N
N

N

HAL

open science

Methodology for the derivation of product behaviour in
a Software Product Line

Paul Istoan

» To cite this version:

Paul Istoan. Methodology for the derivation of product behaviour in a Software Product Line. Other
[cs.OH]. Université de Rennes; Université du Luxembourg, 2013. English. NNT: 2013REN1S013 .

tel-00925479

HAL Id: tel-00925479
https://theses.hal.science/tel-00925479

Submitted on 8 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00925479
https://hal.archives-ouvertes.fr

ANNEE 2013

UNIVERSITE DE & = l""l“

UNIVERSITE DU
LUXEMBOURG

THESE / UNIVERSITE DE RENNES 1

sous le sceau de [’Université Européenne de Bretagne

o

pour le grade de
DOCTEUR DE L’UNIVERSITE DE RENNES 1

Mention : INFORMATIQUE
Ecole doctorale Matisse

présentée par

Paul Alexandru ISTOAN

Thése soutenue & Luxembourg
le 21-02-2013

devant le jury composé de :

Philippe LAHIRE

Prof. Dr. , University of Nice / rapporteur

Methodology for the , y / xapp
David BENAVIDES

derivation Of pI’OdllCt Prof. Dr. , University of Seville / rapporteur

Pascal BOUVRY

Prof. Dr. , University of Luxembourg / exami-

behaViour in a nateur

Olivier BARAIS

Assoc. Prof. Dr. | University of Rennes 1 /
examinateur

Jean-Marc JEZEQUEL
Prof. Dr. | University of Rennes 1/ directeur de

Software Product Line

these
Nicolas GUELFI
Prof. Dr. | University of Luxembourg / co-

directeur de thése

Nicolas BIRI
Dr. , Centre de Recherche Public Gabriel

Lippmann / membre invite

Alfredo CAPOZUCCA

Dr. , University of Luxembourg / membre invite

To loana, Matei, Smaranda and loan.

CONTENTS

Page

Contents e 6
List of Figures e 10
List of Tables e 11
1. Introduction 1
1.1 Research domain 1
1.1.1 Software Engineering oo 1

1.1.2 Software Product Lines 2

1.1.3 Model Driven Engineering 0L 3

1.1.4 Business Process Modelling 0. 4

1.2 Problem statement oL 4

1.3 Contributions of the thesis 6
1.4 Thesis organization Lo 10

2. Background 12
2.1 Software Product Lines o 12
2.1.1 General notionso 13

2.1.2 SPLE process e 14

2.1.3 Domain Engineering oo oL 15

2.14 Application Engineering oL 16

2.1.5 Benefits and disadvantages L. 17

2.1.6 Variability in SPL oo 19

2.1.7 Feature Modelling 25

2.2 Model Driven Engineering o 29

2.2.1 Models and meta-models 30

Contents

2.2.2 Model transformations L oL 33
2.2.3 Model driven language engineering 37

2.3 BuSIness ProCesses v v v e e e e e 40
2.3.1 DBusiness process management 42
2.3.2 Business process modelling oL 44
2.3.3 Business Process Modeling Notation 46
234 PetriNets e 52

. SPL methodology for the derivation of product behaviour 60
3.1 Overview of the methodology 62
3.2 Construction of the feature diagram 67
3.2.1 Feature diagram dialect and meta-model 67
3.2.2 Feature diagram construction process. 70

3.3 Creation of business process fragments 74
3.3.1 Overview of business process fragments 74
3.3.2 DBusiness process fragment construction process 76

3.4 Verification of business process fragments 78
3.4.1 Verification of structural and behavioural correctness 79
3.4.2 Business process fragment verification process 81

3.5 Association of business process fragments to features 83
3.6 Configuration of the feature diagram 84
3.6.1 What is a feature diagram configuration? 84
3.6.2 Feature diagram configuration process 87

3.7 Product derivation specificationo 0oL 89
3.7.1 Composition interfaces 89
3.7.2 Composition operators 90
3.7.3 Product derivation specification process 92
Language for modelling and composing business process fragments 96
4.1 What is a composable business process fragment? 97
4.2 Abstract syntax 100
4.2.1 Relation with BPMN standard 100
4.2.2 Language meta-model 102

4.2.3 Language support for composing business process fragments 113

Contents 5

4.2.4 Language support for product derivation specification 123

4.3 Concrete graphical syntax oo 126
4.3.1 Direct definition of graphical concrete syntax 126
4.3.2 Meta-model based graphical concrete syntax 131

4.4 Translational semantics oL Lo o 139
4.4.1 Meta-model of Hierarchical Coloured Petri Nets 141
4.4.2 Model-to-model transformation from CBPF to HCPN 142

5. Verification of business process fragment correctness 155
5.1 Notion of "correctness” for business process fragments 156
5.2 Verification of structural correctness of business process fragments 158
5.3 Verification of behavioural correctness of business process fragments 163
5.3.1 Using HCPN for business process fragment verification 164
5.3.2 Verification of general behavioural properties 165
5.3.3 Verification of fragment specific behavioural properties 169

6. Exemplification of the proposed methodology and tool support 175
6.1 Introducing the bCMS case study 175
6.2 Applying the proposed SPL methodology on the bCMS case study 178
6.2.1 Construction of the feature diagram 178
6.2.2 Creation of business process fragments 183
6.2.3 Verification of business process fragments 190
6.2.4 Association of business process fragments to features 194
6.2.5 Configuration of the feature diagram 196
6.2.6 Product derivation specificationo L. 199

6.3 Tool support 206
6.3.1 Tool requirements 206
6.3.2 General architecture of thetool 207
6.3.3 Modules of the tool 212

7. Perspectives 226
7.1 Defining composition operators for the CBPF language 226
7.1.1 Mathematical specification of business process fragments 228
7.1.2 Proposed composition operators. 230

7.2 Composing business process fragments using aspect weaving 245

7.3 Modelling data for business process fragments 252

6 Contents

8. Conclusion e 254

Appendix 273

A. Annex 2: business process fragments for the bCMS case study 275

LIST OF FIGURES

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

General SPL engineering process [PBvdLO05] 15
Classification of SPL variability modelling approaches. 22
Feature diagram dialects - synthesis of variability modelling concepts 27
The four layer meta-modeling architecture 33
Overview of Model Transformation process. 35
Graphical notation for core set of BPMN elements 02
General steps of the proposed methodology 66
Feature diagram meta-model 68
Complete process for creating the feature diagram 71
Complete process for creating business process fragments 77
Complete process of verification of business process fragments 82
Feature diagram meta-model: associating fragments to features 83

Complete process of associating business process fragments to features from

the FD o o o e 85
Complete process of configuring the feature diagram 88
Steps of the product derivation specification process 93
Frequency distribution of BPMN construct usage [Recl0] 101
Core structure of the business process fragment modelling language 103

Excerpt of composable business process fragment meta-model: flow objects 105

Excerpt of language meta-model: swimlanes and connecting objects 106
Excerpt of language meta-model: newly introduced concepts 110
Excerpt of language meta-model: composition interface 111
Meta-model of composable business process fragment modelling language . . 112
Excerpt of language meta-model: composition operators 122

Excerpt of language meta-model: support for product derivation specification125

4.10 Graphical concrete syntax: representation of activities, events and gateways 128

List of Figures

4.11
4.12
4.13
4.14
4.15
4.16

4.17
4.18
4.19
4.20
4.21

4.22
4.23

5.1
0.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10
6.11

6.12
6.13
6.14

Graphical concrete syntax for: swimlanes, connecting objects and artifacts . 129
Graphical concrete syntax for product derivation specification elements . . . 130
A general model of diagrams for describing the concrete syntax of the language132
Concrete graphical syntax and relation with abstract syntax - part 1 135
Concrete graphical syntax and relation with abstract syntax - part 2 137

Example of business process fragment created with CBPF : transportation

booking 138
Meta-model of Hierarchical Coloured Petri Nets 140
Mapping template from CBPF to HCPN: task and sub-process 143
Mapping template from CBPF to HCPN: gateways 145
Mapping template from CBPF to HCPN: events 147
Mapping template from CBPF to HCPN: sequence flow, message flow, data

association, data objects and composition tags 149
Mapping transportation reservation fragment to HCPN: Step 1 151
Mapping transportation reservation fragment to HCPN: Step 2 153
Generic query function for node search and processing 173
Pseudo-code description of SearchNodes function 174
Overall view of the environment and the desired system 176
Domain model of the bCMS system 179
Complete feature diagram of the bCMS system 182
Communication establishment business process fragment 184
Creation of coordinated route plan business process fragment 186
Closing the crisis business process fragment 187
PSC send and receive business process fragment 188
Multiple crisis business process fragment 188

SSL communication protocol for vehicle management business process frag-
MENt . . . o Lo e e e 189

PSC authentication using symmetric encryption business process fragment . 191

Transforming the Creation of coordinated route plan business process frag-
ment into a HCPN 192

Connecting features to business process fragments for the bCMS case study 195
Feature diagram configuration of bCMS product 198

"Coordinator identification" business process fragment after adding compo-
sition tagso 201

List of Figures 9

6.15

6.16
6.17
6.18
6.19
6.20
6.21
6.22

6.23
6.24
6.25
6.26
6.27

7.1
7.2
7.3
7.4
7.5

7.6

7.7

7.8

7.9

7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17

"Objective complete coordination" business process fragment after adding

composition tags L 202
First part of composition workflow for bCMS example 204
Second part of composition workflow for bCMS example 205
General architecture of SPLIT tool 208
Usage of the SPLIT tool, 211
Screenshot of the Feature Diagram Editor 213
CBPF to HCPN tranformation using ATL: mapping the root elements . . . 217
CBPF to HCPN tranformation using ATL: mapping CBPB objects into

HCPN elements 217
Screen-shot of CPN Tools interface 218
Architecture of the Fragment to aspect adapter module 222
Join-Point meta-model 223
Class Diagram of the Join Point Detector Module 224
Class Diagram of the Weaver Module 225
Sequential composition operator for business process fragments 231
Parallel composition operator for business process fragments 232
Exclusive choice composition operator for business process fragments 234
Choice composition operator for business process fragments 235

Unordered (arbitrary) sequence composition operator for business process

fragments 237
Parallel with communication composition operator for business process frag-

ments L. 239
Refinement composition operator for business process fragments 240
Synchronization composition operator for business process fragments 242
Insert after composition operator for business process fragments 244
Sequential weaving with aspects oo oL 246
Choice composition of business process fragments 247
Initial fragment and choice operator 248
Pointcut and Advice built for Choice composition 248
Exclusive choice composition of processes with aspects 249
The eight aspects for the choice composition 250
Input of the refinement composition 251

Pointcutl and Advice built for Refinement composition 252

10

List of Figures

A.1 Communication establishment business process fragment
A.2 Coordinator identification business process fragment
A.3 Crisis details exchange business process fragment
A.4 Creation of coordinated route plan business process fragment
A.5 Vehicle dispatch coordination business process fragment
A.6 Vehicle target arrival coordination business process fragment
A.7 Crisis objective complete business process fragment
A.8 Vehicle return coordination business process fragment
A9 Close crisis business process fragment
A.10 Vehicle management - PSC send and receive business process fragment . . .
A.11 Vehicle management - FSC send and receive business process fragment . . .
A.12 Vehicle management - PSC receive business process fragment
A.13 Multiple crisis business process fragment
A.14 SOAP communication protocol business process fragment
A.15 SSL communication protocol business process fragment
A.16 Encrypted data communication business process fragment
A.17 Password based authentication business process fragment
A .18 Certificate based authentication business process fragment
A.19 Symmetric encryption authentication business process fragment
A.20 One time password based authentication business process fragment
A .21 Authentication based on mutual authorization business process fragment . .
A.22 HTTP based communication layer business process fragment

A.23 SOAP based communication layer business process fragment

LIST OF TABLES

12

List of Tables

1. INTRODUCTION

Abstract

In this chapter, both the problems that address this thesis and the objec-
tives that motivated its development are introduced. The chapter opens with the
presentation of the dimensions of interest that represent the research domain.
Then, the current problems that have been found in this domain are clearly
stated. This is followed by a list of contributions of this thesis, aimed at solving
these identified problems. The chapter ends with an overall description of the
organisation of the thesis.

1.1 Research domain

1.1.1 Software Engineering

The increasingly complex and competitive market situation places intense demands on
companies, requiring them to respond to customer needs, and to deliver more function-
ality and higher quality software faster. Software industry is constantly facing increasing
demands for "better, faster, cheaper" and the increasing complexity of software products
and projects have significantly "raised the bar" for software developers and managers to
improve performance.

Ed Yourdon in his foreword for the "Managing Software Requirements" book [LW99],
describes software systems as being, by their nature, "intangible, abstract, complex, and
d in theory at least 4 "soft" and infinitely changeable”. All these indicate that software
development is a highly complex, dynamic task, which is not only determined by the choice
of the right technologies, but also & to a large extent &4 by the knowledge and skills of the
people involved. The success of software organisations depends on their ability to facilitate
continuous improvement of products and on the effectiveness and efficiency of software
product development.

The significant impact of software on today’s economy generates considerable interest in
making software development more cost effective and producing higher quality software.
However, almost since software engineering emerged, software engineers have had to cope
with the famous "software crisis", challenging their abilities to provide satisfactory so-
lutions within a reasonable time. All over the world, organizations developing software
intensive systems are today faced with a number challenges. These challenges, related to
characteristics of both the market and the system domain, may include:

e Systems grow ever more complex, consisting of tightly integrated mechanical, elec-
trical /electronic and software components.

2 1. Introduction

e Systems are often developed in series, ranging from a few to thousands of units. This
implies that it is important to achieve efficient development, since development costs
are carried by only a few units.

e Systems have very long life spans, typically 30 years or longer. This implies that it
is important to develop high quality systems, and to achieve effective maintenance
of these systems once developed.

e Systems are developed with high commonality between different customers; however
systems are always customized for specific needs. This implies that there is potential
for high levels of reuse of development efforts between different customer projects.

Throughout the last decades, the software engineering community has developed some
innovations that are enabling engineers to tame the inherent complexity of modern systems
and to develop them more rapidly. Among them, this thesis identifies software product
lines, model driven engineering and business process modelling as mainstays to define an
approach capable to address the aforementioned challenges.

1.1.2 Software Product Lines

Software reuse has become a significant ingredient of software development due to rapid
and large amount of software production. The organizations adopt this approach to reduce
cost, time to market and to increase the quality of the software. During 19804s object
oriented programming brought reuse in the form of classes and later, component based
software development introduced reuse in the form of components. These methods did not
obtain the original benefits of reuse due to the usage at a very small scale and opportunistic
reuse.

In the late 1980s a growing number of software development organizations started adopt-
ing approaches that emphasize proactive reuse, interchangeable components, and multi-
product planning cycles to construct high-quality products faster and cheaper. Standard
methods, referred to as software product line or software family practices, have developed
around these approaches.

The concept of "product line” is not new and engineers in various domains, such as the
automotive sector, have adopted this concept of development for the last few decades, to
benefit from the advantages that SPL engineering offers. However, with regard to software,
systematic reuse, including variability concepts, is still challenging and a relatively new
problem.

Software product line engineering (SPLE) came into being in 1990s. In this approach the
reuse is planned, large in scale, wide in range and profitable. The reuse includes artefacts
which are costly to develop from scratch and planned in such a way to be used in a family of
related products. SPLE is an extensive approach to organizing the continuous development
of software products, where the main property is the planned, prepared, and anticipated
reuse of a set of domain artefacts for later fast and efficient composition of applications.
This software development paradigm enables reuse of common parts but at the same time
allows for variations. The basic idea of this approach is to use domain knowledge to identify
common parts within a family of related products and to separate them from the differences
between the products. The commonalties are then used to create a product platform that
can be used as a common baseline for all products within such a product family.

1.1. Research domain 3

SPLs are gaining widespread acceptance and various domains already apply SPL engineer-
ing successfully to address the well-known needs of the software engineering community,
including increased quality, saving costs for development and maintenance, and decreas-
ing time-to-market. SPLs offer a systematic reuse of software artefacts within a range of
products sharing a common set of units of functionality.

This thesis will analyse the SPL engineering domain and its latest progress. It will iden-
tify some of the issues that are currently being faced for applying software product line
engineering approaches and will propose viable solutions to those problems.

1.1.3 Model Driven Engineering

As we have seen, the main problem software engineers are faced with is complexity. It may
be accidental (i.e. related to a particular technology we are using to develop systems) or
essential (related to the problem to solve). One possible approach to deal with complexity
is the use of models. Models have been used in various engineering disciplines such as civil
engineering or anatomy to reason about the system to be built.

Modelling is a cornerstone of all traditional engineering disciplines [Sel03]. From the con-
ception and design, through the construction and maintenance of any engineered system,
modelling plays a crucial role. Throughout the last decades software engineers have ex-
plored how lessons learned from traditional engineering disciplines can be applied to the
design, construction, deployment and maintenance of software systems. The solution pro-
posed is called Model Driven Engineering (MDE). This software development paradigm
raises the abstraction level for system specification and is highly regarded as a viable so-
lution for building complex software systems. The overall objective of MDE is to increase
productivity and reduce the time to market by enabling the development of complex sys-
tems by means of models [Sel03].

The guiding principle of this new software engineering trend is to focus on models rather
than on computer programs. Models provide a view of the system from a certain per-
spective, that is they concentrate on some relevant aspects of the system while abstracting
others. Therefore, models are easier to read and facilitate the understanding of the system.
Unlike in civil engineering, software models can also be used to actually build the system
by transforming them from requirements to system implementation.

MD also promotes the notion of "platform independence”, as a solution to perpetuate
software design decisions with respect to technological changes. Abstract models of a
system can be freed from any information about the technology that will be actually used
to develop the system. Technology-dependent concrete models can be generated thanks to
model transformation and via separate models describing the target platform.

This thesis adheres to the MDE principles, in particular for domain specific language
design. We use the meta-modelling technique when addressing the definition of modelling
languages (for abstract and concrete syntax definition). Moreover, the concept of model
transformation is also extensively used. Hence, the notions of model, meta-model, model
conformance and model transformation are major concerns on which this thesis relies on
for the achievement of its contributions.

4 1. Introduction

1.1.4 Business Process Modelling

We have seen that the main focus of the business and commercial worlds is to automate and
improve production efficiency, reduce costs and tame the complexity of modern systems.
Thus, many companies had to improve their business to keep their customers. This moment
triggered the awareness of organisations of the importance of business processes. They
became the key to a successful business.

Value-adding processes have become more and more the principle of organising the busi-
ness. Hence the modelling of business processes is becoming increasingly popular. Both
experts in the field of Information Technology and Business Engineering have concluded
that successful systems start with an understanding of the business processes of an organ-
isation.

A business process is the combination of a set of activities within an enterprise with a
structure describing their logical order and dependence whose objective is to produce a
desired result. Business process modelling enables a common understanding and analysis
of a business process. A process model can provide a comprehensive understanding of
a process. An enterprise can be analysed and integrated through its business processes.
Hence the importance of correctly modelling its business processes.

Business Process Management (BPM) is an established discipline for building, maintaining,
and evolving large enterprise systems on the basis of business process models. Organiza-
tions attempt to improve their business performance by applying BPM methods. BPM has
become an essential way of controlling and governing business processes. Business process
modelling is a key phase of the BPM life-cycle, which intends to separate process logic from
application logic, such that the underlying business process can be automated [SBWO04].
The modelling of business processes is becoming increasingly popular and plays a pivotal
role in the business process management discipline.

However, the modelling of business processes is complex due to several reasons. The real-
world processes are large and complex but must be captured in process models. This
thesis makes use of business processes and business process modelling to a large extent.
There is a clear synergy between business process modelling and MDE which we try to
exploit. Moreover, all of these concepts are applied in the context of software product line
engineering.

1.2 Problem statement

Software Product Line Engineering (SPLE) is a recent software development paradigm of-
fering software suppliers/vendors new ways to exploit the existing commonalities in their
software products and to support a high level of reuse, thus generating important quan-
titative and qualitative gains in terms of productivity, time to market, product quality
and customer satisfaction. This technique has gained a lot of attention in recent years
by both research and industry. The SPLE process consists of two major steps: Domain
Engineering deals with core assets development, while Application Engineering addresses
the development of the final products.

Throughout the past years, the product line community has mainly focused on the Domain
Engineering phase of the process. A review of SPLE literature indicates that Application
Engineering (product derivation), a key phase of the SPL process that can be tedious and

1.2. Problem statement 5

error-prone, has been given far less attention compared to Domain Engineering. Implicitly,
there arises the need for new product derivation techniques in the SPL research field.

To address this situation, SPLE has recently turned towards Model-Driven Engineering
(MDE), identified as a software development paradigm able to offer viable solutions for
improving product derivation. MDE advocates the use of models to face the inherent
complexity of software systems. The result of the derivation process is the model of an
individual product obtained from the core assets. Two types of models, each offering a
different view of the derived product, can be obtained: structural and behavioural. Struc-
tural models provide a static view of the derived product. Behavioural models illustrate
the dynamic behaviour of the product and the general flow of control. Most of the work
in SPLE addresses the derivation of structural product representations, neglecting or just
briefly addressing the problems inherent to the derivation of product behaviour. This yields
an unwanted situation, as the behavioural product representation is as important as the
structural one. The few existing techniques that try to address to some extent the issue of
deriving product behaviour lack the "end-to-end" dimension, meaning they do not cover
both domain engineering and application engineering phases of the SPLE process.

Taking into consideration all of the afore mentioned reasons, the major problem addressed
in this thesis is the definition of a methodology for software product line engineering that
covers both Domain Engineering and Application Engineering phases of the SPLE process
and which focuses on the derivation of behavioural models of SPL products. By applying this
methodology we want to produce behavioural models that belong to the analysis and early
design levels of the software development life-cycle. Thus, the behavioural models obtained
as a result of applying this methodology should describe the business and operational
step-by-step workflows of activities/actions performed by the derived product. BPMN,
the standard for modelling business processes, has been selected as the specific type of
model used for representing the behaviour of derived products. The proposed methodology
can be applied in general software engineering domains, it does not target a specific one.
We require several qualities from the proposed methodology: scalable, comprehensible,
suitable, expressive enough, can be easily maintained and supports modifications.

From another perspective, we want to develop this methodology following model driven
engineering principles. This is due to the fact that in software engineering, models allow to
express both problems and solutions at a higher abstraction level than code. MDE treats
models as first-class elements in the software development process. By applying an MDE
approach, it is possible to reduce design complexity and make software engineering more
efficient by shifting the focus from implementation to modelling.

Another challenge that lies ahead is to propose and deliver the appropriate tool support
for the methodology. The availability of good tool support will enable users to better
understand and more easily apply the proposed methodology. Moreover, tool support
facilitates assessing the entire methodology on appropriate case studies for showcasing its
characteristics and strong points.

As the main focus of the methodology is to obtain behavioural representations of SPL
products, this also implies to solve the following problem: how to model a complex be-
haviour starting from several simpler ones? One of the factors that contributes to the
difficulty of developing complex behaviours is the need to address multiple concerns in
the same artefact. This situation emphasizes the need for separation of concerns (SOC)
mechanisms as a support to the modelling of complex behaviours, represented using busi-
ness processes in this case: concerns are defined separately, and assembled into a final

6 1. Introduction

system using composition techniques. This challenge is pointed out by Mosser in [Mos10]:
"there is no approach described in the literature which fulfils the specific goal of supporting
the modelling of complex business processes following a compositional approach, at model
level”.

Another challenge lies in finding both the adequate behavioural formalism that fits the
needs of the analyst as well as a formal composition mechanism that facilitates the gener-
ation of the expected behavioural model.

Regarding the actual composition of business processes, there are currently only a few
proposals. This is currently very much a manual activity, which requires specific knowledge
in advance and takes up much time and effort. The composition problem is one that
cannot easily be solved by a "copy and paste" approach, as it may introduce problems like:
redundancy, update anomalies or inconsistent behaviour in the resulting models. There is
also a need for a formal foundation and notation for the compositions which allows the
creation of business process models from model fragments. All the afore-mentioned reasons
make the question: "how to build a complex behaviour based on simpler ones?" complex to
answer.

1.3 Contributions of the thesis

The main contributions of this thesis are the following:

e A notion of composable business process fragment with the appropriate
language support

A major contribution of this thesis is to introduce the notion of composable business
process fragment as a new unit of reuse for business process modelling. Semantically,
a business process fragment specifies a single abstract functionality. It implements
the behaviour of a single feature. Business process fragments are blocks of process
logic with strictly defined boundaries. They fulfil the need of another unit of reuse,
one that allows fine-grained reuse of process logic within the range from atomic
language constructs to sub-processes and whole processes. Fragments have relaxed
completeness and consistency criteria compared to regular business processes and
may be partially undefined.

We also propose a language that supports the modelling of such composable business
process fragments. It is called CBPF and is based on the BPMN language, the
standard defined by OMG for modelling business process flows which promotes a
process oriented approach for modelling system behaviour. We use BPMN as the
basis for defining the CBPF language because it provides a notation that is easily
readable, usable and understandable by both technical and business users. Based on
existing studies [zMROS8], our language contains only those BPMN elements proven
to be essential for modelling behaviour.

To address the issue of process composition, the CBPF language proposes the concept
of composition interface and composition tag. Using an annotation-based mechanism,
composition interfaces are used to explicitly identify the parts of a process fragment
where it can connect to other fragments or where other fragments can be connected
to it. The interfaces are also an indicator of how this connection can be performed.

1.3.

Contributions of the thesis 7

The CBPF language is created following model driven engineering principles. The
abstract syntax of the language is specified by defining its meta-model which rep-
resents in an abstract way the concepts and counstructs of the modelling language,
and providing the means to distinguish between valid and invalid models. A set
of consistency rules, described using the Object Constraint Language (OCL), are
added on the meta-model in order to express well-formedness constraints for busi-
ness process fragments. We then propose a unique graphical concrete syntax for the
language. It is a crucial element of language design and we therefore treat it as a
separate element within the language description. It is based on the graphical syntax
proposed by BPMN, enriched by concrete syntax representations for the newly in-
troduced concepts. Finally, we define the semantics of the CBPF language following
a translational approach.

A model-to-model transformation that automates the mapping from the
CBPF language towards the Petri Net formalism

Following an MDE approach, we propose a model-to-model transformation that
translates the newly proposed business process fragment modelling language into
the Petri Net formalism. We use a particular class of Petri Nets, called hierarchi-
cal coloured Petri Nets, that have several properties useful when creating a proper
mapping. This model transformation is used for defining the semantics of the CBPF
language in a translational manner.

Model-to-model transformations are used to normalize, weave, optimize, simulate and
re-factor models, as well as to translate between modelling languages. This is the
type of model transformation that we propose. We specify it in terms of a mappings
of elements from the business process fragment modelling language to equivalent
constructs in Hierarchical Coloured Petri Nets (HCPN). The transformation is uni-
directional and covers the entire set of elements.

The goal of this transformation is twofold:

— as the business process fragment modelling language does not have a formally
defined semantics, the mapping is used for provide a formal semantics to the
language using a translational semantics;

— as Petri Nets are a well-known formalism, several well defined analysis ap-
proaches and tools exist for it. The second goal of the mapping is to allow
access to these tools and thus facilitate the verification of behavioural correct-
ness of business process fragments.

A new set of composition operators created specifically for the composition
of CBPF models

An essential part of any composition process are the composition operator that are
applied. Another contribution of this thesis is to propose a set of composition oper-
ators created specifically for composing business process fragments. The operators
are inspired from well known and well defined composition operators proposed for
the Petri Net language.

We formally define a set of 10 binary composition operators for business processes.
The operators are included in the business process fragment meta-model. The seman-
tics of each operator is defined using a translational semantics towards an equivalent
Petri net composition operator. The notion of composition interface is crucial for the

1. Introduction

specification of the operators, as it indicates precisely the places where the models
taken as input by the operator will be modified during the actual composition.

These composition operators are used during the product derivation process, for
composing business process fragments into the final product behaviour. However,
they are valuable by themselves and can also be used independently from the SPL
context, whenever we need to compose two business processes into a new one.

e An approach for verifying the correctness of business process fragments
from both a structural and behavioural perspective

The notion of correctness for composable business process fragments is defined as the
summation of two simpler properties: structural correctness and behavioural correct-
ness.

— Structural correctness: a business process fragments is considered to be struc-
turally correct if it satisfies a set of consistency rules. We propose a set of such
well-formedness rules for business process fragments and specify them using
OCL directly on the CBPF meta-model. Therefore, all business process frag-
ments created based on this meta-model will have to satisfy these consistency
rules to be valid with respect to the CBPF meta-model.

— Behavioural correctness: requires the verification of several dynamic properties
on a business process fragment, which cannot be statically checked. There are
two types of behavioural properties that we want to verify. First of all, we
propose to check a predefined set of general properties, which should hold on
every business process fragment, like: absence of dead states, live-lock analysis,
reachability analysis for end states and composition interfaces. Secondly, we
want to allow the user the possibility to verify certain properties specific to
individual fragments. To enable this, we provide several generic verification
templates written in the CPN query language which the user can adapt to
his particular needs. For performing all the behavioural verifications, we first
apply a model-to-model transformation that transforms the business process
fragment into an equivalent hierarchical coloured Petri net. The verification of
the behavioural properties is then performed on the resulting Petri net using
CPN Tools, a well known Petri net verification tool.

¢ A new SPLE methodology, focusing on the derivation of product be-
haviour

Another main contribution of this thesis is a new software product line engineer-
ing methodology that focuses on the derivation of product behaviour. By applying
this methodology, we can produce behavioural models that belong to the analysis
and early design levels of the software system development life-cycle. The proposed
methodology covers only the derivation of behavioural product models and does not
address the structural product representation. However, it can be used together with
other product derivation techniques for obtaining the structural product models.

The methodology follows the classical SPLE process [vdL02]| and covers both Domain
Engineering and the Application engineering phases:

— during Domain Engineering, we propose to capture domain knowledge using the
newly introduced concept of reusable/composable business process fragments.
These composable process fragments represent our core assets base, from which

1.3. Contributions of the thesis 9

new behavioural product models will be later created. We choose to capture
the commonality and variability in the domain in a separate variability model,
represented as a feature diagram. We apply the SOC principle and keep the
core assets and the variability representations separate. Moreover, in order to
facilitate the product derivation process, we connect features from the feature
diagram to business process fragments by association. This relation is explic-
itly specified in the feature diagram meta-model. Moreover, we want to ensure
that business process fragments from the core assets base are correct prior to
composition. Therefore, we propose to apply the approach for the verification
of business process fragment correctness from structural and behavioural per-
spective which was previously mentioned.

— during Application engineering, we create new products from the core assets
base using a compositional approach. We propose a new derivation approach
that uses positive variability and which creates a new business process that
models the behaviour of the derived product. In a first step, we require the
contribution of the user for creating a particular product configuration based on
a selection of features performed on the feature diagram. Once the selection is
done, the business process fragments associated to the selected features are also
implicitly selected. The next step is to create a composition workflow that ex-
plicitly defines both the order in which the selected fragments are composed and
also the composition operators that will be applied. The composition process
itself is influenced by the composition interfaces defined on the business process
fragments. The composition operators that we previously proposed are used
for composing the business process fragments, resulting the final behavioural
product representation.

e Tool support for the proposed SPLE methodology

Good tool support is one of the key elements for the fast adoption of any new method-
ology and language. Thus, it is of the utmost importance to provide the product line
engineer with a tool that will allow him to practically apply the concepts and ideas
proposed by our methodology. Moreover, after designing a domain-specific language
like CBPF, the next important task is to determine how to provide the supporting
tools for the modelling language. Thus, the SPLIT tool suite, a tool that supports
the users in applying all the phases of our SPL methodology is also proposed in this
thesis. We describe initially the general requirements that such a tool should fulfil,
like: Support for modelling and configuring feature diagrams, creating CBPF mod-
els, support for verifying and composing business process fragments. The SPLIT tool
suite has been developed as a set of Eclipse plug-ins which are meant to be integrated
as a single tool that is capable of fulfilling the previously mentioned requirements.
We propose a modular tool architecture, to facilitate plugin-development and devel-
opment iterations, by distributing different tasks of the tool to different modules of
the architecture. This allows the swapping of strategies and approaches, while main-
taining a fully functional tool, and in this manner quantitatively and qualitatively
compare multiple implementation options for the same module section.

Finally, for better understanding, the methodology is applied on a medium scale case
study. This serves to point out the characteristics of the approach and also its strong
and weak points.

10 1. Introduction

1.4 Thesis organization

The thesis is organised in eight chapters, plus some appendixes with additional information
useful for the understanding of the thesis content. In the following, a summary of the
content of each chapter and appendix is given.

Chapter 2 introduces the necessary background related to the areas of software product
line engineering, model-driven engineering and business process modelling, as the claimed
thesis contributions rely on these domains. Hence, it is in this chapter that the reader will
be introduced to the concepts and principles that govern the field of Model-Driven Engi-
neering. Core concepts like model, meta-model and model transformation are presented.
Special attention is dedicated to the definition of domain specific languages using following
an MDE approach. We also present software product line engineering, which is rapidly
emerging as a viable and important software development paradigm aimed at handling the
exponential increase in complexity and variability of modern software. Finally, we present
business processes and business process modelling, since experts in the fields of Informa-
tion Technology and Business Engineering have concluded that successful software systems
start with an understanding of the business processes of an organisation.

Chapter 3 presents one of the main contributions of this thesis and proposes a new software
product line engineering methodology that focuses on the derivation of product behaviour.
A methodology can be seen as a framework for applying software engineering practices with
the specific aim of providing the necessary means for developing software-intensive systems.
By applying the proposed methodology, behavioural product models can be produced that
belong to the analysis and early design levels of the software development life-cycle. The
behavioural models obtained should describe the business and operational step-by-step
workflows of activities/actions performed by the derived product. We first define the main
flow of the methodology and then describe in detail its specific individual steps.

Chapter 4 presents a new domain specific language called CBPF created specifically for
modelling composable business process fragments. The most common approach to obtain
business process fragments is to create them from scratch, as concrete implementations of
the features from the feature diagram of the SPL. For this purpose, adequate language
support is required. We start by precisely defining what a business process fragment really
is. Then, a model driven approach is followed for creating and specifying the CBPF domain
specific language. We first describe the high-level structure of the CBPF language and its
abstract syntax by means of a meta-model representation. We continue the language
description by we proposing a unique graphical concrete syntax. We conclude the chapter
by defining the semantics of the CBPF language following a translational approach, by
proposing a mapping of CBPF concepts onto the Hierarchical Coloured Petri Net (HCPN)
formalism.

Chapter 5 several types of verifications that can be applied to business process fragments
in order to determine their "correctness”. Business process fragment verification is also
a key step of the proposed SPL methodology. We first define the notion of "correctness”
for business process fragments as the summation of two other properties: structural cor-
rectness and behavioural correctness. The structural verification of a business process
fragment is ensured by defining a set of adequate fragment consistency rules that should
be valid for every business process fragment that can be created with the CBPF language.
These well-formedness rules are defined using OCL directly on the CBPF meta-model. To
perform the verification of behavioural correctness, we must first transform the business

1.4. Thesis organization 11

process fragment under analysis into an equivalent HCPN with the help of a model-to-
model transformation that we propose. Business process fragment behavioural properties
are separated into two major classes: generic ones which specify general dynamic proper-
ties that any business process fragment should fulfil; fragment specific properties for which
we propose several property templates that can be adapted and used by the product line
engineer to check them.

Chapter 6 exemplifies the proposed SPL methodology by applying it to a case study from
the crisis management system domain. the case study also serves to facilitate the under-
standing of the concepts and functioning of the CBPF language, and also to exemplify the
proposed verification techniques of business process fragments. After briefly introducing
the bCMS case study, we follow the methodology and, for each of its steps, explain and
exemplify how it applies on the case study. In the second part of the chapter we present
the SPLIT tool suite, which is the tool support that we propose for our methodology. We
describe the general requirements that such a tool should fulfil. We then present the gen-
eral architecture of the proposed tool and discuss in more details the different tool modules
and the functionalities each of them provides.

Chapter 7 describes extensions, improvements and potential directions for future research.
We propose a set of composition operators for the CBPF language, designed specifically for
composing business process fragments. We also propose to investigate the integration of
data and data modelling for business process fragments. Furthermore, we identify aspect
weaving as a possible approach for composing business process fragments, and present how
two fragments together with the composition operator to be applied for composing them
can be transformed into base and aspect and woven together.

Finally, Chapter 8 concludes the thesis, summarising the main achieved results.

2. BACKGROUND

Abstract

The research context of this thesis is scoped by three research areas: (1)
Software Product Lines (SPL), (2) business processes, and (3) Model-Driven
Engineering (MDE). The goal of this chapter is to introduce the relevant con-
cepts belonging to each of these areas in order to facilitate the understanding of
this thesis for the reader and allow him to acquire the required background on
which the claimed thesis contributions rely on. The presentation of the back-
ground s structured in three parts, one for each area of interest. Section 2.1
introduces the general terminology about Software Product Lines and discusses
what makes them successful. The general SPL engineering process is then pre-
sented. Indiwidual sub-sections are dedicated to discussing in more details the
characteristics of each step of the process. We then focus on variability, one of
the key characteristics that distinguishes SPL from other software engineering
approaches. A separate sub-section is dedicated to Feature Modelling, the most
popular SPL wvariability modelling technique. Section 2.2 presents the MDE
field by giving information about its aim, and describing in details the concepts
and principles that govern this area. We discuss the importance of models and
meta-models for MDE and the use of model transformations. A presentation
of how MDE principles can be applied to language engineering is also provided.
Finally, section 2.3 addresses business processes and business process modelling
and their increasing importance in modern enterprises. BPMN, the standard
for modelling business processes and process flows, is discussed in details. We
end with a presentation of the formal language Petri Nets.

2.1 Software Product Lines

Until recently, software systems were either designed to have an extensive list of possible
features, or they were particularly produced for a single customer. Furthermore, software
solutions were originally quite static and every change implied extensive changes of existing
source code. This is no longer an option for contemporary software systems. Software
solutions also have to deal with an exponential increase in complexity and variability, due
to the constant evolution of the market. Interests of the software producer, to maximize his
benefits and minimize production costs, come into contradiction with those of the customer,
who expects an increase in quality of the delivered software. Therefore, especially when size
and complexity exceed the limits of what is currently feasible with traditional approaches,
new approaches to software development to address the above mentioned issues are required
by the software development community.

Software Product Lines (SPL), or software families, are rapidly emerging as a viable and
important software development paradigm aimed at handling such issues [Nor99|. Use

2.1. Software Product Lines 13

of product line approaches allowed renowned companies like Hewlett-Packard, Nokia or
Motorola to achieve considerable quantitative and qualitative gains in terms of productivity,
time to market and customer satisfaction [SEI].

2.1.1 General notions

The "software product line" concept has its origins in the program families approach of
Parnas [Par76]. It only drew the attention of the software engineering community when
software began to be massively integrated in families of hardware products, cellular phones
[MHO5] being the best known example. Several other areas, like automotive systems,
aerospace or telecommunication are also targeted by software product lines.

In the 1990’s, industry was confronted with an increasing demand for individualised prod-
ucts, which meant taking into account the customers’ requirements. For the companies, this
implied higher investments and therefore lower profit margins. Many companies started
to introduce common platforms for their different types of products and plan in advance
which parts can be used in different products. By combining mass customisation and
a common platform, a higher level of reuse and customer satisfaction can be achieved.
The application of these principles for the development of software-intensive systems gave
birth to the software product line engineering paradigm. The use of software product
line engineering practices can efficiently satisfy this need for software mass customization
[PBvdL05, Dav87].

Several definitions can be found in the research literature for the "software product line”
concept:

e Clements et al. define the concept as follows: "a software product line is a set of
software-intensive systems sharing a common, managed set of features that satisfy
the specific needs of a particular market segment or mission and that are developed
from a common set of core assets in a prescribed way" [CNO1]. This definition cap-
tures the fundamental idea of SPL: to reuse a base of managed software artefacts to
systematically define, design, build and maintain a set of related products in a given
domain.

e Bosch defines the concept somewhat differently: "A software product line consists
of a product line architecture and a set of reusable components that are designed
for incorporation into the product line architecture. In addition, the product line
consists of the software products that are developed using the mentioned reusable
assets" |Bos00]. These two definitions share the notion of set of reusable or core
assets. Nevertheless, they provide different perspectives of the concept: market-
driven, as seen by Clements et al., and technology-oriented for Bosch.

e We also retain the definition of Pohl et al.: "Software product line engineering is a
paradigm to develop software applications (software-intensive systems and software
products) using platforms and mass customisation” [PBvdL05]. It focuses on the
idea of software mass customization and the use of a common platform.

SPL engineering (SPLE) focuses on capturing the commonality and variability between
several software products [CHW9S]. Instead of describing a single software system, a SPL
describes a set of products in the same domain. This is accomplished by distinguishing

14 2. Background

between elements common to all SPL members, and those that may vary from one product
to another. Reuse of core assets, which form the basis of the product line, is highly encour-
aged. These core assets extend beyond simple code reuse and may include the architecture,
software components, domain models, requirements statements, documentation, test plans
or test cases [ZJ06a].

The notions of commonality and wvariability are of the utmost importance when referring
to software product lines. In this context, they can be defined as:

o Commonality: a property held uniformly across all the members of the SPL;

o Variability: a property about how members of a SPL differ from each other.

Reuse is another core concept for the SPL paradigm. Software reuse has long been re-
garded as the answer to the "software crisis" [Gib94|. The main goal of software reuse is
to improve software quality and productivity, thereby maximizing a software development
organization’s profits [FK05]. At a first glance, SPL development might resemble to tradi-
tional software reuse, but it is actually much more elaborated. In product line development
reuse is planed, enabled and enforced [SEI12]. The core assets are the reuse repository of
a software product line. They include all the artefacts that are the most costly to develop:
domain models, requirements, architecture, components, test cases, performance models,
etc. Furthermore, these core assets are from the beginning developed to be (re)used in
several products.

SPL focuses on strategic software reuse: "consolidate commonality throughout the product
line, strategically manage all product line variation, and aggressively eliminate all duplica-
tion of engineering effort" [SPL|. Adopting a software product line approach requires an
organization to move from developing single products to developing product families. This
means that everything is developed with reuse in mind, so the effort needed to customize
the reusable assets to fit a new system is largely reduced compared to traditional reuse
approaches.

2.1.2 SPLE process

Adopting the SPLE paradigm implies performing two main activities: domain engineering
and application engineering [WL99, vdL02].

The domain engineering phase, also called development for reuse, focuses on the develop-
ment of core assets throughout the domain analysis, domain design and domain imple-
mentation processes. It is also responsible for defining the commonality and the variability
of the product line. The analysis of the domain performed during this phase gives a set
of requirements which can be reused to define the requirements of an application and to
explicit the necessity to integrate new requirements. A reference architecture, defined by
the domain design, is used to develop and structure applications. A backward and forward
traceability must be established between the reference requirements, the reference archi-
tecture and the reusable components to facilitate the changes and updates management in
the product line.

The application engineering phase, also called development with reuse or product derivation,
consists of developing the final products using core assets and following specific customer
requirements. It consists of three steps: application requirements, application design and

2.1. Software Product Lines 15
FeedBack/
A Adaptatign Y
Domain Domai
Expertise Domain Domain | Domain - c.)r:nalrr)n
Analysis Design "| Implementation Fhgineering
]
Y
Traceability Traceability
Reference D
Reference Lore /-\SSGTS
; = Architecture Reusable
Requirements Components
New
Requirements o L . Application
Application Application Application | £ ineering
Requirements Design Coding
—
Final
products

Fig. 2.1: General SPL engineering process [PBvdLO05|

application coding. In this phase new systems are built based on the results of domain
engineering. During this phase, a feedback process can be used to revise the domain design
and the domain implementation. New products may reveal the necessity to integrate new
reusable components to the product line’s architecture or to modify reusable components.

There is a clear advantage of having a two phase process: a separation of the two concerns,
to build a robust platform and to build customer-specific applications in a short time is
achieved [PBvdL05|. In order to be effective, the two processes need to interact with each
other in a manner that is beneficial to both. The two phases are actually intertwined:
application engineering consumes the assets that are produced during domain engineering,
while feedback from it facilitates the construction or improvement of the core assets. Figure
2.1 graphically represents the general SPL engineering process, as it can be found in the
research literature [vdL02|. The two phases of the SPL engineering process are discussed
in more detail in the following.

2.1.3 Domain Engineering

Domain engineering is the SPL engineering process phase in charge of core assets devel-
opment. It follows a waterfall life cycle model. Its key goals, as satted by Pohl et al.
[PBvdL05] are to:

e define the commonality and the variability of the software product line

e define the set of applications the SPL is planned for (define the scope of the SPL)

e define and construct reusable artefacts that accomplish the desired variability

16 2. Background

Various inputs may be used for core assets development, like: production constraints and
production strategy. Reuse is an important aspect of this phase. The goal is to reuse
available pre-existing components, but also the development experiences of the company.
The assets created during this phase describe partial solutions (such as a component or
design document) or knowledge (such as a requirements database or test procedures) that
engineers use to build or modify software products [Wit96].

Domain engineering also deals with identifying the existing commonality and variability
amongst SPL members. Even if the SPL approach is a new paradigm, managing variability
in software systems is not a new problem and some design and programming techniques
allow to handle variability. However, outside of the SPL context, variability concerns a
single product, and is resolved after the product is delivered to customers and loaded into
the final execution environment. For software product lines, variability should explicitly be
specified and be a part of the SPL. In contrast with single product variability, product line
variability is resolved before the software product is delivered to customers. In [Nor99], the
variability included in the single product is called run time variability, while product line
variability is called development time variability. The topic of SPL variability is discussed
in-depth in a separate sub-section.

2.1.4 Application Engineering

Clements et al.’s definition [CNO1]| of a software product line discussed previously also
mentions that the set of software-intensive systems is developed from a common set of core
assets in a prescribed way. This specific activity is known as application engineering or
product derivation |ZJO6b].

The main goals of application engineering, as stated by Pohl et al. [PBvdL05], are to:

e achieve a high reuse of the domain assets when defining and developing a product
line application

e exploit the commonality and the variability during the development of a product line
application

e document the application artefacts and relate them to the domain artefacts

e bind the variability according to the application needs

According to the derivation technique used, currently available approaches to support
product derivation can roughly be organized in two main categories: configuration and
transformation.

e Derivation by configuration: product configuration or software mass customiza-
tion |[Kru06| originates from the idea that product derivation activities should be
based on the parametrization of SPL core assets, rather than focusing on how indi-
vidual products can be obtained. When all SPL members can be completely char-
acterized, an automated derivation process can be devised. It relies on selecting
product features according to the variants offered by the product line requirements
description. Then, a configuration tool selects and assembles core assets automati-
cally according to a decision model.

2.1. Software Product Lines 17

Several configuration-based approaches base their decision models on feature models
[CHE05b, GFdA98]. In [KKL'98a] the FODA approach is extended in order to
support the description of domain assets at the design level. This idea is also explored
in [CHEO5b]| through the concept of staged configuration: every time the user makes
a choice in the feature model, a new feature model is computed according to user
choices at a lower stage. Product configuration based on feature modelling has also
received commercial tool support: Pure::Variants [Pur| (provides a complete feature
modelling environment integrated with IBM Eclipse IDE) and BigLever GEARS
[GEA] (acts as a "bridge" between several product lines to configure a particular
product).

There are also configuration approaches that do not base their decision model on
feature models. In [BF06], a decision model is used to relate features to their real-
izing software and hardware assets and the contextual information which provides
additional constraints in a single model. This decision model is part of the ConIPF
[HWK™06] methodology.

Van Ommering et al. [vO02| designed an architecture description language called
Koala to define the product architecture based on a pool of components that may
be reused from different product lines. Product derivation is performed by assigning
values for parameters and switches, then a compiler will automatically configure the
product according to these values.

e Derivation by transformation: the introduction of Model Driven Engineering
(MDE) techniques has played a major role in SPL engineering, especially for sup-
porting product derivation, by providing models as useful abstractions to understand
assets, and transformations able to use them as first-class artefacts for product gen-
eration.

In [KMHCO05] the authors propose to derive products by instantiating, via MDE
transformation mechanisms, a framework embodying core assets on the basis of a
decision model and according to the variants selected for a specific product.

In [ZJO6b| Ziadi et al. emphasize product derivation at the design level, for both
static and behavioural aspects. Static models are described in terms of UML class
diagrams. The derivation process uses a decision model taking the form of a design
pattern to display the variants available for each product. Behavioural derivation is
based on the synthesis of state machines from scenarios.

In [PKGJ08a|, Perrouin et al. propose a product derivation process that is a trade-off
between automation and flexibility. They demonstrate how, by combining well-known
derivation approaches, it is possible to provide tool support automating a significant
part of this process.

2.1.5 Benefits and disadvantages

In the following, we briefly outline the key factors that motivate the development of software
under the SPL engineering paradigm:

o Reduction of development costs: this is achieved through the reuse of core assets in
several different kinds of systems, which implies a cost reduction for each system.

18 2. Background

o Improved quality through reuse: the core assets have to prove their proper func-
tioning in different products. This implies extensive quality assurance, therefore a
significantly higher chance of detecting faults and correcting them, thereby increasing
the overall quality of all products.

o Reduction of time to market: for SPL the time to market is initially higher, as the
common artefacts have to be created first. Nevertheless, after this initial phase, the
time to market is considerably shortened, as many artefacts can be reused for each
new product.

e Reduction of maintenance effort: whenever a core asset is modified, the changes can
be propagated to all products in which the artefact is being used. This may be
exploited to reduce maintenance effort.

e Managing evolution and complexity: thee are two close coupled aspects. The intro-
duction of a new artefact into the platform, or the change of an existing one, gives
the opportunity for the evolution of all kinds of derived products. The reuse of core
assets throughout the product line reduces complexity significantly.

e Benefits for the customers: they obtain products adapted to their needs and wishes.
Moreover, they can purchase these products at a reasonable price as SPL helps to
reduce production costs. Additionally, customers get higher quality products.

Besides the clear advantages, the software product line approach has also its risks and
disadvantages. The most important are discussed in the following:

e The introduction of a product line approach implies a major change in mentality and
has a high impact in terms of time and costs. For these reasons, SPL does not appear
accidentally and an explicit effort is required to initiate it.

e Changing an organisation’s original mode of development from single product view
to a product line approach entails a fundamental shift for the organisation and can
bring resistance to changes.

e Another problem is the lack of software engineers that have a global view on the entire
product line. There is a clear need for a software product line expert who knows
perfectly the application domain, has enough responsibility, authority, experience
and understanding of software product line theories.

e Capturing requirements for a group of systems may require sophisticated analysis and
intense discussions to agree on the common requirements and the variation points to

be defined

e SPL core assets must be designed to be robust and extensible so that they can be
used across a range of product contexts. Often, components must be designed to be
more general without loss of performance, or be made extensible to accommodate
product variations.

2.1. Software Product Lines 19

2.1.6 Variability in SPL

Variability is seen as "the key feature that distinguishes SPL engineering from other soft-
ware development approaches” [BFGT02]. In common language use, the term "variability”
refers to the ability or the tendency to change. It is a central concern in SPL develop-
ment [HP03] and covers the entire development life cycle, from requirements elicitation to
product testing. Variability management is thus growingly seen as complex process that
requires increased attention.

2.1.6.1 General notions

In a SPL context, the notion of "variability” has been defined in several ways.

e For Weiss et al. it is "an assumption about how members of a family may differ from
each other" [DMW99.

e According to Bachmann et al. variability means "the ability of a core asset to adapt
to usages in different product contexts that are within the product line scope” |[BC05].

e For Pohl et al. it is the variability "that is modelled to enable the development of
customised applications by reusing predefined, adjustable artefacts”" [PBvdLO05|.

It is important also to clarify what the goal of variability 4s. It is of course desirable to
enable fast and cost effective production of products, but to limit the goal to this does not
suffice. Bachmann et al. assert that the overall goal of variability in a software product
line is to "maximize return on investment for building and maintaining products over a
specified period of time or number of products” [BC05].

With variability being an extensive research topic in SPL engineering, several possible
classifications have been proposed.

e Halmans et al. [HPO03| distinguish between essential and technical variability, es-
pecially at requirements level. Essential variability corresponds to the customer’s
viewpoint, defining what to implement, while technical variability relates to product
family engineering, defining how to implement it.

e A classification based on the dimensions of variability is proposed by Pohl et al.
[PBvdLO05|: variability in time concerns the existence of different versions of an arte-
fact, valid at different times; variability in space defines the existence of an artefact
in different shapes at the same time.

e According to Pohl et al. [PBvdLO05], variability is important to different stakehold-
ers and thus has different levels of visibility: external variability is visible to the
customers while internal variability, that of domain artefacts, is hidden from them.

The management of variability in a SPL is a delicate and complex process. Svahnberg et
al. [SvGBO05| have identified a minimally necessary set of steps to be taken to adequately
complete this process:

20 2. Background

e identification of variability: determine where variability is needed in the product line
(list the features that may vary between products)

e constraining variability: provides just enough flexibility for current and future system
needs

e implementing variability: selects a suitable variability realization technique based on
the previously determined constraints

e managing variability: requires constant feature maintenance and re-population of
variant features.

Several authors propose mechanisms to implement and manage variability especially at
code level. Jacobson et al. [JGJ97| and Bachmann et al. [BC05]| propose to use mechanisms
like inheritance, extensions and extension points, parametrization, templates and macros,
configuration and module interconnection languages, generation of derived components,
compiler directives for this purpose. Recently, tagging approaches were also proposed,
such as [BCHT10]. Svahnberg et al. [SvGBO05| present a taxonomy of different ways to
implement variation points, which they refer to as "variability realization techniques".

It is thus important to mention which are the problems that may affect the introduction,
modelling and management of variability in a SPL. Bosch et al. [BFGT02] identify and
discuss some of these issues:

e the need of a first-class representation for features and variation points, lacking from
most variability modelling techniques, which makes it difficult to distinguish variabil-
ity at the requirements and realisation level;

e dependencies between architectural elements and features are rarely made explicit;

e software configuration management tools fail to support important variability man-
agement aspects;

e lack of methods, techniques and guidelines to help selecting the optimal life cycle
phase when variation points should be introduced, extended or bound;

e selection of variability mechanisms without considering their specific advantages and
disadvantages.

For the past few years, several variability modelling techniques have been developed, which
offer viable solutions to some of the above mentioned problems. Some of the most important
proposals in product line variability modelling are discussed and evaluated in the following.

2.1.6.2 Modelling variability in SPL

As variability is extensively used in SPL engineering, variability related concepts can be
gathered in a separate, dedicated language. In Model Driven Engineering (MDE), the con-
cepts of a domain is explicitly captured in a meta-model. Working at the level of models
and meta-models makes it possible to analyse and classify SPL variability modelling meth-
ods at a higher level of abstraction and objectiveness, and to extract general observations

2.1. Software Product Lines 21

valid for an entire class of approaches. Therefore, we propose a new classification frame-
work that looks at variability modelling approaches from a high level of abstraction and
provides a model driven point of view. We focus on identifying and analysing the central
concepts used by a wide variety of variability modelling techniques and show how they
relate to each other. The analysis is performed at two levels: meta-model and model.

SPLs are usually characterized by two distinct concepts: a set of core assets or reusable
components used for the development of new products - the (assets model); a means to
represent the commonality and variability between SPL members - the (variability model).
Our classification is based on these two concepts.

We performed a thorough analysis of the research literature which indicated two major
directions in SPL variability modelling:

e Methods that use a single model to represent the SPL assets and the SPL
variability:

— Annotate a base model by means of extensions: [Cla01, ZJ06b, GS08, dOJdSGHMO5]

— Combine a general, reusable variability meta-model with different domain meta-
models: [MPL*09|

e Methods that distinguish and keep separate the assets model from the vari-
ability model:

— Connect Feature Diagrams to model fragments: [PKGJ08b, CA05, LGBO0S,
ATKO09|

— Orthogonal Variability Modelling: [PBvdL05, MPH'07]

— ConIPF Variability Modeling Framework (COVAMOF): [SDNB04, SDH06]

— Decision model-based approaches: [DGR10, MS03, SJ04, ABMO0O|

— Combine a common variability language with different base languages: [HMPOT 08|

In this proposed classification, the terms assets meta-model (AMM) and assets model (AM)
cover a broad spectrum, which depends on the point of view of the different authors. Thus,
these notions are further refined for each particular class of methods. Figure 2.2 summarizes
the proposed classification and the newly introduced concepts. It briefly depicts what
happens at both meta-model and model level for the identified classes of techniques. In
the following, we present in more details this classification.

A. Single model to describe the SPL assets and the SPL variability:

This category contains techniques that extend a language or a general purpose meta-model
with specific concepts that allow engineers to describe variability. The core characteristic
of these approaches is the miz of variability and product line assets concepts into a unique
model. Concepts regarding variability and those that describe the assets meta-model are
combined into a new language, that may either have a new, mixed syntax, or one based on
that of the base model extended by the syntax of the variability language. These properties
apply at both meta-model and model level. We further distinguish two sub-categories:

Al. Annotate a base model by means of extensions [Cla01, ZJ06a, GS08, dOJASGHMO05]:
standard languages are not designed to explicitly represent all types of variability. There-
fore, SPL models are frequently expressed by ezxtending or annotating standard languages

22

2. Background

Technique Name Meta-model level Model level

1. Unique model (combined) for

product line assets and PL variability

Annotating the base model by means of AMM+V PLM

extensions (conform to AMM+V)

Combine a general, reusable variability meta- | AMM VMM

model with base meta-models \ / PLM
AMM+V (confirm to AMM+V)

2. Separate (distinct) assets model
and variability model

Connect Feature Diagrams to model fragments

AMM | VMM

AM | VM (FDM)

Orthogonal Variability Modelling (OVM)

AMM | VMM

AM | VM (OVM)

ConlPF Variability Modelling Framework

AMM | VMM

AM | VM (CVV)

(COVAMOF) (CVYV)

Decision model based approaches AMM | VMM AM VM(DM)
(DMM)

Combine a common variability language with | AMM VMM AM VM (CVL)

different base modelling languages (CVL)

Notation used:

AMM - assets meta-model
VMM - variability meta-model

AMM-+YV - assets meta model with variability

CVL — common variability language
DMM - decision meta-model

AM - assets model
VM - variability model

PLM - product line model

FDM - feature diagram model
DM - decision model

Fig. 2.2: Classification of SPL variability modelling approaches.

2.1. Software Product Lines 23

(models). The annotated models are the union of all specific models in a model family and
contain all necessary variability concepts. Regarding our classification, we observe at meta-
model level an assets meta-model enhanced with variability concepts (denoted AMM+V).
The term assets meta-model (AMM) refers here to a base or domain meta-model. Then,
at model level, product line models (denoted PLM) can be derived. They conform to the
AMM~+YV defined at meta-model level. A typical example is the extension of UML with
profiles and stereotypes.

A first approach from this category is that of Clauss [Cla01, CJ01]. He applies variability
extensions to UML Class Diagrams. Clauss uses generic models in which he explicitly de-
fines variability at particular points called hot spots. The extensions proposed are based on
the notions of wariation points (to locate variability) and variants (concrete way to realize
that variability). The following stereotypes are used: ((variationPoint)) , ({(variant)).

A second approach comes from Jézéquel et al. [ZJ06a, ZHJ03|. They define a set of
stereotypes, tagged values and structural constraints and gather them in a "UML profile for
product lines"” |ZHJ03]. Initially, extensions for class diagrams are proposed: ((optional))
stereotype to denote optionality, using UML inheritance to model wvariation points, con-
straints that specify structural rules applicable to all models tagged with a specific stereo-
type. The profile is then extended for sequence diagrams.

We also mention the work of Gomaa et al. |{GS08, Gom05| on multiple-view product line
modelling using UML. The views proposed are: use case model (functional SPL require-
ments), static model (static structural SPL aspects), collaboration model (capture the se-
quence of messages passed between objects), state chart model (address dynamic SPL
aspects). A multiple-view model is modified at specific locations, different for each view:
variation points in the use case model, abstract classes and hot spots in the static model.

A2. Combine a general, reusable variability meta-model with different domain meta-models
[MPL'09]: these approaches focus on the meta-model level, where a two-step process is ap-
plied. Initially, two separate meta-models are created: an assets meta-model and a general,
reusable variability meta-model. They are then combined, resulting in a unique assets
meta-model extended with variability concepts. The term AMM denotes here a domain
meta-model. At model level, product line models can easily be derived.

A representative approach comes from Morin et al. [MPL"09|. They propose a reusable
variability meta-model describing variability concepts and their relations independently from
any domain meta-model. Using Aspect-Oriented Modelling (AOM) techniques, variability
can be woven into any given base meta-model. A central concern of this method is the
definition of a general variability meta-model, which is based on the work of Schobbens et
al. [SHTBO07].

B. Separate the assets model from the variability model:

Techniques in this category have separate representations for the variability and for the
assets model. The key characteristic of such methods is the clear separation of concerns,
which applies at both meta-model and model level. Elements from the variability model
relate to asset model elements by referencing or other techniques. Advantages of these
methods include: each asset model may have more than one variability model; designers can
focus on the product line itself and not on its variability, addressed separately; possibility
for a standardized variability model. We further identify three sub-categories of methods
which share the same principle but differ in the type of variability model used.

B1. Connect Feature Diagrams to model fragments [PKGJ08a, CA05, LGB08, ATK09]:

24 2. Background

despite their popularity, feature diagrams lack a lot of information. The need arises to
combine them with other product representations. An emerging research direction is to
associate model fragments to features. The FD defines the product line variability, with
each feature having an associated implementation. Concerning our classification, there is a
clear distinction between assets and variability related concepts at meta-model level. This
situation extends at model level. For this category, the assets model is of a set of software
artefact /asset fragments. The particular type variability model used is a Feature Diagram
(FD). A more detailed presentation of the techniques belonging to this category is available
in one of the next sections.

B2. Orthogonal Variability Modelling [PBvdL05, MPHT07|: the assets model and the
variability model are still kept separate. The variability model relates to different parts
of the assets model using artefact dependencies. The differentiating factor is the type of
variability model used: an orthogonal variability model (OVM). There is also a difference
regarding the assets model, which is now a compact software development artefact.

The OVM concept was introduced by Pohl et al. [PBvdLO05| as "a model that defines the
variability of a SPL separately and then relates it to other development artefacts like use
case, component and test models”. It provides a view on variability across all development
artefacts. The central concepts are variation points (VP)) and variants (V). Both VPs and
Vs can be either optional or mandatory. Optional variants of the same VP are grouped
together by an alternative choice. The variability model relates to other software artefacts
using traceability links. A special type of relationship called artefact dependency, relates a
V or a VP to a development artefact.

B3. ConIPF Variability Modeling Framework (COVAMOF') [SDNB04, SDHO06]: we include
in this category the COVAMOF method of Sinnema et al. Concerning our classification, we
identify separate variability and assets meta-models at the meta-model level. This reflects
also at model level, where a separate variability model, called COVAMOF Variability View
(CVV), and an assets model can be distinguished.

The goal of COVAMOF is to uniformly model variability in all abstraction layers of a SPL.
Variability is represented using variation points and dependencies. Variation points in the
CVV reflect the variation points of the product family and are associated with product
family artefacts. Dependencies are associated with one or more variation points and are
used to restrict the selection of associated variants.

Bj. Decision model based approaches: this class of approaches differs by using decision
models as a particular type of variability model. For Bayer et al. a decision model "captures
variability in a product line in terms of open decisions and possible resolutions” |BFGO00].
Decision-oriented approaches treat decisions as first-class citizens for modelling variability.

A representative approach is DOPLER (Decision-Oriented Product Line Engineering for
effective Reuse) from Dhungana et al. [DGR10|. It was designed to support the modelling
of both problem space variability using decision models, and solution space variability using
asset models and also to assure traceability between them.

There are other decision model based approaches except DOPLER. Schmid et al. [SJ04]
extend the Synthesis approach with binding times, set-typed relations, selector types, map-
ping selector types to specific notations, using multiplicity to allow the selection of subsets
of possible resolutions. The KobrA approach [ABMO00] integrates product line engineer-
ing and component-based software design. KobrA decision models are described using a
tabular notation.

2.1. Software Product Lines 25

B5. Combine a common variability language with different base languages [HMPOT08]:
methods in this category propose a generic language or model that subsumes variability
related concepts. The same general variability model can be combined with different base
models, extending them with variability. Regarding our classification, at meta-model level
there is a separate generic variability meta-model and an assets meta-model (AMM). At
model level, variability model elements relate to assets model elements by referencing and
using substitutions.

We mention the work of Haugen et al. [HMPO™08] who propose a simple domain specific
language focusing only on variability, called Common Variability Language (CVL). CVL
models specify both variabilities and their resolution. By executing a CVL model, a base
SPL model is transformed into a specific product model. The CVL model points out base
model elements and defines how they can be replaced to generate a new product model.
The substitutions defined are: wvalue, reference and fragment.

2.1.7 Feature Modelling

Central to the product line paradigm is the modelling and management of variability, the
commonalities and differences in the applications in terms of requirements, architecture,
components, and test artefacts [PBvdLO05|. At all those levels, but especially at the re-
quirement level, a popular way to model variability is through Feature Models. They are
the first proposal of the SPL community for dealing with variability.

2.1.7.1 General concepts

In feature modelling, the notion of feature commonly refers to requirements, but can also
denote domain properties, specifications and design, leading to confusion as to what exactly
features describe. Several authors propose definitions for the notion of feature.

e Kang et al. give the most general one: "a prominent or distinctive user-visible aspect,
quality or characteristic of a software system or systems” [KCHT90].

e Bosch specializes this definition for software systems: "a logical unit of behaviour that
is specified by a set of functional and quality requirements” [Bos00]. From this point
of view, a feature is a construct used to group related requirements.

e In this thesis we consider the definition of Czarnecki: "a system property relevant to
some stakeholder used to capture commonalities or discriminate among systems in a

family" [CEQ0].

In [SHTBO7| Schobbens et al. distinguish between the specific use of feature models
throughout the SPL engineering process:

e During domain engineering, features are "units of evolution” that adapt the system
family to optional user requirements. A recurrent problem at this phase is the one
of feature interaction: adding new features may modify the operation of already
implemented ones;

26 2. Background

e During application engineering, "the product is defined by selecting a group of fea-
tures, for which a carefully coordinated and complicated mizture of parts of different
components are involved” |Gri00|. It is therefore essential that features and their
interactions are well-identified.

Feature diagrams emerged as a popular SPL variability modelling technique ever since
Kang et al.’s [KCH"90] proposal in 1990 to express feature relations using a feature model.
It consists of a feature diagram (FD) and other associated information: constraints and
dependency rules. Feature diagrams provide a graphical tree-like notation depicting the
hierarchical organization of high level product functionalities represented as features. The
root of the tree refers to the complete system and it is progressively decomposed into
more refined features (tree nodes). Relations between nodes (features) are materialised by
decomposition edges and textual constraints.

Variability can be expressed in several ways. Presence or absence of a feature from a
product is modelled using mandatory or optional features. Features can also be organised
into feature groups. Boolean operators are used to select one, several or all the features
from a feature group:

o czclusive alternative(XOR): exactly one feature from a features group can be included
e inclusive alternative(OR): one or more features from a set of features can be included

e and: all of the features will be included

Moreover, dependencies between features can be modelled using textual constraints. The
most commonly use are:

e require: to express that the presence of a feature imposes the presence of another
feature;

e muter: to indicate that two features cannot be present simultaneously in the same
product.

Feature diagrams are an essential means of communication between domain and application
engineers, as well as customers and other stakeholders. They provide a concise and explicit
way to:

describe allowed variabilities between products of the same family;

represent feature dependencies;

guide the selection of features allowing the construction of a specific product;

facilitate the reuse and the evolution of software components implementing these
features.

2.1. Software Product Lines 27

FODA FORM | FeatuRSEB | Van Gup& Riebish Generative | PLUSS
Bosch programming

Mandatory
feature

Optional
feature

And
decomposition

OR

F
o
F
decomposition ><

marking of
variation
points(VP) and
variants(V)
Other special
notational
elements

XOR
decomposition
Dependencies requires>> | <<requiress TequIres <Erequires Tequires S<rEqure=>
between features ol
(Textual) exclude>> | <<exclude>> exclude>= <<exclude>> “exclude SEERAE
Dependencies “<require=> <<require=> <<require=> <requirs>>
between features Foeooe »F Eo ——pF P »F | B »E
(Graphical)

F——PF F~ *y | F *p |F T
Explicit :

[External
generalization / i F i Feature

specialization V
-F
untime
mimg | LF] LF]

implemented b Where ¥ 0.1 1 0.n
opemee [] Loplps D2,

AKX

Fig. 2.3: Feature diagram dialects - synthesis of variability modelling concepts

2.1.7.2 Overview of feature modelling dialects

For the last 22 years, there have been a lot of contributions from research and industry
in the area of feature modelling. The initial proposal of Kang et al. was part of the Fea-
ture Oriented Domain Analysis (FODA) methodology [KCH™90]. Its main purpose was to
capture commonalities and variabilities at requirements level. This notation has the advan-
tage of being clear and easy to understand. Unfortunately, it lacks the expressive power to
model relations between variants or to explicitly represent variation points. Consequently,
several extensions were added to this notation.

A first extension is the Feature Oriented Reuse Method (FORM) [KKL*98b| developed
by Kang et al. in 1998. It proposes a four-layer decomposition structure, corresponding to
different stakeholder viewpoints. There are small differences in the notation compared to
FODA: feature names appear in boxes and three new types of feature relations introduced
(composed-of, generalization/specialization, implemented-by).

Griss et al. propose FeatuRSEB [GFdA98|, a combination of FODA and the Reuse-Driven
Software Engineering Business(RSEB) method. The novelties proposed are: introduction

28 2. Background

of UML-like notational constructs for creating FDs, explicit representation of variation
points and variants (white and black diamonds), explicit graphical representation for fea-
ture constraints and dependencies. Van Gurp et al. [vGBS01] slightly extend FeatuRSEB
by introducing binding times and external features.

Riebisch proposes the use of UML multiplicities [Rie03| in feature diagrams. Group car-
dinalities are introduced and denote the minimum and maximum number of features that
can be selected from a feature group. There are two other changes: a feature is allowed to
have multiple parents; edges are made optional or mandatory, not the features themselves.

Czarnecki et al. studied and adapted FD in the context of Generative Programming [CE(0].
This proposal adds the OR feature decomposition and defines a graphical representation of
features dependencies. More recently, the notation was extended with new concepts: staged
configuration (used for product derivation) and group and feature cardinalities [CHEO5a].

Finally, Product Line Use Case modelling for System and Software engineering (PLUSS)
[EBBO05] is an approach based on FeatuRSEB and combines feature diagrams and use cases.
The novelty is changing the place of the decomposition operator, from the decomposed
features or the edges, to the operand nodes. Two new types of nodes are introduced: single
adapters (represent XOR-decomposition) and multiple adapters (OR decomposition).

In order to increase the clarity and conciseness of the methods previously presented, we
provide in Figure 2.3 a synthesis of the concepts used to capture variability and how they
are graphically represented by each feature modelling language. The figure shows what
each feature modelling dialect is able to represent, as well as its limitations.

2.1.7.3 Associating models to features

Feature diagrams only provide a hierarchical structuring of high level product function-
alities. One of the major downsides is that, using only feature diagrams, we are limited
in the quantitative and qualitative information we can express. For example, there is no
indication of what are the concrete representations of the features. Moreover, regarding
product derivation, FDs only allow the SPL engineer to make a simple configuration of
products through a feature selection. However, they tell very little about how the features
are combined into an actual product. Due to these limitations, the need arises to combine
feature models with other product representations. An emerging research direction is to
associate model fragments to features. Different types of model fragment can be associated
to features. The feature diagram defines the product line variability, with each feature
having an associated implementation.

The first approach presented comes from Perrouin et al. [PKGJ08a|, who address specific
and unforeseen customer requirements in product derivation. The contribution of their
work relevant to this thesis are two meta-models: a generic feature meta-model that sup-
ports a wide variety of existing FD dialects and a subset of UML used to define the assets
meta-model. Based on the work of Schobbens et a. [SHTBO07|, Perrouin et al. extract
a generic FD meta-model [Per06], with a simple and intuitive structure. Variability is
represented using boolean operators. All classical feature diagram operators are provided:
or, and, zor, opt and card to support group cardinalities. Feature dependencies like mu-
tex or require can also be represented. In the feature diagram meta-model, the Feature
meta-class is connected using a composite association to a class called Model that defines
the core assets involved in feature realization. This relation specifies that a feature may

2.2. Model Driven Engineering 29

be implemented by several model fragments. Initially exploited with class diagrams, the
meta-model allows any kind of assets to be associated with features.

Czarnecki et al. [CAO05] propose a general template-based approach for mapping feature
models to concrete representations using structural or behavioural models. The idea is to
separate the representation of a product line model into: a feature model (defines feature
hierarchies, constraints, possible configurations) and a model template (contains the union
of model elements in all valid template instances). Elements of a model template can be
annotated. These annotations are defined in terms of features from the feature model,
and can be evaluated according to a particular feature configuration. Possible annotations
are presence conditions (PCs) and meta-ezpressions (MEs). PCs are attached to a model
element to indicate if it should be present or not in a template instance. Typical PCs
are boolean formulas over a set of variables, each variable corresponding to a feature
from the FD. MEs are used to compute attributes of model elements. When a PC is
not explicitly assigned to an element of a model template, an implicit presence condition
(IPC) is assumed. IPCs reduce the necessary annotation effort for the user. To derive an
individual product (an instance of a model family), we must first specify a valid feature
configuration. Based on it, the model template is instantiated automatically. To improve
the effectiveness of template instantiation, the process can be specialized by introducing
additional steps: patch application and simplification. The approach is general and works
for any model whose meta-model is expressed in MOF.

There exist other methods belonging to this category, which we will only briefly mention.
Laguna et al. [LGBO08| separate SPL variability aspects using goal models and UML di-
agrams, while keeping features at the core of the representation. They combine previous
approaches with the UML package merge implementation to provide a set of mapping rules
from features to class diagram fragments. Apel et al. [ATKO09] introduce superimposition
as a technique to merge code fragments belonging to different features. They extend the
approach and analyse whether UML class, state and sequence diagrams can be decom-
posed into features and then recomposed using superimposition to create complete models
corresponding to SPL products.

2.2 Model Driven Engineering

Modelling is a cornerstone of all traditional engineering disciplines [Sel03|. From the con-
ception and design, through the construction and maintenance of any engineered system,
modelling plays a crucial role. Throughout the last decades software engineers have ex-
plored how lessons learned from traditional engineering disciplines can be applied to the
design, construction, deployment and maintenance of software systems. The solution pro-
posed is called Model Driven Engineering (MDE) [Ken02, Bez04, Fav04], a software de-
velopment paradigm that raises the abstraction level for system specification and is highly
regarded as a viable solution for building complex software systems.

Model-Driven Engineering is an approach to software development by which software is
specified, designed, implemented and deployed through a series of models. The guiding
principle of this new software engineering trend is to focus on models rather than on com-
puter programs. According to Selic [Sel03], MDE is a good candidate to be the next
established way to develop software: "model-driven development holds promise of being the
first true generational leap in software development since the introduction of the compiler”.

30 2. Background

From a historical point of view, MDE is a natural step in the evolution of software en-
gineering, following the tendency towards raising the abstraction level in the design and
development of software systems.

Model-driven initiatives propose a completely new terminology with a specific meaning.

e Model-Driven Architecture (MDA): "is an OMG initiative that proposes to define a
set of non-proprietary standards that will specify interoperable technologies with which
to realize model-driven development with automated transformations” [Gro03|.

e Model-Driven Development (MDD): "is simply the notion that we can construct a
model of a system that we can then transform into the real thing" [CJ03|. One
difference with MDA is that MDD is not adhered to any of the OMG standards,
according to Fowler [Fow09], but the main contribution of MDD is the flexibility
offered to define development processes.

e Model-Driven Engineering (MDE): "attempts to organize new efforts by proposing a
framework (1) to clearly define methodologies, (2) to develop systems at any level of
abstraction, and (3) to organize and automate the testing and validation activities".
[Ken02|. The MDE initiative proposes that any specification should be expressed by
models, which are both human and machine understandable. Models, depending on
what they represent, can reside at any level of abstraction, and can be restricted to
address only certain aspects of the system.

e Model-Driven Development (MDD): "is an emerging paradigm for software creation.
It advocates the use of Domain Specific Languages (DSLs), encourages the use of
automation, and exploits data exchange standards" [Bat07].

Model-Driven Engineering promotes the systematic use of models as first class entities
throughout the software engineering life cycle. The focus of development is shifted from
third generation programming language codes to models expressed in proper domain spe-
cific modelling languages. The objective is to increase productivity and reduce the time to
market by enabling the development of complex systems by means of models [Sei03].

Embracing this vision about MDE, the rest of this section focuses on: model, meta-model,
model transformation and model driven language engineering, as they are crucial for an
accurate understanding of MDE.

2.2.1 Models and meta-models

Models have become increasingly important in software engineering, and are a key concept
and the main artefact in MDE [Sei03]. A model signifies a representation of some reality
or system with an accepted level of abstraction, so all unnecessary details of the system
are omitted for the sake of simplicity, formality, comprehensibility. A model has two key
elements: concepts and relations. Concepts represent things and relations are the links
between these things in reality. A model can be observed from different abstract point of
views (views in MDE). The abstraction mechanism avoids dealing with details and eases
re-usability.

The model concept is not a novelty. According to Favre [FEBF06], it dates back to ancient
times, more than five thousand years ago. The word "model” has its etymological root

2.2. Model Driven Engineering 31

in the Latin word "modullus”, a diminutive of "modus”, which means a small measure.
Today the interpretation of the word strongly depends on the point of view of the observer
and his domain. The Merriam-Webster on-line dictionary gives 13 meanings of the word
model. The first few of them are: "a miniature representation of something”; "an example
for imitation and emulation”; "a description or analogy used to help visualize something
that cannot be directly observed”.

If we restrain to the domain of software engineering, several authors have proposed defini-
tions for the "model" concept. Some of them are presented in the following.

e A basic definition is given by Selic: "a model is a representation of a system that
hides some of the properties and highlights the ones that are of interest for the user”.
This hiding and highlighting means "a model is an abstraction” [Sel06].

e Bezivin et al. define it as "a simplification of a system built with an intended goal in
mind. The model should be able to answer questions in place of the actual system”
[BGO1].

e Kleppe et al. give a definition even more directed to MDE: "a model is a description
of a (part of) systems written in a well-defined language. A well-defined language is a
language with well-defined form (syntaz), and meaning (semantics), which is suitable
for automated interpretation by a computer” [KWBO03|.

e Seidewitz defines a model as "a set of statements about a system under study. A model
can be used either descriptively to determine properties of a system, or prescriptively
as a specification of a system to be built" [Sei03].

e The MDA guide defines a model of a system as "a description or specification of that
system and its environment for some certain purpose. A model is often presented as
a combination of drawings and text. The text may be in a modelling language or in
a natural language” |[OMGO3|.

Models thus provide simplified abstractions of the reality which encompass only the nec-
essary details to the context taken into account. These abstractions allow domain experts
to focus on the specific concepts related to their own domains leaving out non-essential
aspects related to the chosen deployment platform. However, an abstraction is truly use-
fulness if it is complete and unambiguous for the purpose it has been conceived. The more
models are precise, the easier it will be to produce useful artefacts and effective analyses.

In order to obtain the maximum benefits from the adoption of MDE techniques, it is nec-
essary that all the needed information is represented by means of some kind of abstraction.
This is leading to a new paradigm promoted by MDE, where "everything is a model"
[Bez05]: requirements, tests, transformations and so forth are described as models. In
MDE, we start from a description of a business feature by building models which are at
high level of abstraction. The final goal is to get to the lowest level of abstraction, an
executable system. In this manner, the understanding of both the business goals and the
system under development evolves.

By modelling the target system, key problems can be revealed and the problem domain
and its solution domain can be better described. Modelling allow us to record and describe
the mapping of relationships from problem domains to solution domains and to resolve
problems at the model stage [Sel03]. Resulting advantages include helping both developers

32 2. Background

and users of the target system better understand, analyse and estimate system design
accuracy and reliability and to discover the potential problems of system design by building
a system model before the full system is created.

MDA defines three major classes of models, which refer to the development stages of
software, going from the problem space to the implementation solution:

e Computation Independent Model (CIM): is a view of the system from the computa-
tion independent viewpoint. According to the MDA guide, a CIM "is a view of a
system from the computation independent viewpoint. A CIM does not show details
of the structure of systems. A CIM is sometimes called a domain model and a vo-
cabulary that is familiar to the practitioners of the domain in question is used in its
specification” [OMGO3|.

e Platform Independent Model (PIM): is a view of a system from the platform indepen-
dent viewpoint. A PIM "ezhibits a specified degree of platform independence so as to
be suitable for use with a number of different platforms of similar type” [OMGO3].

o Platform Specific Model (PSM): is a view of a system from the platform specific
viewpoint. A PSM "combines the specifications in the PIM with the details that
specify how that system uses a particular type of platform” [OMGO3|.

One of the main motivations of this classification is to enable enterprises to preserve invest-
ments in business logic by means of a clear separation of the system functionalities from
the specification of the implementation on a given technology platform.

Every model should conform to a meta-model. In the same way a grammar is specified
to describe a programming language, a meta-model can be given to define correct models.
Therefore, a meta-model can be considered as the set of rules to produce legal instances of
a certain abstraction. The word "meta” is Greek and means "above”, therefore the term
meta-model can be interpreted as a model describing another model.

When defining what a model is, Kleppe [KWBO03] speaks about a "well-defined language”
which can be used to create a model. In MDE meta-models define how a model can look
like: a meta-model defines the constructs and rules usable to create a class of models. This
is consistent with the following definitions:

e "A meta-model is a model of a set of models" [Fav05];

e "A meta-model is a model that defines the language for expressing a model” |Gro04].

From the above definitions we can deduce that a meta-model is a model itself, that is,
a model of a language. Each meta-model defines the abstract syntax for a language by
means of elements and relations between them. As such, a meta-model is, in turn, created
using a modelling language. The meta-model used to define this meta-modelling language
is referred to as the meta-metamodel. To avoid an infinite stacking of meta levels, meta-
metamodels are often specified self reflexively and therefore the meta-model of the meta-
metamodel is the meta-metamodel itself. This yields a layered architecture of models. In
this respect, OMG has introduced the four level architecture which organizes artefacts in
a hierarchy of model layers. This architecture is illustrated in Figure 2.4.

2.2. Model Driven Engineering 33

] 1
L | conformsTo I conformsTo] confarmsTo
eve q] m] ﬂ
] 1
M3 meta-metamodel | MOF 1 EBNF
| 1
o 1 ZAY 1 7
confarmsTo] conformsaTa confarmsTo] confarmsTo conformsTo
] conformsTo ,
M2 Metamodel ! UML SPEM cWM | renee A
] 1 grammar grammar
P | 1 i
conformsTo 1 conformsTo 1 conformsTo
M1 del ; UmML } Java
mese 1 Model 1 Program P
I~] AN 1 [
descnbedBy] descnbedBy , descnbedBy
] 1 .
Mo instance] Fosi 1 Execution
] System 1 of P
| 1
| 1
] 1

Fig. 2.4: The four layer meta-modeling architecture

e The MO layer is an instance level. It is an example of the model in M1 level.
e The M1 layer is a model level. It is a model usually faced by the modelling people.

e The M2 layer is called the meta-model level and corresponds to the meta-model of
the M1 layer. The M2 layer extracts abstract concepts and relative structure of
different areas in the M2 meta-model. It also provides modelling symbols for the
modelling language of the M1 layer. Therefore, the M2 layer provides corresponding
domain-specific modelling language for different areas.

e The M3 layer holds a reflexively defined model of the information at M2, hence it does
not require to refer to any further layers and is called the meta-metamodel. Eclipse
Modeling Framework’s (EMF) Ecore and Object Management Group’s (OMG) Meta-
Object Facility (MOF) are two well known meta-metamodels.

There are two important relations defined between elements from different layers of the
previously described architecture. Elements from the MO level are "instances of” or "de-
scribed by " elements in the M1 level. Further, models from level M1 are "conform to" their
meta-models from the M2 level. Similarly, all meta-models from M2 level are "conform to”
the meta-metamodel from the M3 layer.

The importance and relevance of models and meta-models in MDE is further increased by
model transformations. They are discussed in the following.

2.2.2 Model transformations

Working with multiple interrelated models requires significant time and effort to accomplish
model management related tasks, such as refinement, consistency checking or refactoring.
One of the major challenges related with the use of models in Software Engineering is to

34 2. Background

automate these tasks. Model transformations have been accepted as the appropriate way to
do so. Model transformations are essential for realizing the power of MDE [SK02, GLR02].

The effectiveness of the MDE vision is fully attained through the use of model trans-
formations. Transformations are the link between domain abstractions and represent a
fundamental concern in development automation. A transformation is defined as a process
that converts a source model into a target model related to the same system by means of
a transformation specification [KWB03, OMGO03|. In turn, a transformation specification
encompasses the set of rules needed to map the source toward the target. Finally, each
rule describes how to transform source instances to the corresponding target.

Model transformations are used for a variety of different purposes [CHO06], including:

e generating lower-level models, and eventually code, from higher-level models;

e mapping and synchronizing among models at the same level or different levels of
abstraction;

e model evolution tasks such as model re-factoring;

e reverse engineering of higher-level models from lower-level models or code.

The research literature offers several possible definitions for the "model transformation”
concept:

e According to the OMG a model transformation is "the process of converting one
model to another model of the same system" [OMGO1];

e Kleppe et al. define model transformation as "an automatic generation of the tar-
get model from a source model, which conforms to the transformation definition”

[KWBO03];

e Tratt uses the following definition: "a model transformation is a program which mu-
tates one model into another; in other works, something akin to a compiler” |Tra05|.

In most of the above-mentioned definitions, a model transformation is regarded as a process
that takes a model as input, referred to as the source model and produces as output another
model, referred to as the target model. Figure 2.5 provides an overview of this process.
The root of the process is the meta-metamodel (MMM). It provides with a set of basic
abstractions that allow defining new meta-models. Next, the source and target meta-
models are defined by instantiating the abstractions provided by the meta-metamodel.
They are said to conform to the meta-metamodel. Finally, the model transformation engine
executes the MMa2MMb model transformation to map an input model Ma into an output
model Mb. To do so, MMa2MMb specifies a set of rules that encode the relationships
between the elements from the MMa and MMb meta-models. The model transformation
is defined at meta-model level, it maps elements from the input and output meta-models.
Implicitly, it can be used to generate an output model from any set of models conforming
to the input meta-model. In other words, the model transformation program works for any
model defined according to the input meta-model.

If the set of rules and constraints that drives the construction of a model transformation are
collected in a meta-model (MtMM), any model transformation can be expressed as a model

2.2. Model Driven Engineering 35

— conforms to

Meta-Meta-Model > uses
MMM
Meta-Model A P— Model Transformation | > Meta-Model B

MMa Language Meta-Model (MMb)

(MtMM)

Model Transformation
(MMa2MMb)
Model A source target Model B
(Ma) (Mb)
Model Transformation Engine

Fig. 2.5: Overview of Model Transformation process

conforming to such meta-model. Expressing model transformations as models, so-called
transformation models, allows manipulating them by means of other transformations.

Model transformations are always implemented by an engine that executes the transfor-
mations based on a set of rules. The rules can be either declarative (outputs are obtained
from some given inputs) or imperative (how to transform) [CH03|. Declarative rules are
expressed in three parts: two patterns and a rule body. The two patterns are the source and
target patterns respectively in a unidirectional transformation or the same pattern acting
as source/target in a bidirectional transformation. A source pattern is composed of some
necessary information about part of the source meta-model, according to which a segment
of source model can be transformed. Similarly, a target pattern consists of some necessary
information about part of the target meta-model, according to which a segment of target
model can be generated. The link between these two patterns is the rule body. Declara-
tive rules can be composed in a sequential or hierarchical manner, achieving flexibility and
re-usability in transformations. Transformation have usually a mixed-style (having both
declarative and imperative rules,) so that complex transformations can be implemented.

Transformations can be applied manually or automatically. In manual transformations, it
is the developer’s responsibility to investigate the input model and apply the modifications
to it by adding, editing, or removing some model elements. Furthermore, the consistency
of the resulting model is up to the developer. In automatic transformations, some trans-
formation rules are defined to drive the changes, therefore the consistency of the output
model is guaranteed.

MDE model transformations can be classified according to different point of views. Several

36 2. Background

proposed classifications are available. In [MCVGO05|, a taxonomy of model transformations
is discussed. Two orthogonal dimension pairs are defined: horizontal versus vertical and
rephrasing versus translation.

e Horizontal transformation indicates transformation between different models at the
same level of abstraction. Model refactoring is an example of such a transformation
because the source model is restructured and the target models are at the same level
of abstraction.

o Vertical transformation indicates a transformation where the source and target mod-
els reside at different levels of abstraction. Refinement is an example of such a
transformation. The original model and its refined version are at different levels of
abstraction.

e Rephrasing indicates a transformation where the models are expressed in the same
modelling language. This kind of transformation is also called an endogenous trans-
formation. Examples of rephrasing are optimisation, which aims at improving certain
operational properties while preserving the semantics of the software, and re-factoring
which aims at improving certain software quality characteristics while preserving the
software’s behaviour.

e Translation indicates a transformation where the source and target models are ex-
pressed in different languages. This kind of transformation is also called an exoge-
nous transformation. Examples of translation are reverse engineering which extracts
a higher-level specification from a lower-level one, and migration which translates a
program written in one language to another, while keeping the same level of abstrac-
tion.

One of the main characterizations of model transformation approaches is the distinction
between model-to-text (or model-to-code) and model-to-model techniques. A model-to-
model transformation creates its target as a model which conforms to the target meta-
model. On the contrary, the target of a model-to-text transformation is essentially strings.

e Model-to-model transformations (M2M): are one of the key aspects of MDE. In order
for software systems to truly realize the potential of platform independence, models
must exist for several target platforms and model to model transformations [BH02]
must be designed to convert object models from one canonical form to any platform
specific instance. MDE supporters expect that writing model to model transforma-
tions will become a common task in software development and these transformations
will be shared among engineers [JK06]|. As the name states, in model-to-model trans-
formation, a model is changed to another model. The source model and the target
model could be instances of the same meta-model or different meta-models. When
both source and target are from the same meta-model, there are two specific cases of
model-to-model transformations [BIJ06|: refinement and refactoring. In refinement
transformations, a model is slightly changed to another model that better matches
the desired system. Refinements can be done manually or automatically. In refactor-
ing transformations, the designer tries to reorganize the model and make it simpler
based on some well-defined criteria. In [CHO06| a classification of model-to-model
transformation languages is proposed. It is summarized in the following:

2.2. Model Driven Engineering 37

— Direct manipulation techniques: users are provided with a minimum set of tools
to implement transformation rules, scheduling, tracing and other facilities in
a programming language. Usually, these techniques are based on an internal
model representation and some APIs to manipulate it.

— Operational techniques: a direct manipulation of input artefacts is allowed in
some way similar to the previous category. In general, they are the result of
an extension of the meta-modelling formalism which adds a set of features to
express computations over the models. QVT Operational mappings [Gro05]| or
Kermeta [DFFT10] are examples of this methodology.

— Relational techniques: declarative approach is based on the concept of relations.
A type of relation between the source and target model must be first stated
and then, it will be specified using constraints. Usually this specification is non-
executable but it can check if two models are consistent. Therefore, relational
approaches can be seen as a form of constraint solving methods. Examples of
such approaches are QVT Relations [Gro05] and AMW [FBJ*05].

— Hybrid techniques: different techniques from the previous categories are com-
bined. For example ATL [JKO06|, which embodies imperative manipulations
inside declarative constructs.

— Graph-transformation based techniques: source and target models are repre-
sented as abstract syntax graphs on which transformation rules are based. In
particular, each rule has a left-hand side (LHS) and a right-hand side (RHS).
Both LHS and RHS describe graph patterns: when a LHS pattern is matched
in the source model it is mapped toward the corresponding RHS pattern in the
target. As a consequence, a rule without a RHS pattern deletes some source
element and vice versa; that is, if a rule does not have an LHS pattern then
some target element is created. AGG |Tae04], AToM3 [dLV02] and VIATRA2
[VVPO02| are well-known graph-transformation approaches.

o Model-to-Text transformation (M2T): are also referred to as "code generation" or
forward engineering techniques. Applying this transformation, part of the code is
generated automatically from the model. Code generation is one of the features
that distinguishes MDE from the old paradigms of software development. Most of
the modern modelling tools are capable of generating code skeletons for a given
model. The ultimate goal of MDE is to reach the level of full automatic code gen-
eration. There is evidence that this dream does not seem to be elusive, considering
the advances in the supporting technology [Sel06]. There are two classes of M2T
approaches:

— Visitor-based: use the visitor design pattern to traverse across the whole model,
translating each elements into code and printing it to a text stream.

— Template-based: are more common in industry, than visitor-based ones. A tem-
plate is usually a fragment of code with meta-code insertions to access a source
model and get necessary information from it.

2.2.3 Model driven language engineering

In the context of software language engineering, Model Driven Engineering is beginning
to take a more prominent role, due to the intensive use of models, considered as first

38 2. Background

class artefacts of the development process, and of automatic model transformations, which
drive the overall design, from requirements elicitation until the final implementation to-
wards specific platforms. In this context, we talk about model driven language engineering
[Ken03] when language development is carried out following the principles of the MDE
approach: language descriptions are first class artefacts, and the abstract syntax of the
language is defined in terms of a model, called language meta-model, which allows sepa-
rating the abstract syntax and semantics of the language constructs from their different
concrete notations.

Among software languages, a distinction can be made between programming languages
[Tes84], used to develop software code running on a given platform and satisfying certain
computational paradigms, and modelling languages [DHO00], which are used for high level,
platform-independent software design and are increasingly being defined as domain-specific
languages (DSLs) [VDKV00] for specific domains of interest.

Traditionally, programming language construction follows a well-defined path [Tes84] usu-
ally consisting of the following steps:

e defining the language syntax: is mostly done using Bachus-Naur Form (BNF) [Nau63|;
e generating a parser;
e defining a type-system,;

e developing algorithms that walk the abstract syntax tree and check the well-typedness
of the program.

In the model-based development context, meta-model-based languages are increasingly
being defined and adopted either for general purposes or for specific domains of interest.
Modelling languages offer designers modelling concepts and notations to capture structural
and behavioural aspects of their applications. In contrast to general-purpose modelling
languages (like UML) that are used for a wide range of domains, some modelling languages
are often tailored to a particular problem domain, and for this reason considered domain-
specific.

The development process of modelling languages diverges from the traditional language
design [SK95]|, since modelling languages are usually introduced to model specific domain
concepts, should be easy and fast to define, and should allow re-use of previously defined
artefacts. Modelling languages themselves can be seen as artefacts of the model-based
approach to software language engineering. In a model-based language definition, the
abstract syntax of a language is defined in an abstract way by means of a meta-model, that
characterizes syntax elements and their relationships, separating thus the abstract syntax
and semantics of the language constructs from their different concrete notations. The
definition of a language abstract syntax by a meta-model is well mastered and supported
by many meta-modelling environments (Eclipse/Ecore [Ecl12], GME/MetaGME [GME11],
AMMA /KM3 |ATL|, XMF-Mosaic/Xcore [Xac|, etc.).

Regardless of their general or domain specific nature, modelling languages share a common
structure. They usually have a:

e concrete syntaz (textual, graphical, or mixed);

2.2. Model Driven Engineering 39

e abstract syntax;

e semantics which can be implicitly or explicitly defined, and may be executable.

Formally, a modelling language L is defined [KSNO05] as a five-tuple L = (4, C, S, MC', MS),
consisting of the abstract syntax A, concrete syntax C, semantic domain S, syntactic map-
ping MC and semantic mapping MS. We detail in the following each part of this language
definition.

The syntax can be divided into abstract syntaxr and concrete syntaz. The abstract syntax
describes the high-level structure of language elements and their relations. The concrete
syntax defines the actual (textual or graphical) representation of the models, i.e. the
language sentences.

The abstract syntaz is defined by means of a meta-model representing in an abstract (and
possibly visual) way concepts and constructs of the modelling language, and providing the
means (usually constraints) to distinguish between valid and invalid models. The meta-
model of a language describes the vocabulary of concepts provided by the language, the
relationships existing among those concepts, and how they may be combined to create
models. A meta-model based abstract syntax definition has the great advantage of being
suitable to derive from the same meta-model (through mappings or projections) different
alternative concrete notations (textual or graphical or both) for various scopes like graphical
rendering, model interchange, standard encoding in programming languages, while still
maintaining the same semantics. Therefore, a meta-model could be intended as a standard
representation of the language notation.

A language can have one or more concrete syntazes, textual or visual or mixed, derived
from the meta-model, as notation to be used by language users to effectively write models
conforming to the language meta-model. The concrete syntax must be treated with equal
attention as the abstract syntax. It is crucial element of language design and deserves
to be a separate element within the language description. If no agreement on concrete
syntax would exist, anything could represent anything, and language users would no longer
understand each other. The description of the concrete syntax and the description of the
abstract syntax are separate entities belonging to one language description. Fondement
et al. [FBO05| use the formalism of meta-modelling for both. A separate meta-model
representing concrete syntax elements is build and related to the abstract syntax meta-
model via a model transformation. Xtext [Xte07| uses both meta-modelling and BNF.
From an existing BNF grammar that represents the concrete syntax, a meta-model is
generated that represents the abstract syntax. Languages often have multiple concrete
syntaxes. There is a growing need for languages that have both a graphical and a textual
syntax.

Furthermore, the language description should at least contain a mapping from concrete
to abstract syntar, and preferably also from abstract to concrete syntax. The syntactic
mapping, MC : C' — A, assigns syntactic constructs to elements in the abstract syntax. In
the process of creating a language description either one can be chosen as starting point,
the other being developed together with the mapping to the first.

The syntax of the language, specified by means of a meta-model, only defines the structure
of the language. However, the semantic properties such as conditions over valid models
and the behavioural semantics of a model are not specified. A semantics description is
included in a language description because the language designer wants to communicate

40 2. Background

the meaning of the language to other persons. Semantics descriptions of software languages
are intended for human comprehension. The semantics can therefore be seen as the abstract
logical space in which models, written in the given language, find their meaning. Semantics
have an equally important role for a language definition as the structure of the language.

The language semantics is defined [HR04| by choosing a semantic domain S and defining
a semantic mapping MS : A — S which relates syntactic concepts to those of the semantic
domain. The semantic domain S and the mapping MS can be described in various ways,
from natural language to rigorous mathematical specifications. Both S and MS should be
defined in a precise, clear, and readable way. The semantic domain S is usually defined in
some formal, mathematical framework. The semantic mapping MS is not so often given in
a formal and precise way.

For the description of the language semantics, there are several possible existing approaches
[Kle08, NN92, CCGO09|:

e Operational: this approach directly manipulates the model. It therefore allows to
stay in the same technical space and express the evolution of the model state in the
same specific domain. It generally implies extending the initial meta-model with the
informations that describes the state of model at execution. The meaning of each
possible statement that can be written using the language’s constructs is specified by
rules (or axioms) that determine the induced computation of such statement when it
is executed on a particular abstract machine. The abstract machine is characterised
by a state, whereas the rules specify how the state is transformed by a statement
written using the different language constructs.

e Axiomatic: requires to define a set of properties satisfied by the model in the different
steps of its execution (like pre- and postconditions). It is usually not easy to fully
specify the behaviour of the model in such a manner [9]. An axiomatic semantics can
not be made automatically or easily executable. Using this approach, the meaning
of each possible statement that can be written using the language’s constructs is
specified by giving rules of the form {P}C{Q} that relate the state before (i.e. P)
and after (i.e. Q) the execution of a statement (i.e. C).

e Translational: specified by translating (mapping) the current language into another
language that is formally well defined and understood. It relies on a previously
existing semantics defined on the target language. It implies translating constructs
from the initial domain into the constructs of the formal target domain. One of the
main reasons for which translational semantics are used is to take advantage of the
facilities and tools available in the target domain (code generators, model-checkers,
simulators, visualization tools, verification tools). To use translational semantics, the
appropriate target domain has to be chosen, depending on the kind of property to
be checked or tool to be used. This approach requires to define a meta-model for the
target language, which may not already.

2.3 Business processes

Since the beginning of the industrial revolution, the main focus of the business and com-
mercial worlds was on automating and improving production efficiency and reducing costs

2.3. Business processes 41

|[LDLO03|. In the 1960s, the inefficiencies and inaccuracies of companies in terms of perfor-
mance began to matter to the customers, so many of them had to improve their business
to keep their customers. This moment triggered the awareness of organisations of the im-
portance of business processes. It became clear that it was vital for their survival to let
business processes be at the heart of the company. In other words, business processes be-
came the key to a successful business. Even though it was in the 1960s when Levitt [Lev60]
first mentioned the importance of business processes it was not until the 1990s that pro-
cesses acquired a real importance in enterprise design. Authors such as Harrington (1991),
Davenport (1993) and Hammer (1990), among others, promoted the new perspective.

Experts in the fields of Information Technology and Business Engineering have concluded
that successful systems start with an understanding of the business processes of an organ-
isation. Furthermore, business processes are a key factor when integrating an enterprise
[ASO05]. A business process oriented perspective allows software architects and organiza-
tions to identify and reason about actors, goals, cooperation, commitments and customer
relations, aspects which are crucial in a world of constant change for keeping the orga-
nizational objectives, and the objectives of the supporting information system aligned
[MWH99].

A business process begins with a mission objective and ends with the achievement of the
business objective. Business Processes are designed to add value for the customer and
should not include unnecessary activities. The outcome of a well designed business process
is increased effectiveness (value for the customer) and increased efficiency (less costs for
the company). Business processes use information to tailor or complete their activities.
Information, unlike resources, is not consumed in the process - rather it is used as part of
the transformation process. In formation may come from external sources, from customers,
from internal organisational units and may even be the product of other processes.

There are several possible definitions for the notion of "business process" available in the
research literature:

e Davenport defines a business process as "a structured, measured set of activities
designed to produce a specific output for a particular customer or market. It implies
a strong emphasis on how work is done within an organization. A process is thus a
specific ordering of work activities across time and space, with a beginning and an end,
and clearly defined inputs and outputs. Taking a process approach implies adopting
the customer’s point of view. Processes are the structure by which an organization
does what is necessary to produce value for its customers"” [DS90];

e Hammer et al. define it as "a collection of activities that takes one or more kinds of
input and creates an output that is of value to the customer"” [HCO03]. This definition
provides a more transformation oriented perception, and puts less emphasis on the
structural component;

e According to Scheer et al. "the term business process is intended to embrace not only
the control flow, i.e. the chronological sequence of function execution, but also the
descriptions of data, organizations and resources that are directly associated with it"

[SATJKO02];

e According to Weske "a business process consists of a set of activities that are per-
formed in coordination in an organizational and technical environment. These ac-
tivities jointly realize a business goal. FEach business process is enacted by a single

42 2. Background

organization, but it may interact with business processes performed by other organi-

zations" [WGHS99];

e In the context of this thesis, we retain the definition provided by the Workflow Man-
agement Coalition (WfMC) in its "Terminology and Glossary": "a business process
1s considered as a set of one or more linked procedures or activities which collec-
tively realise a business objective or policy goal, normally within the context of an
organisational structure defining functional roles and relationships" [Coa99)].

There are three types of business processes:

e management processes: govern the operation of a system

e operational processes: constitute the core business and create the primary value
stream

e supporting processes: support the core processes

As we have seen, business processes are the key to a successful business. This is probably
the case as they focus on creating value for customers. They alone are not the solution,
though. We need also Business Process Management (BPM) to contribute to this concept.

2.3.1 Business process management

Business Process Management (BPM) is an established discipline for building, maintaining,
and evolving large enterprise systems on the basis of business process models [BKRO03|.
Organizations attempt to improve their business performance by applying BPM methods.
BPM has become an essential way of controlling and governing business processes. For
organizations it is generally important to discover, control, and improve their processes to
increase their total revenue, their customer satisfaction or to ensure regulatory compliance
as in the introductory example. BPM offers viable solutions to these aspects and deals
with the coordination of activities in business processes within and between organizations.

The foundation of business process management lies in business administration and in-
formation systems. Business process management solutions have emerged in both indus-
try products and academic prototypes since the late 1990s, when new innovations and
technologies paved the way for BPM and its automation. Workflow management [JB96]
was invented and new ideas brought into the BPM area. Methods like business process
re-engineering [GKT93] and business process improvement [Har91] were adopted by com-
mercial vendors and helped to analyse and optimize existing business processes. The orga-
nizations recognized that their business processes became more efficient and consequently
started using these systems.

Nowadays, business process management is considered to support many aspects concern-
ing business processes in and among organizations. These aspects include, e.g, advanced
reporting and analysis technologies, quality assurance of processes, the automatic execu-
tion of processes with workflow management or the optimization and redesign of business
processes. BPM allows organizations to abstract business processes from technology inno-
vations and enables them to change their own business quickly according to their changed
needs, customers, or regulatory compliance.

2.3.

Business processes 43

Many scientist and associations have created and proposed their own definition of business
process management. A selection of the most relevant ones is presented here:

Weske states that business process management "includes concepts, methods, and
techniques to support the design, administration, configuration, enactment and anal-
ysis of business processes” [Wes07]. Thus, BPM can be seen as a holistic managing
approach for the handling of business processes;

In [vdAtHWO03] BPM is defined as a management discipline "supporting business pro-
cesses using methods, techniques, and software to design, enact, control, and analyse
operational processes involving humans, organizations, applications, documents and
other sources of information" [Wes07];

Zairi suggests that BPM is "the way in which key business activities are managed and
continuously improved to assure consistent ability to deliver high quality standards of
products and services” |Zai97|;

Miers states that BPM "should be thought first and foremost as a management phi-
losophy that is driven from the top of the organization. It is not a new technology,
rather it is a way of thinking that regulates the structure of the business and drives
its overall performance” [Mie09].

Business Process Management manages the life cycle of processes with respect to improve-
ment and optimization to strengthen the ability to achieve the company’s goals in an
environment with growing complexity [SF03|. These management activities can be can be
arranged in a life cycle, which consists of phases that are related to each other based on
their logical dependency. All BPM activities can be attributed to one of the phases of the
BPM lifecycle [ZMO04]:

Analysis: the BPM lifecycle begins with the analysis of a certain situation. During
the analysis the organization and the process structure is investigated to conclude
and derive requirements

Design: the requirements serve as important input for the design phase. Within
this phase, the business processes are identified. The process characteristics, the
resources, the order of activities and organizational aspects are determined. The
details are usually documented in the modelling process with the help of business
process models. The models serve as representation of the real world processes.

Implementation: the process models serve as input for the implementation phase.
Based on the information in the models, the infrastructure for the business processes
is set up. For the automatic execution of business processes, the process model serves
as blueprint for the configuration.

Enactment: in this phase the business processes run on the technical infrastructure as
set up in the previous phase. Individual cases are handled by the system. Information
about all cases, e.g. time data or resource allocation, is stored in the infrastructure.
This data serves as input for the monitoring and evaluation phase.

Monitoring: the monitoring of the processes in the system is important for identifying
deviations or problems at an early stage. The monitoring can be done automatically.
The infrastructure can also execute countermeasures to fix certain problems or devi-
ations once they are detected by the system.

44 2. Background

e Fwvaluation: this phase compares the actual process data handled by the systems with
the requirements stated in the analysis phase. In the evaluation, new requirements
might come up which are then fed back to the design phase to change the business
processes and the corresponding process models. Thus, the overall performance of
the business processes is measured and continuously improved.

From the phases in the BPM lifecycle, it becomes obvious that business process models
play an important role in the lifecycle.

2.3.2 Business process modelling

Business process modelling is a key phase of the BPM lifecycle, which intends to separate
process logic from application logic, such that the underlying business process can be auto-
mated [BSW04]. The modelling of business processes is becoming increasingly popular and
plays a pivotal role in the business process management discipline. Both experts in the field
of Information and Communication Technology (ICT) and of Business Engineering have
concluded that successful systems (re)engineering starts with a thorough understanding of
the business processes of an organisation: a business process model.

Business process modelling is a widely-used approach to achieve the required visibility for
existing processes and future process scenarios. It claims a more disciplined, standardized,
consistent and overall more mature and scientific approach. It facilitates process visibility
and has to satisfy an increasingly heterogeneous group of stakeholders and modelling pur-
poses. It has to be scalable, configurable and usually able to provide a bridge between IT
capabilities and business requirements. It is an essential part of any software development
process, as it allows the analyst to capture the broad outline and procedures specifying
what a business does. This model provides an overview of where the proposed software
system being considered will fit into the organisational structure and daily activities. As
an early model of business activity, it allows the analyst to capture the significant events,
inputs, resources and outputs associated with business process.

Real-world or artificial business processes are mapped into business process models. This
explicit representation is an essential concept within business process modelling. It helps
achieve the communication among stakeholders and creates a common understanding of
the processes [Wes07|. Business process modelling is therefore the human activity of cre-
ating business process models. They have become an integral part of the organizational
engineering efforts. A business process model is simply a flow-oriented representation of a
set of work practices aimed at achieving a goal. More formally, Mendling [Men07]| defines a
business process model as "the result of mapping a business process. This business process
can be either a real-world business process as perceived by a modeller, or a business process
conceptualized by a modeller".

Business process models are used on the business level for describing business operations
in a consistent way, as well as on the technical level for specifying requirements that have
to be supported by enterprise software. In practice, business process models are often used
for documentation purposes and business process design is one of the major reasons for
conducting conceptual modelling projects [DGR-+06]. Therefore, most business process
models can be regarded as descriptive models for organization, although they may also
serve as decision models in other phases of the BPM life cycle.

2.3. Business processes 45

Business process models show an abstract view of complex structures, which has a number
of advantages [CKO92]:

e meaning of each process is precisely defined

e models are graphical and therefore easy to understand, which allows different users
to interpret them in the same way

e new processes can be modelled by combining existing processes or components in
new ways

e allow to focus on a specific part of a structure, in such a way that key relationships
are highlighted and less relevant aspects ignored

The increasing popularity of business process modelling resulted in a rapid growing num-
ber of modelling techniques. Several languages have been proposed for business process
modelling. Though most of them follow the conventional representation of processes as a
series of steps, they emphasize different aspects of processes and related structures, such
as organizations, products, and data. We provide in the following a brief overview of the
languages that have played an important role in business process modelling.

Flowchart: a flowchart is defined as "a formalised graphic representation of a program
logic sequence, work or manufacturing process, organisation chart, or similar formalised
structure” |LCB96|. It is a diagram that represents a process as a sequence of activities
and decisions. Flowcharts are the oldest and most basic process related modelling method-
ology known, with their first reported occurrence dating back to the early 1920s, where
they were used by mechanical engineers to describe machine behaviour. Basic flowchart
constructs are activities, decisions, start points and end points. These are the basic build-
ing blocks typically used to represent processes. More advanced flowcharts use data-flow
constructs which denote the information that flows throughout the process. Relationships
in a flowchart are denoted by arrows which indicate a flow of control from one element to
another. All elements in a flowchart are either directly or indirectly connected with one
another.

Role activity diagrams (RAD): are based around a graphic view of the process from the
perspective of individual roles, concentrating on the responsibility of roles and the inter-
actions between them [HRG83|. The primary constructs used in a RAD are roles, actions,
interactions and decisions. Roles contain the actions and decisions that are performed by
the man or machine with the assigned role. The interaction construct allows a role to
communicate with another role, which also constitutes the only way how a relationship
can be established between roles.

UML Activity Diagrams (UML AD): are part of the Unified Modeling Language
(UML) |Gro07]. UML was primarily designed to model software systems, however some
diagram types, such as UML ADs, can also be used for business process modelling. A
business process can be described by an activity counsisting of a coordinated sequencing
of nodes, based on control-flow and object-flow. The control-flow comprises two types
of nodes: action nodes and control nodes. An action node can model an activity to be
performed or a signal to be received/sent by the process. Control nodes are used to model
sequencing and parallel or alternative branching. Processes can be organized in a hierarchy
by means of compound activities, in order to avoid cluttering the model. There are two
other important features of UML AD which are swimlanes and sub-activities. Swimlanes

46 2. Background

can be used to group actions on some common characteristic. Sub-activities can be used
to aggregate an activity diagram into a single activity for use in other activity diagrams.
Sub-activities facilitate composition and decomposition in activity diagrams.

Event-driven Process Chains (EPC): are an easy-to-understand language for mod-
elling business processes [SL05], initially developed for the design of the SAP R/3 reference
process model [Her97]. EPCs also became the core modelling language in the ARIS plat-
form [Sch00]. Since its creation, the EPC method has grown to become one of the more
popular business process modelling methodologies. An EPC is a directed graph consisting
of events, functions, connectors and arcs linking these elements. Each EPC starts and ends
with at least one event. Events are triggers for functions and signal their completion, while
functions represent activities to be performed. Each function is preceded and followed by
an event. Connectors are used to model alternative and parallel branching and merging.
They are splits and joins of the logical types of OR and XOR (for inclusive and exclusive
decision and merging, respectively) and AND (for parallelism and synchronization).

Web Services Business Process Execution Language (WSBPEL): web services
play an important part in the BPM landscape. BPEL [OAS07] is used to describe the
behaviour of Web services using business process modelling constructs. For this reason,
BPEL represents a convergence between Web services and business process technology.
BPEL extends imperative programming languages, like C, with constructs for the imple-
mentation of Web Services. A BPEL process is exposed as a Web Service through WSDL
interfaces. A BPEL process is a hierarchical structure of basic activities corresponding
to atomic actions for sending, receiving and creating/processing messages. Compound
activities determine the process structure by allowing sequential, parallel and conditional
routing, as well as looping. It is also possible to specify events as external agents, such as a
time-out or a message receipt. Specific activities are also available for exception handling
and recovery. The language has been designed to specify both abstract and executable
processes.

Yet Another Workflow Language (YAWL) [vdAtHO5]: is an expressive language
to describe, analyse and automate complex business process specifications, built on top
of the research outcomes of the Workflow Patterns Initiative [Inill]. YAWL was realized
by extending Petri nets with vital constructs to directly support the workflow patterns.
Nevertheless, YAWL is a completely new language with a formal semantics specifically
designed to model workflow specifications. A YAWL model is a hierarchical structure of
tasks corresponding to atomic or composite work items (similar to transitions in Petri
nets), and conditions, to explicitly represent the notion of state. Splits and joins are of
type OR, XOR and AND, and are defined as output, respectively, input decorations of a
task. Multiple instance tasks and cancellation regions complete the control-flow semantics
of YAWL, and are used to model advanced control-flow features. YAWL relies on global
variables to capture the data-flow.

Other important process modelling languages like Petri Nets (PN) and the Business Process
Modelling Notation (BPMN) will be addressed in more detail in the following sections.

2.3.3 Business Process Modeling Notation

The Business Process Modeling Notation (BPMN) [OMG11] is gaining adoption as a stan-
dard notation for capturing business processes [RIRG05]. The initial version of BPMN
was developed by the Business Process Management Initiative (BPMI) in 2004. Two years

2.3. Business processes 47

later, the Object Modeling Group (OMG) adopted the language as a standard for business
process modelling [Gro06a]. As of 2011, BPMN is the most used notation for the mod-
elling of business processes and considered the de facto standard [18]. Currently, the latest
version of BPMN is 2.0 [OMG11].

The primary goal of BPMN is to provide a notation that is easily understandable by
all business users, starting with the business analysts that create the initial drafts of the
processes, to the technical developers responsible for implementing the technology that will
perform those processes, and finally, to the business people who will manage and monitor
those processes. BPMN aims to support the complete range of abstraction levels, including
business levels and software technology levels. Thus, BPMN creates a standardized bridge
for the gap between the business process design and process implementation and also
between technical and non-technical people. In spite of being easy to use, BPMN also has
the ability to model very complex processes.

A second, equally important goal of the language, is to ensure that XML-based languages
designed for the execution of business processes, such as BPELAWS and BPML, can be
visually expressed using a common notation. It also tries to be formal enough to be easily
translated into executable code. By being adequately formally defined, it can create a
connection between the design and the implementation of business processes. BPMN is
based on the same principles as flowcharts, but includes a much greater variety of con-
structs, making the language far more expressive than flowcharts. Besides flowcharts, the
constructs present in BPMN have their roots and are inspired from other notations and
methodologies, especially UML Activity Diagram, UML EDOC Business Process, IDEF,
ebXML BPSS, Activity-Decision Flow (ADF) Diagram, RosettaNet, LOVeM and EPCs.

The main concept specified in BPMN is a single diagram, called the Business Process
Diagram (BPD) [WS05|, which can be used to create graphical models especially useful for
modelling business processes and their operations. It is based on a flowchart technique -
models are networks of graphical objects (activities) with flow controls between them. The
purpose of this diagram is twofold. First, it can quickly and easily be used to model business
processes, and it is also easily understandable by non-technical users (usually management).
Second, it offers the expressiveness to model very complex business processes, and can be
naturally mapped to business execution languages.

Business Process Diagrams were developed with web services and the Business Process
Execution Languages (BPEL) in mind. Thus, they map directly to any major execution
language such as: Business Process Execution Language for Web Services (BPEL4WS) or
Business Process Modeling Language (BPML). We will describe these execution languages
in more detail later. BPD also serve as a common visual notation for expressing different
execution languages.

A BPD is made up of a set of graphical elements [Whi0O4]. These elements facilitate the
development of simple diagrams that will look familiar to most business analysts (e.g.,
a flowchart diagram). The elements were chosen to be distinguishable from each other
and to utilize shapes that are familiar to most modellers. For example, activities are
rectangles and decisions are diamonds. It should be emphasized that one of the drivers for
the development of BPMN is to create a simple mechanism for creating business process
models, while at the same time being able to handle the complexity inherent to business
processes. The approach taken to handle these two conflicting requirements was to organize
the graphical aspects of the notation into specific categories. This provides a small set of
notation categories so that the reader of a BPD can easily recognize the basic elements and

48

2. Background

understand the diagram. Within the basic categories of elements, additional variation and
information can be added to support the requirements for complexity without drastically
changing the basic look-and-feel of the diagram. The four basic categories of elements are:

o Flow Objects;
e Connecting Objects;
o Swimlanes;

o Artifacts.

Flow Objects are the core of a BPD and contain three types of objects defining the behaviour
of a business process:

e Fuyents: an event is something that happens during the course of a business process.

These events affect the flow of the process and usually have a cause (trigger) or an
impact (result). Events are graphically represented by circles with open centres to
allow internal markers to differentiate different triggers or results. The event notion
covers a broad spectrum of concepts in a business process fragment, like: the start or
end of an activity, the sending of reception of a message, the occurrence of an error,
the end of a time interval. There are three main types of events, based on when they
affect the flow: start, intermediate and end.

— Start: indicates where a particular business process starts. In terms of connec-
tion with other flow objects, the start event initiates the flow of the business
process, and therefore will not have any incoming sequence flow connections.
It is mandatory for every business process model to have a unique start event.
Implicitly, this is the only entry point to the business process;

— Intermediate: denotes that something happens inside the flow of the business
process. Intermediate events will affect the flow of the business process, but will
not start or terminate it. This type of events are generally used for modelling
message exchanges, delays are expected within the process or the occurrence of
errors during the flow of a business process;

— FEnd: indicates where a business process will finish. In terms of connection with
other flow objects, the end event terminates the flow of the business process,
and therefore will not have any outgoing sequence flow connections. End events
are mandatory within a business process.

Every event has a trigger, which defines the cause for that event. There are multiple
ways in which an event can be triggered. For a start event, the triggers are designed
to show the general mechanism that will instantiate that process fragment. They
may also define the consequences of reaching an end event. The BPMN standard
proposes a set of 10 types of event triggers. The most important ones are:

— Message: can be applied to any type of event. For the start event, it denotes
the arrival of a message from a participant and triggers the start of the business
process. If applied to an end event, it indicates that a message is sent to a
participant at the conclusion of the business process. Finally, when applied to

2.3. Business processes 49

an intermediate event, it indicates that a message arrives from a participant and
triggers the event. This causes the business process to continue if it was waiting
for the message, or changes the flow for exception handling.

— Timer: can only be applied to start or intermediate events. It may denote that
a specific time-date or a specific cycle can be set that will trigger the start of the
business process. If used within the main flow, it acts as a delay mechanism.

— Plain: it is the most generic type of trigger and can be applied to any type
of event. The modeller does not display the exact cause of the event. Within
the main sequence flow, it is used to indicate a change of state in the business
process;

— Error: this type of trigger can be assigned to intermediate and end events. They
signal an error in the functioning of the business process and disrupt the normal
flow of activities. Error events can be addressed in several ways, depending on
the type of error handling mechanism applied.

o Activities: an activity is a generic term for work that company performs. Activities
are the main elements of a business process. It is represented by a rounded-corner
rectangle. We distinguish between atomic and compound activities. The types of
activities that are a part of a business process model are: task and sub-process.

— Task: is an atomic activity that is included in a business process. They are
mostly used when the behaviour described by the business process is not broken
down to a finer level of detail. In general, an end-user and/or an application are
used to perform the task when it is executed.

— Sub-process: is a compound (non-atomic) type of activity. It has detail that
is defined as a flow of other activities. Sub-processes are complex activities
which require several atomic activities to be performed/executed. Implicitly,
a sub-process consists of several tasks. A sub-process is characterized by its
type, which can be either collapsed or expanded. A collapsed sub-process hides
its internal details. It therefore only provides a high-level view of an activity,
without detailing its internal mechanism. They are also used for providing a
hierarchical organization of activities in a process fragment. On the contrary, an
expanded sub-process shows its details within the view of the process fragment
in which it is contained. They can be used to flatten a hierarchical process
fragment so that all detail can be shown at the same time. They can also
be used to create a context for exception handling that applies to a group of
activities.

e (lateways: are used to control the divergence and convergence of sequence flow. Thus,
they determine the branching, forking, merging, and joining of paths in a business
process. They are used to control how the sequence flows interact as they converge
and diverge within a process fragment. Gateways are not required if the flow does
not need to be controlled. There is a mechanism that either allows or disallows the
passage through every gateway. Thus, sequence flows that arrive at a gateway can be
merged together on input and/or split apart on output as the mechanisms are invoked.
Four different types of gateways exist. The behaviour of each type of gateway will
determine how the sequence flow will continue after passing the gateway. A particular
type of gateway can have multiple input and multiple output sequence flows at the
same time. The type of gateway will determine the same type of behaviour for

50 2. Background

both the diverging and converging sequence flow. There are four possible types of
gateways:

— FExclusive forking: can be both data-based and event-based. They define loca-
tions within a business process where the sequence flow can take two or more
alternative paths. This basically creates a forking of paths for a process frag-
ment. However, only one of the paths can be taken. The choice of which path to
follow is made based on a decision. A decision can be thought of as a question
that is asked at that point in the process. The question has a defined set of
alternative answers, each associated with a condition expression found within
an outgoing sequence flow. When a particular alternative is chosen during the
performance of the process fragment, the corresponding sequence flow is then
chosen;

— Inclusive forking: represents a branching point where alternatives sequence flows
may be followed. However, in this case, the evaluation to True of one condition
expression does not exclude the evaluation of other condition expressions. All
sequence flows with a True evaluation will be traversed. Since each path is
independent, all combinations of the paths may be taken, from zero to all.
However, it should be designed so that at least one path is taken;

— Complez: are used to handle situations that are not easily handled through the
other types of gateways. They can also be used to combine a set of linked simple
gateways into a single, more compact solution.

— Parallel forking: to define the parallel nature of this gateway’s behaviour for
splitting, if there are multiple outgoing sequence flow, all of them will be used
to continue the flow of the business process. For the merging behaviour, all the
incoming sequence flows will be synchronized;

Connecting Objects are used for connecting together the flow objects in a diagram, to create
the basic skeletal structure of a business process fragment. They this define how the flow
progresses through a process fragment (in a straight sequence or through the creation of
parallel or alternative paths). There are three possible types of connecting objects:

e Sequence Flow: is used to show the order (sequence) in which flow objects will
be performed in a business process. It is represented by a solid line with a solid
arrowhead. Sequence flow will generally flow in a single direction (either left to right,
or top to bottom). A sequence flow has only one source and only one target.

e Message Flow: is used to show the flow of messages between two separate business
process participants (business entities or business roles) that send and receive them.
In BPMN two separate pools in the diagram will represent the two entities between
which the message exchange is performed. It is mandatory that message flow connects
two flow objects that belong to different pools. The source and the target cannot
connect two objects within the same pool. In case there is an expanded sub-process
in one of the pools, then the message flow can be connected either to its boundary
or to one of the flow objects within the sub-process.

e Association:: an association is used to associate extra information with Flow Ob-
jects. Text and graphical non-flow objects can be associated with flow objects. An
association is represented by a dashed line with an open arrowhead.

2.3. Business processes 51

BPMN specifies two ways of grouping modelling elements (e.g. progresses, events and
gateways) through so called Swimlanes. They are used to help partition and/organize the
activities of a business process. Their goal is to represent participants of a business process
and their collaboration. Swimlanes may be arranged horizontally or vertically. They are
semantically the same, just different in representation. For horizontal swimlanes, process
flows from left to right, while vertical swimlanes flow from top to bottom. There are two
kinds of swimlanes: Pools and Lanes. There is a simple relation between the two: a pool
is composed of multiple lanes. :

e Pools: represent participants in a business process, which can be a specific entity or
arole. A poolis in general a container and regroups several flow objects, representing
the work that the pool needs to perform under the process being modelled. To
facilitate the clarity of the business process, a pool will extend the entire length of
the diagram, either horizontally or vertically. There is no specific restriction to the
size or positioning of a pool. Also, a pool acts as the container for the sequence
flow between activities of a business process. The sequence flow can thus cross the
boundaries between the different lanes of a pool, but cannot cross the boundaries of a
pool. To represent the interaction between several pools the message flow is used. All
business process fragments contain at least one pool. In most cases, is the diagram
consists of a single pool, it will only display the activities of the process fragment
and may omit to display the boundaries of the pool.

e Lanes: are sub-partition of pools. As with pools, they can be used to represent
specific entities or roles involved in the process fragment. They extend the entire
length of the pool, either vertically or horizontally. Lanes are mainly used to organize
and categorize the activities within a pool.

The last category of elements in BPMN are called artifacts. They are used to provide
additional information about the process. There are three artifacts specified in BPMN but
modelling tools are allowed to add as many new artifacts as they need:

e Group: grouping of activities does not affect the Sequence Flow. The grouping can
be used for documentation or analysis purposes.

o Text Annotation: are a mechanism for a modeller to provide additional information
for the reader of a BPMN Diagram.

e Data object: are considered artifacts because they do not have any direct effect on
the sequence flow or message flow of the process, but they do provide information
about what activities require to be performed and/or what they produce.

Figure 2.3.3 depicts the subset of the most commonly used BPMN elements and how they
are graphically represented.

The BPMN specification defines the Business Process Diagram modelling objects, already
presented, but also the semantics of their behaviour. The BPMN 2.0 specification document
[OMG11] provides an entire section dedicated to defining the execution semantics of BPMN
processes. The purpose of this execution semantics is to describe a clear and precise
understanding of the operation of BPMN elements. The execution semantics are described
informally (textually).

52 2. Background

A o T I
|
As Az | (] | Sequence
| L O00F — =
| Sub-Process | | st Intermediate End ! oo—— Message
|l — 1 Flow
T 900! .
| [\ T Association
| { | str Intermediate End | Flow
| T Message MessageMessage :
D — - .
: T —— : : Baria : (C) Connection Objects
| -1 e —— -
l l r-------------j .---~-----~-4--"
] [! i
| A O B i
| \ :
| [+ 1 e S : \ Y
1 | way way Group
| Collapsed SubProcess | XoR |
| L} 3
| Tasks | : : Artifact /
i S S 4 H Data Object
|
Lane 1 Gateway Gateway :
| AND OR | Text Comment/
Pool | \ Annotation
| Gateways |
Lo o o o o - - — -
(A) Swimlanes (B) Flow Objects (D) Artifacts

Fig. 2.6: Graphical notation for core set of BPMN elements

To facilitate the definition of process elements behaviour, the standard employs the concept
of a token that will traverse the sequence flows and pass through the elements in the process.
A token is a theoretical concept that is used as an aid to define the behaviour of a process
that is being performed. The behaviour of process elements can be defined by describing
how they interact with a token as it "traverses" the structure of the process. However,
modelling and execution tools that implement BPMN are not required to implement any
form of token.

A Process is instantiated when one of its start events occurs. Each start event that occurs
creates a token on its outgoing sequence flows, which is followed as described by the se-
mantics of the other process elements. A Process instance is completed if there is no token
remaining within the process instance. For a process instance to become completed, all
tokens in that instance must reach an end node, where the tokens are "consumed".

As presented, the execution semantics of BPMN is defined in terms of enabling and firing
of elements, based on a token-game. The dynamic behaviour of Petri Nets is also defined in
terms of firing of transitions, triggering the passing of a token through the net. Petri Nets,
one of the best known process modelling languages, is presented in the following section.

2.3.4 Petri Nets

Petri nets (PN) |Pet77| are a formal, mathematical framework for the modelling and anal-
ysis of complex concurrent systems. Petri nets were originally formalised by Carl Adam
Petri in his thesis in 1962 [Pet62] at the Technische University Darmstadt, Germany. Since
their emergence, they have been extensively studied and a recent bibliographical study
shows that there are currently over 8500 papers in the Petri Net literature [Worl2].

Petri nets have their foundation in theoretical computing science with numerous papers

2.3. Business processes 53

being published on their fundamental concepts, theory and algorithms. Due to their
popularity, they have been intensively applied in a wide range of disciplines, including
manufacturing, hardware design, business process management, verification of distributed
algorithms, local area networks, neural networks and more recently biological networks
[DRRO4]. Their popularity is due to both the easy-to-understand graphical representation
and their potential as a technique for formally analysing concurrent systems.

2.3.4.1 Place Transition Nets

A Petri net is a directed bipartite graph, in which the nodes represent transitions (dis-
crete events that may occur), places (conditions) and directed arcs (describe which places
are pre- and/or post-conditions for which transitions). They have a simple graph-based
representation.

Transitions are active components. They model activities which can occur, thus changing
the state of the system. Transitions are only allowed to fire if they are enabled, which
means that all the preconditions for the activity have been fulfilled. Transitions are graph-
ically represented as rectangles. Places in a Petri net model local system states and are
represented as empty circles. State changes are modelled by the flow relation which con-
nects places with transitions and transitions with places using directed arcs. An arc can
connect a place to a transition, or a transition to a place, but is not permitted to connect
a place to a place, or a transition to another transition. An arc is given a weight which
signifies the replication of that arc. The connectivity of the places and transitions gives
the structure, or topology of the net.

Each place in a Petri net may contain a non-negative number of tokens. Such a token
is graphically represented by a black dot. Tokens denote the number of the particular
resource contained by the place. The number of tokens in a particular place is called the
place’s marking. A distribution of tokens over the places of a net is called a net marking.
The state of a Petri net is determined by the number of tokens present in each place. The
initial state of the system is represented by the initial marking.

A transition is said to be enabled in a given marking if all of its input places have a marking
greater than the weight of the arc from the place to the transition. Enabled transitions can
fire, which represents an event, or reaction happening, and alters the marking of the net.
The firing of a transition changes the marking of the net (state of the system), consuming
a number of tokens (equal to the weight of each input arc) from each of its input place,
and producing an amount of tokens (equal to the weight of each output arc) to each of its
output place. Transitions do this atomically, in one non-interruptible step. The interactive
firing of transitions in subsequent markings is called token game.

The class of Petri nets described above is called place/transition nets (PT nets) and it is
the most general one.

Definition: a place/transition net PN is a tuple, PN = {P, T, F, W, My}, where:

o P ={p1,pa,...,pn} is a finite set of places names;

o T ={ty,to,..., ty } is a finite set of transitions names, such that P and T are disjoint:
PNT=0;

54

2. Background

o FC(PxT)U(T x P) is the flow relation (arcs), where (z,y) € F denotes an arc

from x to y;

o W : F — N*is the weight function;

e My : P — N is the initial marking of the Petri net.

One of the important aspects that makes Petri nets interesting is that they provide a
balance between modelling power and possibility of analysis: many properties one would
like to know about concurrent systems can be automatically determined for Petri nets,
although some of them are very expensive to determine in the general case. There are
several behavioural properties of Petri nets [Mur89]:

e Boundedness: this property tells us how many (and which) tokens a place may hold

when we consider all reachable markings. A Petri net is said to be k-bounded if the
number of tokens in each place does not exceed a finite number k, for any marking
reachable from the initial marking. For a particular place of the net, we have the best
upper bound (maximal number of tokens that can reside on a place in any reachable
marking) and the best lower bound (minimal number of tokens that can reside on a
place in any reachable marking). Finally, a net is said to be safe if it is 1-bounded.
By verifying that the boundedness or safeness properties are respected that there will
be no overflow in the buffers or registers, no matter of the firing sequences taken.

Reachability: is one of the fundamental properties that can be studied for Petri nets.
The reachability problem for Petri nets is to decide, given a net N and a marking M, if
that marking can be reached from the initial marking My. A marking M is said to be
reachable if there is a firing sequence that transforms My into M. This is just a matter
of traversing the reachability graph until either we reach the requested marking or
we know it can no longer be found. However, this is harder than it may seem at first:
the reachability graph is generally infinite, and it is not easy to determine when it is
safe to stop. It has been shown that the reachability problem is decidable although
it takes at least exponential space and time to verify in the general case.

Liveness: this concept is closely related to that of complete absence of deadlocks
in operating systems. a Petri net can be described as having for degrees of liveness
Ly — Ly. This depends on the liveness of its transitions, where a live transition is
characterized by the fact that from any marking there exists an occurrence sequence
which can enable this transition. Thus a Petri net is said to be live if all of its
transitions are live, or in other words if, no matter what marking has been reached
form the initial marking My, it is possible to ultimately fire any transition of the net.
This property ensures that a net is deadlock-free no matter what firing sequence is
chosen. The property also allows to identify unwanted infinite firing sequences, verify
that a transition can alwwys re-enabled and ensure that all transitions of the net will
ultimately get enabled.

Home properties: tell us about markings (or sets of markings) to which it is always
possible to return. The home properties tell us that there exists a single home
marking Mpome, which can be reached from any reachable marking. This means that
it is impossible to have an occurrence sequence which cannot be extended to reach
Mpome. In other words, we cannot do things which will make it impossible to reach
Mpome afterwards. The set of all home marking of a net is called the home space.

2.3. Business processes 55

e Dead markings: are markings in which no transitions are enabled. The verification of
existence of dead markings allows to check that the net does not run into unwanted
deadlocks.

e Fuirness: tell us how often individual transitions occur. This property is only relevant
if there are Infinite Firing Sequences(IFS). Given a transition t it is often desirable
that t appears infinitely often in an IFS. The following situations might occur:

— t is impartial: t occurs infinitely often in every IFS;
— t is fair: t occurs infinitely often in every IFS where t is enabled infinitely often;

— t is just: t occurs infinitely often in every IFS where t is continuously enabled
from some point onward;

— No fairness: not just, i.e., there is an IFS where t is continuously enabled from
some point onward and does not fire any more.

The notions presented above concern more the Petri net simulator semantics
rather than the Petri net semantics itself.

There are other, less important behavioural properties of a Petri net, which we only men-
tion: coverability, persistence and synchronic distance [Mur89].

Petri nets have a number of desirable features as a modelling framework:

e 3 clear graphical visualisation of the system;

the ability to analyse the network topology and to determine structural properties;

the ability to analyse the network topology and state to determine behavioural prop-
erties;

the ability to simulate a network by the addition of a time element;

the ability to analyse a model with high level variants of a Petri net.

Due to their popularity, a lot of Petri net formalisms have emerged. In [BDC92|, Bernar-
dinello et al. propose a possible classification that distinguishes between three basic net
levels:

e Level 1: are characterized by "boolean tokens", i.e. places are marked by at most 1
unstructured token.

— Condition/Event Systems: are Petri Net Systems of level 1 which require the net
structure to be pure and simple. The semantics are defined by the full marking
class (forward and backward reachability) and require 1-liveness.

— FElementary Net Systems: have been defined by G. Rozenberg and P. Thiagara-
jan as a more simpler model with only forward reachability.

— I-safe systems: belong to net systems of level 1, since their places are marked
by at most one unstructured token.

e Level 2: are characterized by "integer tokens", i.e. places are marked by several
unstructured tokens - they represent counters.

56 2. Background

— Place/Transition Nets: are Petri Nets of level 2 characterized by counter tokens,
arc weights and place capacities.

— Ordinary Petri Nets: are defined as a subclass of P/T Systems with infinite
place capacities and unary arc weights.

e Level 3: are characterized by high-level tokens, i.e. places are marked by structured
tokens where information is attached to them.

— High-Level Petri Nets with Abstaract Data Types: are high-level algebraic Petri
Nets, where the tokens and firing rule are specified over an algebraic specifica-
tion.

— Environment Relationship Nets: are high-level Petri Nets, where the tokens are
environments.

— Well-Formed Nets: are high-level Petri Nets similar to Coloured Petri Nets
where the colour functions are defined in a different way.

— Traditional High-Level Petri Nets: were defined as Predicate/Transition nets by
H. J. Genrich and K. Lautenbach and as Coloured Petri Nets by K. Jensen.

Important extensions to this general Petri Nets classification are:

e Colored Petri Nets: add the possibility to use data types and complex data manipula-
tion. Each token has attached a data value called the token colour. The token colours
can be investigated and modified by the occurring transitions. It is also possible to
make hierarchical descriptions.

e Timed Petri nets: associate with each arc an interval (or bag of intervals). Each token
has an age. This age is initially set to a value belonging to the interval of the arc
which has produced it or set to zero if it belongs to the initial marking. Afterwards,
ages of tokens evolve synchronously with time. A transition may be fired if tokens
with age belonging to the intervals of its input arcs may be found in the current
configuration.

e Modular Petri nets: introduce structure by letting modules be specified separately.
The modules communicate either by using shared transitions or place fusion.

2.3.4.2 Hierarchical Coloured Petri Nets

Coloured Petri nets (CPN) [Jen92, Jen94| represent an extension of Place/Transition Petri
nets, as they attempt to distinguish individual tokens of PT-nets by giving them colours
[Pet80].

When modelling a system by means of a classical Petri nets, elements of this system should
represented as tokens, places, transitions and connections. Tokens can be used for modelling
physical objects, information objects, collections of objects, states and conditions. In
classical Petri nets, however, it is not possible to describe the attributes of a token. It is
therefore natural to extend classical Petri nets in such a way that every token carries some
data. In a Coloured Petri nets, every place has a type and every token has a value and
the value of the token is also called its colour. The value of a token can be used to keep
up-to-date with information about the object represented by the token [JKO09|.

To give an overall picture, CP-nets are different from PT-nets in the following ways:

2.3. Business processes 57

e Tokens in CP-nets can have an arbitrary abstract data type. The data type is referred
to as its colour set and the value of the token is called its colour. All PT-net tokens,
in contrast, are of a single, unstructured type.

e Arcs in CP-nets have arc expressions associated with them (instead of the simple arc
weights of PT-nets). The arc expressions can contain variables whose scope covers
all arcs associated with a particular transition. The expressions must evaluate to a
multi-set of tokens of the appropriate data type for the place associated with that
arc.

e Transitions can have guard expressions associated with them. A transition is not
enabled unless the guard evaluates to "TRUE".

e Places in CP-nets do not have weights associated with them.

e A marking of the CPN model is given by the number of tokens and the token colours
on the individual places which together represent the state of the system.

In a CPN, the enabling and occurrence of transitions happens in the following manner.
The arc expressions on the input arcs of a transition together with the tokens on the
input places determine whether the transition is enabled, so it is able to occur in a given
marking. For a transition to be enabled, it must be possible to find a binding of the
variables that appear in the surrounding arc expressions of the transition such that the arc
expression of each input arc evaluates to a multi-set of token colours that is present on the
corresponding input place. When the transition occurs with a given binding, it removes
from each input place the multi-set of token colours to which the corresponding input arc
expression evaluates. Similarly, it adds to each output place the multi-set of token colours
to which the expression on the corresponding output arc evaluates.

An important extension to CPN is the introduction of modules and therefore the possibility
to make hierarchical descriptions. A CPN model can be organised as a set of modules, in a
way similar to that in which programs are organised into modules. There are several reasons
why modules are needed. Firstly, creating a CPN model of a large system as a single net is
very difficult and impractical, since it would become very large and inconvenient. Secondly,
the use of modules as elements of abstraction allow the modeller to concentrate on only
a few details at a time. Therefore, CPN modules can be seen as "black boxes", where
modellers, when appropriate, can forget about the details within modules. This enables
the work at different abstraction levels. Finally, there are often system components that
are used repeatedly. A module can be defined once and used repeatedly, so it also serves
as a unit of reuse.

A hierarchical CPN model consists of a set of modules (pages) which each contain a net-
work of places, transitions and arcs. The modules interact with each other through a set
of well defined interfaces. A page may contain one ore more substitution transitions. Each
substitution transition is related to a page, i.e., a subnet providing a more detailed de-
scription than the transition itself. There is a well-defined interface between a substitution
transition and its sub-page. The places surrounding the substitution transition are socket
places. The sub-page contains a number of port places. Then, socket places are related to
port places in a similar way as actual parameters are related to formal parameters in a
procedure call. This representation makes it easy to see the basic structure of a complex
CPN model and understand how the individual processes interact with each other.

58 2. Background

The Petri net research literature proposes three main types of analysis approaches that can
be applied on HCPN. Each can be applied to both classical and high-level coloured Petri
nets:

o Simulation: is the most widely used analysis technique. From a technical point of
view, the simulation of a Petri net involves just a "walk" in the reachability graph.
By performing several such "walks" it is possible to make reliable statements about
different dynamic properties or performance indicators. This technique is mainly
used for validation and performance analysis purposes, but cannot be used to prove
correctness. Usually, performing a single run does not provide information about
reliability of results. Therefore, multiple runs or one run cut into parts: sub-runs.
The simulation of HCPN models has many similarities with debugging of programs
written in high-level languages such as Java or C. HCPN tools provide different modes
of simulation suitable for different purposes. In general, there are two different types
of simulations that can be performed:

— Interactive: a HCPN can be investigated and debugged by means of the HCPN
simulator, just as a programmer tests and debugs new parts of a program. In the
interactive mode of the simulation the user is in full control, sets breakpoints,
chooses between enabled binding elements, changes markings of places, and
studies the token game in detail. The modeller is able to inspect all details
of the markings reached and can see the set of enabled transitions and select
the binding elements to occur.The purpose is to see whether the individual
net components work as expected. Interactive simulations are, by nature, very
slow, as no human being can investigate more than a few markings per minute.
Interactive simulations do not require the model to be complete, so the user
can start investigating the behaviour of parts of a model and directly apply the
insight gained to the ongoing design activities.

— Automatic: is useful later on in a modelling process, when the focus shifts from
the individual transitions to the overall behaviour of the full model. This type
of simulation allow us to obtain much faster simulations. A totally automatic
simulation is executed with a speed of several thousand steps per second (de-
pending on the nature of the CPN model and the power of the computer on
which the CPN simulator runs). The user is in control of automatic simulations
by means of stop options which make it possible to give an upper limit to the
number of steps the simulation should run.

e Place/Transition invariants: this concept can be used to partially address the prob-
lem of state space explosion that appears in Petri net analysis. Inwvariants define
net properties independent of the initial state of the Petri net. Such invariants may
be applied to either places or transitions. Invariants can be computed using linear
algebraic techniques.

e State-space analysis: simulation can only be used to consider a finite number of
executions of the model being analysed. This makes it likely that the protocol works
correctly, but it cannot be used to ensure this with absolute certainty since we cannot
guarantee that the simulations cover all possible executions. The state space of a
HCPN is a directed graph with a node for each reachable state and an arc for each
possible state change. Full state spaces represent all possible executions of the model

2.3.

Business processes 59

being analysed. The basic idea is to calculate all reachable states (markings) and all
state changes of the HCPN model and represent these in a directed graph. The state
space of a HCPN model can be computed fully automatically and makes it possible
to automatically verify that the model possesses an abundance of properties, like
reachability, boundedness, liveness, and fairness.

State spaces are also referred to as occurrence graphs or reachability graphs/trees. The
term occurrence graph denotes the fact that a state space contains all the possible
occurrence sequences of the HCPN. The reachability graph/tree is used because the
state space contains all reachable markings of the net.

One of the main drawbacks of the state-space analysis approach is the state space
explosion problem, which might limit the application of this method to very large
HCPNs. For large models the state space is often so huge that it cannot be fully
generated. Therefore, the user has to focus only on certain aspects of the model and
generate only a sub-graph of the state space. As the aim of the state space models is
to analyse the overall behaviour of the HCPN, standard queries may be applied for
determining certain behavioural properties.

3. SPL METHODOLOGY FOR THE
DERIVATION OF PRODUCT BEHAVIOUR

Abstract

Throughout this chapter, we propose a new software product line engineering
methodology that focuses on the derivation of product behaviour. A methodology
can be seen as a framework for applying software engineering practices with the
specific aim of providing the necessary means for developing software-intensive
systems. By applying the proposed methodology, behavioural product models can
be produced that belong to the analysis and early design levels of the software
development life-cycle. We focus on behavioural models as this type of product
representation is currently not sufficiently addressed in product line engineering.
The behavioural models obtained should describe the business and operational
step-by-step work flows of activities/actions performed by the derived product.
The main flow of the methodology and its specific steps are described in Sec-
tion 3.1. The first step of the methodology, described in Section3.2, focuses on
capturing the common aspects and those that discriminate among systems in
the product family using feature models. The second phase of the methodology
focuses on the creation of business process fragments, which represent the core
assets of the software product line, and is presented in Section 3.3. Throughout
Section 8.4 we briefly discuss the concept of "correctness” for business process
fragments and explain what type of verifications are required to ensure this prop-
erty. Section 3.5 aims at bridging the gap between feature models and solution
models and thus defines a mapping of features to model fragments specifying
the concrete feature realisations. Section 3.6 is the first one that belongs to
the Application Engineering phase. It consists of selecting, based on the user’s
preferences, the required features that will be part of a particular product that is
derived. Finally, in Section 3.7, the set of business process fragments resulting
from the feature diagram configuration step are transformed, through a compo-
sitional approach, into a proper business process that models the behaviour of
the SPL product being derived.

Software development is a complex and tedious task. As a consequence, software engi-
neers are unable to produce complex and high-quality applications in an ad-hoc manner.
Methodologies are the means provided by software engineering to facilitate the process of
developing software and, as a result, to increase the quality of software products.

Methodologies have been successfully applied in various disciplines and domains for a long
time, before their introduction to software engineering. A methodology usually provides
guidelines for solving a problem, with specific components such as phases, tasks, methods,
techniques and tools [IR05|. Jayaratna emphasises that a methodology provides an ex-
plicit way of structuring systems development: "Methodologies contain models and reflect

61

particular perspectives of ‘reality’ based on a set of philosophical paradigms. A methodology
should tell you "what’ steps to take and "how’ to perform those steps but most importantly
the reasons 'why’ those steps should be taken, in that particular order” [Jay94|. The concept
of "methodology” may also be defined as follows [MW12]:

e "the analysis of the principles of methods, rules, and postulates employed by a disci-
pline";

o "the systematic study of methods that are, can be, or have been applied within a
discipline";

o "the study or description of methods".

In the field of software engineering, a methodology provides a structured set of guidelines,
methods, descriptions and tools for each phase in the life cycle of a system, to ensure the
production and maintenance of a well-engineered product that is fitted for its purpose.
It can also be seen as a framework for applying software engineering practices with the
specific aim of providing the necessary means for developing software-intensive systems.
Methodologies may differ widely in terms of their philosophy, objectives and system mod-
elling approaches. Therefore, several authors have defined this concept in the context of
software engineering:

e Avison et al. state that "a methodology is a collection of procedures, techniques, tools
and documentation aids which will help the systems developers in their efforts to im-
plement a new information system. A methodology will consist of phases, themselves
consisting of sub-phases, which will guide the system developers in their choice of the
techniques that might be appropriate at each stage of the project and also help them
plan, manage, control and evaluate information systems projects” [DEA03];

e Maddison et al. define a methodology as "a recommended collection of philosophies,
phases, procedures, rules, techniques, tools, documentation, management and training
for developers of information systems" [MBBT84].

A methodology therefore permit individuals to structure their understanding of appropri-
ate solutions for a problem situation, according to their perspective and their previous
experience of both the problem context and the methodology. It affects the way in which
individuals will perceive the context and tasks of development, with each component layer
of the methodology acting as a filter to the next layer. Ultimately, the problem situation
is perceived through the filters provided by successive elements of the methodology.

Moreover, software engineering methodologies have been demonstrated to be important in
two respects:

e Facilitate standardisation and thus manage the development process, decreasing in-
dividuals’ autonomy and discretion in design decisions;

e Embody the values of technical development staff reinforcing and propagating those
values through the normative processes of design.

62 3. SPL methodology for the derivation of product behaviour

SPLs have recently been introduced as one of the most promising advances for efficient
software development. This technique has gained a lot of attention in recent years by both
research and industry. Throughout the past years, the SPL comunity has mainly focused
on the domain engineering phase of the process. Application engineering, or product
derivation, a key phase of the SPL process that can be tedious and error-prone [DSB05],
has been given far less attention compared to domain engineering. Implicitly, there arises
the need for new product derivation techniques in the SPL research field.

To address this situation, SPLE has recently turned towards Model-Driven Engineering,
identified as a software development paradigm able to offer viable solutions for improving
product derivation. In this context, the result of the derivation process is the model
of an individual product obtained from the set of core assets. Two types of models, each
offering a different view of the derived product, can be obtained: structural and behavioural
|[RC10]. Structural models provide a static view of the derived product. Behavioural models
illustrate the dynamic behaviour of the product and the general flow of control. Most of the
work in SPLE addresses the derivation of structural product representations, neglecting or
just briefly addressing the problems inherent to the derivation of product behaviour. This
yields an unwanted situation, as the behavioural product representation is as important as
the structural one.

Moreover, upon closer examination, there are only few guidelines or methodologies avail-
able that try to address to some extent the issue of deriving product behaviour. These
approaches typically focus on enhancing specific steps of the SPLE development, without
being a methodology that covers the SPLE process end-to-end.

Our goal in this section is to introduce and define a SPL engineering methodology which
allows the development and the derivation of behavioural models of SPL products. The
methodology covers the entire SPLE process, from variability modelling and core assets
definition during the domain engineering step all the way to the actual product derivation
during application engineering. We focus on behavioural models as this type of product
representation is currently not sufficiently addressed in product line engineering. The
behavioural models obtained should describe the business and operational step-by-step
workflows of activities/actions performed by the derived product. We propose a process-
based language called Composable Business Process Fragments (CBPF), based on the
BPMN standard, as the specific type of model used for representing the behaviour of
derived products. However, the methodology is generic and can also work with other types
of behavioural models. The methodology is intended to support both domain engineering
and application engineering phases of SPL software development process.

3.1 Overview of the methodology

We propose a new software product line engineering methodology that focuses on the
derivation of product behaviour. By applying this methodology, we can produce be-
havioural product models that belong to the analysis and early design levels of the soft-
ware development life-cycle. The proposed methodology covers only the derivation of
behavioural product models, and does not address the structural product representation.
However, it can be used together with other product derivation techniques aimed at ob-
taining structural product models.

We present in the following the key features, or the "meta-requirements", desired for this

3.1. Overview of the methodology 63

methodology:

e The methodology adopts and follows the traditional software product line engineer-
ing approach by splitting the overall development life-cycle into two phases: domain
engineering (DE) and application engineering (AE). From this point of view, the
proposed methodology can be considered "complete” or "end-to-end”, covering the
entire SPLE process. During domain engineering, the focus is on core assets develop-
ment. For this methodology, the core assets created are business process fragments.
Moreover, during this phase of the process, we also address the variability of the
product line. Feature models are used for capturing product line commonality and
variability. During the application engineering phase, new behavioural product mod-
els are created from the core assets base. Based on a user guided selection, a set
of business process fragments are selected. A new business process, modelling the
behaviour of the desired derived product, is then obtained following a compositional
approach.

e The methodology follows the separation of concerns principle. In Section 2.1.6 we in-
troduced a classification of variability modelling approaches. In our methodology, we
use a variability modelling technique that belongs to the second class of approaches,
those that distinguish and keep separate the assets model from the variability model.
More precisely, we use feature diagrams as a means to capture the product line vari-
ability. Features are then connected to business process fragments, which represent
the core assets. Therefore, a clear separation of concerns is achieved. Some implicit
advantages are: each asset model may have more than one variability model; design-
ers can focus on the product line itself and not on its variability, which is addressed
separately; possibility for a standardized variability model.

e The methodology makes use of positive variability [VGO7|. In MDE-based SPLE,
models are used to represent products in the problem and solution domain. Con-
sequently, a solution domain model often needs to be adapted based on a product
configuration in the problem domain. In other words, we want to use a configuration
of the variability model, in our case the feature model, to guide the derivation of the
desired product model. There are two fundamentally different ways of approaching
this problem: use negative variability or positive variability. Negative variability se-
lectively takes away parts of a creative-construction model based on the presence or
absence of features in the configuration model. The "overall" model is built manu-
ally, and model elements in that model are connected to features in the configuration
model. With positive variability we start with a minimal set of core assets and pro-
gressively add additional parts. In our methodology, we use positive variability in the
following manner: a configuration of the feature diagram is created based on a spe-
cific user selection; implicitly, business process fragments connected to those features
are also selected; the fragments are then combined using a compositional approach
into the resulting behavioural product model.

e The methodology allows to model complex product behaviours using a compositional
approach. Since the methodology focuses on behavioural representations of SPL
products, an important aspect to be addressed is how to obtain a complex behaviour
from several simpler ones? One of the factors that contributes to the difficulty of
developing complex behaviours is the need to address multiple concerns in the same
artefact. This situation emphasizes the need for separation of concerns mechanisms

64

3. SPL methodology for the derivation of product behaviour

as a support to the design of complex behaviours, modelled using business processes
in this case: concerns are defined separately, and assembled into a final system using
a compositional techniques. This challenge is pointed out by Mosser: "there is no
approach described in the literature which fulfils the specific goal of supporting the
design of complex business processes following a compositional approach, at model
level” [Mos10|. The use of the separation of concerns principle in this methodology
was explained in the previous paragraphs. The methodology uses a compositional
approach for creating the final derived products. The same compositional approach
can also be used for creating individual business process fragments. For this purpose,
we propose a set of business process composition operators that are applied on the
business process fragments and produce the final behavioural product model.

The methodology uses the notion of "composable business process fragment” and pro-
vides language support for it. Business process fragments are introduced as a new
unit of reuse for business process modelling. They fulfil the need of another unit
of reuse, one that allows fine-grained reuse of process logic within the range from
atomic language constructs to sub-processes and whole processes. We also propose a
language that supports the modelling of such business process fragments. To address
the issue of process composition, our language proposes the concept of "composition
interface” and "composition tag”. Using an annotation-based mechanism, composi-
tion interfaces are used to explicitly identify the parts of a process fragment where
it can connect to other fragments or where other fragments can be connected to it.
The interfaces are also an indicator of how this connection can be performed.

The methodology ensures several desirable structural and behavioural correctness
properties are fulfilled through a Petri nets based wverification. We define the no-
tion of "correctness” for composable business process fragments in terms of structural
and behavioural correctness. To ensure structural correctness, several well-formedness
properties are defined on the business process fragment meta-model. This ensures
that those properties are fulfilled for every business process fragment that conforms
to the meta-model. Regarding behavioural correctness, we ensure that business pro-
cess fragments satisfy two types of dynamic properties: predefined (absence of dead
tasks, livelock analysis, deadlock analysis, reachability analysis for end states and
composition interfaces) and specific (differ from one process to another) properties.

The methodology provides a step-by-step guide to creating behavioural product models.
Complete methodologies consist of many steps, each addressing different aspects of the
product life cycle. The main flow of the methodology and its specific steps are described
in the following.

e Construction of the feature diagram: the first step of the methodology consists

of capturing the variability of the SPL using feature models. They are constructed
based on requirement documents and user specifications. It involves a thorough anal-
ysis and parsing of the documents to eztract the features. Then, the actual feature
diagram construction is performed: determine variation points and associated vari-
ants, define feature groups and relations between them, choose mandatory and op-
tional features, express cross-tree feature dependencies. The end result is the feature
diagram of our SPL.

3.1.

Overview of the methodology 65

Construction of business process fragments: for our methodology, business
process fragments represent the core assets base of the product line. There are three
possible ways by which they can be created.

— Construct form scratch: new business process fragments can be created as the
actual implementations of the features. The product line engineer creates them
based on feature descriptions and detailed information from the requirement
documents. The specific knowledge of a domain expert in the field is required
for obtaining proper business process fragments;

— Select from fragment library: business process fragments might already be avail-
able in different forms in business process libraries/repositories. In this case, we
can simply select a fragment that corresponds to the current requirements, which
can be used "as-it-is", without further modifications;

— Adapt existing fragment: business process fragments can be found in process
libraries that only partially satisfy the requirements. In this case, such processes
can be partially reused and adapted to fit the current needs.

We provide full language support for creating business process fragments.

Verification of business process fragments: we want to ensure that several
properties are fulfilled by the business process fragments created during the previous
step. Therefore, each process fragment will be individually verified to guarantee its
correctness. We define the notion of correctness for business process fragments as
the union of structural correctness and behavioural correctness properties. Structural
correctness guarantees that all business process fragments satisfy a series of well-
formedness rules. However, we also want to ensure some dynamic properties. Two
types of properties are checked: general ones (should be valid for all business process
fragments) like reachability of end events and composition interfaces, deadlock-free
process, absence of dead tasks, no infinite occurrence sequences, data type consis-
tency; process specific ones (cannot be verified in general and differ form one process
to another) for which we propose several general property templates that the user
can instantiate for a specific purpose.

Associating business process fragments to features: during the previous steps,
the variability of the product line was captured using feature models. Then, business
process fragments were created as concrete implementations of the features from the
feature diagram. During this step, a I-to-1 association between features and busi-
ness process fragments is performed. Therefore, each feature will have an associated
business process fragment that corresponds to its actual implementation. This step
needs to be performed manually by the product line engineer, who will assign the
business process fragments to the appropriate feature form the feature diagram.

Feature diagram configuration: consists of selecting the features that will be part
of a particular product that is derived. The selection of the features is performed
according to user requirements. Configuring the feature diagram amounts to resolving
all the variations it contains. For each variation point, the appropriate variant(s) are
selected. Once a particular configuration of the feature diagram has been obtained,
the process fragments corresponding to the selected features will also be part of the
product configuration.

66

3. SPL methodology for the derivation of product behaviour

(START |

DOMAIN ENGINEERING

L

Feature Diagram construction

8

Business process fragment
construction

N/

Business process fragment
werification

1

Associgte features to
business process fragments

(. Phase 1 (_

<. Phase 2 (_

APLICATION
ENGINEERING

\7

Feature Diagram configuration

N/

Product derivation

specification

Fig. 3.1: General steps of the proposed methodology

3.2. Counstruction of the feature diagram 67

e Product derivation specification: during this step of the methodology, the actual
business process corresponding to the behavioural model of the derived product is
obtained. First, the set of business process fragments are annotated with composition
interfaces. Their role is to explicitly mark the locations where a business process
fragment can be composed with other fragments. Then, the actual order in which
the fragments should be composed is specified by means of a composition workflow.
The actual composition is a stepwise process: the composition workflow is parsed
and for each pair of fragments the corresponding composition operator is applied; the
result obtained is further composed with the next fragment of the workflow, using the
specified operator. The result of the last composition corresponds to the end result
of the methodology: the behavioural model of the derived product, represented as a
business process model.

From a product line engineering perspective, the first four steps of the methodology belong
to the domain engineering process, while the last two steps belong to the application
engineering process. A graphical representation of all the steps of the methodology is
presented in Figure 3.1. A flowchart is used for the graphical representation. Each rectangle
in the diagram corresponds to a distinct step within the methodology and the directed arcs
between them indicate how they are related. Steps belonging to domain engineering and
those belonging to application engineering are explicitly delimited in the diagram.

3.2 Construction of the feature diagram

Central to the product line paradigm is the modelling and management of variability.
The first step of the methodology focuses on defining the system properties relevant to the
stakeholders and also on capturing the common aspects and those that discriminate among
systems in the product family. To achieve this goal, we use feature models, a popular SPL
variability modelling technique. A thorough presentation of feature modelling concepts is
available in Section 2.1.7.

3.2.1 Feature diagram dialect and meta-model

For the past 22 years, there have been a lot of contributions from research and industry
in the area, generating several feature modelling dialects. The feature model used in this
thesis is based on previous work from Perrouin [PKGJ08b| and Gouyette [GBLNJ10]. It
combines concepts from the FORM |[KKL"98a| and Riebisch |Rie03] feature modelling
dialects.

FORM is one of the several extensions of the seminal feature modelling approach called
FODA [KCH'90]. We keep the main concepts defined in FODA and FORM: there is a root
node, which refers to the entire system and which is always mandatory. The remaining
nodes denote features and sub-features. Features are mandatory by default but can be
made optional. Features are assembled in feature groups and are subject to decomposition.
Dependencies between features can be expressed using the mutexr and requires constraints.
From the FORM approach, we inherit the property that feature names are depicted in
boxes. We use FODA and FORM as the basis for our feature modelling language be-
cause these notations have the advantage of being clear, well-known, precise and easy to
understand.

68 3. SPL methodology for the derivation of product behaviour

_Q—m iz TextualConstraint
= name : EString

assodatedModel '\ 1 [] FeatureDiagram 3
constraint i
' graphTypeTree : EBoolean = el
constraintEdges |} ConstraintEdge B [|
e [Require Mutex
0..* features
root
[F| Feature 0.1 [E Atbie |
operators | 0..* = name : EString source © name : EString
_B features | G selected : EBoolean 0.1 @ value ; EString
© name : EString L.* target attributes | © type : EString
0.*
B source |1 target| 1 % [Primiivefcshre
T -
|| DecompositionEdge
[gopt [gad [gor [B¥or [Card
1 min : EInt
© max : EInt

Fig. 3.2: Feature diagram meta-model

From the feature modelling dialect of Riebisch we inherit the concept of group cardinalities.
Riebisch insists on the importance of representing cardinalities in feature diagrams, and
proposes to extend them with UML multiplicities, as the use of alternatives, or and xor
relations could lead to ambiguities and only allows multiplicities to be partially represented.
We decide to use cardinalities as they confer a great power of expression to the language
and allow to represent a large range of possible variabilities.

Following a model-driven engineering approach, the feature modelling language used is
presented in the form of a meta-model. The graphical representation is available in Figure
3.2. This meta-model is presented in more detail in the following.

FeatureDiagram is the root class of the meta-model. This class has an attribute graphType-
Tree which permits to determines whether the feature diagram is a tree feature diagram or
a directed acyclic graph (DAG). It also contains a list of features (class Feature), which are
represented in the feature diagram as nodes. Features can be distinguished by their name
attribute. It is also possible to express if a feature is part or not of a configuration using
the selected attribute. There is a unique special root node, identified by the reference root
from FeatureDiagram meta-class to the Feature meta-class. The notion of primitive feature
is introduced to distinguish between features that are internal to the feature diagram and
the leaf features. A feature is characterized by a set of attributes. It can have a name, a
particular value and a specific type.

Relations between features can be expressed using operators. In the meta-model, these
operators are subtypes of the meta-class Operator, and each feature (class Feature) may
contain () or more such operators. All the classical feature diagram operators are available.

3.2. Counstruction of the feature diagram 69

A feature can be made optional by using the Opt operator. There are three operators
defined for feature groups: And, Or, Xor. The use of group cardinalities is possible through
the Card operator. It defines the minimum and maximum number of features that can be
selected from a feature group where this operand is applied.

The decomposition of a feature into more refined features is done using edges (class Decom-
positionEdge). Edges have features as sources and targets. The set of constraint edges is
represented in the meta-model by the class ConstraintEdge and are contained by the class
FeatureDiagram. Constraint edges are used to represent cross-tree feature dependency
relations. Each constraint edge contains either a Require or a Mutexr constraint.

Moreover, in the meta-model a feature is related to a unique model by the composite
association between the class Feature and the class Model. There is a 1-to-1 association
between features and models, specifying that one feature is represented by a unique model.

Finally, feature modelling constraints have been implemented to guarantee the well-formedness
of all feature models that are conform to this meta-model. They are defined as a constraints
plugin, developed in order to help the user create valid feature models. This plugin is writ-
ten using Praxis rules [{SMBB10|. The proposed consistency rules are briefly presented in
the following;:

e noTwoFeaturesHaveSameName : a feature can’t the same name of another feature
in the feature diagram;
e noParentFeature AsChildren : children features cannot contain their parent features;

o noMuterBetweenParentAndChild : there cannot be mutual exclusivity between a
parent feature and one of its children;

o noSeveralMutexOnSameFeature : there cannot exist several mutex constraints be-
tween the same pair of features;

o noCyclesOnRequire : for two features f; and fo, if f; requires fo, then f, cannot require

fi;

e noBothRequire AndMutezOnSameFeatures : there cannot exist both mutex and re-
quire constraints between the same pair of features;

e minCardLargerThanZero : when the cardinality operator is used, the value of the
min attribute must be greater or equal than 0;

o noMinGreater ThanMaz : when the cardinality operator is used, the value of the min
attribute must be greater or equal than the value of the max attribute;

o noMazLessThanMinusOne : when the cardinality operator is used, the value of the
max attribute must be greater or equal than -1;

o nbFeaturesMustBeMore ThanMin : the number of children features of the cardinality
operator on a feature must be greater or equal than the minimum cardinality;

o orOperatorMustHaveAtLeastTwoOperands : the Or operator must have at least two
children features;

o zorOperatorMustHaveAtLeast TwoOperands : the Xor operator must have at least
two children features;

70 3. SPL methodology for the derivation of product behaviour

o noAncestorFeatureAsChildren : a child feature cannot have one of his ancestors as
children;

e noConstraintReflexive : a given feature cannot require itself or be mutually exclusive
with itself;

o noMuterBetweenAndFeature Children : features with the same parent feature and
contained in an And operator cannot be mutually exclusive.

3.2.2 Feature diagram construction process

The process is quite difficult due to the fact that the information that needs to be ex-
tracted, the domain knowledge, resides in natural language requirements documents and
user specifications. The potential size, quantity and heterogeneity of these documents,
combined with the inherent ambiguity of natural language, means that the task can be
very cumbersome, and can be both time-consuming and error-prone when performed man-
ually. The individual steps of the process followed for constructing the feature diagram of
the product line are presented in the following. The entire process for creating the feature
diagram is graphically depicted in Figure 3.3.

e Document analysis and feature extraction:

This step of the process relies on and has as input the requirements documents and
the wuser specifications. It involves the manual or automatic identification and ex-
traction of features. The user or SPL engineer may be faced with a large volume
of textual requirements documentation, written in natural language, with all its in-
herent ambiguity and implicit or tacit knowledge. In addition to this, requirements
documents may be heterogeneous, and might include diverse artefacts and concerns
from a business as well as a technical standpoint.

The product line engineer has to parse the requirements document(s) and mine the
text in order to identify and extract the features. The context in which this text
analysis is performed is quite flexible and can go from single phrases delimited by
punctuation marks, to complete paragraph or even subsections. The goal of this anal-
ysis is to identify the main requirements and to determine similarity relations them,
within one document or across multiple requirements documents. This information
can then be used in the process of abstracting them in order to obtain the features
of the feature model.

A large set of requirements are initially extracted from the text. They correspond
to an initial possible set of features. However, the size of this initial set will be
quite large, so the product line engineer needs to identify similarities between these
requirements and then to perform a clustering operation based on such similarities.

A certain level of flexibility is required in comparing the requirements, not only taking
into account words that match, but also taking into account how often they occur
together in the rest of the documents: words of requirements occurring together in
the rest of the documents suggest that these requirements are similar. Requirements
can be considered related if they concern similar matters/subjects. Thus, the subject
of the requirements has to be compared, and requirements with similar subjects will
be grouped together. Such comparisons are usually performed based on similarity
measures. Natural language processing techniques like the Latent Semantic Analysis

3.2. Counstruction of the feature diagram 71

START

Lizer
specification

Reguirements

docLrent

“{t

Document analysis and
feature extraction

e

Construction of the § Feature
feature diagram e Diagram

STOP

Us

Fig. 3.3: Complete process for creating the feature diagram

72

3. SPL methodology for the derivation of product behaviour

(LSA) can also be used. LSA considers texts similar if they contain a significant
set of semantically similar terms, where semantic similarity is deduced by examining
term distribution among the entire document set.

Following this step, requirements which are found to be semantically similar (have
the most in common), are "clustered" to form a feature. This operation is performed
based on the intuition that features are tightly-grouped clusters of related require-
ments. Pre-existing hierarchical relationships between requirements should also be
captured. The clustering is an iterative process, so the smaller features are then
clustered with other features and requirements to form a larger feature. It is up to
the product line engineer when to stop the clustering process and to determine the
maximum number of levels in the feature hierarchy.

Ultimately, the result obtained is a hierarchy of features, which are clusters of re-
quirements. A refinement of the resulting features can the be performed, including
the manual naming of the features.

Creation of the feature diagram:

Building feature models is far from a trivial task, even when features have been
identified, as the product line engineer will need to distinguish which are the core
and which are the variant features, and also to deal with the product line variability.
Once the set of features from which the feature model will be created have been
selected, there remain several activities to be performed to transform them into the
actual SPL feature model.

— Identification of core/mandatory features: mandatory features define the core
of the product line. A feature is considered mandatory if it belongs to every
possible configuration of the feature model, so it implicitly appears in all the
products that can be derived from the SPL. They can be considered as the pre-
requisites for every product that will be built and are the foundation of the SPL,
onto which all the products are built. Mandatory features correspond to key
requirements which are essential for the product line. The product line engineer
therefore needs to carefully select from the available set of features those he
thinks will become the backbone of the SPL.

— Identification of optional features: in a similar manner as for mandatory fea-
tures, the product line engineer needs to define the features that will appear
as optional in the feature diagram. An optional featured defines a requirement
or functionality that can be omitted from some of the products of the SPL.
They are specific characteristics of some individual product(s). Optional fea-
tures are not part of the backbone of the SPL. Optionality is one possible way
of representing variation if feature diagrams. The selection process of optional
features is quite straightforward: all the features that are not defined as being
mandatory implicitly become optional.

— Identification of variability: this is a crucial step in the construction of the
feature diagram. Variability needs to be first detected by analysing the require-
ments documents. In order to identify variability already present in these doc-
uments, we determine words whose semantic category denotes variability. For
this, a variability lexicon can first be defined and then a grammatical pattern
identification process applied on the text. The variability lexicon is a collection
of words (e.g., different, like, such as, several, and, or) which point to the po-
tential presence of variability elements in the text. Grammatical patterns are

3.2. Counstruction of the feature diagram 73

patterns of natural language that denote the potential presence of variability,
for instance enumerations. When a variability element is considered relevant for
inclusion into the feature model, the analyst needs to decide upon the semantics
of the variation. Moreover, the product line engineer needs to consider to which
level of the feature model this variability should be propagated. He also needs
to consider how to represent this variability in the feature model: what sort of
optionality has been revealed, whether sub-features need to be created and so
on.

— Selection of variation points and variants: a variation point identifies one or
more locations at which the variation will occur. They offer the required flexi-
bility and adaptability to the SPL. In this context, variation points define high
level requirements for which several possible concrete implementations exist.
Based on the results of the variability identification step, the product line en-
gineer needs to select from the feature set those that become variation points.
However, variation points can also be created "artificially": if several similar fea-
tures are identified during the variability identification step, a new higher-level
feature that subsumes them can be introduced and becomes a variation point.
Once defined, a variation point needs to have several variants. They repre-
sent concrete possible implementations of that variation point. Use of variation
points and variants is the main variability implementation technique for feature
models. As for variation points, variants are also selected based on the results
of the variability identification step.

— Applying variation operators: the variants connected to a variation point can
be grouped together into a feature group. Different variability relations may
exist between the variants of such a feature group. Variation rules or operators
define the manner in which a variation point is replaced by one or more of its
variants. At the variation points, the variation rule/operator is applied accord-
ing to the semantics of the natural-language operator. The rules specify the
semantics of the variation - that is, how the variation manifests itself: the inclu-
sion or removal of sub-features, concerns, or the composition of requirements in
new ways. Variation operators like and, or, xor, cardinality are defined and ap-
plied. The variation rules/operators are deduced from the results of variability
identification.

Constructing a feature diagram from a requirements document is a difficult task, that can
become both time-consuming and error-prone when performed manually. Some authors
have worked on automating this process. In [WCRO09|, Weston et al. introduce a tool suite
which automatically processes natural-language requirements documents into a candidate
feature model, which can be refined by the requirements engineer. The framework also
guides the process of identifying variant concerns and their composition with other features.
Feature models produced by this framework compare favourably with those produced by
domain experts. Acher et al. [ACPT11] try to facilitate the transition from product
descriptions expressed in a tabular format to feature models accurately representing them.
They propose a process that is parametrized through a dedicated language and high-level
directives (e.g., products/features scoping). They also guarantee that the resulting FM
represents the set of legal feature combinations supported by the considered products and
has a readable tree hierarchy together with variability information.

74 3. SPL methodology for the derivation of product behaviour

3.3 Creation of business process fragments

Reuse is a key enabler for improving business efficiency. The rise of BPM techniques and
the desire to better manage processes has led to increased awareness and desire to reuse
processes. The design of business processes can benefit from reusing existing knowledge.
The benefits of reuse have been long recognized and include saving time and resources,
reducing development cost, and increasing reliability. Several concepts have been proposed
in the field of process-based application development to provide different granularities of
reusable process artefacts. There is a need of another unit of reuse, which should allow
fine-grained reuse of process logic within the range from atomic language constructs to sub-
processes and whole processes. The concept of business process fragment is a promising
candidate to fill this gap. The second phase of the methodology focuses on the creation of
business process fragments, which represent the core assets of the software product line. A
more detailed presentation of the characteristics of business process fragments and of the
necessary steps required to create them are available in the following.

3.3.1 Overview of business process fragments

Today’s business dynamics are mandating that business processes be increasingly respon-
sive to change. It is therefore crucial that business process models be modular and flexible,
not only for increased modelling agility but also for the greater robustness and flexibility
of executing processes. Traditional approaches to business process modelling frequently
result in large models that are difficult to change and maintain. Because of their size,
these models are not very flexible.

It is important when designing or modelling processes to build in reuse right from the start.
To bring more dynamics and flexibility into reuse in business process modelling, we need a
more modular and granular way to define and describe reusable parts of business process
models. A business process fragment is intended as a reusable granule for business process
design and can allow for reuse of process logic. This concept is comparable to reusable
components in software engineering.

Process fragments represent incomplete process knowledge, which needs to be integrated
with further process knowledge to become a complete process model. They are incomplete
building blocks containing some local process knowledge that might be useful for more
that one business process. By definition process fragment models also have to be compos-
able together into a business process and leave some room for adoptions where the exact
business logic is not known at fragment design time. A process fragment represents the
implementation of a single abstract activity or functionality. These are the main differences
which separate process fragments from classical sub-processes.

To be able to refer to different parts of a process model, several authors have defined
process fragments as connected parts of a process model, where boundary nodes of a
process fragment can be distinguished as fragment entries and fragment exits based on the
directions of incident control flow edges. Defining a process fragment as a connected sub-
graph of a process graph is not our intention. We consider business process fragments as
self-contained connected process structures which are in most cases created from scratch in
a bottom-up approach. Process fragments are designed to implement a set of requirements
and model a single abstract functionality, and thus are not a sub-graph of a pre-existing
process graph.

3.3. Creation of business process fragments 75

Structurally, a business process fragment is a self-contained block of process logic with
strictly defined boundaries. Semantically, a process fragment can be addressed as a detailed
specification of a high level abstract task or functionality. A process fragment is accepted
as a unit of meaningful aggregation of process logic. They need to be coherent and make
sense to a domain specialist. Each fragment forms a useful resource in its own right.

There are several characteristics that are required from a business process fragment:

e is a connected process structure with significantly relaxed completeness and consis-
tency criteria compared to an executable business process. This is due to the fact
that process fragments model partial or incomplete knowledge and are meant to be
integrated with other fragments.

e we require business process fragments to be structurally correct. This is an important
property and is ensured through the definition of several consistency rules, which will
be discussed in more detail in Section 4.

e business process fragments are meant to be composable. Therefore, a process fragment
will contain specific areas where it can connect with other processes.

e has to consist of at least of one start event (entry point) and one end event (exit
point). As a process fragment models an abstract functionality, it is required to
consist of at least one activity. A business process fragment is not necessarily directly
executable and it may be partially undefined.

There are several ways in which one can interpret a process fragment. We define three
process fragment logical viewpoints:

o Fragment viewpoint: defines the actual or intended behaviour of the process fragment.
This view corresponds to the actual workflow structure of the process, defining the
flow of activities. It is the straight-forward way of interpreting a business process
fragment.

o Composition viewpoint: relates to the fact that process fragments area meant to be
composed with other fragments. This viewpoint identifies the composition interface
of a business process fragment. It specifies the exact places in the fragment where it
can be composed with other ones.

o SPL viewpoint: defines the behaviour of the fragment as a "black-box", seen from the
outside. Process fragments are meant to be concrete implementations of an abstract
functionality. Therefore, this viewpoint abstracts from the actual implementation and
process structure and focuses only on the functionality (feature) that the business
process fragment is meant to implement.

The advantages of process fragments are basically similar to those of code reuse in tradi-
tional programming:
e the same logic does not need to be specified over and over again;

e an improved quality of the process design, which can be better assured when the
process fragments that are used in the process have an efficient design;

76 3. SPL methodology for the derivation of product behaviour

e in case a better fragment is available for a particular task it replaces the less efficient
version stored in the repository /library;

e over time, the quality of the process logic that is reused increases with this approach.

To create business process fragments, a domain specific language is required. This language
support is one of the contributions of this thesis and will be presented in-depth in Chapter
4. However, in addition to the usage of the language primitives, a process fragment can
be created through the composition of two existing fragments by applying a composition
operation. We therefore extend the domain specific language for creating business process
fragments with a set of composition operators. They are presented in more detail in
Chapter 4.

3.3.2 Business process fragment construction process

Business process fragments are the core assets used by the methodology, so their creation
is of the utmost importance. The entire process for creating business process fragments
is graphically depicted in Figure 3.4. It can be noticed from the figure that there are two
main ways in which business process fragments can be created:

o (Construct a new process fragment: a process fragment can be addressed as a detailed
specification of a high level abstract task or functionality. Therefore, new process
fragments can be created from scratch as concrete implementations of features from
the feature diagram. This construction process is based on the information avail-
able in the requirements documents, form where the functional and non-functional
requirements for the fragment will be extracted. In most cases, the knowledge and
expertise of a domain expert is required and will highly improve the quality of the
resulting process fragment. Domain experts are able to identify the key function-
alities that the process fragment has to implement and to express this information
in a concise, flexible and reusable manner. We promote the idea of business pro-
cess reuse, therefore newly created process fragments are stored in a business process
library /repository, to be possibly used for other software product lines.

For constructing a new process fragment from scratch, adequate language support is
required. We propose a new domain specific language designed specifically for mod-
elling composable business process fragments. The language is based on the BPMN
process modelling standard. It only uses a subset of the core BPMN elements, those
proven to be the most commonly used when modelling business processes [zMRO0S].
The choice of elements id detailed in Chapter 4 However, we add new concepts and
rules to the language to facilitate the modelling of incomplete process knowledge and
to highlight the composability characteristic of process fragments. The use of this
language enables the creation of new business process fragments.

e Reuse existing process fragments: in this methodology, we promote the idea of busi-
ness process reuse as it allows saving time and resources, reducing development cost
and increasing process reliability. As such, another possible way to obtain business
process fragments is by reusing existing ones. For this, a business process reposi-
tory/library is required. The way an organization stores the information about its
business processes presents a clue as to whether they are only considered as documen-
tation or true business assets. A Business Process Repository is a central location for

3.3. Creation of business process fragments 77

START

BuUsiness process

repository / library

O3

Construct new business Select business
process fragment process fragment

[
Store business
process fragment Vi
[] Adapt business Use business process
process fragment fragment as-is

Business pracess
repostory / ibrary

STOP

Fig. 3.4: Complete process for creating business process fragments

78 3. SPL methodology for the derivation of product behaviour

storing information about how an enterprise operates in the form of business process
models. This information may be contained in various storage media, especially elec-
tronic. Electronic repositories may range from passive containers for storing process
artefacts to sophisticated tools that facilitate such as monitoring, execution, man-
agement and reporting on business processes. The availability of a large collection
of processes opens up new possibilities, like: extracting knowledge about the opera-
tions of the organization from the collection or reusing process fragments from the
collection to design new processes.

There are two distinct ways in which a process fragment from a business process
repository can be reused in our methodology:

— Reuse process fragment as-is: the most straight forward possibility is to directly
use the business process fragment, without further modifications or adaptations.
This corresponds to an "of the shelf" reuse of process fragments. The product
line engineer will select, based on the requirements and the description of the
functionality that needs to be implemented, a business process fragments form
the process repository that best fits the requirements. The selected process
fragments is directly used as-is. Although this case implies a high degree of
reuse of process fragments and is a best-case scenario, in real-life product lines
it will rarely happen. Due to the specific requirements and particularities of a
product line, it is highly improbable that a process fragments that fulfils exactly
the requirements can be found or was already developed for another product line.

— Adapt existing process fragment: a second possibility is to reuse an existing
process fragments by adapting and tailoring it to the specific requirements of
the functionality we need to implement. In this case, the product line engineer
selects form the business process repository a process fragment that resembles
as much as possible and fulfils most of the required characteristics of the process
that is being created. The selected process needs then to be slightly modified
and adapted so that is entirely models the desired functionality. This type of
process reuse is the most probable in real-life projects and product lines.

3.4 Verification of business process fragments

Business process fragment verification is a key phase of the methodology. Verification is
concerned with determining, in advance, whether a business process model exhibits certain
desirable behaviours. To verify business processes created at analysis and design time is
highly desirable. At a late stage of system development process the cost to repair incorrect
business processes are extremely high. Therefore, it is reasonable to identify errors at design
time. By performing these verifications at design time, it is possible to identify potential
problems, and modify the model accordingly before it is used for execution. As the systems
created through our product line engineering approach rely on business process models,
careful analysis of process fragments at design time can greatly improve the reliability and
also allows to correct or optimise the design of such system. Throughout this section we
briefly explain the concept of correctness for business process fragments and explain what
type of verifications are required to ensure this property. As the verification of business
process is an important contribution of this thesis, it will be discussed in-depth separately
in Chapter 5. Therefore, throughout this section, we only provide an overview of the
verification process proposed.

3.4. Verification of business process fragments 79

3.4.1 Verification of structural and behavioural correctness

The correctness of models is a major stream of research in business process modelling. Its
importance comes from the observation that incorrect process models can lead to wrong
decisions regarding a process and to unsatisfactory implementations of the targeted soft-
ware systems. The verification of business process correctness is essential for ensuring an
unambiguous description of the processes. However, the notion of correct business process
has a wide understanding. By correctness properties, people usually refer to the different
kinds of soundness properties [vdAvHtH 11| that have been introduced in the workflow
management domain and later on refined.

In this thesis, we define the notion of correctness for business process fragments as the
summation of two other properties: structural correctness and behavioural correctness. We
discuss each of these properties in the following:

e Structural correctness: mainly focuses on avoiding errors at the structural level
of business process fragments. In general, structural correctness concerns:

— the correspondence between the model and the language in which the model is
written;

— the alignment between the model and a set of structural properties that any
model of the same type must respect.

Structural properties refer to the type and number of elements in a process fragments
and the control flow relations between them. More precisely, to ensure the structural
correctness of a business process fragments, we need to define a set of adequate
fragment consistency rules that should be valid for every business process fragment.
Following a model driven engineering approach, we define these consistency rules
on the business process fragment meta-model. Implicitly, every business process
fragment created that is conform to the meta-model will be ensured to satisfy these
consistency rules. The rules are defined using the Object Constraint Language (OCL)
[OMGO6], the standard used for defining constraints on meta-models.

We propose a set of 26 consistency rules that assure the structural well-formedness
of business process fragments. We propose two types of rules:

— Based on OMG BPMN specification: as the business process fragments we pro-
pose share a large set of elements with the BPMN language, we consider impor-
tant to keep the consistency criteria defined by the BPMN standard which are
relevant for business process fragments. However, the BPMN documentation
does not define well-formedness fo business processes in an explicit and concise
manner. This information appears only textually as part of the description and
presentation of the different BPMN language elements. Therefore, we needed
to extract these rules and express them formally using OCL. The rules defined
range form simple ones (business process fragments have exactly one start event,
there is at least one end event) to more complex (all flow objects with incoming
and outgoing flow relations are on a path from the start event to an end event).

— Fragment specific constraints: as the language for creating business process
fragments contains only a subset of the elements of the BPMN standard but
also adds new elements and concepts, specific consistency rules are introduced.

80

3. SPL methodology for the derivation of product behaviour

They are also expressed using the OCL language. These rules mainly refer to
two aspects: the fact that business process fragments model partial information
and might be incomplete and the existence of composition interfaces for business
process fragments.

e Behavioural correctness: structural correctness only allows to check that certain

structural properties are valid. However, we also want to perform checks related
to the dynamic behaviour of process fragments. Therefore, we define the notion of
behavioural correctness which serves to verify the possible behaviours of a business
process fragment. The concept is defined based on the original definition of process
soundness proposed by van der Aalst [vdA03| for workflow nets. Behavioural cor-
rectness ensures that a business process fragment does not exhibit any erroneous or
unwanted behaviours. As the behaviour of a business process fragments is defined
by its execution traces, the verification of behavioural correctness is also performed
on these traces. However, it should be noticed that this type of verification does not
concern the semantic analysis of a business process fragments.

We propose to verify two kinds of behavioural properties for business process frag-
ments:

— Generic: specify general dynamic properties that any business process fragments
should fulfil. Most of them are inspired by the soundness property defined by
van der Aalst for workflows and petri nets. The verified properties are:

x Reachability of end events: end events should always be reachable from the
start event. This property ensures that any process fragment eventually
terminates (has the option to complete);

x Reachability of composition interfaces: all fragment elements tagged with a
composition interface can be reached from the start event. This property is
required for the proper composition of business process fragments;

* Process fragments are deadlock-free: implies that process fragments have no
deadlocks, therefore they don’t get stuck during their execution;

x Absence of dead tasks: there are no tasks or activities in the process frag-
ment that are never executed (no dead tasks);

x No infinite occurrence sequences: all occurrence sequences (execution traces)
of the process fragment are finite;

* Data type consistency of composition interfaces: check that when two frag-
ments are composed, the data types at their composition interfaces corre-
spond. Ensures the good progression of data flow after a composition is
performed and also the data compatibility of the composed fragments.

— Fragment specific: certain properties cannot be verified in general and differ
form one business process fragment to another and the specific context in which
that process is used. We want to offer the product line engineer the possibility
to define and verify such process specific properties. Therefore, we propose
several general property templates which can be instantiated by the product line
engineer for a specific purpose, for verifying a specific property of interest. These
property templates allow answering certain specific questions about a process
fragment, like:

x Can a certain flow object be reached from the start event?
x Is a certain flow object always executed?

3.4. Verification of business process fragments 81

*

Will a certain activity have a data object of a certain type during process
execution?

*

If activity z is executed, will activity y also be executed?

*

If activity = has data type dz than activity y will have dy?

*

If activity z is executed, then activity y will never be executed

3.4.2 Business process fragment verification process

The entire process of verification of business process fragments is graphically depicted in
Figure 3.5. Asit can be noticed from the figure, the verification process consists of checking,
in parallel, two types of properties: structural and behavioural correctness.

e Verification of structural correctness: this type of verification ensures that
the business process fragments satisfy the structural correctness property described
above. During this step of the process, the set of structural well-formedness rules
are checked for the process fragments being verified. Both types of consistency rules
are verified: the ones based on the OMG BPMN specification and the fragment spe-
cific ones. The goal of this type of verification is to point out structural flaws or
inconsistencies in the business process fragments.

As presented previously, there are two main ways for obtaining business process
fragments: creating new fragments from scratch or reusing existing fragments from a
fragment repository. For each case, the verification of structural correctness can be
performed:

— For newly created fragments: as the structural consistency rules are specified
as OCL rules defined on the BPMN process fragment meta-model, the verifica-
tion of structural correctness is performed automatically: any business process
fragment created which is conform to the meta-model will verify all of the con-
sistency rules. Therefore, our methodology guarantees that all business process
fragments are structurally correct by construction.

— For reused fragments: the verification of structural correctness can also be per-
formed for fragments that are directly reused or reused with some modifications.
The same set of consistency rules needs to be checked on the final fragment that
will be used as an asset of the product line. These checks can be performed ei-
ther manually by the product line engineer or by using an automatic verification
tool.

e Verification of behavioural correctness: this type of verification ensures that
the business process fragments satisfy the behavioural correctness property described
above. There are several steps involved in the process:

— Mapping to HCPN: behavioural properties cannot be directly verified on the
BPMN process fragments. To perform this type of verification, the BPMN
process fragments have to be mapped onto a formal language. The Hierarchical
Coloured Petri Nets (HCPN) have been chosen as target formal language. We
propose a model-to-model transformation that takes a BPMN process fragments
as input and returns a hierarchical coloured petri net. The entire behavioural
analysis is then performed onto the resulting petri net.

82

3. SPL methodology for the derivation of product behaviour

START

N

Verification of fragment
consistency rules

)

U
<>

EBPMN" to PN
transformation

/ HCPN mode/

Verification of dynamic
properties using CPN tools

/‘ ool feedbac;/

Modification of fragment
based on tool feedback

-

-

-

-

T

STOP

Fig. 3.5: Complete process of verification of business process fragments

3.5. Association of business process fragments to features 83

[FeatureDiagram
¢ GraphTypeTree : EBoolean

{
features |0..* 1| root
E] Feature Attribute
H Model = name : EString _ attributes name : EString
< name : EString o selected : EBoolean o+ value : EString
- type : EString

Fig. 3.6: Feature diagram meta-model: associating fragments to features

Verification of dynamic properties using CPN tools: the goal of the mapping to
HCPN is to allow access to the formal verification techniques and tools available
at this level. Using CPN tools [RWL™03|, both types of behavioural properties
defined for business process fragments (general and fragment specific) can be
verified.

Fragment modification based on tool feedback: the analysis performed using CPN
tools returns a result specified in terms of petri net concepts. Since the goal is
to verify the business process fragment, this result needs to be interpreted in
terms of BPMN concepts. Once this operation is achieved, the business process
fragment under verification can be adapted and the identified errors solved.

3.5 Association of business process fragments to features

Variability modelling with feature models was performed in one of the initial steps of the
methodology to capture the variability within a product line. Feature models abstract
from concrete feature realizations. However, feature models usually do not exist alone,
but are related to reusable assets describing the solution space. In order to build concrete
products from a product line, features have to be realised using software artefacts shared
across the product line. Throughout this step of the methodology, we aim at bridging
the gap between feature models and solution models. Therefore, we define a mapping of
features to model fragments specifying the concrete feature realisations.

While variability modelling resides in the problem space, the realisation of features is part
of the solution space. To instantiate products from a product line, feature realisations in
the solution space have to be included according to the presence of the features in a variant
model that is an instance of a feature model. To support this transition from problem space
to solution space in an automated way, a mapping from features to software artefacts that
realise the features is needed. This mapping will also allow for the automatic derivation of
a product instance based on a given variant configuration.

This phase of the methodology takes as input the feature diagram obtained during the
feature diagram construction phase and the correct BPMN process fragments resulting from
the business process fragment verification phase. As the business process fragments were

84 3. SPL methodology for the derivation of product behaviour

created based on the feature descriptions and their purpose is to be the concrete feature
implementations, associating the fragments to the features is quite straightforward. The
mapping is generic and connects features from the problem space with any type of product
line core assets of the solution space. Any type of models can be associated with a feature.
For our methodology, business process fragments are specific type of assets used.

This association is implemented in the feature diagram meta-model. A relevant excerpt
of this meta-model is presented in Figure 3.6. In this figure, the Model meta-class is
highlighted. A model is simply characterized by its unique name. There is no restriction
imposed on the type that the model can have. Implicitly, any type of models can be
associated to features. There is an association relation between the classes Feature and
Model which models this connection. We also impose a 1-to-1 cardinality to this relation,
meaning that each feature has a unique model associated to it which represents its concrete
implementation. From a technical point of view, each feature has a container. Any type
of model element, model fragment or entire model can be added into such a container.
Therefore, associating a business process fragment to a particular feature simply resumes
to adding it to the feature’s container.

The entire process of verification of business process fragments is graphically depicted in
Figure 3.7. As it can be noticed from the figure, the process is an iterative one. First, one
of the features from the feature diagram is selected. Then, the product line engineer needs
to select the business process fragment that will be be associated to that feature. The
selected business process fragment is then added into the container of the feature. One
this operation is performed, the product line engineer checks if, in the feature diagram,
there remain other features which have no process fragments associated. If this is the case,
the entire previous procedure is repeated for a new feature. In case all the features have
assigned implementations, the process is completed.

3.6 Configuration of the feature diagram

This step of the methodology is the first one that belongs to the Application Engineering
phase. It consists of selecting the required features that will be part of a particular product
that is derived. The actual feature selection process is based on user requirements and
choices It highly, so this step of the methodology highly involves the end-user. We first
explain what a configuration of the feature diagram means and then detail the steps involved
in the configuration process.

3.6.1 What is a feature diagram configuration?

A feature model describes the configuration space of a product family. It represents a
set of configurations, each being a set of features selected from a feature model according
to its semantics. The product line engineer may specify a member of the product line
by selecting the desired features from the feature model within the variability constraints
defined by the model. These are instance of the feature diagram and consists of an actual
choice of atomic features, matching the requirements imposed by the diagram. Such an
instance corresponds to a product configuration of a system family.

Configuring a feature diagram is a technique intensively used in product line engineering.
Several authors define this concept in different ways:

3.6. Configuration of the feature diagram 85

START
< I

/Sefect featur/

Assignh process
fragment to feature

Features
emaining?

YES

Fig. 3.7: Complete process of associating business process fragments to features from the
FD

86 3. SPL methodology for the derivation of product behaviour

e In [Wik| a feature configuration is defined as "a set of features which describes a
member of an SPL: the member contains a feature if and only if the feature is in its
configuration. A feature configuration is permitted by a feature model if and only if
it does not violate constraints imposed by the model".

e Czarnecki et al. define feature configuration as "the process of specifying a family
member, whereas the specification is fulfilled by an stakeholder who selects the desired
features from the feature model taking into account the variability constraints defined
by the model as well as other constraints which could not be modelled as a feature

diagram" [CHEO5b)].

e In [BCTSO06| configuration is presented as "the process of deriving a concrete con-
figuration conforming to a feature diagram by selecting and cloning features, and
specifying attribute values”.

Configuration is the process of deriving a configuration, selecting or removing features,
from the feature diagram (while taking any constraint into account), in order to reduce
the variability that the feature model is depicting. A configuration consists of the features
that are selected according to the variability constraints defined by the feature diagram.
The relationship between a feature diagram and a configuration is comparable to the one
between a class and its instance in object-oriented programming.

The outcome of the configuration can be either a concrete configuration which uniquely
identifies a product in the product line (because there is no point of variability) or a partial
configuration which represents the variability of a subset of products in the product line;
that is, a partial configuration is an specialisation because it yields another feature diagram.

Czarnecki et al. define in [CHEO05b| the notion of staged configuration as the process where
"each stage takes a feature model and yields a specialised feature model, where the set of
systems described by the specialised model is a subset of the systems described by the feature
model to be specialised”.

There are actually two possible configuration procedures, depending on how the process is
carried out:

e Configuration: a complete and unique configuration is derived from the feature dia-
gram;

e Specialisation: a sequence of partial configurations are derived, each one from the
previous one, starting with the product line’s feature diagram, and then a configura-
tion is derived from the last staged configuration, which is a fully specialised feature
diagram.

There are a few rules that apply when performing a feature diagram configuration, which
Laguna et al. have identified in [LMRC11]:

e (Core selection: since the root feature of any feature diagram is the smallest prospec-
tive configuration, any mandatory child feature of the root feature (and subsequently,
any other mandatory child feature connected indirectly to the root feature through
mandatory child features) also belongs to this "smallest" configuration;

3.6.

Configuration of the feature diagram 87

Selection by inheritance: any mandatory child feature of a selected feature should
also be selected in the configuration;

Selection by parenting: a non-mandatory child feature of a feature can only be selected
(or included in the configuration) if it has at least one parent which is selected;

Decomposing selection: when a feature is selected, the number of its child features
which are to be selected should be not more than n but no less than m, for a cardi-
nality of [m..n|;

Selection by require constraint: any feature which is required as a result of a selected
feature for which there is a require constraint such that demands it should also be
selected in the configuration;

Selection by muter constraint: any selected feature which is involved in a mutex
constraint restricts the selection in the configuration of all other features taking part
in the same mutex constraint.

3.6.2 Feature diagram configuration process

All the steps of the feature diagram configuration process are graphically depicted in Figure
3.8 and presented in the following:

o Selection of features by the user: this activity highly depends on the involvement

of the end user. This activity takes as input the feature diagram and is based on
the specific user requirements. Based on these particular requirements, the user will
select a set of features, that constitute a particular feature diagram configuration and
are the output of this step of the process.

Propagation of constraints, relations, dependencies: this activity is based on the set
of rules previously presented that apply when performing a feature diagram configu-
ration. Several conditions restrict the possibilities the user may have when selecting
different features during feature diagram configuration. The different variability re-
lations that may exist for a feature group will impose certain restrictions to the pos-
sibilities that can be made. For example, in case of the XOR operator, once a feature
is selected, the other ones are implicitly excluded from the current configuration, no
matter if the user wants to select some of them. Similarly, when group cardinalities
are present, the upper and lower limit need to be taken into account when making
the feature selection. Cross-tree feature dependencies might also impose the pres-
ence of certain feature in the current configuration or completely exclude other ones.
Therefore, all the rules and constraints of the feature diagram are propagated every
time the user selects a feature for the configuration.

Business process fragment selection: in the previous step of the methodology, the
core assets of the product line, the business process fragments, were related to fea-
tures from the feature diagram. These associations define for each feature a concrete
implementation. When a particular feature diagram configuration is achieved, the
business process fragments associated to the set of feature that pertain to the config-
uration are also selected. This is an automatic process. The result is a set of business
process fragments from which the behavioural model of the derived product will be
constructed.

88

3. SPL methodology for the derivation of product behaviour

START

Feature User
Diagram requirements
User feature
selection process
Set of selected
features

Propagate constraints,
relations, dependencies

<

Business process
fragment selection

Set of sefected
process fragments
STOP

Fig. 3.8: Complete process of configuring the feature diagram

3.7. Product derivation specification 89

3.7 Product derivation specification

The last phase of the methodology is called product derivation specification. It takes as
input the set of business process fragments resulting from the feature diagram configura-
tion step and transforms them, through a compositional approach, into a proper business
process that models the behaviour of the SPL product being derived. The compositional
approach applied requires the introduction of a new concept, the composition interface of
a business process fragment, and the definition of a set of BPMN composition operators.
Both concepts are essential for the well-functioning of the composition process and will be
discussed in more detail in this section.

3.7.1 Composition interfaces

A business process fragment is intended as a reusable granule for business process design
and can allow for reuse of process logic. Process fragments represent incomplete process
knowledge, which needs to be integrated with further process knowledge to become a
complete process model. A process fragment represents the implementation of a single
abstract activity or functionality.

The business process fragment concept is comparable to reusable components in software
engineering. Component-based software engineering (CBSE) is a branch of software en-
gineering that emphasizes the separation of concerns and is also a reuse-based approach
to defining, implementing and composing loosely coupled independent components into
systems. In CBSE, an individual software component can be a software package, a web
service or a module that encapsulates a set of related functions.

Component-based software development is the process of assembling reusable software com-
ponents in an application such that they interact to satisfy a predefined functionality. Each
component will provide and require pre-specified services from other components, so the no-
tion of component interfaces becomes an important concern. Interfaces are the mechanisms
by which information is passed between two communicating components. Components of-
fer interfaces to the outside world, by which it may be composed with other components
[Cai00]. A software component communicates only through its interfaces.

In a similar manner, we consider imperative the introduction of interfaces for business
process fragments. A process fragment interface explicitly defines the elements of a frag-
ment where it can connect or be connected with other fragments. Interfaces are offered
by one fragment in order to be used by other process fragments. An interface also defines
the manner in which a business process fragment can be related with other fragments for
compositional purposes. As process fragments represent incomplete process knowledge, the
composition interface explicitly defines the places where they can be integrated with other
process fragments to become a complete process model.

Composition interfaces allow business process fragments to be used as a black box for com-
positional purposes. For process fragments, composability is be achieved by using explicit
interfaces for defining where the actual composition process will be performed. The pres-
ence of composition interfaces restricts the possible ways in which the actual composition
of process fragments can be performed. It also creates compositional dependencies between
process fragments, when several fragments need to be composed.

These interface can be seen as a signature of the business process fragments - the user

90 3. SPL methodology for the derivation of product behaviour

does not need to know about the inner workings of the fragment (implementation) in order
to make use of it during composition. However, when a fragment needs to use another
fragment in order to extend its functionality, it verifies its interface to determine their
compositional compatibility. The goal of composition interfaces is therefore to enable and
guide the composition process for business process fragments.

The concept of process fragment composition interface is introduced as part of the language
we propose for modelling business process fragments and their composition. However, we
start by first introducing the composition tag concept. A composition tag is a type of
BPMN artifact, represented as a textual tag, that can be added on the flow objects of
a business process fragment. It explicitly denotes the places where a business process
fragment can be composed with other ones. Composition tags can be added on any type
of flow object (activity, event or gateway). There are two distinct types of tags possible:

e input tag: the presence of this tag on a flow object of a business process fragment
denotes that when this fragment is composed with another one, the composition
process will be performed at this exact element, and that the second process fragment
will be connected to the current one ezactly before the tagged flow element. In other
words, the process fragment is extended before the tagged flow object by composition;

e output tag: similarly, the presence of this tag on a flow object of a business process
fragment denotes that when this fragment is composed with another one, the com-
position process will be performed at this exact element, and that the second process
fragment will be connected to the current one exactly after the tagged flow element.
In other words, the process fragment is extended after the tagged flow object by
composition.

With the help of the composition tags just presented, we can introduce the notion of
composition interface. It defines the exact places where a business process fragment can
be composed with other fragments. We propose two types of interfaces:

e The input composition interface of a business process fragment is defined as the set
of all its flow objects tagged with an input composition tag;

e The output composition interface of a business process fragment is defined as the set
of all its flow objects tagged with an output composition tag;

Therefore, the composition interface of a business process fragment is the union of its input
and output composition interfaces. A more detailed presentation of composition interfaces
and of how they are used is available in Chapter 4.

3.7.2 Composition operators

The methodology presented throughout this thesis situation promotes the use of the sepa-
ration of concerns (SOC) mechanisms as support for modelling complex business processes.
In the SOC paradigm, concerns are defined separately and assembled into a final system
using composition operators [SGST04].

3.7. Product derivation specification 91

Business process composition |[EN10| is regarded as a flexible mechanism capable to cope
with the increasing complexity of business processes. Similar to component-based soft-
ware development, the core idea is to create a complex business process by assembling
simpler ones (fragments). Process composition reduces complexity by having smaller pro-
cess components/fragments connected together by flexible mechanisms to realize a process
that provides the same business support as the initial complex process. The complexity of
building a business process is taken away from the business analyst and delegated to the
actual composition.

Creating a business process by composition facilitates its understanding and its use. More-
over, it can be updated more easily, as the necessary changes are performed on smaller
separate models. The maintainability of the business process is also enhanced. Another
strong argument motivating the use of process composition is process reuse [MP08|. The
desire to better manage processes and improve business efficiency has led to increased
awareness and desire to reuse processes. Process reuse is a way to promote the efficiency
and quality of process modelling. Fewer business processes are built from scratch, as many
existing processes are used for the development of new ones, following a compositional
approach.

The general approach when applying model composition is to provide composition opera-
tors. They are mechanisms that take two (or more) models as input and generate an output
that is their composition. Most languages provide a fixed set of composition operators,
with explicit notations, specific behaviour and defined semantics. In case a language does
not provide a composition operator with the desired behaviour, different workarounds need
to be used.

In recent years, the Business Process Model and Notation 2.0 has received increasing at-
tention, becoming the standard for business processes modelling. BPMN is the basis for
the business process modelling and composition that is proposed in this thesis and will be
discussed in the next chapter. A thorough analysis of the BPMN specification document
reveals that the standard does not address in any way nor does it provide support for busi-
ness process composition. However, there are several possible workarounds. Conversations
and choreographies, used to model interactions and message exchanges between partici-
pants, are a possible solution. Gateways, normally used to express control flow, can be
used together with sub-processes, global tasks or call activities as a possible way to express
process composition. Sub-processes are ow objects used as an abstraction mechanism in
BPMN. They are used to hide or reveal additional levels of business process detail. There-
fore, they can be used for hierarchical process decomposition. The use of sub-processes
is a possible workaround for replacing some composition operators, like refinement. Nev-
ertheless, complex compositions like choice or synchronization cannot be expressed using
sub-processes.

All these workarounds are very limited in terms of possible results that can be obtained.
Composition of BPMN models currently requires specific knowledge in advance and takes
up a lot of time and effort. There are no composition operators available for BPMN. They
are necessary to achieve the composition of BPMN processes. Implicitly, composition
operators are mandatory for composing business process fragments. Therefore, another
contribution of this thesis is to propose a set of composition operators created specifically
for composing BPMN models and business process fragments.

To successfully apply a composition operator we must know where a business process can
be connected with other processes. These are the places where the actual composition is

92 3. SPL methodology for the derivation of product behaviour

performed. The proposed composition operators are defined in close connection with the
business process fragment composition interface previously introduced. The two concepts
work together: the composition interfaces guide the composition process and define the
exact places where the composition operators are applied; then, the composition operators
specify the steps to be performed for the actual composition.

We define a set of 9 binary composition operators, which take two business process frag-
ments as input and produce another business process fragment as output. The composition
operators proposed are: sequential, choice, arbitrary sequence, parallel, parallel with com-
munication, refinement, synchronization, discriminator and insertion. The operators are
inspired from well known and well defined composition operators proposed for the Petri
Net language. The execution semantics of BPMN it in terms of enabling and firing of
elements, based on a token-game. The behaviour of a business process can be described
by tracking the path(s) of the token through the process. The dynamic behaviour of Petri
Nets is also defined in terms of firing of transitions which triggers the passing of a token
through the net. As the execution semantics of both languages are defined in a similar
manner, we consider that Petri nets might provide useful composition operators that can
also be applied to business process fragments.

The composition operators are part of the language for the modelling and composition of
business process fragments proposed in this thesis. They are discussed in detail in Chapter
4. The semantics of each operator is defined using a translational semantics towards an
equivalent Petri net composition operator. These composition operators are used during the
product derivation process, for composing business process fragments into the final product
behaviour. However, they are valuable by themselves and can also be used independently
from the SPL context, whenever we need to compose two business processed into a new
one.

3.7.3 Product derivation specification process

All the steps involved in the product derivation specification process are graphically de-
picted in Figure 3.9 and detailed in the following.

e Annotation of business process fragments with composition interfaces: the first step
of the process takes as input the set of business process fragments obtained after
the feature diagram configuration. These fragments need to be compose together
into a unique business process model that gives the behavioural description of the
derived SPL product. We argued before that composition interfaces are an essential
part of the composition process and therefore of the entire product derivation. The
process fragments available at this step of the process have no composition interfaces
defined on them. Therefore, during this step of the process, composition interfaces
are defined on the entire set of business process fragments. We choose to define the
composition interface of a business process fragment only at this late stage of the
methodology due to the fact that presence of composition interfaces highly restricts
the possibilities of composition for a fragment. We want to keep the process fragments
as reusable as possible, so they are stored in the process library/repository without
being annotated. We also consider that annotation with composition interfaces will
highly differ from one product line to another and also between the different products
of the same SP1. The annotation is performed iteratively for each fragment, until all

3.7. Product derivation specification

93

START

o) l

=

Annotate business process fragments
with compositon inteifaces

Annotated process
fragments .

Create composition
warkflow

-

=

Select composition
operators

omplete composition
workflow

fterative application of
composition operators

C

<

STOFP |

Fig. 3.9: Steps of the product derivation specification process

94

3. SPL methodology for the derivation of product behaviour

of them have been annotated. The result of this step is a set of annotated business
process fragments which are ready for composition.

Creation of the composition workflow: without any further guidance provided, several
possible orders to compose the annotated business process fragments are possible.
One could assume that all possible orders of composition lead to the same resulting
product. It has been shown [IBK11| that this is actually not the case and that the
order in which models are composed has a big influence on the result: different orders
imply different derived products. To obtain a specific behaviour that characterizes
the derived product, the process fragments thus need to be composed in a specific
order. It is the product line engineer that defines this particular composition order,
which is specific to each individual product that is derived from the SPL. We propose
the use of a workflow for specifying this composition order. Thus, for a certain SPL,
we will have as nanny composition workflows as the number of products we want to
derive. The workflow is also created based on the specific composition interfaces of
the business process fragments, which will highly restrict the possible orders.

A composition workflow has several types of elements:

— Fragment place-holders: for the composition workflow, business process frag-
ments are seen as black boxes, we are not interested in their internal representa-
tions. Therefore, in order to reduce complexity, a composition workflow contains
fragment place-holders instead of the actual business process fragments. A frag-
ment place-holder references an actual business process fragment for further
use;

— Operators: the goal of the composition workflow is to specify the exact order in
which process fragments are composed. It is essential to to be able to represent
the different types of business process composition operators that can be applied.
Therefore, another element of the composition workflow are the composition
operators;

— Connectors: we need to be able to represent the sequencing/flow of elements in
the composition workflow. That is why we use simple directed connectors. A
connector has a single source and a target and can connect a fragment place-
holder to an operator or vice-versa.

We try to keep the description of the composition workflow as simple and easy to use
as possible, and therefore propose the minimum number of elements necessary.

Selection of applied composition operators: once the composition workflow has been
specified for the currently derived product and therefore the order in which the frag-
ments should be composed defined, we need to specify the exact composition opera-
tors to be applied at each step. The product line engineer starts with the first two
fragments from the composition workflow and decides which composition operator
will be applied. Then, the hypothetical result of this composition needs to be com-
posed with the next fragment present in the workflow. We therefore decide which
operator should be used for this composition. In a similar manner, we traverse the en-
tire workflow and decide on the exact composition operators that will be applied. At
this stage, the composition workflow is complete and the actual composition process
can take place.

3.7. Product derivation specification 95

o [terative application of composition operators: the last step of the process involves
applying the actual composition operators. The composition workflow is traversed
and the following operations are performed:

— The first two fragment place-holders from the workflow are selected, together
with the operator that connects them. The place-holders reference the actual
annotated business process fragments. Based on the composition interfaces of
the two process fragments, the selected composition operator is applied.

— We continue traversing the workflow and select the next fragment place-holder
and the operator situated before it. The composition operator takes as input
the process fragment resulting from the previous composition and the current
process fragment.

— Iteratively, we traverse the entire workflow and apply the same process for per-
forming the actual compositions.

Once the entire workflow has been traversed and processed, the result of the last
composition is a business process that models the behaviour of the derived product
and therefore the end result of our methodology.

The language support for creating the composition workflow is part of the business process
fragment modelling and composition language that we propose in this thesis and will be
discussed in more detail in the next chapter.

4. LANGUAGE FOR MODELLING AND
COMPOSING BUSINESS PROCESS
FRAGMENTS

Abstract

Business process fragments are the core assets used by our software product
line methodology. The most common approach to obtain them is to create new
business process fragments from scratch, as concrete implementations of the fea-
tures from the feature diagram of the SPL. For this purpose, adequate language
support is required. Throughout this chapter we propose a new domain specific
language called CBPF created specifically for modelling composable business
process fragments. We start by precisely defining in Section 4.1 what a business
process fragment really is. We motivate the need for creating business process
fragment and then detail several of their structural and behavioural character-
istics. A model driven approach is then followed for creating and specifying
the CBPF domain specific language. We start by defining the abstract syn-
taz of the language in Section 4.2.We describe the high-level structure of the
CBPF language by means of a meta-model representing in an abstract way the
concepts and constructs of the modelling language, and providing the means to
distinguish between wvalid and invalid models. The abstract syntaz is described
i an incremental manner: we fiest define the core part of the language; then,
we enrich it with concepts related to the "composability” of business process
fragments; finally, we further extend the language to support the modelling of
product deriwation specifications. We continue the language description in Sec-
tion 4.3 by we proposing a unique graphical concrete syntaz for the language. It
18 a crucial element of language design and we therefore treat it as a separate
element within the language description. We conclude the chapter by defin-
ing the semantics of the CBPF language following a translational approach,
by proposing a mapping of CBPF concepts onto the Hierarchical Coloured Petri
Net (HCPN) formalism. The semantics can be seen as the abstract logical space
in which models, written in our language, find their meaning. Semantics are as
important as the structure of the language.

Business process fragments are the core assets used by our software product line methodol-
ogy defined in Chapter 3, from which the models of the derived SPL products are created,
following a compositional approach. The concept was introduced in Chapter 3, where we
also presented the process followed for creating them. The most common approach is to cre-
ate new process fragments from scratch, as concrete implementations of the features from
the feature diagram of the SPL. For this purpose, adequate language support is required.
Throughout this chapter, we propose a new domain specific language called Composable

4.1. What is a composable business process fragment? 97

Business Process fragments (CBPF) designed specifically for modelling such composable
business process fragments. CBPF provides the necessary language support for several
steps of our methodology. CBPF is based on the BPMN process modelling standard. It
only uses a subset of the core BPMN elements, those proven to be the most commonly used
when modelling business processes. Moreover, we introduce new concepts like composition
tags and fragment composition interface, which facilitate the composition of business pro-
cess fragments. Furthermore, we extend the language with a set of composition operators
that enable the composition of business process fragments.

A model driven approach is followed for creating and specifying the CBPF domain specific
language. The structure followed for the CBPF language definition is the following:

e Defining the abstract syntaz: we describe the high-level structure of the CBPF lan-
guage by means of a meta-model representing in an abstract way the concepts and
constructs of the modelling language, and providing the means to distinguish between
valid and invalid models. The meta-model of the CBPF language describes the vocab-
ulary of concepts provided by the language, the relationships existing among those
concepts, and how they may be combined to create valid models. We define first
the core of the CBPF language and then extend it with composition interfaces and
composition operators. Finally, we explain how this language can also support the
creation of product derivation specifications.

e Defining the concrete syntaz: we propose a unique graphical concrete syntax for the
language. It is a crucial element of language design and we therefore treat it as
a separate element within the language description. The proposed graphical syn-
tax is inspired from the one of the BPMN language. We extend it with graphical
representations associated to the newly introduced language concepts.

e Defining the semantics: semantics descriptions of software languages are intended for
human comprehension. The semantics can therefore be seen as the abstract logical
space in which models, written in our language, find their meaning. Semantics are as
important as the structure of the language. We propose a translational semantics for
the language. It is specified by mapping the current language onto another language
that is formally well defined and understood, in our case hierarchical coloured Petri
nets.

4.1 What is a composable business process fragment?

Business process fragments represent the core assets and the building blocks for our software
product line methodology. They are created during the business process fragment construc-
tion step of the methodology 3.3, then the behavioural models of the derived products of
the SPL are obtained by composing such fragments during the product derivation specifi-
cation phase 3.7. Throughout this section we explain what a composable business process
fragment is and which are its main characteristics.

It is important when designing or modelling processes to create them taking reuse into
account right from the start. To bring more dynamics and flexibility into reuse in busi-
ness process modelling, we need a more modular and granular way to define and describe
reusable parts of business process models. A business process fragment is intended as a

98 4. Language for modelling and composing business process fragments

reusable granule for business process design and can allow for reuse of process logic. This
concept is comparable to reusable components in software engineering.

The concept of process fragments has already been used in the research literature. To be
able to refer to different parts of a process model, several authors have defined process frag-
ments as connected parts of a process model, where boundary nodes of a process fragment
can be distinguished as fragment entries and fragment exits based on the directions of inci-
dent control flow edges. However, this type of definition of a process fragment (a connected
sub-graph of a process graph) does not coincide with our view and is not our intention. We
consider business process fragments as self-contained connected process structures, which
are in most cases created from scratch in a bottom-up approach. Process fragments are
designed to implement a set of requirements and model a single abstract functionality, and
thus are not a sub-graph that can be extracted from a pre-existing process graph. There-
fore, business process fragments can be considered on their own as independent units of
reuse for business process modelling.

Another essential characteristic of business process fragments is their capacity to represent
wncomplete process knowledge, which needs to be integrated with further process knowl-
edge/information in order to become a complete process model. This makes them incom-
plete building blocks, containing some local process knowledge that might be useful for
more that one business process. This property is essential as business process fragments
model a single high-level functionality, therefore the provided model only offers informa-
tion about that functionality and might not be complete. Therefore, a business process
fragment is not necessarily directly executable and it may be partially undefined.

By definition, business process fragment also have to be composable together into a business
process and leave some room for adoptions where the exact business logic is not known
at fragment design time. A process fragment represents the implementation of a single
abstract activity or functionality. In order to describe the features of a product, these
functionalities are meant to be combined. Therefore, business process fragments are con-
ceived with the idea of future composition in mind and will have precisely defined elements
inside the fragments denoting the places where they can connect with other fragments.

From a structural point of view, a business process fragment is a self-contained block of
process logic with strictly defined boundaries. Form a semantic perspective, a business
process fragment can be interpreted as a detailed specification of a high level abstract task
or functionality. A process fragment is accepted as a unit of meaningful aggregation of
process logic. They need to be coherent and make sense to a domain specialist. Each
fragment forms a useful resource in its own right.

We require several characteristics from a business process fragment:

e a business process fragment may have significantly relazed completeness and consis-
tency criteria compared to an executable business process. This property is in direct
relation with the fact that business process fragments model partial or incomplete
knowledge and are meant to be integrated with other fragments. Implicitly, the com-
pleteness and consistency criteria that apply to regular business processes need to be
adapted for fragments;

e we require that a business process fragment be structurally correct. The notion of
structural correctness is discussed in-depth in Chapter 5. It is an important prop-
erty, ensured through the definition of several well-formedness and consistency rules
defined directly on the business process fragment meta-model;

4.1. What is a composable business process fragment? 99

e business process fragments are conceived as units of process reuse. One of the key
aspect of business process fragments is their ability to enable process reuse across
different product lines and within different companies. They are created once but
may be used several times directly or with possible modifications or adaptations for
different products of one SPL or for different product lines all-together.

e business process fragments are meant to be composable. Therefore, a process fragment
will contain specific areas where it can connect or be connected with other process
fragments through composition;

e lastly, a business process fragment has to consist of at least one start event (entry
point) and one end event (exit point). Moreover, as a process fragment models an
abstract functionality, it is required to contain at least one activity.

Business process fragments may be used by different stakeholders, each with its own point
of view and specific interest in using the fragment. To accommodate such different possible
perspectives, we define three possible fragment logical viewpoints:

o Fragment viewpoint: it defines the actual or intended behaviour of the process frag-
ment. This view corresponds to the actual workflow structure of the process, defining
the flow of activities. It is the straight-forward way of interpreting a business process
fragment. The product line engineer that creates the fragment is the one that is the
most interested in this low-level, high-detail perspective.

o Composition viewpoint: addresses the fact that business process fragments area
meant to be composed with other fragments. This viewpoint identifies the com-
position interface of a business process fragment. It specifies the exact places in the
fragment where it can be composed with other ones. This view abstracts from the
inner representation of the fragments and only focuses on the composition aspect.

o SPL viewpoint: defines the behaviour of the fragment as a "black-box", seen from the
outside. Process fragments are meant to be concrete implementations of an abstract
functionality. Therefore, this viewpoint abstracts from the actual implementation and
process structure and focuses only on the functionality (feature) that the business
process fragment is meant to implement. It is the most high-level way in which one
can look at a business process fragment.

The use of business process fragments comes with certain advantages, which resemble those
of code reuse in traditional programming:

e the same logic does not need to be specified over and over again and can be highly
reused in different projects;

e the quality of process design is highly improved, and can be better assured when the
process fragments used in the process have an efficient design;

e in case a better fragment is available for a particular task, it can simply replace the
less efficient version stored in the repository/library;

e over time, the quality of the process logic that is reused increases with this approach.

100 4. Language for modelling and composing business process fragments

Now that the concept of composable business process fragments has been defined, we require
the appropriate language support to allow us to model such business process fragments.
We therefore propose the CBPF domain specific language for modelling and composing
business process fragments. The language is constructed in an incremental manner. We
start by creating a language that will simply allow the modelling of business process frag-
ments. We then add new concepts that allow to make those business process fragments
composable. Moreover, as the obtained business process fragments need to be composed
in our methodology, we extend the language with a set of composition operators that will
enable the composition of the process fragments. Finally, during the product derivation
specification step of the methodology, we need to specify the workflow that defines the
composition of the fragments. Therefore, we also extend the language with the necessary
concepts that allow the creation of such composition workflows. Throughout the follow-
ing sections, we present this language following a model driven engineering approach, by
defining the abstract syntax, concrete syntaxr and semantics of the language.

4.2 Abstract syntax

The abstract syntaz describes the high-level structure of the CBPF language elements and
their relation. Following a model-driven engineering approach, the abstract syntax of the
language is defined by means of a meta-model representing in an abstract (and visual)
way the concepts and constructs of the modelling language. It also provides the means
(constraints) used to distinguish between valid and invalid models.

The meta-model of the language describes the vocabulary of concepts provided by our
language, the relationships existing among those concepts, and how they may be combined
to create models. We employ the use of a meta-model based abstract syntax definition as
it has the great advantage of being suitable to derive from the same meta-model (through
mappings or projections) different alternative concrete notations (textual or graphical or
both) for various scopes like graphical rendering, model interchange, standard encoding in
programming languages, while still maintaining the same semantics. Therefore, a meta-
model could be intended as a standard representation of the language notation.

4.2.1 Relation with BPMN standard

The CBPF language that we propose in this chapter is inspired from the Business Process
Modeling Notation (BPMN), an increasingly important standard for process modelling
and has enjoyed high levels of attention and uptake in practice. Presented in Chapter 2,
BPMN is a rich language that allows to define a multitude of business scenarios, ranging
from internal process choreographies to inter-organizational process orchestrations, service
interactions and workflow exceptions.

BPMN offers a wide range of modelling constructs, significantly more than other popular
languages. Version 1.2 of BPMN consists of 52 distinct graphical elements: 41 flow objects,
6 connecting objects, 2 grouping objects and 3 artefacts. That implies a lot of vocabulary
to learn and understand, given that each graphical element has a specific meaning and rules
associated to it. Even the core BPMN element set contains 11 elements. The complexity of
the BPMN language increases even more for version 2.0, and includes almost 100 elements.
However, not all of them are equally important in practice as business analysts frequently
use arbitrary subsets of BPMN.

4.2. Abstract syntax 101

0% 25% 50% 75% 100%

Normal Flow

Task

~ EndEvent
Start Event f Event

Fig. 4.1: Frequency distribution of BPMN construct usage [Rec10]

102 4. Language for modelling and composing business process fragments

It should also be emphasized that one of the key goals of BPMN is to create a simple mech-
anism for creating business process models, and that the notation be simple and adoptable
by business analysts. At the same time, BPMN has to be able to handle the complexity
inherent to business processes. The approach taken to handle these two conflicting require-
ments was to organize the graphical aspects of the notation into specific categories. First,
there is the list of core elements that will support the requirement of a simple notation.
Most business processes will be modelled adequately with these elements. Second, there is
the entire list of elements, including the core elements, which will help support requirement
of a powerful notation to handle more advanced modelling situations.

Taking these aspects into consideration, we want to propose a language that is easy to use
and understand by most people and which is not cumbersome to be learnt. We therefore
ask ourselves the question: which of the BPMN elements are most used in practice and how
frequently? The studies presented in [zMR08, RIRGO06] provide valuable answers to this
question. Figure 4.1 shows the frequency distribution of the individual BPMN constructs,
separated by the three sample sets and ranked by overall frequency. It can be noticed that
only four constructs being common to more than 50 % of the diagrams: Sequence Flow,
Task, End Event and Start Event. All these constructs all belong to the BPMN core set.
The figure also shows that every model contained the Sequence Flow construct, and the
basic Task construct. The other BPMN constructs were unevenly distributed.

Based on these observations, the language we propose for modelling composable business
process fragments (CBPF) will only contain a subset of the most used elements found in
the BPMN standard. We consider that the selection of elements we have made allows
to completely and correctly represent behavioural models that describe the business and
operational step-by-step work-flows of activities. We remove the elements we consider not
necessary for representing such types of models, in order to keep the language simple, clear
and concise. The meta-model that defines the abstract syntax of the language is presented
in the following.

4.2.2 Language meta-model

The abstract syntax of the language is defined by means of a meta-model representing
the concepts and constructs of the modelling language. The meta-model describes the
vocabulary of concepts provided by our language, the relationships existing among those
concepts and how they may be combined to create models. We start the presentation of the
CBPF abstract syntax by first defining all the necessary concepts for modelling business
process fragments and specify the existing relations between these concept.

High-level language structure

A major goal of our language is to propose a notation that is simple and easily adoptable.
The approach taken to handle these requirements is to organize the elements of the notation
into specific categories. This results in a small set of notational categories, which enable
the reader of a diagram to easily recognize the basic types of elements and understand
the diagram. Within these basic categories, additional variation and more detailed and
specialized information can be added to support the modelling of more complex diagrams,
without drastically changing the basic look and feel of the diagram.

Therefore, we propose to structure the abstract syntax of the CBPF language into five
basic categories of elements:

4.2. Abstract syntax 103

£ Composable business process fragment objects [CBPF object
b= 5..%
interface 1
£ FragmentInterface H FlowObject | [E Swimlane | E ConnectingObject H Artifact

Fig. 4.2: Core structure of the business process fragment modelling language

e Flow Objects: are the main graphical elements, used to define the behaviour of a
business process fragment;

e Connecting Objects: define the possible ways for connecting different flow objects;

o Swimlanes: define a visual way of grouping and organizing the primary modelling
elements of a business process fragment;

e Artifacts: allow developers to bring more detailed information into the model/dia-
gram, making it more readable;

o Composition interface: is a newly introduced concept that specifies the exact places
where a business process fragment can be composed with other fragments.

The core structure of the language is graphically depicted in Figure 4.2. The root meta-class
is Composable business process fragment, which denotes the entire language. It contains
several CBPF objects, which denote the basic categories of elements proposed by the lan-
guage. The meta-classes: FlowObject, ConnectingObject, Swimlane and Artifact represent
exactly the element groups defined before. It can also be noticed that every business
process fragments has a wnique composition interface, denoted by the FragmentInterface
meta-class.

Language concepts similar with BPMN

In the following, we discuss in more detail the different categories of elements and the
language concepts contained by each one. The part of the language that corresponds to
elements that also appear in the BPMN standard, which have been described in detail in
section 2.3.3, will not be discussed in-depth.

Flow objects are the core concept in a business process fragment, defining its behaviour.
There are three different types of flow objects:

e Fuents: are something that happens during the course of a business process. In our
meta-model, the Event meta-class inherits from and is a subclass of the FlowObject
meta-class. The main attribute of an event is its type. We define three types of
events:

104 4. Language for modelling and composing business process fragments

— Start: indicates where a particular business process fragment starts and are
mandatory within a business process fragment;

— Intermediate: denotes that something happens inside the flow of the process
fragment;

— FEnd: indicates where a process finishes and are mandatory within a business
process fragment. We allow the existence of multiple end events in a business
process fragment (there may exist several ways in which a business process
fragment terminates).

Every event has a trigger, which defines the cause for that event. The BPMN standard
proposes a set of 10 types of event triggers. For modelling business process fragments
and using them to represent product behaviour in SPL, we only consider necessary
to propose the following triggers in our language:

— Message: has a string attribute called message that specifies the exact text to
be transmitted during the message exchange;

— Timer: has a TimeDate attribute defined for reflecting a specific time-date or
a specific time cycle;

— Plain: most generic type of trigger and can be applied to any type of event;

— FError: has a unique ErrorCode string attribute that identifies the specific type
of error detected. Also, intermediate error events are usually attached to an
activity.

o Activities: are the main elements of a business process fragment. We allow for looping
actiities in CBPF. If the isLooping boolean attribute is True, the concerned activity
will be executed several times. In this case, the looping activity will have a boolean
expression (loopCondition) that is evaluated after each cycle of the loop. There are
two distinct types of activities: task and sub-process.

— Task: are the atomic units of behaviour in a business process fragment. Each
task has an operation which defines the specific activity that a task performs.
We impose the condition that each task has a single input and a single output
sequence flow;

— Sub-process: is characterized by the type attribute, which can be either collapsed
or expanded.

e Gateways: have a type attribute which determines if the behaviour of the gateway is
splitting or merging. There are four sub-types of gateways possible:

— FEzclusive: creates a forking of paths for a business process process fragment.
However, only one of the paths can be taken. The choice of which path to follow
is made based on a decision.

— Inclusive: represents a branching point where alternatives sequence flows may
be followed. All sequence flows with a True evaluation will be traversed. Since
each path is independent, all combinations of the paths may be taken, from zero
to all;

— Parallel: provide a mechanism to synchronize or to create parallel sequence
flows within a business process fragment.

4.2. Abstract syntax

105

I B FowObject

[Event

[[PlainEvent

| B MessageEvent

= type : EventType <]

[Gateway

o type : GatewayType <

7 message : EString

| TimerEvent |
=1 TimeDate : EDate

£ Activity

= isLooping : EBoolean

| = loopCondition : EBooleanObject

E ErrorEvent associated_error
7 ErrorCode : EString
0..1
E ExclusiveGateway
|
|
E InclusiveGateway
1
|
[ParalleGateway |
[E ComplexGateway
7 condition : EBoolean
1..* [Subprocess
<———=® o type : SubprocessType
activities
"\l

1..* | tasks

H Task

@& operation()

Fig. 4.3: Excerpt of composable business process fragment meta-model: flow objects

106 4. Language for modelling and composing business process fragments

]
i)

name : EString

1

[£ S ConecingOted
B AowObyect =
. B)
[EPodl] [EGe |
pool objects lanes
1.*
source | ¢ 1|to 1 o
£ MessageFlow SequenceFow DataAssociation
et |1 from 2 message : EString condition : EBooleanObject

Fig. 4.4: Excerpt of language meta-model: swimlanes and connecting objects

Complex: contains a boolean attribute called condition that specifies an expres-
sion that determines which of the sequence flows will be chosen for the process
fragment to continue.

The part of the language meta-model that defines the flow objects is depicted in Figure
4.3.

Swimlanes are used to help partition and organize the activities of a business process frag-
ment. Their goal is to represent participants of a business process and their collaboration.
There are two kinds of swimlanes: Pools and Lanes.

e Pools: represent participants in a business process fragment. A pool is in general a
container and regroups several flow objects, representing the work that the pool needs
to perform under the process fragment being modelled.

e Lanes: are sub-partition of pools. Lanes are mainly used to organize and categorize
the activities within a pool.

Connecting objects are used for connecting together the flow objects in a diagram. There
are three possible types:

o Sequence flow: shows the order in which flow objects are performed in a business
process fragment. A sequence flow has only one source and only one target, which
must both be flow objects. A sequence flow has a boolean attribute called condition.
This means that the condition expression must be evaluated before traversing the
flow. Such conditions are usually associated with exclusive gateways, but may also
be used with regular activities.

4.2. Abstract syntax 107

e Message flow: is used to show the flow of messages between two separate business
process fragment participants. Message flow has a single source and a single target.
It is mandatory that message flow connects two flow objects that belong to different
pools.

The part of the language meta-model that defines swimlanes and connecting objects is
depicted in Figure 4.4.

Artifacts allow developers to bring more information into the business process fragment.
In this way the model becomes more readable. From the original BPMN specification, we
do not use groups or text annotations, which we consider not necessary for the goals of our
language.

Newly introduced concepts

Besides the previously presented elements inspired from the BPMN standard, we also
propose a set of new concepts, specific to business process fragments. These new concepts
are introduced in the language either as types of artifacts or as types of connecting objects.
These concepts serve mainly two purposes:

e Data objects, data specifications and data associations are used for representing data
and data flow in a business process fragment;

o Composition tags and composition interfaces facilitate the composition of business
process fragments.

These concepts are presented in detail in the following:

e Data association: thisis a new concept, that does not appear in the BPMN standard.
Data associations are a specific type of connecting object. They are used to associate
data objects with flow objects. Associations are needed to show the data inputs and
outputs of activities. A data association relation has as single source a task of the
business process fragment, and as single target a data object of the business process
fragment. Associations are also used to model the data flow of a business process
fragment.

e Data objects: we propose this concept to allow the modelling of data and data flow in
a business process fragment. Very often, when executing a business process fragment,
there may be data produced, either during or after the end of the process. A tra-
ditional requirement of process modelling is to be able to model the items (physical
or information items) that are created, manipulated, and used during the execution
of a process fragment. Thus, we propose data objects as a mechanism to show how
data is required or produced by the activities of a business process fragment. Data
objects are introduced in the language as specific types of artifacts. The presence of
this concept allows to represent the data flow of a business process fragment. Sev-
eral data analysis, ranging from simple to complex one, can be thus performed on a
business process fragment. However, data flow analysis and processing for business
process fragments is not addressed during this thesis, but is part of the future work.
Thus, we only propose in this section a way to represent data for business process
fragments but don’t go into further details regarding this topic.

108 4. Language for modelling and composing business process fragments

Activities often required data in order to execute. In addition, they may produce
data during or as a result of execution. Therefore, we propose two types of data
objects:

— Data input: is a declaration that a particular kind of data will be used as input
to a task in order for that task to execute. There may be multiple data inputs
associated with a task;

— Data output: is a declaration that a particular kind of data may be produced
as output of the execution of a task. As before, there may be multiple data
outputs associated with a task.

Data objects need to be associated with flow objects. The data association relation,
introduced before, is used to make the connection between a flow object and its
associated data objects. This relation is also depicted in the language meta-model
in Figure 4.5, where the Association meta-class has two reference relations: one
source, which is a task of the process fragment, and one target, which is a data
object. This means that the behaviour of the process fragment can be modelled
without data objects for modellers who want to reduce complexity and abstract from
any data representations. The same process fragment can be modelled with data
objects for modellers who want to include more information without changing the
basic behaviour and flow of the process fragment.

Several other elements still need to be defined in order to complete the representation
of data for a business process fragment. We introduce the notion of data specification
as the general representation of the data that a task requires or produces. It can be
observed in Figure 4.5 that the Task meta-class may contain a DataSpecification. The
cardinality of this containment relation denotes the optionality of the data specifica-
tion. This means that modellers are not obliged to represent data in their diagrams.
In cas a data specification exists, it will be unique. Suc a data specification regroups
all the data dependencies of a task. It contains one InputSet of data that is processed
by the task, and one OutputSet of data that is produced by that task. The goal of
the input set is to regroup all the data input objects that are required by a task.
Similarly, the output set regroups all the data output objects that are attached to
that task. The overall goal is to represent the fact that a task may have multiple
input and output data objects associated with it.

Finally, every data object will have a unique type.DataType meta-class denotes the
specific type of data contained by each data object. We propose three elementary
data-types:

— IntObject: represents integer data objects;
— StringObject: represents string data objects;

— BoolObject: represents boolean data objects.

As presented in Chapter 3, during the application engineering phase of our SPL method-
ology, business process fragments need to be composed in order to obtain the behavioural
models of the SPL products that we are deriving. To successfully realize these compositions
we must know where a business process fragment can be connected with other ones. These
are the exact places where the actual composition is performed.

4.2. Abstract syntax 109

In its current state, the CBPF language does not provide any support for specifying the
exact places in a business process where the actual composition is performed. We therefore
need to extend the language with new concepts that will enable the modelling of "com-
posable" business process fragments. To facilitate the composition of business process
fragments, we introduce two new concepts: composition tag and composition interface.
They serve to render business process fragments "composable”.

o Composition tags: this is a newly introduced concept which we propose for business
process fragments. By using such composition tags a business process fragment can
easily and directly be composed with other fragments. A composition tag is simply a
text annotation under the form of a stereotype that can appear on different elements
of a business process fragment. We impose the constraint that composition tags can
only be added on the flow objects of a business process fragment. This can also be
seen in Figure 4.5, where the meta-class FlowObject has a containment relation with
the Composition tag meta-class. The cardinality of this relation, which is set to 0..1,
implies that at most one composition tag can appear on a flow object. Moreover, this
also implies that there may exist flow objects with no associated composition tag.

Composition tags are mainly used to guide the composition of business process frag-
ments, specifically during the composition process itself. A composition tag identifies
an exact place in a business process fragment where that fragment can be composed
with other ones. This means that during the composition process, the process frag-
ment elements tagged with composition interfaces will be directly involved. The
specific operations particular to each composition operator will concern those tagged
elements. The explicit identification of the composition areas with composition in-
terfaces facilitates and guides the actual composition process. The specific manner
in which composition interfaces are used in the composition process will be further
detailed later on in this chapter, when the set of newly proposed process fragment
composition operators are introduced.

We propose and distinguish between two different types of composition tags:

— Input tags: the presence of this tag on a flow object of a business process frag-
ment identifies this element as the exact location where the actual composition
with another fragment will be performed. It also specifies how, in a binary
composition, the second business process fragment will be connected to the cur-
rent one: the second operand is connected (added) ezactly before the tagged
flow object. Thus, an input tag requires an extension towards the top of the
current process fragment. In other words, the process fragment is extended, by
composition, before the tagged flow object;

— QOutput tags: similarly, the presence of this tag on a flow object of a business
process fragment identifies this element as the exact location where the actual
composition with another fragment will be performed. It also specifies how, in a
binary composition, the second business process fragment will be connected to
the current one: the second operand is connected (added) exactly after the tagged
flow object. Thus, an output tag requires an extension towards the bottom of
the current process fragment. In other words, the process fragment is extended,
by composition, after the tagged flow object;

The part of the language meta-model that defines the newly introduced concepts

110 4. Language for modelling and composing business process fragments

[[] BPMA process fragment | : [[BoMNObgect | [[Tw0bject | [[StingObiect BoolObect
2 title : EString fragmen._objects 5 name : EString ?Dva.g:m \EII:‘llabe:ari‘g value : EBoolean
5.* | 5 id:ESuing
3 |
—a , [[Conecongobect | Ve
r i i
composition tag | g3
‘DataAssodation
’D:_——} [[Gorpeionag] Wg‘: Lﬂ—”"“’b’m
uH.mping:godm
1 koopCondition : EBocleanObject
Ay [[OutputTag [TnputTag CH] [DawOwput |
daln 1% dataOut [0.°
¥ _Jﬁ— source
11 type : SubprocessType wsks [g o) 1
12
0.1 |datSpec inpus [[Trpusee
[[[] DetaSpecibication 1

outputs. J:Lrouw(
1

Fig. 4.5: Excerpt of language meta-model: newly introduced concepts

discussed above and how they are integrated in the language is depicted in Figure
4.5.

o Composition interface: business process fragments are intended to be reusable gran-
ules for business process design and should allow for reuse of process logic. They are
comparable to reusable components in software engineering. Each software compo-
nent will provide and require predefined services from other components, so the notion
of component interface becomes an important concern. Interfaces are the mechanisms
by which information is passed between two communicating components. Compo-
nents offer interfaces to the outside world, by which they may be composed with
other components.

Based on the same principles, we propose the new notion of composition interface
for a business process fragment. This concept allows business process fragments to
become composable. Business process fragments represent incomplete process knowl-
edge, which needs to be integrated with further process knowledge to become a
complete process model. Therefore, in order to create complete business process
models, business process fragments need to be composed together. The composi-
tion interface facilitates this activity. A composition interface explicitly defines the
elements of a business process fragment where it can connect or be connected with
other fragments. Interfaces are offered by one fragment in order to be used by other
process fragments. An interface also defines the manner in which a business process
fragment can be related with other fragments for compositional purposes. As process
fragments represent incomplete process knowledge, the composition interface explic-
itly defines the places where they can be integrated with other process fragments to
become a complete process model.

4.2. Abstract syntax 111
(8T —— S T [B cBPF object
fra t_objects 2 name : EString
o id : EString
5.*
[Artefact
B Composition interface elements g Fowobject
{ ¥ 0.* - -
composition_tag o
% [Composition tag
0.1
[Input interface [Output interface

[[
' : [B OutputTag [B TnputTag

Fig. 4.6: Excerpt of language meta-model: composition interface

Composition interfaces allow business process fragments to be used as a black box
for compositional purposes. For process fragments, composability is be achieved by
using explicit interfaces for defining where the actual composition process will be
performed. The presence of composition interfaces restricts the possible ways in
which the actual composition of process fragments can be performed. It also creates
compositional dependencies between process fragments, when several fragments need
to be composed.

These interface can also be seen as a signature of the business process fragments -
the user does not need to know about the inner workings of the fragment in order to
make use of it during composition. However, when a fragment needs to use another
fragment in order to extend its functionality, it verifies its interface to determine their
compositional compatibility. The goal of composition interfaces is therefore to enable
and guide the composition process for business process fragments.

This concept is an important part of our language and is integrated in the language
meta-model. This can be seen from Figure 4.6, where a business process fragment
has a unique Composition interface. This interface might be empty, meaning that
the fragment does not define any places for composition. If not empty, a composition
interface contains several flow objects. There is a close relation between the notion
of composition tag, defined previously as part of the artifacts of the language, and
the concept of composition interface. The composition interface is defined as a union
of flow objects that have composition tags associated with them. We propose two
types of composition interfaces, so there are two sub-classes that inherit from the
Composition interface meta-class:

Input interface: is defined as the set of all its flow objects tagged with an
input composition tag. Implicitly, it defines all the places of a business process
fragment where, during the composition process, the actual composition will be
performed before the tagged elements;

Qutput interface: is defined as the set of all its flow objects tagged with an
output composition tag. Implicitly, it defines all the places of a business process

Language for modelling and composing business process fragments

4.

112

IOhet Singlhet B0t

EPHIOGt J
vale: Eit e Eing Vike: EBean

Eimmm\amw o EEMWMW e s ety k
e
Ot g " it: iy
0 ?
Dl
At il
e efee E [
Bt L
E Compston e dengts
v il
& s lie
s
In
o lffm
aonpstin g)
swee e Dttt
E It E Oiptitefae (msinizg -
‘ ‘ fagt NessgeFon Seenefion Datassczion !
messe B8y ardion: okt
*E 7@ o ity e 04t i Dt Dt
bt .
 tye:BeiTpe tye: e oy ot !
s i kit ' w o
g 0| e
’ ‘ ‘ ‘ abiiis |1,
Bt Bt it ‘E by | |] ety ‘E Ry iy
D iy O | |D ik ‘ ‘ ol
. Tak
gl (11| swodd il u e !
B i) e s i
e Deteficin !
0
b Oip
1

Meta-model of composable business process fragment modelling language

Fig. 4.7

4.2. Abstract syntax 113

fragment where, during the composition process, the actual composition will be
performed after the tagged elements.

In order to have a complete and global view of the abstract syntax of the language and to
understand all the relations and dependencies between the elements, the entire language
meta-model is graphically depicted in Figure 4.7.

We want to establish and ensure that no ill-formed business process fragment models can
be produced given the language meta-model. In other words, we want to be sure of the
well-formedness of all the model instances that can be created with the proposed language.
It is imperative to check the correspondence between the models and the language in which
the models are written. To be sure that the business process fragments that can be created
with the proposed language, we will check the alignment between the created models and
a set of structural properties that any model of the same type must respect.

In model driven engineering, a meta-model is typically not refined enough to provide all
the relevant aspects of a specification. There is a need to describe additional constraints
about the objects in the model. The approach we follow is to express a set of desired well-
formedness constraints in the Object-Constraint Language with respect to the meta-model
of the business process fragment modelling language. The Object Constraint Language
(OCL) |[Gro06b] is a formal language that remains easy to read and write. It provides
a formal language for specifying constraints which can supplement the models and meta-
models created using MDE principles.

These consistency rules serve also for verifying the structural correctness of business process
fragments. Therefore, they are presented in detail and discussed in Chapter 5.

4.2.3 Language support for composing business process fragments

As defined until now, our language allows the modelling of business process fragments and
adds the notion of "composability" through the introduction of composition interfaces.
The main goal of business process fragments is to be composed together for creating com-
plete and more complex business processes. Business process composition is regarded as a
flexible mechanism capable to cope with the increasing complexity of business processes.
Similar to component-based software development, the core idea is to create a complex
business process by assembling simpler ones - in our case, business process fragments. The
complexity of building a business process is taken away from the business analyst and del-
egated to the actual composition. Another strong argument motivating the use of process
composition is process reuse.

The general approach when applying model composition is to provide composition oper-
ators. They are mechanisms that take two (or more) models as input and generate an
output that is their composition. Most languages provide a fixed set of composition opera-
tors, with explicit notations, specific behaviour and defined semantics. In case a language
does not provide a composition operator with the desired behaviour, different workarounds
need to be used. Therefore, we consider imperative to enrich our language with a set
of well-defined composition operators, specifically defined for composing business process
fragments.

All the composition operators we propose are binary composition operators: they take two
business process fragments as input and produce a single process fragment as output of
the composition. We propose the following composition operators:

114

4. Language for modelling and composing business process fragments

e Sequential composition operator: is one of the most elementary composition

operators we propose. This composition operator is used when there is a causality
relation, either logical or functional, between the two business process fragments
that are composed (one fragment cannot start until the other is over). As a basic
condition, when applying this composition operator, the first fragment (CBPF}) must
be completed before the second (CBPF5) can start. The result result of applying
this operator is a business process fragment that performs (executes) the fragment
(CBPF) first, followed by the fragment (CBPF3), in sequence, one after the other.

Requirements: to apply this operator, two conditions need to hold on the input
business process fragments:

— CBPF; has an output composition interface at one of its end events:
de € Fe1 such that e € I,, where E.1 = E1 N E;

— CBPF5 has an input composition interface at its start event:
de € Fyo such that e € I;, where Eyo = Fo N Es.

Notation: seq(CBPF;, CBPF3)

Composition interface of result: is the union of the interfaces of the input models,
from which we need to remove out(CBPF) and in(CBPF»):

Lres = 1,1 \ {Out(CBPFl)} Uli_o \ {in(CBPFQ)}

For a better understanding, the semantics of this composition operator can be infor-
mally defined in terms of token passing, and is the following: a new token is generated
at the start event of CBPF; and through the outgoing sequence flow arrives at the
first flow element of CBPF1, enabling it. Once the flow element has executed, the to-
ken is sent through to the next flow element. In the same manner, the token traverses
in sequence all the flow elements of CBPF;, then those of CBPF5, until it reaches
the end event of CBPFy where it is consumed. As this is the only token generated,
the process is considered completed.

Parallel composition operator: this operator represents the concurrent execu-
tion of two business process fragments. Two process fragments can be executed
concurrently if they do not depend on each other, i.e., they are not causally linked.
There is no communication between the two fragments that are composed. The re-
sult obtained when applying this composition operator performs the business process
fragments (CBPF;) and (CBPF5) independently of each other (concurrently).

Requirements: to apply this operator, two conditions need to hold on the input
business process fragments:

— Both CBPF; and CBPF, have an output composition interface at one of their
end events:
dey € E.l,e9 € E 2 such that e; € I;1,e2 € 19, where E.1 = By NE., B2 =
E2 N ge;

— Both CBPF; and CBPFs have an input composition interface at their start
events:
de; € Egl,eq € Eg2 such that e; € [;1,es € I;o, where E;1 = By NE;, B2 =
EyNés.

Notation: par(CBPFy, CBPF5)

4.2.

Abstract syntax 115

Composition interface of result: contains the union of interfaces of the input
models, from which we remove the start events and end events tagged with compo-
sition interfaces of CBPF; and CBPF5, and add an output composition tag at the
newly introduced end event and an input composition tag at the newly introduced
start event:

Les = HUL\{in(CBPFy), out(CBPF),in(CBPFy), out(CBPFy) }U{startney, endpew }
where start,ey € Es, endpey € Ee

For a better understanding, the semantics of this composition operator can be infor-
mally defined in terms of token passing, and is the following: a token is generated
by the start event and, through the outgoing sequence flow, reaches the parallel split
gateway, that controls the diverging of the sequence flow. For this composition oper-
ator, two parallel flow are generated, one for each outgoing arc, and a token produced
on each output flow of the gateway. The tokens traverse in parallel the two branches
and are synchronized by the merging parallel gateway. After passing the merging
gateway, the token is consumed by the end event.

Exclusive choice composition operator: this operator is used to represent differ-
ent possible paths of execution when the control flow is determined based on a specific
condition or decision, or even non-deterministically. It also models non-determinism:
the choice between the process fragments by default is made randomly. The result of
applying the exclusive choice composition operator on two input fragments CBPF;
and CBPFs is a business process fragment that can behave either like CBPF} or like
CBPF5. Once one the fragments (CBPF; or CBPF5) executes its fist activity, the
elements from the other fragments cannot be reached any more. This operator has
basically two main use cases: presentation of alternate functionality, meaning that
the main goal of the resulting fragment can be achieved in two (or more) distinct
ways; another possibility refers to its use for representing fault tolerance.

Requirements: to apply this operator, two conditions need to hold on the input
business process fragments:

— Both CBPF; and CBPF, have an output composition interface at one of their
end events:
de; € E.l,e5 € E 2 such that e; € I,1,e3 € 1,0, where E.1 = By N &, E.2 =
Exané&e;

— Both CBPF; and CBPFs have an input composition interface at their start
events:
dey € Esl,es € E;2 such that eq € [;1,e9 € I;o, where Byl = Ey N &, B2 =
EyNné&s.

Notation: excl(CBPF;, CBPF5)

Composition interface of result: contains the union of interfaces of the input
models, from which we remove the start events and end events tagged with compo-
sition interfaces of CBPF; and CBPF5, and add an output composition tag at the
newly introduced end event and an input composition tag at the newly introduced
start event:

Les = hUL\{in(CBPFy), out(CBPF),in(CBPFy), out(CBPF3) }U{startney, endpeyw }
where start,e, € Es, endpey € Ee

116

4. Language for modelling and composing business process fragments

For a better understanding, the semantics of this composition operator can be infor-
mally defined in terms of token passing, and is the following: a token is generated by
the start event and, through the outgoing sequence flow, reaches the exclusive split
gateway, that controls the diverging of the sequence flow. A token is sent only on
one of the output paths, based on the decision taken, activating just one of the two
flows. The active path is then traversed by the token. The merge exclusive gateway
must wait until the token from the active path arrives, and only then the sequence
flow continues. After passing the merge gateways, the token is consumed by the end
event.

Choice composition operator: this operator is used to represent different possible
paths of execution when the control flow is determined based on a specific condition
or decision. It can be considered a special case of the exclusive choice composition
operator. The result of applying the choice composition operator on two input frag-
ments CBPF; and CBPF, is a business process fragment that can behave either like
CBPF; or like CBPF; or like both of them. The particularity of this operator is that
the business process fragments are executed alternatively, i.e., either one fragments
is executed or the other, or both of them.

Requirements: to apply this operator, two conditions need to hold on the input
business process fragments:

— Both CBPF; and CBPF, have an output composition interface at one of their
end events:
dey € E.l,e0 € E 2 such that e; € I,1,e0 € 1,9, where E.1 = F1 NE,, E.2 =
Ey N é&e;

— Both CBPF; and CBPFs have an input composition interface at their start
events:
dey € Ezl,es € E;2 such that eq € I;1, e € I;o, where Byl = Ey N &g, Es2 =
EyNéEs.

Notation: cho(CBPF;, CBPF5)

Composition interface of result: contains the union of interfaces of the input
models, from which we remove the start events and end events tagged with compo-
sition interfaces of CBPF, and CBPF;, and add an output composition tag at the
newly introduced end event and an input composition tag at the newly introduced
start event:

Iyes = LUL\{in(CBPF), out(CBPF}), in(CBPF5), out(CBPF3) }U{startyey, endpey }
where start,e, € Es, endpey € Ee

For a better understanding, the semantics of this composition operator can be infor-
mally defined in terms of token passing, and is the following: a token is generated
by the start event and, through the outgoing sequence flow, reaches the inclusive
split gateway, that controls the diverging of the sequence flow. When the inclusive
gateway is reached, for each outgoing sequence flow with a true condition, a token is
generated and traverses that path. The merge inclusive gateway allows the process
to continue only when tokens arrive from all incoming sequence flows where a token
was generated before. After passing the merge gateway, the token is consumed by
the end event.

Abstract syntax 117

Unordered (arbitrary) sequence composition operator: two business process
fragments can be either independent or logically correlated. This composition oper-
ator is usually applied in the case of total independence of the two fragments, when
the unordered sequence operator becomes an alternative to the parallel composition
operator. The operator can also be applied in the case when the process fragments
are logically dependent, while being functionally independent, i.e., the two fragments
complement each other. The result of applying the unordered sequence composition
operator on two inputs business process fragments CBPF) and CBPFj is a fragment
that performs either the behaviour specified by fragment CBPF; followed by frag-
ment CBPF5, or the behaviour of fragment CBPF; followed by CBPF] sequentially,
but in no particular order.

Requirements: to apply this operator, two conditions need to hold on the input
business process fragments:

— Both CBPF; and CBPF, have an output composition interface at one of their
end events:
de; € E.l,e5 € E 2 such that e; € I,1,e3 € 1,0, where E.1 = By N &, E.2 =
Exané&e;

— Both CBPF; and CBPF> have an input composition interface at their start
events:
de; € Egl,eq € E 2 such that e; € [;1,ea € I;5, where E;1 = E1NEy, B2 =
EynNé&s.

Notation: arb(CBPF;, CBPF3)

Composition interface of result: contains the union of interfaces of the input
models, together with the previously created composition interface copies, from which
we remove the start events and end events tagged with composition interfaces of
CBPFy, CBPF,, CBPFY,

CBPF}, and add an output composition tag at the newly introduced end event and
an input composition tag at the newly introduced start event:

Iyes = LULULUL\ {in(CBPF,), out(CBPFY), in(CBPF,), out(CBPF,), in(CBPF}),
out(CBPFY), in(CBPF}), out(CBPF3) }U{startpew, endpey } where startpe, € E, endpey €
Ee

For a better understanding, the semantics of this composition operator can be infor-
mally defined in terms of token passing, and is the following: a token is generated
by the start event and, through the outgoing sequence flow, reaches the exclusive
split gateway, that controls the diverging of the sequence flow. When the exclusive
gateway is reached, a single token is generated on one of the outgoing sequence flows,
which activates one of the two paths which is then traversed. Thus, either all the
flow objects of CBPF; be executed followed by those of CBPFs, or they are executed
in the order CBPF, then CBPF;. The merge exclusive gateway allows the process to
continue only when the tokens arrives from the active path. After passing the merge
gateways, the token is consumed by the end event.

Parallel with communication composition operator: this operator is abso-
lutely necessary whenever two business process fragments are mutually dependent:
during its operation, one fragment may require some data produced by the other
and vice versa. The operator enhances the basic parallel composition one to operate

118

4. Language for modelling and composing business process fragments

in the case where two concurrent fragments need to synchronize or exchange data
during their execution. It models a functional dependence between the two process
fragments that are composed, which prevents their sequential execution. The result
of applying the parallel with communication composition operator on two input pro-
cess fragments CBPF; and CBPF} is a business process fragment that performs the
fragments CBPF; and CBPF5 independently of each other (in parallel) - represents
the concurrent execution of the fragments. Further more, the concurrent process
fragments may synchronize and exchange information over a set of communication
elements belonging to the two fragments.

Requirements: to apply this operator, some conditions need to hold on the input
business process fragments:

— Both CBPF; and CBPF; have an output composition interface at one of their
end events:
de; € E.l,e5 € E.2 such that e; € I,1,e9 € I,9, where E,1 = E1NE., B2 =
EQ N ge;

— Both CBPF; and CBPFs have an input composition interface at their start
events:
dey € Fgl,es € Eg2 such that e € I;1,e2 € Ijo, where E;1 = By N &g, B2 =
EyNé&s;

— For each of the two fragments, there is at least one activity or message event
inside the fragment tagged with an input or output composition tag. These
tagged elements make up the set of communication elements (SCE) for the
two fragments. The SCE is a set of pairs of the form (x,y), where: x denotes
an activity or message event belonging to CBPF; having a composition tag; y
denotes an activity or message event belonging to CBPF5 having a composition
tag; the tags of x and of y must be different. The role of the composition tags
on the elements from the SCE is to define the directionality of the message
exchange. For example, for a pair (x,y) from the SCE, if x is tagged with an
output composition interface and y with an input composition interface, then in
the process fragment resulting from their composition, there will be a message
exchange from x to y. Moreover, the number of elements (pairs) in SCE gives
the number of message exchanges that will appear in the resulting fragment
after the composition.

Notation: parC(CBPF;, CBPFy)

Composition interface of result: contains the union of interfaces of the input
models, from which we remove the start events and end events tagged with compo-
sition interfaces of CBPF, and CBPF5;, and add an output composition tag at the
newly introduced end event and an input composition tag at the newly introduced
start event:

Ies = LUL\{in(CBPF), out(CBPF),in(CBPF5), out(CBPF3) }U{startney, endpey }
where start,e, € &, endpey € Ee

Refinement composition operator: refinement is the transformation of a design
from a high level abstract form to a lower level more concrete form, hence allowing
hierarchical modelling. In our case, the refinement operation consists in replacing
an activity from a business process fragments by a more refined construct (another

4.2.

Abstract syntax 119

process fragment) in order to introduce a higher level of detail in the initial business
process fragment. The result of applying the the refinement composition operation
on two input business process fragments CBPF; and CBPF5, at the specific activity
a, behaves as fragment CBPF, except for the activity a, which is replaced by the
process fragment CBPF5.

Requirements: to apply this operator, some conditions need to hold on the input
business process fragments:

— Fragment CBPF; must have an an input or output composition interface at one
of its activities:
da € Ay such that a € ;1 Va € I,1;

— Fragment CBPF, must have an output composition interface at its start event
and an input composition interface at one of its end events:
de; € Ey2,e9 € E.2 such that ey € I,9,es € I;o, where Es2 = Fo N Es, E.2 =
ENE,.

Notation: ref (CBPF;, CBPF3)

Composition interface of result: contains the union of interfaces of the input
models, from which we remove the tagged activity of CBPF; and the start and
tagged end event of CBPFy:

Les = I U I\ {compl, in(CBPFy), out(CBPF3)}

For a better understanding, the semantics of this composition operator can be infor-
mally defined in terms of token passing, and is the following: a new token is generated
at the start event of CBPF; and, through the outgoing sequence flow, arrives at the
last flow element of CBPF; before activity compl. Once that flow element has exe-
cuted, the token is sent through to the first flow element of CBPF5. It then traverses
all the flow objects of CBPFs, until it reaches the end event of CBPFy where it is
consumed.

Synchronization composition operator: specifies a situation in which two busi-
ness process fragments synchronize their execution because they have specific simi-
larities between one or more of their flow objects. Synchronization can only be done
at the level of activities of a process fragment. Therefore, for performing the actual
synchronization operation, a matching process should be performed first that deter-
mines the set of activities that match between the two process fragments. This set
is called the synchronization set Sync, where the actual synchronization operation
will be performed. The synchronization set contains activities from the two process
fragments that match and where the actual synchronization will be performed. The
following restriction applies: it is only possible to synchronize activities from one
fragment with activities in the other fragment. The result of applying the synchro-
nization composition operator on two input business process fragments CBPF; and
CBPFs, at the specific locations specified by the synchronization set Sync, is a busi-
ness process fragment that performs in parallel (concurrently) the parts of the two
process fragments which do not belong to the synchronization set Sync, and merges
(synchronizes) and performs only once the elements from the synchronization set.

Requirements: to apply this operator, some conditions need to hold on the input
business process fragments:

— There must exist a synchronization set: 3Sync = {(z,y)|z € F1,y € Fa};

120 4. Language for modelling and composing business process fragments

— Fragments CBPF; and CBPF; have flow objects (activities) belonging to the
synchronization set Sync: 3z € Fi,y € Fy such that (z,y) € Sync;

— The flow object of fragment CBPF; that belong to the synchronization set Sync
must have an input composition tag: (z,y) € Sync,z € F} = x € I;1 ;

— The flow object of fragment CBPF, that belong to the synchronization set Sync
must have an output composition tag (z,y) € Sync,y € Fy = y € I,9;

Notation: sync(CBPF;, CBPF})

Composition interface of result: is the union of the ones of the input process
fragments, from which we remove the elements belonging to the synchronization
set Sync, and add an input composition tag on the new start event and an output
composition tag on the new end event:

Lies = HUL\ {z,yl(z,y) € Sync,z € A1,y € A} U {startpey, endpey }, where
Tag(startpey) € CTi, Tag(endpey) € CT,

For a better understanding, the semantics of this composition operator can be infor-
mally defined in terms of token passing, and is the following: a new token is generated
at the start event and through the outgoing sequence flow reaches the first split par-
allel gateway. Here, two tokens are generated for each outgoing sequence flow, which
are executed in parallel. The flows synchronize at the merge parallel gateway. From
its output sequence flow, the token is passed to the first merged synchronization el-
ement. Further on, the same idea is applied for the process areas situated between
and bellow synchronization elements, as they are put in parallel and tokens traverse
them. After the last merge parallel gateway, the token is consumed by the end event.

e Insertion composition operator: this composition operator is inspired from the
"insert process fragment" pattern, belonging to the workflow design patterns [vd AtH99].
The application of the insertion composition operator on two input business process
fragments CBPF; and CBPF; consists in inserting the business process fragment
CBPFs before or after a certain activity of process fragment CBPF;. The applica-
tion of this composition operator requires the explicit marking of the activity where
the insertion is performed. This is done with the help of the composition tags: the
activity where the insertion will be performed is explicitly marked with either an
input or an output composition tag.

Two separate cases of insertion are possible, depending on the type of the composition
tag:

— an input composition tag implies that the insertion will be performed before/above
the tagged activity;

— an output composition tag implies the insertion will be performed after/below
the tagged activity.

Requirements: to apply this operator, some conditions need to hold on the input
business process fragments:

— Fragment CBPF; must have either an input or an output composition tag at
one of the activities within the fragment:
da € Ay such that a € [;1 Va € I,1; ;

4.2. Abstract syntax 121

— Fragment CBPF; must have an input composition tag at the start event and
an output composition tag at one of the end events:
de; € Es2,e9 € E,2 such that ey € Iyo,e5 € Lo, where E;2 = EoNEs, B2 =
EyNé&e;

— For ease of use, we denote by actl the activity from fragment CBPF; tagged
with a composition interface.

Notation: ins(CBPF;, CBPF5)

Composition interface of result: is the union of those of the input process frag-
ments, from which we remove the tagged activity of fragment CBPF; and the start
and tagged end event of fragment CBPFs. We then add an input composition tag
on the start event of the result and an output composition tag on the end event:

Les = hUL\{actl,in(CBPFs), out(CBPF3) }U{ Esyes, Eeres }, where Espes = Esy, Eeres €
Eey and Tag(ESTes) € CTin, Tag(Eeres) € CTout

For a better understanding, the semantics of this composition operator can be infor-
mally defined in terms of token passing, and is the following: a new token is generated
at the start event of fragment CBPF and through the outgoing sequence flow reaches
the last flow object before the activity tagged with a composition interface. In case
of an insert before composition, the token then passes to the first flow object from
CBPF;5 and afterwards through all the flow objects of CBPF5.It then arrives at the
tagged activity of CBPF; and passe the rest of the flow object of CBPF;, before
reaching the end event where the token is consumed. In case of an insert after com-
position, the token goes to the tagged activity of CBPF;, followed by all the flow
objects of CBPF,. It then continues with the successor of the tagged activity of
CBPF; and follows with the rest of the flow objects of CBPF}, before reaching the
end event where it is consumed.

The set of composition operators designed specifically for the composition of business
process fragments are discussed in detail in Chapter 7. In the same chapter they are also
defined in a formal manner using a set-based mathematical specification.

However, these operators are not yet part of the CBPF domain specific language. Therefore,
in the following, we enrich our language with a set of well-defined composition operators.
They are added to the abstract syntax of the language. We do this by extending the
language’s meta-model with the appropriate support for the composition operators.

In Figure 4.8 we present an excerpt of the business process fragment modelling and compo-
sition language meta-model, which presents the newly introduced composition operators.
The central meta-class of this meta-model is BP composition language. It denotes the
business process fragment modelling and composition language that we propose through-
out this chapter. As it can be seen from the diagram, the language allows to create several
Composable business process fragments. They have been discussed in detail in the previ-
ous sections. Therefore, the meta-model in Figure 4.8 shows only some high level details
regarding the modelling of business process fragments. A composable business process
fragment contains several fragment objects (CBPF object). As we saw previously, there
are four main classes of elements that can appear in a business process fragment: flow
objects, swimlanes, connecting objects and artifacts. Moreover, a business process fragment
also has a composition interface.

4. Language for modelling and composing business process fragments

122

0. BP compasition language
operators
resut |1 0.% | fragments
kft 3 CBPF Object
r [Composable business pmess fragment fraqment. obi -
e U o tite ; ESting - e ek nane; ESting
@ compos) fght i id ; EString
] ! | 1
1 |interface
™ | Sequence R dements FlowObject Swimbane ConnectingObject Atefact
m ParaleComunication Compostion interface |
@ compose() 0.*
& compose()
[Aitrary Sequence w
e B Synchronization
o ompose()
£ Choice b U Input interface Output interface
"B Refinement
| @ ompose() | depene
| Bcushehoke | @ composel) |
[g Tnet
& compoge()
[g Pade ¥ ooopeee)) |
@ compose()

Fig. 4.8: Excerpt of language meta-model: composition operators

4.2. Abstract syntax 123

In the context of business process composition and composition operators, it is the left
part of Figure 4.8 that is more relevant. The language contains a set of composition op-
erators. This is described in the meta-model by the containment relation between the BP
composition language and the Operator meta-classes. The Operator meta-class is an ab-
stract one. Its purpose is to subsume several possible concrete meta-classes, which define
specific composition operators and which will override the abstract meta-class. The Oper-
ator meta-class contains an abstract operation called compose(), which will implement the
actual composition. As presented earlier, all the operators that we propose are binary com-
position operators. This is also represented on the meta-model. The Operator meta-class
is connected through two reference relations to the Composable business process fragment
meta-class. This denotes the fact that every composition operator has two operands: a left
one and a right one. There is a third relation between the two meta-classes, denoting the
fact that the result of a composition is also a business process fragment. However, the type
of relation is this time different: containment relation. We use it in order to specify that a
new business process fragment is created as a result of a composition operation. Moreover,
the result of a composition can further be used in other composition as an operand.

The Operator meta-class is an abstract one and only defined at a high level the composition
operators. Using the inheritance relation, we add nine new meta-classes which denote
concrete composition operators:

e Sequence: defines the sequential composition operator;

o ArbitrarySequence: represents the unordered (arbitrary) sequence composition oper-
ator;

e Choice: denotes the choice composition operator;
o FExclusiveChoice: denotes the exclusive choice composition operator;
e Parallel: defines the parallel composition operator;

o ParallelComunication: defines the parallel with communication composition opera-
tor;

e Synchronization: denotes the synchronization composition operator;
o Refinement: denotes the refinement composition operator;
e Insertion: denotes the fragment insertion composition operator.
Each of these meta-classes contains an operation called compose(). This operation overrides

the one with the same name defined in the Operator meta-class. Each individual operation
thus implements the specific type of composition defined the composition operator in cause.

4.2.4 Language support for product derivation specification

The last step of the SPL methodology we proposed in Chapter 3, called product derivation
specification, takes as input a set of business process fragments and transforms them, using
a compositional approach, into a proper business process that models the behaviour of
the SPL product being derived. The steps involved in the product derivation specification
process are the following:

124 4. Language for modelling and composing business process fragments

Annotation of business process fragments with composition interfaces;

Creation of the composition workflow;

Selection of applied composition operators;

Iterative application of composition operators.

We consider that the CBPF language proposed throughout this chapter should also offer
the necessary support for the creation of such product derivation specifications. For the
first step of the process, the annotation of business process fragments with composition
interfaces, the necessary support is already provided: we can create new business process
fragments and define their composition interfaces. For the actual composition, we can
use the set of composition operators that are already available in the language. However,
the creation of the composition workflow is not supported with the current version of our
language. The role of the composition workflow is to specify the exact order in which the
business process fragments are composed. It also specifies the exact composition operators
that will be applied.

As defined in Chapter 3, a composition workflow has the following elements:

e Fragment place-holders: for the composition workflow, business process fragments
are seen as black boxes, we are not interested in their internal representations;

e Operators: the goal of the composition workflow is to specify the exact order in which
process fragments are composed. It is essential to to be able to represent the different
types of business process composition operators that can be applied;

e Connectors: we need to be able to represent the sequencing/flow of elements in the
composition workflow.

Therefore, we need to extend the CBPF language with the necessary support for creating
such composition workflows. In Figure 4.9 we present a part of the language meta-model
that defines this language extension. The main class of the meta-model is BP composi-
tion language, which denotes the language we are proposing and defining throughout this
chapter. The language allows the creation of several composable business process frag-
ments. This part is not detailed, as it was introduced previously at the beginning of the
chapter. The language also allows to specify different derivation workflows (meta-class
ProductDerivationSpecification). Such a product derivation specification is characterized
by a unique name. Each product derivation specification contains one or more elements
(meta-class PDSObject). This is modelled using a containment relation between the two
meta-classes. Fach such object is characterized by a unique id. We define three types of
product derivation specification objects:

e Operators: this meta-class defines the composition operators previously introduced
in the language. It has been discussed in detail in the previous subsection. All the
operators are binary ones and produce as a result a new composable business process
fragment.

4.2. Abstract syntax 125

[frosoet |, | Productheriaionspecticin 0.2 BP compostion lnguage
2 id : EString productiame : EString
i\ 0
e result
1 l 0.* | fragments
e e Composable business process fragment
Fragment placeholder r —
B 1 F} Comector S | G k:t tte : ESting
1 —
@ compose() i
target 1 right
1
referenced fragment
) 5.% fi hjecs
CBPF Object
name : EStrng
id : EString

Fig. 4.9: Excerpt of language meta-model: support for product derivation specification

o Fragment place-holders: in order to maintain simplicity and ease of use, in the com-
position workflow, business process fragments are seen as black boxes, we are not
interested in their internal representations. Therefore, in order to reduce complexity,
a composition workflow contains fragment place-holders instead of the actual busi-
ness process fragments that are composed. Each fragments place-holder has a string
attribute fragName which corresponds to the name of the actual fragment which they
substitute. A fragment place-holder references an actual business process fragment
for further use (the actual composition). This is specified through a reference re-
lation between the Fragment placeholder and Composable business process fragment
meta-class.

e (Connectors: for a complete specification, we need to be able to represent the sequenc-
ing/ordering of elements in the composition workflow. That is why we use simple
directed connectors. A connector has a single source and a single target which can
be fragment place-holders or operators. It will thus connect a fragment place-holder
to an operator or vice-versa.

It should be noticed that, although defined in the same meta-model and therefore part
of the same language, composable business process fragments and composition workflows
represent two different types of diagrams, situated at two different levels of abstraction.
While a composable business process fragment describes the "insides" and is interested in
the concrete implementation and functioning of a business process fragment, a composition
workflow looks at business process fragments as black-boxes, and is thus not interested
in their exact functioning and sees them from a higher level of abstraction. Therefore,
concepts belonging to these two types of models (diagrams) that can be created with the
CBPF language should not be mixed together.

126 4. Language for modelling and composing business process fragments

This concludes the presentation of the abstract syntax of the CBPF domain specific lan-
guage. In the next section, we propose a concrete syntax for our language, that will enable
language users to graphically represent composable business process fragments that con-
form to the CBPF meta-model.

4.3 Concrete graphical syntax

The concrete syntaz defines the actual representation of the CBPF models. A concrete
syntax acts as an interface between the instances of the concepts, and the human being
supposed to produce or read them. It defines the physical appearance of our domain specific
language. For a graphical language like CBPF, this means that it defines the graphical
appearance of the language concepts and how they may be combined into a model.

Almost each of today’s modelling languages comes with a graphical representation in order
to improve readability and usability. Thus, the concrete syntax of modelling languages
should be defined in terms of a visual language. It describes a set of visual sentences which
in turn are given by a set of visual elements. A visual element can be seen as an object
characterized by values of some attributes. We therefore propose a graphical concrete
syntax for our CBPF language.

4.3.1 Direct definition of graphical concrete syntax

Most solutions to graphical concrete syntax definition on top of a meta-model are based
on ad-hoc symbol editors. Early domain-specific modelling tools such as Meta-Case’s
MetaEdit+ [Poh03] or GME [Dav03] derive the structure of the graphical representation
from the abstract syntax, as notation definitions are assigned directly for each abstract
syntax model element. For each representable element of the meta-model, one defines an
icon and indicates properties to be displayed. We make use of this approach for defining
an initial form of the concrete graphical syntax of our language.

In the following we detail the graphical representation of the concepts of the language.
For this purpose, we take all the elements defined in the abstract syntax and for each one
indicate the corresponding graphical representation. As was discussed during the definition
of the abstract syntax, the language we propose contains a subset of the most relevant
elements found in the BPMN standard. As BPMN is a standard for modelling business
processes and well known by the industrial and research communities, users are familiar
with its notation. Therefore, we use a similar graphical notation as the one proposed by
BPMN for the elements that are common to both languages.

All events share the same shape footprint, which is a small empty circle. Different line
styles distinguish between the three types of events. In order to further distinguish between
the different triggers that an event might have, specific representative icons can be included
within the shape.

e Start: is graphically represented by a circle drawn with a single thin line;

e Fnd: is graphically represented by a circle drawn with a single thick line;

o Intermediate: is graphically represented by a circle drawn with a double thin black
line;

4.3. Concrete graphical syntax 127

e Plain: the modeller does not graphically display the type of event. Therefore, all
plain events (start, intermediate or end) are graphically displayed as regular start,
intermediate respectively end events;

e Message: the trigger is displayed with a specific graphical marker, in this case an
envelope, set inside the empty circle;

o Tumer: the trigger is displayed with a specific graphical marker, in this case a clock,
set inside the empty circle;

e FError: the trigger is displayed with a specific graphical marker, in this case a a
lightning bolt, set inside the empty circle.

Activities are graphically represented by an empty rectangle with rounded corners. There
are several possible types of activities:

e Tusk: is graphically represented by a rectangle that has rounded corners which must
be drawn with a single thin black line;

e Collapsed sub-process: is graphically represented by a rrounded corner rectangle that
must be drawn with a single thin black line. In order to differentiate between collapsed
and expanded sub-processes, the collapsed sub-process contains a specific marker.
The marker is be a small square with a plus sign inside. The square is positioned at
the bottom center of the shape;

o Farpanded sub-process: is graphically represented by a rrounded corner rectangle that
must be drawn with a single thin black line. It does not contain any specific marker.

Gateways are graphically represented with the diamond symbol, drawn with a single thin
black line. The symbol is used as it has been used in many flow chart notations for exclusive
branching and is familiar to most modellers. To differentiate between the four different
types of gateways, we use markers which are placed inside the diamond symbol.

e Parallel: uses a marker that is in the shape of a plus sign and is placed within the
gateway diamond symbol to distinguish it from other gateways;

e FExclusive: no specific marker is required for this type of gateway;

o Inclusive: uses a marker that is in the shape of a circle or an "O", placed within the
gateway diamond shape to distinguish it from other Gateways;

o (Complex: uses a marker that is in the shape of an asterisk and is placed within the
gateway diamond shape to distinguish it from other gateways.

The graphical representations for all the flow objects (events, activities and gateways) are
displayed in Figure 4.10.

Pools: from a graphical point of view, a pool is a container for partitioning a process
fragment. It is graphically represented by a square-cornered rectangle that must be drawn
with a solid single black line. A pool will extend the entire length of the diagram, ei-
ther horizontally or vertically. However, there is no specific restriction to the size and/or
positioning of a pool.

128 4. Language for modelling and composing business process fragments

INTERVMEDIATE TVER
START END MESSAGE ERROR:
Sub-process 2
Task 1 Sub-process 1 - -
+
SIMPLE TASK COLLAPSED SUB-PROCESS EXPANDED SUB-PROCESS

4+ < O =%

PARALLE. GATEWAY EXCLUSVE GATEWAY NCLUSVE GATEWAY COMPLEX GATEWAYS

Fig. 4.10: Graphical concrete syntax: representation of activities, events and gateways

Lanes: are sub-partitions of a pool and will extend the entire length of the pool, either
vertically or horizontally. Graphically, lanes are represented in the same manner as pools:
a square-cornered rectangle that must be drawn with a solid single black line. However,
lanes can only appear inside a pool, which contains them.

Sequence flow: the graphical representation of a sequence flow is a line with a solid arrow-
head that must be drawn with a solid single line. The directionality of the sequence flow
is from the source flow object towards the target flow object. A sequence flow can have a
conditional expression attached to it, expressed as a boolean attribute. In this case, the
condition is graphically represented as a text label attached to the arrow representing the
sequence flow.

Message flow: graphically, a message flow is a line with an open arrowhead that MUST be
drawn with a dashed single black line.

Data association: graphically, a data association is a line that must be drawn with a dotted
single black line. It also has a single simple arrowhead at one of its ends. The directionality
of the data association is given by the presence of the arrowhead at one of the ends of the
dashed line. When the data associations connects an input data object with a task, the
arrowhead points towards the task. In case an output data object is connected with a task,
the arrowhead points towards the data object.

Jomposition tags: identify an exact place in a business process fragment where the frag-
ment can be composed with other fragments. A composition tag is simply a tezt annotation
in form of a stereotype that can appear on elements of a business process fragment. Com-
position tags are added on flow objects of a business process fragment. From a graphical
point of view, a composition tag is a textual stereotype that is attached to a low object be-
longing to the business process fragment. Depending on the type of composition tag (input

4.3. Concrete graphical syntax 129

&)

A

Lane1

Pool Name
Pool Name

Lane 2

POOL WITH LANES

. o } E S‘
=% =
SEQUENCE FLOW MESSAGE FLOW

DATA ASSOCIATION
<<input>> <<output>>
Task Task

NPUT COMPOSITION TAG OUTPUT COMPOSITION TAG DATA NPUT

DATA OUTRUT

Fig. 4.11: Graphical concrete syntax for: swimlanes, connecting objects and artifacts

or output), we have two different stereotypes that can be applied: ({(input)) or ({output)).

Data objects: graphically, a data object is depicted as a portrait-oriented rectangle that
has its upper-right corner folded over, and must be drawn with a solid single black line.
However, we must be able to graphically differentiate between the two existing types of
data objects: input and output. This distinction is made by the addition of an empty or
filled arrow at the top of the rectangle representing the data object. The empty arrow thus
denotes an input data object, while the presence of the filled arrow denotes an output data
object.

The graphical representations for swimlanes (pools and lanes), connecting objects (sequence
flow, message flow, data association) and artifacts (composition tags and data objects) are
displayed in Figure 4.11.

The graphical concrete syntax presented until now corresponds to the part of the meta-
model (abstract syntax) that allows the modelling of composable business process frag-
ments. However, we also need to add a graphical syntax for the part of the meta-model
that defines the product derivation specification and the business process fragment com-
position operators.

Composition operators: are using for composing business process fragments. In one of the
previous sections, we proposed a set of 9 such composition operators. From a graphical
point of view, a composition operator is depicted as an equilateral triangle that has one of
its tips pointing to the left, and must be drawn with a solid single black line. However,
as there are 9 different types of composition operators, we need to be able to graphically
differentiate between them. Therefore, we propose to add a simple text label inside the

130 4. Language for modelling and composing business process fragments

> [>

) Exclusive Arbitrary
Sequential Parallel Choice choice choice
Parallel with]]
communication Synchronization Refinement Insertion
Frag 1
Frag 1
29 Result
Fragment Frag 2
placeholder

Connectors and use of
the operator

Fig. 4.12: Graphical concrete syntax for product derivation specification elements

4.3. Concrete graphical syntax 131

triangle shape that will characterize each individual composition operator. The text labels
used are the following:

e Seq for the sequential operator;

e Par for the parallel operator;

e Cho for the choice composition operator;

e Fxcl for the exclusive choice composition operator;

e Arb for the arbitrary (unordered) sequence operator;
e ParC for the parallel with communication operator;
e Sync for the synchronization operator;

e Ref for the refinement operator;

e [ns for the insertion composition operator.

Fragment place-holders: are black-box views of business process fragments and are used
for simplicity reasons in the composition workflows of the product derivation specification
as place-holders or substitutes for the actual business process fragments. Graphically, they
are represented as a simple rectangle with sharp edges drawn with a continuous black line.

Connectors: are used for connecting together the different elements of a product derivation
specification. A connector has a single source and target. They are used for creating the
sequencing order for the composition operations. We use the same graphical representation
for connectors as the one introduced for the sequence flow: a continuous black line with a
filled black arrow at the target end.

The graphical representations for the different product derivation specification elements:
composition operators, fragment place-holders and connectors are displayed in Figure 4.12.

4.3.2 Meta-model based graphical concrete syntax

A straightforward strategy to balance abstraction with expressive power is to separate
abstract and concrete syntax representations. Essentially, this approach treats the visual
notation as a separate language with its own element types, attributes and relations, on
an additional modelling layer. For two dimensional graph-like languages, this visualisation
grammar is derived from a core diagram meta-model, which contains attributed nodes and
edges. By refining these concepts to specific model elements, the structure of the concrete
syntax may be elaborated.

In [CSWO08] Clark et al. propose a meta-model based way of describing the concrete syntax
of a language and how to connect it with the abstract syntax. In order to describe how
to interpret a diagram, they first define what it means to be a diagram at some level of
abstraction. This is achieved by creating a model of diagrams in XMF, presented in detail
in [CSWO08|. This model is very similar with OMG’s diagram interchange model. This
enables it to capture the concrete syntax concepts, and the relationship between them, for
a broad spectrum of diagram types, ranging from sequence diagrams to state machines to
class diagrams.

4. Language for modelling and composing business process fragments

132

] Diagram K <enumeration>>
& name : EString StereotypeText
<<input>>
<<output>>
graph 03 Mm
| m Gaph graphs EXCL
<5 CHO
DashedLine ARB
IE PARC
0.* [nodes 0.t | edges REF
i i DotedLine SYNC
m Node m m&a &mﬁg\ Line _— INS
o xzEint 1 thickness (EIt [
oy Eint
o width : Elnt ContinuousLine
@ height : Elnt -
labels 0.* | waypoints
i b - 0.1 | amow
0.% | displays fabel] Label | Waypoint
— = Arowhead
] Display 0.1 | ted:Estring o X Elnt =
s BNt " | @ attachedTo ; EInt o y; Elnt e EBuoleen
@ y: Elnt Sereotype
D NV text : StereotypeText
]] | T3 |
[Rectangle [Cre 5 Diamond i] Trange [Group GraphicalMarker
 width : Elnt o radus : Elnt o height ; Elnt e o width : EInt marker : EResource
o height : Elnt o doubleLined : EBoolean o height : Elnt NW
[StamRectangle [RoundedRectangle - - - _ ATOW
[| [EmvelopeMarker [ClockMarker [ErorMarker [ParalielMarker InclusiveMarker Complexiarker pe—
: _ ' envelope : EResource & dock : EResource bolt : EResource & plus : EResource indusive : EResource ompex : EResource wm_a.. EBoolean

Fig. 4.13: A general model of diagrams for describing the concrete syntax of the language

4.3. Concrete graphical syntax 133

We adapt this model for the specific needs of our concrete syntax. The resulting model is
presented in Figure 4.13. The main meta-class of the meta-model is Diagram and defines
in general all the diagrams that can be represented with the language. All diagrams are
represented as graph-like structures. Graphs contain two main types of elements: nodes
and edges. Nodes are used for representing the main graphical elements in a diagram, while
the role of edges is to connect different nodes.

A node is characterized by four integer type attributes: the z and y coordinates give
the position of the node on the screen; the width and height attributes characterize the
different graphical shapes that a node may be represented by. A node is however an
abstract concept, which requires different graphical shapes that will represent it in the
diagram. Therefore, in the meta-model, a node has several displays. These displays are
the concrete graphical shapes that are used for representing a node in the diagram. They
are adapted to the particular needs of the graphical concrete syntax we are creating. We
have seven main types of displays possible, represented in the meta-model as sub-classes
of the display meta-class:

e Rectangle: this basic shape describes a simple rectangle. It is characterized by two
attributes: the width and theheight, which have both integer values. Due to the
specific needs of our graphical syntax, we distinguish between rectangles that have
sharp edges and those that have rounded edges.

e (lrcle: this basic shape describes a simple circle. It inherits the z and y attributes
from the Display super-class which are used to define the position of the center of
the circle on the screen. Moreover, there is another integer attribute called radius
that defines the exact radius of the circle, so it can be drawn. In order to distin-
guish between different graphical elements, we need to add another attribute called
doubleLined which states if the circle with be drawn with a single or with a double
one.

e Diamond: describes a simple rhombus. It inherits the z and y attributes from the
Display super-class which are used to define the position of the center of the rhombus
on the screen. It also has an attribute called height that defines the distance between
the center of the rhombus to any of its vertexes.

e Triangle: this basic shape describes a simple equilateral triangle. It inherits the z
and y attributes from the Display super-class which are used to define the position of
the center of mass of the triangle on the screen. Another integer attribute z defines
the distance between the center of the triangle to its three vertexes.

e Group: is used as a container for other types of displays. A group is displayed as
a simple rectangle and is a container of other display elements. The group figure is
mainly introduced for representing the pools and lanes of a business process fragment.

e Graphical marker: this is a special kind of display that we propose. It is mainly
used for describing the graphical markers used for graphically distinguishing between
the different types of events, gateways and data objects. As a graphical marker
may define a complex graphical shape, we use images for displaying them. For this
purpose, a graphical marker contains an attribute called marker which is of resources
type. We have defined seven types of graphical markers, which will all inherit from
the GraphicalMarker meta-class: enwvelope, clock, error, parallel, inclusive, complex
and arrow.

134 4. Language for modelling and composing business process fragments

e Stereotype: defines a textual annotation that can be added on different graphical
elements. A stereotype is defined a special type of label. We require the definition of
two types of stereotypes: ({input)) and ((output)).

Edges are used for connecting the nodes of the graph and transitioning between them.
An edge has a single source and a single target, represented by two reference relations to
the Node meta-class. Another characteristic of an edge are its waypoints. They define
the end points of the edge, therefore where it is attached to the source and target nodes.
Different labels can be added on an edge, in order to bring supplementary information
or to express conditions that need to be fulfilled for activating the respective edge. Each
label consists of some text that is associated with the edge. Waypoints are also used to
determine how the label position relates to the bounds of the edge geometry. As in the
case of nodes, edges have to be graphically represented in a diagram. Therefore, an edge
has a graphical display which is a line. A line connects two nodes (points) in the graph. A
line is characterized by the two end-points between which it is drawn, which are given be
the waypoints of the edge. Due to our specific needs, a line can have a variable thickness.
We distinguish between three types of lines: continuous ones, drawn in a single movement
between its two end-points; dashed lines which are drawn as a succession of several small
line segments; doted lines. A line can have an arrowhead, which is a simple arrow shape
that can be attached to the line and graphically represents its directionality. Arrowheads
may be either empty or filled.

Once the model of diagrams from Figure 4.13 has been defined, specific diagramming
types are described by specialising this model. By refining these concepts to specific model
elements, the structure of the graphical concrete syntax of our language is elaborated. We
create a new model which relates elements from the abstract syntax to their graphical
representation in the concrete syntax. Due to the size of the resulting model and in order
to improve the comprehensibility of the diagrams, we decided to split it in two parts,
presented in Figure 4.14 and in Figure 4.15.

The meta-model in Figure 4.14 presents the concrete graphical syntax of the part of our
language responsible with the modelling of composable business process fragments. The
BP composition language meta-class, which is the main class of our language meta-model
previously described in Figure 4.7, inherits from and is a type of Diagram. The graphical
syntax of the language is defined as a Graph. The language allows to model different
composable business process fragments. Each of these fragments contains several CBPF
objects. These objects will be represented in our graph and inherit from either the node or
the edge meta-classes from the general diagram meta-model introduced in Figure 4.13. For
example, all the ConnectingObjects are types of edges. Implicitly, they will be graphically
displayed as different types of lines with or without arrowheads. It can be noticed that the
MessageFlow is displayed as a DashedLine with an arrowhead. In order to specify that
the associated arrowhead is an empty one, the IsFilled attribute of the Arrowhead class is
set to false. As another example, we analyse the SequenceFlow meta-class. It is displayed
using a ContinuousLine with a filled arrowhead attached to it. Moreover, as a sequence
flow may have a condition associated, the line that displays the sequence flow will have a
label associated to it. The DataAssociation relation is defined in a similar manner.

All of the other CBPF objects of a composable business process fragment inherit from the
node meta-class and are accordingly displayed as different types of nodes in the diagram.
A task is simply displayed by a rounded-edged rectangle, while for displaying a sub-process
we need a sharp-edged rectangle with a particular marker attached to it. All gateways

4.3. Concrete graphical syntax 135

o o | | e sl
pagay [
e ||
anpsy]
hagsp [1
mrnﬁ

prguay [|
wawe | |

g

I

| moigouestes
-

l

| dgll_ |

g3 3 0
mafl

Sl = - [1B =
1irallliG ‘g e g% i
= £l
Eg N = —-chl,;g
= 5‘
il §
E i
I § - |8
alligllt |
Eall - _l
" i R
ﬁ'g &F
Himil g
e | s
e LE
FiF .
5= :
3 i—
fiE }’
= ||
§§

Fig. 4.14: Coucrete graphical syntax and relation with abstract syntax - part 1

136 4. Language for modelling and composing business process fragments

are displayed using a diamond. To differentiate between the different types of gateways,
specific graphical markers are used, like the complex marker for the complex gateway or
the parallel marker for the parallel gateway. All events are graphically displayed using
variations of the circle shape. As in the case of gateways, graphical markers are used
for distinguishing between different events: envelope marker for the message event, error
marker for the error event, clock marker for the timer event. Moreover, to distinguish
between start, intermediate and end events, the doubleLined and thickness attributes of
the Circle meta-class are used. Swimlanes are simply displayed using the group, which
was specifically introduced in the general diagram meta-model for this purpose. Finally,
in the case of artifacts, the composition tags are displayed using stereotypes particularly
created for this, while data objects are displayed using a sharp-edged rectangle and the
arrow marker.

The meta-model in Figure 4.15 presents the concrete graphical syntax of the part of our
language responsible with creating the product derivation specifications. The graph used for
graphical representation is used for displaying different types of PDS objects. Connectors
inherit from the edge meta-class and are graphically displayed using a continuous line
with a filled arrowhead attached to it. The fragment place-holders and operators inherit
from the node meta-class. A fragment place-holder is simply displayed using a sharp-
edged rectangle. The composition operators are all displayed using equilateral triangles. To
distinguish between the possible composition operators, each one will also have a specific
stereotype displayed inside the triangle shape.

Throughout this section we proposed and presented two different manners of defining the
graphical concrete syntax of our CBPF language: a straight-forward one which assigns
graphical representations to the elements of the abstract syntax meta-model; a second
one which defines a separate meta-model for the concrete syntax and proposes a mapping
between it and the meta-model of the abstract syntax. In the end, both methods produce
the same graphical syntax that will be used for displaying models created with the CBPF
language.

In order to facilitate the understanding of the language concepts proposed by the CBPF
language and their graphical representation, we present in Figure 4.16 a small example of
a business process fragment created with the CBPF language. The goal of this example is
to present to the reader how a business process fragment looks like in practice and to show
some of the elements it may contain. The example in Figure 4.16 presents a transportation
reservation business process fragment. It can be easily imagined that such a fragment may
be used within a SPL, for example an entire vacation booking SPL. Several of the main
elements of a business process fragment are displayed in this example, like: tasks (select
destination, book flight),sub-processes (book train ticket), start and end events, exclusive
gateway, message events (phone agent, flight info), error event, all of them connected by
sequence and message flow relations. Moreover, we can also see some of the new elements
proposed by the CBPF language: composition tags (input tag at the start event, output tag
associated to the end event and the find alternate transportation task). For this fragments,
the composition interface is made up of the start and end event and also of the tagged
task. We also wanted to show one of the main characteristics of business process fragments
- they represent incomplete information. Thus, it can be noticed that one of the branches
of the process ends with a task that has an associated composition tag. This represents
that at that particular place, more detailed information will be added by composition with
other business process fragments.

4.3. Concrete graphical syntax 137

[E Diagram |
3 name : ESting |

] BP composition language PDS [ProductDerivationSpedification
{ 01
graph _ o+ | objects
== B PDS objects 5P o
0.*
A
[” [FragmentPlaceholder [E Operator B Gomedor |
1 | display display |1 1 display display | 1
? SharpRectangle | [[Triangle | E Stereotype ContinuousLine
4
1 arrow
[& Amowhead
= isFilled
\VA o é_
£| Node £ Edge
= X : Elnt
= y:Ent
= height : EInt
1 width : EInt

Fig. 4.15: Concrete graphical syntax and relation with abstract syntax - part 2

4. Language for modelling and composing business process fragments

138

_“ Task

Exclusive gateway _
i §

Sub-process *

=

Hmzd. event _

Booking failed

<<output>>
Find alternate

Task with i,
om_suomao: tag |

End event |

- transportation
_H Start event S 3 -
S s e 2 . -n
@ 3 %
£ : . .
m : Sequence flow i W/
. - A ~ \.\\.
(Select Choose travel / \X/ §
destination | dates \ ,
. \ <<output>>
<<input>>
= 1 Contact travel Receive flight Choose
] - — -' agency offer P desired fight
_!Mo:_vom.ao: tag _ ﬂ NV
T — I
1
1
I
4
i
T
1
i
| ! Sequence flow _
m. _\Rmmwmno c<m=~m ! - = Message flow 7
$ e ¥ —
e Check Check flight Create offer for
.m @IVT»BB& data ‘ P availabilties ‘ VA customer TV@ = Book flight =
= -
Phone agent Flight offer Chisen flight " Flightinfo

: transportation

Fig. 4.16: Example of business process fragment created with CBPF

booking

4.4. Translational semantics 139

However, the syntax of the language, specified by means of a meta-model, only defines the
structure of the language. The semantic properties, such as conditions over valid models
and the behavioural semantics of a model, are not defined. A semantic description is
included in a language description because the language designer wants to communicate
the understanding of the language to other persons. Therefore, throughout the following
section, we define a translational semantics for the CBPF language. This will complete the
language definition.

4.4 Translational semantics

Semantics descriptions of software languages are intended for human comprehension. In
general terms, a language semantics describes the meaning of concepts in a language. The
semantics can therefore be seen as the abstract logical space in which models, written in
the given language, find their meaning. Semantics are as important as the structure of the
language.

For the description of the language semantics, there are several possible existing approaches,
which were presented in Section 2:

o Operational: modelling the operational behaviour of language concepts;

e Aziomatic: defining a set of properties satisfied by the model in the different steps
of its execution (pre- and postconditions);

e Translational: translating from concepts in one language into concepts in another
language that have a precise semantics.

In this thesis we choose to provide a translational semantics for the CBPF language. This
kind of semantics is based on two key notions:

e The semantics of a language is defined when the language is translated into another
form, called the target language;

e The target language can be defined by a small number of primitive constructs that
have a well defined semantics.

The goal of a translational approach is to define the semantics of a language in terms of
primitive concepts that have their own well defined semantics. Typically, these primitive
concepts will have an operational semantics already defined. The main advantage of this
approach is that if the target language can be executed, it is possible to directly obtain
an executable semantics for the source language via the translation. Moreover, numer-
ous works use translational semantics mainly to take advantage of the facilities and tools
available in the target language (code generators, model-checkers, simulators, visualization
tools, etc.). However, a possible disadvantage is that information might be lost during the
transformation process. While the end result is a collection of primitives, it will not be
obvious how they are related to the original modelling language concepts. There are ways
to avoid this: it is possible to maintain information about the mapping between the two
models.

140 4. Language for modelling and composing business process fragments

jot

55

1
i}

OPDUNR
(fnma g
(v @
DR
v
;‘?‘L

(rroaa @ |

i S
Zi.ll gl|o g I‘ = ‘g ’
- ﬁml grm' 1 o
i - |l§R §§| i i -
(sn) E l'IU_l>
e g g
- |& - m,|_
' B & i’ -
i L
L e
g . g
e
:—
£

WOSIRLLDRUSIE

wid
(massudznees
Y3 WO
TP ARG

™
®

Iy

Fig. 4.17: Meta-model of Hierarchical Coloured Petri Nets

vassuTy
10| osasge
fenn

4.4. Translational semantics 141

We use the translational approach for defining the semantics of the CBPF language. As
our language defines a workflow-based notation, we choose hierarchical coloured Petri nets
(HCPN) as the target language for the translational semantic definition. HCPN;, introduced
in section 2.3.4, are a well know and formally defined language. They combine the strengths
of ordinary Petri nets with the strengths of a high-level programming language.

4.4.1 Meta-model of Hierarchical Coloured Petri Nets

In order to define the translation between concepts belonging to our language and HCPN
concepts, we first need to define a meta-model for the HCPN language. The meta-model
we propose is based on the original work of Jensen et al. [Jen94| for defining hierarchical
coloured Petri nets, but also on other existing work in the HCPN field from authors like
Domokos et al. [DV02], Delatour et al. [DdLO03]|, Hillah et al. [HP10|, Weber et al.
[WKO03b| and the ISO International Standard for High-level Petri Nets [JTCO07]. The
resulting meta-model is depicted in Figure 4.17.

Petri Net is the main meta-class of the meta-model, characterized by a unique name. Every
Petri net is composed of several Petri Net elements. There are three main types of such
elements defined: nodes, arcs and tokens. There are two types of nodes defined: transitions
and places. For defining Petri net composition operators, we define a special type of place
called connection place. During the execution of the Petri net, each place can contain
several tokens. Places are characterized by a specific type, called the colour set. Such a
colour set of the equivalent of a data structure in programming languages, and therefore
may contain several colours, each one defining a particular type of data. Tokens are used
for executing a Petri net. A token is characterized by a particular colour that defines the
type of data it can carry. Transitions are another type of node. In HCPN, transitions may
have a guard which defines a particular condition that must be satisfied for the transition to
fire. To facilitate the composition of Petri nets, a specific type of transition is introduced:
silent transition (has no action associated to it). Another category of Petri net elements
are arcs, which are used for connecting places and transitions. An arc has a single source
and target. Arcs may have associated arc expressions that impose certain conditions that
may apply for the traversal of the respective arc. The HCPN is also characterized by its
markings, which are a distribution of tokens over the places of the net. In order to introduce
hierarchy, the concept of subnet is used. A subnet inherits from the Petri net meta-class,
therefore may contain the same type of elements. Subnets are used for the hierarchical
decomposition of HCPNs and to facilitate the modelling and comprehensibility of complex
nets. It is possible, in a HCPN, to make a reference to another subnet, through the use of
the substitution transition concept. They are used for hiding complexity and point towards
a detailed subnet which they reference.

In addition to the standard HCPN elements described above, we enrich our meta-model
with two more concepts: composition tags and composition operators. The nodes of a
HCPN may have an associated composition tag, which explicitly marks that node for fur-
ther composition. Moreover, HCPNs may be composed between themselves using the
classical Petri net composition operators defined in the Petri net literature. Therefore,
the operator abstract meta-class is introduced in our meta-model. All the operators are
binary and take two nets as input and produce a new net as output. There are nine types
of composition operators that specialise the abstract super-class by implementing different
types of compositions: sequence, choice, exclusive choice, arbitrary sequence, refinement,
synchronization, insertion, parallel and parallel with communication.

142 4. Language for modelling and composing business process fragments

4.4.2 Model-to-model transformation from CBPF to HCPN

The semantics of our language is defined in a translational way by a mapping towards
Hierarchical Coloured Petri Nets, who have a well-defined formal semantics. The model
transformation we propose is described as a series of mapping rules or mapping templates
that translate the elements defined in the abstract syntax of our language into equivalent
constructs in HCPN. As our language is much bigger than HCPN in terms of size and
number of elements, the mapping will usually not be 1-to-1, but in most cases a language
element will be translated into an equivalent set of HCPN elements (a HCPN construct).
The mapping templates proposed range from simple 1-to-1 ones, to more complicated.

Before presenting the mapping templates (rules) in detail, we need to introduce some
HCPN concepts that are necessary for performing these mappings:

e Silent transition: is a particular type of transition (subclass of Transition meta-class
in Figure 4.17) characterized by the fact that it has no operation associated to it.
Thus it does not perform any activity once the transition is reached. This type of
transition is simply used for mapping purposes, in order to facilitate the definition
of the mapping rules. Graphically, silent transitions are represented by black-filled
rectangles;

e Connection place: is a special type of place (subclass of Place meta-class in Figure
4.17) that we introduce. In order to distinguish it from regular places, it is marked
with an S symbol and is represented with an interrupted line contour. Connection
places are used to represent how the particular element for which we currently pro-
pose the mapping connects with other diagram elements, when part of an entire
HCPN. Thus, connection places serve only for the mapping itself and will never ap-
pear in the actual HCPN diagram. What happens when a business process fragment
is transformed into an equivalent HCPN is that every element of the business process
fragment is mapped, according to the mapping rules, to an equivalent HCPN con-
struct; then, all the obtained constructs need to be connected together for obtaining
the final HCPN; at this moment, the connection places of each HCPN construct will
be merged with the corresponding connection places (input or output) of the HCPN
construct with which the current construct needs to be related. For example, suppose
we have two tasks connected by a sequence flow relation. Based on the mapping tem-
plates, each task is translated individually into HCPN as a simple transition with an
input and output connection place; to put the two tasks together in the sequence flow
relation, the output connection place of task 1 is merged with input connection place
of task 2 into a regular HCPN place. Graphically, a connection place is represented
as a circle drawn with a dotted line and with has the "S" symbol inside the circle
shape.

In the following, we introduce and discuss the proposed mapping rules:

e Composable business process fragment: describes at the highest level the busi-
ness process fragments that we want to create. This concept is mapped to the Petri
Net concept, which denotes at the highest level a HCPN. The string attribute ti-
tle which denotes the unique name of a composable business process fragment, is
mapped onto the string attribute name of a Petri net.

4.4, Translational semantics 143
/f\\ ,’\\
Task A \ S "_) A 4)‘ S)
N/ N/
Vo ¥ 27N
Collapsed sub-process A | S s)
S \~/
Expanded sub-process A
/’s\\ . /rs\\
\)<) >
B PP C \N_~ _/)
=

Fig. 4.18: Mapping template from CBPF to HCPN: task and sub-process

Composable business process fragment — Peltri Net, with Title: string — PetriNet
. Name: string

e CBPF object: a composable business process fragment consists of several elements.
A CBPF object provides a high level description for all the elements that can appear
in our diagrams. This concept is mapped onto the Petri Net element concept in
HCPN, whic serves the main purpose for the HCPN language. A CBPF object is
characterized by two string attributes: name and id. These attributes are mapped
onto the corresponding name and id string attributes of a Petri Net element.
CBPF object — Petri Net element, with name: string — Petri Net element .
name : string and id: string — Petri Net element . id : string

To facilitate the understanding of the proposed mapping, Figure 4.18 graphically
presents the mapping templates that translate tasks and sub-processes into equivalent
HCPN constructs.

e Task: defines a basic activity performed in a business process fragment. This con-
cept is mapped onto the following Petri net construct: a transition connected to an
input connection place and an output connection place. The transition denotes the
processing performed by the task. The input connection place is used to denote the
start of the task, while the output connection place denotes the end of the process-
ing proposed y the task. Moreover, these connection places are used for the future
connection with other elements, when a task is part of an actual business process frag-
ment. A task also defines an operation(), which is mapped onto the corresponding
operation() which exists for a transition.

e Collapsed sub-process: is a compound (non-atomic) type of activity. The collapsed

144

4. Language for modelling and composing business process fragments

sub-process hides the internal details about the process implementation and thus
provides a high-level view of an activity. It is mapped onto the following HCPN
construct: a substitution transition connected to an input connection place and an
output connection place. The substitution transition denotes and is associated to
a Petri net subnet. The role of the connection places is to denote the start and
end of the sub-process, and as before, they are also used for further connecting a
collapsed sub-process with other elements in a business process fragment. We make
this mapping as the substitution transition concept plays a similar abstraction and
hierarchical decomposition role in a HCPN as a sub-process does in a business process
fragment.

Expanded sub-process: shows its details within the view of the process fragment
in which it is contained. They can be used to flatten a hierarchical process fragment
so that all the details can be shown at the same time. We map this concept onto the
following HCPN structure: a subnet connected to an input connection place and an
output conmection place. The role of the connection places is the same as before. In
HCPNSs, each substitution transition is related to a subnet providing a more detailed
description than the transition itself. It is clear thus that the role of a subnet in a
HCPN is very similar to that of a collapsed sub-process for business process fragments.
Moreover, the existing logical relation between collapsed and expanded sub-processes
is kept by mapping them to substitution transitions and subnets, which hold a similar
relation between them.

Parallel gateway: this type of gateway either splits one incoming sequence flow into
multiple outgoing parallel paths of execution or merges and synchronizes multiple
incoming flows. There are two possible types of this gateway, each with its own

mapping:

— Splitting: we map this concept onto the following HCPN structure: an input
connection place followed by a silent transition; from the silent transition, there
are two (or more) output arcs, each one connecting the silent transition with an
output connection place. We require such a complicated Petri net structure as
we want to keep the original semantics of the parallel gateway and conserve the
behaviour. The connection places are used as before for the future connection
with other elements. The silent transition, which does not execute any specific
activity, is used for splitting the outgoing execution paths and for preserving
the original semantics of the parallel splitting gateway in Petri net.

— Merging: we map this concept onto the following HCPN structure: two (or
more) input connection places are connected by arcs with one silent transition;
this transition is then connected through an arc to an output connection place.
The idea of the mapping is very similar with the one for the splitting parallel
gateway, adapted to the particularities of the merging gateway. The role of
the silent transition is to merge the incoming sequence flows and preserve the
original semantics of the parallel merging gateway in Petri net.

e Exclusive gateway: this type of gateway denotes a decision point in the flow of

execution. For the splitting gateway, the incoming flow is split into multiple outgoing
paths, from which exactly one can be taken. For the merging gateway, only one of
the incoming flows may lead to the output flow:

4.4, Translational semantics

145

\
Py

7N,
(w)
Nio
_:\ :\
{
] AT

@ O P
4

PN 75 7oy
(150 Y (0 Y
Sorad' Nl
a
aj\li
Za
_/I

P
w

\

it
/j\
l
\

7 ~

xpr2

®

e
w
e

/N

7)

N/

\/
w

/'-\

\
lw,
*\

{
/ \

/
[
\

\
/

w
-~

@
~

~

~
\
4
.
Va N
[o)
~7 oA

/
AN

o)

/7
\

#2 2T
0) [o)
ol N

2T

| »)

N

(

VS
| o
\

a3
\ £
] ey
%
\
| »
\~_/’

w

Fig. 4.19: Mapping template from CBPF to HCPN: gateways

Splitting: we map this concept onto the following HCPN structure: an in-
put connection place has two (or more) outgoing arcs, each leading to a silent
transition. Each such silent transition is then connected to an output connec-

tion place. The number of silent trausitions is given by the number of outgoing
sequence flows of the exclusive gateway. During execution, once a token has

passed from the input connection place through one of the silent transitions,
none of the other paths can be accessed any more. This behaviour coincides to
the one described by the exclusive gateway.

Merging: we map this concept onto the following HCPN structure: two (or
more) mpul connection places are connected each one to silent transitions. All

these silent transitions are then connected through their outgoing arcs to a single
oulpul connection place. There are as many silent transitions as inpuft sequence

flows for the exclusive merging gateway.

e Inclusive gateway: this type of gateway denotes a decision point in the flow of

execution. For the splitting gateway, the incoming flow is split into multiple outgoing

146 4. Language for modelling and composing business process fragments

paths, from which one or more can be taken. For the merging gateway, one or more
of the incoming flows may lead to the output flow:

— Splitting: the mapping of this gateway is inspired by the one previously pre-
sented for the exclusive splitting gateway. Therefore, we start from the Petri net
structure obtained for the exclusive gateway and enrich it. The input connection
place contains an extra outgoing arc leading to another silent transition. This
silent transition will have two outgoing arcs, each one leading to the already
existing output connection places.

— Merging: the mapping of this gateway is inspired by the one previously pre-
sented for the exclusive merging gateway. Therefore, we start from the Petri net
structure obtained for the exclusive gateway and enrich it. Each one of the input
connection places has an extra outgoing arc connected to a newsilent transition.
This silent transition is then connected through an outgoing arc to the output
connection place.

e Complex gateway: this type of gateway denotes a complex decision point in the
flow of execution, which cannot be easily expressed with the previously described
gateways. A complex gateway contains a boolean condition attribute that specifies an
expression that determines which and how many of the sequence flows will be chosen
for the process fragment to continue. To express this condition for our mapping, we
make use of the arc ezpression concept that exists in HCPN.

— Splitting: we propose the following mapping: one input connection place is
connected by outgoing arcs to three (or more) silent transitions. Each of these
outgoing arcs has an associated arc expression. Each of the silent transitions is
then connected by a simple arc to its own output connection place.

— Merging: we propose the following mapping: three (or more) input connection
places are each connected through simple arcs to silent transitions. Each such
silent transition is is then connected by an outgoing arc to a unique output
connection place. Each of these arcs has an associated arc expression. Therefore,
the condition of the complex gateway is replaced by having arc expressions on
each of the arcs connecting the silent transitions to the unique output connection
place.

For a better understanding, Figure 4.19 graphically presents the mapping templates
that translate all the types of gateways into equivalent HCPN constructs.

e Start event: indicates where a particular business process fragment will start. De-
pending on the type of trigger that a start event might have, we propose to map this
element to the following HCPN structures:

— Plain start event: is mapped onto a place with no input arcs and one outgoing
arc. Moreover, this place will hold the initial marking of the Petri net;

— Message start event: indicates that a message arrives from a participant and
triggers the start of the business process fragment. We propose to map this
element to the following HCPN structure: a place with no input arcs and one
outgoing arc leading to a message transition and then an output connection
place. The message transition is discussed a bit later;

4.4, Translational semantics 147

Timer Start

Fig. 4.20: Mapping template from CBPF to HCPN: events

Timer start event: denotes that the elapse of a certain time interval triggers
the start of the process. We propose to map this element to the following
HCPN structure: a place with no input arcs and one outgoing arc leading to a
timer transition. and then an output connection place. The message transition
is described a bit later;

e Intermediate event: denotes that something happens inside the flow of the business
process fragment. Depending on the type of trigger that a start event might have,
we propose to map this element to the following HCPN structures:

Plain intermediate event: is mapped onto an input connection place followed by
a simple fransition connected then to an output connection place. The role of
the input connection place is to denote the start of the event, while the output
connection place denote the end of the event. The connection places are also
used for connectivity reasons when the event belongs to a HCPN;

Message intermediate event: we propose to map this element to the following
HCPN structure: an input connection place related through an arc to a message
transition and then an oufput connection place. The message transition is a
special type of transition used to simulate the sending or receiving of a message.
It has the following characteristics: the string attribute name is set to have
the value "Message"; the generic operation() method is defined to be either
sendMessage(msg: String) or receiveMessage(msg: String);

Timer intermediate event: may denote that a specific time-date or a specific
time cycle can be set that will trigger the start of the process fragment or act
as a delay mechanism. We propose to map this element to the following HCPN
structure: an input connection place related through an arc to a timer transition
and then an output connection place. The message transition is a special type of
transition used for simulating time intervals. It has the following characteristics:
the string attribute name is set to "Timer"; a guard acting as a condition to to

148

4. Language for modelling and composing business process fragments

show when the specified time interval has passed or not; the guard expression
is defined based on the original TimeDate of the timer event;

Error intermediate event: signals an error in the functioning of the process
fragments and disrupt the normal flow of activities. We propose to map this
element to the following HCPN structure: an input connection place related
through an arc to a error transition and then an output connection place. The
error transition is a special type of transition used for defining the occurrence
of errors. It has the following characteristics: the string attribute name is set to
"Error"; the string that determines the error code is concatenated to the name
attribute, resulting in a transition name of the type: "ErrorerrorCode

e End event: indicates where a process will finish. Depending on the type of trigger
that a start event might have, we propose to map this element to the following HCPN
structures:

— Plain end event: denotes the normal termination of a business process fragment.

This element is mapped onto a simple place that has no outgoing transitions,
which will also hold the final marking of the Petri net;

Message end event: denotes that the sending or receival of a message causes
the business process fragment to stop. We propose to map this element onto an
input connection place related through an outgoing arc to a message transition
which is then connected to a simple place that has no outgoing transitions;

Error end event: denotes the fact that the occurrence of an error cause the
business process fragment to end. This element is mapped onto an input con-
nection place related through an outgoing arc to an error transition which is
then connected to a simple place that has no outgoing transitions.

For a better understanding, Figure 4.20 graphically presents the mapping templates
that translate all the types of events into equivalent HCPN constructs.

e Sequence flow: shows the order in which flow objects are executed in a business
process fragment. A sequence flow relation is characterized by one source and one
target. There are three possible types of sequence flows:

— Normal: defines the exact order of execution of flow objects in a process frag-

ment. We propose to map this element onto the arc concept in HCPN. The
obtained arc will have no arc expression associated to it. The boolean attribute
condition is mapped onto the arc expression concept in HCPN.

Conditional: has a conditional expression attribute that must be evaluated be-
fore the sequence flow can be traversed. This concept is mapped onto an arc
with an associate arc expression in HCPN. The arc expression servers a simi-
lar role as the conditional expression, restricting certain tokens to traverse the
respective arc.

Ezxception handling: this particular type of sequence flow occurs outside the
normal flow of the process and is based upon an event (intermediate error) that
occurs during the execution of the process fragment. Error events are usually
attached to tasks of a business process fragment. The modeller is creating an
event context to interrupt the activity and redirect the flow through the inter-
mediate error event. We map this situation into the following HCPN construct:

4.4. Translational semantics

I:Normalseqtmceﬂw I: Normal arc
\ S A —> S)
A B N N~
c ,() . '\
Error —> S
N
I:Excepﬁon sequence flow Edding an eror fransition
7\
\ S
N
E A B \
N
;
o
[Messageﬂwbemeniwotasks [Addngamessagelmsiﬁon
yofing
: : X i /‘\ k<input>> ’N\
int X String Bool <<input>> S gy —>{ S
Task A N il
Task A
77\ =
Placet :color set = 1 X Sring) - s {7 s)
Place 2 : color set = (Bool) N N
Data specification of task: |
- data input: xcInt , y:String [nput and Output composition tags
- data output: zzBool -

Fig. 4.21: Mapping template from CBPF to HCPN: sequence flow, message flow, data
association, data objects and composition tags

150

4. Language for modelling and composing business process fragments

an exception flow attached at the input connection place of the affected task
(to which the error event is attached). We made the explicit choice to attach
the exception flow before the task, although it is also possible to attach it after
after the task.

e Message flow: shows the flow of messages (message exchange) between two entities.

Message flow must connect two pools, either to the pools themselves or to some flow
objects within those pools, but it cannon connect two objects belonging to the same
pool. The message flow is interpreted as a message exchange between the two flow
objects belonging to different pools. Therefore, it is translated into a HCPN message
transition that will be placed between the HCPN constructs corresponding to the
translated flow objects.

Swimlanes: are used to help partition and organize the activities of a business
process fragment. A swimlane is thus a way to contain and group the flow objects
that are performed by a certain participant. There are two types of swimlanes: pools
and lanes. As this concept is used for the grouping of elements in a business process
fragment, we consider that it should not be mapped onto any HCPN construct. A
mapping would however be possible, but it would only overburden the resulting Petri
net and make the resulting diagram difficult to understand and possibly illegible.
Moreover, such a mapping would not bring any crucial or important information
in the resulting HCPN. Therefore, neither pools nor lanes are mapped onto HCPN
constructs.

Data objects: are used for modelling data and data flow in a business process
fragment. Activities often required data in order to execute. In addition they may
produce data during or as a result of execution. Therefore, we propose two types of
data objects: data input and data output. We propose to map such data objects onto
the concept of color from HCPN. This mapping is motivated by the fact that in a
HCPN every token has a value also called its colour, which is thus used in HCPN to
represent the data type of a token. This which is very similar with the role of data
objects in business process fragments.

A data object has also an associated data type (can be int, string or bool). The data
type of a data object is mapped onto the type attribute of a color. This attribute
defines three different possible data values: int, string, boolean.

Data specification: regroups all the data dependencies of a task. It contains one
InputSet of data that is processed by the task, and one QutputSet of data that is
produced by that task. This concept is mapped onto the color set notion in HCPN.
A color set is a sort of data record that regroups all the data types that a place may
contain. As a data specification contains all the data inputs and outputs of a task,
similarly a color set regroups all the colors that a HCPN place may have.

Data association: is a specific type of connecting object that allows to connect a
task to its data inputs and outputs. As the data object concept was mapped before
onto the notion of color in HCPN, a data association does not need to be mapped
by itself to any HCPN notion. It is actually the data association together with the
corresponding data object that will be mapped onto a specific color in HCPN.

Composition tags: serve to render business process fragments "composable". A
composition tag is simply a text annotation in form of a stereotype that can appear

4.4. Translational semantics

151

7SS Select Choose travel
l\ destination dates

4

X L2

Travel by plane

-

Contact travel 7N
agency \ S '_)
~
|
v
A
(IZI\ Check
\ customer data
S
Phone agent

Booking failed

train ticket

Book

X—QO

o A
\ <<ou(put>>
Receive flight
details

Choose
travel
dates

<<input>>
Travel 77\
by —®{ S)
train N
Travel 77N
by I—» s
plane N
Travel
by
plane
Check T
MSG —DO—D customer —N s)
data \\ -
/ ‘; \ Btr(:: /‘; N
‘\ ticket ~ /)
ooking
Error failed

Fig. 4.22: Mapping transportation reservation fragment to HCPN: Step 1

152

4. Language for modelling and composing business process fragments

on elements of a business process fragment. A composition tag identifies an exact
place in a business process fragment where the fragment can be composed with other
ones. This concept is mapped onto the corresponding notion of composition tag from
Petri net, introduced in our HCPN meta-model from Figure 4.17. Therefore, the
mput and output composition tags are mapped onto their HCPN equivalent.

For a better understanding, Figure 4.21 graphically presents the mapping templates
that translate sequence flow, message flows, data association, data objects and com-
position tags into equivalent HCPN constructs.

Composition operators: earlier in this chapter we defined a set of binary compo-
sition operators which take two business process fragments as input and produce a
single process fragment as output of the composition. When these composition op-
erators were introduced, their semantics was informally described in terms of token
passing, in order to facilitate their understanding. In order to formally define their
semantics, these operators are mapped onto equivalent composition operators that
have been defined for Petri nets. The HCPN composition operators onto which we
perform the mapping are classical operators defined for composing high level Petri
nets, which can be found in the Petri net research literature. These composition
operators are present in the HCPN meta-model from Figure 4.17.

Therefore, the operator concept from CBPF is mapped onto the equivalent operator
concept from HCPN. Similarly, we have the following mappings:

— Sequence: is mapped onto the sequential composition operator defined for HCPN;

— Arbitrary sequence: is mapped onto the unordered (arbitrary) sequence compo-
sition operator defined for Petri nets;

— Choice: is mapped onto the operator with the same name defined for Petri nets;

— FEzclusive choice: mapped onto the exclusive choice composition operator for
HCPN;

— Parallel communication: is mapped onto the parallel with communication com-
position operators defined for Petri nets;

— Refinement: is mapped onto the place/transition refinement composition oper-
ator for Petri nets;

— Synchronization: is mapped onto the place fusion / transition synchronization
operator fro Petri nets;

— Insert: is mapped onto the insert fragment operator defined for Petri nets.

A review and detailed presentation of the composition operators defined for HCPN
is available in Annex 1.

In order to facilitate the understanding of the mapping presented throughout this section,
we will explain it on the example previously introduced at the end of Section 4.3 in Figure
4.16. The example described a transportation reservation business process fragment. The
mapping towards HCPN is a two.step process. First, based on the mapping templates
proposed, all the elements of the business process fragment are transformed into equivalent
HCPN constructs. This step of the process is exemplified in Figure 4.22, in which we take
several elements (or element groups) from the business process fragment and, applying
the mapping templates, transform them into their equivalent HCPN constructs. Then,

4.4. Translational semantics

153

Create
offer for
customer]

Check
flight

1ab

ilities

MSG

Check
ustomer
data

Receive
flight
offer

<<input>>

Select
destination

Choose travel
dates

Travel by
plane

Q

Travel by
plane

6

IChoose
desred
flight

Receive flight
details

<<output>>

Travel by train

Book train
ticket

Fig. 4.23: Mapping transportation reservation fragment to HCPN: Step 2

Booking
failed

<output>>
Find

alternate
transportati
on

NS

154 4. Language for modelling and composing business process fragments

in a second step, all the HCPN constructs obtained in the previous step, are assembled
together in order to obtain the final resulting HCPN, whicg defines the transformation of
the entire business process fragment into HCPN. For our example, the resulting HCPN
model is presented in Figure 4.23.

5. VERIFICATION OF BUSINESS PROCESS
FRAGMENT CORRECTNESS

Abstract

Throughout this chapter we propose several types of verifications that can be
applied to business process fragments in order to determine their "correctness”.
Business process fragment verification is a key step of the SPL methodology pro-
posed in Chapter 3. It is highly desirable to verify business process fragments
created at analysis and design time. We want to ensure that the business pro-
cess fragments created with the CBPF language during the domain engineering
phase are correct. We start by defining the notion of "correctness” for busi-
ness process fragments in Section 5.1 as the summation of two other properties:
structural correctness and behavioural correctness. In Section 5.2 we present the
structural verification of a business process fragment by defining a set of ade-
quate fragment consistency rules that should be valid for every business process
fragment that can be created with the CBPF language. These well-formedness
rules are defined using OCL directly on the CBPF meta-model. We also want to
perform checks related to the dynamic behaviour of business process fragments.
Thuse, the verification of behavioural correctness of business process fragments
s presented in Section 5.83. These verifications are done by first transform-
ing the business process fragment into an equivalent HCPN with the help of
the model-to-model transformation that we propose. Once this is done, we can
take advantage of the large array of analysis and verification techniques and
tools available for Petri nets. The behavioural properties that should be verified
for a business process fragment are separated into two major classes. Generic
ones which specify general dynamic properties that any business process frag-
ment should fulfil. As business process fragments are created to describe a high
level functionality or feature, there will exist certain dynamic properties that are
specific to each individual fragment and therefore cannot be verified in general.
Therefore we define a set of fragment specific properties and propose property
templates that can be adapted and used by the product line engineer to check
them.

As business processes have become more complex, the probability of making errors in their
design has increased. Errors in business processes can cause big financial losses, therefore
the need for identifying and correcting the errors has become critical. In many cases,
business process analysis is often performed by walk-through only. Simulations can also be
used for model validation and testing, but verification is needed to guarantee behavioural
properties. Real-life business processes are too large and complex to be verified manually,
and automated support is therefore essential.

156 5. Verification of business process fragment correctness

Business process fragment verification is a key step of the SPL methodology proposed
in Chapter 3. We want to ensure that the business process fragments created with the
CBPF language during the domain engineering phase and the used during the application
engineering phase for creating behavioural models of the derived SPL products are correct.
It is highly desirable to verify business process fragments created at analysis and design
time. In a late state of the system development process the cost to repair incorrect business
processes are extremely high. Therefore, it is reasonable to identify errors at design time.
Moreover, the correctness of a business process specification is critical for the automation
of business processes. For this reason, errors in the specification should be detected and
corrected as early as possible.

Throughout this chapter we discuss the notion of correctness and how it applies to busi-
ness process fragments. We will see that guaranteeing the correctness of a business pro-
cess fragment implies ensuring that two properties are verified: structural correctness and
behavioural correctness. The particularities of each of these specific verifications are sepa-
rately discussed in detail throughout this chapter.

5.1 Notion of "correctness” for business process fragments

The notion of "correct business process” has a wide understanding in business process
research. In general, by correctness properties, people usually refer to the different kinds of
soundness properties first introduced in 2000 in the work of Wil van der Aalst on workflow
verification [vdA00]. The notion of soundness was later on also extended to business
processes.

The verification of business process fragment correctness is essential for ensuring an un-
ambiguous description of the processes. In this thesis, we analyse the notion of business
process correctness from a different perspective and try to adapt it to the particularities
of business process fragments. Therefore, we define the notion of correctness for busi-
ness process fragments as the summation of two other properties: structural correctness
and behavioural correctness. We introduce each of these two types of properties in the
following:

o Structural correctness: mainly focuses on avoiding errors at the structural level of
the business process fragments. For the CBPF language and thus business process
fragments, this property deals with:

— the correspondence between the model and the language in which the model is
written (in out case CBPF);

— the alignment between a business process fragment model created using CBPF
and a set of structural properties that any model of the same type must respect.

Structural properties mainly refer to the type of elements that may appear in a busi-
ness process fragment and the various control flow relations that exist between them.
More precisely, to ensure the structural correctness of a business process fragments,
we first need to define a set of adequate fragment consistency rules that should be
valid for every business process fragment that can be created with the CBPF lan-
guage. As the CBPF language was defined following a model-drive approach and its
abstract syntax specified as a meta-model, the consistency rules that will ensure the

5.1.

Notion of "correctness"” for business process fragments 157

structural correctness of business process fragments will be defined directly on the
business process fragment meta-model. Implicitly, every business process fragment
created that is conform to the CBPF meta-model will be ensured to satisfy these
consistency rules. We thus propose a set of consistency rules that try to ensure the
structural well-formedness of business process fragments, defined using the Object
Constraint Language (OCL). Two types of rules are proposed:

— Based on OMG BPMN specification: as the CBPF language shares a large set
of elements with the BPMN language, we consider important to keep in our lan-
guage the consistency criteria defined by the BPMN standard which are relevant
for CBPF. However, the BPMN documentation does not define well-formedness
rules/criteria for business processes in an explicit and concise manner. This
information appears only textually in the BPMN standard [OMG11] as part
of the description and presentation of the different BPMN language elements.
Therefore, we needed to extract these rules and express them formally using
OCL;

— Business process fragment specific constraints: CBPF specific consistency rules
are introduced, also expressed using OCL. These rules mainly refer to two as-
pects: the fact that business process fragments model partial information and
the existence of composition interfaces for business process fragments.

e Behavioural correctness: mainly concerns the control-flow of the business process

fragments. At this level, we want to perform checks related to the dynamic behaviour
of business the process fragments. The concept is defined based on the original defini-
tion of process soundness proposed by van der Aalst for workflow nets [vdA00]. The
soundness criterion and its derivatives are typically used to check whether proper
completion of business process is possible or even guaranteed. We extend this notion
and adapt it for business process fragments. In our case, behavioural correctness
ensures that a business process fragment does not exhibit any erroneous or unwanted
behaviours. As the behaviour of a business process fragments is defined by its exe-
cution traces, the verification of behavioural correctness is also performed on these
traces. We propose to verify two kinds of behavioural properties for business process
fragments:

— Generic: the goal here is to specify general dynamic properties that any busi-
ness process fragment should fulfil. We verify high-level properties like the
reachability of end events or of composition interfaces, ensure that the process
is deadlock-free and has no dead tasks or that the process fragment can properly
finish;

— Process fragment specific: certain properties cannot be verified in general and
are different form one business process fragment to another and depend on the
specific context in which that fragment is used. We want to offer the product
line engineer the possibility to define and verify such business process fragment
specific properties. These properties concern only the business process frag-
ments themselves and are not related to the different composition operators that
might be used for creating new fragments following a compositional approach.
Analysing how these properties are conserved and impacted by the different
composition operators is planned as future work and some ideas regarding this
subject are presented in Chapter 7.

158 5. Verification of business process fragment correctness

The notion of correctness is an essential one because we want to ensure that all the business
process fragments that can be created with the CBPF language respect some structural
well-formedness properties, but that also, from a behavioural perspective, our business
process fragments poses several dynamic properties that we consider important.In the
next sections, we discuss in detail how the structural and the behavioural verifications are
performed.

5.2 Verification of structural correctness of business process
fragments

The structural verification of a business process fragment requires the definition of a set of
adequate fragment consistency rules that should be valid for every business process fragment
that can be created with the CBPF language. In model driven engineering, a meta-model
is typically not refined enough to provide all the relevant aspects of a specification. There is
a need to describe additional constraints about the objects in the model. Such constraints
are often described in natural language. However, this will always result in ambiguities.
In order to write unambiguous constraints, formal languages have been developed. The
disadvantage of traditional formal languages is that they are only usable to persons with
a strong mathematical background, but difficult to understand and use by the average
business or system modellers.

The Object Constraint Language (OCL) [Gro06b] was developed to fill this gap. It is a
formal language that remains easy to read and write. It provides a formal language for
specifying constraints which can supplement the models and meta-models created follow-
ing MDE principles. The language has a precise syntax that enables the construction of

unambiguous statements. It is used for precisely defining the well-formedness rules for
UML and further OMG-related meta-models.

The core concept defined by OCL is that of constraint. Warmer and Kleppe [WKO03a]
define a constraint as "a restriction on one or more values of (part of) an object-oriented
model or system”. A constraint is formulated on the level of classes or meta-classes, but
its semantics is applied on the level of objects. There are three basic types of constraints

that can be defined using OCL:

e [nvariants: define constraints that must always be met by all instances of the
(meta)class. These constraints should be true for an object during its complete
lifetime;

e Pre-conditions: refer to the operations of a model and specify constraints that must
always be true before the execution of the operation. The meaning of a precondition
is that it has to be valid in the initial state of an operation, otherwise the operation
should not be executed;

e Post-conditions: similarly to pre-conditions, they also refer to the operations of a
model and specify constraints that must always be true after the execution of an
operation/method. They define the way the actual effect of an operation is described
in OCL.

We want to establish and ensure that no ill-formed business process fragment models can
be produced given the language meta-model. In other words, we want to be sure of the

5.2. Verification of structural correctness of business process fragments 159

well-formedness of all the model instances that can be created with the proposed language.
It is imperative to check the correspondence between the models and the language in
which the models are written. To be sure that the business process fragments that can
be created with the proposed language, we will check the alignment between the created
models and a set of structural properties that any model of the same type must respect.
The approach followed allows us to express a set of desired well-formedness constraints in
the Object-Constraint Language with respect to the meta-model of the business process
fragment modelling language.

Using OCL well-formedness constraints, it is possible to express different properties and
characteristics of business process fragments which cannot be expressed directly with the
meta-model. These constraints, defined directly on the language meta-model, facilitate a
more refined specification of business process fragments and restricts the set of structurally
valid process fragments. Moreover, the advantage of using OCL resides in the fact that the
constraints are defined only once, on the language meta-model, and apply to all models
created with that meta-model. Using this approach, a model is well-formed if and only if
it conforms to the meta-model, i.e., it satisfies the multiplicities and the OCL constraints
defined on the meta-model.

The BPMN standard document defines, in an informal manner, using a natural language
description, several structural properties that should be verified by all BPMN models that
conform to the standard. Based on this document, we adapt some of those constraints to
the specificities of our business process fragment modelling and composition language and
create a set of well-formedness constraints applicable to business process fragments, which
we specify using OCL on the language meta-model. Another set of OCL constraints are
well-formedness rules specific to our language, which we create from scratch. All the well-
formedness rules are specified using OCL and described in the following. The constraints
are first described using natural language, then the corresponding OCL rule is stated:

e There is only a unique instance for a business process fragment:

context BPMN _process _ fragment
inv uniquelnstance : self .alllnstances() — forAll(p1, p2|p1 = p2)

e A business process fragment must respect the following minimal requirements:

— are single entry workflows - there is exactly one start event ey (fragment entry)
for the process fragment:
context BPMN _process _ fragment
inv exactlyOneStart : self .fragment_objects — FlowObject — Fvent —
select(el|e.type = EventType :: start) — size() =1

— are multiple exit workflows, i.e. there is at least one end event e; (fragment
exit) for the process. It is allowed to have more than one end event:

context BPMN _process _ fragment
inv multipleEnds : self .fragment_objects — FlowObject — FEvent —
select(e|e.type = EventType :: end) — size() > 1

— have at least one activity:

context BPMN _ process _ fragment
inv atLeastOneActivity : self .fragment_objects — FlowObject — Activity —
size() > 1

160

5. Verification of business process fragment correctness

— have at least two connecting objects (sequence flow relations) between e - a
and a - e):
context BPMN _ process _ fragment
inv atLeastTwoSeqFlows : self .fragment_objects — ConnectingObject —
SequenceFlow — size() > 2

e All start events have zero incoming and one outgoing sequence flow relations:

context Fvent

inv : self.alllnstances — forAll(e|e.type = FEventType :: start implies self .FlowObject.
sourceFlow — size() = 0)

inv : self.alllnstances — forAll(e|e.type = FEventType :: start implies self .FlowObject.
targetFlow — size() = 1)

All end events have zero outgoing and one incoming sequence flow relations:

context Fvent

inv : self.alllnstances — forAll(e|e.type = EventType :: end implies self . FlowObject.
sourceFlow — size() = 1)

inv : self.alllnstances — forAll(e|e.type = EventType :: end implies self . FlowObject.
targetFlow — size() = 0)

All the activities and intermediate events of a process fragment have exactly one
input and one output sequence flow relations:

context BPMN _process _ fragment

inv : self.fragment_objects. FlowObject — select(a|a.oclls Type Of (Activity)) —
forAll(

self .sourceFlow — size() = 1)

context BPMN _ process _ fragment
inv : self .fragment_objects. FlowObject — select(e|e.oclls Type Of (Event)) — forAll(
ele.type = EventType :: intermediate implies e.sourceFlow — size() = 1)

All splitting gateways have an input degree of 1 and and output degree of at least 2:

context Gateway
inv : self.alllnstances — forAll(g|g.type = GatewayType :: forking implies self .
FlowObject.sourceFlow — size() = 1)

inv : self.alllnstances — forAll(g|g.type = GatewayType :: merging implies self.
FlowObject.targetFlow — size() > 2)
All merging gateways have an input degree of at least 2 and and output degree of 1:

context Gateway
inv : self.alllnstances — forAll(g|g.type = GatewayType :: merging implies self .
FlowObject.sourceFlow — size() > 2)

inv : self.alllnstances — forAll(g | g.type = GatewayType :: merging implies self .
FlowObject.targetFlow — size() = 1)
All error events have no incoming and one outgoing flow relation:

context Fvent
inv : self.alllnstances — forAll(e|e.oclls Type Of (ErrorEvent) implies self . FlowObject.
sourceFlow — size() = 0)

Verification of structural correctness of business process fragments 161

inv : self.alllnstances — forAll(e|e.oclls Type Of (ErrorEvent) implies self . FlowObject.
targetFlow — size() = 1)

Every error event is attached to an activity (either a sub-process or a task):

context Event
inv : self.alllnstances — forAll(e|e.oclls Type Of (ErrorEvent) implies e.Activity —
size() = 1)

All error events are intermediate events:

context Fvent
inv : self — select(e|e.type = EventType :: intermediate) — forAll(e.oclls TypeOf
(ErrorEvent))

No flow element can be in a direct sequence flow relation with itself:

context BPMN _ process _ fragment
inv : self.fragment_objects. ConnectingObject — select(s|s.oclls Type Of (SequenceFlow)) —
forAll(s.source # s.target)

There are no two inclusive gateways in a cycle:

context SequenceFlow

inv : let g1, g2 : InclusiveGateway

f: FlowObject

m

(gl.targetFlow = f.sourceFlow) and (f.targetFlow = g2.sourceFlow) implies (g2.targetFlow #
gl.sourceFlow)

Any two activities connected by a message flow relation need to belong to different
pools:

context MessageFlow
inv : self.alllnstances — forAll(m|m.from.poolObjects — includes(m.sourceRef)
and m.to.poolObjects —> includes(m.targetRef) implies (m.from # m.to))

Two flow objects that are in a message flow relation with each other can only be
activities or message events:

context MessageFlow

inv : self.alllnstances — forAll(self .sourceRef .oclls Type Of (Activity) or self .sourceRef .
ocllsType Of (MessageEvent) and self .targetRef .oclls Type Of (Activity) or self .targetRef .
ocllsTypeOf (MessageEvent))

All flow objects with incoming and outgoing flow relations are on a path from the
start event to an end event:

context BPMN _ process _ fragment :: Predecesor(z : FlowObject) : FlowObject
body : self.fragment_objects — select(s|s.oclls TypeOf (SequenceFlow)) — forAll(s|s.target =
z implies result = s.source)

context BPMN _process _ fragment :: Succesor(z :FlowObject) : FlowObject
body : self.fragment_objects — select(s|s.oclls TypeOf (SequenceFlow)) — forAll(s|s.source =
z implies result = s.target)

context FlowObject
inv : self.alllnstances — iterate(e : FlowObject;

162 5. Verification of business process fragment correctness

answer : Set(FlowObject) = Set|answer.including(Predecesor(e)) — exists(e :
Event|e.type = Event :: Start)

context FlowObject

inv :self .alllnstances — iterate(e : FlowObject;

answer : Set(FlowObject) = Set|answer.including(Succesor(e)) — exists(e : Event|e.type =
Event :: End)

e Exception: the only exception to the previous rule refers to the presence of composi-
tion interfaces - a flow object element can be on a path from a start event that does
not finish with an end event, but with a flow object that has a composition tag:

context FlowQObject

inv : self — iterate(e : FlowObject;

answer : Set(FlowObject) = Set|answer.including(Predecesor(e)) — excludes(e :
Event|e.type = Event :: End) implies answer — exists(a : Activity|a.compositionTag —
size() = 1) and (a.targetFlow — size() = 0)

e If a flow object has a composition tag, this tag can only be of one type - input or
output:

context FlowObject
inv : self.composition_tag — size() # 0 implies (self .composition_tag.oclls Type Of (OutputTag)
or self .compositionTag.oclls Type Of (InputTag))

e An input composition interface only contains flow objects having the input compo-
sition tag:
context BPMN _process _ fragment

inv : self.fragment_interface.Input_interface.elements — select(e : FlowObject|
e.compositionTag.1s TypeOf (Output) — size() =0

e An output composition interface only contains flow objects having an output com-
position tag:
context BPMN _ process _ fragment

inv : self.fragmen_interface.Input_interface.elements —» select(e : FlowObject|
e.compositionTag.Is TypeOf (Input) — size() =0

e The sets of composition interfaces of a business process fragment are disjoint:

context CompositionInterface
inv : self .InputInterface — asBag() — intersection(self.OutputInterface —
asBag) — isEmpty()

e A flow object cannot be in a sequence flow relation with itself:

context BPMN _process _ fragment
inv : self .BPMNObject — select(z|z.oclls TypeOf (SequenceFlow)) — forAll(z.source #
z.target)

e A business process fragment is required to have no two sequence flow objects that
have the same target and source activities:

context BPMN _ process _ fragment
inv : self .BPMNObject —> select(x|z.oclls Type Of (SequenceFlow)) — forAll(zy, s :
SequenceFlow|z1.source # z2.source and z1.target # x2.target)

5.3. Verification of behavioural correctness of business process fragments 163

In order to ensure that the OCL constraints presented above are well-written and that
they precisely specify the intended well-formedness rules, they need to be verified. For this
purpose, we use Dresden OCL, which provides a set of tools to parse and evaluate OCL
constraints on various models and meta-models like UML, EMF and Java. Furthermore,
Dresden OCL is meta-model independent and can be connected to various meta-models. It
offers support for adaptations to MDT UML, EMF Ecore, Java Classes and XML Schema.

5.3 Verification of behavioural correctness of business
process fragments

The verification of structural correctness, presented in the previous section, can only al-
low to check that certain structural properties of the business process fragments are valid.
However, we also want to perform checks related to the dynamic behaviour of business pro-
cess fragments. Therefore, we propose the notion of "behavioural correctness" which serves
to verify the possible behaviours of a business process fragment. Behavioural correctness
ensures that a business process fragment does not exhibit any erroneous or unwanted be-
haviours. The concept is defined based on the original definition of "process soundness”
proposed by van der Aalst in the context of workflow nets [vdA98]:

Definition: A workflow-net is sound if and only if:

e For every state M reachable from state the initial state, there exists a firing sequence
leading from state M to the final state;

e The final state is the only state reachable from the initial state with at least one
token in the final place;

e There are no dead transitions.

The above definition uses the notion of firing sequence, already introduced in Section 2.3.4,
and those of reachability and dead transitions which will be discussed later on in this
section.

Based on the notion of soundness, we adapt this concept to the CBPF language and propose
a set of properties that should be verified in order to ensure the behavioural correctness
of business process fragments. The behavioural properties that should be verified for a
business process fragment are separated into two major classes:

e (eneric: they specify general dynamic properties that any business process fragment
should fulfil. Most of them are inspired by the soundness property defined by van der
Aalst. Examples of such properties are: reachability of end events or composition
interfaces, dead-lock freedom or absence of dead tasks;

e Fragment specific: as business process fragments are created to describe a high level
functionality or feature, there will exist certain dynamic properties that are specific
to each individual fragment and therefore cannot be verified in general. We want
to offer the product line engineer the possibility to define and verify such fragment
specific properties. Therefore, we propose several general property templates which
can be instantiated by the product line engineer for a specific purpose, for verifying
a specific property of interest.

164 5. Verification of business process fragment correctness

Throughout the rest of this section, we describe in detail how the two types of behavioural
properties can be verified and how Petri nets can help in this process.

5.3.1 TUsing HCPN for business process fragment verification

In section 4.4 we provided a formal semantics to the CBPF language using a mapping of
concepts to HCPN. The mapping proposed in section 4.4 actually served two purposed:

e Define a formal semantics for the CBPF language in a translational manner;

e Verification of behavioural properties of business process fragments requires advanced
analysis techniques. Fortunately, many powerful analysis techniques have been devel-
oped for Petri nets [Mur89]. Therefore, the mapping also allows us to take advantage
of all the analysis techniques and tools already defined by the Petri net research
community.

A more detailed presentation of the main analysis techniques developed for Petri nets which
we can take advantage of for verifying the behavioural correctness of business process
fragments is available in Section 2.3.4. The abundance of available analysis techniques
shows that Petri nets can be seen as a solver independent medium between the design of the
business process fragment and its analysis. The type of verifications proposed throughout
this section are based on coverability graph (state space) analysis techniques 2.3.4. Some
of the questions that can be answered from state space analysis and interesting behavioural
properties that can be proven are listed in the following: boundedness, reachability, liveness,
home properties, dead markings, fairness. A more detailed description of these properties
is presented in Section 2.3.4.

We have seen that HCPN provide powerful analysis techniques that we may use for verifi-
cation purposes, which we take advantage of due to the mapping provided between CBPF
and HCPN. Moreover, another goal of this mapping is to allow access to the already ex-
isting analysis and verification tools developed by the HCPN community. These tools can
automate the verification process. The tool that we have selected is called CPN Tools
[JKWO07]. It provides an environment for editing and simulating HCPN models, and for
verifying their correctness using state space analysis methods. CPN Tools combines power-
ful functionalities with a flexible user interface, containing improved interaction techniques,
as well as different types of graphical feedback which keep the user informed of the status
of syntax checks, simulations, etc. The functionalities of the tool that are mostly use in
this thesis are the support for two types of analysis for HCP-nets: simulation and state
space analysis. A detailed presentation of CPN Tools, it’s functionalities and how it it
practically used for verifying HCPN models is given in Chapter 6.

Based on the state space analysis technique available for HCPN and on the behavioural
properties which can be verified for HCPNs, listed in Section 2.3.4, we present in the
next sections how general and fragment specific behavioural properties of business process
fragment created using the CBPF language can be verified. We also explain how these
verifications can be performed with HCPNs.

It should however be mentioned that the verifications we propose in the following are only
an initial attempt towards the complete verification of behavioural properties of business

5.3. Verification of behavioural correctness of business process fragments 165

process fragments. We propose a series of general and fragment specific behavioural prop-
erties for business process fragments. These properties are then interpreted in terms of
Petri net concepts and properties. The actual verification is performed at the Petri net
level, in order to take advantage of the rich analysis techniques and tools available at this
level. In practice, the CPN Tools package is used for performing the various analysis and
verifications on the obtained HCPNs. The feedback that the tool provides is given in terms
of Petri net concepts. In most of the cases, we are only interested to know if the property
that we are verifying is fulfilled or not. In this case, the result obtained on the HCPN is
directly applicable on the original business process fragment and we know if the property
is true or false on the process fragment under investigation. However, there might be cases
in which CPN Tools will provide additional information when the property that we are
checking is not fulfilled, in general a example of execution trace that invalidates the prop-
erty. This result is meant to help the user in solving the possible errors that might have
been detected. However, the changes can only be made at the level of the HCPN. But in
the end, we are interested in knowing this information for the business process fragment
which is analysed, so that we can modify it accordingly. In order to be able to accomplish
this and also interpret some of the more complex feedbacks of the Petri net tool back on
the original business process fragment, we need to be able to go back from the HCPN to
the original process fragment and point out the possible errors directly at that level. This
can be accomplished by defining a trace model between the business process fragment and
the HCPN that corresponds to it. This trace model can be created during application of
the model to model transformation which we proposed between CBPF and HCPN. For the
moment, this trace model is part of the future works of this thesis and will be discussed in
more detail in Chapter 7. Due to this reason, we acknowledge that an additional step is still
required for completing the work on verification of business process fragment behavioural
properties.

5.3.2 Verification of general behavioural properties

This category contains a certain set of behavioural/dynamic properties that should hold
for all the business process fragments that can be created using the CBPF language. These
properties are thus generic and need to be independent of the particularities of the domain
or of the SPL to which the business process fragment under analysis belongs to. Therefore,
the generic properties that we propose for verification are inspired from the behavioural
properties of Petri nets which were described in the previous section. However, these
properties need to be adapted to the specific context of business process fragments. In the
following, we present a set of generic behavioural properties that we propose for verification
and explain how they can be checked using HCPNs:

e Reachability of end events: an end event indicates where a business process frag-
ment will finish. Each business process fragments must have at least one end event.
We therefore know that by construction, every business process fragment will struc-
turally have at least an end event. However, what this structural property cannot
guarantee is that, by executing the business process fragment, the end event will be
reached. We therefore want to check if there exists an execution path (execution
trace) that begins at the start event of the business process fragment and contains
the end event. The property thus guarantees that the business process fragment un-
der analysis eventually reaches completion, which may also be referred to as proper

166

5. Verification of business process fragment correctness

completion of the fragment. This means that there exists at least one execution se-
quence (trace) that reaches the end event, and that when that happens there are no
enabled tasks left in the process fragment.

With the help of the proposed mapping between CBPF and HCPN, this property
can be easily verified. Based on the mapping templates introduced in Section 4.4.2,
and end event is transformed into either a simple place with no outgoing arcs (for
the plain end event) or into a special kind of transition (error or message) connected
to a a place with no outgoing arcs (for the error and message end events). Therefore,
verifying the reachability of the end event of a business process fragment resumes

to verifying the reachability of the place with no outgoing arcs in the corresponding
HCPN model.

Proper completion of a business process fragment: the previous reachabil-
ity property ensured that the end events of a business process fragment can always
be reached from the start event, which implies that the process instance eventually
reached completion. However, we would like to know that when that happens, mean-
ing that the process fragment reaches the end event, there are no enabled tasks still
active in the process. This property is called the proper completion of a business
process fragment.

The reachability of end events property can be seen as an option to complete for
the business process fragment. In addition to this, we want to ensure that when the
business process ends, it should not have any other tasks still running.

Using the proposed CBPF to HCPN mapping, verifying this property for a business
process fragment resumes to checking that the place with no outgoing arcs (corre-
sponding to the end event) is a dead marking and also a home marking. The fact that
the corresponding HCPN place is a dead marking guarantees the fact that, when this
marking is reached, there are no other transitions enabled. Moreover, by asking for
that place to also be a home marking, we ensure that this place can be reached from
any other reachable marking, no matter what happens; this means that the Petri net
will always reach this desired state.

Reachability of composition interfaces: composition tags and composition in-
terfaces are two newly introduced important concepts that characterize a business
process fragment. As previously discussed, the composition interface defines the ex-
act set of flow objects from a business process fragments where this fragment will be
composed with other ones. We know that business process fragments are created with
the goal of being later on composed with other fragments. When such a composition
occurs, it is the flow object elements tagged with composition interfaces that will be
directly concerned by and involved in the actual composition process. Therefore, is
is of the utmost importance to ensure that those elements can be reached.

This means that we need to prove that there is a path (execution trace) that goes
from the start event and reaches the tagged flow object. This property is needed
for ensuring that, when the business process fragment under analysis is composed
with other fragments, the new paths created due to the composition can be accessed
from the start event. In case the property is not true for a certain business process
fragment, then by composition the resulting fragment will have certain elements that
cannot be reached or execution paths that cannot be accessed, which is undesirable.
Thus the fulfilment of this property can be seen as a pre-condition for ensuring that
the composition of business process fragments take place correctly.

5.3.

Verification of behavioural correctness of business process fragments 167

Based on the abstract syntax of the CBPF language, composition tags can only be
attached to activities or events. Using the proposed mapping between CBPF and
HCPN, we transforms the composition tags from CBPF into similar tags in HCPN.
We also know that tagged activities (tasks and sub-processes) are mapped onto the
following HCPN constructs: a tagged transition having an input and output place
connected to it or a tagged substitution transition having an input and output place
connected to it. Based on the mapping templates, tagged events are transformed
into places connected by an arc to a tagged transition (either simple or special type
- message, error, time). Therefore, verifying this property for a business process
fragment resumes to checking that, in the resulting HCPN, the place that follows the
tagged transitions (simple, substitution or special) is reachable.

Absence of dead tasks: tasks are atomic activities that define the work performed
in a business process fragment. A dead task corresponds to a part of the business
process fragment that cannot be activated. This means that the presence of dead
tasks within a business process fragments implies that there exist some tasks that will
not be executed. However, it is desirable that all the tasks of a process fragment be
realized, so that the business process fragment can completely execute the behaviour
it was meant to perform. Moreover, as a task is meant to be an active element of a
business process fragment, a dead task can be interpreted as a passive element which
should not appear in the fragment. Thus, the absence of dead tasks means that all
the tasks of a business process fragment can be performed.

Based on the mapping provided between CBPF and HCPN, we know that tasks
and sub-processes are transformed into the following HCPN structures: a transition
having and input and output place, respectively a substitution transition connected
to an input and output place. Therefore, in order to verify that a business process
fragment has no dead tasks, we need to check that in the resulting HCPN there are
no dead transitions. A transition is considered to be dead if there exist no reachable
markings in which that transition is enabled. Dead transitions correspond to parts
of the Petri net that can never be activated.

Deadlock-free business process fragment: the concept of deadlock is well known
in computer science and describes a situation in which two or more competing actions
are each waiting for the other to finish, and thus neither ever does. In the case of
business process fragments, a deadlock defines a point in a process fragment that
may block the execution of the process. When a process fragment reaches such a
deadlock, it cannot continue its execution in any way any further and is thus stuck
in that state. This means that, when reaching a deadlock in the process, there are
no available outgoing paths that may be taken. The process is stuck in a state from
which it is impossible to advance. This is an unwanted situation for any business
process fragment that must clearly be avoided for ensuring the correct behaviour of
the process fragment. We want to discover deadlocks as early as possible in order to
avoid unwanted problems later on. Once a deadlock has been discovered, corrective
measures must be taken and the business process fragment under analysis needs to
be changed to remove the problem.

Based on the proposed mapping between CBPF and HCPN, the deadlock-freedom
of a business process fragment can be ensured by investigating the absence of dead
markings in the corresponding HCPN. A dead marking is one in which no transitions
are enable, this no transitions can be fired when that marking is reached. This leads

168 5. Verification of business process fragment correctness

to the Petri net being stuck in that place, as no transitions can be fired for advancing.
We verify the presence or absence of dead markings in a HCPN to check that the net
does not run into unwanted deadlocks. However, what we want to prove is that the
net does not contain any dead markings, except for the final place of the net. We
have seen before that for ensuring the proper completion property of a Petri net, the
final place of the net needs to be a dead marking. Therefore, we want to ensure that
the final marking is the only dead marking of the HCPN.

e Compatibility of data type of composition interfaces: a composition interface
explicitly defines the exact place in a business process fragment where the concerned
fragment can be composed with other ones. They play a crucial role in the com-
position of business process fragments. One of the previously presented behavioural
properties ensured that composition interfaces are always reachable in a business
process fragment. However, we also want to ensure that, when two business process
fragments are composed, they are compatible in terms of data. This means that
the type of the data output associated to a task tagged with a composition interface
belonging to the first fragment is the same as the type of the data input associated to
a task tagged with a composition interface belonging to the second fragment. Thus,
after the actual composition is performed, the data flow of the resulting fragment is
correct.

This property ensures that two process fragments that are composed are compatible
in terms of data at the flow objects where the composition will be performed. This
also ensures that after composition, the data flow will not be disrupted due to data
incompatibility of the elements involved in the composition.

Based on the mapping between CBPF and HCPN that we propose, this property
can be verified by checking boundedness properties on the corresponding HCPNs.
The best lower multi-set bound of a place specifies for each colour in the colour set
of the place the minimal numbers of tokens that is present on this place with the
given colour in any reachable marking. This is specified as a multi-set, where the
coefficient of each value is the maximal number of tokens with the given value. Best
lower multi-set bounds give, therefore, information about how many tokens of each
colour that are always present on a given place.

Therefore, to ensure the compatibility of the composition interfaces of two business
process fragments that we want to compose, we must perform the following steps:

— transform the two business process fragments into corresponding HCPNss;

— apply the LowerMultiSet query function on the place following the concerned
tagged transition of the first HCPN;

— check that the colours corresponding to the data inputs of the tagged flow object
belonging to the second process fragment appear in the result obtained in the
previous step.

This concludes the presentation of the general behavioural properties which we want to
check for all business process fragments. In the following section, we another set of be-
havioural properties which are specific to the individual business process fragments that
are under verification and explain how they can also be checked.

5.3. Verification of behavioural correctness of business process fragments 169

5.3.3 Verification of fragment specific behavioural properties

In the previous section we proposed a set of general dynamic properties that any business
process fragment should fulfil. However, certain behavioural properties cannot be verified
in general and might differ from one business process fragment to another and depend
on the specific SPL context in which that process is used. Business process fragments
are created to be the core assets used and consumed by our SPL methodology. They are
this created for a specific product line and implement a particular functionality required
by some of the products of that SPL. They are thus used in very diverse contexts and
implement a variety of functionalities.

We want to offer the product line engineer the possibility to define and verify behavioural
properties that are specific to a particular business process fragments and which may only
be relevant in a particular context of use. We propose to achieve this by providing the
product line engineer with a set of high-level property templates, which the product line
engineer can then tailor and adapt to his particular needs.

A property template defines in a generic, high-level manner a property that can be veri-
fied on a business process fragment. Such templates are defined in a more abstract way
and usually take abstract parameters. Then, depending on the specific property that the
product line engineer wants to check, he can tailor and adapt the template according to his
particular needs. The adaptation of the template to a specific context is done by replacing
the abstract parameters by concrete ones. This transforms the template into a specific
query function that can be applied, which checks a specific property of interest for the
business process fragment under analysis.

As for the generic behavioural properties defined and explained in the previous section, the
verification of fragment specific properties is also done using Petri net analysis techniques.
Thus, a pre-requisite for all these verification is to apply the transformation from CBPF
into HCPN and do all the verifications on the resulting Petri net. Thus, the property
templates that we propose throughout this section are defined for HCPN. They are based
on standard or non-standard queries that are available in CPN Tools. Checking if they are
true or not is also done using CPN Tools.

The proposed property templates are discussed in the following:

e Can a certain flow object be reached from the start event?

In a lot of practical case we are interested to know is, from the start event, a certain
flow object can be reached. This means that we want to check if there is at least
a path (execution trace) that leads from the start event to a certain flow object.
Usually, the flow objects for which we want to perform this verification are activities
(tasks or sub-processes). However, the verification can as well be made for events or
gateways. In case we perform the check for activities, we are interested to know if
that specific activity will be executed or not in the business process fragment.

In terms of Petri nets, this resumes to proving that a specific node (place or transition)
of the resulting HCPN is reachable from the starting place. Therefore, we can use the
Reachable query function or its chatty version Reachable’ for creating the property
template. Based on these CPN Tools functions, we propose the following property
template:

Reachable’(id — nodesart, Var : id — nodepierested)

170

5. Verification of business process fragment correctness

This is just a simple application of the standard Reachable’ query function for which
the first parameter used is a constant defining the id of the start place of the net
(usually 1), and the second parameter is a variable denoting the id of the node
for which we want to check the reachability. The template can easily be used for
performing a particular query by simply replacing the variable parameter with the
specific value of the place for which we perform the check.

A simple exemplification of the use of this property template is given in the following.
Based on the mapping templates we proposed, we know that tasks are mapped onto
the following HCPN structure: place connected by an arc to a transition with the
name of the task connected then by another outgoing arc to a place. In order to
check that a task can be reached form the start event, we simply have to apply the
following query on the resulting HCPN: Reachable’ (1, idsqsr) , where idy,s, denotes
the id of the place from the net that follows the transition with the same name as
the task. The function will either return false in case the task is not reachable, or it
will return true followed by an example possible path.

Is a certain task always executed?

In a business process fragment, tasks are the atomic units of execution. However,
certain tasks may be of more importance for defining the behaviour of the fragment
than others. Also, certain tasks may be critical for the execution of the fragment and
thus are more important than the other tasks present in the fragment. Therefore,
we want to offer the product line engineer the possibility to check that such crucial
tasks which are of special interest are always executed in every possible execution of
the business process fragment under investigation. This means that such a task is
part of all the execution traces of the business process fragment.

In terms of Petri net concepts, this resumes to checking that a certain place of the
resulting HCPN is or not a home marking. A home marking is characterized by the
fact that it is reachable from every other marking, no matter what happens. This
means that the HCPN will always reach this desired place. We can thus use the
HomeMarking or ListHomeMarkings query functions provided by CPN Tools. Based
on these CPN Tools functions, we propose the following property template:

HomeMarking(Var : id — nodepterested)

The template is just a simple application of the standard HomeMArking query func-
tion for which the only parameter is defined as a variable denoting the id of the place
which we want to prove is a home marking.

A simple exemplification of the use of this property template is given in the following.
Based on the mapping templates propose, we know that a task is transformed into
the following HCPN structure: a place connected by an arc to a transition that has
the same name as the CBPF task connected by an outgoing arc to another place.
Thus, in order to check that a certain task can always be executed for the current
business process fragment, we simply need to apply the proposed property template
in the following manner on the resulting HCPN: HomeMarking (idyqsr) , where idyqsy,
denotes the id of the place from the HCPN that follows the transition with the same
name as the task. The function will either return false in case the task is not always
executed, or it will return true in case the property is fulfilled.

e Will a certain task have data objects of a particular type?

5.3. Verification of behavioural correctness of business process fragments 171

We know that data inputs and data outputs are assigned through data associations to
tasks in order to model the data representation and data flow for a business process
fragment. The product line engineer might be interested to know if, during the
possible executions of the business process fragment, a specific task will contain or
not data objects of a specific type. We know that the data input of a task defines the
particular types of data required for the execution of that task. However, we do not
know if, during the execution of the business process fragment, those data types will
be available at that task in order to activate it. This is what this property allows us
to determine.

In terms of Petri net concepts, this resumes to checking the colours of all the tokens
that may arrive in a certain place and see if the desired colour or colours are among
them. Determining the colours of the tokens that may arrive in a specific place
throughout all the possible executions of the net can be done using the boundedness
Petri net property. We propose the following property template:

LowerMultiSet(Var : id — nodejpierested)

The template is just a simple application of the standard LowerMultiSet query func-
tion for which the parameter is defined as a variable denoting the id of the place for
which we want to determine the possible colour sets.

A simple exemplification of the use of this property template is given in the following.
Based on the mapping templates propose, we know that a task is transformed into
the following HCPN structure: a place connected by an arc to a transition that has
the same name as the CBPF task connected by an outgoing arc to another place.
Also, the data objects associate to a task are transformed into colours and colour
sets. Thus, in order to check that a certain task will have data objects of a certain
type during the execution of the business process fragment, we simply need to apply
the proposed property template in the following manner on the resulting HCPN:
LowerMultiSet (idyqst) , where idy,s; denotes the id of the place from the HCPN that
precedes the transition with the same name as the task. The function will return
a set of tokens and their colours. The product line engineer needs then to check if
the data type that we are checking for, which corresponds to a specific colour, is
included in the previously obtained set. In this is the case, we can say that the task
under investigation will have that particular type of data as input during the business
process fragment execution.

e If a particular activity x is executed, then will activity y also be executed?

In certain cases and for certain business process fragments, there may exist activities
that are logically connected. This means that when one of them is executed, then
the other one needs also to be executed. Thus there is a certain dependency between
them. This property allows the product line engineer to check, for two activities of
the business process fragment, knowing that one of them is executed, if the other one
is also executed. We therefore want to see that, if there is a path (execution trace)
that goes from the start event until activity x, then if that path also contains activity

y.
In terms of Petri net, this resumes to checking if a certain node belongs or not to

an execution trace that contains another node. We propose the following property
template:

NodesInPath(id — nodegyqry, Var : id — nodes)

172

5. Verification of business process fragment correctness

The template is an application of the standard NodesInPath query function for which
the first parameter is a constant denoting the id of the start place of the resulting
net (usually 1), and the second parameter is a variable denoting the id of one of the
places that needs to be in the path.

A simple exemplification of the use of this property template is given in the following.
Based on the mapping templates propose, we know that a task is transformed into
the following HCPN structure: a place connected by an arc to a transition that has
the same name as the CBPF task connected by an outgoing arc to another place.
We have two cases for our property:

— Task x executed before task y: this means that we want to check that there exists
a path between the start event and task y, and that task x is part of this path.
That will guarantee that when task y is executed, then task x has already been
executed before it. In order to verify this, we need first to apply the property
template in the following way: NodesInPath(1,id — nodey), where id — nodey is
the id of the place following the transition named "y". The function will return
a set of nodes that represent a path between the start event and task "y". Once
this is done, we need to check that node "x" is part of the result previously

obtained.

— Task = executed after task y: his means that we want to check that there exists
a path between the start event and task x, and that task y is part of this path.
That will guarantee that when task x is executed, then task y has already been
executed before it. In order to verify this, we need first to apply the property
template in the following way: NodesInPath(1, id — node,), where id — node,, is
the id of the place following the transition named "x". The function will return
a set of nodes that represent a path between the start event and task "x". Once
this is done, we need to check that node "y" is part of the result previously
obtained.

o If activity x is executed then activity y will never be executed

In some cases, some activities of a business process fragment might be mutually
exclusive. This means that when one of them is executed, the other one will implicitly
never be executed. We want to offer the product line engineer the possibility to check
this type of situations in a business process fragment and verify if two activities which
are of interest for a business process fragment are mutually exclusive. This type of
verification is important as we may want to check that it is never true for a pair
of activities and there is thus always an execution path connecting them, or on the
contrary to verify that the property is always true for a pair of activities which need
to be mutually exclusive.

In terms of Petri net concepts, this resumes to verifying that there exists or not a
path (execution trace) connecting the two activities. In other words, proving that
one activity is reachable from the other. We propose the following property template:

Reachable’(Var : id — nodes, Var : id — nodey)

The template is an application of the standard Reachable’ query function for which
both parameters are variables denoting the id of the tasks that we want to check are
connected by a path.

A simple exemplification of the use of this property template is given in the following.
Based on the mapping templates propose, we know that a task is transformed into

Verification of behavioural correctness of business process fragments 173

0 N O O W N =

e e
N o= O ©

the following HCPN structure: a place connected by an arc to a transition that has
the same name as the CBPF task connected by an outgoing arc to another place.
Thus, in order to verify that if activity "x" is executed then activity "y" will never
be executed, we simply need to apply the property template in the following manner:
Reachable’(id — nodey, id — node;), where id — node, and id — node, correspond to
the ids of the places situated right after the transitions named "x" and "y" in the
resulting HCPN. In order for the property to be fulfilled, the functions needs to return
false. Otherwise, there exists a path between the two activities and the property is

invalidated.

e User defined property templates

Throughout this section we presented a set of property templates which the product
line engineer can use and tailor for verifying different business process fragment spe-
cific behavioural properties. However, the templates we propose will surely not cover
all the possible verifications that a product line engineer might want to perform on a
business process fragment. Thus, we want to offer the possibility to the product line
engineer to write his own queries, adapted for verifying a particular fragment specific
behavioural property which cannot be checked with any of the templates proposed.

55 % 3k ok okok skok sk sk sk sk sk sk sk skok skok sk sk sk sk sk sk sk sk sk kok ok sk sk ok ok sk sk skosk kok sk ok sk ok sk sk sk skosk ok ok ok ok sk ok ok ok ok kok kok
;3 Generic node search
55 % 3k sk okok skok sk sk sk sk sk sk sk sk sk sk ook sk sk sk sk sk sk sk sk ok sk osk ok ok sk sk sk sk sk sk sk koo sk ok sk sk sk sk sk sk skosk ok ok skok ok sk kook kok

SearchNodes (Area, Pred, Limit, Eval, Start, Comb) where:

area search area Node list
pred predicate function Node —> bool
limit search limit int
eval evaluation function Node —>
start start value ’b
comb combine function

a

’

a *x b —> ’b

Fig. 5.1: Generic query function for node search and processing

CPN Tools offers a generic, highly parametrizable function that allows to search
and perform various processing operations on the nodes of the occurrence graph.
The function is described in Figure 5.1. The generic query function SearchNodes
traverses the nodes of the occurrence graph. At each node some specified calculation
is performed and the results of these calculations are combined, in some specified way,
to form the final result. The function takes six different arguments and by varying
them it is possible to specify a lot of different queries:

— Search Area: specifies the part of the occurrence graph which should be searched.
It is often all nodes, but it may also be any other subset of nodes;

— Predicate function: this argument specifies a function. It maps each node into a
boolean value. Those nodes which evaluate to false are ignored, while the others
take part in the further analysis;

— Search limit: specifies an integer which tells us how many times the predicate
function may evaluate to true before we terminate the search. The search limit
may be infinite. This means we always search through the entire search area;

174 5. Verification of business process fragment correctness

— FEwaluation function: specifies a function that maps each node into a value, of
some type A. The evaluation function is only used at those nodes (of the search
area) for which the predicate function evaluates to true;

— Start value: this argument specifies a constant, of some type B;

— Combination function: this argument specifies a function that maps from A x B
into B, and it describes how each individual result (obtained by the evaluation
function) is combined with the prior results.

By convention, the following values are used for some of the parameters:

— wval EntireGraph to denote the set of all nodes in the occurrence graph;

— wal NoLimit to specify an infinite limit for the search limit;

A pseudo-code like description of how the SearchNodes function works is presented
in Figure 5.2.

1
2 SearchNodes (Area, Pred, Limit, Eval, Start, Comb)
3 begin
4 Result := Start; Found := 0
5 for all n in Area do
6 if Pred(n) then
7 begin
8 Result := Comb(Eval(n), Result)

9 Found := Found + 1

10 if Found = Limit then stop for—loop

11 end

12 end

13 end.

Fig. 5.2: Pseudo-code description of SearchNodes function

The SearchNodes function is a bit complicated to understand and use. However, it
is also extremely general and powerful. It can actually be used to implement most of
the standard query functions that were presented in this section. The product line
engineer can thus use this function for preforming different business process fragment
specific verifications by adapting this generic function and applying it to the HCPN
corresponding to the business process fragment under analysis.

This concludes the presentation of the different general or fragment specific behavioural
properties that we propose for verifying the behavioural correctness of a business process
fragment.

6. EXEMPLIFICATION OF THE PROPOSED
METHODOLOGY AND TOOL SUPPORT

Abstract

Throughout this chapter we ezemplify the SPL methodology proposed in
Chapter 3 by applying it to a case study from the crisis management system
domain. This case study also servers to facilitate the understanding of the con-
cepts and the functioning of the CBPF language proposed in Chapter 4, but also
to exemplify the verification techniques of business process fragments proposed
in Chapter 5. We start by introducing the bCMS car crash crisis management
system case study in Section 6.1. Then, throughout Section 6.2, we apply the
proposed SPL methodology on the bCMS case study. We follow the methodol-
ogy as it was introduced in Chapter 3 and, for each of its steps, explain and
exemplify how it applies on the bCMS case study. In the second part of the
chapter, in Section 6.3, we present the SPLIT tool suite, which is the tool sup-
port that we propose for our methodology. Good tool support is one of the key
elements for the fast adoption of any new methodology and language. We start
by describing the gemeral requirements that such a tool should fulfil. We then
present the general architecture of the proposed tool and discuss in more details
the different tool modules and the functionalities each of them provides.

6.1 Introducing the bCMS case study

Throughout this section we introduce the "bCMS car crash crisis management system”,
which serves the following purposes:

e explain and exemplify the SPL methodology presented in Chapter 3;

o facilitating the understanding of the concepts and the functioning of the CBPF lan-
guage proposed in Chapter 4;

e exemplify the verification of business process fragments proposed in Chapter 5.

The initial bCMS case study [CCGT11]| was defined at the 2011 AOM Bellairs Workshop
on Developing End-to-End AOSD Artifacts !. The case study was then improved during
the Comparing Modeling Approaches (CMA) workshop ? at MODELS 2011, becoming a
focused case study that defines a simple Crisis Management System.

! http://www.cs.mcgill.ca/ joerg/SEL/AOM-Bellairs-2011.html
% http://cserg0.site.uottawa.ca/cma2011 /index.htm

176 6. Exemplification of the proposed methodology and tool support

Police Station Fire station
r 3. '8 ~
PS database Fs database
sl e
bCrash
PS system [Fs
coordination coordination -
 process J lprocess —
e
J \. J
PS coordinator communication FS coordinator
channel

Fig. 6.1: Overall view of the environment and the desired system

The purpose of the bCMS document [CCGT11] is to define the requirements of a Software
Product Line (SPL) called 6CMS-SPL and aimed at managing car crash crisis. Basic
features along with desired variations are proposed such that it results in a small SPL
definition. The primary focus of the proposed variations is to allow for static and dynamic
variations (i.e., dynamic change between variants at runtime). The software product line
is described in the following manner: the specification of a "reference variant” of the
SPL referred to as bCMS is first provided; in a specific section, we then include all the
information concerning possible variations that could be applied to bCMS. In this way,
all the variation points and their possible implementations are introduced. A detailed
description of the bCMS case study can be found in [CCGT11].

The bCMS requirements definition document is structured in the following manner. It
introduces first the scope and stakeholders of the system. Then, functional and non-
functional requirements are specified. A discussion about hardware and standards and a
definition of the allowed variation points follows. The document concludes with a data
dictionary and a glossary.

The bCMS system is a distributed crash management system responsible for coordinating
the communication between a fire station coordinator (FSC) and a police station coor-
dinator (PSC) to handle a crisis in a timely manner (as seen in Figure 6.1). Internal
communication among the police personnel (including the PSC) is outside the scope of the
desired system. The same assumption applies to the fire personnel (including the FSC). In-
formation regarding the crisis as it pertains to the tasks of the coordinators will be updated
and maintained during and after the crisis.

There are two collaborative sub-systems. Thus, the global coordination is the result of
the parallel composition of the (software) coordination processes controlled by the two
distributed coordinators (i.e., PSC and FSC). There is no central database; fire and police
stations maintain separate databases and may only access information from the other
database through the bCMS system. FEach coordination process is hence in charge of
adding and updating information in its respective database.

6.1. Introducing the bCMS case study 177

bCMS starts operating at the point when a given crisis has been detected and declared both
at the fire station and the police station, independently. The coordinators (i.e., PSC and
FSC) have already defined the parameters necessary to start handling the crisis. The initial
emergency call of a witness and any subsequent notifications of the crisis from additional
witnesses through either the police station and/or fire station call centers are outside the
scope of the desired system.

There is a specific section in the bCMS document that discusses the stakeholders of the
system and states the objective of each one:

o Fire Station Coordinator (FSC): maintains control over a crisis situation by commu-
nicating with the police station coordinator (PSC) as well as firemen;

e Fireman: acts on orders received from the FSC and reports crisis-related information
back to the FSC. Furthermore, he communicates with other firemen, victims, and
witnesses at the crisis location;

e Police Station Coordinator (PSC): maintains control over a crisis situation by com-
municating with the fire station coordinator (FSC) as well as policemen;

e Police officer: acts on orders received from the PSC and reports crisis-related in-
formation back to the PSC. Furthermore, he communicates with other policemen,
victims, and witnesses at the crisis location;

e Victim: has been adversely affected by the crisis and may communicate with police-
men and firemen;

o Witness: has observed the crisis and communicates with policemen and firemen;

o Government agencies: provide funding for the system and expect improvements of
the communities’ living standard from the deployment of the system.

The functional requirements of the system are detailed in a separate section in terms of
use case of the bCMS system. Also, another section briefly discusses three non-functional
requirements.

The purpose of the "Variations” section of the requirements document is to define the
requirements for the bCMS-SPL. The approach chosen for describing the SPL is to define
and detail the possible variations points that could be applied to the "reference variant"
bCMS, which is described in the other sections of the bCMS requirements document.
Desired variations are proposed that result in a small SPL definition. The primary focus is
to allow for static and dynamic variations. The variations proposed cover both functional
and non-functional requirements variations. Furthermore, for each variation two priorities
are defined. A priority may either be "must have" (i.e., the variation must be part of the
model) or "may have". The proposed variation points are the following:

e Police and Fire Stations Multiplicity;
o Vehicles Management;

o Vehicles Management Communication Protocol,

o Crisis Multiplicity;

178 6. Exemplification of the proposed methodology and tool support

o (Confidentiality of Data Communication;
o Authentication of System’s Users;

o Communication Layer;

For a better understanding of the bCMS system, we present in the following a structural
view that describes the key elements of the system and their relationships. The class
diagram notation is used to construct a domain model of the system that describes the
elements of the system and the portion of the environment with which those elements
interact. For example, while the PS coordinator and FS coordinator are the key elements
of the bCMS system, the PS coordinator needs to interact with individual police units
that are also modelled, but their detailed functionality is beyond the scope of the system.
Therefore, the individual police unit is included in the domain model to provide context
for the system elements serving as an entity to receive and send information to the PS
coordinator. The key software elements of the domain model have been described in a data
dictionary that is available in [CCGI11]. The domain model is graphically presented in
Figure 6.2.

6.2 Applying the proposed SPL methodology on the bCMS
case study

In Chapter 3 we proposed a new software product line engineering methodology that focuses
on the derivation of product behaviour. The methodology covers the entire SPLE process,
from variability modelling and core assets definition during the domain engineering step all
the way to the actual product derivation during application engineering. By applying this
methodology, we can produce behavioural product models that belong to the analysis and
early design levels of the software development life-cycle. The proposed methodology covers
only the derivation of behavioural product models, and does not address the structural
product representation.

Throughout this section we apply the proposed SPL methodology on the bCMS case study.
This will both facilitate the understanding of the different phases of the methodology (how
they are actually applied) and point out the string points and limitations of the proposed
methodology. We follow the methodology as it was introduced in Chapter 3 and, for each
of its steps, explain and exemplify how it applies on the bCMS case study.

6.2.1 Construction of the feature diagram

The first step of the methodology focuses on defining the system properties relevant to the
stakeholders and also on capturing the common aspects and those that discriminate among
systems in the product family. To achieve this goal, we use feature models, a popular SPL
variability modelling technique. We will therefore create a feature diagram of the bCrash
SPL system, based on the requirements document provided. The process is quite difficult
due to the fact that the information that needs to be extracted, the domain knowledge,
resides in natural language requirements documents and user specifications.

The feature diagram of the bCMS SPL is created based on the requirements document. It
is created in a two steps process:

179

udy

sed SPL methodology on the bCMS case st

6.2. Applying the propo

del of the bCMS system

Fig. 6.2: Domain mo

180 6. Exemplification of the proposed methodology and tool support

e analysis the possible variation points listed in Section 7 of the bCMS requirements
document [CCGT11];

e analysis of the "reference variant", in order to identify the features corresponding to
the basic actions defined in the given scenario. For this purpose we analyse both the
functional and non-functional requirements of the "reference variant", corresponding
to Sections 4 and 5 of the requirements document, respectively.

Analysis of the variation points:

In the requirements document [CCG™11]|, variations are divided into functional (section
7.1 to 7.4) and non-functional (section 7.5 to 7.7) depending the type of requirement they
target. We can start constructing the feature diagram from its root feature named bCMS.
Moreover, the feature diagram of the bCMS system must have two mandatory features
called Functional and Non-functional, which descend of the root feature. An AND feature
group decomposition is used to relate these two features with the root feature.

The priorities "must have" and "may have" defined in the requirements document are
translated as mandatory and optional features into the feature diagram, respectively. The
concrete variants to be implemented by each variation point correspond to those items
listed within the "Variations" part of each variation point. Similarly, the information
placed in the "Constraints" part is used to determine the type of relationship between the
different concrete variants of a variation point. This information leads towards the creation
of the following features:

e Police and Fire Stations Multiplicity: mandatory feature whose parent is feature
Functional. It is decomposed into two mutual exclusive (XOR) features named One
PS FS and Many PS FS.

o Vehicles Management: optional feature whose parent is also feature Functional. It
is decomposed into two mutual exclusive variants. In the constraints part of Section
7.2, it is indicated that the variant No send receive excludes all the other variants
(PSC send receive, FSC send receive, PSC FSC send and PSC receive). Thus,
for easing the modelling, variants 245 have been regrouped in a unique variant called
Other, which is mutually exclusive with variant No send receive. In this way, the first
constraint is fulfilled. Variants 2..5 defined in Section 7.2 become children of feature
Other and are all optional, related by an AND decomposition relation. The second
and third constraints are represented as "require" feature dependencies between the
different variants.

o Vehicles Management Communication Protocol: optional feature whose parent is fea-
ture Functional. It is decomposed into two optional sub-features named SOAP and
SSL. These features are related to each other by an AND decomposition relation.
The phrase "In case the system offers the functionality of communication between
PSC/FSC and their respective vehicles" is interpreted as a "require" feature de-
pendency between these features and the feature Other from the feature Vehicles
Management.

o (Crisis Multiplicity: mandatory feature whose parent is feature Functional. Tt is
decomposed into two mandatory features named Single and Multiple. These two
features are related by a mutual exclusion (XOR) feature decomposition relation.

6.2. Applying the proposed SPL methodology on the bCMS case study 181

o Communication Layer: optional feature whose parent is feature Non-functional. It
is decomposed in two mutually exclusive features named Proprietary and Other.
Feature Other is introduced in order to fulfil the first constraint given in Section 7.7.
Concrete variants HTTP and SOAP are children of feature Other and are connected
to each other by an AND feature decomposition relation.

o Authentication of System’s Users: optional feature whose parent is feature Non-
functional. Tt is decomposed into five optional features which correspond (and are
named after) to the variations defined in section 7.6. There is a further decompo-
sition of feature Challenge response into three mutual exclusive sub-features called
Symmetric encryption, Mutual authorization, and Kerberos.

e Data Communication Confidentiality: mandatory feature whose parent is feature
Non-functional. Tt is decomposed into two mutually exclusive sub-features named
Encrypted and Not encrypted.

Analysis of the reference variant:

As the requirements document specifies, Sections 4 and 5 describe the characteristics of a
"reference variant of the SPL". Therefore, the analysis of these sections will produce a set
of mandatory features that should be captured in the feature diagram.

Based on the main scenario defined in Section 4, mandatory features corresponding to the
basic actions defined in this scenario can be extracted. These features become children
of the Functional feature previously defined. As a result of this analysis, the following
mandatory features are extracted:

e communication establishment;

e coordinator identification;

o crisis details exchange;

e coordinate route plan creation;

e vehicle dispatch coordination;

e vehicle target arrival coordination;

e objective completion coordination;

e vehicle return coordination;

e close crisis;
The same kind of analysis is performed now on Section 5 from the requirements document,
and results in a set of features that become mandatory children of feature Non-functional.
These mandatory features are related to each other by an AND feature decomposition, are
the following:

o integrity;

o availability;

6. Exemplification of the proposed methodology and tool support

182

Non-functional

Vehicle management]

o Mandatory feature [Variation point
o’ Optional feature —1 Vvariant

\7 AND feature group
} OR feature group
\? XOR feature group

Vehicle target — Objective completon
amival coo || ;

Fig. 6.3: Complete feature diagram of the bCMS system

6.2. Applying the proposed SPL methodology on the bCMS case study 183

e performance.

The end result of this entire process is the feature diagram of the bCMS SPL system,
presented in Figure 6.3. To make its understanding easier, the features coloured in yellow
represent variation points, while the variants of a variation point are coloured in green.

6.2.2 Creation of business process fragments

The second step of the methodology consists in creating business process fragments, which
are the core assets used by the methodology. We presented in Section 3.3 two main ways
in which business process fragments can be created:

o (Construct a new process fragment: a business process fragment can be seen as a
detailed specification of a high level abstract task or functionality. Therefore, new
business process fragments can be created from scratch as concrete implementations
of features from the feature diagram. The CBPF language presented in Chapter 4 is
used for creating and modelling business process fragments from scratch.

e Reuse existing process fragments: another possible way to obtain business process
fragments is by reusing ezisting ones. For this, a business process repository/library
is required. There are two distinct ways in which a process fragment from a business
process repository can be reused in our methodology:

— Reuse process fragment as-is: corresponds to an "of the shelf" reuse of process
fragments. The product line engineer will select, based on the requirements and
the description of the functionality that needs to be implemented, a business
process fragments form the process repository that best fits the requirements.
The selected process fragments is directly used as-is.

— Adapt existing process fragment: reuse an existing process fragments by adapting
and tailoring it to the specific requirements of the functionality we need to
implement.

For the bCMS case study, we will construct the necessary business process fragments from
scratch, following the first construction method explained above. We create new business
process fragments from scratch, using the CBPF language, as concrete implementations
of features from the bCMS feature diagram obtained previously. This construction pro-
cess is highly based on the information available in the bCMS requirements document
[CCGT11], form where the functional and non-functional requirements for the fragment
will be extracted. The knowledge and expertise of a domain expert was required and highly
improved the quality of the resulting business process fragments. To create the business
process fragments, we need to identify the key functionalities that the process fragment has
to implement and to express this information in a concise, flexible and reusable manner.

For a complete description, we need to create a business process fragment for each feature
of the bCMS feature diagram presented in Figure 6.3. This is the starting point for con-
structing the business process fragments. The name of the features provide the abstract,
high-level functionality that the corresponding business process fragments need to actually
implement. However, this will not suffice for creating accurate and well-designed business
process fragments.

184 6. Exemplification of the proposed methodology and tool support

(‘process Communication establishment [£ Communication establishment U h
PS coordinator FS coordinator
CallFS dinat: h
a coordinator L Receive PS
| coordinator call
| J
A
|
Request _ =1 A
communication PSC h
Call PS coordinator
J
R R R Request
;:?:::3: tF>S> communication FSC
coordinator call
N\ J

Fig. 6.4: Communication establishment business process fragment

6.2. Applying the proposed SPL methodology on the bCMS case study 185

For a complete understanding of the exact functionality that each business process fragment
needs to provide, we need to closely study the requirements document. Section 4 of the
document describes the functional requirements of the bCMS SPL. They are detailed in the
form of use-cases (main scenario plus alternative and exceptional scenarios). Based on these
descriptions, we can infer the behaviour of a large part of the bCMS features, those that are
children of the Functional feature: communication establishment, coordinator identification,
crisis details exchange, coordinate route plan creation, vehicle dispatch coordination, vehicle
target arrival coordination, objective completion coordination, vehicle return coordination
and close crisis. The business process fragments corresponding to some of these features
are presented and discussed in the following. However, due to their large number and the
fact that they are mostly created in the same manner, we only exemplify some of them
here. The complete set of business process fragments can be found in Annex 2.

The first business process fragment that we create is called communication establishment
and corresponds to the feature with the same name. It is graphically depicted in Figure
6.4. We know from the requirements document that the goal of this process fragment
is to model how the police station coordinator and the fire station coordinator establish
contact between themselves and start the communication. We can notice from the figure
that there are two vertical pools having the names of the main actors involved in this
process. The role of the pools is to model the two roles: police station coordinator and
fire station coordinator. The behaviour described is simple: the PS coordinator calls the
FS coordinator and tries to establish communication; once the FS coordinator receives
the call, he will will also try to contact the PS coordinator in response. What should be
noticed is that the business process fragment ends with a task (receive FS coordinator call)
tagged with an output composition tag. The fact that the fragment ends with a tagged
task and not with an end event is a specific characteristic of business process fragments.
This has two goals: show that the business process fragment models partial information
and that the fragment will be completed, by composition, with the necessary information.
The composition tag also defines that, when the fragment is composed with other ones,
the actual composition will be performed at this exact place and that the fragment will be
extended below this place.

A more complex business process fragment that we present here is called creation of co-
ordinated route plan, corresponding to the feature with the same name from the bCMS
feature diagram. The behaviour described by this fragment is a negotiation between the
PS coordinator and the FS coordinator for establising a common plan for deploying their
respective police cars and fire trucks. The PSC and the FSC announce each-other that
they want to deploy their respective vehicles for intervention at the crisis location. It is
the PSC that proposes a common route plan to the FSC. In case the FSC agrees with
the proposed plan, he sends his acknowledgement back to the PSC and the fragment ends.
In case he does not agree, he proposes an alternative route and sends this information to
the PSC. It is now the turn of the PSC to analyse the newly proposed route. In case of
agreement, he confirms this to the FSC. In case he does not agree with the new route, then
the negotiation reaches a time-out state and the business process fragment ends with an
error. This business process fragment is graphically depicted in Figure 6.5.

Finally, the last business process fragment which we present here, created based on the
functional requirements of the bCMS SPL, is called close crisis. It corresponds to the
feature with the same name from the bCMS feature diagram. It describes how the PS
coordinator and F'S coordinator communicate to each other that the crisis has been solved
and thus they agree that it should be ended. They coordinate and communicate to each

186

6. Exemplification of the proposed methodology and tool support

(‘process Creation of coordnated route plan [[P} Creation of coordinated route pian]J

PS coordinator

FS coordinator

Deploypolicecars 0 — — - - — — — — — — — — — —

Receive firetrueks: 1. . _ _ - _ _ _ _ _ _ _ |
deployed

Receive new route [<

Disagree with
new root
Route negotiation
time-out

Communicate
acceptance of new D —
root

deployed

Deploy fire trucks

Receive proposed

route

Communicate
route agreement
to PSC

Receive root
acceptance

Communicate

dissagreement to
PSC

.

Fig. 6.5: Creation of coordinated route plan business process fragment

6.2. Applying the proposed SPL methodology on the bCMS case study 187

(‘process Close crisis [[2] Close crisis U h

PS coordinator FS coordinator

Proposetoclose |y | _|__ _ _ @
the crisis

Receive close
crisis proposal

Agree to close the
crisis
Receive

acceptance from - -rr - - -~
FSC

Declare crisis
closed

Fig. 6.6: Closing the crisis business process fragment

other this decision. The business process fragment is graphically described in Figure 6.6.

In the feature diagram of the bCMS system from figure 6.3, there are other features besides
the ones presented above that are children of the feature Functional. Those features have
been created based on section 7 of the requirement document. Therefore, we also need to
create new business process fragments that implement these features. These fragments are
created based on the "Variations” section from the bCMS requirements document. Some
of them are presented in the following. The complete list of business process fragments is
available in Annex 2.

A first business process fragment that we present is called "PSC send and receive” and
corresponds to the feature with the same name, which is a variant of the Vehicle manage-
ment variation point. It is a simple fragment that describes how the PS coordinator, by
using a dispatch service, broadcasts the dispatch order to the concerned police cars. The
fragment is graphically depicted in Figure 6.7.

Another business process fragment that we present here is called "Multiple Crisis" and
corresponds to the feature with the same name, which is a variant of the Crisis multiplicity
variation points. The business process describes how the PSC and the FSC deal with
the fact that multiple crisis may exist. Thus the PSC will selects a certain crisis to be
addressed and proposes to the FSC to intervene on this crisis. If the FSC agrees, it sends
its acknowledgement to the PSC and the fragment ends. In case the FSC does not agree

188 6. Exemplification of the proposed methodology and tool support

(‘process Vehicle Management - PSC send & receive [; Vehicle Management - PSC send & receive U

PS coordinator

Create police car
dispatch order

Broadcast order to
police cars

Inform FSC of
police cars
dispatched

Fig. 6.7: PSC send and receive business process fragment

(‘process Crisis mutiphicity - Multiple [[E5) Crisis muttipticity - Muttple }J

PS coordinator FS coordinator
Select specific
crisis to acton

Prpose FSC to act
on selected crisis

Receive PSC
proposal

Acknowledgs to g
Refuse PSC crisis
= - PSC acceptance to proposal

intervene in crisis

Send PSC refusal
__________ el D R I R S response

Receive FSC
agreement

Fig. 6.8: Multiple crisis business process fragment

6.2. Applying the proposed SPL methodology on the bCMS case study 189

(process Communication protocol - SSL [Communica ion protocol - SSL U)
PS coordinator Police car
Create "dispatch
order” message
Encrypt message
using session key
Send secure
encrypted message
Decode encrypted
@ ————— -— 1T~ message using
private key
Create "order
received message”
Encrypt message
using session key
Send secure
@d— ————— - — -| — — { encrypted message
to PSC
¥
Decode encrypted
police car message
using private key
. J

Fig. 6.9: SSL communication protocol for vehicle management business process fragment

on the proposed crisis, it sends its refusal to the PSC, which causes the process to abruptly
end with an error. This business process fragment is available in Figure 6.8.

Another example is of the "Communicalion protocol by SSL" business process fragment.
It corresponds to the SSL feature from the feature diagram, which is a variant of the
Vehicle management communication protocol variation point and feature. The behaviour
modelled describes how the PSC, using a dispatch service, can send a dispatch order to
its respective police cars. However, the underlying communication protocol followed for
sending the necessary messages follow the SSL protocol. Figure 6.9 graphically depicts this
business process fragment.

Finally, the last business process fragment that we present here is called "Authentication
with symmetric encryption”. It corresponds to the Symmetric encryption feature, which
is a variant and child of the Authentication variation point and feature. It described how,
using a symmetric encryption protocol, the PS coordinator can authenticate himself to the

190 6. Exemplification of the proposed methodology and tool support

F'S coordinator, before sending him his credentials. An authentication authority is required,
which generates challenge strings used later on by the PSC for encoding and hashing its
authentication credentials. Figure 6.10 graphically presents this business process fragment.

This concludes the presentation of how business process fragments can be created for the
bCMS case study. The complete listing of all the business process fragments created for
the bCMS case study is available in Annex A.

6.2.3 Verification of business process fragments

Business process fragment verification is a key phase of the methodology. Verification is
concerned with determining, in advance, whether a business process model exhibits certain
desirable behaviours. In this thesis, we defined the notion of correctness for business process
fragments as the summation of two other properties: structural correctness and behavioural
correctness.

Structural correctness mainly focuses on avoiding errors at the structural level of business
process fragments. In our case it deals with the correspondence between the model and
the CBPF language in which the model is written. It is also concerned with the alignment
between the CBPF models and a set of structural properties that any model of the same
type must respect.

Structural properties refer to the type and number of elements in a business process frag-
ments and the control flow relations between them. More precisely, to ensure the structural
correctness of a business process fragment created using the CBPF language, we need to
define a set of adequate fragment consistency rules that should be valid for every business
process fragment. Thus, in Section 3.4 we proposed a set of well formedness rules defined
using OCL directly on the CBPF meta-model. Therefore, all of the models that are created
using the CBPF language will be ensured to satisfy these consistency rules. Therefore, in
the case of the bCMS case study, all of the business process fragments that were created in
the previous section are structurally correct, as they were created with the CBPF language.
Thus, there is no need to perform any additional verifications on these business process
to know if they are structurally correct. Therefore, following the SPL methodology that
we propose, the structural verification step is an automatic one and is guaranteed if we
construct the business process fragments using the CBPF language.

However, structural correctness only allows to check that certain structural properties are
valid. We also want to perform checks related to the dynamic behaviour of business process
fragments. Therefore, in Section 3.4, we defined the notion of behavioural correctness which
serves to verify the possible behaviours of a business process fragment.

In order to verify the set of behavioural properties defined in Section 3.4, we need first to
transform the business process fragment that is being analysed into a hierarchical coloured
Petri net. This transformation can be performed by applying the different mapping rules
or mapping templates that were proposed as part of the CBPF to HCPN model-to-model
transformation.

As an exemplification, we take the Creation of coordinated route plan business process
fragment. The fragment is described in Figure A.4, available in Appendix A. We want
to check that this business process fragments is behaviourally correct, which means that it
verifies the behavioural properties presented in Section 3.4. To be able to perform these
verifications, in a first step we need to transform this business process fragment into a

6.2. Applying the proposed SPL methodology on the bCMS case study

191

fprocess Authentication - symmetric encryption [@ Authentication - symmetric encryption y

PS coordinator

Authentication authority

Enter password

[Apply HMAC-MD5]

function on password
and challenge string

Send hashed
password

Receive validation
response

Unauthorized
ACCESS <<output>>

Login successful

Generate
challenge string

Retrieve user
password

Apply reverse
hash function

Validate client
credentials

Fig. 6.10: PSC authentication using symmetric encryption business process fragment

6. Exemplification of the proposed methodology and tool support

Deploy
police cars

Receive
1 () [wse ()] wocan
deployed
Degloy fire Recelve fire
trucks
UckS ' MSG . deployed
Propose fire
rucks route L]
Receive
[| proposed
route

Communicate .

dissagreement | | Communicate
to PSC []route agreement
. to PSC
Propose
e ot Lo Receive oot
] agroanent

‘ <<output>>

Disagree with =" Communicate
new root [] acceptanceof
new root
. Recelve root
a tance
Route —

negotion [() wse () >—1—e)

time-out
O .

Eror | |

®

Fig. 6.11: Transforming the Creation of coordinated route plan business process fragment

into a HCPN

6.2. Applying the proposed SPL methodology on the bCMS case study 193

corresponding hierarchical coloured Petri net. Therefore, we apply the proposed map-
ping templates on the business process fragment under study and obtain its corresponding
HCPN model, presented in Figure 6.11.

Once this is done, we can take advantage of the CPN Tool verification capabilities and
start by checking whether the general behavioural properties defined in Section 3.4.

o Reachability of end events: looking at the original Creation of coordinated route plan
business process fragment, it can be noticed that it contains three end events: two
normal end events and an error end event. Thus, we need to verify that all these
three events can be reached from the start event. In practice, we need to apply the
Reachable’ (idpoge—start; dnode—end) query function on the resulting HCPN model
three times. For each application the first parameter will be 1 (id of start node),
while the second parameter will take the id of the three end nodes from Figure 6.11.
In all three cases, the response of the tool will be YES, followed by a sequence of
node ids denoting a possible path from the start node to each of the end nodes.

o Proper completion of a business process fragment: in order to verify this property
we need to use a combination of home and query functions. We first apply the
ListHomeMarkings() function. It returns the list of all the home markings of the
Petri net. By simply checking the result, we observe that the ids of the end nodes
are within this list. Thus, we can proceed and apply the ListDeadMarkings() query
function. As before, we check that the result contains the ids of the end nodes and
see that this is the case. Thus, we can conclude that the property is fulfilled for the
business process fragments under analysis.

e Reachability of composition interfaces: in the original Creation of coordinated route
plan business process fragment there are three composition tags applied: one input
composition tag applied on the start event, and two output composition tags applied
on each of the two normal end events. Proving that the start event is reachable is
trivial. Moreover, proving that the two end events are reachable has already been
proven for the first behavioural property that we checked.

o Absence of dead tasks: to verify that a business process fragment has no dead tasks,
we can simply apply the ListDeadTIs() query function. It returns the list of all the
dead transitions of the HCPN model under study. Thus, we apply this function on
our Petri net and obtain as a result an empty list. This means that there are no dead
transitions in the HCPN. Thus, we can conclude that the business process fragment
under analysis has no dead tasks.

e Deadlock-free business process fragment: we can simply apply the ListDeadMark-
ings() query function on the HCPN model. The result returned by the tool only
contains the ids of the end nodes, which are the only dead markings of the net.
Thus, we can conclude that the Creation of coordinated route plan business process
fragment is deadlock-free.

After performing the above-mentioned generic behavioural property verifications, the SPL
methodology offers the product line engineer the possibility to perform several fragment
specific behavioural verifications. We proposed in Section 3.4 to achieve this by providing
the product line engineer with a set of high-level property templates, which he can then

194 6. Exemplification of the proposed methodology and tool support

tailor and adapt to his particular needs. We apply some of these templates for the Cre-
ation of coordinated route plan business process fragment and verify some fragment specific
properties.

e We want to check that the Receive proposed route task of the business process frag-
ment can always be reached from the start event. This specific property can be easily
checked by applying the following property template: Reachable’ (idpode—start; Var :
idpode—interested)- We need to adapt this generic template to our specific request.
Thus, we apply the template where the first parameter takes the value 1 (id of the
start node), and the second parameter is the id of the place from the net that follows
the Receive proposed route transition. The query returns TRUE and also provides a
list of nodes denoting a possible path from the start place until the Receive proposed
route transition. Thus, we can conclude that the Receive proposed route task can
always be reached.

e Another property that we might want to check is that Propose fire trucks route task
is always executed, in all the possible execution traces. To check this property, we
can apply the following property template: HomeMarking(Var : idpode—interested)- We
adapt this generic property template for our specific case and will use as parameter for
the function the id of the place that follows the Propose fire trucks route transition.
The function returns true, so the property is fulfilled.

e As another example, we want to check that if task Receive police cars deployed is
executed, then there exist at least one execution path where task Receive proposed
route will also be executed. We can use in this case the following property template:
NodesInPath(idpoge—start; Var : idpoge). We apply it in the following manner: the
first parameter is 1; the second parameter is the id of the place that follows the
Receive proposed route transition. The function returns a list of node ids. We then
verify that the id of the place that follows the Receive police cars deployed transition
is in this list. This is the case, so this property is verified for our business process
fragment.

6.2.4 Association of business process fragments to features

During the initial step of the methodology, we used feature models to capture the common-
ality and the variability of the bCMS product line. The resulting feature model abstracts
from concrete feature realizations. However, we need to relate these features to reusable
assets describing the solution space. In order to build concrete bCMS products, features
have to be realised using software artefacts shared across the product line. For this case
study, the core assets of the bCMS product line are the business process fragments already
created in one of the previous steps of the methodology.

During this phase of the methodology, we aim at bridging the gap between feature models
and the business process fragments of the bCMS product line. Therefore, we define a map-
ping of features to business process fragments specifying the concrete feature realisations.
This mapping was pre-planned and known in advance, as the business process fragments
for bCMS were created as concrete implementations for the features from the bCMS feature
diagram. This mapping also supports the transition from problem space to solution space
in an automated way. It will also allow for the automatic derivation of a product instance
based the presence of the features in a variant model that is an instance of a feature model.

6.2. Applying the proposed SPL methodology on the bCMS case study 195

-44

g0]
Pepeed |
:’t_E]
—-boobo g smeneges
f
| ouumapsny
A
L)
o
apsng
(fimmamz0 xesar] ixemvmsp v ssaud

= |
mumi
j
PP
AEEPL L WS
:
PR
pe e
| S———
Apupeng

({ mmsm]
i
\/
nppIOS]
(1 s s b g s o

T

]

-
| K=
3
o
3
| SN

g PR
Syl Wy SISO 1)~ |- - 4 S s 53 sy
) "
LRy
|
/
XEUpg

T e)

:‘"..:,mml

DRUPN03 §d

3| | §
d - |8
i

Jopuapioea g

Fig. 6.12: Connecting features to business process fragments for the bCMS case study

196 6. Exemplification of the proposed methodology and tool support

As the business process fragments for bCMS were created based on the feature descriptions
and their purpose is to be the concrete feature implementations, associating the fragments
to the features from the bCMS feature diagram is quite straightforward. When we con-
structed the business process fragments during the business process fragment construction
step, for each fragment created we mentioned also the feature to which it corresponds.
Also, to facilitate the mapping, the names of the newly created business process fragments
were given in such a way as to coincide with those of the features to which they will be
associated. An excerpt of this mapping between features and business process fragments
for the bCMS example is presented in Figure 6.12.

This concludes the domain engineering part of our methodology. In the next sub-sections,
we present how concrete bCMS products can be obtained during the application engineering
phase.

6.2.5 Configuration of the feature diagram

We start by selecting the required features that will be part of a particular bCMS product
that we want to derive. The actual feature selection process is based on user requirements
and choices, therefore this step of the methodology highly involves the end-user.

The bCMS feature model previously created describes the configuration space of the bCMS
product family. It represents a set of configurations, each being a set of features selected
from the bCMS feature model according to its semantics. The product line engineer may
specify a member of the bCMS product line by selecting the desired features from the
feature model within the variability constraints defined by the model. These are instances
of the feature diagram and consists of an actual choice of atomic features, matching the
requirements imposed by the diagram.

In order to obtain such a feature diagram configuration, we need to select or remove
features from the bCMS feature diagram (while taking any constraint into account), in
order to reduce the variability that the feature model is depicting. A configuration consists
of the features that are selected according to the variability constraints defined by the
feature diagram. The outcome of the configuration process will be a concrete configuration
which uniquely identifies a product in the bCMS product line. In Section 3.6 we explained
in detail how this process is performed and which are the rules that apply when performing
a feature diagram configuration.

We want to obtain a bCMS product with a large number of features, in order to increase
the complexity of the example and point out the feasibility of our approach. Thus, the
bCMS product that we want to obtain should have the following characteristics/features:

e it should be able to perform the basic functionalities defined in the Functional re-
quirements section of the bCMS requirements document;

e the product describe the case of a single police station and fire station that manage
the crisis;

e the system can handle multiple crises;

e offers a vehicle management functionality that allows both police and fire stations
coordinators to send and receive messages to/from their respective vehicles;

6.2. Applying the proposed SPL methodology on the bCMS case study 197

the communication between the police station coordinator and the fire station coor-
dinator will be done using a SOAP communication protocol;

the underlying communication layer used by the bCMS system is based on HT'TP;

the system supports an authentication mechanism based on symmetric encryption;

data communication confidentiality is ensured by having encrypted exchange of crisis
details between the PSC and FSC.

For the bCMS case study, we start the configuration process by first selecting the root
feature from the bCMS feature diagram presented in Figure 6.3. The root feature of any
feature diagram is the smallest prospective configuration, therefore it has to be selected.
We then continue by performing the core selection: any mandatory child feature of the root
feature, and subsequently, any other mandatory child feature connected indirectly to the
root feature through mandatory child features, belongs to this core selection. These feature
need need to be selected for any product that we want to derive. They define the basic
functionalities of any bCSM product. In our case, this leads to the selection of the following
features for our bCMS feature diagram configuration: functional, non-functional, commu-
nication establishment, coordinator identification, crisis details exchange, coordinated route
plan creation, vehicle dispatch coordination, vehicle target arrival coordination, objective
completion coordination, vehicle return coordination, close crisis.

The next step that needs to be taken is to resolve all the variation points defined in the
initial bCMS feature diagram. The resolution of the variation points is done based on the
specific choices made before, when we stated what characteristic we would like our bCMS
product to have. For the bCMS variation points, we perform the following selections:

e Police and Fire station multiplicity: variant "One PS and FS" is selected. The XOR
feature relation automatically excludes the other possible variant "Multiple PS and
FS".

e Vehicle management communication protocol: variant "SOAP" is selected. The other
variant, defined as optional, is not selected. Once the feature Vehicle management
commumnication protocol is selected, due to the require feature dependency present in
the bCMS feature diagram, we are also obliged to select one of the variants of feature
Other, child of feature Vehicle management.

o Vehicles management: both variants "PSC send and receive” and "FSC send and
receive” are selected. The other variants, defined as optional, are not chosen.

o (C'risis multiplicity: variant "Multiple” is selected. The XOR feature relation auto-
matically excludes the other possible variant "Single”.

o Communication layer: variant "HTTP" is selected.

o Authentication: variant "Symmetric encryption” is selected. The presence of the
XOR feature relation automatically excludes features "Kerberos” and "Mutual au-
thorization based”. The other possible variants, defined as optional, are not selected.

e Data communication confidentiality: variant "Encrypted” is selected. The XOR fea-
ture relation automatically excludes the other possible variant "Not encrypted”.

6. Exemplification of the proposed methodology and tool support

198

bCMS SPL

Functional

Non-functional

PaFstaon | | Venices | Neticemenagement| | Crss | [Commuricaon | | Coodineor
mufpicty | management] | communicaion mfpiicty | | esbishement | |identicafon

= }@

Tceayd | [Oope] [VAo || oo o
oigin | | cooniaion. | | 27

Encrypted
Crisis detalls| |Coordinated route} | Vehick dispatch
exchange | | plncreation || coordination
i
+] ¥ h.:

Fig. 6.13: Feature diagram configuration of bCMS product

6.2. Applying the proposed SPL methodology on the bCMS case study 199

The final result of the configuration process is presented in Figure 6.13. The diagram corre-
sponds to a specific bCMS product. It can be noticed that there is no more representation
of variability in the obtained diagram, as all the variation points of the original bCMS fea-
ture diagram have been resolved. Features marked in green in the diagram denote features
for which a business process fragment has been created. These features thus each have a
business process fragment associated. The other features in the diagram correspond to in-
termediate features from the original bCMS feature diagram and only serve decomposition
and representation purposes.

Once a selection of features has been made and a feature diagram configuration obtained, as
in one of the previous steps of the methodology we associated business process fragments to
the features, a selection of such business process fragments is also automatically made. For
each selected feature, the corresponding business process fragment is also automatically
selected. Therefore, the end result of this step of the methodology is a set of business
process fragments that correspond to the selected features and denote the functionalities
of the bCMS product that we want to derive.

6.2.6 Product derivation specification

The last phase of the methodology is called product derivation specification. It takes as
input the set of business process fragments resulting from the previous step and transforms
them, using a compositional approach, into a proper business process that models the
behaviour of a bCMS product.

The business process fragments resulting from the previous step of the methodology need
to be composed together. Composition interfaces are an essential part of the composition
process and thus of the entire product derivation. The business process fragments available
at this step of the process have no composition interfaces defined on them. Therefore,
during this step of the process, composition interfaces are defined on the entire set of
business process fragments corresponding to the bCMS product we are deriving. The
annotation is performed iteratively for each business process fragment, until all of them
have been annotated.

We start by annotating the business process fragments that correspond to the core selection
of features. They are those fragments that will actually appear in every bCMS product and
define the basic behaviour for all bCMS products. For these business process fragments,
most of the annotations performed are on the start and end events. That is because we
know that there is a logical and functional dependency between these fragments and that
the pieces of behaviour each fragment describes need to be composed in succession for
obtaining the behaviour of the final bCMS product. Therefore, the following annotations
are performed:

e Communication establishment: this fragment already has an output composition
interface defined at the Receive F'S coordinator call task. Additionally, we add an
mput composition interface at the start event.

e Coordinator identification: for this fragment, we add an input composition inter-
face at the start event and also an output composition interface at the end event. We
also add an output composition tag on task "Authenticate PSC'".

200

6. Exemplification of the proposed methodology and tool support

Crisis details exchange: for this fragment, we add an input composition interface
at the start event and also an output composition interface at the end event. There
will also be input composition tags added on all the four tasks of the business process
fragment.

Coordinated route plan creation: for this fragment, we add an input composition
interface at the start event. We also add two output composition interfaces, one at
each regular end event of the business process fragment.

Vehicle dispatch coordination: for this fragment, we add an input composition
interface at the start event and also an output composition interface at the end event.
In addition to this, we add two input composition interfaces: one at the Police cars
dispatched task and the other at the Fire trucks dispatched task.

Vehicle target arrival coordination: for this fragment, we add an input compo-
sition interface at the start event and also an output composition interface at the end
event.

Objective complete coordination: for this fragment, we add an input composition
interface at the start event and also an output composition interface at the end event.

Vehicle return coordination: for this fragment, we add an wnput composition
interface at the start event and also an output composition interface at the end event.

We then continue to add annotations on the rest of the fragments. These fragments cor-
respond to specific choices made for the different variation points of the bCMS feature
diagram and thus define pieces of behaviour specific to the bCMS product that we are
deriving. The following annotations are made:

PSC send and receive: for this fragment, we add an input composition interface
at the start event and also an output composition interface at the end event. We also
add an input composition tag on task broadcast order to police cars.

FSC send and receive: for this fragment, we add an input composition interface
at the start event and also an output composition interface at the end event.

Crisis multiplicity - multiple: for this fragment, we add an nput composition
interface at the start event and also an output composition interface at the normal
end event of the business process fragment.

Communication protocol - SOAP: for this fragment, we add an input composition
interface at the start event and also an output composition interface at the end event.

Communication layer - HTTP: for this fragment, we only add an output compo-
sition interface at the end event.

Symmetric encryption: this business process fragment already has a composition
interface defined on it from its creation, an output tag on the "Login successful” task.
We will also add a new input composition tag at the start event.

Data communication confidentiality - encrypted: for this fragment, we add
an input composition interface at the start event and also an output composition
interface at the end event. There are also output composition tags added on the

6.2. Applying the proposed SPL methodology on the bCMS case study 201

(‘process Coordinator identifica ion [[£] Coordinator identification U h

PS coordinator FS coordinator

Q—
v

<<output>>
Authenticate PSC

I

Send PS coordinator -1 -

Receive PS coordinator
credentials

credentials
Store PS coordinator
credentials
Receive FS coordinator 1 __L - _ Send FS coordinator
credentials credentials
<<output>>
\ J

Fig. 6.14: "Coordinator identification" business process fragment after adding composi-
tion tags

following tasks of this business process fragment: "Send PS crisis details”, "Receive
PS crisis details"”, "Send FS crisis details”, "Receive FS crisis details”.

As an exemplification, Figure 6.14 shows the business process fragment "Coordinator iden-
tification"” after composition tags have been added on it. Further more, another example
is shown if Figure 6.15, where the business process fragment "Objective complete coordina-
tion" is depicted after the definition of its composition interface.

The next step that needs to be undertaken during the product derivation specification
process is to create the composition workflow. At this moment, several possible orders to
compose the annotated business process fragments are possible. To obtain the specific
behaviour that characterizes the derived bCMS product, the annotated business process
fragments need to be composed in a specific order. The CBPF language proposes the use
of a workflow notation for specifying this composition order. The composition workflow
is specific to each individual bCMS product that we want to derive. It is created by the
product line engineer based on the specific composition interfaces of the business process
fragments, which will highly restrict the possible orders.

As defined in Section 3.7, the composition workflow consists of the following elements: frag-
ment place-holders (black-box representation of the selected business process fragments),
operators (the composition operators that will be used) and connectors (connect fragment
place-holders and operators). We present in the following which compositions are made,
in which order and using which specific composition operators:

202

6. Exemplification of the proposed methodology and tool support

(‘process Objective conplete coordination [[£] Objective complete coordination 1) h
PS coordinator FS coordinator
O <<Mt>>
Declare completion
of police car objective
-8
Receive police car
objective complete
Receive fire trucks A _ Declare completion of
objective complete fire trucks objective
<<putput>>
J

Fig. 6.15: "Objective complete coordination" business process fragment after adding com-

position tags

Operator | Operand 1 Operand 2 Result | Observations
sequential | communication| communication| Result | It can be noticed that fragment commu-
layer HT'TP establishment | 1 nication layer HTTP has no input com-
position interfaces defined on it. This
is a good indication that this fragment
should be the first one in our compo-
sition workflow. The pre-conditions for
applying the operator (in terms of avail-
able composition interfaces) are satis-
fied. The obtained fragment has a new
composition interface, obtained accord-
ing to the specific rules of the sequential
composition operator defined in Section
4.2.3.
sequential | Result 1 Coordinator Result
identification 2
refinement| Result 2 Authentication | Result | It is task Authenticate PSC, tagged with
symmetric en- | 3 an output composition tag, that will be
cryption used for the actual refinement operation.

6.2. Applying the proposed SPL methodology on the bCMS case study

203

sequential | Result 3 Crisis mul- | Result
tiplicity 4
multiple
synchron. | Crisis details | Data confi- | Result | It can be noticed that these two frag-
exchange dentiality -1 b ments have four task with the same
encrypted name: "Send PS crisis details”, "Receive
PS crisis details”, "Send FS crisis de-
tails", "Receiwve FS crisis details”. For
fragment Crisis details exchange they
are tagged with input composition tags,
while for fragment Data confidentiality
- encrypted they are tagged with output
composition tags. These tagged activi-
ties from the two fragments constitute
the synchronization set required by the
synchronization composition operator.
sequential | Result / Result 5 Result
6
sequential | Result 6 Creation of | Result
coordinated 7
route plan
sequential | Result 7 Vehicle dis- | Result
patch coordi- | 8
nation
insertion | Result 8 PSC send and | Result | An insert before composition is per-
receive 9 formed, at task Police cars dispatched
which has an input composition tag.
insertion | Result 9 FSC send and | Result | As before, it as an insert before compo-
receive 10 sition that is performed, at task Fire
trucks dispatched which has an input
composition tag.
refinement| Result 10 Communication Result | The refinement operation is performed
protocol 11 at task Broadcast order to police cars,
SOAP belonging to fragment PSC send and re-
cetwe which was already composed.
sequential | Result 11 Vehicle target | Result
arrival coordi- | 12
nation
sequential | Objective Vehicle return | Result
complete coordination 13
coordination
sequential | Result 13 Close crisis Result
14
sequential | Result 12 Result 1) Final | The result obtained is also the final re-
result | sult of our composition process. It de-

notes a business process that describes
the behaviour of the bCMS product that
we are deriving using our methodology.

6. Exemplification of the proposed methodology and tool support

204

Communication
layer HTTP

Communication
establishment

Resuilt 1

Coordinator
identification

Result 2

Authentication
symmetric
encryption

Crisis
multiplicity -
multiple

Crisis details
exchange

coordinated
Data route plan

confidentiality
- encrypted

Fig. 6.16: First part of composition workflow for bCMS example

205

6.2. Applying the proposed SPL methodology on the bCMS case study

Vehicle
dispatch
coordination

PSC send and
receive

Result 10

Comunicaion
protocol
SOAP Vehicle target
arrival
coordination

FSC send and
receive

Result 12

Vehicle return Result 14
coordination y

FINAL
RESULT

MS example

5
"I\

Fig. 6.17: Second part of composition workflow for b(

206 6. Exemplification of the proposed methodology and tool support

The composition workflow is created using the CBPF language. The result obtained for
the first part is graphically represented in Figure 6.16. The composition workflow that
describes the last compositions performed, starting with fragment Result 7 and leading
to the final result, is graphically presented in Figure 6.17. Therefore, in order to have
the complete composition workflow for the bCMS product that we are deriving using the
methodology, we need to concatenate the workflows presented in Figures 6.16 and 6.17.
The result gives a complete image of the composition workflow for the bCMS product.

This concludes the presentation of how our methodology can be applied to the bCMS case
study.

6.3 Tool support

Throughout Chapter 3 of this thesis, we proposed a new software product line engineer-
ing methodology that focuses on the derivation of product behaviour. By applying the
proposed methodology, behavioural product models can be produced that belong to the
analysis and early design levels of the software development life-cycle. The behavioural
models obtained described the business and operational step-by-step workflows of activ-
ities/actions performed by the derived product. Then, in Chapter 4 we proposed a new
domain specific language called Composable Business Process Fragments (CBPF) designed
specifically for modelling composable business process fragments. CBPF provides the nec-
essary language support for several steps of our methodology. A model driven approach is
followed for creating and specifying the CBPF domain specific language. Finally, through-
out Chapter 5 we proposed several types of verifications that can be applied to business
process fragments in order to determine their "correctness". These verifications are used
during a key step of the proposed SPL methodology. We also use them as we want to
ensure that the business process fragments created with the CBPF language during the
domain engineering phase are correct.

Therefore, throughout the previous chapters of the thesis we proposed a new SPL engi-
neering methodology and the necessary language support for it. However, in order for this
methodology to be easily applicable by product line engineers, it requires also the appropri-
ate level of tool support. Good tool support is one of the key elements for the fast adoption
of any new methodology and language. Thus, it is of the utmost importance to provide the
product line engineer with a tool that will allow him to practically apply the concepts and
ideas proposed by our methodology. Moreover, after designing a domain-specific language
like CBPF, the next important task is to determine how to provide the supporting tools for
the modelling language. Therefore, throughout this section, we propose the appropriate
tool support for our methodology. We start by describing the general requirements that
such a tool should fulfil. We then present the general architecture of the proposed tool and
discuss in more details the different functionalities it provides.

6.3.1 Tool requirements

The tool that we want to provide needs to facilitate the use of the SPL methodology that we
proposed in Chapter 3. Therefore, it needs to support all of the steps of the methodology
or as many of them as possible. Thus, the basic requirements that our tool must satisfy
are in direct connection with the steps of the methodology. We discuss in the following the
set of requirements (features) that the proposed tool should respect and provide:

6.3. Tool support 207

o Support for modelling and configuring feature diagrams: feature diagrams are used in
our proposed methodology as a means to capture the commonality and the variability
of all the products of the SPL. Moreover, they are used during the product derivation
phase for configuring the specific SPL product that we want to derive. Therefore, it
is important to that the tool provides support for the modelling of feature models.
Moreover, another useful characteristic would be to allow the user to make different
configurations of the feature diagram, which would be a great asset for the product
derivation phase.

o Support for creating CBPF models: the CBPF domain specific language was pre-
sented in Chapter 4 as our language support proposal for the methodology. It allows
the modelling of composable business process fragments. It also allows to define
composition interfaces for these business process fragments. Moreover, using a set of
OCL constraints, all models created with the CBPF language are structurally cor-
rect, as presented in Chapter 4. Therefore, our tool should also allow the product
line engineer or any other user to create such CBPF models.

o Support for verifying business process fragments: business process fragment verifica-
tion is one of the key steps of our methodology. The verification of structural cor-
rectness is ensured by defining a set of well-formedness rules on the CBPF language
meta-models. However, for the verification of behavioural correctness, we perform a
transformation of CBPF models in HCPN models and perform different behavioural
verifications at this level. Therefore, another desirable feature of the tool would be to
allow the verification of behavioural correctness of CBPF models by means of Petri
net verifications.

e Support for composing business process fragments: during the product derivation
phase of the methodology, we derive the behavioural representation of an SPL product
using a compositional approach. The business process fragments selected by the user
will be composed, following a specific composition workflow, in order to obtain the
end business process describing the product. Thus, the tool should have the following
two features: allow the composition of business process fragments and facilitate the
creation and parsing of the composition workflow.

With this requirements in mind, in the following we propose a tool that supports our
methodology. We start by presenting the general architecture of the tool.

6.3.2 General architecture of the tool

The tool chain (suite) that we propose is called SPLIT. The name comes from the research
project in the context of which this thesis took place. The SPLIT tool suite provides
a practical implementation of the proposed methodology. The tool is Eclipse-based !.
Eclipse is a multi-language software development environment comprising an integrated
development environment (IDE) and an extensible plug-in system. It is written mostly in
Java. It can be used to develop applications in Java and, by means of various plug-ins,
other programming languages.

The Eclipse Platform uses plug-ins to provide all functionality within and on top of the
runtime system, in contrast to some other applications, in which functionality is hard

! http://www.eclipse.org

208 6. Exemplification of the proposed methodology and tool support

Auxiliary modules
_____________ Feature to
Scheduler! Aspect
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, adapter

Business
process process
fragments fragments

Feature diagram Bumsinesss
(configured) ?rragment
CBPF model manager
. FD configurator CBPF
FD editor (selector) Importer model editor

Fig. 6.18: General architecture of SPLIT tool

coded. The Eclipse IDE allows the developer to extend the IDE functionality via plug-
ins 2, which are Eclipse software components. The plug-in architecture supports writing
any desired extension to the environment. With the exception of a small run-time kernel,
everything in Eclipse is a plug-in. Plug-in development consists of developing the code
following the "rules" of Eclipse, and so we have the obligation and privilege to use features
available in the Eclipse platform.

Therefore, the SPLIT tool suite has been developed as a set of Eclipse plug-ins which are
meant to be integrated as a single tool that is capable of fulfilling the requirements presented
in the previous sub-section. This is to facilitate integration with already existing tools,
make it distributable through Eclipse repositories and as an eclipse plug-in it facilitates its
use in multiple OS’s.

Having this in mind a modular architecture was defined, to facilitate plugin-development
and development iterations, by distributing different tasks of the tool to different modules
of the architecture. Following this modular development approach approach, we can also
facilitate development and subsequent research as well as maintenance and future testing
and experimentation. This allows the swapping of strategies and approaches, while main-
taining a fully functional tool, and in this manner quantitatively and qualitatively compare

% http://www.eclipse.org/pde/

6.3. Tool support 209

multiple implementation options for the same module section.

The general architecture of the tool is presented in Figure 6.18. The tool is highly modular,
as we can notice the clear separation into modules. Each module provides a separate
functionality, mainly corresponding to the tool requirements described previously. The
following core modules are proposed:

e Ul and Manager: the overall control of all the modules and thus of the functionali-
ties provided by the SPLIT tool chain is handled by the UI and Manager component.
Its overall goal is to serves as a bus between all the other modules. In practice what
this implies is that each module with the exception of the Manager is unaware of
the other module’s interface, and because of this they are completely independent,
facilitating modular development. The manager receives different data from all the
other modules and forwards it as input to other modules that need it. Moreover,
to provide a greater control of the user interaction and to allow this interaction to
better evolve with the remaining tool’s development, these interactions are specified
in this module. This allows to expand on the user experience without interfering with
the functional code of the tool and on the other hand as the tool’s inner functioning
evolves, the user interaction can remain stable.

e Feature model manager: this core module of the SPLIT tool suite provides basic
feature modelling and configuration facilities. As it can be seen from Figure 6.18, the
module regroups two separate functionalities: modelling new feature diagrams using
the dedicated feature model editor and, starting form a feature diagram, create dif-
ferent possible and valid configurations for it using the feature diagram configuration
component.

e CBPF model manager: this module of the SPLIT tool chain deals with business
process fragments. In Chapter 4 we proposed the domain specific language CBPF
that allows the modelling of composable business process fragments. Therefore, this
module allows the user to obtain business process fragments in two ways: create a new
business process fragments from scratch using the CBPF model editor component;
reuse an already existing business process fragment by loading it using the importer
component.

e Model composer: this module deals with the composition of business process frag-
ments for obtaining the end result of the proposed SPL methodology. In the SPLIT
tool, the business process fragment composition is implemented using aspect model
weaving techniques and procedures. Model weaving, being one of many forms of
model manipulation, focuses in the combination of two or more models into a sin-
gular model. In this approach, we structure the weaving, by classifying the models
into two types: the base models, of which we only use one at any given weaving,
are normal models; the second type are the models that will be woven into the base
model. To be able to weave these models into the base model, we also need to specify
a pattern of where this weaving can occur in the base models. To this pattern we call
pointcut, and for every model to be woven we have one pointcut. The weaving itself
takes place, by detecting the pointcut pattern within the base model. This occurs as
an adjacency preserving bijection mapping between the pointcut and a sub-section
of the base model and it is denoted as an isomorphism. Therefore, this modules
provides two components with interdependent functionality: the join-point detector
performs the detection of the pointcut within the base model; then, based on these

210 6. Exemplification of the proposed methodology and tool support

results, the weaver component will perform the actual composition of the base model
and the aspect.

e Model verification: this modules of the SPLIT tool suite deals with the verification
of business process fragments, and in particular with the verification of behavioural
correctness. Thus, the CBPF to HCPN component implements the model transfor-
mation from business process fragments on high level Petri nets. Once this is done,
we can take advantage of the already existing Petri net verification tool called CPN
Tools. Tt is at this level that all the behavioural verifications proposed in Chapter 6
are performed.

e Auxiliary module: as its name states, this module will provide extra functionality
required and used by the previously presented modules. For example, the business
process fragments created using the CBPF model manager modules need to be trans-
formed into aspects so that they can be used by the model composer for the weaving.
This transformation is performed by the Fragment to Aspect adapter component.
Moreover, during the application engineering phase of the methodology, there is the
need to create a composition workflow that gives the order in which the composi-
tions (weavings) will be performed. Moreover, the composition workflow needs to be
parsed (interpreted), as this information is required by the weaver component. This
functionality is provided by the scheduler component.

Now that the general architecture of the SPLIT tool suite has been presented and the main
modules introduced, we can explain how the tool can be actually used. In Figure 6.19 we
present the overall usage workflow for the tool. It describes how the different modules and
components are actually used, which are their inputs and outputs. Moreover, we can see
how the tool can be used for actually supporting the SPL. methodology that we proposed
in this thesis. This usage workflow consists of several steps, which are also shown in Figure
6.19:

e Step 1: the user (product line engineer) creates a new feature diagram of the product
line using the FD editor.

e Step 2: for the features in the previously created FD, the product line engineer
constructs new business process fragments. This can be done in two ways: create
new business process fragments using the CBPF model editor; reuse an existing
fragment and load it using the Importer. The obtained business process fragments
are sent to the Manager module.

e Step 3: from the previously created business process fragments, one of them is loaded
from the Manager into the CBPF to HCPN component.

e Step 4: the fragment previously loaded into the CBPF to HCPN component is
transformed into a corresponding high level Petri net. Te result is then sent back to
the Manager.

Steps 3 and 4 are repeated until all the business process fragments are transformed
into HCPN models.

e Step 5: one by one, the obtained HCPN models are loaded from the Manager into
the CPN Tool.

6.3. Tool support 211

3. Business
process
fragment 15. Annotated

response

17. Frag + 19.List of

fragments operators aspects

11. SPL
FD

‘I. LT] 1nInIg
P FrEagmentio s
CBPF to HCPN CPN Tools FD configurator Scheduler i | Aspect | Mode/
(selector) : weaver
p—— 111 eﬂlnm-‘-
4. Petri net 12. Config. 16. Comp. ;
model 6. Tool FD workflow 1:;;:::?; 20.Weaved

model

9. SPLFD 8.Updated
. fragment
1. SPL Fragm. 10.FDfrag 2. Business 7. Modif. ¢
FD mapping process request 14.Annotated
fragment 13. Selected fragment
fragment
FD editor CBPF model manager *
Importer .
p* model editor
LoadI
- ——— - -

\...Model

Fig. 6.19: Usage of the SPLIT tool

Step 6: in the CPN Tool, the verification of behavioural properties is performed. The
tool provides a feedback telling us if the verified properties are true of false.

Step 7: in case some errors have been detected by the CPN Tool, then the fragments
in cause need to be sent back to the CBPF model manager module.

Step 8: the incorrect fragments can be modifies using the CBPF model editor and
the errors detected can be corrected. After the necessary updates, the fragments are
resent to the Manager.

Step 9: the SPL feature diagram is loaded into the FD editor module.

Step 10: the product line engineer creates a mapping between features and business
process fragments. In the FD editor, a business process fragment is added into the
contained of each feature. In this way, the desired mapping is made.

Step 11: the feature diagram of the SPL is loaded into the FD configurator.

Step 12: based on the choices made by the user and on his selection, a configuration
of the feature diagram is created. This configuration is stored in the Manager. Also,
a the list of the business process fragments corresponding to the selected features is
also sent to the Manager.

Step 13: the business process fragments from the selected list are sent one by one to
the CBPF model editor.

212 6. Exemplification of the proposed methodology and tool support

e Step 14: in the CBPG model editor, the product line engineer can annotate the
selected fragments with composition tags, creating thus the composition interface for
these business process fragments.

e Step 15: the annotated fragments are loaded into the Scheduler.

e Step 16: the composition workflow is created in the Scheduler. A parsed version of
this workflow is sent back to the manager.

e Step 17: the parsed composition workflow (list of business process fragments and
composition operators used) is loaded into the Fragment to Aspect adapter module.

e Step 18: based on the received information, a base model is selected amongst the
business process fragments. Then, the other fragments are transformed, one by one,
according to the composition order and the composition operator applied, into aspects
by the Fragment to Aspect adapter module.

e Step 19: the base model and the first aspect are loaded into the weaver, then the
weaving is applied. The resulting model becomes the new base. The next aspect is
loaded and woven. This process is repeated until all the aspects have been woven.

e Step 20: the business process obtained at the end of the weaving process is the end
result.

6.3.3 Modules of the tool

We have seen that the SPLIT tool suite is highly modular. An overall look at the modules
used by the tool was given in the previous sub-section. A more thorough presentation of
the different modules use and their functionality is presented in the following.

Feature model manager:

This core module of the SPLIT tool suite provides basic feature modelling and configuration
facilities. The feature diagram tool suite is used to manage variability between a family of
products. It was created at the Triskell research team * from Rennes, one of the partners
of the SPLIT project #, in the context of which this thesis took place. The feature diagram
tool suite is composed of the following modules :

o Feature Diagram Editor;

o Feature selection engine.

We choose to create a graphical feature diagram editor as an Eclipse plugin. This graphical
editor must take into account the following elements : features, decomposition edge such
as and, or, xor, card, attributes which can permit to associate metadata on a feature to
facilitate the selection of its children. Moreover, the plugin provides a direct mapping
between elements of the feature model and elements of the base model(s), implemented
as the addition of model elements from this base model(s) into the features. These model
elements can be any element stored into a model based on EMF (and ecore). In addition to

% http://www.irisa.fr /triskell
* http://wiki.lassy.uni.lu/Projects/SPLIT

6.3. Tool support 213

| < Feature Diagram Editor{Feature Diagram true) 53 | =8|
* | 3 Palette
root Feature b o |
heam-=-
E2 [Tools
k—‘ o = Feature
root Feature
- = Aftribute
"~ B | - 13 Model

1 lel| = of Opt
o i A o
A\ Xor
7777777777777777 ; /M And
"]
f /g\ Card
= % Require
= Mutex
= — Operators to
features
i =] Properties & @ Information @ Model requests interpreter |:_ Problems | T Time Profiler View ‘A: Consistency I3 svN Repositories B Console i __%‘2
+ Feature b
| Semantic Propery Value
| Feature b
Style -
= 1 Name =b
ppearance | Owning Operator 4 And And
Selected Bk false

Fig. 6.20: Screenshot of the Feature Diagram Editor

the feature diagram editor, a constraints plugin was developed in order to help user to create
valid feature models. This plugin is written using Praxis rules. The rules implemented are
the ones described in Section 3.2.

As there exist several feature diagram notations descried in the research literature, we
have selected a specific one to be implemented by the feature diagram editor. The used
graphical notation is similar to the FORM notation, except that we add an OR operator
(represented with a dark mathematical angle), a CARD operator (represented with a white
mathematical angle and its bounds) and Require and Mutez constraints (represented by
dashed arrows, one for require and two for mutex). The exact notation used and the feature
diagram meta-model used by the tool are the ones presented in Section 3.2.

The technology used to develop this Feature Diagram Editor is Obeo Designer ° provided
by the Obeo society. Obeo Designer is a commercial tool which permits to create easily
Eclipse-integrated graphical editor for any DSML (GMF-like editor). Obeo Desiger permits
to develop a DSL graphical editor on interpretation mode without generating code like in
GMF (Graphical modelling Framework). However, some graphical notation cannot be
obtained with simplicity. That is why some changes were made between the "conceptual”
graphical notation and the real notation on the tool. So, the dark or white mathematical
angles respectively for or or xor operator are replaced respectively by a dark or a white
triangle. It is the same for the card operator represented with a square. The second tool
used for the feature diagram editor is Praxis for expressing constraints on feature diagrams.
Praxis [?] is an integrated Eclipse tool developed by UMPC to check inconsistencies not
only on a single model but also on two distinct models. It is based on Prolog. Praxis was
used to create constraints on Feature Diagram Editor.

This feature diagram editor is directly integrated on Eclipse. A screenshot of the tool is
presented in Figure 6.20. A demonstration of this tool is available in [INR10]. To add

5 http://www.obeo.fr/pages/ obeo-designer /fr

= =5

214 6. Exemplification of the proposed methodology and tool support

graphical element on the feature diagram, the user simply needs to click on the desired
tool presented on the right of Figure 6.20 and drag and drop it in the feature diagram
canvas. All the classical feature diagram elements described in Section 3.2 can be created
using the palette.

A core functionality provided by the Feature Diagram Editor tool is to add domain model
elements into features. In most cases, domain model elements are added using drag and
drop on a feature. In a first step, we need to add the domain model in the current session.
The domain model element(s) is added as an existing resource. The user simply needs to
click on the concerned model element and drag it into the feature. It will be added into
the container associated to the feature. However, as domain model elements are directly
referenced by the features, to add Domain model element on a feature we can alternatively
simply right click on the Feature — AddDomainModelElement in the tool. A wizard
appears. Click on load button to select a domain model element model. The next wizard
page permits to select the desired Domain Model elements and add it into the feature. A
special wizard permits to select and associate to a feature any model file based on EMF
by clicking on Load and search the file.

A second part of the Feature model manager module is the Features Diagram Configurator
(Selection Engine). It lets the designer choose which features are required for a specific
product. The first version created was a textual interface implemented in Kermeta that
traverses the feature model, asks to the designer the feature to select between the children
of a given feature and populates a feature selection model (called resolution model). To
check this feature selection we will check the resolution model. The tool permits also to
select automatically require features and deselect features mutually exclusives with other
features ever selected. As a development of the pool, a form model was added that permits
to generate automatically a customized user interface dialogue according to the choices
proposed to the designer by the feature model.

CBPF model editor:

Business process fragments are the core assets used by our SPL methodology. The CBPF
language presented in Chapter 4 provides the necessary language support for modelling
new business process fragments. However, we need also the tool support for creating such
business process fragments. This is the role of the CBPF model editor module of the SPLIT
tool suite.

The CBPF language is based on the BPMN language, the standard for modelling business
processes, and shares a lot of common elements with it. Therefore, as there are several
tools that offer support for modelling business process fragments, we decided to extend and
adapt one of these tools in order to fit the needs of the CBPF language. We have selected
to base our module on the Eclipse BPMN Modeler ”, which is an open source project under
the Service Oriented Architecture (SOA) Container Project of Eclipse.

The BPMN Modeler provides a graphical modelling tool which allows creation and editing
of BPMN (Business Process Modeling Notation) diagrams. The tool is built on Eclipse
Graphiti and uses the BPMN 2.0 EMF meta model developed within the Eclipse Model
Development Tools (MDT) project. This meta model is compatible with the BPMN 2.0
specification proposed by the Object Management Group (OMG). The following features
are in scope for the BPMN Modeler project:

6 http://www.kermeta.org/
7 http://eclipse.org/proposals /soa.bpmn2-modeler/

6.3. Tool support 215

e Basic BPMN 2.0-compliant file creation and editing capabilities;

e Process Modeling, Process Execution and Choreography Modeling Conformance as
defined section 2 of the specification;

e Plug-in extension points that allow the editor to be customized for specific applica-
tions;

e Deployment of BPMN resources to a suitable runtime;

e Simulation and debug support of business processes.

The specific intent of this project is to provide an intuitive modelling tool for the business
analyst, which conforms to well-established Eclipse user interface design practices. The
BPMN 2.0 Modeler provides visual, graphical editing and creation of BPMN 2.0-compliant
files with support for both the BPMN domain as well as the Diagram Interchange models.
Currently the editor is functional and can consume and produce valid BPMN 2.0 model
files.

The BPMN Modeler fully leverages the Eclipse Graphical Modeling Framework (GMF)
that provides components in order to develop editors based on EMF (Eclipse Modeling
Framework) and GEF (Graphical Editing Framework). Following GMF best practices, a
flexible and extensible domain model for BPMN has been first created using EMF followed
by a corresponding Graphical Model. The GMF generator model was later used to map
those 2 models to generate the corresponding BPMN diagram Editor.

However, the editor cannot be used as is and some adaptations are needed. The graphical
interface of the Eclipse BPMN Editor offers a palette that enables users to create different
graphical BPMN elements and, by drag and drop, add the on the current BPMN diagram
that is being modelled. In order to offer support for creating CBPF diagrams, we propose
to personalize the palette of the Eclipse BPMN editor. In this way, we can remove shapes
from the palette that exist in BPMN but do not exist in CBPF. Moreover, we can also add
new elements to the palette and shapes for representing the elements newly introduced by
CBPF.

In order to make these changes to the Eclipse BPMN Editor, we took advantage of the
extension-point mechanism available. This mechanism defines a standard way of adapting
and tailoring the editor to specific needs. One of the main features of the editor is to
provide such plug-in extension points that allow the editor to be customized for specific
applications. First of all, we need to hide some of the BPMN elements from the palette.
In this simple way, we can ensure that only elemnts that exist in CBPF can be added in
the diagram.

Secondly, we need to be able to create and display the new elements introduced by CBPF.
Following the explanations provided in 8, we identified how to add to the BPMN diagram
custom data and also how to display and interact with that custom data. Every element of
the domain model of the stp.bpmn modeler is an EMF EModelElement. This means that it
can be attached arbitrary annotations. By default the EAnnotations added to the BPMN
objects are displayed in the properties view inside the 'BPMN’ tabulation. Once the model
has annotations it is possible to display in the diagram that the model element associated
to a particular shape or connection has been annotated. In order to do this, an extension

® http://wiki.eclipse.org/STP /BPMN ¢ omponent / STPg PMNp resentation Parts)

216 6. Exemplification of the proposed methodology and tool support

point called org.eclipse.stp.bpmn.diagram. EAnnotationDecorator has been implemented in
the Eclipse BPMN Modeler. By adapting this extension point, we can add the concepts of
composition tag and composition interface and be able to display them in the diagrams.

CBPF to HCPN transformation:

In order to perform the behavioural verification of business process fragments and to have
access to the different verification capabilities provided by CPN Tools, presented previ-
ously, business process fragments need to be transformed into hierarchical coloured Petri
nets. This activity is performed by the CBPF to HCPN modules, which implements
a model-to-model tranaformation between the CBPF and HCPN languages using model
transformation approaches.

The transformation implements the mapping between CBPF and HCPN which was already
defined in Section 4.4.2. The model transformation we proposed was described as a series
of mapping rules or mapping templates that translate the elements defined in the abstract
syntax of the CBPF language into equivalent constructs in HCPN. As CBPF is much
bigger than HCPN in terms of size and number of elements, the mapping will usually not
be 1-to-1, but in most cases a CBPF language element will be translated into an equivalent
set of HCPN elements (a HCPN construct). The mapping templates proposed range from
simple 1-to-1 ones, to more complicated.

The model-to-model transformation is defined using ATL (ATL Transformation Language)
9 ATL is a model transformation language and toolkit. In the field of Model-Driven Engi-
neering (MDE), ATL provides ways to produce a set of target models from a set of source
models. Developed on top of the Eclipse platform, the ATL Integrated Environnement
(IDE) provides a number of standard development tools (syntax highlighting, debugger,
etc.) that aims to ease development of ATL transformations.

ATL provides a way to produce a number of target models from a set of source models. An
ATL transformation program is composed of rules that define how source model elements
are matched and navigated to create and initialize the elements of the target models.In
other word, ATL introduces a set of concepts that make it possible to describe model
transformations.

The ATL language is a hybrid of declarative and imperative programming. The preferred
style of transformation writing is the declarative one: it enables to simply express mappings
between the source and target model elements. However, ATL also provides imperative
constructs in order to ease the specification of mappings that can hardly be expressed
declaratively. An ATL transformation program is composed of rules that define how source
model elements are matched and navigated to create and initialize the elements of the target
models. Besides basic model transformations, ATL defines an additional model querying
facility that enables to specify requests onto models. ATL also allows code factorization
through the definition of ATL libraries.

Some simple example of mapping rules defined with ATL for the CBPF to HCPN model
transformation are presented in the following.

Figure 6.21 presents the ATL rule that maps the Composable business process fragment
objects into Petri Net objects. A matched rule enables to match some of the model
elements of a source model, and to generate from them a number of distinct target model
elements. It can be noticed that each rule has a unique name. We then need to define the

? http://www.eclipse.org/atl/

6.3. Tool support 217

1 rule ComposableBusinessProcessFragment2PetriNet {

2 from

3 cbpf : MM-CBPF ! Composable business process fragment
4 to

5 pn : MMHHCPN ! Petri Net (

6 name <— cbpf.title

7)

s}

Fig. 6.21: CBPF to HCPN tranformation using ATL: mapping the root elements

1 rule CBPFObject2PetriNetElement {

2 from

3 Cobj : MM-CBPF ! CBPF Object

4 to

5 PNelem : MMHHCPN ! PetriNet element (
6 id <— Cobj.id

7 name <— Cobj.name

s)

o}

Fig. 6.22: CBPF to HCPN tranformation using ATL: mapping CBPB objects into HCPN
elements

source element of the mapping: in our case, it is the Composable business process fragment
meta-class belonging to the CBPF metamodel. Then we define the target element of the
mapping: the Petri Net meta-class belonging to the HCPN metamodel. 1t is at this level
where we also need to define which are the values of the newly created element, by mapping
them to their corresponding attribute from the source model. In our example, the name
attribute of the Petri Net element is the same with the title attribute of the Composable
business process fragment element.

Another transformation example is presented in Figure 6.22, where an ATL rule is presented
that transforms CBPF objects into PetrilNet elements. The mapping rule is similar to the
previous one.

CPN Tools:

CPN Tools [JKWO0T7] provides an environment for editing and simulating HCPN models,
and for verifying their correctness using state space analysis methods. CPN Tools com-
bines powerful functionalities with a flexible user interface, containing improved interaction
techniques, as well as different types of graphical feedback which keep the user informed
of the status of syntax checks, simulations, etc.

CPN Tools basically consists of two components: a graphical editor and a simulator dae-
mon. The editor allows users to interactively construct a CPN model that is transmitted
to the simulator, which checks it for syntactical errors and generates model-specific code
to simulate the CPN model. The editor invokes the generated simulator code and presents
results graphically. The editor can load and save models using an XML format. A snapshot
of the CPN Tools interface is presented in Figure 6.23.

One of the main features of CPN Tools is to allow users to create and edit HCPNs in an
easy, fast and flexible manner. While a net is being edited, CPN Tools assists the user in
a number of different ways, e.g. by providing a variety of graphical feedback regarding the

218 6. Exemplification of the proposed methodology and tool support

) - March Z006)

¥ Tool box

e Auxiliary Stace space Simulation Visw
b Create Enter
e Hisrarchy ss @
» Monitoring |
PNet Bindero ‘g B,
»Simulation . Page 3N
»State space
»Style
e View
= Hzlp
= Options PH,a{(‘) —
¥ DningPhilosophers.cpn 4 Think Liph(1)++
Stap: 0 1 ph{2)++
Time: 0 PH 1'ph{3j++
»Options P ;’ ggg;++
b History -
vDeclarations
Take ;
vyvaln=75; ; Chopsticks Chopsticks{p)
vcolset PH = index ph with 1..n;
vcolset CS = index ¢s with 1..n;
vvarp: PH; P
¥ fun Chopsticks(ph(i)) = | P A 4 CS.all()
1" csfi) ++ 17 cs(if i=n'then 1 else i+1); Unused Se. 1
»Monitors Eat Chapsticks,™
Page PH -
p
4
Put Down Chopsticks!
Chopsticks 2 i
e ———

= -

Fig. 6.23: Screen-shot of CPN Tools interface

6.3. Tool support 219

syntax of the net and the status of the tool, or by automatically aligning objects in some
situations. The syntax of a net is checked and simulation code for the net is automatically
generated while the net is being constructed. Create tools are used to create HCPNt
elements. All net elements can be created using palettes, tool-glasses and marking menus.
Style tools can be used to change the style of any net element. View tools are used to define
groups and to zoom in and out on a page. Hierarchy tools are used to create hierarchical
CP-nets.

Another important feature of CPN Tools is its support for syntaz check and code generation.
The users invoke syntax checks explicitly, either through a command in a menu or through a
switch to the simulation mode. In response to requests from users, this explicit syntax check
has been eliminated, and CPN Tools instead features a syntax check that automatically
runs in the background. Code generation is connected to the syntax check. When portions
of a net are found to be syntactically correct, the necessary simulation code is automatically
generated incrementally.

Simulations are controlled using the Simulation tools. The basic functionalities offered
are: rewind (returns the net to its initial marking), single-step tool (causes one enabled
transition to occur), play tool (will execute a user-defined number of steps). Simulation
feedback is updated during the syntax check and during simulations. Green circles indicate
how many tokens are currently on each place, and current markings appear in green text
boxes next to the places. Green halos are used to indicate enabled transitions.

CPN Tools also contains facilities for generating and analysing full and partial state spaces
for CP-nets. The provided state space tools are: EnterStateSpace tool (is used first to
generate net-specific code necessary for generating a state space), CalcSS tool (generates the
state space), CalcSCC tool (calculates the strongly connected component graph of the state
space). Two tools exist for switching between the simulator and a state space. Standard
state space reports can be generated automatically and saved using the SaveReport tool.
The first step when conducting state space analysis is usually to ask for a state space report,
which provides some basic information about the size of the state space and standard
behavioural properties of the CPN model. The state space report provides the following
information:

o State space statistics telling how large the state space is: number of nodes and arcs.
We also get statistics about the SCC-graph;

o Information about the boundedness properties: best upper integer bound, best lower
integer bounds, best upper multi-set bound and best lower multi-set bound;

o Home properties tell us about the existence of home markings;

e Liveness properties contain information about dead markings, dead and live transi-
tions;

The aim of generating a state space is to check whether the considered model has certain
properties. Some standard queries are relevant for many models, so CPN Tools supports
that the results of the standard queries are automatically saved in a textual report.The
user may also want to investigate properties that are not general enough to be part of the
state space report. For this purpose a number of predefined query functions are available in
CPN Tools that make it possible to write user-defined and model-dependent queries. CPN

220 6. Exemplification of the proposed methodology and tool support

Tools provides a general query language called the CPN ML programming language, based
on the Standard ML language, for writing such generic or model specific queries. Query
functions are typically used in auxiliary boxes, alone or as part of a larger ML expression.
The box is evaluated by means of the ML Evaluate command. CPN Tools additionally
contains a library that makes it possible to formulate queries in a temporal logic.

Using CPN Tools, several behavioural properties, presented in Section 5.3, can be verified.
We present in the following how this is done using CPN Tools:

o Reachability of end events: we simply need to apply either the Reachable’ or the
SccReachable’ functions, using the id of the start place as first parameter (usually 1)
and the id of the last node as second parameter:

Reachable’ (id — nodesyary, id — nodeepq)

e Proper completion of a business process fragment: in order to verify our property,
we can simply use a combination of the home and dead marking query functions
described above. For example, the simplest solution would be to first apply the
HomeMarking function with the id of the last node as parameter, then apply the
DeadMarking function with the same id as parameter:

HomeMarking (id — nodeeng), DeadMarking(id — nodeepq)

However, if any of the two queries performed returns false, then the property is
broken. They need to both be true in order for the property to be valid. Moreover, if
the ListDeadMarkings function is used and it returns a list that contains more that
the id of the end event, then a problem has been detected, as the marking of the end
place needs to be the only dead marking in the net.

e Reachability of composition interfaces: the verification is actually done in two steps:
first, based on the mapping, we determine the id for which we need to check the
reachability (the place that follows the tagged transition as described above). Then
we can apply the Reachable or Reachable’ query functions with the id of the start
node as parameter and the id determined in the first step as second parameter:
Reachable(id — nodegiart, id — nodeserched)

If the function returns true as a result, then we know that the tagged flow object
for which we are performing the verification can be reached from the start event.
However, for the property to be valid, it is required that this verification is true for
all the flow objects that are part of the composition interface of a business process
fragment.

o Absence of dead tasks: to verify that a business process fragment has no dead tasks,
we can simply apply the ListDeadTIs function of the corresponding HCPN and check
that the result returned by this query function is an empty list. In case the list
returned as a result is non-empty, we know that the property is not satisfied.

e Deadlock-free business process fragment: in order to verify that a business process
fragment is deadlock-free, we can simply apply the ListDeadMarkings query function
on the corresponding HCPN. In order for the property to be fulfilled, the function
has to return a list that only contains the last place of the net. In case the result
returned is an empty list, then the property is satisfied but the Proper completion
property is broken. If the result contains more elements, then the deadlock-freedom
property is broken and we have identified the places in the net where the deadlocks
occur.

6.3. Tool support 221

Scheduler:

During the application engineering phase of the methodology, there is the need to create
a composition workflow that gives the order in which the model compositions, in our case
aspect weavings, will be performed. Moreover, the composition workflow needs to be parsed
(interpreted), as this information is required by the weaver component. This functionality
is provided by the scheduler module.

The weaving of aspects can raise potential conflicts; to deal with this, and because the
order in which aspects are applied to a model can greatly influence the final result of a
weaving, aspects need to be applied in a specific order. To facilitate this, a Scheduler
module is issued, to manage, in an ordered and non-conflicting manner, the execution of
both the join point detection and the weaving process itself, instead of having the user call
the weaving process, one aspect at a time. The manner in which the Scheduler does this is
by controlling the input files that are fed to the join point detector and by retrieving the
output of the Weaver for re-processing, until all aspects have been processed and a final
result has been achieved.

This modules is based on the part of the CBPF language that offers support for product
derivation specification, already presented in Section 4.2.4 in Figure 4.9. The scheduler
is actually a small domain specific language designed specifically for creating composition
workflows. The language allows to define the following components:

o Fragment place-holders: for the composition workflow, business process fragments
are seen as black boxes, we are not interested in their internal representations;

e Operators: the goal of the composition workflow is to specify the exact order in which
process fragments are composed. It is essential to to be able to represent the different
types of business process composition operators that can be applied;

e Connectors: we need to be able to represent the sequencing/flow of elements in the
composition workflow.

A small graphical editor provides a simple palette that has graphical representations for
all the above-mentioned components.

Fragment to aspect adapter:

This module of the SPLIT tool suite aims to transform a business process fragment (that
may contain composition interfaces), in conjunction with a composition operator, into an
aspect that can be processed by the Weawver plugin. The Fragment to aspect adapter module
was developed by the Centre de Recherche Public ¢ Gabriel Lippmann in the context of
the SPLIT project.

The Fragment to aspect adapter module is an Eclipse plugin intended to be used in SPLIT
tools suite. It is dedicated to business process fragments but can also be used with standard
BPMN models. We have seen previously that in SPLIT tools suite, the composition of
business process fragments is performed by means of aspect weaving. Because the Weaver
module deals only with aspects, it is necessary to have a module that transforms business
process fragments into aspects. Thus, the precise purpose of the Fragment to aspect adapter
is to transforms a list of annotated business process fragments (used in conjunction with a
composition operator for each fragment) into a list of aspects that conform to the Aspect
Model defined in the Weaver.

ATL language is a hybrid of declarative and imperative programming. An ATL transformation
program is composed of declarative rules that define the mapping between source and target
models. When mapping is too complex to be performed declaratively or to ease programming,
imperative constructs are possible.

222 6. Exemplification of the proposed methodology and tool support
5 Module architecture
The architecture is based on the composition operators.

Transformer
(ATL)

A

BPMN Advice
+
BPMN Pointcut

Aspect

Y

Fragment processor Fragment processor Fragment processor
Sequential Refine aEE Parallel

A

Annotated Fragment

Aspect list

Y

AspectSelector entry point

List of (Annotated
Fragment +
compaosition operator)
Aspect list

Figure 5 AspectSelector architecture
6.24: Architecture of the Fragment to aspect adapter module
5.1 AspectSeIector‘ entry point

Input of the AspectSelector is a list of annotated fragment with their corresponding chosen

composn:lon operator
The input and output data of this module are models that are conforms to their respective

metamodels. The metamodels used in the Fragment to aspect adapter are conforms to
is an aspect

aspect adapter
is to generate a business process fmgment advice and a business process fragment pointcut,
then link them together through a morphism and finally run a CBPF to AspectModel
transformation using the Atlas Transformation Language (ATL).

The mapping between flow objects of the advice and flow objects of the pointcut is a
morphism denoted g-morphism. This information is needed by the weaver because it
acts as weaving instructions between the fragment and the base model. G-morphismd is
represented by an identifier put on any flow object. The identifier is added in CBPF as
an extended metadata. The extended metadata chosen is an EAnnotation, part of Ecore
model (package org.eclipse.emf.ecore. EAnnotation). EAnnotation is a key/value pair. The
Fragment to aspect adapter use the string "AspectSelectorGMorphismID" as key and the
g-morphism identifier as value.

The module also proposes a mapping between CBPF and AspectModel, performed by the
ATL engine thanks to a given ATL language file. For each elements generated in the
Aspect, some properties (AspectModel Propertie) are added like a unique identifier.

The overall architecture of the Fragment to aspect adapter module is presented in Figure

RPNALIANL NSRRI NI I VANTEL JERTEIAIIANE S SIEAELNL N Aty IS SR . Sl R,
Upon completion of the join point detection, an interface model is created, with the listing
of all join points detected; to be processed in the next stages.
The format of this output is fixed by the meta-model presented in Figure 14, where a match
is created for each j Jom point detection, and is then comprised by all the pairings between the

models it is not poss1ble to view in the figure the references of each pair, to the base and aspect
model elements.

El JoinPoint . hasMatches B Match hasPairs B Ppair

0.* | 0..*

Figuts 44: Join Boint meta-mode]

As a test module, the specific manner in which the detection occurs and what tools are
used can be changed, by replacing the module, as long as the new module l_‘prov1des an output

corglgﬁian{tvﬁthatgﬁg ﬁfét%lﬁfiﬁ‘éili%égé% ea’f)ﬁﬁf’?éﬁﬁil ﬂyosed in for the CBPF language. The

input of the AspectSelector entry point is a list of annotated fragments with their cor-
spowfuﬁ; fhosen (omposmou operator. The AspectSelector selects the right fragment
pxoce%sol A Pvagment processor exists for each composition operator. The AspectSelector
In tdteiWedter apodyle cthefoatpattof diventoihPeitth desecheory preserssed:. il Seetivap el .k is
prouesset] ito téxeeritpseathmpeavingbf dhiemdyict fiethenbagarmodalh the name of the Aspect-
SFhe tmapnekapewhich the weaving takes place is done according to the strategies stated in

Se%n f%u4also see that t ere e 15&\% set of fm it ewf pm(£SSOTS, whele each Qnﬁ is dedjcateq

e out epver Im complete mo eg fcan ither e “the

oub o8t mu op u dsa)umh?%s PrOCEss 1111 a dv ce rom thie anno-
%mf e sul]] (i eaviI to 1P egrate new as ec}s {1 ElOf: een woven
ed aguwut € busIness proceaa raguien ACE 1S a Ccop) (He antiona ragiment

Vel from which some composition interfaces are removed and some business process fragment
elements are removed and/or added. G-morphism identifiers are generated and put in the
advice. After the built of advice, it builds alBusiness process fragment pointcut. The last
step is to call the transformer with generated advice and pointcut. Custom fragment pro-
cessors (composition operators) can be added to the Fragment to aspect adapter module.

It is possible by modifying the sources.

For some compositions, the processor needs to generate multiple advices for one fragment.
That’s why the processor could return a list of aspects. But in some cases, it needs to
generate multiple pointcuts for one advice: in this particular case, the weaver will have
to deal with the first aspect, and, if a join-point is found, it has to discard other aspects.
To reflect this situation, the AspectSelector doesn’t return a list of aspects but a list of
aspect choices, each one is the list in which the weaver has to deal with no more than one
matching aspect in the model.

Model composer module:

This module deals with the composition of business process fragments for obtaining the
end result of the proposed SPL methodology. It consists of two separate plugins:

o Model weaver;

e Join point detector.

In the SPLIT tool, the model composition is implemented in terms of aspect model weaving.
For this approach we need to consider first a base model, which for us is a business process
we want to enrich with some aspect. Such an aspect contains a pointcut which gives the
information of where the aspect will connect to in the base model, and an advice, which
gives the the information of what is the contribution of the aspect. To be able to weave the
aspect models into the base model, we also need to specify a pattern of where this weaving
can occur in the base models. This pattern is called the pointcut. Each sub-section of the
base model that is isomorphic to the pointcut is denoted as a join point, and these are the
points where the weaving occurs.

224 6. Exemplification of the proposed methodology and tool support

==lava Class==

== Java Clagess @EDS”WJSHIUGIOHE
@Ac‘ti\ratur Iu.uni lassy. split commaon. EQL
lu.uni lassy. zplit jpd < madule: IEclExecutablebadule
Sf PLUGIN_ID: String < resutt: Object
{)CAC‘tiva‘torO ()cEpsilonStandalone()
@ start(BundleCaortest): vaid chcre.;'teII.-!oduIe().'IEoIExecutabIeModu.fe
@ stop(BundleContesd | vaid i & getSource):String
PyetDefaults) Activator HIEN | of etModers) List=iModels
A @ postProcess() void

@ preProcess()void
["'/_D @ executel) void
e e < executel EolExecutableModule) Ohject
GDetectantandalnne < createEmiModel=tring, String String boolean boolean): Emitodel
u.uni Jas=y.split jpd EOL <» createEmthodel=tring, String String, String oolean baolean). Emfiodel
< cresteEmfModelBy URICSting String, String boolean hoolean) Emthodel
< cresteEmfModelBy URICSting String, String String hoolean boolean) Emfiode]

< getFile(String) File

4 madel: String
4 metabdadel; String
& modeld2; String

C}C DetectarStandalone()
@ main(String[[): void [
@ crestedodule]) EolExecutableModule

@ gethodel=(): List=IModel=
@ getSource() String & JonPointDetector()
@ postProcess()void @ execute=String, String String) Object

==lava Class==

(2 JoinPointDetector

lu.uni lazsy.splt jpd handler

Fig. 6.26: Class Diagram of the Join Point Detector Module

The Join point detector plugin is responsible for detecting the join points of a single aspect
in the base model, according to different detection policies. Upon completion of the join
point detection, an interface model is created, with the listing of all join points detected;
to be processed in the next stages. The format of this output is fixed by the meta-model
presented in Figure 6.25, where a match is created for each join point detection, and is
then comprised by all the pairings between the base and pointcut models, that produce
the match. Because they are references to external models it is not possible to view in the
figure the references of each pair, to the base and aspect model elements.

The class diagram for the main Join Point detection Plug-in is presented in Figure 6.26.
In it, we can see the DetectorStandalone class that invokes the EOL interpreter, which
inherits from EpsilonStandalone, a class based on the launching EOL from Java. The
JoinPointDetector class serves as the interface of the module, providing the operations
that should remain in alternative implementations of the Join Point Detection Module.

In the Weaver plugin, the output of the Join Point detector is processed to execute each
weaving of the advice in the base model. The manner in which the weaving takes place is
done according to the strategies stated in [MKKJ10]. The output generated by the weaver
is a complete model, which can either be the final model or be subject of further weaving,
to integrate new aspects that have not been woven yet. The weaver proposed in the SPLIT
tool suite is a generic model weaver. This means that any type of model can be used as
input for the weaver. However, in the context of this thesis, it is used with business process
fragment models.

The design of the Weaver plugin is much like the one for the Join Point Detector, as it
can be seen in Figure 6.27. It is composed of a class that invokes the EOL interpreter, in
this case the class WeaverStandalone, who also inherits from EpsilonStandalone, and an

6.3. Tool support 225

==lava Class==

GHEpsilonStandalone

lu.unilassy.split.commeon. EOL

==Jdava Clags==
(2 Activator
lu.uni lassy.split. weawer

SFPLUGIN_ID: String

& module: [EclExecutableModule
& result: Ohject

@ Activator)

L |
EpzilonStandalone
© starttBundieCartet) void orF 0
& stop(BundleCantest): vaid @' cregteModuiel) iEoiExec itab/e Moduse
L N

-pluigin & petSi St
P yetDetaul() Activator ip ¢ @ getSaures():String

A o' getMadeist):ListziMadels
@ postProcess() void
@ preProcess()void

@ executel): vaid
F//J‘? 2 executel|EolExecutableModule’ Ohject
T E— 2 createEmiadel] String, String String boolean boolean): Emfodel
GWeauerstandalune 2 createEmthadel] String, String String, String boolean boolean): Emfkodel
I uni Jassy.split weaver EOL = createEmthdadelByURI S ring, String String boolean boolean).Emthodel

2 cresteEmftade By LRI String String String, String boolean hoolean). Emfiiacel
< getFileString): File

& model: String
& metadlodel: String
4 model02: String

{;B\NeaverStandalone()
@ maingString[]); woid
@ crestedodule]) IEclExecutabletodule

==lava Class==

[®Weaver

lu.uni lassy.split.weawver handler

@ getSource): String {.-DWeaver()
@ getdodels(): List=IMadel= @ executel String, String String String, String, String): Ohject
@ postProcess()void @ executeString String String): Ohject

Fig. 6.27: Class Diagram of the Weaver Module

==lava Clagsss == lava Classss ==lava Clagg==
(9 Activator (B Core (5 RunWeave
interface class efrtbsissmyodule, in this casetheitWeaver| clasgshunilassy.spit.oors handers

SFPLUGIN_D: String r—— JETpT—)
f;@ﬁ;ﬁ(gﬁ%%%?%%&t%‘}%}éles L%ggg;ﬁgﬁg}ﬂ tool suite.

This concly des iR presentation
@ start(BundleCortext): void @ exectﬂe(ExechonEverﬂ}Object

@ stop(BundleContext) vaid .
-plugin

@ getDefaulty) Activator
= ’:..1

o

7. PERSPECTIVES

Abstract

This Chapter describes possible improvements and extensions to the contri-
butions of this thesis. Some of these extensions may be applied in the short term,
whereas others may imply to explore new research areas. This chapter is divided
in three parts: the first one focuses on extending the CBPF language with a set
of composition operators; the second one addresses the use of aspect oriented
techniques and in particular aspect weaving for composing business processes;
the last part discusses the modelling of data fir business process fragments and
its implications.

7.1 Defining composition operators for the CBPF language

One of the main contributions of this thesis is the CBPF language for modelling and
composing business process fragments, presented in Chapter 4. CBPF was designed as the
language support for the SPL methodology that we propose and presented in Chapter 3.
It is created specifically for modelling composable business process fragments. A model
driven approach is then followed for creating and specifying the CBPF domain specific
language: abstract syntax, graphical concrete syntax and semantics definition.

The abstract syntax of the CBPF language is defined using a meta-model that specifies
the components of the language and their relations in a concise manner. An important
part of this meta-model is dedicated to presenting the support and concepts that CBPF
offers for composing business process fragments. Thus, we introduced a set of binary
composition operators: they take two business process fragments as input and produce a
single process fragment as output of the composition. However, the composition operators
that we proposed are only described at a hight level of abstraction. We present in general
what each operator should do, define the necessary requirements that must be fulfilled for
applying it, provide a textual notation for it and explain how the composition interfaces
of the result are obtained.

We propose to extend the CBPF language specification and formally define the composi-
tion operators that we initially proposed. This allows to specify in a formal manner the
syntax of each composition operator. It will also facilitate the exact understanding of how
each operators behaves and which are the exact operations performed when applying that
specific operator. Adding such a specification of the composition operators will enable the
user to have a business process view of the composition. This means that the user will
now be able to take two business process fragments as input, apply to them a particular
composition operator and obtain a concrete business process fragment as a result.

This extension can be either be used individually, for composing different business process
fragments using the proposed composition operators, or it may be used together with the

7.1. Defining composition operators for the CBPF language 227

SPL methodology that we proposed in this thesis. During the last step of the methodology
presented in Chapter 3, called the product derivation specification, we created a composition
workflow which described which business process fragments need to be composed, in which
order and using which specific composition operators. Thus, this composition workflow is
also a high level and concise representation of the business process that we want to derive
using the methodology. If the language extension is applied and a formal specification
of the composition operators is available, we can also extend the methodology in the
following manner: starting from the composition workflow, we parse it and apply all the
composition operators in the order indicated in the workflow. The final result of this
sequence of compositions is a new business process fragment which defines the behaviour
of the product that we are deriving. Thus, it is now possible to have a business process view
of the product that we are deriving. It is up to the user of the methodology is he wants to
stop the derivation process at the level of the workflow as final product specification, or ha
wants a more detailed and business process oriented view, in which case he can practically
apply the operators.

Moreover, the specification of the composition operators at the level of business process
fragments opens another interesting and challenging research perspective. In the presenta-
tion of the CBPF language from Chapter 4, the semantics of the composition operators was
formally defined using a translational approach in terms of equivalent Petri net composition
operators. All of the CBPF composition operators were mapped onto equivalent HCPN
composition operators, which have a clear and well understood semantics. However, in
this section we propose a new formalization of the CBPF language and of its composition
operators using a set-based specification. The research question that implicitly arises is
how can one prove that these two specifications are equivalent and lead to the same result.
We thus need to prove that these two definitions of the composition operators lead to the
same results when applied to the same business process fragments.

Using the approach presented in Chapter 4, given two business process fragments (CBPF)
and (CBPF3), in order to compose them using one of the proposed composition operators,
we first need to apply the model-to-model transformation that was also proposed and
obtain equivalent HCPN models. Then, the corresponding Petri net composition operator
is applied for composing these HCPN models. Using the approach proposed in this section,
we can directly apply the CBPF composition operator onto the (CBPF;) and (CBPFs)
business process fragments. However, the challenge is to prove the equivalence of these
two results. This needs to be done in a general case, for any two input business process
fragments and for all of the proposed composition operators. This is a challenging and
difficult task that we propose to address in the future.

In order to present the formal specification of the CBPF composition operators, we first
need to choose an appropriate formalism in which the specification will be created. In our
case, we propose to use a set-based mathematical specification. In a first step, we therefore
propose a set-based specification of the CBPF abstract syntax. As the abstract syntax of
the CBPF language was initially defined using a meta-model, it is quite straight-forward to
obtain a set-based specification from it. Once this is done, we can start to formally define
the set of composition operators that were proposed using the same set-based formalism.
These two steps are presented in detail in the following sub-sections:

228

7. Perspectives

7.1.1 DMathematical specification of business process fragments

We want to provide a formal specification of the composition operators, in order to avoid
any ambiguities in their definition. That is why we start by introducing a set-based for-
malization of the abstract syntax of business process fragments. This formalization will
then be used for defining the functioning of the proposed composition operators.

Definition: We define the following notations for business process fragments:

Let O be the set of all objects that appear in all business process fragment diagrams
Let F be the set of flow objects for all business process fragment diagrams: F C O
Let A be the set of activities for all business process fragment diagrams: A C F

Let & be the set of events for all business process fragment diagrams: € C F
Let G be the set of gateways for all business process fragment diagrams: G C F

The set of flow objects is partitioned into disjoint sets of activities A, events £, and

gateways G: F=AUEUG

The set of events is partitioned into disjoint sets of start E;, intermediate &;, and end
events Eg: £€=E,UE UE,

The set of gateways is partitioned into disjoint sets of parallel G,, exclusive G,
inclusive G;, and complex gateways G.: G =G, UG, UG; UG,

The set of activities is partitioned into disjoint sets of tasks T and sub-processes SP:

A=TUSP
Let Ar be the set of artifacts for all business process fragment diagrams: Ar C O

The set of artifacts is partitioned into disjoint sets of data objects DO and composition

tags CT: Ar =DOUCT

Let S be the set of swimlanes for all business process fragment diagrams: S C O

Using these notions, we propose the following definition for a business process fragment:

Definition: A business process fragment is a tuple BP (F, S, Ar, SF, MF, AS) where:

F s the set of flow objects of the business process fragment process, with F C F
S is the set of swimlanes of the business process fragment process, with S C S
Ar is the set of artifacts of the business process fragment process, with Ar C Ar
SF C F x F defines a sequence flow relation between flow objects

MF C EUA X EU A defines a message flow relation between events or activities

AS C F x Ar defines an association relation between flow objects and artifacts

For a business process fragment as defined above, we also have the following relations:

7.1. Defining composition operators for the CBPF language 229

e The set of flow objects F' is partitioned into disjoint sets of activities A, events £,
and gateways G:
F=AUFEUG,where ACAECE, G CG;

e The set of artifacts Ar is partitioned into disjoint set of data objects DO and
composition tags CT:
Ar=DOU CT, where DO CDO,CT CCT

e The et of composition tags CT is partitioned into disjoint sets of input CT; and
output CT; composition tags: CT = CT; U CT,

Moreover, we also define predecessor and successor functions for flow objects, which will
also be used later for the specification of the composition operators. The predecessor
function returns the flow object connected by an input sequence flow relation with the flow
object on which the function is applied. Similarly, the successor function returns the flow
object connected by an output sequence flow relation with the flow object on which the
function is applied.

Definition: For a business process fragment BP we define the following functions:

o Let pred : F — F,pred(z) |(y,z) € SF'}
T

={y
o Let succ: F — F,succ(z) = {y|(z,y) € SF}

We also define a tagging function that returns the composition tag of a flow object, if it
has one

Definition: For a business process fragment BP, we define the tagging function as:
o Tag: F — CT, where FF C F

We can now formally define the concept of composition interface of a business process
fragments:

Definition: The composition interface of a business process fragment is I = ;U ,, where:

o [; is the input composition interface: I; = {z|z € F, Tag(z) € CT;}

o [, is the output composition interface: I, = {z|z € F, Tag(z) € CT,}
Finally, we can now formally define the notion of composable business process fragment,
used as input for our composition operators:

Definition: A composable business process fragment is a tuple

CBPF = (F,S,Ar,SF,MF,AS, I, Tag), where (F, S, Ar, SF, MF, AS) defines a business
process fragment, Tag is a tagging function returning the composition tags of flow objects,
and I is the composition interface of the fragment.

For a composable business process fragment, we define the following auxiliary functions:
e out : CBPF — E.,out(BP) = {e|Tag(e) € CTi,},E. = E N &, returns the end
events of a process tagged with an output composition interface.

e in : CBPF — E.,out(BP) = {e|Tag(e) € CTout}, Es = E N E; returns the start
events of a process tagged with an input composition interface.

230 7. Perspectives

7.1.2 Proposed composition operators

All the composition operators we propose are binary composition operators: they take two
business process fragments as input and produce a single process fragment as output of
the composition.

For all the composition operators that will be presented, we use the following notations:

e Let CBPFy = (Fy, S1,Ari, SFy, MF1, ASy,) and CBPFy = (F2, S, Ary, SFo, MF5, ASs, I5)
denote two composable business process fragments used as input for the composition
operators.

o Let CBPFes = (FT€S7 Sress ATres, SFres, MFres, ASres, Ires) denote the result of apply-
ing a composition operator.

Sequential composition operator:

Definition: Let CBPFl == (Fl, Sl, A’I“l, SFl, MFl, ASl,]1) and

CBPFy = (F3, 52, Arg, SFy, MF5, ASy, I3) be two business process fragments. The result
of applying the sequential composition operator on the process fragments (CBPF;) and
(CBPF,), denoted seq(CBPF;, CBPFy), is a new business process fragment

CBPFes = (FT857 Sres, ATres, SFres, MFres, ASres, Ires) where:

e The flow objects of the result contain the union of the flow objects from the input
models, from which we remove the end event of CBPF; tagged with a composition
interface, and the start event of CBPFj:

Fres = F1 U Fy \ {out(CBPFy),in(CBPFs)}

e For the resulting sequence flow, we need to disconnect and from the initial models,
then connect together the remaining process fragments:
SFres = SF1USFo\{(pred(out(CBPF)), out(CBPF)), (in(CBPFy), succ(in(CBPF))) YU
(pred(out(CBPFY)), succ(in(CBPFy)))

e The swimlanes, artifacts, message flow and associations of the result are the union
of their counterparts from the input processes:
Sres = Sl U 52
Arpes = Ary U Ary
MFyes = MF1 U MFy
ASpes = AST UAS,

e The composition interface of the result is the union of the interfaces of the input
models, from which we need to remove and :

Les = 1; 1 \ {out(CBPFl)} Ul_o \ {m(C’BPFQ)}
The general functioning of the operator is graphically depicted in Figure 7.1.

Parallel composition operator:

Definition: Let CBPFl = (Fl, Sl, A’I“l, SFl, MFl, ASl, Il) and
CBPFy = (F3, 52, Ara, SFy, MFy, ASs, I3) be two business process fragments. The result

7.1. Defining composition operators for the CBPF language 231

4 @ J N
<<input>> Es1 <<input>> Es2
CP p ? .
A (o
-+ _ =+ D, Sequen ial
composition B
&)
4 N\
B D /; ;\
m " m J/ C
<<output>> Ee1 <<output>> Ee2 D
<<output>> Ee2
\. J

Fig. 7.1: Sequential composition operator for business process fragments

of applying the parallel composition operator on the process fragments (CBPF1) and
(CBPF1), denoted par(CBPF1, CBPF2), is a new business process fragment
CBPFr‘es = (Fmsa SresaATres’ SFresa MFH:S:ASms’ Ires) where:

e The result contains the union of all activities from the input process fragments:
Apes = A1U A2

e The result contains the union of the events of the two input process fragments, from
which we need to remove the start events of CBPF; and CBPFs and their end events
tagged with composition interfaces, then add a new start and end event:

Eres = E1UE\{in(CBPF1), out(CBPF1),in(CBPF2), out(CBPF2) }J{start,cy, endpey },
where E1 C F1, E2 C Fo, startyey € Es, endpew € Ee

e To obtain the gateways of the result, we take the union of the gateways of the input
process fragments and add two new gateways, a splitting parallel one and a merging
parallel one:

Gres = G1U Ga U {g1, g2}, where G1 C F1, G2 C F2 and g1,92 € G,

e The sequence flow of the result is obtained from the union of sequence flows of the
input fragments, from which we first need to disconnect the start and end events,
then connect the new start and end events to the newly introduced gateways, then
finally connect these gateways to the remaining parts of the input process fragments:
For simplicity and to improve the understanding, we use the following notations:
in1 = in(CBPF1),in2 = in(CBPF2), out1 = out(CBPF1), outz = out(CBPF2)
SFpes = SF1USF2\{(in1, succ(in1)), (pred (out1), out1), (in2, succ(in2)), (pred (out2), outz) }U
{(startpew, 1), (92, endnew) (91, suce(ini)), (g1, suce(in2)), (pred (outz), g2), (pred (out1), g2) }

e The swimlanes, artifacts, message flow and associations of the result are the union
of their counterparts from the input processes:

632 e] 7. Perspectives

<<input>> Es1 <<input>> Es2 C) <<input>>Es_new

? 9 &

' N
+ J 0o
+ _ + J c
Parallel e i
p N Composition
B D A 4 A
B D
-+
<<output>> Ee1 <<output>> Ee2 I
<<output>>Ee_new
. J

Fig. 7.2: Parallel composition operator for business process fragments

Sres = S1U So

Arpes = Ari U Aro
MF,.s = MF1U MF>
ASpes = AS1 U ASo

e The composition interface of the result contains the union of interfaces of the input
models, from which we remove the start events and end events tagged with compo-
sition interfaces of CBPFi and CBPF2, and add an output composition tag at the
newly introduced end event and an input composition tag at the newly introduced
start event:

Ires = UL \{in(CBPF1), out(CBPF1), in(CBPF2), out (CBPF2) }U{start,ew, endney }
where start,e, € &, endpew € &,

The general functioning of the operator is graphically depicted in Figure 7.1.

Exclusive choice composition operator:

Definition: Let CBPF1 = (F1,S1, Ar1, SF1, MF1,AS1, 1) and

CBPFy = (F2,82, Arg, SFa, MF3, ASs, I5) be two business process fragments. The result of
applying the exclusive choice composition operator on the process fragments (CBPF;) and
(CBPF,), denoted excl(CBPF1, CBPF3), is a new business process fragment

CBPFres = (Fress Sress Arress SFresy MFreg, ASres, Ires) where:

e The result contains the union of all activities from the input process fragments:

Apes = A1 U A2

e The result contains the union of the events of the two input process fragments, from
which we need to remove the start events of CBPF1 and CBPF2 and their end events

7.1. Defining composition operators for the CBPF language 233

tagged with composition interfaces, then add a new start and end event:
Eres = EAUES\{in(CBPFy), out(CBPF}), in(CBPFy), out(CBPF3) }U{startpew, endnew },
where E1 C Fi, By C Fy, startpey € Es, endpey € Ee

e To obtain the gateways of the result, we take the union of the gateways of the input
process fragments and add two new gateways, a splitting exclusive one and a merging
exclusive one:

Gres = G1 U G2 U {41, g2}, where G; C Fy, Gy C Fy and g1, 92 € G,

e The sequence flow of the result is obtained from the union of sequence flows of the
input fragments, from which we first need to disconnect the start and end events,
then connect the new start and end events to the newly introduced gateways, then
finally connect these gateways to the remaining parts of the input process fragments:
For simplicity and to improve the understanding, we use the following notations:
iny = in(CBPFy), ing = in(CBPF3), out; = out(CBPF;), outy = out(CBPF)
SFres = SF1USF\{(in1, succ(iny)), (pred(outy), outy), (ing, succ(ing)), (pred (outs), outs) }U
{(startnew, 1), (g2, endpew), (g1, succ(ing)), (g1, succ(ing)), (pred(outs), g2), (pred(outy), g2)}

e The swimlanes, artifacts, message flow and associations of the result are the union
of their counterparts from the input processes:

Sres = Sl U 52

Arpes = Arp U Ary
MF,es = MF, U MFy
AS,es = AST U ASy

e The composition interface of the result contains the union of interfaces of the input
models, from which we remove the start events and end events tagged with compo-
sition interfaces of CBPF; and CBPF5, and add an output composition tag at the
newly introduced end event and an input composition tag at the newly introduced
start event:

Les = LULN\{in(CBPFy), out(CBPFy), in(CBPFy), out(CBPFy) }U{startpey, endpey }
where startye, € &, endpey € Ee

The general functioning of the operator is graphically depicted in Figure 7.3.

Choice composition operator:

Definition: Let CBPFl = (Fl, Sl, Arl, SFl, MFl, ASl, [1) and

CBPFy = (F9, S, Ary, SFo, MF5, ASs, I) be two business process fragments. The result of
applying the choice composition operator on the process fragments (CBPF;) and (CBPF}),
denoted cho(CBPF;, CBPF5), is a new business process fragment

CBPFes = (FreSa ST687 A'rreSa SFT'@S; MFyes, ASre57 [res) where:

e The result contains the union of all activities from the input process fragments:
Ares = Al U A2

e The result contains the union of the events of the two input process fragments, from
which we need to remove the start events of CBPF; and CBPF5 and their end events
tagged with composition interfaces, then add a new start and end event:

Eres = EY\UES\{in(CBPFy), out(CBPF}), in(CBPFy), out(CBPF3) }U{startpey, endnew },
where F1 C F, Fy C Fy, startpey € Es, endpey € Ee

7. Perspectives

B
(5l

<<input>> Es1 <<input>> Es2 <<input>>Es_new

T @
L2) (e

B D
= =

P
)
5
+|>

<<output>> Eel <<output>> Ee2

‘ <<output>>Ee_new

Fig. 7.3: Exclusive choice composition operator for business process fragments

e To obtain the gateways of the result, we take the union of the gateways of the input
process fragments and add two new gateways, a splitting inclusive one and a merging
inclusive one:

Gres = G1U Ga U {g1, 92}, where Gy C F1,Go C F and g1,92 € G;

e The sequence flow of the result is obtained from the union of sequence flows of the
input fragments, from which we first need to disconnect the start and end events,
then connect the new start and end events to the newly introduced gateways, then
finally connect these gateways to the remaining parts of the input process fragments:
For simplicity and to improve the understanding, we use the following notations:
mnp = in(C’BPFl), mng = z"n(CBPFz), outy = out(CBPFl), ouly = 011.t(CBPF2)
SFyes = SF1USFo\{(in1, succ(in1)), (pred(out1), outr), (in2, succ(in2)), (pred (out2), outz) YU
{(startyew, g1), (925 endpew)s (g1, succ(ini)), (g1, suce(ing)), (pred(outz), g2), (pred (out1), g2) }

e The swimlanes, artifacts, message flow and associations of the result are the union
of their counterparts from the input processes:

Sres = S1 U S2

Arpes = Art U Aro
MF, ., = MF1 U MF,
AS s = AS1 U ASs

e The composition interface of the result contains the union of interfaces of the input
models, from which we remove the start events and end events tagged with compo-
sition interfaces of CBPF1 and CBPF2, and add an output composition tag at the
newly introduced end event and an input composition tag at the newly introduced
start event:

Ires = UL\ {in(CBPF1), out(CBPF1), in(CBPF2), out (CBPF2) }U{start, ey, endney }
where startpew € 85) endnew S 88

The general functioning of the operator is graphically depicted in Figure 7.4.

7.1. Defining compo@on opgrators for the CBPF language 285
7

O <<input>>Es_new

<<input>> Es1 <<nput>> Es2

N

4 N\
+ _ +‘ J A c
Parallel it it
2 L Composition
B D A 4
i E B D
+ or
<<output>> Eel <<output>> Ee2 O
‘ <<output>>Ee_new
- J

Fig. 7.4: Choice composition operator for business process fragments

Unordered (arbitrary) sequence composition operator:

Definition: Let CBPFy = (F1,S1, Ar1, SF1, MF1, AS1, 1) and

CBPF2 = (F2, 52, Ara, SF2, MF2, AS2, I2) be two business process fragments. The result of
applying the arbitrary sequence composition operator on the process fragments (CBPFi)
and (CBPF1), denoted arb(CBPF1, CBPF2), is a new business process fragment

CBPF o5 = (Fresy Sress ATresy SFresy MFregy ASres, Ines) where:

e We need first to make copies of the activities of CBPF1 and CBPF3. Then, the result
will contain the union of all activities from the input process fragments, together with
the previously created copies of the activities:

Aes = A1 U A2 U A} U A, where AY, A, are exact copies of A1, A2 respectively

e We fist make copies of the intermediate events of the two input process fragments.
The result will then contain the union of the events of the two input process frag-
ments, from which we need to remove the start events of CBPF1 and CBPF2 and
their end events tagged with composition interfaces. We also add the previously cre-
ated copies of the intermediate events. Finally, we add a new start and end event. :

Eres = E1UE\{in(CBPF1), out(CBPF1),in(CBPF2), out(CBPF2) }U{start,cy, end ey }U
Eii U Ei, where E1 C Fi, B2 C Fa, startyey € &, endyew € €., Ei1 = E1NE;, Big =
EsNE; and Ez'{,Ez'é are exact copies of Ei1, Eig respectively

e As before, we first make copies of the gateways of the two input process fragments.
To obtain the gateways of the result, we take the union of the gateways of the input
process fragments, add the previously created gateway copies, then add two new
gateways, a splitting inclusive and a merging inclusive one:

Gres = G1UGoU G{ U GéU{gl,gz}, where G1 € F1,Ga C Fy |, 91,92 € G; and G{, Gé
are exact copies of (G1, G2 respectively

e As before, we first make copies of the sequence flows of the two input fragments.
Then, the sequence flow of the result is obtained from the union of sequence flows of

236 7. Perspectives

the input fragments, together with the previously created copies of sequence flows.
We then need to remove the sequence flows connecting the start and end events, from
both the original fragments and the copies. The next step is to add a new sequence
flow relation connecting the end of the first fragment with the beginning of the sec-
ond. Similarly, we add a new sequence flow connecting the end of the copy of the
second fragment with the start of the copy of the first fragment. The fragments thus
obtained need to be connected with the splitting and merging inclusive gateways.
Finally, the last step is to connect using sequence flow the new start and end events
to the gateways:

For simplicity and to improve the understanding, we use the following notations:
iny = in(CBPF),ing = in(CBPF3), outy = out(CBPF}), outs = out(CBPFy)

SFres = SF1 U SFy U SF{ U SF)\ {(iny, succ(iny)), (pred(outy), outy), (ing, succ(ing)),
(pred(outy), outs), (in], succ(iny)), (pred(out]), outy), (inj, succ(ind)), (pred(outs), outs) }U

{(pred(outy), succ(inh)) }U{(pred(outy), succ(in})) }U{ (g1, succ(in1)), (g1, suce(in})) }U
{(pred(outs), g2), (pred(out{), g2) } U {(startpew, g1), (92, endnew)}

e The swimlanes of the result are the union of their counterparts from the input pro-
cesses:

Sres = Sl U 52

e We make first a copy of the artifacts from the two input processes. The artifacts of
the result are the union of their counterparts from the input processes to which we
add the previously created copies of artifacts:

Arpes = ArpUAr U Ar{ U Ary, where Ar{, Arj are exact copies of Ary, Ary respectively

o We make first a copy of the message flows from the two input processes. The message
flow of the result are the union of their counterparts from the input processes to which
we add the previously created copies of message flows:

MFyres = MFy U MFy U MF{ U MF} |, where MF|, MF} are exact copies of MFy, MFs
respectively

o We make first a copy of the associations from the two input processes. The associ-
ations of the result are the union of their counterparts from the input processes to
which we add the previously created copies of associations:

ASres = AS1 U ASy U AS) U ASy , where AS], AS) are exact copies of AS;, AS;

respectively

e As before, we first make a copy of the composition interfaces of the input fragments.
The composition interface of the result contains the union of interfaces of the input
models, together with the previously created composition interface copies, from which
we remove the start events and end events tagged with composition interfaces of
CBPF,, CBPF,, CBPF},

CBPF}, and add an output composition tag at the newly introduced end event and
an input composition tag at the newly introduced start event:

Iyes = LULULUL\ {in(CBPF,), out(CBPF), in(CBPFy), out(CBPF), in(CBPF)),
out(CBPFY), in(CBPF}), out(CBPF}) YU{startpey, endpey } where startpe, € Es, endpey €
Ee

7.1. Defining composition operators for the CBPF language 237

&)

(; <<input>> Es_new
‘ O g

/

<<input>> Es1 <<input>> Es2
(\. G -+
/
B

[1 —
) D
A c \ +) +)
[+ [+ - Unordered sequence
composiion —_— —
N\ C.
+
B D
5 I -
D
+
<<output>> Ee1 <<output>> Ee2

<

©
6 <<output>> Ee_new

Fig. 7.5: Unordered (arbitrary) sequence composition operator for business process frag-
ments

The general functioning of the operator is graphically depicted in Figure 7.5. At a closer
analysis, this operator is a composed one, which can be replaced by using the sequen-
tial and choice operators together in the following manner: seq(CBPFy, CBPFs) and
seq(CBPF2, CBPF1), followed by a choice composition of those results. Using the notation
introduced, we obtain:

arb(CBPF1, CBPF2) = cho(seq(CBPF1, CBPF2), seq(CBPFa, CBPF1))

Parallel with communication composition operator:

Definition: Let CBPF1 = (F1,S1, Ar1, SF1, MF1, AS1, 1) and

CBPFy = (F2, 82, Ary, SFo, MF5, AS3, I5) be two business process fragments. The result of
applying the parallel with communication composition operator on the process fragments
(CBPFy) and (CBPF;), denoted par C(CBPF1, CBPF5), is a new business process fragment
CBPF o5 = (Fres, Sress Avresy SFresy MFregy, ASres, Ires) where:

e The result contains the union of all activities from the input process fragments:
Apes = A1 U A2

e The result contains the union of the events of the two input process fragments, from
which we need to remove the start events of CBPF1 and CBPFs and their end events
tagged with composition interfaces, then add a new start and end event:

238 7. Perspectives

Eres = E\UE>\{in(CBPF,), out(CBPF,), in(CBPFy), out(CBPF2) }U{startpew, endnew,
where F1 C F1, Fy C Fy, startpey € Es, endpey € Ee

e To obtain the gateways of the result, we take the union of the gateways of the input
business process fragments and add two new gateways, a splitting parallel one and a
merging parallel one:

Gres = G1 U Gy U {gl,gg}, where G; C Fy, Gy C Fs and g1, g0 € Qp

e The sequence flow of the result is obtained from the union of sequence flows of the
input process fragments, from which we first need to disconnect the start and end
events, then connect the new start and end events to the newly introduced gateways.
Finally, we connect these gateways to the remaining parts of the input process frag-
ments:

For simplicity and to improve the understanding, we use the following notations:

iny = in(CBPFy), ing = in(CBPFy), out; = out(CBPFY), outy = out(CBPF5)

SFyres = SF1USFo\{(in1, succ(iny)), (pred(outy), outy), (ing, succ(ing)), (pred(outs), outs) }U
{(startpew, 1), (92, endpew), (g1, succ(iny)), (g1, succ(ing)), (pred(outz), g2), (pred(outy), g2) }

e The swimlanes, artifacts, and associations of the result are the union of their coun-
terparts from the input processes:

Sres = Sl U SQ
Arpes = Ary U Ay
ASyes = AST UAS

e The message flow of the result is the union if the message flows of the input process
fragments to which we add a set of message exchanges between elements from the
two fragments that belong to the same pair in SCE:

MFres = MFy U MFy U {(z,y)|(z,y) € SCE,z € I,1,y € L2} U{(z,y)|(z,y) €
SCE,z € 1,2,y € I;1}

e The composition interface of the result contains the union of interfaces of the input
models, from which we remove the start events and end events tagged with compo-
sition interfaces of CBPF, and CBPF;, and add an output composition tag at the
newly introduced end event and an input composition tag at the newly introduced
start event:

Lyes = LUL\{in(CBPF), out(CBPF}), in(CBPF5), out(CBPF3) }U{startyey, endpey }
where start,ey € Es, endpey € Ee

The general functioning of the operator is graphically depicted in Figure 7.6.

Refinement composition operator:

To facilitate the description of the operator, we use of the following notations: let comp1
be the activity of CBPF) tagged with either and input or output composition interface.

Definition: Let CBPFl = (Fl, Sl, A’f'l, SFl, MFl, ASL [1) and

CBPFy = (F3,S53, Are, SFa, MF5, ASs, I5) be two business process fragments. The result
of applying the refinement composition operator on the process fragments (CBPF;) and
(CBPF}), denoted ref (CBPF,, CBPF3), is a new business process fragment

CBPFyes = (Fres> Sress ATresy SFres, MFres, ASpes, Ires) where:

7.1.

Defining composition operators for the CBPF language 239

—
g)

))
{ :<<i|pu|'>>B 2 <<npu>> Es_new (,
<<output>> Parallel composion
B with conmunicaton
<<input>>
c
<<output>> Ee_2

<<output>> Ee_1

Fig. 7.6: Parallel with communication composition operator for business process frag-

ments

e The flow objects of the result contain the union of the flow objects of the input

process fragments, from which we have to remove the activity from CBPF; tagged
with a composition interface, and also the start event and end event from BP2 tagged
with composition interfaces:

Fres = F1U F2 \ {compl, in(CBPF2), out(CBPF2)}, where compl € F1

The sequence flow of the result is obtained by first disconnecting the tagged activity
from CBPF;, then connecting the resulting upper process fragments to the first flow
object of CBPF9 and the resulting lower process fragment to the last flow object of
CBPFy:

For simplicity and to improve the understanding, we use the following notations:
in1 = in(CBPF1),in2 = in(CBPF2), outi = out(CBPF1), outz = out(CBPF2)

SFpes = SF1U SFa \ {(pred (compl), compl), (compl, succ(compl)), (in2, succ(inz)),
(pred(out2), out2) } U {(pred(compl), succ(in2)), (pred (out2), succ(compl))}

The swimlanes, artifacts, message flow and associations of the result are the union
of their counterparts from the input processes:

Sres = S1 U Sa

Arpes = Ar1 U Aro
MF,.s = MF1 U MF>
ASpes = AS1UAS>

The composition interface of the result contains the union of interfaces of the input
models, from which we remove the tagged activity of CBPF and the start and tagged
end event of CBPFs:

240 7. Perspectives

<<input>>Es_2

1 (O O

A1
+
3 Refinement
Col ition
<<input>>/ B1 oS

<<output>>B

<<output>> Ee_2

N J
Fig. 7.7: Refinement composition operator for business process fragments

Ies = I1 U I\ {compl, in(CBPF2), out(CBPF2)}
The general functioning of the operator is graphically depicted in Figure 7.7.

Synchronization composition operator:

Definition: Let CBPF; = (F4,S1,Ary, SFy, MFy,ASy,1;) and

CBPFa = (F2, 82, Ara, SF2, MF2, AS2, I2) be two business process fragments. The result of
applying the synchronization composition operator on the process fragments (CBPF1) and
(CBPF1), denoted sync(CBPF1, CBPF2), is a new business process fragment

CBPFs = (Fre.s', Sress ATress SFresy MFresy ASres, Ires) where:

e To perform the composition we need to "synchronize" the activities that belong to
the synchronization set Sync. This can be performed in three possible ways. For
each pair of activities from Sync, we can: add a new activity that represents their
synchronization; keep the first element of the pair (the activity that belongs to frag-
ment CBPF1) to represent their synchronization; keep the second element of the
pair (the activity that belongs to fragment CBPF2) to represent their synchroniza-
tion. For ease of use, we denote by SolvedSync the set of activities that have been
synchronized.

The activities of the result are the union of the activities of the input process frag-
ments, from which we need to remove the activities belonging to the synchronization
set Sync and add the ones that represent their synchronization (one of three possible
choices listed above):

7.1.

Defining composition operators for the CBPF language 241

Ares = A1 U A2\ {(z,y)|(z,y) € Sync} U {synci|sync; € SolvedSync}, where z €
A17 /BS AQ;

The events of the result are the union of events of the input models, from which we
remove the start and end events and add new start and end events:

Eres = EY\UEs\{in(CBPFy), out(CBPF,), in(CBPFy), out(CBPF3) }U{startpey, endnew },
where Eyes C Freg, By C F1, By C Fy, startpey € Es, endpew € Ee

To obtain the gateways of the result, we take the union of gateways of the input
models and add several new parallel gateways; their number depends on the number
of elements in the synchronization set Sync:

Gres = G1 U Go U {gi]gi S gp,i =1.2% |Sync\}

When the synchronization set Sync has only one element, it defines two fragments
(above, bellow) on each input process. To obtain the sequence flow of the result,
the above fragments are first composed in parallel using parallel gateways; the same
applies for the below fragments. Then the results thus obtained are composed in
sequence, adding between them a new element that is the merging of the synchro-
nization elements:

For simplicity and to improve the understanding, we use the following notations:

iny = in(CBPFy), ing = in(CBPF3), out; = out(CBPFy), outy = out(CBPF3)

SFres = SF1USFo\{(in1, succ(iny)), (pred(outy), outy), (ing, succ(ing)), (pred (outs), outs),
(pred(actl), actl), (actl, succ(actl)), (pred(act2y), act2y), (act21, succ(act2y))} U
{(startnew, 1), (g1, succ(iny)), (g1, succ(ing), (pred(actl), g2), (pred(act2), g2), (g2, act12),
(act12, g3), (g3, succ(actl)), (g3, succ(act2)), (pred(outr), g1), (pred(outz), g4), (94, endpen),
(startpew, 1) , where Sync = {(actl, act2)}, SolvedSync = {act12},g; € Gp,i =1.4

If the synchronization set has more than one element (|SyncSet| > 1) then to
obtain the sequence flow of the result SFy.; we follow the same procedure, but this
time we also have to compose the process fragment parts created between successive
synchronization elements.

The swimlanes, artifacts, message flow and associations of the result are the union
of their counterparts from the input processes:

Sres = Sl U 52

Arpes = Ary U Ary
MF,.s = MF; U MFy
ASyes = AST U ASy

The composition interface of the result is the union of the ones of the input process
fragments, from which we remove the elements belonging to the synchronization
set Sync, and add an input composition tag on the new start event and an output
composition tag on the new end event:

Lies = L UL\ A{z,yl(z,y) € Sync,z € A1,y € Az} U {startpey, endpey}, where
Tag(startpew) € CT;, Tag(endpey) € CT,

The general functioning of the operator is graphically depicted in Figure 7.8.

Insertion composition operator:

242 7. Perspectives

=)
Es 1 Es 2
(f ™ N

—+ >

]

BB
Synchronization -
<<input>>B \ L <<output>>B' J boson

e) e] N

[+

oy
N

Fig. 7.8: Synchronization composition operator for business process fragments

7.1.

Defining composition operators for the CBPF language 243

Definition: Let CBPF; = (Fl, S1, Ar1, SF1, MFy, ASq, Il) and

CBPFy = (F3,S3, Arg, SFy, MF5, ASs, I5) be two business process fragments. The result
of applying the insertion composition operator on the process fragments (CBPF;) and
(CBPF}), denoted ins(CBPF;, CBPF,), is a new business process fragment

CBPFes = (FT687 Sress ATresy SFres, MFres, ASpes, Ires) where:

The activities of the result are the union of the activities of the input business process
fragments:

Ares = Al U A2

The events of the result are the union of events of the input models, from which we
remove the start event and tagged end event of fragment CBPF5:

Eres = E1 U By \ {Z"fL(CBPFQ), Out(CBPFg)}

To obtain the gateways of the result, we take the union of gateways of the input
process fragments:

Gres = Gl U G2

For the insert before composition: the sequence flow of the result is the union of the
sequence flows of the input process fragments, from which we remove the sequence
flow connecting the tagged activity of fragment CBPF; with its predecessor and also
the sequence flows connecting the start and tagged end event of fragment CBPF5.
We then connect, by adding sequence flow relations, the predecessor of the tagged
activity from CBPF; to the first flow object of CBPFs, and the last flow object of
CBPF, with the tagged activity of CBPF:

For simplicity and to improve the understanding, we use the following notations:
iny = in(CBPFy), ing = in(CBPFs), out; = out(CBPF;), outy = out(CBPF3)

SFres = SF1 U SFy \ {(pred(actl), actl), (iny, succ(ing)), (pred (outy), outs)}

U {(pred(actl), succ(ing)), (pred(outs), actl)}

For the insert after composition: the sequence flow of the result is the union of the
sequence flows of the input process fragments, from which we remove the sequence
flow connecting the tagged activity of fragment CBPF] with its successor and also the
sequence flows connecting the start and tagged end event of fragment CBPF;. We
then connect, by adding sequence flow relations, the tagged activity from CBPF; to
the first flow object of CBPF5, and the last flow object of CBPF5 with the successor
of the tagged activity of CBPF;:

SFres = SF1 U SFy \ {(actl, succ(actl)), (iny, succ(ing)), (pred(outs), outz)}
U {(actl, succ(ing)), (pred(outz), succ(actl))}

The swimlanes, artifacts, message flow and associations of the result are the union
of their counterparts from the input processes:

Sres =5 U5

Arpes = Ar U Ary
MF,es = MFy U MFy
ASpes = AST U ASy

The composition interface of the result is the union of those of the input process
fragments, from which we remove the tagged activity of fragment CBPF; and the

244 7. Perspectives

<<output>> Ee_2

Fig. 7.9: Insert after composition operator for business process fragments

7.2. Composing business process fragments using aspect weaving 245

start and tagged end event of fragment CBPF,;. We then add an input composition
tag on the start event of the result and an output composition tag on the end event:

Les = UL \{actl, in(CBPFs), out(CBPF) }\U{ Esyes, Eeyes }, where Espes = Esy, Eepes €
Eey and Tag(Esyes) € CTip, Tag(Eeres) € CToys

The general functioning of the operator is graphically depicted in Figure 7.9. This concludes
the specification of the CBPF composition operators.

7.2 Composing business process fragments using aspect
weaving

Throughout this thesis we focused on the modelling and composition of business process
fragments. In Chapter 4 we proposed the CBPF language, a domain specific language
created exactly for these purposes. For the composition of business process fragments, the
CBPF language proposes a set of composition operators. However, there exist other ways
and methods that can enable the composition of business process fragments. We consider
that concepts and principles from the field of Aspect Oriented Modelling, especially aspect
weaving, can be of great benefit in this direction. Thus, in the following we introduce the
idea of applying aspect weaving for composing business processes as an interesting research
perspective and present the first steps in this direction. We acknowledge the fact that this
idea should be analysed and studied in more depth.

Although composition is a central concern in both Business Process Modelling and Aspect
Oriented Modelling domains, its definition is quite different in each case. While composition
of business processes is a rather symmetric approach, where each view belongs to the same
model, the AOM composition is asymmetric, considering one part as a base model and the
other as an aspect that intend to modify the base. In many case, it would be useful to
combine these two approaches. To simplify the task of the designer, it would be easier if
a unique method/tool could be use to perform the composition, whether we handle two
models or a model and an aspect.

The composition of behavioural models is a quite complex task, much more intricate than
that of structural models. The main issue is that there exists a lot of possible composition
for two processes, each of them leading to a semantically different result. We have seen that
the result of composing two business processes may have different semantics, corresponding
to, for example: a sequential execution of processes, a choice between the processes, a
competition between the execution of processes. Each of this result can be performed by
a specific composition operator propose by the CBPF language, and we could have added
many other composition results to the lists. There are plenty of possible composition for
two processes. Thus, composition is not restricted to a systematic operation but implies a
choice between several strategies.

In this context it is useful to provide an efficient way to implement these composition opera-
tors, and to provide tools that help the designers to choose the right compositions operators
for some given processes. Our proposition is to study and provide a unified approach that
relies on aspect-oriented modelling concepts to implement these compositions.

Being able to use aspect weaving to compose business processes has several benefits. First,
it means that you will have a single algorithm to implement the composition, which facili-

246 7. Perspectives

v
¥ ¥ A
A B +
o +

B
O O
O- PointCut Advice O

Base Aspect Result

Fig. 7.10: Sequential weaving with aspects

tates the implementation of different composition strategies and the design of new compo-
sitions. This feature is very useful in the domain of business processes, as composition may
have different meanings. Second, if the designer wants to be able to decompose its software
into components and to use aspects, the whole composition phase can be performed by the
same tools.

In the following we explain how aspect weaving can be used to perform behavioural model
composition. The general idea is that two business process fragments can be composed by
first transforming one of them into an aspect and then weaving it with the other business
process. In Figure 7.10 we introduce a simple example that shows how two business
processes can be composed to produce a new process. Qur approach consist in transforming
the second business process into an aspect that can be weaved with the first one to obtain
the expected result. To do so, we need to define how the pointcut, the advice and the
mapping from the first to the latter can be extracted from the second process.

The pointcut aims at defining what part of the first process will be transformed during
the composition. It must be composed of the element that need to be replaced or removed
during the composition and of the information required to identify precisely the location
of the weaving. In the example, we need to indicate that we will plug the new fragment
at the end of the first one. So, we need to isolate the end event of the first process in the
pointcut. We also put into the pointcut the transition that leads to the end event because
we need to update it after the weaving, so that it leads to the start of the second process
afterwards. T . v

The ;dvice defines what will be inserted or rempved during the weaving. Here, it is c@npose
of alEche elementsrthe second process except the start event (that will be replaced by the last
transition of the first process). Finally, the mapping between the pointcut and the advice
is straightforward: the final transition of the point cut is mapped t@e first trar@n of
the advice. The result, as well &g the graphical representation of aspect, is gifen in
Figure 7.10. PointCut Advice

vice

In ‘@ollowing, we take some 6PERE compositié®t operators proposed in the CBPF language
and explain how they can be replaced by aspect weaving and which are the required
opefations for doing this. We stai®¥ith the choice composition operator, thEt4ims to put

6.2 Choice (or Inclusive or Alternative)

Goal:

7 2. Comp051ng bu51ness process fragments u51n

aspect weav1ng

gateways.
_<<input>>
.| <<input>> . . - =<input>>
Some BPMN Some BPMN Some BPMN
A & : >> -
- | ==output=> .. +| =<output=>
.+ =<output=>
Figure 9 Choice composition
Fig. 7.11: Choice composition of business process fragments
Input:

Th g fra Helglslg 1n grallemoa%né)th%atthzgﬁ%mvif al clus %v%%tﬁxgsays. An example of applying

1s operator 1s avai able in Figure

In or&e?@f@ﬁmé%%@@get@ﬂg%Ho"f’é@c@&ﬁﬂﬁ%or‘f%%%%w%tr?rfﬁ%’ct weaving approach,

we ﬁrst to choose which o f the‘,two busmess é)r%cess %ra ments is considered as
vent Activity tag gf ﬂ‘u outpLi sition |
base mo or the weaving: ragment w not e a tere and no further processing

needs to be performed on it. Implicitly, the other business process fragment, which was
not selected as base, need to be transformed in an aspect. This means that we need to

build_the appPARHREY i duice and|pointA¥N T he conE9GuReah Skte He VEGSION s arPagﬁprafion
. ASPECTSELECTOR V1.0.D0C Olivier Pedretti FINAL a0 11/26
tha ngﬂly dependads on the Eype f (,()Inp()blElOIl thatwe want to perform. In other wo dS,

a business process fragment will be transformed differently into an aspect, depending on
which type of composition we want to apply.

In the case of the choice composition, a business process fragment is transformed into an
aspect in the following manner:

o (C'reate the advice: we start from the original business process fragment that needs to
e transformed. We take the start event, tagged with an input composition interface,
and add a splitting OR gateway after it. On one of the outgoing branches of this
gateway, we add all of the flow objects of the initial business process fragment. The
other branch will only contain a simple sequence flow with nothing connected to it.
Both branches converge into a merging OR gateway, which is then connected by an
outgoing sequence flow to a tagged end event.

Create the pointcut: we create a new business process diagram that contains an
EndEvent tagged with an output composition interface, then add a "floating" Se-
quenceEdge that has no source but has the EndFEvent as target and put on it the
same g-morphism identifier as used in Advice for the "floating" SequenceEdge con-
nected to the gateway connected to the EndEvent. We do the same for StartEvent.

To facilitate the understanding, we present this process in Figures 7.12 and 7.13. Figure
7.12 presents a simple generic business process fragment used as input for the transforma-

248

7. Perspectives

Centre de Recherche Public

Gabriel Lippmann

Cr

w. de
\)

.| <<input>>
°~' Centre de Rech ’
P Gabriel Lij
+
+ | <<output>>
.| <<output>>

Choice operator

or

Fig. 7.12: Initial fragment and choice operator

BPMN Pointcut

g-morphis

. .| <<output>>

Fig.

. rs<output>> . . . “ . et T
: ‘Poltitent and Advice built for (,hmémposmon

BPMN Advice

| ssinput>>

>

Some BPMN
A

‘J

. | SSsouutz>

. | SSoubut>>

7.2. Composing business process fragments using aspect weaving 249

4 v
X X
h 4 L 4
A v B v v
¥ [+ A B

L -4

X) Ik
O A X
o [PointCut Advice O

Base Aspect Result

Fig. 7.14: Exclusive choice composition of processes with aspects

tion and mentions the fact that the choice composition will be used. In Figure 7.13 we can
see the pointcut and advice that are created.

In the same manner as presented above, we can replace the exclusive choice composition
operator by a specific aspect weaving. In Figure 7.14 we present how a business process
fragment can be transformed into an aspect for this specific type of composition (creation
of the pointcut and advice) and how to obtain the result of the weaving.

The procedure presented in Figure 7.14 works well as long as we want to run in parallel
all the content of the two business processes. However, often we will have to integrate a
choice only for a part of one of the two business processes. To identified the part of the
process that will be taken into account for the choice operation, composition annotations
can be introduced: an annotation c-start, respectively c-end, will identify the beginning
(resp. the end) of the choice section. In this case, applying the choice composition using
aspect weaving is more intricate. We consider the following three criteria:

e Does the sub-process that will be integrated to the choice part starts the whole
process?

e Does the sub-process that will be integrated to the choice part ends the whole process?

e [s there more than one element in that process?

These criteria are independent. Thus, it leads to a total of eight possibilities. Unfortu-
nately, each one corresponds to a particular aspect. These aspects are provided in Figure
7.15. The four on the left are for process fragments that are composed of a single element
while those on the right are composed of several elements. The two of the first line have
neither any element before or after the business process part to set in parallel. The two of
the second line have elements before the business process part to set in parallel, but none
after. On the third line, there are elements after the business process part to set in parallel
but none before. On the last line, there are elements before and after the business process
part to set in parallel.

250 7. Perspectives

v b4
¥ <<c_start>> v ~
v X
==c_start>>
= A4 A4
w<<c_end>> v)
B <<c_end>> B
¥) [+
[+ (™ [
> X - X =
PointCut Advice | PointCut Advice
v M sy
v ==c_start>>
<<c_start>> ' |~ A4 X

]
-«

w<<c_end>>

¥ ‘ X <cfc_end>) %
B >
o+ _
X e X e
PointCut Advice . PointCut Advice
v _ v <<c_start>> v
<<c_start>> = X = ¥ ¥ < X
w<<c_end>> -\ " (- 4
< d=
= <<c_end=>> B
> - Lt
v)
M v X
M
PointCut Advice
; r v
5 v
v - ¥ v
v <<c_start>>
v .
<<g_start=> A4 X
/ \ v
yescend>> v X
B -:{c_end::-'_ %
) [+
v Y) X e
v
v ¥
PointCut Advice PointCut Advice

Fig. 7.15: The eight aspects for the choice composition

- ' Centre de Recherche Publicrocess fragments using aspect weaving ISC depar‘

." Ga b ri el Ll p pm ann Informatics, Systems and Collab

Some BPMN + Refinement operator

A

FiguFel 491 Refineimentrprodessariniput

Id the Advice:As it can be seen, each aspect as a distinct pointcut and the pointcuts are not ambiguous.
or two given annotation c start and c end, it exists at most one pointcut out of the eight
of Figure 7.15 such that there is a joinpoint that includes that includes these annotations.

' processor remevas:shietotanthvent Activity: and-thenEndiuent Astivity. i tags the
aining “floating” 884ent8E ge with two new g-morphism identifiers.

nother example of how to replace a composition operator by a specific aspect weaving

. technique can be given for the refinement composition operator. This composition simply

Id the p0|ntCU§§é to replace a task of one business process fragment with an entire business process
fragment, in order to give more detail about that activity. In order to be able to apply this

. Ositi d Ly T th jRes fr s T »
ﬂ—tCUt: 1 the p@e@?c%@?k%ﬁ%eﬂ%ﬁ??m(lgiég}?f‘%@g’ fé;gl %i%uptl‘;étg c%inposi 1onan Input
nposition interfage on it, adds a “floating” SequenceEdge that has no source but has
k as target and put onritsthe samesgermesphisan: identifiercasruseddmdgdvice on the

osition, the following operations need to be performed:

juenceEdge that &8s no’ source.

o Build the Ac_im'ce: we need to remove the StartEvent and the EndFEvent frqm the
BRMMNsBotatCitgment. We also tag the two remaining "AdSRMBEAdAVIEEges

with two new g-morphism identifiers.

idéntifier as ud_ir.l—égy&gp,pn the SequenceEdge that as no sourge.

. . S PMN
Flgure 7.16 grpphically presents the input for the refinement cof Sggg?on pYocess.

Then in Figurg 7.17 we can see how the business process fragmeng is ddivertgd into

..........

.............

In the same manner, appropriate transformations need to be created for all the composition
operators defined in CBPF, in order to implement them using aspect weaving methods.

As wEignre.20 Paintcutd. and Adyice built. by Refipement, processor. cq

cases might appear and thus the transformations form fragment to aspect require some

ntcut 2: processor does the same as previously but adds an “output”™ composition in
the created Task instead of an “input” one.

=111 1

. 1: the processor creates a new BPMN diagram, adds a Task, adds an “input”
ition interface on it, adds a “floating” SequenceEdge that has no source but has the
target anggput on it the same g-morphism identifier as usedein Aduige on the
-eEdge that as no source.

BPMN Pointcut BPMN Advice
...... g-morphism
. —<<input>>
L Some BPMN
A
g-morphism

.............
.............

Figur%éo Pointcutl and CMl&li.ce bbull,ljicl%lbxeﬁefinement processor

. 7.17: Pointcutl an vice nement composition

. 2: procegsar d0es.the. same a8 Rreviously yb.adds, an oukpul, composition interfe

reated Taskunsteadoafranrd‘m pjut;a’u’se@rfg_ all the composition types. Any of the classical

aspect model weaving techniques defined by the AOM research community can be applied.
Moreover, another advantage of this approach is the fact that new types of compositions
can easily be added, without any modification required to the aspect weaver which remains
the same. To add a new composition, we simply need to define the fragment to aspect

yects due %HEHEH%WQ E?lérgtgled)f éélgi tﬁfg@jg unt, we consider this topic to be of great interest

and an interesting possible r 10n for the future.

|) - -
arallel W!}i:hh’fcpcfgﬂwgu&%%qg rlllsiness process fragments

Data representation is an important part of any business process modelling language.

Therefore, it is also of the utmost importance to propose data modelling for the CBPF
allel with capmunicatien camposgition awmsta, putafraginentibiaspacallel to another
i e re t u it ing o e end o Ss,
o two pargiigfHatelidys st a8ide ohelar ABre RS sgs o imications between
Tasks. or information items) that are created, manipulated, and used during the execution of a

process fragment.

In its current status, the CBPF language provides a minimal set of concepts for data
modelling as part of the CBPF abstract syntax. Data objects, data specifications and data
associations are used for representing data and data flow in a business process fragment.
These concepts were introduced in Section 4.2.2.

We proposed data objects as a mechanism to show how data is required or produced by the

activities of a business process fragment. Data objects are introduced in the language as

cifetupecmaf-artifacta—Aetinatiec—often—rearired—data—in—orderto—esxeeit Tn—additieon

—‘\J\Jlllbﬁy\/ Ul arviracus. IIYCUTVIUICTS UTUCIT l\./\,lul.lb\..l. \A(kbm ITTOrdor TOUO " CATTUU . T (k\.‘.\.al_lUl.UJJ.’
oC

DogUMENt Idoduce data dring or AU of exhelOEUMBNE SRR, Version.,| Page
ASPECTSE{-@%[(%"STQF%E&IE;I oBiddC data inp LUIBTIRBAREIE. Diuta assofilNAYhs are a specifid tihe of 16/26

connecting object. They are used to associate data objects with ow objects. Associations
are needed to show the data inputs and outputs of activities. Finally, every data object
will have a unique type. We propose three elementary data-types: IntObject (represents

7.3. Modelling data for business process fragments 253

integer data objects); StringObject (represents string data objects); BoolObject (represents
boolean data objects).

However, this type of data representation is a very basic one and is very limited in the type
of information that it provides to the user regarding the overall data flow of the business
process fragment. Moreover, it limits the types of data analysis that may performed on a
business process fragment. Therefore, we consider that an extension if the CBPF language
with a set of concepts that allow an in-depth representation of data for a business process
fragment is a promising research direction for the future.

A first improvement that can be brought is to re-think which is the most appropriate way
in which data can be represented in a business process fragment. For the moment, we
make use of specific data objects. However, this solution might be too rigid and restrictive.
One possibility if to make use of meta-class attributes for representing data in the CBPF
meta-model. This solution could prove to be more flexible.

Another interesting research idea is to see how data objects are related to the flow objects
of a business process fragments. Moreover, for the moment we only associate data objects
to the tasks of a business process fragment. In the future, we plan to study how data can
be added to some of the other flow objects of a business process fragment, like gateways
or event triggers. This extension of data representation to more elements of a business
process fragment would facilitate the accurate modelling of the data flow over the entire
fragment.

Another point that can be improved concerns the types of data that can be modelled in
a business process fragment. For the moment, CBPF provides only a minimalistic set of
data types which cover the basic data representations (string, integer and boolean). It is
mandatory to enrich this set of data types that can be offered by the language. Many more
basic data types could be added. Moreover, an important improvement could be brought
by introducing compound data types. Such data types, which could be inspired by those
that already exist in most programming languages, facilitate the representation of complex
and structured data. Even a data type hierarchy could be envisioned in such a case as a
possible language extension.

The appropriate representation of data is only the first step towards the complete modelling
of data flow in a business process fragment. Therefore, once the above-mentioned ideas are
put into practice and this the CBPF language extended, any language user will have access
to the data flow of the business process fragment that he is creating. Implicitly, questions
regarding data dependencies in a business process fragment will need to be investigated in
more detail.

A proper representation of the data flow also opens the door for a series of data flow
analysis techniques that may be applied on business process fragments. For the moment,
the verification of business process fragments does not involve any data related properties
and queries. However, we plan to extend the type of analysis that may be applied on a
business process fragment and propose a set of new data flow related properties that could
be studied. This will allow the user to gain even more insight into the process that he is
creating or using and increase the degree of certainty that the business process behaves in
a correct manner.

8. CONCLUSION

Abstract

This chapter outlines the main research questions that we propose to solve
in this thesis. It also states the major contributions of the work presented in
this dissertation and draws some conclusions about it.

Software Product Line Engineering is a recent software development paradigm that offers
software suppliers/vendors new ways to exploit the existing commonalities in their software
products and to support a high level of reuse, thus generating important quantitative and
qualitative gains in terms of productivity, time to market, product quality and customer
satisfaction. This technique has gained a lot of attention in recent years by both research
and industry.

This thesis investigates how recent software engineering breakthroughs such as Model
Driven Engineering and Business Process Modelling can be combined to devise a new and
improved software product line engineering methodology. More specifically, our research
was driven by the increasing need that arises in the SPL research field and community for
new product derivation techniques. Further more, we have noticed that most of the work
that advocates the use of model driven engineering techniques for software product line
engineering addresses only the derivation of structural product representations, neglecting
or just briefly addressing the problems inherent to the derivation of product behaviour.
This yields an unwanted situation, as the behavioural product representation is as impor-
tant as the structural one. Moreover, the few existing techniques that try to address to
some extent the issue of derivation of product behaviour in a software product line lack
the "end-to-end" dimension, which means that they do not cover both domain engineering
and application engineering phases of the SPLE process.

Therefore, the main motivation and initial driver of this thesis is the study and improvement
of software product line engineering methodologies with the focus on behavioural product
derivation. Accordingly, the major research problem addressed throughout this thesis
and thus our main claimed contribution is the definition of a new software product line
engineering methodology that covers both domain engineering and application engineering
phases of the SPLE process and which focuses on the derivation of behavioural models
of SPL products. We impose the condition that the behavioural models obtained as a
result of applying this methodology should describe the business and operational step-
by-step workflows of activities/actions performed by the derived product. Moreover, we
require several qualities from the proposed methodology: easily maintainable, scalable,
comprehensible, suitable, expressive enough and to easily support modifications. We also
want to develop this methodology following model driven engineering principles, as they
allow to reduce design complexity and make software engineering more efficient by shifting
the focus from implementation to modelling.

Several other inherent research challenges emerge and need to be solved in order to provide
a proper solution to the main research question that we try to answer in this thesis:

255

e As the main focus of the methodology is to obtain behavioural representations of
SPL products, another related problem that needs to be solved is: how to model
a complex behaviour starting from several simpler ones? One of the factors that
contributes to the difficulty of developing complex behaviours is the need to address
multiple concerns in the same artefact.

e Another challenge lies ahead is to find both the adequate behavioural formalism that
fits the needs of the analyst as well as a formal composition mechanism that facilitates
the generation of the expected behavioural model.

e Regarding the actual composition of business processes, there are currently only
a few proposals. This is currently very much a manual activity, which requires
specific knowledge in advance and takes up much time and effort. The composition
problem is one that cannot easily be solved by a "copy and paste" approach, as it may
introduce problems like: redundancy, update anomalies or inconsistent behaviour in
the resulting models. There is also a need for a formal foundation and notation for
the compositions which allows the creation of business process models from model
fragments.

e From a practical and technological perspective, another possible challenge is to pro-
pose and deliver the appropriate tool support for the methodology. The availability
of good tool support will enable users to better understand and more easily apply
the proposed methodology.

As an answer to the main research question that this dissertation tries to address, we in-
troduced in Chapter 3 the main contribution of this thesis: a new software product line
engineering methodology that focuses on the derivation of product behaviour. By apply-
ing this methodology, we can produce behavioural models that belong to the analysis and
early design levels of the software system development life-cycle. The proposed method-
ology covers only the derivation of behavioural product models and does not address the
structural product representation. However, it can be used together with other product
derivation techniques for obtaining the structural product models. The methodology fol-
lows the classical SPLE process and covers both Domain Engineering and the Application
engineering phases:

e During domain engineering, we capture domain knowledge using the newly proposed
concept of composable business process fragments, which are our core assets base
from which new behavioural product models will be later created. We choose to
capture the commonality and variability in the domain in a separate variability model,
represented as a feature diagram. We apply the separation of concerns principle and
keep the core assets and the variability representations separate. Moreover, in order
to facilitate the product derivation process, we connect features from the feature
diagram to business process fragments by association. Moreover, we want to ensure
that the created business process fragments are correct prior to composition. Thus,
we propose to apply a new business process fragment correctness verification approach
on our core assets.

e During application engineering, we create new products from the core assets base
using a compositional approach. Our derivation approach uses positive variability
to creates a new business process that models the behaviour of the derived prod-
uct. In a first step, we require the contribution of the user for creating a particular

256 8. Conclusion

product configuration based on a selection of features. The business process frag-
ments associated to the selected features are also implicitly selected. We then create
a composition workflow that explicitly defines both the order in which the selected
fragments are composed and also the composition operators that will be applied. The
composition operators that we propose are used for composing the business process
fragments, resulting the final behavioural product representation.

In Chapter 4 we proposed a new domain specific language called Composable Business
Process Fragments (CBPF), created specifically as the necessary language support for the
proposed methodology. The language is based on the concept of business process fragment,
which are the core assets used by our SPL methodology. We propose this new concept
as a reusable granule for business process design that can allow for reuse of process logic.
Business process fragments are designed to implement a set of requirements and model a
single abstract functionality. Thus, the CBPG language allows the modelling of composable
business process fragments. The language was constructed following an MDE approach.
We start by defining the abstract syntax of the language by means of a meta-model, rep-
resenting in an abstract way the concepts and constructs of the modelling language. We
continue the language definition by proposing a unique graphical concrete syntax for the
language. Finally, we define the semantics of the CBPF language following a translational
approach. The CBPF language is created in an incremental manner. Initially, the lan-
guage simply offers the necessary concepts for modelling business process fragments. As a
solution to the problem of business process composition which we identified, we extend the
CBPF language with new concepts for creating "composable" business process fragments.
Moreover, we propose a set of composition operators created specifically for composition
such business process fragments. Finally, as CBPF is meant to be the language support
for our SPL methodology, we further extend the language with a set of concepts that allow
the modelling of composition workflows and product derivation specifications.

In order to verify the correctness of the business process fragments created using the CBPF
language and also to support one of the steps of our SPL methodology, we propose in
Chapter 5 a verification techniques that checks the structural and behavioural correctness.
The structural verification is performed by defining a set of adequate fragment consistency
rules that should be valid for every business process fragment that can be created with the
CBPF language. To check the dynamic behaviour of business process fragments, we first
need to transform business process fragment into equivalent HCPN with the help of the
model-to-model transformation that we propose. Once this is done, we take advantage of
the large array of analysis and verification techniques and tools available for Petri nets and
describe how to verify several generic and fragment specific behavioural properties.

It was mentioned that one of the challenge faced was to deliver the appropriate tool support
for the methodology. Thus, in Chapter 6 we present the SPLIT tool suite, which is the
tool support that we propose for our SPL methodology. We start by describing the general
requirements that such a tool should fulfil. We then present the general architecture of the
proposed tool. The SPLIT tool suite provides a practical implementation of the proposed
methodology. The tool has been developed as a set of Eclipse plug-ins which are meant to
be integrated together. The tool is also highly modular, so we also discuss in more details
the different tool modules and the functionalities each of them provides.

BIBLIOGRAPHY

|ABMOO]

[ACP*11]

[ASO05]

[ATKO09]

[ATL|

[Bat07]

[BCO5|

[BCH*10)

[BCTS06]

[BDC92

[Bez04]

Colin Atkinson, Joachim Bayer, and Dirk Muthig. Component-based
product line development: the kobra approach. In Proceedings of theFirst
Software Product Line Conference, 2000.

Mathieu Acher, Anthony Cleve, Gilles Perrouin, Patrick Heymans,
Charles Vanbeneden, Philippe Collet, and Philippe Lahire. Reverse en-
gineering architectural feature models. In 5th European conference on
Software architecture, pages 220-235, 2011.

Ruth Sara Aguilar-Savenn and Jan Olhager. Integration of product, pro-
cess and functional orientations: Principles and a case study. In APMS,
pages 375-389, 2005.

Sven Apel, Salvador Trujillo, and Christian Kastner. Model superimposi-
tion in software product lines. In 2nd International Conference on Theory
and Practice of Model Transformations, pages 4-19, 2009.

ATLAS. Atlas model management architecture.
http://wiki.eclipse.org/ AMMA.

Don Batory. Program refactoring, program synthesis, and model-driven
development. In 16th international conference on Compiler construction,
pages 156-171, 2007.

Felix Bachmann and Paul Clements. Variability in software product
lines. Technical Report cmu/sei-2005-tr-012, Software Engineering In-
stitute, Pittsburgh, USA, 2005.

Quentin Boucher, Andreas Classen, Patrick Heymans, Arnaud Bourdoux,
and Laurent Demonceau. Tag and prune: a pragmatic approach to soft-
ware product line implementation. In IEEE/ACM international Confer-
ence on Automated Software Engineering, pages 333-336, 2010.

David Benavides, Antonio Ruiz Cortés, Pablo Trinidad, and Sergio Se-
gura. A survey on the automated analyses of feature models. In JISBD,
pages 367-376, 2006.

Luca Bernardinello and Fiorella De Cindio. A survey of basic net models
and modular net classes. Advances in Petri Nets, 609:304-351, 1992.

Jean Bezivin. In search of a basic principle for model driven engineering.
Nowatica Upgrade, 2:21-24, 2004.

258

Bibliography

|Bez05]

[BFO6]

[BFGOO

[BEG102]

[BGOL|

[BHO2]

[BLI06]

[BKRO3]|

|Bos00|

[BSW04]

[CA05]

[Cai00]

|CCGOY]

|CCGT11]

Jean Bezivin. On the unification power of models. Software and Systems
Modeling, 4:171188, 2005.

Thorsten Blecker and Gerhard Friedrich. Mass Customization - Chal-
lenges and Solutions. Springer, 2006.

Joachim Bayer, Oliver Flege, and Cristina Gacek. Creating product line
architectures. In IW-SAPF, pages 210-216, 2000.

Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, J. Henk Ob-
bink, and Klaus Pohl. Variability issues in software product lines. In
Springer-Verlag, editor, 4th International Workshop on Software Product-
Family Engineering, pages 13-21, 2002.

Jean Bezivin and Olivier Gerbe. Towards a precise definition of the
omg/mda framework. In 16th IEEE international conference on Auto-
mated software engineering. IEEE Computer Society, Washington, DC,
USA, 2001.

Luciano Baresi and Reiko Heckel. Tutorial introduction to graph trans-
formation: A software engineering perspective. In Proceedings of the First
International Conference on Graph Transformation, page 402429, 2002.

Alan W. Brown, Sridhar Iyengar, and Simon Johnston. A rational ap-
proach to model-driven development. IBM Systems Journal, 45:463480,
2006.

J. Becker, M. Kugeler, and M. Rosemann. Process Management. A Guide
for the Design of Business Processes. Springer-Verlag: Berlin, 2003.

Jan Bosch. Design and use of software architectures: adopting and evolv-
ing a product-line approach. Addison-Wesley, 2000.

Stefan Berndes, Alexander Stanke, and Kai Worner. Business process
modelling. In Business Process Management for Open Processes: Method
and Tool to Support Product Development Processes. Springer, 2004.

K. Czarnecki and M. Antkiewicz. Mapping features to models: a template
approach based on superimposed variants. In GPCE, pages 422-437, 2005.

Xia Cai. Component-based software engineering: technologies, develop-
ment frameworks, and quality assurance schemes. In 7th Asia-Pacific
Software Engineering Conference, pages 372 — 379, 2000.

Benoit Combemale, Xavier Cregut, and Xavier Garoche, Pierre-
Loic andThirioux. Essay on semantics definition in mde - an instrumented
approach for model verification. Journal of Software, 4:943-958, 2009.

Alfredo Capozucca, Betty Cheng, Geri Georg, Guelfi, Paul Istoan, and
Gunter Mussbacher. Requirements definition document for a software
product line of car crash management systems. Technical Report CS-
11-105, Computer Science Department Colorado State University, June
2011.

Bibliography

259

|CCGI11]

[CE00]

[CHO3]

[CHO6]

[CHEO5a]

[CHEO5b]

[CHWOS]

[CJo1]

[CJ03]

[CKO92]

|Cla01]

[CNO1]

[Coa99]

[CSWOS]

|Dav87]

[Dav03]

Alfredo Capozucca, Betty Cheng, Nicolas Guelfi, and Paul Istoan. Oo-spl
modelling of the becms case study. Technical Report TR-LASSY-11-14,
University of Luxembourg, 2011.

Krysztof Czarnecki and Ulrich Eisenecker. Generative programming:
methods, tools, and applications. ACM Press/Addison-Wesley Publish-
ing Co., New York, NY, USA, 2000.

Krzysztof Czarnecki and Simon Helsen. Classification of model tranfor-
mation approaches. In OOPSLA Workshop on Generative Techniques in
the Context of Model Driven Architecture, 2003.

Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model
transformation approaches. IBM Systems Journal, 45:621645, 2006.

Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. Formal-
izing cardinality-based feature models and their specialization. Software
Process: Improvement and Practice, 10:7-29, 2005.

Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. Staged
configuration through specialization and multilevel configuration of fea-
ture models. Software Process: Improvement and Practice, 10:143-169,
2005.

James Coplien, Daniel Hoffman, and David M. Weiss. Commonality and
variability in software engineering. IEEFE Software, 15:37 — 45, 1998.

M. Clauss and I. Jena. Modeling variability with uml. In GCSE Young
Researchers Workshop, 2001.

John Clark and Jeremy Jacob. Model-driven development. [EEE Soft-
ware, 20:14-18, 2003.

Bill Curtis, Marc I. Kellner, and Jim Over. Process modelling. Commu-
nications of the ACM, 35:75-90, 1992.

M. Clauss. Generic modeling using uml extensions for variability. In
OOPSLA, 2001.

Paul Clements and Linda Northrop. Software Product Lines: Practices
and Patterns. Addison Wesley, 2001.

Workfow Management Coalition. Terminology and glossary doc-
ument number wfmec-tc-1011. http://www.wfmc.org/Download-
document/ WFMC-TC-1011-Ver-3-Terminology-and-Glossary-
English.html, 1999.

Tony Clark, Paul Sammut, and James Willans. Applied metamodelling:
a foundation for language driven development. Ceteva, Sheffield, 2008.

S. M. Davis. Future Perfect. Addison-Wesley, 1987.

James Davis. Gme: the generic modeling environment. In OOPSLA
Companion, page 8283, 2003.

260

Bibliography

[DAL03]

[DEA03]

[DFF+10]

[DGRI10]

[DHOO]

[dLV02]

[DMW99)

[d0JdSGHMO5]

[DRRO4|

[DS90]

[DSBO5]

[ASMBB10]

[DV02]

[EBBO]

Jerome Delatour and Florent de Lamotte. Argopn: a case tool merging
uml and petri nets. In NDDL/VVEIS, pages 94-102, 2003.

Guy Fitzgerald David E. Avison. Where now for development methodolo-
gies? In Communications of the ACM, volume 46, pages 78 — 82. ACM
New York, NY, USA, 2003.

Zoe Drey, Cyril Faucher, Franck Fleurey, Vincent Mahe, and Didier Voj-
tisek. Kermeta language reference manual, November 2010.

Deepak Dhungana, Paul Grunbacher, and Rick Rabiser. The dopler meta-
tool for decision-oriented variability modeling: a multiple case study. Au-
tomated Software Engineering, 18:77-114, 2010.

B. Rumpe D. Harel. Modeling languages: Syntax, semantics and all that
stuff, part i: The basic stuff. Technical report, Weizmann Science Press
of Israel, 2000.

Juan de Lara and Hans Vangheluwe. Atom3: A tool for multiformalism
and meta-modelling. In FASE, 2002.

C. T. R. Lai D. M. Weiss. Software product-line engineering: a family-
based software development process. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1999.

Edson Alves de Oliveira Junior, Itana Maria de Souza Gimenes, Elisa
Hatsue Moriya Huzita, and Jose Carlos Maldonado. A variability man-
agement process for software product lines. In CASCON, pages 225241,
2005.

J. Desel, W. Reisig, and G. Rozenberg. Advances in Petri Nets. Springer,
2004.

T. H. Davenport and J. E. Short. The new industrial engineering: in-
formation technology and business process redesign. Sloan Management
Review, 31:11-27, 1990.

Sybren Deelstra, Marco Sinnema, and Jan Bosch. Product derivation in
software product families: a case study. Journal of Systems and Software,
74:173194, 2005.

Marcos Aurelio da Silva, Alix Mougenot, Xavier Blanc, and Reda Ben-
draou. Towards automated inconsistency handling in design models. In
22nd International Conference on Advanced Information Systems Engi-
neering, volume 6051. Springer, 2010.

Peter Domokos and Daniel Varro. An open visualization framework for
metamodel-based modeling languages. Electr. Notes Theor. Comput. Sci.,
72:69-78, 2002.

Magnus FEriksson, Jurgen Borster, and Kjell Borg. The pluss approach
- domain modeling with features, use cases and use case realizations. In
SPLC, pages 33-44, 2005.

Bibliography

261

[Ecl12]

[EN10]

[Fav04]

|[Fav05]

[FBOS5|

[FBJ*05]

[FEBF06]

[FKO5]

[Fow09]

[GBLNJ10]

[GEA]

[GFdA9S|

[Gib94]

[GKT93]

[GLR*02]

|[GME11]

Eclipse. Eclipse/ecore. http://www.eclipse.org/modeling/emft/?project ecoretools,
2012.

Rik Eshuis and Alex Norta. Business process composition. Dynamic
Business Process Formation for Instant Virtual Enterprises, pages 93—
111, 2010.

Jean M. Favre. Towards a basic theory to model model driven engineering.
In Workshop on Software Model Engineering, 2004.

Jean-Marie Favre. Foundations of meta-pyramids: Languages vs. meta-
models episode ii: Story of thotus the baboon. In Jean Bezivin and Reiko
Heckel, editors, Dagstuhl Seminar Proceedings, 2005.

Frederic Fondement and Thomas Baar. Making metamodels aware of
concrete syntax. In Lecture Notes in Computer Science : Model Driven
Architecture Foundations and Applications, volume 3748 of Lecture Notes
in Computer Science, page 190204. Springer, 2005.

Marcos Didonet Del Fabro, Jean Bezivin, Frederic Jouault, Erwan Breton,
and Guillaume Gueltas. Amw: a generic model weaver. In Procs. of
IDMO05, 2005.

Jean-Marie Favre, Jacky Estublier, and Mireille Blay-Fornarino. Linge-
nierie dirigee par les modeles, au-dela du MDA. Hermes Science, Lavoisier,
2006.

William B. Frakes and Kyo Kang. Software reuse research: Status and
future. IEEE Transactions on Software Engineering, 31:529-536, 2005.

Martin Fowler. Language workbenches and model driven architecture.
http://martinfowler.com/articles/mdalLanguageWorkbench.html, 2009.

Marie Gouyette, Olivier Barais, Jerome Le Noir, and Jean-Marc Jezequel.
Managing variability in multi-views engineering. In Journee Lignes de
Produits, October 2010.

GEARS. Biglever. http://www.biglever.com /index.html.

M. L. Griss, J. Favaro, and M. d Alessandro. Integrating feature modeling
with the rseb. In ICSR, 1998.

Wayt Gibbs. Softwares chronic crisis. Scientific American, 3:72-81, 1994.

Subashish Guha, William J. Kettinger, and James Teng. Business process
reengineering. Information Systems Management, 10:13-22, 1993.

Anna Gerber, Michael Lawley, Kerry Raymond, Jim Steel, and Andrew
Wood. Transformation: The missing link of mda. In Ist International
Conference on Graph Transformation, page 90105, 2002.

GME. Gme metamodeling environment.
http://w3.isis.vanderbilt.edu/Projects/gme/meta.html, 2011.

262 Bibliography

|Gom05] Hassan Gomaa. Designing software product lines with UML - from use
cases to pattern-based software architectures. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 2005.

[Gri00] Martin L. Griss. Implementing product-line features with component
reuse. In 6th International Conerence on Software Reuse, page 137152,
2000.

[Gro03] Object Management Group. Mda guide version 1.0.1.
http://www.omg.org/docs/omg/03-06-01.pdf, 2003.

[Gro04] Object Management Group. Meta object facility (mof) 2.0 core specifi-
cation. http://www.omg.org/cgi-bin/apps/docptc/03-10-04.pdf, 2004.

[Gro05] Object Management Group. Mof qvt final adopted specification, 2005.

[Gro06a) Object Management Group. Bpmn 1.0: Omg final adopted specification.
http://www.omg.org/bpmn/Documents/OMGFinal Adopted BPMN1.0Spec.pdf,
2006.

[Gro06h] Object Management Group. Object constraint language, version 2.0.
http://www.omg.org/spec/OCL/2.0/PDF, May 2006.

|Gro07] Object Management Group. Unified modeling language
(uml), version 2.1.2 omg infrastructure specification.

http://www.omg.org/spec/UML/2.1.2 /Infrastructure/PDF, 2007.

[GSO08| Hassan Gomaa and Michael Eonsuk Shin. Multiple-view modelling and
meta-modelling of software product lines. IET Software, 2:94-122, 2008.

|[Har91| James Harrington. Business process improvement: The breakthrough
strategy for total quality, productivity, and competitiveness. McGraw-Hill,
New York, 1991.

[HCO3] Michael Hammer and James Champy. Reengineering the Corporation: A
Manifesto for Business Revolution. Harper Business Books, New York,
2003.

[Her97] Jose Antonio Hernandez. The SAP R/8 Handbook. McGraw-Hill & Os-

borne Media, 1997.

[HMPO™ 08| Oystein Haugen, Birger Moller-Pedersen, Jon Oldevik, Goran K. Olsen,
and Andreas Svendsen. Adding standardized variability to domain specific
languages. In Software Product Line Conference, 2008.

[HPO3] Gunter Halmans and Klaus Pohl. Communicating the variability of a
software-product family to customers. In Software and System Modeling,
pages 15-36, 2003.

[HP10] L. Hillah and L. Petrucci. Standardisation des réseaux de petri : etat de
I’art et enjeux futurs. Genie Logiciel, 93:5-10, 2010.

[HRO4| David Harel and Bernhard Rumpe. Meaningful modeling: Whats the
semantics of "semantics"? IEEE Computer, 37:6472, 2004.

Bibliography 263

[HRGS83| A. W. Holt, H. R. Ramsey, and J.D. Grimes. Coordination system tech-
nology as the basis for a programming environment. FElectrical Commu-
nication, 77:307313, 1983.

. Hotz, K. Wolter, 1. Krebs, 5. Deelstra, M. Sinnema, J. Nijjhuis, an

HWK™06 L.H K. Wol T. Krebs, S. Deel M. Si J. Nijhui d
J. MacGregor. Configuration in Industrial Product Families, The ConIPF
Methodology. 10S Press, 2006.

[IBK11] Paul Istoan, Nicolas Biri, and Jacques Klein. Issues in model-driven be-
havioural product derivation. In 5th Workshop on Variability Modeling of
Software-Intensive Systems, pages 69-78, 2011.

[Inill] Workflow Patterns Initiative. Workflow patterns initiative.
http://www.workflowpatterns.com, 2011.

[INR10] INRIA. Feature diagram editor. http://movida.gforge.inria.fr /uploads/Demos /FeatureD:
2010.
[TRO5] S.I. Irny and A.A. Rose. Designing a strategic information systems plan-

ning methodology for malaysian institutes of higher learning. Issues in
Information System, 6:23-31, 2005.

[Jay94| Nimal Jayaratna. Understanding and Evaluating Methodologies: NIM-
SAD, a Systematic Framework. McGraw-Hill, Inc. New York, NY, USA,
1994.

[JBI6| Stefan Jablonski and Christoph Bussler. Workflow Management: Model-

ing Concepts, Architecture and Implementation. International Thomson
Computer Press, September 1996.

[Jen92] Kurt Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods
and Practical Use, Vol. 1: Basic Concepts. Springer-Verlag, Berlin, 1992.

[Jen94] Kurt Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical Use, Vol. 2: Analysis Methods. Springer-Verlag, Berlin, 1994.

[JGJI7| I. Jacobson, M.L. Griss, and P. Jonsson. Software reuse: architecture, pro-
cess and organization for business success. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 1997.

[JKO6] Frederic Jouault and Ivan Kurtev. Transforming models with atl. In Lec-
ture Notes in Computer Science, page 128138. Springer Berlin Heidelberg,
2006.

[JKO09] Kurt Jensen and Lars M. Kristensen. Coloured Petri Nets. Modelling and
Validation of Concurrent Systems. Springer-Verlag, Berlin Heidelberg,
2009.

[JKWO07] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured petri
nets and cpn tools for modelling and validation of concurrent systems.
Int. J. Softw. Tools Technol. Transf., 9:213-254, 2007.

[JTCOT7]| Technical Committee ISO/IEC JTC1. Iso/iec 15909 : Software and sys-
tem engineering highlevel petri nets. Technical report, ISO, 2007.

264

Bibliography

[KCH*90|

[Ken02]

[Ken03]

[KKL 1984

[KKLT98b]

[K1e08]

[KMHC05]

| Kru06|

[KSNO5)

[KWB03]

[LCBY6)

[LDLO3]|

|Lev60]

[LGBOS]

[LMRC11]

K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-oriented
domain analysis (foda) feasibility study. Technical report, Carnegie-
Mellon University Software Engineering Institute, November 1990.

Stuart Kent. Model driven engineering. In Integrated Formal Methods,
pages 286-298, 2002.

Stuart Kent. Model driven language engineering. Flectronic Notes in
Theoretical Computer Science, 72:286-298, 2003.

Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and
Moonhang Huh. Form: A feature-oriented reuse method with domain-
specific reference architectures. Ann. Softw. Eng., 5:143-168, 1998.

Kyo Chul Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and
Moonhang Huh. Form: A feature-oriented reuse method with domain-
specific reference architectures. Ann. Softw. Eng., 5:143-168, 1998.

Anneke Kleppe. Software Language FEngineering: Creating Domain-
Specific Languages Using Metamodels. Addison-Wesley Professional, 2008.

Soo Dong Kim, Hyun Gi Min, Jin Sun Her, and Soo Ho Chang. Dream:
A practical product line engineering using model driven architecture. In
ICITA, page 7075, 2005.

Charles W. Krueger. New methods in software product line development.
In SPLC, pages 95-102. IEEE Computer Society, 2006.

Chen Kai, Janos Sztipanovits, and Sandeep Neema. Toward a seman-
tic anchoring infrastructure for domain-specific modeling languages. In
5th ACM International Conference On Embedded Software, pages 1822,
2005.

Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained. The Model
Driven Architecture: Practice and Promise. Addison-Wesley, 2003.

R. Lakin, N. Capon, and N. Botten. Bpr enabling software for the financial
services industry. Management services, 40:18-25, 1996.

Ann Lindsay, Denise Downs, and Ken Lunn. Business processes—attempts
to find a definition. Information and Software Technology, 45:1015-1019,
2003.

Theodore Levitt. Marketing myopia. Harvard Business Review, 82:13849,
1960.

M. A. Laguna and B. Gonzalez-Baixauli. Product line requirements:
Multi-paradigm variability models. In 11th Workshop on Requirements
Engineering, 2008.

Miguel A. Laguna, Jose M. Marques, and Guillermo Rodriguez-Cano.
Feature diagram formalization based on directed hypergraphs. Comput.
Sci. Inf. Syst., 8:611-633, 2011.

Bibliography

265

[LW99]

[MBB*84]

[MCVG05]

[Men07]

[MHO05]

[Mie09]

[MKKJ10]|

[Mos10]

[MPOS]

[MPH*07]

[MPL*09]

[MS03]

[Mur89|

Dean Leffingwell and Don Widrig. Managing software requirements: a
unified approach. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1999.

R. Maddison, G. Baker, L. Bhabuta, G. Fitzgerald, K. Hindle, J. Song,
N. Stokes, and J. Wood. Feature analysis of five information systems
methodologies. In T. Bemelmans, editor, Beyond Productivity: Infor-
mation Systems Development For Organizational Effectiveness. Elsevier
Science Publishers, North Holland, 1984.

Tom Mens, Krzysztof Czarnecki, and Pieter Van Gorp. A taxonomy
of model transformations. In Language Engineering for Model-Driven
Software Development, in Dagstuhl Seminar Proceedings, 2005.

J. Mendling. Detection and prediction of errors in epc business process
models. PhD thesis, Vienna University of Economics and Business Ad-
ministration, Vienna, Austria, 2007.

Alessandro Maccari and Anders Heie. Managing infinite variability in
mobile terminal software. Software: Practice and Ezperience, 35:513 —
537, 2005.

D. Miers. Bpm: driving business performance. http://www.bptrends.com,
20009.

Brice Morin, Jacques Klein, Joerg Kienzle, and Jean-Marc Jezequel. Flex-
ible model element introduction policies for aspect-oriented modeling. In
13th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, LNCS 6395, pages 63—77. Springer, 2010.

Sebastien Mosser. Behavioral Compositions in Service Oriented Architec-
ture. PhD thesis, Polytech’Nice - Sophia Antipolis, October 2010.

Ivan Markovic and Alessandro Costa Pereira. Towards a formal framework
for reuse in business process modeling. In Business Process Management
Workshops, pages 484-495, 2008.

Andreas Metzger, Klaus Pohl, Patrick Heymans, Pierre-Yves Schobbens,
and Germain Saval. Disambiguating the documentation of variability
in software product lines: A separation of concerns, formalization and
automated analysis. In Requirements Engineering, pages 243-253, 2007.

Brice Morin, Gilles Perrouin, Philippe Lahire, Gilles Barais, Olivuer Van-
wormhoudt, and Jean-Marc Jezequel. Weaving variability into domain
metamodels. In MoDELS, pages 690-705, 2009.

Jason Xabier Mansell and David Sellier. Decision model and exible com-
ponent de

nition based on xml technology. In PFE, 2003.

T. Murata. Petri nets: Properties, analysis and applications. Proc. IEEE,
77:541-580, 1989.

266 Bibliography

[MW12| Merriam-Webster. Merriam-webster online dictionary.
http://www.merriam-webster.com /dictionary /methodology, 2012.

[MWH99| Florian Matthes, Holm Wegner, and Patrick Hupe. A process-oriented
approach to software component definition. In CAiSE, pages 26-40, 1999.

[Nau63| Peter Naur. Revised report on the algorithmic language algol 60. Com-
mun. ACM, 6:1-23, 1963.

|INN92| Hanne Riis Nielson and Flemming Nielson. Semantics with applications:
a formal introduction. John Wiley and Sons, Inc., New York, NY, USA,
1992.

[Nor99] Linda Northrop. A framework for software product line practice. In
Proceedings of the Workshop on Object-Oriented Technology, pages 365 —
376. Springer-Verlag London, 1999.

[OAS07] OASIS. Web services business process execution language
(ws-bpel), version 2.0. oasis standard. http://docs.oasis-
open.org/wsbpel/2.0/0S /wsbpel-v2.0-OS.pdf, 2007.

[OMGO1] OMG. Model driven architecture. http://www.omg.org/mda/, June 2001.

[OMGO3] OMG. Mda guide version 1.0.1, June 2003.

[OMGO6| OMG. Object constraint language.
http://www.omg.org/spec/OCL/2.0/PDF, May 2006.

[OMG11] OMG. Business process model and notation (bpmn) version 2.0.
http://www.omg.org/spec/BPMN/2.0/, 2011.

[Par76] David Lorge Parnas. On the design and development of program families.
Transactions on Software Engineering, 2:1-9, 1976.

[PBvdL05] Klaus Pohl, Gunter Bockle, and Frank J. van der Linden. Software Prod-
uct Line Engineering: Foundations, Principles and Techniques. Springer,
2005.

[Per06] Gilles Perrouin. Coherent integration of variability mechanisms at the
requirements elicitation and analysis levels. In Workshop on Managing
Variability for Software Product Lines, 2006.

[Pet62] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Technische
University Darmstadt, 1962.

[Pet77] J.L. Peterson. Petri nets. Computing Surveys, 9:223252, 1977.

[Pet80] James L. Peterson. A note on coloured petri nets. Information Processing
Letters, 11:40-43, 1980.

[PKGJ08a] Gilles Perrouin, Jacques Klein, Nicolas Guelfi, and Jean-Marc Jezequel.

Reconciling automation and flexibility in product derivation. In SPLC,
page 339348, 2008.

Bibliography

267

[PKGJOSb|

[Poh03]

[Pur|

[RC10]

[Rec10]

[Rie03]

[RIRGO5]

[RIRGO6]

[RWL*03]

[SAJKO02]

[SchoO]

[SDHO6]

[SDNB04]

[SEI|

[Sei03]

Gilles Perrouin, Jacques Klein, Nicolas Guelfi, and Jean-Marc Jezequel.
Reconciling automation and flexibility in product derivation. In 12th
International Software Product Line Conference, pages 339-348. IEEE
Computer Society, Washington, DC, USA, 2008.

Risto Pohjonen. Boosting embedded systems development with domain-
specific modeling. In RTC Magazine, page 5761. 2003.

Pure::Variants. Puresystems. http://www.pure-systems.com/.

Julia Rubin and Marsha Chechik. From products to product lines us-
ing model matching and refactoring. In Workshop on Model-driven Ap-
proaches in Software Product Line Engineering, 2010.

Jan C. Recker. Opportunities and constraints : the current struggle with
bpmn. Business Process Management Journal, 16:181-201, 2010.

Matthias Riebisch. Towards a more precise definition of feature models.
In Modelling Variability for Object-Oriented Product Lines, pages 64-76,
2003.

Jan Recker, Marta Indulska, Michael Rosemann, and Peter Green. Do
process modeling techniques get better? a comparative ontological anal-
ysis of bpmn. In 16th Australasian Conference on Information Systems,
2005.

Jan Recker, Marta Indulska, Michael Rosemann, and Peter Green. How
good is bpmn really? insights from theory and practice. In 14th Furopean
Conference on Information Systems, pages 1582-1593, 2006.

Anne V. Ratzer, Lisa Wells, Henry Michael Lassen, Mads Laursen, Ja-
cob Frank Qvortrup, Martin Stig Stissing, Michael Westergaard, Soren
Christensen, and Kurt Jensen. Cpn tools for editing, simulating, and
analysing coloured petri nets. In Applications and Theory of Petri Nets,
volume 2679, pages 450-462, 2003.

A.-W. Scheer, F. Abolhassan, W. Jost, and M. Kirchmer. Business Pro-
cess Excellence ARIS in Practice. Springer-Verlang, Berlin, 2002.

A.W. Scheer. ARIS: Business Process Modelling. Springer-Verlag, Berlin,
2000.

Marco Sinnema, Sybren Deelstra, and Piter Hoekstra. The covamof
derivation process. In ICSR, pages 101-114, 2006.

Marco Sinnema, Sybren Deelstra, Jos Nijhuis, and Jan Bosch. Covamof:
A framework for modeling variability in software product families. In
SPLC, pages 197-213, 2004.

SEL Software product line conference - hall of fame.
http://splc.net/fame.html.

E. Seidewitz. What models mean. IEEFE Software, 20:2632, 2003.

268

Bibliography

[SEI12]

[Sel03]

[Sel06]

[SF03]

[SGS+04]

[SHTB07

[SJ04]

[SK95]

[SK02

[SLO5|

[SPL]

[SvGBO5|

[Tae04]

[Tes84]

[Tra05|

SEI. Framework for software product line practice, version 5.0.
http://www.sei.cmu.edu/productlines/tools/framework/, 2012.

Bran Selic. The pragmatics of model-driven development. IEEFE Software,
20:1925, 2003.

Bran Selic. Model-driven development: Its essence and opportunities. In
International Symposium on Object and Component-Oriented Real-Time
Distributed Computing, page 313319. IEEE Computer Society Press, 2006.

Howard Smith and Peter Fingar. Business Process Management: The
Third Wave. Meghan-Kiffer Press, 2003.

Greg Straw, Geri Georg, Eunjee Song, Sudipto Ghosh, Robert France,
and James Bieman. Model composition directives. In 7th International
Conference Unified Modelling Language: Modelling Languages and Appli-
cations, 2004.

Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and
Yves Bontemps. Generic semantics of feature diagrams. Computer Net-
works, 51:456-479, 2007.

Klaus Schmid and Isabel John. A customizable approach to full lifecycle
variability management. Sci. Comput. Program, 53:259-284, 2004.

Kenneth Slonneger and Barry L. Kurtz. Formal syntax and semantics of
programming languages - a laboratory based approach. Addison-Wesley,
Boston, MA, USA, 1995.

Shane Sendall and Wojtek Kozaczynski. Model transformation the heart
and soul of model-driven software development. Technical report, Ecole
Polytechnique Federale de Lausanne, 2002.

Kamyar Sarshar and Peter Loos. Comparing the control-flow of epc and
petri net from the end-user perspective. In International Conference on
Business Process Management, page 434439, 2005.

SPL. Welcome to software product lines.
http://www.softwareproductlines.com/.

Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. A taxonomy of vari-
ability realization techniques. Software Practice and Experience, 35:705—
754, 2005.

Gabriele Taentzer. Agg: A graph transformation environment for mod-
eling and validation of software. In Workshop on Applications of Graph
Transformations with Industrial Relevance, 2004.

Lawrence G. Tesler. Programming languages. Scientific American,
251:70-78, 1984.

Laurence Tratt. Model transformations and tool integration. Journal of
Software and Systems Modeling, 4:112-122, 2005.

Bibliography

269

[vdA98]

[vdA00]

[vdAO03]

[vdAtH99|

[vdAtHO5]

[vdAtHW03]

[vdAvHtHT11]

[VDKV00]

[vdL02]

[VGO7]

[vGBS01]

[vO02]

[VVP02

[WCR09)

Wil M. P. van der Aalst. The application of petri nets to workflow man-
agement. Journal of Circuits, Systems and Computers, 8:21-66, 1998.

Wil M. P. van der Aalst. Workflow verification: Finding control-flow
errors using petri-net-based techniques. In Business Process Management,
pages 161-183, 2000.

Wil M. P. van der Aalst. Challenges in business process management: Ver-
ification of business processing using petri nets. Bulletin of the EATCS,
80:174-199, 2003.

Wil van der Aalst and Arthur ter Hofstede. Workflow patterns.
http://www.workflowpatterns.com/, 1999.

W. M. P. van der Aalst and A. H. M. ter Hofstede. Yawl: Yet another
workflow language. Information Systems, 30:245275, 2005.

W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske. Business
process management: a survey. In Proceedings of the 2003 international
conference on Business process management, pages 1-12. Springer-Verlag,
2003.

W.M.P. van der Aalst, K.M. van Hee, A.H.M. ter Hofstede, N. Sidorova,
H.M.W. Verbeek, M. Voorhoeve, and M.T. Wynn. Soundness of work-
flow nets: classification, decidability, and analysis. Formal Aspects of
Computing, 23:333-363, 2011.

Arie Van Deursen, Paul Klint, and Joost Visser. Domain-specific lan-
guages: An annotated bibliography. ACM SIGPLAN Notices, 35:26-36,
2000.

F. van der Linden. Software product families in europe: The esaps and
cafe projects. IEEE Software, 19:4149, 2002.

Markus Voelter and Iris Groher. Product line implementation using
aspect-oriented and model-driven software development. In 11th Interna-
tional Software Product Line Conference, pages 233-242. IEEE Computer
Society Washington, DC, USA, 2007.

Jilles van Gurp, Jan Bosch, and Mikael Svahnberg. On the notion of
variability in software product lines. In WICSA, pages 45-54, 2001.

Rob van Ommering. Building product populations with software compo-
nents. In 24th International Conference on Software Engineering, page
255265, 2002.

Daniel Varro, Gergely Varro, and Andras Pataricza. Designing the auto-
matic transformation of visual languages. Science of Computer Program-
ming, 44:205227, 2002.

Nathan Weston, Ruzanna Chitchyan, and Awais Rashid. A framework
for constructing semantically composable feature models from natural

language requirements. In 13th International Software Product Line Con-
ference, pages 211-220, 2009.

270

Bibliography

[Wes07]

[WGHS99]

[Whi04]

[Wik]

[Wit96]

[WKO03a

[WKO03b]

[WL99]

[Worl2]

[WS05]

[Xac]

|Xte07]

[Zai97|

[ZHJ03)|

[ZJ06a]

M. Weske. Business Process Management: Concepts, Languages, Archi-
tectures. Springer-Verlag New York Inc., 2007.

Mathias Weske, Thomas Goesmann, Roland Holten, and Rudiger
Striemer. A reference model for workflow application development pro-

cess. In International Joint Conference on Work Activities Coordination
and Collaboration, pages 1-10, 1999.

S. A. White. Introduction to bpmn. Technical report, IBM Cooperation,
2004.

Wikipedia. Feature model. http://en.wikipedia.org/wiki/FeatureModel.

James Withey. Investment analysis of software assets for product lines.
Technical Report CMU/SEI-96-TR-010, Software Engineering Institute,
Carnegie Mellon University, 1996.

Jos Warmer and Anneke Kleppe. The Object Constraint Language: Get-
ting Your Models Ready for MDA. Addison-Wesley Longman Publishing
Co., Inc. Boston, MA, USA, 2003.

Michael Weber and Ekkart Kindler. Petri net technology for
communication-based systems. Advances in Petri Nets, 2472:124-144,
2003.

D. M. Weiss and R. Lai. Software Product-Line Engineering: a Family-
Based Software Development Process. Addison-Wesley, Reading, Mas-
sachusetts, 1999.

Petri Nets World. The petri nets bib-
liography. http://www.informatik.uni-
hamburg.de/TGI/PetriNets/bibliographies/aboutpnbibl.html, 2012.

Terje Wahl and Guttorm Sindre. An analytical evaluation of bpmn using
a semiotic quality framework. In K. Siau T. Halpin and J. Krogstie,
editors, Workshop on EvaluatingModeling Methods for Systems Analysis
and Design, page 533544. Eds., FEUP, Porto, Portugal, 2005.

Xactium. Xmf-mosaic. http://www.xactium.com/.
Xtext. Xtext. http://www.eclipse.org/Xtext/, 2007.

Mohamed Zairi. Business process management: a boundaryless approach
to modern competitiveness. Business Process Management Journal, 3:64—
80, 1997.

Tewfik Ziadi, Loic Helouet, and Jean-Marc Jezequl. Towards a uml profile
for software product lines. In PFE, pages 129-139, 2003.

Tewfik Ziadi and Jean-Marc Jezequel. Software product line engineering
with the uml: deriving products. Software Product Lines, 1:557 — 588,
2006.

Bibliography 271

|ZJO6D| Tewfik Ziadi and ean-Marc JJezequel. Software product line engineering
with the uml: Deriving products. In Software Product Lines, pages 557—
588. Springer, 2006.

[ZMO04] M. Zur Muehlen. Workflow-based Process Controlling. Foundation, De-
sign, and Application of workflow-driven Process Information Systems.
Logos Berlin, 2004.

[zMROS] Michael zur Muehlen and Jan C. Recker. How much language is enough?
theoretical and practical use of the business process modeling notation.
CAiSE, Lecture Notes in Computer Science, 5074:465-479, 2008.

272 Bibliography

APPENDIX

A. ANNEX 2: BUSINESS PROCESS
FRAGMENTS FOR THE BCMS CASE STUDY

A. Annex 2: business process fragments for the bCMS case study

(‘process Communication establishment [[Communication establishment U h
PS coordinator FS coordinator
0
Call FS coordinator Receive PS
]_ - - - coordinator call
| | —
|
Request -} v
communication PSC
Call PS coordinator
[PR A Request
l:oc:::\':e“ ‘F>S> communication FSC
coordinator call
_ J

Fig. A.1: Communication establishment business process fragment

(process Coordinator identification [[] Coordinator entification U A
PS coordinator FS coordinator
¥
Authenticate PSC
Send PS coordinator [— - — — | — — —pf Receive P* coordinator
credentials
Store PS coordinator
credentials
Receive FS coordinator 1 _ _L__ Send FS coordinator
credentials credentials
o J

Fig. A.2: Coordinator identification business process fragment

277

(‘process Crisis details exchange [[g Crisis details exchange U)
PS coordinator FS corodinator
Send PS crisis details O~ — - — —D(Ihoeive PSC crisis detailaJ
[f&ceive FSC crisis details }F - — — O Send FS crisis details
NG J

Fig. A.3: Crisis details exchange business process fragment

,proeess mdmwmwn[@mdcmmmu

PS coordinator

FS coordinator

Receive police cars
deployed

Communicate
dissagreement to
PSC

Communicate
route agreement

to PSC

5 Receive root

Fig. A.4: Creation of coordinated route plan business process fragment

A. Annex 2: business process fragments for the bCMS case study

(‘process vmmmx@vmmmy

Fig. A.5: Vehicle dispatch coordination business process fragment

(‘process vmuwmsmm[@vmmwammu il

PS coordinator FS coordinator

()

Check status of
police cars

Send replacement

police cars

Police cars arrived - — —
at destination

Calculate new ETA
of police cars

Fire trucks arrived
at destination

Receive fire trucks
arrived
___________________ R S e o) Communicate
updated ETA to PSC
Receive updated
fire trucks ETA
\ J

Fig. A.6: Vehicle target arrival coordination business process fragment

279

(‘process Objective complete coordination [@ Objective conplete coordination]J

(.

PS coordinator

FS coordinator

Declare completion
of police car objective

Receive fire trucks
objective complete

Receive police car
objective complete

= Declare completion of
fire trucks objective

)

Fig. A.7: Crisis objective complete business process fragment

fprocess Vehicle refurn coordination [Vehicle return coordination]J

PS coordinator

FS coordinator

Police cars back
from crisis location

Receive fire trucks
back

Fig. A.8: Vehicle return coordination business process fragment

280 A. Annex 2: business process fragments for the bCMS case study

(‘process Close crisis [[2] Close crisis u

PS coordinator FS coordinator

Propose to close 0— —|— -
the crisis

Receive close
crisis proposal

Agree to close the

Fig. A.9: Close crisis business process fragment

fprocess Vehicle Management - PSC send & receive [Vehicle Management - PSC send & receive U

PS coordinator

@

Create police car
dispatch order

Send order to
dispatch service
Broadcast order to
police cars

Inform FSC of
police cars
dispatched

Fig. A.10: Vehicle management - PSC send and receive business process fragment

281

(process Vehicle Management - FSC send & receive [£ Vehicle Management - FSC send & receive U

FS coordinator

Y

K/‘

Create fire truck
dlspmch order

Broadcast order to fire
trucks

Send order to
dlspatch service

Inform PSC of pol
cars dlspatched

Fig. A.11: Vehicle management - FSC send and receive business process fragment

(‘process Vehicle Management - PSC receive [[Eg Vehicle Management - PSC receive]J

PS coordinator

Citizen vehicle

Receive accident
report

Store accident data

Send report to
police

Fig. A.12: Vehicle management - PSC receive business process fragment

282

A. Annex 2: business process fragments for the bCMS case study

(‘process %EWNAW(EGESM-MMU

PS coordinator

FS coordinator

Prpose FSC to act
on selected crisis

Acknowledgs to =
PSC acceptance fo Rehse B3 :ISIS
intervene in crisis propos
Send PSC refusal
response

Fig. A.13: Multiple crisis business process fragment

(prooess Communication protocol - SOAP[@ Communication protocol - SOAPU

PS coordinator

Police car

<_>
Create SOAP
message "dispatch
order”

Forward SOAP
message to police
cars

Decode SOAP message
from police car

Decode SOAP
message from PSC

Create SOAP message
“order received”

Send SOAP
message to PSC

Fig. A.14: SOAP communication protocol business process fragment

283

(‘process mmmum-m[[gmmmm-my

PS coordinator

Police car

Fig. A.15: SSL communication protocol business process fragment

~&W[EM

)

PS coordinator

FS coordinator

Send FS crisis
details

Fig. A.16: Encrypted data communication business process fragment

284 A. Annex 2: business process fragments for the bCMS case study

(‘process Auﬁerﬁcaﬁm—passwordbased[Auﬂmﬁcdim—passwoMbasedU h

PS coordinator

Enter password
Validate credentials

Unauthorized <<output>>
access Login successful

Fig. A.17: Password based authentication business process fragment

p ication - certifi based[[E;AMaﬁon-eenﬁmmﬂJ

PS coordinator

@

Enter password

Validate PSC
credentials

. Enter connection
Unauthorued code generated from
osieia o certificate

Unauthorized
access

Fig. A.18: Certificate based authentication business process fragment

285

(process Authentication - symmetric encryption [Authentication - symmetric encryption U

PS coordinator

)

-

!

[Enter username } ——————

+
[Enter password J

|

Apply HMAC-MD5

function on password
and challenge string

[v

Send hashed
password

Receive validation
response

!

i !
Unauthorized]
i <<output>>
l Login successful

Authentication authority

)

challenge string

Retrieve user
password

v

Apply reverse
hash function

v

Validate client
credentials

(
-

Fig. A.19: Symmetric encryption authentication business process fragment

286 A. Annex 2: business process fragments for the bCMS case study

(process Authentication - one time passw ord [E:E‘ Authentication - one time passw ord u

PS coordinator Authentication authority

(Enter username J

'

[Enter password)

Validate PSC
credentials

}

= .
aithored [Partial access)D Rl By R *D(E\,

access

granted

(Generate TAN code)

}

_______ —J— — —(] Send generated code
by SMS to PSC

Receive TAN code]

([Enter received | _ _ _ _ | 1 Validate entered
!, code code

Get validation
response

'
e V|

Unauthorized
access <<output>>
l Login successful

7~

.

Fig. A.20: One time password based authentication business process fragment

287

(process Authentication - mutual authorization [Authentication - mutual authorization U

PS coordinator

Authentication authority

Generate client
random number Rb

username using Raand Rb

|

Send hashed |~ _ _ _ _ _ _ |
username to server

[Apply hash function on]

results

!

[Get validation

{

Unauthorized
[access J [Authentication })
request

Get authority
res ponse

=)

[Apply hash functlon J
J
J

onreceived id

Validate authority

Login successful

[<<output>>

e — -

@

4

Generate server
random number Ra

_ Apply server hash
function on username

[vatdstecient
oo o@

Apply server hash
f o function on server
id using Ra

()

Fig. A.21: Authentication based on mutual authorization business process fragment

288 A. Annex 2: business process fragments for the bCMS case study

(process mmmhmhyer—HﬂP[\g;memm-HﬂP]J D
PS coordinator FS coordinator
C)
Set up PSC as
communication client
Set up FSC as
communication server
5 Define list of
Establish TCP e
S = 71 1 — {J communication ports
to IiSIen to
- J

Fig. A.22: HTTP based communication layer business process fragment

(‘process Comnunication layer - HTTP [£25] Communication layer - anu

PS coordinator FS coordinator

()

L4

Set up SOAP
processing model

configuration as
SOAP receiver

Define FSC
o- - - - — 1 -1 - configuration as
SOAP sender

Define FSC

configuration as
SOAP receiver

Initiate SOAP
— emf e e - message path

Complete SOAP
ELTE between PSC ans FSC

ration

Fig. A.23: SOAP based communication layer business process fragment

