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Résumé: Diffusion d’un faisceau modelé par un particule
excentrique et propriétés arc-en-ciel du sphéroides

Deux pieces de travail sont inclus dans cette thése. La premicre partie
analyse l'interaction d'une spheére excentrique avec un faisceau incident
quelconque forme au sein de 1'généralisé la théorie de Lorenz-Mie (GLMT).
Distributions de controle interne, preés de la surface, loin des champs
dispersés zone ainsi que le comportement de la morphologie dépendant
résonances (MDR) dans une sphére excentrique éclairée par un faisceau
focalisé gaussien sont analysés. Dans la seconde partie, en utilisant le EBCM,
les propriétés de diffusion de lumicre autour de l'angle arc pour un ensemble
de sphéroides dans des orientations aléatoires éclairé par une onde plane sont
¢tudiés. En comparant les paramétres extraits de ces parameétres originaux
utilisés dans les expériences de simulation, la sensibilité de la technique
d'arc de la sphéricité des gouttelettes non est quantifiée.

Mots-clés: GLMT Faisceau modelé Particule excentrique EBCM
Sphéroides Technique d'arc-en-ciel

Abstract: Shaped beam scattering from an eccentric
particle and rainbow properties of spheroids

Two parts of work are included in this thesis. The first part analyses the
interaction of an eccentric particle with an arbitrary incident shaped beam
within the generalized Lorenz-Mie theory (GLMT). Distributions of internal,
near-surface, far-zone scattered fields as well as the behavior of
morphology-dependent resonances (MDRs) in an eccentric sphere
illuminated by a focused Gaussian beam are analyzed. In the second part, by
using the EBCM, light scattering properties around the rainbow angle for an
ensemble of spheroids in random orientations illuminated by a plane wave
are studied. By comparing the extracted parameters with those original
parameters used in the simulation experiments, the sensitivity of the rainbow
technique to the non-sphericity of droplets is quantified.

Key word: GLMT Shaped Beam Eccentric particle EBCM
Spheroids Rainbow technique
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RS TN 2 R b FRAT TR AL, 556 P BT 45 3 A3 SR i Lok 1 (R G U 5 1 5
F 23 2 [ LR A5 7 PR TR (K B 2 R A AR K AN R o D 17 S DIORG B 1) 4 ik A
B Sy MW VAR 11/ € PR e = M9 B B 4 SRS P VAR R E R PR 33
FEDRRHRI AR Z, PR OB X L O BOBUH R R S i B 2
J AL EER I BB B R

i, BR T R OB B R T A EAE AR TEAh, fi
LR 75 2 LR B R s AR AT T — AN AL eung 258 S
R S 0 B TRV T /NSRBI BRI T X 1 3%, 1fii Curzon FTPlant™ 1 H]
07 5 R P AN R AR VB T BRI 0 (AR BRI 1 35 0 I R Al e e N0
AR RIRESE A, HES T i L 9 AZ /N IR S DESERTE 1 4 Js (1 3L IR 3 A 7 1) 238
2o WEFTT D BB 25 Bl LA 2 805 IR AR B2 B 2 [ 1 DG R i 2. il
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AL L AT T ORI SRR 7 (R L

Hasheminejad fllMirzaeil™ ) FH ™ 4% 10 43 155 A5 F vk S0BT IS 7 i Oo Bk = i ik s 4
PR AR R o A SCH T H B BIAE, 32 EE35 AR T 0 /0 BROGT H R % TR 1)
STRAEST, AR B8 45l O BRON LA o, sl (RSO AL AR o fR it
Mgt

AV S — o B EAHR S T B R A SN A . R R R M R
HIC PR AAT B A AR R B ECEH R I T R 0, AH OGS HE T 45
R OZLA—ARIIE 0Kk £ /EOptics Communications 7074, Horf 32 s gk 8 1 4
AN PRI T RN i TR OSBRI T A TR A i
ESR =R AL T SUSAC 2K EE S, SO ER 57 T 3 2 1) PR Al 1
I F S, I HHFORTRANGE 5 X H i HE S AT g fE SR fift . 26 DU 52 vh AT 1)
H g 5 IRER, S CER I 3 A0 W 3R AT T 2B &5 Sy, 236 =
HIESE DY 22 R AH e i O 2 R R AETOSA AZ%G BV 7088 T dh Al T D BR B
LG TEHAT T HUE R 45 BT, MISSR 4 R R AETOSA ARk 110,
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FE EENHERRRIKRKE KRR

AZEMENGT 7Lk K2 (GLMT) W St BRI, ) SUB b 35 K 38
WHAERN, FIRRKERBIAELR Exst A A LT ZR T stk g 32 Hfa
B FATHAFR TP HAnk I, BEEFTOANSGH I KRS A A L4
F TR RBBEI, EF T HRKE T (Beam Shape Coefficients, BSCs) /£
R AT A Z 0 A0 B4R 6 — IR K A N, AT AR R A B, 0 T Stk
RERBTEAEZT A LATE T LR BACREAT R LN, TABR THMA
AR, REAER R ZAS IR A, LB T T HER THET
FORRBATHRFEEKN., ST EARATEH LT R Rk 8] o5
Fo By PRk 91 R0, 2 [R IR AL 4 04 5 R AL B AR Aot SE 64 VE ) .

§2.1 JsteRoR IR

IR Hh A n) [R) A S5 2 R 1) 38 S 3ok - 6] Y- T FE TR 8 TR AT e A, 0l el
Lorenz!"1 18904F FMie™ - 1908 4 1k -2 5 i 5 Jy FEALUEAT T 74 Kt k43T
A FUHE S U oy = s TR oy An R AT R IA S, TR T & LR s AR 22 oK Bk
(Lorenz-Mie theory, LMT). [ M 1964458 — G WOLES E A LK, OB DL &
RN EEN SO /1 S STI 0 S  IP ) AR e ot ) O G P 7 T A e ==
S T IESEPERE A WOCI A BRI, S AOG SR AR A A T BT
RFEFNFH o A fE 4R 22 010G 2 M S R RS B b, WORHE i T HoA
P A R PR A e AR Bl eI, IR OO 5 SR A 2 TR AR HATE D B4t

AAFE, AR -, WO M R /AT A Y], e 25 [0 73 AT (1R
RO O TR EARS . sy T 2 2O G2 (E TEMo i 20~ TAF
ISF, BT R A SR SO IR AR T 8 520 A S PR AE R = 3 oA, DTt e Rk v
Wrote MEUMA S A TR BAR R A A EAE RIS, 7 A2 I U 3 16 2% 18] 53 A A AR
T AR B P JFURIAT T AR M BT, T HLE AT O A A AR 0T A )
WA AL E . T AR 7 S5 B INAT 5 S o B T 1) A, AT SN 4y
PP IOGKT A T8 W R SR~ 2 TR RO I il o i G e O B, A A e R HE £ 1)
O AR AT AR AN [R] PRI AR A 28 HP R I8 25 B AT T RO R

T H FRATT VT LUK A T B B 08 R 40 i B 40 % (Partial Waves) 8% 35 & 11~ [T %
(Partial Plane Waves) I E0E N, T IR iE AAH AL tH— 41 B T RECR LR,
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AL L AT T ORI SRR 7 (R L

MRZ R BA A o Horp N 5 ok |32 (5 9252 H Gouesbet I Grehan i A P24 H (1)
] A 22 K B2 (Generalized Lorenz-Mie theory, GLMT). | XS AE 22 KBS KA
TV FOTE AL 1k AN TR W W FURE A7 K /N 23 I e B8 I, AR JE Tl 70 B AR %
TE 55 B AN TR SRORE -1 AERE I (R AR B 28 SR At Hh FELRA S 7 RE IR B e . 2 1330
ERBEMNHE, E2M0FFEIE AR TEE T, & & R At
HATE WG R 5 25 R R NDRE - 2 TR AH BAE I B LB R Tk — o e
) SORAR 2K BRI 5, IR 5 P TR I R IR J& 7 11 A0 25 b S 2R
FIUET 1) 8 R A o 0 e AR KR i . 19824, GouesbetMlIGrehank £ 1)) Lis4e
22K BAR 2 BT 0] i 3T O BRI RE 1 U0 8] B IEIT o A2 AT TR IR SO R) I,
Barton' 6} 15 B 5 W TEMma 3EAT T W07, Loic!™, w30t ik 0k o
TR ) RLEA T T WF 5, AT 58 550 R Y R (Laser-sheet beam) 1 B8 408 JT 04T T
WF9Y . (ERPIEIRL 7T 5T4R)E L, GouesbetFlGrehan™!, Barton™!. Lock!®®!,
FARARE T NS BRI R T ZJRERR P L2 ST . Barton?H, i P40
5K A 7k PO N 3 BGRR[0 BOHEEAT TWF9E. X T 2 GLMTUE304E 5K 5y
(R AR RGNS, %7 AR B R AR A 5 BRYE, 1 2% Gouesbet M Grehani it
AR I

W B PITIR R0 I PRCRSCSRT i 2 S AR P O R v B OB, A R o R M £ )
S AT R 3807 7 AR R 8 AR B R N IR NS AT TR, IR AEAH BV )
ARFRZR T SRABAFNT I IR AR R 1, A T 18 TR RS ST i) 0 1 SR B A 00 20T ) 2 T
Hoo TORBMEETERR BRI, R RATERR AT AR R T R RIF I, h
0 T R PSR i) 7 ) SR it i Ak R T SRl o

§2.2 BROCHCPPA N ik e 2

§2.2.1  EROSFEP R EN E X

H 19354 Hansen 2 — (X 32 B R R AR 2 5, 2B 2 N T %
TR IR S U B TG, Blam&fe 22 K30, | &1t 22 K38, EBCM
JNEAESE . N IRATE A AR B RS, FFEA T ARSI Bk R &
BRI E X

FETCYR . 5] W RPEGE T, W 25 i TR R 7 expGiwe) » I IS HLRGIZ 1)
1375 03 5 A7) 0 & 03 ool 2 LA AR R ) R S Ak o0 1«

VE+k’E=0 @1
V’H+k’H=0
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KA Rm L = ue+iouw, Mie, wp, oBRNEFEAHF L
W PR SR, WSk =Qr/ )n, A NHEREAE A R K, ol
BETARNS T B ER 2 8] B AR T 5 23
WA 22 e T e, RN H s o & E R 0 & HL 2 TRBEAA AR AT BL R 56
ESiW
E:ia)—;quH, H=_LV><E (2-2)
k iou
W Ry Iy R Q-1 I s 7 AR bR JR PSR AR, belnaskARFR &, JAT TR A
W il g A PIAL Iy SRR BT R, AESKRAR I R AR N e O 1SR (2- 1)
JiFE, Stratton BRI T bR R By AT R, SRS bR R
HRy s A2 (2-1) TN RE A = AN R I e U«
L=Vy
M=Vx(ry) (2-3)
N=k"-VxM
Horpr RUAME—H R &, 7RSS e T iR AR
PRI R H y oR G LAY T (2- 1D bR ) U5
Vi +kiy =0 (2-4)
TE AT R E AR R Oxyz FX NI ERARFR R (R, 0,0) T, (2-4) AT H N
1o LAY NY L2 74 S S P E I S
R” OR R”sinf 060 00" R°sin” 0 0¢
KM AR JT R, DT AR AL -

oy
R’ +
( M)

Vs = 2,(k7) B (c03 O) explime) o

Herb 2, (kR) 3 VUSSER DLZE IR R HY 7, (KR) > v, (KR) » Iy (kR) > hy* (kR) TR
—AN, P (cos @) KSR LR R AL

W AEERARBR 3 SR A4S B B bR R By, RIE X (2-6) RN X (2-3) B ) 143 2]
52 MR = AR BRI R gL, , M, , N, :

M) (kr,0,0) = (~1)"[im (cos O)i, 7" (cos O)i, Iz, (kr) explimp) — (2-7)

n(n+1)

N (kr,0,0) = (-1)" { z, (k) B’ (cos O)i,
(2-8)

+ L A2 R o503, +ima (cos Q)iw]}exp(l’mgﬂ)

kr dr
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AL L AT T ORI SRR 7 (R L

dz, (kr)
d(kr)

+fﬁ£?3{r:<coseﬁg-+vnﬂf(cos9ﬁ¢]}exp<ﬁ"¢)
r

L(r{n)1 (kl", 95 ¢) = (_ l)m { Pm (COS 0)1

(2-9)

Hrr P (cos @), 77 (cos@), 7z (cos @) 73 il Ry il A ek Kl DL S AN AT )
HEE ARG NI BARE e RIZRIR S, CLA VRN R B SR A 7 v A G B
KA. FIIMEMS AT BATIE 73 R4t T A — A i oy B b A ek 5 DL AN — 4k

AT i ) LE A A R B E;(cos ), ;n’;(cos ), ;z?(cos 0) 2k 5E o

AT L = AR 2 e bR O I 2 [ P, 9 ELYEBR AL 25 P 2 75 7
FAHTR, MRT eI, P, AR 2-1) i 52 ok B S ]
L, , M, N, (&SR, EFefoF, ki,

I HE M, N, A, AR SOITIFIT I AU 1)) s 1%
HKIGUL

2.1 S5t R A AR 2R 2 TRDH S Wy A7 R4 T AR T

§2.2.2 WL HIE X

fBE A AR S S B AR AR, 73 I BRTE Oxyz 1 O3z KK . EATT
KR ERAARE 2R3 (r,0,0) R (r,0, @) KR o TEILS AL BRI BERE A, TA]
LA AN AR R R AT L HOC R, e i Rl R B2 A1 (e, B, ) 2K
ik .

KT P LR R A AR R A I MR A (a, B, ) BEAT IR i i i A
Bdmonds™ 7EAth (1) % & b 45 18 T VRN IR K, 2 S5 10 £ % BHIF T AE A 4E
Mishchenko, Doicu, #hi—F&E NEVE ] TRX AR . 15 G TRATIE e 7 1n) i 2
A TR IE I AR T 1) A IR e 7 10) s 2 e TR e O 2 10 O e 7 1) o BAA i
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R WE2APR, LA L AP R

1. LIARBR R Oxyz T z Bk ot e e gt AT e s, e a (0<a <27),
MIM#F 2 FR 2 Ox, y, 2, o

2. LLAB KR R Ox,y,z, "0y, 4l o0 e e Bl Bk AT e B, e A AR R
BO<a<z), MIMGRIRR Ox,y 2z, .

3. LLABKR AR Ox,yy,z, I 2 SO0 RO e BOEA T e e, e fifE y (0<a < 7)),
MTIAFRIMRR R Ox 2, 5 BB a B ERE A FR 2R O%9Z .

EAFER — g, 2 8l7E Oxyz RTPHIBRAKR (r,60,0) BN (r, B,a)

§2.2.3  BROC IR BN g i g B

PHASIL IR LA A s 2 PT LU I R B A (e, B, ) R M LR AR OK, JE 11X
PN AN R A1 s 28 (10 R % B 30 R B2 ) P R L 20 45 5 2R PR DA B O Y0 i ) e e Jn
POEB, XA E BN A B BCRAEAN R AR AR AR R 0 T SR O K T . R
FRAT TR IEAN 5 BEEAT ] A -

AR AR R e A bs 2 b, G AN AR AR AR BT Bk A s B )
TR AR

P"(cos @) exp(imp) = i p(m,s,n)P’(cos 2) exp(is@) (2-10)
N I:':‘ :
plm,s,m) = exp(isy ul, (/) explimar) o)

W (B) =1 (n+s)(n—s)! ]1,2

(n+m)!(n—m)!

N (_qyse| Mo nom Baoisimy: Branzo-sm
Za:( 1) ( ]( o j(COSZ) (51112)

(2-12)
n—-s—o

XA LA s ) — 2l AR bR &R, &S (A AT R — RAE SN b b A R A A A
SEAR I A AR 7, DR R R Q-10) N IL AL 2, (k) , FFREATREEIES, 2
Ja Fe LIAR R ) spr e, W13 LR 25

Viz, (kr)P" (cos B)e™"]x T = Z {p(m,s,nV[z, (kr)P: (cos 0)e™]xF}  (2-13)
W45 (2-13)00 EE bR B pR 2 t// (15 X (2-6), FATAT LG H]:
Vy,, Xt = Z {p(m,s,nVy,, xF} (2-14)
FR A Stratton FH AR I pR BOR) I % S BkaE pR B e S, BATTrT LASH
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AL L AT T ORI SRR 7 (R L

an (kr) = V x (r l//mn) = V y/mn x r

(2-15)
R L B R, R T 7 R M e i B
M, (kr,0,0)= 3 p(m,5,mM., (kr,0,5) (2-16)

h T B e B AR E 1 LA AH N (R4 S ek BRI LA AL, AR AT S
AWigner-defi %, Wigner-deR#Ue 28758 1 157 70 TS & 18 21 (1) 20 1R
e, R AR 7 {5 M T R R AE — 4 AR by 3R 2 (W) 30 3 e e AT SR AR LG &R .
Wigner-d R £ ) o — AN B Rk B A«

dP(B) = (1" J(n+9)(n—5)(n+m)!(n—m)!
ﬂ 20+s+m

(cos™)

xZ(—l)" 2

olln—-s—o)l(n-m—-o)l(s+m+0o)!

B Jr-2osom (2-17)

sin
( 2

FWigner-d iR IE A o, R 2-12)8AT HEE, BT LS 2
dy) () =(=1)""uj, (2-18)

B2 KT Wigner-d bR B IR A S, EHEIa H O R, LB 5w SR
A PRI OC 2RV 2 JE BT SR AL

BT U ERECEER, 856 R0 OBk g s s B0t e S, AT LIS 2 LA
T BR SR S I R B TE A I L

an(kr,e,§0) = ZH;n((X’ﬂ’y)Mm(kr’é’@) (2_19)

&

H:'m (0(, ﬂ’ 7/) = (_ l)mﬂ eisydgr’;) (ﬂ)eim (2-20)

WAL B e R, BATRT BRI 55— N ER SRR R ALN,,, (k) IR i
PR A

Nmn (kr’ 9’ §D) = z Hrjm (a9 ﬂ’ }/)Nsn (krﬂ é’ ¢) (2-2 1)

§2.2.4  EROCERBPA KT Nk e B

A5 AR RGO AR G i) @V SR AR IR, W RSO Bt 2 MR A R, 3K
AT ZEAE I L BEARL T IRIL F ZAE I 25 A FB I B8 B ASRL 7 DT AR R 5 (10 A
PRARRLE, BE R ORI K B LR ro R oy AR LA AR AR AR 1) AR T e 1 1]
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Ao A BIER SRR R BT P A e B, BRI n] LS B i 37 73 BEAEAR B4
AN AR R P RS, AR I (K32 F 2 PSR A S (e R

Z A
Z, M
r r,
r O1 y1
o >y
o, vl d

K22 EAMBARRIHATE 3h7n

B ORI BR B 0k o BE A ) T 1961 4F H Stein® M P RIS IE, 1 b N
HE (4] T 2 08 v e B T R AL Sk . &0l 200 R E TAEE L9 RIS,
F RIS RS B ek 2O s PR T 2R B0 S 22247 LU R LA 50V (D
W BEIEARSR AR 710 %7 VR 5] i Stein® 2, I FHMackowski®*, Chew!™ %5 A
LA, A4S TR O A . e R IEAR T VR S SR AR AT 2 b 3K BRI
AL ARG R R RECHAS EIERE R P R MR R A, SRR IR
B BRAK R BNV E FEAE R 8. (ID) Wigner 3jmf5 5505, 19624F Cruzan®?
XIS BT 7 HEE R e, @il gl A AU T Steindfi 5 o 1 2 100
A RIES, $2HH H Wigner 3jmf 5 7] L 4245 2k S AL f R BRI g by 28 T8 1) vt
O, ¢ TERR R RECER Ik e BRI A s e, H)5, Bruning Ml
Lo "X — 45 AT T itk o Tsange NPHE—20 43 31 78 T EHLTH S RIA
e (IDIE TPk T 5T Gaunt R B0 5% . Xl i s B R BT TN &
SRR, e Tl RV Gaunt RECK R R EUMEE, IR TIZN
JH BT 22 57 U P 1) SR A e O TR AT 057 o £ 2 B B B o1 R ik
ERL,

WER2.207R, AFRMWASPAT I B AR BR R 53 0 H Oxyz F10\x,p,z, K&, H
AFR 2R O, x, 2, W AL O, TEAAFR B Oxyz WP IO B 2R & vy SR80 o s s () h A7
fEE—RM, ELAEEMPERR Oxyz M1 Ox,y,z, TS E S0 H e v KRR AT
ALUNRRRRAN: r=r +1,

XTI AR bR RV, R BRI MR TR v e BER R O
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AL L AT T ORI SRR 7 (R L

MO (k)=S0 (47 (kMY (ke + B (ke N ()]

mn uv
v=l pu=-v

L (2-22)
N(j)(kr) = Z z [B;’:l;l’p (kro )M(ij) (krl) + AZ:’p (kro )Niljv) (krl)]

mn

v=l u=-v
Serpamer, B A8 R HL

XTSRS 77 AR 5 2 BT B ) SR TR 7 8, SRQ-22)h O A
IIESERA TR E S

my

ML) (k) = 3 [ A (ke )M (k) + By (ke )N, (k)]

v=l

. (2-23)
N (k) = > [By” (ke ML) (k) + Ay (kg NG ()]
v=l

XS I R e, AT

my

M) (kr) = i[Aﬁf ! (ke )ML) (k) + Byt (ke )NU) (k)]
- (2-24)
NG (kr) =Y [Bo (ke ML) (kr) + A (ke )NS) (k)]
TR BRI R E, AEr > TSOLR, TRAi 145

M (k) = D LA (ke MY (ke ) + B (ke )N (k)]
v=l
(2-25)

mn my my

N (k) = 3 LB (ke M (k) + A7 (kNG (k)
v=1l
Er < HEOLT, AT
M (k) = D [ A (o )M, (kry )+ B (ke )N (k)]
v=I
(2-26)

NG () = [ By O (ke )M (k) + A7) (ke )N (k)]
v=l

TSR BB (A7, B ) (R AR SR AR 712, RN A0 15175 BAK S I 4B
§2.3 (ERAWHEH AR EIF

§2.3.1 A7 TEI K i) Bromwichdiid A 4 X7 1) 52 X

LEZZ ST 7 AR I FERE 1, Gouesbet® AP A Bromwich#hs fit 340 A S oK
(R o B EAT ARAE, S8R T 0 R B 2 () A AT IR o AT BT TR
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W) Bromwich#y &2 #4932 LU il 70 5 12«
o’U 1 oU 1 a U

—+ —(s1 n—)+——-———+k’'U=0 (2-27)
or*  r’sin@ o6 06 *sin 08(p

KT AR RDORIR A LTI RS, 159 2P M5 LA 28 500050 A -

Uny ——Z 3 g, (k)P (c0s O) explimp) (2-28)

n=l m=-n

Uy = —Z Z g, (kr) P (cos 0) exp(ime) (2-29)

oAk A R AL B DA, v, (kr) = krj, (k) M Ricatti-Bessel B8 4% .

gl s &otrp NAFRIITPN PR A T, e T A 5
=y

T L AN DGR AR A 53 S RE IS L8 v IR 0% H, = 0 (Transverse magnetic

wave, TM wave)/> & FIi# L) E, =0 (Transverse electric wave, TE wave)/> & . &1

HL i Bromwichbs S AN AR, R H LRGSR 5 AN ilii b 7 B SR 5z

(AR AR B DG 2R, FRATTR AT ASKAS F R 37 7y & 1K) AR B 2 ik e 9l amox T rEL R i3

HITMIR, AT

(2-30)

Uy, s 10°U. 1 oU
Z w4 U E =—_-"m g —— M 2-31
RIM gy Une» Bon r oro0 oM ysin@ orog (@31)
iws oU. iwe oU.
H = —TM ) H - M 2-32
O psing g oM r 00 (2-32)

¥ Bromwichbr i 3 U, 315 2 (2-28) AN SR Af ¢ R (2-31)-(2-32) wh il LA
B PG I R R A R o i . [RIRERI TV, A Bromwichbs &35 U, (K&
G I ALK i b At v DA 20 v iple rh B B I &S d I o == K i oy
BIHCEERIE AN EER S R R M (kr), N (kr) 11952 SCRIEA T, AT A3 5
NS TR (0 H 3 o S ARG 4y B R IE N -

w m—|m (n m) . m m
E ;mznkcp ( 1)( iz ‘ D'[ gn,TEan(kr)+gn,TMNmn(kr)] (2'33)

(=" "”‘“M[ —ig)' N, (kr) + g M, (k)] (2-34)
mwnlm ~ —[m" " ’
METF(2-33)-(2-34) AT LA, 04 N S F R i SR P 3 ) 0 At %
B ER O S R A S I, AT SE AT AT T B R AR ik . e b, &
AR 3K 26 AN 5] B 250 1) BROE BR B2 PR A A3 U, T B AT R R R R R il R R B
g 8o BRI 1 AL X RN RRALE
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AL L AT T ORI SRR 7 (R L

§2.3.2 ATLEANATEH AN EIT

P GLMT T Lot 3 WL SR T 5 8 T30 R0 B ) B0 AT 3R S0 s 43
Bi. LTS B R, 75 SRR T TR I [ A b 25 F et I P i 9 4
K SR AT T R 1 O BB X T BR BB T, T BR
M, (ke), N, (kr) 2 [0 02 VTR T A R, Bl TIT DA T R i v
R 4 R O R ML, (ke), N (k) SRJETF, T IR W R 1 i PR
g g AR IE . HZRAI, ZEREARRE R R, T TR Bl B 4
T L FEAFL R R 22 B B ML, (), N, () K — BT, A3 H S A 2
Mo ok R BT . FE MR ER AR BR R R, U nr LR KB HE R B B8
M., (.1.C .00, N, (co17, &) TR TFAR MR LB o T BT8R O bR 8
L RS TR 2E AT R P A ARBR 2 T IO R OF WL, SR it F P 2
7Y DA SIGLMT, EBCMA % Fii it i 7 e 2 kel e 1

S 4T NS RO PR T 58— R O 6 B I

Ei = EOZ Z amann(kr)-l-bmnNmn (kl’) (2_35)
n=1 m=—n
. KE, &
H =——-% % a,N, (kr)+b,M,, (kr) (2-36)
la)/,l n=l m=—n

$5_EITH R T520(2-33)--34) AT L, TATAT LM R TF R ¥ a,, . b, 15
R T g7 g LI F R AR

(n=—m)!

bmn = kcfvv(_l)(m—\m\)ﬂ (n_ | - |)'gn,TM (2-37)
. W m—|m n—m ' m
a, =—ike’ (1) 'ngm (2-38)

B, WS SR T g7, g HOE, AT LIRS 0, b, A T
g 8" LI, AR BIRE S ARAT R R A TR I R T B 264

Fh A TR R DR T B SRR LB TR, B 0 AR S E 23 B )
SRR R, YO B R I B S, LR A R A
SRR A E, SRR T ALEDE A A bE R T R TT, SRR R T,
I FERAR LA AR ROVERE ARG R, TATAAE ) ook I RO S5 T TR
SRAE R ARRR R T I, Gouesbet S A5 I 48 1 T UM 4 IRGUEL AN,
AV B ST R AR BRI T g7, g™y o EBLIERN E, FTRA TR
o o R R T I A TR s B, TR ER T A A ke 7
RS, SO R0 NI TR 1 Fh 6 R T R 1 A T T
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B B A AT B AN L RS B A AR B &R Oxyz F1 Oxpz , A AT 2 T8 3l ik Rk 47 £A
(a, B,y) AT CASEIUAH B et . ZEE SRS R Oxyz F, FIREOR T I HER R &=
e R T LR TR A

E = Eoi Z a, M, (kr)+b, N (kr) (2-39)

n=1 m=—n

Hi

(2-40)
lmﬂ =l m=—

%Uﬁﬁﬂé%%wz@i&mm%m&m@, B 20 (2-19) A1 Q-2 AN NI I A 1 e T
R(2-39)-(2-40) ", WG B e AR R OFp2 N AE IR BRI B iR s EU# T L

Yoy il LA
E' ZZZH (o, B.7)a, M_ (kr,0,3)+b N_ (kr,0,()] (2-41)

n=l m=-ns

RebpvE m 5y S M, B2 )5

Ei - i Zn: Zl—;;an (kl", é’ (b)—}_gr:;Nmn (k?', éa (b) (2-42)
n=1 m=—n
Hrp JEIFR BN -
mn = Z H:Z (a’ﬂ’ j/)asn (2-43)
by —ZH(aﬁ’ﬂb (2-44)

$30(2-37)-(2-38) AT (2-43)-(2-44),  FRATTAL LS e e A8 5 2R Ox3z T HTE
WP T g NS SRR TR Oxyz FAT TGRS SR g, 2 IR LA e (1

— R AR
o - Hi(a,B.7)
gn,X = /umn z ( ﬂ }/)gn,)( (2'45)
S=—n ﬂsn
HorAy
|
(n—m)!
H;m (a’ ﬂ, }/) — (_l)m+s ezlv;/ds(;;) (ﬂ)eima (2-47)

§2.3.3 AR A HINPR I R T

P AT AR/ IR AR 1) AN 2 5 1) B il AR S e R B 2. NATT Rk 24
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AL L AT T ORI SRR 7 (R L

IO A A — Bl 18] [ AL R A LB . AN, R 3 R € 1 A
PRIl Be R, AT 55 i S TR 48R T 7 BB AR AT 2 SR B 3. AT 19 44
— RAE AR 2 (AL AR T RSO AR AT R, PE bl e i i, DUIE IR
A5, PRI BRI o T AR S A O] AR e oA Ay 981 R o Y8 R PR 35k e % R
TR DR 1 SR AR T R T EAR I 207 o

§2.33.1  FEHWHNNFRIE A e I

ik Rt S MAE R A BRI ENER S, EREEEMAMBIER X, y,z =
WRE A S, S, S, A=A BRBOXBAALRE T U 2 5L ds, ELIATE X
4 HAC Y BN E R S AL R T7 0] 2 Bl 40 5 S (0 = 0) ANEE T IR B RPR Ay — Bk
W (Generic beams). Il 010 HOREAE—BOR VG N FIE . 2E—20, AT X
THE 3 I PRI AR — AR o 5 AR R, R 3 B Ok B VR AR % T 1) z Al )
gyt S, AR KRN TR @ Tk, SEONTRII, X IR FR A 7 SRS BRI A
IK AR AN 1 HAT LT ff i 2P
g =0, [ml#1 (2-48)
1 1 £ . _ 8

_ -1 _ 1 _
8 _Egn,TM =g, g = Egn,TE D)

Hrh S8 e HE—DRAERETT M I, SHEERJT MW IE 2 B, e B-1; 4
REVR T MW 4z JhNF, e iU+1o KON — DRI BRI AR 1S3, BRI
{ECRE RIS B ak FH R AR R 3R AT 0% o e ), 43 BV S R B i A 46 7 1) X il i) 23 2 S OE
tb T cospltf, K =+1.

W 55 20(2-48) LA L2 (2-49) RN AT TE B AT KL -1 AR B 38 2 TR T 4 AR e ) — fR R
F(2-45), BIATAS 30 7r bk B R e R DR 1~ 8 3 I e e AR AR 28 2 R AH B %%
e A

(2-49)

" H/ (a,p, H" (a,B,7) _
gy = ﬂmn[‘(—mg,i,x +Mgn,‘x] (2-50)
lLlln ﬂ—ln
Ho g
1
=(-1 5 = — 2-51
/’lln ( ) /’l 1n n(n+1) ( )

Hi(e, B.7) = (=)™ d, (B H", (o, f,y)=(=D)""e"d)_(S)e™ (2-52)
FF B S AFR O AN SEA R B HE S, A A2451A.25:
(n—m)!

———=[ 7' (cos B)+mz'(cos B) | =—[n(n+1)d},(B) (2-53)

(n+m)!
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=IO 2 cos ) - cos ) =t + D () @54
(n+m)!
B (2-53)FIR-5H) N K T (2-52), FATTHT LAFF I
H\(a, f.7)=(=)""e""d), ()" (2-55)
', (e, B,7)=(=1)""e"d, (B)e™ (2-56)

B 25 (2-55)-(2-56)3% [A 25 A (2-5 DR I F(2-50),  FATTAT LAAS 2 HlCHFR % 3
TER B0 U o DRl 0 S AU i AR R R 2 DA E A 4 R T A g A 2 A 2K

m—‘m‘

mo o pymHlo 1y 2 ,imr
gy =(CD""(=D * e (2-57)

{mz) (cos B)le g, —€“g, (-7, (cos Ble g, +e“g, ]|

§2.33.2 B FRBOR I EIT

SR T g, gl HITHEL, GrehanF1Gouesbet 5 AP JEHH T #1431
A IRFBUETT i AR AESS =Rl 7. AT 58 55 P R0 X S ALy
S S, JM TIEHERE), vFEED G R KA . AESRAFAE RN
PR T 1 FERE L, Doicue:P VR FIER 4% 3 o8 B0 188 Inidse B4 S T s gl R
P AR T I A e SR AR AN O 6k ST A% i s BILSR A T 9 AR R D
(R TTEREAT T 208t o AEPT IR BN IR LE R g Ty ik, XA By AL v SR e
WesiovELy, A WA P B SO A 20 2 N o SRBHE ST &gtk kAl
5023 0 P I s BESRAFE A X SO AR AT 40, O B g R e R R ) 5K
R pE AL B LAl .

A. PRI e BER R

WE2. 27, AR BT I B A AR BR 52530 H Oxyz F10,x, 2, K&,
LR ARBR 2R O,x, 2, KRR O, AEAA R 2R Oxyz WP IO B 2R By SRR o e 25 [A)
AT MM, EFE AR R Oxyz R Ox, y,z, F AL E 5> 9 H v Flr KRR
TATALL R RIRR R r=r 41 EEMABIER Oxyz HRATAT LI A 3R
(1) FELRZE 37 5y 8 FH Bk O 0% R BT T

E = EOZ Z a, M _(kr)+b N, (kr) (2-58)
n=l m=—n
L KE, &
H =——2%>"a,N, (kr)+b, M, (kr) (2-59)
LOLL =i m=-n

A R BB R B2 o B
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AL L AT T ORI SRR 7 (R L

M) (kr) =D >[4 (ke )M, (k) + By (ke )NG) (k)]
v=l u=—v
I (2-60)
Ni) (kr) =D > [Bor (ke ML) (kry) + A (ke )NG) (k)]

v=l u=—v

F:0(2-60) A (2-58)-(2-59), FFHF v T mn 53550 4, FRATTAT LA1G 2

= Z auvArf;:,l + buan/:r‘l/’l > br'nn = Z auanél;’l + buvAn/;r‘t/’l (2_61)
uv uv

Hrba,, b W VBZIEMRR FAIEER T RZE B -6
(2-37)-(2-38) R ] 15 B TP KA R ARFR R N JRIFIBEOR A -, (R AN Sk .

T AME SRR TR B A R F I AT ER N, AR ER R S s B S Bk R =
PR BRI E IR S (AT Ok U pR B TR A HL A 0GR, FRATTRA AT BASK A
A T A RN FAENFERAE bR R [REAR bR R ik L1,

B. DXL KA
HARAERAFAE B AR BOR A (AT &, AP I e BLRES AT Ok 1525
R R o AFUERE BIE A 310, Gouesbet™ AU H (1) X S5l L1 LA
FCURSR e R, WS, B WA P B SO A3 20 S84 iz KN . R T3k
AT DI ATE AR AT 7 [ NSHAT T B ARAEAT AR BR AR N BUBOR A 1. A
%EW@U%X%&%I? FRT 43 B AR LA RO,
— KA i E, (r, 0,0) M7 1R 73356 H (v, 0,9) 7393173 85 1 m B 73
E&%E%Mﬁ Ferbm N7 R AARE DN % 0 B R SR AR AT TR A S

AL ST ) 23R m AT
E\ "&(E"
(bcj—-E;(}{m] (2-62)
B R ULER Y EBOR E A H T 2 1 R
EX) ][ k. 0 0 Er- 2-63
e = H, exp(—ikr cos @) exp(img)sin H" (2-63)
TATAT LIS RIA AR T o R R RIE > 52 £ R H)" .

W= B EN R H!" AT IR . BIFESRARAR AR, R A B R 2

MEE 25 rsind H L7 kAR, IR olce h»/2 . Hhof:
L=mn+1/27=(m|+1/2) (2-64)
F0: B E¥ Ll ErRis s ik FIR- AL T Z 3T A
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m _i m|—
Z, =(F)‘ - (2-65)

B ] 45 5 B RAEAT R TAT AL R F OB R T g7, gy o KR T
8 g WIS PN 28(2-45) B T 758 ) BB B B R AT R AR 2 JRETF A
WP T S T A EL M A BT B B AT RO AR 2 R IO T, R IITRAT LA
o 7 T 1K LA A AT 3 R 7 ) o A

§2.3.4 AR R ) R TT

T BRATTIS VS T 0 R e A TR L AT I AR AR bR R B SR AR 1 — %
Zile MWEEL(Q2-48)-2-4NAHMERIN, 2 (e, K) = (=1, +1) B, FhXF R APBOR K 1
(IS R 7N D e R o AR 9 o b A 1) B v U8t RO R IR 7 LA — AR T U -

. . g,
grlt,TM = gn,lTM = lg;l1,TE = _lgn,lTE :? (2-66)

D v OB AR — Foft SR (B PRI R, B I SO H S R 0 A1 e O 5 3
Bz —, I T IONT R R R P LA e TR oA P R SR AR BEA T PR 1) 70 AT

| % |
x"x\xl Y
SeloW, Tw

- _,"‘)90

-
- ~.
_ -
- -

K12.3 ey il AR A 9 2 ) A% ik A i
§2.3.4.1 =Y R P

FELJR 20 A DGR 2% [R) A A% 478 I8 A2 Hermitz 77 4«
VE+k’E=0 (2-67)
T SRAF T RERT LU, ST BRI LA ST ThI R0 2 e IR AR A o (H 2
fan VT AN A A Hermitz 7 BE RS AR, 1R AR SR PR Mm U i) — AU AR
e ST R A i R s A E R I B TR 9 P 93 A AR v S0 28 R 50 ) 08 R R 8 R o
WIEL2.3 7 A i N AR R R I ] . R sy Rk Ak
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AL L AT T ORI SRR 7 (R L

E o, r r
exp[—

3 ]exp{—i[k(
oz @ (z) R(z)
b o, WIS, o(2) WAL 2 AEEOBER TN, R(2) S 3 E 72,
w(z) NARLIA T

E(r,z)=

+2)—y (Z)]} (2-68)

o(z) = o 1+(z/ 2, ,w(z) = tan’l(Zi)

0 (2-69)

Hrpz, WILESH, WIS :

1 2
2= ko, (2-70)

AL B R TEM oo A2 O 2 5305 a1 TAEAE, 4 B e ) AR ek A
1) e 52 ) 3 A T 3o T T FRATT DA EASE 15 i R TEM g0 A 91 5K 13 BH i 8 e AT 3
AFRRTIETT . 24078, — RORBEEAT R o, IR il vas B v AL bR
A0 uvw B w B IEDT [ ALHR, I TR 120 exp(ior) » e o MR . RO
LA R RO, BE, BRI BN w HNEDT M. 555 O uvw A
PRAPATIN LSRR AR Oxyz » HorP O uvw HEBR R R KL O, FEABHR R Oxyz [ A
K (X, Vy»2,) o BJiT> WEFE B AR R Oxpz Rl I AR 2R Oxyz IAERRPLA (a, B, )
(R e 2 K Il 211 o

AW

7
2.4 # IR AT B EL A AR 3 b T

§2342  fERSHTBORKACA A

TEWRAAR TR O uvw o1, Davis> ULl ik s R I R 2 1B 48
BRI Bk AL 22 e 5 U RE s AT M A e T R R T IR KA A 1) . AE
RARIT I, SR TR RAE B ARAR 2R O juvw I FBIES 7 3 AR IK S0 R BT«
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E! (u,v,w) = E,¥, exp(—ikw)

E!(u,v,w)=0 (2-71)
ELev.) =22 Bl v,

H! (u,v,w)=0

H! (u,v,w)=H,¥, exp(—ikw) (2-72)

H;(u,v,w):_%m(u,v,w)

Horp By o2 R0 AR i 37 IR S 137 RO S ml e BA R SR R A5 2

H,=E, |5 (2-73)
Hy

. iOw* +v*) 1
¥ = = 7, S -
’ lQeXp[ ] ¢ i+2(z—z2,)/1 7

AT KEE: [ =keo;
§2.3.43 @R ATEOR AR

KT PN B AT I AR AR 2R Oxyz FIALFR 3 O,uvw, AR BRHN Ox AT T Ou
Hog KA MR BB A BT, O uvw ABR T O, 7EARBE &R O xyz 1AL AR I

(X05Y052¢) o %

w=z-z, u=x-x, v=y-J, (2-75)
HE R Q7SRO B BT SR (2-71)-(2-72) s T L5 0

WAE EAAARR T IAH N 38 5
E_=Ey,exp(-ik(z—z,))

Ey:() (2-76)
Ez :_?(X_XO)EX
H =0
H, =Hyy,exp(—ik(z - z,)) (2-77)
2
Hz :_TQ(y_yO)Hy
HorAy
. X4y 1
= -~ , O=————— 2-78
7z lQexp[ 0 )j T 2-78)
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AL L AT T ORI SRR 7 (R L

AL RIBOE R R, BATHU] LIAEBRAA R R i A3 BB 125400

E =Ey,[cospsind(1- % rcos )+ %xo cos d]exp(K)

E,=Ey,[cosp(cos O+ ? rsin’ 0) — ? x, cos @]exp(K) (2-79)

E,=-Ey,sinpexp(K)

H =Hy,[singpsinf(1- %r cosd)+ ?yo cos@exp(K)

H,=Hy,[sin@(cos O+ % rsin’ @) — % ¥, sin@]exp(K) (2-80)

H,=Hyy,cospexp(K)

y
=

2(rcosf@—z,)

K =—ik(rcos@—-z,) QO=1/(i+ ) (2-81)

Wo =WoWy
. __r*sin’ @ oxi4+y?
wo = iQexp(~i0 ) exp(~iQ L2 0) (2-82)
@, @,

vy = exp[@ rsin@(x, cos@+ y,sin )]

@,
§23.4.4 RPN BRI 5 R BRI

ATHE, ot T A AR FR = i A A L o3 5 ) ol R ik AU
22 O 7 RE MDD, AN AL 22 S 5 R o AT R P DX ABLTA X g
SR BCRIEAT BRI, 45 B (1 5 Wripd R ) BRI A2 e 5 52 4T AL 22 s i
JiT, AT IR R AR 1,
IV FH 2. 375 B DX ST AL SRR IR 5 ATl A 380 8 Al oo T B R HH B O%
R R BURTIF BRI 1 g7y, gt R ARIE S
2 &

o m N - (P2 X+ S
w | =23 expikz Q. exp[=iQ. (~) exp(—iQ, = —=)—( DWW, EDV) (283)
0 0 Je=m Jo=m

8.1e

1 I
0= ey 2= 5 ) (59
p,=L" % (2-85)
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iQ.rsin@; (x,—iv,) " (x, +iy,)"
lPJ’p = ( 2 .

- (2-86)
@, (J-p)'p!
y/4 o
Y= jo=j+1-2p j=j-1-2p
j=0 p=0

RE]— 2EAN S A AL SEIN A %, = 3, = 0, B LA A0 (2-86), BIRT 153 £y |, =0
LA Yo =16 2k s

m 1
.g";nTM =—g, ., |m=1 (2-87)
18, & 2

g, = exp[—(%f] (2-88)

0

FEB— ~PIREG Ol M m B R AR A% @, — oo I, v iR IR A0 B
W, WA g, =1, W
g:ZTM _ l )
(ig,}ZTEJ =3 (2-89)
ST RIN T g7, gy HISRABFE RA AR (2-45) 55 2-50), TATik

A DA BHZ I AR R A AR R AR b &R R R 2
B, K 2(2-87)-(2-88) R AT (2-45) B (2-50), TR TR LAAS 30 75 il o $mipe ok B o BT 178

R EAMAIRR T ik K

m m m—|m n—|m '
gl = (=1 (=12 = DL

(n )] " [sin asimn” (cos B) +cosat” (cos B)]  (2-90)
n+m)!

n

1y 1\(m—imD/2 (n—|m|)!
=CDTED (n+m)!

LLE SR SR AT A bR 2N A T WARCBOR IR 5 1K 53k, iR BT A K Ja
Hops Sl fe, AT K 4 hRLIT . BISEAE B AARBR 22T F X 3 ABhik Sk
AR AR bR AR N ORI 1 (LIdFE) , SRRl Bhr R g kR (RiZRE) 1595
Jree ARAR AR T IR N 10 O T S BRAZ SR R, D5 (RN~ 1 P A 45 SR EA T LR A

fo g g,*¢"" [cosasimz!" (cos B) —sinaz” (cos B)] (2-91)

BAVEX: gy =gy« Mgl REMIRL-SLRR AT B B A T

FITRAG L], X SRR T (LR ik 72 5 R A
TR TR A B (RIF) AR o BIFRAT IR A S £ B A0 A b
F B SR A LA AT e At (ROERD) o AR5 B B8
o 2P P ST A KA (L3R o T AT LA P TR SR b A 00
PP R I TR, Ko Bh S5 B igik

X T R TSRO A T JE I 6 P S P e P T, SRR
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AL L AT T ORI SRR 7 (R L

PR E 5 BV EA AR RN U ik 2O
E = exp(—ikz) E =E =0 (2-92)
2oL BRI A A Tie e, BATTRT LIS 2T AR bR 21 T HARETR 0 i
E. = cosa cos S exp(—ikz)
E; =—sina exp(—ikz) (2-93)
E. =cosasin fBexp(—ikz)
MRYE ] B R AR, AR W R AR BRARAR R N AR T 20 A -

E =[sin A(cos & cos S cos @—sina sin @)+ cos a sin [ cos 0] exp(—ikz) (2-94)

MRS DU BT R SR AL A, FATIAT

Lo P oI P

e’ )
—sina

lexp(—ikz) (2-95)

E™=E 0= %) =[cosacos

X FATHF A X 7R BRI FRIER X AT XL AR IE 5, BDR R 2
rsin@ 1 L2 SR8, 0K 0BCE Ry /2, o L Ris X an2-64) 7=

B 20(2-95) 1K) Z 4z = g4 2 Ja BRARAR R R IIARRR X, 9, Z ko, BfiTn] L
1531

exp(—ikz) = exp(—iR sin [ cos @) (2-96)
X TR @, exp(—ikz) & —Uh 27 hy BRI pR A, R FEAE {06 R A 4 .
exp(—ikz) = IZO:;O ;;7’[6”@ (2-97)

7 R(2-96)R1(2-97) L RIRTIBESLAT [ dge ™, Bell1nT LA 3

2z . L 2 2z A . - 0, I#m
d ~ _iBcosp—imp — d = 0 il-m)e — ’ 2-98
J.o pe I_ZOOJ.O ¢27Z'e {Am,lzm ( )
HAHTAIE A B=—-Rsin g
TN RATAT -
_ i 2z i(xcos@+nd)
I, ()= jo e do (2-99)
R (2-99)ii AZEK(2-98), AT 13
A = 27” J_, (B) (2-100)
i
JIESE
exp(—ikz)= )" i"J, (B)e"” (2-101)
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KX @-10D)MRAN R RIE X (2-95), AT LI H]:
E, = i """ f . (B)= f.J,,(B)] (2-102)

Hroy: f =(cosacosf+isina)/2, f, =(cosacosf—isina)/2
WU RTAFLRISIE 1 SR FT A AR A 1A -

—i
F

m —_—

g = ()" S (L sin B) = £, (=L sin )] (2-103)

15 50 LR 7 R AT R R - g7, FIRL D7V SRAS (R A 7 g, A

A5 I TFRLUITECAL L 2 FIg e AE, AR5 FIgXT ATz g s b, IRltn]
LAV GE LRIFVAEANTE HI AL T 5 A IAT I B AGBAR A 1 R SR A

§ 2.4 AR BN 1B AR A 1

T BAT A FH 2.3 75 e R R 3 18 A 8 5 BEOR SR AP RN I i B R 1 38 A A

m - ng:l, a, 9 K
gy =t D (ﬂ—Mgn,X (2-104)

Ay

ez (n—[m])!
iy = (=1) oot

m _ (n_m)!(n—ks)!nisa s g(n) imy
(e )= [y e

FEBE ST v 3 PP AR
S H!(a,B,7)
gl’z'f)( = por lfmgos |: = (,Usnﬂ 7/) gn,X ,U_S"
H(2-10H) A (2-105):
5 w1 o m ) (n+ 5)!
gﬂ=§%+%ﬁ4ﬂ“GD2 J;Jm&&—g! (2-106)
x[emed; g () et g ]
T ISR Wigner-d & i, FAITRT LA 2B AL bR 2R AOBORIN 1
H T B K IERTE, AT ITAEER S SRR A AT LA™, 7ER2.
FBATHS T RN A =0.5145um , HBEAARH) 0, =10.00m » AP OALEARFR
Xy =¥, =050, z,=0.5s, s=8.1885E —03 [¥] 1 fll =i Ur B A3 IAE IEAST (R
fla=pF=y=00") ULBAG (BKifa=y=00, f=60.0") FEARN 1%L

(2-105)

n,X

JHL@BD }
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AL L AT T ORI SRR 7 (R L

LR, HPRPERRM (a=p=y=0.0) IFHIFULEE R SRR K

iR e—3.
221 A v R AR AT T ) NS R A IR - (R BB &
B R 1 ” \ m . .
gom(a@=p=y=0.0) g (@=y=0.0",5=60.0")

g (-6.14427E-02, -2.96953E-01) (5.7801E-02, 2.82976E-01)

g’ (4.854417E-03, -1.04614E-03) (-4.2087E-02, -1.80031E-01)
gl (-6.14650E-02, -2.96948E-01) (5.77785E-02, 2.8298E-01)
g’ (-1.47481E-03, -9.51931E-04) (-9.66254E-03, -4.1728E-02)
g (-6.14147E-02, -2.96917E-01) (-4.7399E-02, -2.43079E-01)
g5 (1.45603E-02, -3.13778E-03) (0.11888, 0.514614)

< (-6.147664E-02 -2.96903E-01) (-4.7021E-02 -2.41613E-01)
I8 (-9.51827E-04, 1.474874E-03) (-1.01512E-02, -4.4041E-02)

§ 2.5 /hgh

AFEE LG T TR EOCROR S H AR A RO AN AR 1) %48
ZZAKIE o FEGLMTERIG T, For e oCHE . A doe PR ) i) L2 — & BT Ry 5 A4
PRA P AT BT S8 B R ITIE . AE) SGs e ZOKRBAR HEZR A, A
FHER O I o BE IR e e ELAARAR R I IR BB Ik g BEANAE AT AR AR R R 11
PR INTRE B, CRHARETT M A B BCARAEAR E E A A R R T RO R IR AL
JETT, #ES TR 7 AEAN R AA bR AR 2 T AH B IR AR 3o BURORT ARBOR
A, g5 T RIS BRBCR PR N T AEAE T B A bR 3R N AR L e i g AL e b 08
o ATEHEH TR SR Sa DO )2 M s OB R O B, g T
A T EUE T SBR[ e R85

AN AT BRI R 5 e TT BRSR AR 2B ITAR I AR 1 AFBRE
RET THOR W) R ) S o i R AN BB A A, DA S AT I U TR ) SR A e
MBI T H . X I PRI HE S TN JR Sy, O Bohs 5 XHE R T WA
TR AT LA 22 KL (AR T T TR BE5E T 06 20 ) Al o
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FZF e OBRRLT R R AL

AT LE—FPNEEFTOANTAHLERGIRETERIET, KFLA
GLMTH$AER A, FIFRKZR [ FHImE TR, HFIFRBT ROR
KT HERE T GAHA L RRAGBH T2, KT RFHELIEFLER, A
FORTRAN#t &5 %5 T — 2 Al TAM AR B R B T RS SR 42
Y. R\EGFe N B WRLR = B A AR . XA AT A IR
e b, AT R SRR TFAIR KN RSIE. R RAM F R F B AT
HHS R T rn, TR ERA AR @ L g e mo A T —F RO

§3.1 5l

TEXPRLFRAR KN A . B R E) . U8 5 2 B0 AT BRI 1R i 7
H, FRATT AR B RAR M HUNAE 5 AT R R RS D2, BD S E0) S o 1y SK
RS2 K0S R TS 2 A7 PG ) B B B o 5T AR B b AR ) 4 i e
7, KA. 5. vKE S, KA A e R 7 iR T g
B RRIURL A, IR RAORE B Wl 25 IRRE RO S A D N o BT R BB T
JUARTRERRAE 1 A b Ak 22 27 2 e AT R S A 2R A by 5 R oRL 1 A S U R PR A
MHERRAL, (EAR 2 NG00 T AR USRI BT 25 . T skbs b, WAk T
FRERRL 1 2 18] i A7 AR KB FE 22 5, T E RN, WKL S L
ORI o AL AR BE R) O BRRE, R 5 A i /O A ) 3K L 55 28 (A S i
PR A i O BRORE- ) SRAB A TE I E A . O BOORE . N3 T 255 H I A1 5L
Y0 B A S A

FikiorisfTUzunoglu®, Broghese®® *" FlFullers A 2% 2173 51l o) fhi Lo B L 1 ) °F-
IR T 1) R4 T T B 70 M7 o NgoAVideens NP1 22L FEBCM 7 V44 542 fhi L
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B =3y ¢, M (kyr)+d, N9 (kry) (3-46)
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IS /O 33K PR 228 1 WS o B2 = 4 () 7 AT it 1 3.5(b) s - MBI AT TiT LU HIAE
WAL /N BRRL 20 (R B TN RR IO, B BRI T — AN bE, XA B — M0
P55 RERER OB I 53— AT OGO I B, TERE T SN st e %2 .
ZHAEAL 45 SRR Secker N U STHT 19 St &5 L — S0 AR RF W A%/ NERRL 104 B AR,
TR /N vt ST TR (R TR A2 5 g, = 2.0,am , JHE IRl 0 B3R FK) 528 7 B 0 8 == 4 2 1)
A E3.5) . MBI AT I, B AR A AR (R gk, o0y
BRI HU (I 4 SR 2 o 32 DR ARV SR I Al IR T, SEZ G
JGiE N RIRANR S WA DR A TR, 389 T WA/ NERI R 3, AN
/N ERRE 177 A AR R T DU PR 98 BB 3 T R BR AR 35k A PR A 6 50T A A= B
IR TG . CREFRIEAR K @, = 2.0,0m 1 = 3T AR P HEUR, FRATTRE Y AZ /S
BRORE 1S 20 7 [ A B (R 2 ORERER Ly, AEIX AN I RE TR JRATT AT LA 2 2R AL 11
TR RUR T AW AR A T3 R . IF BIRATAT LUK B, fEb o T BiiAg A% Zh Bk
Kir s, TaaUf R AR AW AR, 7870 Ul B T I 3Ko0 [ [A] #E 6
T 4% U A T K /A B e o e S FRATT RS v 0 J oA ) R e A
X, =Y, =2, =0.0umB N E| x, =y, =0.0um, z, =2.0um W7, FRATERE3.5(d)H H
7 RIS Lo R CIRLCNER D 8 B il v 30 J8 o HESS T S 3 U o B = 4[R]3 A
BT e ) R BRI, BT T LA b ok a5 J of I FR) #5505 8 2% ] 3 A 1] LA
AL EI IR, 1HSH%TR[75].

ME3SAT LRI, AN AL O JE A5 e T R U T T O3RN
ANER TR P 7= A A T S 5 AT R R R BR300 I 78 AL IR AH T e U AE 403 ik AR
T, I RS o TG ] 4 o Pl T2 e 1] 5 () EAA O SR s [a) Tl i e o5 =2
B A% AINERAFAS RS RN = A = TR A B R sg e, DR an SO e 30 4 80 — 4
O HLERIN S A 0 DA AR RN AR B, K Ay o BRORE 1 (R AH DG I S S AKHs . R 1
AT TR A S 56 I 8 PR A P SRASALL AT LAl L 3R A 3 IR T I e
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AL L AT T ORI SRR 7 (R L

§3.4.2 Lo BIRL 1328 37 HIUH 3 2 ) 031 (4 = e

§3.42.1 ol R 1 ) A7 B Al IE

WEB.6R, —WEOGHE R AT AR PR R OXYZ 141 Z B 1E Z Bk ik, 3%
WA W R B A s X BT Al . FRATH —MIETT B 4B itk lgds, L
WCCDHCMOSEE, 4 AT S UGS BB s B, 3 v DAIEAT £ 4 R
TR UL S SLAE R 7 3 P I N A5 R P 90 120 26 B 0 e 22 2 S b 1 1)
PR R G, EEan e v Hs et 25 (RT3 28 46 e Rl 2 AR AIE &A1 22 8] (R4
XS S IR, TR BRI S L 58 Y0 1) 28 R T8 DL SR S AR IR R0R o 0T i 43
IR AL B, K53 o8 S BN AR T3 AR HAR R 73 AR 7 VA N
AR T ISR AL H AN B A T A B R G DRL I I LA A B, DR
FEMENTEARGALIDY S I IR, XN AT AR T W &, HA]LUER
PAJ ) AR SR I LARIF o

Incident. st 2D.
Plane-wave. = Detector.

A 4

od© zi.

3.6 R HICH 70 Jay Bl 45 D0 e 51 26 s R
G AT R G AR 5 RIS B R AN BT R A A R AR bR &R
OXYZ " IRTBERATHRR o (BB A A IE 7 TERR M B 0 5, 84 % B OA i J2:
PRIFER o RN 02k O4 5 855 OZ 2 IR K FR M RN A0 12, T 6, k87

RIS (0 PRI Y TRl ] A e KA e NI AT 0, A1 0, KRR, e AT TS 2RI A 5
0, ZIAATLL MR R K 0, = (0,0 +6,,)/ 20

NI A AR BR R PRI 0 2 OA 55 1IN 2% (3 THT W 2 3 10 IS4 OA
AR AR R/ 590 AR A S A BRI 28 () PR B o A SSAE A SR AR R R R IR AR AR A
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(RcosO, Rsinf, ), EEM 2 BRI - ¥Exoz 1l F S ERMTRAHAS B4 Er— R,
HARBR A (X, 0, 2), HEAFRATA:

m:(x—Rsinﬁm,z—Rcosﬁm) (3-58)

TR 1002 OA 5400 48 (O AR T KA TR 2T, 8 4 [ 5 OA [ B AM ()3
B2, L3

OA~AM = R(zcos0, +xsinf, )~ R*> =0 (3-59)
JUESE
zcos®, +xsinf, =R (3-60)
AR PRI S 2RI 1 L AR PR, BRAT T AT LA 2
x, =tan6,, z x,=tan6  z, (3-61)
NITESEEE
R R
zZ, = z, = (3-62)

r= -
cos@ +sinf tand

" cosf +sind, tand,

JOHARIRRES B MEIT TR IS 5 93 B R/ IR Y 3 BT PRI T PR HL

Yyt R/ o DRI JRATTAG Tl 5 ) 5 ST A T Poynting % S8 Y TH AT 2 R AL 2 Y
(ERepiER

S = %Re[E' -H‘*] (3-63)

§3.4.22  fLERRLF G AFIHEIA

TER O BRORL 7 BEAT RiIR Z 1, FATTHEKe T i 240 FH 2019 = AN B AR bR 200
BT 38— JRAAAR 2R OXYZ , FH TR NSRRI IR, IF5 AR IZS K40
PRI B o 5 AR RN SR AR AR 2R oxyz ,  FLARBR i s R Lo BRORE 1~ K BRI
BROOPHEAT, BRI R T IAISN (x,,p,.2,) o« JAERAERR AR IS A Al bkl 55 4
JR AARR FR A N AR BRBFIAH B AT, AT DOE 2 SR AR bR R OXYZ AT P45 2, 2
AR RN TR AR AR R OXE o B AT R AR R R oxyz EIL KB A (a, B, 1)
(T 19 21

IR ZSF1H EARE— SD, EAERRARIRR TR A (x,,v,,2,) - WA

5 PD {2 AR R i AR R N (x, — X, Vg =V Za—Z,) e

ﬁ = xlocil‘)% + ylocit.j> + Zlocité (3_64)
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AL L AT T ORI SRR 7 (R L

:/H\:EP: xlocit :xd _xp’ylocit :yd _yp’ Zlocit :Zd _Zp

2o A PRI BERE AR e, FRATT T LARH B ) B PD (e R 1AL bR 5 O T3

_ ar A1 Al
PD = XioeX + YioeY + ZipeZ (3'65)
Hor,
xloc ‘xloc t
ylot = R yluc t
Zloc Zloc t

cosy siny Ofjcosff 0 —sinf|| cosa sina 0
R=|-siny cosy O 0 1 0 —sina cosa 0 (3-66)
0 0 l{sing 0 cosp 0 0 1

R i BRI A SIEI HTTAE e A bm 28 P (1 R AR AR RS «

r=\/(xd—xp)2+(yd—yp)2+(zd—zp)2 (3-67)

0 =arccos(z,,/R,.) ¢=arctan(y,, /x,.) (3-68)

§3.423 HUN RIS FRCR

FEREF bR R R, el —EAE (2-42)Fn s BATR LURHE ST ISR ]
EROR BRI BRI A -

E = Eoi Z a M_(kr)+b N (kr) (3-69)

mn> " mn
n=l m=—n

o

M) (kr,0,p) = (=1)"[imz,' (cos O)i, — 7, (cos O)i, |z, (kr) exp(imp) (3-70)

D - (k) B (o5 O,

Mﬂmam=em{

L L dlrz, ()
kr dr

(3-71)
[z, (cosO)i, +imr, (cosO)i, ]} exp(ime)

HLT R (2-37)2-38), ATBR AL e AR R T IR ETFR T (. b, ) FIHEAE

CENPETPALE S S8
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b = E ke (-=D)" (=1)"" gy (m—m)! =2

3-72
(n—|m])! gn ™ ( )

w1y 1\(m-lm])/2 (n—-m)! —
- lkcn ( 1) ( 1) ( _| |)'gn,TE

R e AR bR AR AR AT RO R A 7 (R AT e Ae sl — s et 7
HARHEG RS, X ELIRAT T ST R AR TEM oo [ R A 1 R AR IE 3

(3-73)

m mm/Z(n |m|)
1 1( |ml)
A e Y

o = e™ [sinasimz!" (cos B)+cosar! (cos B)]  (3-74)

— (- 1)m+l( 1)(m m|)/2 (n—|m|)!

(n )| g,*¢""[cos asimz!" (cos B) —sinaz” (cos B)] (3-75)
m

gn TE

B (3-74)-3-THRNA K (3-72)-(3-73), FATTAT LIS F]

(n—m)!

b = Ekc" mg " [sinasimz' (cos f3)+cos at.' (cos B)] (3-76)
n-+—m

a =iEkc!" En m;'g7 e" [cos asimn” (cos B) —sinat! (cos )] (3-77)
n+m

N T RIEE R, AT INH— I Legendre PREL:

;n;n/(COS 0) _ ’2]’1 +1 En m;'an(COS 9) Cmpm(COS 8) (3-78)

g
P " (cos0) = (~1)" E" ;P’”(cosé?) (3-79)
UESE
P "(cos @) = (—1)" P" (cos ) (3-80)

AR RV NS AT TR F A A RS BR A bR R 7R O«

:EOZ z (;l—;n—r:)Nan(kr)N +(gr\n—r:)NNmn(kr)N (3'81)

n=l m=—n
M) (kr,0.0) = (~1)"[imz] (cos )i, 7, (cos O)i, )z, (kr)exp(imp)  (3-82)

n(n+1)

N, (kr,0,0)y = (=1)" { z,(kr) P (cos O)i,

LAz R S os o), + im” (cos O)i ]}exp(imcv)
kr dr

EFREATGIAN T PN AR — AL ER R e i 2, A

(3-83)
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MY (kr,0,9), ="M (kr,0,¢)

nm

. | (3-84)
N, (kr,0.9), =N, (kr,0,0)
DT T LA 8198 R PR R T AL 72
pw o .
(@,)y =a,,/¢ = im-e””[cos asimr!" (cos B)—sinatr” (cos 5)]
2n+1 (3-85)

2Ekc™g, . — >

(l;,;)N = l;,;/c;" = e [sin asimz (cos )+ cosat! (cos )]
2n+1

a=00gza=m AT LIEE R,
(a_,)y =™ (=1)""a,, (b, )y =€ (=1)"b,, (3-86)
Mt R B RIS, AT LA F

(g_\n;)N — e—Z[m}/ (_l)mHE:n; (C/II—V)N — e—Zim}/ (_l)m(/l]\m; (3-87)

—mn

Ya=x/2mH e =320, FATA LRI

(C/l\/)N — e—2im}/ (_l)m;l:’; (B—_Tn;)N — e—2im}/ (_1)m+ll/);; (3-88)

[P S B B, T A
(€ )y =€ (=D)"c,, )y =€ (=1)"d,, (3-89)
ERAE PG P L PR R 50 2 KR B AR S
§3.42.4  HUPDGIEMTHE

FEFERERL TR AR TR, SR B ) U SR A, A TRT LR AT bE 7 BN S 7E R
AR RN B HiRE s gy B KRS ELAA ARAR AR B ERARAR R Z I A ok R, 3K
145 B I AE B AR R T & T7 25N -

E' cos@sind cospcosfd —sing || E’
E) |=|singsin@ singcosd cosp || E, (3-90)
E’ cosd —sind 0 E,

S5 RN HERE (—,— B ) T LA HERE B T A 5 e R 0

MAbR AR, 1R 6 BAE R AR R R R IA A

E, E,
E, |=R'|E (3-91)
E, E!

e
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cosa —sina Off cosfp 0 sinf|[cosy —siny O
R'=|sina cosa O 0 1 0 siny cosy O (3-92)
0 0 IL{|-sinf 0 cosf 0 0 1

FEARRCI EHAR Y, BIAURHLEOR . B4 BEoREE, & ZAEANFIAK
S i BRI U 5 o R LA R B30 2 T LICKs FLURE 37 70 BB BT RCHIUH #

JE I B 2%
E, cosd 0 -sind || E,
E,|1=| 0 1 0 E, (3-93)
E, sind, 0 cos6@, |l E.

SRAG QR AT R Lk oy T e, mn] DU 5X(3-63) K4S Poynting K e kAT 71
B, IR € U AR 5 35 K/

§3.4.25 ZRiFHURERS N

M TR A PR~ 22 IR B 22 K, A s ) i — sl PR FRL R 7 i
S I A KL UM 9 A s AR T8 X5 28N RE BSCB (R %5 A WL b 70
MR YRIEREAT BN

Ve=>r (3-94)

FLARN Ay 2 1) 5 e ok 1 1) S VIR Fa 3 0 BB 7 70 EH I R &
Mo WARGE FL LI 0T B ARKR 2R hx, yliz 7 ) Lo it YARR &SR T HUN
W35 BB 377 FiH.

LU ER B HER AT, AR TGS TV 2R T B SR AT IR
R I B A

LAERE MR PR EAR BIrR, 2 mAnE AR n] LA 3o

2. JerfR ALK FT LUSCEAE S A ALE . T I RALEOR . Bk
2 D BOREFHEAT I 2347 o

3. WAL 1 5 PN & 2 18] (A7 BT MR E o NIEAVE I 0 Ak
LI o AR T AEA T T o

§3.426 HUHSRE D

AR S 5 RE Py ] LA 22 E 1 HIUH VR 2R IR RO 2 R BEA T 00, (ER X
AT AL 7 A B 45 R BEAT U T, B 060 /o OB 1 ) RSS9 2 1) 7
AR RGEAT 0T, 10 2 AR 1 B IO 4 R 2R T A3 O D AT A B R w)
B2 TR R RURE T, JATA BB X AR 7 R ER 7 A T4 Ry A
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AL L3 AT T AU SRR 1R R AL PE

PRAM 50 Es
(a) FAEAD=10pum) ¥ (b) FARAD=6um1J B IHER
(c) ERHL T 73l HIH 2 Ji e i 1 78 (d) [FICNERRLT (KRR 45

K3.7 SPIHEASS MR I UM B % . (a) KR (b) BEEEERRL T (c) KT AN Es sk
HUR BRI RN (d) K SRR ER A U RO BRI o NS K 0.532um, Al AL T5
XNTMBAL, B 5 KA A 308505 . /K I 3T 5 % hm=1.33-0.0i, BEIEki =
W2 ym=1.5-0.0

h T IR0 LRI FU AR R AR O BRI AL TR SCE e a3 et 1) A Bk
T R RO BRRL T [ HCH BHREAT T BT, %I R [ I A BT 5% B 5 25 1
Bouke WE3. 7, AT 6 H B R NG . BEEER . LUK H K R
/NS ER IR A R FRY [ 33K ™ A RSO S5 S S EAT T REAUTH BT . NSRS TR B A Ay
0.532um, A T7 XA TMARAL,, 7K 1 ELAE K/ AD=10pum, Z 314 Fm=1.33-0.0i,
BEREER I HAR KN D=6um, E 375 HEm=1.5-0.0i, JtHAE #0155 K5 A ik
w5 M3OSE IS0 VLR, 5K M4 512%512, BS54 55 B /K R=1m.
W K13 7a M3 7oA T X LG, FRATIRZE 5 RN, BEAE R PRARIRR, £af5 5 R4k
B N A S0 R 1 T 34119 &1 3. 7a 81 &1 3. 70 (045 5 AH H. & in~F- 14 )5 1551 18]
3.7¢, 1M 3. 7d0)5E KA E AR K/ A D=6pmF B FGEK, 4hERCA H AR K/ A D=10pm
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(1K AR [l o BRI U 45 . I3 7e R 3. 7d T LAt AN 2 B A
SIS [ Lo ER U 9 PV rh AR AL 5 AT P BRI T 4 80, P K iR 2 E0K
HFRBRRL T, MR 480K B TN T AZRE T R 3. 7cATK3.7d
BEATRIEL, FRATT AT LA R BRI R 25 S0 565 A /INER B 1S o 5 2
A7 AE R ZE 57

Iy

(a) OERN IS ZiBEd=1.0um  (b) WO IRN IR 5)d=1.0um

1

() MOER N Iyl F 5)d=0.50um  (d) fi-CoER Y EZ ATy HIAS Bd=1.0pm,
13,8 S THI NS 7K 3 0 38 3B 3 oK 11 o JsRORSE 77 242 PR 8 7 UMY P81 56 0 NSRRI Ry
0.532um, Ak O TMIRAL, 155 KA L3050/ . KERIEN I A2 K/ A D=10um, & 3
S m=1.33-0.0i, WIZBIEBKIN EAT KN A D=6pm, E 5 % lym=1.5-0.0i

N T WIF S CoBIORE 7 A FESCSR AR 1 LA B PR o 33K PN R AFDGS T K3k 1)
Y mE, TA BRI E T Ok ) AR e % . B8R, FRATIN
BEHAERAE R I AZ/NER, 7K 1 Sy IR I oo JsKORSE 70 ~F T 8RR = 2 1) 4%
S5 AT T RSB, Hor YA /INBR (R 33K Lo A 6 T R IR BR O 1 2% ) 7
FLAMARR TR R (X, y, 2)RE R NSV K N0.532um, P13 AL T
FONTMIRAL, 7K 1 B4 A D=10pm, B 475 #m=1.33-0.0i, WIZBIEERN EA2H0
D=2pum, Z 414 ZEm=1.5-0.0i, 't H A& AR K45 5 R A 205 W) f1 FE ik o5 A 30/ 1 S0 /%
FEE, BREFEFESIA512%512, HUNE 5 KA m R B /K R=1m.
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AL L AT T ORI SRR 7 (R L

MIEBTRIELE Y, O IRRL T R 25 SUT R — ZR U [FLO BN B3 i
X T N AZRL T AR T R BRRL A7 — AN A R OO BRORE 1A R 25 TS A IR BT R AR 1 2
WEI3.817, AR /NERRE 13 B A A AR 2R Bl sl 2 SNy, oo BR ) 5UH
5 P B AT AR — AL RO A BR o 17 AR R 3y BT MR BN, O AR R R AR
(R HCE 5 B2 B 22 m DUt 2 E PSS R & A IR S 25 3, JF B
S B OR, A EMER A BEERC o 3X R R 24 G i A S 1R R0 s A
Tx-z> Vi b, RN R ECE 24, R -2 R AT DT M BN,
P DA AZ R - S 7 A A T 6 U5 - BRI O (o7 B8 (0 A T 6 U5 21T A% T2 B 1 o 5
ZEFEAR/N T AN ERRL Wy R S IR, PR A RO DU 1AL B Al (1) o
By, {EAHEAE I = A G T B % O AR Sh I BRSO, PR
DR BTG HAL B 1R A0 BE OB, PR BR IR U P15 52 38 1) 5 1 Bk

§3.5 /g

PR AT BRI BRI PR B TT, A FAE GLMTHTRHEZE A X fi L
BRORL 7 55 AT TR TR AH B AR T A R () B AT 1 SR A o R B O 8 o 211
Mo mide g B, HE TSR T OO0 BRORL 1 XA 207 AN B A HC T . JE
TAFERRIeHE AR, MAFORTRANTIHEE S 94SE T &0l TEIT A B
PRI T Do BRI 3, I3 AN N 3 PG R S = A5 () 0 AT (R o AEXS R
FeabAy 78 o3 e Uk AR B, AT T BR N RORE AR R/ PR . R
NG 5 1) 46 DR 2200 38 3 HIORTRE PE RS Tl Lo BRORE 7 1A 3 FHEE 32 1R PR 8 93 A
KA b eIt
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FNE ROBKAIT RIBFIES S

AEGLMTHWIER A, f5I R T oS st T rHEE T QASA IR
498 7 42, A FIFORTRAN9O% B T — 55T A TAELMMr AR T R BBA T 1R
SHASHEY), LHFNHREIRE Z R ERASRAES, EFZFRNOE
GHTT H I IERNS T SERAL T IR W HATAF M. AR AL A 247 2 HERAAT
ROMESHBEARAX, ATHFTAHRREETOAMHBAT, hokiT
BATIE A2 1 3939 5% 2 F A6t FAE K, AERTPTAF 2 6 KAnAn A2 /7 it
7T SRR B T, 2t T B A 0 S0 IR 5 ) BRSBTS
oS SRA T ) 3 An it 39 WL B AR B o T 0 A8 K B4 Ao 45 R A

§4.1 915

AT T 20 Bk 1 a3 BBk 1, MO BRbL T 5 HRE O 2 (R AH BAE
FEINSE 2. A TG EINRR AR 508 e R 2 [0 AH B AR (R4 BEATL 2,
RN T ARANS A O Co B P 35 2 2 (0 Al m R 8 W0 2 R B e U0 100, AR St
BIORL 2 2% v Wil R RS O Lo RN 1 A 3 R SR TR 3 5 BE A AT EAT T U
FIRERL, AR T 45 B 0 FAT TS s R I B B 48 15 B

FEXMOGAARMETS T, BB N DG IR MR 2 2R %, L
SR A aC ) o U, e A Qg n s AT 5 R SO B B ), T
K/ INERE T RER P BE 2 18] 52 2% (R0 AR EL AR FH T 72 A2 307 6 2R L, ik s
ISP PN AR N5 5, KA ] B I i sl ) S L R 2 PR O A I R )
7B I SZ R B U, 2 ELH O 4% . Kerker!'” Barber AHINAE A5G 5
KPR NGO, Y5 BRI MER Bk 1~ (1 3 R0 W 3480 T R4 1K1 43 #T - Barton
2t NI 32 ST ol T W RT3 5 NSRS O, S50 EBRI . AER AR 1 B 3
RN I T FEAE) AT o e TFGLMTHES, BAES =2 LIS T OBk
B XA 5577 NS T A 1) R R SR A, AN B FRAT i o KOG 27 ) N
S T AU B30 37 R0 A 3 (R it B o A BEAT A3 Ao, DA T 32 (R A iy o
WOt R, OGRS (e O BB - B BAE R BEATHEST, 45 T —Le B Ak
BB o T NI R AR AR . NI 7 ) AL NERF R ~F L O
SEZHON U L 3 AT R BEA T I 18
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AL L AT T ORI SRR 7 (R L

§42 Hitie

MR = FAOC IV B HE T, FATT AT LAAS 2 i Lo BRORE 1 2% A3 LR 23 B ) L
RIEA . SR T L s B VP 5 S i s EEAR IE B, ALty UM v 3 i
K3~ SN S MR R A LR 7 5 R (1 2 ) o3 A1, BRIV BT SR R AE 2 A «

_EE
[Ef

Fop B 2R W AR R B K HL R 00 3, B D NS F G L 37 20
PRWEAE . AELL MRS, ST, BATMEGE NS R R A 37 70 1) e i L
AR T

(4-1)

§4.2.1 PR IR RIA X

SRR T2 S A S AL RIS (1) PR
Vot (1) PRGN ER A TR AR T P 2 R PR B P e 128 = 2
BB HT AL, PR ERIG R SRR R Ry BT LA B 1 4 5 4
BT

E™ =33 MO (k) + 5, N (ki) + 0, MO (kry) + 1, N9 (ki) (42)

W BR O i oA ) AR E iR 50 (2-7)-(2-8) R AN B (4-2), Fedi 1T LA 2
LR R S I R AT
E :i Z (—l)m[Snmhﬁ”(sz)+unmh,52)(klrz)]@;’n"/’ (cosO)exp(imp)  (4-3)

n=l m=—n 1°2

EM=3% (-1" {[rnmh,j”(klrz) +14,, 1 (k) lim ] (cos )

n=l m=—n

1 d(r,h® (k1)) d(nh? (k) -
e lp, Heh ), A0 68w o5 0)) explime)
k1r2 drz er
E;ml = Z z (—l)m {[—anh,,(l) (klrz) - tnmhn(Z) (k1r2 )]z/-\n”/l(cos 9)
n=1 m=—n
(4-5)
) (2) —~
N 1 [Snm d(l’zhn (k1 r, )) tu, d(l’zhn (kl 7, )) ]zmﬂ';" (COS 9)} eXp(lmql))
klrz drz er

FIFEAR, A2 AR /INER IR SR S A B 28 BLI, AT AT LCKS Py A /N ER A #8814 1 9 P
AR PR BRSO -
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Eimz = z Z pan;llr)l (ker) + qnme’llrzl (k]rz) (4_6)

5 RIS B B LR 260 2 (2-7)-2-8) PN B (d4-6) 1, AT B 755 e
4 BRIE AN
EM =33 (1)"q,, (k)

n=l m=—n 22

n(n D pr ———P"(cos @) exp(ime) 4-7)

B =Y 3 I poui (e ima (cos6)

n=1 m=-n

(4-8)
+q,, L d(), (k1)) 5 7" (cos 0) } exp(ime)
k,r, dr,
E' =3 3 (1" |=p,ud, ()7 (cos 0)
n=1l m= nl d k (4_9)
+q, (/s (ko13)) imrn! (cos 0)} exp(ime)
kyr, dr,

§4.2.2 IO R A A RGR

RL 2R 1 AT S FN SR PR B R ESCS HL A P o R B I AL . AER G
JRIAERR AR R, IR F R () HL 37 ARG 7 e mT LR R AR B R 800 T 3

B =3 ¢, MU k) +d, N9 (k) (4-10)

RO B S EL R TF O B8 5K (2-7)- Q-8 R B (4-10)1, #1527
PRI,
EX = i i (=D" dnmhr(IZ)(kO ) n(]l: Dpr P (cos 0) exp(imp) (4-11)
14

n=1 m=-n 01

£ =3 3 (D" e, b (kg im] (cos6)

n=l m=—n

L dnh? (k)] o
v d, L AA G o o)1 expime)
ki dn;
E;)ml _ Z Z (=" {_ - hP(k, r)z' (cosB)
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WH L, WBAARIRIERRE, ANZ/DERRL 711 d = 0.04R AL EmMBI, —Fdk
Vo W) AR g EEES AT [) N AR A2 LG G [ CoBsORE 10 5 A AR R FRAG, XEE 5 A)
OBRRL A LG, /Lo BR A — i P i 1) e 8 B 2 S ABORE 7 380 A A% /N BRORE 3 L T 25
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~r=0.92R| TE.
—FE R 18,2
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B Ja AR 5.5 45 T R RN T A RN ER S R ER AR LA 7 3
0.7A10.92 PR L I [ Lo ERORE 5 FSCE AR Bk 20 ¥ YAl T 5% N [ fCHT 8 20 . I
HRGE N, HARRNERRUREREAR LI KR, — B ez A B ik & (R IR A7
FLAN I IR (R RN R AR 32 BARK S W . B il e 52 A% /N BRIKT R i E2 L — By
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IR, XA A — B ot B () e S 0 e S8 DU s R BRI SRR T, ez A )=
BRI AR WL o

§5.2.3  EHNRATHOCRIAS RO IER 0TS

Rao M Gupta ' F5T T VI T, OB DG R R v oAb AT R
2P TR R A i O BORE 71, BDAS O R DL T, T EON AR RAE TS A7
FT 1) IR BRI, /O BROG A 43% B A SRR m ANy AEARIR S L
Ol L BRI O 5 3 R 1 BEAT HIARL 07 SR BT 0 4 SR AR AR W] 2R v O
AT R BRI, A Lo BG4I 5 H T A AR m WA R A k. AR
PRGNS B i BRORE BN, WL FO A BN AR FORE 2 25 AT B Bk, A
1M W] fE 2 T BOMDRsH 7 (7 A BEE m (1) 53 il s 5 R I AAAAE IR i o PR 7 o 713X
I, BRATRE SO SR OGRS i BR B IR EEA T AR DR I B T T

FEAAT WA SRBAUTT S, JRATMBE ORISR 7 17 90, FELE B T,
X TR PR PR ERC R (R BE 25, (i o BORE 7 AEDOT F ANSRF 3B TR PR e Bk PRk Bl e K
U9 — SRS r 0 At PR Bt 43 HE W 22 AN A 1D v S0 I8 AR M xRl g I A 4, R P )
PEE N x, =y, =0.0um, z,=2.9335Tum.
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2L 91=0.92R o A Cadk P ER Lo [B] [P FE B O d=0.04R o P TIP3 £11 24590.0 /5

FEEIS.6M, FATTE T~ R R I [R] Lo BRORE 1 R i Lo BORE 1 PR D6 1 11 B
B WANERIIAEAREE AT=0.92R . M RT LU Y, AR LEAT 5w i Jo IR F) i v o
AR A TR LS. Tl B ORI /NG D BATRT LU B, AR A O 1
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TMIIR 2 15 22 LU TEHIR 32 15 5 7% o A AR 00

PRI T AR RIS GO0 1, BAHEES. 745 H T r =0.7R » AR/ BRI
TR O0 T AL T G 1 LU . 1L 5.8 R U4 H 17 i L BRORE 1~ A AR 3R A LE 481 Ay
r=0.92R, AFM RN T ARSI T Gk i LA
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KIS.8 i R B, AN TR /O S /N i o BRRE 1 R AR 20 T 6 R B 0 LR A . AR
BRIG2EAE HE r=0.92R.

5P B F AR VSR R TR AR B BATIAE Lo BRI Bl
TS A 2RI D IR . HNINEREAR L] r = 0.TR I, PIRZ/NER
BN oA BB P (KD M LIS, it B s (RS M AR Ko 1T =4 Y AR ER
SEAREEH r = 0.92R I, — BRI [ ez 452 BIR KIS . FEBE A R A2
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4 A% /N BRO B B v Jri RBLE [ b T d = —0.04R 3 d = 0.0R 73 d = +0.04R
SCZE S UM N R i ARV (VA i P U U i <0 P93 L N

§5.2.4 BB R OGN i CoBRORE 1 A 3 1 5 23 A1

T T AR LU, AP TP SRR R DA, FE TSR e G IR 3k
Jil s AL BRORE 1 (0 Bl o0 RO AT B8 S iR O R BT B & O TR
BRI FOX B P A 2 BRSO, BATTR (/Lo ok P 37 500 58 K/ 222 1) o A At
TR

UIPS. 9P, F3 iRV T S R 1 2R v e SR P AR 0 1, AT
N T ERORE P AEARIR G G DL, 56 #  sUA DURT A E 5 48 4iR BEUS OL B AN
KNI AT Do

RFARCEIRG G DU T, i CoBRORE 775 88 528 i i R U R I A 3 20 A
(5.9 SAEFmis A R Wz Ai (EI5.9a) ATRKIAR, XL N
TA RS BRAEAL R LR A ARG & . RSBt IRG GO T,
ST SRS o Co BORE 1 1) A 370 iy KBRS RT3 AT AT — R A AR SEAR AL, 105 K B
(B3 TAE BSOS T T 0 ) PN D7 Tl b (JE15.9b) o Gl BE AR IR 40 A AT Rl B
B, M TAERE M EIREI TE, R AEx-2>V- 10 LAzl A0 Bl 7ERE— 10 H8A n A
WA o AR SR Ry i B AR A AN s 3K 2893 B AR AR s DA — SO (R 3T 5
KEHL. AT IR RNSHEOL T, O BR B2 9 2 W O £ 7 7 A A
RTINSO AT AT LUACHIL, BRI i Ly BROBE 1 (1) A S s K BRI 23 A1 (1 A%
B 9 P56 WAL e K RN A 28 ANFE AL T TOH T T AT ) AN ) b i 0 ) 5
HABTT 1) R AE RS o BRATTEARAS B8 MO BRORL 1 (150 23 W D63 vh 5 1D 24 4R 5
P AR 0 B LS, (B M Lo BIORE 1 (1 N 37 9 JEE (0 23 A, AT A L BE IR Y
T 58 AR AR AR 2 AN FRL - B B g A0 [0 A i) b, i S ABL 5~ 1 5
WU 352 2 ) i) At 7 16 B AR AW S, AT 75 17 V28 g e R S I~ i L BB
TR AR A A T
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(c) AETEIEIEHRNE hix=32.2054 (0 FETEHIEHRTS x=32.2054
KI5.9 ST T (a,b,c) Rl iy 3T 5 A HESFE T (doe, DR/ Lo BRRE T N 37 58 B 0 A 15 0l o (a,d) R CoER
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T F AR # PR 0 R d=0.04R
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§53 /heh

MR R F29 97 N Jl 1R 06 S Bl o AT Y o iz R
Wz —o BRI, B FUNER S AN A 2R i I s BN, A i
BRI i PR JTORE 4 TR DA R Sl A4 A T (RS AN 38 50 1T 52 215 o AN FEAEGLMT R 12
HEZRPY, WIEGT T O/ BRORE 5 £ A 5 T NS AR i 2 e B o il I~ 1R ' 24k
R o I o0 T D T R T RO e P ) 4 SN B, BT T oL BB 1
IRl LA ZHD G A R PR 2T o 25 Y T BBl s s AP I A 1 i
VERRL AR DL ARSI O0 T N 3750 5 1K) 2 TR) 23 A P

5 RS ERIERL 7 M2 2 Rl aRk— A, (Do BR ARG 22 1 I B R IR A AN
2 DA NS IR R B AR 55 2 B A T A AR A A o 55 AR NP 0 PR 8l 15
ANFL AR R OIS 1, AT BEAE (/Lo BRORE 53020 1 e h S 3D 27
WEIRBEEL m 1) 0 i o A, JELD 0]l LR PAY 37 98 158 22 ) A1 F) 4 S 3RAT T ) LA 21,
ANRE NP T s (Rl — - AEARI S SR G A AR 5 Lo Bk P 0 S A8
FROMAT I PG RE RS T i, R At A s T R AT e, R WG SRR
Hom WRAT 73
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EZRRD BT RAIEFIET R

FET O HUR AR 1) 2 R BT Sk B el DL R S 2 245 W & 250
Fe, Bl T RO R EAIZ SN, AR TR TR AR A5 22 A Sl o 1)
Mo BA o mERAEAE . e el @i 50 H sl g5 At
AT, A0t HAR S5 M RE RS SR 1 RATAT 40, JF HAR LR IRk 4
T, R RS BRI EE Ot () AR A R Al I ke Ay SR A W )
BAETEZ — o XA AR NVREL 2 5 A R, Tk b R w55 30k
AT, A BRI ZE AR 2. BERE,  LAANATT L £ FH FR T o e (1) ) 3 ok 72 4%
S, R T SEBLAR Rk R DA R i TR R R A, I N I S YRR R R A O 2
AT, BFERAR AT R R/ NSOGB B AT R . Ak, B A OGS
WHAE LA M. Gevk R g, ] DU B2 B R B R T, AR o A
F2J¥CFD, FLUENT, kel ECFEFPLES, DNS%%, Fft s inukaf s se e, 2t
A 50 52 2% (R ) BRI S R i

AR RE R A0 R, TR DG iU B G I & R 2 i LLRE S
RN IR AN, B 5 THOGEOR I & R LL R 5915 5 Rl 2 AR 1 4
e WOLR A RIFM R rE . smAH 1k DL S e i B2 i B S5 P T8 T o DG R
MHAR ) IE IR . WOCAE IR AR R P AR FR I 2 R AU IS, HUN OG5
JESf oAy AP PE . DGR S A U H AR AR B a5 R A P A DDA oG, il
P HC CAH OGS BRI, 50TT LSO H ESUR A A B S5 R PR o i 22 A5 B

H AT O RE T 2Rl SR 1 RO RN SR BE RGN & vk, Refg i 2 A A1
LN AN AERG . BRI R L. hnsh AL EUTE(Dynamic Light Scattering,
DLS). Y& F 40561 & (Photon Correlation Spectroscopy, PCS). Wflldiik. i
BIRAE ST AR B FHSOEIRX R 1 (oK m AN =K &5 & RIT,
e R NN AR Y i b7 Nt AR K SE o (I bt NN [ A3 1/ AR 1 1)
PRIt - AL ik 2 PO (BRSO MR U B, MR
VA b s bR 2ilF AR A TBr S A TP SRR Y AR AN I (TR AR R i 3
LA /N, A BEN & (1) VF 22 0l ) U2 SR A o 1T BT I I R
WKW E o HE, 27100 KR RT Il & 5 SOs I RE I B A R o LA
S AR U0 22 385 I3 A (Laser Doppler Velocimetry, LD V)KL 45
14 (Particle Imaging Velocimetry, PIV) &% HI Rl ki 1 I R, H 0 R Rife oK
NI S HITCRE R JT o FLDVEARBAT G T g, A MOGHUNE 5 h I K
(R AR A A 5ok SOBORE 1 1 RN, XA AR BR O AH 22 3 ) 1 (Phase Doppler
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Anemometry, PDA). fHZ 81 {C(PDAE M IHOE 2 A s — A=A Es, W=
T\ HAER TP IR 2] T RO R N o e T B RTINS I
PG FIRIAR RN, 2 AT ABe . Wis i R sude it 7 il TR . A
FHAH 2 5 A AT R b 2 73R i i RS e M I B AERT h. —fR
(I AH 22 X5 86000 B RE RS AR Sf M 510 e DA B3 51001 B R ST 4040, AEEX T35
FCER D RN RS A AR EA . YT IR IR, JO6AH T g
(Interferometric Laser Imaging for Droplet Sizing, ILIDS), MFRAH-fAHT 4
(Interferometric Particle Imaging, IPT)HFH V4 4% S5 I 5 > I 2 55 K5 R A1
REARIRIR /NG AT, RS BE AT IE GBI K G o XA FOARIE T T FRURPRE 1~ F (1) SRl
LR — B3I S D' e 2 TR HiF 1) AH 1 B8 I 7 AR R T8 A SUR R R AR 1 i o,
FEAT /NN o AR L TAR S BEA]T BUA XA 7V BRAAE T H g H T i&E W
BRIGRL ¥ 1IN . JF BN AR A R BOR — 4, XA 7R N T 2 T3 R
FHBAIN, AR5 FERCR IO T 3R ZE AT 2 LUK

ey % 2203 R v R 5 2 ) N AN SR AR — LA AN B R B L HE AV DU
SR R FIRIPIV, PDA, ILIDSZFHUAR RIS BEAE 0T CAT IR 5% 55 3 (1)
TRE L ORLAR o A LA LRI T AR AT 35 A T (RN B, TR 1) 25 A s R R A A A
WTEAS BT R T BB AR, SR IX LEH A E6 W 1) B I = e ek 7 .
SRIM A T HERA IR AR B A AR R R 1 R IR RAE L, A SR e s
()5 PR DA A ST BRI A SR, il Z000E YR PR 2 A1 LA SR
T A O AT I & o A A I T VAR L, AT B AR AN GRS vk I
VBT PRI SR /N, 3 B 0 Aok A2 97 SR 48 1100 A s e R A S AL B oy, IR
Joeied R FRORS il B S ) FE LRl LS P,

LT ILIDS I & S B, U] F AR (Rainbow  technique) & ) FH AN [ B £ o
FeZ AR S, LA RAT A (A7 B A Airy W) [RI R, SRXTERTERL 1~ FETERL T
FIPRLAR 70 AT s i QRS K/NEESEGIAT R & . ROodU JE H DG U BE
VM SRR e AT DURS 1 1 55350 5 5l JE 8 S BRTE L1 RIUET T L 15U 16 5 5 4 )
A, R eSO X R R Y AR T ) T R ARAR I
X G AN [R) TSI 50 6 B 1 22 5 AT LA 29 BObs #E R M) 2 152K (Standard: Rainbow
technique) 1 43 M & H7 AR (Global Rainbow technique) 4

TERAERCATIN B R, JAT Tl A 4D F AR S 28 ke 1 s AN R 1
XPHLE (O WOGHIUR IR FURL SR S A o0 AT o 12 MRS B2 A 23 AT B RDRE 1 [RPRE AR K
NS ORL BT R DL SN S R P B E DI R R . AEFRHERILE 5,
ANt R W 2 TR PR R B A A REAR RN BN, TR A 1 A4 2 D) T L
FH A 5 0T 0 2 B RN, IR HUORE 7 P SR B RN e — MG OLT, H
THASRL T ANR I B AR 25 25 RS 5 i RAR K 22, FRAE R BOR AN K3 BT
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T T BRI R T MR T AR REULA 5 IR, van Beeck s NS H T 4
BORMT AR . ASEEG I ke B S RS, ORI BOR MIFRHERZ T F52 R 2 JA)
KIRIAN [F] & AE AR HERC AT F AT A o 55 B30 a0 280 [R] 8B 7 A 328 F Ak b o FR AN
T RS 5 AT K AR o TR MR U 22 B T IX A2 (A g A, A HAE 5
RAEHIN GBS HRGHR RE B T — BB R 1o MSEER RS & R R E, 4
Sl RT3 A T I J 3 B 2R AL T AR AP R AT I ) R B . AR T A Rz AT
TR A ST AEBENUT 3 70 AT (R AR BRI L1 RS 57 K 1R 52 i AN KX A
R EA a7 NS IR AT B AR ST P A s pece = Wi AR ik v = af = A P\
HERRL B, FeATT 43 i NSz g6 I BE U IR AN J5 T Z BB EAT T R
AV S HAR TTAEAE T B AN EAR 1) A BRI B BRORE 1~ HREMAS 5 o M DL A
X 4stg, A4 Bk e AF Experiment in Fluids 77,

M BT ABA BT UG, A G EBORAAG I A S (W00 U Y (1)
JR BRI o AR SE BRI B R R, T RN S A MR T R AT AT HT I ERK
NSO R R FEE AN SH, AR ] — R B VAT IR AT A R A
ERLEE FRAT 10 5 S P A 2l 22 7 VAR 45 5 A R A T I &, 48 2 R HI PD AR RZ BT
BRGS0 7 VR R TR 7 SR S R g 0,
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FRE TROAFHE

ATHFRRE, AT R4 % (Extended Boundary Condition Method,
EBCM), 57T &6 R A E- &) 1A B AR a9 AR M 4E IS, 412 2 T4
HARFE, RARLRBAT ML, ST 2R IE EAAEE A 4 TR -0
RS O FRATRE . 3B I R [ F SN F G RAT A X JF — AR R 289 K
BRRT, ARG T BA ARG RBRE., KEHEREFREAT—F
8 A AR I F Ak

§6.1 9l=

AERI H Arn R O 35 U ) AR AR 22 A U0, Sl B 3R 44
Y\ A RURIATUR B (WA 3T 2 RS (B 2 SRRSET, ¥ RIS 4 AF
Vi SRAAE A R IUPRE 1~ O o) dse A7 K 7 vk — o B Eokit, AT fgid 5t
SAE ] SRARAT AR H B IR FURA IR RSN IR) e RE ), S H AR AT R JEA
R S X RSl e NP RR B UART TR I B an sk R 1« MIRRL [ AR 1~ 55 U
A R AT ESRT Tr) SR AR sk 5 v B st I PR IO A i R B ) o SRR 93 5 7 6 R e
Ky KK T R s i, %07 A A s B B L e UM A
YO H bR i) AR A 3, B A BRZE 0 VA(FDTD) HEETA(MOM). B
ZWIE(DDA)TE, BRI LR 7356, ¥ IRIAFFAE AR RS 4
FE1SOLL_L (R AEBR TR HEAT B I (0 T O, b T4 DX 550 ) 010 oK gt s el L
BRI LART 6 27 DX ORORE - BSUR Il i 1 BR G4 M Bt i, TR T SRR T3 X 480X A~
D2 ] B 0 TR A R DL~ PR ) R 5 4

¥R 54441 (Extended Boundary Condition Method, EBCM), X FRVEZE 77
7% (Null Field Method)&% 3 T-4[4 % (Transition matrix method, T-matrix method). 1%
J7 ik i WatermanU W, R R4 S (098, B N R IR U H
TR AT — B0, T AWORE PR 42 st b 23 0 R 5 R AR e R BSOR FE I, R
FH RIS A% S o B () T SR il i e I R Bz Tl 2 I e AR A oS &R o e RS0k
DHE T % F 71 A sk DL JLAE 5% Foft 52 2% 5T o R0 A (00 4 S 17 g % €0 130,
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§6.2 FAAH bR

§6.2.1 “ERURIE

' RE T TG T3 52 W N S PR I8 RO P i E — A 5 S AORE 1) M
T R 5 0 P R B R BRSSP Xk R e T 3R
2 [ S PEAR O R« A TS BIEBUN S A K BUMA N I 2 ARG R
FAT T A H 2305 I B (Field Equivalence Principle)Fs S b FEL 37 O YR AE
1 37 ) LSRR () 30 9 Bt A8 Ay 6 288 PR TG R e ) R

S AT E—NAIE I, e RN T 0] 0 A NSNS N PR 45, A4
T SAM A TGRS, T B A AR LA SR IR A T I T S NS . WnEl6. 1(A) T, R
WA R B DLl S A 3 S TG 25 (8] 9 3 v AR i ih i b5 | N it o6 S dnt
TCREERSEFR A [ CHTTIEIS Y6 1 H SR I 20 AT o a0 A TS P 3 A3 h 5
TEBEAS A 0] Jr = A 3 72 (B, H) W AE il fn S b AT a) LR 45 2 H o
(E, xA, AxH,) KKK LES B0 EUahIE, RIS/ ECH 7 (E,, H,) & i FL
(E, xA, AxH)WOREM . Hrpa S Bk it T timssrm
Wh3g 3 A 56 A A SR 4R, WIS W AT AR, APkt 2, 5aiss
R zZK6.1(B)FTR.

FAA, FHIEWE6. 1), WliiSIMT —RFMYE (-J,, —M,) 7E H B
[ rp = AL i (-E,, —H,), FIHSERREE, FATT LIS 214 E16.2(D) I 7 55K
ghSL, WS LAAM SR R S b A R AR G oR AR, IR G
TESN =AM L RE3A FH (—E,, —H,)RoR, 1AE TSI TS0, Ak
hE o AT RHUR P, X IR A A

¥ El6.1(B)ATE6.1(D) s it AN 1~ 1) jUAH & A 21 Kl 6. L(E) s [l @i, A7

J =nax(H,+H,), M, =(E,+E )xn (6-1)

EE 6. 1(E) 51N — R BB (3, M,) » IR 7 AR SN
(E,, H), A& RmE61F)Fn. (B, +E,, H,+H,) B HiiSob s r) k3.
ULPRATT AT CAE T SH S R AR 5 U 23 A 1 6. 1(A) HH IR 4 )
FHIA], B2 SIS HOR H AR — FR 91 S5 A4 R T A R A . X e 3 1 it oo 7
T SHM IR B2 SRS 3, A TS Y 7 A2 B2 SN S 3

MRS, FATAT LK I 2 RN A -

E'(r) = Vx| (AxE.)g(kR)dS -V x Vx| 1

(ix H,)g(kR)dS (6-2)
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LE HH TS A 35 X 4«

L (ixH )g(kR)dS
&y

0=Ei(kr)+V><J. (ﬁxEJg(kR)dS—vaXj

Ferbr g (kR) 72 F Hh 2 a] RS AR PR KL

exp(ikR) ,
kR)=—""=, R=|r-
g(kR) AZR r—r'|
E Hs- ; Es HS J=nH
s "'w\\<i’ Ry o =¥ M, =E, 1
I/ Es‘ Hs‘ ' :" ;_;i%
* fJi%_. S:".\"-
(A) (B)
& - o 17, J =n(-H,)
E H =M PRI i
R L P
- e M, =-E
X P R
b S.!‘ h
-E.—H, ! _E;'~ _H;- ‘
(©) (D)
E.H, E+E.H+H_
”‘\ e o oA, _-_;j\‘:_‘.!+ 4 ]} o S . 3
o “"L;§n1+ N 6%
! ~B.~H o  mm M
(E) (F)
Kl6.1 R BN K]
(6-3) P A T ] LU T4 -
(AxE,)g(kR) = (ixE, G, (ixH,)g(kR) = (71 x H, )G

Horb G A FF RS MR HL
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Ji LR X A7 T R B SRR 1 (R PE

§6.2.2 £ [A [R5 H AR 1 ESCH ) L

k6. 257, AT ST Bl ARBUA VIR AR RO A4, BV, i 44
WARER N BRI,V 0 HUN AR SMEER AN X . R ERON ISR, Ao it
SURIERCRIRIER,  AMEEROY B O A LB OAE 5 ri Ak fe /N ER

Ke.2 ¥ RILF AR E R

FEERMARR AR T, AR AT 389 20 2% 1i) [RI P9 S5 2 B ) I s £ P B O ) L
FATATLSE NG+ BRI LA R A 390 3 PR AR 5 R BBOR T

E)=Y 3[4, MU (k) + 5, N kr)] (6-6)
n=1 m=—n

Em=Y 3 [e,M0r)+d, N0 ()] ©7)
n=l m=-n

E"0) =Y Y [ £, MU k) + 2, N (k)] (©9)
n=1 m=—n

Horfs k=kgn, k =k, kR B RO PSRRI O, RO A
A T IK S TS R, R T T A SR A S R

T NS K A AMBEER 2 A, 24 B S Bte TRV, IR, ST 7
o BT 7 >, T

@) en MY (k)| e N®) (k)
= —sz‘ dSnxiouH , « —ik I dSnxE, e« (6-9)
b s N(3) (kr) s M(3) (kr)

nm —mn —mn

AL ARV, SN, S BRI P R B R B AR <

I MY ()| e N (kr)
= sz‘ dSnxiouH , « +ik I dSnxE_ » (6-10)
d : N (kr) : M") (kr)

nm
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Fd 4 MorseflIFeshbach2h Hi (11 Bk < 1898 pR LS5 M6 AR BRIER 1 0 AR

6o = kZZ M(i}m (k') xNY (k) r>r
r,r l
p M") (k') xMY) (k) + N (k) <N (kr) r<r’

(k") x M) (fr) +N©

o
) (6-11)
ME(6-11) AT EAE th, SEBr b A P EER A RN S M3k A S 11 DX It % b R
(TSI X ] o BRI B AR s 4% A2 P AR ARAT TR E AR IR U ) i, H
X FSUSR AR P 7 PR 5 S AT PR FO0IN 7 T AT " PR AN R Atk
ARHR P ) A RS I MR R, FRATT AT AR RO HARII NS 1. K
S UL K N 3 ) R TT Az (RS T () 2 A5

a f c /
nm — R nm n,m — —R o n,m 6- 12
|:bnmj| Q |:gnm:| |:dn,m:| gQ |:gn,m:| ( )
T SCHUS A S R -
Com T D 6-13
dn,m - bn,m ( - )
N I:':‘ :
T = —RngQ71 (6-14)
1
Qll QIZ
Q = (QZI Q22

o =J4 4 pn g2 (6-15)

oM =g 4 gt (6-16)

o =g 4 g (6-17)

0% =g 4 p g+ (6-18)

A

g j 1\ % C) (kr)ehdS (6-19)

Tt =(=1)" [ ML), C) (kr)eidS (6-20)

mn m'n’ T .[ M kr)'ﬁdS (6-21)

T2t =(=1)" [ N (kyr)>NC), (Jer )i (6-22)
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AL L3 AT T AU SRR 1R R AL PE

FUFIRRER ik, K5 b4 2 i ME) A NG) 450 ek MO RN, )

1321 RgO WA MK A AR 73 2k 1
R HCR H AR R AR BE S AE R AL bR & b I B RIS o ok, T
A BT IR T LU TN -
or or

m (27 T
ot =(=1)" [ a4, deMEi?nr(ksrw,m)xM‘iln(kr(e,qzs)){%xa—yj (6-23)

AL FATT AT LAAG 2 B (1 HeAb 27

.

0.1
0.01
1E-3
1E-4
1E-5

H— 1k 1 g 50

1E-6

1E-7
- .. =
0 20 40 60 80 100 120 140 160 180
A
Kl6.3 JfERR 1 (Wi 50.97) IH—fbam & Mo An I, R 15 AR RS S50 150

AT — A LAzl Ay Jie e o Pl () e e A RRORE 17, 8k 2 ) P T b R, A
xPlAyHh ER R e, JLEAMPRR NN -

X+’ fi

a’ b’

& XHEERRL T IOREERFR N b/ a . W a>b, FRATSBUR 2B mAiER, 1

NARB I A0 S v] DA BRERRSE AR SR AE s Wik a <b, FRATHEZ B KA K,

Bt N A A G I AR AR, JAT TR AT 4 B RIOR 5 (EAH DL BRAR AR 2R Y

JiFEN -

=1 (6-24)

b2
IR, M(6-25)nT LAE H, H T ABRoRE 1 5 2200 P e e AR PR A1 R 2 20
TR FTEI, XA B B AR RIS AL AR PR U5 . W63 FT, FRATI4
T AMEERZE R 0.97 1) e B ER R 7 IV A ST A A L, ok A T R 2
$h150.

sin?6@ cos?@)
HO)=| ==+ (6-25)
a
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XF T e e W RARBR R 1 B o5, 9 il i S i i de S PR A
fib JURR A 3 oF SRR UKL 7B ) B /7%, HEWIFDTD, DDAAE, ZEHREFJL
AN, PRI 1R N SR AR HR AE AT 9 Ik B8 AT e e PR TR 1) H b 5 T
SR 2 AW, 7 el B A E S AR e e X FR H AR B )l B3 ) 1)
RN o N A5 AR 7 g, SR BT R 5 A A 5 10 SR A A e e )
PR E AR B ] 9 N R A B T7 9

SETTARRE T 6N HR R B T2 B, B R AR HAR I & & i KA ol 2 7%
AN AT — 2 RASTA I, IRALAGFSRAAR SRR B R b A JRE R b o0 17 7 f AL
o MRS ARSI RO, Kahnert5 A6 ok b FEIX Rl 53 A 10 475
DL RO A T B g mte s, JF oot TR e oL MMER IS5 . Laitinen Al
Lumme! P WA N AEATAu] U T8, BT (0 5828 100 AR S ol i B30T 1) s AR o
J3 ) B R il R AR e e N TR E R, T IR AN E ROBE B DR IMEORS T
W71 SEBR RS S8, 18 A7 BAE M Ak 3 s i e o &2 . R R S
Dy IR T WA AR T BA R 3R — 2R 81 (3 B2 1)~ 1 eR BRI AU T 3R -

r(@, (0) R4y, + liﬂlzl:akldék (‘9) COSUW’) (6-26)

=1 k=0

ISA(6-26)FT LI, FT 31 BT 107 BRSBTS sinkop) B -1
B M1 =08, EIRARME—MrEREIERL - MREA 1, R,
XA A AR AW & 7] T 377 AR 1 AR . R IXFREAL, i n] DU A& S ke
RG> TR T L SRS )8, AR BE Ty v mT DAY e i FH 21 ST = 2 TR R
TR R T2 AN, BarberATHINM Y, DL K MishchenkoE A PPTIAE 44
ANKESE ) 53 DX TR 43 ) A FH 0RO, A4S AR 40 X AN 23 X TA) N JE B J T
B ST IRy, XA TTEE T AR 2 R I i s 45

SLSAEYS K B ST 7 AR~ 5O 1) @2 1, Mishchenko %5 A\ AE Y 1A A 44477
VEVESAT R AR A 1n) 50 4 i e 2 26 A BRI IX Pl Sl 0 AN ESE A s o, 1 4
IR RITR, KRR A [0,6,] 0 [6,712]0 [n/2.7-6,]5 [7—6, 7] A
XN BN, AT B AN SR AR 3 T 5 TS 7 AR D S A BRI A R 2
I K IIANF B AE T2 @ M 4E0, 90, 180FI270/% L Al s, 1M 0 f AR
— MM AFAE, AR XA AL B A T AN @ o DRI Z50KE O 1 2 AR
T NIRRT R, ARG RTAH I (1) @ AT AR 53

WE6.4F 7m B T2 Y e S A B AN S 7 PAORE -1 1B R T 1540
HOCRT AR T BT PSS A7 VDR e o Ao R A 1) LAk s LK (6-68) T
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AL L AT T ORI SRR 7 (R L

----- parallel
— perpendicular

DSCS

0 ZIO 46 GID Bb 160 150 14‘10 1(|:»‘0 180
Scattering Angles
6.4 77 AOREFAE VIR 60 B AT 1A 20 A B o A SRR 00,6283 um, i
TR/ A Tum

§6.2.3 2[RI H AR ECH A

ML BRI Fie 32 57 2 AR 25 1) [R5t H A T Tl AL PR 9 5 ) DA
N TSRO 5 NG L TR AR R, A5 ZEAE B e S b1 A 2 1)
ZRMEIRAR, PRI FH A2 5 V2SR AP AT ] 70 5 5 B R 1 (R N 37 A T e T AR
555 i RIVE Y B H AR AN 2, 250 1m0 S PR A Jot H b A 37 AN i T 5 1 DU Ak F ek
REPRBETT o WP 7 r 5 5 RE, I T AR AL 55 18 5 AR 4 B B A4 1]
FAIG Y T LRI IR R PR BRSSP B 1) A S5 304 70 R B T T

§62.3.1  HiSrE HAr AT
HL 7 (2 TC U FL38 2] )55 3 A (A4 a2 BA R 22 0 45 e
VxE =ik,B VxH = -ik,D

VeB=0 VeB=0
JF H AL A O &

(6-27)

D=¢E B=uH (6-28)

o, g AP SO R S o I LRV B 47— I 9

Gy, WS ATEA B TR AT — A% 1 R A H 8 R — NG S R A R 2 5 430
HIEL R PR
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3 e g, 0 B
e=|-ie, ¢ 0| u=u (6-29)

w w w .
Hrpe=1- 2 2 Ty &= . NG gz=1——’2’; U‘&W’We’wpﬁj\%ljj\j
wo—w, w (W —w)) w

HE TR B TR IR UL B TR AR
M — A REKRE, BAH T MU R

E=xD H=v-B (6-30)

Hor:

::y* (6-31)

0 0 «x
T 5 R B 7 7 AT L) s 47 7E L R 6

g —&, 1
;o K, = ;K =— (6-32)

K=

z

2 27 2 27
& —é&, & —e&, g,

Tk S A B AR, FLRE S i nT Y TR A3 = (AR 4 T AR R
X(r) = jx(k)e“‘"dV(k) (6-33)

L X(@r)#*r E, H, DNBHHALE—M0®, XKWERRE, H, D, BMHMN
P BL AR o i, ko, A LR e ks

VxX(r)=j j X (K)e™*dV (k) (6-34)

TRATTAT LUK 22 ve 075 7 R =X 1(6-27) L A (A R ZR X (6-30) A8 46 0y«

kxE=kB  kxH=—kD (6-35)
keB =0 keD =0 (6-36)
E-xD H-1B (6-37)

TA A ) BUMCE] N ERARBR R T 18, AR AN (e, e ne,)
HA Rk AL RNk =kee, » J (B, 5,,2,) FRKNEA(r,0,0) M55,

FATR] LURF (0 FOR AR AE FLAT ARAR AR ANER AR B 28 B I LUK SC AR A B SRR S BT B
et
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A, cospsind cosgpcosd —sing |[ A, A
A, |=|singsingd singpcost cosp || A, =R A, (6-38)
A cosd —sind 0 A, A,
TERRASRR R, 3(6-35)F1(6-36)F6 4 -
EQJ k Z{ng
= u(-2) D =0 (6-39)
(Ew k D(ﬂ
R(6-37) M
E A .
r 6 (4 Dg
E, |=| Ay /19(/, D (6-40)
B, ) N uo Ay | "
Hrpo:
B | &sin®@+x . cos’@ (k—K.)sinfcos@ ik, sinb| |4, A, A,|
ki =R KR =| (k- )sinfcos@ rKcos’O+i sin’ O ik, cos0 |=| A, Ay Ay, |=M
—iK, sin6 —iK, cost K Ao A Ay
2(6-39)F1(6-40) 4 I T I Jitb D, A1 D RIRFAE 7 R
-i 4
{/19.9 A Ay, }(DHJZO l:lu(ﬁ)z (6-41)
do A=A |ID, k

ISR AR L ERFAE T RS, AT R DA B P ANRFAEARL &y, BLRORE I )R AIE 1]

V, = féa + é{p V,= (éa + fé(p) (6-42)

1
ko =koJ ! A Ay = E(ﬂ“ae +/1¢<p +D) (6-43)
D=y =2 =428, [ =225 /2y~ A, ~ D) (6-44)

XA SRR AR, AT

D= \/(/196, —A) — 44y, = \/(/c — k)’ sin* @+ 4« cos’ 6 (6-45)

FED>0, FAHA =4, KIICPIARAAL I R AHERE . FFHE T RE(6-41)
AR AR LA A ] AR Jl L E PR ) B 2t B e BAT DR AL AE A 2R
AR BRI B AR FNR A R AR T AT A5 21

D)= [ [D,(0,0)V,(e,5€,€,)¢" " +D,(0,0)V;(e,,€,¢,)¢™ " |dQ  (6-46)

Hrbp,, D, fELL O o AL R AR I I h B R
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H T RERE RN HUR AR N I G o3 By An B RIS T, AT IR &
BREREG h TEUEVHR TR, FRATE SO
m,,, (0,9) =[imz" (O)e, " (O)e, 1e™
n,.(0,p) =[z" (O)e, +imz" (O)e,1e™ (6-47)
Pon(0.0) = P e,

(e, e, e,) AL E A T [DERMBE RO, 2(9), 77" (0) WAk %k, L

Fi%E i Legendre BRI AL K 78 -

\’”\(,9) P"(cos0)
sin

I BROSEB pR BN IEACE s BATT AT DICREAT 7 AR JEE O B O% B R R K
PAETT o IF HAI(6-39) T LLFE U D, 73 %, Nitkp,, RAE R i
s 25 o AP D) 23 T a2 BL R R AR 5K

() = ok P’” (cos6) (6-48)

er X mmn = nmn er X nmn = _mmn (6_49)

bl 1 2 R A T LR TT 0+

D,(6.0)V,(6,9)+D,(6,0)V,(6.9) ——SZ Z T o (00)+d, 0, (00)] - (6-50)

n=l m=— n

Zeid L AR A S, BATA LA 2

L I O +id O +d, [ O ) +im @)1
(6-51)

L 1 @ +id O+, [ O+ im O

4 n+l

n=l m=n

b=

4 -+l

n=l m=—n

%ﬁﬁmwwuwﬂﬂﬁﬁu&MﬂUﬁﬁﬁ%%W%%M%ﬂ%%@ﬁ%
AR IF

B0 =33 [, X5, (1) +d, Y., ()]

o (6-52)
mnrjizzﬂ%%mH%ﬂMm
n=l m=—n
EﬁXﬂ,Xﬂﬁﬁﬁ%%@%%@ﬁ:
X' (r) = j (- f — )[4, W L B weteh T 1dS(Q)
(6-53)

Yne;,n (r) =J- e,heikler-r +B"nnw§,heikze,‘-r ]dS(Q)
Q

l—f2
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A, =ma(O-1)+ir!" (@) A, =imz" (@) (1) +7"(6) (6-54)
B,, =ma"(0)+iz"(O)~f) B, =imz!"(0)+7"(O)(~f) (6-55)
wi=e{[(Aof +24)le, + AoV wi=\JAe(fe,~¢,)

wi=e{[(Ay+ A, 0, + v, Wh=\1s(@, - /&) (6-56)

MCETRRIHE T n] LU, 388K 5 Un] DU B Bl 25 i S M o A 7 0
FAh7e . ERDRERE T R P AR TR B E N R, BT ) AT 21 025 1]
SEPES R RE

k,=0—24,,=4,=0 — f=0 - V,=¢,,V,=¢, (6-57)
ES): s (NESEEIE
=D, = —62 Z —c,,ma!"(0)+d,, " (@)l

n=1 m= n

= =-€ZZ e, 2" (@) +d, mr!" (0)]e™

n=1 m=-n

DLk UORISCRI e &5t 1 Sl 5 1 S PE A R IE U T8 A —FF, ATt 5E
FF T BATHET 1 IEAE

(6-58)

§6232 PlEILILLMEKM®

gi s BN RIER, PUNIRATE Y B IL 5 SRR SR g AL 55 5 4
B ) S H AR BB ) kR I SHE R, e HU R4 N R X 4 D, A4
WXk D, o H SR A R L S 2 N &, A g o
EAG, AT I AU S Ok R R R T R A T L
E,. ()= Z Z [/,M%) (kx)+g,, N (k)] (6-59)

n=1 m=-n

E.0)=> > [a,M{ (kr)+b, N (kr)] (6-60)

n=1 m=-n

Horbrk, = kyJe,u, RS T RMENTREVBE . a,,,0,, > o> & 7T ANGT

Yy MU B JETT Z 5
FEHUH H bR 1 I F b 3L 5 25 A -
ﬁ X Einc - ﬁ X Esca = ﬁ X Eint
. . . (6-61)
nXHinc _nXHsca :nXHint
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BTR3NS b R RICH b 2 T ) e S A
fmn _ amn
K (662
T =00 Q) (6-63)

Herh Q2L FEMELE = g, = puy W22

3 3
Q;m — Pn;nm n' Rr;mm n (6-64)
Smnm n Umnm n

l—j(nfo;m)N +\/:(n><Xh )M

Pmnm n' l—sj. (ﬁ X Y:l'n' )‘Ngj’z + \/E(ﬁ X Y;Z'n' ).MSr)ldS
R3 T s 8s
_ A (6-65)

mnm'n’
3

S y 2
rznm n lk_sJ‘ (ﬁ X Xem'n' ).MS}E + \/E(ﬁ X X}’;,n, )-Ng:,),dS
T 85

mnm'n’

z—j(nx < MYy —(anh )eNUds

é

Ol AERETTLATTHEK 02 rh it MO AT NG 43 s ML) RN e #)

8yro

L AAT T BATATASRIM (k) FIN  (kr) (T IEE

MO (k) = SR i 0,0)+0(- )
fer . (6-66)
N (k r) = e"p(’ XPURT) iy, (6, ¢o>+0< )
B 20(6-66) RN (6-59) FeAlT ] AT F)
limE, (r) = expUhr) p 0+E,, 0l (6-67)

s

o E, M E, , Y B A X Y11 7 &
TPAMERIEER Y, ARG S R B U, € SC8:

2 2

477'. Esb’ E
2 kz |—

sp

2
—2} (6-68)

sca

E,

mc

: 2
Opes = limérr
r—0 E

mc
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AL L AT T ORI SRR 7 (R L

§6233 HHEEE

AR 11 THAH R [ S HE S, FRATTFHFORTRANTE 55 % B in) SR T g B SR A«
BB BE D UTZRIALRR AT A R R AT TR AR AL -

—— T matrix
- -- FEM/MOM

/A (dB)

=10 4
-15 4

-20 4

0 '20'40'60'8|0 '160'1':’0'11;0'1é0'180
Scattering Angle (Degree)

6.5 1K BN i (RCSs) Bl B A 6 19 A6 S 2 W EBCMUT ik L4, B2k

FEM/MoM i £ /it S48 . BIALSE B TR0 S5 B 5O B h kyr = . & =5.34958, ,

e =10¢,.

W T RAERE, R E e, =0, AR B k=7, HEAH
WHUMAIN £ =5.34956,, & =T7.06,0 TERHRULT, Bl OLH MOHARTIO MM
R 25 B TG BRI . 5% S FF A S O A T 45 4 5 Doicu s
FHR B RO R LE, B e .

S3Ab, HAl TR A ST A S 5 A B A i (FEMUMOM) i 2 77 1 A4
HEAT LU, e R E6.sHis. fEE6.5%, Hfi1sr il FIEBCM T dA It/
Hht (FEM/MOM)JR £ /7 51 T R 55 85 TR 10 784 O AT (RCSs) . AL %
HTARIBEA A kr =05, s=56,, ¢, =—c,» &.=T5,. MEPATLIEH,

g

P GRS AR, ARt — 2B R W] T LR RHE T A e S RE /7 (1 IE A e

98



-30-
-40

-50 4

o/\? (dB)

-60 -

.70 4| — T matrix
|| - - - FEM/MoM

-80 T L L — T T T — T T T
0 20 40 60 80 100 120 140 160 180
Scattering Angle (Degree)

6.6 ik HIUH #Ii (RCSs) B HIUN ff1 O 19224k . SEE W EBCMUS VA THEE R, B2y
FEM/MoMitd 5 JATH 5 R AL S5 B TR S 280 i o kyr = 0.5, £ =S¢, €, = —&, 5

e =Tg,

20
15
10 ——E Plane
= \
\ ---- HPlane
m 5
=)
(q\]
< 0
b <4
-5 -
-10 4
-15 T T T T T T T T

T T T T T T T T T
0 20 40 60 80 100 120 140 160 180
Scattering Angle (Degree)

Kl6.7 BrIAELST I (RCSs) BHECH ff @ 117284k . SE4 N E-planetl 5458, H-planet] 545
Ko HAEE TR SEON A kr =7, £=53495¢,, &,=-2¢,, € =&,

(ERI6.6, FAIEBCM vk 8 T AL S B T-4kBR 1t 1 1 BT A T (RCSs)
S AN RS RS TARBRINB RO W e =58, kyr=m, &=53495s,
£, =25, £=T5. WESIHRIOSE, HHI6THIIR S SEE A%,
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AL L AT T ORI SRR 7 (R L

§6.3 2 HARERKIEUH A

IR T AR DT CAREAEAERI FEAR H A () FL B RS i) AL PR BIE 5 PP 3R A
IR, Hep A BB AR AR AR B 1R v S AR T F A B K
BB RN RS Jri s AU 35, S NS PEBOE G, DR 3K
iR TS B B0 A RS P, AT B S IR R R R, it T AR
KT S AR 10 2 Bl O R o IXAMIL AR DB 5 0 Hhons T AR R RE 1 ) 35 3
SRR EUE 7 1 P A3 BR G AOARIL, DR g B0 S JORE 11U IR AL S R
CUNCIRD S = RE D VAR R VAR R 35 B S A N TRl TR VA W RS N TR R ME IV PN
N2 B S A At SR A B R B AR . oy, T RIS AR
PR AT AU T AR G R SRR T i, B R MR ATe S RE T T DU R
R BE SRR, D v RSO i REUR A b SR AR G (A B AR L, P SAAERS BAT
Ji@ e o R T AR ) B AR TR o) @ P SR b 849 3 TARBF AR B . RS bl &y,
B 10 AR IRE S At BT R 22 7 20 22 i AR R B4, iR
FRYCHIURAS Y, #1221 E 1) BEATLATE 3 ) 22 007 AR BSOS ) AL el F 2 A1k
IIER SuR S

Mishchenko 5 AL Ji 120 54 1102 N FH - 1) BETL I — BREASAH DGR T A 1L
SFIR) e b, HES TS R TR R T I RIE S, R HAR gy T A R
J¥, KRS TZ VAL 2 R R U )8 E R . Skaropoulos A %)
TR RS FR IR 2200 1 B R R AT T AR GEHE T, DR N R B B g b ik U0 —
FRCERIE PR B POBOR T, i T ARS A (KSR, JF B RO 1 AT R 5 i i)
3 ARERL X1 T (R RSO AR O o X HLIRAT T 1 R I R A ARE X AR L
S e PR SR A, A T P AL [ B3RS 1 LT PR R

AL SR T IR TUR H R

BT P IRE NI LN (0, 0) s IBANGFH 2 -5 NS5 100 A B2k
ORI

E,(r) = (E;0, + E,,) exp(ik,r) (6-69)
R XSy, HOH IR A ek, Hg e 3RiA 08
E (r)=E0 +E, (6-70)

AT H R AT L X -

E;)_explibr) g o o[ _
(ES] = . S(ns,ni)(E;J (6-71)

4
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53 UL RORE-7- 3 A L)
b TR b — A H G AR R K oR Ak, Bl 13k v DU — A R A A 3R 3R
7N
1 . 1 :
E,= ﬁ(Eo +iE,), E, = ﬁ(Ee —iE,) (6-72)
E)_p[Eo po Lt ! (6-73)
E,) \E, ) 201 i
B2 BASRL - (R S ] B Bl A SR 7 A
C A AN AR -1 _|:C+1+I C+l—l:|
(n,,n)=PS(n;n )P =
C71+1 Cfu
(6-74)
~ [SM —iS, +iS,, +S,, S, +iS,, +iS,, —Szz}
S11 _iS12 _iS21 _Szz Sll +iS12 _iS21 + Szz
B. HASKL T ROK B R
FAASRLF (R ) o P Ze PR SR o A -
Iy :%Zs(ﬁs,ﬁi,a, iN%) b (6-75)
L, L A3 A NS AR it e i 28 =1 o U V]
I=E,E,+EE, Q=E,E,-E,E, (6-76)
U=-E,E,-E,E, V=iEE,~E,E,) (6-77)
HAPTRREE, R,
FAASRL T K ) R o P [ AR A B 7 Ty
L = 7%y i, BT (678)
r
C 1Ci1+1 C—1+1C:1+1 C 1- 1C+1 1 C 1+1Ci1 1
c,.C c.,.C c,.C c.,C
ZC(ﬁS’ﬁl,a’ﬂ’ 7) — +1-1 :1+1 +1+1 :1+1 +1-1+1-1 +14+1+1-1 (6-79)
C -1C 1+1 C-|+1C 1+1 C C —1-1 C-1+1C-1 1
C+1 1C—1+1 C+1+1C—1+1 C'+1 lc—l 1 C 1+1C*1 1

FCrP B AR S (A, ) AR HGR T O R ke, AN TR ARk

Forp g X 23 A NS AU S T e S 5L =11, 1, 1, 1,]"

L=E E,=(Q+iU)/2 I,=E_.E, =(I+V)/2

I,=E E =(-V)/2 I,=E.E =(Q-iU)/2
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AL L AT T ORI SRR 7 (R L

LA B bR 7R 2 TR BL R e ok R 5K

Z%(hsn)=A"Z(A,0)A (6-82)
HrpAf:
01 7 O 0 1 0
11 o0 o 1 L 0 0 1
A=— Al = (6-83)
211 0 0 -1 - 0 0
01 = 0 0 1 -1 0

C. ZRL T HERIKBN RS
X AN IMA T A ] B AT SRR, KA AR B 5% 1 TR 1 AR
S OIEEAPSYIE
Z(n;n)=N<Z(n;n;a,p,y)> (6-84)

A A 2z T, 2z
<Z(ihza.f.y)>= | daf sinpdp] " dy
XZ(ﬁs,ﬁl,a,ﬂ,y)p(a,ﬂ,}/)

Horb p(a, B y) RERERL T U BERL A s, e ATHT LR IS5

(6-85)

J, da];sinpdp], dyp(a.p.p) =1 (6-86)

D. KL F R AU AR
25 LT VR R T P R R o 3o o R A ok 5 3L -

F(6,)= é—” <7(6,;0,0,0) > (6-87)
Ho €, Mo HUN 25
C,, =27 sin0,d0<Z,(6,;0,0,0) > (6-88)

Z,,(6,50,0,0) A KB HFE S —A oo Higi 2 LN IH— 44
% jo” sin 0. dOF, (6.) =1 (6-89)

AT BE R, XL A TR R 5 SCAE AU 1 . & 288 LR
RO AR LA 2 42 SR A bR AR P

<Z(n;n;a,p,y)>= %L(ﬂ' -0,)F(6.)L(-0)) (6-90)
T

y
=
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1 0 0

0 cos26 sin26
L(0) = :

0 —sin28 cos20

0 0 0

X RO BB BENUER, 200 B R BN AR AR, FLEUN AR A
B RATLL M RIEIE

(6-91)

- o o O

a b 0 0

|6 a, 0 0
F(0)= (6-92)

0 0 a b,

0 0 -b a

a,+a, b+ib, b —ib, a,-a,
FC(9) = 1 b +ib, a,+a, a—a, b —ib, (6.93)
2|b—ib, a—-a, a+a, b+ib,

a,—a, b—ib, b +ib, a,+a,

T 30 5 [5R1AW A S 7 T TS R B v P 6 38 mT LRI o MR o 50 1 4

EZ
Fi =" Z(k  gufi(eos&:™) (6-94)
Horr P (cos @) — M BRI R £
LRI R A B S AR
g =2 [ dlcos 05 S (0 Py eos 05°) ©95)

IRAANN T EAEIL R N B R s, BATAT

a,(0) =Y a; P (cos0) (6-96)

<
a (9)+a3(0>=i,(a; +a})P(cos6) (6-97)
%wrﬂm%=gw;wnmxww) (6-98)
a,(0) =Y a; Ry (cos 0) (6-99)

—~
b,(0)= 3 b P (cos ) (6-100)

~
b,(0) =S BB} (cosd) (6-101)

-
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XA K S5 R B v 1) 0 38 R T Il — BB IR B U R R 7 K, X
IR NN T R =R = NIV
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VTR TS FRO AP A o LR RE RO B Fp 25 A o0 38 AR B 28 X — BTk el B 2%
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B, RAMEALTARE, AR RS E, BT 2 IREEIIEE S
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R R FHBSHA . FITAF KD F AP FA.
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(IR P U (Ve 8
ALK EAR D HPAT IS e A B SR o ARG R &, ATl ®in]
LIAE S PRI R, B2 A Qi L B A BE NG WOR 5512, ILEIRE IR
WA TR AL, BATE W B 2 IR B RIS NORZ AL, W71 0R. X T
o BORAL, LR AN RIS 0T UREX 70 (0, R0 20, 3,
P LR L, 1S B RZ AL R P C AT MY L 20 28— i R AL ) 100 € A 5
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o | BHRIL
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DIAZIIPN =Y 4

K7.1 AARFHERIRXUZ LIS
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Feo XIS Z JE IR Bk Descartes T LA & 1 IAE 5256 = 1 45 2E 5K . Descartes
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ZE MM AT AR BT IR ) 4518, NIRRT (1) B B BEHEAT T80k R GEH)
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1M EL AT DA o R 34 T BRARRE , A Lorenz-Mie H {8 i A 5T ML L4 1) 2
BN ITEZ — WET20R, BANG T — A5 B0 778V 1 S~ — B
R B SR R B A A O T IR KRL T S, WAL R A A T
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U I T WA A Rl e . SEBr b, I SRR OGO RN, s E
FARAHT ) ZEMNH . BOCEA RGN aEr:, EEME, DLARIRSRT
AT . PRI AT DA SO S5 R I AH LA BT = A R P B . o T 5
FEA S I FH R 96 A2 52 B TS0 14 75 2, Gouesbet FllGrehan®s A\ POF-19884E 4 H1 1)
X Lorenz-Mie 2 i (GLMT) > i Rl F 54T B0 TP (10 HL I 38t R RN 25 AR UDRE 522 [1)
AHEAER] . 55 T-GLMT, FJFH 5 4 iy s o s ol DABEATAAS [FA57 B NS 1R D' HRO6

ULEERI I DTk van Beeck! Ve b i 1418 S0 R T — SR ER B SR WKL AN R 47 B
NS ) T A R UG R, ARRF I AE T — B R LR —F R AL L. 2
U, 6 TERE R HUR PR A AT IS A 90 AT LR s 3, i3 TR AT IS
R BRI BB WIAL TR e B By, 41 T 22 AUl T 4 149 31 ORI 22 1) 6
o

§7.1.2  AriERAT IR

BRI G R S W BT T A 4 LML T, (H2 L 319884F,
TR (XA UERIT AR, Standard Rainbow Technique) 4 HiRothZs A 147 148]
S — I SRR (AR R S AT I B o % AR AT LA R] I SR R A 2 AT
R R /N

5 AR AU )= ANF],  S25 = 8] S Aot A H 2R KRG
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VE BRI S EIR, I BN B 22 VB0 OO 6 AR R S 1T T i o (R ML 4544
EHYIRIUL, SIS B2 RO R SUIRIRE /A, IR R m@ pSIE
o T S 5 B A YR X B R SO ST T 7 A TR U 5 E A 23 A TR E%%%
FLFRATTASA AT LUKS B O WF 9 90 e R L, it EL AT DAAIF 9% 2 5 & W s B
Walker! *VFI| il He-Ne Ot 88 57 1 /K AL WA R 1390 R UL Aki%véjzﬁ¢ v
WTAEAEAE TGP 2 20, (ROl s, FIFEAR s, B, X2 AT AR5
Hh X UV 38— B A R DAA R B s B R AL 1 SR DR BT A

4 Spatial Filter
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i

Volume r
Selection Image

0 ~
Probe Volume of Focal Plane

LASER

Mirror

7.4 AL EEOR SR A R R B

PR B ol A ) S 002 i A A LR T B, B s T PR R S 6 =5 S )
MWK 7.4/ 7507, fEIXERCE Y, FEAFET LU LAY 1)
GRAE, W% PP B2 . —MOX AN B 1 35 B0 23 2 T A R AR B 1R A7 1
T IRE . LTk EI CORIA M L4 5 HL I, 266 5 v] LK /K L 1H E T 5° C %)
80°C Z IANK AN B W B o W FR) P S5 REAR R /N K R TR B I 1) 2R /)
PGP Z kAR o (1)l PO 8 7 A OGO AU AT Rk S e
(IR . —J7TH, — AN D2 A2 FLR IO 2% P it oo o T DA VR
JihVRRBEAT A OGN B S 5G » y— 7 1Hl,  H TR H bR I SO R Kb O BUR R
P ERRRZE S, H A RMIEA SR PR BR-E 5 A oG A VRS, %y
TEMT A N 6 B AT 40 i . (LD) RHTAS 5 (R SRR TSR B0 2« O 6l 5
M EAER G, HORAUT A BT A7 B I8 1 8O 9 B2 56t — N R AL B Bk R AR
m%mﬁ@PZ%%~A”®ﬁ&$muLﬁ 5 HCERAN YR ST PR SR R A

o BRIRBEIIMGE T ARG 5 —NE B S A B AR ¥ 5 H — AN B AT 1 L
m¥%$ﬁﬁﬁ%@%§W@wEm%TmamW%ﬂmﬁ@ﬁ@ IR S . (IV)
G — T SRR A CEE 1, WiAiryPRig, GLMTEILSE, XfCCD%
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AL L3 AT T AU SRR 1R R AL PE

HEE AL A5 R AR AR B B AR 5 EA T AR AR R T LS H R AR AT
I E PNANY PS5 8

K7.5 LI BOR SR 20k A S IEl (SCHR[134])

7.6 e LRI A 0 S BT £

§7.1.3  AHUEATHAR

1 A 19884FRoth % N MEE— VR A IR R R CIAERR R e AL EEAD
FI LRI 25 (AR S S B, H TR BRI ke B A o I RDRGRE vy Sk
ISR A R EAER A AN R R b E g TR 2 iz . H
FEAHABI RS —FE, & B S WA €N RRE, Repm L ER . b
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S5 VL) DR 2R AT YRR 1 P S (0 AR 2 A O IR g SR T AR 192
s AU 4OV ) B S RSB0 5 T ST T FLAT L M B WA IR ML I S, 400
USSR 3 T 0 PR AR A9 A B R R AT 55 (5 R ST T 8 (O S 0, 94
Br 7ARS) (22 BRR PRI, SaengkaewE NIPUxtEIYS) (£)2) BR
RL T HIRAT AR PR TOT9T,  KORSE it T R A G RL 1~ 2 5 SR B o 1T v
o~ A THT R TE AR X0 R MLAT 5 (R 5 M LA SN i 82 2 B0 RS FE IR se i U S H
AT T BRIBLR 2 TH AR R U A FE (M, van Beeck 25 A1 119994 15 K
P T U T £ K (Global Rainbow Technique, GRT).

B7.7 4 PRI s R AR 2 (1 Y ) ORI AR

FESCIG I R B (3 b, SO ALEOR AR HE R AL R ) f K AN
ARAERZHL B Fp 7 B P32 B8 2 TR) TN 3802 ] e o A 6 9 W L 6F B Y80 (1 1
SHE S AT RS . AR B AR U £ B T IXA 2SR gE s AR5 RN
X G N ERANBORG B T — REROHRL 1o ISEIR RS R B R PR, Rl
BRI i BEEE N30 T~ A AR A R I R T s B o R T 4 SR AT B R 1)
S N AE B AR T 0 A (K A BB RL 10 SR AR 5 5 K R 5 M AN XA 1Y
BB B Ao RA AN [FPREAR R /MELA 8 o0 A [R] AR ER TR 5 B 2R IR AL A o2
BANAZ, R RN V) SR A AL EORE N R AR ER AR 5 B A O
s LI R R e O T B UE A SOR ML i ik (Al A P 2 5 3 s v LR 0
VRO 5 PR T AR BRI AL A ORI B i R AR5, BAT T ARRIORE 7 B,
53 5 NSz RS TN I T B BEEAT T 00T o AR A R AR — 47,
AT I B ANEAE o T AR, JEHRERRE A IS B, WSO Bk
A RINERTI P AR EREE AP
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§ 7.2 WHERRL 7 RALAE 5 B 2 A

§7.2.1  MHERRL T IR HERALAS 5

FER R ULE AR LT A ST I SR SE 50, A 2 R T RE e m
B S50 v R S5 R, Lean SR TR B AEBRTE TR AL « 00 P SRS (R Ry
SYRREEARA . RHTAE 5 I s iR 5 e T AR A o 1L R SRR T ) T AR K
FEMLAE 5 (S M e AT I R 2R 22—, DRI AR G b HE AL R o 8 75 2
X AEBRTERL 7 IR LA 5 AT b BB RN HE B She 48 v 00t RO RS 2

TR R TH K S IR IR, i N 25 5rP 1) B A0 2 B AR B BR T, A
AR 22 SCRRAE I TR WO ' AR B0 s 1~ U A R A 5 1 Il BN, 28 R 0T
iR BRIERL T S5 b, KR PR R, TR B E DA
FOTMREIER, & BRI THER

X IR N JEERE R RS 5 IBF9T, FAE19104F, Moebiusylifr 2l
JUAT 25 T At b, R AR AR 0] L~ 1 3R T T A2 1 5 LR 1 S LA R L
FARCE R PEAT T8, JE4r T N1 R A i A% BEAFG K 2K /N AR Ak () T
WA AHE B TR HREOEIMAAHT T, FZA XA RS BRI B £
LA AT A AU B AR A, T AN RE TR A G RAAT 4 SUH L Marston! >l
FLTFUA SIS BRI LR T BRI AL .

VNI 0 AR R 7 0 5 B ARRR R o s AL — IR
S5 I e IR I G 0 SO 5 NS Gk (Rt N F O 60, 1% 50 SURR R BR
JERLT LR o A5 B) JLDG A SaaB BRVE AT A3 6, S NG 7, Z T] A
HRFR. MTFERIERT, BN X RFIEAN:

0,=4t',-2t, (7-1)
-1

sz, = 3 (7-2)

ncost',, =cost,, (7-3)

Forbr o b 7T R 5 B B A A S R L. AERERRL T I BRR SIL T 1
HRL 7 BRIE TEARAACAS KIS 0L R, BOBRL T ) LRPR AL A R AL 5 ) L) 2L
FIZE

b—a\cost,, . COS7,,
AG,, = 16( J g sm3(arccos(Tf’)) cos(6,, —2a) (7-4)

b+a n
H AR Moebius 28 AN BE FNINRL 14032 [ ARy 45 HAh T30 o = 1 g, (HEE
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Following the recent results in generalized Lorenz—Mie theory concerning the description of an arbitrary shaped
electromagnetic beam propagating in an arbitrary orientation, a theoretical investigation of morphology-
dependent resonances (MDRs) excited in a sphere with an eccentrically located spherical inclusion illuminated
by a tightly focused Gaussian beam is presented. Calculations of extinction efficiency spectra and backward-
scattering intensity spectra are made for different locations and radii of the inclusion with respect to the host
sphere. Exemplifying field distributions inside of the scatterer under both off-resonance and on-resonance con-
ditions are exhibited. The influences of the relative size of the inclusion with respect to the host sphere and of the
separation distance between the two sphere centers on the positions and on the amplitudes of the MDRs peaks are
studied. As are the cases for spheres and concentrically multilayered spheres, the resonance positions of MDRs in
an eccentrically layered sphere are located at the same size parameter for Gaussian beam illumination and for
plane-wave illumination. In contrast with the lift of azimuthal modes m degeneracy in MDR peaks for an eccentric
sphere illuminated obliquely by a plane wave, we display a kind of lift that cannot be observed in extinction
efficiency spectra with an oblique illumination of a tightly focused Gaussian beam. Nevertheless, asymmetric
distributions of the internal field inside of the eccentric sphere at resonance conditions are observed both with
an oblique illumination of a tightly focused beam and with an oblique illumination of a plane-wave illumination.
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Interpretation from a perspective of the localization principle is applied to the simulation results. © 2011 Optical

Society of America

OCIS codes:  260.2110, 140.3430.

1. INTRODUCTION

Morphology-dependent resonances (MDRs) generated by a
spherical surface are believed to be first described by Lord
Rayleigh a century ago, but only after the invention of laser
did they start to have more scientific relevance, and it is only
during the past three decades that there has been a substantial
move toward extensive practical applications. MDRs were
first observed in radiation pressure experiments on dielectric
spheres while levitating a droplet by a tightly focused laser
beam [1]. Numerical simulations carried out with high resolu-
tion by using the Mie—Debye theory were given very soon after
[2], and remarkable agreement with the experimental obser-
vations of MDRs was shown. Because of the fact that the po-
sitions and the widths of MDRs are highly sensitive to the size
parameter and to the refractive index of the scatterers (in par-
ticular droplets), MDR-related optical techniques, based on
the properties of MDR peaks in elastic scattering spectra
[3] or in inelastic scattering spectra [4], were introduced to
detect various properties of droplets. With extensive investi-
gations in the past decades [5,6], a reliable optical tool for op-
tical particle characterization is now available. Relying on the
precise measurement of the positions and of the widths of the

1084-7529/11/091849-11$15.00/0

MDR peaks by high-resolution spectroscopy, absolute sizes of
spheres can be obtained to a precision of 1 part in 10°. By
measuring the wavelength shift of MDR peaks in the scattering
spectrum, evaporation and condensation rates of droplets can
be obtained.

MDRs in a dielectric sphere have been studied extensively
for both plane-wave illumination and Gaussian beam illumina-
tion. They exhibit themselves in the form of sharp spikelike
features in the plots of various scattering characteristics ver-
sus size parameter. Recalling the MDR labeling convention,
one resonance excited in a homogeneous sphere can be iden-
tified by its state of polarization and by three so-called quan-
tum numbers [, n, and m. The mode order [ is associated with
the radial function and indicates the number of intensity peaks
in the radial distribution of the field inside of the sphere. The
mode number 7 is one of the classical quantization numbers
for the angular momentum, which coincides with half the
number of intensity maxima along the perimeter of the sphere.
For a perfect sphere, there is no particular quantization axis,
which leads to the fact that the resonance frequencies do not
depend on mode m, therefore corresponding to a degeneracy
in m for the resonances. Nevertheless, the degeneracy in m

© 2011 Optical Society of America
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mode can be lifted by a nonconcentric perturbation inside of
the scatterer [6-9] or by a deformation in the outer surface of
the particle [10-12].

The present study is more particularly devoted to the ana-
lysis of the influence of a perturbation inside the particle on
MDR properties. More specifically, the scattering model of a
sphere with an eccentrically located spherical inclusion is stu-
died in this paper, a geometry that has also been analyzed by
several groups. Indeed, as we know, the analysis of MDR prop-
erties has attracted much attention particularly because the
MDRs can significantly enhance internal field intensities with
ultrahigh quality factors (Qs) of MDRs that can reach 108, en-
abling nonlinear optical processes such as fluorescence, sti-
mulated Raman scattering (SRS), and stimulated Brillouin
scattering (SBS) to occur in droplets with a relatively low level
of pumping power. Nevertheless, such high Qs of MDRs can
be greatly influenced by nonconcentric perturbation inside of
the droplet. Numerous interesting observations, such as spec-
tral line broadening and laser emission, have been reported. In
the analysis of resonance locations and Qs of MDRs in an in-
homogeneous sphere with a small perturbation in refractive
index carried out by Mazumder et al. [13], an increase in the
refractive index in a nonconcentric spherical region inside the
larger sphere leading to a decrease of resonance frequencies
was reported. Fuller [14] discovered that a spectral shift of the
resonance peak might be brought up when the inclusion is
located in the forward hot spot of the host sphere. Further-
more, predicted by Leung et al. [8], MDRs in a dielectric
sphere with many tiny inclusions may split into multiplets be-
cause of the loss of spherical symmetry and manifest them-
selves as broadened spectral lines in the scattering cross
section. Similar results were also presented by Rao et al. [9]
in considering a system of an inclusion sphere embedded in a
larger sphere.

Because of the fact that all of the previous theoretical anal-
ysis of MDR behaviors in a host sphere containing an ec-
centric spherical inclusion (in short, an eccentric sphere, with
variants) was carried out in the case of plane-wave illumina-
tion, our motivation in this paper is to study the properties of
MDRs excited in an eccentric sphere with illumination by a
tightly focused Gaussian beam. This scattering model under
study is of great interest because, when the inclusion inside
of the host sphere approaches the rim of the host sphere, then,
on one hand, some MDRs may be suppressed or even annihi-
lated by the embedded inclusion resulting in a loss of the high
Qs, which may block the phenomena of SRS, SBS, and so on.
But, on the other hand, some MDRs might be extensively en-
hanced due to the complex optical interaction between the
spherical inclusion and the host sphere, which form a dielec-
tric annular billiard, which can possibly be used as a quantum
chaotic model of a micro-optical resonator [15,16]. Under fa-
vorable circumstances, these highly enhanced MDRs can be
manipulated to realize an efficient coupling to the external
medium in a specific orientation, leading to potential practical
applications in novel light transition devices, compact laser
cavities, high-sensitivity biosensors as well as microparticle
characteristics [17,18].

Within the framework of the generalized Lorenz—Mie theory
(GLMT), the scattering problem of an eccentric sphere illumi-
nated by an arbitrary shaped beam was originally studied by
Gouesbet and Gréhan [19], however, only in a formal way,
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without any numerical results. Numerical results for far-zone
field distribution were given later by Han et al. [20] and Yan
et al. [21]. By virtue of the recent theoretical results in the
GLMT concerning the description of an arbitrary shaped beam
in an arbitrary orientation [22-26], numerical results for spa-
tial distributions of external and internal fields under off-
resonance conditions have been recently presented [27]. In
the present paper, the properties of MDRs excited in an ec-
centric sphere under illumination by tightly focused beams
are studied. Corresponding results for plane-wave illumina-
tion are also presented for the sake of comparison. These cal-
culations will provide insights for the understanding of
previously reported experimental observations as well as pro-
viding guidelines for future experiments in biological observa-
tion and particle characterization.

The body of the present paper is organized as follows. In
Section 2, we briefly present a theoretical treatment for the
scattering problem of an eccentric sphere illuminated by an
arbitrary shaped electromagnetic beam in an arbitrary orien-
tation in the framework of the GLMT. In Section 3, a tightly
focused Gaussian beam in the fundamental mode (TEM,,)
is specifically considered for numerical illustration. The beha-
viors of MDRs excited in an ethanol sphere with a glass inclu-
sion are analyzed under parallel and oblique illuminations of
an off-axis Gaussian beam. Some results and discussions are
summarized in Section 4, which also serves as a conclusion.

2. THEORETICAL ANALYSIS BY THE GLMT

A. Definition of the Problem

The geometry of the specific scattering problem under study is
illustrated in Fig. 1. The host sphere is attached to a global
Cartesian coordinate system (0O;X;YZ;), and its correspond-
ing spherical coordinates are designated as (71,01, ¢1). A
spherical inclusion is embedded in the host sphere. It is
attached to an inclusion coordinate system (OsX3Y2Z5)
whose corresponding spherical coordinates are designated
as (7,03, ¢s). The three axes in the inclusion coordinate

F 3 Zl
b IiZ
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¥ d
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O1 B

Fig. 1. Scattering geometry of the problem under study.
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system are parallel to the corresponding axes in the global
coordinate system, respectively.

Without any loss of generality, the center of the inclusion is
located on the z axis of the global coordinate system. The cen-
ter—center separation distance being designated by d, we have

Xy = Xy, Y2 = Y1, 2 =2 -d. (1)

The radii of the host sphere and of the inclusion are a and b,
respectively. The complex refractive index and wavenumber
of the surrounding medium are m, and k,, respectively. The
corresponding parameters for the host sphere are m; and k;
and for the inclusion my and k.

The scattering model in Fig. 1 is illuminated by an arbitrary
shaped beam propagating along the w axis in the beam co-
ordinate system OgUVW. The coordinates of its origin Og
with respect to the global coordinate system (O,X,YZ;)
are denoted as (g, ¥, 2o). The frame system (0, X,Y,Z;) can
be obtained from the beam coordinate system (O,UVW) by
rotations through Euler angles (a,f,y) [22-26] followed by
a translation of (xy,¥y,29) and vice versa. The time-
dependence factor reading as exp(jwt) is assumed, where
w is the angular frequency. This term will be omitted from
all formulae for the sake of conciseness.

B. Solutions

As already mentioned, the theoretical treatment to the scatter-
ing of a sphere with an eccentrically located spherical inclu-
sion illuminated by an arbitrary shaped beam was originally
presented by Gouesbet and Gréhan [19]. Afterward, Han
et al. [20] and Yan et al. [21] also studied this problem and
analyzed the scattered field in the far zone. Both the external
field and internal field intensity distributions at off-resonance
conditions were very recently presented by Wang et al. [27].
Therefore, we will not focus on these derivations but only re-
call some expressions useful for the sequel.

In the global coordinate system, an arbitrary shaped beam
in an arbitrary orientation illuminating the host sphere may be
expressed in terms of vector spherical wave functions
(VSWFs) with two sets of expansion coefficients a,,, and
b,m according to

L +n

B =3 N 0, M (kory) + by N (kory).— (2)

n=1m=-n

in which the field strength E\ has been set equal to unity.
Furthermore, the relationship between the expansion coeffi-
cients a,,,, b,,, on one hand and the more traditional beam
shape coefficients g;'y on the other hand is available from
[28] and will be provided in the sequel.

Similarly, the scattered field may be expanded using the
spherical Bessel functions of the fourth kind (in the VSWFs):

o

+n
B = 3" 3 6, Min (kory) + du N (kory). ()

n=1 m=-n

The main field in the annular zone between the surface of
the host sphere and that of the inclusion may be expressed
using the spherical Bessel functions of the third and the fourth
kind in the global coordinates system, indicating a superposi-
tion of incoming and outcoming partial waves:

Vol. 28, No. 9 / September 2011 / J. Opt. Soc. Am. A 1851

oo +n
Eintl — Z Z eanfylb(klrl) +fnmN§321(k11'1)

n=1m=-n

+ Dy Mol (1) + T N (g1 ). (4)

In the inclusion coordinate system, the main field can be
expanded as

o +n
Eintl — Z Z TangL?;L(ker) —+ snme('L&;'ZL(ker)

n=1 m=-n

+ LMk (1 X2) + Uy Nl (K1), (5)

and the internal field inside the inclusion can be represented
as

o

+n
Eint2 — Z Z pangllyzl (kzrz) + QnmNgn)'L (k2r2)' (6)

n=1m=-n

In order to obtain the solutions to the scattering problem,
the expansion coefficients of the fields can be related by ap-
plication of the boundary conditions at the sphere surface
r1 = a and at the inclusion surface ry = b. It is worth noticing
that the VSWF's in the global coordinate system in Eq. (4) and
those in the inclusion coordinate system Eq. (5) are different
and they can be related by applying translational addition
theorems of VSWFs; please refer to [19,27] for more details.

The extinction cross sections can be obtained by a similar
procedure as for a spherical particle [29], but they are given as

7 > 2n 41 n+ m!
Cowt = Re anT o R mE
et g [;m_z_nn(nqu)n—mH

The normalized differential scattering cross section is given
by

|Esca ‘2

Osca = ra® (8)

C. Beam Shape Coefficients for an Arbitrary Shaped
Beam in an Arbitrary Orientation

In the GLMT, the electromagnetic components of the illumi-
nating beam are described by multipole expansions over a set
of basis functions. The expansion coefficients are expressed
versus fundamental coefficients, usually denoted as g’y [X is
transverse electric (TE) or transverse magnetic (TM), with n
from 1 to «, m from -n to n], known as beam shape coeffi-
cients (BSCs). These BSCs are used to express electromag-
netic fields of laser beams in expanded forms, for use in
GLMTs, or in other light scattering approaches, such as the
extended boundary condition method. Their calculations form
the key issue, and the most difficult one, when dealing with a
GLMT. Initiated by Han et al. [30,31], a systematic analysis was
made recently concerning the transformation of BSCs through
rotations of coordinate systems, and corresponding results
are published in a series of papers [22-26], providing us with
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a new tool for further studies, especially in cases of nonsphe-
rical or composite scatterers.

The relationships between the expansion coefficients
@ys Oy, ON One hand and the BSCs g)'y on the other hand
read as [22]

gy (0= m)!
o = it (-1 (- ST g

weml (0 —m)! G
b — ke (—1ym(—1yie (=) Gumy
nm ( ) ( ) 2 (n_‘ml)' C;Ln

. (10)

in which ¢} are plane-wave coefficients reading as [29]

2n+1

o= nin+ 1)

1
Z (=gl 11
L () (11)

According to the transformation theorem for BSCs in sphe-
rical coordinates [22], the tilde-decorated BSCs g,y in a ro-
tated system are expressed versus the BSCs g}’ in another
system, called the unrotated system, as

J. “HY
Inx = Ham Z Inx» (12)

o——n Hns
where

wm (n = |m)])!

Hom = (_1)171(_1) (n_m)' ’ (13)

Hg, = (—1)"”%em’eis"z:(—l)ﬁ( n+s )(n—3>

p n-m-o c

20+m-+s 2n-2c-m-s
X <cos‘g) (sin‘g) , (14)

in which (a, 5, 7) are Euler angles bringing the unrotated sys-
tem to the rotated system, whose definitions could be found in
[22-26].

With decades of effort devoted to the description of an ar-
bitrary shaped beam, the BSCs of an arbitrary shaped beam in
the unrotated coordinate system g;'y can be evaluated by sev-
eral methods, sharing various degrees of time running effi-
ciency, or of flexibility, which are described in detail in a
very recent book with computation programs by Gouesbet
and Gréhan [32]. In our computer program, the modified lo-
calized approximation method [33], which was rigorously jus-
tified by Gouesbet and Lock [34,35], is applied to evaluate the
BSCs in the unrotated coordinate system due to the fact that it
provides the most efficient method, with regard to computa-
tional time, by orders of magnitude with respect to other
methods such as by using quadratures [36]. It is also the most
appealing from a physical point of view because it provides
many physical insights on the interpretation of beam
models [37].
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3. NUMERICAL RESULTS AND
DISCUSSIONS

MDRs will exhibit themselves in the form of supernarrow
spikelike features in the plots of various scattering character-
istics versus size parameter, such as extinction efficiency
spectra. They can also be observed in scattered intensity spec-
tra at a specific orientation. Actually, the resonances become
in general more pronounced with increasing scattering angles
since the scattered intensity is greatly reduced in the back-
scattering direction. Nevertheless, it is worthy to mention that
some of the resonances can vanish at the scattering angle of
90° because the associated Legendre functions are equal to
zero for certain modes n [38].

In this section, simulations concerning the MDRs excited by
a focused Gaussian beam or a plane wave are made by using a
homemade code [27] within the framework of the GLMT. The
correctness of the code has already been checked in several
ways, including by comparing results with those obtained
from a widely used code published by Ngo et al. [39] and with
published research data [20,40].

Exemplifying results about extinction efficiency spectra
and normalized differential scattering cross sections in a spe-
cific direction are displayed in the following. Because of the
fact that the normalized differential scattering cross sections
calculated by using Eq. (8) are proportional to the intensity, it
is conveniently referred to as intensity in the present paper.
The case of a focused fundamental Gaussian beam (TEMy,
mode) illuminating an ethanol sphere (having a real refractive
index equal to 1.36) with an eccentrically located spherical
glass inclusion (having a real refractive index equal to 1.50)
is simulated. This model can be regarded as a glass bead cov-
ered inhomogeneously with an ethanol coating illuminated by
a laser beam. The wavelength of the laser beam is assumed to
be 2 =0.532 ym, and the beam waist radius is wy = 1.0 ym.
Furthermore, a plane wave can be obtained by setting w,
to be much larger than the radius of the host sphere, say,
wy = 100R. The amplitude of the beam at its focal point is
set to be unity without any loss of generality.

A. Parallel Illumination by an Off-Axis Gaussian Beam
Previous observations [41] in experiments and results in nu-
merical calculations of the light scattered by a homogeneous
sphere or a concentric sphere illuminated by a Gaussian beam
show that the excitation of MDRs depends significantly on the
focal center position and the polarization of the incident beam
[40,42/43]. As the beam is shifted farther away from the par-
ticle center, the fraction of the incident energy coupled into
the sphere at resonance first increases and then decreases
[40]. Electromagnetic energy is most efficiently coupled into
MDRs when a laser beam is focused near the edge of a par-
ticle. Results in our simulations also support these mentioned
conclusions. Thus, for exemplifying results, an off-axis Gaus-
sian beam, which is aligned at the edge of the scatterer, is ap-
plied as an excitation source to excite MDRs. The Gaussian
beam is assumed to propagate in the z-axis direction with
its electric vector polarized along the x axis at its waist center.
The focal center of the Gaussian beam is shifted along the x
axis to a constant distance a = 2.93357 um relative to the
center of the droplet, which corresponds to the radius of
an ethanol sphere when the TE,; ; (n =41, I = 1) resonance
is excited.
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Fig. 2. Extinction efficiency spectrum and backward intensity spectrum for a concentric sphere. The radius of the inclusion is » = 0.7R, plane-

wave illumination with incidence angle 0.0°.

With plane-wave illumination, extinction efficiency and
scattered intensity at scattering angle 180° are shown in Fig. 2
for a concentric sphere as a function of size parameter. The
radius of the host sphere is denoted by R, and the radius of the
inclusion is specified as a ratio of the host sphere radius
r = 0.7R. Both TE and TM resonances are visible in Fig. 2.
It is obvious that the resonances in the backscattering direc-
tion [Fig. 2(b)] are much more pronounced than those in the
extinction efficiency spectrum [Fig. 2(a)].

With Gaussian beam illumination, comparisons of extinc-
tion efficiency and of scattered intensity at scattering angle
180° as a function of size parameter are shown in Fig. 3 for
a concentric sphere and an eccentric sphere. The radius of the
inclusion is » = 0.7R. The displacement of the inclusion with
respect to the host sphere center is designated as a center—
center separation distance d = 0.1R for the eccentric sphere.
In Fig. 3, both the first-order (I = 1) and the second-order
(I = 2) resonances are clearly visible. Compared with plane-
wave illumination, only TE resonances can be seen in Fig. 3
with Gaussian beam illumination. A similar calculation shows
that only TM resonances can be seen if the Gaussian beam
shifts along the y axis instead of along the x axis. This is agree-
ment with the fact that only tangential components of the elec-
tromagnetic field can be sufficiently coupled into the
resonances. For a concentric sphere or a multilayered sphere,

0.040 -

- - - Eccentric sphere d=0.1R
Concentric sphere N
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34
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(a) Extinction efficiency spectrum

Intensity

the scattered field coefficients with an illumination of arbi-
trary shaped beam in the framework of the GLMT are actually
proportional to the corresponding scattered field coefficients
with a plane-wave illumination in the Lorenz-Mie theory
(LMT) [44]; thus, the MDRs found in Fig. 3 for the concentric
sphere are located at the same positions as those in Fig. 2.
As we can see from Fig. 2, especially from Fig. 2(b), the
amplitudes of the first-order resonance peaks I = 1 are not
changed a lot under a plane-wave illumination in the limited
size parameter range shown in Fig. 2. Nevertheless, the ampli-
tudes of the first-order resonance peaks decrease monotoni-
cally under the focused Gaussian beam illumination, which
can be observed in Fig. 3, particularly in Fig. 3(b). This can
be explained by invoking the localization principle [37,45],
according to which the nth partial wave is associated with
a bunch of rays passing through a radial position (n+
1/2)(2/2x) from the scatterer center, where 1 is the wave-
length. Thus, only certain resonances can be strongly excited
by a focused laser beam depending greatly on the shape pat-
tern as well as on the focal center location of the laser beam.
For the simulations in this paper, the focal center of the
Gaussian beam is shifted along the x axis with a =
2.93357 ym, which corresponds to the TE,; ; resonance, so
that resonances modes around 7 = 41 are more pronounced.
It is interesting to find that the most enhanced resonances are
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Fig. 3. (Color online) Comparison of extinction efficiency spectra and of backward intensity spectra for a concentric sphere and an eccentric
sphere (d = 0.1R), respectively. The radius of the inclusion is = 0.7R, Gaussian beam illumination with incidence angle 0.0°.



1854 J. Opt. Soc. Am. A / Vol. 28, No. 9 / September 2011

for the modes a little bit smaller than n = 41. This is agree-
ment with the result that the fraction of the internal energy
is most efficiently coupled to the resonances when the fo-
cused beam center is located slightly outside of the parti-
cle [40].

Compared with the concentric sphere, the second-order re-
sonances (I = 2) in the eccentric sphere with a separation dis-
tance d = 0.1R are greatly affected by the shift of the
inclusion. Nevertheless, the first-order resonances (I = 1) are
little affected. This is reasonable because, for an inclusion
with » = 0.7R, a small displacement of the inclusion d =
0.1R cannot affect the first-order resonances efficiently be-
cause they are closer to the rim of the particle. As has been
mentioned above, each resonance in a sphere or a concentric
sphere can be identified by its state of polarization and two
quantum numbers 7, [ and does not depend on mode m, such
as the label TE,, ; indicates the resonance is predominantly in
the ¢, coefficients at quantum numbers n = 41, [ = 1. Never-
theless, the resonances in an eccentric sphere cannot be la-
beled like this. This is due to the fact that each resonance
in the eccentric sphere is contributed by several n» modes in-
stead of a single n mode, which was also mentioned by Rao et
al. [9]. Thus, all the resonances in an eccentric sphere are not
labeled in the figures of this paper.

Heated by the laser beam or by any possible heating meth-
od, such as by putting it close to a hot iron wall, the ethanol
coating would become thinner because of evaporation. Ac-
cordingly, in Fig. 4, the radius of the inclusion is specified
as r = 0.92R to indicate a very thin film of ethanol coating.
A center—center separation distance d = 0.04R is assumed.
The other parameters are exactly the same than the ones used
in Fig. 3. Compared with the case when r = 0.7R with
d = 0.1R, the positions of the first-order resonances shift
much more in Fig. 4 when r» = 0.92R, even with a smaller dis-
placement of the inclusion d = 0.04R. Similar to the behavior
in Fig. 3, the second-order resonances in Fig. 4 are also much
more affected than the first-order resonances. This is because
more energy from the second-order modes overlap with the
core region. It is interesting to find that the amplitudes of the
first-order resonances decrease a lot in the eccentric sphere
with d = 0.04R compared to that in the concentric sphere,
which may be due to the fact that the electromagnetic energy
at the first-order resonances is more efficiently coupled into
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the inclusion in the eccentric sphere than in the concentric
sphere.

Furthermore, with Gaussian beam illumination, extinction
efficiency and backscatter intensity are plotted in Fig. 5 as a
function of size parameter for a concentric sphere of » = 0.7R
and for a concentric sphere of » = 0.92R. It is obvious that, as
the relative radius of the inclusion with respect to the host
sphere increases, both the first-order and second-order reso-
nances shift dramatically. And the second-order resonances
are significantly enhanced.

B. Oblique Ilumination by an Off-Axis Gaussian Beam
As reported by Rao et al. [9], with a parallel illumination by a
plane wave, that is to say, when the wave travels along the z
axis in our case, which indicates the incidence angle is zero,
the degeneracy in mode m is not lifted for an eccentric sphere.
This is reasonable because the symmetry of the scatterer is
not broken in the azimuthal direction with regard to the inci-
dent direction of plane wave. Indeed, we have shown in Sub-
section 3.A that the degeneracy in mode m is also not lifted
with a parallel illumination by an off-axis Gaussian beam.
In the following calculations, the incidence angle of the
Gaussian beam is assumed to be 90°, in which case the asym-
metry of an eccentric sphere reaches the largest extent for a
fixed center—center separation distance d. More specifically,
the Gaussian beam is assumed to propagate in the x-axis di-
rection with its electric vector polarized in the z axis at its
waist center. The focal center of the Gaussian beam is situated
on the z axis with a constant distance 2, = 2.93357 ym.
With a plane-wave illumination, as we can see from Fig. 6,
splitting in MDRs are observed for modes having sufficiently
high Qs. More detailed information for single resonance peaks
can be obtained in the insets. It shows that the TM resonance
peaks are more easily lifted than the TE resonance peaks.
With a tightly focused Gaussian beam illumination, extinc-
tion efficiency as a function of size parameter for an eccentric
sphere of » = 0.7R with different displacements of the inclu-
sion is shown in Fig. 7, and that for an eccentric sphere of r =
0.92R with different displacements of the inclusion is shown
in Fig. 8. In contrast with the case of a plane-wave illumina-
tion, splitting in resonance peaks are not observed in the ex-
tinction efficiency spectrum for the focused Gaussian beam
illumination. For the eccentric sphere with » = 0.7R in Fig. 7,
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Fig. 4. (Color online) Comparison of extinction efficiency spectra and of backward intensity spectra for a concentric sphere and an eccentric
sphere (d = 0.04R), respectively. The radius of the inclusion is » = 0.92R, Gaussian beam illumination with incidence angle 0.0°.
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Fig. 5. (Color online) Comparison of extinction efficiency spectra and of backward intensity spectra for concentric spheres of » = 0.7R and of
r = 0.92R, respectively. Gaussian beam illumination with incidence angle 0.0°.

the effects on the second-order resonances due to the ec-
centric shift of inclusion are very significant, while there is
much less influence on its first-order resonances. For the ec-
centric sphere with » = 0.92R in Fig. 8, all the amplitudes of
first-order and second-order resonances are enhanced step by
step as the inclusion approaches the symmetric axis of the
Gaussian beam from d = -0.04R to d = 0.0 and then to
d = +0.04R. It is interesting to find that the first-order reso-
nances are greatly suppressed for d = -0.04R while the
first-order resonances are greatly enhanced for d = +0.04R.

Furthermore, as for spheres or concentrically multilayered
spheres [44], the scattered field coefficients for eccentric
spheres with an illumination of arbitrary shaped beam in
the framework of the GLMT are also proportional to the
corresponding scattered field coefficients with a plane-
wave illumination; thus, the MDRs found in Fig. 6 for the
eccentric sphere are located at the same positions as those
in Fig. 8.

X=32.1946

1.20

1.20

! X=32.2054

C. Internal Field Distribution

In contrast with the behaviors of MDRs with a plane-wave il-
lumination, splittings in the resonance peaks are not observed
in the extinction efficiency spectrum with a tightly focused
Gaussian beam illumination. To provide additional informa-
tion with regard to the pattern of the MDRs, plots of internal
field distributions for some resonances are presented.

Even though the magnitude and the phase for each partial
wave component of the electromagnetic field can be deter-
mined from the GLMT formalism, a useful visualization of
the field distribution can be obtained by plotting the normal-
ized source function as a function of spatial position. The nor-
malized source function is defined as

S = [E[?/|E,[*, (15)

where E is the electric vector of the internal or external field
and E is the electric field strength of the incident field, which

is assumed to be unity. To emphasize the internal distribution,
the external field intensities are suppressed to zero in the
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Fig. 6.

(Color online) Comparison of extinction efficiency spectra for a concentric sphere and eccentric spheres (d = 0.04R, d = —-0.04R). The

radius of the inclusion is » = 0.92R, plane-wave illumination with incidence angle 90.0°.
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Fig. 7. (Color online) Comparison of extinction efficiency spectra for eccentric spheres of » = 0.7R with different center—center separation dis-

tances illuminated by a Gaussian beam.

subsequent figures, and the spatial coordinates are normal-
ized by the host sphere radius.

Calculations of internal field distribution for an off-reso-
nance case, a complete resonance case in a concentric sphere,
and a broken-resonance case in an eccentric sphere are
shown in Figs. 9(a)-9(c), respectively, for a plane-wave illu-
mination and in Figs. 9(d)-9(f), respectively, for a tightly
focused Gaussian beam illumination. Parameters used in
Figs. 9(a)-9(c) are the same as the ones used in Fig. 6, and
parameters used in Figs. 9(d)-9(f) are the same as the ones
used in Fig. 8.

For a plane-wave illumination, a picture of an off-resonance
case at size parameter x = 32.19 for the eccentric sphere is
plotted in the transverse x—z plane in Fig. 9(a). Figure 9(b)
is the TE,,; resonance occurring in the concentric sphere
at size parameter x = 32.1946. The largest enhancements

are near the forward- and backward-scattering directions. De-
tailed study of the resonance reveals that the TE, ; mode re-
sonance has n peaks in each side of the x—= plane with the z
axis as a symmetric axis. Nevertheless, this symmetry is bro-
ken if the inclusion is shifted eccentrically to the rim of the
host sphere. Figure 9(c) shows the internal field distribution
of a broken resonance at size parameter x = 32.2054. The lar-
gest enhancements are found to be shifted away from the
forward- and backward-scattering directions. The intensity
peaks around the rim of the sphere become blurred because
several m modes contribute to the resonance.

For a tightly focused Gaussian beam illumination, Fig. 9(d)
is a plot of internal field distribution for an eccentric sphere
with d=-0.04R at off-resonance with size parameter
x=32.19. Figure 9(e) shows the TE4); resonance occurring
in an concentric sphere with size parameter x = 32.1946. A
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Fig. 8. (Color online) Comparison of extinction efficiency spectra for eccentric spheres of » = 0.92R with different center—center separation

distances illuminated by a Gaussian beam.
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Fig. 9. (Color online) Distributions of internal field for an eccentric sphere illuminated by (a), (b), (¢) plane wave and (d), (e), (f) Gaussian beam.
(a), (d) off-resonance case with d = —0.04R; (b), (e) complete resonance case with d = 0.0R, and (c), (f) broken-resonance case with d = 0.04R.
The radius of the inclusion is » = 0.92R. The incident wave propagates along the x axis from negative to positive.

broken-resonance case occurring in an eccentric sphere with
size parameter x = 32.2054 is presented in Fig. 9(f). For the
on-resonance cases in Figs. 9(e) and 9(f), enhancements in
the internal intensity are excited near the edge of the host
sphere. Different from the pattern of separated peaks ob-
served for the plane-wave illumination in Figs. 9(b) and 9(c),
a solid ring formation is displayed for the Gaussian beam il-
lumination. For a concentric sphere, a symmetric formation of
the resonance is obtained with greatest field intensities near
the forward- and backward-scattering directions. For an
eccentric sphere, although the degeneracy of the mode m

is not observed in the extinction efficiency spectra, the sym-
metric formation of the internal field distribution at resonance
conditions becomes asymmetric with largest field intensity
locations shifted away from the forward- and backward-
scattering directions.

4. CONCLUSIONS AND DISCUSSION

Following the recent results in the GLMT concerning the
description of an arbitrary shaped beam in an arbitrary
orientation [22-27], the properties of MDRs excited in an
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ethanol sphere (having a real refractive index equal to 1.36)
with an eccentrically located spherical glass inclusion (having
a real refractive index equal to 1.50) illuminated by a tightly
focused Gaussian beam is studied. Corresponding calcula-
tions for plane-wave illumination are also made for the sake
of comparison.

As for spheres and concentrically multilayered spheres,
since the scattered field coefficients with an illumination by
arbitrary shaped beam in the framework of the GLMT are pro-
portional to the corresponding scattered field coefficients
with a plane-wave illumination in the LMT, the resonance po-
sitions of MDRs in eccentrically layered spheres are equal for
laser beam illumination and for plane-wave illumination. With
an illumination of a tightly focused Gaussian beam, the posi-
tions and the amplitudes of the MDRs peaks excited in an ec-
centric sphere depend greatly on the relative size of the
inclusion with respect to the host sphere and on the separa-
tion distance between the two sphere centers. The amplitudes
of the MDR peaks are also found to be very sensitive to the
relative location and the polarization status of the laser beam.
In the simulation of a glass bead covered inhomogeneously
with a very thin film of ethanol coating (» = 0.92R) illumi-
nated by a Gaussian beam focused at the edge of the particle
(x = 2.93357 ym), all the first-order (I = 1) and second-order
(I = 2) resonances are found to be enhanced step by step as
the inclusion approaches the symmetric axis of the Gaussian
beam from d = -0.04R to d = 0.0 and then to d = +0.04R. It is
interesting to find that the first-order resonances are sup-
pressed for d = -0.04R while the first-order resonances are
greatly enhanced for d = +0.04R under the tightly focused
Gaussian beam illumination. Nevertheless, the extinction effi-
ciency spectra for d = -0.04R and those for d = +0.04R are
identical under the plane-wave illumination.

Different from the MDRs with a plane-wave illumination,
only certain resonances are strongly excited by a focused la-
ser beam depending greatly on the shape pattern as well as on
the location of the focal center of the laser beam. This is easy
to understand from the point of view of the localization prin-
ciple. Indeed, the nth partial wave is associated with a bunch
of rays passing through a radial position (n + 1/2)(1/2x) from
the scatterer center. Thus, for an off-axis illumination by a
tightly focused Gaussian beam, only those modes with radial
position at or close to the focal center of the Gaussian beam
are strongly excited.

With a tightly focused Gaussian beam illumination, splitting
of the resonance peaks in the extinction efficiency spectrum is
not observed for an eccentric sphere. Looking closely at the
absolute value of the BSCs |g}"| calculated by using the loca-
lization approximation method [46], it is observed that it de-
creases quickly as |m| increases, and |g}| even vanish except
for |m| = 1 when the scatterer center is located on the beam
axis. Thus the high-order m terms are expected to contribute
little to scattering phenomena, and the lift of degeneracy in
mode m cannot be observed. Furthermore, instead of exciting
only a single angular mode m, several angular modes are ex-
cited in the case of an illumination by an off-axis Gaussian
beam. Thus, in contrast with the pattern of separated peaks
observed in the internal field distribution at resonance condi-
tion for a plane-wave illumination, a solid ring formation is
displayed for the Gaussian beam illumination. In contrast with
the symmetric formation of the internal field distribution at

Wang et al.

resonance condition for a concentric sphere, asymmetric for-
mation with largest field intensity positions shifted away from
the forward- and backward-scattering directions to sideways
is observed for an eccentric sphere. It indicates that the de-
generacy of m modes is lifted for an eccentric sphere with
a tightly focused Gaussian beam, although splitting of the re-
sonance peaks cannot be observed in the extinction efficiency
spectra.
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Abstract The measurement of droplet temperature and
size distribution in sprays is a difficult task. To reach this
aim, the global rainbow technique (GRT) has been devel-
oped on the assumption that the synthetic rainbow created
by a large number of droplets is insensitive to the non-
sphericity of droplets if the droplets’ orientations were
sufficiently random. In order to test this assumption,
numerical as well as experimental analyses of GRT are
carried out by our team. As a companion to the work done
in experiments, the objective of this work is to quantify the
sensitivity of the GRT to the non-sphericity of droplets
from a numerical aspect. Light scattering properties around
the rainbow angle are investigated by using the Null-field
method within a T-matrix formulation, both for a single
spheroid in an arbitrary orientation and for an ensemble of
spheroids in random orientations illuminated by a plane
wave. Refractive index and size distribution of droplets are
extracted from simulated global rainbow signals so as to
quantify the sensitivity of the GRT to the non-sphericity.
Exemplifying results are compiled and presented. Addi-
tionally, comparisons between the Null-field method and
the generalized Lorenz-Mie theory for spheroids are also
provided in this paper.
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1 Introduction

Rainbow refractometry has been investigated for over
20 years since the standard rainbow refractometry was
presented the first time by Roth et al. (1988, 1990). Both
the temperature and the size of droplets can be measured
simultaneously. Just as each technique possesses its own
advantages and limitations, the measurement accuracy of
the rainbow refractometry is also affected by many
factors. The most important ones are the refractive index
gradients inside the droplets (Saengkaew et al. 2007), the
ripple structure on the main rainbow pattern and the non-
sphericity of the droplets (Han et al. 2002). The influ-
ence of the non-sphericity, which can distort the rainbow
pattern, is least understood. During recent years, based
on the assumption that the scattering contribution of an
ensemble of randomly oriented non-spherical particles to
the synthetic rainbow pattern results in a general uniform
background, the global rainbow technique (GRT) was
developed by van Beeck et al. (1999), which primarily
aimed at eliminating the side effects brought in by
droplets non-sphericity. This promising technique has
already been successively applied to the analysis of
water sprays created by flat fan (van Beeck et al. 2001)
and measurement of mean temperature of the falling
droplets in a large containment vessel (Lemaitre et al.
2006).

In order to optimize the GRT, the assumption that the
synthetic rainbow is insensitive to the shape of droplets is
tested by our research team recently, both from a numerical
aspect and an experimental aspect. As a companion to the
work done in experiments (Saengkaew et al. 2009), the
objective of this work is to quantify the sensitivity of the
GRT to the non-sphericity of droplets from a numerical
aspect.

@ Springer



150

Exp Fluids (2011) 51:149-159

Among those factors that affect the measurement
accuracy of rainbow refractometry, the influence of the
temperature gradient and ripple structure can be relatively
easily quantified by numerical simulations, while the effect
of the non-sphericity on the rainbow pattern is more dif-
ficult to predict. The influence of the non-sphericity on a
single particle was firstly predicted by Moebius (1910).
The validity of the Moebius formula has been examined by
van Beeck (1997) by using a mixed approach (geometrical
optics/Huygens—Fresnel integral) and by Han et al. (2002)
in the rigorous framework of generalized Lorenz-Mie
theory (GLMT). Xu et al. (2010) also addressed the
influence of non-sphericity on rainbow position through
separating the p = 2 order of scattering by extending the
Debye series to spheroidal particles and compared their
results with the predictions from Moebius. Similar results
were obtained and all of them demonstrated that both the
position and the shape of the rainbow pattern for a single
particle are very sensitive to the non-sphericity. Due to the
spheroid’s instinct lower body symmetry compared with a
sphere, the location as well as the shape of the rainbow
created by a spheroid changes a lot with respect to illu-
mination direction of the incident wave. To our knowledge,
in the frame of a rigorous theory, only the shift of rainbow
angle as a function of ellipticity was analysed, and a study
of rainbow pattern for a single particle in an arbitrary
orientation becomes necessary, especially in the analysis of
the GRT. Relying on previous works (Barton 1995, 2001;
Xu et al. 2007; Han et al. 2003; Han et al. 2009) on
developing the GLMT for non-spherical particles, the
GLMT provides us with the capability to predict the scat-
tering behaviours for a non-spherical particle with respect
to illumination direction of the incident wave. Neverthe-
less, to our knowledge, the existing programmes within the
framework of GLMT for light scattering from a spheroid in
an arbitrary orientation still have a limitation in the domain
of size parameter at the moment (Xu et al. 2007; Han et al.
2009). More precisely, the programmes are valid for
spheroids with size parameter less than 100. On the other
hand, this limit has been overcome by using the Null-field
method within a T-matrix formulation to deal with particles
with size parameter well exceeding 100 (Wielaard et al.
1997). Some comparisons between the results obtained
from the Null-field method and those from the GLMT are
presented in this paper. It is worth noticing that, for better
terminologies and escaping from a misunderstanding
between a method and a formulation, we prefer to use the
Null-field within a T-matrix formulation terminology
instead of T-matrix method (Gouesbet 2010) in this paper.

In the case of an ensemble of non-spherical particles,
light scattering properties of randomly oriented, identi-
cal spheroids were studied by Asano and Sato (1980)
by extending the Lorenz-Mie theory from spheres to
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spheroids. Mishchenko and Travis (1994a) later analysed
light scattering from polydisperse, randomly oriented par-
ticles of size comparable to wavelength. In order to study
the influence of non-sphericity on the rainbow refractom-
etry technique, light scattering properties near the rainbow
angle of relatively large size particles should be further
considered. This paper is focused on discussing the light
scattering properties of an ensemble of poly-ellipticities,
randomly oriented large particles around the rainbow
angle.

Since its presentation by Waterman (1971), the Null-
field method has been greatly improved and become a
powerful tool for computing light scattering by non-
spherical particles. It is well known that the inversion
procedure of the transition matrix in the Null-field method
becomes ill-conditioned easily for particles with large size
parameter and/or big ellipticity. Due to the previous efforts
of researchers (Mishchenko and Travis 1994b; Wielaard
et al. 1997), this limitation has been greatly overcome,
which provides us another way to predict the rainbow
pattern behaviours and to explore its implication in the
GRT measurements. It is worth to mention that, compared
with the GLMT, the Null-field method is less efficient in
computation time due to the requirement of calculations of
integral elements in its 7 matrix. Nevertheless, by
expanding the elements of the scattering matrices in terms
of generalized spherical functions analytically (Mish-
chenko et al. 1999), the cost of computational time by
using the Null-field method for an ensemble of particles is
greatly reduced and is acceptable. A detailed discussion of
Null-field method can be found in the books (Mishchenko
et al. 1999; Doicu et al. 2006) and references within and
will not be stated here.

This paper is organized as follows. The light scattering
properties around the rainbow angle for a single spheroid in
an arbitrary orientation are investigated in Sect. 2. In Sect.
3, the light scattering properties for an ensemble of
spheroids in random orientations are analysed. The inver-
sion of rainbows signals by using GRT is presented in Sect.
4; corresponding results and deviations are compiled and
given. Section 5 contains conclusions and discussions.

2 Scattering by a single spheroid in an arbitrary
orientation

To describe the scattering of a non-spherical particle in an
arbitrary orientation illuminated by an electromagnetic
plane wave, two sets of coordinates are introduced, which
are referred to the laboratory frame L{x'y'7'} and the par-
ticle frame P{xyz}, respectively. The orientation of the
particle with respect to the laboratory frame is specified by
three Euler angles of rotation, o, f§ and y, which transform



Exp Fluids (2011) 51:149-159

151

Fig. 1 Rotation of Euler angles (a, f8, y) transforming the laboratory
coordinate system L {Ox’y'7'} to the particle coordinate system P
{Oxyz}

the laboratory frame into the particle reference frame,
corresponding geometric illustration is shown in Fig. |
with more detailed information available from books
published (Mishchenko et al. 1999; Doicu et al. 2006).
Furthermore, to characterize the non-sphericity of the
spheroids, the ellipticity is defined as the ratio of a spher-
oid’s horizontal length “a” to its vertical length “b”, with
vertical length “b” as its axis of rotation, similar defini-
tions were used by Han et al. (2002). The ellipticity of the
spheroid is given by e = a/b, with e < 1.0 for a prolate
spheroid and e > 1.0 for an oblate spheroid. Throughout
this paper, the plane wave is assumed to travel along the 7’
axis of the laboratory reference frame, and the scattering
particles under study are assumed to be water droplets with
refractive index equals to 1.330. Moreover, in the com-
putations of this section, the surface-equivalent size
parameter of the scattering droplets equals to 150 (corre-
sponding to a diameter equals to about 30 um for an
incident visible wavelength: 0.6283 pm).

First, to validate the code based on the Null-field
method, the results calculated by Null-field method for a
spheroid with ellipticity equals to 1.0001 are compared
with those calculated by Lorenz-Mie theory for a perfect
spherical particle. The comparisons of normalized inten-
sities are shown in Fig. 2. The results from the two
methods agree with each other very well for the full scat-
tering diagram as well as for the rainbow region.

Relying on previous works on developing the GLMT for
spheroids (Xu et al. 2007; Han et al. 2003; Han et al. 2009),
the GLMT also provides us the capability to predict the
scattering behaviour for spheroids. Thus, the code based on
the Null-field method is validated by comparing the scat-
tering results calculated by Null-field method with those
calculated by GLMT for spheroids. The scatterer is a
prolate spheroid with ellipticity equals to 0.97, whose
orientation is specified by Euler angles o, f3, y equal to 0°.
Comparisons of normalized intensities are illustrated in
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Fig. 2 Comparisons of scattered field intensity diagram calculated by
the Null-field method for a spheroid with a/b = 1.0001 and by the
Lorenz-Mie theory for a perfect sphere with size parameter 150.
a Full scattering diagram, b Details around the rainbow angle

Fig. 3. Figure 3a shows that the results from the two
methods coincide with each other in the general picture
except a small deviation occurs around the scattering angle
90°. This deviation is caused by a numerical instability,
which happens around the scattering angle 90° when we
evaluating scattering intensities by GLMT for spheroids
with a large particle-size parameter and/or a big ellipticity.
This numerical instability has been explained in an earlier
paper (Han et al. 2003), and the improvement is under
analysis. Nonetheless, we must underline that the insta-
bility is not significant around the rainbow angle, a situa-
tion that is favourable for rainbow measurements.
Figure 3b displays the comparison of the normalized
scattered intensities around the rainbow angle calculated by
Null-field method and by GLMT. The results from the two
methods match each other very well, indicating that both of
them are suitable for the rainbow prediction.
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Fig. 3 Comparisons of scattered field intensity diagram calculated by
the Null-field method and by the GLMT for a spheroid with ellipticity
equals to 0.97 and surface-equivalent size parameter 150. The solid
curve is obtained by the Null-field method, and the dashed line is
obtained by GLMT. The semi-length b is perpendicular to the
incident plane wave. a General picture and a zoom for details near 90°
b Details around the rainbow angle

On the basis of the validation works above, the Null-
field method is applied to check the sensitivity of the
rainbow pattern created by an individual particle to its
ellipticity. The scattering behaviours of a single spheroid in
a fixed orientation with different ellipticities are studied.
The Euler angles o, f3, y are equal to 0°, and the particle
ellipticity is the parameter. Exemplifying results of nor-
malized intensities are compiled in Fig. 4. A shift of the
main peak can be observed with the increase of the ellip-
ticity. The simulation results reveal a general conclusion
that both the rainbow position and the shape created by a
single non-spherical particle are very sensitive to its
ellipticity. Furthermore, the rainbow angle of the primary
order rainbow can be obtained by filtering the Fourier
transformed intensity diagram, which is calculated by
either the GLMT or the Null-field method (Han et al.
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Fig. 4 Normalized scattered intensity diagram around the rainbow
angle for a spheroid with surface-equivalent size parameter 150 in a
fixed orientation (o, f3, y equal to 0.0°), different ellipticities (0.96,
1.0001, 1.04) are plotted
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Fig. 5 Normalized scattered field intensity diagram around the
rainbow angle for a spheroid with Euler angles o = 0.0°, y = 0.0°
and different 5. The result for a sphere with a same surface-equivalent
size parameter 150 is also compiled

2002), corresponding deviations in the filtered intensity for
the primary order rainbow can be evaluated by using the
Debye series through separating the p = 2 order of scat-
tering (Xu et al. 2010).

The behaviour of the rainbow pattern with regard to the
change of the particle orientations is investigated in the
following. Rainbows created by non-spherical droplets
with ellipticity equals to 1.03 and various orientations are
discussed. Angular distribution of scattered intensity
around the rainbow angle has been computed by Null-field
method for a spheroid with Euler angles o, y equal to 0°
and f§ increasing from 0° to 90° with a step of 10°. Figure 5
compiles some exemplifying results. As the angle f
increases from 0° to 90°, the primary rainbow position of
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the spheroid shifts slowly from the left side to the right side
of the primary rainbow position of its surface-equivalent
sphere.

In this section, the code based on the Null-field method
is validated by LMT and GLMT. The light scattering
properties around the rainbow angle for a spheroid in an
arbitrary orientation have been studied by using the Null-
field method. Simulation results confirm that a small
departure away from perfect sphere can influence both the
rainbow location and shape greatly. For particles of the
same shape, different orientations also induce large shifts
in the rainbow location and big variations in the rainbow
shape, which makes it very difficult to find a relationship
between the rainbow pattern and the refractive index for an
arbitrary oriented non-spherical particle. Nonetheless, the
synthetic rainbow obtained by GRT is claimed to be
insensitive to the influence of non-sphericity. This claim is
analysed and quantified in the next section.

3 Scattering by a group of spheroids in random
orientations

On the basis of the results presented in the last section, the
rainbow pattern of an individual particle is very sensitive to
the non-sphericity, which makes the analysis of the rain-
bow pattern extremely difficult. To overcome these diffi-
culties, the GRT was developed by van Beeck et al. (1999,
2001). The key point is to extend the investigation from a
simple particle to a group of particles. Then, the rainbows
created by each droplet in a cloud are added together
leading to a stable and clear synthetic rainbow pattern,
which can be used to extract a size distribution and a mean
refractive index (temperature) of the droplets. The GRT
was developed on the assumption that a stable synthetic
rainbow can be obtained due to two different intensity
summation processes, namely an accumulative summation
from rainbows created by spherical droplets, as the rainbow
positions are identical for all of them, and a dispersive
summation from the rainbows created by randomly ori-
ented non-spherical particles, whose rainbow positions are
randomly located then yielding a uniform background, so
in this way, the rainbow pattern created by spherical par-
ticles is selected out automatically. However, if the
assumption of a uniform background is not verified, how
does the non-sphericity of droplets affect the results? To
test the assumption, the light scattering properties of a
group of randomly oriented spheroids are investigated in
this section.

As we mentioned, the exiting programmes within the
framework of GLMT for light scattering of a spheroid in an
arbitrary orientation still have a limitation in the domain of
size parameter at the moment (Xu et al. 2007; Han et al.
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Fig. 6 Normalized scattered intensities around the rainbow angle for
randomly oriented spheroids with different ellipticities. a Randomly
oriented oblate spheroids. b Randomly oriented prolate spheroids

2009). Nevertheless, this limit has been overcome by using
the Null-field method to deal with particles with size
parameter well exceeding 100. Thus, the Null-field method
is applied in this section for the numerical simulation for an
ensemble of spheroids. The basic particle parameters used
in the simulations of this section are as follows: the ellip-
ticities are distributed in the range [0.9 1.1], the surface-
equivalent size parameter is equal to 100 (corresponding to
a diameter equals to about 20 pm for an incident visible
wavelength 0.628 pm), and the refractive index equals to
1.330.

3.1 A group of identical spheroids
A group of identical spheroids (spheroids with the same
shape) are studied in this subsection. In Fig. 6, angular

distribution of scattered intensity around the rainbow angle
is displayed for randomly oriented spheroids as a function
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Fig. 7 Comparison of normalized scattered field intensity diagram
for a prolate spheroids (ellipticity = 0.95); b spheres with a same
surface-equivalent size parameter; ¢ oblate spheroids (elliptic-
ity = 1.05); in random orientations

of ellipticity. It shows that, for both oblate (Fig. 6a) and
prolate (Fig. 6b) spheroids, a clear and stable synthetic
rainbow pattern can be obtained. The angular position of
the primary rainbow maximum shifts to smaller angle, as
their ellipticities depart away from 1.00. Meanwhile, the
half width of the maximum peak of the primary rainbow
is broadened. The valley between the first peak and the
second peak of the primary rainbow is filled little by
little. Furthermore, when the ellipticity departs away
further from 1.00, the orientation average effect could
eliminate the ripple structure on the primary rainbow.
Finally, as is shown in Fig. 7, the average effect due to
the random orientations removes the ripple structure for
prolate spheroids more efficiently than it does for oblate
spheroids.

3.2 A group of spheroids with various ellipticities

In this subsection, a group of water droplets, whose ellip-
ticity distribution satisfies the Gauss normal distribution in
the range [0.9 1.1], are taken into consideration.

Figure 8 shows the angular distribution of scattered
intensity around the rainbow angle for a group of randomly
oriented spheroids whose ellipticity distribution satisfies
the Gauss normal distribution. In Fig. 8a, the mean value of
their ellipticities is 1.00, and the dispersions are 0.00, 0.01
and 0.02, respectively. In Fig. 8b, the parameters are the
same with that in Fig. 8a except that the mean value of
their ellipticities is 0.97. The figures tell us that as the
dispersion of the ellipticity distribution increases, the
angular position of the maximum of the primary rainbow
seems to keep steady, the half width of the first peak
expands a little, the valley between the first peak and the
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Fig. 8 Normalized scattered field intensity diagram around the
rainbow angle for randomly oriented spheroids whose ellipticities
satisfy Gauss normal distribution with different dispersions and mean
values. a Mean value 1.00 with various dispersions b Mean value 0.97
with various dispersions

second peak is filled slowly. Furthermore, a comparison
between Fig. 8a, b reveals that the rainbow pattern created
by droplets with larger shape deviation (deviation from
sphere) is less sensitive to the dispersion of the ellipticity
distribution.

4 Practical implications in GRT

It is shown in Sect. 3 that the global rainbow pattern is
sensitive to the shape of the scattered particles. In this
section, the global rainbow signals obtained from the
simulations are used to evaluate the size distribution and
temperature of the droplets; the sensitivity of the mea-
surements to the non-sphericity is quantified.

Based on the assumption that a stable synthetic rainbow
is created by spherical droplets, several powerful inversion
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schemes were developed in the recent years (Vetrano et al.
2004; Saengkaew 2006) in order to deduce the particle
parameters (size distribution and refractive index) from the
global rainbow signals. In the following, an algorithm
(Saengkaew 2006), which is based on the non-negative
least square method combined with a minimization proce-
dure, is applied to predict the diameter and temperature by
fitting the simulated global rainbow signals obtained from
the Null-field method for a group of spheroids (samples are
presented in the last section) to the simulated results
obtained by using Nussenzveig’s theory for a group of
spheres.

Ellipticity =1.05

4.1 A group of identical spheroids

Typical inversion results extracted from global rainbow
signals created by a group of identical water droplets are
shown in Fig. 9 and Table 1. The surface-equivalent size
parameter of these spheroids is 100 (corresponding to a
diameter equals to about 20 um for an incident visible
wavelength 0.628 pm). The remarkable phenomenon to
notice from Fig. 9 is that more and more “spurious small
particles” are extracted from the simulated signals, as the
shape of the particles departs away from perfect spheres,
both when the ellipticity becomes larger and less than 1.0.
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Table 1 Extracted refractive indices from simulated signals created
by identical spheroids in random orientations with ellipticity as the
parameter

Ellipticity 1.01 1.02 1.03 1.04 1.05
Refractive index ~ 1.3287  1.3278  1.3241  1.3198  1.3135
Ellipticity 0.99 0.98 0.97 0.96 0.95
Refractive index ~ 1.3272  1.3291  1.3245 13191 1.3136

These predictions are confirmed by the facts we observed
in the experiments which we carried out very recently
(Saengkaew et al. 2009). Furthermore, the “spurious small
particles” even begin to dominate the proportion of the
extracted size distribution when the ellipticity of the par-
ticles exceeds 1.03 or less than 0.97. Nevertheless, as is
shown in Table 1, the influence to the refractive index is
less significant. But it is worth to remark that the deviation
between the extracted refractive index and the simulation
parameter increases as the droplet non-sphericity increases.
It is not a surprise to notice that the extracted results for
oblate spheroids and for prolate spheroids of the same non-
sphericity are similar. Compared to the obvious different
behaviour of prolate and oblate spheroid in the analysis of

single particle (Fig. 4), there is no more big difference
between them when a group of randomly oriented particles
are taken into consideration. This agrees with the results
found by Asano and Sato (1980) when they analysed par-
ticles with smaller size parameter.

4.2 A group of spheroids with various ellipticities

Typical inversion results extracted from global rainbow
signals created by a group of water droplets with different
mean ellipticities and dispersions (g) are shown in this
subsection. The parameters in Fig. 10 and Table 2 are
related to a group of droplets whose ellipticity distribution
satisfies the Gauss normal distribution. The mean value is
1.00, and the dispersion is the parameter. When the dis-
persion is small, the size distribution as well as the
refractive index (temperature) is nearly accurate. As the
dispersion of the ellipticity distribution increases, the
deduced refractive indices move a little to smaller values
(Table 2), and the dispersion of the extracted size distri-
bution increases (Fig. 10).

Table 3 are refractive indices extracted from simulated
signals created by spheroids with dispersion equals to 0.01

Fig. 10 Typical exacted size Size distribution extracted Size distribution extracted
distributions for water droplets
with a surface-equivalent 0,009 T LR RS ERS FEREE S e
diameter 20 um. The 0,008
dispersions (c) of the ellipticity 2 o g 0006
distribution is the parameter, g % 0.005
while the mean value is a fixed g 0e g e |
value 1.00 5 005 £ oon
£ 004 § oo
2 . 2 o
00m 0,001
0 - 0 ‘ l‘ ~8-
0 10 2 BN 4« @ 0 0 20 3 40 350 60 T
Diameter Diameter
o =0.0001 o =0.01
Size distribution edracted Size distriution extracted
001 {- 001
] om
y 003 |y 008
gﬁmﬁ 0 0008}l s
g 000 E 0,007
5 0006 15 oo
£ 05| A g 00054
2 0o 14 04
Z o Z o
0032 0,002
0,0M 0,001 1
0
40 50 40 50
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Table 2 Extracted refractive indices from simulated signals created 1.330] 20
by spheroids with different dispersions of the ellipticity distribution, ’ /\ L 40
whose mean value is a fixed value 1.00 ® 1.328 / >§ | 60
o 1.326 —_
Dispersion 001 0015 002 0025  0.030 £ 324 80 9
o 100
Refractive index ~ 1.3288  1.3273  1.3261  1.3248  1.3232 -s 1.322 120 g
L 5
2 1.320 / s
S 1318 ¥ F10 5
g / [ 160 2
‘® 1.3164 —o— Data from Table 1 €
o 7V7DatafromTable3 L 180 'd_)
1.314 1
Table 3 Extracted refractive indices from simulated signals created ° L 200
by spheroids with different mean values of the ellipticity distribution, 13127« L 220
whose dispersion is equal to 0.01 1.310 T T T T T
0.94 0.96 0.98 1.00 1.02 1.04 1.06

Ellipticity 1.01 1.02 1.03 1.04 1.05
Refractive index ~ 1.3276  1.3255  1.3233  1.3202  1.3135
Ellipticity 0.99 0.98 0.97 0.96 0.95
Refractive index ~ 1.3283  1.3255 1.3223  1.3181 1.3121

Table 4 Extracted refractive indices from simulated signals created
by spheroids with different mean ellipticities and various dispersions

()

Mean Mean Mean
ellipticity = 1.03 ellipticity = 1.0001 ellipticity = 0.97

o = 0.001 1.3241 1.3294 1.3245
o =001 1.3233 1.3288 1.3223
o =0.02 1.3205 1.3261 1.3205

and different mean values. Table 4 exhibits refractive
indices extracted from simulated signals created by
spheroids with different mean ellipticities and various
dispersions (o).

Up to this point, only the refractive index has been
discussed. However, the temperature of droplets is what we
want to determine in the experiments. As we mentioned
above, the temperature can be obtained directly according
to the relationship between temperature and refractive
index for a particular liquid.

For the water droplets used here, in Fig. 11, a compar-
ison between the data from Table 3 and those from Table 1
is shown, along with their corresponding temperatures
calculated according to the formulations given by Harvey
et al. (1998). It is found that if the spheroids’ ellipticity is
out of the range [0.97 1.03], the extracted refractive indices
are so small that unreasonable temperatures are extracted,
which could be regarded as an indicator for experiments.
Once an unreasonable temperature is extracted, it tells us
that the shape of the particle departs too far away from
sphere. The figure also tells us that the deduced refractive
indices turn out to be smaller for particles with a larger
dispersion of the ellipticity distribution. This conclusion is
also supported by the data from Table 4.

Ellipticity

Fig. 11 Comparison of the data from Table 3 and those from Table 1
as a function of ellipticity, temperatures in degree Celsius (°)
correspond to the refractive indices are plotted in the right side

5 Discussion and conclusion

In the framework of the Null-field method within a T-matrix
formulation, the light scattering properties around the rain-
bow angle are investigated for one spheroid in an arbitrary
orientation and for an ensemble of spheroids in random
orientations illuminated by a plane wave. Based on the
assumption that a stable synthetic rainbow is created by
spherical droplets, an algorithm (Saengkaew 2006), which is
based on the non-negative least square method, is applied to
predict the diameter and temperature by fitting the simulated
global rainbow signals obtained from the Null-field method
for a group of spheroids to the simulated results obtained by
using Nussenzveig’s theory for a group of spheres.

For an individual non-spherical droplet, the Null-field
method provides us with the capability to simulate rain-
bows accurately, as confirmed by comparing with the
results obtained from the rigorous generalized Lorenz-Mie
theory. Simulations show that the rainbow pattern is very
sensitive to the particle non-sphericity. This is due to the
fact that both the position and shape of the rainbow pattern
depend not only on the shape of the particle, but also on its
specific orientation, which makes the analysis of the rain-
bow pattern created by a single non-spherical particle
extremely difficult.

In the case of an ensemble of non-spherical droplets in
random orientations, a stable and clear global rainbow
pattern can always be detected. The global rainbow tech-
nique signals generated by a group of droplets do not
apparently suffer from the typical problems we encounter
in the Standard Rainbow Technique, such as the sensitivity
to the ripple structure or the large angle shift due to
the non-sphericity of particles. However, it does not
mean that the non-sphericity does not influence the
prediction accuracy of size distribution and temperature in
the measurement.
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When the rainbow signals created numerically are pro-
cessed by an inversion procedure, we can see that as the
mean value of the ellipticity distribution increases, larger
dispersion in the extracted size distribution and more
“spurious small particles” are produced. At the same time,
the refractive indices extracted from the simulated signals
turn out to be smaller, although it is not significantly
influenced. As the dispersion of the ellipticity distribution
increases, larger dispersion in the extracted size distribu-
tion and relatively smaller refractive indices are found,
more “spurious small particles” are also extracted from
the simulated signals. These quantified results confirm
the experimental observations we previously obtained
(Saengkaew et al. 2009).

The physical origin of the small spurious particles
extracted by the inversion procedure can be explained. This
is due to the fact that the increases of the dispersion and of
the mean value of the ellipticity distribution lead to the
broadening of the first peak of the primary rainbow and
some reduction to its slope. Provided that the rainbow
pattern is constructed fully by perfect spherical particles,
these phenomena are interpreted to be brought in by a
group of smaller water droplets. Consequently, “smaller
spurious particles” are produced in the inversion procedure
instead of larger spheroids. Meanwhile, the extracted
refractive index turns out to be a little smaller than the
original parameter. It implies that the presence of the spu-
rious particles can be viewed as an indicator of the
refractive index quality. When there is not any spurious
particles are extracted, the refractive index measurements
can be qualified of nearly exact. Consequently, if spurious
particles are extracted, it tells us that the measured tem-
perature is overestimated. Another interesting phenomenon
in the simulation is that when the ellipticity of the particle
exceeds some kind of range, the extracted refractive indi-
ces become so small that unreasonable temperatures are
extracted, which could also be regarded as an indicator for
experiments. Once an unreasonable temperature is extrac-
ted, it tells us that the shape of the particle departs too far
away from sphere.
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Based on the recent results in the generalized Lorenz—Mie theory, solutions for scattering problems of a sphere
with an eccentrically located spherical inclusion illuminated by an arbitrary shaped electromagnetic beam in an
arbitrary orientation are obtained. Particular attention is paid to the description and application of an arbitrary
shaped beam in an arbitrary orientation to the scattering problem under study. The theoretical formalism is
implemented in a homemade computer program written in FORTRAN. Numerical results concerning spatial dis-
tributions of both internal and external fields are displayed in different formats in order to properly display ex-
emplifying results. More specifically, as an example, we consider the case of a focused fundamental Gaussian
beam (TEMy, mode) illuminating a glass sphere (having a real refractive index equal to 1.50) with an eccentrically
located spherical water inclusion (having a real refractive index equal to 1.33). Displayed results are for various
parameters of the incident electromagnetic beam (incident orientation, beam waist radius, location of the beam
waist center) and of the scatterer system (location of the inclusion inside the host sphere and relative diameter of
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the inclusion to the host sphere).
OCIS codes:  140.0140, 260.2110, 290.0290.

1. INTRODUCTION

The well-known Lorenz-Mie theory (LMT) [1] provides a rigor-
ous way to describe the electromagnetic scattering interaction
between a linearly polarized plane wave and a homogeneous
spherical particle described by its diameter d and its complex
refractive index m. Since the advent of the laser, the interaction
of a focused laser beam with different kinds of particles has
become a most interesting topic, with applications spread in
a variety of fields including particle sizing, Raman scattering
diagnostics, optical manipulation, and design of new optics
devices. To meet the requirements of these new practical situa-
tions, the LMT has been generalized after the name of general-
ized Lorenz—Mie theory (GLMT) mainly from two perspectives:
(i) arbitrary laser beam and (ii) particle shape, with recent re-
views by Lock and Gouesbet [2] and by Gouesbet [3]. The
GLMT extends the LMT, from the first perspective, to deal with
the scattering problem of particles illuminated by an arbitrary
laser beam [4-7] instead of a continuous plane wave, which is
the case in the LMT framework. Another version to arbitrary
shaped beam, equivalent to GLMT, could be found in [8].
The GLMT was also extended to deal with cases of nonsphe-
rical and/or composite scatterers from the second perspective,
relying on the method of separation of variables (SVM) in var-
ious orthogonal coordinate systems [9-12].

For an arbitrary shaped beam, an issue of significance con-
cerns the orientation of the beam with respect to the scatterer.
The consideration of arbitrary orientation is compulsory in
the case of GLMTs for cylinders and has been implemented,

1084-7529/11/010024-16$15.00/0
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both in circular cylindrical and in elliptical cylindrical coordi-
nates, e.g., [9,13-15] and references therein. In the case of
spherical coordinates with spherical particles possessing a
complete spherical symmetry (homogeneous spheres, or con-
centric layered spheres), the concept of arbitrary orientation,
more precisely of arbitrary direction (that is to say without
accounting for the direction of polarization), is irrelevant
since any diameter of the scatterer can be regarded as an axis
of symmetry. Any direction of propagation then does belong
to the parallel illuminations, including on-axis incident case
[16] and off-axis incident case [17]. However, in spherical co-
ordinates, with spherical particles which do not possess a
complete spherical symmetry, such as for the case of a sphe-
rical particle hosting an eccentric spherical inclusion, we may
have to distinguish between parallel and oblique illuminations
and relate beam shape coefficients in various coordinate
systems obtained, one from the other, by a rotation of coor-
dinates. These issues of oblique illumination and of the trans-
formations of spherical beam shape coefficients through
rotations of coordinate systems have been thoroughly inves-
tigated recently by us with results that can be found in [18-24].
These recent results obtained in the GLMT framework provide
a new tool for the description of illuminating arbitrary beams,
including the special case of plane waves, and are implemen-
ted in the present paper.

With regard to the shape of the scatterer, the wave scattering
problem defined by a host homogeneous sphere embedding
an eccentrically located inclusion (or several inclusions) has

© 2011 Optical Society of America
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attracted much interest in recent years in both electromag-
netic- and acoustic-oriented literatures [10,25-30]. This is par-
tially due to the fact that particles or fluid droplets with smaller
inclusions are very common in our daily life as well as in the
research for industry or environment concerns. For instance,
many small particles, such as natural biological spores or cells,
possibly artificial biological spores or cells for military pur-
poses, and aerosols in the atmosphere could be regarded as
spheres with concentric or eccentric inclusions. Also, fluid dro-
plets with small inclusions such as medicinal sprays or daily
cosmetics could be modeled as spherical particles with inclu-
sions as well [31-34].

The associated scattering problem has been studied by using
various methods, such as the separation of variables method
[10,25], the order of scattering approach [26,27], and the ex-
tended boundary condition method (EBCM) [28,35], which is
also named null-field method [29]. Nevertheless, most of the
previous literature dealt with the case of plane wave illumina-
tion. After the introduction of a GLMT for the problem under
study by Gouesbet and Gréhan [10], numerical results have
been provided by Han et al. [36] and Yan et al. [37]. Neverthe-
less, only far-field scattering results were presented in [36,37].
In the present paper, spatial distributions of external and inter-
nal fields, including scattered field in the far zone, near-surface
field outside of the host sphere and internal field inside the host
sphere, are analyzed extensively and systematically by taking
advantage of the new aforementioned computational tool
[20-24].

One of the purposes of our present work is to cast some
light on light-scattering-related experimental or industrial ap-
plications such as in particle characterization or identification
techniques [31,33,34]. Indeed, as we know, light scattering
methods provide ideal means for in situ particle characteri-
zation or identification, because of their fast responses and
nondestructiveness.

Traditionally, light scattering measurements are made with
a single, possibly movable, detector, or with a limited number
of fixed detectors. Sometimes, such simple facilities might be
sufficient due to the inherent symmetries in the scattered field
patterns created by particles sharing a high enough level of
symmetry, such as spherical particles or axisymmetric parti-
cles exhibiting some specific orientations. However, for the
study of nonspherical or nonhomogeneous particles, such
as the ones investigated in the present paper, in cases where
symmetries in the scattered field distribution are broken,
more elaborate spatial detections might be required. With im-
proved instrumentation, such as wide application of intensi-
fied charge-coupled device cameras, researchers are able to
employ two-dimensional angular optical scattering as a tool
for analyzing such particle systems [31,38]. Along with the ap-
plications of new facilities in the measurements, a knowledge
of spatial distributions of the energy intensity is also required
in theoretical processing, especially when the symmetry of the
scattering pattern is broken, this being an issue that we keep
in mind in the present paper.

Another motivation of our study lies on the expected future
detection of optical (Hamiltonian) chaos features depicted in
[39-41], which might be associated with the destruction and
splitting of morphology-dependent resonances (MDRs)
[27,42/43]. Such features are associated with the increase of
complexity of the optical interactions between the eccentri-
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cally located inclusion and the host sphere, generated by a
loss of spherical symmetry. The curved surfaces of the parti-
cle system together with the discontinuity of the complex re-
fractive index at the interface of two different media influence
the spatial distribution of the field intensities both in the inter-
nal and external regions. In this paper, spatial distributions of
the internal and near-surface fields for the scattering system
under study in off-resonance conditions are presented for the
first time, with the expectation that the numerical results gi-
ven here would contribute to the understanding of multiple
scattering interactions between closely spaced particles or be-
tween different parts of a scattering system.

The body of the present paper is organized as follows. In
Section 2, we present a theoretical treatment for the scattering
problem of a sphere with an eccentrically located spherical
inclusion illuminated by an arbitrary shaped electromagnetic
beam in an arbitrary orientation in the framework of GLMT.
Particular attention is paid to the description and application
of an arbitrary shaped beam in an arbitrary orientation to the
problem under study. In Section 3, the case of a focused Gaus-
sian beam in the fundamental mode (TEMy) is specifically
considered for numerical illustration. Spatial distributions
of both internal and external fields, including scattered field
in the far zone, near-surface field outside of the host sphere
and internal field inside the host sphere, are presented for var-
ious parameters of the incident electromagnetic beam and of
the scatterer system. Some discussions are presented in
Section 4, which serves as a conclusion as well.

2. THEORETICAL TREATMENT BY GLMT

A. Definition of the Problem

The geometry of the specific scattering problem under study is
illustrated in Fig. 1. The host sphere is attached to a global
Cartesian coordinate system (O;X,YZ,), and its correspond-
ing spherical coordinates are designated as (r1,6;,¢1). A
spherical inclusion is embedded in the host sphere. It is at-
tached to an inclusion coordinate system (0,X,Y,Z5), whose
corresponding spherical coordinates are designated as
(79, 05, ). The three axes in the inclusion coordinate system

Z1

11

Og

Fig. 1. Scattering geometry of the problem under study.
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are parallel to the corresponding axes in the global coordinate
system, respectively.

Without any loss of generality, the center of the inclusion is
located on the z axis of the global coordinate system. The
center—center separation distance is designated by d; we have

Xy = 2y, Y2 = Y1, B =2z-d (1)
The radii of the host sphere and of the inclusion are a and b,
respectively. The complex refractive index and wavenumber
of the surrounding medium are m, and k, the corresponding
parameters for the host sphere are m; and k;, and for the in-
clusion, my and k.

The scattering model in Fig. 1 is illuminated by an arbitrary
shaped beam propagating along the w axis in the beam coor-
dinate system O,UVW. The coordinates of its origin O, with
respect to the global coordinate system (0,X,Y,Z;) are de-
noted as (%, Yo, 29)- The frame system (O, X,YZ;) can be ob-
tained from the beam coordinate system (O,UVW) by
rotations through Euler angles (a, #,7) [20-23] followed by a
translation of (%, ¥y, 2y), and vice versa. In this paper, a fo-
cused Gaussian beam propagating along the w axis with beam
waist center located in the origin of the beam coordinate sys-
tem O,UVW is specified for numerical illustration. The time-
dependence factor reading as exp(jwt) is assumed, where w
is the angular frequency. This term will be omitted from all
formulas for the sake of conciseness.

B. Vector Spherical Wave Functions

The vector spherical wave functions (VSWFs) used in this
paper are a little different from the ones used in [20,44] by
a normalization factor and also by the fact that we have inter-
changed the indices n and m, i.e., M,(Z)n instead of M%)n and
similarly for Ng)n. Nevertheless, the interchanges of orders
n and m in subscripts occur only superficially in appearance
for the purpose of consistency in the paper, which will not
change their original meanings. They read as

Mg,)n = (=1)"[imay (cos )iy - 7' (cos 0)i, |z, (kr) exp(ime),

2)
N9, = (-1)m™ {%zn (kr)P™ (cos 0)i,

1[d N .
+ o [% 12, (Im")} 7 (cosB)iy

+ k_lr [% 2, (kr)} imzp (cos H)i,,,} exp(imey), (3)

in which i,, iy, and i, are standard unit vectors associated with
the coordinates 7, 6, and ¢, respectively, of a spherical coor-
dinate system (7, 6, @), k is the wavenumber in the considered
medium, z,(kr) designates any spherical Bessel function
(> YUn> hﬁf h,l ), and 7 and 7 designate the normalized gen-
eralized Legendre functions according to

pm
A (cos @) = L2 (cos 6) :

- d -
) (cos®) = —Py'(cosd). (4)

do

P™(cosf) is the fully normalized associated Legendre
function, which is normalized from the associated Legendre
functions P}'(cos):
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P (cos0) = c"P(cos0), (5)

where ¢} is a normalization factor:

o = 1y g ©

and the associated Legendre functions Pj(cos6) read as

d™P, (cos @)

Pyl (cos ) = (-1)"(sing)" (dcosO)™ °

(7)

C. Solutions

The theoretical treatment to scattering from a sphere with an
eccentrically located spherical inclusion illuminated by an ar-
bitrary shaped beam was originally presented by Gouesbet
and Gréhan [10]. Afterward, Han et al. [36] and Yan et al. [37]
also studied this problem. Here, we will not focus on these
derivations but recall some expressions necessary for the
sequel.

In the global coordinate system, an arbitrary shaped beam
in an arbitrary orientation illuminating the host sphere may be
expressed in terms of VSWF's with two sets of expansion coef-
ficients a,,, and b,,,:

fd +n

Einc = Z Z aanﬁLlnL(kOrl) + bmnNS'Ll?'ZL(kOrl)s (8)

n=1m=-n

in which the field strength F; has been set equal to unity.
Furthermore, the relationship between the expansion coeffi-
cients a,,,, and b,,,, on one hand and the more traditional beam
shape coefficients g;', on the other hand is available from [44]
and will be provided in the sequel.

Similarly, the scattered field may be expanded using the
spherical Bessel functions of the fourth kind:

w©  4m

Es = Z Z CmnM’s;lrz'L (kOrl) + dnmN’E’LL’lVBl (kOrl)- (9)

n=1 m=-n

The main field in the annular zone between the surface of
the host sphere and that of the inclusion may be expressed
using the spherical Bessel functions of the third and the fourth
kind in the global coordinates system, indicating a superposi-
tion of incoming and outcoming partial waves:

©

+n
Eintl — Z Z eomMe (kyry) +fnmN1(2372’L(klrl)

n=1 m=-n

+ Uan%/zL (klrl) + hnmN“EL%rzb (kl 1‘1). (10)

In [10], Egs. (11) and (12), the choice has been made to use the
first and fourth kinds of VSWFs instead , indicating superposi-
tion of waves incident on the inclusion and of waves scattered
from the inclusion.

The incident coefficients a,,, and b,,, and the scattered
coefficients c,,, and d,,, can then be related to the expansion
coefficients e,,,, fum>» Vnm, and h,, by applying the
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well-known boundary conditions at the main sphere surface
r1 = a, according to which the tangential components of
the electric and magnetic field would be continuous across
the sphere surface.

The same procedure is then implemented in the inclusion
coordinate system, which relates the expansion coefficients
Toums Snms bum, a0 U, of the main field,

o +n
Emtl — Z Z ranf’,ZL(ker) + Sn7,,LN/E'Lﬁ;21 (k1r2)

n=1m=-n

+ tangﬁrgz (ker) + unmN£L472L (’ﬁrz), (11)

to the expansion coefficients p,,,, and q,,, of the internal field
inside the inclusion,

fd +n

EintZ = Z Z pan% (erZ) + QnmN%(kzl‘z), (12)

n=1m=-n

by applying the well-known boundary conditions at the
inclusion surface 75 = b.

In order to obtain the solutions to the scattering problem,
translational addition theorems of VSWFs [45,46] should be
applied to the main field so as to relate its expansion coeffi-
cients e,,,, frums Vnm, andh,,, in the global coordinate system
with those 7., Sym, tum, and 4, in the inclusion coordinate
system. Relevant translational coefficients of the vector addi-
tion theorem as well as those of the scalar addition theorem
have been discussed in the literature, e.g., [29,47,48], and are
given in Appendix A.

As a summary, in the global coordinate system, the expan-
sion coefficients that describe the scattered field, c,,, and d,,,,,,
and the expansion coefficients that describe the main field,
Cums S nms Vnm, a0d Ry, can be related to the expansion coef-
ficients that describe the incident field a,,,, and b,,, by appli-
cation of the boundary conditions, according to which the
tangential components of the electric and magnetic field
would be continuous across the sphere surface. Similarly,
in the inclusion coordinate system, the expansion coefficients
which describe the inclusion internal field, p,,,, and g,,,, can
be related to the expansion coefficients describing the main
field, 7, Spm> bum, @0d Uy, by application of the correspond-
ing boundary conditions at the surface of the spherical inclu-
sion. The solutions to the scattering problem can then be
readily reached by applying translational addition theorems
of VSWFs to the main field; see [10] for details.

D. Beam Shape Coefficients for an Arbitrary Shaped
Beam in an Arbitrary Orientation

In the GLMT, the electromagnetic components of the illumi-
nating beam are described by multipole expansions over a set
of basis functions. The expansion coefficients are expressed
versus fundamental coefficients, usually denoted as g’y (X is
TE, transverse electric, or TM, transverse magnetic, with n
from 1 to o, m from —n to n), known as beam shape coeffi-
cients (BSCs). These BSCs are used to express electromag-
netic fields of laser beams in expanded forms, for use in
GLMTs, or in other light scattering approaches such as the
EBCM. Their calculations form the key issue, and the most
difficult one, when dealing with a GLMT. Initiated by Han
et al. [18,19], a systematic analysis was made recently con-
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cerning the transformation of BSCs through rotations of co-
ordinate systems, and corresponding results are published
in a series of papers [20-24], providing us a new tool for
further studies, especially in cases of nonspherical or compo-
site scatterers.

The relationships between the expansion coefficients a,,,,
by on one hand, and the BSCs g’y on the other hand read as
[44]

o (0 =m)! Gyre

anm:_ikc%w(_l)m(_l) E W on (13)

mjm| (n-m)! Gy

by = kb’ (-1)" (-1 - , 14
nm n ( ) ( ) 2 (n_ ‘ml)' C;’? ( )
in which ¢} are plane wave coefficients reading as [4]
1 2n+1
w Lo gl ST L 1
o k( 9) nn+1)° (15)

With respect to the corresponding equations in [44], the fol-
lowing modifications have been introduced: (i) the field
strength E, has again been set equal to unity, (ii) the coeffi-
cient ¢;; has been introduced as a consequence of the fact that
we use a slightly different definition for the VSWFs [see
Subsection 2.B], and (iii) the BSCs are tilde-decorated to
indicate that they are valid in a rotated system.

According to the transformation theorem for BSCs in sphe-
rical coordinates [20], the tilde-decorated BSCs g;'y in a ro-
tated system are expressed versus the BSCs g,y in another
system, called the unrotated system, as

- " H",
g::LX = Hpm Z = g::LXv (16)
s——n Hns
where
- w0 = [m))!
Ham = (=1)"(=1)72 —m) (17)
(n — m)l . . n+s n-s
H"™ — (-1 n+s 1My Hisa ~1)°
= (-1) s’ 20:( ) o .
26+m-+s 2n-2c-m-s
X (cosg) (sin'é) , (18)

in which (a,p,y) are Euler angles bringing the unrotated
system to the rotated system, whose definitions could be
found in any of the references [20-24].

With decades of efforts devoted to the description of an ar-
bitrary shaped beam, the BSCs of an arbitrary shaped beam in
the unrotated coordinate system can be evaluated by several
methods, sharing various degrees of time running efficiency,
or of flexibility, namely by using quadratures [49], finite series
[60], localized approximations generating localized beam mod-
els [6], or by a hybrid method taking advantage of both quad-
ratures and of a localized approximation, named the integral
localized approximation [51]. The evaluation of BSCs has also
been investigated by relying on addition theorems for transla-
tions of coordinate systems, an approach originally introduced
by Doicu and Wriedt [62] and also used by Zhang and Han [53].
In our computer program, the Modified Localized Approxima-
tion method [6,54], which was rigorously justified by Gouesbet
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and Lock [16,17], is applied to evaluate the BSCs in the unro-
tated coordinate system due to the fact that it provides the most
efficient method, with regard to computational times, by orders
of magnitude with respect to other methods, such as by using
quadratures [55]. It is also the most appealing from a physical
point of view because it provides many physical insights on the
interpretation of beam models.

In order to describe an arbitrary shaped beam in an arbi-
trary orientation, the BSCs in the rotated coordinate system
have to be evaluated.

Two different ways have been explored to deal with the use
of a localization procedure associated with a rotation, namely,
arotation—localization (RL) procedure in which we first apply a
localization operator and afterward rotate, and a localization—
rotation procedure, in which we first rotate and afterward ap-
ply a localization procedure, with details presented in [24]. It
has been surprising to uncover that the operations of rotation
and localization do not commute, not only for non-Maxwellian
beams, but also for Maxwellian beams, in particular, for even a
plane wave. Therefore, at the present time, in order to obtain a
localized beam model under an arbitrary orientation, one has to
use the RL procedure as we have used in this paper. That is to
say, after obtaining the BSCs of an arbitrary shaped beam in the
unrotated coordinate system by the Modified Localized Ap-
proximation method [6,16,17,54], the transformation theorem
for BSCs [20-24] is applied to obtain a localized beam model in
a rotated system in terms of the localized beam model in the
unrotated system.

E. External Near-Surface and Internal Fields

Even though the magnitude and the phase for each compo-
nent of the electromagnetic field can be determined from the
GLMT formalism discussed in this paper, a useful visualization
of the electromagnetic field distribution can be obtained by
plotting the normalized source function as a function of spa-
tial position. The normalized source function is defined as

S = [E[?/|E,[*, (19)

where E is the electric (internal or external) field and E is the
electric field strength of the incident field, which is assumed
to be unity in this paper.

1. Internal Field

Inserting Eqgs. (2) and (3) into Eq. (11), expressions for
evaluating the main internal field in the annular area can be
obtained:

Ellnt I = i Z [S ILWL
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Similarly, the main internal field could also be evaluated in the
global coordinate system by using Eq. (10).

Also, the expressions for calculating the internal field inside
the inclusion can be obtained:
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2. External Near-Surface Field
The external near-surface field is a summation of the incident
field and the scattered field. The intensity of the incident
shaped beam can be evaluated either by using analytical ex-
pressions in closed form (see [4]) or by using expressions in
expanded form from Eq. (8), which is applied in our simula-
tions in this paper. The approach for calculations of the scat-
tered field in the near zone is very similar to that used in the
calculation of the internal field. The only significant difference
lies in the number of summation terms. In the evaluation of
scattered field, the number of terms taken into account is
fixed at a cut-off number related with the size parameter of
the host sphere. While in the evaluation of internal intensity
distribution, a fewer number of summation terms for smaller
radii than the fixed cut-off number have to be taken into
account.

The expressions for calculating the scattered field in the
near zone are given:

¢ hs? (ko) :
Esea — : O n(n + 1)P(cos 6)
nz; ”;n TLTI 07‘1 n
x exp(ime), (26)
©  4n
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F. Scattered Field in the Far Zone

In the far zone away from the scatterer, where kr > ka,
the spherical Hankel functions reduce to spherical waves,
according to

—ikr (2) —ikr
) i1 @ dhy,’ (kr) .. e

B2 (kr) ~ A 2 A

o () @S atkr) " ke

(29)

Inserting Eq. (29) into Eq. (26)-(28), the scattered field in
the far zone degenerates to transversal spherical waves, and
the nonzero components are expressed as
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The scattering intensity may be expressed as [4]
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3. NUMERICAL RESULTS

A computer program is written in FORTRAN relying on the
theoretical work stated above. Thanks to the programs pub-
lished and maintained on the Internet, such as the one from
Wriedt [56], it allows almost instant verification of results
without costly software development for some commonly
used subroutines. For instance, the required Ricatti-Bessel
functions in our program are evaluated using the recursion
algorithm presented by Ngo et al. [35]. The most significant
differences between our code and the one from Ngo et al.
are as follows. (i) Plane wave illumination is generalized to
arbitrary shaped beam illumination. Specifically, the BSCs,
for Gaussian beam illumination, are determined using the
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Modified Localized Approximation method developed by
Gouesbet et al. [6,16,17,54]. (ii) Subroutines for evaluations
of internal and near-surface field distributions are developed.

Furthermore, for the aim of developing a more convergent
computer program, the associated Legendre functions are
evaluated in terms of Wigner d functions, which achieve good
convergence even when the order is very large [57]. The trans-
lational coefficients of the VSWFs are evaluated according to
the recurrence relationship provided by Mackowski [48] in-
stead of the one proposed by Bobbert and Vlieger [47] and
used by Ngo et al. [35]. Although several modifications have
been made, the convergent problem reported in Ngo’s code
[68] also exists in our code. Nevertheless, it has little influence
on the analysis of field intensity distributions in the pre-
sent paper.

Regarding the numerical evaluation of the elements H7}, in
Eq. (18), Han et al. [36] calculated them (although with a dif-
ferent notation and presentation) by using a summation of a
finite number of terms that satisfy the following four condi-
tions: (i) 6<0, (i) oc<-(m+m), (i) oc<n-m, (@{v)
o <n —m'. This was a fairly tedious procedure so that, for this
paper, we use a somewhat more efficient method. Let us recall
Eq. (102) in [22]; we can rewrite Eq. (18) as

(m-m)l(n+s)2 .
m — vmy ZS(Zd?‘L s 35
sn |:(n+m)'(n_s)' € € ms ( )
where d;;,; is the Wigner d function, which can be evaluated by a
recurrence relation [57], which is given in Appendix B for the
sake of convenience.

A. Numerical Test Cases

As a verification of the homemade program as well as of the
theoretical derivations for an arbitrary shaped beam in an ar-
bitrary orientation, we have compared our results with those
published by Ngo et al. [35] in the case of plane wave illumi-
nation. All the results concerning the extinction and scattering
efficiencies coincide with each other at least in four digits.

As another verification of the code, comparisons between
the results obtained from our code are compared with those
published by Han et al. [36] and Yan et al. [37]. As we noticed,
only results for special cases of on-axis Gaussian beam illumi-
nation were presented by Yan et al. [37]. We prefer to present a
comparison of scattered intensity distribution for a general
case of off-axis Gaussian beam illumination in Fig. 2 between
the results obtained from our code and those published by Han
et al. [36]. In this comparison, parameters are adopted directly
from [36]. The radii of the inclusion and of the host sphere are
0.5um and 1.0 yum with complex refractive indices of 1.55 +
0.07 and 1.33 + 0.04, respectively. The center—center separa-
tion distance is d = 0.25 ym. It is illuminated by a Gaussian
beam at incidence angles a = y = 0.0°, = 45.0°, with wave-
length 1 = 0.6328 ym and beam waist w, = 1.0 ym. The loca-
tion of the beam waist center is a varied parameter.
Satisfactory agreements are achieved, although there may
be some differences (logarithmic scales are used), especially
in the forward- and backward-scattering direction.

Further verification is made by comparing spatial distribu-
tions of normalized source function for the internal and near-
surface fields with published results for a sphere illuminated
by plane wave [59].
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Figure 4(a) shows the normalized source function distribu-
tion of the near-surface and internal fields along the z axis for a
homogeneous spherical glass bead (having a complex
refractive index m = 1.5 + 0.07 and size parameter 20) illumi-
nated by an x-axis direction polarized plane wave propagating
along the +z axis direction. The amplitude of the incident elec-
tromagnetic wave electric field has been set to unity. Spatial
coordinates are normalized relative to the sphere radius. Re-
sults from our code are identical to those provided by Barber
and Hill [59]. Particular values for exact checks are evaluated at
points -2.5, —1.0, 1.0, and 2.5. The values obtained from our
code are 0.87081, 1.4987, 59.2146, and 3.2682, respectively.

B. Numerical Results

1. Scattered Field in the Far Zone

Scattered field distributions resulting from a focused laser
beam incident on a particle system are dependent on the prop-
erties of the incident electromagnetic beam (beam waist
radius, location of beam waist center, wavelength, and
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Fig. 2. (Color online) Comparison of scattered intensity distribution
between the result obtained from our code and Fig. 6 published in
[36].
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incident orientation) as well as on the properties of the
scatterer (shape, diameter, complex refractive index, etc.).

Variations in spatial distributions of scattered field in the far
zone from a spherical glass bead (having a complex refractive
index 1.50 4 0.07) containing a spherical water inclusion (hav-
ing a complex refractive index 1.33 + 0.07) are displayed in
video format for different cases. The following parameters
are applied except stated otherwise. The complex refractive
index in the surrounding medium is set equal to unity. The
radius of the host sphere is assumed to be 3.0 yum, and that of
the inclusion is 1.50 ym. The incident electromagnetic focused
Gaussian beam was assumed to be linearly polarized along the
u axis at its waist with a wavelength equal to 0.6328 ym. Its
beam waist center is located at the origin of the global coor-
dinate system with xy = yy = 2y = 0.0 yum. The incident orien-
tation is specified by Euler angles at a = y = 0.0°, f = 90° so
that the forward direction of the scattered field is at the center
of the graphs (6 = 90°, ¢ = 0.0°). Media 1 and Media 2 pro-
ceed along eight steps according to the scenario detailed be-
low. The vertical axis in the movie is the zenith angle 6 in
degrees, and the horizontal axis is the azimuthal angle ¢ in
degrees; scenery numbers are shown at the rightmost side
to indicate the procedure of the movie. Single-frame pictures
excerpted from Media 1 and Media 2 are shown in Fig. 3.

The movie begins with the inclusion situated at the center
of the host sphere. The particle system is illuminated by a
Gaussian beam with a pretty large beam waist, such as
wy = 50.0 um; that is to say, plane wave illumination is ap-
plied. Then (i) the inclusion is translated along the z axis from
the center of the host sphere d = 0.0um to the edge at
d = 1.0 um. Afterward, (ii) holding the position of the spheri-
cal inclusion constant at d = 1.0 yum, we decrease the radius of
the inclusion from b = 1.5 ym to b = 0.0 ym, which is followed
by (iii) increasing the radius of the inclusion from b = 0.0 yum
to b = 1.5 um. The beam waist radius of the Gaussian beam is
then (iv) decreased from w, = 50.0 ym to w, = 2.0 yum. That is
to say, the plane wave illumination is replaced by a focused
Gaussian beam illumination step-by-step, with a step of 5.0 yum
in the range [50.0 um, 5.0 um] and a step of 0.5 ym in the range
[6.0ym, 2.0 ym]. Fixing the Gaussian beam waist at w, =
2.0 um and holding the position of the inclusion constant at
d = 1.0 um, we (v) decrease the radius of the inclusion from
b = 1.5umto b = 0.0 yum, which is followed by (vi) an increase
from b = 0.0 ym to b = 1.5 ym. The inclusion then (vii) trans-
lates to the center of the host sphere with d = 0.0 yum. At the
end of the movie, (viii) we move the beam waist center of the
focused Gaussian beam toward the edge of the host sphere
along the z axis with z; = 2.0 ym.

As we can notice from the movie, either in the illumination of
aplane wave or in the illumination of a focused Gaussian beam,
a second set of diffractionlike rings can be observed when the
symmetry of the particle system is broken. The inclusion acts
as a second radiating source, contributing to an interference
structure in the scattering pattern, the spatial frequency of
which varies with the location and the radius of the inclusion.
A butterfly pattern is noticed growing up as the center—center
separation distance increases. With a decrease in the inclusion
radius, the wings of the butterfly seems to diffuse laterally (the
inclusion becoming smaller, with a larger radius of curvature,
throws rays away more efficiently in the lateral directions),
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Fig. 3. (Color online) Scattered field distribution in the far zone. (a) Single-frame excerpt from Media 1 for cases of plane wave illumination. (b)
Single-frame excerpt from Media 2 for cases of focused Gaussian beam illumination. The vertical axis in the movie is the zenith angle 6 in degrees,

and the horizontal axis is the azimuthal angle ¢ in degrees..

also become weaker since the inclusion is smaller, and at last
disappear when the inclusion disappears.

During the procedure of plane wave illumination replaced
step-by-step by Gaussian beam illumination, for most of the
time we do not observe any significant variation in the scat-
tering pattern, in accordance with the fact that the radius of
the host sphere is 3.0 yum, which is much smaller than the
beam waist radius, so that, for most of the time, the illumina-
tion is still essentially the one of a plane wave. When Gaussian
beam effects become significant, we conversely observe a
strong modification of the scattering pattern, in which an im-
age of the inclusion in the scattering pattern becomes more
and more apparent in the forward direction, while as a whole
the interference pattern simplifies, with many rings progres-
sively disappearing and much less light shed laterally.

At the last part of the movie, the inclusion is located at the
center of the host sphere; such a geometry actually corre-
sponds to the one of a coated sphere. We can observe a pattern
with a maximal spherical symmetry (spherical symmetry of the
scatterer, and location of the beam waist center at the center of
the scatterer). When the beam waist center of the Gaussian
beam is moved toward the edge of the host sphere, a progres-
sive and eventually very significant loss of symmetry can be
noticed, in which the original maximal spherical symmetry
is broken. This evolution corresponds to the development of
a similar butterfly pattern, but with wings stretching in the
downward direction instead of in the upward directions as
we saw in the first half of the movie.

2. Near-Surface Field and Internal Field

Calculations of the internal and near-surface fields of a trans-
parent sphere could be found in the case of plane wave illumi-
nation [59] and also in the case of shaped beam illumination [8].
Large enhancement of the near-surface field located in the sha-
dow side of the particle was found both in the on-resonance
conditions and in the off-resonance conditions. In the case
of shaped beam illumination, the distribution of the internal
and near-surface field is strongly dependent on the location
of the focal center of the laser beam, which differs significantly
from the corresponding results when the exciting resource is a

plane wave. Nevertheless, most efforts have been found to be
devoted to spherical particles, but other shapes or composite
particles are also of interest, such as a micrometer-sized par-
ticle containing a smaller eccentrically located inclusion under
study in this paper. A series of calculations is then performed to
demonstrate the effects of particle system geometry, orienta-
tion, and focal center location of the Gaussian beam on the spa-
tial distributions of internal and near-surface fields.

Specifically, near-surface and internal fields distributions
are calculated for a glass sphere (having a real refractive index
equal to 1.50) with an eccentrically located water droplet (hav-
ing a real refractive index equal to 1.33) in the case of plane
wave illumination and in the case of a focused Gaussian beam
illumination. The incident beam (plane wave or Gaussian
beam) is originally assumed to propagate in the +z-axis direc-
tion with electric field vector polarized along the x axis (at the
waist) with wavelength 0.6283 ym. The beam waist radius of
the Gaussian beam is assumed to be @y = 1.6 yum, which is
smaller than the radius of the host sphere a = 2.0 um, while
greater than the radius of the inclusion b = 1.0 yum.

As aforementioned, even though the magnitude and the
phase for each component of the electromagnetic field can
be determined, a useful visualization of the electromagnetic
field distribution can be obtained by plotting the normalized
source function as a function of spatial position. Normalized
source functions are calculated on a normalized square grid of
dimension 2r/a x 2r/a. Two hundred points along the z axis
and 100 points along the x axis are used in Figs. 4 and 5, due to
the fact that, in these cases, the intensity variation along the x
axis is much slower than that along the z axis. Nevertheless,
200 points are used both along the 2z axis and along the x axis
in Figs. 7 and 8, which are the cases when the shaped beam is
incident on the particle obliquely. It is worth mentioning that if
too many points are used in the calculation of internal field
distribution, the calculation of the Bessel functions may be-
come unstable for radii near the origin, since the argument
of the functions will be much smaller than the order.

Normalized source function distributions along the z axis
are displayed in Fig. 4, and distributions over the equatorial



32 J. Opt. Soc. Am. A / Vol. 28, No. 1/ January 2011

plane (x—z plane) are shown in Fig. 5 as a function of the
center—center separation distance d.

In Fig. 4(a), the well-known high intensity peak in the near-
surface field behind the scatterer dominates the graph, whose
intensity is more than 100 times the incident beam intensity.
Nevertheless, this large broad intensity peak is afterward sig-
nificantly spoiled due to the existence of an inclusion, as ob-
served in Figs. 4(b) and 4(c). Furthermore, when the plane
wave illumination is replaced by a focused Gaussian beam il-
lumination in Figs. 4(d)-4(f), the high intensity peak is also
reduced greatly. In a further study (results are not shown
here), we find that the narrower the Gaussian beam waist
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is, the lower the intensity of the high energy peak will be.
Thus, we may come to the conclusion that the focusing effect
caused by the curved surface of host spherical particle plays a
main role in the construction of the high intensity peak in the
shadow side of the host sphere, which is similar to the trans-
mission spherical aberration caustic in the optical system.
This conclusion is also supported by the fact that several in-
tensity peaks are observed in the shadow side of the inclusion,
which may mainly be due to the focusing effect of the
spherical inclusion.

The other prominent feature in Fig. 4 is that a small inten-
sity peak observed in the illuminated side of the host sphere
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Fig. 4. Normalized source function for external and internal fields along the z axis with center—center separation distance d as the parameter. The
left column [(a), (b), (c)] is for cases of plane wave illumination; the right column [(d), (e), (f)] is for cases of focused Gaussian beam illumination.
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(the small peak located at approximately 2/R = —0.8) in the
case of plane wave illumination is significantly degenerated
when a focused Gaussian beam illumination is applied. From
a point of view of ray theory, this peak is claimed to be con-
structed by the crossing of the arms of the interior focusing
caustic for three internal reflections [60]. And the numerical
results obtained here emphasize that the construction of this
peak is crucially associated with the off-axis partial waves
propagating in the A zone depicted in Fig. 6.

The features found in Fig. 4 can also be observed in Fig. 5.
Furthermore, if we look closely into the interior of the host
sphere, three energy flows toward the shadow side of the host
sphere can be apparently observed when the host sphere is
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illuminated by a plane wave. The main energy flows in the
middle is greatly enhanced in the case of focused beam illu-
mination, while the other two energy flows in the lateral sides
are blurred or even disappear.

Spatial distributions of normalized source functions over
the equatorial plane (x—=z plane) are shown in Fig. 7 as a func-
tion of the incident direction of the Gaussian beam. The sphe-
rical inclusion is located on the z axis with center—center
separation distance d = 0.5. A focused Gaussian beam
illuminates the particle system with Euler angles a = y = 0.0°
and S as a parameter. The beam waist center of the Gaussian
beam locates at the center of the host sphere with
Xy =Yy =2y = 0.0.

= j/
7 ';/ (X
//"”',%'24'39"' i

2

®

Fig. 5. Normalized source function for external and internal field over the x—2 plane with center—center separation distance d as the para-
meter. The left column [(a), (b), (¢)] is for cases of plane wave illumination; the right column [(d), (e), (f)] is for cases of focused Gaussian beam

illumination.
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Comparing Fig. 7(a) with Figs. 7(b)-7(d), we can observe
that, when the particle system with a broken spherical sym-
metry is illuminated obliquely by a focused Gaussian beam,
the scattered field resulting from scattering of the inclusion
interferes with the incident beam, which is refracted once
by the host sphere surface, to create a complex interference
pattern in the internal field. This interference pattern contri-
butes to the features that the main electromagnetic energy
propagates along a different track from that of the incident
beam direction; a branch of electromagnetic energy is ob-
served to be divided from the main energy flows.

Spatial distributions of normalized source functions over
the equatorial plane (x—z plane) are shown in Fig. 8, as a func-
tion of location of the Gaussian beam waist center. The sphe-
rical inclusion is located on the z axis with center—center
separation distance d = 0.5. A focused Gaussian beam illumi-
nates the particle system with Euler angles « = y = 0.0° and
£ = 90° that is to say, it propagates along the x axis from left
to right in the figures. The position of the beam waist center of

2 T 5

(©)
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Azone:

-
ot.

Fig. 6. Illustration of localization of partial waves in a geometric
optics point of view.

the Gaussian beam is assumed to be x, = y, = 0.0 and 2 as a
parameter.

Figure 8 shows the behavior of an off-axis Gaussian beam
when it transmits through a host sphere with an eccentrically

2

Fig. 7. (Color online) Normalized source function distribution for external and internal fields over the x—z plane with Euler angles o« = y = 0.0°

and f as a parameter..
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Fig. 8. (Color online) Normalized source function distribution for external and internal field over the x—z plane with location of the Gaussian beam
waist center as a parameter. The Gaussian beam propagates along the x axis from left to right..

located spherical inclusion. Generally speaking, when the
beam waist center of the Gaussian beam is not located at
the center of the host sphere, that is to say, more partial waves
with higher electromagnetic energy density become off-axis,
the propagation direction of the Gaussian beam is bent toward
the horizontal center-line (the x axis) due to the refraction ef-
fect at the surface of the host sphere. The farther the beam
waist center is away from the host sphere center, the larger
the incident angle is, which leads to a larger turning angle be-
tween the propagation direction after refraction and the ori-
ginal propagation direction. In the meanwhile, more energy is
reflected back into the surrounding medium with the increase
of the incident angle; a clear nonsymmetric interference pat-
tern can be observed in the backward-scattering direction.
These features are very similar to the case of a bunch of rays
strikes on a sphere of large size parameter as shown in Fig. 6.
Nevertheless, the scattering behavior becomes more compli-
cated in the problem under study, especially the field distribu-

tions inside the particle, which is very sensitive to the relative
location of the inclusion inside the host sphere.

4. CONCLUSION

Based on the recent improvements in the GLMT concerning
the evaluation of BSCs [20-24], this paper presents a study
on the scattering problem of a sphere with an eccentrically
located spherical inclusion illuminated by an arbitrary shaped
electromagnetic beam in an arbitrary orientation. A computer
program is written in FORTRAN based on the theoretical
work, which permits the prediction of various scattering data.
Besides completing the scattering results in the far zone pub-
lished in [36,37], numerical results concerning spatial distribu-
tions of the near-surface field outside of the host sphere and
internal field inside the host sphere are presented for the first
time in this paper for various parameter values, such as re-
garding orientation of the incident Gaussian beam, location
of the beam waist center of the Gaussian beam, and location
of the spherical inclusion.
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Concerning the scattered field distributions in the far zone,
when the symmetry of the problem is broken (either due to a
loss of symmetry of the particle configuration or to a loss of
symmetry of the location of the illuminating beam), the symme-
try of the scattering pattern in the far zone is broken as well.
The inclusion acts as a second radiating source, contributing to
an interference structure in the scattering pattern. A second set
of diffractionlike rings is observed with lower intensity relative
to the main diffraction rings, whose frequency varies signifi-
cantly depending on the location and radius of the inclusion.
Well-apparent butterfly patterns can be observed in the movies,
associated with symmetry breakings. Such symmetry break-
ings arise when the inclusion is more and more eccentrically
located, instead of being located at the center of the host sphere
(coated sphere problem), or when the beam waist center of the
Gaussian beam is not situated at the center of the host sphere.
Focused Gaussian beam effects have also been underlined in
which radiating sources (host sphere and inclusion) appear to
be more focused and brighter, with an enhancement and
spreading of the interference structure, with respect to plane
wave illumination.

From numerical results concerning spatial distributions of
near-surface and internal fields, we can notice that the well-
known high intensity peak in the near-surface field behind
the scatterer, whose intensity could be more than 100 times
the incident plane wave intensity, is degenerated significantly
due to the existence of an inclusion or when the plane wave
illumination is replaced by a focused Gaussian beam illumina-
tion. Furthermore, the narrower the Gaussian beam waist is,
the lower the intensity of the high energy peak will be, indicat-
ing that the focusing effect caused by the curved surface of host
spherical particle plays a significant role in the construction of
the high intensity peak in the shadow side of the host sphere,
which is similar to the transmission spherical aberration caus-
tic in optical systems.

Another prominent feature is that the peak observed in the
illuminated side of the host sphere in the case of plane wave
illumination is significantly degenerated when a focused Gaus-
sian beam illumination is applied, which indicates that the con-
struction of this peak is greatly associated with the off-axis
partial waves propagating in the A zone depicted in Fig. 6.

When the particle system with broken spherical symmetry is
illuminated obliquely by a focused Gaussian beam, the main
energy flows are observed to be out of the original track along
the propagation direction of the incident beam. A branch of en-
ergy is divided from the main energy flows. Furthermore, when
the beam waist center of the Gaussian beam is not located in
the center of the host sphere, the incident beam is bent toward
the horizontal centerline along the x axis due to the refraction
effect at the surface of the host sphere. The farther the beam
waist center is away from the host sphere center, the larger the
turning angle between the refraction direction and the original
propagation direction would be. In the meanwhile, a larger
fraction of electromagnetic energy is reflected back into the
surrounding medium with the increase of the incident angle;
a clear nonsymmetric interference pattern can be observed
in the backward scattering direction.

The original motivation of our present work lies on the fu-
ture detection of the interesting optical (Hamiltonian) chaos
features depicted in [39—41], which are raised by the complex
optical interactions between the eccentrically located inclu-
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sion with the host sphere, in the case of loss of spherical
symmetry. The study on internal and near-surface field distri-
bution would contribute to the understanding of multiple
scattering interactions between closely spaced particles or be-
tween different parts of a scattering system, such as the scat-
tering model under study. It would also have contributions to
the study of the nonlinear optical mechanisms leading to la-
sering in cavity quantum electrodynamic (QED) as well as to
the improvement of optical sensors and imaging, such as the
study of fluorescence and Raman effects. Furthermore, the
work on scattered field distributions would be helpful to
the improvements of relevant laser-related detecting techni-
ques, such as in the field of particle characterization or iden-
tification of internal nonuniformities.

APPENDIX A

In general, the translational addition theorem for VSWF's can
be written

(/) m' (krl)

M), (kr) Z Z A" (krg)M
-

n'=1m=

+ B (krg)NY) (kry), (A1)

/

oo n
=3 > B (k)M (kry)

n'=1m=-n'
+A™ (krg)NU) (kery). (A2)
If the translation is along the z axis, the double summation

above reduces to a single summation over the index n’. So we
obtain

M), (kr) ZA“ (krg)M) (kry) + B™, (krg)NY) (kry),

(A3)
Nioy (kr) = iBm (krg)MLJ) (ry) + A7, (kg )NL) (Fry ).
nm nn' n'm nn' n'm
n'=1
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For axial translations and positive values of m, the vector
addition coefficients A7, and B}, can be related to the scalar
addition coefficients C)":

Amn (kZO) C’mn (kZ())

mn

kz, \/(n/—m+1)(n/+m+1)nmn (k7o)
0
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kzg | (n'-m)(w'+m) .,
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. m
By (kzy) = jkzo ﬁ Crmi (o). (A6)

For negative values of the index m, the following symmetry
relations can be used for practical calculations:
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A_mn; (kZO) = A:ZZ; (lﬁZo),
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The recurrence relations for the C)", coefficients are
simple in the case of axial translation and positive m:
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The convention C, = 0 for m > n and m > ' is assumed in
the above equations.
Initial values are given:

Cont! (kzg) = (=1 V20" + 1j,y (kzy)
for regular VSWFs translation,
0P (kzg) = (~1)" V2r' + 1h) (kzy)
for radiating VSWF's translation.

(A1)

APPENDIX B

The recurrence relation for the Wigner d functions are given
below, which can also be found in [57], Appendix B:
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Initial values are given:

it (B) = 0, (B2)
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in which

= 1 if s2m
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The Wigner d functions have real values and share the follow-
ing symmetry properties:

dfns(ﬂ) = (_l)ersdy—Lm,—s(/}) = dﬁs,—m(ﬂ)’ (B6)

s (= ) = (=1)"*ds(B) = (-1)"™dp (B).  (BT)

By specifying s = 0, we can obtain the associated Legendre
functions in terms of the Wigner d functions:

Bl =\ e P (oS, (B9)

in which Pj(cosp) are the associated Legendre functions.
With some straightforward derivations, we can obtain
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The generalized Lorenz-Mie theory in the strict sense describes the interaction between an illuminating
arbitrary shaped beam and a homogeneous sphere characterized by its diameter d and its complex refractive
index m. It relies on the method of separation of variables expressed in spherical coordinates. Other
generalized Lorenz-Mie theories (for other kinds of scatterers) expressed in spherical coordinates are

available too. In these theories, the illuminating beam is expressed by using expansions with expansion
coefficients depending on some fundamental coefficients named beam shape coefficients, more specifically
spherical beam shape coefficients. In this paper we present a general formulation for the transformation of
spherical beam shape coefficients through rotations of coordinate systems.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The generalized Lorenz-Mie theory in the strict sense describes
the interaction between an illuminating arbitrary shaped beam and a
homogeneous spherical particle described by its diameter d and its
complex refractive index m, e.g. [1], [2] with recent reviews by Lock
and Gouesbet [3] and by Gouesbet [4]. In this theory, which relies on
the method of separation of variables in spherical coordinates, the
electromagnetic components of the illuminating beam are described
by multipole expansions over a set of basic functions. The expansion
coefficients are expressed versus fundamental coefficients, usually
denoted as gi'rv and giie (n from 1 to e, m from —n to +n, TM for
Transverse Magnetic, TE for Transverse Electric), known as beam
shape coefficients. More specifically, in the present case where we use
spherical coordinates, these coefficients may also be called spherical
beam shape coefficients.

There exist other generalized Lorenz-Mie theories, for other kinds
of scatterers, in spherical coordinates, in which the illuminating beam
is expressed by using spherical beam shape coefficients too. These
other theories concern the cases of multilayered spheres [5], of
spherical particles with an eccentrically located spherical inclusion [6]
and of aggregates or of assemblies of spheres [7].

* Corresponding author.
E-mail address: Gouesbet@coria.fr (G. Gouesbet).

0030-4018/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.0ptcom.2010.04.050

In any of these theories, one of the most important and
complicated task, to which much effort has been devoted, is the
evaluation of the beam shape coefficients. Several methods have been
developed and studied, sharing various degrees of time running
efficiency, or of flexibility, namely by using quadratures [8], finite
series [9], localized approximations generating localized beam models
[10], [11], or a hybrid method taking advantage of both quadratures
and of a localized approximation, named the integral localized
approximation [12].

The evaluation of beam shape coefficients has also been investi-
gated by relying on addition theorems for translations of coordinate
systems, an approach originally introduced by Doicu and Wriedt [13],
and also used by Zhang and Han [14]. In the present paper, we are
starting a series concerning the evaluation of beam shape coefficients
by relying on addition theorems for rotations (not translations) of
coordinate systems (precursors will be acknowledged later).

The specific problem to be studied may be defined as follows. Let
us consider a Cartesian system of coordinates, denoted as x=(x, y,
and z), associated with usual spherical coordinates (r, 6, and ¢), called
the unrotated system, and let gity and gt be the beam shape
coefficients for the description of the illuminating beam in this
unrotated system. Let us consider a second system of coordinates,
called the rotated system, deduced from the unrotated system by a
rotation defined by Euler angles (¢, 3, and ), later defined more
precisely. Quantities in the rotated system are denoted by using tilde-
decorations. Therefore the Cartesian coordinates of the rotated system
are denoted as X= (X, ¥, and Z) and they are associated with spherical
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coordinates (F=r, 6, and ¢). The beam shape coefficients in the
rotated system are denoted as gi',,and git;. We intend to express
the beam shape coefficients in the rotated system in terms of beam
shape coefficients in the unrotated system.

The previous paragraphs provided an abstract and minimal
definition of the problem to be studied in the present series of
papers. It is however convenient to dress this problem by introducing
extra-elements. The first element concerns the definition of the
unrotated system. Of course, any system may be taken as being the
unrotated system and, in particular, we are free to invert the role of
the unrotated and of the rotated systems, pretending that the rotated
system is now to be taken as being the unrotated one and vice
versa. However, to better approach the history of GLMTs and some
traditional points of view taken from this history, the unrotated
system will be given a specific definition as follows.

Following the description of coordinate systems given in Fig. 1 of
Ref. [1], we consider a Cartesian system of coordinates, with origin Og
and coordinates (u, v, and w), attached to the illuminating beam. We
take the axis Oqw as being the main axis of propagation of the beam
(particularly easy to define in the case of axisymmetric beams, such
as a Gaussian beam). Next, we decide to describe the scattering
phenomena by using another Cartesian coordinate, with origin Op and
coordinates (x, y, and z). We furthermore make the axes Opx, Opy, and
Opz parallel to the axes Ogu, Ogv, and Ogw respectively. Then, we
define the coordinates (x, y, and z) as being the Cartesian coordinates
of the unrotated system.

Up to now, we have only considered coordinate systems and
nothing has been said concerning the nature of the scattering
particles. The second element to dress the problem is concerned
with the introduction of particles. These particles are such that the
scattering problem they generate can be solved by using separation of
variables in spherical coordinates. They are originally attached to the
frame Opxyz which may be called the (unrotated) particle frame.
When rotating this frame, the particle, which is attached to the frame,
is assumed to follow the rotation of the frame, i.e. the unrotated
particle frame becomes a rotated particle frame.

Let us begin by assuming that the scatterer is a homogeneous
sphere defined by its diameter d and its complex refractive index m
and, for the sake of simplicity, let us assume that the incident beam is
a Gaussian beam or more generally what has been originally called an
axisymmetric light profile [15], and later better studied under the
name of axisymmetric beams [16]. We may then be facing two
different situations. In the first case, the axis Oqw of the illuminating
beam coincides with the axis Opz of the particle frame. In other words,
the center Op of the particle is located on the axis of the beam. This is
called the on-axis case. Otherwise, we are facing the off-axis case. That
these two cases are deeply different may be appreciated by the
following fact. In the on-axis case, it can be demonstrated that the
double set {gn'rv, gnre} of beam shape coefficients reduces to a single
set {g,}, n=1..., of special beam shape coefficients. Accordingly, the
on-axis version of the GLMT becomes much simpler than the off-axis
version. The rotation from Opxyz to OyXjZ does not modify the
scattering phenomena since the rotation of the attached sphere,
which possesses a high degree of symmetry, does not modify the
scattering problem. But it may modify deeply the computations
involved to describe the phenomena. For instance, assume that we
have an on-axis situation with special beam shape coefficients g,.
After the rotation, the center Op of the particle is still located on the
axis of the beam, but the axis Ogw of the illuminating beam does not
coincide any more with the axis, now denoted as 0pZ, of the particle
frame and, as we shall see (in Part II of this series), the description of
the illuminating beam must now been made again in terms of a
double set of beam shape coefficients now denoted as gy, X=TM or
TE. In other words, the rotation of the particle frame induces a more
complicated situation without any benefit since the eventual physical
results have to remain unchanged. Note however that no complica-

tion is generated by the rotation of the particle frame in the case of off-
axis illumination since we need to use g;'-kinds of coefficients in both
the rotated and unrotated systems. A similar discussion could apply to
the case of multilayered spheres [5].

However, let us now consider particles which, in general, do not
possess the property of invariance through rotation, although the
method of separation of variables is still applied to them in spherical
coordinates, e.g. [6], [7]. For being specific, let us more particularly
consider the case of a sphere, with center located at Op, with an
eccentrically located spherical sphere, or inclusion [6]. Let us assume
the simplest situation available, that is to say the case when the center
of the inclusion is located on the axis Opz of the unrotated system. This
may be viewed as a case of parallel illumination since the axis of the
beam Ogw is parallel to (or even coincide with) the axis of the
unrotated system. Now, in contrast, in the rotated system, we are
facing a quite different situation that we may call a situation of oblique
illumination. It is under this name (oblique illumination) that the
topic has been initiated by Han et al. [17,18]. The problem may then be
expressed as the one of the evaluation of beam shape coefficients in
oblique illumination in terms of beam shape coefficients in parallel
illumination, providing a new method of evaluation of beam shape
coefficients.

This paper is the first part of a series of papers. Part I is devoted to
the general formulation and ends with a theorem which shall be used
as a starting point in other subsequent parts. Part II is devoted to
axisymmetric beams (particularly to on-axis axisymmetric beams),
Part Il to special values of Euler angles and Part IV to the case of an
illuminating plane wave. A particular effort in the special cases of
Parts II-IV will be devoted to the derivation of results in compact
forms, rather than in terms of series (for better computer efficiency).

The present Part I is organized as follows. We begin with a few
sections defining preliminary materials required for the sequel.
Section 2 is devoted to vector spherical wave functions (VSWFs).
Section 3 operates a conversion of the description of the incident
fields, from the original Bromwich formulation used when devel-
oping the GLMT stricto sensu to a description in terms of VSWFs.
Section 4 deals with the definition of Euler angles («, 3, and )
allowing one to bring the unrotated system (x, y, and z) to the
rotated system (X, ¥, and Z). Section 5 deals with the rotation of
VSWEFs. Section 6 establishes the main result of the paper, i.e. it
allows one to express the spherical beam shape coefficients in the
rotated system versus those in the unrotated system. Section 7 is a
conclusion in which the main result is expressed as a theorem.
There is also an Appendix A devoted to a technical checking.

2. Vector spherical wave functions (VSWFs)

The vector spherical wave functions (VSWFs) used in this paper
are the same than the ones which have been used in [7], [6], and [19].
They read as:

MY = (—1)" [imzn (kr)iy (cos0) exp(ime)iy—z, (kr)Ty (cosd) exp (im«p)i@]
1)

N = (—1)"’{ w%(kr)ﬂ(cose) exp (imo)i, 2)

l a m 1 .
+ i {5 rzn(kr)] Tp (Cos0) exp (imQ)i,
iml0 m . .

+ o {E rzn(kr)} 10, (€osB) exp (lm@)l@}

in which i, iy, and iy, are standard unit vectors associated with the
coordinates r, 6, and @ respectively of a spherical coordinate system
(r, 6, and @), k is the wave-number in the considered material, z,
designates any spherical Bessel function (¥, j=1, 2, 3, and 4 in the
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Meixner and Schifke notation [20], also denoted jy, yy, h$" and h{
respectively), and ', ;' designate the generalized Legendre func-
tions according to:

P (cos)

T, (cos) = <o

3)

Th(cosh) = —— Py (cosh) (4)

d
e "
in which the associated Legendre functions (often misnamed as
polynomials by physicists) read as:

m d™P,(cos0)

Py (cosb) = (— “dcoso)™ (5)

1)™(sin®)

The VSWFs of Egs. (1) and (2) may be obtained from Stratton ([21],
pp. 414-416) by adding the solutions with a subscript “e” and i times
the solutions with a subscript “0”. They are equal to those denoted M
and N by Stratton, using a more concise notation, without any
subscript or superscript. However, the prefactor (—1)™ does not
appear in Stratton due to the fact that this author uses an alternative
definition of the associated Legendre functions, namely Eq. (5) where
(—1)™is dropped. The functions defined by Egs. (1) and (2) furthermore
agree with the ones used in [22], again modulo (—1)™. Such prefactors
may appear recurrently throughout this paper (and the other papers in
the associated series).

The superscript (j) in Egs. (1) and (2) refers to the spherical Bessel
function to be used. We shall only need ¥{" satisfying:

v, (kr)

k)=, (kr) = = - (6)

in which ¥, designates Ricatti-Bessel functions.
Other classical expressions are recalled:

2
% + | (e k) = " E D g e )
P, ™(cosh) = (—1)"‘M1)’”(cose) (8)
n - n+m! " '
Also, this implies:
P(cost) = (1) 2 (n=lmD! P (cos 9
n (cosB) = (—1) W (cosh) 9)

that is to say we may uniquely define P;'(cosf), Vm € Z. From Egs. (3)
and (4), we deduce that a similar relation also holds for the
generalized Legendre functions m;' and 7y;. Such relations are of
interest because the VSWFs are expressed in terms of P, ', and 17
while field expressions in the Bromwich formalism are expressed in
terms of P, ™ and 7}, Eq. (9), and similar relations, constitute an
improvement with respect to Eq. (12) in [7] and Eq. (13) in [6].

3. Incident fields: conversion from Bromwich formulation
to VSWFs

For the problem under study, we only need to deal with incident
fields. We recall a basic background, extracting relevant information
from [19].

The generalized Lorenz-Mie theory stricto sensu has originally
been developed by using Bromwich scalar potentials Uy and Urg (TM
for Transverse Magnetic and TE for Transverse Electric), for the
incident, the scattered, and the internal (or sphere) waves. When the
Bromwich scalar potentials are known, electric and magnetic fields of
the TM and TE kinds may be obtained by using derivative rules,

namely Eqgs. (10)-(19) in [1]. Furthermore, from the definitions of
the TM and TE waves, we have:

Hr,TM =Eqmx =0 (10)

Total field components are obtained by summing TM- and TE-
components. In the present paper, it is sufficient to consider electric
incident field components. The Bromwich scalar potentials for the
incident wave read as [1]:

. E i +n .
U= 2 X 2 agimaVn(knPy" (cosh) exp (img) (1
i _ Ho < & pwom jm| .
U= 222 3 g V(kPy (cosh) exp (img) (12)

in which the superscript “i” stands for “incident”, gi'x(X=TM,TE) are
the beam shape coefficients, and the coefficients ¢k (“pw” standing
for “plane wave”) are coefficients which appear naturally in the
classical Lorenz-Mie theory (expressed in the Bromwich formulation)
and, for this reason, are isolated [15]. They read as:

n+1 2n+1

Y= %(—i) e (13)

From the expressions for the Bromwich scalar potentials, Eq. (10),
and the rules of derivation of the fields given in Ref. [1], we may obtain
the expressions for the components of the incident electric field. We
may obtain the components of the magnetic field too, but we limit
ourselves to the electric field components which are found to be:

o +n P
E, r;] 3 Fordad e [\If,,(kr) + \Ifn(kr)] P (cos6) exp (im@)
(14)
Bo= B0 5 5 g ke (cost) + mgghe ¥, (k) (cos)] exp(ime)
n=1 m=—
(15)
Efp = iET‘JTé] m:jn [mgnTMIIf (kr)m™ (cos0) + gir W, (kr)Th (cos(-))] exp(imo)

(16)

in which a prime denotes a derivative with respect to the argument.
In terms of VSWFs, the incident field can be expressed as [23]:

+

n

=X Gy Mo (kr) + by N (k)| (17)

In particular, noting that (MS})(kr)), is zero from Eq. (1) and
expressing (Nﬁ,},i(kr))r from Eq. (2), we may express the radial
component E; as:

+

—n

1)"ban(n + 1)j,(kr)P) (cos®)exp(img)  (18)

»‘_.

which must identify with Eq. (14). Using various expressions from
Section 2, this identification allows one to determine b, as:

m—|m| .,
(n m))!' & (19)

b = kEoch" (—1)™(—1) (n—m|)!
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Similarly, working out the component Ej allows one to confirm
Eq. (19) and to evaluate the coefficients a,,, reading as:

MMy —m))

Ay = —ikEgcy” (—1)"(—1) Wgn.m

(20)

Dealing with E’;P does not provide more information, but simply
confirms the expressions found for a,,, and b,;;. We have therefore
established the connection between the beam shape coefficients g’y of
the original formulation of GLMT and the coefficients d,,,, and b, of the
corresponding formulation in terms of VSWFs.

4. Euler angles

The relationship between the unrotated system (x, y, and z) and
the rotated system (%, ¥, and 2) is defined by using Euler angles ¢, £3,
and y as defined by Edmonds [24], and used by Mishchenko et al. [25],
Doicu et al. [23], or Han et al. [17,18]. The definition is as follows.

(i) Afirst rotation, applied to the unrotated system (x, y, and z), by
an angle o (0<a<2m) about the z-axis, brings the unrotated
system to a a-rotated system with Cartesian coordinates (X,
Yoo and zg,).

(ii) A second rotation, applied to the a-rotated system (Xq, Yo, and
Z), by an angle B (0<B<m) about the y,-axis, brings the o-
rotated system to a 3-rotated system with Cartesian coordi-
nates (Xg, yp, and zp).

(iii) A third rotation, applied to the 3-rotated system (xg, y3, and zp),
by an angle y (0 <7y<2m) about the zs-axis, brings the 3-rotated
system to a <y-rotated system (simply called the rotated
system) with Cartesian coordinates (x, y,, and z,) better
denoted as (%, 7, and Z).

All rotations defined above are positive (by definition, a positive
rotation about a given axis is a rotation which would carry a right-
handed screw in the positive direction along that axis).

Let D(c, B, y) be the operator denoting the rotation with Euler
angles (¢, 3, and ) from coordinates X to coordinates X. The inverse
rotation is achieved by undoing successively the rotations associated
with v, 3, and « in that order. Therefore, we have:

D™ (o, p,7y) = D(—, —P. —a). (21)

5. Rotation of VSWFs

In this section, we discuss the rotation of VSWFs (addition theorem
for rotation). Because this issue is central to the present work, we shall
develop it along two approaches and, thereafter, we shall show how
these two approaches agree. By using two approaches, we will obtain
a better understanding of the issue, useful for the sequel.

5.1. First approach, by using Wigner d-functions

The first approach relies on the use of Wigner d-functions,
according to Mishchenko et al. [25]. A part of this section is devoted
to some amount of translations between notations. Indeed, instead of
Eq. (17), Mishchenko et al. used (p. 116):

M=

E — él i (@)t REMp (k) + (By) i REN o (k)] (22)

—n

in which we already introduced a few obvious changes of notations. In
particular, the subscript M is used to avoid any confusion with a,,,, and

bumn in Eq. (17). From Mishchenko et al. [25], Appendix C, with again a
few obvious changes of notations, we have (p. 372):

RgM,,, (kr) = RgM,, (kr, 0, @) = Ypppfin (K1) Cpp (0, 0) (23)
in which:
[ @n+ 1)n—m) 71/2
Ymn = [4nn(n F1)(n + m)! 24
and j,(kr) is defined by Eq. (6). Furthermore:
_ [. Pi(cost). dPy(cosB). T ime
Con(0,0) = [lm o o 1¢]e . (25)

Let us note that the definition of associated Legendre function Py
(cosf) used by Mishchenko et al. [25] is the same as ours, and
therefore simultaneously different from the one used by Stratton [21].
Introducing the generalized Legendre functions m;' and 7, see
Egs. (3) and (4), Eq. (25) may be rewritten as:

Cpn(0, ) = €™ [imﬂ?(cose)ie—Tnm(cose)iw}4 (26)
Inserting Eq. (26) into Eq. (23), we obtain:

REMy (kr) = RgMyyy (kI 0, @) = Yy (kr)e™ [imy! (cost)iy =Ty (cosh)iy .

(27)
Now, from Eq. (1):
M (ke) = (—=1)™j, (kr)e™? [imnnm(cose)ie—Tnm(cose)i@} ) (28)
Hence, from Egs. (27) and (28), we have:
RgM,,, _ , om _ . m|[ @n+ 1)(n—m)! 1/2
IV (=D Ymn = (=1) {4ﬂn(n + (n+ m)!] ' (29)

Similarly, we readily obtain:

RgNmn — Rngl’l
1 1
Nim Min,

(2n + 1)(n—m)! T/z
N

= (—1)m’Ymn = (_1)m 4TTTl(Tl + 1)(” +m

(30)

Still from Mishchenko et al. [25], Appendix C, applying a D(«, 3, y)-
rotation to a system of coordinates x=(r, 6, ¢©) leading to a new
system %= (r, 6, @), the VSWFs, in the version used by Mishchenko

et al., transform according to (again with obvious convenient changes
of notations):

. n
RgMyy (kr8.8) = 3. RgMi (kr, 0, @)D (et o) (31

with a quite similar relation for Ns, namely we could replace M by K in
Eq. (31), with K standing both for M and N.
In agreement with Eq. (21), we conversely have:

n ~ o~
RgM,, (kr,0,0) = s;n RgMy, (kr, G,Q)D?m(—'y,—[i, —a). (32)

In Eq. (31), we have:

D (0t B,Y) = e d (e ™™ (33)
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in which d,,(B) denotes the Wigner d-functions. Mishchenko et al.
[25], Appendix B, provides four different but equivalent ways to
express these functions, according to:

[dh,®)]" = /(n + 5)I(n—s)1(n + m)! (n—m)! (34)
E 2n—20 + s—m . E 20—s + m
2 175 (<:T2s>—o)!(n—m—(ir)1!2()m—s + o)l
[d.3)]% = (=1)""™/(n + s){(n—s)1(n + m)I(n—m)! (35)
) (cosg)s +m+ 20 (sing)%sfmf%
; (=1) ol(n—s—o)l(n—m—0)l(s + m + o)!
[d.@®)]% = (=1)" 5/ (n + s){(n—s)I(n + m)I(n—m)! (36)
E 20—s—m / . E 2n + s + m—20
; (=17 ol ((::izs)—o)!(n(—s:nnzllo)!(o—s—m)!
(3] = (=1 /(n + s)[(n—s)I(n + m)I(n—m)! (37)
<COSE> 2n—20—s + m (SiHE)2U + s—m
o 2 2
; (=1) ol(n—s—o)!l(n + m—o)l(s—m + o)1

Each of these different versions may be processed according to a
certain procedure to be explained below. However, for the sake of
comparison with the second approach explained in the next sub-
section, we remark that Han et al. [17] introduced a function u{%(p3),
which is strictly equal to a Wigner d-function d{%(B) introduced by
Edmonds [24], reading as:

W o [ (048 (n—s)! 11/?
usmu%){m]

2 (nn—Jsr—TJ (n;m > (=)™ (cosg) e (sin %) e
(38)

If we compare the exponents of the functions cos and sin between
Eq. (38) on one hand, and Eqgs. (34)-(37), on the other hand, we see
that u{® () compares favourably with the second version [d%,(53)]*.
Indeed, we have:

[do(3)]® = (=)™ " Sy (39)

For this reason, we proceed further by choosing the second version
in the set of Egs. (34)-(37). We now use Eq. (31) in which we insert
Egs. (33), (35), and (29) to obtain, after a few lines:

(_1)n +m g

(1) 8&) = _qym+ts. 1 (1) —isa  —imy
an(kr.e,cp) ) s:—n( 1) (n—s)! My, (kr,0,@)e ""e

() () ) )

(40)
This may be rewritten as:
M (k. 5.8) = 3 Ghulan P yMY (1,0, ) (41)
in which:
e

=T ) m ) (esB) T (s
(42)

5.2. Second approach

Following Han et al. [17], we write:

(—1)"P]'(cos0)e™ = 3 p(m,s,m)(—1)'P; (cosh )" 43)

S=—-n

p(m,s,m) = (—1)° ’”e"”[ W™ (a4)

(n 4+ m)ln—s)11/2

V@) = {w}l/z % (__l)n—s—(y< n+m ) (45)

(n + m)l(n—m)! n—s—o
(Tl:)_m) (COS%>20 +s+m (Sing) 2n—20—5—m.

Egs. (44) and (45) agree perfectly well with Egs. (3) and (4)
given by Han et al. [17]. There are however small formal differences
between Eq. (43) and Eq. (2) in Han et al. [17], namely concerning
the factors (—1)™ in the Lh.s and (—1)° in the r.h.s. of Eq. (43).
They are due to the fact that Han et al. [17] do not use our definition
of the associated Legendre functions, but the alternative one from
Stratton [21]. Let us note that the Lh.s of Eq. (43) concerns the
unrotated system (angular variables are not tilde-decorated). Also,
the subscript o in the summation of Eq. (45) runs over all values
which make the arguments of the factorials, in the binomials, non-
negative (the same is true for Egs. (34)-(37)).

Han et al. [17] claimed that they derive their formulation from
Edmonds [24]. However, a missprint in Edmonds [24], appearing
in Stein too [26], had to be corrected, namely the terms e*” and e™*
in the r.h.s. of Eq. (44) were erroneously written as e*® and e™”
respectively. It is rather easy to convince the reader that the original
equations in Edmonds [24] are erroneous. Indeed, let us simply
consider a rotation of angle « about the z-axis from Cartesian
coordinates (x, y, and z) with associated spherical coordinates (r, 0,
and @) to an a-rotated system and observe that, under such a
rotation:

P™(cos0)e™® = P (cosh,, e % e™ (46)

explicitly showing that « is associated with m, not with s. Another
problem in Edmonds [24] concerns his equation 4.1.4. Afterward,
using also Egs. 4.1.10, 4.1.12, 4.1.15, we might believe that the Lh.s. of
Eq. (43) concerns a rotated system, in contrast with the fact that it
does concern an unrotated system. The validity of Eq. (43) may be
checked by examining it for various specific values of n and m. The
reader might also refer to a book by Varshalovich et al. [27] and to a
thesis by Guoxia Han [28] agreeing with our Eqs. (43)-(45) that we
use as the starting point for the second approach.

Let us now consider Eq. (43), multiply by z,(kr), as defined after
Egs. (1) and (2), take the gradient, and vectorially multiply on the
right by r. We obtain:

[(—1)'"Vzn(kr)P,T(cose)e“““’] xr (47)
= s:_nnp(m,s,n) [(— )Yz, (kr)PS (cosé)e”sﬂ xr.

In order to interpret this equation, we make a detour relying on
the book by Stratton. Following Stratton [21], p. 415, and recalling
that our Ms are exactly equal to those of Stratton, as pointed out in
Section 2, we introduce the following equation:

MU (k) = Vx(i,U(r) W) = Ly, u(r) (48)



G. Gouesbet et al. / Optics Communications 283 (2010) 3218-3225 3223

in which u(r) is an unknown scalar function of r. We supple-
mented Stratton's equation with subscripts (mn) for the sake of
clarity, although this may be a matter of taste. Also, in Eq. (48),
we have:

. 0V, 10V,,,. 1 0v,,.
Lo = V¥ = =550 75010 i o e 49
v, = (—1)"z,(kr)P™ (cos6)e™? (50)

in which, for the time being, the angular variables 6 and ¢ pertain to
any spherical coordinate system (rotated or unrotated). Now, let us
choose u(r) =r, then from Egs. (48) and (49), and using the definitions
of Egs. (3) and (4), we have:

MY (kr) = Lyyxi,r = V¥, xir =

oV,

or r 0

10w g = | (= 1)"imz, (k)™ (cos6)e™
r 0o

1 0V, 0 —(—=1)"z, (kr)T(cos0)e™?
rsind  do

(=1)"z, (k)™ [imﬂ;” (cosB)ig—Ty (cose)i¢] .

(51)
Using Eqgs. (50) and (51), Eq. (47) is then translated to:
0 kr.6,0) = 3 MY (kr,8,¢ 52

an(<r7 "<‘P) s=n p(m7s7n) sn r7 7(1D - ( )
In particular, we shall need:

M (kr,0,0) = 3 M) (kr,8,¢ 53
mn(kr.0,@) = 2. p(m.s,n)Ms, (kr.0,0). (53)

Having established the rotation transformation for the Ms, we now
deal with the Ns. From Stratton, p. 415, we have:

kNO = v x MY, (54)

for which we provide a direct check in Appendix A. This being done,
we may now return to Egs. (54) and (52), from which we immediately
obtain that the Ms and the Ns satisfy the same transformations under
rotations.

5.3. Agreement between the two approaches
We first recall what we have obtained. On one hand, from Mischenko

et al. [25], we derived Egs. (41) and (42), reading as, after a minor
simplification:

~ n
Mo (kr.8.0) = 30 Gunlet B )M, (kr. 60.0) (55)

Gl oY) = (—1)" (1™ e ™ (1)

b <—1>"(n”_§_”j)) (”;’") (cos g) e (sin 2)2”‘2"‘5‘”’,
(56)

On the other hand, the result of the second approach, following
Han et al. [17], from Egs. (53), (44) and (45), can be conveniently
rewritten as:

M 0.6) = 3 Hyw(e By (K, 8.6) (57)
in which:
Hin(ew ) = (—1)" (e
o S e) )
(58)

We observe that the two approaches invert what is called the
rotated system and what is called the unrotated system. To compare
their results, we shall therefore have to compare, for instance, G,,(c,
B, v) and H;,n(—y,—B,—a). We readily have:

(Tl—S)I —isa —inv
(n—m)! e

2 () (™) (o) R (sin) Bdomsen
(39)

Hy (=Y, =P, —)=(—=1)" *5(=1)" "™

We then observe that G,,,(c, B, y) and Hy,,(—y,—B,—) are equal,
as they should. The other version of this equality is given by:

ann ((X7 B7 ‘Y) = ann(_'y _B7 _a) (60)

in which Hy,, (o, B, v) will be simply denoted as H;,, when there is no
ambiguity, in particular when we do not need to specify the values of
the Euler angles.

6. Transformation of beam shape coefficients through rotations

Using the abbreviated notation H;,,,,, we now express the unrotated

Ms versus the rotated ones as:

n N ~
M (kr.0.9) = 3. Hy My (ke 8.0). (61)
Similarly:
n A o~
Non(kr0.9) = 3. HyNG/ (kr8.0). (62)

Now, we recall Eq. (17)

(@M (kT 0, @) + by Ninh (kT 0,9) . (63)

1 m=-—n

) S:Zr:n H,, [am,,ng (kr, @,@) + b, N (kr, 0, @)]
(64)

We may interchange the names of the summation indices m and s
leading to:

T n 1 m ] (1) Ko~ 1 m] (1) =
E - Z Z Z aSHHSH an (kr‘r 9’ ‘P) + Z bSTlHSTl Nmn (kr’ 67@) ‘
n=1 m=-n =-n s=-—n
(65)
But we may also express the electric field in terms of rotated

quantities, according to:

E=F = nél Zn: . {E,;Mﬁ,l,), (kr,é,@) + b N (kr, 6@)]‘(66)

m=—
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Therefore, from Eqs. (65) and (66):
n
= 2 agHy, (67)
—_— n m
bmn = SZZ;TI bansn' (68)

Finally, we invoke Egs. (19) and (20), introduce the beam shape
coefficients giiyy and gy in the rotated system, and readily obtain:

S m—|m| n S=ISl
g = ("1 2 G S -1 2 S e
(69

in which X is TM or TE.
7. Conclusion

In this paper, we have established the law of transformation of
spherical beam shape coefficients under rotations. The result obtained
may be expressed as a theorem expressed below.

Let x and X be two systems of coordinates, named the unrotated
and the rotated systems, respectively. Let gnx and gy, with X=TM
or TE, be the spherical beam shape coefficients of an arbitrary
shaped beam in the unrotated and in the rotated systems, respec-
tively. Then:

B =t L 128 (70
in which:
m—|m|
oy (n—=m])!
W = (=1)7(=1) —m)l (71)

Hy = (-1 AR (s ) (700) o2)

o

P’ 20+ m+s i [)) 2n—20—m-—s
<COS§ smi

in which (o, 3, y) are Euler angles bringing the unrotated system to
the rotated system.

Appendix A

In this Annex, we provide a direct check of Eq. (54). For convenience,
let us set:

RY =vxmY. (73)

Following Stratton [21], page 52, we have:

o _ 1[0 u 0 ]
Rmn = 75inp L’)e (smean ‘P) do M, 9} (74)
11 0o 00 ]
+ T {%%an,r_ or (ran,gc):| 1y
170 0 .
+ = {ar ( Mg‘m 6) ae Mgnn r:|
in which, from Eq. (1):
MI(T}:I.)H r O
MY = M;%)ne = | (=1)™imz,(kr)n" (cos0)e™ . (75)
Mo —(—=1)"z, (kr)T™ (cosB)e™?

From Egs. (74) and (75), and invoking Eq. (2), we then readily
establish:
Ry, = (V x MY )@ = (—1)'"? {% rzn(kr)} ' (cosB)e™ = kNU
(76)
i -1n"[o
oo = (VxMJ,) = ( r) [Erzn(kr)] (cost)e™ = kND), .

(77)

The derivation for RY),, is a bit more complicated. We begin by
using again Eqs. (74) and (75) to obtain:

. . —1)m
RO, = (Vi) = =Dz ke, 78)
in which:
Apn = 4 in 07" (cosB) —m>mi]" (cosh). (79)

de

We may explicit rewrite A;,,, under the form:

m 2pm m
Ay = cosgPn(cost) éceose) + sing®P "déczose) _m?h "S(icr?;e). (80)
But we readily establish:
dPy'(cosd) . _dP'(cosB)
R Py (81)
d*P™(cosh) dP;(cos0) . 2. d’P™(cosh)
— 1Y = —cosO—2—— + sin"0—"—~ 82
de? deosy TS (d cosb)? (82)

Inserting Eqs. (81) and (82) into Eq. (80), and rearranging, leads

to:
Am _ dP;" (cos) .5 d*P(cosh) 5 P (cosb)
snb — 2c0567dCose + sin” 0 (dcoso)? <in6 (83)

But the associated Legendre functions Pj'(cosf) satisfy an
associated Legendre equation reading as:

% d*Py(cos) dP} (cos) _ m® |
sin (d cosb)? 2 cosB dcosh + |n(n+1) in6 P, (cosb) =0
(84)
Then, from Egs. (83) and (84):
Apn = —n(n + 1)sin Py (cosh). (85)

Inserting Eq. (85) into Eq. (78), and invoking Eq. (2), we finally
obtain:

mn(n + 1)

r 2, (kr)P™ (cos)e™® = kN |

(86)

R = (Vx M) =(=1)

as it should.
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The description of laser beams in spherical coordinates requires the introduction of expansion coefficients
named beam shape coefficients, or more specifically spherical beam shape coefficients. In part I of the
present series of papers, we presented a general formulation for the transformation of spherical beam shape
coefficients through rotations of coordinate systems, taking the form of a theorem of transformation. The
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beams (such as Gaussian beams in an on-axis configuration).
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1. Introduction

The description of laser beams in spherical coordinates under
expanded forms, which may be useful in light scattering theories,
particularly for generalized Lorenz-Mie theories which describe the
interaction between arbitrary shaped beams and regular particles, in
spherical coordinates, e.g. [1-8], requires the evaluation of expansion
coefficients known as beam shape coefficients. For these evaluations,
several methods have been developed and studied, sharing various
degrees of time running efficiency, or of flexibility, namely by using
quadratures [9], finite series [10], localized approximations [11,12], or
by a hybrid method taking advantage of both quadratures and of a
localized approximation, named the integral localized approximation
[13]. The evaluation of beam shape coefficients has also been
investigated by relying on addition theorems for translations of
coordinate systems, an approach originally introduced by Doicu and
Wriedt [14], and also used by Zhang and Han [15]. The present paper
pertains to a series concerning the evaluation of beam shape
coefficients by relying on addition theorems for rotations (not
translations) of coordinate systems, a topic initiated by Han et al
[16,17].
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doi:10.1016/j.0ptcom.2010.04.049

For convenience, in particular to recall some notations, the specific
problem attacked in Gouesbet et al. [18] is briefly stated again. Let us
consider a Cartesian system of coordinates, denoted as x=(x, y, z),
associated with usual spherical coordinates (r, 6, ¢), called the
unrotated system, and let gy, g1z be the beam shape coefficients for
the description of the illuminating beam in this unrotated system. Let
us consider a second system of coordinates, called the rotated system,
deduced from the unrotated system by a rotation defined by Euler
angles (¢, 3, ), defined according to Edmonds [19], as explained in
Part I [18]. Quantities in the rotated system are denoted by using tilde-
decorations. Therefore the Cartesian coordinates of the rotated system
are denoted as X = (%,7,Z) and they are associated with spherical

coordinates (F =r, 6,@) .The beam shape coefficients in the rotated

system are denoted as % 7% . The problem is to express the
beam shape coefficients in the rotated system in terms of beam shape
coefficients in the unrotated system. A general solution to this
problem has been found in Part I [18]. In some cases of significant
importance, the results obtained in Part [ can be further simplified,
possibly receiving compact expressions, allowing one to speed up
numerical computations. In the present Part II, we specify the results
obtained to the case of axisymmetric beams, more particularly to
the case of on-axis axisymmetric beams, such as on-axis Gaussian
beams.

The paper is organized as follows. Section 2 recalls the results
obtained in Part I, forming our starting point for this Part II. Section 3
recalls what are axisymmetric beams, particularly on-axis axisym-
metric beams, and their properties useful for the sequel. Section 4
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deals with the transformation of axisymmetric beams in expanded
forms, while Section 5 deals with the same issue in compact forms. This
Section 5 contains a subsection devoted to beam shape coefficients, in
which the main formal results of the paper are expressed, namely by
Eqs. 98, 99. Section 6 deals with the case when there is no rotation, i.e.
the rotated system identifies with the unrotated system, providing a
checking of our computations. Section 7 provides a discussion of the
significance of the results obtained, and also serves as a conclusion.

2. General solution to the problem of the transformation of beam
shape coefficients

2.1. Beam shape coefficients

In this paper, the beam shape coefficients are defined in the
framework of the Bromwich formulation, as originally done in the
GLMT stricto sensu, e.g. [1,2]. This framework relies on the use of two
Bromwich scalar potentials Ury, and Urg (TM for Transverse Magnetic
and TE for Transverse Electric), for the incident, the scattered, and the
internal (or sphere) waves. When the Bromwich scalar potentials are
known, electric and magnetic fields of the TM and TE kinds may be
obtained by using derivative rules, namely Eqgs. (10)-(19) in [1].The
Bromwich scalar potentials for the incident wave read as [1]:

+

n

. E, =
Um =% 2

n=1

c Vgt (kr)PI™ (cos 0) exp (im©) 1)

HM

i H,
U = & .

> :i g, (k)P (co50) exp (im) @)

u ”

in which the superscript “i” stands for “incident”. Note however that,
in most of the present paper, we do not consider any scattering
particle, that is to say the superscript “i” may rather be viewed as
anticipating our results for use in GLMTs. Also, Ey and Hy are field
strengths, and k is the wave-number in the medium in which the
beam propagates. The coefficients ch" (“pw” standing for “plane
wave”) are coefficients which appear naturally in the classical Lorenz-
Mie theory and, for this reason, are isolated [20]. They read as:

n+1 2n+1
nn+ 1)

G = (=) G3)

==

The functions ¥,(kr) are Ricatti-Bessel functions, which may be
expressed in terms of spherical Bessel functions j,(kr) according to:

Wy (kr) = krjy (kr) (4)

The expressions for the Bromwich scalar potentials also involve
the associated Legendre functions (often misnamed as polynomials by
physicists) reading as (for m non-negative):

P (cos0) = (—1)m(sin9)m% (5)
We also have:

Py (cos0) = (~1)" (T P (coso) (6)
This implies:

Picost) = (—1) 2 LRl coso) 7)

that is to say we may uniquely define P;'(cosf),Yme<Z [18,21].
We may then consider that Egs. (1) and (2) serve as a definition of
the beam shape coefficients gi'x, with X=TM or TE. The relationship

between the scalar Bromwich formulation and a formulation in terms
of vector spherical wave functions (VSWEFs) is discussed elsewhere,
for instance in Part I [18].

2.2. The theorem of transformation

We now know enough to express the theorem of transformation of
beam shape coefficients under rotations of coordinate systems,
established in Part I, reading as follows. Let X and X be two systems
of coordinates, named the unrotated and the rotated systems,
respectively. Let g and gl'y, with X=TM or TE, be the spherical
beam shape coefficients of an arbitrary shaped beam in the unrotated
and in the rotated systems, respectively. Then:

n

T . 3 ®)
in which:

m—|m|
o = (—1)"(=1) 2 IR ©

(n—s)!

20+ m+s 2n—20—m-—s
COS= B sinE
2 2

in which (o, 3, y) are the Euler angles bringing the unrotated system
to the rotated system.

o= 0 G R (1) (757) a0

3. Definition and properties of axisymmetric beams

We are now considering a class of special beams called axisymmetric
beams, discussed by Gouesbet [22], that we begin by briefly reviewing.

Let S be the Poynting vector, with components S,, S,, S, in a
Cartesian coordinate system (x, y, z) with associated spherical
coordinates (r, 6, ¢), and the axis z being taken as the direction of
propagation of the beam. By definition, a beam is said to be generic iff
(iff, ie. if and only if) S,(0=0) is not zero, that is to say iff the
longitudinal component of the Poynting vector along the positive z-
axis is not zero. Only generic beams are considered below.

Furthermore, we define an axisymmetric beam to be a beam for
which S, does not depend on the azimuthal angle ¢, in suitably chosen
coordinate systems. It is then demonstrated that the beam shape
coefficients of a generic axisymmetric beam, when S, does not depend
on @, [22], read as:

g = 0,|m#1 (11)

S = %gn_.';M —iggy = Kgn oTE = ‘% (12)

The reciprocal statement is true. Eq. (12) defines a set {g,} of special
beam shape coefficients g, and shows that the double set {g/, g/} of
beam shape coefficients, with two subscripts (n, m) reduces to a single
set {g,,} with a single coefficient n. The parameter €is equalto —1 (+1)
when the energy flux flows toward positive zs (negative zs). This
parameter is therefore a property of coordinates, not a property of the
beam. The parameter K is a real number and describes the state of
polarization of the beam, with respect to the coordinate system used.
Specifically, if S, is proportional to cos¢, then K= 4= 1. It happens that
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Eq. (12) with (¢, K) = (—1, 4+ 1) is structurally identical with the set of
equations obtained for an on-axis Gaussian beam polarized in the x
direction at its focal waist, namely [1,20,23]:
1 -1 -1 _ &
Zntv = ntm = i8n1E = —i8n, TE 7" (13)
Note however that a beam satisfying Eqs. (11) and (13) is not
necessarily a Gaussian beam. Nevertheless, an axisymmetric beam

satisfying Eqs. (11) and (12) (or more specifically Eq. (13)) is called an
on-axis axisymmetric beam.

4. Transformation of on-axis axisymmetric beams.
Expanded forms

We now examine the theorem of transformation of beam shape
coefficients under rotation when the beam, in the unrotated system, is
an on-axis axisymmetric beam satisfying Egs. (11) and (12), or more
specifically Eq. (13). In this section, we provide the results using
expanded forms, i.e. with series.

From Eq. (8), when Eq. (11) applies, we readily obtain:

o H™,, — HT!
g?)( = p‘mn 1ngn)} + jgrll)( (14)
Ho1n Hin
in which, from Eq. (9):
s (15)
o = m+ 1)
My = —1 (16)

Furthermore, from Eq. (10):

HM = (=1 1%(340‘61”17; (_1)0(n_n1;1_0> (n g 1)
x <cos%> o (sin%) et a7

Now, from Eq. (17), we extract the product of binomials:

_( n—1 n+1 (n—=1)1(n + 1)1
an_(n—m—(f)( o > (n—m—o)l(m+o—-1)lol(n+1-0)!

(18)

The range of o'in Eq. (17) is defined by the fact that the arguments
of the factorials in Eq. (18) should be non-negative. We may then
show that this implies that the range of o depends on m according to:

m=0=0=1,2,...,n

m=jj=1.n=0=01,..n—j (19)
m=—jj=1l.n=0=j+1j+2,..n+1

Similarly:

1)n+1(n m)!

e s 0 () (M) @

[5 20+ m+1 . B’ 2n—20—m—1
X <COS§ smi

HY = (=

with:

m=jj=1.n=0=01,..n—j (21)

m=0=0=0,1,....n—1
m=—jj=1.n=0=j—-1,j,..,n—1

We now insert Egs. (15)-(17) and (20) into Eq. (14), considering
successively the cases m=0, m=j(j=1...n) and m=—j(j=1...n),
introducing explicitly the corresponding ranges of o.

For m =0, we note that o, = 1. Next, we obtain a first summation
for o ranging from 1 to n, and a second summation for o ranging from
0 to (n—1). Setting o=0’+1 in the first summation, both
summations are given the same ranges. Once this is done, we observe
that the products of binomials in the first and in the second
summation are equal. Eventually, we obtain:

gnx = (=1)"nl(n + D! [gxe™ + goxe ]

(—])0 [)) 20+1 . P’ 2n—20—-1
X(;Zo(n o—1)! (n—o)!o!(o+1)!(cosi> (5‘“5)
(22)

For m=j, j=1...n, there are two summations having the same
ranges for 0, and there appear two products of binomials which are
not equal. The result is then readily found to be:

g = Hjn{(—l)” ((:_')'. oY (,Zo (cos%)zuﬂ;1 <sin%)2nizgiji1
X [(—1) ( HE]_10> (n :; 1 ) (sing)ze_i“g,:)} (23)

() (51 (o) e}

For m= —j,j=1...n, we obtain fairly similarly (with a manipulation
on indices of the first summation):

Efk:H—jn{(_”n((Tl]))lew Z (_1)G<C°S%>20_H]
o(smB)" [(—U(n Joma)(633)
x(cos%>2 gy + (nn-:}_lo)(n;]) sm elag'l’x]}

We may afterward further specify Eqs. (22)-(24) to the case of
Eq. (12), and also afterward to the case of Eq. (13). These
specifications are so easy that the corresponding results are not
worth to be given. As a special case of on-axis axisymmetric beams,
we may also consider plane waves obtained by specifying the value of
g, to 1[1], or more generally to a phase term exp(ikzy) which may be
viewed as irrelevant, or absorbed in the field strengths. What is
however remarkable, is that the results obtained in the present
section may be expressed in compact forms.

5. Transformation of on-axis axisymmetric beams. Compact forms

We are going to reach our goal by using, to begin with, preliminary
steps.

5.1. Preliminaries 1

In these first preliminaries, we are going to provide specific
expressions for the two following quantities:

P (cos )

mPi = 2m sinf

(25)
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and:

dP}(cos 3)
dp

Tau = (26)

in which, let us recall, P! denotes the associated Legendre functions of
Egs. (5)-(7). The starting points are recurrence relations given by
Stratton ([24], pages 401-402) rewritten below. It is however
important to note that the definition of associated Legendre functions
given by Stratton differs from ours by a factor (— 1)™. The recurrence
relations are then written as, following closely Stratton, but with a bit
of rearrangement:

PM " YcosB) + (n + m)(n—m + 1)PI ' (cos p) = —2m cot PPY(cos P)

(27)
2—um(cos B) = —cosB[(n + m)(n—m + 1)P™ (cosB) + PI' * ! (cos B)}
sin " " !
+ 2msin BPy (cos P) (28)
dP)'(cosp) . ,dPy(cosp)
—dap —sinf dcosp

= —% [(n + m)(n—m + 1P (cos B)—P; " ' (cos )
(29)

We now insert Eq. (27) into Eq. (28), yielding:

mP,T(cos B) = 2mcosf cot PPy (cosB) + 2msin PPy (cosB)  (30)

Now, from Eq. (27), we have:

(n + m)(n—m + 1P (cosp) = —2mcot PPy (cos B)—PI ' (cosB)
(31)

that we may insert into the third recurrence equation, namely
Eq. (29), to obtain:

dP; (cos B)

g = meot RPI (cosR) + Pp T '(cos ) (32)

Using well known trigonometric relations:

2
cosp = 1—2<sin%) (33)
. B\2
B _ (Sl[‘li)
tanz =2 Snp (34)

Eq. (32) is modified to:

dP,Tchgs B _ mP'Tiicr?éB) — {m tan%P,T(cos B)—PI * T(cosp)| (35)

Let us remark that this equation establishes a relationship between
the two quantities introduced at the beginning of these preliminaries,
in Egs. (25) and (26).

Now, let us consider mPi of Eq. (25) alone. The following
trigonometric relation is valid:

B (sin%)2 + (cos%)2

2
E = (36)

PP
sin5 cosy

from which we manipulate mPi as follows:

2mm — mP™(cosp) (sin%)2 " (cos%>2

sinp . p B

sin’; cos

= mP}}(cosP) {tanE + cotg}

2 2
= {mPrT(cos B) tan% —P" * Y(cos B)}
m B m + 1
+ {mPn (cosp) coti + P, (cos B)} (37)
Let us, for convenience, introduce:

A = mP"(cos p) tan% —P" * T(cosp) (38)
B = mP; (cos B) cot% + Pt cos p) (39)

We can then rewrite our results concerning mPi and Tau as
follows:

Py(cosp) _
amn e =A+B (40)
dPy'(cosp) _ Pp(cosP) , _ B—A

ap =m sinp A_T (41)

5.2. Preliminaries 2

We are now going to complete our evaluations of Eqs. (40) and
(41) by expressing the results in terms of o-summations. Recalling
that Mischenko et al used the same convention as ours for associated
Legendre functions, we have, from Mischenko et al ([25], Appendix,
Eq.B.28):

s (42)

mo(B) =
in which d},0(B) is a Wigner d-function. Among the four expressions
of the Wigner d-functions given by Mischenko et al, we choose B2,
page 362, [25], which furthermore corresponds to the second version
denoted [d%,(B)]> in [18], from which we evaluate di,(3) and
afterward, from Eq. (42), and rearranging, we obtain:

m . n—o (n + m)!n!
Pu(cosB) = 2 (=" = 55m + o)l (n—m—0) 101
. B 2n—m—20 B 20+ m
X <51n§> (cos §> (43)
Next, we have [26]:
Py(— cosp) = Py (cos(m—p)) = (=1)" © "P}(cosP) (44)

Then, from Eq. (43):

P,T(— cos L))) IPLH(COS(T[_E’)) = ; (_l)n_() (n—o) | (nEZ—_i_)')rln(i‘IZ'm—o‘) 10!
B 2n—m—20 . E’ 20+ m
X <COS§> <Sll'1 i) (45)
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Then, from both Eqs. (44) and (45), we obtain another expression
for Py}(cosp):

m N m+ o (n + m)!n!
Pa(cosp) = 3 (—1)" " (n—0)l(m + 0)l(n—m—0)lol

B 2n—m—20 . P’ 20 +m
X(COSE smj

Now, from Eqs. (43) and (46), we may obtain two different
expressions for PT+!(cosB), namely:

(46)

m+ 1 _ _ 4\n—0 (n+m+ 1)In!
P (cosp) = %:( D (n—o)!I(m + 1 + o)!l(n—m—1—o0)lo!
" <Sin%>2n—m—l—20 <COS%>20 +m+1 (47)
and:
m+ 1 _ _qmt1+0 n+m+ 1)In!
Po " (cosp) = 2 (=1) n—o)l(m + 1+ 0)l(n—m—1—0)l0l
" (COS%>2n—m—1—20 <Sin%>z(y +m+1 (48)

We may now invoke Eqgs. (46) and (48) to evaluate the quantity A,
leading to, after a few standard manipulations:

A = mP}}(cos B) tan g—Pf "1 (cosp) (49)

(n+m)l(n+ 1)!
(n—o—1)!I(m + o + 1)!(n—m—o0)!o!

. B 20+ m+1 B 2n—m—1-20
X (smi COSE

=> (-1

We may also invoke Eqs. (43) and (47) to evaluate the quantity B,
leading to, again after a few standard manipulations:

B = mPJ(cos ) cotg + P Y(cosp) (50)
_ n—o (n+mln+ 1!
- §<—1> (n—o—1)I(m + 0 + 1)!(n—m—0)!0!

B 20+ m+ 1 . B 2n—m—1-20
X (COSE Sll’lj

Inserting Eqs. (49) and (50) into Eq. (40), we then have:

omPr(COsB) _ 5~ (n+ ml(n + 1!

sinP 5 (n—o—1)!(m+ o + 1)!(n—m—o0)!o!

20+ m+1 2n—m—1-20
X I:(—l)m_" (sin%) <cos%>

+ (_1)n70 <COS%> 20+ m+ 1 <Sin%>2n—m—l—20:|

(51)

Similarly, from Eq. (41):

dP'(cosp) (n+m)ln+ 1)!
2 i =X

5 (n—o—1)!I(m + o + 1)!(n—m—o)!o!

20+ m+1 2n—m—1-20
x I:(—l)”_" (cos%) (sin%)

meo (. P’ 20+ m+1 B 2n—m—1-20
—(—=1) (smj) (cosj) ]

(52)

5.3. Preliminaries 3

We now deal with the quantities H™ ,,, and HY}, given in Eqs. (17)
and (20). Concerning HY}, of Eq. (20), it may be rewritten as:
HY = (=" " Yn—m)l(n + 1)1e%e™ (53)

B 20+ m+ 1 S B 2n—20—m—1
(COS j) (sm7>

ol(n—m—o)!(n—1-0)!(m+ o + 1)!

% % (_.l)()'

There is however an alternative way soon to be found useful.
Indeed, following Mischenko et al [25], let us recall an expression
already used in Part I [18], namely:

Dl (o, B.y) = e " di (B)e ™ (54)

Now, among the four versions of the Wigner d-functions given by
Mishchenko et al [25], instead of using the second version denoted
[d%,]? in Part I, as we have done above in the second preliminaries, let
us use the fourth version denoted [d%,(B3)]* in Part I, and insert it into
Eq. (54). This leads to:

DL (B, y) = (—1)° e 5% ™ /(n + 5)I(n—s)!(n + m)!(n—m)!

B 2n—20—s + m/ . B 20 + s—m
(COS 7) (Sll‘l 7)
o

ol(n—s—o)l(n + m—o)!(s—m + 0)!

x 2 (=1)
o
(55)
The quantity D%, (o, 3, y) is used to express the transformation of
vector spherical wave functions (VSWFs), from which in Part I we

derived the transformation rule for beam shape coefficients, according
to, following Mischenko et al [18,25]:

n
Ry, (kr.8.5) = 37 RgM (kr 0. €)Dn(ct,B.7) (56)

in which RgM,,, are VSWFs which are related to other VSWFs,
denoted as M{}), used by Stratton [24] and by ourselves in Part I,
according to [18]:

(2n 4+ 1)(n—m)! 1'/2
4nn(n + 1)(n + m)!

Rngn

= (="
My

(57)

We now insert Eq. (55) into Eq. (56), and, by using Eq. (57), we
express the result in terms of M(") instead of RgM. We then obtain a
relation already provided in [18]:

n

Y Ghnlon P, y)MY (kr,6,¢) (58)

S=-—n

M) (kr, 0, (b) =
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in which however the quantity G, is given an alternative form with
respect to [18], namely:

—imy —iso

Grn(e,B,y) = e ™e ™™ (n + m)! (n—s)!

3\ 21—20—s + m/ . \20 + s—m
" (cos %) (sm‘?)
ol(n—s—o0)!(n + m—o)l(s—m + 0)!
(39)

x L (-1)

But the quantity Hyj, involved in the theorem of transformation is
given by [18]:

Hence, we have, from Egs. (59), (60):
HE = (—1)™ * 5e5*e™ (n + )l (n—m)! (61)

B) 2n—20—m + s <SiTl E)ZU + m—s

<2 (=1)° (cos% :

53 ol(n—m—o)l(n + s—o)!l(m—s + o)!

In particular, for s=—1:

H™, = (—=1)" e ™™ (n—1)1(n—m)! (62)

B 2n—20—m—1/ . B 20+ m+1
o (COS j> <Sll’17)
x 2 (—1)

o ol(n—m—o)!(n—1-0)!(m+ 1 + 0)!

The results of Eqs. (53) and (62) may be assembled together as
follows:

HY, | (n—m)!
HM, | & ol(n=m—0)l(n—1-0)!(m + 1 + 0)!
L 20+m+1 2n—20—m—1
(=) (1) 1ei%e™ (cosE> (sinE>
2 2
X
L 2n—20—m—1 20+m+1
(=)™ 1O (n—1)1e ™ (cos E) <sin E)
2 2
(63)
Let us now introduce the following short-hand notations:
G— 1 64
~ ol(n—m—o)l(n—1-0)I(m + 1 + 0)! (64)
20+ m+ 1 2n—-m—1-20
E=(-1)"" (cos%) (sin%) (65)
20+ m+ 1 2n—m—1-20
F=(—-1)""° (sin%) (cos%) (66)
Eq. (63) can then be rewritten as:
HY, —(n=m)! | (n + 1)le®e™E
H",, ; G (n—1)le”"*e™F ©7)
We may also rewrite Eqs. (52) and (51) as:
_ 2 dPy'(cosp) _ —~E—F
Ry = m+mln+1)! dp - Zy G (68)
_ 1 Py(cosPp)  —E+F
Ry (nm+m)ln+ 1)! sinp Z, G (69)

From Eqs. (68) and (69):

E Ry +R

G : 2 : (70)
F R,_R

; c= 22 1 (71)
We now rewrite Eq. (67) as:
m —(n—m)!(n + 1)191'0‘91'"175
= G (72)

How] o —(n—m)!(n—l)!e_io‘eimyg

We may now insert Egs. (70), (71) into Eq. (72), and afterward
invoke Egs. (68), (69), to obtain:

i Pn(cosP) , dPy(cosp)
Hﬁl — (_.1) (n_m)! eim‘y ¢ [m SinP’ dB :|
n(n + 1HH™,, (n+m)! —ia[ Py (cosp) dPy'(cosp)
¢ {’” sinfs dp ]

(73)

that is to say:

HI — (1) (n=m)! iy e [mm! (cos ) + Th'(cos B)]
nm+ HH", | (n + m)!

e " [mm (cos B) Ty (cos 3]

(74)
in which we introduced the generalized Legendre functions reading as:

P (cos 3)

Ty (Cos ) = Sinp (75)
Th(cosP) = dP”g;gSB) (76)

5.4. A complementary approach to compact forms

We are now going to use a complementary approach to reach the
result of Egs. (75), (76). The advantage of this second approach is that
it is more concise than the previous one but with the price to pay that
it is less transparent.

Recalling Eq. (21) in Part one, we take the inverse of Eq. (56),
reading as:

n ~ o~
RgMy, (kr.0.0) = 3°  ReMgy (kr.8.8)D0(—y. —B.—)  (77)
We now use Eq. (54), from which we derive:
Din(—Y, =B, —) = €7 dg, (—R)e™ (78)

and Eq. (57), to obtain:

- {(n—s)! (n+ m)!r/2 (79)

Mon(kr.0.0) = 3 (=" "\ o

S=-—n

xeTe" g, (—p)My (kr,6,0)

We now use a symmetry relation given by Mischenko et al [25],
Appendix B, Eq.B.6, namely:

don(—B) = (—=1)" "dgn(P) (80)
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rearrange, and obtain:

1 n—s)! (n 4+ m)17"2 iy 1

M= 2 [ ] e MG (81)
As in [18], we set:
1 z )

My, = 3 HoMy, (82)

Therefore, from Eqgs. (81) and (82), we have:

1/2 . .
Hm = [(;nﬁs)).%} ee ™ dg (1) (83)
that is to say:
m (n—m)! (n + s)! V2
Hg, = {m (n—s)! } e™e s () (84)

In particular, for s=1:

_ 1/2 ..

We now invoke Eq. B.25, Appendix B, from Mischenko et al [25],
rewritten under the form of two equations reading as:

m

d n 3 n n
s Grs(B) i dhl) = ol (3)—1=S] 0 + 5+ T 1(B)
(86)

d m Scos%
s P =i () = P () + I S T T (3

(87)
We now consider Eq. (86) for s=0, reading as:
d n m
EdmO(B) + o5 snp do(B) = —/n(n + 1)dpy (B (88)
from which we extract:
) =~ [ dhol®) + grhol®)] (89)

We insert this equation into Eq. (85), rearrange, and obtain:

m ]/2 im io d n n
Hiy = (1] e [ dhal®) + gnadia®)]  90)

But we have [25], Appendix B, Eq.B.28:

(n—m)!

mP,Z"(cos B) (91)

;0(5) =

Inserting Eq. (91) into Eq. (90), and invoking the definitions of m};'
and 7" of Egs. (75) and (76), we obtain:

(n—m)!

) e el® [mm; (cos ) + Ty (cos )] (92)

Hiy = (—1)

which identifies with the result involved in Egs. (73) and (74).

We now specify Eq. (84) for s=—1 and obtain:

(n—m)!(n—1)!

o = | | emeed ) ©3)
I+ myl(n + 1)! m(=1

Next, we specify Eq. (87) for s =0, from which we deduce:

n _ 1 d o m
() = s | o®) i ool (94)

Using once more Eq. (91), and the definitions of my and 77, this
equation becomes:

1 (n—m)!

Vi + 1)\ (n+m)!

We now insert Eq. (95) into Eq. (93) and obtain:

-nHB) = i[Th (cosp)—mm;(cos )] (95)

1 (n—m)!

T T mie ¢ R sB)-

HY, = mm, (cosP)]  (96)

agreeing with Eqgs. (73) and (74).
5.5. Beam shape coefficients

From Eqgs. (14), (9) and (74), we may now express the beam shape
coefficients in the rotated system as follows:

— m—jm|
g = (-1 2 e

xem{mnnm(cos B)[ “gux—€“gnx| —Tn (cos B)[ “gnx +elagg'x}}
(97)

This equation may easily be specified in the case of Eq. (12). Let us
better specify it for the more common form of Eq. (13). We then
obtain the beam shape coefficients in the rotated system in terms of
the special beam shape coefficients in the unrotated system, according
to:

—_— m—\m
= ((71:_‘ T:J)).' e™g, [im sin amy (cosp) + cos ath (cos )]

(98)

[

P oimy

——€
)!

g, [im cos amy (cos B)— sin )y (cos B)]

(99)

which can be further specified for the plane wave case by setting
g, =1, or more generally by setting it to a constant phase term of the
form exp(ikzo).

6. On-axis axisymmetric beams. Case without any rotation

Anticipating on Part Il [27] which will be devoted to special values
of Euler angles, we now consider the case of on-axis axisymmetric
beams satisfying Eq. (97) in the case when there is no rotation, that is
to say for the trivial case a ==y =0. Eq. (97) then simplifies to:

— m—|m|

g = (—)" =1y 2 i

(n + m)!

x{ [mmy (B = 0)= 77/ (B = 0)] gy x — [mm

MB=0)+7(B=0)gx}
(100)
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Let us recall Eq. (7). Then, from the definitions of m and 7}, we
derive similar equations reading as:

<m:?moﬂw) :(_1fﬁ;”opﬂmq!<mnfamsm) (o1)
Ty (COSP) (n=m)! \ " 7" cosp)
We may then rewrite Eq. (100) under the following form:

S _qm+1 [—m)’
Gx=(—1) - I+ m)ln—m)!

{ [mm (B = 0) =7 (B = 0) gax — [mm)" B=0) + 71" (& = 0)] gax }
(102)

But, for m>0 and 3— 0 (or ), we have, according to Doicu et al
[28], p 257:

m—1
i (cos g)—»(—l)m%% (g) (103)
m—1
T (cos B)—%—U’"%% @) (104)

in which we incorporate a prefactor (—1)™, absent from Doicu et al
[28], due to a different definition of associated Legendre functions.
These relations may be rewritten as:

im0y — LED™ i mpt ) m
B0 = 5 i = (m—1y1 2 (109
Mmooy — L qym__ (4 [m])! py =t
=0 = D s m =11 \2 1o
We insert Egs. (105) and (106) into Eq. (102), yielding:
T LB\ me 1, m (n=|m])!(n + |m))!
Enx= 3 (i) O N aemim + myigm =ty (107
m -1 m 1
<L)y 1)
We now consider Eq. (107) for m>0, becoming:
/™1 1
Enx = (j) mgnx (108)
from which we deduce:
gr(m>0,m=1,3=0) =0 (109)
T 1
Enx = &nx (110)
Similarly, for m<0, Eq. (107) leads to:
S Byt —1
Enx = (f) mgnx (111)
from which we deduce:
g (m<0.m#—1,3 = 0) = 0 (112)
=1 -1
Enx = &nx (113)

For m=0, Eq. (100) leads to:

0

2hx = 0B = 0) [zt + g1 (114)
Now, we have:

0 _ dP)(cosP) _ dP,(cosp) _ . dP,(cosp)

Tp(CcosP) = & = & = SIHBW (115)

But P,(cosp) is a polynomial of the argument cosp. Therefore, its
derivative with respect to the argument remains finite, and we then
obtain:

(116)

Hence, Eq. (114) becomes:

gx =0 (117)

Then, in this section, we have obtained the following result: if
there is no rotation, the beam shape coefficients of on-axis
axisymmetric beams in the rotated system are equal to those of the
unrotated system. This is actually a rather trivial result. It does not
supplement us with any new knowledge but rather provides a
checking of our computations.

7. Discussion and conclusion

We now discuss the practical significance of the results obtained in
this paper, a discussion which will also serve as a conclusion. To this
purpose, we dress the original problem (transformation of beam
shape coefficients of on-axis axisymmetric beams) with two extra-
elements.

The first element concerns the definition of the unrotated system.
Of course, any system may be taken as being the unrotated system
and, in particular, we are free to invert the role of the unrotated and of
the rotated systems, pretending that the rotated system is now to be
taken as being the unrotated one and vice versa. However, to better
approach the history of GLMTs and some traditional points of view
taken from this history, the unrotated system will be given a specific
definition as follows.

Following the description of coordinate systems given in the Fig. 1
of Gouesbet et al. [1], we consider a Cartesian system of coordinates,
with origin Og and coordinates (u, v, w) attached to the beam under
discussion, now called the illuminating beam. We take the axis Ocw as
being the main axis of propagation of the beam (particularly easy to
define in the present case of axisymmetric beams). Next, we decide to
describe the scattering phenomena by using another Cartesian
coordinate system, with origin Op and coordinates (x,y,z). We
furthermore make the axes Opx, Opy, and Opz parallel to the axes Ogu,
Ocv, and Ogw respectively. Then, we define the coordinates (x, y, z) as
being the Cartesian coordinates of the unrotated system.

Up to now, we have only considered coordinate systems and
nothing has been said concerning the nature of the scattering
particles. The second element to dress the problem is concerned
with the introduction of particles. These particles are such that the
scattering problem they generate can be solved by using separation of
variables in spherical coordinates. They are originally attached to the
frame Opxyz which may be called the (unrotated) particle frame.
When rotating this frame, the particle, which is attached to the frame,
is assumed to follow the rotation of the frame.

Let us begin by assuming that the scatterer is a homogeneous
sphere defined by its diameter d and its complex refractive index m. In
the case of axisymmetric beams (not necessarily on-axis), we may
readily define two different situations. In the first case, the axis Ocw of
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the illuminating beam coincides with the axis Opz of the particle frame
and, therefore, the center Op of the particle is located on the axis of the
beam. This is called the on-axis case. Otherwise, we are facing the off-
axis case. That these two cases are deeply different may be
appreciated by the following fact. In the on-axis case, we know that
the double set {gi'mv, gnre} of beam shape coefficients reduces to a
single set {g,}, n=1...%, of special beam shape coefficients, as the
consequence of Egs. (11) and 12, or 13. Accordingly, the on-axis
version of the GLMT becomes much simpler than the off-axis version.
The rotation from Opxyz to OpX§Z does not modify the scattering
phenomena since the rotation of the attached sphere, which possesses
a high degree of symmetry, does not modify the scattering problem.
But it may modify deeply the computations involved to describe the
phenomena. For instance, in the unrotated system, we only need to
use special beam shape coefficients g, in the on-axis case. After the
rotation, the center Op of the particle is still located on the axis of the
beam, but the axis Ogw of the illuminating beam does not coincide any
more with the axis, now denoted as OpZ, of the particle frame and, as
we have established in this paper, the description of the illuminating
beam must now been made again in terms of a double set of beam
shape coefficients now denoted as gr,’;fvx,X = TM or TE. In other words,
the rotation of the particle frame induces a more complicated
situation without any benefit since the eventual physical results
have to remain unchanged. Note however that no complication is
generated by the rotation of the particle frame in the case of off-axis
illumination since we need to use g;'-kinds of coefficients in both the
rotated and unrotated systems. A similar discussion could apply to the
case of multilayered spheres [3].

However, let us now consider particles which, in general, do not
possess the property of invariance through rotation, although the
method of separation of variables may still be applied to them in
spherical coordinates, e.g. [4,5]. For being specific, let us more
particularly consider the case of a sphere, with center located at Op,
with an eccentrically located spherical sphere, or inclusion [5]. Let us
assume the simplest situation available, that is to say the case when
the center of the inclusion is located on the axis Opz of the unrotated
system. This may be viewed as a case of parallel illumination since the
axis of the beam Ogw is parallel to the axis of the unrotated system.
Now, in contrast, in the rotated system, we are facing a quite different
situation that we may call a situation of oblique illumination. It
is under this name (oblique illumination) that the topic has been

initiated by Han et al [16,17]. The problem may then be expressed as
the one of the evaluation of beam shape coefficients in oblique
illumination in terms of beam shape coefficients in parallel illumina-
tion. The present paper elaborated on a solution to this problem,
discussing it, in the case of on-axis axisymmetric beams. Accordingly,
the main formal results of the paper are Egs. (98), (99).
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1. Introduction

For the sake of convenience, we recall the specific problem which
is studied in this series of papers. Let us consider a Cartesian system of
coordinates, denoted as x=(x,y,z), associated with usual spherical
coordinates (r, 0, ©), called the unrotated system, and let gi'my, g5 be
the beam shape coefficients for the description of the illuminating
beam in this unrotated system. Let us consider a second system of
coordinates, called the rotated system, deduced from the unrotated
system by a rotation defined by Euler angles (¢, 3, y), as defined in
Part I [1]. Quantities in the rotated system are denoted by using tilde-
decorations. Therefore the Cartesian coordinates of the rotated system
are denoted as X=(X,§,Z) and they are associated with spherical
coordinates (7= r,§,¢>).’_@’e beam shape coefficients in the rotated
system are denoted as gy, 81'rz- The problem is to express the beam
shape coefficients in the rotated system in terms of beam shape
coefficients in the unrotated system. A general solution to this
problem has been found in Part I of the present series of papers [1]. It
takes the form of a theorem of transformation from which all
subsequent developments can be derived. In particular, Part II
discussed the special case of axisymmetric beams, particularly of
on-axis axisymmetric beams [2], which are rather common and of
widespread use. The most emblematic example is a Gaussian beam

* Corresponding author.
E-mail address: Gouesbet@coria.fr (G. Gouesbet).

0030-4018/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.0ptcom.2010.04.051

interacting head-on with a spherical particle, as can be described in
some Generalized Lorenz-Mies, e.g. [3-5]. In the present Part III, we
deal with other special cases of Part I, namely when the Euler angles
are given special values, with the aim to provide results in compact
forms. Such compact forms should be useful to speed-up numerical
computations in some privileged configurations.

The paper is organized as follows. Section 2 recalls a basic back-
ground from previous parts [1,2], namely the theorem of transforma-
tion, how to dress the problem (in particular when considering a host
sphere containing an inclusion), and the definition of on-axis
axisymmetric beams. Section 3 deals with the trivial case of no
rotation, when all Euler angles are zero, and constitute a check of the
formulation. Section 4 deals with the case when the inclusion
introduced in the dressed problem is upside-down located. Section 5
deals with the case when the center of the inclusion is located in the
“horizontal plane.” Section 6 deals with the case when the center of the
inclusion is located in the Cartesian vertical planes. Section 7 discusses
the case of a rotation about the vertical axis, and its relationship with
the case when there is no rotation at all. Section 8 is a conclusion.

2. Basic background
2.1. The theorem of transformation

The theorem of transformation, established in Part I [1], reads as
follows. Let x and X be two systems of coordinates, named the
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unrotated and the rotated systems, respectively. Let g/’x and é,f":( with
X=TM or TE, be the spherical beam shape coefficients of an arbitrary
shaped beam in the unrotated and in the rotated systems, respec-
tively. Then:

—— n m
Sux = M 2 g (1)
s=—n My
in which:
gy (n—|m))!
B = (=1)"( Gl @)

(n=ml iagimys, () 3)

ol = 2 -1, 1 5 ) (75 ) (cos) T (sm)
4)

in which (o, B, y) are Euler angles bringing the unrotated system to
the rotated system.

2.2. Dressing the problem

The matter discussed in this paper, more generally in the present
series of papers, just requires us to introduce two coordinate systems,
an unrotated system and a rotated one. To help our mind producing
concrete mental pictures, and to give us the opportunity in the sequel
of this paper to use an extended language, we shall however dress the
problem under discussion with two extra-elements, already exten-
sively introduced in Part I [1], and briefly recalled in this section.

The first element concerns the definition of the unrotated system.
As in the figure 1 of [3], we consider a Cartesian system of coordinates,
with origin O¢ and coordinates (u, v, w). attached to a beam called the
illuminating beam. We take the axis Ocw as being the main axis of
propagation of the beam and we decide to describe the scattering
phenomena by using another Cartesian coordinate, with origin Op and
coordinates (x, y, z). We furthermore make the axes Opx, Opy, Opz
parallel to the axes Ogu, Ogv, Ocw respectively. Then, we define the
coordinates (x, y, z) as being the Cartesian coordinates of the
unrotated system.

The second element to dress the problem is concerned with the
introduction of particles. In this paper, we shall specifically consider
that the particle is a sphere with an eccentrically located spherical
inclusion [6]. It is originally attached to the frame Opxyz which may be
called the (unrotated) particle frame. When rotating this frame, the
particle, which is attached to the frame, is assumed to follow the
rotation of the frame. We also assume that, in the unrotated system,
the center of the inclusion is located on the axis Oz, and the center of
the host sphere is located at the origin Op of coordinates of the particle
frame. The specification of Euler angles is then equivalent to the
specification of the location of the center of the inclusion.

2.3. On-axis axisymmetric beams

We consider beams for which the beam shape coefficients satisfy
the following relations [2,7]:

g,TX = 0,|m|#1 (5)

1 . e 1 g
g:l.TM = RgnJ]'M = _18&11.15 = Rgn.TE = jn (6)

Eq. (6) defines a set {g,} of special beam shape coefficients g, and
shows that the double set {g}'m, gn'7e} of beam shape coefficients, with
two subscripts (n, m) reduces to a single set {g,} with a single

coefficient n. The parameter ¢ is equal to —1 (+ 1) when the energy
flux flows toward positive zs (negative zs). The parameter K is a real
number which describes the state of polarization of the beam. It
happens that Eq. (6) with (¢,K)=(—1, +1) is structurally identical
with the set of equations obtained for an on-axis Gaussian beam
polarized in the x direction at its focal waist, namely [3,8,9]:

1 -1 .1 . —1 &
Enm = Entv = 8n1E = —18n1E = 7” (7)

A beam satisfying Eqs. (5) and (6) (or its special case of Eq. (7)) is
called an on-axis axisymmetric beam.

3. No rotation

The interest of this first special case, in which the Euler angles take
the special values: «==vy=0, is to provide a checking. Indeed, we
should not expect any new physical result from this section because the
rotated beam shape coefficients, in the case of no rotation, must be equal
to the original beam shape coefficients. This will be indeed the case.

We start from Eqs. (1)-(4), expressing the theorem of transfor-
mation, and we are looking for g’y (@« = 3 = y = 0). To this aim, let
us examine the quantity S,(0). This is different from 0 and will then
contribute to Eq. (3) only when the exponent of sin(3/2) is 0, that is to
say when:

o=n-" ;_ o (8)
Hence:

500 = [=10° ("2 ) ("57)] s )
From Egs. (4), (3) and (9), we then have:

Hia=p=y=0= 1 O ([ m 1) (”;S)Ln_m;s

(10)

We then see, from the subscript in the bracketed term, that Hg;,
(=P =1y=0) is zero when m and s do not possess the same parity.
We then have to examine two cases (i) m and s even and (ii) m and s
odd.

In the first case, we set m=2M and s = 2S, and convert Eq. (10) to:

H%V,'n(a=13=v=0)=(—1>"<n_2M)!(—1)”‘M—S(n+2s>< n—28 >

(n—2S)! S—M n—M-—S
(11)
This equation may be rewritten as:
n—2M)!
B =p=y=0 = (-1 * 02
' (12)

(n + 25)!(n—29)!
S—M)I(n + M + S)I(n—M—S)I(M—5)!

From the factorials (S—M)! and (M —S)!, we see that we need
M =S5, and the single contribution, after simplification, is found to be:

Hopn =1 (13)

which, invoking Eq. (1), implies:

o =g (14)



G. Gouesbet et al. / Optics Communications 283 (2010) 3235-3243 3237

as expected. Similarly, in the second case, we set m=2M + 1, observe
that we must have s=2S+ 1, and obtain:

2M 2M
gn,X ol = gn,X ol (15)

again as expected.
4. Inclusion upside-down
4.1. Arbitrary shaped beams

In this section, we let the Euler angle o unspecified and specify the
two other Euler angles as follows:

This is a situation in which the center of the inclusion is still
located on the axis Oz but it has been brought from an upside position
to a downside position. Because cos([3/2) is then equal to 0, the only
term which remains in the summation of Eq. (4) is the one for which:

_m+s

0= )

(17)

From Eq. (3), this implies that Hg; is 0 whenever m and s have
different parities. We then begin by assuming that m and s are even,
and therefore set:

N (18

so that the only term in the S,-summation is for:

o=—-M-S§ (19)
From Eq. (4), we then obtain:

sop=m = (=" () () (20)

becoming:

S B=m=(—1)M""S (n + 25)1(n—25)!

(n—M + S)I(M + S)I(—M—=S)I(n + M—=S)!
(21)

From the two factorials (M +S)! and (—M —S)! in the denomi-
nator, we see that we must have (S+ M) =0, that is to say:

S=-M (22)

This implies that, in the same way that the S,-summation reduces
to a single term, the s-summation of Eq. (1) reduces to a single term
too, the one for which Eq. (22) is satisfied. We therefore have:

g = Fowm pu oo (23)
H_2mn

in which, from Eq. (3), with y=0:

% = (—1)" 2ML o2 (g — ) (24)

(n + 2M)

in which, from Eqgs. (21) and (22), So(B=m) reduces exactly to (1).
From these results, and invoking also Eq. (2), we obtain:

o (n—=[2M)! o n oM _—2m
gn.X - (n_|_2M|)|( 1) e gn,X (25)

simplifying to, whatever M:
gax = (1) Mg 3N (26)

We now deal with the odd case: m=2M + 1, with s =25+ 1. From
Eq. (1), we have:

M+ 1 n H' il s 4

— + 1n

&n.x =Mom + 10 2 —&nx (27)
s=-n,s=25+ 1 Hos + 1n

But, from Eq. (3):

n+1(M=2M—1)! jos + 1)a

Hos' (B =My =0) = (=" " ey Se(B =)
(28)
in which, according to Eq. (4):
of nMts n—s
S(I(B=ﬂ)=2(—1)’( >< >
o n—m-—o (o)
M\20 +m+s, I 2n—20—m—s (29)
(cos) (sin3)
me:2M+1§:25+L0:—m;S:—M—&J
becoming:
n+2S+1 n—25—1
Sp=m=(-1" (TR EN(NET) e
leading to:
M ASH1 (n+2S+ 1) (n—25—1)!
SoB=m=(=1 (n—M + SIS+ M + 1)! (—=M—S—1)I(n—S + M)!
(31)

The factorials (S+M+1)! and (—M —S—1)! in the denominator
imply that we must have:

S=—-M-1 (32)

Therefore, there is only one term remaining in the summation of

Eq. (27), involving H*¥\i 1 .. Also, accounting for Eq. (32), we readily

have, from Eq. (31):
Se(B=m =1 33)

so that we obtain, from Egs. (28) and (33):

M+1 _ a1 (M=2M-D! oM 4
H m—10 = (=1) n+ 2M + 1)1 (34)
Now, Eq. (27) simplifies to:
gt B L e (35)
Hom—1n

We now recall Eq. (2) and obtain:

2M + 1—2M + 1|
_ oM + 1 ST T (n—2M 4 1))!
Wum 4+ 10 = (—1) (-1 2 m (36)
—2M—1—|-2M—-1] | _ |
Wowan= (- 2 MEIEAMEIDL 5,

(n+2M + 1)1
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We then readily establish:

" “RPMANEIZ2M (n—2M + 1)1 (n + 2M + 1))
(n—2M—1)! (n—|—2M—1))!

(38)

_MPmt+an _ (—

R
Mn
Hom—1n

that we examine for M>0 and M<0. In both cases, the result is:

(n+ 2M + 1)!
(n—2M—1)!

Rpw = —

(39)

We afterward insert Eqs. (34) and (39) into (35), leading to:

gil\jl( +1 _ (7]);164(21\/1 + 1>ag;)z<M71 (40)

4.2. On-axis axisymmetric beams

We now specify the results obtained in the previous sub-section to
the case of on-axis axisymmetric beams. Inserting Eq. (5) into
Eqgs. (26) and (40) leads to:

gax =0 (41)
g% "' =0 but for M =0,—1 (42)

We then readily obtain:
gox = (—1)"e gk (43)

gx = (—1)"e%g) (44)

for M=0,—1 respectively. We may then specify these results for
Egs. (6) or (7). Let us do it for Eq. (7). We obtain:

B = (1), (45)
B = (-1 g, (46)
R I (47)
G = o (—1)"e"%, (48)

These relations do not share the same simplicity as the ones
displayed for instance in Eq. (7). In particular, g, / g, is equal

to exp(—2ia) which is different from (1), except for =0, in
contrast with g} m/g.mv ' which in Eq. (7) is always equal to 1.
Nevertheless, from a physical point of view, the value of « is
irrelevant. Indeed, the value =0 defines the same upside-down
physical situation than any other value, and could have been
specified in Eq. (16), in the same way than we have set y equal to
0. For =0 however, the relations above can be pleasantly
summarized as follows:

—_— —

= X - 1
g;,TM = gn,T]M = —igyy = igyr = i(_1)ngn (49)

—_— —

which may be interestingly compared with Eq. (7), or more
interestingly, with Eq. (6). Both equations then formally identify
with (—1)"g, changed to g,, with K= 1, and €= + 1. This value of ¢ is

in agreement with the fact that the case under study makes the beam
flowing toward negative z,s.

As a checking, we should recover these particular results for on-
axis axisymmetric beams from the compact forms obtained for this
case, given in [2], specified for B=m, y=0, reading as:

— m—|m|
g = (" 2 R
x{mnnm(cosﬁ =-1) {efiag,:,)l(—eiagrln,x] (50)

—Th(cospp = —1)[e g, x + €"21x]}

in which m'(cosB) and 7;'(cosB) are the generalized Legendre
functions defined as:

7 (cosp) = %"g’” (51)
T (cos B) = 7(113’2”&;)53) (52)

For convenience, just playing with arguments in a looser way, we
better rewrite Eq. (50) as:

— m—|m|
m_ amt 1, e (M= |m])!
gn.X - ( ]) * ( 1) 2 (n + m>|
x{mml(p = m e g, ke g ] (53)

i 1

—Th(B=m)[e gy + €]}

To deal with this expression, we start with a bit of preparation.
From Doicu et al. [10], p 257, we have, for m>0:

m—1
mn" (6—0, 1) = (—1)"1%—<n_(z1;!’($)_!1)! (g) (54)
m m1l (n+ m)! o\m1
T (0=0,m) = (=1) i(n—m)!(m—l)!(i) (33)

in which the prefactor (—1)™, which does not appear in Doicu et al.
[10], is due to the fact than Doicu et al. used an alternative definition
for the associated Legendre functions. With our convention, let us
recall that these associated Legendre functions may be given a unique
form, whatever meZ, reading as [1]:

m—|m|

(n—[mj)!

=] P (cosb) (56)

Py (cosh) = (—1)

Next, from the definitions of m} and 77}, Eq. (56) implies that,
whatever the value of meZ:

m—|m| .
mmy (cosf) = (—1) 2 %mﬂ'f,ﬂ'(cose) (57)
m M (n—jmp)!
T (cosf) = (—1) 2 WTH (cost) (58)
We now set:
6=mn—p (59)

so that, in the present case where 3=m, we have 6 =0.
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We also have from Doicu et al. [10], p 260:
m (B) = (=1)""my (m—p) (60)
TR =) P (61)

Inserting Eqs. (60) and (61) into Eq. (53), and using Eq. (59), we
obtain:

P — m—|m|

g = (1" 2 e
x{[mm (6 = 0) + 0 = 0)]e g x (62)
+ [Th(6 = 0)—mmy (0 = 0)]e“gy x}

We now introduce Egs. (57) and (58) into Eq. (62) and obtain:

—_—

gix = (=)t =y

o om0

+ [0 = 0)-

(n—jm))! (n—jm)}!

(n+m)! (n—m)!
0))e “gnx (63)

mm;"(6 = 0)] e"“gl,‘x}

)+ (0 =

Eqgs. (54) and (55) then imply that gy is proportional to (6/2)™~
with =0, that is to say, with the case m =0 excluded:

gnx = 0,|m|#1,m#0 (64)
Afterward, from Egs. (54), (55) and (63), we obtain:

g = (e g (65)

ok = (1) gl (66)

that is to say, we have recovered Egs. (43) and (44), as required.
We still have to deal with the case m=0. Specifying Eq. (62) for
this case, we have:

gix = (1" IO = 0)e gk + gy (67)
However, from Eq. (52):
dP (cos®) _ dP,(cos®) _ .  dP,(cosO)
(cosﬂ) a0 = a0 = smOW (68)

But P,(cosf) is a polynomial of the argument cos6. Therefore, its
derivative with respect to the argument remains finite, and we then
obtain:

T,(0=0)=0 (69)
leading to:

0
&ix =0 (70)

so that Eq. (64) can be extended to the case m=0.

5. Inclusion in the horizontal plane

We now consider the case when the Euler angle « is free,
specifying the two other Euler angles to:

B=m/2y=0 (71)

In the dressed problem, with the center of the inclusion in the
unrotated system located on the z-axis, called the vertical axis, Eq. (71)
corresponds to the case when the center of the inclusion is located in
the horizontal plane containing the center of the host sphere.

5.1. Expanded forms: arbitrary shaped beams

We specify Eq. (4) expressing S,(3) for 3=m/2, that is to say for:

cosg = cosg = \/72 = sin% = sing (72)
We then obtain:

Sop=m/2)= 53 (=1 (," 75 ) ("7 73)
This can be rewritten as:

Ss(B=1m/2)= zl—n(n + 5)1(n—s)!T;(n,m,s) (74)

in which:

To(nm,s) = % (=1 (75)

(n—m—o0)l(m + o + s)l(0)!(n—s—0)!

Let us now consider the general result of Eq. (1) in which we insert
the expressions for t,, and L, given by Eq. (2), and the expression for
H¢; given by Eq. (3), all these specified for B=m/2, y=0, with S(3)
available from Egs. (74), (75), eventually leading to:

m—|m| 1
=n/2y=0=(-1)"""(=1) 2 @—|jmD'zx 6
n STl o (n + 5)!(n—s)!

= (n—Is])!

B

TU(n7 m, S)g:l,x

It may be convenient to rewrite this expression as:

S B =1/2y=0)=Al(S, +5, +5_) (77)
in which:

m—|m|
AT = (=1 1) 2 (nfm oy 78)

and Sy (corresponding to the term for s =0), S, (corresponding to the
terms for positive values of s) and S_ (corresponding to the terms for
negative values of s) can be given the following forms:

So = n!T,(n,m,0)gy (79)
S, = 3 € n + 5)ITy(nm,5)g x (80)
s=1
—1 .
S.= L (1™ (n—s)!T,(n,m,s)g; x (81)
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Although a bit contradicting the title of this sub-section, we are
now going to provide an explicit compact expression for T,(n,m,0)
involved in Sy, reading as:

=1’

To(n,m, 0) = % (n—m—o)!(m + o0)lo!l(n—o)! (82)
For this, we recall that we have demonstrated, in [2]:
m _ _q\n1—0O (n + m)!n!
Pr(cosB) = 2 (=1 (= 5)1m + o)l (n—m—0)101
. [5 2n—m—20 B 20 +m (83)
X (sm 5) (cos§>
We specify this equation for 3=m/2 and we obtain:
m 1"
P, (0) = z—n(n + m)!n!T;(n,m,0) (84)
that is to say:
N G VA
To(nvmvo) - (n+m)'n'Pn (O) (85)
But [11]:
P(0) = 0,(n—m)odd
n+m ENT
o) = (1) 2 BEMDU ) even (86)
22 (457!
in which:
nll =135...n
{ (—1ll =1 (87)
We afterward insert Eq. (86) into Eq. (85) to obtain:
T,(n,m,0) = 0, (n—m)odd
__q1\19yn n+m —1\1
To_(n’m.ro) — H# _1) 2 M7(n_m)even
(n + m)in! 2% n—my,
(=)
(88)
Hence, inserting this relation into Eq. (79) we have:
So = 0,(n—m)odd
(= TEM 4 m—1)11 39
= rmiY 2 =m g m—meven (89

22 (M)

Inserting Egs. (78), (80), (81), and (89) into Eq. (77), we may write
our result under the following form:

— m—|m|

gix = (=1)"TM(=1) 2 (n—|m|)!2]—n

X{ (—1)"2" (_1)“;’"(n +m=111 ¢
|

_ 8n.xOpar(2)par(n—

n+m n—m n,XOpar(2)par(n—m)

( ) 22 (M)l 50
n . ’

+ 3 en +s)!To(ﬂ=m»5)gi=X

s=1

b T (1 e )T, (0, m, )

S=-—n

in which par(i) is the parity of i.

5.2. Expanded forms: on-axis axisymmetric beams

In the case of on-axis axisymmetric beams, we may apply Eq. (5) to
Eq. (90) which dramatically simplifies to:

m n+m m;m 1
&ux = (=1 7 N (=1) 2 (n=|m])! 55
x{e(n + 1)1 Ty(n,m, gy x—e (0 + 1)ITy(n.m, —1)g, x|
(91)
We now specify Eq. (91) to Eq. (7). This readily leads to the
following results:

—_— . m—|m|
m _ n m -
gim = (1" T2 (n—jm) g, ©2)

x[Ty(n,m, 1) =T, (n,m, —1)e "]

—_— m—|m|
o + — = (n+ 1!
g = —i(=1)" " "(=1) 2 Wgn (93)

x [Tg(n,m, 1)e® + T, (n,m, —1)e*”°‘]

(n—[m|)!

5.3. Concise form: arbitrary shaped beams

Let us rewrite Eq. (4) under the following form:

e o (n +5)1(n—s)!
SolP) = ; =D (n—m—0)!(s + m + o)lol(n—s—o)! (04)
X <cos§> e (sin %) e

Now, in [1], we have introduced four versions of Wigner d-functions,
following Mishchenko et al. [12]. One of them reads as:

drs(B) = (—1)"*/(n + m)I(n—m)!(n + s)!(n—s)!
(COS%)S + m + 20 (SiTlB> 2n—s—m—20 (95)

Z (_1)().0-!(

5 n—m—o)!l(n—s—o)!(m + s + 0)!

from which we deduce:

Se(B) = (—1)"*°

(n+s)! (n—s)17112 ,
] (96)

We then use Egs. (74) and (96), to obtain:

_ (_1)n + 5211 n _ I
To(m,m,s) = V¥ s)Il(n—s)I(n + m)I(n—m)! dms(ﬁ - 5> ®7

At the present step, the expression for the d-function still however
contains a o-summation, so that the effective gain is not obvious. This
o-summation is simply made explicit when we use the original
notation for S,(3). However, the d-function can also be evaluated by
using a recurrence relation in [12] (Appendix B, p 365) so that Eq. (97)
may actually be viewed as being more efficient than an expanded
form. Nevertheless, we shall not call it a compact form, but a concise
form. Concise forms for beam shape coefficients may afterward been
readily obtained by using Egs. (96), (3), (2) and (1).

5.4. Compact forms: on-axis axisymmetric beams

Genuine compact forms may however been obtained in the case of
on-axis axisymmetric beams, by elaborating more on Eq. (91) which
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involves the quantities T,(n,m,1) and T,(n,m,—1). Indeed, from
Eq. (97):

_ (="t n(p T
Tl 1) = e e (B=3) ©8
B _ (_1)11 + 12n n . E
Tol =1 = =T + i T m)!(n—m)!d’”“”(B_ )
(99)
We insert Egs. (98) and (99) into (91), yielding:
~ m—|m| _ | |
11111 — _1m+1_]T (n ‘m|) (n+1)'
&ux = (D77 (=) Vn=m)I(n + m)I(n—1)! (100)

0= Dabeme (3 D]

We now invoke Eq. (B25), Appendix B, from Mishchenko et al.
[12], rewritten under the form of two equations reading as:

J () + S () =SS ()~ =S T 5 T Ty 1)
(101)
4 - ) = PBan () + i F s F il 1)
dB ms sinB ms - sin[ﬂ ms ms—1
(102)
We specify these equations for s =0 and readily obtain:
n _ -1 i n m
() = s |l + i dhal8)] (103
n . +1 d m o
o B) = s o) ol (104
We insert Eqs. (103) and (104) into Eq. (100), leading to:
— m—|m|
m 1M1\ o (n_|m‘)!
gn,x—{( R N (= IR
io d n n
x[e 2h (o) + sz dhol®)) (105)

d m

—ioe _—1 n n
+e g”*x<d73 mo(ﬁ)_mdmo(ﬁ)ﬂ}ﬁzg

But we have, from Mishchenko et al. [12], Appendix B, Eq. (B.28):

(n—m)!

mP,T (cosB)

dmo(B) = (106)

By using this relation, and the definitions of )} and 7}, Eq. (105)
can be rewritten as:

o m—jm o, _
gix = (=1)"(=1) 2 %
x[eiag;,X(Tnm(COSB) + mmy (cosp) (107)

+ € gux (T (cosp)—mm (cosp)]

[\S}

This may be further simplified. For this, we use Eqgs. (86), (87) and
recall [11]:

0for (n—m)even
L (—1)% (n + m)!1 for(n—mjodd (108)

dPy' (cosp)
[ cos, L_Z LELT

dcosf3

Next, we have:

m _ my — |Pa(cosP) _pm
7 cos],_n = mi0) = [ 00 s =HO (109)
m _m,n _ [dPT(cosP) _ [ ,dPy(cosP)
[Tn(cosf%]ﬁzg—m(m—[7% ]ﬂ;_{ i
_ [dP,f,”(cos[%)}
dcos3 B:g
(110)

Inserting these results into Eq. (107), we obtain the following
beam shape coefficients compact forms:

m—|m| n4m
7 n—m.even) — )"0 2 (-1 T m—{m)(n + m—1)1
' ' ) (n+m)!(7”;m)!

x[e“gnx—e gux]
(111)
nHmtl 1m7‘m‘ 1”"1;1 ! i
—_— —_1\m _ 2 _ 2 — —
Trn-modgy = V"D 2 (2D 2 nim)ln - mo
(n+m)!(T)!

i 1 —ia _—1
Xle gyx—e gn)(]

(112)

These two last equations can readily be specified for Egs. (6) or (7).
Equivalently, we could start from the results obtained for on-axis
axisymmetric beams in Part II 2] and specify them for the case under
study.

6. Inclusion in the Cartesian vertical planes

After having considered the case, call it case H, when the center of
the inclusion is located in the plane xOy (the horizontal plane), we
might naturally consider the cases when the center of the inclusion is
located in what we call in this paper the Cartesian vertical planes,
namely either in the plane yOz (case V1) or in the plane x0z (case V2).
We shall be content with a discussion of the case V1.

According to the definition of Euler angles, we must have 0 <p<m.
Therefore, case V1 requires us to consider two different cases:

(i) a=3m/2, B current, y=0. In this case, the inclusion runs along
a half-circle on the left of the plane (x, z), crossing the negative
y-axis.

(ii) a=m/2, B current, y=0. In this case, the inclusion runs along a
half-circle on the right of the plane (x, z), crossing the positive
y-axis.

We insert Eq. (96) into Eq. (3) to obtain:

— 1/2 . .
HO) = | e (113)
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We now consider the case (i) with a=3m/2 and y= 0. With these
values of the Euler angles, Eq. (113) simplifies to:

(”+”W“mﬂ”%&$) (114)

Hy ) = (-17|

(n—s)!(n + m)!

For case (ii), when a=m/2, y=0, we similarly obtain:

(n + s)"("_m)!} Tam) (115)

%@=%;mmﬂm

These are what we have called concise forms (not compact forms).
Concise expressions for the beam shape coefficients may afterward be
obtained by using Eq. (1).

We now discuss the case of on-axis asymmetric beams, recalling a
compact form obtained in Part II [2] for on-axis axisymmetric beams
in the rotated system:

—_— m—m| ., 1.
mo gy 3 MDY imy
gix = (1" N1 2 gE
x{m (cosp) [e~" gy x—€ gy x| ~Th (cosp) (116)
x[e gy + €“gnx]}
In case (i), Eq. (116) simplifies to:
— m—mf |
m = i(—1 m+ 1 —]T(n ‘m|)
gn,X ( ) ( ) (Tl + m), (]]7)
{mcost) gk -+ 8] cosp g -]
When Eq. (7) is satisfied, this equation leads to:
—_— m—|m|
m ) m+ 1 7(n_|m|)! m
Eny = i(=1)7 7 (=1) 2 CET (cospP)g, (118)
p— m—|m|
m m+ 1 ——= (n—=m)! _n
g = (=1) (=1 2 m"'n (cosP)gy (119)
in agreement with results already obtained in Part II [2].
In case (ii), Eq. (116) simplifies to:
P m—|m| ., |
Ty (n—jm))!
x{mmy (cosp) g x + 8n.x] + Th(cos) g x—8ux] }
Specifying Eq. 7, we then obtain:
— MMl —|m)!
m ) m : m
Zum = i(=1)7(=1) 2 mm"n (cosP)g, (121)
7 S (n—m))!
m m ' m
e = (—1)7(—1) 2 m"'n (cosP)g, (122)

Specifying Eq. (7), we then obtain in: agreement with results
already obtained in Part II [2].

It is worthwhile to note that Egs. (121), (122) agree with
Egs. (118), (119), except for a phase term equal to (—1).

Concerning V2, let us just mention that, due to the constraint
0<pB<m we have to separately consider two cases (i) a=7y=0
(ii) a=m, y=0. The rest is left to the reader.

7. Rotation about the vertical axis

This case corresponds to 3=0, and will allow us an interesting
discussion on physics. With the axis Oz being taken as the vertical axis,
this is a case when the only rotation involved is a rotation about the
vertical axis. We have actually already considered a special case of it,
namely the case of no rotation: = 3=<y=0. We begin by discussing
the relationship between these two special cases.

For =0, Eq. (3) becomes:

(n—m)!

m _ __(_q\n+s isce _imy
Ho(p = 0) = (—1)" " 0= e e™s, 0) (123)
In the case of no rotation, this reduces to:
—m)!
H™ (norotation) = (—1)" ** (31_'?))" S, (0) (124)
that is to say:
_HaB=0) "™ (125)
H{}(no rotation)
In terms of beam shape coefficients, this implies:
—_— . n . m i
Eix(B = 0) = ™ 30 b (RO 1ORAON) s (126)
S=—n “sn
with the reciprocal relation:
m . —im n —isa m(P’ = O) s
g1 (no rotation) = p,.e ™ Y e S”Tgnx (127)
S=-n sn

Nevertheless, for 3=0, any rotation (q, 0, ) is equivalent to a
single rotation I' such as I'= (a+y), that is to say of the kind (0, 0, I').
Starting from Eq. (127) (or 126), we then physically obtain the
interesting relation:

27" (no rotation) = ™ gy (B = 0) (128)

Both kinds of beam shape coefficients are simply related by a phase
factor, involving a single angle of rotation I' around the original z-axis. A
similar discussion is also valid in the special case of on-axis
axisymmetric beams, although in this case only HY}, and H_T}, intervene.

Also, let us extend the discussion by considering a problem dressed
with a spherical inclusion having its center located on the axis Oz.
Then, both cases (no rotation, rotation about the vertical axis) are
equivalent and the phase angle I should be physically irrelevant.

We now mathematically elaborate on these remarks. The issue is
that we should be able to derive Eq. (128) mathematically (and not
physically) from Eq. (127). To this purpose, we start from Eq. (96),
with B=0:

S,(B=0) = (—1y [N o)

(n + m)l(n—m)! (129)

But, from Mischenko et al. [12], Appendix B, p 363, Eq. (B6), we
have:

(B = 0) = By (130
Inserting Eq. (130) into Eq. (129) readily leads to:
SeB=0) = (=1)" " "8y, (131)



G. Gouesbet et al. / Optics Communications 283 (2010) 3235-3243 3243

We now insert Eq. (131) into Eq. (123), yielding:

Hin(B = 0) = e™e™5,, (132)
Similarly, inserting Eq. (131) into Eq. (124), we obtain:
Hi(no rotation) = &, (133)

Inserting Eqgs. (132) and (133) into Eq. (126) and afterward into
Eq. (127), we obtain:

ngx B=0)= et a)gg,lx

—_—

gn'x(no rotation) = gy'y

(134)

(135)

From these two last equations, we recover Eq. (128). Let us remark
also that Eq. (135) is already known to us from the section devoted to
the case of no rotation. It has here been obtained in a way which is
faster, albeit less transparent.

8. Conclusion

This paper pertains to a series devoted to the study of the
transformation of spherical beam shape coefficients under rotations of
coordinate systems, for use in some generalized Lorenz-Mie theories
expressed in terms of spherical coordinates. Such a study provides a
new means to the evaluation of beam shape coefficients of arbitrary
shaped beams. After Part I devoted to the general formulation of the

problem, Part II was devoted to the special case of on-axis
axisymmetric beams. The present Part III investigated special values
of Euler angles, with a special effort due to the search of compact
forms which, presumably, should allow one to speed up the numerical
computations of beam shape coefficients in cases when such compact
forms have been obtained. The formal manipulations involved in this
search also allow one to deepen our understanding of the mathemat-
ics and physics involved in the issue. Part IV will be devoted to a
specific study of plane waves in unrotated and rotated systems.
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1. Introduction

This paper is the fourth one of a series of papers devoted to the
study of the transformation of beam shape coefficients, under the
rotation of coordinate systems. These coefficients are required to
express the electromagnetic fields of laser beams in expanded form,
and therefore play an essential role in generalized Lorenz-Mie
theories describing the interaction between electromagnetic arbitrary
shaped beams and some regular particles. The specific problem under
study in this series may be recalled as follows. Let us consider a
Cartesian system of coordinates, denoted as x=(x, y, z), with
spherical coordinates (r, 6, ¢), called the unrotated system, and let
gitvs e be the beam shape coefficients for the description of the
illuminating beam in this unrotated system. Let us consider a second
system of coordinates, called the rotated system, deduced from the
unrotated system by a rotation defined by Euler angles (o, 3, y),
defined as in [1]. Quantities in the rotated system are denoted by
using tilde-decorations. Therefore the Cartesian coordinates of the
rotated system are denoted as X= (%, ¥, Z), with spherical coordinates
(f=r, 6, ¢). The beam shape coefficients in the rotated system are
denoted as gy, &ire- The problem is to express the beam shape
coefficients in the rotated system in terms of beam shape coefficients
in the unrotated system. A general solution to this problem has been
found in Part I of the present series of papers [1]. Part Il discussed the

* Corresponding author.
E-mail address: Gouesbet@coria.fr (G. Gouesbet).

0030-4018/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.0ptcom.2010.04.053

special case of on-axis axisymmetric beams [2]. In Part IIl 3], we dealt
with the case when the Euler angles are given special values. With this
Part IV we return to plane waves, viewed as special cases of on-
axisymmetric beams described in Part II. One of the unexpected
results of this paper is that these plane waves, in general, i.e. in the
case of oblique illumination, requires the use of beam shape
coefficients, exactly as in the case of arbitrary shaped beams. This
means that they have to be expressed in a framework pertaining to
generalized Lorenz-Mie theories.

The paper is organized as follows. Section 2 recalls a few
miscellaneous basic ingredients required for the sequel, namely the
definition of beam shape coefficients, with some basic mathematical
expressions, the definition of on-axis axysimmetric beams, the
expressions of electric and fields components in the rotated system,
the expressions of electric and magnetic fields in the unrotated system
for on-axis axisymmetric beams, various expressions for plane waves
under expanded and non-expanded (compact) forms. Section 3 deals
with a plane wave in the unrotated system. Section 4 similarly
discusses the much more difficult case of plane waves in the rotated
system. Section 5 provides a discussion which will also serve as a
conclusion.

2. Basic ingredients
2.1. Beam shape coefficients

In this paper, the beam shape coefficients are defined in the
framework of the Bromwich formulation, as originally done in the
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GLMT stricto sensu, e.g. [4,5]. The incident field is expressed by two
Bromwich scalar potentials Uty and Utg (TM for Transverse Magnetic
and TE for Transverse Electric), reading as [4]:

) ® +n
Uy = % Y X g (kr)P," (cosh) exp (ime) 1)
n=1 m=-n
i Ho < & pwom Im| .
Ure = 3 Z] mZ G Zn1eWn(kr)Py™ (cos 0) exp (imo) (2)
n= =-

in which the superscript “i” stands for “incident”. Also, Eg and Hq are
field strengths, and k is the wave-number in the medium in which
the beam propagates. The coefficients ch" (“pw” standing for “plane
wave”) are coefficients which appear naturally in the classical
Lorenz-Mie theory and, for this reason, are isolated [6]. They read
as:

1, . 2n + 1
pw___n+1
@ = 0 amE @)

The functions ¥, (kr) are Ricatti-Bessel functions, which may be
expressed in terms of spherical Bessel functions j,(kr) according to:

W, (kr) = krj,(kr) (4)

Let us recall, for further use, that the spherical Bessel functions
satisfy:

d2

{— + I<2} (1 (kry) = " 1)

ar? Jn(kr) (5)

The expressions for the Bromwich scalar potentials also involve
the associated Legendre functions defined as (for m non-
negative):

. d™P,(cos )
m ___q\m m n

P, (cos0) = (—1) (sin6) “dcos0y (6)
in which P,'s are Legendre polynomials. They may be uniquely
defined, Vm Z, according to [1]:

m—|m| (

n—|mj)

PM(cos®) = (—1) (n_m)!! PI" (cos ) (7)

We may then consider that Eqs. (1) and (2) serve as a definition of
the beam shape coefficients gy, with X=TM or TE. The relationship
between the scalar Bromwich formulation and a formulation in terms
of vector spherical wave functions (VSWFs) is discussed elsewhere,
for instance in Part I [1].

2.2. Beam shape coefficients for on-axis axisymmetric beams and plane
waves

On-axis axisymmetric beams satisfy the following relations [2,7]:

Znx = 0,[m|#1 (8)
R U RS TR (S B -
Envm = Rgn,TM = 1&gy = Rgn,TE =5 9)

Eq. (9) defines a set {g,} of special beam shape coefficients g, and
shows that the double set {g'r\, gnre} of beam shape coefficients, with
two subscripts (n, m) reduces to a single set {g,,} with a single coefficient
n. It happens that Eq. (9) with (¢, K) = (—1, + 1) is structurally identical

with the set of equations obtained for an on-axis Gaussian beam
polarized in the x direction at its focal waist [4,6,8]. We then have:

1 -1 .1 . —1 &
8utm = &ntm = 8n1e = —i8u1E = 7" (10)

The case of on-axis axisymmetric beams is assumed to hold for the
unrotated system (before applying Euler angles (¢, B, )). In the
rotated system, the special beam shape coefficients g, of Egs. (9) and
(10), give birth to a new set of beam shape coefficients {%,@?{E’}
We then have the following relationships [2]:

m—m| ., .
g = (11 2 (e, )

[imsinoum; (cosP) + cos oty (cosP)]

m—|m|

(n—=[mN! imy
(n + m)!

[im cos amy (cos ) — sin oty (cos PB)]

M _qym+ 1,
g = (=" =) & 12

in which ;' and 717 are generalized Legendre functions reading as:

Ty (cos ) = %OEB) (13)
Th(cosp) = dP”g;SSB) (14)

Let us now assume that we are dealing with plane waves. Then, the
special beam shape coefficients g, may be taken equal to 1 or, more
generally, are equal to phase factors of the form exp(ikzy).e.g. [4,6]. In
any case, they are constant terms which do not depend any more on
the subscript n. Therefore, we may make the change: gn— g.

Furthermore, from Eq. (7), we have:

m m—|m [m]
<ﬂ;(cos{5)> — ™ (n—|m))! (nn (COSB)) (15)
Tn

(cosP) (n=m)! \ 7 cosp)

Inserting Eq. (15) into Eq. (11), we obtain, for a plane wave:

[(n=Im!)* iy

gnmn = 81" S T (16)

imsinamn™ (cosp) 4+ cos ot/ (cos B)]
But we have:

[(n—|m])!]?
(n + m)l(n—m)!

~ (n—jm))!
= m|! an

Hence, Eq. (16) simplifies to:

P — — | .

T _ gy (nImD! iy

&nm = &( )(n+|m|)! a8)

[im sinam) (cosB) + cosaTh(cosp)

Similarly, Eq. (12) becomes:

m+1 (=Ml iy
(n+ m|)! (19)

im cos an,‘f" (cosP)— sin orr‘,;m (cos [5)]

gg?TE =g(—1)

Egs. (18) and (19) exhibit a somewhat unexpected result announced
in the Introduction, namely that, in general, the description of the plane
wave in the rotated system requires the use of beam shape coefficients
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(adouble set of beam shape coefficients), as for arbitrary shaped beams,
in contrast with the easy degenerated description in the unrotated
system.

2.3. Electric and magnetic fields in the rotated system

The electric and magnetic fields, in expanded forms, in the rotated
system are exactly the ones obtained in the general framework of
spherical GLMTs, although, from a notational point of view, the beam
shape coefficients are tilde-decorated in the rotated system. Relevant
references are [4] and [9]. The most efficient one is [10]. Electric field
components are also explicitly given in [11].The expressions read as:

o

. n _
E, = kE, n§1 m:Z_n A grtm [\If,,(kr) + W, (kr)| P™ (cosB)e™  (20)

P (gt U (kr)T (cos 0) (21)

+ mgnTE\If (kr)m™ (cos 6))e™?

A
g=m0y y

' n=1 m=-n

" Mg W, (kr)m (cos 8) (22)
+ g Wy (kr)Ty" (cos 0)]e™?

i bl n "
H =kHy, Y X cPWg,TTE[ " (kr) + W, (kr)| P (cos 0)e™  (23)
n=1 m=-—n

Hy= "0 5 3 [ gl W, (k)i (cos6) g W, (kr)m” (cos)| ™
n=1 m=-n
(24)
. iH, = — — .
H, = T"ﬁzl m;_n f {mg,TTE\Ifn(kr)n‘,;"‘(cos6)—gZi’TM\Ifn(kr)Tlf”(cosé))]e’m‘p

(25)

in which the tilde-decorated beam shape coefficients gy are ex-
pressed by Eqs. (11) and (12) in terms of special beam shape
coefficients g, when the beam in the unrotated system is an on-axis
axisymmetric beam, and by Eqgs. (18) and (19) in terms of a
degenerated special beam shape coefficient g when the beam in the
unrotated system is a plane wave. The other quantities in the set of
equations have been defined previously, see Egs. (3), (4), (6), (13)
and (14).

2.4. Electric and magnetic fields in the unrotated system

For the time being, we assume that the beam in the unrotated
system is an on-axis axisymmetric beam, expressed in terms of special
beam shape coefficients g, (not tilde-decorated) satisfying Eq. (10).
The electric and magnetic field components may then have been
derived from Eqgs. (20)-(25) above (tilde-decorations removed), and
are also available from elsewhere, e.g. [7]. They read as:

E =

E7°cos<p > Agn(n + 1)j,(kr)P)(cos6) (26)
n=1

i _ E 2 pw,_ [drja(kr)
E, = ?coscpngl -

T,(cos 0) —ikrj, (kr)m, (cos 6)} (27)

_Ey . = pw [drj,(kr)
o TSll‘l(pn;] fot gn{ ar

T, (cos 0)—ikrj, (kr)T,(cos e)} (28)

Hi = %simp > HVg.n(n + 1)'n(kr)P,}, (cos0) (29)
n=1

H drj, (kr
H smcpZ b gn{ ]d(r )

T, (cos 0)—ikrj, (kr)m,(cos 9)} (30)

i
H‘P

H sl w_ [drj, (kr
= 7°coscp Zl c gn{ n )nn
n=

ar (cos 0)—ikrj,, (kr)T,(cos 9)} (31)

in which m,=n} and 7, =1L
Let us remark that these expressions satisfy:

Ei Eg _ Eycoso

Hi ~ Hi ~ H,sing (32)
Ei .

o _ _ Egsing (33)

Hj, H, cos¢

These relations however are not valid in the general case (in
particular in the rotated system).

2.5. Plane wave expressions

Here is an expression for the expansion of a general plane wave
el r12]:

" = 4n Z Y (0,000 1) (34)

n*O m=-—n

in which the star denotes a complex conjugation, 6y, ¢, denote polar
angles in the wave-number space, Y;"'s are spherical harmonics, and:

\[ Kjn (kr)Y, (35)

are free spherical waves.
Eq. (34) can be rewritten as:

@l<nm

n

=4n Y. Y 1 (kn)Yy (@)Y, (0.9) (36)
n=0 m=-—n
Rather than e ¥, we shall actually need e~ ¥, reading as:
. « n
e kT = 4ﬂn§0 m:Z_ (=) (kr)Yy (0,01 Yn (0.0) 37)

In the same way that there is a unique form to express P, Vm Z,
there is a unique form to express the spherical harmonics, reading as:

mom 21 4 1
Vi) = (-1 2L [

—|m])! pmi

CERLL (cos®)e™ (38)

that can be established from the unique form for P} together with the
definition of the spherical harmonics.
Inserting Eq. (38) into Eq. (37), we obtain:

(=MD )i (cos 0PI (cos )™ e ™

—xk r__ - 1
o -+ )i
(39)

=0 mffn

(2n+1)

For further use, it is convenient to make a change of subscript
(m——m) leading to:

J, (kr)P™ (cos 6, )PI™ (cos 0)e ™™™

(40)

—ikr_ v+ u an (n—|mf)!
e =3 ;ﬁn(—l) (2n+1)7(n D!

It is important to remark, for further use, that the term (n=0) in
this summation is equal to jo(kr) =sin(kr)/(kr), see [13], i.e. does not
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depend on any angular coordinate. Therefore, it does not play any role
in any derivation with respect to an angular variable.

We shall also need another form for exp(—ik-r), i.e. a non-
expanded one. Let us set:

k= (kx,ky,k ) (41)

in Cartesian coordinates in the wave-number space and, in spherical
coordinates in the wave-number space:

k= (k8.@) = (kBvi) (42)

in which we have conveniently introduced, for further use, the change
of variables: 6, — 3, O — Vi.

We have:
k, = ksincosy, (43)
k, = ksinf siny,
k, = kcosp

In the physical space, we have:

X = rsinfcos¢@ (44)
y =rsin@sin@
zZ=rcosH
So that:
e T — exp{—ikr[sin P sin 6(cosy, cos © + siny, sin@) + cosfcos 0]}
(45)

Furthermore, with the change of notations just introduced above,
and isolating the (n=0)-term, Eq. (40) becomes:

okt _ sin kr (46)

—i)"(2n + 1)% jn(kr)

PI™ (cosp)PI™ (cosh)e ™ ™ke™?

As an interesting special case, we may consider Eq. (45) for 3=0.
We then have [14]:

emikreost — 5™ (—iy"(2n + 1)j,(kr)P,(cos6)
n_Ok ) (47)
512 T+ % (—0)"@2n + 1)j,(kr)P, (cos®)
n=1
which can also be rewritten as:
o ikreost _ Z cn(n + 1)ikj,(kr)P,(cos0) (48)

in which we have used Eq. (3).
3. Plane wave in the unrotated system
3.1. Compact forms
In the unrotated system x = (x, y, z) with spherical coordinates (r,
0, ©), we consider a plane wave. This plane wave, and many

expressions below, can be obtained from a Gaussian beam with a
beam radius going to infinite studied in [8,15].

In Cartesian coordinates, the plane wave is described by the
following relations:

Ei=Ee ™ H,=0
E,=0  H,=Hpe ™ (49)
E=0 H =0

in which Hy/E, is a certain physical constant that we do not need to
define (see [15]).

The components in spherical coordinates then read as, in compact
forms:

E. = E, cos @sin e % (50)
| — E,cosocosfe”

E(Ia EO © 0 ikr cos6 51

E, = —E,singe " (52)

H! = H, sin@sin e« (53)

sin @ cos Be

He HO 0 0 —ikr cosf 54

Hi —H —ikrcosf 55
o = Hg cosge (55)

3.2. Expanded forms

The corresponding expanded forms are given by Eqs. (38)-(43) in
[15], with the proviso that we have to replace the special beam shape
coefficients g, by a constant g, i.e. a constant phase term of the form
exp(ikzo) that we may conveniently take equal to 1, or absorb in Eg
and Hy. From Eqgs. (38)-(43) in [15], and using also Egs. (3) and (5),
the expanded forms can be rewritten as:

E, = E—cosgo > n(n + 1)j,(kr)P)(cos6) (56)

n=1

E, = E—coscp Z v {dr]z(rk )

T,(cos0)—ikrj, (kr)m,(cos 6)} (57)

E. = —E—sm(p Y v {% n(cose)—ikrjn(kr)rn(cos6)] (58)
n=1
Hi* = ?singo > Hnm + 1)'n(kr)P,1(cose) (59)
n=1

H), = H—sm@ > {drjd(rkr)

n=1

T, (cos 0)—ikrj, (kr)m, (cos 6)} (60)

i
HL,.

_ Hy = pw [drjy (kr)
= Tcoscpngl fot { ar

nn(cos9)—ikrjn(kr)1’n(cose)} (61)

Egs. (56)-(61) are, coherently, special cases of Egs. (26)-(31) with
gn— 1. Also, we used a star subscript to distinguish compact and
expanded forms. Due to the coherence of the Bromwich formalism
and to the fact that plane waves exactly satisfy Maxwell's equations
(which is generically not the case for the description of arbitrary
shaped beams, e.g. [15]), corresponding compact and expanded forms
must be strictly equal. This is most easy to demonstrate for radial
components (the privileged ones since they are sufficient to
determine the beam shape coefficients, e.g. [4]), but more tricky for
angular components, as we are going to see. The sequel of this section
will also provide us with a training for the more complicated case of
fields in the rotated system.
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3.3. Equality between compact and expanded radial components

For the radial electric component, let us start from Eq. (56). We
then use P1=dP,/d6, Eqs. (3) and (47) to readily establish:

i —iF, d
E, = Trocoscp%e

— ik cosd o ikrcosd _ i
1ot — Ey cos @sinfe Y = E, (62)

as it should.

Similarly, starting from Eq. (59), we readily establish:

—tHo i 2e
kr ‘Pae

_ Cireoss L _
H. = #rest = Hy singsin e " = H (63)

3.4. Equality between compact and expanded angular components
Let us now consider the electric f~component. We must have:
By, = Ey (64)

that is to say, from Egs. (57) and (51):

n21 a dr]"d(rkr) T,,(cos) —ikrj, (kr)m,(cos0)| = rcosfe ¥ (65)
To prove this equality, we use a technique similar to the one
previously invented in [15]. Let us rewrite Eq. (65) under the form:

Ay + By =R, (66)
in which:

Ay = né o drjfj(rkr) 7, (cos®) (67)
By = —ikrnijl i, (kr)m, (cos6) (68)
R, = rcosfe kreos® (69)

Now, we derive A, with respect to r, and use Eq. (5), yielding:

Ay _ i cﬁ""M]’n(kr)ﬂl(cose)—k2 i crj, (kr)T,(cos8)
n=1

=
(70)

In the first term of the r.h.s., we express 7, versus P,, according to
To=dP}/d0=d?P,/d#? invoke Eq. (48) and obtain:

Ay _ laie*”“wse_kz 3 "1, (kr)T,(cos 0) (71)
or ikr 062 n=1 0" !

Deriving again with respect to r, we obtain:

9%A 10108 i
er — @@;Wﬁ’ iki cos()_kZAe (72)

This implies:

2 .
<% + kz)Ae = (ik + k’r cos 0—2ik cos> 6—k*r cos’ 6) e kreost 73y

For By, we derive it immediately twice with respect to r, use Eq. (5),
express 1, versus P} and afterward P}, versus P,, invoke Eq. (48), and

obtain:

2 .
(;7 + kz)B6 = —ike Hros? (74)

For Ry, we readily have:

2 .
(aa—z + k2>Re = —kcos()(—kr + 2icosh + krcos® e)e_""mse (75)
.

Next, from Eqgs. (73), (74), and (75), we may check that:

2
a— + K

57 1| (A + By—Ry) =0 (76)

We therefore have:
Ay +By =Ry + F (77)
in which Fy=F(r, 0) satisfies the following differential equation:

aZ
(W + 1<2)F(r,e) =0 (78)

The general solution of Eq. (78) reads as:
F(r,0) = C(8) coskr + S(8) sinkr (79)

Eq. (77) may therefore be rewritten as:

é}l v dng(rkr) T, (cos 0) —ikrj, (kr)m, (cos 0) 0)

= rcose %% 4 C(0) coskr + S(0) sinkr

We are now going to prove that C(0)=S(0)=0, therefore
establishing the validity of Eq. (65). We begin by considering the
limit of Eq. (80) when (kr) =0. We have the fact that [13,16]:

Jn(0)=0n>0 (81)

Furthermore, the derivatives of j,(kr) with respect to (kr) are
finite. Therefore:

{drjzl (rkr)} r

= [ty + 19 =0 =on>0 (52

=0
Then, for r=0, Eq. (80) implies:
c® =0 (83)

To deal with S(6), we derive Eq. (80) with respect to r, take
advantage of our previous result of Eq. (83), and obtain:

o 2 .
> v a0, () - (cose)—idr]:i(kr) ,,(cos0)

n=1 darr " r (84)

= €080 ikreosd (1 _jkr cos ) + kS() coskr
We afterward use Eq. (5) rewritten under the form:

drj(kr)  nn+1), .
é’;g ): (kr )]n(kr)—kr]n(kr) (85)
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and substitute it into Eq. (84). The L.h.s of the obtained result reads as:

LHS = éjl cﬁw{ {w —kr]jn(kr)'rn(cose)—i[jn(kr) + rdj,b(fr)} nn(cose)}
(86)
becoming, for r=0:
d nn+1),
(LHS);—p = X " [% Jn(kr)T,(cos e)} (87)
n=1 KT r=0
We express T, versus P, invoke Eq. (48), and obtain:
—i az —ikrcos 6
LHS)._y = | 5—=>¢€
(LHS)r=o L@raez B
r=0
_ ;1 . _ 2 —ikr cos 6 88
=% {[cose kr + kr cos B}e }r:O (88)
__coso

Tk

This is to be compared with the r.h.s. of Eq. (84), for r =0, reading

as:

RHS = ? + kS(6) (89)
Hence:

S0) =0 (90)

so that we are done. The electric o-component would be treated quite
similarly. And, for magnetic field components, it is easy to show that
the problems they raise are equivalent to the ones solved for the
electric components.

We end this section with a remark on strategy: in the case of radial
components, we have been able to go from a known expanded form to
a compact form, without the need to know the compact form.
Conversely, in what we have done above for the angular components,
we have shown the validity of equations relating an expanded form
and a compact one, both forms having to be known. This difference of
strategy is to be kept in mind because it will be preserved in the next
section.

4. Plane wave in the rotated system

We now examine the plane wave in the rotated system. Insofar as
there will not be any ambiguity, we conveniently omit the tilde-
decorations. We essentially follow the same line of exposition than in
the previous section, but are dealing with more complicated
calculations which, most often, should better be made by using a
symbolic computation software. In the previous section, computa-
tions could be hand-made, serving as exercises for the present section,
beside its own interest.

4.1. Compact forms

In the original unrotated system, the field components given by
Eq. (49) may be rewritten as:

E = Epe ™"x (91)
i —ik-r
H =Hpe "y (92)

in which x and y are unit vectors along the x- and y-directions of the
unrotated Cartesian system (x, y, z). Also, note that k- r is an invariant

(a scalar product) whose expression in the unrotated system is kz but
which is now convenient to express in its invariant form.

After the first rotation by an angle « (revise the definition of Euler
angles in [1]), the vector X is transformed as:

X = COS Xy, — Sinay, (93)
in which x,, and y,, are unit vectors along the x,- and y,-directions of
the Cartesian coordinate system (X,, Vo Zo) generated by the a-

rotation. Inserting Eq. (93) into Eq. (91), the electric field becomes:

ik-r

E' = E,(cosox —sinay,)e 94
0 (64 4

Carrying out the second rotation with an angle (3, the unit vectors
X, and y,, are transformed according to:

Xy = COSPxy + sinPz, (95)
Yo =¥ (96)

in which X4, Ya, and z,, are unit vectors defined in the now obvious
way. The electric field now reads as:

E' =E X, +Ey, +E 2 (97)

in which:

E,, = Egcosacospe ™" (98)

E}",“ = —E,sinae ** (99)

E. = E,cosasinpe X* 100
Zp 0

We now proceed to the third rotation for which:

Xp = COSYX,—sinvy, (101)
yp = sinyx, + cosvy, (102)
z, =1z, (103)
and establish, similarly as before:

E =Ex, +Ey, +Ez, (104)
in which:

E)"(y = Ey(cosacos 3 cosy— sinasiny)e ™" (105)
E;,y = —Ey(sinacos’y + cosacosPsiny)e " (106)
E;y = Eycosasinpe ** (107)

Omitting tilde-decorations for the rotated system, we may then
evaluate the electric radial field component in the rotated system,
from Eqgs. (105)-(107), according to:

Ei = Ej‘v cosesin® + Ei,y sin@sin® + E;y cos0 (108)
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leading to:

E. = Epe ™

"{sin asin 6[— siny cos @— cosysin )] (109)
— €os & sin O cos B[siny sin @— cosy cos @]
+ cosasinfcos0}

Similarly, the angular components of the electric field are found to
be:

Ey = E, cos@cos0 + E, sin@cos0—E; sin (110)
becoming:

Ef, = Eoe_ik"[cosa cos > cosB(cosy cos@— sin<y sin @) (111)

—sinacosf(siny cos @ + sin@cosy]— cosa sinf3 sin o)

and:

E, = —E, sing + E, coso (112)
becoming;:

Efp = —Eoe_ik"[cosot cosP(cosy sin@ + sin y cos®) (113)

+ sino(cosy cos@— sinvy sin@)]

For the radial magnetic field, we may proceed similarly as for the
radial electric field, starting from Eq. (92), and obtain:

H' = H, X, + H, y, + H. z, (114)
in which:
H,l;Y = Hy(sinacosf>cosy + cosasin 'y)e_ik" (115)
H;V = Hj(cos o cosy— sinoucos B sin \/)ef’vk'r (116)
H, = sinasinpe ™" (117)
Afterward, we have:
Hﬁ = H)';y cos@sin® + H;y sin@sin® + Hiy cos 6 (118)
that is to say:
Hi = Hoe_ik"{cosocsin 0[sin'y cos ¢ + cosysin Q] (119)
+ sinosin® cos3[cosycos @— sinysin @]
+ sinasinpcos6}
For the angular components, we find:
Hf; = Hf‘y cos@cosO + H;y sin @ cos G—H;y sinf (120)

Hé, = Hoe_ik"[sin QL CoS (3 cos B(cosy cos @— siny sin Q)
-+ cosa cosO(siny cos @ + cos y sin @©)— sin sinf3 sin 6]
(121)

H, = —H, sing + H, cosg

o (122)

H, = Hye ™ "[cos a(cosy cos @— sinysin @) (123)

—sina cosP(sin’y cos @ + cosy sin Q)]
4.2. Radial electric field

We start from Eq. (20), and will once again omit the tilde-
decorations. The bracket term is modified by using Eqs. (5) and (4),
leading to:

nn + 1)

[ (k) + (k)| = =5 kr) (124)

Furthermore, we insert the expression of c§", i.e. Eq. (3), leading
to:

_iF. n ;
oy S (i) (20 + 1)glm (k)P (cos0)e™

E =
r kr =1 m=in

(125)

Inserting Eq. (18) for gi'rv into Eq. (125), we obtain:

I _an ; m| img,_ym (N—=|M)! imy
E = = m:7n( )" (2n + 1)j,(kr)P;" (cos0)e™ (—1) CESCN
[im sin aﬂl{"‘(cos[ﬁ) + cos aTL’”‘(cos [5)}
(126)

in which the constant g has been set equal to 1 (or absorbed into Ey).
This may be rewritten as a sum of two terms, in which /™ and 7"
are expressed versus the associated Legendre functions, according to:

r=(B), + (), (127)
i Eysina & n . (n—|m|)!
E) =700 — —)"(=D"2n + 1) ——=
( f)1 krsmBn§1 mzzfn( D=1 @n + )(n + |m|)! (128)
J, (kr)P™ (cos 6)e™ ™ mpPI™ (cos )
N —iE i = 1 _anqm (n—|m|)!
(B), = tcosegg 2, X (0"(=1) @n 1) 5 1 (129)
Jn(kr)P™ (cos 0)e™e™ P (cos B)
We modify again these results by introducing:
Y = —(m+) (130)
implying:
(—1)"e™ = ¢~ M (131)
Hence:
i _ Esina & & (n—|m|)!
(B), = frsing 2 w2, (7120 + DT 132
jn (kr)PI™ (cos 6)e™ e~ MYemPlM (cos B)
i = TEooeq 0 S v g (n—=jmp!
(B), = & cosags 22, (T @+ D 133,

Jjn(kr)PI™ (cos )e™P e~ ™Yk plml (cos )
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Now, from Eq. (46):

%e'k' — iél min (—i)"(2n + 1)%@(1«)
(134)
P (cos )P (cos 6)e ™ Vkme™?
Hence:
Using Eq. (45), this becomes:
(Ei)l = E, sinasin B[cosy,, sin @— sin vy, cos np]ef"k'r (136)
which, by using Eq. (130), implies:
(Ei)l = —E,sinasin6[cosysing + sin'yc:oscp]e_ik'r (137)
Similarly, we establish:
(Ei)2 = ﬂcosa%e fler (138)
leading to:
(Eﬁ)z = E, cos at[cos 3 sin B(cosy cos ©— sin-ysin ¢) + sinf cos G]e_"k'r
(139)

Summing up (E.); of Eq. (137) and (EL), of Eq. (139), we recover
Eq. (109), as it should.

4.3. Radial magnetic field

We start from Eq. (23) and proceed similarly as for the electric
field, to obtain:

i (i i
H = (H,)1 + (H,)Z (140)
in which:
iy _ iHpcoso & Lo .n (n—|m|)!
(Hr>1 - kr Sinﬁnzl m;—n ( 1) (zn + U(” + |m|)'
(141)
jn(kr)PI™ (cos B)PIM (cos B)e ™k ime™?
which is translated to:
i\ _ iHpgcosa 0 _ixcr
(H’)1 ~ kr sinp 0o (142)
becoming:
(Hi)] = H,cosasinf[cosysing + sin'ycoscp](f'lk'r (143)
Let us remark that:
<Eﬁ)1 Eysina
A= (144)
(H), h cosa

Concerning (H.),, it is readily found to read as:

(H), = m—osma%e fer (145)
leading to:
(H’r) , = H, sinat[cos B sin 6(cosy cos @— sin-ysing) + sin{cos e]ef"k'r
(146)
Let us remark that:
(Ei)z _ Ejcosa (147)

(Hi),  Hpsina

As a whole, summing (H!); and (H
should.

1),, we recover Eq. (119), as it

4.4. Electric field, 6-component

On one hand, the electric field component E} is given, in compact
form, by Eq. (111). On the other hand, for the expanded form version,
we start from Eq. (21), omit the tilde-decorations, insert Egs. (3), (4),
(18) and (19), and write it as the sum of four terms, according to:

Ey = Ag + Ay + By + By (148)
in which:
—iE, LN M+1 (n—|m|)!
Ay =20 " AU
"= O 2 T ) (149)
drjzl(rkr) 7™ (cos )T (cos 0)e ke ™
E, n2n+1 (n—|m|)!
Ay = —sma ) ———
02 E] mE_n (=D nn + 1) (n + [m|)! (150)
dr]‘,ﬁ(r) mn!™ (cos )T (cos 6)e ™k
—E, h2n 41 ( —jm|)!
By, = — -~ 7
0™ kr COSO‘,,E m_z_n (=) n(n+ 1) (n + |m|)! (151)
krj, (krymm™ (cosp)mmi™ (cos B)e "™ ¥ e™?
.n 2n+1 (n—|m|)!
By, = —i)t o T
02 = k SlIlOth:I mZ:_n (=) n(n+ 1) (n + |m))! (152)

krj, (kr)Ti™ (cos Bymm)™ (cos 6)e ™ ™Yk ™?

Rather than testing Eq. (148), we shall more conveniently test this
equation multiplied by r. We then introduce the notation:

= rE} (153)

and similar notations for Xy =rXk;, in which X is A or B, and the
subscriptiis 1 or 2.
To process Ay, we derive it once with respect to r, invoke Eq. (5),

explicit one of the terms obtained in terms of derivatives of e~ ¥,
and rederive once again with respect to r, to obtain:

~ —iE, 1 _ik-

DAy = —Focogq 010 0 pmiter (154)

Kk “%rropoe
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in which we introduced the operator:

D= Lis + 12 (155)
o\
The term Ay is processed quite similarly, leading to:

DA, = —iEpsine 019 3 _icr (156)

ksin 0rrdedd

For By and By, we simply apply the operator D, invoke Eq. (5),and
establish:

Eycos o ? _ir

DBy = m@ (157)

—Eysinat 0 0 _ikr

D = —She opdct (158)

For & of Eq. (153), we invoke Ejof Eq. (111), and also Eq. (45) for
e~ 't write it under the form:

& = rEype (159)
and establish:

De, = —kEOD(—kr + 2ic + krcz)e*"‘” (160)
Using the form of Eq. (45) for e~ T, we afterward obtain, from

Egs. (154), (156)-(158), and (160), without forgetting to recall y, =

—(m+1) of Eq. (130):

D(Ay + Ao + By + Byp) = Dgy (161)
In other words, we obtain the same result when the operator Dis

applied to the expanded and to the compact forms of rEj. This means

that these two forms are equal within a function F satisfying DF=0.
The general form for F is therefore:

F = Cggcoskr + Sggsinkr (162)
in which Cg and Sgy do not depend on r.
Hence:
Ag1 + Agy + By + Byy = & + Cggcoskr + Sggsinkr (163)
Now, from Egs. (149)-(152), and using Eq. (81), we have:
(Ao1)r=0 = (Ag2)r=0 = Ba)r=0 = Baz)r=0 = (£p)r=0 =0 (164)
which, inserted into Eq. (163), implies:
Cep=0 (165)

Next, we consider the derivative with respect to r of Eq. (163),
knowing Eq. (165), in the limit r=0:

a,

0
{5@491 + Ay + By + BGZ):|r:0 = <ar>,:0 + kSgy (166)
We afterward evaluate, in a now fairly obvious way:
aAm _ _IEO a a —ik-r
< or )r:O B < kr Cosa%%e )r:O (167)
0A, _ [—iEysinoe 0 0 _jkr
(5), -, = CirSinpagans ™)., (168)

aBﬁl _ aBBZ _
(7),:0 = (W)r:o =0 (169)

After evaluation of Egs. (167), (168) and of (0€,/0r), — o, Eq. (166)
implies:
Sgg =0 (170)
ending the demonstration of the equality between compact and
expanded forms.

4.5. Electric field, o-component

The study of this component is quite parallel to the study of the
previous one, so that we shall expose it in a somewhat more concise
way. The electric field component Eﬁp in the rotated system is given, in
compact form, by Eq. (113). We then use the notation &, to denote rEip.
The expanded form of &, is written as the sum of four terms reading
as:

Cigas £ g 2] lm)t
Aot = k Smangl m:Z:—n (=) n(n + 1) (n + |mf)! (171)
drjzi(rkﬂ mn™ (cos Bymm!™ (cos 6)e ™ Vke™?
T R L
A@Z Tk €os 0Lné:l m;—n (=) nn+1)(n+ m)! (172)
% 7™ (cos Bymm!™ (cos 6)e ™™
o § (g 201 (nlm)t
Bor = pocosa 2 0 g+ m) (173)
krj, (krymm™ (cos p)TI™ (cos B)e "k ei™e
B (g2l (impt
B =7esinad. 2 (=0 n £ ) (174)
krj, (kr)Ti™ (cos ) TI™ (cos B)e MYk eMm?
We afterward establish:
~  —iEysina 01 8 _ir
DAg = ksinBsin 00r r 9¢? (17)
A —iEjcosad10 0 _ikr
DAz = Ysing orropae” 7o)
s —Ejcosad 0 _ikr
DB = — 5P 5090 {a77)
A Eysinad 0 _ikr
DB, = 7 555 (178)
Writing £, under the form:
&, = rEFe C (179)
We also have:
De, = —kEoF (—kr + 2iC + krc*)e ™" (180)
We afterward establish:
15(,4(P1 + Ag + By + B@2> = De, (181)
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implying:

Agt + Agy + Bgy + Bgy = &g + Cgp COSkr + Sg, sinkr (182)

Proceeding in the same way than for the component Ej we
afterward establish:

0An\ [ —ifysina @ i

< or )r_o - <krsmgsmea@2e . (183)
0Az _ [—iEpcosat 0 0 _jer

< o )r_o - <W%%e >,:0 (184)
aBnpl o aBQZ .

<ar> - < ar =0 (185)

r=0 r=0
and find:
e =k =0 (186)

4.6. Magnetic field, angular components

For the §—-component, the compact form Hj is given by Eq. (121).
Being still more concise than for the previous component, we find that
the quantity Hy=rHj, in the expanded form, is the sum of four terms
according to:

He = Ce] + C(')Z + Del + D92 (187)

Working out each of these terms, we find that they may be
expressed as:

(7) = Tt () (se

(%) = Bocoa (50 (159
We afterward establish:

D(Cyy + Cop + Doy + Dy) = DH, (190)

implying:

Co1 + Coy + Dyy + Dyy = Hy + Cygcoskr + Sygsinkr (191)

Afterward, proceeding in the same way than for the electric
components, we establish:

Cyo =Sy =0 (192)

For the ¢o-component, the compact form pr is given by Eq. (123).
The quantity H,, = r"Hy, in the expanded form, is the sum of four terms
according to:

Hy = Co1 + Cop + Der + D (193)

Working out each of these terms, we find that they may be
expressed as:

C —H, cosax /A
f1 ) — 0P (ol 194
(D‘PZ ) Eq sinat ( Bga ) (134)
C H, sina [ A
©2 — -0 ©2
(le > Eqcosa (Bcpl ) (199)

We afterward establish:

D(Cor + Cor + Dot + D) = D (196)
implying:
Co1 + Cea + Dy + Dz = My + Cygcoskr + Sy, sinkr (197)

Afterward, proceeding in the same way than for the previous
components, we establish:

=0 (198)

5. Discussion and conclusion

In a series of papers devoted to the transformation of spherical
beam shape coefficients (for use in generalized Lorenz-Mie theories
in spherical coordinates) under the rotation of coordinate systems,
this paper discusses the case of plane waves viewed as a special case of
on-axis axisymmetric beams. The description in the unrotated system
is taken as simple as possible. The corresponding description in the
rotated system is far more complicated and it might seem that, for
plane waves, the interest of rotations is suspicious.

Nevertheless, to better understand the issue, let us now dress the
problem by attaching a scattering particle to the unrotated system,
and assuming that this particle follows any rotation of it. If the particle
is a homogeneous spherical particle defined by its diameter and its
complex refractive index, as in the GLMT stricto sensu [4], then any
rotation lets the physics invariant. There is therefore no interest
indeed to choose working with the rotated system which complicates
the intermediary calculations without any benefit. The same is true
when the scattering particle is a multilayered sphere [17].

However, let us now assume that the scatterer is a spherical
particle with an eccentrically located spherical inclusion [18]. Let us
locate the center of the inclusion on the “vertical” axis Oz of the
unrotated system, and the center of the host sphere at the origin O of
the Cartesian coordinate system. The plane wave in the unrotated
system propagates along the axis Oz and we are facing a rather easy
geometry of the scattering problem. Everything now becomes more
complicated after rotation, when the plane wave is still propagating
along Oz but the center of the inclusion is no more located on this axis.
This may be viewed as a case of oblique illumination. This terminology
(oblique illumination) is the one which has indeed been used by Han
et al. [19,20] when they initiated the issue. We then have discussed a
new way of calculating the beam shape coefficients of plane waves
under oblique illumination, and took this opportunity to investigate
the mathematical behavior of these waves. A similar discussion is
valid for assemblies of spheres and aggregates [21], for instance in the
case of several spheres aligned along an axis. Such scatterers are
currently under study, e.g. [22,23].

A last remark of importance is also to be recalled. Egs. (18) and
(19) indeed exhibit a somewhat unexpected result, namely that, in
general, the description of the plane wave in the rotated system
requires the use of beam shape coefficients (a double set of beam
shape coefficients), as for arbitrary shaped beams, in contrast with the
easy degenerated description in the unrotated system.
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1. Introduction

Many approaches to light scattering, such as generalized Lorenz-
Mie theories in spherical coordinates (for homogeneous spheres [1,2],
multilayered spheres [3], spheres with spherical inclusions [4],
assemblies of spheres and aggregates [5], with recent reviews in
Refs. [6,7]), or Extended Boundary Condition Method, also called Null-
Field Method [8,9], most often misleadingly named T-matrix method
[10], require the evaluation of expansion coefficients known as beam
shape coefficients.

These beam shape coefficients may be evaluated by using various
methods, namely quadratures [11], finite series [12], localized
approximations generating localized beam models [13,14], or a
hybrid method taking advantage of both quadratures and of a
localized approximation, named the integral localized approximation
[15]. The evaluation of beam shape coefficients has also been
investigated by relying on addition theorems for translations of
coordinate systems, an approach originally introduced by Doicu and
Wriedt [16], and also used by Zhang and Han [17].

In the previous papers of this series [18-21], we have developed
another approach, initiated by Han et al. [22,23], to the evaluation of
beam shape coefficients, relying on addition theorems for rotations
(not for translations) of coordinate systems. This approach takes the
form of a theorem of transformation which expresses the beam shape

* Corresponding author. Tel.: +33 2 35 52 83 92; fax: +33 2 35 52 83 90.
E-mail address: Gouesbet@coria.fr (G. Gouesbet).

0030-4018/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.0ptcom.2010.08.082

coefficients in a rotated system in terms of beam shape coefficients in
an unrotated system.

The present paper is devoted to the study of a synthetical question,
concerning both the use of localized approximations, and the use of
rotational addition theorems, to the evaluation of beam shape
coefficients. It happens that the use of a localized approximation, to
evaluate beam shape coefficients, provides the most efficient method,
with regards to computational times, by orders of magnitudes with
respect to other methods such as by using quadratures. It is also the
most appealing from a physical point of view because it provides
many physical insights on the interpretation of beam models.

Then, let us consider an original system of coordinates, called the
unrotated system, in which we possess compact (non-expanded
expressions), to describe an electromagnetic field. Most usually, this
description does not exactly satisfy Maxwell's equations, this being
called a non-Maxwellian description, a feature having deep con-
sequences in light scattering theories [24-27]. Nevertheless, by using
a localized approximation, we may obtain, in the unrotated system, an
expanded beam description, called a localized beam model, which is
Maxwellian, i.e. which exactly satisfies Maxwell's equations. By using
the theorem of transformation previously mentioned, we may then
obtain a localized beam model in a rotated system in terms of the
localized beam model in the unrotated system. This procedure to
obtain a localized beam model in the rotated system is called the RL-
procedure. It is achieved by applying the localization in the unrotated
system (operator L) followed by a rotation (operator R) to the rotated
system, in short: localize and afterward rotate.

Alternatively, we may start from the non-Maxwellian beam
description in the unrotated system, rotate it to the rotated system,
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and afterward apply a localized approximation in the rotated system.
This is called the LR-procedure, i.e. first rotate and afterward localize.

In general, since we are working with non-Maxwellian descrip-
tions of beams, we should not expect that the operators R and L
commute: RL # LR, but we expect that they nearly commute, that is to
say that the results of applying the RL- or the LR-procedures, although
different, are close enough in some sense. In the light of this
expectation, we were quite surprised to find that the operators R
and L do not commute, not only for non-Maxwellian beams, but for
Maxwellian beams as well. The aim of this paper is to demonstrate
these unexpected statements, to explain why it is so, and to draw
consequences.

The paper is organized as follows. In Section 2, a few basic
ingredients required for the sequel are recalled. They concern the
definitions of beam shape coefficients and of Euler angles, a theorem
of transformation of beam shape coefficients through rotations of
coordinate systems, and the modified localized approximation
procedure for arbitrary shaped beams, in its current form. Section 3
discusses the RL-procedure, while Section 4 discusses the LR-
procedure. Section 5 is a conclusion. A concise Appendix is devoted
to a small technicality.

2. Basic ingredients
2.1. Beam shape coefficients

The beam shape coefficients that are considered in the present
series of papers are denoted as gy’ 1y and g 7¢ (n from 1 to «, m from
—nto +n, TM for Transverse Magnetic, TE for Transverse Electric), e.g.
Refs [1,2] in which they are used in the framework of a generalized
Lorenz-Mie theory describing the interaction between an electro-
magnetic arbitrary shaped beam and a homogeneous sphere defined
by its diameter and its complex refractive index. There are various
ways to define them. An expedient one might be to write down the
expression for the radial electric field component according to Ref.
[18]:

+

! (—=1)"byun(n —+ 1)j, (kr)P}' (cos v) exp(imm) 1)

—n

[ =

E=,3
n=1m

=

r

in which k is the wave number in the space where the wave
(an illuminating wave in the framework of a scattering problem)
propagates, (r, v, 1) are spherical coordinates, j, designates spherical
Bessel functions of the first kind, and P} are associated Legendre
functions. The expansion coefficients b, read as:

mm —m)l

Wgn, ™ (2)

bun = KEocy" (=1)"(—1)
in which Ey is a field strength which, without any loss of generality,
will be taken equal to 1 in the sequel (similarly, when required, the
magnetic field strength Hy is taken equal to 1 as well), and ch" are
coefficients appearing naturally in the Bromwich version of the
Lorenz-Mie theory. The TE-beam shape coefficients g7 7z will not be
considered in this paper. They would be similarly defined, in terms of
the radial magnetic field component H,, instead of E, and any
statement we shall make for the TM-coefficients would apply, mutatis
mutandis, to the TE-coefficients as well.

2.2. Euler angles

Let us consider an unrotated frame of reference with Cartesian
coordinates (x, y, z) and spherical coordinates (r, 6, ¢). We then apply
to this frame a rotation defined by Euler angles (¢, 3, y) leading to a
rotated frame of reference with Cartesian coordinates (%, j, Z) and
spherical coordinates <f =r, 6, Cp), in which tilde-decorations are

used to denote quantities in the rotated system. The definitions of the
Euler angles are given in Ref. [18], but it is most convenient to repeat
these definitions here.

(i) Afirst rotation, applied to the unrotated system (x, y, z), by an
angle a (0<a<2m) about the z-axis, brings the unrotated
system to an a-rotated system with Cartesian coordinates (X,
YonZa)-

(ii) Asecond rotation, applied to the a-rotated system (X, Yo Zo), by an
angle 3 (0<B<m) about the y,~axis, brings the a-rotated system
to a B-rotated system with Cartesian coordinates (xg,yp.23).

(iii) A third rotation, applied to the 3-rotated system (xg,yp,23), by
an angle y (0<+y<2m) about the zz-axis, brings the 3-rotated
system to a 7y-rotated system (simply called the rotated
system) with Cartesian coordinates (x,,y,.z,) better denoted
as (%.3,2).

All rotations defined above are positive (by definition, a positive
rotation about a given axis is a rotation which would carry a right-
handed screw in the positive direction along that axis).

2.3. The theorem of transformation

We now know enough to state the theorem of transformation
demonstrated in Ref. [18].

Let x and x be two systems of coordinates, named the unrotated
and the rotated systems, respectively. Let g x and ¢, with X=TM
or TE, be the spherical beam shape coefficients of an arbitrary shaped
beam in the unrotated and in the rotated systems, respectively.
Then:

m . 1 H;‘Trl'l S
gn,X _umn Z - gn,X (3)
s=—n Hep
in which:
mIml — |mj)!
o = (<1"(=1) 2 G @

m _ o gynts(M=M)! isq imy _1\O n+s n—s
o = g e 50 <n—m—o>< 0) 5

B 20+m+s . B 2n—20—m-—s
(COSE smi

in which (o, [3,7y) are Euler angles bringing the unrotated system to
the rotated system, defined in the previous subsection.

We shall be more specifically concerned with beams pertaining to
a class of beams, named on-axis axisymmetric beams, e.g. Ref. [28].
They may be defined by beam shape coefficients taking the following
values:

gnx = 0,|m|#1 (6)

1 1 4 .1 ie 1 g
9o = In M = —lEgn E = K InTE = 7” (7)

in which KER, and €=+ 1, are parameters. Eqs. (6) and (7) show
that, for this class of beams under consideration, the double set of
beam shape coefficients {g7'm, gn e} reduces to a single {g,} of
coefficients, named special beam shape coefficients. A particular
interesting case is when (K,&) = (1, —1). Then, Eq. (7) reduces to:

1 -1 .1 | g
In, M = In, ™M = Wn,TE = TG0, TE = 7" (8)

This is in particular valid in the case of an on-axis Gaussian beam
polarized in the x-direction at its focal waist, e.g. Refs. [1,29,30]. When
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both Eqgs. (6) and (8) are valid, the theorem of transformation for the
TM-beam shape coefficients reduces to a simple enough expres-
sion [19]:

m—|m

ln—mp)! imy

I = (=D)™(=1) T m)l €™ g, [im sin oy (cos B) + cosamy (cosP)] (9)

in which ;' and 77 are generalized Legendre functions reading as:

i (cosp) = ‘25 (10)
™(cosp) = "P"é;gsﬁ) (11)

2.4. Modified localized approximation

We now recall the modified localized approximation procedure for
arbitrary shaped beams such as exposed and justified in Ref. [14].
Following Ref. [14], we decompose the radial electric component
expressed in a spherical coordinate system (r,v,m) into m-modes
according to:

ERv= Y ERVY) (12)
E"(R,v,m) = {e_iRCOSUsinveimn}ET(R,v) (13)
The TM-beam shape coefficients are then given by:
m —i\m=1
W= (a)  &(n2) (14
in which the overbar denotes “localization” and:
L= (n—|m)n + [m| + 1) = (n + 1/2)*—(jm| + 1/2)*. (15)
In these equations, we introduced the notation R=kr. Further-
more, in the unrotated system, we have: (v,1)=(6,¢) and, in the
rotated system: (v,1m) = (G,Cp).
To decrease the amount of actual computations in the case of

complicated structures, it is however convenient to rewrite the above
procedure in a different way. Let us introduce the notation:

F=Fuv) =Fuv=m/2). (16)

We may then rewrite the modified localized approximation
procedure as:

E'(R.m/2.m) (17)

Em = ™emR) = ™M (R, m/2) (18)
—i\mM-1— 5
:<ﬁ§ (1) (19)

3. The RL-procedure

We are now going to evaluate beam shape coefficients in the
rotated system by using a RL-procedure, that is to say we first apply a
localization operator (or procedure) and afterward a rotation. To be
specific, we shall assume that the beam is a first-order Davis beam
taken as an approximation to a Gaussian beam.

3.1. Beam description in the unrotated system

The beam description in the unrotated system is taken to be
the one of a Gaussian beam in the first-order Davis approxima-
tion, when the location parameters are xo=yo=20=0. It is
defined by the following equations, e.g. Refs. [1,31] and references
therein:

E,=H,=0 (20)
E, = W, exp(—ikz) (21)
E = —?xEX (22)
H, = ¥, exp(—ikz) (23)
2
H, = —TQyHy (24)
2 2
Wy = iQexp(—iQx Rl ) (25)
Wo
1
— , 26
= +27 (26)

The radial electric field component E,, which is the only one
required to evaluate the TM-beam shape coefficients, then reads
as:

E, = W¥ycos ¢ sin9<1—2%r cos 6) exp(—ikr cos ) (27)
with, now:
2 .2
W, = iQexp(—iQr 1 e) (28)
wo
1
=—0. (29)
. T cos0
i+2 i
We also recall that the diffraction length [ is given by:
I = kwg (30)
and that we have the beam confinement factor s given by:
1
s= Towg (31)

in which wy is the beam waist radius.

An interesting special case which will be used in the next section is
when wo =, that is to say when s=0, which is equivalent to the
consideration of only O (s°)-contributions in series expansions of the
first-order Davis beam description presented above. The Gaussian
beam has then become a plane wave which, from the above equations,
is found to read as:

E, = exp(—ikz),E, = E, = 0. (32)

3.2. Beam shape coefficients in the unrotated system

As an exercise, let us evaluate the TM-beam shape coefficients of
this plane wave, in the unrotated system, by using the modified
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localized approximation procedure. The radial electric field compo-
nent for this case is readily found to be:

e¥ +e
E, = cos ¢ sin 0 exp(—ikrcos0) = Tsine exp(—ikrcos®). (33)
Hence:
_ io —ie
E = eete ™ (34)
2
leading to:
E' =& = 0,m[#1 (35)
El =e®/2E  =e )2 (36)
fg=61=1/2 (37)
gn v = 0, |m|#1 (38)
1 -1
Inv = o = 1/2. 39)

Egs. (38) and (39) agree with Egs. (6) and (8) as it should since the
plane wave under study is a special case of an on-axis axisymmetric
beam [28]. All the associated special beam shape coefficients, namely
gn, See Eq. (8), for this plane wave are furthermore equal to 1, a result
known to us since a long time, e.g. Refs. [1,29].

This exercise being done, we now turn our attention to the
values of the beam shape coefficients for the first-order Davis beam
previously described (with s 0). This first-order Davis beam is an
on-axis axisymmetric beam [28]. Therefore, beam shape coeffi-
cients reduce to special beam shape coefficients. We may use a
localized approximation, a modified localized approximation, or a
standard beam (all of them being variants of localized approxima-
tions), to express these special beam shape coefficients [31]. There
is however a unified description, according to the following
formulas [32]:

= 3 Gy (40)
=0
[

G = 2 aufn(n + 1) (41)

in which it has to be noted that the coefficients G, also depend on the
partial wave number n, although this is not explicitly specified in the
notation.

For the localized approximation, we have:

g = exp[—(n+1/2)°5] (42)
leading to:
I
Gy = (_“” (n+1/2)% (43)
(=1 (1\*
e = R1I=k)! (Z) ' (“a4)

For the modified localized approximation, we have:

gy = exp [—(n —1)(n + 2)52] (45)

leading to:
-1
Gu = =) + 2] (46)
_ (=D ik
oy = =12 (47)
For the standard beam, we have:
= (_1
I = Z‘ ( T ) nlSZI (48)
=0 !
in which:
ny =1 (49)
n = (n—=Nhn—I1+ 1)...n—1)(n 4+ 2)...(n + [ + 1),1> 0. (50)
This leads to:
(-1
Gy = Tnl' (51)

There is however no compact expression for the coefficients oy,
although they can be readily evaluated.

3.3. Beam shape coefficients in the rotated system

To obtain the beam shape coefficients in the rotated system, in the
RL-approach, we apply the theorem of transformation for the case of
axisymmetric beams [19], recalled in Eq. (9). To denote the fact that
we first generated a localized beam, and _afterward rotated, the TM-
beam shape coefficients are denoted as ¢ ;,,, in which the overbar
denotes the localization, and the tilde denotes the rotation. We then
readily obtain:

P = m! imey

m — 1\ . . m m > 21
g = (=1)"(=1) T mt [imsin oy (cos ) + cos Ty, (cosP)] l;g Gys

(52)

which is valid for the unified description encompassing the localized
approximation, the modified localized approximation, and the
standard beam description. For the modified localized approximation,
Eq. (52) specifically becomes, using Eq. (45):

= (71)'"(71)m72‘m‘(n7‘m|)! ™ [im sin aurty (cosp) + cos T (cos )] ex
In, M = (n + m)! n n p

[f(nf])(n + 2)52] (53)

At 0(s°), or equivalently in the plane wave case of Eq. (32):

m—\m\(

n—|mp)! imy

o = (=1)"(=1) e [im sinamy (cosp) + cosaTy (cosp)].

(n + m)!
(54)

4. The LR-procedure

In this procedure, we first apply a rotation of coordinates, express
the original first-order Davis beam in this system of coordinates and,
afterward, apply the modified localized approximation procedure to
the obtained result. When this is done, it is observed that the beam
shape coefficients in the rotated system obtained either by the RL- or
the LR-procedures severely disagree. In other words, R and L do not
commute. This happens even for O (s°)-contribution, that is to say for
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the plane wave that we have previously considered. Hence, we shall
be content in applying the LR-procedure to it. Furthermore, it will be
sufficient to consider a rotation with Euler angles « and 3, with
however y=0. The result of the RL-procedure is then, from Eq. (54),
with y=0:

o (n—jm))!

() [imsin amy (cosP) + cos Ty (cosp)].

9T = (=1 (=1)

(55)

4.1. Rotation of Cartesian field components

Let X,y,Z be unit vectors along the directions x,y,z of the
unrotated system, respectively. Let Xq, Yo, Za e unit vectors along
the directions x,,ya,zo Of the a-rotated system, respectively. The
relationship between these unit vectors through the a-rotation is
given by:

cosa. —sina 0 BN
= | sin cosaa O Vo |- (56)
0 o 1)\ 7%

Let X3 = X. 5 =), Zu = 2 the unit vectors along the directions
Xg =X,yp =Y,23 = Z, of the B-rotated system (identifying with the
rotated system since there is no third rotation of angle 1),
respectively. The relationship between unit vectors through this
second (and final) rotation is given by:

Xy cosp 0 sinPp X =
Y |=| 0 1 0 ly=
Zo —sinf® 0 cosp —

4.2. Rotation of coordinates

N %)

N
)
I
Ny <) XD
—
831
~
=

We shall also need to relate the unrotated coordinates (x,y,z) and
the rotated coordinates (x,y,Z).
For the first rotation:

X cosa  esina 0 /Xy
y| =1 —¢sinae cosa O Ya (58)
z 0 0 1 Zy

in which ¢ is either (+ 1) or (— 1). For the time being, we let the value
of &€ undetermined because our conclusion will not depend on it. In
order to avoid distracting the attention of the reader from the main
issue, the actual value of ¢ is better discussed in a small accessory

Appendix.
Similarly, for the second rotation:
Xq cosp 0 —esinp Xy = %
Ya | = 0 1 0 Yo=Y (59)
Zo gsin 0  cosp zp=12

And, as a whole, we obtain:

()

in which the rotation matrix R reads as:

Ri1 Rz Rys
R=(Ry Ry Ry

R3; Rz Rss (61)
cosacosp esina —egcosasinf
= | —esinacosp cosa sin o sin 3
esin3 0 cosp

4.3. Rotation of the electric radial field component

The determination of the TM-beam shape coefficients in the
rotated system relies on the expression for the electric radial field
component E, in the rotated system that is established and discussed
in this subsection. Using Eqs. (56) and (57), E = E,X, with E,=exp
(—ikz), is found to become:

E = E, |cos otcos [5):(— sin OL}:; + cosasin [55] (62)
Therefore:

E; = cosacosfexp(—ikz) (63)

E, = — sinoexp(—ikz) (64)

E; = cosasin P exp(—ikz) (65)

The radial field component reads as:
E, = Eycos ®sinf + E;sin®sind + E; cos 6. (66)
Inserting Eqs. (63)-(65) into Eq. (66), we obtain:
E = [siné(cos acoscosd—sinosin®) + cosoesinf3 cos é] exp(—ikz).
(67)

According to the second version of the modified localized
approximation procedure, rather than E, we preferably use E;
reading as:
ei& + e*i@ io_ ,—i¢

Tz Ty

l:‘:r = Er(() = 11/2) = <cosacos[5 > exp(—ikz).

(68)

Expressing z in terms of X,y,Z by using Eq. (60), and afterward
X,y,Z in terms of spherical coordinates ¥ = r, 6,0, we obtain:

kz = R(R31 sinfcos® + Ry, sin®sind + Ry3 cos 6) (69)
leading to:
exp(—ikz)= exp [iB cos ¢] (70)

in which we have implemented the values of R3; =¢sin 3,R3, =0,
and introduced the quantity:

B = —&Rsinp. (71)

Since exp(—ikz) is 2m-periodic with respect to ¢, we may express
it as a Fourier transform, according to:
e — +

exp(—ike)= 3 5Le'. 72)

Let us apply the operator _[5" d(,?>€‘””§D to both Egs. (70) and (72).



416 G. Gouesbet et al. / Optics Communications 284 (2011) 411-417

First, we have:

o o~ Al ii-mé _ [ 0,l#m
Jo 465 = ai = m 73)

Hence, from Eq. (72):
JUR + oo A o~ + o o A S ~
2m ime Ay ile — 2m A il—=mye _ —
od@e lngﬂe 1224 IE dpsle A, = MD. (74)
This term, named MD, must be equal to MG given by:
_(2m , ~ iBcos®—im
MG = |, doe . (75)

But we have in Ref. ([33], p 690):

_ i con i(xcos6 + nd)
Ja(x) = o e do (76)
so that:
2n
MG = Tl_n(B) (77)

which is equal to MD=A,,, implying:
21
An = S ®). 78)

Inserting this result in Eq. (72):
+ o

exp(—ik)= ¥ (—1)"I"]_,(B)e™. (79)

= —o

But we have in Ref. ([33], p 677):

J-m(B) = (=1)"Jn(B) (80)
Hence:
exp(—ikz) = i ", (B)e™®. (81)

We may then rewrite Eq. (68) as:

— o~ N L~

E = (f+e“P + f,e*’““) Y " (B)e™. (82)
in which:
f, = %(cos acos + isinw) (83)
o= % (cos oicos R—isin ) (84)

In Eq. (82), we have a sum of two terms. In the first term, we make
a change of subscript m+1—m. In the second term, we make a
change of subscript m—1—m. It then happens that E, may be
rewritten as:

_ iy m+1_im@
T Z 1 e [f—]er](B)_er]mf](B)]- (85)

m= —ow

|

As a check, we may set «==0. Then, using (|33], p 676):

{]m(O) = 0,m#0
b)) =1~

It is afterward readily established that we recover Eq. (34) from
Eq. (85).

4.4. Rotated beam shape coefficients and discussion
We may then apply the modified localized approximation

procedure to obtain the TM-beam shape coefficients in the rotated
system. The m-modes are found to read as:

E = i"" e[ 1 (B) S, Jn1 (B)] (87)
leading to:

‘? = im+1[f7.]m+1(B)_f+.]m71(B)} (88)
Hence:

Inm = <L177/12> ‘m‘ilim“ [f,JmH (—sLl/2 sinB) —f i Jm1 (—sLl/2 sinB)]
(89)

in which the coefficients are decorated in such a way as to recall that
we first rotate, and afterward localize, in contrast with the coefficients
in Eq. (55) in which the coefficients are decorated differently. We then
observe that Egs. (89) and (55) do not agree, i.e. as announced, the
operations R (rotation) and L (localization) do not commute.

To vividly illustrate this lack of commutativity, let us consider the
following special case: n=1, m=0, a=0, B=mn/2. Then, from
Eq. (55), we obtain:

ﬁ:cos(a:O)[W] =—cos(loe =0)sinPp=m/2)= —1.
’ dp p=m/2
(90)
But, for «=0, B=m/2, we have, from Eqgs. (83) and (84):
fl@=0p=m/2)=f (@=0,p=1/2)=0 (91)
Hence:
91 = 0% 9% - (92)

5. Conclusion

We have convincingly established that the current modified
localized approximation for arbitrary shaped beams does not
commute with rotations of coordinate systems, and more importantly
that the exhibited lack of commutativity is harsh, a somewhat
unexpected feature. The reason why it is however simple to identify,
namely the modified localized approximation derived in Ref. [14] is
indeed valid for arbitrary shaped beams propagating along the z-axis
or parallel to it, but it is not valid for arbitrary shaped beams AND for
arbitrary orientation of the beam. The orientation required for the
beam of Eq. (9) in Ref. [14] will thereafter be called the standard
orientation.

Therefore, at the present time, if we want to obtain a localized
beam model under an orientation which is “not standard”, we have to
use the first procedure we have used in this paper, that is to say the
RL-procedure in which we first localize and afterward rotate. As a
consequence, we now have the most interesting question to know
whether one can design a new localized approximation which would
be, in one step only, valid for both arbitrary shaped beams AND
arbitrary orientation of the beam. We are currently pursuing this line
of investigation.
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Appendix A

There are two different points of view available when dealing with
rotations.

The first point of view is the one which is taken in this series of
papers: we make a rotation of an original unrotated system of
coordinates but we let the laser beam unrotated. Then, to secure the
value of g, let us consider the unrotated system (x,y,z) and the rotated
system (X, Yo, Zo) Obtained from a rotation of angle o about the axis z.
Let us next consider the point P on the axis x,, (that can be thought as
being a point attached to the laser beam to which no rotation is
applied), lying in the first quadrant of the (x,y) plane, and let us take
its coordinates in the rotated system as being (X4(P),Ya(P),zo(P)) =
(1,0,0). Since the point P is taken in the first quadrant of the (x,y)
plane, it has x>0 and y>0. By using Eq. (58), we however obtain (x(P),
y(P),z(P)) = (cos o, — e sin @,0). To retrieve y(P)>0, we therefore
must have e=—1.

In the second point of view (which is not the one taken in this
sgi)es of papers), the laser beam is rotated. Let us consider a vector
OM attached to the unrotated system (and to the laser beam), defined
as OM = XX + Y. When rotating the laser beam, this vector would
be rotated too, becoming OM" = X X + Y J, i.e. the rotation does not
affect the length of the components which are X and Y in both the
unrotated and in the rotated systems, but affects the orientation of the
unit vectors. Then, as readily demonstrated in elementary textbooks
dealing with rotations, we would have e=+1.

Finally, the values of ¢ given above are valid for positive rotations
used in this paper. In the case of negative rotations, they would have
to be interchanged.
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KT PRI 7 Cr 5
B 1 1 + B mn—
(o - e
' , , ’ (B. 10)
- J (=) (1 —J Cromem) e ke,
Qn' =1)(2n' +1) Qn' =1)(2n' +1)
(n_m_l)(n_m+l)Cr’::,‘l(kzo)+ (n+m)(n+m+1)c;”:,“(kzo)
2n-D(2n+1) 2n+1)(2n+3) B.11)
- J (Lt m DO ot (k) +J O D e
2n'-1)(2n"+1) 2n"+1)(2n"+3)
WIGEAAR «
COO (kzy) = (=1)"N2n' +1j ,(kz,) (B. 12)
COO (kzy) = (~1)"2n' + 14 (kz,) (B. 13)
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