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Résumé: Diffusion d’un faisceau modelé par un particule 

excentrique et propriétés arc-en-ciel du sphéroïdes  

Deux pièces de travail sont inclus dans cette thèse. La première partie 

analyse l'interaction d'une sphère excentrique avec un faisceau incident 

quelconque forme au sein de l'généralisé la théorie de Lorenz-Mie (GLMT). 

Distributions de contrôle interne, près de la surface, loin des champs 

dispersés zone ainsi que le comportement de la morphologie dépendant 

résonances (MDR) dans une sphère excentrique éclairée par un faisceau 

focalisé gaussien sont analysés. Dans la seconde partie, en utilisant le EBCM, 

les propriétés de diffusion de lumière autour de l'angle arc pour un ensemble 

de sphéroïdes dans des orientations aléatoires éclairé par une onde plane sont 

étudiés. En comparant les paramètres extraits de ces paramètres originaux 

utilisés dans les expériences de simulation, la sensibilité de la technique 

d'arc de la sphéricité des gouttelettes non est quantifiée. 

Mots-clés GLMT  Faisceau modelé  Particule excentrique  EBCM  

Sphéroïdes Technique d'arc-en-ciel 

Abstract: Shaped beam scattering from an eccentric 

particle and rainbow properties of spheroids 

Two parts of work are included in this thesis. The first part analyses the 

interaction of an eccentric particle with an arbitrary incident shaped beam 

within the generalized Lorenz-Mie theory (GLMT). Distributions of internal, 

near-surface, far-zone scattered fields as well as the behavior of 

morphology-dependent resonances (MDRs) in an eccentric sphere 

illuminated by a focused Gaussian beam are analyzed. In the second part, by 

using the EBCM, light scattering properties around the rainbow angle for an 

ensemble of spheroids in random orientations illuminated by a plane wave 

are studied. By comparing the extracted parameters with those original 

parameters used in the simulation experiments, the sensitivity of the rainbow 

technique to the non-sphericity of droplets is quantified. 

Key word GLMT  Shaped Beam  Eccentric particle  EBCM  

Spheroids  Rainbow technique  



(Generalized Lorenz-Mie 

Theory,GLMT)

FORTRAN

(Extended Boundary Condition Method, EBCM)



 

1 

Table of Contents 

 

Chapter 1  General Introduction ..................................................... 1 

§1.1 Background ........................................................................................... 1 

§1.2 Eccentric sphere .................................................................................... 3 

§1.3 Spheroid ................................................................................................ 7 

§1.4 Structure ................................................................................................ 8 

§1.5 Contributions ....................................................................................... 10 

 

Part I  Shaped Beam scattering by Eccentric particles  

 

Chapter 2  Expansion of shaped beam .......................................... 15 

§2.1 Generalized Lorenz-Mie theory .......................................................... 15 

§2.2 Addition theorem of Vector Spherical Wave Functions ...................... 16 

§2.2.1 Definition of Vector Spherical Wave Functions .......................... 16 

§2.2.2 Definition of Euler angles ............................................................ 18 

§2.2.3 Rotational Addition theorem........................................................ 19 

§2.2.4 Translational Addition theorem ................................................... 21 

§2.3 Expansion of shaped beam .................................................................. 23 

§2.3.1 Description of shaped beam in Bromwich formulation ............... 23 

§2.3.2 Expansion of Arbitrary shaped beam ........................................... 24 

§2.3.3 Expansion of Axisymmetric beam ............................................... 26 

§2.3.4 Expansion of Gaussian beam ....................................................... 29 

§2.4 Evaluation of Beam Shape Coefficients ............................................. 35 

§2.5 Conclusion .......................................................................................... 36 

Chapter 3  Shaped beam scattering by Eccentric sphere ............ 39 

§3.1 Introduction ......................................................................................... 39 

§3.2 Shaped beam scattering by Eccentric sphere ...................................... 40 

§3.2.1 Scattering model .......................................................................... 40 

§3.2.2 Scattering equations in global coordinates .................................. 41 

§3.2.3 Scattering equations in local coordinates .................................... 42 

§3.2.4 Solutions of scattering coefficients .............................................. 44 

§3.2.5 Solutions of scattered field .......................................................... 45 



 

2 

§3.3 Numerical implementation and verification ....................................... 46 

§3.4 Distributions of scattered field ............................................................ 49 

§3.4.1 Three dimension distribution ....................................................... 50 

§3.4.2 Local distribution ......................................................................... 52 

§3.5 Conclusion .......................................................................................... 60 

Chapter 4  Distribution of internal and near-surface field ......... 61 

§4.1 Introduction ......................................................................................... 61 

§4.2 Formulations ....................................................................................... 62 

§4.2.1 Internal field ................................................................................ 62 

§4.2.2 Near-surface field ........................................................................ 63 

§4.3 Numerical results ................................................................................ 64 

§4.3.1 Verifications ................................................................................. 64 

§4.3.2 On-axis Gaussian beam ............................................................... 65 

§4.3.3 Off-axis Gaussian beam ............................................................... 69 

§4.4 Conclusion .......................................................................................... 70 

Chapter 5  Morphology-dependent Resonance ............................ 71 

§5.1 Introduction ......................................................................................... 71 

§5.2 Morphology-dependent Resonance of Eccentric sphere ..................... 73 

§5.2.1 Numerical verifications ............................................................... 73 

§5.2.2 Parallel illumination of Gaussian beam ....................................... 74 

§5.2.3 Oblique illumination of Gaussian beam ...................................... 78 

§5.2.4 Internal field distribution ............................................................. 80 

§5.3 Conclusion .......................................................................................... 82 

 

Part II  Rainbow properties of spheroids 

 

Chapter 6  Extended Boundary Condition method ..................... 87 

§6.1 Introduction ......................................................................................... 87 

§6.2 Scattering of single particle................................................................. 88 

§6.2.1 Field Equivalence Principle ......................................................... 88 

§6.2.2 Isotropic particle .......................................................................... 90 

§6.2.3 Anisotropic particle ..................................................................... 94 

§6.3 Scattering of multiple particles ......................................................... 102 

§6.4 Conclusion ........................................................................................ 106 

 



 

3 

Chapter 7  Rainbow properties of spheroids .............................. 107 

§7.1 Rainbow and Rainbow Technique..................................................... 107 

§7.1.1 Rainbow phenomenon ............................................................... 107 

§7.1.2 Standard Rainbow technique ..................................................... 110 

§7.1.3 Global Rainbow technique ........................................................ 112 

§7.2 Rainbow of spheroids ........................................................................ 114 

§7.2.1 Standard Rainbow ...................................................................... 114 

§7.2.2 Global Rainbow ......................................................................... 117 

§7.3 Sensitivity of global rainbow to nonsphericity ................................. 120 

§7.3.1 Spheroids with same ellipticity .................................................. 121 

§7.3.2 Spheroids with different ellipticity ............................................ 123 

§7.4 Conclusion ........................................................................................ 125 

Chapter 8  Conclusion .................................................................. 127 

Acknowledgement ........................................................................... 129 

References ........................................................................................ 131 

List of Publications .......................................................................... 143 

Appendix A Wigner functions ........................................................ 145 

Appendix B Translational Addition theorem of VSWFs ............. 149 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

1 

  

  .......................................................................................................... 1 

§1.1  ........................................................................... 1 

§1.2  ................................................................... 3 

§1.3  ................................................................... 7 

§1.4  ................................................................... 8 

§1.5  ......................................................................... 10 

 

  

 

  ............................................ 15 

§2.1  ............................................................................. 15 

§2.2  ................................................................. 16 

§2.2.1  ................................................................. 16 

§2.2.2  ............................................................................. 18 

§2.2.3  ................................................. 19 

§2.2.4  ................................................. 20 

§2.3  ................................................................. 22 

§2.3.1 Bromwich  ........................ 22 

§2.3.2  ......................................................... 24 

§2.3.3  ..................................................... 25 

§2.3.4  ......................................................... 29 

§2.4  ......................................................... 35 

§2.5  ..................................................................................................... 36 

  ........................................................................ 37 

§3.1  ..................................................................................................... 37 

§3.2  ..................................................................... 38 

§3.2.1  ......................................................................... 38 

§3.2.2  ................................................. 39 

§3.2.3  ................................................. 40 

§3.2.4  ......................................................................... 42 

§3.2.5  ......................................................... 43 



 

2 

§3.3  ................................................................................. 45 

§3.4  ......................................................... 47 

§3.4.1  ................................. 48 

§3.4.2  ......................... 50 

§3.5  ..................................................................................................... 58 

  ................................................................ 59 

§4.1  ..................................................................................................... 59 

§4.2  ............................................................................................. 60 

§4.2.1  ............................................................. 60 

§4.2.2  ..................................................... 61 

§4.3  ......................................................... 62 

§4.3.1  ............................................................. 62 

§4.3.2  ............................................................. 62 

§4.3.3  ............................................................. 67 

§4.4  ..................................................................................................... 68 

  ................................................................ 69 

§5.1  ............................................................. 69 

§5.2  ................................. 71 

§5.2.1  ............................................................. 71 

§5.2.2  ............................. 72 

§5.2.3  ................................. 76 

§5.2.4  ................. 78 

§5.3  ..................................................................................................... 80 

 

  

 

  .................................................................................... 85 

§6.1  ..................................................................................................... 85 

§6.2  ................................................................. 86 

§6.2.1  ..................................................................................... 86 

§6.2.2  ................................................. 88 

§6.2.3  ................................................. 92 

§6.3  ................................................................... 100 

§6.4  ................................................................................................... 104 

 



 

3 

  .......................................................................... 105 

§7.1  ....................................................................... 105 

§7.1.1  ................................................................... 105 

§7.1.2  ........................................................................... 108 

§7.1.3  ........................................................................... 110 

§7.2  ....................................................... 112 

§7.2.1  ....................................................... 112 

§7.2.2  ....................................................... 115 

§7.3  ....................................................... 118 

§7.3.1  ....................................... 119 

§7.3.2  ....................................... 120 

§7.4  ................................................................................................... 123 

  .................................................................................. 125 

  ..................................................................................................................... 127 

 ............................................................................................................... 129 

 ................................................... 141 

A Wigner  ................................... 143 

B  .................................................................. 147 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4 

 

 

 

 

 



 

1 

1   

1.1  

Optical characterization of shape 

and thermo-chemical composition of biodiesel droplets in flames

(60771039)

Interreg Iva-C5: Cross-Chanel Center 

for Low Carbon Combustion

 

[1-3]

[4]

[5]
1-1

 

[6]



 

2 

 

 

1.1  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

) )

)

WKB

(GTD) (PO) (PTD) (GO)

(UTD)

(SVM) (EBCM T )

(FDTD) (FEM) (MOM) (PMM)



 

3 

 

 

1.2  

Lorenz
[7]

1890 Mie
[8]

1908

(Lorenz-Mie theory, LMT)

 

Aden Kerker
[9]

1951

Kerker
[10]

1969



 

4 

Toon
[11]

Bohren
[12]

[13]
1991

Johnson
[14]

Hightower
[15]

Aden Kerker

Ray

[16]
Kaiser

[17]

 

Hightower

Ray

Hightower

Secker
[18]

20um

Tu Ray
[19]

 

Friedman Russek
[20]

1954



 

5 

Stein
[21]

Cruzan
[22]

Friedman Russek

Bobbert Vlieger
[23]

,Mackowski
[24]

 

1979 Fikioris Uzunoglu
[25]

Fikioris Uzunoglu

1992 Borghese
[26, 27]

Fuller
[28]

[29]

Videen
[30]

Ngo

[31, 32]

FORTRAN

Lim Lee
[33]

 

60

Davis
[34]

1979

1982 Gouesbet Grehan
[35]

Davis

Bromwich

30

[36, 37] [38, 39] [40, 41]



 

6 

[36] [42]

Barton
[43]

TEM00

Khaled
[44]

[37]
1997

 

2000 Gouesbet Grehan
[45]

[46, 47] [48, 

49]

 

Fikioris Uzunoglu

30

 

 

 

50



 

7 

 

1.3  

 

Asano
[50, 51]

Barton
[52, 53]

Asano

[54, 55]
Asano

Asano

GLMT

[56]

[41, 57]
GLMT

Debye
[58]

[59]
T

Null-field method
[60]

150
[61]

 

Waterman
[62]

1971



 

8 

FDTD, MOM

40

[59, 60]

Transition Matrix, T

Mishchenko
[63]

Wielaard
[64]

Hackman
[65]

Schulz
[66]

EBCM

 

Mishchenko
[67, 68]

EBCM

Fortran EBCM

Skaropoulos
[69]

EBCM

 

1.4  

 

( )

 

(Generalized Lorenz-Mie Theory, GLMT)



 

9 

(Extended Boundary Conditions Method, EBCM)

 

GLMT

FORTRAN

 

 

 

 

Nussenzveig



 

10 

 

 

1.5  

 

1.

Optics Communications
[70-74]

 

2.

FORTRAN

 

3.

Journal of the Optical Society of America A

[75]
 

4.

Journal of the Optical Society 

of America A
[76]

 

5.



 

11 

Nussenzveig

Experiment in Fluids
[77]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

12 

 

 

 



 

13 

  

 

 

Leung
[78]

Curzon Plant
[79]

[80]



 

14 

Hasheminejad Mirzaei
[81]

 

Optics Communications
[70-74]

FORTRAN

JOSA A
[75]

JOSA A
[76]

 

 



 

15 

2  

(GLMT)

(Beam Shape Coefficients, BSCs)

 

2.1  

Lorenz
[7]

1890 Mie
[8]

1908

(Lorenz-Mie theory, LMT)  1964

TEM00

 

(Partial Waves)

(Partial Plane Waves)



 

16 

Gouesbet Grehan
[35]

(Generalized Lorenz-Mie theory, GLMT)

30

1982 Gouesbet Grehan

Barton
[43]

TEMmn Loic
[82] [83]

[42]
(Laser-sheet beam)

Gouesbet Grehan
[84]

Barton
[85]

Lock
[86]

[37]
Barton

[52] [40]

[56]
GLMT 30

Gouesbet Grehan

[84]
 

 

2.2  

§2.2.1  

1935 Hansen

EBCM

 

exp( )iwt

 

 0

0

22

22

HH

EE

k

k

 

(2-1) 



 

17 

2 2k i

(2 / )k n n

 

E H

 

 
2

1
,

i

k i
E H H E

 

(2-2) 

(2-1)

(2-1)

Stratton
[87]

r

(2-1)  

 
1

( )

k

L

M r

N M  

(2-3) 

r  

(2-1)  

 
022 k

 
(2-4) 

Oxyz ( , , )R (2-4)  

 

0
sin

1
)(sin

sin

1
)(

1 2

2

2

222

2

2
k

RRR
R

RR
  

(2-5) 

 

 
( ) (cos )exp( )m

mn n nz kr P im
 (2-6) 

( )nz kR ( )nj kR ( )ny kR (1) ( )nh kR (2) ( )nh kR

(cos )m

nP  

mn (2-6) (2-3)

nmL nmM nmN  

 

( ) ( , , ) ( 1) [ (cos ) (cos ) ] ( )exp( )j m m m

nm n n nkr im z kr imM i i
 

(2-7) 

( ) ( 1)
( , , ) ( 1) ( ) (cos )

[ ( )]1
[ (cos ) (cos ) ] exp( )

j m m

nm n n r

m mn
n n

n n
kr z kr P

kr

d rz kr
im im

kr dr

N i

i i

 

(2-8) 



 

18 

 

( ) ( )
( , , ) ( 1) (cos )

( )

( )
[ (cos ) (cos ) ] exp( )

j m mn
nm n r

m mn
n n

dz kr
kr k P

d kr

z kr
im im

kr

L i

i i

  

(2-9) 

(cos )m

nP (cos )m

n (cos )m

n

A A

(cos )m

nP (cos )m

n (cos )m

n
 

(2-1)

nmL nmM nmN

nmM nmN

 

2.1  

§2.2.2  

Oxyz Oxyz

( , , )r ( , , )r

( , , )

 

( , , )

Edmonds
[88]

Mishchenko Doicu



 

19 

2.1  

1. Oxyz z (0 2 )

Ox y z  

2. Ox y z y

(0 ) Ox y z  

3. Ox y z z (0 )

Ox y z Oxyz  

z Oxyz ( , , )r ( , , )r  

§2.2.3  

( , , )

 

 

 

(cos )exp( ) ( , , ) (cos )exp( )
n

m s

n n

s n

P im m s n P is

 

(2-10) 

 

 
( , , ) exp( ) ( ) exp( )n

smm s n is u im
 (2-11) 

 

1/ 2

2 2 2

( )!( )!
( ) [ ]

( )!( )!

( 1) (cos ) (sin )
2 2

n

sm

n s s m n s m

n s n s
u

n m n m

n m n m

n s
 

(2-12) 

r (2-10) ( )nz kr

r̂  

 

ˆ ˆ[ ( ) (cos ) ] { ( , , ) [ ( ) (cos ) ] }
n

m im s is

n n n n

s n

z kr P e m s n z kr P er r

 

(2-13) 

(2-13) nm (2-6)  

 

ˆ ˆ{ ( , , ) }
n

nm ns

s n

m s nr r

 

(2-14) 

Stratton  



 

20 

 
( ) ( )mn mn mnkrM r r

 (2-15) 

 

 

( , , ) ( , , ) ( , , )
n

mn sn

s n

kr m s n krM M

 

(2-16) 

Wigner-d Wigner-d

Wigner-d  

 

( )

2 2 2

( ) ( 1) ( )!( )!( )!( )!

(cos ) (sin )
2 2( 1)

!( )!( )!( )!

n n m

sm

s m n s m

d n s n s n m n m

n s n m s m   

(2-17) 

Wigner-d n

smu (2-12)  

 
( )( ) ( 1)n m s n

sm smd u
 (2-18) 

Wigner-d

A  

 

 

( , , ) ( , , ) ( , , )
n

s

mn mn sn

s n

kr H krM M

 

(2-19) 

 

 
( )( , , ) ( 1) ( )s m s is n im

mn smH e d e
 (2-20) 

( )mn krN

 

 

( , , ) ( , , ) ( , , )
n

s

mn mn sn

s n

kr H krN N

 

(2-21) 

§2.2.4   



 

21 

 

 

2.2  

 

1961 Stein
[21]

(I) 

Stein
[21]

Mackowski
[24]

Chew
[89]

(II) Wigner 3jm 1962 Cruzan
[22]

Stein

Wigner 3jm

Bruning

Lo
[90, 91]

Tsang
[92]

(III) Gaunt Xu
[93]

Gaunt

[94]

 

2.2 Oxyz 1 1 1 1O x y z

1 1 1 1O x y z 1O Oxyz 0r

M Oxyz 1 1 1 1O x y z r 1r

0 1r r r  

 



 

22 

 

( ) , ( ) , ( )

0 1 0 1

1

( ) , ( ) , ( )

0 1 0 1

1

( ) [ ( ) ( ) ( ) ( )]

( ) [ ( ) ( ) ( ) ( )]

j mn p j mn p j

mn

j mn p j mn p j

mn

k A k k B k k

k B k k A k k

M r r M r r N r

N r r M r r N r

 

(2-22) 

, ,,mn p mn pA B  

z (2-22)

 

 

( ) , ( ) , ( )

0 1 0 1

1

( ) , ( ) , ( )

0 1 0 1

1

( ) [ ( ) ( ) ( ) ( )]

( ) [ ( ) ( ) ( ) ( )]

j mn p j mn p j

mn m m m m

j mn p j mn p j

mn m m m m

k A k k B k k

k B k k A k k

M r r M r r N r

N r r M r r N r

  

(2-23) 

 

 

(1) ,1 (1) ,1 (1)

0 1 0 1

1

(1) ,1 (1) ,1 (1)

0 1 0 1

1

( ) [ ( ) ( ) ( ) ( )]

( ) [ ( ) ( ) ( ) ( )]

mn mn

mn m m m m

mn mn

mn m m m m

k A k k B k k

k B k k A k k

M r r M r r N r

N r r M r r N r

  

(2-24) 

1 0r r  

 

(3,4) ,1 (3,4) ,1 (3,4)

0 1 0 1

1

(3,4) ,1 (3,4) ,1 (3,4)

0 1 0 1

1

( ) [ ( ) ( ) ( ) ( )]

( ) [ ( ) ( ) ( ) ( )]

mn mn

mn m m m m

mn mn

mn m m m m

k A k k B k k

k B k k A k k

M r r M r r N r

N r r M r r N r

  

(2-25) 

1 0r r  

 

(3,4) ,(3,4) (1) ,(3,4) (1)

0 1 0 1

1

(3,4) ,(3,4) (1) ,(3,4) (1)

0 1 0 1

1

( ) [ ( ) ( ) ( ) ( )]

( ) [ ( ) ( ) ( ) ( )]

mn mn

mn m m m m

mn mn

mn m m m m

k A k k B k k

k B k k A k k

M r r M r r N r

N r r M r r N r

  

(2-26) 

, ,( , )mn p mn p

m mA B B  

2.3  

§2.3.1 Bromwich  

Gouesbet
[36]

Bromwich



 

23 

Bromwich  

 

2 2
2

2 2 2 2 2

1 1
(sin ) 0

sin sin

U U U
k U

r r r  

(2-27) 

 

 

| |0
,

1

( ) (cos )exp( )
n

i pw m m

TM n n TM n n

n m n

E
U c g kr P im

k  

(2-28) 

 

| |0
,

1

( ) (cos )exp( )
n

i pw m m

TE n n TE n n

n m n

H
U c g kr P im

k  

(2-29) 

k ( ) ( )n nkr krj kr Ricatti-Bessel

, ,,m m

n TM n TEg g
pw

nc  

 

11 2 1
( )

( 1)

pw n

n

n
c i

k n n  

(2-30) 

0rH (Transverse magnetic 

wave, TM wave) 0rE (Transverse electric wave, TE wave)

Bromwich

TM  

 

2
2

, 2

TM
r TM TM

U
E k U

r
 

2

,

1 TM
TM

U
E

r r
 

2

,

1

sin

TM
TM

U
E

r r   

(2-31) 

 
,

sin

TM
TM

Ui
H

r
 

,
TM

TM

Ui
H

r   

(2-32) 

Bromwich TMU (2-28) (2-31)-(2-32)

Bromwich TEU

( ), ( )mn mnk kM r N r

 

( | |) / 2

0 , ,

1

( )!
( 1) [ ( ) ( )]

( | |)!

n
i pw m m m m

n n TE mn n TM mn

n m n

n m
E kc ig k g k

n m
E M r N r

 

(2-33) 

( | |) / 20
, ,

1

( )!
( 1) [ ( ) ( )]

( | |)!

n
i pw m m m m

n n TE mn n TM mn

n m n

kE n m
kc ig k g k

i n m
H N r M r

  

(2-34) 

(2-33)-(2-34)

, ,,m m

n TM n TEg g  



 

24 

§2.3.2  

GLMT

( ), ( )mn mnk kM r N r

( ), ( )mn mnk kM r N r

, ,,m m

n TM n TEg g

( ), ( )m mkr krM N

( , , , ), ( , , , )mn mnc cM N

GLMT EBCM  

 

 
0

1

( ) ( )
n

i

mn mn mn mn

n m n

E a k b kE M r N r

  

(2-35) 

 

0

1

( ) ( )
n

i

mn mn mn mn

n m n

kE
a k b k

i
H N r M r

  

(2-36) 

(2-33)-(2-34) ,mn mna b

, ,,m m

n TM n TEg g  

 

( | |) / 2

,

( )!
( 1)

( | |)!

pw m m m

mn n n TM

n m
b kc g

n m   

(2-37) 

 

( | |) / 2

,

( )!
( 1)

( | |)!

pw m m m

mn n n TE

n m
a ikc g

n m   

(2-38) 

, ,,m m

n TM n TEg g ,mn mna b

, ,,m m

n TM n TEg g  

z

( )

Gouesbet
[95]

, ,,m m

n TM n TEg g

 



 

25 

Oxyz Oxyz

( , , ) Oxyz

 

 
0

1

( ) ( )
n

i

mn mn mn mn

n m n

E a k b kE M r N r

  

(2-39) 

 

0

1

( ) ( )
n

i

mn mn mn mn

n m n

kE
a k b k

i
H N r M r

  

(2-40) 

(2-19) (2-21)

(2-39)-(2-40) Oxyz

  

 1

( , , )[ ( , , ) ( , , )]
n n

i s

mn mn sn mn sn

n m n s n

H a kr b krE M N

  

(2-41) 

m s  

 1

( , , ) ( , , )
n

i

mn mn mn mn

n m n

a kr b krE M N

  

(2-42) 

 

 

( , , )
n

m

mn sn sn

s n

a H a

 

(2-43) 

 

( , , )
n

m

mn sn sn

s n

b H b

 

(2-44) 

(2-37)-(2-38) (2-43)-(2-44) Oxyz

,

m

n Xg Oxyz ,

m

n Xg

 

 
, ,

( , , )mn
m ssn
n X mn n X

s n sn

H
g g

  

(2-45) 

 

 

( | |) / 2 ( | |)!
( 1)

( )!

m m

mn

n m

n m   

(2-46) 

 
( )( , , ) ( 1) ( )s m s is n im

mn smH e d e
  (2-47) 

§2.3.3  



 

26 

 

2.3.3.1  

S , ,x y z

, ,x y zS S S z

z ( 0)zS

(Generic beams)

z

zS

[96]
 

 
0, | | 1m

ng m
  

(2-48)

 

 

1 1 1 1

, , , ,

1

2

n
n TM n TM n TE n TE

gi
g g i g g

K K  

(2-49) 

z -1

z +1 K

x
xS

cos 1K  

(2-48) (2-49)

(2-45)

 

 

1 11 1
, , ,

1 1

( , , ) ( , , )
[ ]

m m
m n n
n X mn n X n X

n n

H H
g g g

  

(2-50)

 

 

 
1 1

1
( 1),

( 1)
n n

n n   

(2-51) 

 
1

1 1( , , ) ( 1) ( )m m im n i

n mH e d e 1

1 1( , , ) ( 1) ( )m m im n i

n mH e d e
 (2-52) 

A A.24 A.25  

 
1

( )!
(cos ) (cos ) ( 1) ( )

( )!

m m n

n n m

n m
m n n d

n m
  

(2-53) 



 

27 

 
1

( )!
(cos ) (cos ) ( 1) ( )

( )!

m m n

n n m

n m
m n n d

n m
  

(2-54) 

(2-53) (2-54) (2-52)  

 
1

1 1( , , ) ( 1) ( )m m im n i

n mH e d e
  

(2-55)
 

 
1

1 1( , , ) ( 1) ( )m m im n i

n mH e d e
  

(2-56)
 

(2-55)-(2-56) (2-51) (2-50)

 

 

1 2
,

1 1 1 1

, , , ,

( 1) ( 1)

(cos )[ ] (cos )[ ]

m m

m m im

n X

m i i m i i

n n X n X n n X n X

g e

m e g e g e g e g
 

(2-57) 

2.3.3.2  

, ,,m m

n TM n TEg g Grehan Gouesbet
[97]

[98]

 

Doicu
[99]

[100]

 

 

A.  

2.2 Oxyz 1 1 1 1O x y z

1 1 1 1O x y z 1O Oxyz 0r

M Oxyz 1 1 1 1O x y z r 1r

0 1r r r Oxyz

 

 
0

1

( ) ( )
n

i

mn mn mn mn

n m n

E a k b kE M r N r

 

(2-58) 

 

0

1

( ) ( )
n

i

mn mn mn mn

n m n

kE
a k b k

i
H N r M r

  

(2-59) 

 



 

28 

 

(1) ,1 (1) ,1 (1)

0 1 0 1

1

(1) ,1 (1) ,1 (1)

0 1 0 1

1

( ) [ ( ) ( ) ( ) ( )]

( ) [ ( ) ( ) ( ) ( )]

mn mn

mn

mn mn

mn

k A k k B k k

k B k k A k k

M r r M r r N r

N r r M r r N r

  

(2-60) 

(2-60) (2-58)-(2-59) mn  

 

,1 ,1 ,1 ,1,mn uv mn uv mn mn uv mn uv mn

uv uv

a a A b B b a B b A

  

(2-61) 

mn mna b (2-61)

(2-37)-(2-38)  

[100]
 

 

B   

Gouesbet
[101]

[101]
 

( , , )rE r ( , , )rH r m

m

rE m

rH m

m  

 

mm
r r

m
mr r

E E

H H
 

(2-62) 

m

rE m

rH  

 

0 ,

0 ,

exp( cos )exp( )sin

mm
rr

mm
rr

E EE
ikr im

H HH
 

(2-63) 

,

m

rE
,

m

rH  

,

m

rE
,

m

rH z

sinr 1/ 2L / 2  

 
2 2( 1/ 2) (| | 1/ 2)L n m

  
(2-64) 

m

nZ  



 

29 

 

| | 1

1/ 2
( )m m

n

i
Z

L   

(2-65) 

, ,,m m

n TM n TEg g

, ,,m m

n TM n TEg g (2-45)

 

§2.3.4  

(2-48)-(2-49) ( , ) ( 1, 1)K

x  

 

1 1 1 1

, , , ,
2

n
n TM n TM n TE n TE

g
g g ig ig

 

(2-66) 

 

 

2.3  

2.3.4.1   

Hermitz  

 
2 2 0kE E  (2-67)

 

Hermitz

 

2.3  



 

30 

 

2 2

0 0

2
( , ) exp[ ]exp [ ( ) ( )]

( ) ( ) ( )

E r r
E r z i k z z

z z R z
  

(2-68)

 

0 ( )z z ( )R z

( )z  

 

2 1

0 0

0

( ) 1 ( / ) , ( ) tan ( )
z

z z z z
z

 
 (2-69) 

0z  

 

2

0 0

1

2
z k

  

(2-70)

 

TEM00

TEM00

2.4 0

gO uvw w exp( )i t

gO u
gO uvw

Oxyz gO uvw gO Oxyz

0 0 0( , , )x y z Oxyz Oxyz ( , , )

 

2.4  

2.3.4.2  

gO uvw Davis
[34]

gO uvw  



 

31 

 

0 0( , , ) exp( )

( , , ) 0

2
( , , ) ( , , )

i

u

i

v

i i

w u

E u v w E ikw

E u v w

Qu
E u v w E u v w

l  

(2-71) 

 

0 0

( , , ) 0

( , , ) exp( )

2
( , , ) ( , , )

i

u

i

v

i i

w v

H u v w

H u v w H ikw

Qv
H u v w H u v w

l  

(2-72) 

0E  

 0

0

00 EH

 

(2-73) 

 

2 2

0 2

0

( )
exp

iQ u v
iQ  

0

1

2( ) /
Q

i z z l
 

(2-74)

 

l
2

0l k  

2.3.4.3  

Oxyz gO uvw Ox Ou

gO uvw gO pO xyz

),,( 000 zyx  

 0w z z 0u x x 0v y y
 (2-75) 

(2-75) (2-71)-(2-72)

 

 

0 0 0

0

exp( ( ))

0

2
( )

x

y

z x

E E ik z z

E

Q
E x x E

l   

(2-76) 

 

0 0 0

0

0

exp( ( ))

2
( )

x

y

z y

H

H H ik z z

Q
H y y H

l   

(2-77) 

 

 

2 2

0 2

0 0

1
exp ( ) ,

2( ) /

x y
iQ iQ Q

i z z l
  

(2-78) 



 

32 

 

 

0 0 0

2

0 0 0

0 0

2 2
[cos sin (1 cos ) cos ]exp( )

2 2
[cos (cos sin ) cos ]exp( )

sin exp( )

r

Q Q
E E r x K

l l

Q Q
E E r x K

l l

E E K
 

(2-79) 

 

0 0 0

2

0 0 0

0 0

2 2
[sin sin (1 cos ) cos ]exp( )

2 2
[sin (cos sin ) sin ]exp( )

cos exp( )

r

Q Q
H H r y K

l l

Q Q
H H r y K

l l

H H K
 

(2-80) 

 

 0( cos )K ik r z    02( cos )
1/( )

r z
Q i

l   

(2-81) 

 

0

0 0 0

2 22 2
0 0 0
0 2 2

0 0

0 0 02

0

sin
exp( )exp( )

2
exp[ sin ( cos sin )]

x yr
iQ iQ iQ

iQ
r x y

 
 

(2-82) 

2.3.4.4  

[102, 103]
 

2.3

, ,,m m

n TM n TEg g  

2 2
, 2 0 0

0

, 0 0

1
exp( ) exp[ ( ) ]exp( ) ( )

2

m jp jp
n TM m n

n jp jpm
j m j mn TE

g x y
Z ikz iQ iQ iQ

g
    

(2-83) 

   

0

1

2( ) /
Q

i z z l
   

0

1
( 0)

(2 / )
Q Q z

i z l
 (2-84) 

 

1/ 2

2
n L

 

(2-85) 



 

33 

 

0 0 0 0

2

0

( ) ( )sin
( )

( )! !

j p p
j

jp

x iy x iyiQ r

j p p
 

(2-86) 

0 0

jp j

j p

  1 2j j p   1 2j j p  

0 0 0x y (2-86) 0jp

00 1  

 

,

,

1

2

m

n TM

nm

n TE

g
g

ig
 | | 1m

 
(2-87) 

 

2

0

exp[ ( ) ]n
ng

 

(2-88) 

0

1ng  

 

,

,

1

2

m

n TM

m

n TE

g

ig
 

(2-89) 

, ,,m m

n TM n TEg g (2-45) (2-50)

 

(2-87)-(2-88) (2-45) (2-50)

 

( | |) / 2

,

( | |)!
( 1) ( 1) [sin (cos ) cos (cos )]

( )!

m m m m im m m

n TM n n n

n m
g g e im

n m  

(2-90)  

1 ( | |) / 2

,

( | |)!
( 1) ( 1) [cos (cos ) sin (cos )]

( )!

m m m m im m m

n TE n n n

n m
g g e im

n m  

(2-91) 

RL

L R

, ,

m m

n X n Xg g ,

m

n Xg RL-  

L

R

R

L

 



 

34 

 

 exp( ) 0x y zE ikz E E  (2-92) 

 

 

cos cos exp( )

sin exp( )

cos sin exp( )

x

y

z

E ikz

E ikz

E ikz
  

(2-93) 

 

 
[sin (cos cos cos sin sin ) cos sin cos ]exp( )rE ikz

 
(2-94) 

 

 

( ) [cos cos sin ]exp( )
2 2 2

j j j j
loc

r r

e e e e
E E ikz

 

(2-95) 

“ X ” “ X ”

sinr 1/ 2L / 2 L (2-64)  

(2-95) z , ,x y z

 

 
exp( ) exp( sin cos )ikz iR

 
(2-96) 

exp( )ikz 2  

 

exp( )
2

ill

l

A
ikz e

 

(2-97) 

(2-96) (2-97)
2

0

imd e  

 

2 2
cos ( )

0 0

0,

,2

iB im i l ml

l m

l mA
d e d e

A l m
 

(2-98) 

sinB R  

 

 

2
( cos )

0
( )

2

n
i x n

n

i
J x e d

 

(2-99) 

(2-99) (2-98)  

 

2
( )

m mm
A J B

i  

(2-100) 

 

 

exp( ) ( )m im

m

m

ikz i J B e

 

(2-101) 



 

35 

(2-101) (2-95)  

 

1

1 1[ ( ) ( )]m im

r m m

m

E i e f J B f J B

 

(2-102) 

(cos cos sin ) / 2, (cos cos sin ) / 2f i f i

 LR  

 

| | 1 1 1/ 2 1/ 2

, 1 11/ 2
( ) [ ( sin ) ( sin )]m m m

n TM m m

i
g i f J L f J L

L  

(2-103) 

LR
,

m

n TMg RL
,

m

n TMg

RL

LR  

2.4  

2.3

 

 
, ,

( , , )mn
m ssn
n X mn n X

s n sn

H
g g

 

(2-104) 

 

( | |) / 2 ( | |)!
( 1)

( )!

m m

mn

n m

n m  

( )( )!( )!
( , , ) ( 1) ( )

( )!( )!

m is m s n im

sn sm

n m n s
H e d e

n m n s
 

 

 

, , ,

0 0

( , , ) ( , , )

1

m mn
m s smn sn sn
n X n X n X

s s sn sn

H H
g g g

 

(2-105) 

(2-104) (2-105)  

 

( | |)

2
,

0 0

, ,

1 ( | |)!( )!
( 1) ( 1)

1 ( | |)!( )!

( 1)

m mn
m m s

n X

s s

im is n s s im is n s

ms n X m s n X

n m n s
g

n m n s

e e d g e e d g
 

(2-106) 

Wigner-d  

[104]
2.1

0.5145 m 0 10.0 m

0 0 00.5x y 0 0.5z s 8.1885 03s E

0.0 0.0 60.0



 

36 

0.0
[104]

 

 

2.1  

 
, ( 0.0 )m

n TMg
 , ( 0.0 , 60.0 )m

n TMg  

1

1g
 

(-6.14427E-02, -2.96953E-01) (5.7801E-02, 2.82976E-01) 

0

1g
 

(4.854417E-03, -1.04614E-03) (-4.2087E-02, -1.80031E-01) 

1

1g
 

(-6.14650E-02, -2.96948E-01) (5.77785E-02, 2.8298E-01) 

2

2g
 

(-1.47481E-03, -9.51931E-04) (-9.66254E-03, -4.1728E-02) 

1

2g
 

(-6.14147E-02, -2.96917E-01) (-4.7399E-02, -2.43079E-01) 

0

2g
 

(1.45603E-02, -3.13778E-03) (0.11888,  0.514614) 

1

2g
 

(-6.147664E-02 -2.96903E-01) (-4.7021E-02 -2.41613E-01) 

2

2g
 

(-9.51827E-04, 1.474874E-03) (-1.01512E-02, -4.4041E-02) 

 

2.5  

GLMT

 

 

 

 



 

37 

3  

GLMT

FORTRAN

 

3.1  

(

)

 

Fikioris Uzunoglu
[25]

Broghese
[26, 27]

Fuller
[28, 29]

Ngo Videen
[31, 32]

EBCM

Gouesbet
[45]

2000

GLMT



 

38 

[49, 105]
GLMT

[47, 106]

 

GLMT

 

3.2  

§3.2.1  

3.1  

 

3-1

1 1 1 1O x y z



 

39 

1z 1 1 1 1O x y z

2 2 2 2O x y z

1 1 1( , , )r 2 2 2( , , )r d  

 2 1 2 1 2 1, ,x x y y z z d
 

(3-1) 

gO uvw w
gO 1 1 1 1O x y z

0 0 0( , )x y z
gO uvw ( , )

1 1 1 1O x y z
gO xyz gO xyz

0 0 0( , )x y z 1 1 1 1O x y z  

1 1 1 1O x y z

2 2 2 2O x y z

gO uvw  

§3.2.2  

1 1 1 1O x y z

 

 

(1) (1)

0 0 1 0 1

1

( ) ( )
n

inc

nm nm nm nm

n m n

E a k b kE M r N r

 

(3-2) 

 

(1) (1)0
0 1 0 1

1

( ) ( )
n

inc

nm nm nm nm

n m n

kE
a k b k

i
H N r M r

 

(3-3) 

,mn mna b , ,,m m

n TM n TEg g  

 

( | |) / 2

,

( )!
( 1)

( | |)!

pw m m m

mn n n TM

n m
b kc g

n m  

(3-4) 

 

( | |) / 2

,

( )!
( 1)

( | |)!

pw m m m

mn n n TE

n m
a ikc g

n m  

(3-5) 

sca
E 1 1 1 1O x y z

 

 

(4) (4)

0 0 1 0 1

1

( ) ( )
n

sca

nm nm mn nm

n m n

E c k d kE M r N r

 

(3-6) 

 

(4) (4)0
0 1 0 1

1

( ) ( )
n

sca

nm nm nm nm

n m n

kE
d k c k

i
H N r M r

 

(3-7) 



 

40 

 

 

1 (3) (3) (4) (4)

0 1 1 1 1 1 1 1 1

1

( ) ( ) ( ) ( )
n

int

nm nm mn nm nm nm mn nm

n m n

E e k f k v k h kE M r N r M r N r

 

(3-8) 

1 (3) (3) (4) (4)0
1 1 1 1 1 1 1 1

1

( ) ( ) ( ) ( )
n

int

nm nm mn nm nm nm mn nm

n m n

kE
f k e k h k v k

i
H M r N r M r N r

 

(3-9) 

 

 

1 1 1 1 1 1

1 1 1 1 1 1

1 1

1 1

| | | | | |

| | | | | |

int inc sca int inc sca

r a r a r a r a r a r a

int inc sca int inc sca

r a r a r a r a r a r a

E E E H H H

E E E H H H
 

(3-10) 

 

 

0
0 0 1 1

1

( ) ( ) [ ( ) ( )]nm n nm n nm n nm n

k
a k a c k a e k a v k a

k
 

(3-11) 

 0 0 1 1( ) ( ) ( ) ( )nm n nm n nm n nm na k a c k a e k a v k a
 

(3-12) 

 0 0 1 1( ) ( ) ( ) ( )nm n nm n nm n nm nb k a d k a f k a h k a
 

(3-13) 

 

0
0 0 1 1

1

( ) ( ) [ ( ) ( )]nm n nm n nm n nm n

k
b k a d k a f k a h k a

k
 

(3-14) 

( ), ( ), ( )n n nr r r Riccati-Bessel  

 
(1) (2)( ) ( ), ( ) ( ), ( ) ( )n n n n n nr rj r r rh r r rh r

 
(3-15) 

( ), ( ), ( )n n nr r r Riccati-Bessel  

 

§3.2.3  

 

 

1 (3) (3) (4) (4)

0 1 2 1 2 1 2 1 2

1

( ) ( ) ( ) ( )
n

int

nm nm mn nm nm nm mn nm

n m n

E r k s k t k u kE M r N r M r N r

 

(3-16) 

 

1 (3) (3) (4) (4)0
1 2 1 2 1 2 1 2

1

( ) ( ) ( ) ( )
n

int

nm nm mn nm nm nm mn nm

n m n

kE
s k r k u k t k

i
H M r N r M r N r

 

(3-17) 



 

41 

 

 

2 (1) (1)

0 2 2 2 2

1

( ) ( )
n

int

nm nm mn nm

n m n

E p k q kE M r N r

 

(3-18) 

 

2 (1) (1)0
2 2 2 2

1

( ) ( )
n

int

nm nm mn nm

n m n

kE
q k p k

i
H M r N r

 

(3-19) 

 

 

2 2 2 2

2 2 2 2

1 2 1 2

1 2 1 2

| | | |

| | | |

int int int int

r b r b r b r b

int int int int

r b r b r b r b

E E H H

E E H H
 

(3-20) 

 

 

2
2 1 1

1

( ) [ ( ) ( )]nm n nm n nm n

k
p k b r k b t k b

k
 

(3-21) 

 2 1 1( ) ( ) ( )nm n nm n nm np k b r k b t k b
 

(3-22) 

 2 1 1( ) ( ) ( )nm n nm n nm nq k b s k b u k b
 

(3-23) 

 

2
2 1 1

1

( ) [ ( ) ( )]nm n nm n nm n

k
p k b s k b u k b

k
 

(3-24) 

,nm nmp q  

 

1 1 2 2 1 2

2 1 2 1 1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

r nm n n n n
n

nm n n n n

r k k b k b k k b k b
Q

t k k b k b k k b k b
 

(3-25) 

 

2 1 2 1 1 2

1 1 2 2 1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

s nm n n n n
n

nm n n n n

s k k b k b k k b k b
Q

u k k b k b k k b k b
 

(3-26) 

 

 

2 2

2 2

1 1

1 1

| 0 | 0

| 0 | 0

int int

r b r b

int int

r b r b

E H

E H
 

(3-27) 

 

 

1

1

( )

( )

r nm n
n

nm n

r k b
Q

t k b
 

(3-28) 

 

1

1

( )

( )

s nm n
n

nm n

s k b
Q

u k b
 

(3-29) 



 

42 

 

§3.2.4  

2 | |r d  

 

(3,4) ,1 (3,4) ,1 (3,4)

2 1 1

1

(3,4) ,1 (3,4) ,1 (3,4)

2 1 1

1

( ) [ ( ) ( ) ( ) ( )]

( ) [ ( ) ( ) ( ) ( )]

mn mn

mn m m m m

mn mn

mn m m m m

k A kd k B kd k

k B kd k A kd k

M r M r N r

N r M r N r

 

(3-30) 

(3-30) (3-16) (3-17)

(3-8) (3-9)  

 1

mv mv

nm vm mn vm mn

v

e r A s B

 

(3-31) 

 1

mv mv

nm vm mn vm mn

v

f s A r B

 

(3-32) 

 1

mv mv

nm vm mn vm mn

v

v t A u B

 

(3-33) 

 1

mv mv

nm vm mn vm mn

v

h u A t B

 

(3-34) 

(3-31)-(3-34) (3-25)-(3-26) (3-11)-(3-14)

 

 

0
0 0 1 1

11

1 1

( ) ( ) [ ( ) ( )]

[ ( ) ( )]

mv r

nm n nm n vm mn n v n

v

mv s

vm mn n v n

k
a k a c k a t A k a Q k a

k

u B k a Q k a
 

(3-35) 

 

0 0 1 1

1

1 1

( ) ( ) [ ( ) ( )]

[ ( ) ( )]

mv r

nm n nm n vm mn n v n

v

mv s

vm mn n v n

a k a c k a t A k a Q k a

u B k a Q k a
 

(3-36) 

 

0 0 1 1

1

1 1

( ) ( ) [ ( ) ( )]

[ ( ) ( )]

mv r

nm n nm n vm mn n v n

v

mv s

vm mn n v n

b k a d k a t B k a Q k a

u A k a Q k a
 

(3-37) 



 

43 

 

0
0 0 1 1

11

1 1

( ) ( ) [ ( ) ( )]

[ ( ) ( )]

mv r

nm n nm n vm mn n v n

v

mv s

vm mn n v n

k
b k a d k a t B k a Q k a

k

u A k a Q k a
 

(3-38) 

,mn mna b , ,,m m

n TM n TEg g

,nm nmc d  

 

,1 ,1

1

mv mv

nm n vm mn vm mn

v

a t T u U

 

(3-39) 

 

,2 ,2

1

mv mv

nm n vm mn vm mn

v

b t T u U

 

(3-40) 

 

 1 0 0 0 0[ ( ) ( ) ( ) ( )]n n n n nk k a k a k a k a
 

(3-41) 

 
,1

0 0 1 1 1 0 1 1{ ( )[ ( ) ( )] ( )[ ( ) ( )]}mv mv r r

mn mn n n v n n n v nT A k k a k a Q k a k k a k a Q k a
 

(3-42) 

 
,1

0 0 1 1 1 0 1 1{ ( )[ ( ) ( )] ( )[ ( ) ( )]}mv mv s s

mn mn n n v n n n v nU B k k a k a Q k a k k a k a Q k a
 

(3-43) 

 
,2

1 0 1 1 0 0 1 1{ ( )[ ( ) ( )] ( )[ ( ) ( )]}mv mv r r

mn mn n n v n n n v nT B k k a k a Q k a k k a k a Q k a
 

(3-44) 

 
,2

1 0 1 1 0 0 1 1{ ( )[ ( ) ( )] ( )[ ( ) ( )]}mv mv s s

mn mn n n v n n n v nU A k k a k a Q k a k k a k a Q k a
 

(3-45) 

LU Gaussian

,nm nmt u ,nm nmt u

(3-35)-(3-38) ,nm nmc d  

§3.2.5  

1 0r r

[48] [46]

 

: 

 

(4) (4)

0 1 0 1

1

( ) ( )
n

sca

nm nm nm nm

n m n

c k d kE M r N r

 

(3-46) 

(3-7) (3-8) (3-46)

 



 

44 

 

(2)

0 1

1 0 1

( 1)
( 1) ( ) (cos )exp( )

n
sca m m

r nm n n

n m n

n n
E d h k r P im

k r
 

(3-47) 

 

(2)

0 1

1

(2)

1 0 1

0 1 1

( 1) ( ) (cos )

( ( ))1
(cos )}exp( )

n
sca m m

nm n n

n m n

mn
nm n

E c h k r im

d r h k r
d

k r dr
im

 

(3-48)

 

 

(2)

0 1

1

(2)

1 0 1

0 1 1

( 1) ( ) (cos )

( ( ))1
(cos )}exp( )

n
sca m m

nm n n

n m n

mn
nm n

E c h k r

d r h k r
d im

k r dr
im

 

(3-49) 

1 0r r

 

 

(2)
(2) 1 ( )

( ) ~ , ~
( )

ikr ikr
n nn

n

dh kre e
h kr i i

kr d kr kr  

(3-50)
 

 

 

(2)
(2) 1 [ ( )]

( ) ~ , ~
( )

n ikr n ikrn
n

d kr h kr
kr h kr i e i e

d kr  

(3-51)
 

(3-51) (3-47)-(3-49)  

 
0sca

rE
 

(3-52) 

1

1

[ (cos ) (cos )] ( 1) exp( )
ikr n

sca m m n m

nm n nm n

n m n

ie
E c im d i

kr
im

 

(3-53)

 

1

1

[ (cos ) (cos )] ( 1) exp( )
ikr n

sca m m n m

nm n nm n

n m n

e
E c d m i

kr
im

 

(3-54) 

 

 

22
1

2 2 2

2

| |

4 | |

I S

I r S
 

(3-55)
 

 

 

1

2

1

[ (cos ) (cos )] ( 1) exp( )
n

m m n m

nm n nm n

n m n

S c m d i im
 

(3-56)

 

 

1

1

1

[ (cos ) (cos )] ( 1) exp( )
n

m m n m

nm n nm n

n m n

S c d m i im
 

(3-57)

 



 

45 

3.3  

Fortran

Ngo

 

1. 

 

2. 

 

3. Riccati-Bessel Legendre

Mackowski

 

4. FORTRAN90   

 

3.2  

 

Ngo
[32]



 

46 

0.925 ma 0.525 mb 0.25 md

1.33 0.0m i 1.75 0.0m i

0.6328 m 0 20.0 m 45

0 0 0 0.0x y z

3.2555690ext scaQ Q

Ngo

3.2  

 

3.3  

 

0d

GLMT

[37]
3.3 0d

GLMT

1.0 ma , 0.5 mb 1.33 0.0m i , 1.55 0.0m i

0.6328 m
0 0.75 m

0 0 0 0.0x y z

0.0 3.3

GLMT  

[106] [105]

1.0 ma , 0.5 mb 1.33 0.0m i , 1.55 0.0m i



 

47 

0.25 md 0.6328 m
0 1.0 m

45 0.0 3.4

0 0 0 0.0x y z 0 0 0 0.5x y z m

 

 

a  

 

b [106]  

3.4  

3.4  



 

48 

CCD CMOS

 

§3.4.1  

  

(a)                                    (b) 

  

(c)                                  (d) 

3.5 

 (a) 

 (b) 90  (c) 90  (d) 90

 

 

Secker
[18]

2000

Videen
[107]

Prabhu

[108]
2001



 

49 

1.33-0.0i

1.5-0.0i 3.0 m

z x

1.5 m z  

50 m

3.5(a) ,

z d=1.0 m

3.5(b)

Secker
[18]

0 2.0 m

3.5(c)

0 2.0 m

z

0 0 0 0.0x y z m 0 0 00.0 , 2.0x y m z m 3.5(d)

[75]  

3.5

 



 

50 

§3.4.2  

3.4.2.1  

3.6 OXYZ Z Z

X

CCD CMOS

3D

3D

 

 

3.6 
 

 

OXYZ A OA

OA OZ
m

max min

m m max min( ) / 2  

OA OA

A



 

51 

cos mR sin mR M xoz

(x, 0, z)  

 
( sin , cos )m mAM x R z R

 
(3-58)

 

OA OA AM

 

 
2( cos sin ) 0m mOA AM R z x R

 
(3-59)

 

 

 
cos sinm mz x R

 
(3-60)

 

 

 mintani ix z        
maxtanf fx z

 
(3-61) 

 

 mincos sin tan
i

m m

R
z       

maxcos sin tan
f

m m

R
z

 

(3-62) 

Poynting

 

 

*1
  

2
Re t t

E HS

 

(3-63) 

3.4.2.2  

OXYZ , 

oxyz

P ( , , )p p px y z

OXYZ

Oxyz oxyz ( , , )

 

D ( , , )d d dx y z

PD ( , , )d p d p d px x y y z z  

 _ _ _
ˆ ˆ ˆ

loc t loc t loc tPD x x y y z z
  

(3-64) 



 

52 

_ _ _, ,loc t d p loc t d p loc t d px x x y y y z z z  

PD Oxyz

 

 
ˆ ˆ ˆ

loc loc locPD x x y y z z
 

(3-65)
 

 

_

_

_

R

loc loc t

loc loc t

loc loc t

x x

y y

z z

 

 

cos sin 0 cos 0 sin cos sin 0

R sin cos 0 0 1 0 sin cos 0

0 0 1 sin 0 cos 0 0 1
 

(3-66)

   

 

2 2 2( ) ( ) ( )d p d p d pr x x y y z z
 

(3-67) 

 
arccos /loc locz R

 
arctan /

loc loc
y x

 (3-68) 

3.4.2.3  

(2-42)

 

 
0

1

( ) ( )
n

i

mn mn mn mn

n m n

E a k b kE M r N r

 

(3-69)

 

 

 

( ) ( , , ) ( 1) [ (cos ) (cos ) ] ( )exp( )j m m m

nm n n nkr im z kr imM i i
 

(3-70)

 

 

( ) ( 1)
( , , ) ( 1) ( ) (cos )

[ ( )]1
[ (cos ) (cos ) ] exp( )

j m m

nm n n r

m mn
n n

n n
kr z kr P

kr

d rz kr
im im

kr dr

N i

i i

 

(3-71)

 

(2-37)-(2-38) ,mn mna b

, ,,m m

n TM n TEg g  



 

53 

 

( | |) / 2

0 ,

( )!
( 1) ( 1)

( | |)!

pw m m m m

mn n n TM

n m
b E kc g

n m  

(3-72) 

 

( | |) / 2

,

( )!
( 1) ( 1)

( | |)!

pw m m m m

mn n n TE

n m
a ikc g

n m  

(3-73) 

TEM00  

( | |) / 2

,

( | |)!
( 1) ( 1) [sin (cos ) cos (cos )]

( )!

m m m m im m m

n TM n n n

n m
g g e im

n m  

(3-74) 

1 ( | |) / 2

,

( | |)!
( 1) ( 1) [cos (cos ) sin (cos )]

( )!

m m m m im m m

n TE n n n

n m
g g e im

n m  

(3-75) 

(3-74)-(3-75) (3-72)-(3-73)  

 
0

( )!
[sin (cos ) cos (cos )]

( )!

pw im m m

mn n n n n

n m
b E kc g e im

n m  

(3-76) 

 
0

( )!
[cos (cos ) sin (cos )]

( )!

pw im m m

mn n n n n

n m
a iE kc g e im

n m  

(3-77) 

Legendre : 

 

2 1 ( )!
(cos ) (cos ) (cos )

2 ( )!

m m m m

n n n n

n n m
P P c P

n m
 

(3-78)

 

 

 

( )!
(cos ) ( 1) (cos )

( )!

m m m

n n

n m
P P

n m  

(3-79)

 

: 

 
(cos ) ( 1) (cos )m m m

n nP P
 

3-80

 

 

 
0

1

( ) ( ) ( ) ( )
n

i

mn N mn N mn N mn N

n m n

E a k b kE M r N r

 

(3-81) 

 

( ) ( , , ) ( 1) [ (cos ) (cos ) ] ( )exp( )j m m m

nm N n n nkr im z kr imM i i
 

(3-82)

 

( ) ( 1)
( , , ) ( 1) ( ) (cos )

[ ( )]1
[ (cos ) (cos ) ] exp( )

j m m

nm N n n r

m mn
n n

n n
kr z kr P

kr

d rz kr
im im

kr dr

N i

i i

 

(3-83) 

”N” : 



 

54 

 

( ) ( )

( ) ( )

( , , ) ( , , )

( , , ) ( , , )

j m j

nm N n nm

j m j

nm N n nm

kr c kr

kr c kr

M M

N N
 (3-84) 

 

0

0

2
( ) / [cos (cos ) sin (cos )]

2 1

2
( ) / [sin (cos ) cos (cos )]

2 1

pw
m im m mn n

mn N mn n n n

pw
m im m mn n

mn N mn n n n

E kc g
a a c i e im

n

E kc g
b b c e im

n  

(3-85) 

0.0 ,  

 
2 1 2( ) ( 1) ( ) ( 1)im m im m

mn N mn mn N mna e a b e b
 

(3-86)

 

 

 
2 1 2( ) ( 1) ( ) ( 1)im m im m

mn N mn mn N mnc e c d e d
 

(3-87)

 

/ 2 3 / 2  

 
2 2 1( ) ( 1) ( ) ( 1)im m im m

mn N mn mn N mna e a b e b
 

(3-88) 

 

 
2 2 1( ) ( 1) ( ) ( 1)im m im m

mn N mn mn N mnc e c d e d
 

(3-89)
 

 

3.4.2.4  

6

 

 

cos sin cos cos sin

sin sin sin cos cos

cos sin 0

x r

y

z

E E

E E

E E
 

(3-90)

 

( , , ) ,

6  

 

x x

y y

z z

E E

E R E

E E
 

(3-91)

 

 

 



 

55 

 

cos sin 0 cos 0 sin cos sin 0

sin cos 0 0 1 0 sin cos 0

0 0 1 sin 0 cos 0 0 1

R

 

(3-92)

 

 

 

cos 0 sin

0 1 0

sin 0 cos

xd m m x

yd y

zd m m z

E E

E E

E E
 

(3-93) 

(3-63) Poynting

 

3.4.2.5  

P

 

 

t s,

1

N
j

w w

j

V Y

 

(3-94) 

N V E H

W x, y z Y

E H  

 

1.  

2. 

 

3. 

 

3.4.2.6  

(3.91)



 

56 

O  

    

(a) D=10 m                (b) D=6 m  

    

(c)          (d)  

3.7 (a)  (b)  (c) 

 (d) 0.532 m, 

TM 30 50 m=1.33-0.0i, 

m=1.5-0.0i 

 

3.7

0.532 m TM D=10 m m=1.33-0.0i

D=6 m m=1.5-0.0i

30 50 512*512  R=1m

3.7a 3.7b

3.7a 3.7b

3.7c 3.7d D=6 m D=10 m



 

57 

3.7c 3.7d

3.7c 3.7d

 

     

(a) z d=1.0 m   (b) x d=1.0 m 

     

(c) y d=0.50 m   (d) y d=1.0 m, 

3.8 

0.532 m, TM 30 50 D=10 m,

m=1.33-0.0i, D=6 m, m=1.5-0.0i  

 

3.8

(x, y, z) 0.532 m, 

TM D=10 m, m=1.33-0.0i, 

D=2 m, m=1.5-0.0i, 30 50

512*512, R=1m  



 

58 

3.7

3.8 x z

y

x-z x z x-z

y

 

3.5  

GLMT

FORTRAN

 

 

 



 

59 

4  

GLMT

FORTRAN90

 

4.1  

[109, 110]

 

[111] [112]

[109]

Kerker
[10]

,Barber Hill
[113]

Barton

[43, 52, 85]

GLMT

 



 

60 

4.2  

 

 

*

2

0

I
E

E E

 

(4-1) 

E , 0E

1  

§4.2.1  

(I) 

(II) 

 

 

int1 (3) (3) (4) (4)

1 2 1 2 1 2 1 2

1

( ) ( ) ( ) ( )
n

nm nm nm nm nm nm nm nm

n m n

r k s k t k u kE M r N r M r N r

 

(4-2) 

(2-7)-(2-8) (4-2)

 

 

int1 (1) (2)

1 2 1 2

1 1 2

( 1)
( 1) [ ( ) ( )] (cos )exp( )

n
m m

r nm n nm n n

n m n

n n
E s h k r u h k r P im

k r
 

(4-3) 

 

int1 (1) (2)

1 2 1 2

1

(1) (2)

2 1 2 2 1 2

1 2 2 2

( 1) [ ( ) ( )] (cos )

( ( )) ( ( ))1
[ ] (cos )}exp( )

n
m m

nm n nm n n

n m n

mn n
nm nm n

E r h k r t h k r im

d r h k r d r h k r
s u

k r dr dr
im

 

(4-4) 

 

int1 (1) (2)

1 2 1 2

1

(1) (2)

2 1 2 2 1 2

1 2 2 2

( 1) [ ( ) ( )] (cos )

( ( )) ( ( ))1
[ ] (cos )}exp( )

n
m m

nm n nm n n

n m n

mn n
nm nm n

E r h k r t h k r

d r h k r d r h k r
s u im

k r dr dr
im

 

(4-5) 

 



 

61 

 

int 2 (1) (1)

1 2 1 2

1

( ) ( )
n

nm nm nm nm

n m n

p k q kE M r N r

 

(4-6) 

(2-7)-(2-8) (4-6)

 

 

int1

2 2

1 2 2

( 1)
( 1) ( ) (cos )exp( )

n
m m

r nm n n

n m n

n n
E q j k r P im

k r
 

(4-7) 

 

int1

2 2

1

2 2 2

2 2 2

( 1) ( ) (cos )

( ( ))1
(cos )}exp( )

n
m m

nm n n

n m n

mn
nm n

E p j k r im

d r j k r
q

k r dr
im

 

(4-8) 

  

int1

2 2

1

2 2 2

2 2 2

( 1) ( ) (cos )

( ( ))1
(cos )}exp( )

n
m m

nm n n

n m n

mn
nm n

E p j k r

d r j k r
q im

k r dr
im

 

(4-9) 

§4.2.2  

 

 

(4) (4)

0 1 0 1

1

( ) ( )
n

sca

nm nm nm nm

n m n

c k d kE M r N r

 

(4-10) 

(2-7)-(2-8) (4-10)

 

 

(2)

0 1

1 0 1

( 1)
( 1) ( ) (cos )exp( )

n
sca m m

r nm n n

n m n

n n
E d h k r P im

k r
 

(4-11) 

 

(2)

0 1

1

(2)

1 0 1

0 1 1

( 1) ( ) (cos )

[ ( )]1
(cos )}exp( )

n
sca m m

nm n n

n m n

mn
nm n

E c h k r im

d r h k r
d

k r dr
im

 

(4-12) 

  

int1 (2)

0 1

1

(2)

1 0 1

0 1 1

( 1) ( ) (cos )

( ( ))1
(cos )}exp( )

n
m m

nm n n

n m n

mn
nm n

E c h k r

d r h k r
d im

k r dr
im

 

(4-13) 



 

62 

4.3  

4.2

 

§4.3.1  

4.1a 20 1.5 0.0m i

z

1

Barber Hill
[113]

-2.5, -1.0, 1.0 -2.5 0.87081, 1.4987, 59.2146, 

3.2682  

§4.3.2  

1.33 0.0m i

1.5 0.0m i

0.6283 m z

x
0 1.6 m

2.0a m 1.0b m  

4.1 4.2

z x z

2 / 2 /r a r a

z 200 x y 100



 

63 

200 4.3 4.4

 

 

 

                     (a)                             (e) 

 

                     (b)                             (f) 

 

                     (c)                             (f) 

4.1 z (a,b,c) (d,e,f) 

2.0a m 1.0b m

0.5d m  

 



 

64 

 

                       (a)                                    (d) 

 

                        (b)                                   (e) 

 

                      (c)                                     (f) 

4.2 x-z (a,b,c) (d,e,f) 

2.0a m 1.0b m

0.5d m
 

 

 

 



 

65 

4.1(a)

100

4.1(b,c)

4.1d

 

4.1

 

4.2 4.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

66 

 

 

0.0                        45.0  

 

90.0                        135.0  

4.3 x-z

2.0a m 1.0b m

0.5d m  

 

4.3

0.5d m
0 0.8a

0.0 0 0 0 0.0x y z

4.1 4.3

 



 

67 

§4.3.3  

4.4

0.5d m

0 0.8a 0.0 90.0

0 0 0.0x y 0z

 

 

 

0 1.0z a
                      0 0.5z a

 

 

0 0.5z a
                      0 1.0z a

 

4.4 x-z

2.0a m 1.0b m 0.5d m
 

 

 



 

68 

4.4  

FORTRAN90

 

 

 



 

69 

5  

 

5.1  

Lord Rayleigh 1964

10

[114]
 

(Morphology-dependent resonances, 

MDRs) Ashkin
[115]

Mie-Debey

[116]
MDRs

[2, 117]

[118]

[119]
MDRs

 

MDRs

[1]

MDRs



 

70 

( , , )n m l

n

l m

m

[120-122] [31, 111, 123]

 

m

[120]
Mishchenko

[121]

[122]

m

[124]

 

MDRs

MDRs

Gouesbet
[109, 110, 125]

Mazumder
[126]

EBCM MDRs

MDRs Fuller
[29]

MDRs



 

71 

Leung
[123]

MDRs

Rao Gupta
[111]

MDRs GLMT

 

5.2  

§5.2.1  

32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

TM
34,2

TM
35,2

TM
41,1

B
a
c

k
w

a
rd

 I
n

te
n

s
it

y

Size Parameter

TM
39,1

TM
40,1

 

5.1 r=0.7R.

0 0 0.0x z m 0 2.93357y m  

 

MDRs

MDRs

Barber Hill

Khaled

[127, 128]



 

72 

 

0.0d m Khaled

[128] 0.7r R

1 1.5 0.0m i 2 1.36 0.0m i

0 1.0 m 0.532 m z

x 0 0 0.0x z m

0 2.93357y m 5.1 kr 32 36

51.0 10x

TM 5.3 x

0 0 0.0y z m 0 2.93357x m

TE  

§5.2.2  

 

 

5.2 

0.7r R . 0.0  

 

z

x
0 0 0.0y z

0x 0 0.0x m



 

73 

MDRs

0.532 m 0 2.93357x m

41,1TE ( 41, 1n l )

1 1.5 0.0m i

2 1.36 0.0m i  

5.2

0 100 m

TE TM 5.2(b)

5.2(a) TM

y TE  

 

5.3 

d=0.1R r=0.7R. 0.0

0 0 0.0y z m 0 2.93357y m  

 

5.3 32 36

51.0 10x

0.7r R 5.3

0.1d R MDRs



 

74 

 

5.3 5.3(b)

n

( 1/ 2)( / 2 )n

5.3 x

2.93357a m 41,1TE

41n

41n

[44]
 

5.3 5.2

( , , )n m l

41,1TE nmc 41, 1n l

n

 

0.92r R 0.04d R

5.3 5.4

 

 

 



 

75 

  

5.4 

d=0.04R r=0.92R. 

0.0 0 0 0.0y z m 0 2.93357y m  

 

5.3 5.4 0.04d R

( 1l ) 0.7r R

5.3

0.04d R

 

  

5.5 

0.0  

 

5.5

0.7 0.92



 

76 

 

§5.2.3  

Rao Gupta
[111]

m

m

MDRs m

 

90

z x

0 0 0.0x y m 0 2.93357z m .  

 

5.6 

r=0.92R d=0.04R 90.0  

 

5.6

r=0.92R



 

77 

TM TE  

5.7 0.7r R

5.8

0.92r R  

 

5.7 

r=0.7R. 

 

5.8 

r=0.92R.  

 

0.7r R

0.92r R



 

78 

0.04d R 0.0d R 0.04d R

 

§5.2.4  

 

5.9

 

5.9d 5.9a

5.9b

,n lTE x-z z n

5.9c

 

 

 

 



 

 

5.9 

(a)

(b) 

(c) 

(a,b,c

x=3

x=

c)

d=-0.04R

d=0.04R

7

32.19      

=32.1946  

x=32.2054  

(d,e

(b,e) 

79 

         

        (e)

 

      (f) 

e,f)

 (d) 

) 

x=32.1

x=32.194

x=32.205

(

(c,

9 

 

46 

 

54 

(a,d) 

f) 



 

80 

5.3  

GLMT

 

m

m  

 



 

81 

 

CFD FLUENT LES DNS

 

 

(Dynamic Light Scattering, 

DLS) (Photon Correlation Spectroscopy, PCS)

[4, 129, 130] [131]

[131-135] [4, 129, 130]

(Laser Doppler Velocimetry, LDV)

(Particle Imaging Velocimetry, PIV)

LDV

(Phase Doppler 



 

82 

Anemometry, PDA) (PDA)

10 m

(Interferometric Laser Imaging for Droplet Sizing ILIDS)

(Interferometric Particle Imaging, IPI)

 

PIV PDA ILIDS

[136, 137]
 

ILIDS (Rainbow technique)

Airy

(Standard Rainbow 

technique) (Global Rainbow technique)  



 

83 

 

van Beeck
[138]

[134] [77]

Experiment in Fluids
[77]

 

PDA

[139]
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

84 

 

 

 

 

 

 

 



 

85 

6  

(Extended Boundary Condition Method, 

EBCM)

 

6.1  

[140]

[141]

(FDTD) (MOM)

(DDA)

150
[68]

 

(Extended Boundary Condition Method, EBCM)

(Null Field Method) T- (Transition matrix method, T-matrix method)

Waterman
[62]

[59, 60, 113]
 



 

86 

6.2  

§6.2.1  

(Field Equivalence Principle)

 

S

S S 6.1(A)

S

S S

( , )s sE   S

ˆ ˆ( , )s sn nE   S S ( , )s sE   

ˆ ˆ( , )s sn nE   n̂ S S

S

6.1(B)  

6.1(C) S ( , )i iJ M

( , )i iE   6.2(D)

S S

S ( , )i iE   S

 

6.1(B) 6.1(D) 6.1(E)  

 
ˆ ˆ( ), ( )i s i sn nJ  M E E

 
(6-1) 

6.1(E) ( , )i iJ M

( , )i iE   6.1(F) ( , )i s i sE E S

S 6.1(A)

S S  

 

 0

1
ˆ ˆ( ) ( ) ( ) ( ) ( )s

s s
n g kR dS n g kR dS

i
E r E H

  

(6-2) 



 

87 

S  

 0

1
ˆ ˆ0 ( ) ( ) ( ) ( ) ( )i

s s
kr n g kR dS n g kR dS

i
E E H

 

(6-3) 

( )g kR  

 

exp( )
( ) , | |

4

ikR
g kR R

R
r r

 

(6-4) 

     

(A)                                (B) 

       

(C)                                 (D) 

      

(E)                             (F) 

6.1  

 

(6-3)  

 
ˆ ˆ ˆ ˆ( ) ( ) ( ) , ) ( ) )n g kR n n g kR nE E G H H G

 
(6-5) 

G  



 

88 

§6.2.2  

6.2 S V inV

outV

 

 

6.2  

 

 

 

1 1

1

( ) ( ) ( )
n

i

nm nm nm nm

n m n

a k b kE r M r N r

 

(6-6) 

 

3 3

1

( ) ( ) ( )
n

s

nm nm nm nm

n m n

c k d kE r M r N r

 

(6-7) 

 

1 1int

1

( ) ( ) ( )
n

nm nm s nm nm s

n m n

f k g kE r M r N r

 

(6-8) 

0k k n 0s sk k n 0k sn

n  

r inV S

r r  

 

3 3

2

3 3

( ) ( )
ˆ ˆ

( ) ( )

nm mn mn

s s
nm mn mn

a k k
ik dSn i ik dSn

b k k

M r N r
H E

N r M r
 

(6-9) 

r outV S r r

 

1 1

2

1 1

( ) ( )
ˆ ˆ

( ) ( )

nm mn mn

s s
nm mn mn

c k k
ik dSn i ik dSn

d k k

M r N r
H E

N r M r
 

(6-10) 



 

89 

Morse Feshbach  

3 1 3 1

0 1 3 1 3
1

( , ) 1
n

m mn mn mn mn

n m n mn mn mn mn

k k k k r r
ik

k k k k r r

M r M r N r N r
G r r

M r M r N r N r
 

(6-11) 

(6-11)

 

 

 

nm nm

nm nm

a f
Q

b g
          

, ,

, ,

n m n m

n m n m

c f
RgQ

d g
  

(6-12) 

 

 

, ,

, ,

n m n m

n m n m

c a
T

d b
  

(6-13) 

 

 
1T RgQ Q  

 
(6-14) 

 

11 12

21 22

Q Q
Q

Q Q
 

 
(1,1) (1,2) (2,1)

sQ J n J
 

(6-15) 

 
(1,2) (2,2) (1,1)

sQ J n J
 

(6-16) 

 
(2,1) (1,1) (2,2)

sQ J n J
 

(6-17) 

 
(2,2) (2,1) (1,2)

sQ J n J
 

(6-18) 

 

 
' '

1 31,1

,
ˆ1

m

m n s mnmn m n s
J k k ndSM r M r

 
(6-19) 

 

1 31,2

,
ˆ1

m

mn m n m n s mn
s

J k k ndSM r N r
 

(6-20) 

 

1 32,1

,
ˆ1

m

mn m n m n s mn
s

J k k ndSM r N r
 

(6-21) 

 

1 32,2

,
ˆ1

m

mn m n m n s mn
s

J k k ndSN r N r
 

(6-22) 



 

90 

3

mnM
3

mnN
1

mnM
1

mnN

RgQ  

 

 

2 1 31,1

,
0 0

1 ( , ) ( , )
m

mn m n m n s mnJ d d k k
r r

M r M r

 

(6-23) 

J  

 

6.3 0.97 150 

 

z b

x y a  

 

2 2 2

2 2
1

x y z

a b   

(6-24) 

/b a a b

a b

 

 

1/ 2
2 2

2 2

sin cos
( )r

a b
 

(6-25) 

(6-25) z

6.3

0.97

150  



 

91 

FDTD DDA

 

6

J

Kahnert
[142]

Laitinen

Lumme
[143]

 

 

max

00 0

1 0

, cos
l l

l

kl k

l k

r a a d k

 

(6-26) 

(6-26) sin k

max 0l maxl

Barber Hill
[113]

Mishchenko
[59]

 

Mishchenko

00, 0 , / 2 0/ 2,
0 ,

0 90 180 270

 

6.4

(6-68)  



 

92 

 

6.4 0.6283 m

1 m 

§6.2.3  

 

6.2.3.1  

 

 

0 0

0 0

ik ikE B H D

B B  

 (6-27) 

 

 D E      B H    
 

 (6-28) 

, z

 



 

93 

 

0

0

0 0

g

g

z

i

i    
 

(6-29) 

2

2 2
1

p

e

w

w w
; 

2

2 2( )

pe
g

e

ww

w w w
; 

2

2
1

p

z

w

w
; w , ew ,

pw

 

 

 E D        H B   (6-30) 

 

 

0

0

0 0

g

g

z

i

i   ;   
1

 
(6-31) 

 

 

2 2

g

;   
2 2

g

g

g

;   
1

z

z  

(6-32) 

 

 
( ) ( ) ( )ie dVk r

X r k kX

 
(6-33) 

X(r)  E H D B X(k) E H D B

k  

 
( ) ( ) ( )j

kj e dVk rX r k k
 

(6-34) 

(6-27) (6-30)  

 0kk E B     0kk H D
 

(6-35) 

 0k B         0k D  (6-36) 

 E D=         H B=  (6-37) 

( , , )re e e

k
rkk e ( )

r
A ,A ,A  , ,A r ,

 



 

94 

 

cos sin cos cos sin

sin sin sin cos cos

cos sin 0

x r r

y

z

A

A

A
 

 (6-38) 

(6-35) (6-36)  

 

20( )
k

k
     0r  

 (6-39) 

(6-37)  

 

rrr

 

 (6-40) 

 

2 2

2 2

sin cos ( )sin cos sin

( )sin cos cos sin cos

sin cos

z z g rr r r

T
k z z g r

g g r

i

i

i i
 

(6-39) (6-40) : 

 

0     
20( )

k

k  

 (6-41) 

1,2k

1,2V  

 1
ˆ ˆfe eV      

2
ˆ ˆ( )e feV

 
 (6-42) 

 
1,2 0 1,2/k k      

1,2

1
( )

2
D

 

 (6-43) 

 

2 2( ) 4D    2 /( )f D
 

 (6-44) 

 

 

2 2 2 4 2 2( ) 4 ( ) sin 4 cosz gD
 

 (6-45) 

0D
1 2 (6-41)

 

 

1 2

1 1 2( , ) ( ) ( , ) ( )r rik ik

r re e de r e r

2D(r) V e ,e ,e V e ,e ,e
 

 (6-46) 

1D 2D  



 

95 

 

 

( , ) [ ( ) ( ) ]

( , ) [ ( ) ( ) ]

( , )

m m im

n n

m m im

n n

m im

n r

im e

im e

P e

mn

mn

mn

m e e

n e e

p e
 

 (6-47) 

( , , )re e e r ( )
m

n , ( )
m

n

Legendre  

 

(cos )
( )

sin

m
m n

n

P
   ( ) (cos )

m m

n n

d
P

d  

 (6-48) 

(6-39) r mn
p

 

 r mn mne m n
  r mn mne n m

 (6-49) 

 

1 1 2 1
1

1
( , ) ( , ) ( , ) ( , ) [ ( , ) ( , )]

4

n

mn mnn
n m n

ic d
i

2 mn mnV V m n

 

(6-50) 

 

1 2 1
1

2 2 1
1

1 1
( ) { [ ( )( ) ( )] [ ( )( ) ( )]}
1 4

1 1
( ) { [ ( ) ( )( )] [ ( ) ( )( )]}
1 4

n
m m m m im

mn n n mn n nn
n m n

n
m m m m im

mn n n mn n nn
n m n

c m f i d f im e
f i

c m i f d im f e
f i

D =

D =

 

(6-51) 

(6-40) (6-46)-(6-51),

 

 

1

1

[ ( ) ( )]

[ ( ) ( )]

n
e e

mn mn mn mn

n m n

n
h h

mn mn mn mn

n m n

c d

j c d

E(r) X r Y r

H(r) X r Y r

 

(6-52) 

,e h

mnX
,e h

mnY  

 

1 2

1 2

, , ,

1 22

, ' , ' ,

1 22

1
( ) ( )[ ] ( )

1

1
( ) ( )[ ] ( )

1

r r

r r

ik ike h e h e h

mn mn mn

ik ike h e h e h

mn mn mn

A e B e dS
f

A e B e dS
f

e r e r

e r e r

X r w w

Y r w w

 

 (6-53)  



 

96 

 ( )( ) ( )
m m

mn n nA m f i   
' ( )( ) ( )

m m

mn n nA im f  (6-54) 

 ( ) ( )( )
m m

mn n nB m i f   
' ( ) ( )( )

m m

mn n nB im f  (6-55) 

 

1 1 1

2 2 2

[( )]

[( )]

e

r r r

e

r r r

f

f

w e v

w e v
  

1 1

2 2

ˆ ˆ( )

ˆ ˆ( )

h

h

fe e

e fe

w

w
 (6-56) 

 

0gk 0   0f   1 êV ,
2 êV           (6-57) 

 

 

1
1

1 1
1

1
[ ( ) ( )]

4

1
[ ( ) ( )]

4

n
m m im

mn n mn nn
n m n

n
m m im

mn n mn nn
n m n

c m d e
i

j c d m e
i

2
D =D =

D =D =

 

(6-58) 

[60]

 

6.2.3.2  

S intD

extD 0 0  

 

 

(1) (1)

1

[ ( ) ( )]
n

inc mn mn s mn mn s

n m n

f k g kE (r) M r N r

 

(6-59) 

 

(3) (3)

1

[ ( ) ( )]
n

sca mn mn s mn mn s

n m n

a k b kE (r) M r N r

 

(6-60) 

0s s sk k  mna , mnb , mnf , mng

 

 

 

int

int

ˆ ˆ ˆ

ˆ ˆ ˆ

inc sca

inc sca

n E n E n E

n H n H n H
 

(6-61) 



 

97 

 

 

mn mn

mn mn

f a
T

g b
 

(6-62) 

 

11 31 1( )gyro gyroT Q Q
 

(6-63) 

31

gyroQ  0s  

 

3 3

31

3 3

mnm n mnm n

gyro

mnm n mnm n

P R
Q

S U
 

(6-64) 

 

2
3 3

23
3 3

3

3 2
3 3

3

2

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

ˆ( )

e hs
m n mn m n mn

ss

e hsmnm n
m n mn m n mn

ssmnm n

mnm n e hs
m n mn m n mn

mnm n ss

es
m n

k
i dS

kP
i dS

R

S k
i dS

U

k
i

n X N n X M

n Y N n Y M

n X M n X N

n Y M
3 3ˆ( )h

mn m n mn

ss

dSn Y N

 

(6-65) 

11

gyroQ 31

gyroQ
3

mnM
3

mnN
1

mnM
1

mnN  

 ( )mn skM r ( )mn skN r  

 

(3) 1

(3)

exp( ) 1
( ) {( ) ( , ) ( )}

exp( ) 1
( ) {( ) ( , ) ( )}

n

mn s mn

n

mn s mn

ikr
k i O

kr r

ikr
k i O

kr r

M r m

N r n
 

(6-66) 

(6-66) (6-59)  

 

exp( )
lim [ ]s

s s s
r

s

ik r
E E

k r
E (r)

 

(6-67) 

sE
sE  

 

 

22 2

2

2 2 22

4
lim 4

ssca s

RCS
r

sinc inc inc

EE E
r

kE E E
 

 (6-68) 



 

98 

6.2.3.3  

FORTRAN

z x  

0 20 40 60 80 100 120 140 160 180

-20

-15

-10

-5

0

5

10

15

(d
B

)

Scattering Angle (Degree)

 T matrix

- - -  FEM/MOM

H plane

E plane

 

6.5 (RCSs) . EBCM

FEM/MoM 0k r 05.3495

07.0z  

 

0g 0k r

05.3495 07.0z

Doicu

[60]
 

/ (FEM/MoM)

6.5 6.5 EBCM /

(FEM/MoM) (RCSs)

0 0.5k r 05
0g 07z

  



 

99 

0 20 40 60 80 100 120 140 160 180
-80

-70

-60

-50

-40

-30

-20

(d
B

)

Scattering Angle (Degree)

 T matrix

 FEM/MoM

E plane H plane

 

6.6 (RCSs) EBCM

FEM/MoM 0 0.5k r 05
0g

07z  

0 20 40 60 80 100 120 140 160 180

-15

-10

-5

0

5

10

15

20

(d
B

)

Scattering Angle (Degree)

E Plane

H Plane

 

6.7  (RCSs) E-plane H-plane

0k r 05.3495
02g 07z  

 

6.6 EBCM (RCSs)

05 0k r 05.3495

02g 07z 2 6.7  



 

100 

6.3  

 

Mishchenko
[67]

Skaropoulos
[69]

 

A  

( , ) z n̂

 

 
ˆ ˆ( ) ( )exp( )i i

i i i iE E iE r k r
 

(6-69)

 

 

 
ˆ ˆ( ) s s

s s sE EE r
 

(6-70)

 

 

 

exp( )
ˆ ˆ( , )

s i

s is i

E Eikr
S n n

E Er
  

(6-71)

 



 

101 

ˆ ˆ( , )s iS n n

 

 

 
1 1

1 1
( ), ( )

2 2
E E iE E E iE

  

(6-72) 

 

1

1

11
,

12

EE i

EE i
P P

  

(6-73) 

 

 

1 1 1 11

1 1 1 1

11 12 21 22 11 12 21 22

11 12 21 22 11 12 21 22

ˆ ˆ ˆ ˆ( , ) ( ; )s i s i

C C
n n n n

C C

S iS iS S S iS iS S

S iS iS S S iS iS S

C PS P

  

(6-74) 

B  

 

 
2

1
ˆ ˆ( , , , , )sca S inc

S s i SZ n n
r

I I
  

(6-75)

 

,s iI I [ ]TI Q U VI   

 

* *I E E E E      
* *Q E E E E

 
 (6-76) 

 

* *U E E E E     
* *( )V i E E E E

 
 (6-77) 

T *  

 

 
2

1
ˆ ˆ( , , , , )sca C inc

C s i CZ n n
r

I I
  

(6-78) 

 

* * * *

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

* * * *

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

* * * *

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

* * * *

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ˆ ˆ( , , , , )C

s i

C C C C C C C C

C C C C C C C C
Z n n

C C C C C C C C

C C C C C C C C
  

(6-79) 

,sca inc

C CI I 2 0 0 2[ ]T

C I I I II  

 
*

2 1 1 ( ) / 2I E E Q iU
    

*

0 1 1 ( ) / 2I E E I V
  (6-80) 

 
*

0 1 1 ( ) / 2I E E I V      
*

2 1 1 ( ) / 2I E E Q iU
  

(6-81) 



 

102 

 

 
1ˆ ˆ ˆ ˆ( ; ) ( , )S C

s i s iZ n n Z n nA A
 

 (6-82) 

 

 

0 1 0

1 0 0 11

1 0 0 12

0 1 0

i

i

A      
1

0 1 1 0

1 0 0 1

0 0

0 1 1 0

i i
A

 

(6-83) 

C
 

 

 
ˆ ˆ ˆ ˆ( ; ) ( ; ; , , )s i s in n N n nZ Z

  
(6-84) 

 

2 2

0 0 0
ˆ ˆ( ; ; , , ) sin

ˆ ˆ( ; ; , , ) ( , , )

s i

s i

n n d d d

n n p

Z

Z
 

(6-85) 

( , , )p  

 

2 2

0 0 0
sin ( , , ) 1d d d p

  
(6-86) 

D  

 

 

4
( ) ( ;0,0,0)s s

sca

F
C

Z

 

 (6-87)

 

scaC  

 
11

0
2 sin ( ;0,0,0)sca s sC d Z

 
 (6-88)

 

11( ;0,0,0)sZ

 

 
11

0

1
sin ( ) 1

2
s s
d F

  

(6-89)

 

 

 
2 1

ˆ ˆ( ; ; , , ) ( ) ( ) ( )
4

sca
s i s

C
n n L F LZ

  

(6-90)

 
 



 

103 

 

1 0 0 0

0 cos 2 sin 2 0
( )

0 sin 2 cos 2 0

0 0 0 1

L

  

(6-91)

 

 

 

1 1

1 2

3 2

2 4

0 0

0 0
( )

0 0

0 0

a b

b a
F

a b

b a
  

(6-92)

 

 

2 3 1 2 1 2 2 3

1 2 1 4 1 4 1 2

1 2 1 4 1 4 1 2

2 3 1 2 1 2 2 3

1
( )

2

C

a a b ib b ib a a

b ib a a a a b ib
F

b ib a a a a b ib

a a b ib b ib a a
  

(6-93)

 

 

 max(| |,| |)

( ) (cos )C sca s s sca

kl S kl kl S

s k l

F g P

  

(6-94)

 (cos )s

klP  

 

 

1

1

2 1
(cos ) ( ) (cos )

2

s sca C sca s sca

kl S kl S kl S

s
g d F P

  

(6-95) 

 

 
1 1 00

0

( ) (cos )s s

s

a a P

  

(6-96) 

 
2 3 2 3 22

2

( ) ( ) ( ) (cos )s s s

s

a a a a P

  

(6-97)

 

 
2 3 2 3 2 2

2

( ) ( ) ( ) (cos )s s s

s

a a a a P

  

(6-98)

 

 
4 4 00

0

( ) (cos )s s

s

a a P

  

(6-99)

 

 
1 1 02

2

( ) (cos )s s

s

b b P

  

(6-100)

 

 
2 2 02

2

( ) (cos )s s

s

b b P

  

(6-101) 



 

104 

 

 

1 00 0 0

2 22 2 2

3 22 2 2

4 00 0 0

1 02

2 02

2 Re

2 Im

s s s

s s s

s s s

s s s

s s

s s

a g g

a g g

a g g

a g g

b g

b g
 

(6-102)

 

 

6.4  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

105 

7  

 

Nussenzveig

 

7.1  

§7.1.1  

 

7.1



 

106 

 

 

 

7.1  

 

1611 Dominis

Descartes Descartes

1802 Yong

 

Airy 1838

-

Airy Airy

Airy

Airy

 

 

 



 

107 

Airy Van de Hulst
[144]

van Beeck
[145]

, 
[146]

 

Van de Hulst
[144]

5000

0.628 m 0.5mm Airy

2000

Airy 30 2000

Airy

30 Lorenz-Mie

 

120 125 130 135 140 145

scattering angle (degree)

0.0E0

1.0E3

2.0E3

3.0E3

4.0E3

5.0E3

S
c
a

tt
e

ri
n

g
in

te
n

s
it
y

 

7.2 

d=600 m m=1.33-0.0i, =0.6328 m 

 

Lorenz-Mie

Lorenz-Mie

7.2

138 128 7.3

 

 

 

 



 

108 

137 139 141 143 145

scattering angle (degree)

0.0E0

3.0E6

6.0E6

9.0E6

1.2E7

s
c
a
tt

e
ri
n
g

in
te

n
s
it
y

 

7.3 

d=600 m m=1.33-0.0i, =0.6328 m 

 

Lorenz-Mie

Gouesbet Grehan
[36]

1988

Lorenz-Mie (GLMT)

GLMT

van Beeck
[145]

 

§7.1.2  

1988

Standard Rainbow Technique Roth
[147, 148]

 



 

109 

Walker
[149]

He-Ne 13

 

 

7.4  

 

7.4 7.5 (I) 

CORIA 05 C

080 C

(II) 

-

(III) 

7.6 CCD (IV) 

Airy GLMT CCD



 

110 

 

 

7.5 [134]  

 

 

7.6  

§7.1.3  

1988 Roth
[147]



 

111 

[150, 151] [132, 152]

[146]

[153]

Saengkaew
[154]

van Beeck
[138]

 1999

(Global Rainbow Technique, GRT)  

 

7.7  

 

[134] [77]

 



 

112 

7.2  

§7.2.1  

 

 

1910 Möebius

Marston
[155]

 

z

, rg ,

rg rg

, : 

 rgrgrg 2'4
  

(7-1) 

 3

1
sin

2n
rg

  

(7-2) 

 rgrgn cos'cos
  

(7-3) 

n 1

 

 

)2cos())
cos

(arccos(sin
cos

16 3

rg

rgrg

rg
nnab

ab

  

(7-4) 

Möebius



 

113 

 

 

7.8 Möebius  

 

7.8 (7-4) Möebius ,

3% 03.1ab

04  

van Beeck
[145]

- Möebius

van Beeck

[152]
GLMT

Möebius

[58]
Debye

p=2

[156]

 

(EBCM)

 



 

114 

0 20 40 60 80 100 120 140 160 180
1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1
 Null-field for a spheroid with ellipticity=1.0001

 LMT         for a sphere

N
o

rm
a

li
z
e
d

 I
n

te
n

s
it

y
 (

lo
g

 s
c
a
le

)

Scattering Angle (deg.)

 

110 115 120 125 130 135 140 145 150 155 160
0.0

0.2

0.4

0.6

0.8

1.0

 N
o

rm
a
li

z
e

d
 I

n
te

n
s

it
y
 (

li
n

e
a

r 
s

c
a

le
)

Scattering Angle (deg.)

 Null-field method

 LMT

 

(a)              (b)  

7.9 : LMT EBCM

150 

 

EBCM 7.9

EBCM Lorenz-Mie

 

0 20 40 60 80 100 120 140 160 180

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

80 90 100 110 120
1E-8

1E-7

1E-6

1E-5

N
o

rm
a
li

z
e

d
 i

n
te

n
s
it

y
 (

lo
g

 s
c

a
le

)

Scattering Angle (deg.)

 GLMT

 Null-field method

120 125 130 135 140 145 150 155 160
-0.00001

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

N
o

rm
a

liz
e

d
 i
n

te
n

s
it
y
(l

in
e

a
r 

s
c
a

le
)

Scattering Angle (deg.)

 GLMT

 Null-field method

 

(a) 90°       (b)  

7.10 0.97 : GLMT

EBCM 150 

 

GLMT
[40, 41]

EBCM 7.10 GLMT EBCM

0.97,

0°

90°

90° GLMT



 

115 

[40]

7.10b

 

120 130 140 150 160
0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a
li
z
e

d
 i
n

te
n

s
it

y
 (

li
n

e
a
r 

s
c
a
le

)

Scattering Angle (deg.)

 ellipticity=1.04

 ellipticity=0.96

 ellipticity=1.0001

 

7.11 EBCM

150 

 

EBCM 7.11

150

 

§7.2.2  

van Beeck (Global Rainbow Technique, 

GRT)

[134]
 



 

116 

 

Vetrano
[157]

[134] [77]

 

GLMT

[41, 158]
EBCM

150

EBCM  

7.2.2.1  

100 0.6283 m

20 m 1.33-0.0i  

7.12 7.13

7.12

20 m

7.13

 



 

117 

120 125 130 135 140 145 150 155 160
0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

li
z
e
d

 i
n

te
n

s
it

y
 (

li
n

e
a

r 
s
c

a
le

)

Scattering Angle (deg.)

 ellipticity=1.0001

 ellipticity=1.025

 ellipticity=1.05

120 125 130 135 140 145 150 155 160
0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

li
z
e

d
 i
n

te
n

s
it

y
 (

li
n

e
a

r 
s

c
a

le
)

Scattering Angle (deg.)

 ellipticity=1.0001

 ellipticity=0.950

 ellipticity=0.975

 

(a)                (b)  

7.12 

100  

120 125 130 135 140 145 150 155 160

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a
li
z
e
d

 i
n

te
n

s
it

y
 (

li
n

e
a
r 

s
c
a
le

)

Scattering Angle (deg.)

 perfect spheres

 ellipticity=0.95

 ellipticity=1.05

 

7.13 0.95

1.05  

7.2.2.2  

100 [0.9 1.1]

1.33-0.0i  

7.14

7.14a 1.00



 

118 

0.00, 0.01 0.02 7.14b

0.97 0.00 0.01 0.02 7.14

7.14(a) 7.14(b)

 

120 125 130 135 140 145 150 155 160
0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

li
z
e

d
 i
n

te
n

s
it

y
 (

li
n

e
a

r 
s

c
a

le
)

Scattering Angle (deg.)

 delta=0.01

 delta=0.02

 perfect spheres

120 125 130 135 140 145 150 155 160
0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

li
z
e

d
 i
n

te
n

s
it

y
 (

li
n

e
a

r 
s

c
a

le
)

Scattering Angle (deg.)

 delta=0.00

 delta=0.01

 delta=0.02

 

(a) 1.00           (b) 0.97 

7.14 

 

7.3  

 

[151, 157]
Saengkaew Grehan

[151]

Debye Airy CAM (Complex Angular Momentum 

theory)

Nussenzveig CAM

(Non-Negative Square Least method, NNSL)



 

119 

 

§7.3.1  

1.33

7.15 7-1

100 0.628 m 20 m

7.15

“ ”
[134]

3% “ ”

 

 

7-1 0.0  

 1.01 1.02 1.03 1.04 1.05 

 1.3287 1.3278 1.3241 1.3198 1.3135 

 0.99 0.98 0.97 0.96 0.95 

 1.3272 1.3291 1.3245 1.3191 1.3136 

 

7-1

Asano
[51]

 

 

 



 

120 

 

0.99                1.01 

 

0.97                1.03 

 

0.95                1.05 

7.15 

20 m  

§7.3.2  

1.33-0.0i



 

121 

7.16 7-(2,3,4)

 

 

 

 =0.0001                                 =0.01 

 

 =0.02                                       =0.03 

7.16. 

20 m 1.00  

 

100 0.628 m

20 m [0.9 1.1]

1.0

 

 

 

 



 

122 

7-2 1.0  

 0.01 0.015 0.02 0.025 0.030 

 1.3288 1.3273 1.3261 1.3248 1.3232 

 

7-3 0.01  

 1.01 1.02 1.03 1.04 1.05 

 1.3276 1.3255 1.3233 1.3202 1.3135 

 0.99 0.98 0.97 0.96 0.95 

 1.3283 1.3255 1.3223 1.3181 1.3121 

 

7-4  

 

1.03 

 

1.0001 

 

0.97 

0.001 1.3241 1.3294 1.3245 

0.01 1.3233 1.3288 1.3223 

0.02 1.3205 1.3261 1.3205 

 

7.16 1.00

=0.01

“ ”

3% “ ”

7-2

 

7-3 0.01

1.33

7-4

1.33  

 



 

123 

0.94 0.96 0.98 1.00 1.02 1.04 1.06

1.310

1.312

1.314

1.316

1.318

1.320

1.322

1.324

1.326

1.328

1.330

Ellipticity

R
e
fr

a
c
ti

v
e
 i

n
d

ic
e
s

220

200

180

160

140

120

100

80

60

40

20

 Data from Table 1

0.94 0.96 0.98 1.00 1.02 1.04 1.06

1.310

1.312

1.314

1.316

1.318

1.320

1.322

1.324

1.326

1.328

1.330

 Data from Table 3

220

200

180

160

140

120

100

80

60

40

20

T
e
m

p
e
ra

tu
re

 (o
C

)

 
7.17 7-3 7-1  

 

7-3 7-1

7.17 Harvey
[159]

7.17

[0.97 1.03]

7.17

7-4  

7.4  

Nussenzveig

 

 



 

124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

125 

8  

(I) 

(GLMT)

(II) (EBCM)

 

 

GLMT

FORTRAN

( )  

 

 

EBCM

Nussenzveig

 



 

126 

 

(I)

Hermite-Gaussian (II)

 

GLMT

 

 

 

 

 

 

 

 

 

 

 



 

127 

  

“Optical characterization of shape and 

thermo-chemical composition of biodiesel droplets in flames”

(Xidian University, China) (INSA de Rouen, 

France)

(60771039) “Interreg 

Iva-C5: Cross-Chanel Center for Low Carbon Combustion”  

2006

CORIA

 

Gérard Gréhan Gérard Gouesbet Gréhan

Gouesbet

Gouesbet  

CORIA

2002

Garo 

Annie Meunier-guttin-cluzel Siegfried

CROUS Beaulieu

 

Sawitree 

Saengkaew Damien Bonin Patcharaporn Lorturn

 



 

128 

 

 

 

 

 

 



 

129 

 

[1] Barber, P.W. and R.K. Chang, Optical effects associated with small particles. Advanced 

series in Applied Physics, ed. S. Ramaseshan. Vol. 1. 1988: World Scientific. 

[2] Chen, G., M.M. Mazumder, R.K. Chang, et al., Laser diagnostics for droplet characterization: 

Application of morphology dependent resonances. Progress in Energy and Combustion 

Science, 1996. 22: p. 163-188. 

[3] Gouesbet, G. and G. Grehan, Optical particle sizing: Theory and Practice. 1988: Plenum 

Publishing Co.,N.Y. 

[4] Quinten, M., U. Kreibig, T. Henning, et al., Wavelength-dependent optical extinction of 

carbonaceous particles in atmospheric aerosols and interstellar dust. Appl. Opt., 2002. 41: p. 

7102-7113. 

[5] Meyer, R.A., Light scattering from red blood ghosts: sensitivity of angular dependent 

structure to membrane thickness and refractive index. Appl. Opt., 1977. 16: p. 2036-2037. 

[6] Frohn, A. and N. Roth, Dynamics of Droplets. 2000: Springer-Verlag. 

[7] Lorenz, L., Lysbevaegelsen i og uden for en af plane Lysbolger belyst Kugle. 

Videnskabernes Selskabs Skrifter, 1890. 6: p. 2-62. 

[8] Mie, G., Beitrage zur Optik truben Medien speziell kolloidaler Metalosungen. Annalen der 

Physik, 1908. 25: p. 377–452. 

[9] Aden, A.L. and M. Kerker, Scattering of electromagnetic wave from concentric sphere. J. 

Appl. Phys., 1951. 22: p. 1242-1246. 

[10] Kerker, M., The scattering of light and other electromagnetic radiation. 1969, New York: 

Academic. 

[11] Toon, O.B. and T.P. Ackerman, Algorithm for the calculation of scattering by stratified 

sphere. Appl. Opt., 1981. 20: p. 3657-3660. 

[12] Bohren, C.F. and D.R. Huffman, Absorption and Scattering of Light By Small Particles. 

1983, New York: Wiley. 

[13] Wu, Z.S. and Y.P. Wang, A new algorithm for electromagnetic scattering of multilayered 

sphere. Journal of Electronics, 1993. 10: p. 235-242. 

[14] Johnson, B.R., Light scattering by a multilayered sphere. Appl. Opt., 1996. 35(18): p. 

3286-3296. 

[15] Hightower, R.L., C.B. Richardson, H.B. Lin, et al., Measurement of scattering of light from 

layered microspheres. Opt. Lett., 1988. 13: p. 946-948. 



 

130 

[16] Ray, A.K., B. Devakottai, A. Souyri, et al., Evaporation characteristics of droplets coated 

with immiscible layers of nonvolatile liquids. Langmuir, 1991. 7: p. 525-531. 

[17] Kaiser, T., G. Roll, and G. Schweiger, Investigation of coated droplets in an optical trap: 

Raman-scattering, elastic-light-scattering and evaporation characteristics. Appl. Opt., 1996. 

35: p. 1-7. 

[18] Secker, D.R., P.H. Kaye, R.S. Greenaway, et al., Light scattering from deformed droplets and 

droplets with inclusions. I. Experimental results. Appl. Opt., 2000. 39: p. 5023-5030. 

[19] Tu, H.H. and A.K. Ray, Investigation of concentrically and eccentrically layered droplets by 

light scattering. Appl. Opt., 2006. 45(29): p. 7652-7656. 

[20] Friedman, B. and J. Russek, Addition theorems for spherical waves. Quarterly of Applied 

Mathematics, 1954. 12: p. 13-23. 

[21] Stein, S., Addition theorems for spherical wave functions. Sylvania Electronic Systems, 1961. 

XIX(1): p. 15-24. 

[22] Cruzan, O.R., Translational addition theorems for spherical vector wave functions. Quarterly 

of Applied Mathematics, 1962. 20: p. 33-44. 

[23] Bobbert, P.A. and J. Vlieger, Light scattering by a sphere on a substrate. Physica A, 1986. 

137: p. 209-241. 

[24] Mackowski, D.W., Analysis of radiative scattering from multiple sphere configurations. 

Proceedings of the Royal society of London, 1991. 433: p. 599-614. 

[25] Fikioris, J.G. and N.K. Uzunoglu, Scattering from an eccentrically stratified dielectric sphere. 

J. Opt. Soc. Am. A, 1979. 69: p. 1359-1366. 

[26] Borghese, F., P. Denti, R. Saija, et al., Optical properties of spheres containing a spherical 

eccentric inclusion. J. Opt. Soc. Am. A, 1992. 9: p. 1327-1335. 

[27] Borghese, F., P. Denti, R. Saija, et al., Optical properties of spheres containing several 

spherical inclusions. Appl. Opt., 1994. 33: p. 484-493. 

[28] Fuller, K.A., Scattering and absorption by inhomogeneous spheres and sphere aggregates. 

SPIE Proc., 1993. 1862: p. 249-257. 

[29] Fuller, K.A., Morphology-dependent resonances in eccentrically stratified sphere. Opt. Lett., 

1994. 19: p. 1272-1274. 

[30] Videen, G., D. Ngo, P. Chylek, et al., Light scattering from a sphere with an irregular 

inclusion. J. Opt. Soc. Am. A, 1995. 12: p. 922-928. 

[31] Ngo, D. and R.G. Pinnick, Suppression of scattering resonances in inhomogeneous 

microdroplets. J. Opt. Soc. Am. A, 1994. 11: p. 1352-1359. 

[32] Ngo, D., G. Videen, and P. Chylek, A FORTRAN code for the scattering of EM waves by a 

sphere with a nonconcentric spherical inclusion. Comput. Phys. Commun., 1996. 99: p. 



 

131 

94-112. 

[33] Lim, K. and S.S. Lee, Analysis of electromagnetic scattering from an eccentric multilayered 

sphere. IEEE Transactions on antennas and propagation, 1995. 43(11): p. 1325-1328. 

[34] Davis, L.W., Theory of electromagnetic beam. Phys. Rev. A, 1979. 19: p. 1177-1179. 

[35] Gouesbet, G. and G. Grehan, Sur la generalisation de la theorie de Lorenz-Mie. J. Opt. Paris, 

1982. 13(2): p. 97-103. 

[36] Gouesbet, G., B. Maheu, and G. Grehan, Light scattering from a sphere arbitrarily located in 

a Gaussian beam, using a Bromwich formulation. J. Opt. Soc. Am. A, 1988. 5: p. 1427-1443. 

[37] Wu, Z.S., L.X. Guo, K.F. Ren, et al., Improved algorithms for electromagnetic scattering of 

plane waves and shaped beams by multilayered spheres. Appl. Opt., 1997. 36(21): p. 

5188-5198. 

[38] Gouesbet, G., Interaction between an infinite cylinder and an arbitrary-shaped beam. Appl. 

Opt., 1997. 36: p. 4292-4304. 

[39] Mees, L., K.F. Ren, G. Grehan, et al., Scattering of a Gaussian beam by an infinite cylinder 

with arbitrary location and arbitrary orientation, numerical results. Appl. Opt., 1999. 38: p. 

1867-1876. 

[40] Han, Y.P., G. Grehan, and G. Gouesbet, Generalized Lorenz-Mie theory for a spheroidal 

particle with off-axis Gaussian-beam illumination. Appl. Opt., 2003. 42: p. 6621-6629. 

[41] Xu, F., K.F. Ren, G. Gouesbet, et al., Generalized Lorenz-Mie theory for an arbitrary 

oriented, located, and shaped beam scattered by homogeneous spheroid. J. Opt. Soc. Am. A, 

2007. 24: p. 119-131. 

[42] Ren, K.F., G. Grehan, and G. Gouesbet, Evaluation of laser-sheet beam shape coefficients in 

generalized Lorenz-Mie theory by use of a localized approximation. J. Opt. Soc. Am. A, 

1994. 11(7): p. 2072-2079. 

[43] Barton, J.P., Electromagnetic-field calculation for a sphere illuminated by a higher-order 

Gaussian beam. I. Internal and near-field effect. Appl. Opt., 1997. 36: p. 1303-1311. 

[44] Khaled, E.E.M., S.C. Hill, and P.W. Barber, Internal electric energy in a spherical particle 

illuminated with a plane wave or off-axis Gaussian beam. Appl. Opt., 1994. 33: p. 524-532. 

[45] Gouesbet, G. and G. Grehan, Generalized Lorenz-Mie theory for a sphere with an 

eccentrically located spherical inclusion. J. Mod. Optic., 2000. 47: p. 821-837. 

[46] Han, G.X., Study on the interaction of arbitrarily incident Gaussian beam with eccentric 

sphere and bi-sphere, in School of Science. 2009, Xidian University: Xi'an. 

[47] Han, G.X. and Y.P. Han, Radiation force of a sphere with an eccentric inclusion illuminated 

by a laser beam. ACTA Physica SINICA, 2009. 58: p. 6167-6173. 

[48] Yan, B., X.E. Han, and K.F. Ren, Scattering of a shaped beam by a spherical particle with an 



 

132 

eccentric spherical inclusion. J. Opt. A: Pure Appl. Opt., 2009. 11(1): p. 015705. 

[49] Yan, B. and X.E. Han, Radiation trapping forces acting on eccentric sphere in Gaussian beam 

ACTA Optica Sinica, 2009. 29(6): p. 1691-1696. 

[50] Asano, S. and G. Yamamoto, Light scattering by a spheroid particle. Appl. Opt., 1975. 14: p. 

29-49. 

[51] Asano, S., Light scattering properties of spheroidal particles. Appl. Opt., 1979. 18: p. 

712-723. 

[52] Barton, J.P., Internal and near-surface electromagnetic fields for a spheroidal particle with 

arbitrary illumination. Appl. Opt., 1995. 34: p. 5542-5551. 

[53] Barton, J.P., Internal and near-surface electromagnetic fields for an absorbing spheroidal 

particle with arbitrary illumination. Appl. Opt., 1995. 34: p. 6471-8473. 

[54] Han, Y.P. and Z.S. Wu, The expansion coefficients of a spheroidal particle illuminated by 

Gaussian beam. IEEE Transactions on Antennas and Propagation, 2001. 49: p. 615-620. 

[55] Han, Y.P., Scattering of a spheroidal particle illuminated by Gaussian beam, in School of 

Science. 2000, Xidian Univerisity: Xi'an. 

[56] Zhang, H.Y. and Y.P. Han, Scattering by a confocal multilayered spheroidal particle 

illuminated by an axial Gaussian beam. IEEE Transactions on antennas and propagation, 

2005. 53: p. 1514-1518. 

[57] Xu, F., J.A. Lock, G. Gouesbet, et al., Radiation torque exerted on a spheroid: analytical 

solution. Phys. Rev. A, 2008. 78: p. 013843. 

[58] Xu, F., J.A. Lock, and C. Tropea, Debye series for light scattering by a spheroid. J. Opt. Soc. 

Am. A, 2010. 27(4): p. 671-686. 

[59] Mishchenko, M.I., J.W. Hovenier, and L.D. Travis, Light scattering by nonspherical 

particles : theory, measurements, and applications. 2000: Academic Press. 

[60] Doicu, A., T. Wriedt, and Y.A. Eremin, Light Scattering by Systems of Particles. Null-Field 

Method with Discrete Sources: Theory and Programs. 2006: Springer Science+Business 

Media, New York, USA. 

[61] Schuh, R. and T. Wriedt, Computer programs for light scattering by particles with inclusions. 

J. Quant. Spectrosc. Radiat. Transfer, 2001. 70: p. 715-723. 

[62] Waterman, P.C., Symmetry, unitarity and geometry in electromagnetic scattering. Phys. 

Rev. , 1971. 3: p. 825-839. 

[63] Mishchenko, M.I., Light scattering by size-shape distributions of randomly oriented axially 

symmetric particles of a size comparable to a wavelength. Appl. Opt., 1993. 32(24): p. 

4652-66. 

[64] Wielaard, D.J., M.I. Mishchenko, A. Macke, et al., Improved T-matrix computations for 



 

133 

large, nonabsorbing and weakly absorbing nonspherical particles and comparison with 

geometrical-optics approximation. Appl. Opt., 1997. 36(18): p. 4305-4313. 

[65] Hackman, R.H., Development and application of the spheroidal coordinate based T matrix 

solution to elastic wave scattering. Radio Science, 1994. 29: p. 1035-1049. 

[66] Schulz, F.M., K. Stamnes, and J.J. Stamnes, Scattering of electromagnetic wave by 

spheroidal particles: a novel approach exploiting the T matrix computed in spheroidal 

coordinates. Applied Optics, 1998. 37: p. 7875-7896. 

[67] Mishchenko, M.I., Light scattering by randomly oriented axially symmetric particles. J. Opt. 

Soc. Am. A, 1991. 8(6): p. 871-882. 

[68] Mishchenko, M.I. and L.D. Travis, Capabilities and limitations of a current fortran 

implementation of the T-matrix method for randomly oriented, rotationally symmetric 

scatterers. J. Quant. Spectrosc. Radiat. Transfer, 1998. 60(3): p. 309-324. 

[69] Skaropoulos, N.C. and H.W. Russchenberg, Light scattering by arbitrarily oriented 

rotationally symmetric particles. J. Opt. Soc. Am. A, 2002. 19(8): p. 1583-91. 

[70] Gouesbet, G., J.J. Wang, and Y.P. Han, Transformations of spherical beam shape coefficients 

in generalized Lorenz-Mie theories through rotations of coordinate systems. I. General 

formulation. Opt. Commun., 2010. 283: p. 3218-3225. 

[71] Wang, J.J., G. Gouesbet, and Y.P. Han, Transformations of spherical beam shape coefficients 

in generalized Lorenz-Mie theories through rotations of coordinate systems. II. 

Axisymmetric beams. Opt. Commun., 2010. 283: p. 3226-3234. 

[72] Gouesbet, G., J.J. Wang, and Y.P. Han, Transformations of spherical beam shape coefficients 

in generalized Lorenz-Mie theories through rotations of coordinate systems. III. Special 

Euler angles. Opt. Commun., 2010. 283: p. 3235-3243. 

[73] Gouesbet, G., J.A. Lock, J.J. Wang, et al., Transformations of spherical beam shape 

coefficients in generalized Lorenz-Mie theories through rotations of coordinate systems. V. 

Localized beam models. Opt. Commun., 2011. 284: p. 411-417. 

[74] Gouesbet, G., J.J. Wang, Y.P. Han, et al., Transformations of spherical beam shape 

coefficients in generalized Lorenz-Mie theories through rotations of coordinate systems. IV. 

Plane waves. Opt. Commun., 2011. 283: p. 3244-3254. 

[75] Wang, J.J., G. Gouesbet, Y.P. Han, et al., Study of scattering from a sphere with an 

eccentrically located spherical inclusion by generalized Lorenz-Mie theory: internal and 

external field distribution. J. Opt. Soc. Am. A, 2011. 28: p. 24-39. 

[76] Wang, J.J., G. Gouesbet, G. Grehan, et al., Morphology-dependent resonances in an 

eccentrically layered sphere illuminated by a tightly focused off-axis Gaussian beam: parallel 

and perpendicular beam incidence. J. Opt. Soc. Am. A 2011. 28: p. 1849-1859. 



 

134 

[77] Wang, J.J., G. Gréhan, Y.P. Han, et al., Numerical study of global rainbow technique: 

sensitivity to non-sphericity of droplets. Experiments in Fluids, 2011. 51: p. 149-159. 

[78] Leung, E., C.P. Lee, and N. Jacobi, Resonance frequency shift of and acoustic chamber 

containing a rigid sphere. J. Acoutic. Soc. Am., 1982. 72: p. 615-620. 

[79] Curzon, F.L. and D. Plant, Using perturbed resonance frequencies to study eigenmodes of an 

acoustic resonator. Am. J. Phys., 1986. 54: p. 367-372. 

[80] Xu, D.L., X.M. Wang, Y.J. Song, et al., Acoustic resonance calculation of spherical 

resonance cavity caused by an eccentric sphere. Journal of Daqing Petroleum Institute, 2002. 

26(1): p. 18-20. 

[81] Hasheminejad, S.M. and Y. Mirzaei, Exact 3D elasticity solution for free vibrations of 

eccentric hollow sphere. Journal of Sound and Vibration, 2010. 330: p. 229-244. 

[82] Mees, L., G. Gouesbet, and G. Grehan, Transient internal and scattered fields from a 

multi-layered sphere illuminated by a pulsed laser. Opt. Commun., 2009. 282: p. 4189-4193. 

[83] Han, Y.P., L. Mees, K.F. Ren, et al., Far scattered field from a spheroid under a femtosecond 

pulsed illumination in a generalized Lorenz-Mie theory framework. Opt. Commun., 2004. 

231: p. 71-77. 

[84] Gouesbet, G. and G. Grehan, Generalized Lorenz-Mie Theories. 2011: Springer. 

[85] Barton, J.P., D.R. Alexander, and S.A. Schaub, Internal and near-surface electromagnetic 

fields for a spherical particle irradiated by a focused laser beam. J. Appl. Phys., 1988. 64: p. 

1632-1639. 

[86] Lock, J.A. and G. Gouesbet, Generalized Lorenz-Mie theory and applications. J. Quant. 

Spectrosc. Radiat. Transfer, 2009. 110: p. 800-807. 

[87] Stratton, J.A., Electromagnetic theory. 1941: New-York, London: McGraw-Hill Book 

Company. 

[88] Edmonds, A.R., Angular momentum in quantum mechanics. 1957: Princeton University 

Press. 

[89] Chew, W.C., Waves and Field in Inhomogeneous Media. 1990: IEEE Press. 

[90] Bruning, J.H. and Y.T. Lo, Multiple scattering of EM waves by spheres part I: multipole 

expansion and ray optical solution. IEEE Transactions on antennas and propagation, 1971. 19: 

p. 378-390. 

[91] Bruning, J.H. and Y.T. Lo, Multiple scattering of EM waves by spheres part II: numerical 

and experimental results. IEEE Transactions on antennas and propagation, 1971. 19: p. 

391-400. 

[92] Tsang, L., J.A. Kong, and R.T. Shin, Theory of Microwave Remote Sensing 1985, New York: 

John Wiley & Sons. 



 

135 

[93] Xu, Y.L., Calculation of the addition coefficients in electromagnetic multisphere scattering 

theory. Journal of Computational Physics, 1996. 127: p. 285-298. 

[94] Xu, Y.L., Efficient evaluation of vector translation coefficients in multiparticle light 

scattering theories. Journal of Computational Physics, 1997. 139: p. 137-165. 

[95] Gouesbet, G., G. Grehan, and B. Maheu, Computations of the gn coefficients in the 

generalized Lorenz-Mie theory using three different methods. Appl. Opt., 1988. 27: p. 

4874-4883. 

[96] Gouesbet, G., Partial-wave expansions and properties of axisymmetric light beams. Appl. 

Opt., 1996. 35(9): p. 1543-1555. 

[97] Gouesbet, G., J.A. Lock, and G. Grehan, Generalized Lorenz-Mie theories and description of 

electromagnetic arbitrary shaped beams: localized approximations and localized beam 

models. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011. 12: p. 1-27. 

[98] Ren, K.F., G. Gouesbet, and G. Grehan, Integral Localized Approximation in Generalized 

Lorenz-Mie Theory. Appl. Opt., 1998. 37(19): p. 4218-4225. 

[99] Doicu, A. and T. Wriedt, Computation of the beam-shape coefficients in the generalized 

Lorenz-Mie theory by using the translational addition theorem for spherical vector wave 

functions. Appl. Opt., 1997. 36(13): p. 2971-2978. 

[100] Zhang, H.Y. and Y.P. Han, Addition theorem for the spherical vector wave functions and its 

application to the beam shape coefficients. J. Opt. Soc. Am. B, 2008. 25(2): p. 255-260. 

[101] Gouesbet, G., G. Grehan, and B. Maheu, Localized interpretation to compute all the 

coefficients gmn in the generalized Lorenz-Mie theory. J. Opt. Soc. Am. A, 1990. 7(6): p. 

998-1007. 

[102] Lock, J.A. and G. Gouesbet, Rigorous justification of the localized approximation to the 

beam-shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams. J. Opt. Soc. 

Am. A, 1994. 11(9): p. 2503-2515. 

[103] Gouesbet, G. and J.A. Lock, Rigorous justification of the localized approximation to the 

beam-shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beams. J. Opt. Soc. 

Am. A, 1994. 11(9): p. 2516-2525. 

[104] Ren, K.F., G. Grehan, and G. Gouesbet, Localized Approximation of Generalized 

Lorenz-Mie Theory: Faster algorithm for computations of beam shape coefficients. Part. Part. 

Syst. Char., 1992. 9(1-4): p. 144-150. 

[105] Yan, B., X.e. Han, K.F. Ren, et al., Light scattering of Gaussian beam from an eccentrically 

stratified dielectric sphere and application. ACTA Photonica Sinica, 2009. 38(5): p. 

1268-1273. 

[106] Han, G.X., Y.P. Han, J.Y. Liu, et al., Scattering of an eccentric sphere arbitrarily located in a 



 

136 

shaped beam. J. Opt. Soc. Am. B, 2008. 25(12): p. 2064-2072. 

[107] Videen, G., W. Sun, Q. Fu, et al., Light scattering from deformed droplets and droplets with 

inclusions. II. Theoretical treatment. Appl. Opt., 2000. 39: p. 5031-5039. 

[108] Prabhu, D.R., M. Davies, and G. Videen, Light scattering calculations from oleic-acid 

droplets with water inclusions. Optics Express, 2001. 8(6): p. 308-313. 

[109] Gouesbet, G., S.M. Guttin-Cluzel, and G. Grehan, Periodic orbits in Hamiltonian chaos of 

the annular billiard. Phys. Rev. E, 2001. 65: p. 016212. 

[110] Gouesbet, G., S.M. Guttin-Cluzel, and G. Grehan, Morphology-dependent resonances and/or 

whispering gallery modes for a two-dimensional dielectric cavity with an eccentrically 

located circular inclusion, a Hamiltonian point of view with Hamiltonian (optical) chaos. Opt. 

Commun., 2002. 203: p. 223-242. 

[111] Rao, V.S.C.M., Gupta, and S. Dutta, Broken azimuthal degeneracy with whispering gallery 

modes of microspheres. J. Opt. A: Pure Appl. Opt., 2005. 7: p. 279-285. 

[112] Essien, M., R.L. Armstrong, and J.B. Gillespie, Lasing emission from an evaporating layered 

microdroplet. Opt. Lett., 1993. 18(10): p. 762-4. 

[113] Barber, P.W. and S.C. Hill, Light scattering by particles: computational methods. Advanced 

Series in Applied Physics, v. 2. 1990: World Scientific. 261. 

[114] Spillane, S.M., T.J. Kippenberg, and K.J. Vahala, Ultralow-threshold Raman laser using a 

spherical dielectric microcavity. Nature, 2002. 415: p. 621-623. 

[115] Ashkin, A. and J.M. Dziedzic, Observation of resonances in the radiation pressure on 

dielectric spheres. Phys. Rev. Lett, 1977. 38: p. 1351-1354. 

[116] Chylek, P., J.T. Kiehl, and M.K.W. Ko, Optical levitation and partial-wave resonance. Phys. 

Rev. A, 1978. 18: p. 2229-2233. 

[117] Ducastel, J., Etude des resonances morphologiquement dependantes et application a la 

caracterisation de microparticules en milieu diphasique. 2007, Institut National des Sciences 

Appliquees de Rouen, FRANCE. 

[118] Chylek, P., B. Ramaswamy, A. Ashkin, et al., Simultaneous determination of refractive index 

and size of spherical dielectric particles from light scattering data. Appl. Opt., 1983. 22: p. 

2302-2307. 

[119] Tzeng, H.M., K.F. Wall, M.B. Long, et al., Evaporation and condensation rates of liquid 

droplets deduced from structure resonances in the fluorescence spectra. Opt. Lett., 1984. 9: p. 

273-275. 

[120] Han, Y.P., L. Mees, G. Gouesbet, et al., Resonant spectra of a deformed spherical 

microcavity. J. Opt. Soc. Am. B, 2006. 23: p. 1390-1397. 

[121] Mishchenko, M.I. and A.A. Lacis, Morphology-dependent resonances of nearly spherical 



 

137 

particles in random orientation. Appl. Opt., 2003. 20: p. 5551-5556. 

[122] Chen, G., R.K. Chang, S.C. Hill, et al., Frequency splitting of degenerate spherical cavity 

mode: stimulated Raman scattering spectrum of deformed droplets. Opt. Lett., 1991. 16: p. 

1269-1271. 

[123] Leung, P.T., S.W. Ng, and K.M. Pang, Morphology-dependent resonances in dielectric 

spheres with many tiny inclusions. Opt. Lett., 2002. 27: p. 1749-1751. 

[124] Huang, Y.-Z., K.-J. Che, Y.-D. Yang, et al., Directional emission InP/GaInAsP 

square-resonator microlasers. Opt. Lett., 2008. 33(19): p. 2170-2172. 

[125] Gouesbet, G., S.M. Guttin-Cluzel, and G. Grehan, Generalized Lorenz-Mie Theory for a 

Sphere with an Eccentrically Located Inclusion, and Optical Chaos. Part. Part. Syst. Char., 

2001. 18: p. 190-195. 

[126] Mazumder, M.M., S.C. Hill, and P.W. Barber, Morphology-dependent resonances in 

inhomogeneous spheres: comparison of the layered T-matrix method and the 

time-independent perturbation method. J. Opt. Soc. Am. A, 1992. 9: p. 1844-1853. 

[127] Khaled, E.E.M., S.C. Hill, P.W. Barber, et al., Near-resonance excitation of dielectric spheres 

with plane waves and off-axis Gaussian beams. Appl. Opt., 1992. 31(9): p. 1166-1169. 

[128] Khaled, E.E.M., S.C. Hill, and P.W. Barber, Light scattering by a coated sphere illuminated 

with a Gaussian beam. Appl. Opt., 1994. 33: p. 3308-3314. 

[129] Novick, V.J., Use of series light extinction cells to determine aerosol number concentration. 

Aerosol Science and Technology, 1988. 

[130] Hu, K., J.J. Wang, and Y.P. Han. Measurement of soot concentration by light extinction 

method. in The Sixth Northwest Academic Conference on Computational Physics, China. 

2008. 

[131] Durst, F., A. Melling, and J.H. Whiteiaw, Principles and Practice of Laser Dropper 

Anemometry. 1976, New York: Academic Presss. 

[132] van Beeck, J.P. and M.L. Riethmuller, Rainbow phenomena applied to the measurement of 

droplet size and velocity and to the detection of nonsphericity. Appl. Opt., 1996. 35(13): p. 

2259-66. 

[133] Hom, J. and N. Chigier, Rainbow refractometry: simultaneous measurement of temperature, 

refractive index, and size of droplets. Appl. Opt., 2002. 41(10): p. 1899-907. 

[134] Saengkaew, S., G. Godard, J.B. Blaisot, et al., Experimental analysis of global rainbow 

technique: sensitivity of temperature and size distribution measurements to non-spherical 

droplets. Exp. Fluids, 2009. 47: p. 839-848. 

[135] van Beeck, J.P., T. Grosges, and M.G. De Giorgi, Global rainbow thermometry assessed by 

Airy and Lorenz-Mie theories and compared with phase Doppler anemometry. Appl. Opt., 



 

138 

2003. 42(19): p. 4016-22. 

[136] Bertoli, C. and C.M. Migliaccio, A finite conductivity model for diesel spray evaporation 

computations. Int. J. Heat and Fluid Flow, 1999. 20: p. 552-561. 

[137] Castanet, G., M. Lebouche, and F. Lemoine, Heat and mass transfer of combustiing 

monodisperse droplets in a linear stream. Int. J. Heat Mass Transfer, 2005. 48: p. 3261-3275. 

[138] van Beeck, J.P., D. Giannoulis, L. Zimmer, et al., Global rainbow thermometry for 

droplet-temperature measurement. Opt. Lett., 1999. 24(23): p. 1696-8. 

[139] Wilms, J., Global rainbow refractometry with a selective imaging method. Part. Part. Syst. 

Char., 2008. 25: p. 39-48. 

[140] Havemann, S. and A.J. Baran, Extension of T-matrix to scattering of electromagnetic plane 

waves by non-axisymmetric dielectric particles: application to hexagonal ice cylinders. 

Journal of Quantitative Spectroscopy and Radiative Transfer, 2000. 70: p. 139-158. 

[141] Nieminen, T.A., N.R. Hechenberg, and H.R. Dunlop. Computational modelling of optical 

tweezers. in Proc. SPIE. 2004. 

[142] Kahnert, F.M., J.J. Stamnes, and K. Stamnes, Application of the extended boundary 

condition method to particles with sharp edges: a comparison of two surface integration 

approaches. Appl. Opt., 2001. 40(18): p. 3101-9. 

[143] Laitinen, H. and K. Lumme, T-matrix method for general star-shaped particles: first results. J. 

Quant. Spectrosc. Radiat. Transfer, 1998. 60(3): p. 325-334. 

[144] van de Hulst, H.C., Light Scattering by Small Particles. 1982: Peter Smith Pub Inc. 

[145] Van Beeck, J.P., Rainbow phenomena: development of a laser-based, non-intrusive 

technique for measuring droplet size, temperature and velocity. 1997, Technische 

Universiteit Eindhoven. 

[146] Han, X.E., Study of refractometry of rainbow and applications to the measurement of 

instability and temperature gradient of a liquid jet. 2000, Universite de Rouen: Rouen. 

[147] Roth, N., K. Anders, and A. Frohn. Simultaneous measurement of temperature and size of 

droplets in the micrometric range. in 7th International Congress on Optical in Flow and 

Particle Diagnostic. 1988. U.S.A. 

[148] Roth, N., K. Anders, and A. Frohn, Simultaneous measurement of temperature and size of 

droplets in the micrometric range. Journal of Laser Applications, 1990. 2: p. 37-42. 

[149] Walker, J.D., Multiple rainbows from single drops of water and other liquids. Am. J. Phys., 

1976. 44: p. 421-433. 

[150] Anders, K., N. Roth, and A. Frohn. Theoretical and experimental studies of the influence of 

internal temperature gradients on rainbow refractometry. in 4th International Congress on 

Optical Particle Sizing. 1995. Germany. 



 

139 

[151] Saengkaew, S., Development of novel Global rainbow technique for characterizing spray 

generated by ultrasonic nozzle. 2005, Universite de Rouen. 

[152] Han, Y.P., L. Mees, K.F. Ren, et al., Scattering of light by spheroids: the far field case. Opt. 

Commun., 2002. 210(1-2): p. 1-9. 

[153] Jiang, H.F., On Characteristics of Light Scattering by Inhomogeneous Particles and 

Measurement of Refractive Index Profile, in School of Science. 2007, Xidian University: 

Xi'an. 

[154] Saengkaew, S., T. Charinpanitkul, H. Vanisri, et al., Rainbow refractrometry on particles 

with radial refractive index gradients. Experiments in Fluids, 2007. 43(4): p. 595-601. 

[155] Marston, P.L., Cusp diffraction catastrophe from spheroids: generalized rainbows and inverse 

scattering. Opt. Lett., 1985. 10(12): p. 588-590. 

[156] Li, X.Z. and X.e. Han, Rainbow angle analysis of a homogeneous spheroid. Journal of 

Xidian University, 2010. 37(4): p. 731-736. 

[157] Vetrano, M.R., J.P. van Beeck, and M.L. Riethmuller, Global rainbow thermometry: 

improvements in the data inversion algorithm and validation technique in liquid-liquid 

suspension. Appl. Opt., 2004. 43(18): p. 3600-7. 

[158] Han, Y.P., Y. Zhang, H.Y. Zhang, et al., Scattering of typical particles by beam shape in 

oblique illumination. J. Quant. Spectrosc. Radiat. Transfer, 2009. 110: p. 1375-1381. 

[159] Harvey, A.H., J.S. Gallagher, and J. Sengers, Revised formulation for the refractive index of 

water and stream as a function of wavelength, temperature and density. J. Phys. Chem. Ref. 

Data, 1998. 27: p. 761-774. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

140 

 



 

141 

 

  

 

 

“Optical characterization of shape and thermo-chemical composition 

of biodiesel droplets in flames” 

(2008 2011) 

(No.60771039)  

  

(2008 2010) 

(NECT 04 0949) 

 

(2005 2007)  

 

“Interreg Iva-C5: Cross-Chanel Center for Low Carbon Combustion” 

(2009 2012) 

 

  

 

1. J.J. Wang, G. Gouesbet, G. Gréhan, Y.P. Han, S. Saengkaew. 

Morphology-dependent resonances in an eccentrically layered sphere illuminated 

by a tightly focused Gaussian beam, JOSA A. Vol.28, pp1849-1859, (2011) 

2.   J.J. Wang, G. Gréhan, Y.P. Han, S. Saengkaew, G. Gouesbet. Numerical study of 

global rainbow technique: sensitivity to non-sphericity of droplets, Experiments in 

Fluids, Vol.51, pp.149-159 DOI: 10.1007/s00348-010-1036-4, (2011) 

3.   J.J. Wang, G. Gouesbet, Y.P. Han, G. Gréhan. A study of scattering from a 

sphere with an eccentrically located spherical inclusion by generalized Lorenz-Mie 

theory. Internal and External field distribution, JOSA A. Vol. 28. pp. 24-39 (2011) 

4.   J.J. Wang, G. Gouesbet, Y.P. Han. Transformations of spherical beam shape 

coefficients in generalized Lorenz-Mie theories through rotations of coordinate 

systems. II. Axisymmetric beams, Optics Communication. Vol. 283. pp. 



 

142 

3226-3234 (2010) 

5.   G. Gouesbet, J.J. Wang, Y.P. Han. Transformations of spherical beam shape 

coefficients in generalized Lorenz-Mie theories through rotations of coordinate 

systems. I. General formulation. Optics Communication. Vol. 283. pp. 3218-3225 

(2010) 

6.   G. Gouesbet, J.J. Wang, Y.P. Han. Transformations of spherical beam shape 

coefficients in generalized Lorenz-Mie theories through rotations of coordinate 

systems. III Special Euler angles. Optics Communication. Vol. 283. pp. 3235-3243 

(2010) 

7.   G. Gouesbet, J.J. Wang, Y.P. Han. Transformations of spherical beam shape 

coefficients in generalized Lorenz-Mie theories through rotations of coordinate 

systems. IV. Plane waves. Optics Communication. Vol. 283. pp. 3244-3254 (2010) 

8.   G. Gouesbet, J.A. Lock, J.J. Wang, G. Gréhan. Transformations of spherical 

beam shape coefficients in generalized Lorenz-Mie theories through rotations of 

coordinate systems. V. localized beam models. Optics Communication. Vol. 284. 

pp. 411-417 (2011) 

9.   ; 

(2008) 

 



Morphology-dependent resonances in an eccentrically
layered sphere illuminated by a tightly focused

off-axis Gaussian beam: parallel and
perpendicular beam incidence

J. J. Wang,1,2,* G. Gouesbet,1 G. Gréhan,1 Y. P. Han,2 and S. Saengkaew1

1Laboratoire d’Electromagnétisme des Systèmes Particulaires (LESP), Unité Mixte de Recherche (UMR) 6614 du Centre
National de la Recherche Scientifique (CNRS), COmplexe de Recherche Interprofessionnel en Aérothermochimie

(CORIA), Université de Rouen, et Institut National des Sciences Appliquées (INSA) de Rouen, BP12,
avenue de l’université, technopôle du Madrillet, 76801 Saint-Etienne-du Rouvray, France

2School of Science, Xidian University, 710071 Xi’an, China
*Corresponding author: jiajie.wang@coria.fr

Received May 24, 2011; accepted July 13, 2011;

posted July 18, 2011 (Doc. ID 148104); published August 22, 2011

Following the recent results in generalized Lorenz–Mie theory concerning the description of an arbitrary shaped
electromagnetic beam propagating in an arbitrary orientation, a theoretical investigation of morphology-
dependent resonances (MDRs) excited in a sphere with an eccentrically located spherical inclusion illuminated
by a tightly focused Gaussian beam is presented. Calculations of extinction efficiency spectra and backward-
scattering intensity spectra are made for different locations and radii of the inclusion with respect to the host
sphere. Exemplifying field distributions inside of the scatterer under both off-resonance and on-resonance con-
ditions are exhibited. The influences of the relative size of the inclusion with respect to the host sphere and of the
separation distance between the two sphere centers on the positions and on the amplitudes of the MDRs peaks are
studied. As are the cases for spheres and concentrically multilayered spheres, the resonance positions of MDRs in
an eccentrically layered sphere are located at the same size parameter for Gaussian beam illumination and for
plane-wave illumination. In contrast with the lift of azimuthal modesm degeneracy in MDR peaks for an eccentric
sphere illuminated obliquely by a plane wave, we display a kind of lift that cannot be observed in extinction
efficiency spectra with an oblique illumination of a tightly focused Gaussian beam. Nevertheless, asymmetric
distributions of the internal field inside of the eccentric sphere at resonance conditions are observed both with
an oblique illumination of a tightly focused beam and with an oblique illumination of a plane-wave illumination.
Interpretation from a perspective of the localization principle is applied to the simulation results. © 2011 Optical
Society of America

OCIS codes: 260.2110, 140.3430.

1. INTRODUCTION

Morphology-dependent resonances (MDRs) generated by a

spherical surface are believed to be first described by Lord

Rayleigh a century ago, but only after the invention of laser

did they start to have more scientific relevance, and it is only

during the past three decades that there has been a substantial

move toward extensive practical applications. MDRs were

first observed in radiation pressure experiments on dielectric

spheres while levitating a droplet by a tightly focused laser

beam [1]. Numerical simulations carried out with high resolu-

tion by using the Mie–Debye theory were given very soon after

[2], and remarkable agreement with the experimental obser-

vations of MDRs was shown. Because of the fact that the po-

sitions and the widths of MDRs are highly sensitive to the size

parameter and to the refractive index of the scatterers (in par-

ticular droplets), MDR-related optical techniques, based on

the properties of MDR peaks in elastic scattering spectra

[3] or in inelastic scattering spectra [4], were introduced to

detect various properties of droplets. With extensive investi-

gations in the past decades [5,6], a reliable optical tool for op-

tical particle characterization is now available. Relying on the

precise measurement of the positions and of the widths of the

MDR peaks by high-resolution spectroscopy, absolute sizes of

spheres can be obtained to a precision of 1 part in 105. By

measuring the wavelength shift of MDR peaks in the scattering

spectrum, evaporation and condensation rates of droplets can

be obtained.

MDRs in a dielectric sphere have been studied extensively

for both plane-wave illumination and Gaussian beam illumina-

tion. They exhibit themselves in the form of sharp spikelike

features in the plots of various scattering characteristics ver-

sus size parameter. Recalling the MDR labeling convention,

one resonance excited in a homogeneous sphere can be iden-

tified by its state of polarization and by three so-called quan-

tum numbers l, n, andm. The mode order l is associated with

the radial function and indicates the number of intensity peaks

in the radial distribution of the field inside of the sphere. The

mode number n is one of the classical quantization numbers

for the angular momentum, which coincides with half the

number of intensity maxima along the perimeter of the sphere.

For a perfect sphere, there is no particular quantization axis,

which leads to the fact that the resonance frequencies do not

depend on modem, therefore corresponding to a degeneracy

in m for the resonances. Nevertheless, the degeneracy in m

Wang et al. Vol. 28, No. 9 / September 2011 / J. Opt. Soc. Am. A 1849

1084-7529/11/091849-11$15.00/0 © 2011 Optical Society of America



mode can be lifted by a nonconcentric perturbation inside of

the scatterer [6–9] or by a deformation in the outer surface of

the particle [10–12].

The present study is more particularly devoted to the ana-

lysis of the influence of a perturbation inside the particle on

MDR properties. More specifically, the scattering model of a

sphere with an eccentrically located spherical inclusion is stu-

died in this paper, a geometry that has also been analyzed by

several groups. Indeed, as we know, the analysis of MDR prop-

erties has attracted much attention particularly because the

MDRs can significantly enhance internal field intensities with

ultrahigh quality factors (Qs) of MDRs that can reach 108, en-

abling nonlinear optical processes such as fluorescence, sti-

mulated Raman scattering (SRS), and stimulated Brillouin

scattering (SBS) to occur in droplets with a relatively low level

of pumping power. Nevertheless, such high Qs of MDRs can

be greatly influenced by nonconcentric perturbation inside of

the droplet. Numerous interesting observations, such as spec-

tral line broadening and laser emission, have been reported. In

the analysis of resonance locations and Qs of MDRs in an in-

homogeneous sphere with a small perturbation in refractive

index carried out by Mazumder et al. [13], an increase in the

refractive index in a nonconcentric spherical region inside the

larger sphere leading to a decrease of resonance frequencies

was reported. Fuller [14] discovered that a spectral shift of the

resonance peak might be brought up when the inclusion is

located in the forward hot spot of the host sphere. Further-

more, predicted by Leung et al. [8], MDRs in a dielectric

sphere with many tiny inclusions may split into multiplets be-

cause of the loss of spherical symmetry and manifest them-

selves as broadened spectral lines in the scattering cross

section. Similar results were also presented by Rao et al. [9]

in considering a system of an inclusion sphere embedded in a

larger sphere.

Because of the fact that all of the previous theoretical anal-

ysis of MDR behaviors in a host sphere containing an ec-

centric spherical inclusion (in short, an eccentric sphere, with

variants) was carried out in the case of plane-wave illumina-

tion, our motivation in this paper is to study the properties of

MDRs excited in an eccentric sphere with illumination by a

tightly focused Gaussian beam. This scattering model under

study is of great interest because, when the inclusion inside

of the host sphere approaches the rim of the host sphere, then,

on one hand, some MDRs may be suppressed or even annihi-

lated by the embedded inclusion resulting in a loss of the high

Qs, which may block the phenomena of SRS, SBS, and so on.

But, on the other hand, some MDRs might be extensively en-

hanced due to the complex optical interaction between the

spherical inclusion and the host sphere, which form a dielec-

tric annular billiard, which can possibly be used as a quantum

chaotic model of a micro-optical resonator [15,16]. Under fa-

vorable circumstances, these highly enhanced MDRs can be

manipulated to realize an efficient coupling to the external

medium in a specific orientation, leading to potential practical

applications in novel light transition devices, compact laser

cavities, high-sensitivity biosensors as well as microparticle

characteristics [17,18].

Within the framework of the generalized Lorenz–Mie theory

(GLMT), the scattering problem of an eccentric sphere illumi-

nated by an arbitrary shaped beam was originally studied by

Gouesbet and Gréhan [19], however, only in a formal way,

without any numerical results. Numerical results for far-zone

field distribution were given later by Han et al. [20] and Yan

et al. [21]. By virtue of the recent theoretical results in the

GLMT concerning the description of an arbitrary shaped beam

in an arbitrary orientation [22–26], numerical results for spa-

tial distributions of external and internal fields under off-

resonance conditions have been recently presented [27]. In

the present paper, the properties of MDRs excited in an ec-

centric sphere under illumination by tightly focused beams

are studied. Corresponding results for plane-wave illumina-

tion are also presented for the sake of comparison. These cal-

culations will provide insights for the understanding of

previously reported experimental observations as well as pro-

viding guidelines for future experiments in biological observa-

tion and particle characterization.

The body of the present paper is organized as follows. In

Section 2, we briefly present a theoretical treatment for the

scattering problem of an eccentric sphere illuminated by an

arbitrary shaped electromagnetic beam in an arbitrary orien-

tation in the framework of the GLMT. In Section 3, a tightly

focused Gaussian beam in the fundamental mode (TEM00)

is specifically considered for numerical illustration. The beha-

viors of MDRs excited in an ethanol sphere with a glass inclu-

sion are analyzed under parallel and oblique illuminations of

an off-axis Gaussian beam. Some results and discussions are

summarized in Section 4, which also serves as a conclusion.

2. THEORETICAL ANALYSIS BY THE GLMT

A. Definition of the Problem
The geometry of the specific scattering problem under study is

illustrated in Fig. 1. The host sphere is attached to a global

Cartesian coordinate system ðO1X1Y 1Z1Þ, and its correspond-

ing spherical coordinates are designated as ðr1; θ1;φ1Þ. A

spherical inclusion is embedded in the host sphere. It is

attached to an inclusion coordinate system ðO2X2Y 2Z2Þ

whose corresponding spherical coordinates are designated

as ðr2; θ2;φ2Þ. The three axes in the inclusion coordinate

Fig. 1. Scattering geometry of the problem under study.
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system are parallel to the corresponding axes in the global

coordinate system, respectively.

Without any loss of generality, the center of the inclusion is

located on the z axis of the global coordinate system. The cen-

ter–center separation distance being designated by d, we have

x2 ¼ x1; y2 ¼ y1; z2 ¼ z1 − d: ð1Þ

The radii of the host sphere and of the inclusion are a and b,

respectively. The complex refractive index and wavenumber

of the surrounding medium are m0 and k0, respectively. The

corresponding parameters for the host sphere are m1 and k1
and for the inclusion m2 and k2.

The scattering model in Fig. 1 is illuminated by an arbitrary

shaped beam propagating along the w axis in the beam co-

ordinate system OgUVW . The coordinates of its origin Og

with respect to the global coordinate system ðO1X1Y 1Z1Þ

are denoted as ðx0; y0; z0Þ. The frame system ðO1X1Y 1Z1Þ can

be obtained from the beam coordinate system ðOgUVWÞ by

rotations through Euler angles ðα; β; γÞ [22–26] followed by

a translation of ðx0; y0; z0Þ and vice versa. The time-

dependence factor reading as expðjwtÞ is assumed, where

w is the angular frequency. This term will be omitted from

all formulae for the sake of conciseness.

B. Solutions
As already mentioned, the theoretical treatment to the scatter-

ing of a sphere with an eccentrically located spherical inclu-

sion illuminated by an arbitrary shaped beam was originally

presented by Gouesbet and Gréhan [19]. Afterward, Han

et al. [20] and Yan et al. [21] also studied this problem and

analyzed the scattered field in the far zone. Both the external

field and internal field intensity distributions at off-resonance

conditions were very recently presented by Wang et al. [27].

Therefore, we will not focus on these derivations but only re-

call some expressions useful for the sequel.

In the global coordinate system, an arbitrary shaped beam

in an arbitrary orientation illuminating the host sphere may be

expressed in terms of vector spherical wave functions

(VSWFs) with two sets of expansion coefficients anm and

bnm according to

Einc ¼
X

∞

n¼1

X

þn

m¼−n

anmM
ð1Þ
nmðk0r1Þ þ bnmN

ð1Þ
nmðk0r1Þ; ð2Þ

in which the field strength E0 has been set equal to unity.

Furthermore, the relationship between the expansion coeffi-

cients anm, bnm on one hand and the more traditional beam

shape coefficients gmn;X on the other hand is available from

[28] and will be provided in the sequel.

Similarly, the scattered field may be expanded using the

spherical Bessel functions of the fourth kind (in the VSWFs):

Esca ¼
X

∞

n¼1

X

þn

m¼−n

cnmM
ð4Þ
nmðk0r1Þ þ dnmN

ð4Þ
nmðk0r1Þ: ð3Þ

The main field in the annular zone between the surface of

the host sphere and that of the inclusion may be expressed

using the spherical Bessel functions of the third and the fourth

kind in the global coordinates system, indicating a superposi-

tion of incoming and outcoming partial waves:

Eint1 ¼
X

∞

n¼1

X

þn

m¼−n

enmM
ð3Þ
nmðk1r1Þ þ f nmN

ð3Þ
nmðk1r1Þ

þ vnmM
ð4Þ
nmðk1r1Þ þ hnmN

ð4Þ
nmðk1r1Þ: ð4Þ

In the inclusion coordinate system, the main field can be

expanded as

Eint1 ¼
X

∞

n¼1

X

þn

m¼−n

rnmM
ð3Þ
nmðk1r2Þ þ snmN

ð3Þ
nmðk1r2Þ

þ tnmM
ð4Þ
nmðk1r2Þ þ unmN

ð4Þ
nmðk1r2Þ; ð5Þ

and the internal field inside the inclusion can be represented

as

Eint2 ¼
X

∞

n¼1

X

þn

m¼−n

pnmM
ð1Þ
nmðk2r2Þ þ qnmN

ð1Þ
nmðk2r2Þ: ð6Þ

In order to obtain the solutions to the scattering problem,

the expansion coefficients of the fields can be related by ap-

plication of the boundary conditions at the sphere surface

r1 ¼ a and at the inclusion surface r2 ¼ b. It is worth noticing

that the VSWFs in the global coordinate system in Eq. (4) and

those in the inclusion coordinate system Eq. (5) are different

and they can be related by applying translational addition

theorems of VSWFs; please refer to [19,27] for more details.

The extinction cross sections can be obtained by a similar

procedure as for a spherical particle [29], but they are given as

Cext ¼
λ2

π
Re

!

X

∞

n¼1

X

þn

m¼−n

2nþ 1

nðnþ 1Þ

nþ jmj!

n − jmj!

× ðcnma
%
nm þ dnmb

%
nmÞ

"

: ð7Þ

The normalized differential scattering cross section is given

by

σsca ¼
jEscaj2

πa2
: ð8Þ

C. Beam Shape Coefficients for an Arbitrary Shaped
Beam in an Arbitrary Orientation
In the GLMT, the electromagnetic components of the illumi-

nating beam are described by multipole expansions over a set

of basis functions. The expansion coefficients are expressed

versus fundamental coefficients, usually denoted as gmn;X [X is

transverse electric (TE) or transverse magnetic (TM), with n

from 1 to ∞, m from −n to n], known as beam shape coeffi-

cients (BSCs). These BSCs are used to express electromag-

netic fields of laser beams in expanded forms, for use in

GLMTs, or in other light scattering approaches, such as the

extended boundary condition method. Their calculations form

the key issue, and the most difficult one, when dealing with a

GLMT. Initiated by Han et al. [30,31], a systematic analysis was

made recently concerning the transformation of BSCs through

rotations of coordinate systems, and corresponding results

are published in a series of papers [22–26], providing us with
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a new tool for further studies, especially in cases of nonsphe-

rical or composite scatterers.

The relationships between the expansion coefficients

anm, bnm on one hand and the BSCs ~g
m
n;X on the other hand

read as [22]

anm ¼ −ikc
pw
n ð−1Þ

mð−1Þ
m−jmj

2

ðn −mÞ!

ðn − jmjÞ!

~gmn;TE

cmn
; ð9Þ

bnm ¼ kc
pw
n ð−1Þmð−1Þ

m−jmj
2

ðn −mÞ!

ðn − jmjÞ!

~gmn;TM

cmn
; ð10Þ

in which c
pw
n are plane-wave coefficients reading as [29]

c
pw
n ¼

1

k
ð−iÞnþ1

2nþ 1

nðnþ 1Þ
: ð11Þ

According to the transformation theorem for BSCs in sphe-

rical coordinates [22], the tilde-decorated BSCs ~gmn;X in a ro-

tated system are expressed versus the BSCs gmn;X in another

system, called the unrotated system, as

~gmn;X ¼ μnm

X

n

s¼−n

Hm
sn

μns
gsn;X ; ð12Þ

where

μnm ¼ ð−1Þ
mð−1Þ

m−jmj
2

ðn − jmjÞ!

ðn −mÞ!
; ð13Þ

Hm
sn ¼ ð−1Þ

nþs
ðn −mÞ!

ðn − sÞ!
eimγeisα

X

σ

ð−1Þσ
!

nþ s

n −m − σ

"!

n − s

σ

"

×

!

cos
β

2

"

2σþmþs
!

sin
β

2

"

2n−2σ−m−s

; ð14Þ

in which ðα; β; γÞ are Euler angles bringing the unrotated sys-

tem to the rotated system, whose definitions could be found in

[22–26].

With decades of effort devoted to the description of an ar-

bitrary shaped beam, the BSCs of an arbitrary shaped beam in

the unrotated coordinate system gmn;X can be evaluated by sev-

eral methods, sharing various degrees of time running effi-

ciency, or of flexibility, which are described in detail in a

very recent book with computation programs by Gouesbet

and Gréhan [32]. In our computer program, the modified lo-

calized approximation method [33], which was rigorously jus-

tified by Gouesbet and Lock [34,35], is applied to evaluate the

BSCs in the unrotated coordinate system due to the fact that it

provides the most efficient method, with regard to computa-

tional time, by orders of magnitude with respect to other

methods such as by using quadratures [36]. It is also the most

appealing from a physical point of view because it provides

many physical insights on the interpretation of beam

models [37].

3. NUMERICAL RESULTS AND
DISCUSSIONS

MDRs will exhibit themselves in the form of supernarrow

spikelike features in the plots of various scattering character-

istics versus size parameter, such as extinction efficiency

spectra. They can also be observed in scattered intensity spec-

tra at a specific orientation. Actually, the resonances become

in general more pronounced with increasing scattering angles

since the scattered intensity is greatly reduced in the back-

scattering direction. Nevertheless, it is worthy to mention that

some of the resonances can vanish at the scattering angle of

90° because the associated Legendre functions are equal to

zero for certain modes n [38].

In this section, simulations concerning the MDRs excited by

a focused Gaussian beam or a plane wave are made by using a

homemade code [27] within the framework of the GLMT. The

correctness of the code has already been checked in several

ways, including by comparing results with those obtained

from a widely used code published by Ngo et al. [39] and with

published research data [20,40].

Exemplifying results about extinction efficiency spectra

and normalized differential scattering cross sections in a spe-

cific direction are displayed in the following. Because of the

fact that the normalized differential scattering cross sections

calculated by using Eq. (8) are proportional to the intensity, it

is conveniently referred to as intensity in the present paper.

The case of a focused fundamental Gaussian beam (TEM00

mode) illuminating an ethanol sphere (having a real refractive

index equal to 1.36) with an eccentrically located spherical

glass inclusion (having a real refractive index equal to 1.50)

is simulated. This model can be regarded as a glass bead cov-

ered inhomogeneously with an ethanol coating illuminated by

a laser beam. The wavelength of the laser beam is assumed to

be λ ¼ 0:532 μm, and the beam waist radius is w0 ¼ 1:0 μm.

Furthermore, a plane wave can be obtained by setting w0

to be much larger than the radius of the host sphere, say,

w0 ¼ 100R. The amplitude of the beam at its focal point is

set to be unity without any loss of generality.

A. Parallel Illumination by an Off-Axis Gaussian Beam
Previous observations [41] in experiments and results in nu-

merical calculations of the light scattered by a homogeneous

sphere or a concentric sphere illuminated by a Gaussian beam

show that the excitation of MDRs depends significantly on the

focal center position and the polarization of the incident beam

[40,42,43]. As the beam is shifted farther away from the par-

ticle center, the fraction of the incident energy coupled into

the sphere at resonance first increases and then decreases

[40]. Electromagnetic energy is most efficiently coupled into

MDRs when a laser beam is focused near the edge of a par-

ticle. Results in our simulations also support these mentioned

conclusions. Thus, for exemplifying results, an off-axis Gaus-

sian beam, which is aligned at the edge of the scatterer, is ap-

plied as an excitation source to excite MDRs. The Gaussian

beam is assumed to propagate in the z-axis direction with

its electric vector polarized along the x axis at its waist center.

The focal center of the Gaussian beam is shifted along the x

axis to a constant distance a ¼ 2:93357 μm relative to the

center of the droplet, which corresponds to the radius of

an ethanol sphere when the TE41;1 (n ¼ 41, l ¼ 1) resonance

is excited.
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With plane-wave illumination, extinction efficiency and

scattered intensity at scattering angle 180° are shown in Fig. 2

for a concentric sphere as a function of size parameter. The

radius of the host sphere is denoted by R, and the radius of the

inclusion is specified as a ratio of the host sphere radius

r ¼ 0:7R. Both TE and TM resonances are visible in Fig. 2.

It is obvious that the resonances in the backscattering direc-

tion [Fig. 2(b)] are much more pronounced than those in the

extinction efficiency spectrum [Fig. 2(a)].

With Gaussian beam illumination, comparisons of extinc-

tion efficiency and of scattered intensity at scattering angle

180° as a function of size parameter are shown in Fig. 3 for

a concentric sphere and an eccentric sphere. The radius of the

inclusion is r ¼ 0:7R. The displacement of the inclusion with

respect to the host sphere center is designated as a center–

center separation distance d ¼ 0:1R for the eccentric sphere.

In Fig. 3, both the first-order (l ¼ 1) and the second-order

(l ¼ 2) resonances are clearly visible. Compared with plane-

wave illumination, only TE resonances can be seen in Fig. 3

with Gaussian beam illumination. A similar calculation shows

that only TM resonances can be seen if the Gaussian beam

shifts along the y axis instead of along the x axis. This is agree-

ment with the fact that only tangential components of the elec-

tromagnetic field can be sufficiently coupled into the

resonances. For a concentric sphere or a multilayered sphere,

the scattered field coefficients with an illumination of arbi-

trary shaped beam in the framework of the GLMT are actually

proportional to the corresponding scattered field coefficients

with a plane-wave illumination in the Lorenz–Mie theory

(LMT) [44]; thus, the MDRs found in Fig. 3 for the concentric

sphere are located at the same positions as those in Fig. 2.

As we can see from Fig. 2, especially from Fig. 2(b), the

amplitudes of the first-order resonance peaks l ¼ 1 are not

changed a lot under a plane-wave illumination in the limited

size parameter range shown in Fig. 2. Nevertheless, the ampli-

tudes of the first-order resonance peaks decrease monotoni-

cally under the focused Gaussian beam illumination, which

can be observed in Fig. 3, particularly in Fig. 3(b). This can

be explained by invoking the localization principle [37,45],

according to which the nth partial wave is associated with

a bunch of rays passing through a radial position ðnþ
1=2Þðλ=2πÞ from the scatterer center, where λ is the wave-

length. Thus, only certain resonances can be strongly excited

by a focused laser beam depending greatly on the shape pat-

tern as well as on the focal center location of the laser beam.

For the simulations in this paper, the focal center of the

Gaussian beam is shifted along the x axis with a ¼
2:93357 μm, which corresponds to the TE41;1 resonance, so

that resonances modes around n ¼ 41 are more pronounced.

It is interesting to find that the most enhanced resonances are

Fig. 2. Extinction efficiency spectrum and backward intensity spectrum for a concentric sphere. The radius of the inclusion is r ¼ 0:7R, plane-
wave illumination with incidence angle 0:0°.

Fig. 3. (Color online) Comparison of extinction efficiency spectra and of backward intensity spectra for a concentric sphere and an eccentric
sphere (d ¼ 0:1R), respectively. The radius of the inclusion is r ¼ 0:7R, Gaussian beam illumination with incidence angle 0:0°.
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for the modes a little bit smaller than n ¼ 41. This is agree-

ment with the result that the fraction of the internal energy

is most efficiently coupled to the resonances when the fo-

cused beam center is located slightly outside of the parti-

cle [40].

Compared with the concentric sphere, the second-order re-

sonances (l ¼ 2) in the eccentric sphere with a separation dis-

tance d ¼ 0:1R are greatly affected by the shift of the

inclusion. Nevertheless, the first-order resonances (l ¼ 1) are

little affected. This is reasonable because, for an inclusion

with r ¼ 0:7R, a small displacement of the inclusion d ¼
0:1R cannot affect the first-order resonances efficiently be-

cause they are closer to the rim of the particle. As has been

mentioned above, each resonance in a sphere or a concentric

sphere can be identified by its state of polarization and two

quantum numbers n, l and does not depend on mode m, such

as the label TE41;1 indicates the resonance is predominantly in

the cnm coefficients at quantum numbers n ¼ 41, l ¼ 1. Never-

theless, the resonances in an eccentric sphere cannot be la-

beled like this. This is due to the fact that each resonance

in the eccentric sphere is contributed by several n modes in-

stead of a single nmode, which was also mentioned by Rao et

al. [9]. Thus, all the resonances in an eccentric sphere are not

labeled in the figures of this paper.

Heated by the laser beam or by any possible heating meth-

od, such as by putting it close to a hot iron wall, the ethanol

coating would become thinner because of evaporation. Ac-

cordingly, in Fig. 4, the radius of the inclusion is specified

as r ¼ 0:92R to indicate a very thin film of ethanol coating.

A center–center separation distance d ¼ 0:04R is assumed.

The other parameters are exactly the same than the ones used

in Fig. 3. Compared with the case when r ¼ 0:7R with

d ¼ 0:1R, the positions of the first-order resonances shift

much more in Fig. 4 when r ¼ 0:92R, even with a smaller dis-

placement of the inclusion d ¼ 0:04R. Similar to the behavior

in Fig. 3, the second-order resonances in Fig. 4 are also much

more affected than the first-order resonances. This is because

more energy from the second-order modes overlap with the

core region. It is interesting to find that the amplitudes of the

first-order resonances decrease a lot in the eccentric sphere

with d ¼ 0:04R compared to that in the concentric sphere,

which may be due to the fact that the electromagnetic energy

at the first-order resonances is more efficiently coupled into

the inclusion in the eccentric sphere than in the concentric

sphere.

Furthermore, with Gaussian beam illumination, extinction

efficiency and backscatter intensity are plotted in Fig. 5 as a

function of size parameter for a concentric sphere of r ¼ 0:7R

and for a concentric sphere of r ¼ 0:92R. It is obvious that, as

the relative radius of the inclusion with respect to the host

sphere increases, both the first-order and second-order reso-

nances shift dramatically. And the second-order resonances

are significantly enhanced.

B. Oblique Illumination by an Off-Axis Gaussian Beam
As reported by Rao et al. [9], with a parallel illumination by a

plane wave, that is to say, when the wave travels along the z

axis in our case, which indicates the incidence angle is zero,

the degeneracy in modem is not lifted for an eccentric sphere.

This is reasonable because the symmetry of the scatterer is

not broken in the azimuthal direction with regard to the inci-

dent direction of plane wave. Indeed, we have shown in Sub-

section 3.A that the degeneracy in mode m is also not lifted

with a parallel illumination by an off-axis Gaussian beam.

In the following calculations, the incidence angle of the

Gaussian beam is assumed to be 90°, in which case the asym-

metry of an eccentric sphere reaches the largest extent for a

fixed center–center separation distance d. More specifically,

the Gaussian beam is assumed to propagate in the x-axis di-

rection with its electric vector polarized in the z axis at its

waist center. The focal center of the Gaussian beam is situated

on the z axis with a constant distance z0 ¼ 2:93357 μm.

With a plane-wave illumination, as we can see from Fig. 6,

splitting in MDRs are observed for modes having sufficiently

high Qs. More detailed information for single resonance peaks

can be obtained in the insets. It shows that the TM resonance

peaks are more easily lifted than the TE resonance peaks.

With a tightly focused Gaussian beam illumination, extinc-

tion efficiency as a function of size parameter for an eccentric

sphere of r ¼ 0:7R with different displacements of the inclu-

sion is shown in Fig. 7, and that for an eccentric sphere of r ¼
0:92R with different displacements of the inclusion is shown

in Fig. 8. In contrast with the case of a plane-wave illumina-

tion, splitting in resonance peaks are not observed in the ex-

tinction efficiency spectrum for the focused Gaussian beam

illumination. For the eccentric sphere with r ¼ 0:7R in Fig. 7,

Fig. 4. (Color online) Comparison of extinction efficiency spectra and of backward intensity spectra for a concentric sphere and an eccentric
sphere (d ¼ 0:04R), respectively. The radius of the inclusion is r ¼ 0:92R, Gaussian beam illumination with incidence angle 0:0°.
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the effects on the second-order resonances due to the ec-

centric shift of inclusion are very significant, while there is

much less influence on its first-order resonances. For the ec-

centric sphere with r ¼ 0:92R in Fig. 8, all the amplitudes of

first-order and second-order resonances are enhanced step by

step as the inclusion approaches the symmetric axis of the

Gaussian beam from d ¼ −0:04R to d ¼ 0:0 and then to

d ¼ þ0:04R. It is interesting to find that the first-order reso-

nances are greatly suppressed for d ¼ −0:04R while the

first-order resonances are greatly enhanced for d ¼ þ0:04R.
Furthermore, as for spheres or concentrically multilayered

spheres [44], the scattered field coefficients for eccentric

spheres with an illumination of arbitrary shaped beam in

the framework of the GLMT are also proportional to the

corresponding scattered field coefficients with a plane-

wave illumination; thus, the MDRs found in Fig. 6 for the

eccentric sphere are located at the same positions as those

in Fig. 8.

C. Internal Field Distribution
In contrast with the behaviors of MDRs with a plane-wave il-

lumination, splittings in the resonance peaks are not observed

in the extinction efficiency spectrum with a tightly focused

Gaussian beam illumination. To provide additional informa-

tion with regard to the pattern of the MDRs, plots of internal

field distributions for some resonances are presented.

Even though the magnitude and the phase for each partial

wave component of the electromagnetic field can be deter-

mined from the GLMT formalism, a useful visualization of

the field distribution can be obtained by plotting the normal-

ized source function as a function of spatial position. The nor-

malized source function is defined as

S ¼ jEj2=jE0j
2; ð15Þ

where E is the electric vector of the internal or external field

and E0 is the electric field strength of the incident field, which

is assumed to be unity. To emphasize the internal distribution,

the external field intensities are suppressed to zero in the

Fig. 5. (Color online) Comparison of extinction efficiency spectra and of backward intensity spectra for concentric spheres of r ¼ 0:7R and of
r ¼ 0:92R, respectively. Gaussian beam illumination with incidence angle 0:0°.

Fig. 6. (Color online) Comparison of extinction efficiency spectra for a concentric sphere and eccentric spheres (d ¼ 0:04R, d ¼ −0:04R). The
radius of the inclusion is r ¼ 0:92R, plane-wave illumination with incidence angle 90:0°.
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subsequent figures, and the spatial coordinates are normal-

ized by the host sphere radius.

Calculations of internal field distribution for an off-reso-

nance case, a complete resonance case in a concentric sphere,

and a broken-resonance case in an eccentric sphere are

shown in Figs. 9(a)–9(c), respectively, for a plane-wave illu-

mination and in Figs. 9(d)–9(f), respectively, for a tightly

focused Gaussian beam illumination. Parameters used in

Figs. 9(a)–9(c) are the same as the ones used in Fig. 6, and

parameters used in Figs. 9(d)–9(f) are the same as the ones

used in Fig. 8.

For a plane-wave illumination, a picture of an off-resonance

case at size parameter x ¼ 32:19 for the eccentric sphere is

plotted in the transverse x–z plane in Fig. 9(a). Figure 9(b)

is the TE40;1 resonance occurring in the concentric sphere

at size parameter x ¼ 32:1946. The largest enhancements

are near the forward- and backward-scattering directions. De-

tailed study of the resonance reveals that the TEn;1 mode re-

sonance has n peaks in each side of the x–z plane with the z

axis as a symmetric axis. Nevertheless, this symmetry is bro-

ken if the inclusion is shifted eccentrically to the rim of the

host sphere. Figure 9(c) shows the internal field distribution

of a broken resonance at size parameter x ¼ 32:2054. The lar-

gest enhancements are found to be shifted away from the

forward- and backward-scattering directions. The intensity

peaks around the rim of the sphere become blurred because

several m modes contribute to the resonance.

For a tightly focused Gaussian beam illumination, Fig. 9(d)

is a plot of internal field distribution for an eccentric sphere

with d¼−0:04R at off-resonance with size parameter

x¼32:19. Figure 9(e) shows the TE40;1 resonance occurring

in an concentric sphere with size parameter x ¼ 32:1946. A

Fig. 7. (Color online) Comparison of extinction efficiency spectra for eccentric spheres of r ¼ 0:7R with different center–center separation dis-
tances illuminated by a Gaussian beam.

Fig. 8. (Color online) Comparison of extinction efficiency spectra for eccentric spheres of r ¼ 0:92R with different center–center separation
distances illuminated by a Gaussian beam.
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broken-resonance case occurring in an eccentric sphere with

size parameter x ¼ 32:2054 is presented in Fig. 9(f). For the

on-resonance cases in Figs. 9(e) and 9(f), enhancements in

the internal intensity are excited near the edge of the host

sphere. Different from the pattern of separated peaks ob-

served for the plane-wave illumination in Figs. 9(b) and 9(c),

a solid ring formation is displayed for the Gaussian beam il-

lumination. For a concentric sphere, a symmetric formation of

the resonance is obtained with greatest field intensities near

the forward- and backward-scattering directions. For an

eccentric sphere, although the degeneracy of the mode m

is not observed in the extinction efficiency spectra, the sym-

metric formation of the internal field distribution at resonance

conditions becomes asymmetric with largest field intensity

locations shifted away from the forward- and backward-

scattering directions.

4. CONCLUSIONS AND DISCUSSION

Following the recent results in the GLMT concerning the

description of an arbitrary shaped beam in an arbitrary

orientation [22–27], the properties of MDRs excited in an

Fig. 9. (Color online) Distributions of internal field for an eccentric sphere illuminated by (a), (b), (c) plane wave and (d), (e), (f) Gaussian beam.
(a), (d) off-resonance case with d ¼ −0:04R; (b), (e) complete resonance case with d ¼ 0:0R, and (c), (f) broken-resonance case with d ¼ 0:04R.
The radius of the inclusion is r ¼ 0:92R. The incident wave propagates along the x axis from negative to positive.
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ethanol sphere (having a real refractive index equal to 1.36)

with an eccentrically located spherical glass inclusion (having

a real refractive index equal to 1.50) illuminated by a tightly

focused Gaussian beam is studied. Corresponding calcula-

tions for plane-wave illumination are also made for the sake

of comparison.

As for spheres and concentrically multilayered spheres,

since the scattered field coefficients with an illumination by

arbitrary shaped beam in the framework of the GLMT are pro-

portional to the corresponding scattered field coefficients

with a plane-wave illumination in the LMT, the resonance po-

sitions of MDRs in eccentrically layered spheres are equal for

laser beam illumination and for plane-wave illumination. With

an illumination of a tightly focused Gaussian beam, the posi-

tions and the amplitudes of the MDRs peaks excited in an ec-

centric sphere depend greatly on the relative size of the

inclusion with respect to the host sphere and on the separa-

tion distance between the two sphere centers. The amplitudes

of the MDR peaks are also found to be very sensitive to the

relative location and the polarization status of the laser beam.

In the simulation of a glass bead covered inhomogeneously

with a very thin film of ethanol coating (r ¼ 0:92R) illumi-

nated by a Gaussian beam focused at the edge of the particle

(x ¼ 2:93357 μm), all the first-order (l ¼ 1) and second-order

(l ¼ 2) resonances are found to be enhanced step by step as

the inclusion approaches the symmetric axis of the Gaussian

beam from d ¼ −0:04R to d ¼ 0:0 and then to d ¼ þ0:04R. It is
interesting to find that the first-order resonances are sup-

pressed for d ¼ −0:04R while the first-order resonances are
greatly enhanced for d ¼ þ0:04R under the tightly focused
Gaussian beam illumination. Nevertheless, the extinction effi-

ciency spectra for d ¼ −0:04R and those for d ¼ þ0:04R are
identical under the plane-wave illumination.

Different from the MDRs with a plane-wave illumination,

only certain resonances are strongly excited by a focused la-

ser beam depending greatly on the shape pattern as well as on

the location of the focal center of the laser beam. This is easy

to understand from the point of view of the localization prin-

ciple. Indeed, the nth partial wave is associated with a bunch

of rays passing through a radial position ðnþ 1=2Þðλ=2πÞ from
the scatterer center. Thus, for an off-axis illumination by a

tightly focused Gaussian beam, only those modes with radial

position at or close to the focal center of the Gaussian beam

are strongly excited.

With a tightly focused Gaussian beam illumination, splitting

of the resonance peaks in the extinction efficiency spectrum is

not observed for an eccentric sphere. Looking closely at the

absolute value of the BSCs jgmn j calculated by using the loca-
lization approximation method [46], it is observed that it de-

creases quickly as jmj increases, and jgmn j even vanish except
for jmj ¼ 1 when the scatterer center is located on the beam

axis. Thus the high-order m terms are expected to contribute

little to scattering phenomena, and the lift of degeneracy in

modem cannot be observed. Furthermore, instead of exciting

only a single angular mode m, several angular modes are ex-

cited in the case of an illumination by an off-axis Gaussian

beam. Thus, in contrast with the pattern of separated peaks

observed in the internal field distribution at resonance condi-

tion for a plane-wave illumination, a solid ring formation is

displayed for the Gaussian beam illumination. In contrast with

the symmetric formation of the internal field distribution at

resonance condition for a concentric sphere, asymmetric for-

mation with largest field intensity positions shifted away from

the forward- and backward-scattering directions to sideways

is observed for an eccentric sphere. It indicates that the de-

generacy of m modes is lifted for an eccentric sphere with

a tightly focused Gaussian beam, although splitting of the re-

sonance peaks cannot be observed in the extinction efficiency

spectra.
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Abstract The measurement of droplet temperature and

size distribution in sprays is a difficult task. To reach this

aim, the global rainbow technique (GRT) has been devel-

oped on the assumption that the synthetic rainbow created

by a large number of droplets is insensitive to the non-

sphericity of droplets if the droplets’ orientations were

sufficiently random. In order to test this assumption,

numerical as well as experimental analyses of GRT are

carried out by our team. As a companion to the work done

in experiments, the objective of this work is to quantify the

sensitivity of the GRT to the non-sphericity of droplets

from a numerical aspect. Light scattering properties around

the rainbow angle are investigated by using the Null-field

method within a T-matrix formulation, both for a single

spheroid in an arbitrary orientation and for an ensemble of

spheroids in random orientations illuminated by a plane

wave. Refractive index and size distribution of droplets are

extracted from simulated global rainbow signals so as to

quantify the sensitivity of the GRT to the non-sphericity.

Exemplifying results are compiled and presented. Addi-

tionally, comparisons between the Null-field method and

the generalized Lorenz-Mie theory for spheroids are also

provided in this paper.

1 Introduction

Rainbow refractometry has been investigated for over

20 years since the standard rainbow refractometry was

presented the first time by Roth et al. (1988, 1990). Both

the temperature and the size of droplets can be measured

simultaneously. Just as each technique possesses its own

advantages and limitations, the measurement accuracy of

the rainbow refractometry is also affected by many

factors. The most important ones are the refractive index

gradients inside the droplets (Saengkaew et al. 2007), the

ripple structure on the main rainbow pattern and the non-

sphericity of the droplets (Han et al. 2002). The influ-

ence of the non-sphericity, which can distort the rainbow

pattern, is least understood. During recent years, based

on the assumption that the scattering contribution of an

ensemble of randomly oriented non-spherical particles to

the synthetic rainbow pattern results in a general uniform

background, the global rainbow technique (GRT) was

developed by van Beeck et al. (1999), which primarily

aimed at eliminating the side effects brought in by

droplets non-sphericity. This promising technique has

already been successively applied to the analysis of

water sprays created by flat fan (van Beeck et al. 2001)

and measurement of mean temperature of the falling

droplets in a large containment vessel (Lemaitre et al.

2006).

In order to optimize the GRT, the assumption that the

synthetic rainbow is insensitive to the shape of droplets is

tested by our research team recently, both from a numerical

aspect and an experimental aspect. As a companion to the

work done in experiments (Saengkaew et al. 2009), the

objective of this work is to quantify the sensitivity of the

GRT to the non-sphericity of droplets from a numerical

aspect.
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Among those factors that affect the measurement

accuracy of rainbow refractometry, the influence of the

temperature gradient and ripple structure can be relatively

easily quantified by numerical simulations, while the effect

of the non-sphericity on the rainbow pattern is more dif-

ficult to predict. The influence of the non-sphericity on a

single particle was firstly predicted by Möebius (1910).

The validity of the Möebius formula has been examined by

van Beeck (1997) by using a mixed approach (geometrical

optics/Huygens–Fresnel integral) and by Han et al. (2002)

in the rigorous framework of generalized Lorenz-Mie

theory (GLMT). Xu et al. (2010) also addressed the

influence of non-sphericity on rainbow position through

separating the p = 2 order of scattering by extending the

Debye series to spheroidal particles and compared their

results with the predictions from Möebius. Similar results

were obtained and all of them demonstrated that both the

position and the shape of the rainbow pattern for a single

particle are very sensitive to the non-sphericity. Due to the

spheroid’s instinct lower body symmetry compared with a

sphere, the location as well as the shape of the rainbow

created by a spheroid changes a lot with respect to illu-

mination direction of the incident wave. To our knowledge,

in the frame of a rigorous theory, only the shift of rainbow

angle as a function of ellipticity was analysed, and a study

of rainbow pattern for a single particle in an arbitrary

orientation becomes necessary, especially in the analysis of

the GRT. Relying on previous works (Barton 1995, 2001;

Xu et al. 2007; Han et al. 2003; Han et al. 2009) on

developing the GLMT for non-spherical particles, the

GLMT provides us with the capability to predict the scat-

tering behaviours for a non-spherical particle with respect

to illumination direction of the incident wave. Neverthe-

less, to our knowledge, the existing programmes within the

framework of GLMT for light scattering from a spheroid in

an arbitrary orientation still have a limitation in the domain

of size parameter at the moment (Xu et al. 2007; Han et al.

2009). More precisely, the programmes are valid for

spheroids with size parameter less than 100. On the other

hand, this limit has been overcome by using the Null-field

method within a T-matrix formulation to deal with particles

with size parameter well exceeding 100 (Wielaard et al.

1997). Some comparisons between the results obtained

from the Null-field method and those from the GLMT are

presented in this paper. It is worth noticing that, for better

terminologies and escaping from a misunderstanding

between a method and a formulation, we prefer to use the

Null-field within a T-matrix formulation terminology

instead of T-matrix method (Gouesbet 2010) in this paper.

In the case of an ensemble of non-spherical particles,

light scattering properties of randomly oriented, identi-

cal spheroids were studied by Asano and Sato (1980)

by extending the Lorenz-Mie theory from spheres to

spheroids. Mishchenko and Travis (1994a) later analysed

light scattering from polydisperse, randomly oriented par-

ticles of size comparable to wavelength. In order to study

the influence of non-sphericity on the rainbow refractom-

etry technique, light scattering properties near the rainbow

angle of relatively large size particles should be further

considered. This paper is focused on discussing the light

scattering properties of an ensemble of poly-ellipticities,

randomly oriented large particles around the rainbow

angle.

Since its presentation by Waterman (1971), the Null-

field method has been greatly improved and become a

powerful tool for computing light scattering by non-

spherical particles. It is well known that the inversion

procedure of the transition matrix in the Null-field method

becomes ill-conditioned easily for particles with large size

parameter and/or big ellipticity. Due to the previous efforts

of researchers (Mishchenko and Travis 1994b; Wielaard

et al. 1997), this limitation has been greatly overcome,

which provides us another way to predict the rainbow

pattern behaviours and to explore its implication in the

GRT measurements. It is worth to mention that, compared

with the GLMT, the Null-field method is less efficient in

computation time due to the requirement of calculations of

integral elements in its T matrix. Nevertheless, by

expanding the elements of the scattering matrices in terms

of generalized spherical functions analytically (Mish-

chenko et al. 1999), the cost of computational time by

using the Null-field method for an ensemble of particles is

greatly reduced and is acceptable. A detailed discussion of

Null-field method can be found in the books (Mishchenko

et al. 1999; Doicu et al. 2006) and references within and

will not be stated here.

This paper is organized as follows. The light scattering

properties around the rainbow angle for a single spheroid in

an arbitrary orientation are investigated in Sect. 2. In Sect.

3, the light scattering properties for an ensemble of

spheroids in random orientations are analysed. The inver-

sion of rainbows signals by using GRT is presented in Sect.

4; corresponding results and deviations are compiled and

given. Section 5 contains conclusions and discussions.

2 Scattering by a single spheroid in an arbitrary

orientation

To describe the scattering of a non-spherical particle in an

arbitrary orientation illuminated by an electromagnetic

plane wave, two sets of coordinates are introduced, which

are referred to the laboratory frame L{x0y0z0} and the par-

ticle frame P{xyz}, respectively. The orientation of the

particle with respect to the laboratory frame is specified by

three Euler angles of rotation, a, b and c, which transform
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the laboratory frame into the particle reference frame,

corresponding geometric illustration is shown in Fig. 1

with more detailed information available from books

published (Mishchenko et al. 1999; Doicu et al. 2006).

Furthermore, to characterize the non-sphericity of the

spheroids, the ellipticity is defined as the ratio of a spher-

oid’s horizontal length ‘‘a’’ to its vertical length ‘‘b’’, with

vertical length ‘‘b’’ as its axis of rotation, similar defini-

tions were used by Han et al. (2002). The ellipticity of the

spheroid is given by e = a/b, with e\ 1.0 for a prolate

spheroid and e[ 1.0 for an oblate spheroid. Throughout

this paper, the plane wave is assumed to travel along the z0

axis of the laboratory reference frame, and the scattering

particles under study are assumed to be water droplets with

refractive index equals to 1.330. Moreover, in the com-

putations of this section, the surface-equivalent size

parameter of the scattering droplets equals to 150 (corre-

sponding to a diameter equals to about 30 lm for an

incident visible wavelength: 0.6283 lm).

First, to validate the code based on the Null-field

method, the results calculated by Null-field method for a

spheroid with ellipticity equals to 1.0001 are compared

with those calculated by Lorenz-Mie theory for a perfect

spherical particle. The comparisons of normalized inten-

sities are shown in Fig. 2. The results from the two

methods agree with each other very well for the full scat-

tering diagram as well as for the rainbow region.

Relying on previous works on developing the GLMT for

spheroids (Xu et al. 2007; Han et al. 2003; Han et al. 2009),

the GLMT also provides us the capability to predict the

scattering behaviour for spheroids. Thus, the code based on

the Null-field method is validated by comparing the scat-

tering results calculated by Null-field method with those

calculated by GLMT for spheroids. The scatterer is a

prolate spheroid with ellipticity equals to 0.97, whose

orientation is specified by Euler angles a, b, c equal to 0°.

Comparisons of normalized intensities are illustrated in

Fig. 3. Figure 3a shows that the results from the two

methods coincide with each other in the general picture

except a small deviation occurs around the scattering angle

90°. This deviation is caused by a numerical instability,

which happens around the scattering angle 90° when we

evaluating scattering intensities by GLMT for spheroids

with a large particle-size parameter and/or a big ellipticity.

This numerical instability has been explained in an earlier

paper (Han et al. 2003), and the improvement is under

analysis. Nonetheless, we must underline that the insta-

bility is not significant around the rainbow angle, a situa-

tion that is favourable for rainbow measurements.

Figure 3b displays the comparison of the normalized

scattered intensities around the rainbow angle calculated by

Null-field method and by GLMT. The results from the two

methods match each other very well, indicating that both of

them are suitable for the rainbow prediction.
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Fig. 1 Rotation of Euler angles (a, b, c) transforming the laboratory

coordinate system L {Ox0y0z0} to the particle coordinate system P

{Oxyz}
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Fig. 2 Comparisons of scattered field intensity diagram calculated by

the Null-field method for a spheroid with a/b = 1.0001 and by the

Lorenz-Mie theory for a perfect sphere with size parameter 150.

a Full scattering diagram, b Details around the rainbow angle
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On the basis of the validation works above, the Null-

field method is applied to check the sensitivity of the

rainbow pattern created by an individual particle to its

ellipticity. The scattering behaviours of a single spheroid in

a fixed orientation with different ellipticities are studied.

The Euler angles a, b, c are equal to 0°, and the particle

ellipticity is the parameter. Exemplifying results of nor-

malized intensities are compiled in Fig. 4. A shift of the

main peak can be observed with the increase of the ellip-

ticity. The simulation results reveal a general conclusion

that both the rainbow position and the shape created by a

single non-spherical particle are very sensitive to its

ellipticity. Furthermore, the rainbow angle of the primary

order rainbow can be obtained by filtering the Fourier

transformed intensity diagram, which is calculated by

either the GLMT or the Null-field method (Han et al.

2002), corresponding deviations in the filtered intensity for

the primary order rainbow can be evaluated by using the

Debye series through separating the p = 2 order of scat-

tering (Xu et al. 2010).

The behaviour of the rainbow pattern with regard to the

change of the particle orientations is investigated in the

following. Rainbows created by non-spherical droplets

with ellipticity equals to 1.03 and various orientations are

discussed. Angular distribution of scattered intensity

around the rainbow angle has been computed by Null-field

method for a spheroid with Euler angles a, c equal to 0°

and b increasing from 0° to 90° with a step of 10°. Figure 5

compiles some exemplifying results. As the angle b

increases from 0° to 90°, the primary rainbow position of
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Fig. 3 Comparisons of scattered field intensity diagram calculated by

the Null-field method and by the GLMT for a spheroid with ellipticity

equals to 0.97 and surface-equivalent size parameter 150. The solid

curve is obtained by the Null-field method, and the dashed line is

obtained by GLMT. The semi-length b is perpendicular to the

incident plane wave. a General picture and a zoom for details near 90°

b Details around the rainbow angle
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Fig. 5 Normalized scattered field intensity diagram around the

rainbow angle for a spheroid with Euler angles a = 0.0°, c = 0.0°

and different b. The result for a sphere with a same surface-equivalent
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the spheroid shifts slowly from the left side to the right side

of the primary rainbow position of its surface-equivalent

sphere.

In this section, the code based on the Null-field method

is validated by LMT and GLMT. The light scattering

properties around the rainbow angle for a spheroid in an

arbitrary orientation have been studied by using the Null-

field method. Simulation results confirm that a small

departure away from perfect sphere can influence both the

rainbow location and shape greatly. For particles of the

same shape, different orientations also induce large shifts

in the rainbow location and big variations in the rainbow

shape, which makes it very difficult to find a relationship

between the rainbow pattern and the refractive index for an

arbitrary oriented non-spherical particle. Nonetheless, the

synthetic rainbow obtained by GRT is claimed to be

insensitive to the influence of non-sphericity. This claim is

analysed and quantified in the next section.

3 Scattering by a group of spheroids in random

orientations

On the basis of the results presented in the last section, the

rainbow pattern of an individual particle is very sensitive to

the non-sphericity, which makes the analysis of the rain-

bow pattern extremely difficult. To overcome these diffi-

culties, the GRT was developed by van Beeck et al. (1999,

2001). The key point is to extend the investigation from a

simple particle to a group of particles. Then, the rainbows

created by each droplet in a cloud are added together

leading to a stable and clear synthetic rainbow pattern,

which can be used to extract a size distribution and a mean

refractive index (temperature) of the droplets. The GRT

was developed on the assumption that a stable synthetic

rainbow can be obtained due to two different intensity

summation processes, namely an accumulative summation

from rainbows created by spherical droplets, as the rainbow

positions are identical for all of them, and a dispersive

summation from the rainbows created by randomly ori-

ented non-spherical particles, whose rainbow positions are

randomly located then yielding a uniform background, so

in this way, the rainbow pattern created by spherical par-

ticles is selected out automatically. However, if the

assumption of a uniform background is not verified, how

does the non-sphericity of droplets affect the results? To

test the assumption, the light scattering properties of a

group of randomly oriented spheroids are investigated in

this section.

As we mentioned, the exiting programmes within the

framework of GLMT for light scattering of a spheroid in an

arbitrary orientation still have a limitation in the domain of

size parameter at the moment (Xu et al. 2007; Han et al.

2009). Nevertheless, this limit has been overcome by using

the Null-field method to deal with particles with size

parameter well exceeding 100. Thus, the Null-field method

is applied in this section for the numerical simulation for an

ensemble of spheroids. The basic particle parameters used

in the simulations of this section are as follows: the ellip-

ticities are distributed in the range [0.9 1.1], the surface-

equivalent size parameter is equal to 100 (corresponding to

a diameter equals to about 20 lm for an incident visible

wavelength 0.628 lm), and the refractive index equals to

1.330.

3.1 A group of identical spheroids

A group of identical spheroids (spheroids with the same

shape) are studied in this subsection. In Fig. 6, angular

distribution of scattered intensity around the rainbow angle

is displayed for randomly oriented spheroids as a function
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Fig. 6 Normalized scattered intensities around the rainbow angle for

randomly oriented spheroids with different ellipticities. a Randomly

oriented oblate spheroids. b Randomly oriented prolate spheroids
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of ellipticity. It shows that, for both oblate (Fig. 6a) and

prolate (Fig. 6b) spheroids, a clear and stable synthetic

rainbow pattern can be obtained. The angular position of

the primary rainbow maximum shifts to smaller angle, as

their ellipticities depart away from 1.00. Meanwhile, the

half width of the maximum peak of the primary rainbow

is broadened. The valley between the first peak and the

second peak of the primary rainbow is filled little by

little. Furthermore, when the ellipticity departs away

further from 1.00, the orientation average effect could

eliminate the ripple structure on the primary rainbow.

Finally, as is shown in Fig. 7, the average effect due to

the random orientations removes the ripple structure for

prolate spheroids more efficiently than it does for oblate

spheroids.

3.2 A group of spheroids with various ellipticities

In this subsection, a group of water droplets, whose ellip-

ticity distribution satisfies the Gauss normal distribution in

the range [0.9 1.1], are taken into consideration.

Figure 8 shows the angular distribution of scattered

intensity around the rainbow angle for a group of randomly

oriented spheroids whose ellipticity distribution satisfies

the Gauss normal distribution. In Fig. 8a, the mean value of

their ellipticities is 1.00, and the dispersions are 0.00, 0.01

and 0.02, respectively. In Fig. 8b, the parameters are the

same with that in Fig. 8a except that the mean value of

their ellipticities is 0.97. The figures tell us that as the

dispersion of the ellipticity distribution increases, the

angular position of the maximum of the primary rainbow

seems to keep steady, the half width of the first peak

expands a little, the valley between the first peak and the

second peak is filled slowly. Furthermore, a comparison

between Fig. 8a, b reveals that the rainbow pattern created

by droplets with larger shape deviation (deviation from

sphere) is less sensitive to the dispersion of the ellipticity

distribution.

4 Practical implications in GRT

It is shown in Sect. 3 that the global rainbow pattern is

sensitive to the shape of the scattered particles. In this

section, the global rainbow signals obtained from the

simulations are used to evaluate the size distribution and

temperature of the droplets; the sensitivity of the mea-

surements to the non-sphericity is quantified.

Based on the assumption that a stable synthetic rainbow

is created by spherical droplets, several powerful inversion
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Fig. 8 Normalized scattered field intensity diagram around the

rainbow angle for randomly oriented spheroids whose ellipticities

satisfy Gauss normal distribution with different dispersions and mean

values. aMean value 1.00 with various dispersions bMean value 0.97

with various dispersions
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schemes were developed in the recent years (Vetrano et al.

2004; Saengkaew 2006) in order to deduce the particle

parameters (size distribution and refractive index) from the

global rainbow signals. In the following, an algorithm

(Saengkaew 2006), which is based on the non-negative

least square method combined with a minimization proce-

dure, is applied to predict the diameter and temperature by

fitting the simulated global rainbow signals obtained from

the Null-field method for a group of spheroids (samples are

presented in the last section) to the simulated results

obtained by using Nussenzveig’s theory for a group of

spheres.

4.1 A group of identical spheroids

Typical inversion results extracted from global rainbow

signals created by a group of identical water droplets are

shown in Fig. 9 and Table 1. The surface-equivalent size

parameter of these spheroids is 100 (corresponding to a

diameter equals to about 20 lm for an incident visible

wavelength 0.628 lm). The remarkable phenomenon to

notice from Fig. 9 is that more and more ‘‘spurious small

particles’’ are extracted from the simulated signals, as the

shape of the particles departs away from perfect spheres,

both when the ellipticity becomes larger and less than 1.0.

Fig. 9 Typical extracted size

distribution for water droplets

with a surface-equivalent

diameter 20 lm. Ellipticity

is the parameter
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These predictions are confirmed by the facts we observed

in the experiments which we carried out very recently

(Saengkaew et al. 2009). Furthermore, the ‘‘spurious small

particles’’ even begin to dominate the proportion of the

extracted size distribution when the ellipticity of the par-

ticles exceeds 1.03 or less than 0.97. Nevertheless, as is

shown in Table 1, the influence to the refractive index is

less significant. But it is worth to remark that the deviation

between the extracted refractive index and the simulation

parameter increases as the droplet non-sphericity increases.

It is not a surprise to notice that the extracted results for

oblate spheroids and for prolate spheroids of the same non-

sphericity are similar. Compared to the obvious different

behaviour of prolate and oblate spheroid in the analysis of

single particle (Fig. 4), there is no more big difference

between them when a group of randomly oriented particles

are taken into consideration. This agrees with the results

found by Asano and Sato (1980) when they analysed par-

ticles with smaller size parameter.

4.2 A group of spheroids with various ellipticities

Typical inversion results extracted from global rainbow

signals created by a group of water droplets with different

mean ellipticities and dispersions (r) are shown in this

subsection. The parameters in Fig. 10 and Table 2 are

related to a group of droplets whose ellipticity distribution

satisfies the Gauss normal distribution. The mean value is

1.00, and the dispersion is the parameter. When the dis-

persion is small, the size distribution as well as the

refractive index (temperature) is nearly accurate. As the

dispersion of the ellipticity distribution increases, the

deduced refractive indices move a little to smaller values

(Table 2), and the dispersion of the extracted size distri-

bution increases (Fig. 10).

Table 3 are refractive indices extracted from simulated

signals created by spheroids with dispersion equals to 0.01

Table 1 Extracted refractive indices from simulated signals created

by identical spheroids in random orientations with ellipticity as the

parameter

Ellipticity 1.01 1.02 1.03 1.04 1.05

Refractive index 1.3287 1.3278 1.3241 1.3198 1.3135

Ellipticity 0.99 0.98 0.97 0.96 0.95

Refractive index 1.3272 1.3291 1.3245 1.3191 1.3136

Fig. 10 Typical exacted size

distributions for water droplets

with a surface-equivalent

diameter 20 lm. The

dispersions (r) of the ellipticity

distribution is the parameter,

while the mean value is a fixed

value 1.00
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and different mean values. Table 4 exhibits refractive

indices extracted from simulated signals created by

spheroids with different mean ellipticities and various

dispersions (r).

Up to this point, only the refractive index has been

discussed. However, the temperature of droplets is what we

want to determine in the experiments. As we mentioned

above, the temperature can be obtained directly according

to the relationship between temperature and refractive

index for a particular liquid.

For the water droplets used here, in Fig. 11, a compar-

ison between the data from Table 3 and those from Table 1

is shown, along with their corresponding temperatures

calculated according to the formulations given by Harvey

et al. (1998). It is found that if the spheroids’ ellipticity is

out of the range [0.97 1.03], the extracted refractive indices

are so small that unreasonable temperatures are extracted,

which could be regarded as an indicator for experiments.

Once an unreasonable temperature is extracted, it tells us

that the shape of the particle departs too far away from

sphere. The figure also tells us that the deduced refractive

indices turn out to be smaller for particles with a larger

dispersion of the ellipticity distribution. This conclusion is

also supported by the data from Table 4.

5 Discussion and conclusion

In the framework of the Null-field method within a T-matrix

formulation, the light scattering properties around the rain-

bow angle are investigated for one spheroid in an arbitrary

orientation and for an ensemble of spheroids in random

orientations illuminated by a plane wave. Based on the

assumption that a stable synthetic rainbow is created by

spherical droplets, an algorithm (Saengkaew 2006), which is

based on the non-negative least square method, is applied to

predict the diameter and temperature by fitting the simulated

global rainbow signals obtained from the Null-field method

for a group of spheroids to the simulated results obtained by

using Nussenzveig’s theory for a group of spheres.

For an individual non-spherical droplet, the Null-field

method provides us with the capability to simulate rain-

bows accurately, as confirmed by comparing with the

results obtained from the rigorous generalized Lorenz-Mie

theory. Simulations show that the rainbow pattern is very

sensitive to the particle non-sphericity. This is due to the

fact that both the position and shape of the rainbow pattern

depend not only on the shape of the particle, but also on its

specific orientation, which makes the analysis of the rain-

bow pattern created by a single non-spherical particle

extremely difficult.

In the case of an ensemble of non-spherical droplets in

random orientations, a stable and clear global rainbow

pattern can always be detected. The global rainbow tech-

nique signals generated by a group of droplets do not

apparently suffer from the typical problems we encounter

in the Standard Rainbow Technique, such as the sensitivity

to the ripple structure or the large angle shift due to

the non-sphericity of particles. However, it does not

mean that the non-sphericity does not influence the

prediction accuracy of size distribution and temperature in

the measurement.

Table 2 Extracted refractive indices from simulated signals created

by spheroids with different dispersions of the ellipticity distribution,

whose mean value is a fixed value 1.00

Dispersion 0.01 0.015 0.02 0.025 0.030

Refractive index 1.3288 1.3273 1.3261 1.3248 1.3232

Table 3 Extracted refractive indices from simulated signals created

by spheroids with different mean values of the ellipticity distribution,

whose dispersion is equal to 0.01

Ellipticity 1.01 1.02 1.03 1.04 1.05

Refractive index 1.3276 1.3255 1.3233 1.3202 1.3135

Ellipticity 0.99 0.98 0.97 0.96 0.95

Refractive index 1.3283 1.3255 1.3223 1.3181 1.3121

Table 4 Extracted refractive indices from simulated signals created

by spheroids with different mean ellipticities and various dispersions

(r)

Mean

ellipticity = 1.03

Mean

ellipticity = 1.0001

Mean

ellipticity = 0.97

r = 0.001 1.3241 1.3294 1.3245

r = 0.01 1.3233 1.3288 1.3223

r = 0.02 1.3205 1.3261 1.3205
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Fig. 11 Comparison of the data from Table 3 and those from Table 1

as a function of ellipticity, temperatures in degree Celsius (°)

correspond to the refractive indices are plotted in the right side
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When the rainbow signals created numerically are pro-

cessed by an inversion procedure, we can see that as the

mean value of the ellipticity distribution increases, larger

dispersion in the extracted size distribution and more

‘‘spurious small particles’’ are produced. At the same time,

the refractive indices extracted from the simulated signals

turn out to be smaller, although it is not significantly

influenced. As the dispersion of the ellipticity distribution

increases, larger dispersion in the extracted size distribu-

tion and relatively smaller refractive indices are found,

more ‘‘spurious small particles’’ are also extracted from

the simulated signals. These quantified results confirm

the experimental observations we previously obtained

(Saengkaew et al. 2009).

The physical origin of the small spurious particles

extracted by the inversion procedure can be explained. This

is due to the fact that the increases of the dispersion and of

the mean value of the ellipticity distribution lead to the

broadening of the first peak of the primary rainbow and

some reduction to its slope. Provided that the rainbow

pattern is constructed fully by perfect spherical particles,

these phenomena are interpreted to be brought in by a

group of smaller water droplets. Consequently, ‘‘smaller

spurious particles’’ are produced in the inversion procedure

instead of larger spheroids. Meanwhile, the extracted

refractive index turns out to be a little smaller than the

original parameter. It implies that the presence of the spu-

rious particles can be viewed as an indicator of the

refractive index quality. When there is not any spurious

particles are extracted, the refractive index measurements

can be qualified of nearly exact. Consequently, if spurious

particles are extracted, it tells us that the measured tem-

perature is overestimated. Another interesting phenomenon

in the simulation is that when the ellipticity of the particle

exceeds some kind of range, the extracted refractive indi-

ces become so small that unreasonable temperatures are

extracted, which could also be regarded as an indicator for

experiments. Once an unreasonable temperature is extrac-

ted, it tells us that the shape of the particle departs too far

away from sphere.
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Scattering of light by spheroids: the far field case. Opt Commun

210:1–9
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(2007) Rainbow refractrometry on particles with radial refractive

index gradients. Exp Fluids 43:595–601

Saengkaew S, Godard G, Blaisot JB, Gréhan G (2009) Experimental
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Based on the recent results in the generalized Lorenz–Mie theory, solutions for scattering problems of a sphere
with an eccentrically located spherical inclusion illuminated by an arbitrary shaped electromagnetic beam in an
arbitrary orientation are obtained. Particular attention is paid to the description and application of an arbitrary
shaped beam in an arbitrary orientation to the scattering problem under study. The theoretical formalism is
implemented in a homemade computer program written in FORTRAN. Numerical results concerning spatial dis-
tributions of both internal and external fields are displayed in different formats in order to properly display ex-
emplifying results. More specifically, as an example, we consider the case of a focused fundamental Gaussian
beam (TEM00 mode) illuminating a glass sphere (having a real refractive index equal to 1.50) with an eccentrically
located spherical water inclusion (having a real refractive index equal to 1.33). Displayed results are for various
parameters of the incident electromagnetic beam (incident orientation, beam waist radius, location of the beam
waist center) and of the scatterer system (location of the inclusion inside the host sphere and relative diameter of
the inclusion to the host sphere). © 2010 Optical Society of America

OCIS codes: 140.0140, 260.2110, 290.0290.

1. INTRODUCTION

Thewell-known Lorenz–Mie theory (LMT) [1] provides a rigor-

ous way to describe the electromagnetic scattering interaction

between a linearly polarized plane wave and a homogeneous

spherical particle described by its diameter d and its complex

refractive indexm. Since the advent of the laser, the interaction

of a focused laser beam with different kinds of particles has

become a most interesting topic, with applications spread in

a variety of fields including particle sizing, Raman scattering

diagnostics, optical manipulation, and design of new optics

devices. Tomeet the requirements of these new practical situa-

tions, the LMT has been generalized after the name of general-

ized Lorenz–Mie theory (GLMT)mainly from twoperspectives:

(i) arbitrary laser beam and (ii) particle shape, with recent re-

views by Lock and Gouesbet [2] and by Gouesbet [3]. The

GLMT extends the LMT, from the first perspective, to deal with

the scattering problem of particles illuminated by an arbitrary

laser beam [4–7] instead of a continuous plane wave, which is

the case in the LMT framework. Another version to arbitrary

shaped beam, equivalent to GLMT, could be found in [8].

The GLMT was also extended to deal with cases of nonsphe-

rical and/or composite scatterers from the second perspective,

relying on the method of separation of variables (SVM) in var-

ious orthogonal coordinate systems [9–12].

For an arbitrary shaped beam, an issue of significance con-

cerns the orientation of the beamwith respect to the scatterer.

The consideration of arbitrary orientation is compulsory in

the case of GLMTs for cylinders and has been implemented,

both in circular cylindrical and in elliptical cylindrical coordi-

nates, e.g., [9,13–15] and references therein. In the case of

spherical coordinates with spherical particles possessing a

complete spherical symmetry (homogeneous spheres, or con-

centric layered spheres), the concept of arbitrary orientation,

more precisely of arbitrary direction (that is to say without

accounting for the direction of polarization), is irrelevant

since any diameter of the scatterer can be regarded as an axis

of symmetry. Any direction of propagation then does belong

to the parallel illuminations, including on-axis incident case

[16] and off-axis incident case [17]. However, in spherical co-

ordinates, with spherical particles which do not possess a

complete spherical symmetry, such as for the case of a sphe-

rical particle hosting an eccentric spherical inclusion, we may

have to distinguish between parallel and oblique illuminations

and relate beam shape coefficients in various coordinate

systems obtained, one from the other, by a rotation of coor-

dinates. These issues of oblique illumination and of the trans-

formations of spherical beam shape coefficients through

rotations of coordinate systems have been thoroughly inves-

tigated recently by us with results that can be found in [18–24].

These recent results obtained in the GLMT framework provide

a new tool for the description of illuminating arbitrary beams,

including the special case of plane waves, and are implemen-

ted in the present paper.

With regard to the shape of the scatterer, thewave scattering

problem defined by a host homogeneous sphere embedding

an eccentrically located inclusion (or several inclusions) has
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attracted much interest in recent years in both electromag-

netic- and acoustic-oriented literatures [10,25–30]. This is par-

tially due to the fact that particles or fluid droplets with smaller

inclusions are very common in our daily life as well as in the

research for industry or environment concerns. For instance,

many small particles, such as natural biological spores or cells,

possibly artificial biological spores or cells for military pur-

poses, and aerosols in the atmosphere could be regarded as

sphereswith concentric or eccentric inclusions.Also, fluid dro-

plets with small inclusions such as medicinal sprays or daily

cosmetics could be modeled as spherical particles with inclu-

sions as well [31–34].

The associated scattering problemhas been studied byusing

various methods, such as the separation of variables method

[10,25], the order of scattering approach [26,27], and the ex-

tended boundary condition method (EBCM) [28,35], which is

also named null-field method [29]. Nevertheless, most of the

previous literature dealt with the case of plane wave illumina-

tion. After the introduction of a GLMT for the problem under

study by Gouesbet and Gréhan [10], numerical results have

been provided by Han et al. [36] and Yan et al. [37]. Neverthe-

less, only far-field scattering results were presented in [36,37].

In the present paper, spatial distributions of external and inter-

nal fields, including scattered field in the far zone, near-surface

field outside of the host sphere and internal field inside the host

sphere, are analyzed extensively and systematically by taking

advantage of the new aforementioned computational tool

[20–24].

One of the purposes of our present work is to cast some

light on light-scattering-related experimental or industrial ap-

plications such as in particle characterization or identification

techniques [31,33,34]. Indeed, as we know, light scattering

methods provide ideal means for in situ particle characteri-

zation or identification, because of their fast responses and

nondestructiveness.

Traditionally, light scattering measurements are made with

a single, possibly movable, detector, or with a limited number

of fixed detectors. Sometimes, such simple facilities might be

sufficient due to the inherent symmetries in the scattered field

patterns created by particles sharing a high enough level of

symmetry, such as spherical particles or axisymmetric parti-

cles exhibiting some specific orientations. However, for the

study of nonspherical or nonhomogeneous particles, such

as the ones investigated in the present paper, in cases where

symmetries in the scattered field distribution are broken,

more elaborate spatial detections might be required. With im-

proved instrumentation, such as wide application of intensi-

fied charge-coupled device cameras, researchers are able to

employ two-dimensional angular optical scattering as a tool

for analyzing such particle systems [31,38]. Along with the ap-

plications of new facilities in the measurements, a knowledge

of spatial distributions of the energy intensity is also required

in theoretical processing, especially when the symmetry of the

scattering pattern is broken, this being an issue that we keep

in mind in the present paper.

Another motivation of our study lies on the expected future

detection of optical (Hamiltonian) chaos features depicted in

[39–41], which might be associated with the destruction and

splitting of morphology-dependent resonances (MDRs)

[27,42,43]. Such features are associated with the increase of

complexity of the optical interactions between the eccentri-

cally located inclusion and the host sphere, generated by a

loss of spherical symmetry. The curved surfaces of the parti-

cle system together with the discontinuity of the complex re-

fractive index at the interface of two different media influence

the spatial distribution of the field intensities both in the inter-

nal and external regions. In this paper, spatial distributions of

the internal and near-surface fields for the scattering system

under study in off-resonance conditions are presented for the

first time, with the expectation that the numerical results gi-

ven here would contribute to the understanding of multiple

scattering interactions between closely spaced particles or be-

tween different parts of a scattering system.

The body of the present paper is organized as follows. In

Section 2, we present a theoretical treatment for the scattering

problem of a sphere with an eccentrically located spherical

inclusion illuminated by an arbitrary shaped electromagnetic

beam in an arbitrary orientation in the framework of GLMT.

Particular attention is paid to the description and application

of an arbitrary shaped beam in an arbitrary orientation to the

problem under study. In Section 3, the case of a focused Gaus-

sian beam in the fundamental mode (TEM00) is specifically

considered for numerical illustration. Spatial distributions

of both internal and external fields, including scattered field

in the far zone, near-surface field outside of the host sphere

and internal field inside the host sphere, are presented for var-

ious parameters of the incident electromagnetic beam and of

the scatterer system. Some discussions are presented in

Section 4, which serves as a conclusion as well.

2. THEORETICAL TREATMENT BY GLMT

A. Definition of the Problem
The geometry of the specific scattering problem under study is

illustrated in Fig. 1. The host sphere is attached to a global

Cartesian coordinate system ðO1X1Y 1Z1Þ, and its correspond-

ing spherical coordinates are designated as ðr1; θ1;φ1Þ. A

spherical inclusion is embedded in the host sphere. It is at-

tached to an inclusion coordinate system ðO2X2Y 2Z2Þ, whose

corresponding spherical coordinates are designated as

ðr2; θ2;φ2Þ. The three axes in the inclusion coordinate system

Fig. 1. Scattering geometry of the problem under study.
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are parallel to the corresponding axes in the global coordinate

system, respectively.

Without any loss of generality, the center of the inclusion is

located on the z axis of the global coordinate system. The

center–center separation distance is designated by d; we have

x2 ¼ x1; y2 ¼ y1; z2 ¼ z1 − d: ð1Þ

The radii of the host sphere and of the inclusion are a and b,

respectively. The complex refractive index and wavenumber

of the surrounding medium are m0 and k0, the corresponding

parameters for the host sphere are m1 and k1, and for the in-

clusion, m2 and k2.

The scattering model in Fig. 1 is illuminated by an arbitrary

shaped beam propagating along the w axis in the beam coor-

dinate system OgUVW . The coordinates of its origin Og with

respect to the global coordinate system ðO1X1Y 1Z1Þ are de-
noted as ðx0; y0; z0Þ. The frame system ðO1X1Y 1Z1Þ can be ob-
tained from the beam coordinate system ðOgUVWÞ by
rotations through Euler angles ðα; β; γÞ [20–23] followed by a
translation of ðx0; y0; z0Þ, and vice versa. In this paper, a fo-
cused Gaussian beam propagating along thew axis with beam

waist center located in the origin of the beam coordinate sys-

tem OgUVW is specified for numerical illustration. The time-

dependence factor reading as expðjwtÞ is assumed, where w
is the angular frequency. This term will be omitted from all

formulas for the sake of conciseness.

B. Vector Spherical Wave Functions
The vector spherical wave functions (VSWFs) used in this

paper are a little different from the ones used in [20,44] by

a normalization factor and also by the fact that we have inter-

changed the indices n and m, i.e., M
ðjÞ
nm instead of M

ðjÞ
mn and

similarly for N
ðjÞ
nm. Nevertheless, the interchanges of orders

n and m in subscripts occur only superficially in appearance

for the purpose of consistency in the paper, which will not

change their original meanings. They read as

M
ðjÞ
nm ¼ ð−1Þm½im~πmn ðcos θÞiθ − ~τ

m
n ðcos θÞiφ�znðkrÞ expðimφÞ;

ð2Þ

N
ðjÞ
nm ¼ ð−1Þ

m

 

nðnþ 1Þ

kr
znðkrÞ~P

m
n ðcos θÞir

þ
1

kr

!

d

dr
rznðkrÞ

"

~τmn ðcos θÞiθ

þ
1

kr

!

d

dr
rznðkrÞ

"

im~πmn ðcos θÞiφ

#

expðimφÞ; ð3Þ

in which ir , iθ, and iφ are standard unit vectors associated with

the coordinates r, θ, and φ, respectively, of a spherical coor-

dinate system ðr; θ;φÞ, k is the wavenumber in the considered
medium, znðkrÞ designates any spherical Bessel function
ðjn; yn; h

ð1Þ
n ; h

ð2Þ
n Þ, and ~π

m
n and ~τ

m
n designate the normalized gen-

eralized Legendre functions according to

~πmn ðcos θÞ ¼
~Pm
n ðcos θÞ

sin θ
; ~τmn ðcos θÞ ¼

d

dθ
~Pm
n ðcos θÞ: ð4Þ

~Pm
n ðcos θÞ is the fully normalized associated Legendre

function, which is normalized from the associated Legendre

functions Pm
n ðcos θÞ:

~Pm
n ðcos θÞ ¼ cmn P

m
n ðcos θÞ; ð5Þ

where cmn is a normalization factor:

cmn ¼ ð−1Þ
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1

2

ðn −mÞ!

ðnþmÞ!

s

; ð6Þ

and the associated Legendre functions Pm
n ðcos θÞ read as

Pm
n ðcos θÞ ¼ ð−1Þ

mðsin θÞm
dmPnðcos θÞ

ðd cos θÞm
: ð7Þ

C. Solutions
The theoretical treatment to scattering from a sphere with an

eccentrically located spherical inclusion illuminated by an ar-

bitrary shaped beam was originally presented by Gouesbet

and Gréhan [10]. Afterward, Han et al. [36] and Yan et al. [37]

also studied this problem. Here, we will not focus on these

derivations but recall some expressions necessary for the

sequel.

In the global coordinate system, an arbitrary shaped beam

in an arbitrary orientation illuminating the host sphere may be

expressed in terms of VSWFs with two sets of expansion coef-

ficients anm and bnm:

Einc ¼
X

∞

n¼1

X

þn

m¼−n

anmM
ð1Þ
nmðk0r1Þ þ bnmN

ð1Þ
nmðk0r1Þ; ð8Þ

in which the field strength E0 has been set equal to unity.

Furthermore, the relationship between the expansion coeffi-

cients anm and bnm on one hand and the more traditional beam

shape coefficients gmn;X on the other hand is available from [44]

and will be provided in the sequel.

Similarly, the scattered field may be expanded using the

spherical Bessel functions of the fourth kind:

Esca ¼
X

∞

n¼1

X

þn

m¼−n

cnmM
ð4Þ
nmðk0r1Þ þ dnmN

ð4Þ
nmðk0r1Þ: ð9Þ

The main field in the annular zone between the surface of

the host sphere and that of the inclusion may be expressed

using the spherical Bessel functions of the third and the fourth

kind in the global coordinates system, indicating a superposi-

tion of incoming and outcoming partial waves:

Eint1 ¼
X

∞

n¼1

X

þn

m¼−n

enmM
ð3Þ
nmðk1r1Þ þ f nmN

ð3Þ
nmðk1r1Þ

þ vnmM
ð4Þ
nmðk1r1Þ þ hnmN

ð4Þ
nmðk1r1Þ: ð10Þ

In [10], Eqs. (11) and (12), the choice has been made to use the

first and fourth kinds of VSWFs instead , indicating superposi-

tion of waves incident on the inclusion and of waves scattered

from the inclusion.

The incident coefficients anm and bnm and the scattered

coefficients cnm and dnm can then be related to the expansion

coefficients enm, f nm, vnm, and hnm by applying the
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well-known boundary conditions at the main sphere surface

r1 ¼ a, according to which the tangential components of

the electric and magnetic field would be continuous across

the sphere surface.

The same procedure is then implemented in the inclusion

coordinate system, which relates the expansion coefficients

rnm, snm, tnm, and unm of the main field,

Eint1 ¼
X

∞

n¼1

X

þn

m¼−n

rnmM
ð3Þ
nmðk1r2Þ þ snmN

ð3Þ
nmðk1r2Þ

þ tnmM
ð4Þ
nmðk1r2Þ þ unmN

ð4Þ
nmðk1r2Þ; ð11Þ

to the expansion coefficients pnm, and qnm of the internal field

inside the inclusion,

Eint2 ¼
X

∞

n¼1

X

þn

m¼−n

pnmM
ð1Þ
nmðk2r2Þ þ qnmN

ð1Þ
nmðk2r2Þ; ð12Þ

by applying the well-known boundary conditions at the

inclusion surface r2 ¼ b.

In order to obtain the solutions to the scattering problem,

translational addition theorems of VSWFs [45,46] should be

applied to the main field so as to relate its expansion coeffi-

cients enm, f nm, vnm, andhnm in the global coordinate system

with those rnm, snm, tnm, and unm in the inclusion coordinate

system. Relevant translational coefficients of the vector addi-

tion theorem as well as those of the scalar addition theorem

have been discussed in the literature, e.g., [29,47,48], and are

given in Appendix A.

As a summary, in the global coordinate system, the expan-

sion coefficients that describe the scattered field, cnm and dnm,

and the expansion coefficients that describe the main field,

enm, f nm, vnm, and hnm, can be related to the expansion coef-

ficients that describe the incident field anm and bnm by appli-

cation of the boundary conditions, according to which the

tangential components of the electric and magnetic field

would be continuous across the sphere surface. Similarly,

in the inclusion coordinate system, the expansion coefficients

which describe the inclusion internal field, pnm and qnm, can

be related to the expansion coefficients describing the main

field, rnm, snm, tnm, and unm, by application of the correspond-

ing boundary conditions at the surface of the spherical inclu-

sion. The solutions to the scattering problem can then be

readily reached by applying translational addition theorems

of VSWFs to the main field; see [10] for details.

D. Beam Shape Coefficients for an Arbitrary Shaped
Beam in an Arbitrary Orientation
In the GLMT, the electromagnetic components of the illumi-

nating beam are described by multipole expansions over a set

of basis functions. The expansion coefficients are expressed

versus fundamental coefficients, usually denoted as gmn;X (X is

TE, transverse electric, or TM, transverse magnetic, with n

from 1 to ∞, m from −n to n), known as beam shape coeffi-

cients (BSCs). These BSCs are used to express electromag-

netic fields of laser beams in expanded forms, for use in

GLMTs, or in other light scattering approaches such as the

EBCM. Their calculations form the key issue, and the most

difficult one, when dealing with a GLMT. Initiated by Han

et al. [18,19], a systematic analysis was made recently con-

cerning the transformation of BSCs through rotations of co-

ordinate systems, and corresponding results are published

in a series of papers [20–24], providing us a new tool for

further studies, especially in cases of nonspherical or compo-

site scatterers.

The relationships between the expansion coefficients anm,

bnm on one hand, and the BSCs ~g
m
n;X on the other hand read as

[44]

anm ¼ −ikc
pw
n ð−1Þmð−1Þ

m−jmj
2

ðn −mÞ!

ðn − jmjÞ!

~gmn;TE

cmn
; ð13Þ

bnm ¼ kc
pw
n ð−1Þmð−1Þ

m−jmj
2

ðn −mÞ!

ðn − jmjÞ!

~gmn;TM

cmn
; ð14Þ

in which c
pw
n are plane wave coefficients reading as [4]

c
pw
n ¼

1

k
ð−iÞnþ1

2nþ 1

nðnþ 1Þ
: ð15Þ

With respect to the corresponding equations in [44], the fol-

lowing modifications have been introduced: (i) the field

strength E0 has again been set equal to unity, (ii) the coeffi-

cient cmn has been introduced as a consequence of the fact that

we use a slightly different definition for the VSWFs [see

Subsection 2.B], and (iii) the BSCs are tilde-decorated to

indicate that they are valid in a rotated system.

According to the transformation theorem for BSCs in sphe-

rical coordinates [20], the tilde-decorated BSCs ~gmn;X in a ro-

tated system are expressed versus the BSCs gmn;X in another

system, called the unrotated system, as

~gmn;X ¼ μnm

X

n

s¼−n

Hm
sn

μns
gsn;X ; ð16Þ

where

μnm ¼ ð−1Þmð−1Þ
m−jmj

2

ðn − jmjÞ!

ðn −mÞ!
; ð17Þ

Hm
sn ¼ ð−1Þnþs

ðn −mÞ!

ðn − sÞ!
eimγeisα

X

σ

ð−1Þσ
!

nþ s

n −m − σ

"!

n − s

σ

"

×

!

cos
β

2

"

2σþmþs
!

sin
β

2

"

2n−2σ−m−s

; ð18Þ

in which ðα; β; γÞ are Euler angles bringing the unrotated

system to the rotated system, whose definitions could be

found in any of the references [20–24].

With decades of efforts devoted to the description of an ar-

bitrary shaped beam, the BSCs of an arbitrary shaped beam in

the unrotated coordinate system can be evaluated by several

methods, sharing various degrees of time running efficiency,

or of flexibility, namely by using quadratures [49], finite series

[50], localized approximations generating localized beammod-

els [6], or by a hybrid method taking advantage of both quad-

ratures and of a localized approximation, named the integral

localized approximation [51]. The evaluation of BSCs has also

been investigated by relying on addition theorems for transla-

tions of coordinate systems, an approach originally introduced

by Doicu andWriedt [52] and also used by Zhang and Han [53].

In our computer program, the Modified Localized Approxima-

tion method [6,54], which was rigorously justified by Gouesbet
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and Lock [16,17], is applied to evaluate the BSCs in the unro-

tated coordinate systemdue to the fact that it provides themost

efficientmethod,with regard to computational times, byorders

of magnitude with respect to other methods, such as by using

quadratures [55]. It is also the most appealing from a physical

point of view because it providesmany physical insights on the

interpretation of beam models.

In order to describe an arbitrary shaped beam in an arbi-

trary orientation, the BSCs in the rotated coordinate system

have to be evaluated.

Two different ways have been explored to deal with the use

of a localization procedure associated with a rotation, namely,

a rotation–localization (RL) procedure inwhichwe first apply a

localization operator and afterward rotate, and a localization–

rotation procedure, in which we first rotate and afterward ap-

ply a localization procedure, with details presented in [24]. It

has been surprising to uncover that the operations of rotation

and localization do not commute, not only for non-Maxwellian

beams, but also for Maxwellian beams, in particular, for even a

plane wave. Therefore, at the present time, in order to obtain a

localizedbeammodel under anarbitraryorientation, onehas to

use the RL procedure as we have used in this paper. That is to

say, after obtaining theBSCs of an arbitrary shapedbeam in the

unrotated coordinate system by the Modified Localized Ap-

proximation method [6,16,17,54], the transformation theorem

for BSCs [20–24] is applied to obtain a localized beammodel in

a rotated system in terms of the localized beam model in the

unrotated system.

E. External Near-Surface and Internal Fields
Even though the magnitude and the phase for each compo-

nent of the electromagnetic field can be determined from the

GLMT formalism discussed in this paper, a useful visualization

of the electromagnetic field distribution can be obtained by

plotting the normalized source function as a function of spa-

tial position. The normalized source function is defined as

S ¼ jEj2=jE0j
2; ð19Þ

where E is the electric (internal or external) field and E0 is the

electric field strength of the incident field, which is assumed

to be unity in this paper.

1. Internal Field
Inserting Eqs. (2) and (3) into Eq. (11), expressions for

evaluating the main internal field in the annular area can be

obtained:

Eint1r ¼
X

∞

n¼1

X

þn

m¼−n

ð−1Þm½snmh
ð1Þ
n ðk1r2Þ þ unmh

ð2Þ
n ðk1r2Þ�

×
nðnþ 1Þ

k1r2
~Pm
n ðcos θÞ expðimφÞ; ð20Þ

Eint1
θ ¼
X

∞

n¼1

X

þn

m¼−n

ð−1Þm
!

½rnmh
ð1Þ
n ðk1r2Þ þ tnmh

ð2Þ
n ðk1r2Þ�im~πmn

× ðcos θÞ þ
1

k1r2

"

snm
dðr2h

ð1Þ
n ðk1r2ÞÞ

dr2

þ unm

dðr2h
ð2Þ
n ðk1r2ÞÞ

dr2

#

~τmn ðcos θÞ

$

expðimφÞ; ð21Þ

Eint1
φ ¼
X

∞

n¼1

X

þn

m¼−n

ð−1Þm
!

½−rnmh
ð1Þ
n ðk1r2Þ − tnmh

ð2Þ
n ðk1r2Þ�~τ

m
n

× ðcos θÞ þ
1

k1r2

"

snm
dðr2h

ð1Þ
n ðk1r2ÞÞ

dr2

þ unm

dðr2h
ð2Þ
n ðk1r2ÞÞ

dr2

#

im~πmn ðcos θÞ

$

expðimφÞ: ð22Þ

Similarly, the main internal field could also be evaluated in the

global coordinate system by using Eq. (10).

Also, the expressions for calculating the internal field inside

the inclusion can be obtained:

Eint1
r ¼
X

∞

n¼1

X

þn

m¼−n

ð−1Þmqnm
jnðk2r2Þ

k2r2
nðnþ1Þ~Pm

n ðcosθÞexpðimφÞ;

ð23Þ

Eint1
θ ¼
X

∞

n¼1

X

þn

m¼−n

ð−1Þm
!

pnmjnðk2r2Þim~πmn ðcos θÞ

þ qnm
1

k2r2

dðr2jnðk2r2ÞÞ

dr2
~τmn ðcos θÞ

$

expðimφÞ; ð24Þ

Eint1
φ ¼
X

∞

n¼1

X

þn

m¼−n

ð−1Þm
!

−pnmjnðk2r2Þ~τ
m
n ðcos θÞ

þ qnm
1

k2r2

dðr2jnðk2r2ÞÞ

dr2
im~πmn ðcos θÞ

$

expðimφÞ: ð25Þ

2. External Near-Surface Field
The external near-surface field is a summation of the incident

field and the scattered field. The intensity of the incident

shaped beam can be evaluated either by using analytical ex-

pressions in closed form (see [4]) or by using expressions in

expanded form from Eq. (8), which is applied in our simula-

tions in this paper. The approach for calculations of the scat-

tered field in the near zone is very similar to that used in the

calculation of the internal field. The only significant difference

lies in the number of summation terms. In the evaluation of

scattered field, the number of terms taken into account is

fixed at a cut-off number related with the size parameter of

the host sphere. While in the evaluation of internal intensity

distribution, a fewer number of summation terms for smaller

radii than the fixed cut-off number have to be taken into

account.

The expressions for calculating the scattered field in the

near zone are given:

Esca
r ¼
X

∞

n¼1

X

þn

m¼−n

ð−1Þmdnm
h
ð2Þ
n ðk0r1Þ

k0r1
nðnþ 1Þ~Pm

n ðcos θÞ

× expðimφÞ; ð26Þ

Esca
θ ¼
X

∞

n¼1

X

þn

m¼−n

ð−1Þm
!

cnmh
ð2Þ
n ðk0r1Þim~πmn ðcos θÞ

þ dnm
1

k0r1

dðr1h
ð2Þ
n ðk0r1ÞÞ

dr1
~τmn ðcos θÞ

$

expðimφÞ; ð27Þ
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Escaφ ¼
X

∞

n¼1

X

þn

m¼−n

ð−1Þm
!

−cnmh
ð2Þ
n ðk0r1Þ~τ

m
n ðcos θÞ þ dnm

1

k0r1

×
dðr1h

ð2Þ
n ðk0r1ÞÞ

dr1
im~πmn ðcos θÞ

"

expðimφÞ: ð28Þ

F. Scattered Field in the Far Zone
In the far zone away from the scatterer, where kr ≫ ka,

the spherical Hankel functions reduce to spherical waves,

according to

h
ð2Þ
n ðkrÞ ∼ inþ1

e−ikr

kr
;

dh
ð2Þ
n ðkrÞ

dðkrÞ
∼ in

e−ikr

kr
: ð29Þ

Inserting Eq. (29) into Eq. (26)–(28), the scattered field in

the far zone degenerates to transversal spherical waves, and

the nonzero components are expressed as

Esca
θ ¼ i

e−ik0r1

k0r1

X

∞

n¼1

X

þn

m¼−n

½cnmm~πmn ðcos θÞ

− dnm~τ
m
n ðcos θÞ�i

nþ1ð−1Þm expðimφÞ; ð30Þ

Esca
φ ¼

e−ik0r1

k0r1

X

∞

n¼1

X

þn

m¼−n

½−cnm~τ
m
n ðcos θÞ

þ dnmm~πm
n ðcos θÞ�i

nþ1ð−1Þm expðimφÞ: ð31Þ

The scattering intensity may be expressed as [4]

#

Iθ
Iφ

$

¼
λ2

4π2r2
1

#

jS2j
2

jS1j
2

$

; ð32Þ

where

S2 ¼
X

∞

n¼1

X

þn

m¼−n

½cnmm~πm
n ðcos θÞ

− dnm~τ
m
n ðcos θÞ�i

nþ1ð−1Þm expðimφÞ; ð33Þ

S1 ¼
X

∞

n¼1

X

þn

m¼−n

½cnm~τ
m
n ðcos θÞ

− dnmm~πmn ðcos θÞ�i
nþ1ð−1Þm expðimφÞ: ð34Þ

3. NUMERICAL RESULTS

A computer program is written in FORTRAN relying on the

theoretical work stated above. Thanks to the programs pub-

lished and maintained on the Internet, such as the one from

Wriedt [56], it allows almost instant verification of results

without costly software development for some commonly

used subroutines. For instance, the required Ricatti–Bessel

functions in our program are evaluated using the recursion

algorithm presented by Ngo et al. [35]. The most significant

differences between our code and the one from Ngo et al.

are as follows. (i) Plane wave illumination is generalized to

arbitrary shaped beam illumination. Specifically, the BSCs,

for Gaussian beam illumination, are determined using the

Modified Localized Approximation method developed by

Gouesbet et al. [6,16,17,54]. (ii) Subroutines for evaluations

of internal and near-surface field distributions are developed.

Furthermore, for the aim of developing a more convergent

computer program, the associated Legendre functions are

evaluated in terms of Wigner d functions, which achieve good

convergence even when the order is very large [57]. The trans-

lational coefficients of the VSWFs are evaluated according to

the recurrence relationship provided by Mackowski [48] in-

stead of the one proposed by Bobbert and Vlieger [47] and

used by Ngo et al. [35]. Although several modifications have

been made, the convergent problem reported in Ngo’s code

[58] also exists in our code. Nevertheless, it has little influence

on the analysis of field intensity distributions in the pre-

sent paper.

Regarding the numerical evaluation of the elements Hm
sn in

Eq. (18), Han et al. [36] calculated them (although with a dif-

ferent notation and presentation) by using a summation of a

finite number of terms that satisfy the following four condi-

tions: (i) σ ≤ 0, (ii) σ ≤ −ðmþm0Þ, (iii) σ ≤ n −m, (iv)

σ ≤ n −m0. This was a fairly tedious procedure so that, for this

paper, we use a somewhat more efficient method. Let us recall

Eq. (102) in [22]; we can rewrite Eq. (18) as

Hm
sn ¼

%

ðn −mÞ!ðnþ sÞ!

ðnþmÞ!ðn − sÞ!

&

1=2

eimγeisαdnms; ð35Þ

wherednms is theWignerd function,which canbeevaluatedbya

recurrence relation [57], which is given in Appendix B for the

sake of convenience.

A. Numerical Test Cases
As a verification of the homemade program as well as of the

theoretical derivations for an arbitrary shaped beam in an ar-

bitrary orientation, we have compared our results with those

published by Ngo et al. [35] in the case of plane wave illumi-

nation. All the results concerning the extinction and scattering

efficiencies coincide with each other at least in four digits.

As another verification of the code, comparisons between

the results obtained from our code are compared with those

published by Han et al. [36] and Yan et al. [37]. As we noticed,

only results for special cases of on-axis Gaussian beam illumi-

nation were presented by Yan et al. [37]. We prefer to present a

comparison of scattered intensity distribution for a general

case of off-axis Gaussian beam illumination in Fig. 2 between

the results obtained from our code and those published by Han

et al. [36]. In this comparison, parameters are adopted directly

from [36]. The radii of the inclusion and of the host sphere are

0:5 μm and 1:0 μm with complex refractive indices of 1:55þ
0:0i and 1:33þ 0:0i, respectively. The center–center separa-

tion distance is d ¼ 0:25 μm. It is illuminated by a Gaussian

beam at incidence angles α ¼ γ ¼ 0:0°, β ¼ 45:0°, with wave-

length λ ¼ 0:6328 μm and beam waist w0 ¼ 1:0 μm. The loca-

tion of the beam waist center is a varied parameter.

Satisfactory agreements are achieved, although there may

be some differences (logarithmic scales are used), especially

in the forward- and backward-scattering direction.

Further verification is made by comparing spatial distribu-

tions of normalized source function for the internal and near-

surface fields with published results for a sphere illuminated

by plane wave [59].
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Figure 4(a) shows the normalized source function distribu-

tion of the near-surface and internal fields along the z axis for a

homogeneous spherical glass bead (having a complex

refractive index m ¼ 1:5þ 0:0i and size parameter 20) illumi-

nated by an x-axis direction polarized plane wave propagating

along theþz axis direction. The amplitude of the incident elec-
tromagnetic wave electric field has been set to unity. Spatial

coordinates are normalized relative to the sphere radius. Re-

sults from our code are identical to those provided by Barber

andHill [59]. Particular values for exact checksare evaluated at

points −2:5, −1:0, 1.0, and 2.5. The values obtained from our

code are 0.87081, 1.4987, 59.2146, and 3.2682, respectively.

B. Numerical Results

1. Scattered Field in the Far Zone
Scattered field distributions resulting from a focused laser

beam incident on a particle system are dependent on the prop-

erties of the incident electromagnetic beam (beam waist

radius, location of beam waist center, wavelength, and

incident orientation) as well as on the properties of the

scatterer (shape, diameter, complex refractive index, etc.).

Variations in spatial distributions of scattered field in the far

zone from a spherical glass bead (having a complex refractive

index 1:50þ 0:0i) containing a spherical water inclusion (hav-

ing a complex refractive index 1:33þ 0:0i) are displayed in

video format for different cases. The following parameters

are applied except stated otherwise. The complex refractive

index in the surrounding medium is set equal to unity. The

radius of the host sphere is assumed to be 3:0 μm, and that of

the inclusion is 1:50 μm. The incident electromagnetic focused

Gaussian beamwas assumed to be linearly polarized along the

u axis at its waist with a wavelength equal to 0:6328 μm. Its

beam waist center is located at the origin of the global coor-

dinate system with x0 ¼ y0 ¼ z0 ¼ 0:0 μm. The incident orien-

tation is specified by Euler angles at α ¼ γ ¼ 0:0°, β ¼ 90° so

that the forward direction of the scattered field is at the center

of the graphs (θ ¼ 90°, φ ¼ 0:0°). Media 1 and Media 2 pro-

ceed along eight steps according to the scenario detailed be-

low. The vertical axis in the movie is the zenith angle θ in

degrees, and the horizontal axis is the azimuthal angle φ in

degrees; scenery numbers are shown at the rightmost side

to indicate the procedure of the movie. Single-frame pictures

excerpted from Media 1 and Media 2 are shown in Fig. 3.

The movie begins with the inclusion situated at the center

of the host sphere. The particle system is illuminated by a

Gaussian beam with a pretty large beam waist, such as

w0 ¼ 50:0 μm; that is to say, plane wave illumination is ap-

plied. Then (i) the inclusion is translated along the z axis from

the center of the host sphere d ¼ 0:0 μm to the edge at

d ¼ 1:0 μm. Afterward, (ii) holding the position of the spheri-

cal inclusion constant at d ¼ 1:0 μm, we decrease the radius of

the inclusion from b ¼ 1:5 μm to b ¼ 0:0 μm, which is followed

by (iii) increasing the radius of the inclusion from b ¼ 0:0 μm

to b ¼ 1:5 μm. The beam waist radius of the Gaussian beam is

then (iv) decreased from w0 ¼ 50:0 μm to w0 ¼ 2:0 μm. That is

to say, the plane wave illumination is replaced by a focused

Gaussian beam illumination step-by-step, with a step of 5:0 μm

in the range [50:0 μm, 5:0 μm] and a step of 0:5 μm in the range

[5:0 μm, 2:0 μm]. Fixing the Gaussian beam waist at w0 ¼

2:0 μm and holding the position of the inclusion constant at

d ¼ 1:0 μm, we (v) decrease the radius of the inclusion from

b ¼ 1:5 μm to b ¼ 0:0 μm, which is followed by (vi) an increase

from b ¼ 0:0 μm to b ¼ 1:5 μm. The inclusion then (vii) trans-

lates to the center of the host sphere with d ¼ 0:0 μm. At the

end of the movie, (viii) we move the beam waist center of the

focused Gaussian beam toward the edge of the host sphere

along the z axis with z0 ¼ 2:0 μm.

Aswe cannotice from themovie, either in the illumination of

a planewave or in the illumination of a focusedGaussian beam,

a second set of diffractionlike rings can be observed when the

symmetry of the particle system is broken. The inclusion acts

as a second radiating source, contributing to an interference

structure in the scattering pattern, the spatial frequency of

which varies with the location and the radius of the inclusion.

A butterfly pattern is noticed growing up as the center–center

separation distance increases. With a decrease in the inclusion

radius, the wings of the butterfly seems to diffuse laterally (the

inclusion becoming smaller, with a larger radius of curvature,

throws rays away more efficiently in the lateral directions),

Fig. 2. (Color online) Comparison of scattered intensity distribution
between the result obtained from our code and Fig. 6 published in
[36].
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also become weaker since the inclusion is smaller, and at last

disappear when the inclusion disappears.

During the procedure of plane wave illumination replaced

step-by-step by Gaussian beam illumination, for most of the

time we do not observe any significant variation in the scat-

tering pattern, in accordance with the fact that the radius of

the host sphere is 3:0 μm, which is much smaller than the

beam waist radius, so that, for most of the time, the illumina-

tion is still essentially the one of a plane wave. When Gaussian

beam effects become significant, we conversely observe a

strong modification of the scattering pattern, in which an im-

age of the inclusion in the scattering pattern becomes more

and more apparent in the forward direction, while as a whole

the interference pattern simplifies, with many rings progres-

sively disappearing and much less light shed laterally.

At the last part of the movie, the inclusion is located at the

center of the host sphere; such a geometry actually corre-

sponds to the one of a coated sphere. We can observe a pattern

with amaximal spherical symmetry (spherical symmetry of the

scatterer, and location of the beamwaist center at the center of

the scatterer). When the beam waist center of the Gaussian

beam is moved toward the edge of the host sphere, a progres-

sive and eventually very significant loss of symmetry can be

noticed, in which the original maximal spherical symmetry

is broken. This evolution corresponds to the development of

a similar butterfly pattern, but with wings stretching in the

downward direction instead of in the upward directions as

we saw in the first half of the movie.

2. Near-Surface Field and Internal Field
Calculations of the internal and near-surface fields of a trans-

parent sphere could be found in the case of plane wave illumi-

nation [59] and also in the case of shaped beam illumination [8].

Large enhancement of the near-surface field located in the sha-

dow side of the particle was found both in the on-resonance

conditions and in the off-resonance conditions. In the case

of shaped beam illumination, the distribution of the internal

and near-surface field is strongly dependent on the location

of the focal center of the laser beam,which differs significantly

from the corresponding results when the exciting resource is a

plane wave. Nevertheless, most efforts have been found to be

devoted to spherical particles, but other shapes or composite

particles are also of interest, such as a micrometer-sized par-

ticle containing a smaller eccentrically located inclusion under

study in this paper. A series of calculations is thenperformed to

demonstrate the effects of particle system geometry, orienta-

tion, and focal center location of theGaussian beamon the spa-

tial distributions of internal and near-surface fields.

Specifically, near-surface and internal fields distributions

are calculated for a glass sphere (having a real refractive index

equal to 1.50) with an eccentrically located water droplet (hav-

ing a real refractive index equal to 1.33) in the case of plane

wave illumination and in the case of a focused Gaussian beam

illumination. The incident beam (plane wave or Gaussian

beam) is originally assumed to propagate in the þz-axis direc-

tion with electric field vector polarized along the x axis (at the

waist) with wavelength 0:6283 μm. The beam waist radius of

the Gaussian beam is assumed to be ω0 ¼ 1:6 μm, which is

smaller than the radius of the host sphere a ¼ 2:0 μm, while

greater than the radius of the inclusion b ¼ 1:0 μm.

As aforementioned, even though the magnitude and the

phase for each component of the electromagnetic field can

be determined, a useful visualization of the electromagnetic

field distribution can be obtained by plotting the normalized

source function as a function of spatial position. Normalized

source functions are calculated on a normalized square grid of

dimension 2r=a × 2r=a. Two hundred points along the z axis

and 100 points along the x axis are used in Figs. 4 and 5, due to

the fact that, in these cases, the intensity variation along the x

axis is much slower than that along the z axis. Nevertheless,

200 points are used both along the z axis and along the x axis

in Figs. 7 and 8, which are the cases when the shaped beam is

incident on the particle obliquely. It is worth mentioning that if

too many points are used in the calculation of internal field

distribution, the calculation of the Bessel functions may be-

come unstable for radii near the origin, since the argument

of the functions will be much smaller than the order.

Normalized source function distributions along the z axis

are displayed in Fig. 4, and distributions over the equatorial

Fig. 3. (Color online) Scattered field distribution in the far zone. (a) Single-frame excerpt from Media 1 for cases of plane wave illumination. (b)
Single-frame excerpt from Media 2 for cases of focused Gaussian beam illumination. The vertical axis in the movie is the zenith angle θ in degrees,
and the horizontal axis is the azimuthal angle φ in degrees..
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plane (x–z plane) are shown in Fig. 5 as a function of the

center–center separation distance d.

In Fig. 4(a), the well-known high intensity peak in the near-

surface field behind the scatterer dominates the graph, whose

intensity is more than 100 times the incident beam intensity.

Nevertheless, this large broad intensity peak is afterward sig-

nificantly spoiled due to the existence of an inclusion, as ob-

served in Figs. 4(b) and 4(c). Furthermore, when the plane

wave illumination is replaced by a focused Gaussian beam il-

lumination in Figs. 4(d)–4(f), the high intensity peak is also

reduced greatly. In a further study (results are not shown

here), we find that the narrower the Gaussian beam waist

is, the lower the intensity of the high energy peak will be.

Thus, we may come to the conclusion that the focusing effect

caused by the curved surface of host spherical particle plays a

main role in the construction of the high intensity peak in the

shadow side of the host sphere, which is similar to the trans-

mission spherical aberration caustic in the optical system.

This conclusion is also supported by the fact that several in-

tensity peaks are observed in the shadow side of the inclusion,

which may mainly be due to the focusing effect of the

spherical inclusion.

The other prominent feature in Fig. 4 is that a small inten-

sity peak observed in the illuminated side of the host sphere

Fig. 4. Normalized source function for external and internal fields along the z axis with center–center separation distance d as the parameter. The
left column [(a), (b), (c)] is for cases of plane wave illumination; the right column [(d), (e), (f)] is for cases of focused Gaussian beam illumination.
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(the small peak located at approximately z=R ¼ −0:8) in the

case of plane wave illumination is significantly degenerated

when a focused Gaussian beam illumination is applied. From

a point of view of ray theory, this peak is claimed to be con-

structed by the crossing of the arms of the interior focusing

caustic for three internal reflections [60]. And the numerical

results obtained here emphasize that the construction of this

peak is crucially associated with the off-axis partial waves

propagating in the A zone depicted in Fig. 6.

The features found in Fig. 4 can also be observed in Fig. 5.

Furthermore, if we look closely into the interior of the host

sphere, three energy flows toward the shadow side of the host

sphere can be apparently observed when the host sphere is

illuminated by a plane wave. The main energy flows in the

middle is greatly enhanced in the case of focused beam illu-

mination, while the other two energy flows in the lateral sides

are blurred or even disappear.

Spatial distributions of normalized source functions over

the equatorial plane (x–z plane) are shown in Fig. 7 as a func-

tion of the incident direction of the Gaussian beam. The sphe-

rical inclusion is located on the z axis with center–center

separation distance d ¼ 0:5. A focused Gaussian beam

illuminates the particle system with Euler angles α ¼ γ ¼ 0:0°

and β as a parameter. The beam waist center of the Gaussian

beam locates at the center of the host sphere with

x0 ¼ y0 ¼ z0 ¼ 0:0.

Fig. 5. Normalized source function for external and internal field over the x–z plane with center–center separation distance d as the para-
meter. The left column [(a), (b), (c)] is for cases of plane wave illumination; the right column [(d), (e), (f)] is for cases of focused Gaussian beam
illumination.

Wang et al. Vol. 28, No. 1 / January 2011 / J. Opt. Soc. Am. A 33



Comparing Fig. 7(a) with Figs. 7(b)–7(d), we can observe

that, when the particle system with a broken spherical sym-

metry is illuminated obliquely by a focused Gaussian beam,

the scattered field resulting from scattering of the inclusion

interferes with the incident beam, which is refracted once

by the host sphere surface, to create a complex interference

pattern in the internal field. This interference pattern contri-

butes to the features that the main electromagnetic energy

propagates along a different track from that of the incident

beam direction; a branch of electromagnetic energy is ob-

served to be divided from the main energy flows.

Spatial distributions of normalized source functions over

the equatorial plane (x–z plane) are shown in Fig. 8, as a func-

tion of location of the Gaussian beam waist center. The sphe-

rical inclusion is located on the z axis with center–center

separation distance d ¼ 0:5. A focused Gaussian beam illumi-

nates the particle system with Euler angles α ¼ γ ¼ 0:0° and

β ¼ 90°; that is to say, it propagates along the x axis from left

to right in the figures. The position of the beam waist center of

the Gaussian beam is assumed to be x0 ¼ y0 ¼ 0:0 and z0 as a

parameter.

Figure 8 shows the behavior of an off-axis Gaussian beam

when it transmits through a host sphere with an eccentrically

Fig. 6. Illustration of localization of partial waves in a geometric
optics point of view.

Fig. 7. (Color online) Normalized source function distribution for external and internal fields over the x–z plane with Euler angles α ¼ γ ¼ 0:0°
and β as a parameter..
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located spherical inclusion. Generally speaking, when the

beam waist center of the Gaussian beam is not located at

the center of the host sphere, that is to say, more partial waves

with higher electromagnetic energy density become off-axis,

the propagation direction of the Gaussian beam is bent toward

the horizontal center-line (the x axis) due to the refraction ef-

fect at the surface of the host sphere. The farther the beam

waist center is away from the host sphere center, the larger

the incident angle is, which leads to a larger turning angle be-

tween the propagation direction after refraction and the ori-

ginal propagation direction. In the meanwhile, more energy is

reflected back into the surrounding medium with the increase

of the incident angle; a clear nonsymmetric interference pat-

tern can be observed in the backward-scattering direction.

These features are very similar to the case of a bunch of rays

strikes on a sphere of large size parameter as shown in Fig. 6.

Nevertheless, the scattering behavior becomes more compli-

cated in the problem under study, especially the field distribu-

tions inside the particle, which is very sensitive to the relative

location of the inclusion inside the host sphere.

4. CONCLUSION

Based on the recent improvements in the GLMT concerning

the evaluation of BSCs [20–24], this paper presents a study

on the scattering problem of a sphere with an eccentrically

located spherical inclusion illuminated by an arbitrary shaped

electromagnetic beam in an arbitrary orientation. A computer

program is written in FORTRAN based on the theoretical

work, which permits the prediction of various scattering data.

Besides completing the scattering results in the far zone pub-

lished in [36,37], numerical results concerning spatial distribu-

tions of the near-surface field outside of the host sphere and

internal field inside the host sphere are presented for the first

time in this paper for various parameter values, such as re-

garding orientation of the incident Gaussian beam, location

of the beam waist center of the Gaussian beam, and location

of the spherical inclusion.

Fig. 8. (Color online) Normalized source function distribution for external and internal field over the x–z plane with location of the Gaussian beam
waist center as a parameter. The Gaussian beam propagates along the x axis from left to right..
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Concerning the scattered field distributions in the far zone,

when the symmetry of the problem is broken (either due to a

loss of symmetry of the particle configuration or to a loss of

symmetry of the location of the illuminating beam), the symme-

try of the scattering pattern in the far zone is broken as well.

The inclusion acts as a second radiating source, contributing to

an interference structure in the scattering pattern. A second set

of diffractionlike rings is observedwith lower intensity relative

to the main diffraction rings, whose frequency varies signifi-

cantly depending on the location and radius of the inclusion.

Well-apparent butterfly patterns canbeobserved in themovies,

associated with symmetry breakings. Such symmetry break-

ings arise when the inclusion is more and more eccentrically

located, insteadof being locatedat the center of thehost sphere

(coated sphere problem), or when the beamwaist center of the

Gaussian beam is not situated at the center of the host sphere.

Focused Gaussian beam effects have also been underlined in

which radiating sources (host sphere and inclusion) appear to

be more focused and brighter, with an enhancement and

spreading of the interference structure, with respect to plane

wave illumination.

From numerical results concerning spatial distributions of

near-surface and internal fields, we can notice that the well-

known high intensity peak in the near-surface field behind

the scatterer, whose intensity could be more than 100 times

the incident plane wave intensity, is degenerated significantly

due to the existence of an inclusion or when the plane wave

illumination is replaced by a focused Gaussian beam illumina-

tion. Furthermore, the narrower the Gaussian beam waist is,

the lower the intensity of the high energy peak will be, indicat-

ing that the focusing effect causedby the curved surfaceof host

spherical particle plays a significant role in the construction of

the high intensity peak in the shadow side of the host sphere,

which is similar to the transmission spherical aberration caus-

tic in optical systems.

Another prominent feature is that the peak observed in the

illuminated side of the host sphere in the case of plane wave

illumination is significantly degenerated when a focused Gaus-

sian beam illumination is applied, which indicates that the con-

struction of this peak is greatly associated with the off-axis

partial waves propagating in the A zone depicted in Fig. 6.

When the particle systemwith broken spherical symmetry is

illuminated obliquely by a focused Gaussian beam, the main

energy flows are observed to be out of the original track along

the propagation direction of the incident beam. A branch of en-

ergy is divided from themain energy flows. Furthermore, when

the beam waist center of the Gaussian beam is not located in

the center of the host sphere, the incident beam is bent toward

the horizontal centerline along the x axis due to the refraction

effect at the surface of the host sphere. The farther the beam

waist center is away from the host sphere center, the larger the

turning angle between the refraction direction and the original

propagation direction would be. In the meanwhile, a larger

fraction of electromagnetic energy is reflected back into the

surrounding medium with the increase of the incident angle;

a clear nonsymmetric interference pattern can be observed

in the backward scattering direction.

The original motivation of our present work lies on the fu-

ture detection of the interesting optical (Hamiltonian) chaos

features depicted in [39–41], which are raised by the complex

optical interactions between the eccentrically located inclu-

sion with the host sphere, in the case of loss of spherical

symmetry. The study on internal and near-surface field distri-

bution would contribute to the understanding of multiple

scattering interactions between closely spaced particles or be-

tween different parts of a scattering system, such as the scat-

tering model under study. It would also have contributions to

the study of the nonlinear optical mechanisms leading to la-

sering in cavity quantum electrodynamic (QED) as well as to

the improvement of optical sensors and imaging, such as the

study of fluorescence and Raman effects. Furthermore, the

work on scattered field distributions would be helpful to

the improvements of relevant laser-related detecting techni-

ques, such as in the field of particle characterization or iden-

tification of internal nonuniformities.

APPENDIX A

In general, the translational addition theorem for VSWFs can

be written

M
ðiÞ
nmðkrÞ ¼

X

∞

n0¼1

X

n0

m¼−n0

Amn
m0n0ðkr0ÞM

ðiÞ
n0m0ðkr1Þ

þ Bmn
m0n0

ðkr0ÞN
ðiÞ
n0m0ðkr1Þ; ðA1Þ

N
ðiÞ
nmðkrÞ ¼

X

∞

n0¼1

X

n0

m¼−n0

Bmn
m0n0ðkr0ÞM

ðiÞ
n0m0ðkr1Þ

þ Amn
m0n0

ðkr0ÞN
ðiÞ
n0m0ðkr1Þ: ðA2Þ

If the translation is along the z axis, the double summation

above reduces to a single summation over the index n0. So we

obtain

M
ðiÞ
nmðkrÞ ¼

X

∞

n0¼1

Am
nn0ðkr0ÞM

ðiÞ
n0m

ðkr1Þ þ Bm
nn0ðkr0ÞNðiÞ

n0mðkr1Þ;

ðA3Þ

N
ðiÞ
nmðkrÞ ¼

X

∞

n0¼1

Bm
nn0ðkr0ÞMðiÞ

n0mðkr1Þ þ Am
nn0ðkr0ÞNðiÞ

n0mðkr1Þ:

ðA4Þ

For axial translations and positive values of m, the vector

addition coefficients Amn
mn0 and Bmn

mn0 can be related to the scalar

addition coefficients Cmn
mn0 :

Amn
mn0ðkz0Þ¼Cmn

mn0ðkz0Þþ
kz0

n0þ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn0
−mþ1Þðn0þmþ1Þ
ð2n0þ1Þð2n0þ3Þ

s

Cmn
mn0þ1

ðkz0Þ

þkz0

n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn0
−mÞðn0þmÞ

ð2n0þ1Þð2n0
−1Þ

s

Cmn
mn0

−1
ðkz0Þ; ðA5Þ

Bmn
mn0ðkz0Þ ¼ jkz0

m

n0ðn0 þ 1ÞC
mn
mn0ðkz0Þ: ðA6Þ

For negative values of the index m, the following symmetry

relations can be used for practical calculations:
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A−mn
−mn0

ðkz0Þ ¼ Amn
mn0 ðkz0Þ; B−mn

−mn0ðkz0Þ ¼ −Bmn
mn0ðkz0Þ; ðA7Þ

A−mn
−mn0ðkz0Þ ¼ Amn

mn0ð−kz0Þ; B−mn
−mn0ðkz0Þ ¼ Bmn

mn0ð−kz0Þ: ðA8Þ

The recurrence relations for the Cmn
mn0 coefficients are

simple in the case of axial translation and positive m:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The convention Cmn
mn0 ¼ 0 form > n andm > n0 is assumed in

the above equations.

Initial values are given:

C
00;ð1Þ
0n0 ðkz0Þ ¼ ð−1Þn0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n0 þ 1
p

jn0ðkz0Þ
for regular VSWFs translation;

C
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0n0 ðkz0Þ ¼ ð−1Þn0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n0 þ 1
p

h
ð1Þ
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for radiating VSWFs translation:
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APPENDIX B

The recurrence relation for the Wigner d functions are given

below, which can also be found in [57], Appendix B:

dnþ1
ms ðβÞ ¼ 1

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Initial values are given:

d
nmin−1
ms ðβÞ ¼ 0; ðB2Þ

d
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ms ðβÞ ¼ ξms2
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# ð2nminÞ!
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1=2
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in which

ξms ¼
%

1 if s ≥ m

ð−1Þm−s if s < m
; ðB4Þ

nmin ¼ maxðjmj; jsjÞ; x ¼ cos β: ðB5Þ

The Wigner d functions have real values and share the follow-

ing symmetry properties:

dnmsðβÞ ¼ ð−1Þmþsdn
−m;−sðβÞ ¼ dn

−s;−mðβÞ; ðB6Þ

dnmsðπ − βÞ ¼ ð−1Þn−sdn
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By specifying s ¼ 0, we can obtain the associated Legendre

functions in terms of the Wigner d functions:
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s
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in which Pm
n ðcos βÞ are the associated Legendre functions.

With some straightforward derivations, we can obtain
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The generalized Lorenz–Mie theory in the strict sense describes the interaction between an illuminating

arbitrary shaped beam and a homogeneous sphere characterized by its diameter d and its complex refractive

index m. It relies on the method of separation of variables expressed in spherical coordinates. Other

generalized Lorenz–Mie theories (for other kinds of scatterers) expressed in spherical coordinates are

available too. In these theories, the illuminating beam is expressed by using expansions with expansion

coefficients depending on some fundamental coefficients named beam shape coefficients, more specifically

spherical beam shape coefficients. In this paper we present a general formulation for the transformation of

spherical beam shape coefficients through rotations of coordinate systems.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The generalized Lorenz–Mie theory in the strict sense describes

the interaction between an illuminating arbitrary shaped beam and a

homogeneous spherical particle described by its diameter d and its

complex refractive index m, e.g. [1], [2] with recent reviews by Lock

and Gouesbet [3] and by Gouesbet [4]. In this theory, which relies on

the method of separation of variables in spherical coordinates, the

electromagnetic components of the illuminating beam are described

by multipole expansions over a set of basic functions. The expansion

coefficients are expressed versus fundamental coefficients, usually

denoted as gn,TM
m and gn,TE

m (n from 1 to ∞, m from −n to +n, TM for

Transverse Magnetic, TE for Transverse Electric), known as beam

shape coefficients. More specifically, in the present case where we use

spherical coordinates, these coefficients may also be called spherical

beam shape coefficients.

There exist other generalized Lorenz–Mie theories, for other kinds

of scatterers, in spherical coordinates, in which the illuminating beam

is expressed by using spherical beam shape coefficients too. These

other theories concern the cases of multilayered spheres [5], of

spherical particles with an eccentrically located spherical inclusion [6]

and of aggregates or of assemblies of spheres [7].

In any of these theories, one of the most important and

complicated task, to which much effort has been devoted, is the

evaluation of the beam shape coefficients. Several methods have been

developed and studied, sharing various degrees of time running

efficiency, or of flexibility, namely by using quadratures [8], finite

series [9], localized approximations generating localized beammodels

[10], [11], or a hybrid method taking advantage of both quadratures

and of a localized approximation, named the integral localized

approximation [12].

The evaluation of beam shape coefficients has also been investi-

gated by relying on addition theorems for translations of coordinate

systems, an approach originally introduced by Doicu and Wriedt [13],

and also used by Zhang and Han [14]. In the present paper, we are

starting a series concerning the evaluation of beam shape coefficients

by relying on addition theorems for rotations (not translations) of

coordinate systems (precursors will be acknowledged later).

The specific problem to be studied may be defined as follows. Let

us consider a Cartesian system of coordinates, denoted as x=(x, y,

and z), associated with usual spherical coordinates (r, θ, and φ), called

the unrotated system, and let gn,TM
m and gn,TE

m be the beam shape

coefficients for the description of the illuminating beam in this

unrotated system. Let us consider a second system of coordinates,

called the rotated system, deduced from the unrotated system by a

rotation defined by Euler angles (α, β, and γ), later defined more

precisely. Quantities in the rotated system are denoted by using tilde-

decorations. Therefore the Cartesian coordinates of the rotated system

are denoted as x ̃=(x ̃, ỹ, and z̃) and they are associated with spherical
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coordinates (r ̃=r, θ̃, and φ̃). The beam shape coefficients in the

rotated system are denoted as g̃mn;TM and g̃mn;TE: We intend to express

the beam shape coefficients in the rotated system in terms of beam

shape coefficients in the unrotated system.

The previous paragraphs provided an abstract and minimal

definition of the problem to be studied in the present series of

papers. It is however convenient to dress this problem by introducing

extra-elements. The first element concerns the definition of the

unrotated system. Of course, any system may be taken as being the

unrotated system and, in particular, we are free to invert the role of

the unrotated and of the rotated systems, pretending that the rotated

system is now to be taken as being the unrotated one and vice

versa. However, to better approach the history of GLMTs and some

traditional points of view taken from this history, the unrotated

system will be given a specific definition as follows.

Following the description of coordinate systems given in Fig. 1 of

Ref. [1], we consider a Cartesian system of coordinates, with origin OG
and coordinates (u, v, and w), attached to the illuminating beam. We

take the axis OGw as being the main axis of propagation of the beam

(particularly easy to define in the case of axisymmetric beams, such

as a Gaussian beam). Next, we decide to describe the scattering

phenomena by using another Cartesian coordinate, with origin OP and

coordinates (x, y, and z). We furthermore make the axes OPx, OPy, and

OPz parallel to the axes OGu, OGv, and OGw respectively. Then, we

define the coordinates (x, y, and z) as being the Cartesian coordinates

of the unrotated system.

Up to now, we have only considered coordinate systems and

nothing has been said concerning the nature of the scattering

particles. The second element to dress the problem is concerned

with the introduction of particles. These particles are such that the

scattering problem they generate can be solved by using separation of

variables in spherical coordinates. They are originally attached to the

frame OPxyz which may be called the (unrotated) particle frame.

When rotating this frame, the particle, which is attached to the frame,

is assumed to follow the rotation of the frame, i.e. the unrotated

particle frame becomes a rotated particle frame.

Let us begin by assuming that the scatterer is a homogeneous

sphere defined by its diameter d and its complex refractive index m

and, for the sake of simplicity, let us assume that the incident beam is

a Gaussian beam or more generally what has been originally called an

axisymmetric light profile [15], and later better studied under the

name of axisymmetric beams [16]. We may then be facing two

different situations. In the first case, the axis OGw of the illuminating

beam coincides with the axis OPz of the particle frame. In other words,

the center OP of the particle is located on the axis of the beam. This is

called the on-axis case. Otherwise, we are facing the off-axis case. That

these two cases are deeply different may be appreciated by the

following fact. In the on-axis case, it can be demonstrated that the

double set {gn,TM
m , gn,TE

m } of beam shape coefficients reduces to a single

set {gn}, n=1…∞, of special beam shape coefficients. Accordingly, the

on-axis version of the GLMT becomes much simpler than the off-axis

version. The rotation from OPxyz to Opx ̃ỹz̃ does not modify the

scattering phenomena since the rotation of the attached sphere,

which possesses a high degree of symmetry, does not modify the

scattering problem. But it may modify deeply the computations

involved to describe the phenomena. For instance, assume that we

have an on-axis situation with special beam shape coefficients gn.

After the rotation, the center OP of the particle is still located on the

axis of the beam, but the axis OGw of the illuminating beam does not

coincide any more with the axis, now denoted as Opz̃, of the particle

frame and, as we shall see (in Part II of this series), the description of

the illuminating beam must now been made again in terms of a

double set of beam shape coefficients now denoted as g̃mn;X , X=TM or

TE. In other words, the rotation of the particle frame induces a more

complicated situation without any benefit since the eventual physical

results have to remain unchanged. Note however that no complica-

tion is generated by the rotation of the particle frame in the case of off-

axis illumination since we need to use gn
m-kinds of coefficients in both

the rotated and unrotated systems. A similar discussion could apply to

the case of multilayered spheres [5].

However, let us now consider particles which, in general, do not

possess the property of invariance through rotation, although the

method of separation of variables is still applied to them in spherical

coordinates, e.g. [6], [7]. For being specific, let us more particularly

consider the case of a sphere, with center located at OP, with an

eccentrically located spherical sphere, or inclusion [6]. Let us assume

the simplest situation available, that is to say the case when the center

of the inclusion is located on the axis OPz of the unrotated system. This

may be viewed as a case of parallel illumination since the axis of the

beam OGw is parallel to (or even coincide with) the axis of the

unrotated system. Now, in contrast, in the rotated system, we are

facing a quite different situation thatwemay call a situation of oblique

illumination. It is under this name (oblique illumination) that the

topic has been initiated by Han et al. [17,18]. The problemmay then be

expressed as the one of the evaluation of beam shape coefficients in

oblique illumination in terms of beam shape coefficients in parallel

illumination, providing a new method of evaluation of beam shape

coefficients.

This paper is the first part of a series of papers. Part I is devoted to

the general formulation and ends with a theorem which shall be used

as a starting point in other subsequent parts. Part II is devoted to

axisymmetric beams (particularly to on-axis axisymmetric beams),

Part III to special values of Euler angles and Part IV to the case of an

illuminating plane wave. A particular effort in the special cases of

Parts II–IV will be devoted to the derivation of results in compact

forms, rather than in terms of series (for better computer efficiency).

The present Part I is organized as follows. We begin with a few

sections defining preliminary materials required for the sequel.

Section 2 is devoted to vector spherical wave functions (VSWFs).

Section 3 operates a conversion of the description of the incident

fields, from the original Bromwich formulation used when devel-

oping the GLMT stricto sensu to a description in terms of VSWFs.

Section 4 deals with the definition of Euler angles (α, β, and γ)

allowing one to bring the unrotated system (x, y, and z) to the

rotated system (x ̃, ỹ, and z ̃). Section 5 deals with the rotation of

VSWFs. Section 6 establishes the main result of the paper, i.e. it

allows one to express the spherical beam shape coefficients in the

rotated system versus those in the unrotated system. Section 7 is a

conclusion in which the main result is expressed as a theorem.

There is also an Appendix A devoted to a technical checking.

2. Vector spherical wave functions (VSWFs)

The vector spherical wave functions (VSWFs) used in this paper

are the same than the ones which have been used in [7], [6], and [19].

They read as:

M
jð Þ
mn = −1ð Þ

m
imzn krð Þπ

m
n cosθð Þ exp imφð Þiθ−zn krð Þτ

m
n cosθð Þ exp imφð Þiφ

h i

ð1Þ

N
jð Þ
mn = −1ð Þ

mfn n + 1ð Þ

kr
zn krð ÞP

m
n cosθð Þ exp imφð Þir

+
1

kr

∂

∂r
rzn krð Þ

" #

τ
m
n cosθð Þ exp imφð Þiθ

+
im

kr

∂

∂r
rzn krð Þ

" #

π
m
n cosθð Þ exp imφð Þiφg

ð2Þ

in which ir, iθ, and iφ are standard unit vectors associated with the

coordinates r, θ, and φ respectively of a spherical coordinate system

(r, θ, and φ), k is the wave-number in the considered material, zn
designates any spherical Bessel function (Ψn

(j), j=1, 2, 3, and 4 in the
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Meixner and Schäfke notation [20], also denoted jn, yn, hn
(1) and hn

(2)

respectively), and πn
m, τn

m designate the generalized Legendre func-

tions according to:

π
m
n cosθð Þ =

Pmn cosθð Þ

sinθ
ð3Þ

τ
m
n cosθð Þ =

d

dθ
P
m
n cosθð Þ ð4Þ

in which the associated Legendre functions (often misnamed as

polynomials by physicists) read as:

P
m
n cosθð Þ = −1ð Þ

m
sinθð Þ

m dmPn cosθð Þ

d cosθð Þm
: ð5Þ

The VSWFs of Eqs. (1) and (2)may be obtained from Stratton ([21],

pp. 414–416) by adding the solutions with a subscript “e” and i times

the solutions with a subscript “o”. They are equal to those denotedM

and N by Stratton, using a more concise notation, without any

subscript or superscript. However, the prefactor (−1)m does not

appear in Stratton due to the fact that this author uses an alternative

definition of the associated Legendre functions, namely Eq. (5) where

(−1)m is dropped. The functions defined by Eqs. (1) and (2) furthermore

agree with the ones used in [22], again modulo (−1)m. Such prefactors

may appear recurrently throughout this paper (and the other papers in

the associated series).

The superscript (j) in Eqs. (1) and (2) refers to the spherical Bessel

function to be used. We shall only need Ψn
(1) satisfying:

jn krð Þ≡Ψ
1ð Þ
n krð Þ =

Ψn krð Þ

kr
ð6Þ

in which Ψn designates Ricatti–Bessel functions.

Other classical expressions are recalled:

d2

dr2
+ k

2

" #

rΨ
jð Þ
n krð Þ

" #

=
n n + 1ð Þ

r
Ψ

jð Þ
n krð Þ ð7Þ

P
−m
n cosθð Þ = −1ð Þ

m n−mð Þ!

n + mð Þ!
P
m
n cosθð Þ: ð8Þ

Also, this implies:

P
m
n cosθð Þ = −1ð Þ

m− mj j

2
n− mj jð Þ!

n−mð Þ!
P

mj j
n cosθð Þ ð9Þ

that is to say we may uniquely define Pn
m(cosθ), ∀m2Z. From Eqs. (3)

and (4), we deduce that a similar relation also holds for the

generalized Legendre functions πn
m and τn

m. Such relations are of

interest because the VSWFs are expressed in terms of Pn
m, πn

m, and τn
m

while field expressions in the Bromwich formalism are expressed in

terms of Pn
|m|, πn

|m|, and τn
|m|. Eq. (9), and similar relations, constitute an

improvement with respect to Eq. (12) in [7] and Eq. (13) in [6].

3. Incident fields: conversion from Bromwich formulation

to VSWFs

For the problem under study, we only need to deal with incident

fields. We recall a basic background, extracting relevant information

from [19].

The generalized Lorenz–Mie theory stricto sensu has originally

been developed by using Bromwich scalar potentials UTM and UTE (TM

for Transverse Magnetic and TE for Transverse Electric), for the

incident, the scattered, and the internal (or sphere) waves. When the

Bromwich scalar potentials are known, electric and magnetic fields of

the TM and TE kinds may be obtained by using derivative rules,

namely Eqs. (10)–(19) in [1]. Furthermore, from the definitions of

the TM and TE waves, we have:

Hr;TM = Er;TE = 0: ð10Þ

Total field components are obtained by summing TM- and TE-

components. In the present paper, it is sufficient to consider electric

incident field components. The Bromwich scalar potentials for the

incident wave read as [1]:

U
i
TM =

E0
k
∑
∞

n=1
∑
+ n

m=−n
c
pw
n g

m
n;TMΨn krð ÞP

mj j
n cosθð Þ exp imφð Þ ð11Þ

U
i
TE =

H0
k
∑
∞

n=1
∑
n

m=−n
c
pw
n g

m
n;TEΨn krð ÞP

mj j
n cosθð Þ exp imφð Þ ð12Þ

in which the superscript “i” stands for “incident”, gn,X
m (X=TM,TE) are

the beam shape coefficients, and the coefficients cn
pw (“pw” standing

for “plane wave”) are coefficients which appear naturally in the

classical Lorenz–Mie theory (expressed in the Bromwich formulation)

and, for this reason, are isolated [15]. They read as:

c
pw
n =

1

k
−ið Þ

n + 1 2n + 1

n n + 1ð Þ
: ð13Þ

From the expressions for the Bromwich scalar potentials, Eq. (10),

and the rules of derivation of the fields given in Ref. [1], wemay obtain

the expressions for the components of the incident electric field. We

may obtain the components of the magnetic field too, but we limit

ourselves to the electric field components which are found to be:

E
i
r = kE0 ∑

∞

n=1
∑
+ n

m=−n
c
pw
n g

m
n;TM Ψ

″

n krð Þ + Ψn krð Þ
h i

P
mj j
n cosθð Þ exp imφð Þ

ð14Þ

E
i
θ =

E0
r
∑
∞

n=1
∑
+ n

m=−n
c
pw
n g

m
n;TMΨ

′

n krð Þτ
m
n cosθð Þ + mg

m
n;TEΨn krð Þπ

mj j
n cosθð Þ

h i

exp imφð Þ

ð15Þ

E
i
φ =

iE0
r
∑
∞

n=1
∑
+ n

m=−n
c
pw
n mg

m
n;TMΨ

′

n krð Þπ
mj j
n cosθð Þ + g

m
n;TEΨn krð Þτ

mj j
n cosθð Þ

h i

exp imφð Þ

ð16Þ

in which a prime denotes a derivative with respect to the argument.

In terms of VSWFs, the incident field can be expressed as [23]:

E
i
= ∑

∞

n=1
∑
+ n

m=−n
amnM

1ð Þ
mn krð Þ + bmnN

1ð Þ
mn krð Þ

h i

: ð17Þ

In particular, noting that (Mmn
(1)(kr))r is zero from Eq. (1) and

expressing (Nmn
(1)(kr))r from Eq. (2), we may express the radial

component Er
i as:

E
i
r =

1

kr
∑
∞

n=1
∑
+ n

m=−n
−1ð Þ

m
bmnn n + 1ð Þjn krð ÞP

m
n cosθð Þexp imφð Þ ð18Þ

which must identify with Eq. (14). Using various expressions from

Section 2, this identification allows one to determine bmn as:

bmn = kE0c
pw
n −1ð Þ

m
−1ð Þ

m− mj j

2
n−mð Þ!

n− mj jð Þ!
g
m
n;TM: ð19Þ
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Similarly, working out the component Eθ
i allows one to confirm

Eq. (19) and to evaluate the coefficients amn reading as:

amn = −ikE0c
pw
n −1ð Þ

m
−1ð Þ

m− mj j

2
n−mð Þ!

n− mj jð Þ!
g
m
n;TE: ð20Þ

Dealing with Eφ
i does not provide more information, but simply

confirms the expressions found for amn and bmn. We have therefore

established the connection between the beam shape coefficients gn,X
m of

the original formulation of GLMT and the coefficients amn and bmn of the

corresponding formulation in terms of VSWFs.

4. Euler angles

The relationship between the unrotated system (x, y, and z) and

the rotated system (x̃, ỹ, and z ̃) is defined by using Euler angles α, β,

and γ as defined by Edmonds [24], and used byMishchenko et al. [25],

Doicu et al. [23], or Han et al. [17,18]. The definition is as follows.

(i) A first rotation, applied to the unrotated system (x, y, and z), by

an angle α (0≤αb2π) about the z-axis, brings the unrotated

system to a α-rotated system with Cartesian coordinates (xα,

yα, and zα).

(ii) A second rotation, applied to the α-rotated system (xα, yα, and

zα), by an angle β (0≤βbπ) about the yα-axis, brings the α-

rotated system to a β-rotated system with Cartesian coordi-

nates (xβ, yβ, and zβ).

(iii) A third rotation, applied to the β-rotated system (xβ, yβ, and zβ),

by an angle γ (0≤γb2π) about the zβ-axis, brings the β-rotated

system to a γ-rotated system (simply called the rotated

system) with Cartesian coordinates (xγ, yγ, and zγ) better

denoted as (x ̃, ỹ, and z ̃).

All rotations defined above are positive (by definition, a positive

rotation about a given axis is a rotation which would carry a right-

handed screw in the positive direction along that axis).

Let D(α, β, γ) be the operator denoting the rotation with Euler

angles (α, β, and γ) from coordinates x to coordinates x ̃. The inverse

rotation is achieved by undoing successively the rotations associated

with γ, β, and α in that order. Therefore, we have:

D
−1

α;β;γð Þ = D −γ;−β;−αð Þ: ð21Þ

5. Rotation of VSWFs

In this section, we discuss the rotation of VSWFs (addition theorem

for rotation). Because this issue is central to the present work, we shall

develop it along two approaches and, thereafter, we shall show how

these two approaches agree. By using two approaches, we will obtain

a better understanding of the issue, useful for the sequel.

5.1. First approach, by using Wigner d-functions

The first approach relies on the use of Wigner d-functions,

according to Mishchenko et al. [25]. A part of this section is devoted

to some amount of translations between notations. Indeed, instead of

Eq. (17), Mishchenko et al. used (p. 116):

E
i
= ∑

∞

n=1
∑
n

m=−n
amnð ÞMRgMmn krð Þ + bmnð ÞMRgNmn krð Þ

 !

ð22Þ

in which we already introduced a few obvious changes of notations. In

particular, the subscriptM is used to avoid any confusionwith amn and

bmn in Eq. (17). FromMishchenko et al. [25], Appendix C, with again a

few obvious changes of notations, we have (p. 372):

RgMmn krð Þ = RgMmn kr; θ;φð Þ = γmnjn krð ÞCmn θ;φð Þ ð23Þ

in which:

γmn =
2n + 1ð Þ n−mð Þ!

4πn n + 1ð Þ n + mð Þ!

" #1=2

ð24Þ

and jn(kr) is defined by Eq. (6). Furthermore:

Cmn θ;φð Þ = im
Pmn cosθð Þ

sinθ
iθ−

dPmn cosθð Þ

dθ
iφ

" #

e
imφ

: ð25Þ

Let us note that the definition of associated Legendre function Pn
m

(cosθ) used by Mishchenko et al. [25] is the same as ours, and

therefore simultaneously different from the one used by Stratton [21].

Introducing the generalized Legendre functions πn
m and τn

m, see

Eqs. (3) and (4), Eq. (25) may be rewritten as:

Cmn θ;φð Þ = e
imφ

imπ
m
n cosθð Þiθ−τ

m
n cosθð Þiφ

h i

: ð26Þ

Inserting Eq. (26) into Eq. (23), we obtain:

RgMmn krð Þ = RgMmn kr; θ;φð Þ = γmn jn krð Þe
imφ

imπ
m
n cosθð Þiθ−τ

m
n cosθð Þiφ

h i

:

ð27Þ

Now, from Eq. (1):

M
1ð Þ
mn krð Þ = −1ð Þ

m
jn krð Þe

imφ
imπ

m
n cosθð Þiθ−τ

m
n cosθð Þiφ

h i

: ð28Þ

Hence, from Eqs. (27) and (28), we have:

RgMmn

M
1ð Þ
mn

= −1ð Þ
m
γmn = −1ð Þ

m 2n + 1ð Þ n−mð Þ!

4πn n + 1ð Þ n + mð Þ!

" #1=2

: ð29Þ

Similarly, we readily obtain:

RgNmn

N
1ð Þ
mn

=
RgMmn

M
1ð Þ
mn

= −1ð Þ
m
γmn = −1ð Þ

m 2n + 1ð Þ n−mð Þ!

4πn n + 1ð Þ n + mð Þ!

" #1=2

:

ð30Þ

Still fromMishchenko et al. [25], Appendix C, applying a D(α, β, γ)-

rotation to a system of coordinates x=(r, θ, φ) leading to a new

system x ̃=(r, θ̃, φ̃), the VSWFs, in the version used by Mishchenko

et al., transform according to (again with obvious convenient changes

of notations):

RgMmn kr; θ̃; φ̃
& '

= ∑
n

s=−n
RgMsn kr; θ;φð ÞD

n
sm α;β;γð Þ ð31Þ

with a quite similar relation forNs, namely we could replaceM by K in

Eq. (31), with K standing both for M and N.

In agreement with Eq. (21), we conversely have:

RgMmn kr; θ;φð Þ = ∑
n

s=−n
RgMsn kr; θ̃; φ̃

& '

D
n
sm −γ;−β;−αð Þ: ð32Þ

In Eq. (31), we have:

D
n
sm α;β;γð Þ = e

−isα
d
n
sm βð Þe

−imγ
ð33Þ
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in which dsm
n (β) denotes the Wigner d-functions. Mishchenko et al.

[25], Appendix B, provides four different but equivalent ways to

express these functions, according to:

d
n
sm βð Þ

 ! 1ð Þ
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n + sð Þ! n−sð Þ! n + mð Þ! n−mð Þ!
p

∑
σ
−1ð Þ

σ
cos

β

2

$ %2n−2σ + s−m
sin

β

2

$ %2σ−s + m

σ! n + s−σð Þ! n−m−σð Þ! m−s + σð Þ!

ð34Þ

d
n
sm βð Þ

 ! 2ð Þ
= −1ð Þ

n−m ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n + sð Þ! n−sð Þ! n + mð Þ! n−mð Þ!
p

∑
σ
−1Þð Þ

σ
ðcos

β

2
Þ
s + m + 2σ

sin
β

2

$ %2n−s−m−2σ

σ! n−s−σð Þ! n−m−σð Þ! s + m + σð Þ!

ð35Þ

d
n
sm βð Þ

 ! 3ð Þ
= −1ð Þ

n + s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n + sð Þ! n−sð Þ! n + mð Þ! n−mð Þ!
p

∑
σ
−1ð Þ

σ
cos

β

2

$ %

2σ−s−m
sin

β

2

$ %

2n + s + m−2σ

σ! n + s−σð Þ! n + m−σð Þ! σ−s−mð Þ!

ð36Þ

d
n
sm βð Þ

 ! 4ð Þ
= −1ð Þ

s−m ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n + sð Þ! n−sð Þ! n + mð Þ! n−mð Þ!
p

∑
σ
−1ð Þ

σ
cos

β

2

$ %

2n−2σ−s + m
sin

β

2

$ %

2σ + s−m

σ! n−s−σð Þ! n + m−σð Þ! s−m + σð Þ!
:

ð37Þ

Each of these different versions may be processed according to a

certain procedure to be explained below. However, for the sake of

comparison with the second approach explained in the next sub-

section, we remark that Han et al. [17] introduced a function usm
(n)(β),

which is strictly equal to a Wigner d-function dsm
(n)(β) introduced by

Edmonds [24], reading as:

u
nð Þ
sm βð Þ =

n + sð Þ! n−sð Þ!

n + mð Þ! n−mð Þ!

& '1=2

∑
σ

n + m
n−s−σ

( )

n−m
σ

( )

−1ð Þ
n−s−σ

cos
β

2

( )2σ + s + m

sin
β

2

( )2n−2σ−s−m

:

ð38Þ

If we compare the exponents of the functions cos and sin between

Eq. (38) on one hand, and Eqs. (34)–(37), on the other hand, we see

that usm
(n)(β) compares favourably with the second version [dsm

n (β)](2).

Indeed, we have:

d
n
sm βð Þ

 ! 2ð Þ
= −1ð Þ

m + s
u

nð Þ
sm : ð39Þ

For this reason, we proceed further by choosing the second version

in the set of Eqs. (34)–(37). We now use Eq. (31) in which we insert

Eqs. (33), (35), and (29) to obtain, after a few lines:

M
1ð Þ
mn kr; θ̃;φ̃

$ %

=
−1ð Þn + m

n−mð Þ!
∑
n

s=−n
−1ð Þ

m + s
n−sð Þ!M

1ð Þ
sn kr; θ;φð Þe

−isα
e
−imγ

∑
σ
−1ð Þ

σ n + m
n−s−σ

( )

n−m
σ

( )

cos
β

2

( )2σ + s + m

sin
β

2

( )2n−2σ−s−m

:

ð40Þ

This may be rewritten as:

M
1ð Þ
mn kr; θ̃;φ̃

$ %

= ∑
n

s=−n
G
s
mn α;β;γð ÞM

1ð Þ
sn kr; θ;φð Þ ð41Þ

in which:

G
s
mn α;β;γð Þ =

−1ð Þn + m

n−mð Þ!
n−sð Þ!e

−isα
e
−imγ

∑
σ
−1ð Þ

s+m
−1ð Þ

σ n + m
n−s−σ

( )

n−m
σ

( )

cos
β

2

( )

2σ+ s+m

sin
β

2

( )

2n−2σ−s−m

:

ð42Þ

5.2. Second approach

Following Han et al. [17], we write:

−1ð Þ
m
P
m
n cosθð Þe

imφ
= ∑

n

s=−n
ρ m; s;nð Þ −1ð Þ

s
P
s
n cosθ̃
$ %

e
isφ̃

ð43Þ

ρ m; s;nð Þ = −1ð Þ
s + m

e
isγ n + mð Þ! n−sð Þ!

n−mð Þ! n + sð Þ!

& '

1=2

u
nð Þ
sm βð Þe

imα
ð44Þ

u
nð Þ
sm βð Þ =

n + sð Þ! n−sð Þ!

n + mð Þ! n−mð Þ!

& '1=2

∑
σ
−1ð Þ

n−s−σ n + m
n−s−σ

( )

n−m
σ

( )

cos
β

2

( )

2σ + s + m

sin
β

2

( )

2n−2σ−s−m

:

ð45Þ

Eqs. (44) and (45) agree perfectly well with Eqs. (3) and (4)

given by Han et al. [17]. There are however small formal differences

between Eq. (43) and Eq. (2) in Han et al. [17], namely concerning

the factors (−1)m in the l.h.s and (−1)s in the r.h.s. of Eq. (43).

They are due to the fact that Han et al. [17] do not use our definition

of the associated Legendre functions, but the alternative one from

Stratton [21]. Let us note that the l.h.s of Eq. (43) concerns the

unrotated system (angular variables are not tilde-decorated). Also,

the subscript σ in the summation of Eq. (45) runs over all values

which make the arguments of the factorials, in the binomials, non-

negative (the same is true for Eqs. (34)–(37)).

Han et al. [17] claimed that they derive their formulation from

Edmonds [24]. However, a missprint in Edmonds [24], appearing

in Stein too [26], had to be corrected, namely the terms eisγ and eimα

in the r.h.s. of Eq. (44) were erroneously written as eisα and eimγ

respectively. It is rather easy to convince the reader that the original

equations in Edmonds [24] are erroneous. Indeed, let us simply

consider a rotation of angle α about the z-axis from Cartesian

coordinates (x, y, and z) with associated spherical coordinates (r, θ,

and φ) to an α-rotated system and observe that, under such a

rotation:

P
m
n cosθð Þe

imφ
= P

m
n cosθαð Þe

imφαe
imα

ð46Þ

explicitly showing that α is associated with m, not with s. Another

problem in Edmonds [24] concerns his equation 4.1.4. Afterward,

using also Eqs. 4.1.10, 4.1.12, 4.1.15, we might believe that the l.h.s. of

Eq. (43) concerns a rotated system, in contrast with the fact that it

does concern an unrotated system. The validity of Eq. (43) may be

checked by examining it for various specific values of n and m. The

reader might also refer to a book by Varshalovich et al. [27] and to a

thesis by Guoxia Han [28] agreeing with our Eqs. (43)–(45) that we

use as the starting point for the second approach.

Let us now consider Eq. (43), multiply by zn(kr), as defined after

Eqs. (1) and (2), take the gradient, and vectorially multiply on the

right by r. We obtain:

−1ð Þ
m
∇zn krð ÞP

m
n cosθð Þe

imφ
h i

xr

= ∑
+ n

s=−n
ρ m; s;nð Þ −1ð Þ

s
∇zn krð ÞP

s
n cosθ̃
 !

e
isφ̃

h i

xr:

ð47Þ

In order to interpret this equation, we make a detour relying on

the book by Stratton. Following Stratton [21], p. 415, and recalling

that our Ms are exactly equal to those of Stratton, as pointed out in

Section 2, we introduce the following equation:

M
jð Þ
mn krð Þ = ∇x iru rð ÞΨmnð Þ = Lmnxiru rð Þ ð48Þ
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in which u(r) is an unknown scalar function of r. We supple-

mented Stratton's equation with subscripts (mn) for the sake of

clarity, although this may be a matter of taste. Also, in Eq. (48),

we have:

Lmn = ∇Ψmn =
∂Ψmn

∂r
ir +

1

r

∂Ψmn

∂θ
iθ +

1

rsinθ

∂Ψmn

∂φ
iφ ð49Þ

Ψmn = −1ð Þ
m
zn krð ÞP

m
n cosθð Þe

imφ
ð50Þ

in which, for the time being, the angular variables θ and φ pertain to

any spherical coordinate system (rotated or unrotated). Now, let us

choose u(r)=r, then from Eqs. (48) and (49), and using the definitions

of Eqs. (3) and (4), we have:

M
jð Þ
mn krð Þ = Lmnxirr = ∇Ψmnxirr =

j
∂Ψmn

∂r

1

r

∂Ψmn

∂θ

1

rsinθ

∂Ψmn

∂φ

× j r00 = j
0

−1ð Þmimzn krð Þπm
n cosθð Þeimφ

− −1ð Þmzn krð Þτmn cosθð Þeimφ

= −1ð Þmzn krð Þeimφ imπ
m
n cosθð Þiθ−τ

m
n cosθð Þiφ

h i

:

ð51Þ

Using Eqs. (50) and (51), Eq. (47) is then translated to:

M
jð Þ
mn kr; θ;φð Þ = ∑

n

s=−n
ρ m; s;nð ÞM

jð Þ
sn kr; θ̃; φ̃
" #

: ð52Þ

In particular, we shall need:

M
1ð Þ
mn kr; θ;φð Þ = ∑

n

s=−n
ρ m; s;nð ÞM

1ð Þ
sn kr; θ̃; φ̃
" #

: ð53Þ

Having established the rotation transformation for theMs, we now

deal with the Ns. From Stratton, p. 415, we have:

kN
jð Þ
mn = ∇ × M

jð Þ
mn ð54Þ

for which we provide a direct check in Appendix A. This being done,

wemay now return to Eqs. (54) and (52), fromwhichwe immediately

obtain that theMs and the Ns satisfy the same transformations under

rotations.

5.3. Agreement between the two approaches

We first recall what we have obtained. On one hand, fromMischenko

et al. [25], we derived Eqs. (41) and (42), reading as, after a minor

simplification:

M
1ð Þ
mn kr; θ̃; φ̃
" #

= ∑
n

s=−n
G
s
mn α;β;γð ÞM

1ð Þ
sn kr; θ;φð Þ ð55Þ

G
s
mn α;β;γð Þ = −1ð Þ

n n−sð Þ!

n−mð Þ!
e
−isα

e
−imγ

−1ð Þ
s

∑
σ

−1ð Þ
σ n + m

n−s−σ

$ %

n−m
σ

$ %

cos
β

2

$ %2σ + s + m

sin
β

2

$ %2n−2σ−s−m

:

ð56Þ

On the other hand, the result of the second approach, following

Han et al. [17], from Eqs. (53), (44) and (45), can be conveniently

rewritten as:

M
1ð Þ
mn kr; θ;φð Þ = ∑

n

s=−n
H
s
mn α;β;γð ÞM

1ð Þ
sn kr; θ̃;φ̃
" #

ð57Þ

in which:

H
s
mn α;β;γð Þ = −1ð Þ

m + s n−sð Þ!

n−mð Þ!
e
isγ
e
imα

∑
σ

−1ð Þ
n−s−σ n + m

n−s−σ

$ %

n−m
σ

$ %

cos
β

2

$ %2σ + s + m

sin
β

2

$ %2n−2σ−s−m

:

ð58Þ

We observe that the two approaches invert what is called the

rotated system and what is called the unrotated system. To compare

their results, we shall therefore have to compare, for instance, Gmn
s (α,

β, γ) and Hmn
s (−γ,−β,−α). We readily have:

H
s
mn −γ;−β;−αð Þ= −1ð Þ

m+ s
−1ð Þ

n+ m n−sð Þ!

n−mð Þ!
e
−isα

e
−imγ

∑
σ

−1ð Þ
σ n + m

n−s−σ

$ %

n−m
σ

$ %

cos
β

2

$ %

2σ + s + m

sin
β

2

$ %

2n−2σ−s−m

:

ð59Þ

We then observe that Gmn
s (α, β, γ) and Hmn

s (−γ,−β,−α) are equal,

as they should. The other version of this equality is given by:

H
s
mn α;β;γð Þ = G

s
mn −γ;−β;−αð Þ ð60Þ

in which Hmn
s (α, β, γ) will be simply denoted as Hmn

s when there is no

ambiguity, in particular when we do not need to specify the values of

the Euler angles.

6. Transformation of beam shape coefficients through rotations

Using the abbreviated notationHmn
s , we now express the unrotated

Ms versus the rotated ones as:

M
1ð Þ
mn kr; θ;φð Þ = ∑

n

s=−n
H
s
mnM

1ð Þ
sn kr; θ̃;φ̃
" #

: ð61Þ

Similarly:

N
1ð Þ
mn kr; θ;φð Þ = ∑

n

s=−n
H
s
mnN

1ð Þ
sn kr; θ̃;φ̃
" #

: ð62Þ

Now, we recall Eq. (17)

E
i
= ∑

∞

n=1
∑
+ n

m=−n
amnM

1ð Þ
mn kr; θ;φð Þ + bmnN

1ð Þ
mn kr; θ;φð Þ

h i

: ð63Þ

We now insert Eqs. (61) and (62) into Eq. (63), yielding:

E
i
= ∑

∞

n=1
∑
n

m=−n
∑
n

s=−n
H
s
mn amnM

1ð Þ
sn kr; θ̃;φ̃
" #

+ bmnN
1ð Þ
sn kr; θ̃; φ̃
" #h i

:

ð64Þ

We may interchange the names of the summation indicesm and s

leading to:

E
i
= ∑

∞

n=1
∑
n

m=−n
∑
n

s=−n
asnH

m
sn

& '

M
1ð Þ
mn kr; θ̃; φ̃
" #

+ ∑
n

s=−n
bsnH

m
sn

& '

N
1ð Þ
mn kr; θ̃;φ̃
" #

( )

:

ð65Þ
But we may also express the electric field in terms of rotated

quantities, according to:

E
i
=
˜
E

i
= ∑

∞

n=1
∑
n

m=−n
ãmn M

1ð Þ
mn kr; θ̃;φ̃
" #

+ b̃mnN
1ð Þ
mn kr; θ̃;φ̃
" #h i

:ð66Þ
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Therefore, from Eqs. (65) and (66):

ãmn = ∑
n

s=−n
asnH

m
sn ð67Þ

b̃mn = ∑
n

s=−n
bsnH

m
sn: ð68Þ

Finally, we invoke Eqs. (19) and (20), introduce the beam shape

coefficients g̃mn;TM and g̃mn;TE in the rotated system, and readily obtain:

˜g
m
n;X = −1ð Þ

m
−1ð Þ

m− mj j

2
n− mj jð Þ!

n−mð Þ!
∑
n

s=−n
−1ð Þ

s
−1ð Þ

s− sj j

2
n−sð Þ!

n− sj jð Þ!
H
m
sng

s
n;X

ð69Þ

in which X is TM or TE.

7. Conclusion

In this paper, we have established the law of transformation of

spherical beam shape coefficients under rotations. The result obtained

may be expressed as a theorem expressed below.

Let x and x ̃ be two systems of coordinates, named the unrotated

and the rotated systems, respectively. Let gn,X
m and g̃mn;X , with X=TM

or TE, be the spherical beam shape coefficients of an arbitrary

shaped beam in the unrotated and in the rotated systems, respec-

tively. Then:

g̃
m
n;X = μmn ∑

n

s=−n

Hm
sn

μsn
g
s
n;X ð70Þ

in which:

μmn = −1ð Þ
m
−1ð Þ

m− mj j

2
n− mj jð Þ!

n−mð Þ!
ð71Þ

H
m
sn = −1ð Þ

n + s n−mð Þ!

n−sð Þ!
e
isα
e
imγ
∑
σ
−1ð Þ

σ n + s
n−m−σ

 !

n−s
σ

 !

cos
β

2

 !2σ + m + s

sin
β

2

 !2n−2σ−m−s

ð72Þ

in which (α, β, γ) are Euler angles bringing the unrotated system to

the rotated system.

Appendix A

In this Annex,we provide a direct check of Eq. (54). For convenience,

let us set:

R
jð Þ
mn = ∇ ×M

jð Þ
mn: ð73Þ

Following Stratton [21], page 52, we have:

R
jð Þ
mn =

1

rsinθ

∂

∂θ
sinθM

jð Þ
mn;φ

" #

−
∂

∂φ
M

jð Þ
mn;θ

$ %

ir

+
1

r

1

sinθ

∂

∂φ
M

jð Þ
mn;r−

∂

∂r
rM

jð Þ
mn;φ

" #

$ %

iθ

+
1

r

∂

∂r
rM

jð Þ
mn;θ

" #

−
∂

∂θ
M

jð Þ
mn;r

$ %

iφ

ð74Þ

in which, from Eq. (1):

M
jð Þ
mn = j

M
jð Þ
mn;r

M
jð Þ
mn;θ

M
jð Þ
mn;φ

= j
0

−1ð Þmimzn krð Þπmn cosθð Þeimφ

− −1ð Þmzn krð Þτmn cosθð Þeimφ

: ð75Þ

From Eqs. (74) and (75), and invoking Eq. (2), we then readily

establish:

R
jð Þ
mn;φ = ∇� M

jð Þ
mn

" #

φ
= −1ð Þ

m im

r

∂

∂r
rzn krð Þ

$ %

π
m
n cosθð Þe

imφ
= kN

jð Þ
mn;φ

ð76Þ

R
jð Þ
mn;θ = ∇�M

jð Þ
mn

" #

θ
=
−1ð Þm

r

∂

∂r
rzn krð Þ

$ %

τ
m
n cosθð Þe

imφ
= kN

jð Þ
mn;θ:

ð77Þ

The derivation for Rmn,r
(j) is a bit more complicated. We begin by

using again Eqs. (74) and (75) to obtain:

R
jð Þ
mn;r = ∇�M

jð Þ
mn

" #

r
= −

−1ð Þm

rsinθ
zn krð Þe

imφ
Amn ð78Þ

in which:

Amn =
d

dθ
sin θτ

m
n cosθð Þ−m

2
π
m
n cosθð Þ: ð79Þ

We may explicit rewrite Amn under the form:

Amn = cos θ
dPmn cosθð Þ

dθ
+ sin θ

d2Pmn cosθð Þ

dθ2
−m

2 P
m
n cosθð Þ

sinθ
: ð80Þ

But we readily establish:

dPmn cosθð Þ

dθ
= − sin θ

dPmn cosθð Þ

d cosθ
ð81Þ

d2Pmn cosθð Þ

dθ2
= − cos θ

dPmn cosθð Þ

d cosθ
+ sin

2
θ
d2Pmn cosθð Þ

d cosθð Þ2
: ð82Þ

Inserting Eqs. (81) and (82) into Eq. (80), and rearranging, leads

to:

Amn

sinθ
= −2 cos θ

dPm
n cosθð Þ

d cosθ
+ sin

2
θ
d2Pmn cosθð Þ

d cosθð Þ2
−m

2 P
m
n cosθð Þ

sin2θ
: ð83Þ

But the associated Legendre functions Pn
m(cosθ) satisfy an

associated Legendre equation reading as:

sin
2
θ
d2Pmn cosθð Þ

d cosθð Þ2
−2 cosθ

dPmn cosθð Þ

d cosθ
+ n n + 1ð Þ−

m2

sin2θ

" #

P
m
n cosθð Þ = 0:

ð84Þ

Then, from Eqs. (83) and (84):

Amn = −n n + 1ð Þ sin θP
m
n cosθð Þ: ð85Þ

Inserting Eq. (85) into Eq. (78), and invoking Eq. (2), we finally

obtain:

R
jð Þ
mn;r = ∇�M

jð Þ
mn

" #

r
= −1ð Þ

m n n + 1ð Þ

r
zn krð ÞP

m
n cosθð Þe

imφ
= kN

jð Þ
mn;r

ð86Þ

as it should.
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The description of laser beams in spherical coordinates requires the introduction of expansion coefficients

named beam shape coefficients, or more specifically spherical beam shape coefficients. In part I of the

present series of papers, we presented a general formulation for the transformation of spherical beam shape

coefficients through rotations of coordinate systems, taking the form of a theorem of transformation. The

present Part II deals with the special case of axisymmetric beams, more particularly of on-axis axisymmetric

beams (such as Gaussian beams in an on-axis configuration).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The description of laser beams in spherical coordinates under

expanded forms, which may be useful in light scattering theories,

particularly for generalized Lorenz–Mie theories which describe the

interaction between arbitrary shaped beams and regular particles, in

spherical coordinates, e.g. [1–8], requires the evaluation of expansion

coefficients known as beam shape coefficients. For these evaluations,

several methods have been developed and studied, sharing various

degrees of time running efficiency, or of flexibility, namely by using

quadratures [9], finite series [10], localized approximations [11,12], or

by a hybrid method taking advantage of both quadratures and of a

localized approximation, named the integral localized approximation

[13]. The evaluation of beam shape coefficients has also been

investigated by relying on addition theorems for translations of

coordinate systems, an approach originally introduced by Doicu and

Wriedt [14], and also used by Zhang and Han [15]. The present paper

pertains to a series concerning the evaluation of beam shape

coefficients by relying on addition theorems for rotations (not

translations) of coordinate systems, a topic initiated by Han et al

[16,17].

For convenience, in particular to recall some notations, the specific

problem attacked in Gouesbet et al. [18] is briefly stated again. Let us

consider a Cartesian system of coordinates, denoted as x=(x, y, z),

associated with usual spherical coordinates (r, θ, φ), called the

unrotated system, and let gn,TM
m , gn,TE

m be the beam shape coefficients for

the description of the illuminating beam in this unrotated system. Let

us consider a second system of coordinates, called the rotated system,

deduced from the unrotated system by a rotation defined by Euler

angles (α, β, γ), defined according to Edmonds [19], as explained in

Part I [18]. Quantities in the rotated system are denoted by using tilde-

decorations. Therefore the Cartesian coordinates of the rotated system

are denoted as x̃= x̃; ỹ; z̃ð Þ and they are associated with spherical

coordinates r̃ = r; θ̃; φ̃
 !

:The beam shape coefficients in the rotated

system are denoted as gmn;TM
~

; gmn;TE
~

. The problem is to express the

beam shape coefficients in the rotated system in terms of beam shape

coefficients in the unrotated system. A general solution to this

problem has been found in Part I [18]. In some cases of significant

importance, the results obtained in Part I can be further simplified,

possibly receiving compact expressions, allowing one to speed up

numerical computations. In the present Part II, we specify the results

obtained to the case of axisymmetric beams, more particularly to

the case of on-axis axisymmetric beams, such as on-axis Gaussian

beams.

The paper is organized as follows. Section 2 recalls the results

obtained in Part I, forming our starting point for this Part II. Section 3

recalls what are axisymmetric beams, particularly on-axis axisym-

metric beams, and their properties useful for the sequel. Section 4
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deals with the transformation of axisymmetric beams in expanded

forms,while Section5 dealswith the same issue in compact forms. This

Section 5 contains a subsection devoted to beam shape coefficients, in

which the main formal results of the paper are expressed, namely by

Eqs. 98, 99. Section 6 deals with the case when there is no rotation, i.e.

the rotated system identifies with the unrotated system, providing a

checking of our computations. Section 7 provides a discussion of the

significance of the results obtained, and also serves as a conclusion.

2. General solution to the problem of the transformation of beam

shape coefficients

2.1. Beam shape coefficients

In this paper, the beam shape coefficients are defined in the

framework of the Bromwich formulation, as originally done in the

GLMT stricto sensu, e.g. [1,2]. This framework relies on the use of two

Bromwich scalar potentials UTM and UTE (TM for Transverse Magnetic

and TE for Transverse Electric), for the incident, the scattered, and the

internal (or sphere) waves. When the Bromwich scalar potentials are

known, electric and magnetic fields of the TM and TE kinds may be

obtained by using derivative rules, namely Eqs. (10)–(19) in [1].The

Bromwich scalar potentials for the incident wave read as [1]:

U
i
TM =

E0
k
∑
∞

n=1
∑
+ n

m=−n
c
pw
n g

m
n;TMΨn krð ÞP

jmj
n cosθð Þ exp imφð Þ ð1Þ

U
i
TE =

H0
k
∑
∞

n=1
∑
n

m=−n
c
pw
n g

m
n;TEΨn krð ÞP

jmj
n cosθð Þ exp imφð Þ ð2Þ

in which the superscript “i” stands for “incident”. Note however that,

in most of the present paper, we do not consider any scattering

particle, that is to say the superscript “i” may rather be viewed as

anticipating our results for use in GLMTs. Also, E0 and H0 are field

strengths, and k is the wave-number in the medium in which the

beam propagates. The coefficients cn
pw (“pw” standing for “plane

wave”) are coefficients which appear naturally in the classical Lorenz–

Mie theory and, for this reason, are isolated [20]. They read as:

c
pw
n =

1

k
−ið Þ

n+1 2n + 1

n n + 1ð Þ
ð3Þ

The functions Ψn(kr) are Ricatti–Bessel functions, which may be

expressed in terms of spherical Bessel functions jn(kr) according to:

Ψn krð Þ = krjn krð Þ ð4Þ

The expressions for the Bromwich scalar potentials also involve

the associated Legendre functions (oftenmisnamed as polynomials by

physicists) reading as (for m non-negative):

P
m
n cosθð Þ = −1ð Þ

m
sinθð Þ

m dmPn cosθð Þ

d cosθð Þm
ð5Þ

We also have:

P
−m
n cosθð Þ = −1ð Þ

m n−mð Þ!

n + mð Þ!
P
m
n cosθð Þ ð6Þ

This implies:

P
m
n cosθð Þ = −1ð Þ

m−jmj

2
n−jmjð Þ!

n−mð Þ!
P

jmj
n cosθð Þ ð7Þ

that is to say we may uniquely define Pn
m(cosθ),∀maZ [18,21].

We may then consider that Eqs. (1) and (2) serve as a definition of

the beam shape coefficients gn,X
m , with X=TM or TE. The relationship

between the scalar Bromwich formulation and a formulation in terms

of vector spherical wave functions (VSWFs) is discussed elsewhere,

for instance in Part I [18].

2.2. The theorem of transformation

Wenow know enough to express the theorem of transformation of

beam shape coefficients under rotations of coordinate systems,

established in Part I, reading as follows. Let x and x̃ be two systems

of coordinates, named the unrotated and the rotated systems,

respectively. Let gn,X
m and gmn;X
~

, with X=TM or TE, be the spherical

beam shape coefficients of an arbitrary shaped beam in the unrotated

and in the rotated systems, respectively. Then:

g
m
n;X

~
= μmn ∑

n

s=−n

Hm
sn

μsn
g
s
n;X ð8Þ

in which:

μmn = −1ð Þ
m
−1ð Þ

m−jmj

2
n−jmjð Þ!

n−mð Þ!
ð9Þ

H
m
sn = −1ð Þ

n + s n−mð Þ!

n−sð Þ!
e
isα
e
imγ
∑
σ
−1ð Þ

σ n + s
n−m−σ

 !

n−s
σ

 !

� cos
β

2

 !2σ + m + s

sin
β

2

 !2n−2σ−m−s

ð10Þ

in which (α, β, γ) are the Euler angles bringing the unrotated system

to the rotated system.

3. Definition and properties of axisymmetric beams

Weare nowconsidering a class of special beams called axisymmetric

beams, discussed by Gouesbet [22], that we begin by briefly reviewing.

Let S be the Poynting vector, with components Sx, Sy, Sz in a

Cartesian coordinate system (x, y, z) with associated spherical

coordinates (r, θ, φ), and the axis z being taken as the direction of

propagation of the beam. By definition, a beam is said to be generic iff

(iff, i.e. if and only if) Sz(θ=0) is not zero, that is to say iff the

longitudinal component of the Poynting vector along the positive z-

axis is not zero. Only generic beams are considered below.

Furthermore, we define an axisymmetric beam to be a beam for

which Sz does not depend on the azimuthal angle φ, in suitably chosen

coordinate systems. It is then demonstrated that the beam shape

coefficients of a generic axisymmetric beam, when Sz does not depend

on φ, [22], read as:

g
m
n = 0; jmj≠1 ð11Þ

g
1
n;TM =

1

K
g
−1
n;TM = −iεg

1
n;TE =

iε

K
g
−1
n;TE =

gn
2

ð12Þ

The reciprocal statement is true. Eq. (12) defines a set {gn} of special

beam shape coefficients gn and shows that the double set {gn,TM
m , gn,TE

m } of

beam shape coefficients, with two subscripts (n,m) reduces to a single

set {gn} with a single coefficient n. The parameter ε is equal to−1 (+1)

when the energy flux flows toward positive zs (negative zs). This

parameter is therefore a property of coordinates, not a property of the

beam. The parameter K is a real number and describes the state of

polarization of the beam, with respect to the coordinate system used.

Specifically, if Sx is proportional to cosφ, then K=±1. It happens that
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Eq. (12) with (�, K)=(−1, +1) is structurally identical with the set of

equations obtained for an on-axis Gaussian beam polarized in the x

direction at its focal waist, namely [1,20,23]:

g
1
n;TM = g

−1
n;TM = ig

1
n;TE = −ig

−1
n;TE =

gn
2

ð13Þ

Note however that a beam satisfying Eqs. (11) and (13) is not

necessarily a Gaussian beam. Nevertheless, an axisymmetric beam

satisfying Eqs. (11) and (12) (ormore specifically Eq. (13)) is called an

on-axis axisymmetric beam.

4. Transformation of on-axis axisymmetric beams.

Expanded forms

We now examine the theorem of transformation of beam shape

coefficients under rotationwhen the beam, in the unrotated system, is

an on-axis axisymmetric beam satisfying Eqs. (11) and (12), or more

specifically Eq. (13). In this section, we provide the results using

expanded forms, i.e. with series.

From Eq. (8), when Eq. (11) applies, we readily obtain:

g
m
n;X

~
= μmn

Hm
−1n

μ−1n
g
−1
n;X +

Hm
1n

μ1n
g
1
n;X

 !

ð14Þ

in which, from Eq. (9):

μ−1n =
1

n n + 1ð Þ
ð15Þ

μ1n = −1 ð16Þ

Furthermore, from Eq. (10):

H
m
−1n = −1ð Þ

n + 1 n−mð Þ!

n + 1ð Þ!
e
−iα

e
imγ
∑
σ
−1ð Þ

σ n−1
n−m−σ

" #

n + 1
σ

" #

� cos
β

2

" #

2σ + m−1

sin
β

2

" #

2n−2σ−m + 1
ð17Þ

Now, from Eq. (17), we extract the product of binomials:

Bmn =
n−1

n−m−σ

" #

n+1
σ

" #

=
n−1ð Þ! n + 1ð Þ!

n−m−σð Þ! m+σ−1ð Þ!σ! n+1−σð Þ!

ð18Þ

The range of σ in Eq. (17) is defined by the fact that the arguments

of the factorials in Eq. (18) should be non-negative. We may then

show that this implies that the range of σ depends onm according to:

m= 0⇒σ = 1;2;…;n
m= j; j= 1…n⇒σ = 0;1;…;n−j
m= −j; j = 1…n⇒σ = j + 1; j + 2;…;n + 1

8

<

:

ð19Þ

Similarly:

H
m
1n = −1ð Þ

n + 1 n−mð Þ!

n−1ð Þ!
e
iα
e
imγ
∑
σ
−1ð Þ

σ n + 1
n−m−σ

" #

n−1
σ

" #

� cos
β

2

" #

2σ + m + 1

sin
β

2

" #

2n−2σ−m−1

ð20Þ

with:

m= 0⇒σ = 0;1;…;n−1
m= j; j= 1…n⇒σ = 0;1;…;n−j
m= −j; j = 1…n⇒σ = j−1; j;…;n−1

8

<

:

ð21Þ

We now insert Eqs. (15)–(17) and (20) into Eq. (14), considering

successively the cases m=0, m= j(j=1…n) and m=− j(j=1…n),

introducing explicitly the corresponding ranges of σ.

Form=0, we note that μ0n=1. Next, we obtain a first summation

for σ ranging from 1 to n, and a second summation for σ ranging from

0 to (n−1). Setting σ=σ ′+1 in the first summation, both

summations are given the same ranges. Once this is done, we observe

that the products of binomials in the first and in the second

summation are equal. Eventually, we obtain:

g
0
n;X

~
= −1ð Þ

n
n! n + 1ð Þ! g

1
n;Xe

iα
+ g

−1
n;X e
−iα

h i

�∑
n−1

σ=0

−1ð Þσ

n−σ−1ð Þ! n−σð Þ!σ! σ+1ð Þ!
cos

β

2

" #

2σ+1

sin
β

2

" #

2n−2σ−1

ð22Þ

For m= j, j=1…n, there are two summations having the same

ranges for σ, and there appear two products of binomials which are

not equal. The result is then readily found to be:

g
j
n;X

~
= μ jnf −1ð Þ

n n−jð Þ!

n−1ð Þ!
e
ijγ
∑
n−j

σ=0
−1ð Þ

σ
cos

β

2

" #

2σ+ j−1

sin
β

2

" #

2n−2σ−j−1

�½ −1ð Þ
n−1

n−j−σ

" #

n + 1
σ

" #

sin
β

2

" #

2

e
−iα

g
−1
n;X

+
n + 1
n−j−σ

" #

n−1
σ

" #

cos
β

2

" #

2

e
iα
g
1
n;X�g

ð23Þ

Form=− j, j=1...n, we obtain fairly similarly (with a manipulation

on indices of the first summation):

g
−j
n;X

~
= μ−jnf −1ð Þ

n n + jð Þ!

n−1ð Þ!
e
−ijγ
∑
n−1

σ= j−1
−1ð Þ

σ
cos

β

2

" #

2σ−j + 1

� sin
β

2

" #

2n−2σ + j−3½ −1ð Þ
n−1

n + j−σ−2

" #

n + 1
σ + 2

" #

� cos
β

2

" #

2

e
−iα

g
−1
n;X +

n + 1
n + j−σ

" #

n−1
σ

" #

sin
β

2

" #

2

e
iα
g
1
n;X�g

ð24Þ

We may afterward further specify Eqs. (22)–(24) to the case of

Eq. (12), and also afterward to the case of Eq. (13). These

specifications are so easy that the corresponding results are not

worth to be given. As a special case of on-axis axisymmetric beams,

we may also consider plane waves obtained by specifying the value of

gn to 1 [1], or more generally to a phase term exp(ikz0) which may be

viewed as irrelevant, or absorbed in the field strengths. What is

however remarkable, is that the results obtained in the present

section may be expressed in compact forms.

5. Transformation of on-axis axisymmetric beams. Compact forms

We are going to reach our goal by using, to begin with, preliminary

steps.

5.1. Preliminaries 1

In these first preliminaries, we are going to provide specific

expressions for the two following quantities:

mPi= 2m
Pmn cos βð Þ

sinβ
ð25Þ
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and:

Tau =
dPmn cos βð Þ

dβ
ð26Þ

in which, let us recall, Pn
m denotes the associated Legendre functions of

Eqs. (5)–(7). The starting points are recurrence relations given by

Stratton ([24], pages 401–402) rewritten below. It is however

important to note that the definition of associated Legendre functions

given by Stratton differs from ours by a factor (−1)m. The recurrence

relations are then written as, following closely Stratton, but with a bit

of rearrangement:

P
m + 1
n ðcos βÞ + ðn + mÞðn−m + 1ÞP

m−1
n ðcos βÞ = −2m cot βP

m
n ðcos βÞ

ð27Þ

2m

sin β
P
m
n cos βð Þ= −cos β n + mð Þ n−m + 1ð ÞP

m−1
n cos βð Þ + P

m + 1
n cos βð Þ

h i

+ 2m sin βP
m
n cos βð Þ ð28Þ

dPmn cos βð Þ

dβ
= − sinβ

dPmn cos βð Þ

d cos β

= −
1

2
n + mð Þ n−m + 1ð ÞP

m−1
n cos βð Þ−P

m + 1
n cos βð Þ

h i

ð29Þ

We now insert Eq. (27) into Eq. (28), yielding:

2m

sin β
P
m
n cos βð Þ= 2m cosβ cotβP

m
n cos βð Þ + 2m sinβP

m
n cos βð Þ ð30Þ

Now, from Eq. (27), we have:

n + mð Þ n−m + 1ð ÞP
m−1
n cos βð Þ= −2m cot βP

m
n cos βð Þ−P

m + 1
n cos βð Þ

ð31Þ

that we may insert into the third recurrence equation, namely

Eq. (29), to obtain:

dPmn cos βð Þ

dβ
= m cotβP

m
n cos βð Þ + P

m + 1
n cos βð Þ ð32Þ

Using well known trigonometric relations:

cosβ = 1−2 sin
β

2

" #

2

ð33Þ

tan
β

2
= 2

sin
β

2

$ %

2

sin β
ð34Þ

Eq. (32) is modified to:

dPmn cos βð Þ

dβ
= m

Pmn cos βð Þ

sinβ
− m tan

β

2
P
m
n cos βð Þ−P

m + 1
n cos βð Þ

& '

ð35Þ

Let us remark that this equation establishes a relationship between

the two quantities introduced at the beginning of these preliminaries,

in Eqs. (25) and (26).

Now, let us consider mPi of Eq. (25) alone. The following

trigonometric relation is valid:

2

sin β
=

sin β2

$ %

2
+ cos β2

$ %

2

sin β2 cos
β
2

ð36Þ

from which we manipulate mPi as follows:

2m
Pmn cos βð Þ

sin β
= mP

m
n cos βð Þ

sin
β

2

" #

2

+ cos
β

2

" #

2

sin
β

2
cos

β

2

= mPmn cos βð Þ tan
β

2
+ cot

β

2

& '

= mPmn cos βð Þ tan
β

2
−P

m + 1
n cos βð Þ

& '

+ mPmn cos βð Þ cot
β

2
+ P

m + 1
n cos βð Þ

& '

ð37Þ

Let us, for convenience, introduce:

A= mP
m
n cos βð Þ tan

β

2
−P

m + 1
n cos βð Þ ð38Þ

B= mP
m
n cos βð Þ cot

β

2
+ P

m + 1
n cos βð Þ ð39Þ

We can then rewrite our results concerning mPi and Tau as

follows:

2m
Pmn cos βð Þ

sin β
= A + B ð40Þ

dPmn cos βð Þ

dβ
= m

Pmn cos βð Þ

sin β
−A=

B−A

2
ð41Þ

5.2. Preliminaries 2

We are now going to complete our evaluations of Eqs. (40) and

(41) by expressing the results in terms of σ-summations. Recalling

that Mischenko et al used the same convention as ours for associated

Legendre functions, we have, from Mischenko et al ([25], Appendix,

Eq.B.28):

d
s
m0 βð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s−mð Þ!

s + mð Þ!

s

P
m
s cos βð Þ ð42Þ

in which dm0
s (β) is a Wigner d-function. Among the four expressions

of the Wigner d-functions given by Mischenko et al, we choose B2,

page 362, [25], which furthermore corresponds to the second version

denoted [dsm
n (β)]2 in [18], from which we evaluate dm0

s (β) and

afterward, from Eq. (42), and rearranging, we obtain:

P
m
n cos βð Þ= ∑

σ
−1ð Þ

n−σ n + mð Þ!n!

n−σð Þ! m + σð Þ! n−m−σð Þ!σ!

� sin
β

2

" #

2n−m−2σ

cos
β

2

" #

2σ + m

ð43Þ

Next, we have [26]:

P
m
n − cos βð Þ= P

m
n cos π−βð Þð Þ= −1ð Þ

n + m
P
m
n cos βð Þ ð44Þ

Then, from Eq. (43):

P
m
n −cos βð Þ=P

m
n cos π−βð Þð Þ=∑

σ
−1ð Þ

n−σ n + mð Þ!n!

n−σð Þ! m+σð Þ! n−m−σð Þ!σ!

� cos
β

2

" #

2n−m−2σ

sin
β

2

" #

2σ + m

ð45Þ
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Then, from both Eqs. (44) and (45), we obtain another expression

for Pn
m(cosβ):

P
m
n cos βð Þ= ∑

σ
−1ð Þ

m + σ n + mð Þ!n!

n−σð Þ! m + σð Þ! n−m−σð Þ!σ!

� cos
β

2

 !

2n−m−2σ

sin
β

2

 !

2σ + m

ð46Þ

Now, from Eqs. (43) and (46), we may obtain two different

expressions for Pn
m+1(cosβ), namely:

P
m + 1
n cos βð Þ= ∑

σ
−1ð Þ

n−σ n + m + 1ð Þ!n!

n−σð Þ! m + 1 + σð Þ! n−m−1−σð Þ!σ!

� sin
β

2

 !

2n−m−1−2σ

cos
β

2

 !

2σ + m + 1
ð47Þ

and:

P
m + 1
n cos βð Þ = ∑

σ
−1ð Þ

m + 1 + σ n + m + 1ð Þ!n!

n−σð Þ! m +1+ σð Þ! n−m−1−σð Þ!σ!

� cos
β

2

 !

2n−m−1−2σ

sin
β

2

 !

2σ + m + 1
ð48Þ

Wemay now invoke Eqs. (46) and (48) to evaluate the quantity A,

leading to, after a few standard manipulations:

A= mPmn cos βð Þ tan
β

2
−P

m + 1
n cos βð Þ

=∑
σ
−1ð Þ

m−σ n + mð Þ! n + 1ð Þ!

n−σ−1ð Þ! m + σ + 1ð Þ! n−m−σð Þ!σ!

� sin
β

2

 !

2σ + m + 1

cos
β

2

 !

2n−m−1−2σ

ð49Þ

We may also invoke Eqs. (43) and (47) to evaluate the quantity B,

leading to, again after a few standard manipulations:

B = mPmn cos βð Þ cot
β

2
+ P

m + 1
n cos βð Þ

=∑
σ
−1ð Þ

n−σ n + mð Þ! n + 1ð Þ!

n−σ−1ð Þ! m + σ + 1ð Þ! n−m−σð Þ!σ!

� cos
β

2

 !

2σ + m + 1

sin
β

2

 !

2n−m−1−2σ

ð50Þ

Inserting Eqs. (49) and (50) into Eq. (40), we then have:

2m
Pmn cos βð Þ

sinβ
= ∑

σ

n + mð Þ! n + 1ð Þ!

n−σ−1ð Þ! m + σ + 1ð Þ! n−m−σð Þ!σ!

�½ −1ð Þ
m−σ

sin
β

2

 !

2σ + m + 1

cos
β

2

 !

2n−m−1−2σ

+ −1ð Þ
n−σ

cos
β

2

 !

2σ + m + 1

sin
β

2

 !

2n−m−1−2σ�
ð51Þ

Similarly, from Eq. (41):

2
dPmn cos βð Þ

dβ
= ∑

σ

n + mð Þ! n + 1ð Þ!

n−σ−1ð Þ! m + σ + 1ð Þ! n−m−σð Þ!σ!

�½ −1ð Þ
n−σ

cos
β

2

 !

2σ + m + 1

sin
β

2

 !

2n−m−1−2σ

− −1ð Þ
m−σ

sin
β

2

 !2σ + m + 1

cos
β

2

 !2n−m−1−2σ�
ð52Þ

5.3. Preliminaries 3

We now deal with the quantities H−1n
m and H1n

m given in Eqs. (17)

and (20). Concerning H1n
m of Eq. (20), it may be rewritten as:

H
m
1n = −1ð Þ

n + 1
n−mð Þ! n + 1ð Þ!e

iα
e
imγ

�∑
σ
−1ð Þ

σ
cos β2

" #

2σ + m + 1
sin β2

" #

2n−2σ−m−1

σ! n−m−σð Þ! n−1−σð Þ! m + σ + 1ð Þ!

ð53Þ

There is however an alternative way soon to be found useful.

Indeed, following Mischenko et al [25], let us recall an expression

already used in Part I [18], namely:

D
n
sm α;β;γð Þ= e

−isα
d
n
sm βð Þe

−imγ
ð54Þ

Now, among the four versions of the Wigner d-functions given by

Mishchenko et al [25], instead of using the second version denoted

[dsm
n ]2 in Part I, as we have done above in the second preliminaries, let

us use the fourth version denoted [dsm
n (β)]4 in Part I, and insert it into

Eq. (54). This leads to:

D
n
sm α;β;γð Þ= −1ð Þ

s−m
e
−isα

e
−imγ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n + sð Þ! n−sð Þ! n + mð Þ! n−mð Þ!
p

�∑
σ
−1ð Þ

σ
cos β2

" #2n−2σ−s + m
sin β2

" #2σ + s−m

σ! n−s−σð Þ! n + m−σð Þ! s−m + σð Þ!

ð55Þ

The quantity Dsm
n (α, β, γ) is used to express the transformation of

vector spherical wave functions (VSWFs), from which in Part I we

derived the transformation rule for beam shape coefficients, according

to, following Mischenko et al [18,25]:

RgMmn kr; θ̃; φ̃
" #

= ∑
n

s=−n
RgMsn kr; θ;φð ÞD

n
sm α;β;γð Þ ð56Þ

in which RgMmn are VSWFs which are related to other VSWFs,

denoted as Mmn
(1), used by Stratton [24] and by ourselves in Part I,

according to [18]:

RgMmn

M
1ð Þ
mn

= −1ð Þ
m 2n + 1ð Þ n−mð Þ!

4πn n + 1ð Þ n + mð Þ!

& '1=2

ð57Þ

We now insert Eq. (55) into Eq. (56), and, by using Eq. (57), we

express the result in terms of M(1) instead of RgM. We then obtain a

relation already provided in [18]:

M
1ð Þ
mn kr; θ̃; φ̃
" #

= ∑
n

s=−n
G
s
mn α;β;γð ÞM

1ð Þ
sn kr; θ;φð Þ ð58Þ
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in which however the quantity Gmn
s is given an alternative form with

respect to [18], namely:

G
s
mn α;β;γð Þ= e

−imγ
e
−isα

n + mð Þ! n−sð Þ!

�∑
σ
−1ð Þ

σ
cos β2

 !

2n−2σ−s + m
sin β2

 !

2σ + s−m

σ! n−s−σð Þ! n + m−σð Þ! s−m + σð Þ!

ð59Þ

But the quantity Hsn
m involved in the theorem of transformation is

given by [18]:

H
m
sn = H

m
sn α;β;γð Þ= G

m
sn −γ;−β;−αð Þ ð60Þ

Hence, we have, from Eqs. (59), (60):

H
m
sn = −1ð Þ

m + s
e
isα
e
imγ

n + sð Þ! n−mð Þ!

�∑
σ
−1ð Þ

σ
cos β2

 !2n−2σ−m + s
sin β

2

 !2σ + m−s

σ! n−m−σð Þ! n + s−σð Þ! m−s + σð Þ!

ð61Þ

In particular, for s=−1:

H
m
−1n = −1ð Þ

m−1
e
−iα

e
imγ

n−1ð Þ! n−mð Þ!

�∑
σ
−1ð Þ

σ
cos β2

 !

2n−2σ−m−1
sin β2

 !

2σ + m + 1

σ! n−m−σð Þ! n−1−σð Þ! m + 1 + σð Þ!

ð62Þ

The results of Eqs. (53) and (62) may be assembled together as

follows:

Hm
1n

Hm
−1n

" #

=∑
σ

n−mð Þ!

σ! n−m−σð Þ! n−1−σð Þ! m + 1 + σð Þ!

�

−1ð Þn+1+σ n+1ð Þ!eiαeimγ cos
β

2

$ %

2σ+m+1

sin
β

2

$ %

2n−2σ−m−1

−1ð Þm−1+σ n−1ð Þ!e−iαeimγ cos
β

2

$ %

2n−2σ−m−1

sin
β

2

$ %

2σ+m+1

2

6

6

6

4

3

7

7

7

5

ð63Þ

Let us now introduce the following short-hand notations:

G=
1

σ! n−m−σð Þ! n−1−σð Þ! m + 1 + σð Þ!
ð64Þ

E = −1ð Þ
n−σ

cos
β

2

$ %2σ + m + 1

sin
β

2

$ %2n−m−1−2σ

ð65Þ

F = −1ð Þ
m−σ

sin
β

2

$ %

2σ + m + 1

cos
β

2

$ %

2n−m−1−2σ

ð66Þ

Eq. (63) can then be rewritten as:

Hm
1n

Hm
−1n

" #

= ∑
σ

− n−mð Þ!

G
n + 1ð Þ!eiαeimγE

n−1ð Þ!e−iαeimγF

" #

ð67Þ

We may also rewrite Eqs. (52) and (51) as:

R1 =
2

n + mð Þ! n + 1ð Þ!

dPmn cos βð Þ

dβ
= ∑

σ

E−F

G
ð68Þ

R2 =
1

n + mð Þ! n + 1ð Þ!
2m

Pmn cos βð Þ

sin β
= ∑

σ

E + F

G
ð69Þ

From Eqs. (68) and (69):

∑
σ

E

G
=

R1 + R2
2

ð70Þ

∑
σ

F

G
=

R2−R1
2

ð71Þ

We now rewrite Eq. (67) as:

Hm
1n

Hm
−1n

" #

= ∑
σ

− n−mð Þ! n + 1ð Þ!eiαeimγ
E

G

− n−mð Þ! n−1ð Þ!e−iαeimγ
F

G

2

6

6

4

3

7

7

5

ð72Þ

We may now insert Eqs. (70), (71) into Eq. (72), and afterward

invoke Eqs. (68), (69), to obtain:

Hm
1n

n n + 1ð ÞHm
−1n

" #

= −1ð Þ
n−mð Þ!

n + mð Þ!
e
imγ

eiα m
Pmn cos βð Þ

sinβ
+

dPmn cos βð Þ

dβ

, -

e−iα m
Pmn cos βð Þ

sinβ
−

dPmn cos βð Þ

dβ

, -

2

6

6

6

4

3

7

7

7

5

ð73Þ

that is to say:

Hm
1n

n n + 1ð ÞHm
−1n

" #

= −1ð Þ
n−mð Þ!

n + mð Þ!
e
imγ eiα mπm

n cos βð Þ + τ
m
n cos βð Þ

. /

e−iα mπmn cos βð Þ−τmn ðcos β
. /

2

4

3

5

ð74Þ

in which we introduced the generalized Legendre functions reading as:

π
m
n cos βð Þ=

Pmn cos βð Þ

sinβ
ð75Þ

τ
m
n cos βð Þ=

dPmn cos βð Þ

dβ
ð76Þ

5.4. A complementary approach to compact forms

We are now going to use a complementary approach to reach the

result of Eqs. (75), (76). The advantage of this second approach is that

it is more concise than the previous one but with the price to pay that

it is less transparent.

Recalling Eq. (21) in Part one, we take the inverse of Eq. (56),

reading as:

RgMmn kr; θ;φð Þ = ∑
n

s=−n
RgMsn kr; θ̃; φ̃

 !

D
n
sm −γ;−β;−αð Þ ð77Þ

We now use Eq. (54), from which we derive:

D
n
sm −γ;−β;−αð Þ= e

isγ
d
n
sm −βð Þe

imα
ð78Þ

and Eq. (57), to obtain:

M
ð1Þ
mn kr; θ;φð Þ= ∑

n

s=−n
−1ð Þ

m + s n−sð Þ!

n + sð Þ!

n + mð Þ!

n−mð Þ!

, -

1=2

�e
isγ
e
imα

d
n
sm −βð ÞM

ð1Þ
sn kr; θ̃; φ̃
 !

ð79Þ

We now use a symmetry relation given by Mischenko et al [25],

Appendix B, Eq.B.6, namely:

d
n
sm −βð Þ= −1ð Þ

s−m
d
n
sm βð Þ ð80Þ
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rearrange, and obtain:

M
1ð Þ
mn = ∑

n

s=−n

n−sð Þ!

n + sð Þ!

n + mð Þ!

n−mð Þ!

 !1=2

e
isγ
e
imα

d
n
sm βð ÞM

1ð Þ
sn

~
ð81Þ

As in [18], we set:

M
1ð Þ
mn = ∑

n

s=−n
H
s
mnM

1ð Þ
sn

~
ð82Þ

Therefore, from Eqs. (81) and (82), we have:

H
s
mn =

n−sð Þ!

n + sð Þ!

n + mð Þ!

n−mð Þ!

 !

1=2

e
isγ
e
imα

d
n
sm βð Þ ð83Þ

that is to say:

H
m
sn =

n−mð Þ!

n + mð Þ!

n + sð Þ!

n−sð Þ!

 !1=2

e
imγ

e
isα
d
n
ms βð Þ ð84Þ

In particular, for s=1:

H
m
1n =

n−mð Þ!

n + mð Þ!

n + 1ð Þ!

n−1ð Þ!

 !

1=2

e
imγ

e
iα
d
n
m1 βð Þ ð85Þ

We now invoke Eq. B.25, Appendix B, from Mischenko et al [25],

rewritten under the form of two equations reading as:

d

dβ
d
n
ms βð Þ+

m

sinβ
d
n
ms βð Þ=

s cos β

sin β
d
n
ms βð Þ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n−sð Þ n + s + 1ð Þ
p

d
n
ms+ 1 βð Þ

ð86Þ

d

dβ
d
n
ms βð Þ−

m

sinβ
d
n
ms βð Þ =

−s cos β

sin β
d
n
ms βð Þ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n+ sð Þ n−s+1ð Þ
p

d
n
ms−1 βð Þ

ð87Þ

We now consider Eq. (86) for s=0, reading as:

d

dβ
d
n
m0 βð Þ +

m

sinβ
d
n
m0 βð Þ= −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n n + 1ð Þ
p

d
n
m1 βð Þ ð88Þ

from which we extract:

d
n
m1 βð Þ = −

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n n + 1ð Þ
p

d

dβ
d
n
m0 βð Þ +

m

sin β
d
n
m0 βð Þ

 !

ð89Þ

We insert this equation into Eq. (85), rearrange, and obtain:

H
m
1n = −1ð Þ

n−mð Þ!

n + mð Þ!

 !1=2

e
imγ

e
iα d

dβ
d
n
m0 βð Þ +

m

sin β
d
n
m0 βð Þ

 !

ð90Þ

But we have [25], Appendix B, Eq.B.28:

d
n
m0 βð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n−mð Þ!

n + mð Þ!

s

P
m
n cos βð Þ ð91Þ

Inserting Eq. (91) into Eq. (90), and invoking the definitions of πn
m

and τn
m of Eqs. (75) and (76), we obtain:

H
m
1n = −1ð Þ

n−mð Þ!

n + mð Þ!
e
imγ

e
iα

mπ
m
n cos βð Þ + τ

m
n cos βð Þ

% &

ð92Þ

which identifies with the result involved in Eqs. (73) and (74).

We now specify Eq. (84) for s=−1 and obtain:

H
m
−1n =

n−mð Þ! n−1ð Þ!

n + mð Þ! n + 1ð Þ!

 !

1=2

e
imγ

e
−iα

d
n
m −1ð Þ βð Þ ð93Þ

Next, we specify Eq. (87) for s=0, from which we deduce:

d
n
m −1ð Þ βð Þ=

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n n + 1ð Þ
p

d

dβ
d
n
m0 βð Þ−

m

sinβ
d
n
m0 βð Þ

 !

ð94Þ

Using once more Eq. (91), and the definitions of πn
m and τn

m, this

equation becomes:

d
n
m −1ð Þ βð Þ=

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n n + 1ð Þ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n−mð Þ!

n + mð Þ!

s

τ
m
n cos βð Þ−mπ

m
n cos βð Þ

% &

ð95Þ

We now insert Eq. (95) into Eq. (93) and obtain:

H
m
−1n =

1

n n + 1ð Þ

n−mð Þ!

n + mð Þ!
e
imγ

e
−iα

τ
m
n cos βð Þ−mπ

m
n cos βð Þ

% &

ð96Þ

agreeing with Eqs. (73) and (74).

5.5. Beam shape coefficients

From Eqs. (14), (9) and (74), wemay now express the beam shape

coefficients in the rotated system as follows:

g
m
n;X

~
= −1ð Þ

m + 1
−1ð Þ

m−jmj

2
n−jmjð Þ!

n + mð Þ!

�e
imγ

mπ
m
n cos βð Þ e

−iα
g
−1
n;X−e

iα
g
1
n;X

h i

−τ
m
n cos βð Þ e

−iα
g
−1
n;X+e

iα
g
1
n;X

h in o

ð97Þ

This equation may easily be specified in the case of Eq. (12). Let us

better specify it for the more common form of Eq. (13). We then

obtain the beam shape coefficients in the rotated system in terms of

the special beam shape coefficients in the unrotated system, according

to:

g
m
n;TM

~
= −1ð Þ

m
−1ð Þ

m−jmj

2
n−jmjð Þ!

n+mð Þ!
e
imγ

gn im sinαπ
m
n cosβð Þ+ cosατ

m
n cos βð Þ

% &

ð98Þ

g
m
n;TE

~
= −1ð Þ

m+1
−1ð Þ

m−jmj

2
n−jmjð Þ!

n+mð Þ!
e
imγ

gn im cosαπ
m
n cos βð Þ− sinατ

m
n cos βð Þ

% &

ð99Þ

which can be further specified for the plane wave case by setting

gn=1, or more generally by setting it to a constant phase term of the

form exp(ikz0).

6. On-axis axisymmetric beams. Case without any rotation

Anticipating on Part III [27] which will be devoted to special values

of Euler angles, we now consider the case of on-axis axisymmetric

beams satisfying Eq. (97) in the case when there is no rotation, that is

to say for the trivial case α=β=γ=0. Eq. (97) then simplifies to:

g
m
n;X

~
= −1ð Þ

m + 1
−1ð Þ

m−jmj

2
n−jmjð Þ!

n + mð Þ!

� mπ
m
n β=0ð Þ−τ

m
n β=0ð Þ

% &

g
−1
n;X− mπ

m
n β=0ð Þ+ τ

m
n β=0ð Þ

% &

g
1
n;X

n o

ð100Þ
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Let us recall Eq. (7). Then, from the definitions of πn
m and τn

m, we

derive similar equations reading as:

mπmn cos βð Þ

τ
m
n cos βð Þ

 !

= −1ð Þ
m−jmj

2
n−jmjð Þ!

n−mð Þ!

mπjmj
n cos βð Þ

τ
jmj
n cos βð Þ

 !

ð101Þ

We may then rewrite Eq. (100) under the following form:

g
m
n;X

~
= −1ð Þ

m + 1 n−jmjð Þ!½ �2

n + mð Þ! n−mð Þ!

� mπ
jmj
n β=0ð Þ−τ

jmj
n β=0ð Þ

h i

g
−1
n;X− mπ

jmj
n β=0ð Þ+τ

jmj
n β= 0ð Þ

h i

g
1
n;X

n o

ð102Þ

But, for mN0 and β→0 (or π), we have, according to Doicu et al

[28], p 257:

mπ
m
n cos βð Þ→ −1ð Þ

m 1

2

n + mð Þ!

n−mð Þ! m−1ð Þ!

β

2

& 'm−1

ð103Þ

τ
m
n cos βð Þ→ −1ð Þ

m 1

2

n + mð Þ!

n−mð Þ! m−1ð Þ!

β

2

& 'm−1

ð104Þ

in which we incorporate a prefactor (−1)m, absent from Doicu et al

[28], due to a different definition of associated Legendre functions.

These relations may be rewritten as:

π
jmj
n β→0ð Þ=

1

2

−1ð Þjmj

jmj

n + jmjð Þ!

n−jmjð Þ! jmj−1ð Þ!

β

2

& '

jmj−1

ð105Þ

τ
jmj
n β→0ð Þ=

1

2
−1ð Þ

jmj n + jmjð Þ!

n−jmjð Þ! jmj−1ð Þ!

β

2

& '

jmj−1

ð106Þ

We insert Eqs. (105) and (106) into Eq. (102), yielding:

g
m
n;X

~
=
1

2

β

2

& 'jmj−1

−1ð Þ
m + 1

−1ð Þ
jmj n−jmjð Þ! n + jmjð Þ!

n−mð Þ! n + mð Þ! jmj−1ð Þ!

�
m

jmj
−1

& '

g
−1
n;X−

m

jmj
+ 1

& '

g
1
n;X

( )

ð107Þ

We now consider Eq. (107) for mN0, becoming:

g
m
n;X

~
=

β

2

& 'm−1 1

m−1ð Þ!
g
1
n;X ð108Þ

from which we deduce:

g
m
n;X

~
m N 0;m≠1;β= 0ð Þ= 0 ð109Þ

g
1
n;X

~
= g

1
n;X ð110Þ

Similarly, for mb0, Eq. (107) leads to:

g
m
n;X

~
=

β

2

& '

−m−1 1

−m−1ð Þ!
g
−1
n;X ð111Þ

from which we deduce:

g
m
n;X

~
mb0;m≠−1;β= 0ð Þ= 0 ð112Þ

g
−1
n;X

~
= g

−1
n;X ð113Þ

For m=0, Eq. (100) leads to:

g
0
n;X

~
= τ

0
n β = 0ð Þ g

−1
n;X + g

1
n;X

h i

ð114Þ

Now, we have:

τ
0
n cos βð Þ =

dP0n cos βð Þ

dβ
=

dPn cos βð Þ

dβ
= − sinβ

dPn cos βð Þ

d cos β
ð115Þ

But Pn(cosβ) is a polynomial of the argument cosβ. Therefore, its

derivative with respect to the argument remains finite, and we then

obtain:

τ
0
n β = 0ð Þ= 0 ð116Þ

Hence, Eq. (114) becomes:

g
0
n;X

~
= 0 ð117Þ

Then, in this section, we have obtained the following result: if

there is no rotation, the beam shape coefficients of on-axis

axisymmetric beams in the rotated system are equal to those of the

unrotated system. This is actually a rather trivial result. It does not

supplement us with any new knowledge but rather provides a

checking of our computations.

7. Discussion and conclusion

We now discuss the practical significance of the results obtained in

this paper, a discussion which will also serve as a conclusion. To this

purpose, we dress the original problem (transformation of beam

shape coefficients of on-axis axisymmetric beams) with two extra-

elements.

The first element concerns the definition of the unrotated system.

Of course, any system may be taken as being the unrotated system

and, in particular, we are free to invert the role of the unrotated and of

the rotated systems, pretending that the rotated system is now to be

taken as being the unrotated one and vice versa. However, to better

approach the history of GLMTs and some traditional points of view

taken from this history, the unrotated system will be given a specific

definition as follows.

Following the description of coordinate systems given in the Fig. 1

of Gouesbet et al. [1], we consider a Cartesian system of coordinates,

with origin OG and coordinates (u, v, w) attached to the beam under

discussion, now called the illuminating beam.We take the axis OGw as

being the main axis of propagation of the beam (particularly easy to

define in the present case of axisymmetric beams). Next, we decide to

describe the scattering phenomena by using another Cartesian

coordinate system, with origin OP and coordinates (x,y,z). We

furthermore make the axes OPx, OPy, and OPz parallel to the axes OGu,

OGv, and OGw respectively. Then, we define the coordinates (x, y, z) as

being the Cartesian coordinates of the unrotated system.

Up to now, we have only considered coordinate systems and

nothing has been said concerning the nature of the scattering

particles. The second element to dress the problem is concerned

with the introduction of particles. These particles are such that the

scattering problem they generate can be solved by using separation of

variables in spherical coordinates. They are originally attached to the

frame OPxyz which may be called the (unrotated) particle frame.

When rotating this frame, the particle, which is attached to the frame,

is assumed to follow the rotation of the frame.

Let us begin by assuming that the scatterer is a homogeneous

sphere defined by its diameter d and its complex refractive indexm. In

the case of axisymmetric beams (not necessarily on-axis), we may

readily define two different situations. In the first case, the axis OGw of
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the illuminating beam coincides with the axisOPz of the particle frame

and, therefore, the center OP of the particle is located on the axis of the

beam. This is called the on-axis case. Otherwise, we are facing the off-

axis case. That these two cases are deeply different may be

appreciated by the following fact. In the on-axis case, we know that

the double set {gn,TM
m , gn,TE

m } of beam shape coefficients reduces to a

single set {gn}, n=1…∞, of special beam shape coefficients, as the

consequence of Eqs. (11) and 12, or 13. Accordingly, the on-axis

version of the GLMT becomes much simpler than the off-axis version.

The rotation from OPxyz to OPx̃ỹz ̃ does not modify the scattering

phenomena since the rotation of the attached sphere, which possesses

a high degree of symmetry, does not modify the scattering problem.

But it may modify deeply the computations involved to describe the

phenomena. For instance, in the unrotated system, we only need to

use special beam shape coefficients gn in the on-axis case. After the

rotation, the center OP of the particle is still located on the axis of the

beam, but the axisOGw of the illuminating beam does not coincide any

more with the axis, now denoted as OPz ̃, of the particle frame and, as

we have established in this paper, the description of the illuminating

beam must now been made again in terms of a double set of beam

shape coefficients now denoted as gmn;X
~

;X = TM or TE. In other words,

the rotation of the particle frame induces a more complicated

situation without any benefit since the eventual physical results

have to remain unchanged. Note however that no complication is

generated by the rotation of the particle frame in the case of off-axis

illumination since we need to use gn
m-kinds of coefficients in both the

rotated and unrotated systems. A similar discussion could apply to the

case of multilayered spheres [3].

However, let us now consider particles which, in general, do not

possess the property of invariance through rotation, although the

method of separation of variables may still be applied to them in

spherical coordinates, e.g. [4,5]. For being specific, let us more

particularly consider the case of a sphere, with center located at OP,

with an eccentrically located spherical sphere, or inclusion [5]. Let us

assume the simplest situation available, that is to say the case when

the center of the inclusion is located on the axis OPz of the unrotated

system. This may be viewed as a case of parallel illumination since the

axis of the beam OGw is parallel to the axis of the unrotated system.

Now, in contrast, in the rotated system, we are facing a quite different

situation that we may call a situation of oblique illumination. It

is under this name (oblique illumination) that the topic has been

initiated by Han et al [16,17]. The problem may then be expressed as

the one of the evaluation of beam shape coefficients in oblique

illumination in terms of beam shape coefficients in parallel illumina-

tion. The present paper elaborated on a solution to this problem,

discussing it, in the case of on-axis axisymmetric beams. Accordingly,

the main formal results of the paper are Eqs. (98), (99).
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This paper is Part III of a series of papers devoted to the transformation of beam shape coefficients under

rotations of coordinate systems. These coefficients are required for the expanded description of laser beams,

particularly for use in the framework of generalized Lorenz–Mie theories. In Part I of this series of papers, we

presented a general formulation for the transformation of spherical beam shape coefficients through rotations

of coordinate systems, under the form of a theorem of transformation. Part II was devoted to the special case of

axisymmetric beams, more particularly of on-axis axisymmetric beams. With this Part III, we investigate

simplifications of the general formulation for special values of the Euler angles defining the rotation. As in

Part II, one of the aims is to uncover compact forms of formulae useful to speed-up computations.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

For the sake of convenience, we recall the specific problem which

is studied in this series of papers. Let us consider a Cartesian system of

coordinates, denoted as x=(x,y,z), associated with usual spherical

coordinates (r, θ, φ), called the unrotated system, and let gn,TM
m , gn,TE

m be

the beam shape coefficients for the description of the illuminating

beam in this unrotated system. Let us consider a second system of

coordinates, called the rotated system, deduced from the unrotated

system by a rotation defined by Euler angles (α, β, γ), as defined in

Part I [1]. Quantities in the rotated system are denoted by using tilde-

decorations. Therefore the Cartesian coordinates of the rotated system

are denoted as x̃=(x̃,ỹ,z̃) and they are associated with spherical

coordinates (r ̃=r,θ̃,φ̃). The beam shape coefficients in the rotated

system are denoted as g̃mn;TM ; g̃mn;TE . The problem is to express the beam

shape coefficients in the rotated system in terms of beam shape

coefficients in the unrotated system. A general solution to this

problem has been found in Part I of the present series of papers [1]. It

takes the form of a theorem of transformation from which all

subsequent developments can be derived. In particular, Part II

discussed the special case of axisymmetric beams, particularly of

on-axis axisymmetric beams [2], which are rather common and of

widespread use. The most emblematic example is a Gaussian beam

interacting head-on with a spherical particle, as can be described in

some Generalized Lorenz–Mies, e.g. [3–5]. In the present Part III, we

deal with other special cases of Part I, namely when the Euler angles

are given special values, with the aim to provide results in compact

forms. Such compact forms should be useful to speed-up numerical

computations in some privileged configurations.

The paper is organized as follows. Section 2 recalls a basic back-

ground from previous parts [1,2], namely the theorem of transforma-

tion, how to dress the problem (in particular when considering a host

sphere containing an inclusion), and the definition of on-axis

axisymmetric beams. Section 3 deals with the trivial case of no

rotation, when all Euler angles are zero, and constitute a check of the

formulation. Section 4 deals with the case when the inclusion

introduced in the dressed problem is upside-down located. Section 5

deals with the case when the center of the inclusion is located in the

“horizontal plane.” Section 6 dealswith the casewhen the center of the

inclusion is located in the Cartesian vertical planes. Section 7 discusses

the case of a rotation about the vertical axis, and its relationship with

the case when there is no rotation at all. Section 8 is a conclusion.

2. Basic background

2.1. The theorem of transformation

The theorem of transformation, established in Part I [1], reads as

follows. Let x and x̃ be two systems of coordinates, named the
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⁎ Corresponding author.

E-mail address: Gouesbet@coria.fr (G. Gouesbet).

0030-4018/$ – see front matter © 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.optcom.2010.04.051

Contents lists available at ScienceDirect

Optics Communications

j ourna l homepage: www.e lsev ie r.com/ locate /optcom



Author's personal copy

unrotated and the rotated systems, respectively. Let gn,X
m and g̃mn;X , with

X=TM or TE, be the spherical beam shape coefficients of an arbitrary

shaped beam in the unrotated and in the rotated systems, respec-

tively. Then:

g̃
m
n;X = μmn ∑

n

s=−n

Hm
sn

μsn
g
s
n;X ð1Þ

in which:

μmn = −1ð Þm −1ð Þ
m− mj j

2
n− mj jð Þ!
n−mð Þ! ð2Þ

H
m
sn = −1ð Þn + s n−mð Þ!

n−sð Þ! e
isα
e
imγ

Sσ βð Þ ð3Þ

Sσ βð Þ = ∑
σ
−1ð Þσ n + s

n−m−σ

 !

n−s
σ

 !

cos
β

2

 !

2σ + m + s

sin
β

2

 !

2n−2σ−m−s

ð4Þ

in which (α, β, γ) are Euler angles bringing the unrotated system to

the rotated system.

2.2. Dressing the problem

The matter discussed in this paper, more generally in the present

series of papers, just requires us to introduce two coordinate systems,

an unrotated system and a rotated one. To help our mind producing

concrete mental pictures, and to give us the opportunity in the sequel

of this paper to use an extended language, we shall however dress the

problem under discussion with two extra-elements, already exten-

sively introduced in Part I [1], and briefly recalled in this section.

The first element concerns the definition of the unrotated system.

As in the figure 1 of [3], we consider a Cartesian system of coordinates,

with origin OG and coordinates (u, v,w). attached to a beam called the

illuminating beam. We take the axis OGw as being the main axis of

propagation of the beam and we decide to describe the scattering

phenomena by using another Cartesian coordinate, with origin OP and

coordinates (x, y, z). We furthermore make the axes OPx, OPy, OPz

parallel to the axes OGu, OGv, OGw respectively. Then, we define the

coordinates (x, y, z) as being the Cartesian coordinates of the

unrotated system.

The second element to dress the problem is concerned with the

introduction of particles. In this paper, we shall specifically consider

that the particle is a sphere with an eccentrically located spherical

inclusion [6]. It is originally attached to the frame OPxyzwhich may be

called the (unrotated) particle frame. When rotating this frame, the

particle, which is attached to the frame, is assumed to follow the

rotation of the frame. We also assume that, in the unrotated system,

the center of the inclusion is located on the axis Oz, and the center of

the host sphere is located at the origin OP of coordinates of the particle

frame. The specification of Euler angles is then equivalent to the

specification of the location of the center of the inclusion.

2.3. On-axis axisymmetric beams

We consider beams for which the beam shape coefficients satisfy

the following relations [2,7]:

g
m
n;X = 0; mj j≠1 ð5Þ

g
1
n;TM =

1

K
g
−1
n;TM = −iεg

1
n;TE =

iε

K
g
−1
n;TE =

gn
2

ð6Þ

Eq. (6) defines a set {gn} of special beam shape coefficients gn and

shows that the double set {gn,TM
m , gn,TE

m } of beam shape coefficients, with

two subscripts (n, m) reduces to a single set {gn} with a single

coefficient n. The parameter ε is equal to −1 (+1) when the energy

flux flows toward positive zs (negative zs). The parameter K is a real

number which describes the state of polarization of the beam. It

happens that Eq. (6) with ( ,K)=(−1, +1) is structurally identical

with the set of equations obtained for an on-axis Gaussian beam

polarized in the x direction at its focal waist, namely [3,8,9]:

g
1
n;TM = g

−1
n;TM = ig

1
n;TE = −ig

−1
n;TE =

gn
2

ð7Þ

A beam satisfying Eqs. (5) and (6) (or its special case of Eq. (7)) is

called an on-axis axisymmetric beam.

3. No rotation

The interest of this first special case, in which the Euler angles take

the special values: α=β=γ=0, is to provide a checking. Indeed, we

should not expect any new physical result from this section because the

rotated beamshape coefficients, in the case of no rotation,must be equal

to the original beam shape coefficients. This will be indeed the case.

We start from Eqs. (1)–(4), expressing the theorem of transfor-

mation, and we are looking for g̃mn;X α= β= γ= 0ð Þ. To this aim, let
us examine the quantity Sσ(0). This is different from 0 and will then

contribute to Eq. (3) only when the exponent of sin(β/2) is 0, that is to

say when:

σ = n−
m + s

2
ð8Þ

Hence:

Sσ 0ð Þ= −1ð Þσ n + s
n−m−σ

 !

n−s
σ

 !" #

σ=n−
m + s

2

ð9Þ

From Eqs. (4), (3) and (9), we then have:

H
m
sn α = β = γ = 0ð Þ= −1ð Þn + s n−mð Þ!

n−sð Þ! −1ð Þσ n + s
n−m−σ

 !

n−s
σ

 !" #

σ=n−
m + s

2

ð10Þ

We then see, from the subscript in the bracketed term, that Hsn
m

(α=β=γ=0) is zero when m and s do not possess the same parity.

We then have to examine two cases (i) m and s even and (ii) m and s

odd.

In the first case, we setm=2M and s=2S, and convert Eq. (10) to:

H
2M
2S;n α = β = γ = 0ð Þ = −1ð Þn n−2Mð Þ!

n−2Sð Þ! −1ð Þn−M−S n + 2S
S−M

 !

n−2S
n−M−S

 !

ð11Þ

This equation may be rewritten as:

H2M2S;n α = β= γ= 0ð Þ= −1ð ÞM + S n−2Mð Þ!
n−2Sð Þ!

n + 2Sð Þ! n−2Sð Þ!
S−Mð Þ! n + M + Sð Þ! n−M−Sð Þ! M−Sð Þ!

ð12Þ

From the factorials (S−M)! and (M−S)!, we see that we need

M=S, and the single contribution, after simplification, is found to be:

H
2M
2M;n = 1 ð13Þ

which, invoking Eq. (1), implies:

g̃
2M
n;X = g

2M
n;X ð14Þ
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as expected. Similarly, in the second case, we setm=2M+1, observe

that we must have s=2S+1, and obtain:

g̃
2M + 1
n;X = g

2M + 1
n;X ð15Þ

again as expected.

4. Inclusion upside-down

4.1. Arbitrary shaped beams

In this section, we let the Euler angle α unspecified and specify the

two other Euler angles as follows:

β = π;γ = 0 ð16Þ

This is a situation in which the center of the inclusion is still

located on the axis Oz but it has been brought from an upside position

to a downside position. Because cos(β/2) is then equal to 0, the only

term which remains in the summation of Eq. (4) is the one for which:

σ = −
m + s

2
ð17Þ

From Eq. (3), this implies that Hsn
m is 0 whenever m and s have

different parities. We then begin by assuming that m and s are even,

and therefore set:

m = 2M
s = 2S

 

ð18Þ

so that the only term in the Sσ-summation is for:

σ = −M−S ð19Þ

From Eq. (4), we then obtain:

Sσ β = πð Þ = −1ð ÞM + S n + 2S
n−M + S

! "

n−2S
−M−S

! "

ð20Þ

becoming:

Sσ β = πð Þ = −1ð ÞM + S n + 2Sð Þ! n−2Sð Þ!
n−M + Sð Þ! M + Sð Þ! −M−Sð Þ! n + M−Sð Þ!

ð21Þ

From the two factorials (M+S)! and (−M−S)! in the denomi-

nator, we see that we must have (S+M)=0, that is to say:

S = −M ð22Þ

This implies that, in the same way that the Sσ-summation reduces

to a single term, the s-summation of Eq. (1) reduces to a single term

too, the one for which Eq. (22) is satisfied. We therefore have:

g̃
2M
n;X =

μ2Mn

μ−2Mn

H
2M
−2Mng

−2M
n;X ð23Þ

in which, from Eq. (3), with γ=0:

H
2M
−2Mn = −1ð Þn n−2Mð Þ!

n + 2Mð Þ! e
−2iMα

Sσ β = πð Þ ð24Þ

in which, from Eqs. (21) and (22), Sσ(β=π) reduces exactly to (1).

From these results, and invoking also Eq. (2), we obtain:

g̃
2M
n;X =

n− 2Mj jð Þ!
n−−2Mj jð Þ! −1ð Þne−2iMαg−2Mn;X ð25Þ

simplifying to, whatever M:

g̃
2M
n;X = −1ð Þne−2iMαg−2Mn;X ð26Þ

We now deal with the odd case:m=2M+1, with s=2S+1. From

Eq. (1), we have:

g̃
2M + 1
n;X = μ 2M + 1;n ∑

n

s=−n; s=2S + 1

H2M + 1
2S + 1;n

μ 2S + 1;n
g
2S + 1
n;X ð27Þ

But, from Eq. (3):

H
2M + 1
2S + 1;n β = π;γ= 0ð Þ= −1ð Þn + 1 n−2M−1ð Þ!

n−2S−1ð Þ! e
i 2S + 1ð Þα

Sσ β = πð Þ

ð28Þ

in which, according to Eq. (4):

Sσ β = πð Þ = ∑
σ

−1ð Þσ
n + s

n−m−σ

 !

n−s

σ

 !

cos
π

2

% &2σ + m + s
sin

π

2

% &2n−2σ−m−s

form= 2M + 1;s= 2S + 1;σ = −
m + s

2
= −M−S−1

ð29Þ

becoming:

Sσ β = πð Þ= −1ð ÞM + S + 1 n + 2S + 1
n−M + S

! "

n−2S−1
−M−S−1

! "

ð30Þ

leading to:

Sσ β = πð Þ = −1ð ÞM + S + 1 n + 2S + 1ð Þ!
n−M + Sð Þ! S + M + 1ð Þ!

n−2S−1ð Þ!
−M−S−1ð Þ! n−S + Mð Þ!

ð31Þ

The factorials (S+M+1)! and (−M−S−1)! in the denominator

imply that we must have:

S = −M−1 ð32Þ

Therefore, there is only one term remaining in the summation of

Eq. (27), involvingH−2M−1,n
2M+1 . Also, accounting for Eq. (32), we readily

have, from Eq. (31):

Sσ β = πð Þ= 1 ð33Þ

so that we obtain, from Eqs. (28) and (33):

H
2M + 1
−2M−1;n = −1ð Þn + 1 n−2M−1ð Þ!

n + 2M + 1ð Þ! e
−i 2M + 1ð Þα ð34Þ

Now, Eq. (27) simplifies to:

g̃
2M + 1
n;X =

μ2M + 1;n

μ−2M−1;n
H
2M + 1
−2M−1;ng

−2M−1
n;X ð35Þ

We now recall Eq. (2) and obtain:

μ2M + 1;n = −1ð Þ2M + 1
−1ð Þ

2M + 1− 2M + 1j j
2

n− 2M + 1j jð Þ!
n−2M−1ð Þ! ð36Þ

μ−2M−1;n = −1ð Þ−2M−1 −1ð Þ
−2M−1−−2M−1j j

2
n−−2M−1j jð Þ!
n + 2M + 1ð Þ! ð37Þ
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We then readily establish:

RMn =
μ2M + 1;n

μ−2M−1;n
= −1ð Þ1 +

− 2M + 1j j + −2M−1j j
2

n− 2M + 1j jð Þ!
n−2M−1ð Þ!

n + 2M + 1ð Þ!
n−−2M−1j jð Þ!

ð38Þ

that we examine for MN0 and Mb0. In both cases, the result is:

Rmn = −
n + 2M + 1ð Þ!
n−2M−1ð Þ! ð39Þ

We afterward insert Eqs. (34) and (39) into (35), leading to:

g̃
2M + 1
n;X = −1ð Þne−i 2M + 1ð Þα

g
−2M−1
n;X ð40Þ

4.2. On-axis axisymmetric beams

We now specify the results obtained in the previous sub-section to

the case of on-axis axisymmetric beams. Inserting Eq. (5) into

Eqs. (26) and (40) leads to:

g̃
2M
n;X = 0 ð41Þ

g̃
2M + 1
n;X = 0 but for M = 0;−1 ð42Þ

We then readily obtain:

g̃
1
n;X = −1ð Þne−iαg−1n;X ð43Þ

g̃
−1
n;X = −1ð Þneiαg1n;X ð44Þ

for M=0,−1 respectively. We may then specify these results for

Eqs. (6) or (7). Let us do it for Eq. (7). We obtain:

g̃
1
n;TM =

1

2
−1ð Þne−iαgn ð45Þ

g̃
1
n;TE =

i

2
−1ð Þne−iαgn ð46Þ

g̃
−1
n;TM =

1

2
−1ð Þneiαgn ð47Þ

g̃
−1
n;TE =

−i

2
−1ð Þneiαgn ð48Þ

These relations do not share the same simplicity as the ones

displayed for instance in Eq. (7). In particular, g̃1n;TM = g̃−1n;TM is equal

to exp(−2iα) which is different from (1), except for α=0, in

contrast with gn,TM
1 /gn,TM

−1 which in Eq. (7) is always equal to 1.

Nevertheless, from a physical point of view, the value of α is
irrelevant. Indeed, the value α=0 defines the same upside-down

physical situation than any other value, and could have been

specified in Eq. (16), in the same way than we have set γ equal to

0. For α=0 however, the relations above can be pleasantly
summarized as follows:

g̃
1
n;TM = g̃

−1
n;TM = −ig̃

1
n;TE = ig̃

−1
n;TE =

1

2
−1ð Þngn ð49Þ

which may be interestingly compared with Eq. (7), or more

interestingly, with Eq. (6). Both equations then formally identify

with (−1)ngn changed to gn, with K=1, and ε=+1. This value of ε is

in agreement with the fact that the case under study makes the beam

flowing toward negative z,s.

As a checking, we should recover these particular results for on-

axis axisymmetric beams from the compact forms obtained for this

case, given in [2], specified for β=π, γ=0, reading as:

g̃mn;X = −1ð Þm + 1 −1ð Þ
m− mj j
2

n− mj jð Þ!
n + mð Þ!

×fmπmn cosβ = −1ð Þ e
−iα

g
−1
n;X−e

iα
g
1
n;X

h i

−τ
m
n cosβ = −1ð Þ e

−iα
g
−1
n;X + e

iα
g
1
n;X

h ig

ð50Þ

in which πn
m(cosβ) and τn

m(cosβ) are the generalized Legendre

functions defined as:

π
m
n cosβð Þ = Pmn cosβð Þ

sinβ
ð51Þ

τ
m
n cos βð Þ = dPmn cosβð Þ

dβ
ð52Þ

For convenience, just playing with arguments in a looser way, we

better rewrite Eq. (50) as:

g̃mn;X = −1ð Þm + 1 −1ð Þ
m− mj j
2

n− mj jð Þ!
n + mð Þ!

×fmπmn β = πð Þ e
−iα

g
−1
n;X−e

iα
g
1
n;X

h i

−τ
m
n β = πð Þ e

−iα
g
−1
n;X + e

iα
g
1
n;X

h ig

ð53Þ

To deal with this expression, we start with a bit of preparation.

From Doicu et al. [10], p 257, we have, for mN0:

mπ
m
n θ→0;πð Þ = −1ð Þm 1

2

n + mð Þ!
n−mð Þ! m−1ð Þ!

θ

2

" #m−1

ð54Þ

τ
m
n θ→0;πð Þ = −1ð Þm 1

2

n + mð Þ!
n−mð Þ! m−1ð Þ!

θ

2

" #m−1

ð55Þ

in which the prefactor (−1)m, which does not appear in Doicu et al.

[10], is due to the fact than Doicu et al. used an alternative definition

for the associated Legendre functions. With our convention, let us

recall that these associated Legendre functions may be given a unique

form, whatever m2Z, reading as [1]:

P
m
n cosθð Þ = −1ð Þ

m− mj j
2

n− mj jð Þ!
n−mð Þ! P

mj j
n cosθð Þ ð56Þ

Next, from the definitions of πn
m and τn

m, Eq. (56) implies that,

whatever the value of m2Z:

mπ
m
n cosθð Þ = −1ð Þ

m− mj j
2

n− mj jð Þ!
n−mð Þ! mπ

mj j
n cosθð Þ ð57Þ

τ
m
n cosθð Þ = ð−1Þ

m− mj j
2

n− mj jð Þ!
n−mð Þ! τ

mj j
n cosθð Þ ð58Þ

We now set:

θ = π−β ð59Þ

so that, in the present case where β=π, we have θ=0.
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We also have from Doicu et al. [10], p 260:

π
m
n βð Þ = −1ð Þn−mπmn π−βð Þ ð60Þ

τ
m
n βð Þ = −1ð Þn−m + 1

τ
m
n π−βð Þ ð61Þ

Inserting Eqs. (60) and (61) into Eq. (53), and using Eq. (59), we

obtain:

g̃mn;X = −1ð Þn + 1 −1ð Þ
m− mj j

2
n− mj jð Þ!
n + mð Þ!

×f mπ
m
n θ= 0ð Þ + τ

m
n θ = 0ð Þ

 !

e
−iα

g
−1
n;X

+ τ
m
n θ = 0ð Þ−mπ

m
n θ = 0ð Þ

 !

e
iα
g
1
n;Xg

ð62Þ

We now introduce Eqs. (57) and (58) into Eq. (62) and obtain:

g̃mn;X = −1ð Þn + 1 −1ð Þm− mj j n− mÞj jð Þ!
n + mð Þ!

n− mÞj jð Þ!
n−mð Þ!

×f mπ
mj j
n θ = 0ð Þ + τ

mj j
n θ= 0ð Þ

h i

e
−iα

g
−1
n;X

+ τ
mj j
n θ = 0ð Þ−mπ

mj j
n θ = 0ð Þ

h i

e
iα
g
1
n;Xg

ð63Þ

Eqs. (54) and (55) then imply that g̃mn;X is proportional to (θ/2)
|m|−1,

with θ=0, that is to say, with the casem=0 excluded:

g̃
m
n;X = 0; mj j≠1;m≠0 ð64Þ

Afterward, from Eqs. (54), (55) and (63), we obtain:

g̃
1
n;X = −1ð Þne−iα

g
−1
n;X ð65Þ

g̃
−1
n;X = −1ð Þneiαg1n;X ð66Þ

that is to say, we have recovered Eqs. (43) and (44), as required.

We still have to deal with the case m=0. Specifying Eq. (62) for

this case, we have:

g̃
0
n;X = −1ð Þn + 1

τ
0
n θ= 0ð Þ e

−iα
g
−1
n;X + e

iα
g
1
n;X

h i

ð67Þ

However, from Eq. (52):

τ
0
n cosθð Þ = dP0n cosθð Þ

dθ
=

dPn cosθð Þ
dθ

= −sinθ
dPn cosθð Þ
dcosθ

ð68Þ

But Pn(cosθ) is a polynomial of the argument cosθ. Therefore, its

derivative with respect to the argument remains finite, and we then

obtain:

τ
0
n θ = 0ð Þ = 0 ð69Þ

leading to:

g̃
0
n;X = 0 ð70Þ

so that Eq. (64) can be extended to the case m=0.

5. Inclusion in the horizontal plane

We now consider the case when the Euler angle α is free,

specifying the two other Euler angles to:

β = π = 2;γ = 0 ð71Þ

In the dressed problem, with the center of the inclusion in the

unrotated system located on the z-axis, called the vertical axis, Eq. (71)

corresponds to the case when the center of the inclusion is located in

the horizontal plane containing the center of the host sphere.

5.1. Expanded forms: arbitrary shaped beams

We specify Eq. (4) expressing Sσ(β) for β=π/2, that is to say for:

cos
β

2
= cos

π

4
=

ffiffiffi

2
p

2
= sin

β

2
= sin

π

4
ð72Þ

We then obtain:

Sσ β = π = 2ð Þ = 1

2n
∑
σ
−1ð Þσ n + s

n−m−σ

% &

n−s
σ

% &

ð73Þ

This can be rewritten as:

Sσ β = π = 2ð Þ = 1

2n
n + sð Þ! n−sð Þ!Tσ n;m; sð Þ ð74Þ

in which:

Tσ n;m; sð Þ = ∑
σ

−1ð Þσ
n−m−σð Þ! m + σ + sð Þ! σð Þ! n−s−σð Þ! ð75Þ

Let us now consider the general result of Eq. (1) in which we insert

the expressions for μmn and μsn given by Eq. (2), and the expression for

Hsn
m given by Eq. (3), all these specified for β=π/2, γ=0, with Sσ(β)

available from Eqs. (74), (75), eventually leading to:

g̃mn;X β = π = 2;γ = 0ð Þ = −1ð Þn + m −1ð Þ
m−jmj
2 ðn−jmj jÞ!

1

2n

∑
n

s=−n
−1ð Þ

s−jsj
2 e

isα n + sð Þ! n−sð Þ!
n−jsjð Þ! Tσ n;m; sð Þgsn;X

ð76Þ

It may be convenient to rewrite this expression as:

g̃
m
n;X β = π = 2;γ= 0ð Þ = A

m
n S0 + Sþ + S−
' (

ð77Þ

in which:

A
m
n = −1ð Þn + m

−1ð Þ
m−jmj
2 n−jmjð Þ! 1

2n
ð78Þ

and S0 (corresponding to the term for s=0), S+ (corresponding to the

terms for positive values of s) and S− (corresponding to the terms for

negative values of s) can be given the following forms:

S0 = n!Tσ n;m;0ð Þg0n;X ð79Þ

Sþ = ∑
n

s=1
e
isα

n + sð Þ!Tσ n;m; sð Þgsn;X ð80Þ

S− = ∑
−1

s=−n
−1ð Þseisα n−sð Þ!Tσ n;m; sð Þgsn;X ð81Þ
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Although a bit contradicting the title of this sub-section, we are

now going to provide an explicit compact expression for Tσ(n,m,0)

involved in S0, reading as:

Tσ n;m;0ð Þ = ∑
σ

−1ð Þσ
n−m−σð Þ! m + σð Þ!σ! n−σð Þ! ð82Þ

For this, we recall that we have demonstrated, in [2]:

Pmn cosβð Þ= ∑
σ

−1ð Þn−σ n + mð Þ!n!
n−σð Þ! m + σð Þ! n−m−σð Þ!σ!

× sin
β

2

 !2n−m−2σ

cos
β

2

 !2σ + m
ð83Þ

We specify this equation for β=π/2 and we obtain:

P
m
n 0ð Þ = −1ð Þn

2n
n + mð Þ!n!Tσ n;m;0ð Þ ð84Þ

that is to say:

Tσ n;m;0ð Þ = −1ð Þn2n
n + mð Þ!n! P

m
n 0ð Þ ð85Þ

But [11]:

Pmn 0ð Þ = 0; n−mð Þodd

Pmn 0ð Þ = −1ð Þ
n + m

2
n + m−1ð Þ!!

2
n−m

2
n−m

2

" #

!

; n−mð Þeven

8

>

>

>

<

>

>

>

:

ð86Þ

in which:

n!! = 1:3:5…n
−1ð Þ!! = 1

(

ð87Þ

We afterward insert Eq. (86) into Eq. (85) to obtain:

Tσ n;m;0ð Þ = 0; n−mð Þodd

Tσ n;m;0ð Þ = −1ð Þn2n
n + mð Þ!n! −1ð Þ

n + m

2
n + m−1ð Þ!!

2
n−m

2
n−m

2

" #

!

; n−mð Þeven

8

>

>

>

<

>

>

>

:

ð88Þ

Hence, inserting this relation into Eq. (79) we have:

S0 = 0; n−mð Þodd

S0 =
−1ð Þn2n
n + mð Þ! −1ð Þ

n + m

2
n + m−1ð Þ!!

2
n−m

2
n−m

2

" #

!

g
0
n;X ; n−mð Þeven

8

>

>

>

<

>

>

>

:

ð89Þ

Inserting Eqs. (78), (80), (81), and (89) into Eq. (77), wemaywrite

our result under the following form:

g̃mn;X = −1ð Þn + m −1ð Þ
m−jmj
2 n−jmjð Þ! 1

2n

×

(

ð−1Þn2n
ðn + mÞ! −1ð Þ

n + m

2
n + m−1ð Þ!!

2
n−m

2
n−m

2

" #

!

g
0
n;Xδpar 2ð Þpar n−mð Þ

+ ∑
n

s=1
e
isα

n + sð Þ!Tσ n;m; sð Þgsn;X

+ ∑
−1

s=−n
−1ð Þseisα n−sð Þ!Tσ n;m; sð Þgsn;Xg

ð90Þ

in which par(i) is the parity of i.

5.2. Expanded forms: on-axis axisymmetric beams

In the case of on-axis axisymmetric beams, wemay apply Eq. (5) to

Eq. (90) which dramatically simplifies to:

g̃mn;X = −1ð Þn + m −1ð Þ
m− mj j
2 n− mj jð Þ! 1

2n

× e
iα

n + 1ð Þ!Tσ n;m;1ð Þg1n;X−e
−iα

n + 1ð Þ!Tσ n;m;−1ð Þg−1n;X

n o

ð91Þ

We now specify Eq. (91) to Eq. (7). This readily leads to the

following results:

g̃mn;TM = −1ð Þn + m −1ð Þ
m− mj j
2 n− mj jð Þ! n + 1ð Þ!

2n + 1
gn

× Tσ n;m;1ð Þeiα−Tσ n;m;−1ð Þe−iα
h i

ð92Þ

g̃mn;TE = −i −1ð Þn + m −1ð Þ
m− mj j
2 n− mj jð Þ! n + 1ð Þ!

2n + 1
gn

× Tσ n;m;1ð Þeiα + Tσ n;m;−1ð Þe−iα
h i

ð93Þ

5.3. Concise form: arbitrary shaped beams

Let us rewrite Eq. (4) under the following form:

Sσ βð Þ = ∑
σ
−1ð Þσ n + sð Þ! n−sð Þ!

n−m−σð Þ! s + m + σð Þ!σ! n−s−σð Þ!

× cos
β

2

 !2σ + m + s

sin
β

2

 !2n−2σ−m−s
ð94Þ

Now, in [1], we have introduced four versions of Wigner d-functions,

following Mishchenko et al. [12]. One of them reads as:

dnms βð Þ = −1ð Þn−s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n + mð Þ! n−mð Þ! n + sð Þ! n−sð Þ!
p

∑
σ
−1ð Þσ

cos
β

2

" #s + m + 2σ
sin

β

2

" #2n−s−m−2σ

σ! n−m−σð Þ! n−s−σð Þ! m + s + σð Þ!

ð95Þ

from which we deduce:

Sσ βð Þ = −1ð Þn + s n + sð Þ!
n + mð Þ!

n−sð Þ!
n−mð Þ!

0 11=2

d
n
ms βð Þ ð96Þ

We then use Eqs. (74) and (96), to obtain:

Tσ n;m; sð Þ = −1ð Þn + s2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n + sð Þ! n−sð Þ! n + mð Þ! n−mð Þ!
p d

n
ms β =

π

2

" #

ð97Þ

At the present step, the expression for the d-function still however

contains a σ-summation, so that the effective gain is not obvious. This

σ-summation is simply made explicit when we use the original

notation for Sσ(β). However, the d-function can also be evaluated by

using a recurrence relation in [12] (Appendix B, p 365) so that Eq. (97)

may actually be viewed as being more efficient than an expanded

form. Nevertheless, we shall not call it a compact form, but a concise

form. Concise forms for beam shape coefficients may afterward been

readily obtained by using Eqs. (96), (3), (2) and (1).

5.4. Compact forms: on-axis axisymmetric beams

Genuine compact forms may however been obtained in the case of

on-axis axisymmetric beams, by elaborating more on Eq. (91) which
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involves the quantities Tσ(n,m,1) and Tσ(n,m,−1). Indeed, from

Eq. (97):

Tσ n;m;1ð Þ = −1ð Þn + 12n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n + 1ð Þ! n−1ð Þ! n + mð Þ! n−mð Þ!
p d

n
m1 β =

π

2

" #

ð98Þ

Tσ n;m;−1ð Þ = −1ð Þn + 12n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n−1ð Þ! n + 1ð Þ! n + mð Þ! n−mð Þ!
p d

n
m −1ð Þ β =

π

2

" #

ð99Þ

We insert Eqs. (98) and (99) into (91), yielding:

g̃mn;X = −1ð Þm + 1 −1ð Þ
m− mj j
2

n− mj jð Þ!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n + 1ð Þ!
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n−mð Þ! n + mð Þ! n−1ð Þ!
p

× e
iα
d
n
m1 β =

π

2

" #

g
1
n;X−e

−iα
d
n
m −1ð Þ β =

π

2

" #

g
−1
n;X

h i

ð100Þ

We now invoke Eq. (B25), Appendix B, from Mishchenko et al.

[12], rewritten under the form of two equations reading as:

d

dβ
d
n
ms βð Þ + m

sinβ
d
n
ms βð Þ = s cosβ

sinβ
d
n
ms βð Þ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n−sð Þ n + s + 1ð Þ
p

d
n
ms + 1 βð Þ

ð101Þ

d

dβ
d
n
ms βð Þ− m

sinβ
d
n
ms βð Þ = −s cosβ

sinβ
d
n
ms βð Þ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n + sð Þ n−s + 1ð Þ
p

d
n
ms−1 βð Þ

ð102Þ

We specify these equations for s=0 and readily obtain:

d
n
m1 βð Þ = −1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n n + 1ð Þ
p

d

dβ
d
n
m0 βð Þ + m

sinβ
d
n
m0 βð Þ

& '

ð103Þ

d
n
m −1ð Þ βð Þ = + 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n n + 1ð Þ
p

d

dβ
d
n
m0 βð Þ ÿ m

sinβ
d
n
m0 βð Þ

& '

ð104Þ

We insert Eqs. (103) and (104) into Eq. (100), leading to:

g̃mn;X =

(

−1ð Þm −1ð Þ
m− mj j
2

n− mj jð Þ!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n−mð Þ! n + mð Þ!
p

×½eiαg1n;X d

dβ
d
n
m0 βð Þ + m

sinβ
d
n
m0 βð Þ

) *

+ e
−iα

g
−1
n;X

d

dβ
d
n
m0 βð Þ− m

sinβ
d
n
m0 βð Þ

) *�g
β=

π

2

ð105Þ

But we have, from Mishchenko et al. [12], Appendix B, Eq. (B.28):

d
n
m0 βð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n−mð Þ!
n + mð Þ!

s

P
m
n cosβð Þ ð106Þ

By using this relation, and the definitions of πn
m and τn

m, Eq. (105)

can be rewritten as:

g̃mn;X = −1ð Þm −1ð Þ
m− mj j
2

n− mj jð Þ!
n + mð Þ!

×½eiαg1n;Xðτ
m
n cosβð Þ + mπ

m
n cosβð Þ

+ e
−iα

g
−1
n;X ðτmn cosβð Þ−mπmn cosβð Þ�

β=
π

2

ð107Þ

This may be further simplified. For this, we use Eqs. (86), (87) and

recall [11]:

dPmn cosβð Þ
dcosβ

& '

β=
π

2

=

0for n−mð Þeven

−1ð Þ
n + m−1

2
n + mð Þ!!
2

n−m−1

2

n−m−1

2
ð Þ!

for n−mð Þodd

8

>

<

>

:

ð108Þ

Next, we have:

π
m
n cosβð Þ

0 1

β=
π

2

= π
m
n 0ð Þ = Pmn cosβð Þ

sinβ

& '

β=
π

2

= P
m
n 0ð Þ ð109Þ

τ
m
n cosβð Þ

0 1

β=
π

2

= τ
m
n 0ð Þ = dPmn cosβð Þ

dβ

& '

β=
π

2

= −sinβ
dPmn cosβð Þ
dcosβ

& '

β=
π

2

= −
dPmn cosβð Þ
dcosβ

& '

β=
π

2

ð110Þ

Inserting these results into Eq. (107), we obtain the following

beam shape coefficients compact forms:

g̃mn;X ðn−m;evenÞ =
−1ð Þm −1ð Þ

m− mj j
2 −1ð Þn + m

2

2
n−m

2

m n− mj jð Þ! n + m−1ð Þ!!
n + mð Þ! n−m

2

" #

!

× e
iα
g
1
n;X−e

−iα
g
−1
n;X

h i

ð111Þ

g̃mn;X ðn−m;oddÞ = −1ð Þm + 1 −1ð Þ
m− mj j
2 −1ð Þ

n + m−1

2

2

n−m−1

2

n− mj jð Þ! n + m−1ð Þ!!
n + mð Þ! n−m−1

2

" #

!

× e
iα
g
1
n;X−e

−iα
g
−1
n;X

h i

ð112Þ

These two last equations can readily be specified for Eqs. (6) or (7).

Equivalently, we could start from the results obtained for on-axis

axisymmetric beams in Part II [2] and specify them for the case under

study.

6. Inclusion in the Cartesian vertical planes

After having considered the case, call it case H, when the center of

the inclusion is located in the plane xOy (the horizontal plane), we

might naturally consider the cases when the center of the inclusion is

located in what we call in this paper the Cartesian vertical planes,

namely either in the plane yOz (case V1) or in the plane x0z (case V2).

We shall be content with a discussion of the case V1.

According to the definition of Euler angles, we must have 0≤βbπ.

Therefore, case V1 requires us to consider two different cases:

(i) α=3π/2, β current, γ=0. In this case, the inclusion runs along

a half-circle on the left of the plane (x, z), crossing the negative

y-axis.

(ii) α=π/2, β current, γ=0. In this case, the inclusion runs along a

half-circle on the right of the plane (x, z), crossing the positive

y-axis.

We insert Eq. (96) into Eq. (3) to obtain:

H
m
sn βð Þ = n + sð Þ! n−mð Þ!

n−sð Þ! n + mð Þ!

& '1=2

e
isα
e
imγ

d
n
ms βð Þ ð113Þ
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We now consider the case (i) with α=3π/2 and γ=0. With these

values of the Euler angles, Eq. (113) simplifies to:

H
m
sn βð Þ = −ið Þs n + sð Þ! n−mð Þ!

n−sð Þ! n + mð Þ!

 !

1=2

d
n
ms βð Þ ð114Þ

For case (ii), when α=π/2, γ=0, we similarly obtain:

H
m
sn βð Þ= i

s n + sð Þ! n−mð Þ!
n−sð Þ! n + mð Þ!

 !1=2

d
n
ms βð Þ ð115Þ

These are what we have called concise forms (not compact forms).

Concise expressions for the beam shape coefficients may afterward be

obtained by using Eq. (1).

We now discuss the case of on-axis asymmetric beams, recalling a

compact form obtained in Part II [2] for on-axis axisymmetric beams

in the rotated system:

g̃mn;X = −1ð Þm + 1 −1ð Þ
m− mj j
2

n− mj jð Þ!
n + mð Þ! e

imγ

×fmπ
m
n cosβð Þ e

−iα
g
−1
n;X−e

iα
g
1
n;X

h i

−τ
m
n cosβð Þ

× e
−iα

g
−1
n;X + e

iα
g
1
n;X

h i

g

ð116Þ

In case (i), Eq. (116) simplifies to:

g̃mn;X = i −1ð Þm + 1 −1ð Þ
m− mj j
2

n− mj jð Þ!
n + mð Þ!

× mπ
m
n cosβð Þ g

−1
n;X + g

1
n;X

h i

−τ
m
n cosβð Þ g

−1
n;X−g

1
n;X

h in o

ð117Þ

When Eq. (7) is satisfied, this equation leads to:

g̃
m
n;TM = i −1ð Þm + 1

−1ð Þ
m− mj j
2

n− mj jð Þ!
n + mð Þ!mπ

m
n cosβð Þgn ð118Þ

g̃
m
n;TE = −1ð Þm + 1 −1ð Þ

m− mj j
2

n− mj jð Þ!
n + mð Þ!τ

m
n cosβð Þgn ð119Þ

in agreement with results already obtained in Part II [2].

In case (ii), Eq. (116) simplifies to:

g̃mn;X = i −1ð Þm −1ð Þ
m− mj j
2

n− mj jð Þ!
n + mð Þ!

× mπ
m
n cosβð Þ g

−1
n;X + g

1
n;X

h i

+ τ
m
n cosβð Þ g

1
n;X−g

−1
n;X

h in o

ð120Þ

Specifying Eq. 7, we then obtain:

g̃
m
n;TM = i −1ð Þm −1ð Þ

m− mj j
2

ðn− mj jÞ!
ðn + mÞ!mπ

m
n cosβð Þgn ð121Þ

g̃
m
n;TE = −1ð Þm −1ð Þ

m− mj j
2

ðn− mj jÞ!
ðn + mÞ!τ

m
n cosβð Þgn ð122Þ

Specifying Eq. (7), we then obtain in: agreement with results

already obtained in Part II [2].

It is worthwhile to note that Eqs. (121), (122) agree with

Eqs. (118), (119), except for a phase term equal to (−1).

Concerning V2, let us just mention that, due to the constraint

0≤βbπ, we have to separately consider two cases (i) α=γ=0

(ii) α=π, γ=0. The rest is left to the reader.

7. Rotation about the vertical axis

This case corresponds to β=0, and will allow us an interesting

discussion on physics.With the axisOz being taken as the vertical axis,

this is a case when the only rotation involved is a rotation about the

vertical axis. We have actually already considered a special case of it,

namely the case of no rotation: α=β=γ=0. We begin by discussing

the relationship between these two special cases.

For β=0, Eq. (3) becomes:

H
m
sn β = 0ð Þ = −1ð Þn + s n−mð Þ!

n−sð Þ! e
isα
e
imγ

Sσ 0ð Þ ð123Þ

In the case of no rotation, this reduces to:

H
m
snðnorotationÞ = −1ð Þn + s n−mð Þ!

n−sð Þ! Sσ 0ð Þ ð124Þ

that is to say:

Hm
sn β= 0ð Þ

Hm
snðno rotationÞ

= e
isα
e
imγ ð125Þ

In terms of beam shape coefficients, this implies:

g̃
m
n;X β = 0ð Þ = μmne

imγ
∑
n

s=−n
e
isα H

m
snðno rotationÞ

μsn
g
s
n;X ð126Þ

with the reciprocal relation:

g̃
m
n;X ðno rotationÞ = μmne

−imγ
∑
n

s=−n
e
−isα H

m
sn β= 0ð Þ

μsn
g
s
n;X ð127Þ

Nevertheless, for β=0, any rotation (α, 0, γ) is equivalent to a

single rotation Γ such as Γ=(α+γ), that is to say of the kind (0, 0, Γ).

Starting from Eq. (127) (or 126), we then physically obtain the

interesting relation:

g̃
m
n;X ðno rotationÞ = e

−imΓ
g̃
m
n;X β = 0ð Þ ð128Þ

Both kinds of beam shape coefficients are simply related by a phase

factor, involving a single angle of rotation Γ around the original z-axis. A

similar discussion is also valid in the special case of on-axis

axisymmetric beams, although in this case onlyH1n
m andH−1n

m intervene.

Also, let us extend the discussion by considering a problem dressed

with a spherical inclusion having its center located on the axis Oz.

Then, both cases (no rotation, rotation about the vertical axis) are

equivalent and the phase angle Γ should be physically irrelevant.

We now mathematically elaborate on these remarks. The issue is

that we should be able to derive Eq. (128) mathematically (and not

physically) from Eq. (127). To this purpose, we start from Eq. (96),

with β=0:

Sσ β = 0ð Þ = −1ð Þn + s n + sð Þ! n−sð Þ!
n + mð Þ! n−mð Þ!

$ %1=2

d
n
ms β = 0ð Þ ð129Þ

But, from Mischenko et al. [12], Appendix B, p 363, Eq. (B6), we

have:

d
n
ms β = 0ð Þ = δms ð130Þ

Inserting Eq. (130) into Eq. (129) readily leads to:

Sσ β = 0ð Þ = −1ð Þn + s
δms ð131Þ
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We now insert Eq. (131) into Eq. (123), yielding:

H
m
sn β = 0ð Þ = e

imγ
e
isα
δms ð132Þ

Similarly, inserting Eq. (131) into Eq. (124), we obtain:

H
m
snðno rotationÞ = δms ð133Þ

Inserting Eqs. (132) and (133) into Eq. (126) and afterward into

Eq. (127), we obtain:

g̃
m
n;X β = 0ð Þ = e

im γ + αð Þ
g
m
n;X ð134Þ

g̃
m
n;X ðno rotationÞ = g

m
n;X ð135Þ

From these two last equations, we recover Eq. (128). Let us remark

also that Eq. (135) is already known to us from the section devoted to

the case of no rotation. It has here been obtained in a way which is

faster, albeit less transparent.

8. Conclusion

This paper pertains to a series devoted to the study of the

transformation of spherical beam shape coefficients under rotations of

coordinate systems, for use in some generalized Lorenz–Mie theories

expressed in terms of spherical coordinates. Such a study provides a

new means to the evaluation of beam shape coefficients of arbitrary

shaped beams. After Part I devoted to the general formulation of the

problem, Part II was devoted to the special case of on-axis

axisymmetric beams. The present Part III investigated special values

of Euler angles, with a special effort due to the search of compact

formswhich, presumably, should allow one to speed up the numerical

computations of beam shape coefficients in cases when such compact

forms have been obtained. The formal manipulations involved in this

search also allow one to deepen our understanding of the mathemat-

ics and physics involved in the issue. Part IV will be devoted to a

specific study of plane waves in unrotated and rotated systems.
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This paper is the fourth of a series devoted to the transformation of beam shape coefficients through rotations of

coordinate systems. These coefficients are required to express electromagnetic fields of laser beams in expanded

forms, for instance for use in some generalized Lorenz–Mie theories. The main result of Part I has been the

theoremof transformationof beamshape coefficients under rotations. Part II dealtwith the special case of on-axis

axisymmetric beams. Part III dealt with other special cases, namelywhen the Euler angles specifying the rotation

are given some special values. The present Part IV studies another special case, namely the one of plane waves

viewed as special on-axis axisymmetric beams, and can therefore be viewed as a special case of Part II.

Unexpectedly, it is found that, in general, although plane waves are fairly trivial, their expansions require using

non trivial beam shape coefficients, exactly as required when dealing with arbitrary shaped beams.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

This paper is the fourth one of a series of papers devoted to the

study of the transformation of beam shape coefficients, under the

rotation of coordinate systems. These coefficients are required to

express the electromagnetic fields of laser beams in expanded form,

and therefore play an essential role in generalized Lorenz–Mie

theories describing the interaction between electromagnetic arbitrary

shaped beams and some regular particles. The specific problem under

study in this series may be recalled as follows. Let us consider a

Cartesian system of coordinates, denoted as x=(x, y, z), with

spherical coordinates (r, θ, φ), called the unrotated system, and let

gn,TM
m , gn,TE

m be the beam shape coefficients for the description of the

illuminating beam in this unrotated system. Let us consider a second

system of coordinates, called the rotated system, deduced from the

unrotated system by a rotation defined by Euler angles (α, β, γ),

defined as in [1]. Quantities in the rotated system are denoted by

using tilde-decorations. Therefore the Cartesian coordinates of the

rotated system are denoted as x̃=(x ̃, ỹ, z ̃), with spherical coordinates

(r̃=r, θ̃, φ̃). The beam shape coefficients in the rotated system are

denoted as g̃mn;TM;g̃
m
n;TE. The problem is to express the beam shape

coefficients in the rotated system in terms of beam shape coefficients

in the unrotated system. A general solution to this problem has been

found in Part I of the present series of papers [1]. Part II discussed the

special case of on-axis axisymmetric beams [2]. In Part III [3], we dealt

with the case when the Euler angles are given special values.With this

Part IV we return to plane waves, viewed as special cases of on-

axisymmetric beams described in Part II. One of the unexpected

results of this paper is that these plane waves, in general, i.e. in the

case of oblique illumination, requires the use of beam shape

coefficients, exactly as in the case of arbitrary shaped beams. This

means that they have to be expressed in a framework pertaining to

generalized Lorenz–Mie theories.

The paper is organized as follows. Section 2 recalls a few

miscellaneous basic ingredients required for the sequel, namely the

definition of beam shape coefficients, with some basic mathematical

expressions, the definition of on-axis axysimmetric beams, the

expressions of electric and fields components in the rotated system,

the expressions of electric andmagnetic fields in the unrotated system

for on-axis axisymmetric beams, various expressions for plane waves

under expanded and non-expanded (compact) forms. Section 3 deals

with a plane wave in the unrotated system. Section 4 similarly

discusses the much more difficult case of plane waves in the rotated

system. Section 5 provides a discussion which will also serve as a

conclusion.

2. Basic ingredients

2.1. Beam shape coefficients

In this paper, the beam shape coefficients are defined in the

framework of the Bromwich formulation, as originally done in the

Optics Communications 283 (2010) 3244–3254
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GLMT stricto sensu, e.g. [4,5]. The incident field is expressed by two

Bromwich scalar potentials UTM
i and UTE

i (TM for Transverse Magnetic

and TE for Transverse Electric), reading as [4]:

U
i
TM =

E0
k
∑
∞

n=1
∑
+n

m=−n
c
pw
n g

m
n;TMΨn krð ÞP

jmj
n cosθð Þ exp imφð Þ ð1Þ

U
i
TE =

H0

k
∑
∞

n=1
∑
n

m=−n
c
pw
n g

m
n;TEΨn krð ÞP

jmj
n cosθð Þ exp imφð Þ ð2Þ

in which the superscript “i” stands for “incident”. Also, E0 and H0 are

field strengths, and k is the wave-number in the medium in which

the beam propagates. The coefficients cn
pw (“pw” standing for “plane

wave”) are coefficients which appear naturally in the classical

Lorenz–Mie theory and, for this reason, are isolated [6]. They read

as:

c
pw
n =

1

k
−ið Þ

n + 1 2n + 1

n n + 1ð Þ
ð3Þ

The functions Ψn(kr) are Ricatti–Bessel functions, which may be

expressed in terms of spherical Bessel functions jn(kr) according to:

Ψn krð Þ = krjn krð Þ ð4Þ

Let us recall, for further use, that the spherical Bessel functions

satisfy:

d2

dr2
+ k

2

" #

rjn krð Þð Þ =
n n + 1ð Þ

r
jn krð Þ ð5Þ

The expressions for the Bromwich scalar potentials also involve

the associated Legendre functions defined as (for m non-

negative):

P
m
n cosθð Þ = −1ð Þ

m
sinθð Þ

m dmPn cosθð Þ

d cos θð Þm
ð6Þ

in which Pn's are Legendre polynomials. They may be uniquely

defined, ∀m Z, according to [1]:

P
m
n cosθð Þ = −1ð Þ

m−jmj

2
n−jmjð Þ!

n−mð Þ!
P

jmj
n cosθð Þ ð7Þ

Wemay then consider that Eqs. (1) and (2) serve as a definition of

the beam shape coefficients gn,X
m , with X=TM or TE. The relationship

between the scalar Bromwich formulation and a formulation in terms

of vector spherical wave functions (VSWFs) is discussed elsewhere,

for instance in Part I [1].

2.2. Beam shape coefficients for on-axis axisymmetric beams and plane

waves

On-axis axisymmetric beams satisfy the following relations [2,7]:

g
m
n;X = 0;jmj≠1 ð8Þ

g
1
n;TM =

1

K
g
−1
n;TM = −iεg

1
n;TE =

iε

K
g
−1
n;TE =

gn
2

ð9Þ

Eq. (9) defines a set {gn} of special beam shape coefficients gn and

shows that the double set {gn,TM
m , gn,TE

m } of beam shape coefficients, with

two subscripts (n,m) reduces to a single set {gn}with a single coefficient

n. It happens that Eq. (9)with (ɛ,K)=(−1,+1) is structurally identical

with the set of equations obtained for an on-axis Gaussian beam

polarized in the x direction at its focal waist [4,6,8]. We then have:

g
1
n;TM = g

−1
n;TM = ig

1
n;TE = −ig

−1
n;TE =

gn
2

ð10Þ

The case of on-axis axisymmetric beams is assumed to hold for the

unrotated system (before applying Euler angles (α, β, γ)). In the

rotated system, the special beam shape coefficients gn of Eqs. (9) and

(10), give birth to a new set of beam shape coefficients g̃mn;TM;g̃
m
n;TE

n o

.

We then have the following relationships [2]:

g̃mn;TM = −1ð Þm −1ð Þ
m−jmj

2
n−jmjð Þ!

n + mð Þ!
e
imγ

gn

im sinαπm
n cosβð Þ + cosατ

m
n cosβð Þ

$ %

ð11Þ

g̃mn;TE = −1ð Þm + 1 −1ð Þ
m−jmj

2
n−jmjð Þ!

n + mð Þ!
e
imγ

gn

im cosαπm
n cosβð Þ− sinατmn cosβð Þ

$ %

ð12Þ

in which πn
m and τn

m are generalized Legendre functions reading as:

π
m
n cosβð Þ=

Pmn cosβð Þ

sinβ
ð13Þ

τ
m
n cosβð Þ=

dPmn cosβð Þ

dβ
ð14Þ

Let us now assume that we are dealingwith planewaves. Then, the

special beam shape coefficients gn may be taken equal to 1 or, more

generally, are equal to phase factors of the form exp(ikz0).e.g. [4,6]. In

any case, they are constant terms which do not depend any more on

the subscript n. Therefore, we may make the change: gn→g.

Furthermore, from Eq. (7), we have:

π
m
n cosβð Þ

τ
m
n cosβð Þ

 !

= −1ð Þ
m−jmj

2
n−jmjð Þ!

n−mð Þ!

π
jmj
n cosβð Þ

τ
jmj
n cosβð Þ

 !

ð15Þ

Inserting Eq. (15) into Eq. (11), we obtain, for a plane wave:

g̃mn;TM = g −1ð Þm
n−jmjð Þ!½ �2

n + mð Þ! n−mð Þ!
e
imγ

im sinαπjmj
n cosβð Þ + cos ατ

jmj
n cosβð Þ

h i

ð16Þ

But we have:

n−jmjð Þ!½ �2

n + mð Þ! n−mð Þ!
=

n−jmjð Þ!

n + jmjð Þ!
ð17Þ

Hence, Eq. (16) simplifies to:

g̃mn;TM = g −1ð Þm
n−jmjð Þ!

n + jmjð Þ!
e
imγ

im sinαπ
jmj
n cosβð Þ + cosατ

jmj
n cosβð Þ

h i

ð18Þ

Similarly, Eq. (12) becomes:

˜gmn;TE = g −1ð Þm + 1
n−jmjð Þ!

n + jmjð Þ!
e
imγ

im cosαπ
jmj
n cosβð Þ− sinατ

jmj
n cosβð Þ

h i

ð19Þ

Eqs. (18) and (19) exhibit a somewhat unexpected result announced

in the Introduction, namely that, in general, the description of the plane

wave in the rotated system requires the use of beam shape coefficients

3245G. Gouesbet et al. / Optics Communications 283 (2010) 3244–3254



Author's personal copy

(a double set of beam shape coefficients), as for arbitrary shaped beams,

in contrast with the easy degenerated description in the unrotated

system.

2.3. Electric and magnetic fields in the rotated system

The electric and magnetic fields, in expanded forms, in the rotated

system are exactly the ones obtained in the general framework of

spherical GLMTs, although, from a notational point of view, the beam

shape coefficients are tilde-decorated in the rotated system. Relevant

references are [4] and [9]. The most efficient one is [10]. Electric field

components are also explicitly given in [11].The expressions read as:

E
i
r = kE0 ∑

∞

n=1
∑
n

m=−n
c
pw
n
˜g
m
n;TM Ψ

″

n krð Þ + Ψn krð Þ
h i

P
jmj
n cosθð Þe

imφ
ð20Þ

E
i
θ =

E0
r
∑
∞

n=1
∑
n

m=−n
c
pw
n ½˜g

m
n;TMΨ

′

n krð Þτ
jmj
n cosθð Þ

+ m˜g
m
n;TEΨn krð Þπ

jmj
n cosθð Þ�e

imφ

ð21Þ

E
i
φ =

iE0
r
∑
∞

n=1
∑
n

m=−n
c
pw
n ½m˜g

m
n;TMΨ

′

n krð Þπ
jmj
n cosθð Þ

+˜g
m
n;TEΨn krð Þτ

jmj
n cosθð Þ�e

imφ

ð22Þ

H
i
r = kH0 ∑

∞

n=1
∑
n

m=−n
c
pw
n
˜g
m
n;TE Ψ

″

n krð Þ + Ψn krð Þ
h i

P
jmj
n cosθð Þe

imφ
ð23Þ

H
i
θ =

H0

r
∑
∞

n=1
∑
n

m=−n
c
pw
n
˜g
m
n;TEΨ

′

n krð Þτ
jmj
n cosθð Þ−m˜g

m
n;TMΨn krð Þπ

jmj
n cosθð Þ�eimφ

h

ð24Þ

H
i
φ =

iH0

r
∑
∞

n=1
∑
n

m=−n
c
pw
n m˜g

m
n;TEΨ

′

n krð Þπ
jmj
n cosθð Þ−˜g

m
n;TMΨn krð Þτ

jmj
n cosθð Þ�eimφ

h

ð25Þ

in which the tilde-decorated beam shape coefficients˜gmn;X are ex-

pressed by Eqs. (11) and (12) in terms of special beam shape

coefficients gn when the beam in the unrotated system is an on-axis

axisymmetric beam, and by Eqs. (18) and (19) in terms of a

degenerated special beam shape coefficient g when the beam in the

unrotated system is a plane wave. The other quantities in the set of

equations have been defined previously, see Eqs. (3), (4), (6), (13)

and (14).

2.4. Electric and magnetic fields in the unrotated system

For the time being, we assume that the beam in the unrotated

system is an on-axis axisymmetric beam, expressed in terms of special

beam shape coefficients gn (not tilde-decorated) satisfying Eq. (10).

The electric and magnetic field components may then have been

derived from Eqs. (20)–(25) above (tilde-decorations removed), and

are also available from elsewhere, e.g. [7]. They read as:

E
i
r =

E0
r
cosφ ∑

∞

n=1
c
pw
n gnn n + 1ð Þjn krð ÞP

1
n cosθð Þ ð26Þ

E
i
θ =

E0
r
cosφ ∑

∞

n=1
c
pw
n gn

drjn krð Þ

dr
τn cosθð Þ−ikrjn krð Þπn cosθð Þ

" #

ð27Þ

E
i
φ = −

E0
r
sinφ ∑

∞

n=1
c
pw
n gn

drjn krð Þ

dr
πn cosθð Þ−ikrjn krð Þτn cosθð Þ

" #

ð28Þ

H
i
r =

H0

r
sinφ ∑

∞

n=1
c
pw
n gnn n + 1ð Þjn krð ÞP

1
n cosθð Þ ð29Þ

H
i
θ =

H0

r
sinφ ∑

∞

n=1
c
pw
n gn

drjn krð Þ

dr
τn cosθð Þ−ikrjn krð Þπn cosθð Þ

" #

ð30Þ

H
i
φ =

H0

r
cosφ ∑

∞

n=1
c
pw
n gn

drjn krð Þ

dr
πn cosθð Þ−ikrjn krð Þτn cosθð Þ

" #

ð31Þ

in which πn=πn
1 and τn=τn

1.

Let us remark that these expressions satisfy:

Eir
Hi
r

=
Eiθ
Hi

θ

=
E0 cosφ

H0 sinφ
ð32Þ

Eiφ

Hi
φ

= −
E0 sinφ

H0 cosφ
ð33Þ

These relations however are not valid in the general case (in

particular in the rotated system).

2.5. Plane wave expressions

Here is an expression for the expansion of a general plane wave

eik ⋅ r [12]:

e
ik⋅r = 4π

ffiffiffi

π

2

r

1

k
∑
∞

n=0
∑
n

m=−n
i
n
Y
m⁎
n θk;φkð Þφ

0ð Þ
knm rð Þ ð34Þ

in which the star denotes a complex conjugation, θk, φk denote polar

angles in the wave-number space, Yn
m's are spherical harmonics, and:

φ
0ð Þ
knm rð Þ =

ffiffiffi

2

π

r

kjn krð ÞY
m
n θ;φð Þ ð35Þ

are free spherical waves.

Eq. (34) can be rewritten as:

e
ik⋅r = 4π ∑

∞

n=0
∑
n

m=−n
i
n
jn krð ÞY

m⁎
n θk;φkð ÞY

m
n θ;φð Þ ð36Þ

Rather than eik ⋅ r, we shall actually need e− ik ⋅ r, reading as:

e
−ik⋅r = 4π ∑

∞

n=0
∑
n

m=−n
−ið Þ

n
jn krð ÞY

m
n θk;φkð ÞY

m⁎

n θ;φð Þ ð37Þ

In the same way that there is a unique form to express Pn
m, ∀m Z,

there is a unique form to express the spherical harmonics, reading as:

Y
m
n θ;φð Þ = −1ð Þ

m−jmj
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n + 1

4π

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n−jmjð Þ!

n + jmjð Þ!

s

P
jmj
n cosθð Þe

imφ
ð38Þ

that can be established from the unique form for Pn
m together with the

definition of the spherical harmonics.

Inserting Eq. (38) into Eq. (37), we obtain:

e
−ik⋅r=∑

∞

n=0
∑
n

m=−n
−ið Þ

n
2n+1ð Þ

n−jmjð Þ!

n + jmjð Þ!
jn krð ÞP

jmj
n cos θkð ÞP

jmj
n cos θð Þe

imφke
−imφ

ð39Þ

For further use, it is convenient to make a change of subscript

(m→−m) leading to:

e
−ik⋅r=∑

∞

n=0
∑
n

m=−n
−ið Þ

n
2n+1ð Þ

n−jmjð Þ!

n + jmjð Þ!
jn krð ÞP

jmj
n cosθkð ÞP

jmj
n cosθð Þe

−imφke
imφ

ð40Þ

It is important to remark, for further use, that the term (n=0) in

this summation is equal to j0(kr)=sin(kr)/(kr), see [13], i.e. does not
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depend on any angular coordinate. Therefore, it does not play any role

in any derivation with respect to an angular variable.

We shall also need another form for exp(− ik⋅r), i.e. a non-

expanded one. Let us set:

k = kx;ky;kz

 !

ð41Þ

in Cartesian coordinates in the wave-number space and, in spherical

coordinates in the wave-number space:

k = k;θk;φkð Þ = k;β;γkð Þ ð42Þ

in whichwe have conveniently introduced, for further use, the change

of variables: θk→β, φk→γk.

We have:

kx = k sinβ cosγk
ky = k sinβ sinγk
kz = k cosβ

g
ð43Þ

In the physical space, we have:

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ
g

ð44Þ

So that:

e
−ik⋅r=exp −ikr sinβ sin θ cosγk cosφ + sinγk sinφð Þ + cosβ cos θ½ �f g

ð45Þ

Furthermore, with the change of notations just introduced above,

and isolating the (n=0)-term, Eq. (40) becomes:

e−ik⋅r =
sin kr

kr

+ ∑
∞

n=1
∑
n

m=−n
−ið Þ

n
2n + 1ð Þ

n−jmjð Þ!

n + jmjð Þ!
jn krð Þ

P
jmj
n cosβð ÞP

jmj
n cosθð Þe

−imγke
imφ

ð46Þ

As an interesting special case, we may consider Eq. (45) for β=0.

We then have [14]:

e−ikr cosθ = ∑
∞

n=0
−ið Þ

n
2n + 1ð Þjn krð ÞPn cosθð Þ

=
sin kr

kr
+ ∑

∞

n=1
−ið Þ

n
2n + 1ð Þjn krð ÞPn cosθð Þ

ð47Þ

which can also be rewritten as:

e
−ikr cosθ

= ∑
∞

n=0
c
pw
n n n + 1ð Þikjn krð ÞPn cosθð Þ ð48Þ

in which we have used Eq. (3).

3. Plane wave in the unrotated system

3.1. Compact forms

In the unrotated system x=(x, y, z) with spherical coordinates (r,

θ, φ), we consider a plane wave. This plane wave, and many

expressions below, can be obtained from a Gaussian beam with a

beam radius going to infinite studied in [8,15].

In Cartesian coordinates, the plane wave is described by the

following relations:

Eix = E0e
−ikz Hi

x = 0

Eiy = 0 Hi
y = H0e

−ikz

Eiz = 0 Hi
z = 0

g ð49Þ

in which H0/E0 is a certain physical constant that we do not need to

define (see [15]).

The components in spherical coordinates then read as, in compact

forms:

E
i
r = E0 cosφ sin θe

−ikr cosθ
ð50Þ

E
i
θ = E0 cosφ cos θe

−ikr cosθ
ð51Þ

E
i
φ = −E0 sinφe

−ikr cosθ
ð52Þ

H
i
r = H0 sinφ sin θe

−ikr cosθ
ð53Þ

H
i
θ = H0 sinφ cos θe

−ikr cosθ
ð54Þ

H
i
φ = H0 cosφe

−ikr cosθ
ð55Þ

3.2. Expanded forms

The corresponding expanded forms are given by Eqs. (38)–(43) in

[15], with the proviso that we have to replace the special beam shape

coefficients gn by a constant g, i.e. a constant phase term of the form

exp(ikz0) that we may conveniently take equal to 1, or absorb in E0
and H0. From Eqs. (38)–(43) in [15], and using also Eqs. (3) and (5),

the expanded forms can be rewritten as:

E
i
r⁎
=

E0
r
cosφ ∑

∞

n=1
c
pw
n n n + 1ð Þjn krð ÞP

1
n cosθð Þ ð56Þ

E
i
θ⁎
=

E0
r
cosφ ∑

∞

n=1
c
pw
n

drjn krð Þ

dr
τn cosθð Þ−ikrjn krð Þπn cosθð Þ

" #

ð57Þ

E
i
φ⁎
= −

E0
r
sinφ ∑

∞

n=1
c
pw
n

drjn krð Þ

dr
πn cosθð Þ−ikrjn krð Þτn cosθð Þ

" #

ð58Þ

H
i
r⁎
=

H0
r
sinφ ∑

∞

n=1
c
pw
n n n + 1ð Þjn krð ÞP

1
n cosθð Þ ð59Þ

H
i
θ⁎
=

H0
r
sinφ ∑

∞

n=1
c
pw
n

drjn krð Þ

dr
τn cosθð Þ−ikrjn krð Þπn cosθð Þ

" #

ð60Þ

H
i
φ⁎
=

H0
r
cosφ ∑

∞

n=1
c
pw
n

drjn krð Þ

dr
πn cosθð Þ−ikrjn krð Þτn cosθð Þ

" #

ð61Þ

Eqs. (56)–(61) are, coherently, special cases of Eqs. (26)–(31) with

gn→1. Also, we used a star subscript to distinguish compact and

expanded forms. Due to the coherence of the Bromwich formalism

and to the fact that plane waves exactly satisfy Maxwell's equations

(which is generically not the case for the description of arbitrary

shaped beams, e.g. [15]), corresponding compact and expanded forms

must be strictly equal. This is most easy to demonstrate for radial

components (the privileged ones since they are sufficient to

determine the beam shape coefficients, e.g. [4]), but more tricky for

angular components, as we are going to see. The sequel of this section

will also provide us with a training for the more complicated case of

fields in the rotated system.
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3.3. Equality between compact and expanded radial components

For the radial electric component, let us start from Eq. (56). We

then use Pn
1=dPn /dθ, Eqs. (3) and (47) to readily establish:

E
i
r⁎

=
−iE0
kr

cosφ
∂

∂θ
e
−ikr cosθ

= E0 cosφ sin θe
−ikr cosθ

= E
i
r ð62Þ

as it should.

Similarly, starting from Eq. (59), we readily establish:

H
i
r⁎

=
−iH0

kr
sinφ

∂

∂θ
e
−ikr cosθ

= H0 sinφ sin θe
−ikr cosθ

= H
i
r ð63Þ

3.4. Equality between compact and expanded angular components

Let us now consider the electric θ–component. We must have:

E
i
θ⁎

= E
i
θ ð64Þ

that is to say, from Eqs. (57) and (51):

∑
∞

n=1
c
pw
n

drjn krð Þ

dr
τn cosθð Þ−ikrjn krð Þπn cosθð Þ

 !

= r cos θe
−ikr cosθ

ð65Þ

To prove this equality, we use a technique similar to the one

previously invented in [15]. Let us rewrite Eq. (65) under the form:

Aθ + Bθ = Rθ ð66Þ

in which:

Aθ = ∑
∞

n=1
c
pw
n

drjn krð Þ

dr
τn cosθð Þ ð67Þ

Bθ = −ikr ∑
∞

n=1
c
pw
n jn krð Þπn cosθð Þ ð68Þ

Rθ = r cos θe
−ikr cos θ

ð69Þ

Now, we derive Aθ with respect to r, and use Eq. (5), yielding:

∂Aθ

∂r
= ∑

∞

n=1
c
pw
n

n n + 1ð Þ

r
jn krð Þτn cosθð Þ−k

2
∑
∞

n=1
c
pw
n rjn krð Þτn cosθð Þ

ð70Þ

In the first term of the r.h.s., we express τn versus Pn, according to

τn=dPn
1 /dθ=d2Pn /dθ

2, invoke Eq. (48) and obtain:

∂Aθ

∂r
=

1

ikr

∂2

∂θ2
e
−ikr cos θ

−k
2
∑
∞

n=1
c
pw
n rjn krð Þτn cosθð Þ ð71Þ

Deriving again with respect to r, we obtain:

∂2Aθ

∂r2
=

1

ik

∂

∂r

1

r

∂2

∂θ2
e
−ikr cos θ

−k
2
Aθ ð72Þ

This implies:

∂2

∂r2
+ k

2

 !

Aθ = ik + k
2
r cosθ−2ik cos

2
θ−k

2
r cos

3
θ

$ %

e
−ikr cos θ

ð73Þ

For Bθ, we derive it immediately twicewith respect to r, use Eq. (5),

express πn versus Pn
1 and afterward Pn

1 versus Pn, invoke Eq. (48), and

obtain:

∂2

∂r2
+ k

2

 !

Bθ = −ike
−ikrcos θ

ð74Þ

For Rθ, we readily have:

∂2

∂r2
+ k

2

 !

Rθ = −k cos θ −kr + 2i cosθ + kr cos
2
θ

$ %

e
−ikr cos θ

ð75Þ

Next, from Eqs. (73), (74), and (75), we may check that:

∂2

∂r2
+ k

2

" #

Aθ + Bθ−Rθð Þ = 0 ð76Þ

We therefore have:

Aθ + Bθ = Rθ + Fθ ð77Þ

in which Fθ=F(r, θ) satisfies the following differential equation:

∂2

∂r2
+ k

2

 !

F r;θð Þ = 0 ð78Þ

The general solution of Eq. (78) reads as:

F r;θð Þ = C θð Þ cos kr + S θð Þ sin kr ð79Þ

Eq. (77) may therefore be rewritten as:

∑
∞

n=1
c
pw
n

drjn krð Þ

dr
τn cosθð Þ−ikrjn krð Þπn cosθð Þ

 !

= r cosθe−ikr cos θ + C θð Þ coskr + S θð Þ sinkr

ð80Þ

We are now going to prove that C(θ)=S(θ)=0, therefore

establishing the validity of Eq. (65). We begin by considering the

limit of Eq. (80) when (kr)=0. We have the fact that [13,16]:

jn 0ð Þ = 0;n N 0 ð81Þ

Furthermore, the derivatives of jn(kr) with respect to (kr) are

finite. Therefore:

drjn krð Þ

dr

 !

r=0

= jn krð Þ + r
djn krð Þ

dr

 !

r=0

= jn 0ð Þ = 0;n N 0 ð82Þ

Then, for r=0, Eq. (80) implies:

C θð Þ = 0 ð83Þ

To deal with S(θ), we derive Eq. (80) with respect to r, take

advantage of our previous result of Eq. (83), and obtain:

∑
∞

n=1
c
pw
n

d2rjn xð Þ

dr2
τn cosθð Þ−i

drjn krð Þ

dr
πn cosθð Þ

" #

= cosθ
k e−ikr cos θ 1−ikr cosθð Þ + kS θð Þ coskr

ð84Þ

We afterward use Eq. (5) rewritten under the form:

d2rjn krð Þ

dr2
=

n n + 1ð Þ

kr
jn krð Þ−krjn krð Þ ð85Þ
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and substitute it into Eq. (84). The l.h.s of the obtained result reads as:

LHS = ∑
∞

n=1
c
pw
n

n n + 1ð Þ

kr
−kr

 !

jn krð Þτn cosθð Þ−i jn krð Þ + r
djn krð Þ

dr

 !

πn cosθð Þ

" #

ð86Þ

becoming, for r=0:

LHSð Þr=0 = ∑
∞

n=1
c
pw
n

n n + 1ð Þ

kr
jn krð Þτn cosθð Þ

 !

r=0

ð87Þ

We express τn versus Pn, invoke Eq. (48), and obtain:

LHSð Þr=0 =
−i

k2r

∂
2

∂θ2
e
−ikr cos θ

" #

r=0

=
−i

k
i cosθ−kr + kr cos

2
θ

h i

e
−ikr cos θ

n o

r=0

=
cosθ

k

ð88Þ

This is to be compared with the r.h.s. of Eq. (84), for r=0, reading

as:

RHS =
cosθ

k
+ kS θð Þ ð89Þ

Hence:

S θð Þ = 0 ð90Þ

so that we are done. The electricφ–componentwould be treated quite

similarly. And, for magnetic field components, it is easy to show that

the problems they raise are equivalent to the ones solved for the

electric components.

We end this section with a remark on strategy: in the case of radial

components, we have been able to go from a known expanded form to

a compact form, without the need to know the compact form.

Conversely, in what we have done above for the angular components,

we have shown the validity of equations relating an expanded form

and a compact one, both forms having to be known. This difference of

strategy is to be kept in mind because it will be preserved in the next

section.

4. Plane wave in the rotated system

We now examine the plane wave in the rotated system. Insofar as

there will not be any ambiguity, we conveniently omit the tilde-

decorations. We essentially follow the same line of exposition than in

the previous section, but are dealing with more complicated

calculations which, most often, should better be made by using a

symbolic computation software. In the previous section, computa-

tions could be hand-made, serving as exercises for the present section,

beside its own interest.

4.1. Compact forms

In the original unrotated system, the field components given by

Eq. (49) may be rewritten as:

E
i
= E0e

−ik⋅rx ð91Þ

H
i
= H0e

−ik⋅ry ð92Þ

in which x and y are unit vectors along the x- and y-directions of the

unrotated Cartesian system (x, y, z). Also, note that k⋅r is an invariant

(a scalar product) whose expression in the unrotated system is kz but

which is now convenient to express in its invariant form.

After the first rotation by an angle α (revise the definition of Euler

angles in [1]), the vector x is transformed as:

x = cosαxα− sinαyα ð93Þ

in which xα and yα are unit vectors along the xα- and yα-directions of

the Cartesian coordinate system (xα, yα, zα) generated by the α-

rotation. Inserting Eq. (93) into Eq. (91), the electric field becomes:

E
i
= E0 cosαxα− sinαyαð Þe

−ik⋅r ð94Þ

Carrying out the second rotation with an angle β, the unit vectors

xα and yα are transformed according to:

xα = cosβxβ + sinβzβ ð95Þ

yα = yβ ð96Þ

in which xα, yα, and zα are unit vectors defined in the now obvious

way. The electric field now reads as:

E
i
= E

i
xβ
xβ + E

i
yβ
yβ + E

i
zβ
zβ ð97Þ

in which:

E
i
xβ

= E0 cosα cosβe
−ik⋅r ð98Þ

E
i
yβ

= −E0 sinαe
−ik⋅r ð99Þ

E
i
zβ

= E0 cosα sinβe
−ik⋅r ð100Þ

We now proceed to the third rotation for which:

xβ = cosγxγ− sinγyγ ð101Þ

yβ = sinγxγ + cosγyγ ð102Þ

zβ = zγ ð103Þ

and establish, similarly as before:

E
i
= E

i
xγ
xγ + E

i
yγ
yγ + E

i
zγ
zγ ð104Þ

in which:

E
i
xγ

= E0 cosα cosβ cosγ− sinα sinγð Þe
−ik⋅r ð105Þ

E
i
yγ

= −E0 sinα cosγ + cosα cosβ sinγð Þe
−ik⋅r ð106Þ

E
i
zγ

= E0 cosα sinβe
−ik⋅r ð107Þ

Omitting tilde-decorations for the rotated system, we may then

evaluate the electric radial field component in the rotated system,

from Eqs. (105)–(107), according to:

E
i
r = E

i
xγ
cosφ sin θ + E

i
yγ
sinφ sin θ + E

i
zγ
cos θ ð108Þ

3249G. Gouesbet et al. / Optics Communications 283 (2010) 3244–3254



Author's personal copy

leading to:

E
i
r = E0e

−ik⋅rfsinα sin θ − sinγ cosφ− cosγ sinφ½ �

− cosα sinθ cosβ sinγ sinφ− cosγ cosφ½ �

+ cosα sinβ cosθg

ð109Þ

Similarly, the angular components of the electric field are found to

be:

E
i
θ = E

i
xγ
cosφ cos θ + E

i
yγ
sinφ cos θ−E

i
zγ
sin θ ð110Þ

becoming:

E
i
θ = E0e

−ik⋅r½cosα cosβ cos θ cosγ cosφ− sinγ sinφð Þ

− sinα cosθ sinγ cosφ + sinφ cosγð �− cosα sinβ sinθ�

ð111Þ

and:

E
i
φ = −E

i
xγ
sinφ + E

i
yφ
cosφ ð112Þ

becoming:

E
i
φ = −E0e

−ik⋅r½cosα cosβ cosγ sinφ + sin γ cosφð Þ

+ sinα cosγ cosφ− sinγ sinφð Þ�

ð113Þ

For the radial magnetic field, we may proceed similarly as for the

radial electric field, starting from Eq. (92), and obtain:

H
i
= H

i
xγ
xγ + H

i
yγ
yγ + H

i
zγ
zγ ð114Þ

in which:

H
i
xγ

= H0 sinα cosβ cosγ + cosα sinγð Þe
−ik⋅r ð115Þ

H
i
yγ

= H0 cosα cosγ− sinα cosβ sinγð Þe
−ik⋅r ð116Þ

H
i
zγ

= sinα sinβe
−ik⋅r

ð117Þ

Afterward, we have:

H
i
r = H

i
xγ
cosφ sin θ + H

i
yγ
sinφ sin θ + H

i
zγ
cos θ ð118Þ

that is to say:

H
i
r = H0e

−ik⋅rfcosα sin θ sinγ cosφ + cosγ sinφ½ �

+ sinα sinθ cosβ cosγ cosφ− sinγ sinφ½ �

+ sinα sinβ cosθg

ð119Þ

For the angular components, we find:

H
i
θ = H

i
xγ
cosφ cos θ + H

i
yγ
sinφ cos θ−H

i
zγ
sin θ ð120Þ

H
i
θ = H0e

−ik⋅r½sinα cosβ cos θ cosγ cosφ− sinγ sinφð Þ

+ cosα cosθ sinγ cos φ + cos γ sin φð Þ− sinα sinβ sinθ�

ð121Þ

H
i
φ = −H

i
xγ
sinφ + H

i
yγ
cosφ ð122Þ

H
i
φ = H0e

−ik⋅r½cosα cosγ cosφ− sinγ sinφð Þ

− sinα cosβ sinγ cos φ + cosγ sin φð Þ�

ð123Þ

4.2. Radial electric field

We start from Eq. (20), and will once again omit the tilde-

decorations. The bracket term is modified by using Eqs. (5) and (4),

leading to:

ψ
″

n krð Þ + ψn krð Þ
h i

=
n n + 1ð Þ

kr
jn krð Þ ð124Þ

Furthermore, we insert the expression of cn
pw, i.e. Eq. (3), leading

to:

E
i
r =

−iE0
kr

∑
∞

n=1
∑
n

m=−n
−ið Þ

n
2n + 1ð Þg

m
n;TMjn krð ÞP

jmj
n cosθð Þe

imφ
ð125Þ

Inserting Eq. (18) for gn,TM
m into Eq. (125), we obtain:

Eir =
−iE0
kr

∑
∞

n=1
∑
n

m=−n
−ið Þ

n
2n + 1ð Þjn krð ÞP

jmj
n cosθð Þe

imφ
−1ð Þ

m n−jmjð Þ!

n + jmjð Þ!
e
imγ

im sinαπ
jmj
n cosβð Þ + cosατ

jmj
n cosβð Þ

h i

ð126Þ

in which the constant g has been set equal to 1 (or absorbed into E0).

This may be rewritten as a sum of two terms, in which πn
|m| and τn

|m|

are expressed versus the associated Legendre functions, according to:

E
i
r = E

i
r

" #

1
+ E

i
r

" #

2
ð127Þ

Eir

" #

1
=

E0
kr

sinα

sinβ
∑
∞

n=1
∑
n

m=−n
−ið Þ

n
−1ð Þ

m
2n + 1ð Þ

n−jmjð Þ!

n + jmjð Þ!

jn krð ÞPjmj
n cosθð ÞeimφeimγmPjmj

n cosβð Þ

ð128Þ

Eir

" #

2
=

−iE0
kr
cosα

∂

∂β
∑
∞

n=1
∑
n

m=−n
−ið Þ

n
−1ð Þ

m
2n + 1ð Þ

n−jmjð Þ!

n + jmjð Þ!

jn krð ÞP
jmj
n cos θð Þe

imφ
e
imγ

P
jmj
n cosβð Þ

ð129Þ

We modify again these results by introducing:

γk = − π + γð Þ ð130Þ

implying:

−1ð Þ
m
e
imγ
= e

−imγk ð131Þ

Hence:

Eir

" #

1
=

E0
kr

sinα

sinβ
∑
∞

n=1
∑
n

m=−n
−ið Þ

n
2n + 1ð Þ

n−jmjð Þ!

n + jmjð Þ!

jn krð ÞPjmj
n cosθð Þeimφe−imγkmPjmj

n cosβð Þ

ð132Þ

Eir

" #

2
=

−iE0
kr
cosα

∂

∂β
∑
∞

n=1
∑
n

m=−n
−ið Þ

n
2n + 1ð Þ

n−jmjð Þ!

n + jmjð Þ!

jn krð ÞPjmj
n cosθð Þeimφe−imγkPjmj

n cosβð Þ

ð133Þ
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Now, from Eq. (46):

∂

∂φ
e
ik⋅r = i∑

∞

n=1
∑
n

m=−n
−ið Þ

n
2n + 1ð Þ

n−jmjð Þ!

n + jmjð Þ!
jn krð Þ

Pjmj
n cosβð ÞPjmj

n cosθð Þe−imγkmeimφ

ð134Þ

Hence:

E
i
r

 !

1
=

−iE0
kr

sinα

sinβ

∂

∂φ
e
−ik⋅r ð135Þ

Using Eq. (45), this becomes:

E
i
r

 !

1
= E0 sinα sin θ cosγk sinφ− sinγk cosφ½ �e

−ik⋅r ð136Þ

which, by using Eq. (130), implies:

E
i
r

 !

1
= −E0 sinα sin θ cosγ sinφ + sinγ cosφ½ �e

−ik⋅r ð137Þ

Similarly, we establish:

E
i
r

 !

2
=

−iE0
kr
cosα

∂

∂β
e
−ik⋅r ð138Þ

leading to:

E
i
r

 !

2
= E0 cosα cosβ sin θ cosγ cos φ− sinγ sin φð Þ + sinβ cos θ½ �e

−ik⋅r

ð139Þ

Summing up (Er
i)1 of Eq. (137) and (Er

i)2 of Eq. (139), we recover

Eq. (109), as it should.

4.3. Radial magnetic field

We start from Eq. (23) and proceed similarly as for the electric

field, to obtain:

H
i
r = H

i
r

 !

1
+ H

i
r

 !

2
ð140Þ

in which:

Hi
r

 !

1
=

iH0
kr

cosα

sinβ
∑
∞

n=1
∑
n

m=−n
−ið Þ

n
2n + 1ð Þ

n−jmjð Þ!

n + jmjð Þ!

jn krð ÞPjmj
n cosβð ÞPjmj

n cosθð Þe−imγk imeimφ

ð141Þ

which is translated to:

H
i
r

 !

1
=

iH0g

kr

cosα

sinβ

∂

∂φ
e
−ik⋅r ð142Þ

becoming:

H
i
r

 !

1
= H0 cosα sin θ cosγ sinφ + sinγ cosφ½ �e

−ik⋅r ð143Þ

Let us remark that:

Eir

 !

1

Hi
r

" #

1

= −
E0 sinα

H0 cosα
ð144Þ

Concerning (Hr
i)2, it is readily found to read as:

H
i
r

 !

2
= −

iH0
kr
sinα

∂

∂β
e
−ik⋅r ð145Þ

leading to:

H
i
r

 !

2
= H0 sinα cosβ sin θ cosγ cosφ− sinγ sinφð Þ + sinβ cos θ½ �e

−ik⋅r

ð146Þ

Let us remark that:

Eir

 !

2

Hi
r

" #

2

=
E0 cosα

H0 sinα
ð147Þ

As a whole, summing (Hr
i)1 and (Hr

i)2, we recover Eq. (119), as it

should.

4.4. Electric field, θ–component

On one hand, the electric field component Eθ
i is given, in compact

form, by Eq. (111). On the other hand, for the expanded form version,

we start from Eq. (21), omit the tilde-decorations, insert Eqs. (3), (4),

(18) and (19), and write it as the sum of four terms, according to:

E
i
θ = Aθ1 + Aθ2 + Bθ1 + Bθ2 ð148Þ

in which:

Aθ1 =
−iE0
kr
cosα∑

∞

n=1
∑
n

m=−n
−ið Þ

n 2n + 1

n n + 1ð Þ

n−jmjð Þ!

n + jmjð Þ!

drjn krð Þ

dr
τ

jmj
n cosβð Þτ

jmj
n cosθð Þe

−imγke
imφ

ð149Þ

Aθ2 =
E0
kr
sinα∑

∞

n=1
∑
n

m=−n
−ið Þ

n 2n + 1

n n + 1ð Þ

n−jmjð Þ!

n + jmjð Þ!

drjn krð Þ

dr
mπ

jmj
n cosβð Þτ

jmj
n cosθð Þe

−imγke
imφ

ð150Þ

Bθ1 =
−E0
kr
cosα∑

∞

n=1
∑
n

m=−n
−ið Þ

n 2n + 1

n n + 1ð Þ

n−jmjð Þ!

n + jmjð Þ!

krjn krð Þmπjmj
n cosβð Þmπjmj

n cosθð Þe−imγkeimφ

ð151Þ

Bθ2 =
−iE0
kr
sinα∑

∞

n=1
∑
n

m=−n
−ið Þ

n 2n + 1

n n + 1ð Þ

n−jmjð Þ!

n + jmjð Þ!

krjn krð Þτjmj
n cosβð Þmπjmj

n cosθð Þe−imγkeimφ

ð152Þ

Rather than testing Eq. (148), we shall more conveniently test this

equation multiplied by r. We then introduce the notation:

εθ = rE
i
θ ð153Þ

and similar notations for Xθi=rXθi
i , in which X is A or B, and the

subscript i is 1 or 2.

To process Aθ1, we derive it once with respect to r, invoke Eq. (5),

explicit one of the terms obtained in terms of derivatives of e− ik ⋅ r,

and rederive once again with respect to r, to obtain:

D̂Aθ1 =
−iE0
k
cosα

∂

∂r

1

r

∂

∂β

∂

∂θ
e
−ik⋅r ð154Þ
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in which we introduced the operator:

D̂ =
∂2

∂r2
+ k

2

 !

ð155Þ

The term A θ2 is processed quite similarly, leading to:

D̂Aθ2 =
−iE0 sinα

k sinβ

∂

∂r

1

r

∂

∂φ

∂

∂θ
e
−ik⋅r ð156Þ

For Bθ1 and Bθ2, we simply apply the operator D̂, invoke Eq. (5), and

establish:

D̂Bθ1 =
E0 cosα

r sin β sin θ

∂2

∂φ2
e
−ik⋅r ð157Þ

D̂Bθ2 =
−E0 sinα

r sin θ

∂

∂β

∂

∂φ
e
−ik⋅r ð158Þ

For Eθ of Eq. (153), we invoke Eθ
i of Eq. (111), and also Eq. (45) for

e− ik ⋅ r, write it under the form:

Eθ = rE0De
−ikrC

ð159Þ

and establish:

D̂Eθ = −kE0D −kr + 2iC + krC
2

" #

e
−ik⋅r ð160Þ

Using the form of Eq. (45) for e− ik ⋅ r, we afterward obtain, from

Eqs. (154), (156)–(158), and (160), without forgetting to recall γk=

−(π+γ) of Eq. (130):

D̂ Aθ1 + Aθ2 + Bθ1 + Bθ2ð Þ = D̂Eθ ð161Þ

In other words, we obtain the same result when the operator D̂ is

applied to the expanded and to the compact forms of rEθ
i . This means

that these two forms are equal within a function F satisfying D̑F=0.

The general form for F is therefore:

F = CEθ cos kr + SEθ sin kr ð162Þ

in which CEθ and SEθ do not depend on r.

Hence:

Aθ1 + Aθ2 + Bθ1 + Bθ2 = Eθ + CEθ cos kr + SEθ sin kr ð163Þ

Now, from Eqs. (149)–(152), and using Eq. (81), we have:

Aθ1ð Þr=0 = Aθ2ð Þr=0 = Bθ1ð Þr=0 = Bθ2ð Þr=0 = Eθð Þr=0 = 0 ð164Þ

which, inserted into Eq. (163), implies:

CEθ = 0 ð165Þ

Next, we consider the derivative with respect to r of Eq. (163),

knowing Eq. (165), in the limit r=0:

∂

∂r
Aθ1 + Aθ2 + Bθ1 + Bθ2ð Þ

$ %

r=0

=
∂Eθ
∂r

& '

r=0

+ kSEθ ð166Þ

We afterward evaluate, in a now fairly obvious way:

∂Aθ1

∂r

& '

r=0

=
−iE0
kr

cosα
∂

∂β

∂

∂θ
e
−ik⋅r

& '

r=0

ð167Þ

∂Aθ2

∂r

& '

r=0

=
−iE0
kr

sinα

sin β

∂

∂φ

∂

∂θ
e
−ik⋅r

& '

r=0

ð168Þ

∂Bθ1
∂r

& '

r=0

=
∂Bθ2
∂r

& '

r=0

= 0 ð169Þ

After evaluation of Eqs. (167), (168) and of (∂εθ/∂r)r=0, Eq. (166)

implies:

SEθ = 0 ð170Þ

ending the demonstration of the equality between compact and

expanded forms.

4.5. Electric field, φ–component

The study of this component is quite parallel to the study of the

previous one, so that we shall expose it in a somewhat more concise

way. The electric field component Eφ
i in the rotated system is given, in

compact form, by Eq. (113).We then use the notation εφ to denote rEφ
i .

The expanded form of εφ is written as the sum of four terms reading

as:

Aφ1 =
iE0
k

sinα∑
∞

n=1
∑
n

m=−n
−ið Þ

n 2n + 1

n n + 1ð Þ

n−jmjð Þ!

n + jmjð Þ!

drjn krð Þ

dr
mπ

jmj
n cos βð Þmπ

jmj
n cos θð Þe

−imγke
imφ

ð171Þ

Aφ2 =
E0
k
cosα∑

∞

n=1
∑
n

m=−n
−ið Þ

n 2n + 1

n n + 1ð Þ

n−jmjð Þ!

n + jmjð Þ!

drjn krð Þ

dr
τ

jmj
n cos βð Þmπ

jmj
n cos θð Þe

−imγke
imφ

ð172Þ

Bφ1 =
−iE0
k
cosα∑

∞

n=1
∑
n

m=−n
−ið Þ

n 2n + 1

n n + 1ð Þ

n−jmjð Þ!

n + jmjð Þ!

krjn krð Þmπjmj
n cos βð Þτjmj

n cos θð Þe−imγkeimφ

ð173Þ

Bφ2 =
E0
k
sinα∑

∞

n=1
∑
n

m=−n
−ið Þ

n 2n + 1

n n + 1ð Þ

n−jmjð Þ!

n + jmjð Þ!

krjn krð Þτjmj
n cos βð Þτjmj

n cos θð Þe−imγkeimφ

ð174Þ

We afterward establish:

D̂Aφ1 =
−iE0 sinα

k sin β sin θ

∂

∂r

1

r

∂2

∂φ2
e
−ik⋅r ð175Þ

D̂Aφ2 =
−iE0 cosα

k sin θ

∂

∂r

1

r

∂

∂β

∂

∂φ
e
−ik⋅r ð176Þ

D̂Bφ1 =
−E0 cosα

r sin β

∂

∂θ

∂

∂φ
e
−ik⋅r ð177Þ

D̂Bφ2 =
E0 sinα

r

∂

∂β

∂

∂θ
e
−ik⋅r ð178Þ

Writing Eφ under the form:

Eφ = rE0Fe
−ikrC

ð179Þ

We also have:

D̂Eφ = −kE0F −kr + 2iC + krC
2

" #

e
−ik⋅r ð180Þ

We afterward establish:

D̂ Aφ1 + Aφ2 + Bφ1 + Bφ2

" #

= D̂Eφ ð181Þ
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implying:

Aφ1 + Aφ2 + Bφ1 + Bφ2 = Eφ + CEφ cos kr + SEφ sin kr ð182Þ

Proceeding in the same way than for the component Eθ
i , we

afterward establish:

∂Aφ1

∂r

 !

r=0

=
−iE0 sinα

kr sinβ sinθ

∂2

∂φ2
e
−ik⋅r

 !

r=0

ð183Þ

∂Aφ2

∂r

 !

r=0

=
−iE0 cosα

kr sinθ

∂

∂β

∂

∂φ
e
−ik⋅r

" #

r=0

ð184Þ

∂Bφ1
∂r

 !

r=0

=
∂Bφ2
∂r

 !

r=0

= 0 ð185Þ

and find:

CEφ = SEφ = 0 ð186Þ

4.6. Magnetic field, angular components

For the θ–component, the compact form Hθ
i is given by Eq. (121).

Being still more concise than for the previous component, we find that

the quantity Hθ=rHθ
i , in the expanded form, is the sum of four terms

according to:

Hθ = Cθ1 + Cθ2 + Dθ1 + Dθ2 ð187Þ

Working out each of these terms, we find that they may be

expressed as:

Cθ1
Dθ2

" #

=
−H0 cosα

E0 sinα

Aθ2

Bθ2

" #

ð188Þ

Cθ2
Dθ1

" #

=
H0 sinα

E0 cosα

Aθ1

Bθ1

" #

ð189Þ

We afterward establish:

D̂ Cθ1 + Cθ2 + Dθ1 + Dθ2ð Þ = D̂Hθ ð190Þ

implying:

Cθ1 + Cθ2 + Dθ1 + Dθ2 = Hθ + CHθ cos kr + SHθ sin kr ð191Þ

Afterward, proceeding in the same way than for the electric

components, we establish:

CHθ = SHθ = 0 ð192Þ

For the φ–component, the compact form Hφ
i is given by Eq. (123).

The quantityHφ=rHφ
i , in the expanded form, is the sum of four terms

according to:

Hφ = Cφ1 + Cφ2 + Dφ1 + Dφ2 ð193Þ

Working out each of these terms, we find that they may be

expressed as:

Cφ1
Dφ2

" #

=
−H0 cosα

E0 sinα

Aφ1

Bφ2

" #

ð194Þ

Cφ2
Dφ1

" #

=
H0 sinα

E0cosα

Aφ2

Bφ1

" #

ð195Þ

We afterward establish:

D̂ Cφ1 + Cφ2 + Dφ1 + Dφ2

$ %

= D̂Hφ ð196Þ

implying:

Cφ1 + Cφ2 + Dφ1 + Dφ2 = Hφ + CHφ cos kr + SHφ sin kr ð197Þ

Afterward, proceeding in the same way than for the previous

components, we establish:

CHφ = SHφ = 0 ð198Þ

5. Discussion and conclusion

In a series of papers devoted to the transformation of spherical

beam shape coefficients (for use in generalized Lorenz–Mie theories

in spherical coordinates) under the rotation of coordinate systems,

this paper discusses the case of planewaves viewed as a special case of

on-axis axisymmetric beams. The description in the unrotated system

is taken as simple as possible. The corresponding description in the

rotated system is far more complicated and it might seem that, for

plane waves, the interest of rotations is suspicious.

Nevertheless, to better understand the issue, let us now dress the

problem by attaching a scattering particle to the unrotated system,

and assuming that this particle follows any rotation of it. If the particle

is a homogeneous spherical particle defined by its diameter and its

complex refractive index, as in the GLMT stricto sensu [4], then any

rotation lets the physics invariant. There is therefore no interest

indeed to choose working with the rotated system which complicates

the intermediary calculations without any benefit. The same is true

when the scattering particle is a multilayered sphere [17].

However, let us now assume that the scatterer is a spherical

particle with an eccentrically located spherical inclusion [18]. Let us

locate the center of the inclusion on the “vertical” axis Oz of the

unrotated system, and the center of the host sphere at the origin O of

the Cartesian coordinate system. The plane wave in the unrotated

system propagates along the axis Oz and we are facing a rather easy

geometry of the scattering problem. Everything now becomes more

complicated after rotation, when the plane wave is still propagating

along Oz but the center of the inclusion is nomore located on this axis.

Thismay be viewed as a case of oblique illumination. This terminology

(oblique illumination) is the one which has indeed been used by Han

et al. [19,20] when they initiated the issue. We then have discussed a

new way of calculating the beam shape coefficients of plane waves

under oblique illumination, and took this opportunity to investigate

the mathematical behavior of these waves. A similar discussion is

valid for assemblies of spheres and aggregates [21], for instance in the

case of several spheres aligned along an axis. Such scatterers are

currently under study, e.g. [22,23].

A last remark of importance is also to be recalled. Eqs. (18) and

(19) indeed exhibit a somewhat unexpected result, namely that, in

general, the description of the plane wave in the rotated system

requires the use of beam shape coefficients (a double set of beam

shape coefficients), as for arbitrary shaped beams, in contrast with the

easy degenerated description in the unrotated system.
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This paper is the fifth of a series of papers devoted to the transformation of beam shape coefficients through

rotations of coordinate systems. These coefficients are required to express electromagnetic fields of laser

beams in expanded forms, for use in some generalized Lorenz–Mie theories, or in other light scattering

approaches such as Extended Boundary Condition Method. Part I was devoted to the general formulation.

Parts II, III, IV were devoted to special cases, namely axisymmetric beams, special values of Euler angles, and

plane waves respectively. The present Part V is devoted to the study of localized approximation and localized

beam models, and of their behavior under the rotation of coordinate systems.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Many approaches to light scattering, such as generalized Lorenz–

Mie theories in spherical coordinates (for homogeneous spheres [1,2],

multilayered spheres [3], spheres with spherical inclusions [4],

assemblies of spheres and aggregates [5], with recent reviews in

Refs. [6,7]), or Extended Boundary ConditionMethod, also called Null-

Field Method [8,9], most often misleadingly named T-matrix method

[10], require the evaluation of expansion coefficients known as beam

shape coefficients.

These beam shape coefficients may be evaluated by using various

methods, namely quadratures [11], finite series [12], localized

approximations generating localized beam models [13,14], or a

hybrid method taking advantage of both quadratures and of a

localized approximation, named the integral localized approximation

[15]. The evaluation of beam shape coefficients has also been

investigated by relying on addition theorems for translations of

coordinate systems, an approach originally introduced by Doicu and

Wriedt [16], and also used by Zhang and Han [17].

In the previous papers of this series [18–21], we have developed

another approach, initiated by Han et al. [22,23], to the evaluation of

beam shape coefficients, relying on addition theorems for rotations

(not for translations) of coordinate systems. This approach takes the

form of a theorem of transformation which expresses the beam shape

coefficients in a rotated system in terms of beam shape coefficients in

an unrotated system.

The present paper is devoted to the study of a synthetical question,

concerning both the use of localized approximations, and the use of

rotational addition theorems, to the evaluation of beam shape

coefficients. It happens that the use of a localized approximation, to

evaluate beam shape coefficients, provides the most efficient method,

with regards to computational times, by orders of magnitudes with

respect to other methods such as by using quadratures. It is also the

most appealing from a physical point of view because it provides

many physical insights on the interpretation of beam models.

Then, let us consider an original system of coordinates, called the

unrotated system, in which we possess compact (non-expanded

expressions), to describe an electromagnetic field. Most usually, this

description does not exactly satisfy Maxwell's equations, this being

called a non-Maxwellian description, a feature having deep con-

sequences in light scattering theories [24–27]. Nevertheless, by using

a localized approximation, wemay obtain, in the unrotated system, an

expanded beam description, called a localized beam model, which is

Maxwellian, i.e. which exactly satisfies Maxwell's equations. By using

the theorem of transformation previously mentioned, we may then

obtain a localized beam model in a rotated system in terms of the

localized beam model in the unrotated system. This procedure to

obtain a localized beam model in the rotated system is called the RL-

procedure. It is achieved by applying the localization in the unrotated

system (operator L) followed by a rotation (operator R) to the rotated

system, in short: localize and afterward rotate.

Alternatively, we may start from the non-Maxwellian beam

description in the unrotated system, rotate it to the rotated system,
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and afterward apply a localized approximation in the rotated system.

This is called the LR-procedure, i.e. first rotate and afterward localize.

In general, since we are working with non-Maxwellian descrip-

tions of beams, we should not expect that the operators R and L

commute: RL≠LR, but we expect that they nearly commute, that is to

say that the results of applying the RL- or the LR-procedures, although

different, are close enough in some sense. In the light of this

expectation, we were quite surprised to find that the operators R

and L do not commute, not only for non-Maxwellian beams, but for

Maxwellian beams as well. The aim of this paper is to demonstrate

these unexpected statements, to explain why it is so, and to draw

consequences.

The paper is organized as follows. In Section 2, a few basic

ingredients required for the sequel are recalled. They concern the

definitions of beam shape coefficients and of Euler angles, a theorem

of transformation of beam shape coefficients through rotations of

coordinate systems, and the modified localized approximation

procedure for arbitrary shaped beams, in its current form. Section 3

discusses the RL-procedure, while Section 4 discusses the LR-

procedure. Section 5 is a conclusion. A concise Appendix is devoted

to a small technicality.

2. Basic ingredients

2.1. Beam shape coefficients

The beam shape coefficients that are considered in the present

series of papers are denoted as gn, TM
m and gn, TE

m (n from 1 to ∞,m from

−n to+n, TM for TransverseMagnetic, TE for Transverse Electric), e.g.

Refs [1,2] in which they are used in the framework of a generalized

Lorenz–Mie theory describing the interaction between an electro-

magnetic arbitrary shaped beam and a homogeneous sphere defined

by its diameter and its complex refractive index. There are various

ways to define them. An expedient one might be to write down the

expression for the radial electric field component according to Ref.

[18]:

Er =
1

kr
∑
∞

n=1
∑
+ n

m=−n
−1ð Þ

m
bmnn n+1ð Þjn krð ÞP

m
n cosυð Þ exp imηð Þ ð1Þ

in which k is the wave number in the space where the wave

(an illuminating wave in the framework of a scattering problem)

propagates, (r, υ, η) are spherical coordinates, jn designates spherical

Bessel functions of the first kind, and Pn
m are associated Legendre

functions. The expansion coefficients bmn read as:

bmn = kE0c
pw
n −1ð Þ

m
−1ð Þ

m−jmj

2
n−mð Þ!

n−jmjð Þ!
g
m
n; TM ð2Þ

in which E0 is a field strength which, without any loss of generality,

will be taken equal to 1 in the sequel (similarly, when required, the

magnetic field strength H0 is taken equal to 1 as well), and c
pw
n are

coefficients appearing naturally in the Bromwich version of the

Lorenz–Mie theory. The TE-beam shape coefficients g n, TE
m will not be

considered in this paper. They would be similarly defined, in terms of

the radial magnetic field component Hr, instead of Er, and any

statement we shall make for the TM-coefficients would apply, mutatis

mutandis, to the TE-coefficients as well.

2.2. Euler angles

Let us consider an unrotated frame of reference with Cartesian

coordinates (x, y, z) and spherical coordinates (r, θ, φ). We then apply

to this frame a rotation defined by Euler angles (α, β, γ) leading to a

rotated frame of reference with Cartesian coordinates x̃; ỹ; z̃ð Þ and

spherical coordinates r̃ = r; θ̃; φ̃
 !

, in which tilde-decorations are

used to denote quantities in the rotated system. The definitions of the

Euler angles are given in Ref. [18], but it is most convenient to repeat

these definitions here.

(i) A first rotation, applied to the unrotated system (x, y, z), by an

angle α (0≤αb2π) about the z-axis, brings the unrotated

system to an α–rotated system with Cartesian coordinates (xα,

yα,zα).

(ii) Asecondrotation, applied to theα–rotated system(xα,yα,zα), byan

angle β (0≤βbπ) about the yα–axis, brings the α–rotated system

to a β–rotated system with Cartesian coordinates (xβ,yβ,zβ).

(iii) A third rotation, applied to the β–rotated system (xβ,yβ,zβ), by

an angle γ (0≤γb2π) about the zβ–axis, brings the β–rotated

system to a γ–rotated system (simply called the rotated

system) with Cartesian coordinates (xγ,yγ,zγ) better denoted

as x̃; ỹ; z̃ð Þ.

All rotations defined above are positive (by definition, a positive

rotation about a given axis is a rotation which would carry a right-

handed screw in the positive direction along that axis).

2.3. The theorem of transformation

We now know enough to state the theorem of transformation

demonstrated in Ref. [18].

Let x and x̃ be two systems of coordinates, named the unrotated

and the rotated systems, respectively. Let gn,X
m and g̃

m
n; X , with X=TM

or TE, be the spherical beam shape coefficients of an arbitrary shaped

beam in the unrotated and in the rotated systems, respectively.

Then:

g̃
m
n; X = μmn ∑

n

s=−n

Hm
sn

μ sn
g
s
n; X ð3Þ

in which:

μmn = −1ð Þ
m
−1ð Þ

m−jmj

2
n−jmjð Þ!

n−mð Þ!
ð4Þ

Hm
sn = −1ð Þ

n+s n−mð Þ!

n−sð Þ!
e
isα
e
imγ
∑
σ
−1ð Þ

σ n + s

n−m−σ

 !

n−s

σ

 !

cos
β

2

$ %

2σ +m+ s

sin
β

2

$ %

2n−2σ−m−s
ð5Þ

in which (α,β,γ) are Euler angles bringing the unrotated system to

the rotated system, defined in the previous subsection.

We shall be more specifically concerned with beams pertaining to

a class of beams, named on-axis axisymmetric beams, e.g. Ref. [28].

They may be defined by beam shape coefficients taking the following

values:

g
m
n; X = 0; jmj≠1 ð6Þ

g
1
n; TM =

1

K
g
−1
n; TM = −iεg

1
n; TE =

iε

K
g
−1
n; TE =

gn

2
ð7Þ

in which K∈R, and ε=±1, are parameters. Eqs. (6) and (7) show

that, for this class of beams under consideration, the double set of

beam shape coefficients {gn, TM
m ,gn, TE

m } reduces to a single {gn} of

coefficients, named special beam shape coefficients. A particular

interesting case is when (K,ε)=(1,−1). Then, Eq. (7) reduces to:

g
1
n; TM = g

−1
n; TM = ig

1
n; TE = −ig

−1
n; TE =

gn

2
ð8Þ

This is in particular valid in the case of an on-axis Gaussian beam

polarized in the x-direction at its focal waist, e.g. Refs. [1,29,30]. When
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both Eqs. (6) and (8) are valid, the theorem of transformation for the

TM-beam shape coefficients reduces to a simple enough expres-

sion [19]:

g̃
m
n; TM = −1ð Þ

m −1ð Þ
m−jmj

2
n−jmjð Þ!

n + mð Þ!
e
imγ

gn im sin απ
m
n cosβð Þ + cosατ

m
n cosβð Þ

 !

ð9Þ

in which πn
m and τn

m are generalized Legendre functions reading as:

π
m
n cosβð Þ=

Pmn cosβð Þ

sin β
ð10Þ

τ
m
n cosβð Þ =

dPmn cosβð Þ

d β
ð11Þ

2.4. Modified localized approximation

Wenow recall themodified localized approximation procedure for

arbitrary shaped beams such as exposed and justified in Ref. [14].

Following Ref. [14], we decompose the radial electric component

expressed in a spherical coordinate system (r,υ,η) into m-modes

according to:

Er R;υ;ηð Þ= ∑
∞

m=−∞
E
m
r R;υ;ηð Þ ð12Þ

E
m
r R;υ;ηð Þ = e

−iR cos υ
sinυe

imη
n o

E
m
r R;υð Þ ð13Þ

The TM-beam shape coefficients are then given by:

P

g
m
n; TM =

−i
L1=2

$ %

jmj−1
E
m
r L

1=2
;π=2

& '

ð14Þ

in which the overbar denotes “localization” and:

L = n−jmjð Þ n + jmj + 1ð Þ = n + 1=2ð Þ
2− jmj + 1=2ð Þ

2
: ð15Þ

In these equations, we introduced the notation R=kr. Further-

more, in the unrotated system, we have: (υ,η)=(θ,φ) and, in the

rotated system: υ;ηð Þ= θ̃; φ̃
& '

.

To decrease the amount of actual computations in the case of

complicated structures, it is however convenient to rewrite the above

procedure in a different way. Let us introduce the notation:

F = F υð Þ = F υ= π = 2ð Þ: ð16Þ

We may then rewrite the modified localized approximation

procedure as:

Er = Er R;π=2;ηð Þ = ∑
∞

m=−∞
Emr = ∑

∞

m=−∞
E
m
r R;π=2;ηð Þ ð17Þ

Emr = e
imη

Em
r Rð Þ = e

imη
E
m
r R;π=2ð Þ ð18Þ

g
m
n; TM =

−i
L1=2

$ %

jmj−1
Em
r L

1=2
& '

ð19Þ

3. The RL-procedure

We are now going to evaluate beam shape coefficients in the

rotated system by using a RL-procedure, that is to say we first apply a

localization operator (or procedure) and afterward a rotation. To be

specific, we shall assume that the beam is a first-order Davis beam

taken as an approximation to a Gaussian beam.

3.1. Beam description in the unrotated system

The beam description in the unrotated system is taken to be

the one of a Gaussian beam in the first-order Davis approxima-

tion, when the location parameters are x0=y0= z0=0. It is

defined by the following equations, e.g. Refs. [1,31] and references

therein:

Ey = Hx = 0 ð20Þ

Ex = Ψ0 exp −ikzð Þ ð21Þ

Ez = −
2Q

l
xEx ð22Þ

Hy = Ψ0 exp −ikzð Þ ð23Þ

Hz = −
2Q

l
yHy ð24Þ

Ψ0 = iQ exp −iQ x2 + y2

w20

 !

ð25Þ

Q =
1

i + 2
z

l

: ð26Þ

The radial electric field component Er, which is the only one

required to evaluate the TM-beam shape coefficients, then reads

as:

Er = Ψ0 cos φ sin θ 1−2
Q

l
r cos θ

$ %

exp −ikr cos θð Þ ð27Þ

with, now:

Ψ0 = iQ exp −iQr
2 sin

2
θ

w20

 !

ð28Þ

Q =
1

i + 2
r cosθ

l

: ð29Þ

We also recall that the diffraction length l is given by:

l= kw
2
0 ð30Þ

and that we have the beam confinement factor s given by:

s=
1

kw0
ð31Þ

in which w0 is the beam waist radius.

An interesting special case which will be used in the next section is

when w0=∞, that is to say when s=0, which is equivalent to the

consideration of only O (s0)–contributions in series expansions of the

first-order Davis beam description presented above. The Gaussian

beam has then become a planewavewhich, from the above equations,

is found to read as:

Ex = exp −ikzð Þ; Ey = Ez = 0: ð32Þ

3.2. Beam shape coefficients in the unrotated system

As an exercise, let us evaluate the TM-beam shape coefficients of

this plane wave, in the unrotated system, by using the modified
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localized approximation procedure. The radial electric field compo-

nent for this case is readily found to be:

Er = cosφ sin θ exp −ikr cos θð Þ =
eiφ + e−iφ

2
sin θ exp −ikr cos θð Þ: ð33Þ

Hence:

Er =
eiφ + e−iφ

2
ð34Þ

leading to:

Emr = Em
r = 0; jmj≠1 ð35Þ

E1r = e
iφ
= 2; E−1

r = e
−iφ

= 2 ð36Þ

E1
r = E−1

r = 1 = 2 ð37Þ

g
m
n; TM = 0; jmj≠1 ð38Þ

g
1
n;TM = g

−1
n; TM = 1= 2: ð39Þ

Eqs. (38) and (39) agree with Eqs. (6) and (8) as it should since the

plane wave under study is a special case of an on-axis axisymmetric

beam [28]. All the associated special beam shape coefficients, namely

gn, see Eq. (8), for this plane wave are furthermore equal to 1, a result

known to us since a long time, e.g. Refs. [1,29].

This exercise being done, we now turn our attention to the

values of the beam shape coefficients for the first-order Davis beam

previously described (with s≠0). This first-order Davis beam is an

on-axis axisymmetric beam [28]. Therefore, beam shape coeffi-

cients reduce to special beam shape coefficients. We may use a

localized approximation, a modified localized approximation, or a

standard beam (all of them being variants of localized approxima-

tions), to express these special beam shape coefficients [31]. There

is however a unified description, according to the following

formulas [32]:

gn = ∑
∞

l=0
G2ls

2l
ð40Þ

G2l = ∑
l

k=0
αlk n n + 1ð Þ½ �

k
ð41Þ

in which it has to be noted that the coefficients G2l also depend on the

partial wave number n, although this is not explicitly specified in the

notation.

For the localized approximation, we have:

gn = exp − n + 1=2ð Þ
2
s
2

h i

ð42Þ

leading to:

G2l =
−1ð Þl

l!
n + 1=2ð Þ

2l
ð43Þ

αlk =
−1ð Þl

k! l−kð Þ!

1

4

" #l−k

: ð44Þ

For the modified localized approximation, we have:

gn = exp − n−1ð Þ n + 2ð Þs
2

h i

ð45Þ

leading to:

G2l =
−1ð Þl

l!
n−1ð Þ n + 2ð Þ½ �

l
ð46Þ

αlk =
−1ð Þ

k

k! l−kð Þ!
2
l−k

: ð47Þ

For the standard beam, we have:

gn = ∑
∞

l=0

−1ð Þ
l

l!
nls
2l

ð48Þ

in which:

n0 = 1 ð49Þ

nl = n−lð Þ n−l + 1ð Þ… n−1ð Þ n + 2ð Þ… n + l + 1ð Þ; l N 0: ð50Þ

This leads to:

G2l =
−1ð Þl

l!
nl: ð51Þ

There is however no compact expression for the coefficients αlk,

although they can be readily evaluated.

3.3. Beam shape coefficients in the rotated system

To obtain the beam shape coefficients in the rotated system, in the

RL-approach, we apply the theorem of transformation for the case of

axisymmetric beams [19], recalled in Eq. (9). To denote the fact that

we first generated a localized beam, and afterward rotated, the TM-

beam shape coefficients are denoted as g̃
m
n; TM , in which the overbar

denotes the localization, and the tilde denotes the rotation. We then

readily obtain:

g̃
m
n; TM = −1ð Þ

m
−1ð Þ

m−jmj

2
n−jmjð Þ!

n + mð Þ!
e
imγ

im sinαπ
m
n cosβð Þ + cosατ

m
n cosβð Þ

$ %

∑
∞

l=0
G2ls

2l

ð52Þ

which is valid for the unified description encompassing the localized

approximation, the modified localized approximation, and the

standard beam description. For the modified localized approximation,

Eq. (52) specifically becomes, using Eq. (45):

g̃
m
n; TM = −1ð Þ

m
−1ð Þ

m−jmj

2
n−jmjð Þ!

n + mð Þ!
e
imγ

im sinαπ
m
n cosβð Þ + cosατ

m
n cosβð Þ

$ %

exp

− n−1ð Þ n + 2ð Þs
2

h i

: ð53Þ

At 0(s0), or equivalently in the plane wave case of Eq. (32):

˜
g
m
n; TM = −1ð Þ

m
−1ð Þ

m−jmj

2
n−jmjð Þ!

n + mð Þ!
e
imγ

im sinαπ
m
n cosβð Þ + cosατ

m
n cosβð Þ

$ %

:

ð54Þ

4. The LR-procedure

In this procedure, we first apply a rotation of coordinates, express

the original first-order Davis beam in this system of coordinates and,

afterward, apply the modified localized approximation procedure to

the obtained result. When this is done, it is observed that the beam

shape coefficients in the rotated system obtained either by the RL- or

the LR-procedures severely disagree. In other words, R and L do not

commute. This happens even for O (s0)–contribution, that is to say for
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the plane wave that we have previously considered. Hence, we shall

be content in applying the LR-procedure to it. Furthermore, it will be

sufficient to consider a rotation with Euler angles α and β, with

however γ=0. The result of the RL-procedure is then, from Eq. (54),

with γ=0:

g̃
m
n; TM = −1ð Þ

m
−1ð Þ

m−jmj

2
n−jmjð Þ!

n + mð Þ!
im sinαπ

m
n cosβð Þ + cosατ

m
n cosβð Þ

 !

:

ð55Þ

4.1. Rotation of Cartesian field components

Let x̂; ŷ; ẑ be unit vectors along the directions x,y,z of the

unrotated system, respectively. Let x̂α ; ŷα ; ẑα be unit vectors along

the directions xα,yα,zα of the α–rotated system, respectively. The

relationship between these unit vectors through the α–rotation is

given by:

x̂
ŷ
ẑ

0

@

1

A=
cosα −sinα 0
sinα cosα 0
0 0 1

0

@

1

A

x̂α
ŷα
ẑα

0

@

1

A: ð56Þ

Let x̂β = ˆ̃x; ŷβ = ˆ̃y; ẑβ = ˆ̃z the unit vectors along the directions

xβ = x̃; yβ = ỹ; zβ = z̃, of the β–rotated system (identifying with the

rotated system since there is no third rotation of angle γ),

respectively. The relationship between unit vectors through this

second (and final) rotation is given by:

x̂α
ŷα
ẑα

0

@

1

A=
cos β 0 sin β
0 1 0

−sin β 0 cos β

0

@

1

A

x̂β = ˆ̃x

ŷβ = ˆ̃y

ẑβ = ˆ̃z

0

B

B

@

1

C

C

A

: ð57Þ

4.2. Rotation of coordinates

We shall also need to relate the unrotated coordinates (x,y,z) and

the rotated coordinates x̃; ỹ; z̃ð Þ.

For the first rotation:

x
y
z

0

@

1

A=
cosα ε sinα 0
−ε sinα cosα 0

0 0 1

0

@

1

A

xα
yα
zα

0

@

1

A ð58Þ

in which ε is either (+1) or (−1). For the time being, we let the value

of ε undetermined because our conclusion will not depend on it. In

order to avoid distracting the attention of the reader from the main

issue, the actual value of ε is better discussed in a small accessory

Appendix.

Similarly, for the second rotation:

xα
yα
zα

0

@

1

A=
cos β 0 −ε sin β
0 1 0

ε sin β 0 cos β

0

@

1

A

xβ = x̃

yβ = ỹ

zβ = z̃

0

@

1

A: ð59Þ

And, as a whole, we obtain:

x
y
z

0

@

1

A= R

x̃
ỹ
z̃

0

@

1

A ð60Þ

in which the rotation matrix R reads as:

R =
R11 R12 R13
R21 R22 R23
R31 R32 R33

0

@

1

A

=
cosα cos β ε sinα −ε cosα sin β
−ε sinα cos β cosα sinα sin β

ε sin β 0 cos β

0

@

1

A

ð61Þ

4.3. Rotation of the electric radial field component

The determination of the TM-beam shape coefficients in the

rotated system relies on the expression for the electric radial field

component Er in the rotated system that is established and discussed

in this subsection. Using Eqs. (56) and (57), E = Ex x̂, with Ex=exp

(− ikz), is found to become:

E = Ex cos α cosβ ˆ̃x− sinα ˆ̃y + cosα sinβˆ̃z
h i

ð62Þ

Therefore:

Ex̃ = cosα cosβ exp −ikzð Þ ð63Þ

Eỹ = − sinα exp −ikzð Þ ð64Þ

Ez̃ = cosα sinβ exp −ikzð Þ ð65Þ

The radial field component reads as:

Er = Ex̃ cos φ̃ sin θ̃ + Eỹ sinφ̃ sin θ̃ + Ez̃ cos θ̃: ð66Þ

Inserting Eqs. (63)–(65) into Eq. (66), we obtain:

Er = sinθ̃ cosα cosβ cos φ̃− sinα sin φ̃ð Þ + cosα sinβ cos θ̃
h i

exp −ikzð Þ:

ð67Þ

According to the second version of the modified localized

approximation procedure, rather than Er, we preferably use Er
¯¯

reading as:

Er
¯
¯ = Er θ̃= π= 2

* +

= cosα cosβ
eiφ̃ + e−iφ̃

2
− sinα

eiφ̃−e−iφ̃

2i

 !

ÿÿ
exp −ikzð Þ:

ð68Þ

Expressing z in terms of x̃; ỹ; z̃ by using Eq. (60), and afterward

x̃; ỹ; z̃ in terms of spherical coordinates r̃ = r; θ̃; φ̃, we obtain:

kz = R R31 sin θ̃ cos φ̃ + R32 sin θ̃ sin φ̃ + R33 cos θ̃
* +

ð69Þ

leading to:

exp −ikzð Þ
¯
¯= exp iB cos φ̃

 !

ð70Þ

in which we have implemented the values of R31=ε sin β,R32=0,

and introduced the quantity:

B = −ε R sinβ: ð71Þ

Since
ÿÿ
exp −ikzð Þ is 2π–periodic with respect to φ̃, we may express

it as a Fourier transform, according to:

exp −ikzð Þ
¯
¯= ∑

+ ∞

l=−∞

Al

2π
e
ilφ̃
: ð72Þ

Let us apply the operator ∫2π0 dφ̃e−imφ̃ to both Eqs. (70) and (72).
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First, we have:

∫2π
0
dφ̃

Al

2π
e
i l−mð Þφ̃

=
0; l≠m

Am; l = m
:

 

ð73Þ

Hence, from Eq. (72):

∫2π0 dφ̃e
−im φ̃ ∑

+∞

l=−∞

Al

2π
e
il φ̃

= ∑
+∞

l=−∞
∫2π0 dφ̃

Al

2π
e
i l−mð Þ φ̃

= Am = MD: ð74Þ

This term, named MD, must be equal to MG given by:

MG = ∫2π
0
dφ̃e

iB cos φ̃−im φ̃
: ð75Þ

But we have in Ref. ([33], p 690):

Jn xð Þ =
i−n

2π
∫2π
0

e
i x cos θ + nθð Þ

dθ ð76Þ

so that:

MG =
2π

im
J−m Bð Þ ð77Þ

which is equal to MD=Am, implying:

Am =
2π

im
J−m Bð Þ: ð78Þ

Inserting this result in Eq. (72):

exp −ikzð Þ
¯
¯= ∑

+ ∞

m=−∞
−1ð Þ

m
i
m
J−m Bð Þe

im φ̃
: ð79Þ

But we have in Ref. ([33], p 677):

J−m Bð Þ = −1ð Þ
m
Jm Bð Þ ð80Þ

Hence:

ÿÿ
exp −ikzð Þ = ∑

+∞

m=−∞
i
m
Jm Bð Þe

im φ̃
: ð81Þ

We may then rewrite Eq. (68) as:

ÿÿ
Er = fþe

i φ̃
+ f−e

−i φ̃
! "

∑
+∞

m=−∞
i
m
Jm Bð Þe

im φ̃
: ð82Þ

in which:

fþ =
1

2
cosαcos β + i sinαð Þ ð83Þ

f− =
1

2
cosαcos β−i sinαð Þ ð84Þ

In Eq. (82), we have a sum of two terms. In the first term, we make

a change of subscript m+1→m. In the second term, we make a

change of subscript m−1→m. It then happens that
ÿÿ
Er may be

rewritten as:

ÿÿ
Er = ∑

+∞

m=−∞
i
m+1

e
im φ̃

f−Jm+1 Bð Þ−fþ Jm−1 Bð Þ
# $

: ð85Þ

As a check, we may set α=β=0. Then, using ([33], p 676):

Jm 0ð Þ = 0;m≠0
J0 0ð Þ = 1

:

 

ð86Þ

It is afterward readily established that we recover Eq. (34) from

Eq. (85).

4.4. Rotated beam shape coefficients and discussion

We may then apply the modified localized approximation

procedure to obtain the TM-beam shape coefficients in the rotated

system. The m-modes are found to read as:

ÿÿ
E
m
r = i

m+1
e
im φ̃

f−Jm+1 Bð Þ−fþ Jm−1 Bð Þ
# $

ð87Þ

leading to:

ÿÿ
E
m
r = i

m+1
f−Jm+1 Bð Þ−fþ Jm−1 Bð Þ
# $

ð88Þ

Hence:

˜
P

g
m
n; TM =

−i

L1=2

% &

jmj−1

i
m+1

f−Jm+1 −εL
1 =2

sinβ
! "

−fþ Jm−1 −εL
1 =2

sinβ
! "h i

ð89Þ

in which the coefficients are decorated in such a way as to recall that

we first rotate, and afterward localize, in contrast with the coefficients

in Eq. (55) in which the coefficients are decorated differently.We then

observe that Eqs. (89) and (55) do not agree, i.e. as announced, the

operations R (rotation) and L (localization) do not commute.

To vividly illustrate this lack of commutativity, let us consider the

following special case: n=1, m=0, α=0, β=π /2. Then, from

Eq. (55), we obtain:

˜
g
0
1; TM = cos α= 0ð Þ

dP1 cosβð Þ

dβ

) *

β=π=2

= − cos α = 0ð Þ sin β= π = 2ð Þ= −1:

ð90Þ

But, for α=0, β=π /2, we have, from Eqs. (83) and (84):

fþ α = 0; β = π = 2ð Þ = f− α= 0; β= π = 2ð Þ = 0 ð91Þ

Hence:

g̃
0
1; TM = 0≠˜g01; TM : ð92Þ

5. Conclusion

We have convincingly established that the current modified

localized approximation for arbitrary shaped beams does not

commute with rotations of coordinate systems, andmore importantly

that the exhibited lack of commutativity is harsh, a somewhat

unexpected feature. The reason why it is however simple to identify,

namely the modified localized approximation derived in Ref. [14] is

indeed valid for arbitrary shaped beams propagating along the z-axis

or parallel to it, but it is not valid for arbitrary shaped beams AND for

arbitrary orientation of the beam. The orientation required for the

beam of Eq. (9) in Ref. [14] will thereafter be called the standard

orientation.

Therefore, at the present time, if we want to obtain a localized

beammodel under an orientation which is “not standard”, we have to

use the first procedure we have used in this paper, that is to say the

RL-procedure in which we first localize and afterward rotate. As a

consequence, we now have the most interesting question to know

whether one can design a new localized approximation which would

be, in one step only, valid for both arbitrary shaped beams AND

arbitrary orientation of the beam. We are currently pursuing this line

of investigation.
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Appendix A

There are two different points of view available when dealing with

rotations.

The first point of view is the one which is taken in this series of

papers: we make a rotation of an original unrotated system of

coordinates but we let the laser beam unrotated. Then, to secure the

value of ε, let us consider the unrotated system (x,y,z) and the rotated

system (xα,yα,zα) obtained from a rotation of angle α about the axis z.

Let us next consider the point P on the axis xα (that can be thought as

being a point attached to the laser beam to which no rotation is

applied), lying in the first quadrant of the (x,y) plane, and let us take

its coordinates in the rotated system as being (xα(P),yα(P),zα(P))=

(1,0,0). Since the point P is taken in the first quadrant of the (x,y)

plane, it has xN0 and yN0. By using Eq. (58), we however obtain (x(P),

y(P),z(P))=(cos α,−ε sin α,0). To retrieve y(P)N0, we therefore

must have ε=−1.

In the second point of view (which is not the one taken in this

series of papers), the laser beam is rotated. Let us consider a vector
→

OM attached to the unrotated system (and to the laser beam), defined

as
→

OM = X x̂ + Y ŷ. When rotating the laser beam, this vector would

be rotated too, becoming
→

OM ′ = X ˆ̃x + Y ˆ̃y, i.e. the rotation does not

affect the length of the components which are X and Y in both the

unrotated and in the rotated systems, but affects the orientation of the

unit vectors. Then, as readily demonstrated in elementary textbooks

dealing with rotations, we would have ε=+1.

Finally, the values of ε given above are valid for positive rotations

used in this paper. In the case of negative rotations, they would have

to be interchanged.
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