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Abstract

The synchronous approach to reactive systems, where time evolves by glob-
ally synchronized discrete steps, has proven successful for the design of safety-
critical embedded systems. Synchronous systems are often distributed over
asynchronous architectures for reasons of performance or physical constraints
of the application. Such distributions typically require communication and syn-
chronization protocols to preserve the synchronous semantics. In practice, pro-
tocols often have a significant overhead that may conflict with design constraints
such as maximum available buffer space, minimum reaction time, and robust-
ness.

The quasi-synchronous approach considers independently clocked, synchronous
components that interact via communication-by-sampling or FIFO channels. In
such systems we can move from total synchrony, where all clocks tick simulta-
neously, to global asynchrony by relaxing constraints on the clocks and without
additional protocols. Relaxing the constraints adds different behaviors depend-
ing on the interleavings of clock ticks. In the case of data-flow systems, one
behavior is different from another when the values and timing of items in a flow
of one behavior differ from the values and timing of items in the same flow of
the other behavior. In many systems, such as distributed control systems, the
occasional difference is acceptable as long as the frequency of such differences
is bounded. We suppose hard bounds on the frequency of deviating items in a
flow with, what we call, weakly-hard requirements, e.g., the maximum number
deviations out of a given number of consecutive items.

We define relative drift bounds on pairs of recurring events such as clock
ticks, the occurrence of a difference or the arrival of a message. Drift bounds
express constraints on the stability of clocks, e.g., at least two ticks of one per
three consecutive ticks of the other. Drift bounds also describe weakly-hard
requirements. This thesis presents analyses to verify weakly-hard requirements
and infer weakly-hard properties of basic synchronous data-flow programs with
asynchronous communication-by-sampling when executed with clocks described
by drift bounds. Moreover, we use drift bounds as an abstraction in a perfor-
mance analysis of stream processing systems based on FIFO-channels.
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Résumé

L’approche synchrone aux systèmes réactifs, où le temps global est une séquence
d’instants discrets, a été proposée afin de faciliter la conception des systèmes
embarqués critiques. Des systèmes synchrones sont souvent réalisés sur des
architectures asynchrones pour des raisons de performance ou de contraintes
physiques de l’application. Une répartition d’un système synchrone sur une ar-
chitecture asynchrone nécessite des protocoles de communication et de synchro-
nisation pour préserver la sémantique synchrone. En pratique, les protocoles
peut avoir un coût important qui peut entrer en conflit avec les contraintes de
l’application comme, par exemple, la taille de mémoire disponible, le temps de
réaction, ou le débit global.

L’approche quasi-synchrone utilise des composants synchrones avec des hor-
loges indépendantes. Les composants communiquent par échantillonnage de
mémoire partagée ou par des tampons FIFO. On peut exécuter un tel système
de façon synchrone, où toutes les horloges avancent simultanément, ou de façon
asynchrone avec moins de contraintes sur les horloges, sans ajouter des proto-
coles. Plus les contraintes sont relâchées, plus de comportements se rajoutent
en fonction de l’entrelacement des tics des horloges. Dans le cas de systèmes
flots de données, un comportement est différent d’un autre si les valeurs ou le
cadencement ont changé. Pour certaines classes de systèmes l’occurrence des
déviations est acceptable, tant que la fréquence de ces événements reste bornée.
Nous considérons des limites dures sur la fréquence des deviations avec ce que
nous appelons les exigences faiblement dures, par exemple, le nombre maximal
d’éléments divergents d’un flot par un nombre d’éléments consécutifs.

Nous introduisons des limites de dérive sur les apparitions relatives des paires
d’événements récurrents comme les tics d’une horloge, l’occurrence d’une differ-
ence, ou l’arrivée d’un message. Les limites de dérive expriment des contraintes
entre les horloges, par exemple, une borne supérieure de deux tics d’une horloge
entre trois tics consécutifs d’une autre horloge. Les limites permettent égale-
ment de caractériser les exigences faiblement dures. Cette thèse présente des
analyses pour la vérification et l’inférence des exigences faiblement dures pour
des programmes de flots de données synchrones étendu avec de la communica-
tion asynchrone par l’échantillonnage de mémoire partagée où les horloges sont
décrites par des limites de dérive. Nous proposons aussi une analyse de perfor-
mance des systèmes répartis avec de la communication par tampons FIFO, en
utilisant les limites de dérive comme abstraction.
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Chapter 1

Introduction

Since their invention computers have permeated our daily lives to the extend
that society has become dependent on them, even for safety-critical tasks. It
is not the machines first identified as computers that we rely most on, e.g.
personal computers and laptops, but rather embedded systems; the computers
embedded in machines that perform tasks without being seen. For example, the
anti-lock brake systems (ABS) of our car, the smoke-detector in our kitchen,
the pacemaker on grandfather’s heart, the control software of a nuclear power
plant, and so on.

The safety of such embedded systems are ensured by systematic engineering
processes. In some industries, such as avionics, the design, development and
maintenance processes are standardized through certification. Validation of
systems — checking if a system behaves as intended — is an essential part
of such engineering processes, both during the design and at deployment.

Embedded systems are increasingly distributed for reasons of performance,
robustness, or physical constraints. They are distributed in the sense that there
is no global time-reference by which components agree on the order of events;
components interact asynchronously. Examples of such distributed systems in-
clude network on chips (NoC), drive-by-wire architectures employed in modern
cars, and distributed control systems in rail transportation.

The validation of asynchronous systems is complicated by their non-deterministic
behavior. That is, system behavior depends on the interleaving of events as ob-
served and generated by different parts of the system. In this thesis, we explore
abstractions and verification methods to facilitate the design of such distributed
systems with the aim of distributing synchronous systems.

1.1 Context

1.1.1 Reactive Systems

Reactive systems were identified [HP85] as a class of systems that are notoriously
hard to design. They interact continuously with their environment at the speed
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CHAPTER 1. INTRODUCTION 10

of their environment. Several aspects complicate the design of such systems:

• They are often used for safety-critical applications, where system failure
may have grave consequences. Consequently, the correctness of a design
must be validated before deployment insofar this is possible.

• In case of embedded systems where the system interacts with physical
processes, the system operates under real-time constraints because the
system must react on time.

• They are often subject to resource constraints; the system must be con-
structed within a budget of available resources.

Recently, with the advance of computing in general and networking in par-
ticular, the size and complexity of reactive systems has exploded. It has been
widely noted [Kop08] that engineering practice lacks the models to effectively
reason with such complex systems. [Sif11] notes three challenges in particular:
(1) the combined modelling of the computational and physical aspects of a sys-
tem, (2) the need for a compositional approach to design for scalability, and (3)
the efficient use of resources for mixed-criticality systems.

1.1.2 Synchronous Approach to Reactive Systems

The synchronous programming paradigm [BB91] was proposed to facilitate the
development of reactive systems and since proven to be successful [BCE+03].
Prominent examples of synchronous programming languages include Lustre

[HCRP91] and its commercial implementation Scade, Signal [LB87], and Es-

terel [BG92]. Synchronous programming languages aim to simplify the pro-
gramming of reactive embedded systems through the adoption of a parallel
model of computation based on a high-level timing model. Moreover, the lan-
guages have mathematically defined semantics to permit formal verification of
properties with the help of automatic tools.

The synchronous languages are based on the synchrony hypothesis that states
that computation and calculation are instantaneous. The synchrony hypothesis
leads to a logical model of time, where time evolves by discrete steps. The logical
time is often made explicit as a clock signal that drives components within its
clock domain similarly to the clocks in digital circuits. Figure 1.1 depicts a
schematic reactive program driven by a global clock signal.

Of course the “real” world does not behave synchronously: neither compu-
tation nor communication are instantaneous. Moreover, synchronous programs
are often compiled to a synchronous program where reactions that are parallel
in the synchronous model actually occur in sequence. This discrepancy is re-
solved by designing systems with sufficient margins in the timing requirements
so that the deployed system will react on time even if reactions are not actually
simultaneous.
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A B C

clock

Figure 1.1: Three processes communicating synchronously on a clock signal.

A B C

clock clock clock

Figure 1.2: A GALS system where independently clocked components commu-
nicate asynchronously across clock domains.

1.1.3 GALS Systems

In distributed systems it quickly becomes infeasible or too costly to cope with
asynchrony through design with margins in timing or, conversely, because an
asynchronous design can be cheaper and/or more performant. Modern pro-
cessors, for example, are sometimes partitioned in separate clock domains, be-
cause of clock skew clock signals arrive at different times due differences in
travel distance [VHR+08] or to optimize power usage by dynamic (clock) fre-
quency scaling [SMB+02]. Distribution can also be a consequence of physical
constraints when, for example, the physical distance between two components
prevents timely communication.

Globally asynchronous, locally synchronous (GALS) systems were originally
defined by Chapiro [Cha84] to unify the synchronous and asynchronous modes of
interaction found in distributed hardware. GALS systems consist of synchronous
components that communicate with each other by asynchronous means. Each
synchronous component has its own, independent clock. Figure 1.2 depicts a
GALS variation of the synchronous program depicted in Figure 1.1

The semantics of GALS systems are defined by the asynchronous primitives
used to communicate between clock domains and the origin and nature of the
clocks. Teehan [TGL07] distinguishes three GALS design styles by the nature
of the clocks: pausible clocks where clocks can be controlled to synchronize
across domains, asynchronous clocks where clocks are independently generated
and have no known relation between them and mesochronous clocks that have a
known relation but cannot be controlled, e.g., clocks that have a bounded phase
drift, skew, or fixed rate difference.
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1.1.4 Distribution of Synchronous Programs

One approach to the design of GALS is to first design the system leveraging the
synchronous approach and then distribute the synchronous design. The distri-
bution of a synchronous program on a GALS architecture consists in the de-
composition and subsequent asynchronous recomposition of the program. Each
synchronous sub-system in the asynchronous composition has its own time-steps
that may interleave arbitrarily with each other. In general, such a distribution
may behave differently than the original synchronous program.

Benvensite et al. [BCL99, BCCSV03] identified the following conditions un-
der which the asynchronous composition of synchronous systems behaves like
their synchronous composition, that is, the synchronous behavior can be recon-
structed from the asynchronous behavior:

• each system in the composition must be endochronous (self-timed) to
know, based on its state, whether its inputs are present, as absence/p-
resence of signals cannot be detected; and

• each pair of components in the composition must be isochronous (same-
timed), i.e., they must agree on the values of all shared variables (or on
the shared state).

It is possible to distribute a synchronous program if one ensures the dis-
tributed components and their compositions are both endo- and isochronous.
Endochrony can, in general, only be determined through model checking. In
practice it is therefore more common to desynchronize a system through pro-
gram transformations that ensure endo- and isochrony of the distributed compo-
nents. That is, to design the system using a synchronous language, repartition
its components into clock domains that interact asynchronously, and introduce
synchronization protocols. Figure 1.3 schematically depicts the distribution of
the synchronous program of Figure 1.1 through the introduction of controllers
and communication protocols that ensure endo- and isochrony.

1.1.5 Quasi-Synchronous Systems

In [Cas01] Caspi narrates how analog (unclocked) circuits in control systems
were gradually replaced with digital (clocked) circuits and software, leading to
a particular kind of GALS systems named quasi-synchronous systems. In such
systems, synchronous programs are composed asynchronously using communication-
by-sampling, where independently clocked synchronous programs communicate
by reading and writing shared memory. All clocks have the same period with
a bounded drift and, consequently, some writes may be overwritten before they
are read and some may be read multiple times. The systems are designed un-
der the quasi-synchrony hypothesis: for any pair of clocks one can tick at most
twice between any two ticks of the other. Thus, the number of overwritten and
duplicated messages is bounded.

Loosely Time-Triggered Architectures (LTTA) [BCG+02] provide a quasi-
synchronous platform with independently clocked computing resources that



CHAPTER 1. INTRODUCTION 13

contr contr contr

A B C

prot prot prot

clock clock clock

Figure 1.3: A distributed synchronous program with controllers to synchronize
the clocks and protocols for the transfer of data.

communicate by sampling and proposes a semantic-preserving distribution method.
The quasi-synchrony hypothesis of LTTAs allows for light-weight synchroniza-
tion protocols and throughput guarantees.

1.2 Motivation and Objectives

The motivation of this work starts with the observation that embedded systems
are increasingly designed as distributed GALS systems. Such systems are either
built as GALS systems from the ground up or designed as synchronous systems
that are subsequently distributed.

In the first case, system validation in general is severely complicated by
the large (possibly infinite) number of possible interleavings of events. Testing
based verification is marred by large number of possible execution scenarios
as well as the practical problems of controlling or even observing the order
of events in distributed systems. Formal verification methods face the state-
space explosion problem that originates in the asynchronous composition of
distributed components.

In the second case, that is, the distribution of synchronous systems, both
testing and formal verification of the original design benefits from the synchrony
hypothesis to avoid the aforementioned problems faced for GALS systems. The
validity of the distribution, however, depends on a semantics-preserving desyn-
chronization. In practice desynchronization entails overhead in reaction time,
(memory) space, use of network bandwidth, and loss of robustness. That is, the
distributed system must exchange extra messages, introduce buffers, and delay
execution to be semantically equivalent to the original synchronous program.

The quasi-synchronous approach with communication-by-sampling suggests
a mixed approach where synchronous programs are distributed without a strict
preservation of the synchronous semantics. With communication-by-sampling
the behavior depends on the interleaving of write and read operations, i.e., de-
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prod cons

time →

Figure 1.4: A producer whose output is read by a consumer through
communication-by-sampling.

pending on the interleaving of clock ticks. For example, the system depicted in
Figure 1.4 depicts an independently clocked producer and consumer that com-
municate by sampling. Depending on occurrence times of the producer’s and
consumer’s clocks, messages may be lost (overwritten if the consumer under-
samples the memory cell) or duplicated (if the consumer over-samples the mem-
ory cell).

If clocks are stable enough, such a distribution may still behave much like
the original system and diverge only occasionally. Moreover, not all divergence
from the synchronous behavior may imply a malfunction. We deem such a
mixed approach especially useful for embedded systems of certain types:

• Robust systems must maintain a quality of service in spite of disruptions.
Non-blocking communication-by-sampling is robust in the sense that dis-
ruptions where one component stops functioning do not stop the complete
system.This is especially relevant in cases where parts may stop respond-
ing completely. In normal circumstances the system would need to provide
guarantees on reactivity, e.g., reacting within a given number of clock cy-
cles.

• In control systems a controller directs a physical process through actuators
based on information from sensors. Control systems are designed with
tolerances to deal with the finite accuracy of sensors and actuators, as
well as quantization and signal processing in the controller.

• In weakly-hard real-time systems [BBL01] deadlines for reactions may oc-
casionally be missed, as long as a hard bound is respected, e.g., one out
of ten deadlines may be missed. Similar constraints can be considered for
any error: reactions with the wrong values, absence of reactions, collisions,
etc.

The requirements on these kind of systems fit a pattern: within a given
time-interval the number of some event must be bounded. The number of
events can be bounded from below, e.g., a time-out: react at least once or
sample a sensor-value at least thrice within the interval, or it can be bounded
from above, e.g., the maximum number of missed deadlines. We call these
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weakly-hard requirements as a generalization of Bernat’s notion of weakly-hard
real-time systems.

Consider a synchronous system design that is partitioned into multiple inde-
pendently clocked subsystems that communication by sampling. Starting from
its synchronous execution where all clocks tick simultaneous, we can move to
quasi-asynchronous systems by weakening the synchrony of clocks. Assuming
the synchronous design never violates its requirements, its quasi-synchronous
distribution with will, in general, fail more and more frequently as constraints
on the clocks are relaxed.

This work envisions a mixed approach to the design of GALS systems where
systems are designed principally designed as synchronous systems, but with
foresight of its future distribution. In order to realize such distributions, we
need to (1) describe the degree of (quasi-)synchrony of clocks that drive the
system; (2) express weakly-hard requirements on the frequency of events; and
(3) verify weakly-hard requirements for a quasi-synchronous distribution.

1.3 Contributions and Outline

This thesis introduces a framework for the distribution of synchrononous pro-
grams over a loosely time-triggered architecture with communication-by-sampling,
where the semantics of the distributed system are allowed to diverge from the
original synchronous program as specified by drift bounds on the clocks. We
provide methods to verify and infer weakly-hard properties of such systems
that are necessary for the development of safety-critical systems. This thesis
also gives a method to infer performance characteristics of FIFO-channel based
distributions.

Chapter 2 introduces a discrete event model that is the formal foundation
to describe the processes of GALS systems throughout this work.

Chapter 3 defines clock and drift bounds as abstract descriptions of pro-
cesses. Drift bounds, the first original contribution of this thesis, are is a gener-
alization of the quasi-synchrony hypothesis. A drift bound limits (from below
and/or above) the number of ticks of one clock in for every N consecutive ticks
of another clock. By deriving drift bounds as an abstraction for the possible
behaviors of clocks, we naturally derive useful properties such as the transitivity
of bounds.

Drift bounds turn out to be surprisingly versatile when applied to the oc-
currence of any event and not just clocks. In particular, we show how they can
also be used to express weakly-hard requirements (see Chapter 6).

We also show how drift bounds can be used to describe aspects of resources
and streams. Chapter 4 uses drift bounds in this capacity for a novel perfor-
mance analysis of GALS systems that communicate over FIFO channels. The
analysis is similar to real-time calculus [TCN00] but, in contrast to the ab-
stractions used in real-time calculus (namely arrival and resource curves), drift
bounds preserve the correlation of events which allows us to derive better (local)
backlog bounds.
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Chapter 5 defines sampling networks, a synchronous data-flow language
extended with an asynchronous communication-by-sampling primitive. Non-
blocking communication-by-sampling permits an arbitrary interleaving of clocks,
ranging from (global) synchrony, to quasi-synchrony, to unbounded asynchrony,
but the arbitrary interleaving of clocks will change the behavior. It is therefore
crucial to analyse the behavior of a distributed sampling network. Chapter 6
introduces methods to verify and infer weakly-hard properties (in the form of
drift bounds) of a sampling network when executed in an environment described
by drift bounds. We provide an exact analysis, based on a full state-space ex-
ploration, and an abstract-interpretation based analysis that trades accuracy
for speed of analysis.

Chapter 4 is independent from Chapters 5 and 6, but all depend on the
event-model introduced by Chapters 2 and the abstractions of Chapter 3.

The analyses have been implemented as prototypes based on a library of
operators for non-decreasing function. The operators and their properties are
described in the Appendix A.



Chapter 2

A Discrete Event Model for

GALS Systems

This chapter introduces an event model for reactive systems with discrete events.
The aim is to facilitate reasoning and modeling of GALS systems. The basic
event model captures the occurrence of recurring events over time. Events
model the ticks of a clock, transitions between states, as well as the values of
boolean flows. The event model serves as the semantic domain of the modelling
language for stream processing systems presented in Chapter 4 and the domain
of the sampling networks programming language of Chapter 5.

A relational view on events is constructed that only shows the interleav-
ing of the occurrences of events, while hiding the absolute time of occurrence.
This allows us to isolate logical and temporal aspects of system behavior. The
motivation is that digital systems cannot observe real-time directly, but only
through a digital clock that generates periodic, discrete events. The behavior of
our stream processing systems and sampling networks is solely determined by
the interleaving of events, not their absolute occurrence times.

Consider the producer-consumer example of Figure 1.4 in the introduction.
We can model the system with four events: the ticks of the clocks that activate
the consumer and producer, the event of a loss of a message and the event where
a message is duplicated. The loss and duplication of messages is determined by
the interleaving of the clocks’ ticks. The event model introduced in this chapter
allows us to reason with precisely this kind of systems and abstract from the
real-time aspects when needed.

2.1 Signals, Counter and Dater Functions

The event model describes the behavior of a system through the presence of
events, such as the tick of a clock. Events are unvalued, discrete and atomic,
viz. they occur at a single indivisible time instant and carry no information other
than their presence. A signal is a set of dates in (in R) at which a recurring

17
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p

l

c

d

Figure 2.1: Possible behavior of the producer-consumer system of Figure 1.4
with signals p (producer clock), l (lost), c (consumer clock) and d (duplicate)
depicted on a timeline.

event occurs.

Definition 1 (Signal (S)). The set S consists of all signals. Each signal x ∈ S

is a countable set of events in R such that it is zeno-free, i.e., that only a finite
number of events may occur before any time instant t ∈ R:

∀t ∈ R : |{u ∈ x | u ≤ t}| ∈ N

An event of a signal x is said to occur at time time t if it contains an event at
that time, i.e., if t ∈ x. Conversely, the event t ∈ x is said to be an occurrence of
the event x. Generally, the signal is named after its event, e.g., signal x contains
the occurrences of x.

Signals group the occurrences of recurring events such as all the ticks of a
single clock or the arrivals of messages in one particular stream. Consider a few
abstract example signals that are revisited later on:

• the empty signal ∅ where no event occurs;

• a finite signal fin = {t1, t2} of two events t1, t2 ∈ R; and

• an infinite, periodic signal per = {an+ b | n ∈ N} with a, b ∈ R.

The following examples illustrate the restrictions of signals on event sets:

• The set cont = (s, e) consists of a continuous event from s ∈ R to e ∈ R
is not a proper signal, because it has an uncountable number of events.

• The set zeno = { 1
2n | n ∈ N} contains an infinite number of events just

after time 0. It is not a proper signal because this is a zeno-event.

For a concrete example, consider the producer and consumer of Figure 1.4.
Each is triggered by their respective clocks signals p and c. The signals l and d
respectively refer to the events where a message is lost (overwritten) or a message
is duplicated (read twice) in case of non-blocking communication. Figure 2.1
depicts the signals that describe a possible behavior of the producer-consumer
system.
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2.1.1 Counter Function

A signal can also be described by counting the total number of events over time,
because the only distinguishing element of events in one signal is the time at
which they occur. Such a representation is often more convenient than sets of
dates.

Let sets R∞ and N∞ denote the set of rational numbers extended with the
limits −∞ and ∞ and the set of natural number extended with the limit ∞
respectively. The counter function is then defined as follows.

Definition 2 (Counter function (χx)). The counter function χx ∈ R∞ → N∞

counts the number of events χx(t) of a signal x that have occurred up to time
t ∈ R∞:

χx(t) = |{u ∈ x | u ≤ t}|
Others have proposed similar notions (see Section 2.6.1). Our definition does

not differ in any substantial way from the earlier work.

Lemma 1 (Properties of counter function). The counter function

1. starts at zero (χx(−∞) = 0); and

2. is non-decreasing (t ≤ u =⇒ χs(t) ≤ χs(u)).

Counter functions simplify reasoning with signals, particularly in the case
of data-flow systems. Consider, for example, a variant of the produce-consumer
system depicted in Figure 1.4 where messages are sent over a FIFO channel.
Let the events w and r denote two signals that describe the number of messages
written to (pushed) and the number of read (pulled) elements from the FIFO
channel, then the buffer contains χw(t)− χr(t) messages at any time t.

Revisiting the example signals we obtain the following counter functions:

• the counter function of the empty signal χ∅(t) = 0 for all t ∈ R∞;

• the counter function of the finite signal

χfin(t) =





0 if t < t1

1 if t1 ≤ t < t2

2 if t2 ≤ t

• the counter function of the periodic signal χper (t) = max(0, � t−b
a �).

Figure 2.2 shows the counter functions of the clock signals considered earlier
for the producer-consumer system.

2.1.2 Dater Function

A signal can also be described by a dater function that gives the time of each
consecutive event. If the number of events is bounded, then the time of events
beyond the last is ∞.
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Figure 2.2: The counter functions of clock signals p and c depicted in Figure
2.1.

Definition 3 (Dater function (ηx)). The dater function ηx ∈ N∞ → R∞ gives
the time ηx(n) ∈ R∞ of the n-th occurrence of signal x:

ηx(n) = inf{t ∈ R∞ | χx(t) ≥ n}

Lemma 2 (Properties of dater function). The dater function

1. starts at −∞ (ηx(0) = −∞);

2. eventually reaches ∞ (ηx(n) = ∞ for n > |x|); and

3. is non-decreasing (n ≤ m =⇒ ηs(n) ≤ ηs(m)).

As for the counter functions, dater functions and comparable concepts have
been proposed before (see Section 2.6.1).

Again, this representation is particularly helpful when studying FIFO chan-
nels. Consider again the producer consumer system that communicate with a
FIFO channel where events w and r describe the writing and reading of mes-
sages to and from the FIFO channel respectively. Then, the ηr(n)−ηw(n) gives
amount of time that the n ∈ N-th element spent in the FIFO channel.

Revisiting the example signals we obtain the following counter functions:

• the dater function η∅(n) = ∞ for n > 0 and η∅(0) = −∞ for the empty
signal;
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Figure 2.3: The dater functions of signals p and c depicted in Figure 2.1.

• for the finite signal the dater function

ηfin(n) =





−∞ if n = 0

t1 if n = 1

t2 if n = 2

∞ otherwise

• for the periodic signal ηper (0) = −∞ and ηper (n) = an+ b for n > 0

Figure 2.3 shows the dater functions of the producer-consumer clock signals
corresponding to the counter functions depicted in Figure 2.2.

The signal can be reconstructed from its dater function. To do so one takes
the times at which the counter function increases or, equivalently, the date (as
defined by the dater function) of each event:

x = {ηx(n) | n ∈ N} \ {−∞,∞}

The extrema are removed because a date of −∞ signifies an event that has never
occurred and a date of ∞ describes an event that will never occur.

Thus, we have gone full circle: from signal to counter function, from counter
function to dater function, and from counter function back to the signal. As
a consequence, a signal may be defined by its counter or dater function. In
the sequel we consider signals defined as a set of events or a counter or dater
function.

Note that the countability of the events and Zeno-freedom is crucial for the
existence of counter and dater functions. For example, the Zeno and continuous
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event sets have the same dater function if t1 approaches zero, yet they describe
different sets of events.

2.2 Behaviors and Processes

Until now we have only considered single signals. To model systems with mul-
tiple signals, albeit a finite number, we use vectors of signals. For convenience
the vector is indexed by a set V of events or, rather, their names.

Definition 4 (Behavior (SV)). A behavior is a vector x ∈ SV of |V| signals
indexed by the events of V.

The set SV consists of all behaviors, i.e., vectors of signals, and is isomorphic
to the space of functions V → S that gives the signal of each behavior in V. To
distinguish behaviors x ∈ SV from a signal x ∈ S we print the former in bold.

A behavior can be regarded as a trace of the system that contains all relevant
events that occur while the system is running. Systems are modelled by processes
that consist of the set of all behaviors that the system may exhibit.

Definition 5 (Process (P)). The process P ∈ PV describes a system as the set
of all possible behaviors x ∈ P with events V. Let PV denote the domain of all
processes with events V, i.e., PV = ℘(SV).

A process P ∈ PV∪W may describe a functional relationship, where the
behavior of input events V are uniquely related to the behavior of output events
W. In general, however, the process may describe the behavior of any discrete
event system with a finite number of recurring events regardless of the relation
between events.

2.2.1 Composition of Processes

Processes may be combined to define new processes, facilitating a compositional
construction of processes. Consider, for example, a system with events i and j
described by process P ∈ P{i,j} such that

P = {x ∈ S{i,j} | ∀n ∈ N : dl ≤ ηxj (n)− ηxi(n) ≤ du}

That is, P consists of all behaviors where the event i is always followed by an
event j with a minimum delay of dl ∈ R+ and a maximum delay of du ∈ R+,
where R+ denotes the set of positive real numbers and 0.

Define a second process Q ∈ P{j,k} is a similar fashion such that it consists of
all behaviors where the event j is always followed by k within a delay bounded
by d�l ∈ R+ and d�u ∈ R+. We can create a new system P � Q by combining
processes P and Q supposing that the event j in both systems is the same event
and the event i will be followed by k within a delay bounded by dl + d�l and
du + d�u:

P � Q =

�
x ∈ S{i,j,k}

����
x� ∈ P,x�� ∈ Q,

xi = x�
i,xj = x�

j = x��
j ,xk = x��

k

�
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To simplify the compositional definition of systems, such as the one above, we
now introduce special operators.

If the processes P and Q had described the behavior of the same sets of
events, i.e., P,Q ∈ PV for some V, they could have been composed by inter-
secting the behavior: P ∩ Q. Such a composition restricts the behaviors to
those possible in both behaviors. To perform such a restriction, we first have to
project processes P and Q onto the same domain.

The projection operator πW ∈ PV → PW hides all events not in W and adds
events that are in W but not in V. That is, the projection operator projects a
process from domain PV onto the domain PW, keeping all events in V ∩W and
adding unrestricted (of any possible behavior) behaviors for all events in W \V.

Definition 6 (Projection (πW)). The projection πW(P ) of a process P ∈ PV is
defined such that

πW(P ) = {x ∈ SW | ∀x� ∈ P, ∀i ∈ V ∩W : xi = x�
i}

The projection enables a much simpler composition of processes P and Q
after projecting both onto the same domain: P � Q = π{i,j,k}(P ) ∩ π{i,j,k}(Q).
The projection π{i,j,k}(P ) consists of all behaviors x ∈ S{i,j,k} where the event
i is followed by the event j with the given delay.

The projection operator can also be used to hide the event j from the com-
posed system. This results in the system π{i,k}(P � Q) ∈ P{i,k} where i is
followed by k within a bounded delay.

For convenience we define the composition operator � ∈ PV × PW → PV∪W

to compose any two processes, synchronizing only the events in both processes.

Definition 7 (Composition (�)). The composition (P � Q) ∈ PV∪W of P ∈ PV

and Q ∈ PW is defined such that

P � Q = πV∪W(P ) ∩ πV∪W(Q)

Note that the composition operator is commutative, associative and idem-
potent.

2.3 Processes as a Semantic Domain

Although quite powerful, the operators for processes — intersection, projection
and composition — are insufficient to describe real systems. That is, we still rely
on general mathematic notation to describe a process. This section informally
introduces three languages to describe processes: labelled transition systems
formally defined in Chapter 5, stream processing components formally defined
in Chapter 4, and sampling networks formally defined in Chapter 5.

Signals, behaviors and processes serve as the domain in which we describe
the semantics of these three languages. That is, we interpret a system in one of
the three language as a formal description of a process.
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Figure 2.4: A transition system (a) and one of its behaviors (b).

2.3.1 A Labelled Transition System

Labelled state-transition systems are one of the most commonly used system
models. We consider transition systems that are labelled with a non-empty set
of event names. These are the events that occur when taking the transition.
Figure 2.4(a) depicts such a transition system with events i and j.

A behavior in the process of a transition system describes the occurrences
of events over time for one sequence of transitions. The process of a transition
system consists of all possible timings of all possible sequences of transitions. A
transition that is labelled with multiple events indicates that the events occur
simultaneously. Figure 2.4(b) depicts one behavior of the transition system in
Figure 2.4(a) corresponding to the sequence of transitions

s0
{i,j}−−−→ s1

{j}−−→ s1
{j}−−→ s1

{i}−−→ s0
{i,j}−−−→ s1

{i}−−→ s0
{i,j}−−−→ s1

{j}−−→ s1

The transition system is untimed and only determines the possible interleav-
ings of events. In fact, the dates of the occurrences of events in the depicted
behavior are chosen arbitrarily. The process of a transition system contains all
possible timings for any given sequence of transitions in the event system.

Section 6.3.1 formally links the language of a transition system with a process
by timing the occurrences of events. In Chapter 5 labelled transition systems
are used to describe the behavior of sampling networks.

2.3.2 A Stream Processing System

Let us now consider a language for stream processing systems that consists
of components that operate over streams of messages, tasks and/or resource
units. It is formalized in Chapter 4 and based on the real-time calculus [CKT03,
HT07a]. The language provides high-level constructs to model processing sys-
tem that abstract from the precise operations performed by the components in
order to evaluate system performance in terms of throughput, delay and backlog.

Figure 2.5 depicts a simple stream-processing system with a producer and
a consumer. The producer, modelled by a pjd component, produces tokens or
tasks with a fixed periodic rate, bounded jitter and bounded drift. asymptotic
bandwidth and short term bursts. This results in a stream of arrivals at the
consumer. The consumer, modelled by the bd and gpc components, processes
the tokens of the stream using a resource that is modelled as a “stream” of
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Figure 2.5: A producer-consumer system communicating over a FIFO channel
(a) and a possible behavior for the system (b).

resource units. Consuming or processing a single token costs one resource.
Arrivals are buffered in a FIFO buffer until the resources to process them are
available.

The abstraction provided by the system reduces all system behavior three
types of events: the arrival of a token or task, the departure or completion of
a task and the availability of a resource unit. Figure 2.5(b) shows a possible
behavior with events for the arrivals i (for input), resources r, and departures o
(for output). Note how arrivals are buffered and processed as soon as resources
are available and resources are unused when the buffer is empty.

The process of the producer-consumer consists of many behaviors (often
infinitely many) depending on the parameters (bandwidth, period, drift/jitter
bounds) of the pjd and bd components. In Chapter 4 uses abstractions for
processes to determine bounds (if there are any) on backlog, delay and through-
put of the system for all behaviors in the process described by a composition of
stream processing components.

2.3.3 Boolean Data-Flow

Finally, we use boolean data-flow programs to describe systems reminiscent of
synchronous (clocked) electronic circuit. The language, called sampling net-
works, is introduced in Chapter 5 and is very similar to synchronous program-
ming languages such as Lustre and Signal. These languages consist of com-
ponents that operate on flows: a series of values that occur over time. The flows
are associated to a clock that indicates the presence or absence of a value in the
flow.

Consider the example depicted in Figure 2.6 where we take the conjunction
of the successive values of the flows x and y to obtain a new flow z. The
conjunction is synchronous which implies the values of x and y as well as the
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Figure 2.6: A clocked electric circuit (a) and a possible behavior (b).

result z always occur simultaneously. In sampling networks this is made evident
by the fact that they are all in the domain of the same clock signal c, indicated
by the encompassing box with rounded corners.

The semantics of sampling networks are expressed as unvalued events (pro-
cesses), akin a discretization of asynchronous clocked circuits. That is, a flow
is associated with two signals: its own signal and its clock signal. A flow is
present whenever it clock occurs, it has the value true when its own signal also
occurs at that time instant and false when it does not occur. Thus there is the
(implicit) constraint on processes that the signal of a flow must be a subset of
the flow’s clock signal. The behavior depicted in Figure 2.6 can be interpreted
as the following (untimed) sequences of values where tt denotes the value true
and ff the value false.

x ff tt ff ff tt tt
y ff tt tt ff tt ff
z ff tt ff ff tt ff

The reason for this indirect representation of values is that it allows the
use of the same abstractions for the processes of stream processing systems and
data-flow networks. As it turns out, the abstractions introduced in Chapter 3
and employed for data-flow networks in Chapter 6 express meaningful bounds:
they limit the number of times a flow can be true within a given interval.

2.4 The Relative Counter Function

The counter and dater functions are closely linked. In fact, one might notice
that the counter function is a kind of inverse of the dater function. It is not a
real inverse because ηx(χx(t)) �= t, namely when there is no event at time t in
signal x (t �∈ x). However, the following equalities and inequalities do hold.

Lemma 3 (Compositions of counter and dater functions). Let x be a signal then
the following (in)equalities hold for the compositions of its dater and counter
functions

1. ηx(χx(t)) = t for all t ∈ x

2. ηx(χx(t) + 1) ≤ t for all t ∈ R; and
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3. χx(ηx(n)) = n for all n ∈ N such that n ≤ |x|.

Let us now introduce relative counter functions, defined as a composition
of a counter and a dater function. The original motivation for relative counter
functions was to formulate what values are received when communicating by
sampling. Given a valuation function v ∈ N → V such that v(n) gives the
n-th value written to the shared memory by the producer, we sought to define
another valuation function v� such that v�(n) is the value of the n-th sample
read by the consumer. To formulate the relation between v and v� we need the
total number of writes at the time of ever n-th sample. The relative counter
function expresses precisely this quantity.

Definition 8 (Relative Counter Function (Xx/y)). The relative counter func-
tion Xx/y ∈ N∞ → N∞ gives the total number Xx/y(n) of occurrences of event
x that occurred up to the n-th event of signal y:

Xx/y(n) = χx(ηy(n))

With the relative counter function the sampled values are defined by a simple
composition v� = v ◦ Xp/c where p and c are the clock signals of the producer
and consumer. Note that this formulation implies instantaneous communication
in case the producer and consumer are activated simultaneously.

Relative counter functions inherit most of the counter functions’ properties.
The most important difference being that relative counter functions can increase
by more than one in a single step.

Lemma 4 (Properties of relative counter functions). The relative counter func-
tion Xx/y of all signals x and y

1. starts at zero (Xx/y(0) = 0);

2. is non-decreasing (n ≤ m =⇒ Xx/y(n) ≤ Xx/y(m)); and

3. if x = y it is the identity function (x = y =⇒ Xx/y(n) = n for n ≤ |x|).

In Appendix A we define a set F ⊆ N∞ → N∞ of non-decreasing functions
that start at the origin; the set of all possible relative counter functions. It also
defines a point-wise ordering (≤ ⊆ F × F) and various operators over functions
in F.

Figure 2.7 depicts the relative counter functions of the producer-consumer
system’s clock signals. Observe how Xc/p jumps from 4 to 7, because there are
three occurrences of c between the second and third occurrence of p. We can
also see that only the (non-strict) order of ticks is preserved, in the sense that if
e.g. Xc/p(2) = 4 we do not know if the fourth event in c occurred simultaneously
with the second event in p, or if it preceded the second event in p.

Aside from communication-by-sampling, we find that the relative counter
function provides an excellent abstraction from the temporal behavior that al-
lows us to concentrate only on the observable and often controllable interleavings
of events.
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Figure 2.7: The relative counter functions of signals p and c from Figure 2.1.

2.4.1 Transitivity

The relative counter functions are related by transitivity: the relative counter
functions Xx/y, Xx/z and Xz/y of any three signals x, y and z are not indepen-
dent.

Lemma 5 (Transitivity of relative counter functions). Let x, y and z be signals,
then the relative counter function Xx/y is bounded such that for all n ∈ N∞

Xx/z(Xz/y(n)) ≤ Xx/y ≤ Xx/z(Xz/y(n) + 1)

Proof. The proof of the lower bound follows from the fact that function com-
position is associative and that (ηz ◦ χz)(t) ≤ t:

Xx/z ◦Xz/y

=χx ◦ ηz ◦ χz ◦ ηy (by Definition 8)

≤χx ◦ ηy (by Lemma 3)

=Xx/y (by Definition 8)

The upper bound is proven similarly, but now ηz(χz(t)+1) ≥ t, and therefore

Xx/z(Xz/y(n) + 1)

=χx(ηz(χz(ηy(n)) + 1)) (by Definition 8)

≥χx(χy(n)) (by Lemma 3)

=Xx/y(n) (by Definition 8)

Intuitively one may think of the relative counter function Xx/y both as
an imperfect counter function for x (as observed at occurrences of y) and an
imperfect dater function for y (with occurrences of x as time units). Stated
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Figure 2.8: The relative counter function Xp/c and the pseudo inverse X−1
c/p for

signals p and c from Figure 2.1.

thusly, the composition Xx/z ◦ Xz/y is in fact reminiscent of the definition of
the relative counter function itself with Xx/z as the counter function of x and
Xz/y as the dater function of y, both using occurrences of z as a unit of time.
The inequalities of Lemma 5 are due to the quantization of time by z.

2.4.2 Pseudo-Symmetry

Maintaining the intuition of a relative counter function Xx/y as an imperfect
counter function of x with time units y, we can also perform an operation
analogous to the definition of the (real) dater function in Definition 3:

X−1
x/y(n) = inf{m ∈ N∞ | Xx/y(m+ 1) ≥ n}

This is defined in Appendix A as the pseudo-inverse of functions in F. It is
essentially a discretized version of the operation that defines the dater function.
The intuitive interpretation would suggest that X−1

x/y defines an imperfect dater
function for x with time units in y just like the counter function Xy/x The
example in Figure 2.8 shows that this relation indeed holds for the relative
counter functions of signals p and c. But it also shows that, for the instances
where the signals c and p occur simultaneously, X−1

c/p �= Xp/c. The following
lemma formalizes and proves this relation.

Lemma 6 (Pseudo-symmetry of relative counter function). Let x and y be
signals then, for all n ∈ N∞

X−1
y/x(n) ≤ Xx/y(n) ≤ X−1

y/x(n) + 1

Proof. We will prove this by deriving equal upper and lower bounds of the
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pseudo-inverse. First note that

X−1
x/y(n)

=min{m ∈ N | (χx ◦ ηy)(m+ 1) ≥ n} (per Definition 40)

=min{m ∈ N | ηy(m+ 1) ≥ ηx(n)}

χx(ηx(n)) = n and ηx(χx(t)) ≤ t imply χx(t) ≥ n ⇔ t ≥ ηx(n) because for all
t ∈ R∞ and n ∈ N∞.

Then, since ηy(χy(t) + 1) ≥ t implies n ≥ χy(t) ⇒ ηy(n + 1) ≥ t for all
t ∈ R∞ and n ∈ N∞, we have the lower bound

min{m ∈ N | ηy(m+ 1) ≥ ηx(n)}
≤min{m ∈ N | m ≥ (χy ◦ ηx)(n)}
=min{m ∈ N | m ≥ Xy/x(n)}
=Xy/x(n)

and, because χy(ηy(n)) = n implies ηy(n) ≥ t ⇒ n ≥ χy(t) for all t ∈ R∞ and
n ∈ N∞,

min{m ∈ N | ηy(m+ 1) ≥ ηx(n)}
≥min{m ∈ N | m+ 1 ≥ (χy ◦ ηx)(n)}
=min{m ∈ N | m ≥ Xy/x(n)− 1}
=Xy/x(n)− 1

2.5 Synchronous Processes

Taken literally, synchrony implies simultaneity of events. However, such a notion
adds little meaning in the context of our signals: if the events of two signals are
simultaneous, the signals are equal. In stead, we define two signals in a behavior
to be synchronous if there is a third signal in the behavior that contains the
events of both signals. The third signal effectively functions as a clock for
the two synchronous signals. Extending this notion, we define synchronous
behaviors and processes to possess an hierarchical relationship with a single
root that acts as the clock for the whole system.

Definition 9 (Synchronous Process). The process P ∈ PV of a system events
V is synchronous if there is a hierarchy ≤ ⊆ V× V such that

1. it is a partial order with a single greatest element; and

2. it implies a subset relation on the signals of all behaviors: ∀i, j ∈ V, x ∈
P : i ≤ j =⇒ xi ⊆ xj
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An asynchronous behavior or process has no such hierarchical relation be-
tween signals. GALS systems are compositions of synchronous systems, result-
ing in a system with multiple hierarchies. Note that any process can be equipped
with a set of hierarchies: namely the trivial partial order where no two signals
are comparable. Hence, technically, any process is GALS.

2.6 Conclusion

2.6.1 Related Work

Our signals and processes are closely related to those in the tagged-signal model
first introduced by Lee and Sangiovanni-Vincentelli in [LSV98]. They define
tagged-signals as values paired with a tag from an (partially or totally) ordered
set. Our model can be interpreted as an instance of the tagged-signal model,
where values are in the trivial singleton set, i.e., there is only a single possible
value, and events are dated by R. In [BCC+07] Benveniste et al. investigates
the structure of different tag sets in a variant of the tagged-signal model to
model heterogeneous (in model of communication and computation) systems.
Again our model can be seen as an instance of this variant as well by using a tag
structure based on R and trivial set of values. Signals are then represented by
a partial function that closely resembles the dater function. The tagged-signal
model, however, does not define counter and dater functions.

Both counter functions and dater functions have been used in max-plus
algebra [BCOQ92] and related work to model the activations of transitions in
marked graphs (conflict-free Petri nets) or similar models. The most prominent
difference, is our restriction to a single event per time instant. In much of the
work related to max-plus algebra negative counts are also permitted.

Counter and dater functions have also been proposed by Nicolas Halbwachs
[Hal84]. His event model is based on dater functions from which he then derives
counter functions. Halbwachs also allows simultaneous events.

In her thesis [Pla10] Florence Plateau proposes counter functions to describe
the clocks of a synchronous programming language. Because her counter func-
tions are used in a synchronous context, they are index not over real-time but
over discrete time instants. This corresponds to a relative counter function Xx/y

of a signal x ∈ S with respect to its clock signal y ∈ S such that x ⊆ y.

2.6.2 Discussion

The main contribution of this chapter consists of the relative counter function
that is the basis of the work presented in the remainder of this document. While
the relative counter function purposefully isolates our reasoning from real-time,
it is always possible to add a clock signal that represents a discretization of
real-time to make it an observable quantity.

Relative counter functions seem to have more potential than we explored in
this thesis. For example, one could establish a notion of equivalence between be-
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haviors based on the comparison of the relative counter functions. It seems this
could be a useful notion of equivalence to compare a synchronous program with
its asynchronous implementation, because it abstracts from the exact timing of
events and compares only the interleavings of events.

Observe that one might construct a relative dater function in analogy to the
relative counter function, i.e., a composition ηx ◦ χy for two signals x and y. It
is, however, unclear what aspects of the system these values represent and what
practical applications such a relative dater functions should have.

The limitation to allow only a single occurrence of a signal at any time
instant does seem to limit the power of our model. Although our definitions
could easily be adjusted to allow multiple simultaneous occurrences of the same
event, it would weaken some of the bounds on relative counter functions because
the composition χx◦ηx would no longer be the identity function. Most notably, it
would invalidate the transitive and pseudo-symmetric upper bounds. Moreover,
the current definitions suffice for our purposes.



Chapter 3

Abstract Domains for GALS

Systems

In this chapter we introduce abstractions to efficiently reason with processes. In
particular, the abstractions help us deal with the non-determinism of the root
clocks in GALS systems by characterizing the possible interleavings of clock
ticks in a GALS architecture:

• Clock bounds Cx/y(n) ∈ N limit, for each pair (x, y) of clock signals, the
maximum and minimum, total number of ticks of x up to the n-th clock of
y. Clock bounds include, for example, difference bounds on the number of
ticks of a pair of clocks, e.g., the upper bound Cu

x/y(n) = n+5 is satisfied
if, and only if, x can be at most five ticks ahead of y.

• Drift bounds Dx/y limit, for each pair (x, y) of clock signals, the maximum
and minimum number of ticks of x in any interval of Δ ticks of y. Drift
bounds can, for example, express the quasi-synchrony hypothesis that
requires there be no more than two ticks of one clock for every two of
another.

We also found that drift bounds are useful to describe aspects of resources,
streams, and quality-of-service constraints.

Clock and drift bounds are used to describe guarantees of the environment,
e.g., the drift bounds between clocks or the availability of resources such as
a network connection. The bounds are also used to describe guarantees on
system behavior in the context of an environment, e.g., the quality of service of
a system. The analyses presented in this thesis infer guaranteed drift and clock
bounds of a system when executed in an environment with guaranteed drift and
clock bounds.

Such analyses consist in the abstract interpretation [CC77] of a program
using drift and clock bounds as the abstract domains. That is, the analyses
evaluate a system’s abstract behavior — drift and clock bounds that describe

33
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system behavior — in the context of an environment’s abstract behavior. Ab-
stract interpretation enables analysis of programs with infinitely many behaviors
and unbounded state-space by, in general, over-approximating the set of behav-
iors or state space, with elements from the abstract domain. Thus, in general,
abstract interpretation yields a sound (conservative approximation) but incom-
plete (imprecise) analysis method.

3.1 The Domain of Processes

The set of all possible processes P is the domain of processes. This section
extends the formal framework of of processes and shows how to introduce ab-
stractions for such processes. It then introduces matrices of relative counter
functions as an abstraction for processes.

3.1.1 Complete Lattices

Complete lattices are partially ordered sets where each subset has unique least
upper and greatest lower bounds. All domains considered in this work are
complete lattices including the domain of processes. Let us quickly review the
essential properties of complete lattices. For a more extensive introduction we
refer to [DP02].

Definition 10 (Partial order (�)). A partially ordered set �S,�� consists of
the set S and the transitive, reflexive and anti-symmetric relation � ⊆ S × S.

The domain of processes is partially ordered by the subset relation. That is,
with P � Q ⇐⇒ P ⊆ Q the process P is lesser or equal to Q, if all behaviors
in P are also in Q.

Definition 11 (Upper and lower bounds). Let �S,�� and S� ⊆ S then

• The least upper bound s =
�
S� is the least element in S larger than or

equal to all elements in S�.

• The greatest lower bound s =
�
S� is the greatest element in S less than

or equal to all elements in S�.

The least upper and greatest lower bounds of a powerset ordered by the
subset relation are defined by the union (� = ∪) and intersection (� = ∩)
respectively. For example the greatest lower bound P � Q = P ∪ Q of two
processes P and Q consists of all behaviors both in P and Q.

Complete lattices are partially ordered sets equipped with a least upper and
greatest lower bound. Moreover, any subset of a complete lattice has both a
least upper and greatest lower bound.

Definition 12 (Complete lattice (�,⊥)). A complete lattice �S,�,�,�,�,⊥�
consists of
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• The partially ordered set �S,��
• The least (or bottom) element ⊥=

� ∅ =
�
S

• The greatest (or top) element � =
� ∅ =

�
S

The powerset ℘(A) ordered by the subset relation is a complete lattice with
empty set as a least element (⊥= ∅) and a greatest element that is the set of all
elements (� = A).

3.1.2 Abstractions and their Domains

Abstractions provide a limited view of concrete objects that exposes only specific
aspects of system behavior. For example, the projection of a process where we
consider only a subset of the signals in the complete system is an abstraction
of the unprojected process. The Galois connection (see e.g. [NNH05, Smi10])
formalizes the relation between objects from a concrete domain and objects from
an abstract domain as follows.

Definition 13 (Galois connection (C � A,α, γ)). Let �C,�C� and �A,�A� be
partially ordered set and let α ∈ C → A and γ ∈ A → C a pair of monotone
functions such that

∀a ∈ A, c ∈ C : α(c) �A a ⇐⇒ c �C γ(a)

Then the pair of functions forms a Galois connection, written C
α−��−
γ

A.

The C is the concrete domain and A is the abstract domain. The abstraction
function α relates a concrete object in C to its abstraction in A. The concretiza-
tion function γ does the reverse. Abstractions can be chained [Smi10] because
Galois connections are transitive relations:

C
α−��−
γ

A and A
α�
−��−
γ�

B =⇒ C
α�◦α−−−��−−−
γ◦γ�

B

The simplest abstraction for processes that we use, is the hiding of events
in a process using the abstraction function. That is, let V ⊆ W, then the
domain PV of processes with events V is an abstraction for the domain PW of
processes with events W. The projection function defines the Galois connection:
the concretization function is πW ∈ PV → PW and abstraction function is
πV ∈ PW → PV.

In general there are multiple Galois connections between a concrete domain
and an abstract domain. For example, there is always a connection α(c) =⊥A

and γ(a) = �C . However, a Galois connection is uniquely determined by either
the abstraction or the concretization function as expressed by the following
theorem from [Smi10].

Theorem 1. Let C
α�
−��−
γ

A denote a Galois connection between the partially

ordered sets �C,�C� and �A,�A�, then



CHAPTER 3. ABSTRACT DOMAINS FOR GALS SYSTEMS 36

• α(c) =
�A{a | a ∈ A, c �C γ(a)}

• γ(a) =
�C{c | c ∈ C,α(c) �A a}

This theorem simplifies the construction of Galois connection through im-
plicit definitions of the abstraction and concretization functions in terms of the
other.

3.1.3 The Abstract Domain of Relative Counter Functions

As a first step towards other abstractions, we define the domain of relative
counter functions as an abstraction of processes. The domain of relative counter
functions abstracts from time, keeping only the interleaving of events.

Like the representation of behaviors as a vector of counter or dater functions,
we group the relative counter functions in a matrix. Let the behavior of a system
with events V be described by a column vector χ ∈ (R∞ → N∞)|V|×1 of counter
functions and the corresponding row vector η ∈ (N∞ → R∞)1×|V| of dater
functions, then we define the matrix X ∈ F|V|×|V| of counter functions as their
product:

X =



χ1

...
χn


 ◦ (η1 · · · ηn) =




χ1 ◦ η1 · · · χ1 ◦ ηn
...

. . .
...

χn ◦ η1 · · · χn ◦ ηn




Abusing notation, we access elements of the matrix using the names of
events. So Xi/j is equivalent to Xxi/yj

in the context of a behavior x. Ele-
ments of the domain consist of sets of relative counter function matrices, each
corresponding to one or more behaviors.

Figure 3.1 depicts a relative counter function for the given behavior. The
event names i, j and k are used as indices. That is, the lower left graph depicts
(part of) the relative counter function Xk/i and the upper right depicts Xi/k.

Definition 14 (Domain of Relative Counter Function Matrices (X)). Let XV

denote the domain of all sets of relative counter function matrices with dimen-
sions N ×N indexed by elements from V = {x1, ..., xN}, ordered by the subset

relation, with PV α−��−
γ

XV defined by

α(P ) = {(χx1 , ...,χxN
) ◦ (ηx1 , ..., ηxN

)T | (x1, ..., xN ) ∈ P}

As for processes, we specify the dimension (number of signals) of the domain
in superscript when needed. The concrete domain PV of processes with signals
V is related to the abstract domain XV of relative counter function matrices.

The concretization function is defined implicitly by the abstraction using
Theorem 1 such that a Galois connection is formed. In this case, the concretiza-
tion of a set of relative counter function matrices consists of all behaviors that
have relative counter functions matching one of the matrices.
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Figure 3.1: A matrix (a) of relative counter functions for the behavior (b).
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It is worth noting that sets of relative counter function matrices contain less
information than the original process. In fact, a single relative counter function
matrix abstracts from an infinite number of behaviors. That is, we can obtain an
infinite number of behaviors with the same interleavings of events by stretching
and compressing time.

The intersection of two processes P and Q in PN (with the same number of
signals) can be applied directly to the abstraction, as

αX(P �Q) = αX(P ) � αX(Q)

Note that, like for the processes, ∩ = � and ∪ = �.
The projection operator is also lifted to the domain of relative counter func-

tions where it changes the dimension of the relative counter function matrices.
The projection πV ∈ XW → XV is defined such that

πV(A) =

�
X

����
X ∈ XV , X � ∈ A

∀x, y ∈ (V ∩W) : Xx/y = X �
x/y

�

for all A ∈ XN . As for the domain of concrete processes, the projection defines
a Galois connection between domains XV and XW such that V ⊆ W.

The lifting of projection to relative counter functions also extends the com-
position operator � to relative counter functions with

A � B = πV∪W(A) ∩ πV∪W(B)

for A ∈ XV and B ∈ XW.

3.2 The Domain of Clock Bounds

The domain X is not a very practical abstraction as its elements consist, in
general, of infinitely large sets of relative counter functions. Clock bounds pro-
vide an abstraction that describes processes by the (point-wise) maximum of all
relative counter functions.

Definition 15 (Clock bound). The bounds Cl
x/y and Cu

x/y in F are the lower
resp. upper clock bounds of signals x and y such that for all n ∈ N∞

Cl
x/y(n) ≤ Xx/y(n) ≤ Cu

x/y(n)

Clock bounds limit the total number of events at every occurrence of an-
other signal, e.g., the upper clock bound Cu

x/y(n) = m states that at the n-th
occurrence of y, x may have occurred at most m times. It constitutes a direct
bound on the relative counter function Xx/y.

Consider the upper and lower clock bounds Cu
x/y and Cl

x/y for a process
with three behaviors depicted in Figure 3.2. The clock bound gives the point-
wise maximum and minimum of all behaviors in a process. That means the
maximum may be determined by different behaviors in the process at different
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Figure 3.2: The upper and lower clock bounds for the relative counter functions
Xx/y of a process with events x and y containing behaviors depicted with ◦, �
and �.

points of the bound, i.e., the upper clock bound is not necessarily the maximum
counter function.

Elements from the domain of clock bounds describe all processes that respect
a pair of upper and lower drift bound matrices.

Definition 16 (Clock bound domain (C)). The abstract domain CN of clock
bounds consists of the product of upper and lower bound matrices in FN×N ,

ordered by the element-wise comparison and X
αC

−−��−−
γC

C defined by

γC(C) = {X | X ∈ XN , ∀1 ≤ i, j ≤ N : Cl
i/j ≤ Xi/j ≤ Cu

i/j}

Clock bounds can model general difference bounds such as χi(t)−χj(t) ≥ B
through Cu

i/j(n) = B + n as well as relative clock rates such as χi(t) ≤ χj(t)R

through Cu
i/j(n) = nR, or combinations of both difference bounds and relative

rates. Even rates or difference bounds that change over time can be modelled, as
long as the behavior is eventually periodic (to have a finite representation of the
bound). For example, the clocks constraints of N -synchronous Kahn networks
[CDE+06] and, in particular, the clock envelopes of [CMPP08] can be presented
as a clock bounds.

Consider the synchronous data-flow (SDF) graph (see [LM87]) depicted in
Figure 3.3(a). The graph consists of three actors (vertices) i, j, and k connected
by four FIFO-channels (edges) over which the actors contain tokens. Each
time an actor is activated it consumes a number of tokens from the incoming
channels and produces a number of tokens on the outgoing channels. The token
production and consumption rates of the actors are indicated on the channels:
the channel i

p c−−→
b

j from actor i to actor j is annotated with numbers p, b, c ∈
N such that each activation of i it produces p tokens, each activation of j it
consumes c tokens and the channel initially contains b tokens. Actors cannot
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activate if any of the incoming channels does not contain a sufficient number of
tokens, thus the channels impose constraints on the possible activation patterns.

Interpreting each activation of an actor as an event, we can describe the
semantics of a synchronous data-flow graph with a process. Doing so reveals that
the clock bounds can be used to precisely express the constraints imposed by the
production and consumption rates for each channel between the actors. Figure
3.3(b) depicts the clock bounds of the graph in Figure 3.3(a). For example, the

bound i
2 3−−→
2

j implies two clock bounds:

• at the n-th tick of i, j cannot tick more than Cu
j/i(n) = �(2n+2)/3� times;

and

• at the n-th tick of j, i must have ticked at least Cl
i/j(n) = max(0, �(3n−

2)/2�).

The behaviors that satisfy these bounds — the behaviors in the concretization
of the clock bounds — capture possible behaviors of the SDF graph.

3.2.1 Composition of Clock Bounds

Like relative counter function abstraction we lift the projection and composition
of processes to the clock bound abstraction. This enables the compositional
description of systems with clock bounds and enables us to work with (infinitely)
large sets of behaviors represented by their clock bounds.

First, the intersection and union of clock bound matrices naturally arise from
the Galois connection because the . The intersection consists in the greatest
lower bound �C and takes the element-wise, point-wise infima. That is, for all
A,B ∈ C and n ∈ N∞ the upper bound of the intersection of A and B is defined
such that

[A �C B]ui/j(n) = min(Ai/j(n), Bi/j(n))

The lower bound is defined similarly, but with the point-wise maximum.
As for the relative counter function matrices, the projection operator πW re-

moves and adds dimensions (indexed by event names). Newly added signals are
completely unbounded. Consider, for example, the projection πW(C) of clock
bound matrices C ∈ CV where W = {x1, ..., xN , y1, ...} and V = {x1, ..., xN},
then

[πV(C)]u =




Cu
x1/x1

· · · Cu
x1/xN

�F · · · �F

...
. . .

...
...

. . .
...

Cu
xN/x1

· · · Cu
x1/xN

�F · · · �F

�F · · · �F �F · · · �F

...
. . .

...
...

. . .
...

�F · · · �F �F · · · �F
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Figure 3.3: The clock bounds (b) of a synchronous data-flow graph (a).
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and similarly for the lower bounds. The important consequence is that the
composition operator C � C � = πV∪W(C)∩πV∪W(C �) with C ∈ CV and C � ∈ CW

results in a matrix that contains three submatrices: (1) the matrix for signals
V \W only in C, (2) the matrix for signals W \V only in C �, and (3) the matrix
for signals V ∩W shared by C and C �. The upper bound of the composition is
as follows:

C �

πV∩W(C)

�
πV∩W(C �)

� C �







[C �C C �]u =

The lower bound of the product looks similar, but with ⊥ in the place of �, for
the lower bound.

The bounds of the SDF graph depicted in Figure 3.3 can be constructed by
the composition of bound matrices for bounds on pairs of actors. Defining the
process �i p c−−→

b
j� to consist of all behaviors x ∈ S{i,j} such that the number of

produced tokens is always greater or equal to the number of consumed tokens
given:

∀t ∈ R : χj(t)c− χi(t)p+ b ≥ 0

We obtain clock bounds C = αC(�i p c−−→
b

j�) where

Cu
j/i(n) = �(pn+ b)/c� and Cl

i/j(n) = Cl
i/j(n) = max(0, �(cn− b)/p�)

Let �i p c−−→
b

j�C ∈ C{i,j} denote the clock bounds of the process as defined above.

Then, the bounds of Figure 3.3 are constructed with the composition

�i 2 3−−→
2

j�C � �j 6 2−−→
1

k�C � �k 1 2−−→
3

i�C � �i 4 2−−→
3

k�C

The composition of abstractions is generally approximative, that is,

α(P � Q) � α(P ) � α(Q)

As the next section shows some of the imprecision can be recovered using prop-
erties of the clock bounds.

3.2.2 Properties of Clock Bounds

Clock bounds inherit the transitivity and pseudo-symmetry of relative counter
functions. These properties are direct consequences of Lemmas 5 and 6.
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Lemma 7 (Transitivity of clock bounds). Let C ∈ CV be a pair of lower and
upper clock bound matrices then, for all X ∈ γC(C), all i, j, k ∈ V and all
n ∈ N∞

Cl
i/k(C

l
k/j(n)) ≤ Xi/j(n) ≤ Cu

i/k(C
u
k/j(n) + 1)

Computing the transitive closure of clock bounds is closely related to the
verification of the schedulability of a data-flow system such as SDF [LM87] and
CSDF [BELP96] as well as the N -synchronous Kahn networks [CDE+06]. In
particular, if any upper bounds in the diagonal of the transitive closure is less
than the identity (∃i ∈ V, n ∈ N∞ : Du

i/i(n) < n), the system has a deadlock.

Lemma 8 (Pseudo-symmetry of clock bounds). Let (Cl, Cu) ∈ CV be a pair of
lower and upper clock bound matrices then, for all X ∈ γC, all i, j ∈ V and all
n ∈ N∞

[Cu
j/i]

−1(n) ≤ Xi/j(n) ≤ [Cl
j/i]

−1(n) + 1

Compositions often yield clock bound matrices that are imprecise in the
sense that there exist other, smaller bounds that abstract the same process.
The practical result of transitivity and symmetry of clock bounds, is that we
can use them to tighten the bounds of the composition. Pseudo-symmetry is
used to infer lower bounds from upper bounds and vice versa and the transitive
closure is used to propagate bounds. Figure 3.4 depicts tightened bounds for
the clock bounds of the SDF graph. Note how all pairs of actors have clock
bounds, because all actors in the SDF graph are connected in a cycle.

The transitively closed bounds of an SDF graph would have revealed an
imbalance in the graph: if an infinite number of tokens could be accumulating
on a buffer, the upper and lower bounds would diverge from one-another and,
conversely, if we would run out of tokens the bounds would cross.

3.3 The Domain of Drift Bounds

Clock bounds cannot model time-invariant properties such as a bound on bursts
or jitter. Neither can they express quasi-synchronous clock constraints. For
those, we introduce drift bounds.

Drift bounds limit the incline of the relative counter function for each inter-
val. As shown in Figure 3.5, the constraint imposed by a drift bound can be
interpreted as a sliding window constraint. In the figure, x occurs at most six
times and at least 3 times in every interval of 5 occurrences of y. Drift bounds
generalize this to a more versatile mechanism to apply different constraints for
each interval size.

Definition 17 (Drift bound). The bounds Dl
x/y and Du

x/y in F are a lower
resp. upper drift bound of the signals x and y such that, for all interval sizes
Δ ∈ N∞ and all n ∈ N∞

Dl
x/y(Δ) ≤ Xx/y(n+Δ)−Xx/y(n) ≤ Du

x/y(Δ)
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Figure 3.4: The pseudo-symmetric and transitively closed bounds for the SDF
graph bounds depicted in Figure 3.3.

t

y

x

Xx/y(6)−Xx/y(1) = 6

Xx/y(7)−Xx/y(2) = 3

Xx/y(8)−Xx/y(3) = 4

Figure 3.5: Interpretation of a drift bound as a sliding window: bounding the
number of occurrences of x in every interval of 5 occurrences of y.
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Let us introduce a convenient graph-like notation for clock bound constraints
where vertices are events (similar to the actors in an SDF graph) and edges are
drift bound constraints, i.e.,

i
Δ:n−−→ j and i

Δ:n−−→ j

denote lower and upper bounds respectively where the event j can occur at
least resp. most n ∈ N times for every Δ ∈ N occurrences of j. That is, the
constraints impose the following lower and upper bounds respectively:

Dl
j/i(m) =

�
0 if m < Δ

n otherwise
and Du

j/i(m) =

�
n if m ≤ Δ

∞ otherwise

It is possible to have multiple constraints on the same pair of events: combi-
nations of upper and lower bounds as well as multiple upper or lower bounds.
Multiple upper bounds are combined by taking the point-wise minimum of the
upper drift bound — the strictest constraints for each interval size — and the
point-wise maximum for the lower bound.

Drift bounds can describe a wide variety of concepts depending on the sig-
nificance of the bounded signals.

• In case of communication-by-sampling, a guaranteed drift bound on the
clock signals p and c of producer resp. consumer can be used to find bounds
on the variability of communicated values. Let v and v� in N → R denote
valuation functions for the producer resp. consumer such that v(n) gives
the n-th produced value (at time ηp(n)). Let V ∈ N → R be a variability
bound such that |v(n + Δ) − v(n)| ≤ V (Δ) for all n,Δ ∈ N (note the
similarity with drift bounds). Then the variability of the values read by
the consumer is bounded such that, for all n,Δ ∈ N,

|v�(n+Δ)− v�(n)| ≤ [V ◦Du
p/c](Δ)

• Interpreting clocks either as the availability of resources or the arrivals
and departure of packets in a stream processing network, drift bounds can
express bounds on the availability of resources and burstiness of arrival
streams. This application is explored in the next chapter.

• The requirements for weakly hard real-time systems, where deadlines may
be missed occasionally but not too often, can also be expressed as drift
bounds. Let e be the error event that occurs when a deadline is missed
and c a reference clock representing either an observer’s activations or

a quantization of real-time. A drift constraint c
100:10−−−−→ c expresses the

constraint on behaviors (e, c) that, e.g. 10 deadlines may be missed for
every 100 time units. This principle can be generalized to any type of
error, resulting in a notion of quality of service (QoS).
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We define the drift bound domain in a similar fashion as the clock bound
domain through a Galois connection with the domain of relative counter func-
tions.

Definition 18 (Drift bound domain (D)). The abstract domain DN of drift
bounds consists of the product of all upper and lower drift bound matrices in

FN×N , ordered by the element-wise comparison and X
αD

−−��−−
γD

D defined by

γD(D) =

�
X

����
X ∈ XN , ∀1 ≤ i, j ≤ N : ∀n,Δ ∈ N∞ :

Dl
i/j(Δ) ≤ Xi/j(n+Δ)−Xi/j(n) ≤ Cu

i/j(Δ)

�

The condition in the definition of γD can be rewritten using special operators
that derive from network calculus [LT01], namely the min/max-plus deconvolu-
tions (� and �) defined such that

Du
i/j(Δ) ≥ [Xi/j �Xi/j ](Δ) = sup{Xi/j(n+Δ)−Xi/j(n) | n ∈ N∞}

Dl
i/j(Δ) ≤ [Xi/j�Xi/j ](Δ) = inf{Xi/j(n+Δ)−Xi/j(n) | n ∈ N∞}

for all X ∈ XN , all 1 ≤ i, j ≤ N and all Δ ∈ N∞. The deconvolution operators
are the dual of the min/max-plus convolution operators, which allows us to
write

Xi/j(n) ≤ [Xi/j ⊗Du
i/j ](n) = inf{Xi/j(n−Δ)−Du

i/j(Δ) | 0 ≤ Δ ≤ n}
Xi/j(n) ≥ [Xi/j⊗Dl

i/j ](n) = sup{Xi/j(n−Δ)−Dl
i/j(Δ) | 0 ≤ Δ ≤ n}

While we will avoid the operators where possible, some proofs rely on their
properties. Appendix A gives a more complete overview of the operators and
their properties.

Drift bounds are composed with the same operators as clock bounds, except
that we give operators the superscript D to distinguish them when necessary,
e.g., D �D D�.

Figure 3.6 depicts a network of drift bound constraints and the corresponding
drift bound matrix. It describes the possible behavior of a platform with three

independently clocked systems. For example, the constraint j
4:1−−→ i guarantees

that there is at least one tick of i for every four of j resulting in the bound
Dl

i/j(Δ) = 0 (unconstrained) for Δ < 4 and Dl
i/j(Δ) = 1 for Δ ≥ 4.

3.3.1 Properties of Drift Bounds

Let us note some important properties of drift bounds. Like the properties of
the clock bounds, these are used to find tighter bounds for any given set of
bounds, in particular systems that are the result of a composition such as the
system of Figure 3.6.

Like the clock bounds, drift bounds inherit transitivity and pseudo-symmetry
of relative counter functions. With the constraints, transitivity of drift bounds
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Figure 3.6: A network of drift bound constraints 3.6(a) and the corresponding
drift bound matrix 3.6(b).
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Figure 3.7: On the left the transitivity of an upper drift bound where k
2:3−−→ j

(red) and j
4:4−−→ 4 (blue) imply the constraint k

2:4−−→ i (dashed). On the right,
an example behavior that satisfy the first two constraints, that are illustrated
by sliding windows, and therefore the transitive constraint.

can be described as the following implications

i
p:q
−−→ j

q:r
−−→ k =⇒ i

p:r
−−→ k and i

p:q−−→ j
q+1:r−−−→ k =⇒ i

p:r−−→ k

where the chained constraints describe a conjunction of multiple constraints.
Figure 3.7 illustrates transitivity with constraints and a behavior. The behavior,
where the constraints are shown as a sliding windows, shows why the +1 in the
transitive relation of the upper bound is needed: the three occurrences of j that
occur in the illustrated interval of two occurrences of k (the maximum allowed by
the constraint) describe a smaller interval, i.e. the interval of three occurrences
of j does not include the entire interval of two occurrences of k. The addition
of one safely over-approximates the interval. For a counter example add the

constraint j
3:3−−→ i, which is also satisfied by the given behavior, we see that the

constraint k
2:3−−→ i, that would be obtained without the over-approximation of

the interval, is not actually satisfied.
The following lemma generalizes transitivity to drift bounds where all inter-

val sizes are treated simultaneously.

Lemma 9 (Transitivity of drift bounds). Let D ∈ DN be a pair of drift bound
matrices then, for all X ∈ γD(D), all n,Δ ∈ N∞ and all 1 ≤ i, j, k ≤ N

[Dl
i/k ◦Dl

k/j ](Δ) ≤ Xi/j(n+Δ)−Xi/j(n) ≤ [Du
i/k ◦ (Du

k/j + 1)](Δ)

Pseudo-symmetry implies a relation between upper and lower drift bounds.
In terms of constraints pseudo-symmetry leads to the following implications

i
p:q
−−→ j =⇒ i

p+1:q←−−−− j and i
p:q−−→ j =⇒ i

p:q
←−− j

That is, an upper bound on j with respect to i leads to a lower bound on i
with respect to j and vice versa. Figure 3.8 illustrates pseudo-symmetry with
an example behavior.
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Figure 3.8: On the left the lower drift bound constraint j
2:4−−→ i that implies

the upper drift bound constraint i
4:2−−→ j (dashed). On the right, an example

behavior satisfying the bounds.

Formally, pseudo-symmetry defines a bound on the drift through the pseudo-
inverse defined in Section 2.4.2.

Lemma 10 (Pseudo-symmetry of drift bounds). Let D ∈ DN be a pair of drift
bound matrices then, for all X ∈ γD(D), all n,Δ ∈ N∞ and all 1 ≤ i, j ≤ N

[Du]−1
i/j(Δ) ≤ Xi/j(n+Δ)−Xi/j(n) ≤ [Dl]−1

i/j(Δ) + 1

Like clock bounds, drift bounds are transitive and pseudo-symmetric. Unlike
clock bounds however, drift bounds are additive. Recall the interpretation of
drift bounds as constraints within a sliding window for each interval size. Take
two such intervals and place them next to each other so that one starts where
the other stops. It then stands to reason that the joined interval is bounded by
the sum of the bounds for the two partial intervals. This is the foundation of
additivity of bounds.

In terms of constraints, additivity is expressed by the following implications:

i
p:q−−→ j, i

r:s−−→ j =⇒ i
p+r:q+s−−−−−→ j and i

p:q
−−→ j, i

r:s−−→ j =⇒ i
p+r:q+s
−−−−−→ j

Figure 3.9 illustrates additivity with an example and a behavior. As shown
in the behavior, two drift bound constriants can be added to obtain another
constraint.

Additivity is formalized by the following lemma. Note that the upper and
lower drift bounds are bounded from a different direction: upper bounds are
sub-additive while lower bounds are super-additive.

Lemma 11 (Additivity of drift bounds). Let D ∈ DN be a pair of drift bound
matrices then, for all X ∈ γD(D), all n,Δ,Δ� ∈ N∞,

Dl
i/j(Δ) +Dl

i/j(Δ
�) ≤ Xi/j(n− (Δ+Δ�))−Xi/j(n) ≤ Du

i/j(Δ) +Du
i/j(Δ

�)

Proof. By definition of the concretization, for all X ∈ γ(D), all n,m,Δ,Δ� ∈
N∞

Dl
i/j(Δ) ≤ Xi/j(n−Δ)−Xi/j(n) ≤ Du

i/j(Δ)
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Figure 3.9: On the left the constraints j
2:3−−→ i (blue) and j

1:2−−→ i (red) that to-

gether imply the constraint j
3:5−−→ i (dashed). On the right an example behavior

that satisfies the depicted constraints.

and
Dl

i/j(Δ
�) ≤ Xi/j(m−Δ�)−Xi/j(m) ≤ Du

i/j(Δ
�)

then, for n = m−Δ�, we obtain

Dl
i/j(Δ) +Dl

i/j(Δ
�)

≤Xi/j(n−Δ)−Xi/j(n) +Xi/j(m−Δ�)−Xi/j(m)

=Xi/j(m− (Δ+Δ�))−Xi/j(m)

≤Du
i/j(Δ) +Du

i/j(Δ
�)

Similarly to the case of clock bounds, the properties can be used to tighten
the bounds. In particular for systems described by the composition of abstrac-
tions such as the network depicted in Figure 3.6. As in the case of clock bounds,
we can tighten the drift bound in a fix-point computation, effectively adding drift
bound constraints using the already present constraints.

Figure 3.10 depicts the closure for the drift bound constraint network de-
picted in Figure 3.6 that was constructed by the composition of four drift bound
constraints.

An interesting application of computing the closure is the verification of
the realizability of a set of requirements on clocks. That is, the closure can
be used to verify if there are any behaviors that satisfy given drift bounds by
revealing conflicting constraints: a contradicting upper and lower bound. In
compositions such contradictions will not be immediately apparent computing
the closure however may reveal such contradictions, in particular by exploiting
transitivity to propagate constraints through the system.

3.3.2 Interaction of Clock and Drift Bounds

The drift and clock bounds seem quite similar, but capture different aspects of
processes. If the two domains are combined, yielding a product domain, the
question arises how the two domains interact. That is, we seek the drift and
clock bounds of the composition γC(C)∩γD(D) for a pair (C,D) ∈ C×D. Since
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Figure 3.10: The pseudo-symmetric, transitively closed and additively closed
bounds for the drift bound constraints depicted in Figure 3.6.
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the enumeration of all relative counter functions produced by the concretization
functions is infeasible, we seek bounds that derive directly from the drift and
clock bounds without a concretization step.

First, we consider the clock bound as it is affected by the drift bound. That
is, given a pair of drift and clock bounds, we give tighter clock bounds with
the same concretization. The intuition behind this interaction is that the drift
bounds limit the incline of the relative counter functions in its concretizations,
therefore it should also limit the incline of the clock bounds.

Lemma 12 (Drift bound on clock bound). Let (C,D) ∈ CN ×DN then, for all
X ∈ γC(C) ∩ γD(D) and all 1 ≤ i, j ≤ N

Dl
i/j ⊗ Cl

i/j ≤ Xi/j ≤ Cu
i/j ⊗Du

i/j

Proof. Recall that, by reformulating the concretization function of the drift
bound abstraction with the min/max-plus convolution operators, we have

Xi/j⊗Dl
i/j ≤ Xi/j ≤ Xi/j ⊗Du

i/j

for all X ∈ γD(D) and all 1 ≤ i, j ≤ N . Using the fact that the min/max-
plus operators are monotonic and that X ∈ γC(C), we substitute Xi/j in the
left- and right-hand-side with their lower (Cl

i/j) respectively upper (Cu
i/j) clock

bounds to obtain the result.

Second, we consider the effect of the clock bound on the drift bound. A
drift bound is limited by the maximum incline that is possible for any relative
clock that satisfies the clock bounds. In particular, if the upper and lower clock
bounds are very close to one another, there is little room for bursts.

Lemma 13 (Clock bound on drift bound). Let (C,D) ∈ C × D then, for all
X ∈ γC(C) ∩ γD(D), all 1 ≤ i, j ≤ N and all n,Δ ∈ N∞

[Cl
i/j�Cu

i/j ](Δ) ≤ Xi/j(n+Δ)−Xi/j(n) ≤ [Cu
i/j � Cl

i/j ](Δ)

Proof. By definition of the min/max-plus deconvolutions, we have

[Xi/j�Xi/j ](Δ) ≤ Xi/j(n+Δ)−Xi/j(n) ≤ [Xi/j �Xi/j ](Δ)

for all X ∈ X, all n,Δ ∈ N∞ and all 1 ≤ i, j ≤ N . Using the monotonicity of
the deconvolutions and the fact that X ∈ γC(C), we substitute Xi/j by their
lower and upper bounds to obtain the result. Note the order of the operants
of the deconvolution is reversed, i.e., they are monotone for the left-hand-side
operator and antitone for the right-hand-side.

If we consider that a drift bound can be interpreted as a clock bound, i.e., for
any D ∈ D X ∈ γD(D) implies X ∈ γC(D) (the reverse does not hold though)
we can, in fact, restate both lemma’s as properties of drift bounds. Lemma 12
then leads to the additivity of drift bounds and Lemma 13 leads to a notion
very similar the causality problem treated in [MA10].



CHAPTER 3. ABSTRACT DOMAINS FOR GALS SYSTEMS 53

3.4 Abstract Interpretation of GALS Systems

Chapters 4 and 6 propose analyses for GALS system designs. In those analyses,
the clock and drift bounds serve two purposes. Firstly they specify the behavior
of the environment, i.e., of the input flows and clocks that drive the system.
Secondly, the clock and drift bounds are used to express constraints on, or
guarantees provided by, the GALS system when executed in that environment.
In other words, we seek to compute the abstraction α(P � γ(a)) of the system’s
process P ∈ P when constrained to an environment a ∈ A, be it a clock bound,
drift bound, or both.

Abstract interpretation [CC77, CC92] evaluates program behavior in an ab-
stract domain to obtain an abstraction of its concrete behavior. Let C � A

denote a Galois connection between the concrete domain C and abstract do-
main A with abstraction function α and concretization function γ. With con-
crete semantics described by a transfer function f ∈ C → C that relates objects
(typically input and output) in the concrete domain C, abstract interpretation
uses abstract transfer functions f# ∈ A → A defined such that f# = α ◦ f ◦ γ
or approximated by an abstract transfer function such that f#(a) � α◦f ◦γ(a)
for all a ∈ A. The abstract transfer function yields (an approximation of)
the abstraction of the output of the concrete transfer function for the given,
abstracted, input.

In this thesis processes are specified by equations of the shape x = e where x
is an event name and e is an expression (with an unspecified syntax) over other
events. Let �x = e� denote the process described by the equation x = e, i.e., the
process of all behaviors that satisfy the equation. Systems defined by multiple
equations x1 = e1, ..., xn = en are described by the processes that satisfy all
the equations. That is, a process defined by the composition of the individual
equation’s processes:

�x1 = e1; ...;xn = en� = �x1 = e1� � ... � �xn = en�
Our task is to compute the abstractions of such composed systems and the
theory of abstract interpretation enables us to do this efficiently by composing
abstractions.

3.4.1 Composition as a Fix-Point of Transfer Functions

In practice, computing the (concrete) process of a composition is infeasible be-
cause we lack finite representations of concrete processes. Even if finite rep-
resentations are available, e.g., as finite transition systems (see Chapter 6, the
representation usually does not scale to large systems. Therefore we propose an
approximative method where each component is modelled by a mapping over
the abstract domain that restricts abstracted behavior to those that are possible
in the presence of the component. To handle cyclic relations, the components’
mappings are combined in a fix-point computation.

Figure 3.11 schematically depicts the approximated abstraction of two com-
posed processes. Pictured at the top is the approximated composition in the
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�A

P � � Q

γ

α αA

P

Figure 3.11: Approximation of the abstraction α(P � Q) of a composition.

abstract domain A, which may be the domain of clock bounds, the domain
of drift bounds, or their combination. The lower left and right components
depict the composition of the components with the abstraction of the global
composition in the concrete domain. Because the abstraction only conserva-
tively approximates the behaviors of the environment, each component will also
conservatively approximate the behavior of the global system.

The Knaster-Tarski theorem [Tar55], stated below for the greatest fix-point,
tells us that there is a unique greatest and a unique least fix-point for any
monotonic function over a complete lattice. For a more complete introduction
we refer to [DP02].

Theorem 2 (Knaster-Tarski). Let S denote a complete lattice and Π ∈ S → S
a monotonic function, i.e., a function such that s � s� =⇒ Π(s) � Π(s�) for
all s, s� ∈ S, then the set of fix-points is a complete lattice with greatest fixed
point

gfpΠ =
�

{s | s ∈ S, Π(s) � s}

The theorem enables us to state the following equality that defines a com-
position as a fix-point:

�x1 = e1; ...;xn = en� � �x�
1 = e�1; ...;x

�
m = e�m�

=gfp
�
�x1 = e1; ...;xn = en��P ◦ �x�

1 = e�1; ...;x
�
m = e�m��P

�

where the concrete transfer function �x1 = e1; ...;xn = en��P ∈ P → P of
equations x1 = e1, ..., xn = en yields the process of the equations composed
with its environment and is defined such that

�x1 = e1; ...;xn = en��P(P ) = �x1 = e1; ...;xn = en� � P

By itself, the expression of composition as a fix-point of transfer functions seems
unnecessarily complicated. With the following theorem from [CC92], however,
we can use it to justify a fix-point computation in the abstraction.
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Theorem 3 (Sound over-approximation of fix-ponts). Let C
α−��−
γ

A denote a Ga-

lois connection between complete lattices C and A, and Π ∈ C → C a monotonic
function then

α(gfp(Π)) � gfp(α ◦Π ◦ γ)
Consequently, the abstraction of a composed system can be approximated

with the fix-point of their abstract transfer functions, i.e.,

α(�x1 = e1; ...;xn = en�P � �x�
1 = e�1; ...;x

�
m = e�m�P)

� gfp
�
�x1 = e1; ...;xn = en��A ◦ �x�

1 = e�1; ...;x
�
m = e�m��A

�

where the abstract transfer function of equations x1 = e1; ...;xn = en is defined
such that

�x1 = e1; ...;xn = en��A = α ◦ �x1 = e1; ...;xn = en��P ◦ γ

This is the ideal abstract transfer function. Most of the time, we will use an
approximative abstract transfer function, such that, for all a ∈ A

�x1 = e1; ...;xn = en��A(a) � (α ◦ �x1 = e1; ...;xn = en��P ◦ γ](a)

That is, it over-approximates the possible behaviors.
By itself, the fix-point formulation of the approximation does not suffice

to compute the result. The Kleene theorem [Kle52] permits the computation
of the greatest and least fix-points of continuous (limit-preserving) mappings
for infinite lattices by an iterative method. Kleene iteration formalizes the
computation of the abstract composition through a decreasing chain of bounds
described previously.

Theorem 4 (Kleene Iteration). Let S be a complete lattice and Π ∈ S → S an
upper semi-continuous mapping, i.e.,

�

s∈S�

Π(s) = Π

� �

s∈S�

s

�

for any non-empty, totally ordered subset S� ⊆ S, then

gfpΠ =
�

{Πn(�) | n ∈ N} = � � Π(�) � Π(Π(�)) � ...

Assuming the involved abstract transfer functions are continuous, the fix-
point approximation of the composition in Figure 3.11 can be computed with a
Kleene Iteration.

3.4.2 Abstract Mappings for Properties

When approximative abstract transfer functions are used, we can exploit the
properties of the abstract domains to define additional mappings that compen-
sate (in part) for the pessimism of the abstract mappings resulting in tighter
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bounds. The basic problem is that the approximate transfer functions yield
drift and clock bounds that are not tight, in the sense that there exist smaller
bounds that have precisely the same concretization. An abstraction is tight if
there exists no smaller bound that has the same concretization. Theoretically,
the greatest tight abstraction of some a ∈ A can be obtained by computing
α(γ(a)) (see e.g. [Smi10]), but in practice this is often impossible to compute
(e.g. because there is no finite representation of the concretization) or infeasi-
ble. The properties of clock and drift bounds provide an opportunity to at least
improve the result by approximating the tight bounds.

To find tighter bounds, we use the properties of clock and drift bounds. The
transitivity mapping, for example, ensures the final result is transitively closed,
and the transitive closure of clock or drift bounds have the same concretization
as the original (not transitively closed) bounds. That is, we define abstract
mappings, such as Πtrans ∈ C → C for transitivity of clock bounds that computes
the transitive closure of clock bounds within the environment. By integrating
such mappings in the fix-point the computation will yield better bounds by
ensuring the resulting bounds are transitive. Formally, we defend the use of
such mappings by representing them as approximations of α ◦ γ.

To apply a mapping, it is sufficient to show that a (continuous) mapping
over-approximates the abstract identity in order to add it to the fix-point com-
putation. The properties of clock and drift bounds (transitivity of Lemmas 7
and 9, symmetry of Lemmas 8 and 10, additivity of Lemma 11 and the in-
teraction of Section 3.3.2) naturally lead to approximations of α ◦ γ, because
the properties are formulated as drift or clock bounds on the relative counter
functions that satisfy a given clock or drift bound. In other words, for a given
abstraction a ∈ A (a clock bound, drift bound or their product) the properties
give a tighter abstraction a� � a such that all behaviors in the concretization of
a are also in a�.

Consider, for example, the transitivity of clock bounds presented in Lemma
7. Defining the mapping Πtrans such that for all C ∈ CV and all n ∈ N∞

[Πtrans(C)]li/j(n) = max
k∈V

Cl(Cl(n))

[Πtrans(C)]ui/j(n) = min
k∈V

Cu(Cu(n) + 1)

the Lemma 7 can be restated for all C ∈ C, such that

∀X ∈ γ(C), n ∈ N∞ : [Πtrans(C)]l(n) ≤ X(n) ≤ [Πtrans(C)]u(n)

That means, that all concretizations of C ∈ C are bounded by [Πtrans(C)]u and
therefore Πtrans(C) � [α ◦ γ](C).

Such mappings are defined for all the introduced properties and are added to
all fix-point computations to improve the bounds. That is, we include mappings
for transitivity and symmetry of clock and drift bounds, additivity and causality
of drift bounds and interaction between clock and drift bounds in all fix-points.
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3.5 Conclusion

3.5.1 Related Work

In literature there are many concepts with similarities to drift and clock bounds.
Drift and clock bounds can be used as a generalization of these notions by consid-
ering many different types of events such as the completion of tasks, expiration
of a deadline, a change of system state, etc. The generalization enables the
application of our results, such as the transitivity, to those concepts.

Weakly-hard real-time systems [Ber98, BBL01] permit the occasional dead-
line for the completion of a task to be missed as long as the system satisfies a
given set of constraints. The constraint

�
n
m

�
expresses requires that at least n

out of m consecutive deadlines are met. It can be expressed by a lower drift
bound Dl

s/d(m) = n on the events s of satisfied deadlines with respect to dead-

lines d. The constraint �n� requires that no n consecutive deadlines are ever
missed, and can be expressed by a lower drift bound Dl

s/m(2) = n that requires
at least n occurrences of s (met deadlines) for every two missed deadlines (event
m).

Real-time Calculus [TCN00] uses arrival curves to describe the maximum
and minimum number of the arrivals of tasks for each time interval. The curves
are a real-time version of drift bounds that constrain the (absolute) counter
function for an event model that permits simultaneous events. The extension
[PRT+10] also introduces a very similar but limited form of (relative) drift
bounds. Chapter 4 uses drift bounds in a similar manner and compares the two
domains in more detail.

Bertrane [Ber08] defines an abstract interpretation of imperfectly-clocked
synchronous systems combining several abstract domains. The behavior of these
systems is defined in a concrete domain of continuous boolean signals closely re-
lated to that of electronic circuits. The global changes-counting domain [Ber06]
consists of constraints (u, δ) ∈ N∞ ×R∞

≥0 for each (boolean) signal that are sat-
isfied if the signal changes at most u times in each (real) time-interval of size δ.
The same constraint can be expressed with an upper drift bound Du

c/t(δ) = u on
the change event c with respect to a discretization of real-time t. The integral
bound domain consist of constraints (δ,α, β) ∈ R ∞

≥0 × N∞ × N∞ on a boolean
signal represented by real values in {0, 1} that are satisfied if the integral of
real-valued signal is bounded to the interval [α, β] for every interval of size δ.
We express the same bound in Chapter 6 with a drift bound Dl

x/x̂(δ) = α and
Du

x/x̂(δ) = β for the signal x of a boolean flow (synchronous signal) with respect
to its clock x̂.

3.5.2 Discussion

We introduced the system depicted in Figure 3.12 of abstractions for discrete
event systems. Using the abstraction and concretization functions, we can freely
combine components from different levels of the abstraction by concretizing the
components and combining the resulting processes. That is, we describe the
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P

X

C D

C×D

αXγX
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C

γ
C

αD

γ D

Figure 3.12: The Galois connections of the concrete domain P of processes with
the abstract domains of (sets of) relative counter functions X, clock bound C,
drift bound D and the product domain of both clock and drift bounds.

composition as the concretization of components and subsequent intersection at
the same level of abstraction.

In the analysis of distributed systems clock and drift bound abstractions are
used in two capacities:

• The abstractions can be used to express guarantees on the behavior of
the environment of a system. Most notably in the case of (root) clocks
and resources — the original purpose of the abstractions — drift bounds
can model the availability of resources and stability of clocks. But also
in the case of other events originating in the environment with bounded
non-determinism.

• The abstractions can be used to express requirements on the system. This
mainly considers QoS requirements where errors may occur occasionally,
but not too often.

Typically, one would analyze the behavior of a system when executed in
an environment described by the abstractions. The analysis can be used in a
purely informative fashion (e.g. to determine the frequency of certain events in
a complex system) but also for the validation of requirements. We refer to the
latter as verification to distinguish it from the more general concept of analysis.
The analysis is naturally placed between guarantees and requirements: either to
verify if the requirements are fulfilled by a system executed in an environment
with the given guarantees, or to compute the guarantees provided by such a
system.

The combination of such mappings modelling different sub-systems, is then
used in a single fix-point computation that iteratively tightens the abstraction
that describes system behavior.



Chapter 4

Analyzing Stream Processing

Systems

Stream processing systems are GALS systems where the synchronous domains
communicate over FIFO channels. Modern stream processing systems, such as
multimedia applications and embedded automatic control systems, are often re-
alized on heterogeneous, multi-processor architectures. Such architectures have
a large design space, due to the choice in processors, the networks to connect
them, the partitioning of software on the hardware, and the choice of scheduling
regimes to allocate resources. As development progresses, architecture changes
become increasingly expensive. It is therefore essential to evaluate the feasibility
of a design at an early stage.

This chapter shows how to use the drift and clock bounds introduced in
Chapter 3 to analyse the performance characteristics of stream processing sys-
tems. The clock and drift bound abstractions allow us to analyze systems in an
environment with many unknown quantities: either because they have not yet
been decided upon (early in the design phase) or due to the non-determinism
inherent to distributed systems.

Consider, for example, the simple multimedia decoder depicted in Figure 4.1,
that decodes audio and video parts of an incoming multimedia stream separately
and then joins the decoded streams at the output. Each double arrow in the
diagram represents a lossless channel with FIFO semantics (a stream). The pjd

and bd components denote sources of the multimedia stream i and resources
r and s. The greedy processing components (gpc) model the decoding of the
input stream i, arriving periodically with bounded jitter and minimum inter-
arrival time (pjd), on two separate processors, consuming resources r and s.
The and component joins the decoded streams resulting the output stream o.

59
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Figure 4.1: A multimedia decoder with separate audio and video processors.

4.1 Elements and Semantics of Stream Process-

ing Systems

Stream processing systems are modelled by compositions of a few basic com-
ponents that define relations between streams and resources. Components are
processes (see Chapter 2) where signals model both (the availability of) re-
sources and streams. This section defines the stream processing components
as processes using the signals’ counter functions. Many of the presented com-
ponents are based on the components of the MPA real-time calculus toolbox
[CKT03, HT07a].

4.1.1 Streams and Resources

Streams (the double arrows) tasks or messages to be treated using resources
(single arrows). Both are modelled by signals. In the case of a stream, an event
occurs on arrival or departure of a task or token. In the case of a resource, an
event occurs when a resource is available.

The difference between departure and arrival events is a matter of perspec-
tive: occurrences of an incoming stream’s signal are arrivals and occurrences
of an outgoing stream’s signal are departures. Connecting the output of one
component with the input of another equates the signals thus one component’s
departure is another component’s arrival event.

4.1.2 Source Components

Source components describe the behavior of the environment: the availability of
resources and arriving streams. We capture bounds on availability and variabil-
ity of arrivals with with clock and drift bounds. Such bounds can describe the
non-deterministic behavior of the environment of a distributed system. Bounds
can also be used to describe an environment whose exact behavior is unknown
or has not (yet) been decided on.
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The bd component

The bd component defines a resource with asymptotic rate (bandwidth or pro-
cessing power) and a bounded, but variable, delay. In the long term, the resource
defined by a bd component has a guaranteed rate but availability may be de-
layed occasionally. The rate and delay is defined with respect to a reference
clock which can be any other signal. One possibility is to add a signal that
models a discretization of real-time.

bd[B, d]

r

Figure 4.2: bd[B, d]

Formally the bd component defines the process below.

Definition 19 (bd). The bd component with bandwidth B ∈ R and delay d ∈ N
describes a process bdB,d that consists of all behaviors (r, k) such that for all
n ∈ N∞

�B(n− d)� ≤ Xr/k(n) ≤ �Bn�

The pjd component

The pjd component describes a stream that exhibits jitter, but is asymptoti-
cally stable. Moreover, it gives a lower bound on the time between each two
consecutive events.

pjd[p, j, d]

x

Figure 4.3: pjd[p, j, d]

The component has parameters p, j, d ∈ N for the period, jitter, and inter-
arrival time respectively. Formally the bd component defines the process below.

Definition 20 (pjd). The pjd component with period p ∈ R and jitter j ∈ N
and inter-arrival time d ∈ N describes a process that consists of all behaviors
(x, k) such that for all n,Δ ∈ N∞

�Δ/p� − j ≤ Xx/k(n+Δ)−Xx/k(n) ≤ �min(Δ/p+ j,Δ/d)�

4.1.3 The Greedy Processing Component

The most important component is the gpc which models the processing of
a stream according to the availability of a resource. The incoming stream is
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buffered and processed as soon as resources come available. The greedy pro-
cessing component was first introduced in this form in [TCN00]. The original
definition also provides a stream of remaining resources, which we have left out
for simplicity.

gpc
i o

r

Figure 4.4: gpc

The behavior of the gpc is formalized below. It is a deterministic process
as the output stream is defined as a function of the input stream and resource.

Definition 21 (gpc). The gpc component describes a process with behaviors
(i, o, r) such that, for all t ∈ R

χo(t) = min{χi(u) + χr(t)− χr(u) | 0 ≤ u ≤ t}

4.1.4 The Synchronous Join Component

The purely logical and component — logical, because it is not dependent on
resources — synchronously joins two streams. It is based on the component
presented in [Wan06]. The and component takes one arriving task of each
stream x and y and combines them into a single output task on stream z.

and

x

y

z

Figure 4.5: and

Combining the tasks is instantaneous, so the total number of events in the
outputs stream at any time is the minimum of the total number of events of the
input streams.

Definition 22 (and). The and component defines a process with behaviors
(x, y, z) such that for all t ∈ N

χz(t) = min(χx(t),χy(t))

4.1.5 Time-Division Multiple Access

The tdma component defines a static schedule by which a resource is shared.
That is, it periodically assigns access to a resource. For a tdma component as
depicted below, the first p resource units of resource r are assigned to s, the
next p units to r, then again p units to s, etc. In effect it splits a resource in
two.



CHAPTER 4. ANALYZING STREAM PROCESSING SYSTEMS 63

tdma(p)

r

s u

Figure 4.6: tdma[p]

Definition 23 (tdma). The tdma component with period p ∈ N defines a
process with behaviors (r, s, u) such that for all n ∈ N

Xr/s(n) = n+ p�n/p�
Xr/u(n) = n+ p�n/p�

4.1.6 The Delay Component

The delay component is a synchronous buffer that holds items for a number of
ticks, imposing a fixed delay. The following diagram represents the component
that delays events of the input stream i for d ticks of the reference clock k
resulting in the output clock o.

delay
i o

k

Figure 4.7: delay

The synchronous delay consists in a retiming of the counter function χi such
that its timeline is shifted according to the occurrences of reference clock k with
the given delay.

Definition 24 (delay). The delay component with delay d ∈ N defines a
process with behaviors (i, o, k) such that for all n ∈ N

χo(t) = χi(ηk(χk(t)− d))

4.2 Abstract Interpretation of Stream Processing

Systems

Let us now formulate the abstract behavior and transfer functions of the stream
processing elements. The system is to be analyzed in the product domain C×D

of clock and drift bound domains introduced in Chapter 3.
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Figure 4.8: The clock bound imposed by a bd component.
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Figure 4.9: The drift bound imposed by a pjd component.

4.2.1 Source Components

Source components are non-deterministic processes defined by their abstraction.
They directly formulate bounds on the relative counter functions of the signals
in the source component process.

The bd component expresses a clock bound on the relative counter function
Xr/k of the resource signal r and reference signal k. Figure 4.8 depicts the clock
bounds imposed by the bd component on the relative counter function of the
resource signal with respect to the reference signal with the parameters B = 3/4
and d = 3.

As for the bd component, the pjd directly imposes a bound. Except that
the pjd component imposes a drift bound. Figure 4.9 shows the drift bounds
of a pjd component on the relative counter function of the resource signal with
respect to the reference clock with period p = 3, jitter j = 2 and minimum
inter-arrival time d = 2.

4.2.2 Greedy Processing Component

The greedy processing component imposes some direct bounds that relate the
input stream and resource with the output stream. That is, the behaviors
(i, o, r) of a gpc process in isolation (with unconstrained resources and input
stream) satisfy the following bounds:

• the number of events in the output stream can never exceed the number
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of events in the input stream, i.e., for all n ∈ N

Xo/i(n) ≤ n ≤ Xi/o(n)

• output is produced when input is available: there must be at least one
resource unit for each output event and, conversely, at most one output
for each output event, i.e. for all n ∈ N

Xo/r(n+ 1)−Xo/r(n) ≤ 1 ≤ Xr/o(n+ 1)−Xr/o(n)

Those bounds are, however, not very very precise: they fail to capture the
greedyness of the processor resulting in the lack of a lower bound on the out-
put stream with respect to the resource and input stream. Because the gpc

is deterministic, however, an abstract system function can be used to obtain
better bounds. That is, if bounds on the input or resources are known due to a
composition with other components, they can be used to obtain bounds on the
output by use of the following lemma.

Lemma 14 (Abstract gpc). Let (i, o, r) ∈gpc be a behavior of a greedy pro-
cessing component such that (i, o, r) ∈ γ(C,D), then

Cl
i/r ⊗ id ≤Xo/r ≤ Cu

i/r ⊗ id

Cl
r/i ∧ id ≤Xo/i ≤ Cu

r/i ∧ id

Proof. Let us translate the identity on χo to an identity on relative counter
function Xo/r by substituting real-time parameter t for relative time ηr(n).
Next, we substitute u by ηr(Δ) which is possible, because the minimum must
occur exactly at each occurrence of r. Finally, Xr/r is the identity function.

Xo/r(n)

=min{χi(u) +Xr/r(n)− χr(u) | 0 ≤ u ≤ ηr(n)}
=min{Xi/r(Δ) +Xr/r(n)−Xr/r(Δ) | 0 ≤ Δ ≤ n}
=min{Xi/r(Δ) + id(n−Δ) | 0 ≤ Δ ≤ n}
=Xi/r ⊗ id

The upper and lower bounds follow by substituting X by Cu and Cl respectively.

The lemma allows us to formulate an abstract system function for the gpc

component.

4.2.3 The Synchronous Join Component

Like the gpc component, the synchronous join imposes some bounds directly.
Namely, bounds that ensure that the number of inputs (on both streams) can
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Figure 4.10: The clock bound imposed by a tdma component.

not exceed the number of outputs. That is, each behavior (x, y, z) in the and

process satisfies the following bounds, for all n ∈ N:

Xz/x(n) ≤ n ≤ Xx/z

and similar bounds on Xy/x and Xx/y. In addition, tighter bounds can be
derived if better bounds on the input streams are known using the property
expressed by the following lemma.

Lemma 15 (Abstract and). Let (x, y, z) ∈and be a behavior of a synchronous
join process such that (x, y, z) ∈ γ(C,D), then

Cl
x/k ∧ Cl

y/k ≤ Xz/k ≤ Cu
x/k ∧ Cu

y/k

Proof. First we derive a relation on relative counter functions by substituting t
by ηk(n), which yields Xz/k = Xx/k ∧ Xy/k. The upper and lower bounds are
then obtained by substituting X by its bounds.

4.2.4 Time-Division Multiple Access

The periodic schedule of a tdma component can in fact be modelled by clock
bounds. Observe that, by Definition 23, the tdma component consists in a fixed
relative counter functions. The clock bounds can enforce such a requirement
through equal upper and lower bounds, as is depicted in Figure 4.10. The equal
upper and lower bounds force the clock s to occur synchronously with r for
three ticks, and then pause for the same duration while u is given access, etc.

4.2.5 The Delay Component

The process of a delay component imposes the following bounds on the behaviors

• the upper and lower clock bounds are shifted by the delay:

Cl
i/k(n− d) ≤ Xo/k(n) ≤ Cu

i/k(n− d)

• the drift bound is unaffected by the delay because the same variability
still occurs albeit at a later point in time, because of the delay:

Dl
i/k(Δ) ≤ Xo/k(Δ) ≤ Du

i/k(Δ)
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4.2.6 Interpreting Bounds

If the drift and clock bounds of a system are known, they can be used to derive
the following bounds on system performance:

1. the backlog that the system may accumulate while processing streams;

2. the delay incurred by streams traversing the system; and

3. the processing throughput of the system.

Backlog

Backlog is accumulated when an input stream arrives faster than it can be
processed. It is the difference between the number of arrivals at an input stream
and the number of departures at the input stream. The backlog between two
streams is bounded by the maximal difference of their relative counter function
from the diagonal.

Lemma 16 (Backlog bound). Let (x, y) be a behavior that satisfies the bounds
(C,D). The backlog between signals x and y is bounded for all t ∈ R

χx(t)− χy(t) ≤ max{n− Cl
y/x(n) | n ∈ N}

Proof. This follows from the observation that the difference χx(t) − χy(t) is
greatest when x has just ticked, it therefore suffices to observe the difference at
each time instant ηt(n) for all n ∈ N. This results in

max{χi(t)− χy(t) | t ∈ R∞}
=max{χi(ηi(n))− χy(ηi(n)) | n ∈ R∞}
=max{n−Xy/i(n)) | n ∈ R∞}
≤max{n− Cl

y/i(n)) | n ∈ R∞}

If arrivals are asymptotically faster than the departures, i.e., the system has
insufficient capacity to treat the input, the backlog will accumulate indefinitely
resulting in an infinite backlog.

Delay

Streams incur delay when they are buffered awaiting processing or while being
processed. It is the difference between the arrival time and departure time.

With only the clock and drift bounds, it is impossible to obtain any bound
on the real time, because the bounds only capture information on the relative
occurrences events However, with another signal as reference clock, a bound on
the delay with respect to that clock can be given.
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Let (x, y, k) be a behavior that satisfies the bounds (C,D). The delay be-
tween signals x and y with respect to reference clock k is bounded for all n ∈ N∞:

Xk/c(n)−Xk/y(n) ≤ sup{Cu
k/x(n)− Cl

k/y(n) | n ∈ N∞}

The delay may become infinite if arrivals come faster than the system can
process them. Note that high backlog does not automatically imply a high delay.
For example, backlog may be large but delay small if the system has a large,
constant capacity and input arrives slowly but with large bursts.

Asymptotic Rate

The throughput of a system is determined by the rate at which it produces
output over the system’s lifetime. That is, the asymptotic rate of the output.
As for the delay bound, the asymptotic rate is defined with respect to a reference
clock.

Let (x, k) be a behavior that satisfies the bounds (C,D) then the asymptotic
rate is bounded by the limit

lim
n→∞

n/Cu
x/k(n)

4.3 Experiments

We have implemented the mappings and resulting fix-point algorithm in a pro-
totype programmed in Python. At the core is a suite of operators on functions
as documented in Appendix A and the theory developed in Chapter 3. More
precisely, operators on eventually periodic functions that are represented by a
finite transient part (the aperiodic introduction) and a periodic part with a fi-
nite period. The program consists of a few hundred lines of code, of which more
than half is concerned with the operators.

In order to compare to conventional network calculus’ analysis both systems
were modelled with an additional clock that represented real-time. So all bounds
on input streams and availability of resources were modelled with respect to the
added real-time clock k.

4.3.1 Multimedia Decoder

The multimedia decoder of Figure 4.1 is described and analysed by the follow-
ing code. The system consists of a list of mappings over bound matrices that
correspond to the predicates introduced for the components in Section 4.1.

[k,i,x,y,o,r,s] = range (7) # identifiers

# declare system components

system = [

pjd(i, 4, 24, 1, k),

bd(r, 0.3, 3, k),

bd(s, 0.3, 3, k),
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gpc(i, x, r),

gpc(i, y, s),

and_join(x, y, o),

]

bounds = solve(system) # fixpoint calculation

print backlog_bound(bounds , x, o)

Not visible in the above snippet, are the mappings described in Chapter 3,
that handle the interaction between the bounds; the interaction between lower
on upper bounds, transitivity, and the interaction of drift bounds and clock
bound are applied by the solver implicitly because they are independent of the
system’s components.

The multimedia decoder is modelled with an input stream generated by a pjd

component with period of 4, jitter of 24 and a minimum inter-arrival distance
of 1. The two decoders had resources, generated by the bd components, with
bandwidth of 0.3 units per time-unit and a drift of 3.

We calculate the buffer size using conventional network calculus using the
curves for input stream i and resources r, s defined by the pjd and bd compo-
nents with respect to the real-time clock k, e.g., for stream i the upper arrival
input curve is αu

i = Du
i/k. Then we derive a bound max{αu

x(n)−αl
y(n) | n ∈ N}

for the buffer size of stream x, where αu
x = (αu

i ⊗ β u
r )� β l

r∧ β u
r and αl

y = (αl
i⊗ β l

s).
In this particular configuration our analysis calculated, in twelve iterations,

an upper bound of 8 for the backlog of streams x and y, whereas the conventional
method yields a bound of 18. We also confirmed that increasing the jitter of the
input stream i has little effect on the estimated buffer size, while the conventional
method’s estimate grows quickly with jitter.

4.3.2 Shared Bus

A second example, depicted in Figure 4.11, shows a server that is connected to
the outside world by a bus. The server responds to update requests that arrive
over a bus and returns a reply over the very same bus. Conflict-free access
to the bus from both sides is achieved through a time-division, multiple-access
(tdma) policy. That is, exclusive access to the bus is given periodically to the
requester and the server. The server has a certain delay before it responds. If
this delay corresponds to the tdma period, then the bus does not introduce
any additional delay since the reply to a received request can immediately be
transmitted.

Two new components are used here: the tdma component that splits a
resources according to a fixed schedule, and the del component that imposes
a fixed delay on a stream. In this example, the gpc components do not model
processors or decoders, but the transmission of messages over the bus.

Experiments on the second example, shown below, where a server responds
to requests over a bus, showed that the analysis effectively handles the regular
nature of requests received over the tdma bus.
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Figure 4.11: The stream i of update requests passes a bus, represented by
resource r, to arrive at a server, which, after a fixed delay (del), sends a reply
y back over the bus. The resource is shared with a fixed tdma schedule, over
the resources t and s.

[k,i,x,y,o,r,t,s] = range (8) # identifiers

# declare system components

system = [

pjd(i, 9, 23, 1, r),

bd(r, 0.33, 13, k),

tdma(r, t, u, 9),

gpc(i, x, t),

delay(9, x, y, r),

gpc(y, o, u),

]

bounds = solve(system) # fixpoint calculation

print backlog_bound(bounds , y, o)

Conventional analysis has no straightforward way to model this second ex-
ample. The closest analysis we could make, again taking the drift bounds
for input stream i and resource r, uses β u

t = β u
s = β u

r ⊗ tdmau ⊗ id where
tdmau(n) = 9�n/16� and β l

t = β l
s = β l

r ⊗ tdma l ⊗ id where tdma l(n) =
9�(n+ 7)/16� for the upper (resp. lower) bounds for the shared bus resources.
The delay is modeled according to [LT01] such that αu

y = αu
x ⊗ delay where

delay(n) = 0 if n ≤ 9 else ∞ and αu
x = (αu

i ⊗ β u
t )� β l

t ∧ β u
t . Then we obtain a

buffer size bound max{αu
y (n)− β l

s(n) | n ∈ N} .
With a tdma period of 9 and matching delay our analysis consistently

showed, after 14 iterations, a backlog bound of 2 between streams y and o,
whereas the backlog bound calculated by the conventional method is 7. Here
the improved precision of our approach is due to the combined use of clock and
drift bounds.

Clearly conventional analysis has a lower complexity because we model n
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streams with n2 bounds, whereas conventional analysis needs only n bounds.
There is room for improvement because the effect of most bounds is local, there
is no need to track all n2 relations; the implementation could exploit system
topology to reduce the number of bounds involved in the calculation. It should
also be noted that conventional analysis does not need a fix-point computation
if there are no cyclic dependencies, as is the case for the examples.

Experience suggests that the computational cost is most affected by the
choice of curves. Combining curves with many different prime factors can lead to
very long periods, which affects all further operations on the curve. Conventional
analysis also suffers in this case.

4.4 Related Work

Existing formal verification techniques for real-time systems are based on model-
checking of timed automata [HV06], algebraic techniques like Network calculus
[LT01] and real-time calculus [CKT03], scheduling theory [HKO+93], or combi-
nations thereof [HHJ+05].

Data-flow networks are represented naturally through relational constraints.
The first such a notion is synchronic distance [Pet76] for Petri nets. The syn-
chronic distance is the maximum number of times a transition may fire before
another must be fired. If the Petri net models a data-flow system, typically
modelled by conflict-free nets, the synchronous distance of a producer from a
consumer (both modelled by transitions) corresponds to the maximum buffer
occupation between them.

The affine clock calculus used in the validation and compilation of real-time
applications [SGL99] programmed with a combination of Signal and Alpha,
The calculus relates two clocks through a base clock. Typically, the arrival
of complex tasks is related to their completions through a system clock that
determines execution speed. These relations are expressed by affine transforma-
tions over the occurrence-times of events. The calculus then serves to determine
synchronizability of two event streams.

The more recent work on n-synchrony [CDE+06] develops a similar concept
to verify synchronizability of programs written in a synchronous data-flow lan-
guage extended with statically scheduled sample (a periodic selection of elements
in a flow) and merge (a combination of two flows defined by a static schedule)
operations and buffers with FIFO semantics. The verification is based on a type-
system and determines whether the system can be executed with finite buffer
sizes. The clock envelopes introduced in [CMPP08] further develop this system,
using clock abstractions called envelopes that permit more efficient verification
at the cost of some over-estimated buffer sizes.

The clock bounds, introduced in this paper, express the same essential re-
lations as the data-flow relations of the mentioned work. The formalization of
the relations as bounds on relative counter functions however, is new. And it is
precisely this formalization that allows us to combine clock bounds with drift
bounds. Clock bounds are more general than the synchronic distance on conflict-
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free nets, affine relations and clock envelopes, all of which can be represented
by linear clock bounds in our model. Clock bounds are equal in expressiveness
to the basic model of n-synchrony.

Drift bounds are essentially a relational variant of network calculus’ arrival
and resource curves. The problem of correlating variability of event streams,
such as coincident bursts of arrival streams, has been studied before in various
incarnations of network calculus.

In [RE08, PRT+10] the case where streams are transported over a network
as a single, joined stream, to be separated at arrival, is treated by tracking
the correlations between sub-streams and the aggregated stream. The event
count curves of [PRT+10] are a special case of our drift bounds: a bound on a
sub-stream with respect to the aggregate stream.

Correlated streams are also used in [HT07b] for the analysis of a fork-join
scenario, where the load of a single event stream is split over several processing
components and then merged in a scenario similar to the multimedia decoder
of Figure 4.1. However, [HT07b] distribute frames over the processors for load
distribution, like splitting traffic over two lanes and then merging it again, rather
than the synchronous split join of our example.

Finally [WT05b] exploits correlations between the workload imposed by a
task traversing a chain, which occur e.g. for tasks with variable payloads sizes
that traverse a chain of processors: tasks that require many resources on the
first processor because of a large payload, will also require more work for the
next and vice versa. None of the above approaches uses a general relational
model as presented in this paper.



Chapter 5

Sampling Networks

Sampling networks are comparable to the synchronous data-flow language Lus-

tre. A sampling network consists of a network of processing nodes that operate
on flows. Flows are sequences of values over time. A node defines the values of
output flows based on the values of the input flows and the internal state of the
node at that instant. Informally, one may think of a node as an actor that reads
its inputs, performs its calculations, and writes its output at each activation.
Nodes are activated by a clock, itself a boolean flow.

Consider the example depicted in Figure 5.1 that implements a distributed
watchdog to detect system failure. It consists of two independently clocked
partitions (of nodes) that communicate an alternating bit by sampling shared
memory cells. System failure is detected if the alternating bit remains constant
for too long.

The example consists of logical nodes depicted as combinational logical cir-
cuit nodes, the synchronous delay pre that delays a signal by one time-step (as
per its clock), and the circular nodes are memory places used to communicate
between the nodes in the domains of clocks c and d. The alive component is
a composition of a pre and exclusive or that compares the last two values.

The following describes the sequence of values for each flow during an exe-
cution of the watchdog system, where tt and ff denote the boolean values true
and false respectively and ⊥ denotes absence of a value. The execution is shown
over discrete time steps with instants t = 1, 2, ..., 7.

pre

alive

x

ya

c d

pre

false

alive

Figure 5.1: A distributed watchdog protocol to detect system failure.

73
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t 1 2 3 4 5 6 7
c tt tt ff ⊥ tt tt tt
d tt ⊥ tt ⊥ tt ff ⊥
x ff tt ⊥ ⊥ tt ff ff
y tt ⊥ ff ⊥ ff ⊥ ⊥
a tt tt ⊥ ⊥ ff tt ff

The values of flows x y and a are absent when their clocks are either absent,
or false. Sampling of is done at the instants when the clock is present. When the
reader and writer of a shared memory cell are active simultaneously the memory
is written before it is read. Consequently, the false value of flow y at t = 3 is
never sampled by the domain of clock c because at t = 5 (the first activation of
c after t = 3) a new value has become available simultaneously. Moreover, the
value of x is true at t = 5 because the synchronous buffer (pre) in domain c

contains the value sampled at the previous activation of c (at t = 2).
In addition to the graphical representation of sampling networks, programs

are defined textually with the syntax of Figure 5.2. The watchdog protocol, for
example, is described as follows

alive s = s xor (false -> pre s)

partA y =

let x = false -> pre y;

in (x, alive y);

partB x = not x

system (c,d) =

let (x, a) = partA (sample y on c);

y = partB (sample x on d);

in a

The main difference with the synchronous programming language Lustre

[HCRP91] is the addition of a primitive for communication-by-sampling between
differently clocked components without a common root clock.

5.1 Elements of a Sampling Network

Let us review the elements that make up a sampling network. Expressions
are the basic syntactic element of a sampling network that, like nodes in the
graph, define a flow based on input flows (variables). Constants and variables
are mostly self-explanatory: constants create a sequence of the same value, and
variables refer to input flows defined elsewhere.

Tuples combine multiple flows in a group. Note that there are only tuples
of flows, rather than flows of tuples: the flows in a tuple need not be present at
the same time.
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d ::= f p = e component definition

| d; d definition sequence

p ::= x | p on x | (p, ..., p) pattern

e ::= κ constant flow

| x variable

| (e, ..., e) tuple

| let p = e; p = e, ...; in e local definitions

| e op e buit-in opererator

| e if e else e mux operator

| f e component instantiation

| e on x clocked expression

| pre e synchronous delay

| e → e initialization

| e when e down-sampling

| current e up-sampling

| sample e asynchronous sampling

x, f identifiers

Figure 5.2: Full syntax of a sampling network.
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5.1.1 Primitive Operators

An operator expression applies a primitive functional operator to the consecutive
values of its input flows. For example the following program depicts a single
node with input and output flows.

op
y

v1, v2, ...

z w1, w2, ...

x
v1 op w1, v2 op w2, ...

Figure 5.3: x = y op z

Primitive operators include the boolean conjunct, disjunct and negation as
well as numerical operators such as addition and multiplication.

5.1.2 Synchronous Delay (pre)

The synchronous delay delays the input flow until the next tick of the clock.
Or, said differently, the synchronous delay gives the previous value of the input
flow. The output of a synchronous delay is undefined at the first time instant,
because there is no value for the “previous” time instant. Figure 5.4 shows a
delayed flow.

5.1.3 Initialization (→)

The initialization expression defines a value for the first instant. It is typically
used to define the otherwise undefined value of a delayed stream with a constant
at the right-hand-side, e.g., true -> pre x. The following example shows the
use of a pre-initialized synchronous delay.

pre →y
v1, v2, ...

z
w1, w2, ...

⊥, v2, ...
x

w1, v2, ...

Figure 5.4: x = y -> (pre z)

5.1.4 Clocks and their Domains (on)

Each flow in a program is associated with a clock that indicates when the values
in a flow occur. The clock c of a signal x is a boolean flow that has the value
true exactly when x has a value.

The domain of a clock consists of all flows with a particular clock. In the
graphical notation, clock domains are depicted as rectangles with rounded cor-
ners connected with a fat arrowhead to the endpoint of the clock. The origin
of a flows (arrows) associates the flow to the clock. For example, the domain of



CHAPTER 5. SAMPLING NETWORKS 77

the clock c in the distributed watchdog in Figure 5.1, consists of flows a, x and
sample y.

In the textual notation, flows are either explicitly associated to a clock using
the on expression or pattern, or implicitly when the clock can be inferred from
sub-expressions and the context. For example, the expression x + y defines a
flow that is implicitly clocked by the same clock of flows x and y. Explicit an-
notation is typically necessary for sampling expressions. For example, the basic
expression sample x has ambiguous semantics if it is not explicitly associated
to a clock (e.g. sample x on c). The expression x + sample y, however, may
be associated implicitly to the clock of x.

It is possible to write x on c on d for a flow x clocked by flow c which, in
turn, is clocked by flow d. The flows of a tuple are all clocked individually, e.g.,
(x on c, y on d). Clock annotations distribute over tuples, i.e., writing (x,

y) on c is equivalent to (x on c, y on c).
Flows cannot have arbitrary clocks, so explicit clock annotations must re-

spect certain rules. For example, the expression x on c + y on d is not per-
mitted because the added flows may not be present simultaneously at all times.
Section 5.2.2 formalizes the constraints on clocks through the notion of well-
clocked programs.

5.1.5 Sampling (sample, when, current)

The sample expression realizes communication between two different clock do-
mains through the sampling of memory. At each tick of the clock of the input
flow the value is written to a one-place buffer. At each tick of the output clock,
the output value is the current value in the buffer. If there is no tick of the
output clock for two subsequent inputs the buffered value is simply overwritten.
Two ticks of the output clock without an interceding tick of the input will yield
two subsequent copies of the buffered value. If both input and output are simul-
taneous writing the buffer precedes reading it. Consequently sampling a flow
on its own clock (x = sample y where x on c and y on c) implies equality
of flows x and y. The expression sample (y on c) on d, illustrated in Figure
5.5, creates a flow on clock d that consist of the most recent value of the flow y.

y x

p1, p2, p3, ...
c

q1, q2, q3, ...
d

v1, v2, v3, ... v1, v3, v3, ...

p1 ≤ q1 ≤ p2 ≤ p3 ≤ q2 ≤ q3 ≤ ...

Figure 5.5: x = sample (y on c) on d

It is an asynchronous construct, because the two clock domains do not need
to be synchronized in any way. As we will now show, the synchronous sampling
primitives when and current of Lustre are special cases of our sampling

primitive where the clocks are related hierarchically.
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y x

c

d

(a) x = current (y

on c) on d

y x

c

d

(b) x = (y on d)

when c

Figure 5.6: Synchronous sampling as a special case of asynchronous sampling.

The expression current x over-samples the flow x depending on the clock of
the resulting flow. That is, given the clocked expression current (y on c) on

d, the resulting flow interpolates the flow y by repeating the last value of y, if it
is absent. As shown in Figure 5.6(a) it is defined by the following equivalence
(by equality of the defined flows):

current (y on c) on d = sample (y on c) on d if c on d

The expression x when y selects the values in flow x when the value in y

is true. This constitutes down-sampling resulting in a new flow with clock y.
More precisely (as depicted in Figure 5.6(b):

(y on d) when c = sample (y on d) on c if c on d

The two synchronous sampling primitives can also be combined in a con-
struction that is almost equivalent to the sample expression:

sample (y on c) on d = current (y on c) when d

Almost, because their combination requires the existence of a clock e such that
c on e and d on e. In Figures 5.6(a) and 5.6(b), the hierarchical relation of
the clocks is illustrated by nesting the clock domains of c and d.

The sampling primitive also simplifies synchronous composition of systems,
i.e., within the same hierarchy, because it allows the communication between
arbitrary levels within the hierarchy. Up- and down-sampling, on the other
hand, only allows communication between the domain of a clock and the domain
of its direct super- or sub-clock.

Consider Figure 5.7 that depicts a synchronous composition of the compo-
nents A and B. Both have the same root-clock r but the components’ clocks are
different: A runs on d, itself a subclock of c, and B runs on e. With the sam-
pling primitive, the composition is simple: B (sample (A on d) on e). The
relation between the clocks d and e is irrelevant to the composition itself. The
same composition with up- and down-sampling, however, depends on the re-
lation between the clocks in the hierarchy: B ((current (current (A on d)

on c) on r) when e). The current primitive up-samples a flow to the clock
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d

c

e

r

Figure 5.7: Communication between different clock domains within the same
hierarchy with a single sampling primitive.

that is one level higher in the hierarchy and the when primitive down-samples a
flow to a clock that is one level higher. If a change in the modules that define
the clocks introduces or removes a level in the hierarchy, the composition must
be adapted accordingly.

Although the sampling primitive subsumes the functionality of both the
up- and down-sampling primitives, we maintain the latter two to facilitate the
explicit construction of synchronous systems. The up- and down-sampling prim-
itives often obviate the need for explicit clock annotations with on.

5.1.6 Local Definitions and Cycles (let...in)

The let expression binds variables to local definitions and hides the locally
defined flows. Although it may also facilitate reuse and improve legibility (hiding
prevents the cluttering of the name-space and enables variable shadowing) it is
a necessary component to define cyclical circuits in the textual format. For
example, a simple oscillator that has a single output that alternates between
true and false and no input is defined as follows.

not pre →

true

x

Figure 5.8: let x = true -> pre (not x) in x

5.1.7 Components

At the top-level a program consists in a sequence of component definitions. A
component definition fp = e consists in a composition of variables (a pattern)
that declare names for input flows and an expression that defines the output
flows.

Components defined at the top-level, are instantiated by inserting the expres-
sion e while substituting (taking care not to cause name-conflicts) the variables
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in pattern p with the expressions e� in the instantiation fe�. Circular depen-
dencies between components are not allowed, because they would result in an
infinite expansion.

5.2 A Core Language

For the formal treatment of sampling networks we define a small core of ex-
pressions. For simplicity it is limited to boolean values and all expressions are
clocked explicitly. That is, the values of flows must be in B and each flow
expression eon c is associated with a flow variable c that is its clock flow. More-
over, the structure of a program is completely flat: the program is reduced to
collection of atomic equations without let-expressions. Each declaration binds
a variable to a single primitive that operates only on variables, so expressions
cannot be nested. The flattened program is very close to the graphical repre-
sentation: each declaration corresponds to a node and each variable to an edge
in the graph. The core language is as expressive as the full language but less
convenient to write.

Definition 25 (Core sampling network). A core sampling network language
consists in a set of equations of the form x = e where x denotes a variable name
and e an expression of the following syntax:

e ::= v on x constant value

| x or y on z disjunction

| x and y on z conjunction

| not y on x negation

| prex on x synchronous delay

| sample(x on x) on x asynchronous sampling

where x, y, z are flow identifiers. Let V denote the set of all flow identifiers
(variables) used in a program.

Not all syntactically correct programs are valid. Following [HCRP91] which
defines the similar constraints on Lustre programs, sampling networks must
satisfy the following criteria:

• A program may not redefine the same variable. That is, each equation
in a program {x1 = e1; ...; xn = en} must bind different variables (i �=
j =⇒ xi �= xj).

• Programs must be acyclic unless cycles are interrupted by a synchronous
delay. That is, programs can not contain circular dependencies between
flows, unless the cycle contains a synchronous delay. For example, the
expression let x = x and y; in x is invalid because x depends on itself.
The expression let x = (pre x) and y; in x, however, is valid because
the loop is broken by a delay.
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• Programs must be well-clocked. The arguments of primitive operators
(negation, conjunction, and disjunction), delay respectively must have the
same clock. For example, the expression (x on c) and (y on d) is ille-
gal unless c = d because the semantics are not well defined if either x or
y is absent.

The following subsections formalize and clarify the last two constraints further.

5.2.1 Causality and Cycles

Programs are required to be acyclic because cyclical definitions of flows may be
non-deterministic and contain deadlocks.

Consider again the cyclic expression let x = x and y; in x and note that
there are flows for x and y that satisfy the equality: e.g. a pair of flows where
x is always false and a pair where both flows are equal. Such a program is not
deterministic; the input does not uniquely determine the output.

Similarly, we want to avoid cyclical clock definitions, such as in the simple
program in Figure 5.9. Even though there is a single solution, the timing of the
flows is non-deterministic.

true

true

Figure 5.9: let x = true on y; y = true on x; in x

Additionally cyclic definitions may define deadlocked programs if there is
no solution to the given equations. For example, the simple cyclic expression
let x = not x; in x has no solutions since x cannot be true and false at the
same time. While in this example the contradiction is easy to spot, finding
contradictions in general expressions is a boolean satisfiability problem.

To avoid cyclical programs we require flows to be ordered by a precedence
relation pre that can be interpreted loosely as the (partial) order in which values
can be calculated within one time step. For example, in the expression let x =

y or z on c; in x, each value of the flow x can be computed after the values
of y, z, and c have become available/been calculated.

Definition 26 (Acyclic program (≺)). A program is acyclic if there exists a
strict partial order ≺ ⊆ V×V over the variables in a program x1 = e1; ...; xn =
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en; such that, for all equations xi = ei

x = v on c =⇒ c ≺ x

x = y or z on c =⇒ y, z, c ≺ x

x = y and z on c =⇒ y, z, c ≺ x

x = not y on c =⇒ y, c ≺ x

x = pre y on c =⇒ c ≺ x

x = sample(y on d) on c =⇒ y, d, c ≺ x

It is important to note that only the synchronous delay can break a cycle
and not the sampling primitive, even though sampling also involves memory.
The following distributed oscillator, for example, is still cyclic even though the
system has a reasonable semantics if the clocks c and d do not occur simulta-
neously.

distr_osc (c,d) =

let x = not (sample y) on c;

y = sample x on d;

in y

The requirement that programs be acyclic is a trade-off between expressive-
ness one one side and complexity on the other. There are useful programs with
well-defined (and deterministic) semantics with loops. For example, a flip-flop
could be defined as follows if cycles were permitted:

flipflop (r,s) =

let q = not (r xor nq)

nq = not (s xor q)

in q

However, cyclic programs are easy to detect and correct (made acyclic) and
can be compiled to efficient sequential code [HRR91]. The general problem of
causality in the related problem of cyclic combinational circuits was shown to
be NP-Hard by Malik [Mal93].

5.2.2 Well-Clocked Programs

Core expressions are clocked explicitly such that each flow (identified by its
variable) is associated with a clock. The association between flows and their
clocks has to be consistent with our expectations of the semantics: the operands
in the expression x or y are expected to be available at the same time. That
is, x and y must be associated with clocks that are present and true at the same
time instants. To make sure the clocks are consistent we require a function
that associates each flow with a clock such that the appropriate streams have
matching clocks.

Additionally, the presence of the flow x defined by a program let ... in

x must be determined by an input flow rather than a locally defined flow.
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Definition 27 (Well-clocked program (̂·)). A program is well-clocked if there
exists a function ·̂ ∈ V → V from variable to variable in a program x1 =
e1; ...; xn = en; such that for all equations xi = ei,

xi = v on c =⇒ x̂i = c

xi = y or z on c =⇒ x̂i = ŷ = ẑ = c

xi = y and z on c =⇒ x̂i = ŷ = ẑ = c

xi = not y on c =⇒ x̂i = ŷ = c

xi = pre y on c =⇒ x̂i = ŷ = c

xi = sample(y on d) on c =⇒ x̂i = c, ŷ = d

The above definition excludes some programs that might in fact be consid-
ered valid because clocks must be syntactically equal. Especially in a larger
system, it is conceivable that two flows are clocked by different flows that are
true at exactly the same instants and therefore do have the same clock with
different names. The more precise alternative would be to require the clock
flows to be equal rather than the same. Verifying the equality of two flows un-
fortunately is undecidable [CPHP87] and we therefore make the same choice as
the designers of Lustre to require only syntactic equality of clocks.

The clock relation is functional: each variable is related to a clock, including
variables that serve as clocks themselves. For example, the when expression
depicted in Figure 5.6(b) defines a signal x such that x̂ = c and, in turn, ĉ = d.
Because the precedence relation (≺) establishes a strict partial ordering for
signals with respect to their clocks, the transitive closure of the clock function
(̂·) defines set of clock hierarchies (or forest of clocks). The root clocks of the
hierarchies are their own clock (x̂ = x). Root clocks are always input clocks as
they cannot be defined without a cycle.

5.3 Semantics of a Sampling Network

The semantics of sampling networks are defined by a labelled state-transition
system which states consist of the values stored in the sampling and delay com-
ponents and transitions are labelled with the set of flow variables that are present
and true at the time of the transition.

Labelled transition systems consist of a set of states and a set of directed,
labelled transitions. It describes behavior as a sequence of transitions through
the states.

Definition 28 (Labelled transition system). Let �S,Σ, S0,→� denote a labelled
transition system with states S, alphabet Σ, initial states S0 ⊆ S, and transitions
→ ⊆ S × Σ× S. The notation s

σ−→ s� is equivalent to (s,σ, s�) ∈ →.

We only consider only a special case of labelled transition systems where all
labels are sets of events that occur at the time of a transition. That is, we use
transition systems �S,℘(V), S0,→� where V is a finite set of events.
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1

2

{i}{j} � 1 2 3
{i, k} {i}

{j}{j}
=

(1,1) (2,1) (3,1)

(1,2) (2,2) (3,2)

{i, k}

{j}

{i, k}

{j}

Figure 5.10: The composition of two labelled transition systems.

Composition of labelled transition systems is achieved by extending the com-
position operator �, defined for processes in Section 2.2.1, to labelled transition
systems. It composes two transition systems with named events synchronizing
only on events in both events. Figure 5.10 gives an example composition.

Definition 29 (Composition (�)). The composition A � B of two transition
systems is defined as ((s0A, s

0
B), SA × SB ,ΣA ∪ ΣB ,→) where

(sa, sb)
σa∪σb−−−−→ (s�a, s

�
b) ⇐⇒ sa

σa−→A s�a, sb
σb−→B s�b, σa ∩ ΣB = σb ∩ ΣA

(sa, sb)
σa−→ (s�a, sb) ⇐⇒ sa

σa−→A s�a, sb ∈ Sb, σa ∩ ΣB = ∅
(sa, sb)

σb−→ (sa, s
�
b) ⇐⇒ sa ∈ Sa, sb

σb−→B s�b, ∅ = σb ∩ ΣA

The semantics of a sampling network are described as a composition of tran-
sition systems that define its elementary components. Each transition represents
a global, discrete, time-step in which a signal is present. The hierarchical nature
of flows implies there is at least one root clock present in each transition. A
flow x is present during a transition s

σ−→ s�, that is it has a value, if x̂ ∈ σ and
it is true if x ∈ σ.

Definition 30 (Transition system of a sampling network (�x = e�))). The la-
belled transition system of a sampling network with equations {x1 = e1, ..., xn =
en} input flow variables I as the composition

�xi = ei� � ... � �xn = en�
where the labelled transition systems �x = e� for individual equations are defined
in Figure 5.11.

These semantics only apply to non-cyclic and well-clocked programs. For
example the transition system of the cyclic program let x = not x on c in

x would consists of a single state and a single transition where x and its clock c

are present at every transition. The transition system of the program let c =

false -> not (pre c on d); x = sample y on c; in x would have transi-
tions where x is present without its clock c.

5.4 Related Work

Sampling networks consists, for the most part, in synchronous data-flow prim-
itives used in Lustre with some syntactical differences. The main difference
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◦
�
{x̂, x} if v

{x̂} otherwise

(a) �x = v on x̂�

tt ff{x, y, x̂, ŷ} {x̂, ŷ}

{x, x̂, ŷ}

{y, x̂, ŷ}

(b) �x = pre(y on ŷ) on x̂�

◦
{x̂, ŷ, ẑ}{x, y, x̂, ŷ, ẑ}

{x, y, z, x̂, ŷ, ẑ} {x, z, x̂, ŷ, ẑ}
(c) �x = (y on ŷ) or (z on ẑ) on x̂�

◦ {x, x̂, ŷ}{y, x̂, ŷ}
(d) �x = ¬(y on ŷ) on x̂�

tt ff

{ŷ}
{ŷ, x̂}

{ŷ, y, x̂, x}
{ŷ, y}

{ŷ, y}
{x̂, x}

{x̂, x, ŷ, y}

{x̂, ŷ}
{ŷ}

{x̂}

(e) �x = sample(y on ŷ) on x̂�

Figure 5.11: Labelled transition systems for sampling network components.

is the sampling primitive: while Lustre offers primitives for up- and down-
sampling with current and when it requires the construction of a single clock
hierarchy as was shown in Section 5.1.5. In [CMSW99] a quasi-synchronous
system with communication-by-sampling is designed in Scade, a commercial
implementation of Lustre, using a combination of up- and down-sampling to
cross from one clock domain to another.

The data-flow language Signal [LB87, AGA+95] enables the construction of
polychronous systems where clocks are related in a forest of clocks rather than a
clock hierarchy (tree of clocks). Such forests are created by locally joining flows
with the default primitive that merges two differently clocked flows, preferring
the left-hand-side if both are present at the same time. The default statement
can be used to define communication by sampling in a similar fashion: x = y

default (pre x) when c1 and a clock constraint x =̂ defines the same flow
as x = sample y. As depicted in Figure 5.12 it creates an additional clock k

that is the union of clocks c and e.

1With adapted syntax; in signal we would write x := y default x$1
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Figure 5.12: The default primitive of signal, as adapted to our graphic repre-
sentation, joins two flows creating a new clock-domain.



Chapter 6

Analysis of Sampling

Networks

Sampling networks permit us to write programs that can be executed syn-
chronously, when all root-clocks are synchronized, asynchronously, when the
clock ticks interleave arbitrarily, or quasi-synchronously, when the possible in-
terleavings are bounded.

Drift bounds allow us to describe clocks ranging from total synchrony and
complete asynchrony by limiting the maximum and minimum number of ticks
of one clock, for every interval of ticks of another clock.

In this chapter, we explore the semantics of sampling networks where the
root clocks and input signals are described by to drift bounds. First, we will
verify safety properties of such a system by performing a reachability analysis
of the state-transition system. Then, we will show how to extract the drift
bounds of the output flows of such a system through analysis of the labelled
transition system that defines the system. Finally, we show how we can extract
drift bounds of the behavior of such a system without constructing the actual
state space.

6.1 Verification of a Sampling Network

A safety property is a requirement that something bad, as defined by the prop-
erty, never happens. The verification of safety properties is important for safety-
critical embedded systems where failure could be catastrophic, such as a nuclear
power plant. In this section we show how to verify a safety-property of a sam-
pling network in an environment described by drift bounds.

We express safety properties as a reachability problem in of the labelled state-
transition system of a sampling network composed with a labelled transition
system that models all behaviors allowed by the drift bounds on the root clocks
and inputs. The safety property then distinguishes bad states, where safety
property has been violated, from good states. Verification of such a safety

87
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property is achieved through a reachability analysis that computes the set of
all states that are reachable from the initial state. If the set of reachable states
contains any bad state, the system violates the safety property.

Following the example of [HR99] we present the reachability problem as a
sampling network that defines a single output that is true, as long as the safety
property has not been violated. This approach has the advantage that we may
use sampling networks for all aspects of the system.

Satisfaction of the safety-property is checked by a synchronous observer, a
component in the sampling network that defines a boolean flow that is true as
long as the safety-property is satisfied. Multiple observers can be combined to
check multiple safety-properties as well as assumptions on the input.

6.1.1 Drift Bound Observer

The drift bound observer is a sampling network component that verifies if two
flows satisfy their bounds. It is mainly used to verify that the root-clocks be-
haves realistically, but can also serve to express assumptions on the inputs or
requirements on the outputs.

Figure 6.1 depicts the following upper drift bound observer of the flow x

with respect to the flow y. The simple observer counts the number of instants
where x is true during the past four instants where y is true. If the x is true
more than twice for the past four, that is previous three and current, instants
the output flow of the observer false. Otherwise the output is true. Thus, it
implements an observer that verifies that flows x and y respect a drift bound
such that Du

x/y(4) = 2.

udrift_obs_2_4 (x, y) =

let cnt = counter (y, x);

w_1 = 0 -> pre (sample cnt on y);

w_2 = 0 -> pre w_1;

w_3 = 0 -> pre w_2;

sum = sample cnt + sample w_1 + sample w_2 + sample w_3 on x;

sat = true -> sum <= 2 and pre sat;

in sat

counter (reset, incr) =

let cnt = 0 -> (0 if reset else pre cnt) + d;

d = 1 if incr else 0;

in cnt

The counter component counts the number of instants where incr is true
and resets the counter to zero when reset is true. The drift_obs component to
count the number of events between two consecutive occurrences of y (instances
where y is true) and stores the counts for the last four occurrences of y in w_1,
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Figure 6.1: Drift bound observer whose output sat is true if Xx/y(n + 4) −
Xx/y(n) ≤ 2 for the n-th occurrence of y. It counts the number of occurrences
of x in each interval of four consecutive occurrences of y and verifies the total.

w_2, and w_3. If the total over the last four is greater than four is less than two,
the drift bound observer is satisfied. Note that the resulting boolean signal sat
is clocked by x because a violation of the drift bound will occur at the activation
of x.

6.1.2 Reachability Analysis of a Watchdog Protocol

Consider the watchdog protocol depicted in Figure 6.2. The watchdog observes
an alternating bit to verify if the other component is still active and raises an
alarm if it no longer receives changes. Under normal circumstances the system
should not raise an alarm, e.g., because the alarm would trigger a irrecoverable
emergency shut-down procedure. If the root clocks p and c do not alternate
regularly it is possible that the alarm will be triggered spuriously either because
the alternating bit doesn’t update on time, or the watchdog doesn’t wait long
enough for the bit to change.

We extend the watchdog protocol with observers to verify correctness un-
der normal operating conditions. First we add rift bound observers to model
assumptions on the root clocks:

• The watchdog cannot oversample the alternating bit. Consequently, the
watchdog’s clock d can tick at most once for every tick of the alternating
bit’s clock c.

• Second, the alternating bit cannot change more than three times for every
two samples of the watchdog. Therefore, the clock c of the alternating bit
may tick at most three times for every two ticks of d.
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Figure 6.2: A distributed watchdog protocol with an alternating bit. The pro-
cess on the left sounds the alarm if the alternating bit signal hasn’t changed for
three instances.

Second, we add an observer that ensure the alarm is not triggered, i.e., the value
of alarm is never true. This leads to following sampling network system that
defines a single output flow that is true, as long as the system behaves correctly.

altbit =

let b = false -> not (pre b);

in b;

watchdog b_0 =

let b_1 = pre b_0;

b_2 = pre b_1;

in not ((b_0 xor b_1) and (b_1 xor b_2));

always p =

let x = p -> p and pre x;

in x;

is_init_2 d = current (true -> true -> pre (pre false) on d)

system (c,d) =

let bit = altbit on c;

alarm = watchdog (sample bit) on d;

real = ldrift_obs_1_1 (c,d) and udrift_obs_3_2(c,d);

correct = not (current alarm);

in correct or not always real or is_init_2 d;

Let us review the components used in the system.

altbit The alternating bit component produces an alternating bit. It is de-
picted on the right of Figure 6.2.
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watchdog The watchdog component detects if the alternating bit changes dur-
ing any of the last three samples. It is depicted on the left of Figure
6.2.

always This component defines a flow for a given boolean input flow, that
becomes false as soon as its input is false and remains false from that
point on. It is used on the output of observers to make sure all states that
have been reached by taking a bad or unrealistic transition are marked as
bad or unrealistic.

is_init_2 Creates a stream that is true for two ticks of d and remains false
after. It is used to allow the system to initialize.

drift_obs_p_q The (upper) drift bound observers for a constraint that allows
at most p events of one flow per q of the another. They are a variants of
the depicted in Figure 6.1 with a window size of q and bound p.

Verification is achieved by constructing the labelled transition system of
the observed sampling network and performing a reachability analysis. The
reachability analysis consists in the computation of the transitive closure of
the transition relation of a finite-transition system. That is, we define the set
reach(�S,Σ, s0,→�) ⊆ S of reachable states of a labelled transition system as
follows

reachA = {s | s ∈ S, s0 →∗ s}
where →∗∈ S × S denote the transitive closure of transition relation →.

Constructing the transition system by composition the transition systems
of the separate equations yields the reachable state-space depicted in Figure
6.3. The displayed transition diagram does not contain all states, because there
would be far too many. In particular, the states with unrealistic behavior —
states that can only be reached by violating the drift bounds — have been left
out. There should be an outgoing transition for every combination of the clock
c and d, but the missing ones would have violated the drift bounds. Execution
starts in the initialization state marked 0|000, but the system is only behaving
correctly once it has left the initialization states. That is, it may (spuriously)
raise the alarm during the first two ticks of d, even during normal execution.
Observe that all reachable states outside of the initialization are indeed correct
(have no three equal bits in the watchdog).

With the example we have shown how to verify a safety-property, be it a drift
bound or any other property expressed by an observer, of a sampling network
driven by clocks described by drift bounds. The main purpose was to introduce
drift bound observers and to understand drift bounds in the context of sampling
networks and labelled transition systems.

6.2 Extracting Drift Bounds

This section will show how to extract drift bounds of labelled transition systems
in general, and the labelled transition systems of sampling networks in particu-
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Figure 6.3: Reachable state-space of the watchdog protocol where the drift
bounds are satisfied or are in the initialization phase (in the box). States are
annotated with the values | b_0 b_1 b_2 for the flows of the alternating bit (b)
and the watchdog protocol.
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lar. Where the previous section showed how to verify (weakly-hard) properties
of a system in an environment described by drift-bounds, this section shows how
to infer drift bounds of signals defined by a sampling network. More precisely,
we extract the drift bounds of a sampling network executed in an environment
described by drift bounds. That is, we only consider the behavior of a system
where the environment — the clock signals that drive execution and inputs —
is constrained by drift bounds. For weakly-hard properties the computed drift
bounds reveal how frequently it is violated with respect to a reference clock or
event.

6.2.1 Drift Bounds of a Transition System

Let us first clarify how signals and their drift bounds relate to transition systems.
Realize that a transition system, where transitions are labelled with a set of
event names, defines a process of a system with as many signals as there are event
names. The process of a transition system consists of all behaviors such that
there exists a path from the initial state such that each consecutive transition
corresponds to a consecutive time-instant where the signals in the transition
label are also present at that time-instant.

Consider the labelled transition system depicted in Figure 6.4. One possible
path consist in the following sequence.

s1
{x,y}−−−→ s2

{y}−−→ s3
{y}−−→ s4

{x}−−→ s2

A corresponding behavior is (x, y) = ({1, 4}, {1, 2, 3}). It is constructed by enu-
merating the transitions and using the transition numbers as time of occurrence.

By assigning different, but strictly increasing, times to the transitions an
infinite number of behaviors can be constructed for a single path. Note however,
that all such behaviors have the same relative counter functions. This is reflected
by the intuition that the relative counter functions describe the interleaving of
events.

A drift bound limits the number of possible interleavings of events in a path.
For example, an upper drift bound such that Du

x/y(3) = 2 dictates that each
path segment may have at most two transitions where x is present, per three
transitions where y is present. The above path, for example, satisfies that drift
bound.

More generally we say that a labelled transition system satisfies a drift
bound, if all its behaviors satisfy the drift bound. This means, that the drift
bound is satisfied, if there exists no path (from the initial state) with segments
that violate the drift bound. The labelled transition system depicted in Figure
6.4, for example, satisfies a drift bound Du

y/x(2) = 2. It does not, however,
satisfy a bound where Du

x/y(4) = 2 as evidenced by following path segment:

... → s2
{y}−−→ s3

{x}−−→ s2
{y}−−→ s3

{x}−−→ s2
{y}−−→ s3

{x}−−→ s2
{y}−−→ s3 → ...
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Figure 6.4: A labelled transition system (a) and the tightest drift bounds (b)
for its behaviors.
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The drift bound Dx/y(Δ) of a labelled transition system bounds the number
of occurrences of x in all path segments (from any reachable state) that contains
exactly Δ occurrences of y and ends in a transition where y occurs.

6.2.2 An Algorithm to Extract Drift Bounds

We now introduce an algorithm that finds the exact drift bound Dx/y of the
events x and y in of a labelled transition system with states S. That is, an
algorithm to find the maximum and minimum number of occurrences of x in a
path with Δ occurrences of y and y is present in the last transition.

Algorithm Sketch

The algorithm proceeds in the following steps illustrated in Figure 6.5. For
now, we only compute the upper drift bound Du

x/y, later we generalize to lower
bounds.

Define the weight of a path as the number of occurrences of x in that path.
Construct transition system H with states S where the transitions are labelled
with weights. The weight is 1 if x is present in the transition and 0 otherwise.
The transition system now H contains the weight of all transitions of the labelled
transition system where y is absent.

Compute the transitive, reflexive closure H∗ of H to obtain the weight of
all paths (of an arbitrary number of transitions) free of y transitions. If there
are loops (infinitely long paths) where y does not occur but x does, the weight
is infinite and we can stop the algorithm because drift is unbounded. Note that
it is only necessary to maintain the largest weight of all paths connecting two
states.

The upper drift bound Du
x/y(1) for an interval of size one is the maximum

weight of all paths that contain a single transition with y in the last transition.
To obtain the (maximum) weight of all paths ending in a transition with y,
define the weight-labelled transition system K with states S that contains the
transitions where y is present. As for H, the transitions of K are labelled with
a weight of 1 if x is present and 0 otherwise. By concatenating transitions from
H∗ with transitions K we obtain the weights of all paths ending in a transition
with y. The maximum weight of all paths in the concatenation H∗K gives the
upper drift bound Du

x/y(1).
To compute the drift bound for larger intervals, we concatenate transitions

of H∗K to obtain the weight of paths with, at first, two occurrences of y, then
three, etc.

The analysis for the lower drift bound proceeds in the same fashion, except
that we maintain the minimum weight (number of occurrences of x) at each
step rather than the maximum weight.

The analysis is restricted to the reachable part of a labelled transition sys-
tem. This implies that the analysis is preceded by a reachability analysis of the
transition system. Without the reachability analysis the result may overesti-
mate the bounds, because it would take into account (segments of) paths that
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do not come from an initial state.

The Max/Min-Plus Based Algorithm

The algorithm is expressed by matrix computations in the max-plus (for the
upper bounds) and min-plus (for the lower bounds) algebras [BCOQ92] on the
incidence matrices of transition systems H and K. This not only enables a very
concise formulation of the algorithm, but also allows us to use some well-studied
algorithms.

Weight-labelled transition systems are transition systems where all transi-
tions are labelled with a number from N∞ that we call weight. The incidence
matrix of a weight-labelled transition system, henceforth the weight matrix, is
a square matrix indexed by states S.

Each element Wpq ∈ N∞ ∪ {�} of a weight matrix W gives the maximum or
minimum weight of all paths from state p ∈ S to state q ∈ S. For the matrix of
maximum weights the elements have the following significance:

• If Wpq ∈ N there is a path of finite weight Wpq from p to q.

• If Wpq = � there is no path from p to q.

• If Wpq = ∞ there is a path of infinite length.

The transition system H contains the weights of all transitions where y is
absent. The transition system K contains the weights of all transitions where
y is present. For example, the weight matrices H and K of Figure 6.5 are

H =




� 1 �
� � 0
� � �


 K =




� � �
� � �
0 � 1




These matrices are elements of the max-plus and min-plus algebras. In
these algebras, addition plays the role of multiplication, and the minimum resp.
maximum take the role of addition. We extend the addition operator such that
x+ � = � and x+∞ = ∞, and extend the maximum such that max(x, �) = x.
In the min-plus algebra � = ∞.

Matrix multiplication of weight matrices A and B with dimensions N × O
and O ×M respectively, is defined in the max-plus algebra such that

[AB]ij = max
1≤k≤O

Aik +Bkj

for all 1 ≤ i ≤ N and 1 ≤ j ≤ M and with the minimum in stead of the
maximum for the min-plus algebra.

The concatenation of the paths of two weight-labelled transition systems,
where we add the weight of connecting paths and only keep the paths with
maximum or minimum weight between any two states, consists in the multipli-
cation of their incidence matrices in the max- and min-plus algebras.
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Figure 6.5: The subsequent steps of the drift bound extraction algorithm for the
upper drift bound Du

x/y of the example at the top. Each step yields a weight-

labelled transition system where the weight w of a path p
w−→ q is the maximum

number of occurrences of x in a path from p to q.
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Multiplication also leads to powers of square matrices A of dimension N
such that An+1 = AAn and A0 is the identity matrix, i.e., for all 1 ≤ i, j ≤ N

A0
ij =

�
0 if i = j

� otherwise

To compute the longest paths (of any length) and find loops (including loops
longer than one transition), we concatenate paths of increasing lengths to obtain
the transitive closure. For the weight matrices, this amounts to computing
higher powers. Each consecutive power of the matrix give the weight (number
of transitions containing i) of the path between each pair of states. The H∗

closure of H is defined for all p, q ∈ S as follows

H∗
pq = sup

n∈N
Hn

pq

and consists of all longest paths (of any length) between any two pairs of states.
For example, the closure of H in Figure 6.5 is as follows

H∗ =




0 1 1
� 0 0
� � 0




The closure can be computed using a (modified) Floyd-Warshall [Flo62,
ORE] algorithm. Values in the diagonal of H∗ can either be zero or infinite,
i.e., H∗

ss ∈ {0,∞} for any state s ∈ S. If any of the elements is infinite there is
a loop and the drift is unbounded.

The concatenation H∗K gives the weights (maximum number of occurrences
of x) for all paths between any two pair of states ending in a transition that
contains y. That is, it gives the drift bound for an interval of one for all possible
transitions. To obtain the drift of for larger intervals we iteratively concatenate
the paths in [H∗K] (adding their weights) to obtain paths of increasing lengths:

[H∗K]1 =




1 � 2
0 � 1
0 � 1


 [H∗K]2 =




2 � 3
1 � 2
1 � 2


 [H∗K]3 =




3 � 4
2 � 3
2 � 3




That is, the upper drift bound is computed as the least upper bound of all
paths, between any two states, with Δ occurrences of the reference clock y:

Du
x/y(Δ) = max

p∈S
max
q∈S

[H∗K]Δpq

The lower drift bounds of the examples are computed similarly, except that
computations are performed in the min-plus calculus. Thus, all supremum and
maximum operators are replaced by infinimum and minimum operators respec-
tively.
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Figure 6.6: Simple thermostat that samples environment temperature to control
a heater.

6.2.3 Computing the Drift Bounds of a Thermostat

To illustrate the extraction of drift bounds, we will apply the described al-
gorithm to the following program that models a thermostat and heater in an
environment. The thermostat, depicted in Figure 6.6, must control the heater
in order to keep temperature within a desired range. We will use the drift bound
extraction to determine how many consecutive time units the room will can be
too cold or too warm.

thermostat (too_cold, too_hot) =

let heater_on = false -> (not too_hot and pre heater_on) or too_cold;

in heater_on;

heater command = false -> pre command;

environment heater_state =

let too_hot = not udrift_obs_4_5 (heater_state, true);

too_cold = not ldrif_obs_1_5 (heater_state, true);

in (too_hot, too_cold)

system (c,d) =

let command = thermostat (sample (too_cold, too_hot)) on c;

heater_state = heater (sample command) on d;

(too_cold, too_hot) = environment (current heater_state);

realistic = ldrift_obs_1_2 (d, true) and ldrift_obs_1_2 (c, true);

is_temperate = not (too_hot or too_cold);

in (always realistic, is_temperate);

The system defines two output flows: one that is true as long as the envi-
ronment has behaved realistically during execution — the clocks have respected
their drift bounds — and another that verifies that the temperature is within a
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given range. The former is used to delineate realistic behavior and the latter is
subject of the drift bound extraction. Let us review the components that define
the system one-by-one.

thermostat The thermostat switches on the heating if it is too cold and keeps
it enabled until it becomes too hot and leaves it off until it becomes too
cold again.

heater The heater executes its command after a delay of one tick, resulting in a
flow heater_state that is true when the heater is on and false otherwise.

environment The environment component models the environments reactions
to the heating. We consider the clock of the heater to be a discretization
of real time and then consider that it is too warm if the heater was enabled
during 4 out of 5 of the last time units, and too cold if the heater was
disabled during 4 out of 5 time units. We use the drift bound observers
to express these properties.

system The composed system with two observers: one that verifies if the clocks
have behaved realistically, and another that defines the flow is_temperate

that is true when it is neither too warm nor too cold.

The environment runs at the global clock’s speed whereas the thermostat
and heater run on clocks c and d respectively. The clocks are constrained by
the observers such that the thermostat (on c) and heater (on d) are activated
at least once per every two global time steps. The addition of the global clock
makes the thermostat system a synchronous system where the sub-clocks c and
d are boolean input signals serving as clocks.

Figure 6.7 shows the reachable state-space of the thermostat. It only shows
the realistic behavior, i.e., it only shows the states that can be reached while
realistic is always true. All transitions correspond with a tick of the root
clock and are marked with c and d when those signals are present.

Note that it is impossible to stay on a path within the colored states indefi-
nitely: eventually the thermostat will start or stop the heater and temperature
will be corrected. The lower drift bound of is_temperate with respect to its
clock (the global root clock) should reflect this because the number of consec-
utive time instants where is_temperate is false (does not occur) should be
bounded. Figure 6.8 depicts the computed upper and lower drift bounds for
is_temperate. The lower drift bound shows that temperature will neither be
too hot (temperate) after at most four time steps (occurrences of the root clock).
The upper drift bound shows that temperature will either be too hot or too cold
(not temperate) after at least four time steps.

6.3 Compositional Analysis of Sampling Networks

The precision of the drift bound extraction comes at a great cost: the state-space
grows exponentially with every composition, making the analysis infeasible for
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Figure 6.7: Reachable state-space of the thermostat when constrained to realis-
tic behavior. Start state has a double circle, and the red and blue states indicate
when temperature is too high or too low respectively.
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Δ
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x/y(Δ)

Dl
x/y(Δ)

Figure 6.8: Upper and lower drift bounds Dt/r where t is the signal of flow
is_temperate and r is the global root clock signal.

larger systems. This section proposes a compositional method based on the
approach presented in Section 3.4.1. The idea is to partition the system into
separate components and compute the abstraction of each component’s process
when restricted to the drift bounds of the other components’ processes.

To this end, we introduce a Galois connection between labelled transition
systems, that define the semantics of sampling networks, and drift bounds. The
essential operations have already been introduced: the concretization γ of drift
bounds with drift bound observers in Section 6.1.1 and the abstraction α of a
labelled transition system as the extraction of drift bounds in Section 6.2. The
Galois connection justifies the application of the compositional analysis based
on abstract interpretation.

6.3.1 The Domain of Languages

Formally, we relate the semantics of sampling networks with processes by con-
necting the domain of languages of transition systems with the domain of pro-
cesses and drift bounds. That is, we define the domain of languages L of tran-
sition systems as an abstraction for processes. In addition, we show how drift
bounds are indeed an abstraction for the domain of languages. The connections
enable us to base the analysis on an iterative fix-point computation (see Sec-
tion 3.4.1) where components are each modelled by a single mapping over drift
bounds. and connect it with the domain of relative counter functions through
a Galois connection.

The language of a labelled transition system is defined, as is usual, to consist
of the strings that describe all possible paths through the transition system from
the initial state. The string consists of the sequence of the labels, the characters,
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encountered during traversal along a path.

Definition 31 (String). Let the sequence s ∈ Σ∗ denote a string for a labelled
transition system system with alphabet Σ. The empty string is denoted � and
(σ : s) denotes a string where the character σ ∈ Σ precedes the string s.

Consider the labelled transition system depicted in Figure 6.4. The following
sequence describes one possible path in the transition system:

s1
{x,y}−−−→ s2

{y}−−→ s3
{y}−−→ s4

{x}−−→ s2

The string of that sequence is {x, y} : {y} : {y} : {x} : �.
A string of an labelled transition system effectively describes an interleaving

of events, i.e., it describes the order of events in a behavior. We can reconstruct
such a behavior by enumerating the transitions to give them a time-stamp and
reconstruct the signal of each event as the set of all transition numbers that
contain the event in the label. For example, the behavior corresponding to the
path and string above is (x, y) = ({1, 4}, {1, 2, 3}). Formally, we define this as
the string behavior τ s for string s.

Definition 32 (String behavior). Let (τsx1
, ..., τ sxN

) ∈ SV with V = {x1, ..., xN}
describe the behavior of the string s ∈ ℘(V)∗ of a system with events V such that
for all x ∈ V

τ �x = ∅ and τσ:sx = {n+ 1 | n ∈ τ sx} ∪
�
{0} if x ∈ σ

∅ otherwise

The process of a labelled transition system consists of all behaviors defined
by the alphabet and all possible retimings with a monotonic, bijective retiming
function that, when applied to all signals of a behavior, stretches or compresses
time without changing the interleaving of events.

This is not enough, however, to formally consider drift bounds an abstraction
of labelled transition systems because, while both drift bounds and languages
are abstractions of processes, they are not related to each other. Therefore, we
define the following Galois connection where relative counter functions are an
abstraction of labelled transition systems.

Definition 33 (Concrete of languages (L � X)). Let the domain of languages
LV for events V consist of all languages L ⊆ ℘(V)∗. The domain of relative
counter function matrices is an abstract domain for the domain of languages,

i.e., LV α−��−
γ

XV defined by the abstraction function

α(L) = {X | X ∈ XV, x, y ∈ V, s ∈ L,Xx/y = χτs
x
◦ ητs

y
}

In conclusion, the relative counter functions, as well as clock and drift bounds
are formally an abstraction of the languages of labelled transition systems and
sampling networks are an abstraction of processes.
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6.3.2 Abstraction by Concretization and Extraction

With the Galois connection between sampling networks and drift bounds we
define the abstract transfer function �x1 = e1; ...��D for the transition system
of a sampling network with equations x1 = e1; ... such that

�x1 = e1; ...��D(D) = α(�x1 = e1; ...� � γ(D))

The labelled transition system defined by a satisfied drift bound observer of
Section 6.1.1 realizes the concretization γ of a drift bound. We define the
concretization of a drift bound Du

x/y(m) = n as follows

γ(D) = π{x,y} (�z = udrift_obs_m_n(x, y)� � �z = true�)

The composition with a sampling network that defines z, the output of the drift
bound monitor, to be true at all times limits the reachable state space to the
states where the drift bound is satisfied. That is, the above describes a labelled
transition system with a language that consists of all strings that satisfy the
given drift bound.

The extraction of drift bounds presented in Section 6.2 is the abstraction of
sampling networks, i.e.,

[α(�S,℘(V), s0,→�)]ux/y(Δ) = min
p,q∈S

[H∗K]Δpq

where H and K are the weight matrices of (reachable) transitions → with resp.
without an occurrence of y as described in Section 6.2.

6.3.3 A Compositional Analysis

The main practical consequence of the introduced Galois connection, is the ap-
plication of the approximation of composed systems, presented in Section 3.4.1.
With it, we may approximate the abstraction of the composition of sampling
networks x1 = e1; ...xn = en and x�

1 = e�1; ...;x
�
m = e�m with the fix-point of their

abstract transfer functions:

α(�x1 = e1; ...;xn = en�L � �x�
1 = e�1; ...;x

�
m = e�m�L)

� gfp
�
�x1 = e1; ...;xn = en��D ◦ �x�

1 = e�1; ...;x
�
m = e�m��D

�

When the concrete composition has a large transition system due to the com-
binatory explosion of states, the approximation can be used to avoid the con-
struction of the full transition system by analysing only the parts.

Let us illustrate this problem with a simple, synchronous N -place buffer
described equations xi+1 = prexi−1 on c for 1 ≤ i ≤ N . It has one input flow
x0 on c bounded by a drift bound with respect to the clock signal c. The state-
space of the fully composed system grows exponentially in the number of places
in the buffer. Yet clearly, and this is confirmed by the analysis, Du

xi/c
= Du

xi−1
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for all 1 ≤ i ≤ N1, so the construction of the state space is unnecessary to obtain
the required result. By decomposing the system using the abstract transfer
functions, i.e., by computing

�
gfp

�
�x1 = prex0 on c��D ◦ ... ◦ �xn = prexn−1��D

��
xn/c

we obtain the required result, while only computing the composition of a single
synchronous delay (pre) and the concretization of the drift bounds.

In this case, the decomposition gives a precise result, but in general a de-
composition yields an over-approximation, in for sampling networks with cyclical
dependencies between flows. The compositional analysis of a sampling network
x = false -> not (pre x) on c that defines an oscillating flow, for example,
will yield no bound on x (e.g. Du

x/c(n) = ∞ for n > 0). Fortunately, the compo-
sitional analysis is flexible and we can, for example, choose to decompose only
equations involved in a cycle and ignore the others.

6.4 Abstract Interpretation of Sampling Networks

Although the compositional analysis can help us to limit the number of states,
the concretization of drift bounds may yield very large transition systems by
itself. The resulting explosion of the state-space is especially striking in the
case of combinatory components even though the operations are stateless. This
section presents an extension where we replace the abstract transfer functions
of combinational sampling networks with an approximative, abstract transfer
function that operates directly on drift bounds without constructing any labelled
transition system.

6.4.1 Drift Bounds of Clocked Signals

Recall that all flows of a well-clocked sampling network are clocked: each signal
x is associated with another signal denoted x̂. The flow x is true at the moments
t ∈ R when both its clock is present (t ∈ x̂) and its own signal is present (t ∈ x).
It is false when only its clock is present.

By construction a flow in a well-clocked sampling network cannot be present
when its clock is not, i.e., x ⊆ x̂. The clock relation has consequences for the
drift between the signal of a flow and its clock signal: between any number of
events of x there must be at least an equal number of events in x̂ and between
any number of events of x̂ there can be at most the same number of events.
This is formalized by the following lemma.

Lemma 17 (Abstract clock relation). Let (x, y) denote a behavior such that
x on y if, and only if, for all n and Δ in N∞

Xx/y(n+Δ)−Xx/y(n) ≤ Δ ≤ Xy/x(n+Δ)−Xy/x(n)

1Note, however, that Du
xi/c

�= Du
xi−1

but Du
xi/c

(n+1) ≤ Du
xi−1

(n), due to the initialization

of the buffer elements with the value false.
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Proof. To realize that x ⊆ y is implies the inequality, note that at the time of
each occurrence of x there must be at least one occurrence of y and, conversely,
for each occurrence of y there must be one occurrence of x.

In the abstract domain the inequality of Lemma 17 implies that, for any
processes with behaviors (x, y) ∈ S2 where x on y

Dl
y/x(Δ) ≤ Δ ≤ Du

x/y(Δ)

This drift bound is independent of any input or functional aspect of the anal-
ysed sampling network. The bounds hold for any signal in a sampling network
including input signals and root clocks.

6.4.2 Constant Flow

A constant flow is either true or false at every tick of its clock. Thus, either the
stream associated with the constant is equal to its clock (if the constant is true)
or empty (if it is false). Hence, the relative counter function of the constant
flow with respect to its clock is either a constant zero or the identity function.
Let x = v on c for some constant value v ∈ B define a process of all behaviors
(x, c) such that for all n ∈ N∞

Xx/c(n) =

�
n if c

0 otherwise

A constant value of true has no drift with respect to its clock:

[�x = true on c�D]lx/c(Δ) = Δ = [�x = true on c�D]ux/c(Δ)

for all Δ ∈ N∞. A constant value of false never increases at all:

[�x = false on c�D]lx/c(Δ) = 0 = [�x = false on c�D]ux/c(Δ)

for all Δ ∈ N∞. Constant flows are uniquely identified by their drift bounds with
respect to their clock: any signal x with clock c with the bounds Dl

x/c(Δ) = Δ

or bound Du
x/c(Δ) = 0 is a constant flow of value true or false respectively.

6.4.3 Abstract Negation

Negation, e.g., the equation x = not y on c, defines a signal x that is present
on all events in c where y is not present. Therefore the maximum number of
times x can be true in an interval of Δ ticks of c is the difference between Δ
and the minimum number of times y must be true.

Lemma 18 (Abstract negation). Let (x, y, c) be a behavior such that x = not

y on c and (x, y, c) ∈ γ(C,D) then, for any signal z and all n,Δ ∈ N∞

Dl
c/z(Δ)−Du

y/z(Δ) ≤ Xx/z(n+Δ)−Xx/z(n) ≤ Du
c/z(Δ)−Dl

y/z(Δ)
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Figure 6.9: The bound [�x = not y on c��D(D)]ux/z (depicted with �) for bounds

where Du
c/z (depicted with ◦) and Dl
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Proof. Realize that, x = c \ y and therefore

χx(t) = χc(t)− χy(t)

which implies Xx/k(n) = Xc/k(n)−Xy/k(n) for any signal k. That leads, with
some arithmetic, to the stated inequalities.

The abstract negation is defined such that, for all events z and all Δ ∈ N∞,

[�x = not y on c��D(D)]ux/z(Δ) = Du
c/z(Δ)−Dl

y/z(Δ)

Consider, for example, the negation of a constant: x = not true on c. As
Du

c/c(Δ) = Δ and Dl
true/c(Δ) = Δ, the drift Du

x/c(Δ) = 0. The negation x =

not y on c of a completely unconstrained (apart from the drift bound due to
the clock relation) flow y on c with bounds

Dl
y/c(Δ) = 0 ≤ Xy/c(n+Δ)−Xy/c(Δ) ≤ Δ = Du

y/c(Δ)

has the exact same bounds, i.e., Dx/c = Dy/c.
Abstract negation is completely symmetric in the sense that a double nega-

tion yields the original bounds. In a way, the abstract negation exchanges the
upper and lower bounds of a flow. We will use this fact to define exclusively
deal with upper bounds, using upper bounds on negated flows in stead of lower
bounds when needed.

Figure 6.9 depicts the bound computed by the abstract transfer function of
the negation for a given drift bound. The computed upper bound for x with
respect to z is, by definition of the abstract transfer function, equal to the
subtraction Du

c/z −Dl
y/z.
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where Du
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6.4.4 Abstract Disjunction

The drift bound of a binary disjunction x = y or z on c is derived by con-
sidering a best-case scenario, which occurs when signals y and z are true at
different time instances in the interval, i.e., the events in y and z never coincide.

Lemma 19 (Abstract disjunction). Let (x, y, z, c) be a behavior such that x =

y or z on c and (x, y, z, c) ∈ γ(C,D) then, for any signal r and all n,Δ ∈ N∞

Xx/r(n+Δ)−Xx/r(n) ≤ Du
y/r(Δ) +Du

z/r(Δ)

Proof. Realize that x = y∩z, which implies χx(t) ≤ χy(t)+χz(t) for all t ∈ R∞

and therefore also for all ηr(n) with n ∈ N∞.

The abstract disjunction is defined such that, for all events v and all Δ ∈ N∞,

[�x = y or z on c��D(D)]ux/v(Δ) = Du
y/v(Δ) +Du

z/v(Δ)

Of course the disjunction x cannot be true more often than its clock is
present. Yet, with the above lemma we would conclude that x = true or true

on c has a bound Du
x/c(Δ) = 2Δ. Therefore we cannot forget the additional

constraint of clocked flows that Du
x/c(Δ) ≤ Δ.

Figure 6.10 depicts the result of the abstract disjunction when applied to a
given drift bound.

6.4.5 Abstract Conjunction

The abstraction of a binary conjunction x = y and z on c is based on a best-
case scenario where y and z are true at exactly the same time-instances (events in
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x and y occur simultaneously). Logically, the number of time-instances where
both occur simultaneously is bounded by the maximum number of events in
either x or y for any given interval.

Lemma 20 (Abstract conjunction). Let (x, y, z, c) be a behavior such that x = y

and z on c and (x, y, z, c) ∈ γ(C,D) then, for any signal r and all n,Δ ∈ N∞

Xx/r(n+Δ)−Xx/r(n) ≤ min(Du
y/r(Δ), Du

z/r(Δ))

Proof. As for Lemma 19 except that x = y ∪ z which implies χx(t) ≤ χy(t) and
χx(t) ≤ χz(t) for all t ∈ R∞.

The abstract conjunction is defined such that, for all events v and all Δ ∈ N∞,

[�x = y and z on c��D(D)]ux/v(Δ) = min(Du
y/v(Δ), Dl

z/v(Δ))

Remark that it is impossible to derive the abstract conjunction from the
abstract disjunction via the De Morgan laws (or vice versa). This is because
the abstract disjunction only gives an upper drift bound, while the negation
depends on the lower bound.

Figure 6.11 depicts the result of the abstract conjunction when applied to a
given drift bound.

6.4.6 Abstract Boolean Equations

While the introduced operators suffice to represent any boolean operation the
composition of abstractions may lead to a loss of precision in some cases, because
the boolean disjunction will be pessimistic if its operants can be true simultane-
ously. For example, v = (x and y) or (x and z) on c will yield pessimistic
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results for any drift bound where Du
y/c + Du

z/c �≤ Du
x/c and Du

y/c ≤ Du
x/c and

Du
z/c ≤ Du

x/c, because the result cannot be true more often than x is true.
Rewriting to the equivalent equation v = x and (y or z) on c in conjunc-
tive normal form yields a tighter result in the abstraction.

In other words, the decomposition of boolean equations and subsequent ab-
straction, e.g., to approach the abstraction of �v = (x and y) or (y and z) on c�
with the compositional analysis

gfp
�
�v = v1 or v2 on c��D ◦ �v1 = x and y on c��D ◦ �v2 = y and z on c��D

�

yields an overly pessimistic approximation.
This brings us to the abstraction of logical equations in the conjunctive

normal form. Intuitively the conjunctive normal form has the advantage that all
elements in a disjunction are independent variables and can interleave arbitrarily
and therefore adding their upper drift bounds is not pessimistic.

An expression in conjunctive normal form consists of a conjunction of clauses,
where each clause consists of a disjunction of atoms and each atom is either
a variable or a negated variable. Following convention, we consider a CNF
expression to consist of a set of clauses and, in turn, a clause to be a set of
atoms. As such we hold an empty CNF expression (without any clauses) to be
a tautology and an empty clause to be unsatisfiable.

Let e denote the expression in conjunctive normal form and e� an equivalent
expression, not necessarily in conjunctive normal form, that can be transformed
to e using the mutual distributivity of disjunction and conjunction and removal
of tautologies. The conjunctive normal form of an expression has the tightest
abstraction of all forms of that can be obtained by distributivity of the conjunc-
tion and disjunction and the de Morgan laws.

In the abstraction this amounts to distributing addition over the minimum
and vice versa. While addition distributes over the minimum (a + min(b, c) =
min(a+b, a+c)), the minimum only weakly distributes over addition (min(a, b+
c) ≤ min(a, b) + min(a, c)).

6.4.7 Analysis of a Resource Sharing Protocol

In this example we analyse a primitive resource sharing system between subcom-
ponents. To negotiate access to the resource a simple priority-based handshake
protocol is used. Because the components are too distant from each other to
share the same clock domain they communicate by sampling. The clocks are
almost synchronous but do drift over large periods. The result is, that the num-
ber of states is very large as the observer’s windows are large. Therefore we
perform the analysis in parts and use abstract interpretation wherever possible.
Figure 6.12 depicts the main components of the following program.

prio (ack, reqHigh, reqLow) =

let req = reqHigh or reqLow;

ackHigh = ack and reqHigh;
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ackLow = ack and not reqHigh and reqLow;

in (req, ackHigh, ackLow)

sustain (set,reset) =

let sig = false -> (set or pre sig) and not reset;

in sig

system (reqA on c, reqB on d, reqC on d, reqD on e) =

let (reqX, ackY, ackD) = prio (true, sample reqY, reqD_sust) on e;

(reqY, ackA, ackZ) = prio (sample ackY, reqA_sust, sample reqZ) on c;

(reqZ, ackB, ackC) = prio (sample ackZ, reqB_sust, reqC_sust) on d;

reqA_sust = sustain (reqA, ackA) on c;

reqB_sust = sustain (reqB, ackB) on d;

reqC_sust = sustain (reqC, ackC) on d;

reqD_sust = sustain (reqD, ackD) on e;

real = udrift_obs_3_20 (reqA, c)

and ldrift_obs_2_20 (reqA, c)

and udrift_obs_1_20 (reqB, d)

and ldrift_obs_1_20 (reqB, d)

and udrift_obs_1_20 (reqC, d)

and udrift_obs_1_20 (reqD, e)

and udrift_obs_21_20 (c, d)

and ldrift_obs_19_20 (c, d)

and udrift_obs_21_20 (e, c)

and ldrift_obs_9_20 (e, c);

col = (current ackA and current ackB)

or (current ackA and current ackC)

or (current ackA and current ackD)

or (current ackB and current ackC)

or (current ackB and current ackD)

or (current ackC and current ackD);

in (always real, col)

The program defines two outputs: one output flow that is true as long as the
system has always behaved realistically and one output flow that is true when a
collision occurs. The system is said to behave realistically if the clocks respect
their drift bounds and the number of resource requests is bounded with respect
to the clocks. Let us review the components one-by-one:

prio The priority protocol assigns access to one of two parties if they so re-
quest and the resource is available. The incoming flow ack is true when
the resource is available. The incoming flows reqHigh and reqLow are
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true when the party with high resp. low priority request access to the re-
source. The outgoing flow req forwards the request from either party to
the resource. The outgoing flows ackHigh and ackLow are true when the
respective parties are granted access. The protocol is compositional in the
sense that it can be composed with itself as one of the requesting parties.

sustain The sustain component sustains its output signal once it has switched
on by the flow set and stops when it is reset by flow reset. It is used to
keep requesting a resource until satisfied.

system The composition uses three priority components to share access to a
single resource between components A, B, C and D (in order of priority).

Because the system is not synchronized, it is possible for two requesting
parties to be granted access to the resource at the same time, creating a collision.
Such collisions are rare as clocks are nearly synchronous and requests on the
resource are also relatively rare. The analysis has to determine how many
collisions can occur and if they can occur in bursts.

The analysis starts with a decomposition of the system. First, we separate
the stateful components, the sampling primitives and sustain components, from
the combinational components. Then, we further separate the combinational
components into separate components that each define a single flow with a
boolean expression (to be converted to conjunctive normal form later on). We
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obtain the following decomposition

�reqY� = sample(reqY on c) on e�
� �reqX = reqY� or reqDsust on e�
� �ackY = true and reqY� on e�
� �ackD = true and (not reqY�) and reqD on e�

� �ackY� = sample(ackY on e) on c�
� �reqZ� = sample(reqZ on d) on c�
� �reqY = reqA_sust or reqZ� on c�
� �ackA = ackY� and reqA_sust on c�
� �ackZ = ackY� and (not reqA_sust) and reqZ� on c�

� �ackZ� = sample(ackZ on c) on d�
� �reqZ = reqB_sust or reqC_sust on d�
� �ackB = ackZ� and reqB_sust on d�
� �ackC = ackZ� and (not reqB_sust) and reqC_sust on d�

� �reqA_sust = sustain(reqA, ackA) on c�
� �reqB_sust = sustain(reqB, ackB) on d�
� �reqC_sust = sustain(reqC, ackC) on d�
� �reqD_sust = sustain(reqD, ackD) on e�

The stateful components are treated with the abstract transfer functions
introduced in the previous section. That is, the abstract transfer functions that
compose the transition system of the component with the concretization of the
environment and extracts the drift bounds of the resulting transition system
system. The combinational components are converted to conjunctive normal
form and represented by the abstract transfer functions that operate directly
on the drift bounds. The components’ abstract transfer functions are combined
with the property mappings (see Section 3.4.2) in a large fix-point computation.

The analysis yields a drift bound for col with respect to the root clock that
tells us there can be at most 11 collisions per 246 time units and there can be
at most 5 consecutive collisions. The example shows that we can decompose
systems and analyze the recomposition of their abstractions. While the analysis
of labelled transition systems is much more exact, the abstract mappings for
combinational circuits are much faster in practice because there is no need to
construct the transition system. The result of the analysis, is a conservatively
inferred weakly-hard constraint on the number of collisions.
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6.5 Conclusion

6.5.1 Related Work

Caspi et al. [CMP01, Cas01] identified the use of quasi-synchronous systems for
industrial, distributed embedded systems. In such systems, synchronous pro-
grams are composed asynchronously using communication-by-sampling, where
independently clocked synchronous programs communicate by reading and writ-
ing shared memory. All clocks have the same period with a bounded drift and,
consequently, some writes may be overwritten before they are read and some
may be read multiple times. They assume the quasi-synchrony hypothesis: a
bounded drift such that any pair of clocks can tick at most twice between any
two ticks of another. Thus, the number of overwritten and duplicated messages
is bounded. The composed system is then verified for its fitness.

A subsequent paper [CMP01] shows that it is sufficient to verify the ro-
bustness of synchronous design under distribution. Robustness consists of three
system properties: (1) stability, i.e., when the input is unchanging, the output
will stabilize; (2) order insensitivity, i.e., any interleaving of activations (trig-
gered by clocks) of different components will lead to the same result; and (3)
confluence (of inputs), i.e., the order of changes in the input signal does not af-
fect the result. This method enables a quasi-synchronous, semantics-preserving
distribution of robust synchronous systems.

Julien Bertrane continued the verification-based approach in his PhD [Ber08].
He built a tool for the static analysis of quasi-synchronous systems based on ab-
stract interpretation, using a combination of three different, but interacting
abstract domains. The analysed systems are described with the synchronous
operators of the data-flow language Lustre extended with a non-deterministic,
but bounded delay and a sampling operator.

The first domain presented in [Ber05] consists of two kinds of constraints
on the value of signals in (continuous) time intervals: one that constrains the
signal to have a certain value during the interval and another that requires the
signal to take the value at least once during the interval.

In [Ber06] (revisited in [Ber11]) Bertrane adds a local and global changes
counting domain that bound the maximum number of changes within either a
specific time interval (local) or any time interval of a given size (global). The
interaction between local and global changes counting domain, as well as the
constraints, improves the precision of the overall analysis. Both in [Ber06] and
[Ber11], the analysis proceeds by the computation of the greatest fix-point of
the system, proving properties by contradiction if the fix-point has no concrete
behavior. The properties themselves can either be expressed directly in the
abstract domain (especially in the case of the global changes counting domain)
or through a monitor that is added to the verified system.

Wandeler et al. [WT05a] propose an algorithm to derive a quantitative char-
acterization of event-stream generating finite state machines for the purpose
of a performance analysis of stream processing systems. Their algorithm that
extracts arrival or resource curves is very similar to the algorithm proposed in
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Section 6.2. The main difference between the two algorithms, due to the relative
nature of our drift bounds, is the computation of the transitive and reflexive
closure H∗.

In [LPT09] an interface between timed automata and real-time calculus is
proposed in order to combine stateful components specified as timed automata
with the functional (stateless) stream-processing components. This is achieved
by composing the timed-automata of curves, an abstraction of streams similar to
drift bounds, with the timed-automaton that defines the component, and then
extract the drift bounds of the resulting system. The representation of curves
as timed-automata and the extraction of curves from the resulting system are
comparable to our concretization and extraction of drift bounds. Apart from
the difference between timed-automata and our models, our concretization and
abstraction are more general in the sense that we are not constrained to specific
forms (e.g. convex) of bounds.

The authors of [AM10] developed a tool that enables the combination of Lus-

tre programs with components in the real-time calculus. The tool translates
real-time calculus’ curves to an event generator in Lustre and uses existing
verification tools for lustre to extract the curves that bound the output. Our
drift-bound observer is very similar to their Lustre observers. However, our
extraction algorithm extracts the drift bounds directly from the state transition
system, whereas they rely on repeated calls of verification tools in a binary-
search for the correct bounds. Both methods can yield precise drift bounds.

6.5.2 Discussion

This chapter has presented several important results. First, the verification of
safety-properties of sampling networks in an environment constrained by clock
bounds through reachability analysis, using drift bound observers. Next, the
inference of drift bounds on the output flow of a sampling network through the
construction of weight matrices for the labelled transition system that describes
the behavior of the entire system. Finally, a drift bound inference method
for sampling networks based on abstract-interpretation where we combine the
inference of drift bounds with weight matrices and define specialized abstract
mappings for combinational sampling networks that operate directly on drift
bounds.

Verification is necessary to validate the design of a safety-critical distributed
system. In particular, one needs to ensure that the designed system fulfills its
functions even when messages are lost or duplicated due to communication-by-
sampling.

The inference of drift bounds can be used for verification of weakly-hard
requirements, e.g., if a property may be true at most twice every ten clock ticks,
we can infer the drift of that property with respect to the clock to verify the
requirement. In this capacity, the main advantage of the inference method over
reachability based verification, is the compositionality of the analysis. The infer-
ence can, however, also be used during the design phase when the requirements
and system parameters such as clock drift are not yet exactly defined, because
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the inferred drift bounds allow us to evaluate and compare system designs with-
out set limits.

Currently the decomposition of a system is done manually, because the pre-
cision of the results of an analysis heavily depends on the chosen decomposition.
It should be possible to automate some of the decomposition, for example, by
partitioning strongly connected components. Another option would be to start
with a full decomposition and gradually compose components until the desired
precision has been reached.



Chapter 7

Conclusion

7.1 Recapitulation

We set out to enable the distribution of synchronous system designs by the
relaxation of clock constraints of a synchronous program using communication-
by-sampling and FIFO channels for (asynchronous) communication across clock
domains. Because such a distribution does not preserve the synchronous seman-
tics as messages may be lost or duplicated, we sought to provide methods to
analyze the distributed systems.

With the drift bounds both as a measure of relaxation of the clocks and as
a way to define weakly-hard requirements, we have shown how to analyze and
verify the behavior of such distributed system. Drift bounds have also proven
useful to describe the variable availability of resources and the variability of
arrival times in streams of messages, leading to an analysis for stream processing
systems.

Chapter 2 has shown how the processes of GALS systems can be described
with a simple discrete event model and how to extract a relational view with
relative counter functions. The relative counter functions provide an interest-
ing view on the events of a GALS system, because they hide real-time, which
typically is an uncontrollable (in the sense that we cannot delay or expedite
time) or even unobservable (because observations in a GALS occur are quan-
tized by a clock) aspect at runtime, while clearly revealing the interleaving of
clock ticks (or of other events). It is, for instance, particularly useful to express
communication by sampling as shown in Section 2.4.

Chapter 3 introduced the clock and drift bounds as abstractions of processes.
Clock and drift bounds allow high-level reasoning over the processes of GALS
systems. Drift bounds in particular have shown to be quite versatile to model (a
generalization of) quasi-synchronous clocks as well as weakly-hard requirements.
Our bounds generalize similar concepts in literature in a single framework and,
by formally introducing the bounds as abstractions with Galois connections, we
provide a rigorous framework for further applications and extension.

118
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Chapter 4 proposed a performance analysis for stream-processing systems
based on abstract interpretation of stream-processing components. We have
shown that our drift and clock bound abstractions allow a more detailed analy-
sis resulting in tighter backlog bounds because our relational abstractions reveal
the correlation of events. In addition, the combination of clock and drift bounds
allow us to easily model components such as a TDMA resource sharing compo-
nent.

The sampling networks introduced in Chapter 5 described a programming
language to describe GALS boolean data-flow programs by extending a syn-
chronous data-flow language with asynchronous sampling. While the extension
is unassuming, the resulting language allows us to easily express asynchronous
systems yet remain close to the synchronous approach which was our main goal.
Moreover, the sampling primitive is trivial to realize on any architecture that
provides memory that is shared by different processes.

Chapter 6 introduced a method for the verification and inference of weakly-
hard system invariants in sampling networks where the environment is described
by drift bounds. That is, the chapter enables the analysis of distributed systems
executed on a platform with quasi-synchronous clocks described by drift bounds
and communication-by-sampling. We have shown how to verify properties in
such a setting by a classical reachability analysis and how to infer drift bounds
on events defined by the sampling network. Because inference of clock bounds
can be costly, we suggested different approaches based on the framework of
abstractions, to trade precision of the inferred bounds for performance of the
analysis. The analyses are applied to examples illustrative of the three classes
identified in Section 1.2: a system distributed for robustness (the watchdog pro-
tocol in Section 6.1.2), a distributed control system (the thermostat in Section
6.2.3) and a distributed system with weakly-hard constraints (the distributed
resource sharing system 6.4.7).

7.2 Implementation

The proposed methods have also been implemented in Python based on a library
of operators on ultimately periodic functions, as described in Appendix A, that
we developed during the thesis. In contrast to libraries with similar functions,
see [BT07, Fid10], is that our library focuses exclusively on functions in the do-
main of natural numbers rather than positive real numbers. This enables more
compact representations and allows an exact implementation of function com-
position and the pseudo-inverse. In retrospect, it would be possible to modify
existing libraries to fit our purposes. Nevertheless, the resulting library is, to
our best knowledge, the only library of this nature for Python.
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7.3 Discussion

The foundational discrete event model that underlies all of the presented work
is no panacea, but we have shown it is nevertheless applicable to many different
kinds of systems. The thermostat analyzed in Chapter 6 shows that it can
even be used to model systems that are normally modelled with continuous
signals, by some simple assumptions that can, once again, be expressed with
drift bounds: the room is warm when the heater has been on for more than
2 out of 5 consecutive time units. In any case, there are many possibilities to
extend our simple model to include valued discrete events, as is the case in the
original tagged-signal model [LSV98], or even non-discrete (continuous) signals
such as the ambient temperature over time. The use of abstract domains allows
us to extend the model by connecting new abstract domains or new domains
that incorporate more detail for which processes are an abstraction.

The choice the relational model provided by the relative counter functions
and the abstractions was motivated by the idea that the synchronous compo-
nents of a GALS system observe its environment at the moments its clock is
activated. That is, the relational model provides a view more close to the ob-
servations of the digital system. Moreover, we observed that synchronization
protocols that run within a clock domain, such as depicted in Figure 1.3 of
the Introduction, can only control the relative occurrence of evens. Finally, we
showed that it is always possible to introduce at least a discretized notion of
real-time as an extra clock signal.

Clock and especially drift have shown to be powerful abstractions for the
relevant systems. Drift bounds have turned out to be more useful, because they
express a time-invariant abstraction: where clock bounds express constraints
on the number of occurrences at each (relative) point in time, the drift bounds
allow us to constraint behavior at any point in time. Nevertheless clock and
drift bounds complement each other and can be used side-by-side (see Section
3.3.2).

Although drift bounds are very powerful, they often require special monitors
to create an additional event on which the bound can be expressed. For example,
a bound on the number of changes of a boolean signal — from true to false and
vice versa — (a notion similar to the changes counting domain of Bertrane
[Ber08]) necessitates an observer that compares the previous value with the
current one. That is, the change must be made into an explicit signal that
occurs at the time of the change which can then be bounded by drift or clock
bounds.

Chapter 6 has shown that the expression of drift bounds as event-labelled
transitions is often prohibitively expensive because the state-space grows ex-
ponentially with the interval size. The representation of ultimately periodic
functions used in the implementation to represent clock and drift bounds (see
Appendix A) also grows exponentially in the worst, albeit much less common,
case. Approximating drift bounds with convex hulls would enable much com-
pacter and faster implementations, albeit at a loss of precision.
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7.4 Perspectives

One of the original goals was to synthesize bounds on the root clocks of a dis-
tributed system with communication by sampling such that requirements (ex-
pressed by drift bounds on the outputs) are met. A goal shared with [SPS+13]
where the authors show how to derive bounds on the number of dropped mes-
sages in a distributed control system, leading to a system design with more
efficient use of resources while ensuring system correctness. Such a synthesis
method would propagate requirements, in the form of drift bounds, backwards
through the system from output to inputs and root clocks. As, in general, there
are multiple solutions, synthesis must be guided towards a unique solution, e.g.,
by allowing only select drift bounds on inputs or clocks to be changed. The ver-
ification and inference methods for sampling networks presented in this thesis
are a necessary step towards synthesis.

We have used a single event model and two abstractions to perform analysis
on two types of apparently quite different systems as well as a general analysis
for labelled transition systems. One logical next step, would be to analyse
heterogeneous systems by combining the analyses of stream-processing systems
and sampling networks.

For example, we could model complex resource sharing schemes with sam-
pling networks by interpreting a boolean signal as a resource consumed by a
greedy processing component, resulting in a approach similar to [AM10] for
network-calculus. The resource sharing system presented in Section 6.4.7 did a
step in this direction, except the consumers of the resource were not included
in the model.

Another example of the analysis of heterogeneous systems would be to ex-
tend sampling networks with FIFO channels for asynchronous communication
similar to the buffers of Lucy-N [MP10]. This enables one to use lossless FIFO
channels and communication-by-sampling when the most recent information is
more important. In such systems, our analysis could be used to determine
boundedness of the used buffer-space using the clock bounds. One might also
consider bounded FIFO channels with either non-blocking writes (losing mes-
sages when the buffer is full) or non-blocking reads (duplicating messages when
the buffer is empty) or both to provide for applications where degraded service
is tolerated. An extension of our analysis could then be used to verify or infer
the provided quality of service.

Finally, there is ample room for improvement in the prototype implementa-
tion. In particular the representation of of ultimately periodic drift and clock
bounds quickly grows for larger systems. The most promising solution would be
to use convex hulls of upper and lower clock and drift bound in the domain of
positive rational or real numbers. Convex hulls can be much less precise, e.g.,
the drift bound Du

i/j(Δ) = �2Δ/3� that limits the number of events (maximum
two) for one interval (interval of three) has a distinct staircase-like shape that
is lost by its convex hull. However, convex hulls have very compact represen-
tations and allow for very efficient implementations of the used operators (see
[BT07, LT01]). Moreover, drift bounds expressed as convex hulls have compact
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concretizations representation as labelled transition systems.



Bibliography

[AGA+95] Pascalin Amagbe, Paul Le Guernic, Pascalin Amagbegnon, Loic
Besnard, and Paul Leguernic. Implementation of the Data-flow
Synchronous Language S IGNAL. 6:163–173, 1995.

[AM10] Karine Altisen and Matthieu Moy. ac2lus: Bringing SMT-Solving
and Abstract Interpretation Techniques to Real-Time Calculus
through the Synchronous Language Lustre. 2010 22nd Euromicro
Conference on Real-Time Systems, pages 207–216, July 2010.

[BB91] Albert Benveniste and Gerard Berry. The synchronous approach
to reactive and real-time systems. Proceedings of the IEEE,
79(9):1270–1282, 1991.

[BBL01] Guillem Bernat, Alan Burns, and A Liamosi. Weakly hard real-time
systems. Computers, IEEE Transactions, 50(4):308–321, 2001.

[BCC+07] Albert Benveniste, Benoit Caillaud, Luca P. Carloni, Paul Caspi,
and Alberto L. Sangiovanni-Vincentelli. Composing heterogeneous
reactive systems. ACM Transactions on Computational Logic,
V(N), 2007.

[BCCSV03] Albert Benveniste, L.P. Carloni, Paul Caspi, and Alberto L.
Sangiovanni-Vincentelli. Heterogeneous reactive systems modeling
and correct-by-construction deployment. In Embedded Software,
pages 35–50. Springer, 2003.

[BCE+03] Albert Benveniste, Paul Caspi, S.a. Edwards, Nicolas Halbwachs,
Paul Le Guernic, and R. de Simone. The synchronous languages 12
years later. Proceedings of the IEEE, 91(1):64–83, January 2003.

[BCG+02] Albert Benveniste, Paul Caspi, P. Guernic, H. Marchand, J.P.
Talpin, and S. Tripakis. A protocol for loosely time-triggered ar-
chitectures. In EMSOFT, pages 252–265. Springer, 2002.

[BCL99] Albert Benveniste, B. Caillaud, and P Le Guernic. From synchrony
to asynchrony. CONCUR’99 Concurrency Theory, page 776, 1999.

123



BIBLIOGRAPHY 124

[BCOQ92] Fancois Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre
Quadrat. Synchronization and Linearity, An Algebra for Discrete
Event Systems, volume 52. Wiley, July 1992.

[BELP96] Greet Bilsen, Marc Engels, Rudy Lauwereins, and Jean Peper-
straete. Cyclo-static dataflow. IEEE Transactions on Signal Pro-
cessing, 44(2):397–408, 1996.

[Ber98] Guillem Bernat. Specification and Analysis of Weakly Hard Real-
Time Systems. PhD thesis, Universitat de les Illes Balears, 1998.

[Ber05] Julien Bertrane. Static Analysis by Abstract Interpretation of the
Quasi-synchronous Composition. In VMCAI, pages 97–112, 2005.

[Ber06] Julien Bertrane. Proving the properties of communicating
imperfectly-clocked synchronous systems. Static Analysis, pages
370–386, 2006.

[Ber08] Julien Bertrane. Static analysis of communicating imperfectly-
clocked synchronous systems using continuous-time abstract do-
mains. PhD thesis, 2008.

[Ber11] Julien Bertrane. Temporal Abstract Domains. 2011 16th IEEE In-
ternational Conference on Engineering of Complex Computer Sys-
tems, pages 3–12, April 2011.

[BG92] Gerard Berry and G. Gonthier. The esterel synchronous program-
ming language : design, semantics, implementation. Science of
computer programming, 19(2):87–152, 1992.

[BT07] Anne Bouillard and Éric Thierry. An Algorithmic Toolbox for Net-
work Calculus. DEDS, 18(1):3–49, October 2007.

[Cas01] Paul Caspi. Embedded control: From asynchrony to synchrony and
back. Lecture Notes in Computer Science, 2211:80–96, 2001.

[CC77] Patric Cousot and Radia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or ap-
proximation of fixpoints. In Proceedings of the 4th ACM SIGACT-
SIGPLAN, 1977.

[CC92] P Cousot and Radhia Cousot. Abstract interpretation and applica-
tion to logic programs. The Journal of Logic Programming, 1992.

[CDE+06] Albert Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau,
and Marc Pouzet. N-synchronous Kahn networks: a relaxed model
of synchrony for real-time systems. In ACM SIGPLAN Notices,
volume 41, pages 180–193. ACM, 2006.

[Cha84] D.M. Chapiro. Globally-asynchronous locally-synchronous systems.
PhD thesis, Stanford University, 1984.



BIBLIOGRAPHY 125

[CKT03] Samarjit Chakraborty, S Kunzli, and Lothar Thiele. A general
framework for analysing system properties in platform-based em-
bedded system designs. DATE, pages 190–195, 2003.

[CMP01] Paul Caspi, Christine Mazuet, and N. Paligot. About the design
of distributed control systems: The quasi-synchronous approach.
Computer Safety, Reliability and Security, (EP 25514):215–226,
2001.

[CMPP08] A. Cohen, L. Mandel, F. Plateau, and Marc Pouzet. Abstraction
of clocks in synchronous data-flow systems. PLS, pages 237–254,
2008.

[CMSW99] Paul Caspi, Christine Mazuet, Rym Salem, and Daniel Weber. For-
mal Design of Distributed Control Systems with Lustre. In Safe-
comp, number EP 25514, pages 396–409, 1999.

[CPHP87] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice.
LUSTRE: A declarative language for programming synchronous
systems. pages 178–188, 1987.

[DP02] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambrige University Press, 2002.

[Fid10] Markus Fidler. Survey of deterministic and stochastic service curve
models in the network calculus. IEEE Communications Surveys &
Tutorials, 12(1):59–86, 2010.

[Flo62] R.W. Floyd. Algorithm 97: shortest path. Communications of the
ACM, 5(6):345, 1962.

[Hal84] Nicolas Halbwachs. Modelisation et analyse du comportement
des systemes informatiques temporises. PhD thesis, Univerisé de
Grenoble, 1984.

[HCRP91] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pi-
laud. The synchronous data flow programming language LUSTRE.
Proceedings of the IEEE, 79(9):1305–1320, 1991.

[HHJ+05] R Henia, A Hamann, M Jersak, R. Racu, K Richter, and R Ernst.
System level performance analysis – the SymTA/S approach. CDT,
152(2):148–166, 2005.

[HKO+93] M.G. Harbour, M.H. Klein, R. Obenza, B. Pollak, and T. Ralya.
A Practitioner’s Handbook for Real-Time Analysis. Kluwer, 1993.

[HP85] D. Harel and A. Pnueli. On the Development of Reactive Sys-
tems. NATO ASI Series, Logics and Models of Concurrent Systems,
F13:477–498, 1985.



BIBLIOGRAPHY 126

[HR99] Nicolas Halbwachs and Pascal Raymond. Validation of synchronous
reactive systems: from formal verification to automatic testing. In
Advances in Computing Science—ASIAN’99, 1999.

[HRR91] N. Halbwachs, Pascal Raymond, and C. Ratel. Generating effi-
cient code from data-flow programs. In Programming Language
Implementation and Logic Programming, volume 3, pages 207–218.
Springer, 1991.

[HT07a] W. Haid and Lothar Thiele. Complex task activation schemes
in system level performance analysis. In CODES, pages 173–178.
ACM, 2007.

[HT07b] Kai Huang and Lothar Thiele. Performance analysis of multimedia
applications using correlated streams. In DATE, pages 912–917.
EDA Consortium, 2007.

[HV06] Martijn Hendriks and Marcel Verhoef. Timed automata based anal-
ysis of embedded system architectures. In IPDPS. IEEE, 2006.

[Kle52] Stephen Cole Kleene. Introduction to Metamathematics. North
Holland, 1952.

[Kop08] Hermann Kopetz. The Complexity Challenge in Embedded System
Design. 2008 11th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing (ISORC),
pages 3–12, May 2008.

[LB87] P. Le Guernic and Albert Benveniste. Real-Time Synchronous,
Data-Flow Programming: The Language" Signal" and Its Mathe-
matical Semantics. Institut National de Recherche en, en Informa-
tique et en Automatique, 1987.

[LM87] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Pro-
ceedings of the IEEE, 75(9):1235–1245, June 1987.

[LPT09] Kai Lampka, Simon Perathoner, and Lothar Thiele. Analytic real-
time analysis and timed automata: A hybrid method for analyzing
embedded real-time systems. In Proceedings of the seventh ACM in-
ternational conference on Embedded software, pages 107–116. ACM,
2009.

[LSV98] E.a. Lee and Alberto L. Sangiovanni-Vincentelli. A frame-
work for comparing models of computation. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
17(12):1217–1229, 1998.

[LT01] Jean-Yves Le Boudec and Patrick Thiran. Network calculus: a
theory of deterministic queuing systems for the internet. Springer-
Verlag, 2001.



BIBLIOGRAPHY 127

[MA10] Matthieu Moy and Karine Altisen. Arrival curves for real-time cal-
culus: the causality problem and its solutions. Tools and Algorithms
for the Construction and Analysis of Systems, pages 358–372, 2010.

[Mal93] Sharad Malik. Analysis of cyclic combinational circuits. ICCAD,
13(7):950–956, 1993.

[MP10] Louis Mandel and Florence Plateau. Lucy-n: a n-Synchronous Ex-
tension of Lustre. Mathematics of Program Construction, pages
288–309, 2010.

[NNH05] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Princi-
ples of Program Analysis. Springer, 2005.

[ORE] Geert-jan Olsder, Kees Roos, and Robert-jan Van Egmond. An
efficient algorithm for critical circuits and finite eigenvectors in the
max-plus algebra. (2):1–9.

[Pet76] C. A. Petri. Interpretations of net theory. Gesellschaft für Mathe-
matik und Datenverarbeitung, mbH Bonn, 1976.

[Pla10] Florence Plateau. Modèle n-synchrone pour la programmation de
réseaux de Kahn à mémoire bornée. PhD thesis, Paris XI, 2010.

[PRT+10] Simon Perathoner, Tobias Rein, Lothar Thiele, Kai Lampka, and
Jonas Rox. Modeling structured event streams in system level per-
formance analysis. LCTES, 45(4):37, April 2010.

[RE08] Jonas Rox and Rolf Ernst. Modeling Event Stream Hierarchies
with Hierarchical Event Models. In DATE, pages 492–497. Ieee,
March 2008.

[SGL99] Irina M. Smarandache, Thierry Gautier, and Paul Le Guernic. Val-
idation of mixed SIGNAL-ALPHA real-time systems through affine
calculus on clock synchronisation constraints. In FM, pages 1364–
1383, 1999.

[Sif11] Joseph Sifakis. A vision for computer science — the system perspec-
tive. Central European Journal of Computer Science, 1(1):108–116,
March 2011.

[SMB+02] G. Semeraro, G. Magklis, R. Balasubramonian, D.H. Albonesi,
S. Dwarkadas, and M.L. Scott. Energy-efficient processor design
using multiple clock domains with dynamic voltage and frequency
scaling. Proceedings Eighth International Symposium on High Per-
formance Computer Architecture, pages 29–40, 2002.

[Smi10] Peter Smith. The Galois connection between syntax and semantics.
Technical report, University of Cambridge, 2010.



BIBLIOGRAPHY 128

[SPS+13] Damoon Soudbakhsh, Linh T.X. Phan, Oleg Sokolsky, Insup Lee,
and Anuradha Annaswamy. Co-design of Control and Platform
with Dropped Signals. In ICCPS, pages 129–140, 2013.

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its appli-
cations. Pacific Journal of Mathematics, 5(2):285–309, June 1955.

[TCN00] Lothar Thiele, S. Chakraborty, and M. Naedele. Real-time calculus
for scheduling hard real-time systems. In ISCAS, number March,
pages 101–104. IEEE, 2000.

[TGL07] Paul Teehan, Mark Greenstreet, and Guy Lemieux. A Survey and
Taxonomy of GALS Design Styles. IEEE Design & Test of Com-
puters, 24(5):418–428, September 2007.

[VHR+08] Sriram R. Vangal, Jason Howard, Gregory Ruhl, Saurabh Dighe,
Howard Wilson, James Tschanz, David Finan, Arvind Singh, Tiju
Jacob, Shailendra Jain, Vasantha Erraguntla, Clark Roberts, Yatin
Hoskote, Nitin Borkar, and Shekhar Borkar. An 80-Tile Sub-100-W
TeraFLOPS Processor in 65-nm CMOS. IEEE Journal of Solid-
State Circuits, 43(1):29–41, January 2008.

[Wan06] Ernesto Wandeler. Modular performance analysis and interface-
based design for embedded real-time systems. PhD thesis, ETH
Zürich, 2006.

[WT05a] E. Wandeler and L. Thiele. Abstracting functionality for modular
performance analysis of hard real-time systems. In Proceedings of
the ASP-DAC 2005. Asia and South Pacific Design Automation
Conference, 2005., volume 2, pages 697–702. IEEE, 2005.

[WT05b] Ernesto Wandeler and Lothar Thiele. Characterizing workload cor-
relations in multi processor hard real-time systems. In RTAS, 2005.



Appendix A

Operations over

Non-Decreasing Functions

The principal analysis tool of this thesis are monotonic (non-decreasing) func-
tions over numbers. They are used as counter functions, dater functions, clock
and drift bounds, and resource curves.

A.1 Non-Decreasing Functions

Although occasionally functions with a domain or range of real-numbers are used
(e.g. when dealing with real-time) this chapter only deals with a representation
based on natural numbers, which suffices for our purposes and simplifies the
implementation.

Definition 34 (Extended natural numbers (N∞)). Let N∞ be the set of natural
numbers (including 0) extended with ∞, i.e.,

N∞ = N ∪ {∞}

The extended set of natural numbers is totally ordered by the usual ≤ re-
lation with the least element 0 and greatest element ∞. The extension makes
the order complete: any subset of the extended natural numbers has a unique
infimum (minimum) and supremum (maximum). Addition of extended natural
numbers is defined such that ∞+ n = n+∞ = ∞ for all n ∈ N∞.

Definition 35 (Non-decreasing function (F)). Let F be the set of functions
f ∈ N∞ → N∞ such that

• f is non-decreasing (monotonic) (n ≤ m =⇒ f(n) ≤ f(m)); and

• f goes through the origin (f(0) = 0).
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Relative counter functions are represented in F as functions f ∈ F such that
f(n) = 0 for all n ≤ 0.

Non-decreasing functions are partially ordered by their point-wise compari-
son defined by the following extension of the relation ≤.

Definition 36 (Partial order of F). Let f and g be functions in F then

f ≤ g ⇐⇒ ∀n ∈ N∞ : f(n) ≤ g(n)

The partial order of non-decreasing function forms a complete lattice where

• [
�
G](n) = supf∈G f(n) defines the least upper bound of G ⊆ F;

• [
�
G](n) = inff∈G f(n) defines the greatest lower bound of G ⊆ F;

• �(n) = ∞ for all n > 0 is the top (greatest) element in F; and

• ⊥ (n) = 0 for all n ∈ N∞ is the bottom element.

A.2 Basic Operations

We start with some basic point-wise operations on functions in F and their
properties. Aside from basic properties such as associativity, commutativity
and distributivity, we show each operator to be monotonic (order-preserving)
and continuous.

A.2.1 Point-Wise Minimum and Maximum

First the point-wise upper and lower bound operators. They differ from the least
upper bound and greatest lower bounds only because they are binary operators.

Definition 37 (Point-wise extrema (∧,∨)). Let f and g be functions in F then

(f ∧ g)(n) = min(f(n), g(n))

(f ∨ g)(n) = max(f(n), g(n))

The following properties are all trivially inherited from the minimum and
maximum operators on natural numbers.

Lemma 21 (Properties of point-wise extrema). Let f, g, h ∈ F denote non-
decreasing functions.

1. Closed over F: f ∧ g ∈ F and f ∨ g ∈ F

2. Duality: f ∧ g = −(−f ∨ −g)

3. Idempotent: f ∧ f = f and f ∨ f = f

4. Commutativity: f ∧ g = g ∧ f and f ∨ g = g ∨ f
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5. Associativity:

(a) (f ∧ g) ∧ h = f ∧ (g ∧ h)

(b) (f ∨ g) ∨ h = f ∨ (g ∨ h)

6. Zero element: f∧ ⊥F= f and f ∨ �F = f

7. Absorbing element: f ∧ �F = �F and f∨ ⊥F=⊥F

8. Distributivity:

(a) f ∧ (g ∨ h) = (f ∧ g) ∨ (f ∧ h)

(b) f ∨ (g ∧ h) = (f ∨ g) ∧ (f ∧ h)

9. Order-preserving: f ∧ g ≤ f � ∧ g� and f ∨ g ≤ f � ∨ g�

for any f, f �, g, g� ∈ F such that f ≤ f � and g ≤ g�

A.2.2 Point-Wise Addition

The point-wise addition of two function consist in adding their results for each
element in their domain. The same operators is used for both functions and
constants and we may add a constant by writing f + n for some function f in
F and constant n in N∞.

Definition 38 (Point-wise addition). Let f and g be functions in F then

(f + g)(n) = f(n) + g(n)

Again, we inherit the properties of the normal addition. Note that ∞+n =
∞ for any n ∈ N∞.

Lemma 22 (Properties of point-wise addition). Let f, g, h ∈ F denote non-
decreasing functions.

1. Closed over F: f + g ∈ F

2. Commutativity: f + g = g + f

3. Associativity: f + (g + h) = (f + g) + h

4. Distributivity:

(a) f + (g ∨ h) = (f + g) ∨ (f + h)

(b) f + (g ∧ h) = (f + g) ∧ (f + h)

5. Zero element: f+ ⊥F= f

6. Absorbing element: f +�F = �F

7. Order-preserving: f + g ≤ f � + g�

for any f, f �, g, g� ∈ F such that f ≤ f � and g ≤ g�
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A.2.3 Continuity of Basic Operators

Continuity is important for the application of Kleene’s fixpoint theorem (The-
orem 4). Operators are only required to be continuous for non-empty chains.
Although these results are not new as such we provide the proofs because con-
tinuity is neither trivial nor could we find proofs for our operators elsewhere.
The following lemma shows that continuity of point-wise operators is inherited
from the operators over the natural numbers.

Lemma 23 (Point-wise applications of continuous operators are continuous).
Let π ∈ N∞ × N∞ → N∞ denote an operator such that for all n,m, p, q ∈ N∞

and C ⊆ N∞ where C �= ∅, π is

1. limit-preserving: π(0, 0) = 0 and π(∞,∞) = ∞;

2. commutative: π(n,m) = π(m,n);

3. monotonic: n ≤ m, p ≤ q =⇒ π(n, p) ≤ π(m, q);

4. lower semi-continuous with constant:
supc∈C π(n, c) = π(n, supc∈C); and

5. upper semi-continuous with constant:
infc∈C π(n, c) = π(n, infc∈C).

Then the operator Π ∈ F × F → F, defined by point-wise application of π, i.e.,
Π(f, g)(n) = π(f(n), g(n)) for all f, g ∈ F and n ∈ N∞, is continuous. That is,
for all totally ordered, nonempty subsets C ⊆ F × F

1. Π is lower semi-continuous:

�

(f,g)∈C

Π(f, g) = Π


 �

(f,g)∈C

f,∧
�

(f,g)∈C

g




2. Π is upper semi-continuous:

�

(f,g)∈C

Π(f, g) = Π


 �

(f,g)∈C

f,
�

(f,g)∈C

g




Proof. First note that the quantification over the chain can be separated:

�

(f,g)∈C

Π(f, g) =
�

(f,g�)∈C

�

(f �,g)∈C

Π(f, g)

for any non-empty C, because on one hand we have

�
{Π(f, g) | (f, g) ∈ C} ≤

�

(f,g�)∈C

�

(f �,g)∈C

Π(f, g)
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and, on the other hand, we have the reverse inequality, because for any pair
(f, g) �∈ C such that (f, g�) ∈ C and (f �, g) ∈ C, either (f, g) ≤ (f, g�) (if
(f �, g) ≤ (f, g�)) or (f, g) ≤ (f �, g) (if (f, g�) ≤ (f �, g)) because C is totally
ordered and, by monotonicity of Π, for all such pairs (f, g)

Π(f, g) ≤ Π(f ∨ f �, g ∨ g�)

Then for all n ∈ N∞

[
�

(f,g�)∈C

�

(f �,g)∈C

Π(f, g)](n)

= sup
(f,g�)∈C

sup
(f �,g)∈C

π(f(n), g(n))

= sup
(f,g�)∈C

π(f(n), sup
(f �,g)∈C

g(n))

= sup
(f,g�)∈C

π(f(n), sup
(f �,g)∈C

g(n))

=[Π(
�

(f,g�)∈C

f,
�

(f �,g)∈C

g)](n)

Upper semi-continuity follows in a similar fashion.

With this lemma, the point-wise maximum and minimum are trivially shown
to be continuous, because the point-wise operations satisfy the listed require-
ments.

A.3 Function Composition

The composition of functions in F is defined as a normal function composition.

Definition 39 (Composition (◦)). The composition f ◦ g of non-decreasing
functions f, g ∈ F is defined such that for all n ∈ N∞

(f ◦ g)(n) = f(g(n))

The properties of function composition are well known.

Lemma 24 (Properties of composition). Let f, g, h ∈ F denote non-decreasing
functions.

1. Closed over F: f ◦ g ∈ F

2. Associativity: (f ◦ g) ◦ h = f ◦ (g ◦ h)

3. Distributivity:

(a) f ◦ (g ∨ h) = (f ◦ g) ∨ (f ◦ h)
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(b) (f ∨ g) ◦ h = (f ◦ h) ∨ (g ◦ h)
(c) f ◦ (g ∧ h) = (f ◦ g) ∧ (f ◦ h)
(d) (f ∧ g) ◦ h = (f ◦ h) ∧ (g ◦ h)

4. Zero element: f ◦ id = id ◦ f = f

5. Absorbing elements: f◦ ⊥F=⊥F ◦f =⊥F

6. Order-preserving: f ◦ g ≤ f � ◦ g�
for any f, f �, g, g� ∈ F such that f ≤ f � and g ≤ g�

Proof. Case-by-case

1. Closure: f(g(0)) = 0, f(g(∞)) = ∞ and f ◦ g is non-decreasing because
both f and g are.

2. Associativity follows by expanding the equalities using the definition of
function composition.

3. Distributivity is due to the monotonicity of functions in F.

4. Identity is defined to be the zero element of composition, i.e., id(n) = n
for all n ∈ N∞.

5. Any function that is constant, i.e., any function f ∈ F such that f(n) = K
for some K ∈ N∞ is absorbing, which can be seen by expanding definitions.

A.3.1 The Pseudo-Inverse

In addition we define the pseudo-inverse for function composition.

Definition 40 (Pseudo-inverse (·−1)). The pseudo-inverse f−1 ∈ F for f ∈ F

is defined as
f−1(n) = inf{m | m ∈ N∞, f(m+ 1) ≥ n}

The pseudo-inverse is derived from the pseudo-inverse of monotonic, but
discontinuous functions over real numbers defined, for monotonic functions g ∈
R∞ → R∞:

f−1(n) = inf{r | r ∈ R∞, f(�r�) ≥ n}
The pseudo-inverse has many properties reminiscent of the real inverse, but

weakened.

Lemma 25 (Properties of pseudo-inverse). Let f, g ∈ F denote non-decreasing
functions.

1. Closed in F: f−1 ∈ F

2. Pseudo-inverse:
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(a) (f−1 ◦ f)(n) < n for n > 0

(b) (f ◦ f−1) ≤ id

(c) f ◦ (f−1 + 1) ≥ id

3. Symmetric: [f−1]−1 = f

4. Distributivity:

(a) [f ∧ g]−1 = f−1 ∨ g−1

(b) [f ∨ g]−1 = f−1 ∧ g−1

5. Strictly antitone (order-reversing):
f ≤ g ⇐⇒ f−1 ≥ g−1

Proof. Case-by-case

1. Closure: trivially for the extrema f−1(0) = 0 and f−1(∞) = ∞ and for
p, q ∈ N∞ s.t. p ≤ q, inf{m | m ∈ N∞, f(m + 1) ≥ p} ≤ inf{m | m ∈
N∞, f(m+ 1) ≥ q} as f(m+ 1) ≥ q ≥ p for all m ∈ N∞.

2. Pseudo-inversion: case-by-case

(a) By monotonicity of f , i.e.,

(f−1(f(n))

= inf{m ∈ N∞ | f(m+ 1) ≥ f(n)}
≤ inf{m ∈ N∞ | m+ 1 ≥ n}
<n

(b) Idem dito:

(f(f−1(n))

=f(inf{m ∈ N∞ | f(m+ 1) ≥ n})
≤ inf{f(m) | m ∈ N∞, f(m+ 1) ≥ n}
≤ inf{f(m) | m ∈ N∞, f(m) ≥ n}
≤n

(c)

(f(f−1(n) + 1)

=f(inf{m ∈ N∞ | f(m+ 1) ≥ n}+ 1)

= inf{f(m+ 1) | m ∈ N∞, f(m+ 1) ≥ n}
≥n
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3. Symmetry is shown by proving that [f−1]−1 is both larger or equal, and
smaller or equal to f (and must therefore be equal). On one hand for all
n ∈ N∞

[f−1]−1(n)

= inf{m ∈ N∞ | f−1(m+ 1) ≥ n}
= inf{m ∈ N∞ | m+ 1 > f(f−1(m+ 1)) ≥ f(n)}
≥ inf{m ∈ N∞ | m ≥ f(n)}
=f(n)

while at the same time

[f−1]−1(n)

= inf{m | f−1(m+ 1) ≥ n}
≤ inf{f(m) | m ∈ N∞, f−1(f(m) + 1) ≥ n}
≤ inf{f(m) | m ∈ N∞,m ≥ n}
=f(n)

and therefore [f−1]−1 = f .

4. Distributivity over point-wise minimum:

[f ∧ g]−1(n)

= inf{m ∈ N∞ | min(f(m+ 1), g(m+ 1)) ≥ n}
= inf{m ∈ N∞ | f(m+ 1) ≥ n, g(m+ 1) ≥ n}
= inf({m ∈ N∞ | f(m+ 1) ≥ n} ∩ {m ∈ N∞ | f(m+ 1) ≥ n})
= inf{m ∈ N∞ | f(m+ 1) ≥ n} ∨ inf{m ∈ N∞ | f(m+ 1) ≥ n})
=[f−1 ∨ g−1](n)

Distributivity over point-wise maximum follows analogously.

5. Order-reversing:

f ≤ g

=⇒ ∀n ∈ N∞ : f(n) ≤ g(n)

=⇒ ∀m ∈ N∞ : f(m+ 1) ≤ g(m+ 1)

=⇒ ∀n,m ∈ N∞ : n ≤ f(m+ 1) =⇒ n ≤ g(m+ 1)

=⇒ ∀n ∈ N∞ : {m ∈ N∞ | f(m+ 1) ≥ n} ⊆ {m ∈ N∞ | g(m+ 1) ≥ n}
=⇒ ∀n ∈ N∞ : inf{m ∈ N∞ | f(m+ 1) ≥ n} ≥ inf{m ∈ N∞ | g(m+ 1) ≥ n}
=⇒ ∀n ∈ N∞ : f−1(n) ≥ g−1(n)

=⇒ f−1 ≥ g−1
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A.3.2 Continuity of Composition and the Pseudo-Inverse

For completeness, we first show functions in F to be continuous operators with
respect to N∞.

Lemma 26 (Continuity of functions in F). All functions in F are continuous.

Proof. Let C ⊆ N∞ be a totally ordered nonempty subset, then any f ∈ F is

1. upper semi-continuous, because inf C = minC and therefore, by mono-
tonicity of f , infn∈C f(n) = f(inf C)

2. lower semi-continuous, because if C is finite then supC = maxC and
therefore, by monotonicity of f , supn∈C f(n) = f(supC), and if C is
infinite then supC = ∞ and therefore, because f is non-decreasing, either
f is constant and f(∞) = k = supn∈C f(n) for some k ∈ N∞, otherwise
f(∞) = ∞ = supn∈C f(n).

Continuity of functions in F leads to the continuity of composition. Note
however, that this is different, than proving the composition of continuous map-
pings to be continuous (which is also true).

Lemma 27 (Continuity of composition operator). The composition operator is
continuous.

Proof. Upper semi-continuity follows from the upper semi-continuity of func-
tions in F. That is, for all totally ordered subsets C ∈ F × F and all n ∈ N∞

[
�

(f,g)∈C

f ◦ g](n) = inf
(f,g�)∈C

f

�
inf

(f �,g)∈C
g(n)

�
= [

�

(f,g�)∈C

f ◦
�

(f �,g)∈C

g](n)

Lower semi-continuity follows similarly.

A.4 Operators from the Min/Max-Plus Algebra

The max-plus and the related min-plus (also known as the tropical algebra)
algebras are defined over natural or real numbers with either the minimum or
the maximum in the place of addition and addition in the place of multiplication
(see [BCOQ92]). In Section 6.2.2 we quickly introduced these in the context of
an algorithm. This section only introduces the convolution in the min-plus and
max-plus algebras and their dual, deconvolution operators. These operators
have seen many applications in the context of network calculus [LT01]. Our
only aim here, is to introduce all used operators. For further information and
proofs we refer to [BCOQ92], [LT01], and [BT07].
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A.4.1 The Convolution and Deconvolution Operators

Definition 41 (Min-plus convolution (⊗)). The min-plus convolution f ⊗ g of
functions f, g ∈ F is defined such that

(f ⊗ g)(n) = inf{f(n−Δ) + g(n) | 0 ≤ Δ ≤ n}

Lemma 28 (Properties of min-plus convolution). Let f, g ∈ F denote non-
decreasing functions and G ⊆ F denote a chain.

1. Closed over F: f ⊗ g ∈ F

2. Idempotent: f ⊗ f = f if, and only if,
∀n,m ∈ N∞ : f(n+m) ≤ f(n) + f(m)

3. Commutativity: f ⊗ g = g ⊗ f

4. Associativity: (f ⊗ g)⊗ h = f ⊗ (g ⊗ h)

5. Distributivity: f ⊗ (g ∧ h) = (f ⊗ g) ∧ (f ⊗ h)

6. Order-preserving: f ⊗ g ≤ f � ⊗ g�

for any f, f �, g, g� ∈ F such that f ≤ f � and g ≤ g�

The deconvolution operator is the dual of the convolution, in the sense that
f ≤ g ⊗ h if, and only if, f � g ≤ h.

Definition 42 (Min-plus deconvolution (�)). The min-plus deconvolution f�g
of functions f, g ∈ F is defined such that

(f � g)(Δ) = sup{f(n+Δ)− g(n) | n ∈ N∞}

The deconvolution is not closed over F, but this poses little problems in
practice.

Lemma 29 (Properties of min-plus deconvolution). Let f, g, h ∈ F denote
monotonic functions then

1. Closure: if f ≥ g then f � g ∈ F

2. Duality with convolution: f ≤ g ⊗ h ⇐⇒ f � g ⊗ h

3. Distributivity:

• over ∨: (f ∨ g)� h = (f � h) ∨ (g � h)

• over ∧: f � (g ∧ h) = (f � g) ∨ (f � h)

• over ⊗: (f ⊗ g)� g ≤ f ⊗ (g � g)

4. Composition: (f � g)� h = f � (g ⊗ h)

5. Order-preserving: f ⊗ g ≤ f � ⊗ g� for any f, f �, g, g� ∈ F such that f ≤ f �

and g ≥ g�



APPENDIX A. OPERATIONS OVER NON-DECREASING FUNCTIONS139

A.4.2 Sub-additive Closure

Drift-bounds are sub-additive operators (see Lemma 11). Sub-additivity can be
stated in a number of different ways.

Lemma 30 (Sub-additivity). The following statements are equivalent:

1. f(n+m) ≤ f(n) + f(m) for all n,m ∈ N∞

2. f ⊗ f = f

3. f � f = f

The sub-additive closure of f ∈ F yields the greatest sub-additive function
in F less than or equal to f . It is defined by the fix-point of convolution.

Definition 43 (Sub-additive closere (f∗)). The sub-additive closure f∗ is de-
fined such that

f∗ = �F ∧ f ∧ (f ⊗ f) ∧ (f ⊗ f ⊗ f) ∧ ... =
�

n∈N
fn

Lemma 31 (Properties of sub-additive closure). Let f, g ∈ F denote monotonic
functions then

1. Sub-additivity: f∗ ⊗ f∗ = f∗

2. Sub-additive closure: g ≤ f, g ⊗ g = g =⇒ g ≤ f∗

3. Distributivity: [f ∧ g]∗ = [f ⊗ g]∗ = f∗ ⊗ g∗

A.4.3 The Dual Max-Plus Operators

The max-plus operators can be defined as a dual (with negation as the inversion)
of the min-plus operators (although not in the domain of F). As such, they are
have very similar properties. We only define the operators, see [LT01], [Wan06]
and [BT07] for more information.

Definition 44 (Max-plus convolution (⊗)). The max-plus convolution f⊗g of
functions f, g ∈ F is defined such that

(f⊗g)(n) = sup{f(n−Δ) + g(n) | 0 ≤ Δ ≤ n}

Definition 45 (Max-plus deconvolution (�)). The max-plus deconvolution f�g
of functions f, g ∈ F is defined such that

(f�g)(Δ) = inf{f(n+Δ)− g(n) | n ∈ N∞}

Definition 46 (Super-additive closere (f∗)). The super-additive closure f∗ is
defined such that

f∗ =⊥F ∨f ∨ f⊗f ∨ f⊗f⊗f ∨ ...


