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Introduction

The popularity of digital cameras has created an extraordinary growth in the
quantity of digital images produced and made publicly available. With the avail-
ability of large image collections comes also the desire to search such collections in
order to discover similar images. The easy solution to �nding similar images has
been to use the established text-based search, where keywords or tags have been
manually associated with each image, describing its contents. It is the additional
text-based content that is then actually searched. The problems with keywords
are numerous and take various forms. There are practical problems, like how
laborious it is to manually provide tags and how di�cult it is to quantify the
relevance of a tag. And there are semantical issues, like language ambiguity or
synonymy and the lack of consistent reproducibility due to human nature.

Content Based Image Retrieval Systems

One alternative to the text-based approach is to automatically extract features
from the image that somehow capture its visual content. In addition, a similarity
metric, that can quantify the similarity of two features, must be provided. The
captured image features are then cataloged and indexed to form a searchable
database. The queries for such a database then take the form of an image. This
kind of searching is called content-based image retrieval or CBIR.

To achieve its goal of e�cient and responsive search, the CBIR system has to
solve two problems: 1) how can it automatically capture the content of an image?
and 2) how does it catalog, index and store the captured content such that it can
then be e�ciently searched?

Many methods have been proposed to capture the content of an image. Es-
sentially, all of them try to describe the visual content by extracting features
and calculating from them one or more descriptors that typically take the form
of high-dimensional vectors. The similarity of two images is then established by
calculating the distance between the extracted vectors. This kind of feature ex-
traction does not solve all the aforementioned image description problems (such
descriptions have typically little semantic value). It does however provide a re-
liably reproducible and automatic way of describing images based on the image
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6 Introduction

content, free from the whims of the particular user.
The ability to measure similarity also means that it is possible to discover that

image from a collection which is the most similar to a query image, ergo searching
is made possible. The simplest most basic search algorithm would be a brute-force
sequential scan, calculating the similarity of each descriptor in the collection, and
keeping track of the most similar candidate descriptor(s) discovered so far.

To reduce the overhead of searching, most algorithms use some form of a divide
and conquer strategy. The data is partitioned into small groups and an index can
be used to quickly discard unnecessary groupings during search. Regardless of
the partitioning strategy or the indexing method, the construction of the indexed
database is a time consuming task that requires the processing of each descriptor,
at least once. For this reason, the construction is typically done o�-line.

On the other hand, the search is typically an on-line process where respon-
siveness is an important factor. The two most common search paradigms are the
k nearest neighbor search or k-nn, where a �xed size list of the k most similar
candidates found are kept, and range-queries, where all the candidates that have
a similarity within a given range r are kept.

The search in the traditional CBIR systems would work as follows: It would
start by identifying the query's most similar partition and then scan that partition
for the query's nearest neighbors. Then, using the distance to the kth nearest
neighbor (or the given range r), the index would minimize the work by using
mathematical analysis to exclude any partitions, that could not possibly hold
any more proximate descriptors, from being scanned. Any partitions that could
not be excluded in this way would have to be scanned to see if nearer neighbors
could be found.

With the term �traditional CBIR systems� we refer to the methods proposed
before the year 2000. At the time, the scale of the collections and the dimen-
sionality of the descriptors were much lower than today. Image collections would
typically number in the tens to hundreds of thousands of images and the dimen-
sionality of descriptors numbered in the low tens.

Challenges and solutions for the modern CBIR system

Currently the image collections number in hundreds of thousands to billions
of images. As the image collections became larger, the need for better discrim-
ination and more powerful descriptors became apparent. To address this need,
the number of features extracted and the descriptiveness of those features have
increased. Both pose serious problems for traditional CBIR systems. On the
one hand, the CBIR system has to scale-up to ever larger descriptor collections
and on the other, the more powerful descriptors are typically represented using
higher-dimensional vectors.
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The traditional CBIR systems promised to �nd the most similar descriptor(s),
or the actual nearest neighbor(s), in the database. To do so, they use the index
to only exclude those parts of the partitioning that can under no circumstances
contain a more similar descriptor candidate. As the dimensionality grows, the
ability of the index to safely discard parts of the database is diminished and the
search algorithms may degrade to a full scan of the entire collection. As a result,
the traditional algorithms have failed to meet the modern demand to e�ciently
handle hundreds of millions or even billions of images.

To address this need, modern CBIR systems have turned to approximate
approaches. The approximations are based on the observation that frequently
the most similar descriptor(s) are found early in the search, scanning the �rst
partition(s). In traditional systems, most of the e�ort is thus spent on scanning
partitions that can not be excluded by the index, but rarely hold descriptors
that change the result. By limiting the search to the most likely partition(s),
the search cost can be kept down while still �nding most of the true nearest
neighbors. Thus, the approximate solutions strike a balance between response
time and quality.

Relying on approximations has not been the only way to create larger and
faster CBIR systems. Hardware has always played a part in the development of
such systems. This is because more often than not, the design of the algorithm is
trying to overcome some bottleneck that originates in the limitations of hardware.
In the last decade or so this has become even more relevant as there have been
many advances in hardware that greatly in�uence the design of current and future
CBIR algorithms. Advances such as: solid state disks; size of the main memory
now possible; multi-core processors and last but not least the growing availability
of a large number of high-caliber machines in the form of grids and clouds. All are
important factors to consider for the development of tomorrow's CBIR systems.

Contributions

The work presented in this thesis addresses the issues of web-scale CBIR.
At web-scale, the image collections number in hundreds of millions or billions
of images and there are demands for both responsive real-time search and high-
throughput search.

A key assumption that we make is that our collections are so large that they
will have to reside on secondary storage. As we shall see, a secondary storage
device can be a severe bottleneck. It is thus essential to design a CBIR system
with the limitations of disks in mind, right from the start.

Our algorithm, extended ClusterPruning (eCP) [GJA10, GAJ12b, MSGA13,
GAJ12a, SMGA13], is based on extending a method called ClusterPruning (CP).
The �rst contribution is a set of extensions to deal with indexing and searching
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very large image collections. They include: reducing indexing cost, balancing
the size distribution of clusters and e�ciently accessing disks. We extensively
evaluate eCP using a variety of image collections, commonly available o�-the-
shelf hardware and various secondary storage devices that include Solid State
Disks (SSD).

The second contribution includes parallelizing eCP to harness the power of
multi-core processors, both for indexing and searching. In addition, we propose a
high-throughput batching search that trades response time of individual queries
for throughput. The throughput is achieved by searching the database for images
that are similar to hundreds or even thousands of query images at the same time.
Again, we extensively evaluate our algorithm. This time using a powerful 12-core
(24 logical) server with 144GB main memory and using high-performance RAID-
6 con�gured magnetic disks. We also drastically increase the size of the image
collection used for evaluation, going from a few hundred thousand images to over
25 million images.

Finally, as a third contribution, we extend the eCP algorithm again, to harness
the capability of distributed computation. We do this by adapting eCP to the
MapReduce programming model and implementing it on the Hadoop framework.
This time, we increase the size of our image collection to 100 million images,
where over 30 billion SIFT descriptors are extracted that in turn results in 4TB
of data. Experiments and evaluation are run on over 100 grid-machines from
three di�erent machine-clusters.

Overall, we show: that database construction can smoothly scale-out to a
vast number of cores and machines; that our simple eCP algorithm can scale-up
to provide high quality results using very large collections; that high-throughput
search is possible if queries can be batched and that responsive single query search
would be possible if we had high-performance SSD devices with large storage
capacity.

Structure

The rest of this thesis is structured as follows. We start with chapter 1, where
we discuss relevant work and algorithms which we build upon, have inspired
us and motivated our contributions. In chapter 2 we develop eCP and present
our extensive evaluation of the algorithm. Chapter 3 contains the presentation
and evaluation of the parallelized eCP as well as the batch oriented search. In
chapter 4 we show how we adapt eCP to the MapReduce programming model
and the Hadoop framework as well as presenting evaluation of both distributed
database construction and search. Finally, we end the thesis by summarizing our
accomplishments, draw conclusions from them and discuss future work.



Chapter 1

Background

In this section we will discuss the challenges of large-scale modern CBIR
systems in more detail. We will explain the ideas and assumptions of prior work
that we build upon, as well as highlight the advantages and shortcomings of
alternative solutions.

We will start by discussing how we evaluate the performance of CBIR systems.
The key metrics are presented and we explain how we build a ground truth that
we use to measure search quality. This knowledge is key for fully understanding
the large body of experiments presented in this manuscript.

We then move on to brie�y explain how the visual content is captured auto-
matically and described with high-dimensional feature vectors. We explain how
the SIFT descriptors work, the de facto standard in image and object recognition,
and the descriptors we use in our work.

In the third section, we take a general view on matters related to our topic
and learn important lessons about the design of tomorrow's CBIR systems. We
base our lessons not only on the CBIR literature, but also on the state of the
internet-addicted world we live in. Among the issues discussed are the size of
today's web-scale image collections, a size that was unimaginable just a few years
back, and the shift in development of computing power, from scale-up (faster and
faster) to scale-out (more and more).

The fourth and last section is devoted to describing in some detail speci�c
algorithms that are important to our discussion and the development of our own
solutions to the large-scale CBIR problem.

As may be evident from reading the introduction, our goal is to develop a
modern CBIR algorithm that will take full advantage of today's state of the
art hardware. That includes developing both multi-threaded and a distributed
version of eCP. As each implementation is quite intertwined with the relevant
background material, we prefer to defer the discussion of speci�c background
material for each topic until the beginning of each chapter. The adaptation of
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10 Background

eCP for parallelism is covered in Chapter 3 and eCP is extended for distributed
environments in Chapter 4.

1.1 Evaluation of CBIR systems

The evaluation of a CBIR system has to take many aspects into account. First
is the e�ciency, like response time throughput and hardware utilization.

Second is the evaluation of the search quality. This is naturally done at the
image level, it is after all similar images that we are looking for. We will present
some of the commonly used indicators to gage quality.

We then move on to detailing how we build an image level ground truth for a
query set, as one of the key components of evaluating search quality is to know
what the correct answer to a given image query should be.

1.1.1 Metrics

To gage e�ciency, we use various measurements as well as monitoring both
hardware requirements and utilization. Following are some common metrics used
for this purpose:

� Time is an important metric. The real time is the wall-clock time that
passes between the start and end of a task. We also measure user time, the
cumulated time that cores are reported as busy, and I/O time, where we
measure time spent doing and/or waiting for I/O operations.

� Cache miss measures how frequently data has to be accessed at lower and
more costly levels of memory hierarchy.

� Memory footprint is the maximum memory requirement that the algo-
rithm requires during its execution.

� Storage footprint is the maximum disk space requirement that the algo-
rithm requires during its execution.

We now move on to search quality measures. Let us assume an image query
q that is searched on a CBIR system that has indexed a image collection C. The
result of the search Rq is a ranked list of the most similar database images. To
measure the quality of Rq, we need to know the correct ground truth ranked
list Gq that should have been returned. If we know Gq, we can discover the true
positives (Rq∩Gq) and the false positives (Rq−Gq). Identifying the false negatives
(Gq−Rq) is key in assessing quality. Also, as our result is a ranked list, the order
of the results can also be used as a quality metric.

Following are common quality metrics derived from the above information:
� Precision, is the fraction of true positives in the result (Rq ∩ Gq)/Rq.
Precision at x, or P@x, limits the result set Rq to the x top ranked results
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only. For many use-case-scenarios, the P@1 is the most important measure,
i.e. �was the correct image returned as the top ranked result?�.

� Recall, is the fraction of the ground truth returned (Rq ∩ Gq)/Gq. Like
precision, recall can also be limited to the top x values or R@x.

� mAp, or mean average precision, is commonly used to produce a single
evaluation metric over a large set of queries. It simply calculates the average
precision for each image query and �nds the mean value.

The most common problem is obtaining the ranked ground truth Gq. In our
example we said q was a query image, but we could just as well do this on the
descriptor level. If q is a query descriptor, typically, the only way to obtain Gq is
to do an exhaustive scan of collection C, comparing q to every single descriptor.
In practice, the ground truth has to be obtained for a large set of queries and
repeating the exhaustive scanning of C, for each q in the query set, is a daunting
task.

How we obtain the ground truth at the image level is the topic of the next
section.

1.1.2 Image level ground truth and search scenarios

A common way to create a ground truth is to randomly pick images from the
collection and create altered versions of them (using cropping, rotation, blurring
etc.), using a software tool such as StirMark [PAK98]. The StirMark tool is
available for download at this web site [PAK97].

The outcome of such a process is two sets of images, the randomly picked
originals and the set of altered images. Each image, both the originals and the
created variants, is given a unique ID-number and the ground truth is based on
a lookup-table that keeps track of what variant came from which original image.

Then, at search-time, one set of images is included in the database while the
other is used as an image query set. There are thus two possible scenarios:

I ) The altered images are used as queries and the originals are left in the
image collection to become part of the indexed database. This is often referred to
as a �the Copyright detection scenario�, as it nicely simulates copyright detection.
But this type of evaluation is applicable to many other problems as well.

In this case, the ground truth Gq for any given query image q is a single image,
namely the original image that the query image variant was generated from. In
the search result Rq for this scenario, we would thus expect the original image to
be high on the rank of results, or else the search has failed. While recall is very
important, what we are really interested in is to have the correct image at the
top of the list (P@1).

II ) The other possibility is to use the original images as queries and include
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the altered set of images in the database. This scenario is often referred to as
�similarity search� as it is a good way to simulate �nding multiple similar images
in a database, given a single query image.

In this case the ground truth Gq, for any given original image used as a query
q, is a set of images, namely all the variants that were created from that particular
original image. In the search results Rq for this scenario, we would expect several,
if not all, of the variants to be among the top ranked results. The most important
metric in this case would be the mean average precision (mAP) as both precision
and recall matter.

How we get from results with ranked lists of vectors to ranked lists of images,
is our next topic.

1.1.3 Vote aggregation, per-vector to per-image

In CBIR systems, images are represented by multiple descriptors extracted
from each image. An image query will thus consist of multiple query descriptors,
each generating a search result Rq that consists of a ranked vector-list, instead of
a single ranked image-list. While the vector-level results do not directly measure
image similarity, each vector of every vector-list belongs to some image in the
database. It is thus possible to convert the ranked vector-level results into ranked
image-level results. The conversion process is often called a vote aggregation, as
it can be seen as an election process, where vectors cast votes for images and the
popularity of images determine their rank in the image level-result.

There are many ways to hold �fair� elections and covering all of them is be-
yond the scope of this thesis. One of the simplest election systems is to base
the ranking on the frequency of which each database image is represented by a
descriptor in the ranked vector-lists. This election process uses a one-vote per
vector policy, without taking any consideration neither to the rank nor the prox-
imity information. Each vector, in each ranked result-list, casts one vote for the
database image it comes from. Once all vectors have voted, all the votes are tal-
lied and the list of candidate images is sorted, based on the number of votes each
image received. The outcome is a ordered list of database images that becomes
the ranked image-level result. In fact, this is the vote aggregation process used
in eCP (with only a small added constraint that will be discussed later).

A more common voting policy, used in most state-of-the-art CBIR systems, is
to take the vector's rank and proximity to the query into consideration, assigning
weights to the votes being cast. Weighing the votes is done under the assumptions
that: a) proximate vector(s) are more likely to be very relevant and b) vector(s)
in the vector-list with the best relative proximity to the query are more likely to
be correct. Thus, each vector's vote is weighed based on both factors, a) and b),
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before it is cast. To fully understand the advantage of this, we need to understand
a little bit better what actually happens in the election process.

Vote aggregation and the background noise

Let us assume we do a k-nn search and we are using the copyright detection
scenario. For each query descriptor q, a k-nn ranked result-list is returned. At
the image level, only one of the database images is in the ground truth. Thus, it
should be clear that only 1 of the k votes from each ranked vector-list is correct. 1

The remaining k−1 votes are cast for random images that happen to have similar
vectors. The number of votes a non-correct image receives by the random-votes
is called the �noise-level�. The larger the k is, the more noise is created. What
the CBIR system relies on is that the correct image receive enough votes, such
that it rises signi�cantly above the �noise-level�.

As the query image has been distorted, then, compared to the vectors from the
original image, some new ones have been created and others are very di�erent.
Thus, out of all the extracted query descriptors, only a handful may truly be
matching original descriptors. Some correct matches are very similar, at the top
k, while others fall far down the list. Setting the size of k is thus a balancing act
between �noise-level� and capturing the distorted but correct matches.

One of the primary goals of the weighted-voting policy is to allow the use of a
large k, without increasing the �noise-level� too much. This is done using the a)
and b) criteria describe before, to weigh down �bad� remote neighbors in k and
boosting the �good� proximate ones. In those cases where all descriptors in the
ranked vector-list k are equally remote, all descriptors get about the same voting
weight.

The �noise-level� also depends on the number of unique images in the database.
Many CBIR systems designed and con�gured for large scale may not work as
expected when tested on too small image collections. The search may rely on a
large number of unique images to keep down the �noise-level� and provide good
results. By simply increasing the number of images, such that the collection is of
adequate size, the quality of the search may improve drastically. When evaluating
a CBIR system, it is important to make sure that the con�guration is appropriate
for the task at hand.

Our eCP search algorithm uses the simple one-vote-per-vector policy with one
added restriction. eCp does not need to weigh it's voting as the search produces
very accurate distance estimates (we keep the vectors and can thus do the full
Euclidean distance calculation). Therefore we can set the size of the k nearest
neighborhood very low, typically we use a k = 20. So far, we have not seen the

1. We assume that each vector in k comes from a unique image. Allowing multiple votes for
the same image in the same ranked result-list can cause problems and should be prevented.
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need for implementing a more CPU intensive voting scheme (like weighing the
votes), although doing so would be an easy task.

The added restriction is that eCP does not allow multiple votes for the same
image in the same ranked result-list Rq. We are looking for a one-to-one cor-
respondence between descriptors, if two images are truly similar they will have
many one-to-one matches and the vote will be high.

An image where all the descriptors extracted are similar to each other we call a
�monotonic� image. A single such monotonic image can cause a lot of trouble if we
allow multiple votes to be cast for the same database image from the same ranked
result-list, i.e. we would be allowing a one-to-many correspondence between a
query descriptor and image votes. The monotonic image in the database could
have several of its similar descriptors accumulate many votes, allowing it to rise
above the �noise-level�, even if only a handful of the query descriptor (ranked
result-lists) are actually behind the casting of those votes. Essentially, allowing
the one-to-many correspondence can result in a tendency to always �nd monotonic
images as good matches and make a CBIR system sensitive for attacks [DKAF12].

1.2 Capturing image content, SIFT descriptors

As was brie�y described in the introduction, it is the captured content of the
image that is actually being indexed and searched when using a CBIR system.
That content takes the form of high-dimensional vectors that, together with a
distance function, make it possible to quantify the similarity between images.
That in turn provides the basis for the operations necessary for a CBIR system,
i.e. the ability to compare images, sorting based on similarity and grouping similar
images together.

There are many extraction algorithms and descriptor types in use today and
new schemes are published each year. Most of the variety is due to methods that
are aimed at solving speci�c sub-tasks, where domain speci�c information is used
to create �better� (smaller, faster or more informative) descriptors.

The one most accepted and commonly used today is the scale-invariant
feature transform or SIFT [Low04]. The SIFT descriptor was developed for
object recognition in images and therefore the feature has to be tolerant of changes
in the image like rotation, scale or illumination etc. Today, SIFT is used for a wide
range of applications like localization and mapping in robotics, image stitching
and content based search. The popularity of SIFT comes from its superior ability
to reproduce similar descriptors from otherwise dissimilar images of the same
visual motive.

SIFT extracts local descriptors in three steps. It starts by �nding keypoints,
at coordinate (x, y) and at a scale σ, where the Di�erence of Gaussian (DoG)
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Figure 1.1: Example of SIFT descriptors. 1,751 descriptors are discovered in this 720x480

pixel image.

. model: Ester Eir Gudmundsdottir, photographer: Rakel Edda Gudmundsdottir

response is a local extremum at various scales of the image. In the second step, for
each keypoint, it's main orientation θ is computed based on the gradient directions
locally around (x, y). We thus get a de�nition of a keypoint = (x, y, σ, θ). After
�ltering undesired keypoints, like low contrast and those that fall along edges,
the third step is to compute the actual descriptor vector based on a support
region centered on the (x, y) coordinate. The support region is divided into 16
subregions, and 8-bin quantized histograms of weighted gradient orientation of
the subregions are concatenated into a 128-dimensional vector.

In Figure 1.1, we see an example of where and how SIFT features are acquired.
On the left is the original 720x480 pixel image and on the right we see also the
1,751 local descriptors with orientation.

As each descriptor is calculated from a �xed neighborhood, the discovery of
keypoints is limited to an internal area that is 20 pixels in from any image border.
This restriction matters if the images are very small as only a small part of the
image surface can actually be used for keypoint discovery. As a result, for some
of images in the collections we use, where the longer edge of an image is limited
to 150 pixels, few or even no descriptors can be extracted.

Although eCP can work with high-dimensional vectors from any source, we
do all of our evaluations using SIFT features extracted from images. 2

1.3 General lessons and observations

Before we discuss speci�c algorithms and CBIR systems, there are some gen-
eral observations we would like to highlight from the literature and from the state
of the online web-scale world we now live in.

2. eCP was adapted in less than one day to work with 36 dimensional audio features.
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1.3.1 Size and growth of web-scale image collections

The size and availability of image collections has grown beyond anyone's ex-
pectations in the last few years. Image collections, that researchers had painstak-
ingly been collecting over several years, where dwarfed in size almost overnight
by the rise of social websites like Flickr and Facebook. Since Flickr started in
2004, it has grown to over 6 billion images and, in the year 2012, over 518 million
publicly available photos were added to their collection, or 1.42 million on aver-
age per day. Facebook is even larger, with over 100 billion images and a daily
growth rate of over 200 million. Unlike Flickr, the Facebook collection is not
directly publicly available and thus academia has been prone to collect images
from Flickr for research purposes.

The growth of video content, like on YouTube, has followed a similar trend.
Recently, the mobile-oriented image hosting, such as Instagram, is also catching
up quickly. In the near future, publicly available web-scale collections will not be
limited to just a few sites and the demand for web-scale CBIR search will only
become stronger.

The size and growth rate of web-scale collections is such that currently only
the high capacity secondary storage devices are a viable option for a web-scale
CBIR system. One of the primary reasons web-scale collections cannot be stored
in main memory is because very large RAM is still very expensive and thus
hardly a�ordable [GG97]. Furthermore, such collections need persistency, that
can only be achieved today thanks to secondary storage devices. Making sure
CBIR algorithms deal e�ciently with disks is a crucial design issue.

1.3.2 Hardware developments that in�uence CBIR design

Since the shift in microprocessor development in 2005, from scaling-up with
faster and faster cores to scaling-out to multiple cores, parallelized programming
has become necessary to fully utilize the available processing power of a single
machine. In addition, simultaneous multithreading, or SMT, has become very
advanced and widely used. Today, SMT is typically implemented transparently,
where the operating system sees two (or more) logical cores for every real core
available. However, as we shall see in chapter 3, it is important to be aware of
SMT and design parallelized algorithms accordingly.

Another scaling-out trend has been the growing availability of large machine
clusters, or even multiple clusters, in the form of grids and clouds.

As we shall see in Chapter 2, even with a hierarchical index, an enormous
amount of distance calculations is necessary to partition a large collection of de-
scriptors. On a single core, the process can take days or even weeks. For CPU
intensive applications like that, it is essential to use both parallelization and dis-
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tributed computing to harness all the available processing power of the modern
day infrastructures. However, it is typically not straight forward to e�ciently par-
allelize and distribute complicated algorithms as an afterthought. It is therefore
important to keep in mind the limitation of parallel and distributed computing
during the CBIR's design process, adapting the solution to the environment and
not the other way around.

For a long time, 32bit addressing limited the size of main memory to 4GB.
Today, 64bit addressing has taken over and the machines with tens or even hun-
dreds of GB of RAM are available. Machines with very large RAM capacity still
remain very expensive. This development has brought new life to in-memory
CBIR systems. But, as we have already discussed, we do not consider in-memory
algorithms as a viable long term option at web-scale. The memory footprint and
the e�cient use of the memory is however very important to any CBIR system.

The last development we will mention here is recent advances in secondary
storage, namely solid state disk technology (SSD). For decades, the magnetic disks
have been the only option for permanent storage. The only drastic development
has been in the form of increased storage capacity. Due to mechanical limitation
of moving parts, performance of random access is very poor. A lot of design and
software logic is thus spent on grouping I/O requests such that the disk(s) are
accessed sequentially. This is a form of batching I/O requests. The new SSDs
are both much faster and, as they have no moving mechanical parts, not limited
to sequential access patterns. Currently, the only true limitation of SSDs is their
still relatively small capacity. As we will show in chapter 2, I/O bound algorithms
like the eCP search can greatly bene�t from using SSDs.

1.3.3 The failure of the traditional CBIR algorithms

In this section we will discuss why the early CBIR algorithms have failed to
handle the scale of image collections and the descriptive high-dimensional features
used today.

Uri Shaft and Raghu Ramakrishnan published an article in 2006 where they
showed that almost none of the indexing structures at that time could cope with
increased vector dimensionality [SR06]. This was a serious problem, as the answer
to the demand for better and more descriptive features had been found in increas-
ing the dimensionality of the descriptor vectors. Making matters even worse was
the size of the descriptor collections. Not only were there more images in the
collections, but the use of multiple local descriptors to describe each image could
easily hundredfold, or even thousandfold, the number of descriptors to index.

The millstone for the traditional algorithms, like the K-D tree [Ben75], R*-
tree [Gut84], SS-tree [WJ96] and the M-Tree [CPZ97], was that they would guar-
antee to �nd �the� nearest neighbor(s). To provide that guarantee, the search



18 Background

had to scan every partition that could possibly contain a nearer neighbor than
the ones already found, regardless of how unlikely that extra work was to actually
change the results.

Around the turn of the millennium, several new approximate solutions were
proposed where that correctness guarantee was sacri�ced for more responsive
methods. We will discuss some of the proposed solutions later in this chapter.
The key observation that the new systems build on, is that in the traditional
approach, most of the true nearest neighbors are found early in the search process
and that most of the subsequent e�ort is spent on scanning partitions that rarely
in�uence the �nal outcome. The approximations proposed, give up the notion
of �nding �the� nearest neighbors and instead focus on �nding �a set� of near
neighbors that is likely to contain as many truly nearest neighbors as possible,
but with minimal e�ort.

1.3.4 Strategies to divide and conquer

Most recent approximate indexing algorithms use some form of quantization
to divide the vector collection into small partitions. Indexing is the process of
assigning to the appropriate partition(s) every vector of the collection. Searching
is the process of identifying the most pro�table partition(s) to scan in order to
discover the nearest neighbor(s) of the query.

Quantization associates each high-dimensional vector with a representative
value. There are much fewer such representative values than there are vectors
in the collection. If the representative values are numbers, then the quantization
process is called scalar quantization. Random projections are typically used in
approaches doing scalar quantization of high-dimensional vectors. Examples of
CBIR systems that adopt this type of approach are LSH [GIM99] and the NV-
tree [LAJA06] that is described in Section 1.4.2.

If the representative values lie in a high-dimensional space, then the quan-
tization process is called vectorial quantization. Some of these approaches are
unstructured as they determine the representative values such that they best �t
the real distribution of data over the high-dimensional space. With regard to
quality, the best performing CBIR systems are based on unstructured vectorial
quantization.

We will now move on to discussing a few of the approximate CBIR algorithms
in more detail.

1.4 Algorithms

Following our discussion of partitioning strategies, the �rst algorithm we will
discuss is the k-means algorithm. It is a very popular unstructured vectorial
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quantizer that is used for a wide range of applications, including several CBIR
systems we will discuss shortly.

We then turn our focus on modern CBIR algorithms. We choose to split
them into two categories, �in-memory� and �disk oriented�. �In-memory� does
not mean the algorithms cannot be extended to use secondary storage. In fact,
most of them have been. It simply means that disks were not part of the initial
design, and thus the cost of using disks is dealt with more as an afterthought.
The algorithms covered in the �in-memory� category are Bag-of-Features (a.k.a.
Bag-of-Visual Words), the Vocabulary tree and ClusterPruning. And the NV-tree
algorithm is in the �disk oriented� category.

We then end this section and the chapter with a discussion of the pros and
cons of the various algorithms. But we start with k-means.

k-means
k-means iteratively partitions datasets into k clusters, minimizing each clus-

ter's internal variance, until a locally optimal distribution is found. It starts
by picking k vectors randomly as the initial representatives. Then it proceeds
to assigning each vector to its most similar representative, forming Voronoi-cell
shaped clusters. During the assignments, a new representative value is calculated
for each cluster. Then, at the end of assignments, the current representatives are
replaced by the newly calculated ones. The process is then iterated again and
again, replacing the k representatives after each round, until they have stabilized
at a local optima.

The complexity of the k-means algorithm is NP-hard in the general case, but
if k and the dimensionality of the vectors d are �xed, the complexity is:

O((Ndk + 1) ∗ logN)

where N is the number of vectors in the dataset and logN is the number of
iteration it typically takes k-means to stabilize.

Despite the high complexity, k-means has been very popular and several ex-
tension, approximations and heuristic versions of it have been proposed [AV07,
Elk03]. An extensive overview can be found in [Jai08].

When k-means is used in a CBIR system, the centroids of the k-means al-
gorithm are used as an index to quickly prune o� those regions of the dataset
that do not have to be scanned against a query. How strict the criteria of what
is necessary to scan will depend on weather the search algorithm is exact or
approximate.

The main drawback of using k-means in a large-scale CBIR system is that
the number of clusters k must be large and thus the complexity of indexing is
very high. Using a small number of clusters k is not feasible as that will hurt the
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search process: With a small k, each cluster will contain a lot of points and that
hurts the response time of the search.

A large k also a�ects the search, as the search must scan so many cluster
representatives to �nd the one(s) most similar to a given query. As k-means with
a large k is so costly, developers have turned to more approximate solutions that
build hierarchical index structures.

k-means is also prone to create an imbalanced cluster-size distribution. This is
because its only objective is to �nd stable clusters, regardless of each cluster's size.
It will be perfectly happy with a majority of the data residing in few dense clusters
while others are all but empty. As the queries' descriptors are likely to follow
the same distribution as the descriptors of the database, an imbalanced cluster
distribution will become a big problem at search-time. The largest clusters will
be both more frequently requested and more costly to scan, causing degradation
in response time and overall performance.

In short, a CBIR system that is based on the original k-means algorithm will
not fare well on today's large collection sizes. However, as well shall shortly see,
optimized and/or altered versions of k-means are frequently used in state-of-the-
art CBIR systems.

We now move on to describing the modern in-memory CBIR algorithms.

1.4.1 CBIR: data-in-memory design

Bag-of-Features and the Vocabulary tree
The largest breakthrough in the last decade was the so called Bag-of-Features

or BoF algorithm [SZ03], also known as Bag-of-visual Words or BoW, described
by Sivic and Zisserman. A good overview of BoF can be found here [OD11].

BoF was inspired by the inverted indexing technique designed to e�ciently
index vast amounts of very high-dimensional but sparse word histograms derived
from text documents. The similarity measure of text documents is based on how
many words they have in common. For every word, the inverted index database
creates a list of all documents that contain it. At search-time, for every word
that is in the query text, the list of all documents in the database containing that
word is returned. Then, the most similar documents to the query text are found
by �nding the most common documents in all the returned lists.

Turning to images, the basic idea of BoF is to use a quantizer, called the
codebook, to transform local descriptors extracted from an image into visual-words
and then directly apply the visual-words on the inverted indexing schema. The
codebook is typically some e�cient variant of k-means, where each cluster plays
the role of a visual-word and thus each local descriptor assigned to that cluster
becomes an instance of that visual-word in the clusters inverted index. The main
advantage of this approach is that ultimately the descriptor vector will not have



Algorithms 21

to be kept and no costly scanning is done during the search process.
At search-time, the codebook is used to discover all the visual-words for a query

image. Then, each visual-word list (i.e. cluster) is retrieved and the inverted index
schema derives similarity based on how many visual-words the query and the
database images have in common. As the similarity of images in BoF is based on
how many visual-words they have in common, there is no need to do any costly
scanning of clusters and therefore there is no need to keep the bulky descriptor
vectors either, since no distance calculations are needed.

Another way to view the inverted index schema is to imagine it as a vote aggre-
gation, where each cluster is an unranked list of descriptors and every descriptor
in the cluster gets to cast a vote for the image it comes from.

As was shown in [JDS08], the size of the visual-vocabulary (the number of
clusters in the codebook) needs to be very big, or else there is not su�cient dis-
criminative power to �lter the result set to only a few most similar database
images. The larger the visual-vocabulary, the more costly it becomes to use k-
means as the quantizer. To address this issue, David Nistér and Heinrik Stewéníus
proposed a hierarchical quantizer that they call the Vocabulary tree [NS06].

The goal of the Vocabulary tree is to have a large and discriminative codebook
that still keeps the indexing and search overhead low. The hierarchy is de�ned
by a branching factor br and a maximum number of levels L. The construction
process of the hierarchy starts by doing a k-means with k=br of a su�ciently
large training set. Subsequent levels of the tree are then built by dividing each
created cluster into br new subsets, again and again, until the desired depth L
is reached and a total of brL clusters have been created. Each subdivision is
thus only de�ned by the distribution of the descriptors assigned to the parent
Voronoi-cell and so directly de�nes the vocabulary of the codebook. Once the
Vocabulary tree has been built, it is a static structure that is used to quantize all
the remaining data, and future queries.

The indexing cost of the large codebook is however not BoF's only problem.
Let us summarize the disadvantages and then discuss them:

1. It is hard to set the number of clusters k in the codebook just right. If they
are too few, and there is not enough discriminative power and if they are
too many, similar descriptors risk falling in di�erent clusters and correct
matches are lost;

2. To handle large collections many clusters are needed. Even if an e�cient
variant of k-means is used, indexing can be costly.

3. As the vectors of the descriptors are not kept, no internal cluster discrimi-
nation between descriptors is possible.

4. As a result of 3), search expansions into multiple near clusters are not
feasible.
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5. As a result of 1), 3) and k-means tendency for imbalanced size distribution
of clusters, BoF typically requires several correctly matched visual-words to
�nd the truly most similar database images; If resolution of the images is
small and/or the query image is severely altered, the BoF search may fail
where others CBIR systems can still succeed.

6. For image collections with billions of images, even BoF will run out of
memory.

To fully understand the issues above, we should recall our discussion on vote
aggregation from Section 1.1.3. Speci�cally, the discussion about copyright detec-
tion, vote aggregation of the ranked lists and the �noise-level� created by random
votes.

As described before, we can imagine the inverted index �ltering as a vote
aggregation. One of the key problems is the high �noise-level� that is created by
allowing all the descriptors of a cluster to cast a vote. Large clusters are both
more likely to be found and cast a lot of random votes. Contributing to this
problem is k-means tendency to create imbalanced clusters. Because of this, BoF
has a tendency to need many correct votes, so that the truly most similar images
can rise above the noise.

In Section 1.1.3, we described how a near neighbor search can use it's ranked
results to in�uence the �noise-level� either by changing the size of the neighbor-
hood and/or by using the weighted voting policy. As the inverted index lists of
the visual words are not ranked and no information is kept to create such a rank-
ing, BoF can do neither. The only solutions available to BoF are to either start
storing additional information or to increase the expressive power of the clusters
by making each one smaller and the visual-vocabulary larger. That is, smaller
clusters cast less random votes and therefore �make less noise�.

This brings us to the second part of issue 1), setting the size of the codebook.
When the size of the k-means becomes very large, not only is it more costly to
process, but the risk of similar descriptors falling into di�erent clusters is also
increased.

This is a common problem in many partitioning strategies and the classical
way to address it is to compensate by widening the scope of the search. The two
most common methods for that are called �query expansion� [CPS+07, PCI+08]
and �soft-assignments� [PCI+08]. Query expansion involves allowing the search
to widen its scope to examine multiple similar partitions, instead of just one.
The soft-assignments allow each descriptor to be assigned to multiple partitions,
instead of just a single most similar one (called the �hard-assignment� policy).
In [PCI+08], there is a detailed discussion and evaluation on applying both search
extensions to the large scale CBIR task.

Unfortunately, BoF has no good way of doing such expansions without raising
the �noise-level� excessively. Remember that without ranking, every descriptor
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in the cluster casts a vote. Therefore, increasing the number of descriptors con-
sidered, either by larger clusters or multiple ones, is bound to also add a lot of
�noise�. The point of having large k was to keep the clusters small such that they
do not create too much noise. It would then counter-productive, and ironic, to
compensate for large k by increasing the size of the clusters.

Because of the dilemma described above, many of the extensions to the orig-
inal BoF algorithm choose to sacri�ce some memory to keep additional infor-
mation that makes it possible to rank the visual word lists (i.e. to do a near
neighbor search of the cluster). Examples of such approaches are Hamming em-
bedding [JDS08] and VLAD descriptors [JDSP10], just to name a few.

In any case, setting the size of the codebook (i.e. the number of clusters) is
a balancing act between discriminative power, search quality and indexing cost.
Solving the indexing overhead with a hierarchical index is a vast improvement,
but does not solve the whole problem.

Note that post processing procedures, like geometrical veri�cation [PCI+07],
can be used to remove false positives and are often used to re-rank the returned
results.

With a hierarchical index, Bag-of-Features is a very fast method that works
well when many local descriptors are available from each image. It has received
a lot of attention from the research community and has inspired a whole family
of similar algorithms that try to address the issues raised above.

ClusterPruning
ClusterPruning or CP [CPR+07] is an algorithm proposed by Chierichetti et

al. and was initially intended for indexing and searching 400,000 dimensional
vectors derived from text documents.

CP's approximate search algorithm is based on scanning a single cluster of
data for the k-nearest neighbors of a query. Unlike BoF, CP keeps the full vectors
in its clusters to be able to discover a query vector's k-nn accurately. The main
focus at search-time, is to minimize the number of distance calculations necessary
to populate the query vectors k-nn.

Like BoF, CP uses a quantizer to partition the data into small groups, and
then builds an index over the groupings. At search-time, the index is used to
quickly identify a single most likely partition and then that partition is fully
scanned for the query's k-nearest neighbors.

The base case for CP is to build a single level �at index, where the number of
calculations during search is split even between scanning the index (for rapidly
�nding the single most similar partition) and scanning that partition (to deter-
mine the k-nearest neighbors of the query). The even split is achieved by having√
N clusters, each containing

√
N entries, where N is the size of the dataset.
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The quantizer proposed for CP borrows the initial step of k-means. For a given
collection of C = v1, ..., vN vectors, the base case is to create the

√
N partitions

by randomly picking l =
√
N vectors as leaders. Then, each vi is assigned to the

most similar leader in l. Unlike k-means however, CP does not iterate. It simply
stops after that �rst and only round of assignments.

Once all N vectors have been assigned and the clusters created, a cluster
representative is chosen for each cluster that is used in the �nal index. Chierichetti
et al. proposed three options for the representative: to keep the randomly selected
leader used during the assignments, to use the centroid of the cluster or to use
the medoid of the cluster.

At search-time, a query point q is �rst compared (distances are calculated) to
the set of representatives that make up the index, to �nd the most similar cluster.
Then, that single cluster is retrieved and q is compared to all of the clusters vectors
to �nd its k nearest neighbors. Thus, the total number of distance calculations
is minimized to 2 ∗

√
N .

It is possible to store the clusters on disk if they do not �t in the main-memory.
This adds an I/O cost at search-time, typically a single disk I/O to retrieve the
correct cluster from disk.

Index hierarchy For large collections
√
N can become quite a large number, so

large that the search becomes too cumbersome and unresponsive. To address such
cases, Chierichetti et al. proposed to speed up the search by building, at clustering
time, a multi-level hierarchical index that could be subsequently used at search
time to reduce even further the number of distance calculations necessary during
search.

The hierarchical index proposed is constructed bottom-up by �rst randomly
selecting l = ( L+1

√
N)L leaders, where L is the desired index depth (the base case

described before was L = 1). Then all the assignments of the N vectors are done,
just like before, creating a partitioning where each cluster has L+1

√
N vectors on

average. The second step is to use the chosen cluster representatives as the high-
dimensional dataset to cluster at the next level of the index hierarchy, randomly
choosing a new ( L+1

√
N)L−1 set of leaders and doing assignments etc. This process

is repeated for each level of the index, using the leaders of the level below as the
input data for the clustering process on the level above. It should be clear that
the hierarchical index is built after the completion of all assignments to clusters.

The generalized formula for the number of distance calculations necessary
during search is:

(L+ 1) ∗ L+1
√
N

where L is the desired index depth and N the size of the dataset.
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While the number of distance calculations necessary during search are reduced
exponentially with index depth L, the number of distance calculations necessary
for the initial partitioning step grows exponentially. The initial assignment pro-
cess requires N ∗ ( L+1

√
N)L calculations. There are a few reasons why Chierichetti

et al. may have found this arrangement acceptable. First was that they wanted
to be able to change the cluster representatives, to centroids or medoids, and that
can not be done until after the clusters have been created. Another factor may
have been that they did not care too much about how long the o�-line indexing
process takes. At very large scale this is however not acceptable. The number
of calculations necessary to index a large dataset would be extremely high; A
similar observation was made in the context of BoF and motivated the need for
the hierarchy of the Vocabulary tree [NS06].

Search extensions Sometimes, reading a single cluster may not yield results
of satisfactory quality. In such cases, it is possible to read b clusters to answer
each query; the basic algorithm corresponds to b = 1. The cost of retrieval then
consists of accessing the disk b times and doing (L + 1 + b) ∗ L+1

√
N distance

calculations. Note, that the value of b can be set at search-time.
Alternatively, it is possible to increase the quality of the results by assigning

each vector to its a > 1 most similar clusters, and reading only one cluster
(b = 1) at query time. Each cluster will then contain on average a ∗ L+1

√
N

vectors. While it will take just as many Euclidean distance calculations as using
b, a only requires accessing the disk once. The downside of using a is that it
requires a times more disk space if clusters are stored on disk and it can only be
set at indexing construction time.

These search extensions were discussed earlier, in our discussion about the BoF
algorithm in Section 1.4.1, where they where termed �soft-assignment� (a) and
�query expansion� (b). A detailed discussion and evaluation of the two approaches,
applied to image retrieval at large scale, can be found in [PCI+08].

The main advantage of CP is its simplistic and yet �exible partitioning and
search method. As the vectors are kept, it is possible to tune the aggressiveness
and quality with the a and/or b parameters. To compensate for the cost of keeping
the vectors, the number of distance calculations is kept to the absolute minimum
by splitting the work according to the L+1

√
N formula.

There are however several disadvantages. By keeping all the vectors, the stor-
age requirement is very high. Also, unlike the Vocabulary tree, CP's hierarchical
index structure only bene�ts the search. Because of how the index hierarchy is
built bottom-up, increasing the depth L of the index will actually cause an expo-
nential growth of the assignment costs. Bare in mind that there are N

L
L+1 clusters

created at the bottom level. Hence, the cost of indexing very large collections is
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enormous.
Assigning the dataset to randomly chosen leaders should in theory create

evenly sized partitions. In practice however, there is always an imbalance in
the distribution. If some clusters are abnormally large, regardless of where they
reside in the index hierarchy, accessing and scanning them will always require
more distance calculations than expected. On top of that, as we have to assume
that the queries follow the same data distribution, the problem is compounded
by the fact that the costly large clusters are also more frequently accessed. While
the imbalance in the cluster size distribution may not be as severe in CP as
has been observed in k-means, see [SJHA05], it is still a subject worthy of our
consideration and evaluation.

CP was designed to be in-memory, but the authors proposed that the bottom
level clusters could be stored on disk if the database was very large. However,
the cost of accessing the disk(s) was not taken into consideration. Accessing disks
translates into physical operations, where one access can generate multiple I/O
operations when the clusters are large, or in the case of small clusters, each I/O
operations will actually read a lot more data than is actually needed. As we shall
see later, the only way to make the algorithm truly scalable is to take both CPU
and I/O costs into account right from the start.

1.4.2 CBIR: data-on-disk design

The BoF family of algorithms and CP rely heavily on RAM to keep the
algorithms responsive, and extending them to secondary storage was done more
as an afterthought. The algorithms we will look at in this section use secondary
storage.

First we brie�y look at ImageTerrier, a disk-based implementation of the BoF
algorithm. Then we discuss the NV-tree, that assumes that secondary storage is
necessary and takes that fact into account right from the start.

ImageTerrier
ImageTerrier [HSDL12] is a scalable open-source search engine platform pro-

posed by Jonathon Hare et. al in 2012. It was evaluated by indexing up to 10
million images (10 billion SIFT descriptors) using a single-pass BoF indexing al-
gorithm. What is di�erent about ImageTerrier from most other BoF systems is
that the inverted index is disk-based instead of keeping all the data in RAM. This
makes it possible to index such a large dataset on a single machine.

In the search process, ImageTerrier's average response time per image was
less than 1 second for datasets under 1 million images in size. This was because
most, if not all, of the inverted index lists where being cached by the OS in RAM.
When they indexed the full scale set of 10 million images, there was not enough
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RAM to cache all the data anymore and the disk had to be frequently accessed.
As a result, the response time per image jumped to 28 seconds.

ImageTerrier is not truly optimizing its disk access as the I/O assumption is
not fully integrated into the design of the CBIR algorithm that is at the hart of
the system.

NV-tree
The NV-tree [LAJA06], published by Lejsek et al. in 2006, is an indexing

algorithm especially designed to deal with very large amounts of data, so large in
fact that the authors assume it must be stored on secondary storage. They thus
incorporate the assumptions of using disks as a key component of their design.

Dealing with I/O costs severely complicates things. Not only are there new
costs to take into account, but they are more complicated to estimate as the per-
formance of disks will depend on several factors. For example, the speci�cations
of the underlying hardware can vary, access patterns are very important and the
size distribution of the data matters as well.

The basic idea behind the NV-Tree is to use a scalar quantizer that iteratively
projects high-dimensional vectors, like SIFTs, onto a random line and segments
the projected data into evenly sized partitions. In each iteration of projecting
and segmenting, smaller and smaller segments of similar vectors are created.

Unlike the previously discussed algorithms, this segmentation process is re-
peated until the segments reach a prede�ned I/O friendly size. At that time, the
segment is written to disk. As in BoF, whole descriptor vectors are not stored in
the segments. What is actually written is a list of all the data vectors assigned
to the segment, detailing only the imageID each descriptor comes from and the
distance value of the last projection.

At search-time, a query vector is quantized in the same way to discover the
most similar segment of data. That segment is then retrieved from disk in a single
I/O. Unlike BoF, the k-nearest neighbors can be found by using the similarity of
the last projection value as a �lter. By keeping only the last projection values,
a lot of disk space is saved and the costly similarity comparison of full vectors is
replaced by a much cheaper comparison of just a single value.

The NV-tree has therefore many desirable features. Similar to BoF, the cost
of scanning the partitions for a query-vector's nearest neighbors is minimized.
But unlike BoF, there is some discriminative power preserved in the form of the
distance value of the last line projection. Consequently, a k-nn search is still
possible. The NV-tree is also more of a database system then many other CBIR
systems. For example, it supports ACID (Atomicity, Consistency, Isolation and
Durability): It is possible to add and/or remove a reasonable amount of images
without having to rebuild the whole partitioning and index. And, as its database
and a copy of the current index is always stored on permanent secondary storage,



28 Background

restarting the NV-tree can be done quickly and safely without loss of information.
On the downside, random line projections are often only rough estimates of

the true similarities. As we have discussed before, vectorial quantizers tend to
give better quality than scalar ones. For example, when �ltering the k-nearest
neighbors based only on the last projection value, the inaccuracy of the similarity
can result in a need for a large neighborhood k or else the true nearest neighbor
may be lost.

Also, as each stored projection value is a relative distance estimate that is only
applicable to the objects residing in the local segment, classical search extension
to more than one segment is not possible. As a result, if another segment is the
one most similar to the query vector's segment, there is nothing that can be done.

1.4.3 Summary

The aim of every CBIR system is to e�ciently perform high quality search over
a given image collection. Even if the image collection is vast, containing millions
of images and billions of descriptors, the search must be responsive and/or have
high throughput. The challenge to overcome is the vast amount of distance
calculations necessary for good quality results.

The traditional CBIR systems tried to use mathematically sound methods
to minimize the amount of work necessary, but in high-dimensional space, this
proved all but impossible.

A new breed of CBIR algorithms emerged that use approximate methods,
giving up guarantees of �nding �the nearest neighbors� for drastically improved
performance. Some rely on reducing the storage-footprint and keeping all of its
data in-memory (BoF), while others are designed for secondary storage right from
the start (NV-tree).

A �rst approximation is to prune not only the �safe� branches of the hierarchy
but also the �unlikely� branches. In fact, most modern algorithms narrow the
focus down to only a single most likely partition, pruning o� all others.

A second approximation has to do with minimizing the cost of scanning that
single most similar partition. In the NV-tree, the similarity metric is reduced
to a comparison of a single value, the last random line projection. BoF does
one better and gets rid of the scan entirely, as it bases the similarity between
images only on the visual word frequency they have in common. With the need
for scanning the partition removed, there is also no longer any need to keep the
bulky descriptor vectors around. In the NV-tree only the imageID and a single
distance value are stored for each descriptor, while in BoF only the imageID is
kept.

A third approximation is to use a multi-level hierarchical index structure to
quickly identify a vector's most similar partition(s), both at search time and
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during index construction. For a large scale CBIR system, tasked wit indexing
millions or even billions of images, a deep hierarchical index is essential to its
viability.

However, all of the approximations described above come at a cost. The vastly
improved performance is typically payed for with loss in search quality. A balance
must be struck between the two, maximizing performance with acceptable quality
loss.

Out of the algorithms discussed, BoF is the most commonly used and it has
spawned a whole family of algorithms based on its core ideas. The NV-tree is
the only one, and one of very few today, that assumes that secondary storage is
necessary and takes I/O costs into account in its design. ClusterPruning is based
on a simple but brute idea and is perhaps the most adaptable algorithm. But, its
lack of using an index hierarchy during assignments is a major drawback and it
also keeps all the descriptor vectors, making its storage requirement much larger
than the others.

The typical CBIR search is designed for active users and thus geared toward
answering each image query in a serial manner, minimizing the response time
for each query. This kind of design may however not maximize throughput, as
that may require the sacri�ce of individual query response times for the bene�t
of the many. There is not always an inpatient user on the other end and thus
we will also focus on high-throughput search. Scenarios that would bene�t from
high-throughput are copyright detection, content �ltering, automatic classi�ca-
tion/tagging or any kind of data mining, just to name a few.

As our goal, down the road, is to harness the power of parallelism and dis-
tributed computing, we also need to take into consideration the complexity of
the algorithms and how di�cult it will be to develop. We also assume secondary
storage is a must, but only the NV-tree was really designed with that in mind.

1.4.4 Choosing algorithm for web scale indexing and search

We know that the dimensionality of the SIFT features as well as the scale of
the image collections that we intend to work with are such that the traditional
algorithms, like the K-D tree [Ben75], the M-Tree [CPZ97] etc., will not work.
The strongest candidates are the approximate algorithms that we have discussed:
Bag of Features, CP and the NV-tree.

NV-tree's main advantage is that it is designed for using secondary storage.
Parallelizing and distributing the algorithm will however be di�cult. The index-
ing has data dependencies in each round of projections and segmentation. A lot
of the hard work will therefore not distribute well. Distributing the search is
possible, but it is likely to require a lot of synchronizing and that can become a
bottleneck. In addition, it is a patented solution that is not freely available for
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academic work. We therefore exclude it as a viable option.
As for Bag-of-Features, the key concept is to get rid of the cost of scanning

a partition. This is done by de�ning the similarity of images as the frequency
of clusters that they have in common. The downside is that for there to be
good discriminative power, the clusters need to be small, as they contain no
information to do �ltering at search time. To keep the clusters small, the number
of clusters is set very high, but that causes other problems like increased indexing
cost and potential loss in quality due to similar descriptors falling across cluster
boundaries.

With regard to accessing data, as long as BoF is running in-memory, it will not
mind having many small partitions. But remember that a key assumption that
we make is that the size of the datasets we intend to work with is such that they
simply cannot be kept in memory. Storing the BoF's visual words (clusters) on
disks is possible. However, those small partitions are far from being I/O friendly
and so it is likely that the cost of doing the I/O, to retrieve the visual word's
inverted index list from disk, will become the bottleneck in a disk-based BoF
system.

If the algorithm is I/O bound anyway, why not have the available CPU power
do some similarity evaluations while it waits? We saw a good example of this in
the disk-oriented BoF implementation in ImageTerrier [HSDL12].

Working with small images, as we intend to do, is very challenging. For such
small images, the worst case is that we only get a handful of SIFT descriptors
from each image. And approaches, like BoF, that base their similarity solely on
cluster overlap, are faced with a daunting task when the query image only has a
handful of descriptors. There simply is not enough discriminative power to derive
a short ranked list of candidates.

This leaves us with ClusterPruning. The simplicity of the CP is quite attrac-
tive. It is relatively easy to parallelize and distribute, as the randomly selected
leaders are known a priori, and, unlike k-means, there is only a single iteration
for actually clustering the data. 3 CP can use a hierarchical index to keep the
search cost down and still provides the means to control the aggressiveness of the
approximation with the a and b parameters. However, unlike both BoF and the
NV-tree, CP keeps all the descriptor vectors. This is in fact an interesting feature
as we want to investigate what is at stake when managing very large collections of
descriptors that are stored on disk(s). Keeping the IDs only would facilitate the
job, would be more e�cient, but we would miss the opportunity of investigating
those speci�c problems.

The authors of CP proposed that the lowest level of the index could be stored
on disk, but payed no attention to I/O friendly clusters size or really considered to

3. There are iterations in building the index hierarchy however.
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include the I/O cost in the cost minimization formulas used. Both the clustering
quality and the balance of the cluster size distribution are questionable when
there is only a single step of assignments. In addition, to our knowledge CP has
never been applied to images.

However, we think there is room for improvements. We therefore extend CP
and create a new indexing and searching algorithm called extended ClusterPrun-
ing or eCP. eCP is designed to meet the following objectives:

� Objective I We want to take I/O costs into account during database con-
struction as we assume the clustered data will reside on disk.

� Objective II We also want to minimize costs for search but also during
database construction.

� Objective III We intend to evaluate how extensive the imbalance of clus-
ters size is and �nd means to make the size distribution more even.

In the next chapter we will describe our implementation of the eCP algorithm
and do an extensive evaluation of that implementation.
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Chapter 2

Extended ClusterPruning, eCP

This chapter presents eCP. eCp extends CP in order to deal with large col-
lections of images that are stored on disks. Therefore, the extensions presented
in this chapter include mechanisms to best make pro�t of I/Os, to avoid the
imbalance of clusters that is detrimental to performance as well as mechanisms
dramatically accelerating the assignment of points to clusters.

The chapter is split into 6 sections. We start with a quick review of the
most common storage systems in a background section numbered 2.1. We then
move on to Section 2.2 where we describe the complexity of CP, pointing out the
reasons that make the CP scheme intrinsically ine�cient at large scale. Building
on these issues, Section 2.3 is devoted to our proposed extensions and to giving
a general overview of our eCP algorithm. This is followed by Section 2.4 that
contains more speci�c implementation details of eCP. In Section 2.5 we validate
eCP with a range of proof of concept experiments. The goals of our experiments
are to validate our ideas and to establish guidelines for how to set the various
parameters of eCP. Finally, we end this chapter with a conclusion section where,
in addition to summing up the chapter, we discuss why we consider eCP to be a
prototypical CBIR algorithm and why we think it is a good basis for researching
tomorrow's large scale CBIR systems.

2.1 Background: Storage systems

The limitations of secondary storage technology plays a crucial part in the
design decisions for CBIR systems that rely on them. Because of the limitations,
we start with a brief review of the state-of-the-art in storage technology, focusing
on the aspects that are most relevant for our work.

33
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2.1.1 Magnetic Disks

Magnetic disks are the standard for cheap secondary storage. During the
last decade, only the capacity of the disks has dramatically increased. Their
read/write performance has improved little as their mechanical parts are inher-
ently slow. There are two moving parts in the device, a rotating disk(s) that
contains the data and an arm that holds the heads that do the actual reading
and writing. The two mechanical costs are thus the seek time, the time it takes to
move the arm such that the heads are correctly placed, and the rotational delay,
the time it takes the disk(s) to be spun so that the correct area passes under the
heads.

Small and random operations are greatly impacted by these two costs. In
random operations, the arm has to be frequently moved and each time the disk
has to be spun into place, making random operations signi�cantly slower than
large sequential operations, where the movement of the arm is minimal. Accessing
data that is contiguous on disk is therefore a key to good disk performance.

In modern disks, there is sophisticated software embedded in the device con-
troller that tries to minimize the cost of reading and writing. By using bu�ers
(typically 16-32MB or more), the disk controller can reorder individual I/O re-
quests, enforce contiguity and allow asynchronous writing, all to minimize the
need for arm movement and preventing the costly mechanical delays. As the size
of the bu�ers has increased, it has become common to use the bu�ers to prefetch
more data than is requested, making consecutive requests for that data very fast.
This is especially bene�cial for large sequential reads.

How exactly a disk's embedded software is programmed is vendor speci�c and
typically a trade secret. Programmers of applications have therefore little or no
control over these low-level decisions being made on the disk. The general rule is
to make all disk access as sequential as possible.

2.1.2 Network Attached Storage (NAS)

NAS is typically a quite large secondary storage solution made available over
a network. It usually contains an array of disks, operating in parallel thanks to
an advanced RAID controller, and is made available through network connected
�le-server(s) or dedicated hardware directly connected to the network. The per-
formance of the NAS can be very hard to evaluate as there are many layers of
hardware, caching and communication, each with its own bottlenecks. Often the
network links between the server and the clients limit the throughput as the links
are typically shared by many clients.
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2.1.3 Solid State Disks (SSD)

SSD technology is based on �ash memory chips. There are two types of
memory cells in use: single-level chips (SLC), which are fast and durable, and
multi-level chips (MLC) that take more space and are not as durable, but are
cheaper. Recently Intel, with its 710 Series SSD, introduced new MLC technology
that is nearly on par with SLC in endurance. This new SSD is targeting the needs
of the enterprise with both endurance and capacity.

The Flash memory modules are typically arranged in 128KB blocks. Since
there are no slow mechanical parts, reading from an SSD is extremely fast and
sequential or random reads are equally fast. In contrast, writing is more costly as
it sometimes requires a special erase operation to be done. Each erase operation
is done at the block level. Thus, to write even a single byte may require an erase
of an entire 128KB block. The cost of writing is therefore not uniform and write
performance is typically unpredictable from a programmer's point of view.

In addition, to minimize write costs, internal controlling algorithms do wear-
leveling to extend the life span of the chips. SSD performance has been extensively
studied (e.g., see [BrJB09]).

With the release of the SATAIII standard, the potential transfer rate doubled,
from 300MB/sec to 600MB/sec. In turn, the SSD vendors released 500+MB/sec.
capable disks for the public market. The enterprise market, however, has shown
more restraint in this area and has focused on durability and capacity instead.
For example, the Intel 710 Series disks have only 270MB/s read capability, and
170MB/s write capability, far below the capacity of SATAIII.

2.1.4 Interaction with the OS

In all operating systems there exist many sophisticated routines that try to
reduce the costs of accessing secondary storage. As on the disk level, prefetching
is a common technique used by the OS. The idea is to use otherwise unused RAM
to read more data than is asked for, in the hope that it will be requested later
and thus subsequent disk read operations can be avoided from even being issued.
Reads are blocking operations and the requesting process can only be resumed
once the data is in memory, but writes might be handled asynchronously as there
is e�ectively no need to wait for the data to reach the disk. Overall, the operating
system uses free RAM as bu�ers for I/Os and �lls or �ushes them when it so
desires, trying to overlap the I/O and CPU load as much as possible. If reads or
writes are issued too rapidly, there is little overlapping and performance degrades.
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2.2 The complexity of ClusterPruning

Section 1.4.1 in Chapter 1 already outlined the CP algorithm. In this section
we will give a much more detailed analysis of the cost involved, both during the
indexing and the search.

We will �rst look at the cost of doing the indexing with CP. We then turn to
CP at search-time. And �nally, we will apply CP to a real example of a large
scale collection of 30.2 billion descriptors extracted from 100 million images. With
this example, we demonstrate the complexity of CP in practice and highlight the
issues that we hope to address with eCP.

2.2.1 Estimating the number of distance calculations at in-
dexing time

To fully grasp the complexity of this process, we must recall the following
important fact. The multilevel index hierarchy, eventually created by CP, is not
used during the cluster assignment process. The index hierarchy is in fact created
bottom-up once all the data points have already been assigned. Therefore, it is
impossible for CP to use the index hierarchy during indexing as that structure
does not exist yet. It is essentially created as the last step of that indexing process
and it's purpose is only to speed up subsequent uses, at search-time.

CP only determines the number of nodes it needs in the �nal index tree and
computes the distance between the points in the database and all those nodes.
Therefore, we also know that the bottom-up construction results in an extremely
expensive indexing in the terms of the number of distance calculations that are
necessary. All N vectors have to be scanned against the initial random selection
of l = ( L+1

√
N)L leaders. The number of distance calculations necessary for that

partitioning is captured in the following formula:

CAssignment = N ∗ ( L+1
√
N)L (2.1)

where L is the desired index depth.
Another way to write Equation 2.1 is:

CAssignment = N
L+1
L+1 ∗N

L
L+1 = N

2L+1
L+1

and in this format we can see clearly the exponential growth of this initial step
of partitioning.

The cost (i.e. # of distance calculations) of building the index hierarchy
bottom-up is captured in the following formula:

CIndex =
L−1∑
i=1

(
L+1
√
N)L+1−i ∗ ( L+1

√
N)L−i (2.2)
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where the �rst part of the equation, ( L+1
√
N)L+1−i, is the dataset that is being

indexed (starting with the l = ( L+1
√
N)L initial leaders randomly picked and used

to partition the data) and the second part, ( L+1
√
N)L−i, is the size of the current

index-level (the number of new leaders randomly selected for that index level) at
each time step i.

The full cost of building an indexed database with CP is thus:

CDB construction = CAssignment + CIndex (2.3)

where the dominating factor is the cost of the doing all the assignments to the
l = ( L+1

√
N)L leaders.

2.2.2 Estimating the number of distance calculations at
search time

As discussed before, the index hierarchy is available at search-time and we
know that it can be used to greatly reduce the number of distance calculations
necessary to discover the most proximate cluster(s) to a query. Note that in both
formulas presented, we are assuming no search expansions are used (i.e. a and b
both equal 1). Following is the generalized formula for any index depth L:

CSearch = (L+ 1) ∗ L+1
√
N (2.4)

where L is the desired index depth and L+1
√
N is the average size of each cluster

(I/O cost is not taken into consideration here). And the formula for just traversing
the index is very similar, as we simply skip one level, replacing the (L+ 1) with
just L as follows:

CTraversing index = L ∗ L+1
√
N

2.2.3 CP applied to a real example

To get an even better understanding of the issues that arise when applying
CP at large scale, we give an example using a collection of 30.2B descriptors
extracted from 100M images. The numbers are presented in Table 2.1, where
each column represents a di�erent index depth setting, ranging from L=0, where
there is no index and the algorithm has to resort to a sequential scan, to a six
level deep index structure (L=6).

We calculate the number of clusters created on each level of the index, shown
in rows 1-6. Row 6 is always the number of cluster representatives, one per
cluster created on disk (i.e. the initial set of leaders used to assign all the 30.2B
descriptors to clusters).
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In row 7 we calculate the average number of points per cluster and in row
8 we estimate the size those points will require on disk. In these rows we can
see that as the index grows deeper, the average size of clusters quickly becomes
very small. And, as there is no way we can store all 3.6TB of data in memory,
those clusters will have to be stored on disk. The �problem� is that for any given
storage device, there is a �xed minimum cost (e.g. the seek time and rotational
delay for magnetic disks) regardless of the I/O size. Thus, as the clusters become
ever smaller, we will be paying the same �xed price for ever diminishing return in
information. A balance must therefore be struck between the device performance
and the minimum size of clusters (i.e. to minimize time while maximizing quality).

The three rows 9-11 show us the estimated number of distance calculations
necessary when a=b=1: for traversing the index (row 9), to do the database
construction of Equation 2.3 (row 10) and for searching a single query descriptor
as captured by Equation 2.4 (row 11). Rows 12-14 are the same calculations as
rows 9-11, except this time a search expansion is used, a (or b) is increased from
1 to 3.

We should note that the estimates of index traversal and the cost of searching
(rows 9 and 11) are based on the theoretical assumption that the distribution of
points during assignments (both of the data as well as in the index hierarchy) are
balanced, creating even sized clusters every time. In practice this never happens
and the size distribution is typically quite skewed. The index traversing and the
scanning of clusters from skewed size distributions will result in more overhead
than is estimated. However, they are fairly good estimates on average and we use
them as such, knowing their limitations.

In row 9 we can observe how the index depth is good at minimizing the cost
of traversing the index and therefore good for the search process (row 11). At
the same time, as the index structure is not used for the assignments, we see in
row 11 the drastic increase in the cost of doing the database construction. We
should also note that the use of a or b makes no di�erence for CP's database
construction (bottom-up without index), and thus row 13 is the same as row 10.
The b is a search-time setting and as for a, it is su�cient to keep track of the a
most similar clusters and assign the point to each.

Overall, the �exibility of CP is just limited. The hard line of minimizing only
the number of distance calculations, regardless of other potential costs, is simply
not very applicable to a solution that is to be based on storing its data on disk
at very large scale.
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Table 2.1: Examples of calculations cost of using CP on a collection of 30.2B
descriptors that represent 100M images. The only variable is L, the depth of the
index hierarchy, that ranges from L=0 (in this case there is no index and CP will
do a sequential scan) to L=6.
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2.3 Extended Cluster Pruning: general overview

In this section we will provide a general overview of our extended Cluster-
Pruning algorithm (eCP). We will focus especially on a high-level discussion on
the objectives that we set, the design choices that we make and how the eCP
algorithm di�ers from the CP algorithm that we build upon. A more detailed
low-level discussion will be provided in the Section 2.4.

We start with setting the objectives for our algorithm, including a quick reit-
eration of the three main objectives described at the end of the last chapter, in
Section 1.4.3. We then look at the design choices we made and brie�y discuss
their impact on eCP. After that we highlights the contrast between the behavior
of eCp and CP by applying eCP to the same large scale real example that we
applied CP to in Section 2.2.3. We end this section with a thorough discussion
on several topics related to the eCP algorithm both during indexing and search.
Topics included are top-down vs. bottom-up index construction, the di�erent
ways a search can fail and the importance of disk access policy that is used.

2.3.1 Objectives

We would just like to reiterate our objectives for eCP that we de�ned at the
end of Chapter 1 in Section 1.4.3. Our objectives are to address three main issues
in order to create a more e�cient and scalable CBIR algorithm that will be a
good platform for further development. Following are the objectives we set:

� Objective I We want to take I/O costs into account during database con-
struction as we assume the clustered data will reside on disk.

� Objective II We also want to minimize costs for search but also during
database construction.

� Objective III We intend to evaluate how extensive the imbalance of clus-
ters size is and �nd means to make the size distribution more even.

In addition to the three main objectives, we also describe a few key settings,
features and optimizations that need to be �gured out and evaluated in our
experiments.

The size of clusters One of the main tasks is to establish a cluster target-size,
or ts, that strikes a three-way balance between the CPU cost of scanning the
cluster, the I/O cost of retrieving it and the search quality it gives.

We mention this task �rst as it greatly in�uences the number of clusters in the
index and therefore in�uences the traversal cost and thus also the cost of indexing
and search. Relatively high database construction cost may be acceptable. The
main goal is to have fast and good quality search results. But there is no reason
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to spend more time on database construction than is necessary and the time it
takes has to be within some reasonable limit.

We should also note that any balance of ts arrived at will be upset if the
underlying hardware is changed signi�cantly. 1

Index depth and search expansions We also need to evaluate the index
depth L and the proposed search expansions, a and b, and come up with guidelines
for setting these parameters. The guideline should cover both the case when data
is on disk and in-memory, as is the case when search expansions are used in the
index structure.

Size of the neighborhood If the k-nn used during the scanning of clusters is
too large, we get a high �noise-level�. And if k-nn is too small, we may miss the
correct match. Experimentation is needed to establish guidelines for the size of
the neighborhood used in the k-nn search.

Optimize the image-level search: The image-level search involves doing sev-
eral k-nn searches, one for each query descriptor. The response time to minimize
is that of the whole image, and not individual query descriptor. As we know that
multiple k-nn queries will be issued for each image and that the search is I/O
bound, there are ways to optimize the image-level response time by minimizing
the I/O cost. For example by merging redundant cluster requests for the same
cluster and by retrieving the clusters requested in order, such that disk access is
made as contiguous as possible.

2.3.2 Design choices for eCP

We will now develop our eCP algorithm and describe four design choices that
we propose, which signi�cantly enhance performance.

1) Top-down index Unlike Chierichetti et al., we propose to always use the
randomly chosen leaders as cluster representatives. That way, we can select and
create all the levels of the index right from the start, before the �rst descrip-
tor is even assigned. We also propose to build this index, top-down, such that
both the index construction process and the assignment of descriptors to clusters
can bene�t from using the index hierarchy, dramatically reducing the database
construction time.

1. CPU cost is of course determined by the processor used and the I/O cost by the secondary
storage device. Changing either one may also warrant a change in ts to �nd a better balance.
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2) I/O friendly clusters The results reported in [SJHA05] indicated that
cluster size is a key factor in the performance of systems where the clusters
reside on secondary storage. Therefore, the size of the clusters should be heavily
in�uenced by the performance characteristics of the underlying devices that the
data resides on. However, when we applied CP to a real large-scale example,
see rows 7 and 8 of Table 2.1 in Section 2.2.3, the granularity of the clusters
becomes very small as we increase the depth L of the index. While CP's behavior
minimizes the number of distance calculations (and thus CPU cost) it allows little
or no control of the I/O size created.

What we propose is to force the cluster size to be more I/O friendly by making
it a key factor that we control. Instead of randomly selecting l = ( L+1

√
N)L leaders

to represent clusters on disk, we propose to set the desired average cluster size
and then determine the number of leaders as follows:

l =
N

(desired cluster size/descriptor size)
(2.5)

We will refer to the �desired cluster size/descriptor size� as the cluster target-size
or ts and thus the formula will more commonly be written as l = N

ts
.

Using this new number of cluster leaders, the size of the index hierarchy
is calculated in a similar way as before. The top level of the index will have
L
√
l representatives and each intermediate-level representative still represents L

√
l

points at the level below etc. Thus, if we would set ts to the same setting
as proposed by CP, there would be no change in the derived index structures
(except of course we propose to build it top-down).

While CPU cost is sacri�ced on scanning the larger clusters (if the ts is forced
higher then CP would have set it), the I/O cost is now under our control as we
can set ts to any value we like. By decoupling the size of the clusters from the
choice of L, we gain the following bene�ts:

1. We can tune ts to �nd the optimal setting for the underlying hardware.

2. Time is not wasted on unproductively small I/Os.

3. Larger cluster size means fewer clusters, and thats leads to a narrower
(smaller) index that requires less memory.

3) Balancing the cluster size distribution As was pointed out in [SJHA05],
while many natural clusters in a descriptor collection are very small, the largest
might be as large as 5-20% of the collection. Large clusters result in both a
more expensive I/O operation and additional CPU cost, while small clusters still
require an I/O operation for a small information contribution. Thus, numerous
imbalanced clusters can reduce performance at search-time. Furthermore, large
clusters tend to get selected for scanning more often, impacting performance even
further.
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An algorithm like k-means discovers the natural clustering of the data. CP's
simpli�ed version of clustering does however not go that far since it never iterates
beyond the �rst step. In theory, the random leader selection process should
generate equally sized clusters; in practice, however, this never happens. It is
therefore important to evaluate how imbalanced the eCP clustering is and address
the potential problem if necessary and possible.

Proposed and published solutions, such as [TJA11], are e�ective but tend to be
complicated and costly. We propose a simple, yet surprisingly e�ective method to
balance the size distribution. We �rst determine the number of clusters to create
according to Equation 2.5 (l = N

ts
) and then we intentionally choose X% additional

leaders to create extra clusters. At the end of the assignment process, we then
eliminate the corresponding number of the smallest cluster by reclustering their
descriptors into the l remaining clusters. In addition to the obvious advantage of
eliminating the smallest clusters, the use of more randomly selected leaders gives
a better sampling of the descriptor distribution and therefore also reduces the
size of the largest clusters created.

4) Search expansion, in-memory and on disk CP proposed two options
for search expansions. A soft-assignment policy called a, where each descriptor is
assigned to the a most similar clusters during database construction. The other,
b, is to expand the search to the b most similar clusters at search-time. Both
policies are well described and discussed in [PCI+08]. In CP, the policy used (a
or b) would then apply to all levels of the index hierarchy and clustered data.

In general, we consider a a better option as it is more focused. It expands
the region of the cluster in all directions, creating a small overlap with many
neighboring clusters. However, as we are expecting to work with a lot of data,
we cannot realistically consider a > 1 as an option for data on disk. It would
simply require way too much storage space to a-fold the dataset by assigning each
descriptor to its a most similar clusters. For data on disk, we therefore favor the
use of b. Also, as b is set at search-time, it is much more �exible, allowing failed
searches to be repeated with a larger and more costly scope.

For the in-memory index structure we favor a over b as there we can solve the
soft-assignments with pointers instead of actually a folding the data. However,
as we shall see in the next chapter, the use of pointers can cause poor memory
alignment and degrade performance when the index structure is very large.

What we propose is to allow for a separate policy being used for data on
disk and data in-memory. We will keep using the a and b parameters to refer
to the policy for data residing on disk. For the in-memory index structure, we
de�ne a new set of variables, treeA and treeB, that refer to our in-memory policy.
Typically, our default values are a=1 and treeA=3.
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2.3.3 eCP applied to a real example

In Table 2.2 we revisit our example of the 30.2B SIFT descriptors, this time
using eCP as the basis for indexing and cost calculations. As the number of
clusters created on disk is now controlled by our I/O friendly ts (set to 665KB
here) we see that the values of row 7 and 8 do not change. With the current
setting, 6,052,988 clusters are created, where the average size of each cluster is
664.06 KB.

The most striking di�erence between eCP and CP (see Table 2.1) is however
found in row 10, the indexing cost. At all levels, except L=1, the indexing cost
of eCP is only a fraction of CP's. The reason that eCP's indexing cost is much
higher at L=1 is that there is no index hierarchy yet. The index is only a �at
list and with a ts of 665KB, there are 35 times more clusters created on disk by
eCP (6.1M clusters) than by CP (174K clusters). For all other levels, instead of
the cost growing with the index depth L, we have an exponential reduction in
the cost. This is an absolute key factor in making eCP a viable option at large
scale. For example, even when we use our default setting of treeA=3, see row 13,
the cost of indexing the dataset using eCP at L=2 is 5.67% of the cost indexing
the set with CP at its cheapest setting of L=1. If both use L=2 eCP's cost ratio
is down to 1.01%.

The cost of searching is shown in rows 11 and 14. We can see how the need
for a deep index, that reduces the cost of indexing, makes the cost of traversing
the index at search-time negligible in comparison with the cost of scanning the
cluster, almost regardless of how small we make ts. This added CPU cost of
scanning the clusters is the price we pay for controlling the size of the I/Os.

2.3.4 Discussion

In this section we will focus on a high-level discussion of the eCP algorithm.
We look at the e�ects, consequences and limitations of our proposed design choices
and try to anticipate how the algorithm will behave.

The �rst topic is our proposed top-down index hierarchy that is used both for
search as well as database construction.

Top-down vs. bottom-up indexing What should be clear from the real ex-
ample, where we apply both CP and eCP on a collection of 30.2B descriptors,
is that using the hierarchical index during the assignment process is a key factor
for making the indexing of large scale collections viable.

The way we build the index top-down is that we start by pre-calculating how
many leaders should be created for all levels of the index. We then randomly pick
the leaders for each level, but start by creating the top-level. As we create the
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Table 2.2: Examples of calculations cost of using eCP on a collection of 30.2B
descriptors that represent 100M images. The only variable is L, the depth of the
index hierarchy, that ranges from L=0 (in this case there is no index and eCP will
do a sequential scan) to L=6. The cluster target-size is set to 5,000 descriptors
or approximately 665KB.
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Figure 2.1: The di�erence between top-down and bottom-up clustering.
Left: Level 1 clustering with a �at index. No di�erence yet.
Center: Level 2 clustering built bottom-up using clusters A and B on the upper level. Bottom
level clusters are split by upper level Voronoi-cell boundaries. Queries that fall into the red
areas will follow the �wrong� top-level branch of the index.
Right: Level 2 clustering built top-down using clusters A and B on the upper level. As the
index is used during the assignments, the clustering created respects the upper level Voronoi-cell
boundaries all the way down. Queries may still fail, but the index structure used is the same
at search-time as was used during the assignments.

second-level, we start by scanning the completed top-level, assigning each second
level leader to the treeA most similar top-level leaders. Then, as we create the
leaders of the third-level, we search the already completed index structure and
assign each to the treeA most similar leaders on the level above (i.e. the second-
level). This process continues for each level of the index, each time searching the
already completed index and assigning each new leader to the treeA most similar
leaders on the level above, until the full index structure has been completed. Once
completed, the index structure is a static read-only structure that can be used to
assign all the descriptors of the input collection.

We should note however that the clustering created this way, top-down, is not
the same as the clustering that would have been built bottom-up. In Figure 2.1
we can see three �gures. On the far left we see a L=1 indexing using a �at index.
Points A, B, C, D and E are selected as leaders and the remaining points are
assigned to the most similar leader. In this case, as no hierarchy is being used
yet, the clustering created will be the same for bottom-up and top-down.

In the center image we see how CP would work, doing a bottom-up L=2
clustering of that same data. We can still see the original Voronoi-cells of the
initial clustering as dashed lines. At the top level of the index we have points A
and B as leaders and thus only two Voronoi-cells are created. The data they split
between them are the leaders of the level below (i.e. points A, B, C, D and E) and
a single Voronoi-cell boundary is created (the solid line). We can see how clusters
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C and E are split by this upper-level boundary. The areas marked in red are those
parts of lower-level clusters that are more similar to another upper-level leader
(A or B) than the cluster representative of the cluster they belong to. Queries for
points residing in the red areas will traverse the �incorrect� upper-level branch at
search-time and thus not be scanned against the cluster where the most similar
data resides. 2

In the image to the far right we see how the top-down L=2 clustering of eCP
would work for the same data. Again points A and B are used as the leaders on the
top level of the index and points A, B, C, D and E are the leaders for the bottom-
level (i.e. clusters on disk). However, as we can see, the clusters created are very
di�erent from what was created at L=1. To minimize the number of distance
calculations, the descriptors traverse the index and can therefore only be assigned
to those clusters they are scanned against, namely the bottom-level leaders that
share the same path through the index. What is created is a clustering that
respects the Voronoi-cell boundaries created at all levels of the index. As we
can see, in the top-down indexing, descriptors are not always assigned to the
most similar cluster representative (bottom-level leader), but only the one most
similar that resides in that path through the index. It is therefore important
to use the same index depth L both at clustering and search-time. Reducing
the index depth, or even scanning all the cluster representatives, is most likely
to give worse results even if a more similar cluster representative is found. In a
sense, eCP's top-down clustering is getting the assignments wrong, it just does
so consistently.

This brings us to our next topic, that is on the ways in which the search can
go wrong.

The three ways eCP's k-nn search can fail The search process is essentially
three steps: index traversal (using treeA) to discover the b most similar clusters,
the scanning of those b clusters and a vote aggregation (see Section 1.1.3 in
Chapter 1). The scanning of clusters is straight forward, but traversing the index
is not.

We will de�ne the traversing of the index, from the top-level to the cluster
representatives on the bottom-level, as the path through the index. However, the
last step of the path is di�erent from the others as it involves selecting from a
sub-branch of cluster representatives, i.e. selecting what clusters the query will
request for scanning. The di�erence is that here is where the search expansion b
is applied, while in all other steps of the path, the search expansion was controlled
by the treeA.

2. We are assuming no search expansions are being used (i.e. a=1 and b=1)
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We can therefore identify two di�erent ways the search can �go wrong� in
traversing the index. Either the �mistake� happens before the last step, and the
search is lost in the wrong subsection of the hierarchy, or the mistake is done in
the selection of cluster representatives, i.e. the �wrong� cluster was selected for
scanning at the bottom-level. If the former is the case, there is not much we can
do at search-time as treeA is set during indexing. In the latter case however, re-
searching with a greater search expansion b will eventually result in the scanning
of the cluster where �correct-match� was assigned.

It is therefore interesting to know how frequent the two cases are as that can
tell us what is more important, using large treeA or searching with large b.

Let us get a good understanding of the three ways the search can fail by
taking an example. Assuming that we have a multi-level index structure, a query
descriptor q and for that q there is in the known ground truth �correct match�
descriptor m that is in the database. The �rst two ways the search can fail, as
we already discussed, are in the index traversal. First is that the index traversal
gets lost above the last step of the path (hopelessly lost). Second is that the index
traversal gets lost in the last step of the path (increasing b will work).

The third way is that the correct cluster is scanned but m's distance rank is
lower than the size of the k-nn and thus falls outside the neighborhood and is
not returned. We should note that this also means that even though m is the
�correct match�, there are descriptors in the database that are more similar to
q than m. In content based image retrieval, where the images have often been
heavily distorted in various ways, this is quite common. This third way to fail
can be addressed at search-time by re-searching with a larger k, but that comes
at a prices as a large k also increases the �noise-level� in the vote aggregation (as
was discussed in Section 1.1.3 in Chapter 1).

As the scale of the datasets grows larger, eCP's answer is to create more and
more clusters that widen the index. To keep the cost of traversing the wider index
down, eCP increases the index dept. The result is increased approximation, with
a longer path and relatively fewer cluster representatives scanned, making it more
and more likely that m's and q's paths are di�erent, and that we need larger treeA
and b to compensate. We should therefore expect that as the number of clusters
grows, it becomes harder for eCP to cope with a large distance between q and
m and the deeper the index structures is, we should expect more path failures
before the last step, that are so hard to do anything about.

Intuitively, we are inclined to use a vast number of clusters and a deep in-
dex for a large dataset. But where we draw the line between performance and
approximation has no easy nor straightforward answer.
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Setting the depth of the index hierarchy While making the index deep
reduces the cost of traversing it, such a setting also makes the path longer and, as
we just discussed, that degrades the search quality. From the example of applying
eCP to real large scale problem, see Table 2.2, we can see in row 9 the cost of
traversing the index. At �rst the number of calculations are reduced quickly as
the index depth L becomes deeper, but then the gain diminishes at each added
depth. For example, the level 4 deep index requires 196 distance calculations while
the level 3 deep index requires 547 distance calculations. The ratio between them
is therefore 196/547=35.83%. The 5 level deep index requires only 110 distance
calculations to traverse and the ratio between it and level 4 is 110/196=56.12%.
This clearly shows the diminishing return in reducing the traversing cost with a
deeper index.

Even with 6.1 million clusters created on disk, there are very few top-level
leaders created at L=5 and L=6. The top level tells us how many clusters there
will be on average in every sub-branch (assuming treeA=1) and if this value is
very small, the granularity of clusters in the index is small and the search is more
likely to make mistakes.

The risk is that the search expansion (treeA) will need to be increased to
compensate for the quality loss from using a �too� deep index. As we can see from
row 12 of the same Table 2.2, the increased overhead of treeA=3 is considerable,
increasing it further will quickly become very costly. Any additional gain obtained
from using a deeper index would quickly be undermined if it comes at the cost of
a greater search expansion.

We will now turn to the issue of imbalance size distribution of clusters and
why this is a concern for eCP.

The importance of addressing the cluster size distribution We should
start by pointing out that the imbalanced clustering is an issue both for the
clusters created on disk, as well as for the clustering done on the lower-levels of
the index (i.e. all levels below the top). Therefore, it a�ects not only the search
during the scanning of clusters but also the traversal of the index and thus also
the assignment process in the database construction.

Not only are the large clusters more expensive to scan, but the problem is
compounded by the fact that they are also more frequently requested (assuming
query data follows the same distribution as the indexed data).

Undersized clusters are also a problem for the search as they still require I/Os
to be issued, but scanning them will provide little added value. It would be
possible to compensate for small clusters by having more clusters, but that will
strain the RAM footprint of the index structure. In either case, the reality is that
eCP's formulas are optimized for an estimated target-size and large deviations
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Figure 2.2: TF and CF policies in graphical representation.

from that estimate will result in more costly indexing and search. What we do
not know, is the extent of the problem and our proposed solution, of picking X%
extra clusters, only addresses the problem on the disk level.

Iterative indexing and disk access policy During the indexing, the amount
of data to process is typically much larger than the available memory. Therefore,
the assignment process will have to be done in rounds, creating intermediate
�le(s) at the end of each round. From the intermediate the �nal database �le
is then created. How the intermediate �les are handled during the indexing will
have a great impact on the performance of eCP.

The indexed database consists of three �les: a data �le where the descriptors
are grouped by clusters; an index �le containing the index structure and o�set
information to access the data�le e�ciently; and a con�guration �le with general
information about the database.

As stated above, the assignment process proceeds in rounds. In each round
a chunk (typically 128MB or more) of the raw data is read into RAM. We call
this the in-bu�. Then, eCP's index structure is used to assign each descriptor in
in-bu� to its a most similar clusters (although we typically do not use a > 1).
Before the next round can start, in-bu� has to be freed up by writing the assigned
data to intermediate �les.

One simple and intuitive policy would be to create a �le for each cluster that
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would contain all the data assigned to that cluster so far. We will call this policy
TF , short for temporary �le per cluster. At the end of each round, all the clusters
are looped through and each �le opened, appended to and closed, as they are
too numerous to remain open. Then, once all the data has been assigned, the
�nal database �le is created by simply concatenating all the temporary cluster
�les. In terms of access patterns, TF performs, at cluster assignment time,
large sequential reads to �ll the in-bu� with new descriptors as well as many
small random writes, one per cluster, every time all the data in in-bu� has been
processed. In the concatenation of the intermediate �les into the �nal database
�le, TF performs cluster-sized sequential read of each intermediate �le and large
sequential writes to the �nal concatenated database �le. However, as the ts of
clusters is typically very small, the actual read-back of the intermediate �les is a
random-read pattern.

The second policy, and the one we typically use, is called Chunk-Files or
CF . This policy is based on a sort-merge principle. At the end of each round
of assignments, the descriptors in the in-bu� are sorted based on the assigned
cluster and then written into a single intermediate �le before being �lled again
with new data. Then, once all the data has been assigned, CF merges all the
sorted chunk-�les in a merge-sort like manner. In terms of access patterns, CF
performs, at cluster assignment time, large sequential reads to �ll in-bu� and
large sequential writes when creating each chunk-�le (each chunk-�le is the same
size as in-bu�). When creating the �nal database �le, it performs many small
random reads, to gather all the cluster data from all the intermediate chunk-�les
and a large sequential write to the �nal database �le.

The advantage of the CF policy is that there are much fewer small random
I/Os used. Even the small random reads that are still present, i.e. the reading of
the cluster data back from the sorted intermediate �les, will bene�t heavily from
prefetching as, eventually, all the data from each �le will be read, in order.

A graphical representation of the two polices can be found in Figure 2.2

Optimizing image level search One of our objectives is to try to take advan-
tage of the fact that we know the image search is actually a set of k-nn searches,
one for each query descriptor extracted from the query image. We have come up
with two optimizations.

The �rst optimization is to minimize the image-level I/O cost by eliminating
redundant cluster requests and increasing the contiguity of the disk access. This
is done by �rst traversing the index structure for all the query descriptors, dis-
covering what clusters they will want to access, before we start reading any data.
Knowing this information allows us to group and re-order the cluster requests,
eliminating redundant requests and maximizing contiguity.

The second optimization has to do with terminating the image search early,
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before all query descriptors have been scanned and thus before all the clusters
have been read from disk. This process is called early-halting and is based on
the idea to vote aggregate at some interval those k-nns that have already been
completed and check if a ranked result list can already be determined with a
high probability. If so, then the I/O requests and cluster scans necessary for the
remaining k-nns can be skipped. The earlier the termination can be done, the
bigger the bene�t of halting early.

In the copyright detection scenario (that we frequently use), early-halting is
often very e�ective. This is because in this scenario, only the top-ranked image in
the result-list is really important and the logic of early-halting is therefore greatly
simpli�ed.

In Section 2.3.1 we de�ned three main objectives. Number one was to take
I/O into account, second was to minimize the overhead of indexing and third was
to evaluate and address the imbalance of cluster size distribution.

With the extensions we have proposed for the eCP algorithm, we feel that we
have met all three main objectives. Objective one was meet by de�ning the I/O
friendly target-size for clusters and objective two has accomplished by building
the index hierarchy top-down and used it during the assignment process. The
third objective we address with the idea of of indexing with X% extra clusters
and then removing the same number of the smallest clusters. Because of the
better sampling, this will reduce the size of the largest clusters created as well.
However, we still need an evaluation of how imbalanced eCPs size distribution is,
how much it e�ects the search performance and whether indexing with X% extra
clusters is worth the added e�ort.

2.4 Implementation details

Essentially, the indexing process is a very di�erent algorithm than the search.
The only thing they have in common really is that they both use the index
hierarchy that is constructed at the beginning of the indexing process. We will
start by describing how the indexing is implemented, then we describe the search
process and �nally we will describe the implementation of the early-halting policy
we experimented with.

Indexing The eCP database construction can be split into three phases:

Phase #1: Index creation. During this phase, cluster representatives are
picked from the collection and organized in a in-memory L deep hierarchy.

Phase #2: Assignments. Descriptors are assigned to clusters in rounds of
executions, each round �lls the in-bu� and writes to the intermediate �les
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Figure 2.3: Here we see the 3 phases of eCP: #1 Index creation, #2 Assignments and

#3 Merging. In this description the disk access policy is CF (our default policy), but the

essential steps are the same when using TF .

according to the disk access policy used (CF of TF ).

Phase #3: Merging. This phase creates the three database �les: the data�le,
the index �le and the con�guration �le. How the data�le is created depends
on disk access policy, but ultimately, it should contain all the assigned
descriptors, grouped and ordered by clusters. The o�set information of
each cluster in the data�le is included in the index �les for fast and e�cient
access at search-time.

A graphical representation of the three phase process can be seen in Figure 2.3.
The process of building the index hierarchy, i.e. phase #1, has already been de-

scribed, but essentially the index is built top-down, using the already constructed
hierarchy to quickly build the lower levels. This is a CPU intensive process but
it takes relatively little time in comparison with the other phases.

The second phase takes by far the most time and is both very CPU inten-
sive, traversing the index and doing the assignments, and requires a lot of I/O
operations at the start and end of each round, �lling and �ushing the in-bu�.

The third phase requires very little CPU, regardless of disk access policy, and
is thus mostly an I/O intensive process. This process also requires relatively much
less time than the CPU intensive second phase. The amount of time still depends
on the disk access policy used and the performance of the underlying hardware.

During the indexing process, RAM is a scarce resource. The index structure
requires its share of RAM, so does the in-bu� and whatever RAM is left will
be put to good use by the OS as bu�ers, to do prefetching and other I/O cost
minimizing methods. The only variable we can directly control, without a�ecting
database constructed, is the in-bu�. Intuitively we expect that a large in-bu�
will give better response time as the larger the in-bu� is the fewer the rounds
of assignments and also the fewer times data has to be written to disk. This
should be especially bene�cial to the TF policy and the costly random-writes of
appending data to each cluster �le.

We should also note that during the indexing we need quite a lot of capacity
on the secondary storage. If we delete the input collection before the merging of
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the intermediate �les we get the best case of needing twice the storage capacity
of the input collection. More typically (as we do not want to delete the source
�le), we need 3 times the storage capacity, once for the raw source �le, once for
all the intermediate �les and once for the �nal database data �le.

Searching As has been mentioned, the search process of a single query descrip-
tor can essentially be split into two parts. The traversing of the index to discover
the b most similar clusters and the scanning of those b clusters for the k-nearest
neighbors.

At the image-level however, tens, hundreds or even thousands of query de-
scriptors have to be searched for each image. An added process is also required,
the vote aggregation, that converts the descriptor-level ranked k-nn results into
a single ranked list of the most similar database images.

The process of searching a query image proceeds as follows:

1. The query image is read from disk and the query descriptors are extracted. 3

2. All the clusters to retrieve and scan are discovered by traversing the eCP
index structure for each query descriptor.

3. A lookup-table is created such that for each cluster, the query descriptors
that want to scan that cluster can quickly be found.

4. The clusters are retrieved in-order, to maximize contiguity of the I/Os, and
scanned against the requesting descriptors, to �ll their k-nns.

5. An image-level ranked result is created by vote aggregating the k-nn's with
a one-vote-per-neighbor policy.

6. The image-level result is written as text to a result �le on disk.

As was described in Section 2.3.1, one of the objectives is to optimize image-
level queries. The �rst optimization described there is why we do the discovery
of all the clusters �rst (steps 2 and 3), before we start reading data in step 4.
This gives us the ability to both remove redundant requests as well as to get
more contiguous access of the clusters. However, when the database is large and
the amount of clusters far outnumbers the query points extracted from a single
image, the contiguity becomes less important. This is because typically the access
between the accessed clusters is too high for prefetching to give any advantage.
Any redundant requests are still removed though and for some images, that can
make a di�erence. Also, as we shall see in the next chapter, there is another good
reason for doing things this way.

3. In our case this has already been done and we read the extracted descriptors directly from
a �le on disk.
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Early-Halting In that same image-level optimizations objective, in Section 2.3.1,
a second optimization was described. This optimization is aimed at terminating
the search early if it is highly likely that the scanning of the remaining query
points will not change the rank of the most similar database images already es-
tablished. The earlier the search can be stopped, the more clusters can be skipped
and the better the response time will be. This is called early-halting.

We will now describe the policy that we experimented with as a proof of
concept for this strategy of early termination. To terminate the search earlier,
we must do a vote aggregation and check the probability that a likely result
has already been established. Typically, easy queries will quickly rise above the
�noise-level�.

In our case of copyright detection, the probability calculations become even
easier as we are only interested in whether the top ranking images will change or
not. For �easy� queries, the �correct� database image gets by far the most votes
and will quickly rise above the other candidates. By aggregating a completed
subset of the query descriptor k-nns, this high vote ratio can be detected and a
winner declared with very high probability. Also, if a fair amount of the k-nns
have been completed and yet no strong candidates discovered, it is possible to
declare, with high probability, that there will be a tie. For the copyright detection,
a multi-way tie indicates that the query image is not in violation. Unfortunately,
a lot more k-nn's are needed for this case as the �noise-level� is typically very low
and it will only take a few votes for a winner to emerge.

The down side of early-halting is that a vote aggregation has to be done each
time we try to halt early and doing the vote aggregation takes both CPU power
and causes the attention to be shifted away from the task of scanning clusters.
While this may sound trivial, constant switching of tasks will cause degraded
response time. We therefore limit our strategy to only 5 vote aggregations, at
�xed intervals.

We should also stress again that the strategy that we come up with is only
a proof of concept, not an optimal termination policy. Following are the four
simple rules that we used for determining early termination:

1. If the top voted candidate image has twice as many votes as the second
highest candidate, a winner is declared.

2. A �xed minimum number of k-nns must have been completed before any
vote aggregation.

3. Only four early aggregations will be done, at 10%, 20%, 40% and 80% of
completed k-nns, given that rule 2 is satis�ed as well.

4. If b>1 is used, only k-nns that have been scanned against their most similar
cluster request, count toward the thresholds.

The second rule is necessary as many query images have only a handful of
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Dataset Dimentionality #Descriptors #desc./img. Size on disk
20M 72 20,000,000 667 1.5GB
110M 128 110,000,000 1,100 13.6GB
ANN_SIFT 128 1,000,000,000 n/a 126.7GB

Table 2.3: The datasets used in this chapter to evaluate the eCP algorithm.

query descriptors extracted from them. With the simple metric used in the �rst
rule, a vote aggregation without a minimum threshold would not be viable. The
last rule is to prevent vote aggregations with poor quality results. If care is not
taken, it is very possible to do the �rst vote aggregation without having scanned
a single �most-similar-cluster� for any of the query points.

As can be seen by the four simple rules, we only halt early if we can declare
a winner. We do not try to declare ties. The probability calculations are more
complicated and the low �noise-level� makes declaring a tie harder.

Replacing our simple policy with a more sophisticated one should be a straight-
forward task.

2.5 Proof of concept experiments

The datasets used in our experiments are described in Table 2.3. The two
image datasets, 20M and 110M, are not very large. The 20M set was used in our
earliest evaluations and the 110M set was limited in size by the capacity of the
secondary storage devices we used, especially the low capacity of the Solid State
Disks. 4

The experiments and results presented in this section are mostly based on
two of our published works. The �rst paper [GJA10] was published at ACM MM
2010 VLS-MCMR workshop in 2010 and the other [GAJ12b] was published in
2012 at the FLASHDB workshop, held in association with the DASFAA 2012
conference. Over a year passed between the two sets of experiments and thus
they were done with slightly di�erent versions of eCP, with di�erent datasets and
di�erent hardware. The most recent experiments are the point-level evaluation of
the eCP index structure using the ANN_SIFT collection. This set of experiments
has not been published elsewhere.

4. Note that during the indexing, the need for storage capacity will be at least 3 times that
of input �le. The 13.6GB 110M collection will thus require 40.8GB of storage space in the
course of a single experiment.
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Spec. Ave. Spec. Ave. Spec. Measured Seq.
Disk Type Seek Time Rot. Latency Cache Size R/W Thr.put.
Seagate Magnetic 11.0 ms 4.16 ms 8 MB 46/40 MB/s
Fujitsu Magnetic 11.5 ms 4.17 ms 16 MB 68/53 MB/s
STalent SSD <1 ms - Unknown 124/34 MB/s
Intel SSD <1 ms - 16 MB 220/66 MB/s
PV MD1200 RAID5 - - 256MB∗ 207/80MB/s
PV MD1200 NAS - - >128MB 63/42MB/s

Table 2.4: Key storage device performance indicators for experiments with the
110M dataset. Cache size marked with ∗ indicates the RAID controller memory.

2.5.1 Hardware speci�cations in experiments

Experiments with the 20M set were run on a Dell PowerEdge 1850 machine,
equipped with: two 3.2GHz Intel Pentium 4 processors with 1MB cache, 2GB of
DDR2-memory, and two 140GB 10Krpm SCSI disks. The machines OS is CentOS
5.0 Linux (2.6.18 kernel) and disks are formatted with the ext3 �le system.

Most experiments with the 110M set, all but the ones that use the RAID5
or the NAS, are run on a Dell Precision T3400, equipped with: a single 3.0GHz
Intel E6400 dual core CPU with 6MB L2 cache, 4GB of DDR3-memory and we
use various secondary storage devices (see Table 2.4. The machines OS is Debian
and all local disks are formatted with the ext3 �le system.

The experiments with the 110M set that use the RAID5 are run on a Dell
R710 equipped with: one Intel E5620 4-cores at 2.4GHz, 8GB RAM and the disk
volume is a DAS connected Dell PowerVault MD1200 with 15 7200rpm SATA
disks in a RAID5 con�guration. The RAID controller is a Perc 6/i with 256MB
of RAM. The size of the volume is 15TB of usable disk space. This machine is
a �le server and hosts this volume as a NAS. The machine that does the work
in the NAS experiments is a Dell PowerEdge 2950, equipped with: two 3.0GHz
Intel Xeon 5160 dual core CPU with 4MB L2 cache, 16GB of DDR3-memory.
The NAS is a NetApp. 3070 that accessed via a 1Gbps Ethernet network.

The descriptor level experiments using the ANN_SIFT set were run on a
Dell R710 equipped with: two 2.67GHz Intel X5650 6 core CPU with 12MB L3
and 144GB of RAM. The secondary storage volume is a DAS connected Dell
PowerVault MD1200 with 12x 15k-rpm, 600GB SAS disks organized in a single
RAID6 con�guration by a Dell PERC H800 controller with 512MB of RAM. The
size of the volume is 5.7TB of usable disk space. This disk volume is not in
the Table 2.4 as it was not used in the image-level experiments with the 110M
dataset.

Please note however that ALL experiments in this chapter use only a
single core for both indexing and searching.
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Figure 2.4: Size distribution of eCP clustering. The graph shows the size distribution for all
clusters with no extra clusters (blue) and 100% extra clusters (orange).

2.5.2 Analyzing and evening out the size distribution

We are especially interested in the size distribution of the clusters created
by eCP's simple top-down assignment approach. We are hoping that our size
distribution will be far from the natural distribution that has been reported as
high s 5-20% of the collection [SJHA05].

For this �rst experiment we use the small 20M descriptor dataset (see Ta-
ble 2.3) and to avoid repetitive hardware descriptions, all the hardware descrip-
tions are given in Section 2.5.1, organized by dataset. The cluster ts used is 1,724
descriptors or 128KBs cluster size on disk and that gives us leaders= N

ts
= 11, 860

clusters on disk. We chose to set the index depth to L=2, i.e. two in-memory
levels, and in the index we use our default value of treeA= 3, and no duplication
of data on disk, i.e. a=1.

We then build the database and the results can be seen in Figure 2.4. We also
test our idea 5 to even out the size distribution. In the graph we have cluster on
the x-axis and the size on y. The clusters have been sorted left-to-right, with the
largest clusters to the left. The blue line depicts the default clustering, with just
11,860 random descriptors as leaders.

The largest cluster contains 14,353 descriptors, while the smallest has only
76. Although this is not the even size distribution we wanted, it is still nowhere
near the natural cluster size of 5-20%. The largest cluster is 8.3 times larger than
our desired target size but still only about 0.07% of the size of the dataset. The
orange line in that same graph depicts the size distribution when we pick 100%

5. To intentionally pick extra clusters and remove them by reclustering the smallest ones.
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extra clusters, i.e. there are initially 23,720 randomly selected leaders and 11,860
of the smallest clusters are removed and reclustered. We will come back to this
graph again later.

In the two graphs of Figure 2.5, we have a more detailed size distribution
analysis using various number of extra leaders. To simplify the graphical repre-
sentations we have aggregated the size distributions into �ve categories: 1) clus-
ters with < 1K descriptors; 2) 1− 2K; 3) 2− 3K; 4) 3− 4K and 5) those with
> 4K descriptors.

We then plot the cluster and data distributions in two area-graphs. On the
x-axis we have �ve di�erent clusterings, using from 0-100% extra clusters. On the
y-axis we have the percentage of clusters (left graph) / descriptors (right graph)
that fall into each of the �ve categories. In graph on the left, we have the cluster
size distribution and on the right we have data distribution.

With this representation of the data we get a better overall picture and better
understanding on what actually happens when we cluster. For example, focusing
on the blue < 1K category, in the left graph, we can easily read that in the
original clustering (column 1 labeled 0%) just over a quarter of the clusters are
smaller than 1,000 points. Reading the graph on the right hand side, we see that
those same clusters only represent about 10% of the data.

Knowing the data distribution is in a way more important as it tells us how
likely those clusters are to be accessed. Again, we can see that the largest category
> 4K (maroon) is only about 4% of the clusters (that is not so bad, right?), but
we also see that they contain about 11% of the data. I.e. every 10th search will
scan one of those clusters.

Accumulating categories is also easy, > 3K (maroon + green) has 12% of the
clusters but about 25% of the data (every 4th scan).

The region we would like to be dominant is the orange category of 1-2K
descriptors, as that is where our cluster targets size of 1,724 descriptors is.

So far we have only been reading a from a single column of the graphs, column
1 where no extra clusters are used (0%). As we move along the x-axis, from 0% to
10%, 20%, 50% and 100% extra clusters, we can see that our simple idea, picking
X% extra random leaders and removing the X% smallest clusters by reclustering
them, is quite e�ective. It both eliminates small and large clusters, evening out
the size distribution.

At 50% extra clusters, the desired orange region has grown from 36% of the
data (42% of clusters) to 55% of the data (66% of the clusters). By the time we
reach 100% extra clusters, we have just over 60% of the data (70% of the clusters)
in our target region.

Coming back to the graph in Figure 2.4, the second result, depicted by the
orange line, shows the full size distribution for the 100% extra clustering (i.e. the
full distribution for the last column of the graphs in Figure 2.5). As expected,
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Figure 2.5: Size distribution of eCP clustering grouped into 5 size categories. Here we see
stacked area graphs that show the distribution after being grouped. On the left we have the
distribution of clusters into the �ve categories and on the right we have the distribution of the
descriptors.

we can clearly see the elimination of the small clusters (the smallest has 756
descriptors instead of 76), but the distribution curve has also leveled out and
there are far fewer large clusters. Those few large clusters that remain are much
smaller, with the largest containing 6,599 descriptors, down from 14,354, and
overall only about 8% of the data remains in clusters in the combined category
of > 3K (maroon + green).

Successful as this may be at evening the size distribution, there is a price to
pay. Reclustering the smallest clusters requires added overhead, but that cost is
not our main concern. The majority of added overhead comes from doing the
initial clustering of the whole dataset with the X% extra leaders. Clustering with
10% extra clusters took 1.29 times longer, at 20% it was 1.56, 50% took 2.43 and
at 100% extra clusters the assignments took 5.07 times longer. The cost does not
grow linearly and there are a few reasons why that is. One of the reasons for this
is that we are also having imbalance issues in the index itself. Thus, the cost of
traversing the index is higher than otherwise estimated. In addition, we are using
the treeA= 3 in the index and that tends make the uneven index-size-distribution
problem even worse. It is possible to apply the same X% extra cluster policy on
every level of the index, but that will severly complicate the index construction
process. Also, it is possible use a deeper index hierarchy to compensate for the
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added cost of indexing (i.e. increase L by one).
However, the imbalance problem is nowhere near as bad as we had feared.

Therefore we are aware that our idea for balancing the cluster distribution works,
but we will not be applying it in future experiments.

2.5.3 Experiments to determine appropriate eCP settings

We need to determine guidelines for setting several settings. Among them
are the cluster target-size, the index depth L and the appropriate setting for the
in-bu�.

We will start our work by examining the e�ects of the size of clusters, i.e. how
to set the ts.

Cluster size For this �rst initial experiment we use the small 20M descriptor
dataset (see Table 2.3) and to avoid repetitive hardware descriptions, all the
hardware descriptions are given in Section 2.5.1, organized by dataset.

The setting of ts is a three way balancing act between the time it takes to
do the indexing, the response time of the search and the search quality. For
the purpose of evaluating the search, we created a set of altered images to use
as queries. We start by �rst randomly choosing 120 images from the collection
and then from those 120 images, we use 26 di�erent StirMark variants (resizing,
cropping, compression, rotation, etc.), to create 3,120 altered (or you could call
them attacked) images that we will use as our queries.

We index and search the 20M set using a L=2 deep index and �ve di�erent
ts settings. The ts settings evaluated range from 32KB to 512KB on disk.

Please note that it may not be possible to get a 100% correct identi�-
cation between all variants created and the original image. We base our
ground truth on knowing what original image each variant comes from.
That does however not tell use if it is actually possible to discover that
fact. Only a full sequential scan can actually determine if a variant of
the original is truly discoverable or not.

In Table 2.5 we can see the results. In the �rst two columns we have the �ve
ts settings. We see the number of points per cluster and the size on disk (2nd

column), as well as the number of clusters created on disk (1st column). The
relative indexing times are in the column 3, highlighted in blue, and the search
results are in columns 4 and 5, highlighted in red.

In the table we choose to use the ts=128KB, 3rd row highlighted in green,
as a reference point for both indexing and searching. Each of the 3,120 query
images is searched in sequence, one after the other, and we report two values: the
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Clusters
on disk

Cluster ts Indexing
rel. time

Search b=1 Search b=3
KB #desc. time P@1 time P@1

2,964 512 6,898 x0.35 x3.01 73.41% x7.32 75.56%
5,928 256 3,449 x0.58 x1.63 73.73% x3.65 74.86%
11,859 128 1,724 1.00 1.00 71.91% x2.05 74.66%
23,719 64 862 x1.48 x1.00 71.23% x1.40 74.47%
47,438 32 431 x2.21 x0.96 68.57% x1.31 73.51%
11,859 128 1,724 1.00 x3.05 71.91% x8.45 74.66%

Table 2.5: Balancing indexing cost, search cost and search quality using the 20M
dataset. The settings are L=2, k=20 and the in-bu�=128MB. The only variable
setting is the size of clusters ts. We use the 128KB ts setting as a baseline
(highlighted in green). All rows have hot cache, but in the last row the RAM had
been reduced from 2GB to 750MB.

total wall clock time relative to the baseline setting of ts=128K and b=1; and the
proportion of the queries where the correct image was the top voted candidate or
precision@1 (P@1).

Note that in this set of experiments, the dataset (1.5GB) is smaller than the
RAM (2GB). Thus, after the �rst few images, the search is running on hot �le-
cache. This is unfortunate, but it is impossible to both �ush the cache between
each query and, at the same time, make accurately running time measurements.
We therefore also report the running times for the reference setting after reducing
the RAM to 750MB, see the bottom row that is highlighted in gray. While the
cache is still hot, the whole �le cannot be cached anymore and now the average
processing time is 4sec per image.

Not surprisingly, the indexing cost is strongly in�uenced by the number of
clusters and thus ts. The growth of indexing time is however sub-linear, this is
due to the bene�t of using a two level deep (L=2) top-down index hierarchy. we
see also how index depth can be used to mitigate the cost of having a small ts.

Turning our focus on the search, we see that scanning 3 small clusters gives
better precision than a single 4x bigger one. For example, searching three (b=3)
128KB clusters is both faster and has a 1.25% advantage searching a single
(b=1) 512KB cluster. The speed-up is understandable, fewer points are scanned
(3*128KB=384KB) and as we are running on hot cache, retrieving 3 clusters in-
stead of just 1 has very little added overhead. The increased quality is however
more interesting and may be an artifact of eCP's simple one step clustering. If
the query and its correct match fall close to a Voronoi cell boundary, it can hap-
pen that they fall on opposite sides. This will happen regardless of the cluster
size and probably more frequently in eCP then in a clustering that minimized the
internal variance of clusters (like k-means).
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We also observe that the largest setting of ts always has a signi�cantly higher
overhead (more descriptors to scan in each cluster) but more interestingly there
is only a marginal improvement in the quality. The lowest setting, of ts=32KB,
on the other hand has a signi�cantly higher indexing cost as there are so many
clusters created on disk and thus the index structure is much wider and more
costly to traverse. We also see that the quality of the search su�ers but yet it
takes almost the same amount of time as the 64KB setting.

The 32KB and 512KB settings are not viable options, but the other three are.
We choose the middle ground in the 128KB setting, knowing that any signi�cant
change in hardware requires us to revise this decision.

Search expansions The idea of using the soft-assignment for the data, or a,
has been abandoned. We simply do not think we will have the storage capacity
for a-folding of the data on disk.

In the previous experiment, see Table 2.5 column 5, we see results of using
query expansion, or b=3. In our experiments we evaluated every setting of b
between 1 and 5. The results varied a bit between the ts size settings, and were
in general more e�ective when ts was small and many clusters created. The
di�erence between b=1 and b=3, as can be seen in the table, varies between 2.15
and 4.94% and between b=1 and b=5 the variance ranges from 2.31 to 5.81%.
In general the �rst added cluster was most valuable, for the 128KB setting for
example going from 1 to 2 gave an additional 2.02% while going from 2 to 3 only
added another 0.74% and from 3 to 4 a meager 0.35% is gained.

Setting the neighborhood size In our search experiments we tried various
settings for k, and the default setting we came to use was k=20. Setting k too
high would increase the �noise�-level and result in worse search quality. For some
a setting of k=20 may sound very low, but we are getting good search quality
with it. Part of the reason we do not need to set k higher is because we are not
using estimates of the distance between descriptors but doing the full Euclidean
distance calculation.

Evaluating the impact of index depth The last major remaining factor is
to evaluate the impact of index depth L. For this experiment we will use the
larger 110M set. Again we refer to Section 2.5.1 for information on the hardware
used. The secondary storage used is the Seagate magnetic disk described in the
�rst row of Table 2.4.

For the indexing we use a ts of 992 descriptors. That results in 111,424 clusters
on disk, each 128KB in size on average. The in-bu� is set to 128MB so it will
take 109 rounds of assignments and thus 109 intermediate �les will be created
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using the CF disk access policy. We then index using both a L=2 and a L=3
deep index hierarchy.

At L=2 the process takes 33,508.34 seconds or 9.31 hours. When we use the
L=3 index the same process takes 11,578.35 seconds or 3.22 hours. The L=3
indexing thus takes 34.55% of the time it takes the L=2 or we could also say that
L=3 is 2.89 times less work. Considering how long the L=2 indexing took we did
not do the �at index of L=1.

With respect to search times and quality we could not notice a di�erence
between the two. The set of queries for this dataset is however very small, only
533 queries, and the search quality was very high, above 98% for both settings
of L. More details on this search scenario, using the L=3 index, can be found in
Section 2.5.5 on the early-halting optimization.

The e�ect of in-bu� and the number of rounds of assignment In this set
of experiments we also tested various settings of the in-bu�, ranging it from 32
to 1024MB resulting in 433 to just 14 rounds of assignments.

As expected, the TF policy did much better with a large setting, basically the
larger the better. What was however surprising was that the CF policy actually
did better when the in-bu� was small. The fastest setting was also the lowest
that we tried, only a 32MB in-bu�. Increasing the size to 256MB added 8.34%
to the wall clock running time of the task when running on the Seagate magnetic
disk. This was because the I/O time was increased (the amount of time the CPU
is idle), from 15.38% at 32MB to 17.2% with the 256MB in-bu�.

The fact that CF does better with a smaller in-bu� is very good news as that
leaves more RAM for both the index structure and for the OS to do �le bu�er-
ing. There is however another consideration that must be taken into account.
Depending on the size of the dataset, we may be inclined to set the in-bu� such
that we do not create too many intermediate �les. If they are too many, we will
have to open and close each �le between reads. That would limit the OS's ability
to cache for use and thus severely degrade the performance of the merge phase.
The setting of in-bu� should therefore try to compliment the size of the dataset,
such that the number of intermediate �les does not become too large.

2.5.4 Indexing on a wide range of storage devices

The primary goal of the following experiments is to evaluate the two disk
access polices TF and CF using a wide range of secondary storage devices. For
this task we use again the 110M dataset. The storage device we use are two
magnetic disks, 3.5� Seagate Barracuda 7200.10 and 2.5� Fujitsu MHZ2160BJ.
Both are 7200rpm disks with similar seek time and rotational delay. We also
used two types of SSDs: a SuperTalent FTM28GL25H and we have two Intel X-
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25M, type SSDSA2MH080G1GC. In addition to that we have a RAID5 volume
connected both by DAS and NAS. A summary of all the devices can be found
in Table 2.4 of Section 2.5.1. In that same section is also a description of the
hardware used to do the experiments.

We are very interested in the performance of these new SSD devices as they
do not carry the same penalty for random access as magnetic disks do. The
solid state technology has been called the biggest breakthrough in secondary
storage in decades. The magnetic disks, with their mechanical moving parts,
have stagnated in performance and yet remained unchallenged as the standard
in permanent storage for a very long time.

Measuring I/O time: Accurately measuring the I/O cost is quite hard
and the cost will depend on the underlying hardware. In the indexing
process of eCP, the main reason for an idle CPU is that it is waiting for
I/O operations. We therefore use the loose de�nition of I/O time: as
the di�erence between the wall clock time and the time spent
using the CPU, on a machine that is used in isolation.
As we are only using a single core, we can use the time command in
Linux, to derive our I/O time by:

I/O time = real time− user time

We must however keep in mind the limitation of our de�nition.

Unless otherwise speci�ed, all experiments are conducted with the default
setting of L=3, treeA=3, ts=992 and a 128MB in-bu� size resulting in 109 rounds
of assignments. The number of clusters created on disk is 111,424 and each cluster
is on average 128KB in size. We measure the running time of our experiments
using the time command in Linux, as it will tell us the wall clock time, called
�real�, as well as the amount of time spent using the CPU, called �user�.

Access policies, CF vs. TF We start by analyzing the di�erence between
the two policies. For this purpose we index the dataset on the Seagate magnetic
disks using both L=2 and L=3 deep index.

Using the L=3 index, the number of distance calculations is drastically re-
duced. Despite this, the TF policy cannot take full advantage of the deep index
using the magnetic disks. The reported user (CPU) time during the L=3 index-
ing is only 28% of the reported real (wall clock) time. Thus, the CPU was idle
for 72% of the running time, waiting for I/O operations.

With the CF policy, the reported user time is 84% of the wall clock time using
the same magnetic disk. The CF policy is therefore not I/O but CPU bound.



66 eCP

On the magnetic disks, CF can take full advantage of the deeper index structure.
The running time of CF is shorter by a factor of 2.5 compared to TF and the
CPU is only idle 16% of the wall clock times instead of TF 's 72%.

Scaling the index-up is very e�ective. By incrementing the index depth L by
only one, from 2 to 3, the amount of time the CPU is busy (the amount of work
needed) is decreased by a factor of 2.86. I.e. the same database is constructed
with a 3 level index in only 35% of the wall clock time it took using a 2 level
index.

On the Fujistu magnetic disk, the 109 rounds of the 128MB in-bu� took 60%
longer than the 14 rounds of 1024MB in-bu�. Like we said, this is no surprise.
The magnetic disk does not handle random access very well and with 109 rounds
and 111,424 clusters, we have to append 12.1M times to those intermediate cluster
�les, while with 14 round we only need to do 1.6M appends.

Changing the size of the in-bu� did however not make a signi�cant di�erence
for the TF policy when we used the Intel SSD device. This is because the SSD
disk has no added overhead in doing random writes. Interestingly, using an SSD
can therefore reduce the algorithm's need for RAM and hence, there is no longer
a need use RAM to bu�er and delay random write operations with a large in-bu�.

We also observe that the reported user times for CF are always a little lower
than using TF , indicating that the CF policy is more e�cient regardless of the
I/O costs. In other experiments we stick to the relatively small 128MB in-bu�
because we want to simulate how TF would do at larger scale.

Using di�erent storage devices In this set of experiments we want to eval-
uate the role of the secondary storage device using our default setup and our two
disk access policies CF and TF .

In Figure 2.6 we have the results from running the same indexing process,
using L=3 deep index and all the same setting as before but using a di�erent
storage device each time. Each bar is the full wall clock running time it took to
complete the task. The white section of the bar is the reported user time where
the CPU is busy. Next, in orange, we have the I/O time that was measured
during assignment phase, that is reading the source �le in-bu� by in-bu� as well
as the cost of writing the intermediate �les. The last section, in yellow, represents
the I/O time measured during the merge phase that includes the reading back
the intermediate �les and creating the three database �les.

Please note that the RAID5 and NAS experiments had to be run on di�erent
machines and thus the CPU cost is a little bit higher. One of the machines has
direct access over DAS and the other uses NAS over a 1Gbps network.

The �rst and most obvious observation is that the CF policy performs better
on all devices and is clearly a superior policy. The second observation is that the
TF policy is I/O bound, or close to it, on all devices (the white bar is equal or
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Figure 2.6: Performance of eCP index creation policies, single drive setups.

smaller than the two colored bars). We can also see that the I/O cost for TF
is actually higher when running directly on our NAS server, than when another
machine runs the task using the NAS over the network. Why this happens is not
exactly clear. We think it may have something to do with the NAS con�gurations,
as it is set up for maximum caching on both client and server side. We do not
allow eCP to use more than 128MB of RAM for the chunk of data being processed,
but the machine has 8GB of RAM available.

We also see that the SSD disks, especially the Intel device, are powerful and
fast devices that dominate the magnetic disks. However, it is surprising how
poorly the Super Talent handles the random appends in the TF policy. It actually
has the worst random-write performance of all the devices and is only better than
the Seagate overall, thanks to its fast read-back of those intermediate �les. The
lesson is that not all SSDs are guaranteed to deliver the full potential of the
technology. For that, one should make sure to get one of the �good� models that
typically also cost a little bit more. This technology is new and as it matures, we
expect that sub-par performance of this magnitude will no longer happen.

In light of the excellent performance of the Intel SSD in the TF policy, it
was the only device that was not I/O bound, we therefore also ran experiments
using two devices. We put the source data and the �nal database on the Fujitsu
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Figure 2.7: Performance of eCP index creation policies, two drive setups.

magnetic disk and used an Intel SSD for the random access pattern of hosting the
intermediate �les. We also performed an experiment where we use two separate
Intel SSD devices.

The results of the two disk experiments can be found in Figure 2.7 in the rows
labeled �Fujitsu-Intel� and �Intel1-Intel2�. For comparison we include as well the
experiments that used only one disk, both for the Fujitsu and the Intel SSD.

As we can see, it is not necessary to put the high-performance and pricey
SSDs everywhere, using them where the random I/O occurs is enough.

2.5.5 Early termination of image level search

In the experiments with the 110M set, the main focus was on the index as-
pect of eCP. For this reason we only used a small set of queries to validate the
indexing, 533 queries that where created with 49 StirMark modi�cations of 11
randomly picked images. The evaluation is the same as before, a copyright de-
tection scenario where we include the 11 original in the dataset and use the 533
modi�ed images as queries.

As the performance characteristics of the SSD devices is quite di�erent than
the magnetic disk we used before, we evaluated also a cluster target-size of 256KB
and 512KB in addition to our baseline setting of 128KB ts. For other hardware
speci�cations we refer to Section 2.5.1.
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ts
Indexing Full search Early halting
110M set 533 queries 533 queries

KB mag. SSD mag. SSD P@1/R@1 mag. SSD P@1/R@1
512 7,099s 5,488s 4,003s 1,539s 98.31% 215s 151s 98.31%
256 9,955s 8,240s 2,847s 984s 98.12% 207s 133s 98.12%
128 13,158s 11,196s 3,164s 1,055s 98.50% 375s 249s 98.50%

Table 2.6: Balancing indexing cost, search time and search quality. The reported
indexing times are for the 110M set is using the CF policy, the Fujitsu magnetic
disk and the Intel SSD device. The index used is L=3 deep and we try 3 sizes
of ts: 128KB, 256KB and 512KB. The search is done using no search expansion,
b=1, on both disks with and without early-halting.

In our search experiments we only use the best performing disks of each cat-
egory, the Fujitsu magnetic disk and the Intel SSD device (see table 2.4 for spec-
i�cations).

The results of our experiments are summarized in Table 2.6. The database
construction is reported in the 2nd column, highlighted in blue. The results of
the search are in columns 3 and 4: First is the full scan, highlighted in red; and
second is the early halting policy as described before, highlighted in yellow.

As expected, the database construction of the small and numerous clusters
takes longer, but thanks to the deep index the di�erence is sub-linear.

The searching has a much higher accuracy then before, up to 98.5%. The
main reason for this is that the 26 StirMark variants used before are quite severe
attacks and a perfect recognition is impossible, even with a full sequential scan.
The 49 StirMark variants used here are not as severe and thus the task at hand
is simply not as hard.

For the speed of searching, the best ts setting is is 256KB. The full scan on the
magnetic disk takes on average 5.34sec. per image with that setting while with a
128KB ts it takes on average 5.94sec. and 7.51sec. with a 512KB ts. The pattern
of the performance is the same when we use the SSD device, except the running
times only takes about 35% of the magnetic disk times. With the optimal setting
of 256KB ts, the average time per image is down to only 1.84sec.

In the last column we have the results for the early-halting search. As we can
see, the quality does not change. This may in part be because of how high it was
to begin with (high quality indicated easy task and thus many correct matches).
This is the optimal scenario for our positive only halting policy.

The best performing setting is still the 256KB target-size. What is di�erent
are the running times, they are just a fraction of how long it took the full search
for both storage types.

On margin, the magnetic disks gain the most by terminating the search early.
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This is simply because they are much more I/O bound and have therefore more to
gain. Using the magnetic disk and the optimal ts setting of 256KB, the average
time per images of the full search is 5.34 seconds, but when we use early-halting
the average time falls to only 388ms per image. On the Intel SSD, the average
time per image of the full search is 1.84 seconds and with early-halting this time
is down to only 250ms. Thus, early halting is 13.75x faster on the magnetic disk
and 7.4x faster using the SSD, with no loss in recognition quality.

The performance we observe is very good and the response time is very low.
There are however two factors that may be biasing our results and we should be
aware of.

First is that our 533 queries may be fairly �easy� as we get a >98% correct
matching rate. I.e. all of our queries do have a corresponding database image
and almost all of them are correctly found during a full scan search. This is the
optimal case for our simple early halting policy that only halts when a winner
can be declared. If the queries were harder or a few of the queries did not have
a matching database image, many more searches could not be terminated early
and that would of course quickly raise the average processing time per image.

Second is that we are probably bene�ting a lot from the �le caching being
done by the OS. When a query can terminate early, it will only have read a few
clusters from the beginning of the data�le. When we can terminate early again
and again, multiple queries in a row, the OS will have cached the beginning of the
data�le for us and many of the early terminating searches read only data from the
OS bu�ers (i.e. RAM). This explains the very good performance of the magnetic
disks and why they are performing very close to the SSD. If there were queries
mixed in that did not terminate early and therefore would force the search to read
from the full size of the data�le, the OS's �le cache would be much more stressed
and the performance would most certainly degrade. For this reason, it might be
a good policy to have early-halting eCP search do its own caching, where clusters
could be pinned more to the RAM (we know that the next search will always
read from the beginning of the �le again, but the OS does not).

One of the main limitations of SSD devices today is their limited capacity.
Therefore, when we index and search large collections, using SSDs only may not
be a viable option. However, the capacity of an SSD is typically larger than the
available RAM and it is much cheaper than adding more RAM. For the eCP
search, especially when we do early-halting, it is therefore still possible to make
good use a of them. The idea is to add the SSD as another layer of cache,
between the RAM and the magnetic disk(s). This could be especially bene�cial
to an early terminating search as hopefully, it can terminate before having to
access the costly magnetic disk(s).
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2.5.6 Single point experiments and index quality

Another way to evaluate the indexing is to do evaluation on a per-query-
descriptor basis. For that, you need a set of query descriptors with the ground
truth pre-calculated. The only way to do those pre-calculations is to do a full
sequential scan of the entire collection for each query descriptor in our evaluation
set. For large collections this can be quite a lot of calculations.

The largest publicly available single descriptor dataset, that we know of, is the
ANN_SIFT1B dataset [AJ10]. The set is comprised of 1B SIFT descriptors and
10,000 randomly selected query descriptors that have the 1,000 nearest neighbors
pre-calculated and provided as ground truth.

To create an indexed database, we �rst pick the appropriate ts for the clusters.
The RAID6 volume we will be using has very high-performance magnetic disks
and we could probably us a fairly large ts (256-1024KB). But we choose to use
the 128KB ts as it has been our default setting in most experiments and our focus
is on the quality aspects, not performance.

We then calculate the number of leaders, i.e. clusters on disk, as follows:

ts = (128 ∗ 1024bytes)/(4byteID + 128bytevector) = 992pts.

leaders =
N

ts
=

1, 000, 000, 000

992
= 1, 008, 065

That is, we split the 1B SIFTs into approximately 1M clusters, each hopefully
containing close to 992 descriptors. Then, at search-time, we will pick only the b
most likely clusters for retrieval and scanning.

We also need to pick an index depth L and we need to choose a replication
factor treeA to use in the index soft-assignment search expansion. We choose to
test setting L to 4 and 5 and treeA to 1 and 3, for a total of indexing four di�erent
databases that we will designate L4A1, L4A3, L5A1 and L5A3.

As for the search, we can set b at search-time and we are therefore free to
range it to any value we want. In fact we will report searches with up to b=100.
To keep the quality reporting simple, we only check if the single most similar
point (i.e. the nearest neighbor) is in the k-nn. As the k-nn is a ranked list, this
translates to doing precision at 1 (P@1). Thus, if the nearest neighbor is in the
returned k-nn we de�ne that as a �correct match�, and otherwise the search has
failed (regardless of how many of the near neighbors we did return).

Our reasoning for doing this is that in the copyright detection scenario that
we almost always use, there is only a single correct database descriptor that can
match each query descriptor (there should be a one-to-one correspondence). And,
in most cases, that single correct point is the nearest neighbor.

The initial analysis showed that we only get between 12-14% correct matches,
when searching with b=1 on all four databases. When we increased clusters
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searched to b=10, our correct match rate increased, but only to between 21-31%
correct matches. This does not exactly look promising.

The problem may in part be due to how the query points in this dataset were
selected, namely randomly. What that means is that there is no natural bound
on how far away the nearest neighbor is, i.e. it may be quite far away.

What we did was to analyze the queries and the ground truth, looking at how
far away the nearest neighbor is by looking up the distance distribution to the
�rst nearest neighbor of each query using the provided ground truth.

Please note that the distances are squared (n2) but not rooted (
√
n),

to minimize the cost of doing the calculations.

In the pie chart of of Figure 2.8 we can see that it turns out that for 76.19%
of the queries, the nearest neighbor is at a distance greater than 20,000 square
distance. We also see that there are very few query points, only 3.28%, that have
very near neighbors, i.e. less than 5,000.

This poses a problem for us, as this is a poor representation of the CBIR
problem that we typically face. It is not surprising that we get such poor results
when our deep index has to, again and again, �nd the correct Voronoi-cell of
such dissimilar SIFT descriptors. In this case we may be haunted by the curse-
of-dimensionality, like trying to use apples to �nd oranges.

The number of query descriptors extracted from each image, both original
and attacked query images, varies greatly. In our system however, we typically
only need a handful of descriptors to match the original for a correct image-level
identi�cation. This is because the �noise-level� is typically very low, even if the
database is huge.

What we did was to look at a few of our images and do a full scan comparison
between the original image and the 49 StirMark variants that we use as queries.
The distance to the nearest match depends a lot on the attack used, but typically
at least 10 descriptors have a nearest match below 20,000 distance for all 49
variants. One of the images had only 41 descriptors extracted from the original
image, and even then 7 of them had a match in all 49 variants below 20,000 in
distance. Many original descriptors will always be lost as some of the attacks are
very severe (like cropping 75% of the image). For many of the easier variants we
get a lot of query descriptors that match with a very low distance (some even
exact match of distance 0).

What we choose to do with the data of the ANN_SIFT1B set, is to split
the queries into distance categories of <5K, <10K, <15K, <20K and >20K. The
results are in the bar chart in Figure 2.8.
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Figure 2.8: Ground truth distance analysis on the left and search quality by category on the
right, where labels are the di�erent database settings and A is short for the treeA value.
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Figure 2.9: Search quality for the <5K category(left) and <20K category(right). The labels
are the di�erent database settings where A is short for the treeA value.
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We can clearly see how the distance to the nearest neighbor matters. The by
far best category is <5K with a 38-40% correct matches using b=1, regardless of
treeA.

We create a new grouping of <20K that represents 23.81% of the queries,
leaving out only the largest >20K from before. We focus on this new category,
as well as the <5K, in the charts of Figure 2.9 where we show the results when
searching all four databases using various values of b.

Our new category, <20K, has a precision of 24-27% at b=1 and it jumps up to
38-56% at b=10. For the <5K the jump is even higher, from around 40% up to
55-78%. The largest gain of b was in the �rst few clusters and very few matches
are added after the 10th.

It is also notable that the setting of treeA matters more than the index
depth L. For example, the L5A3 index (green line) does better than the shallower
and non-expanded L4A1 index (blue line).

We are now in a position to discuss the topic of how to set the neighborhood
size k for the search. If we retrieve and scan the �correct� cluster (i.e. the one
containing the database nearest neighbor descriptor), the full scan will �nd the
nearest neighbor, even if k=1. If on the other hand we fail to scan that �correct�
cluster, k will not matter as what ever cluster we scan will not contain the true
nearest neighbor. The �fault� has already happened in the index traversal (see
Section 2.3.4 for description of the three ways the search can fail).

Now for a CBIR system, and especially in the copyright detection scenario,
the most similar descriptor is most commonly also the �correct match�. 6 We are
only inclined to increase k for the heavily distorted queries, but those are also the
ones that are most likely to be scanning the �incorrect� cluster. For such cases,
increasing b might be a better (but costly) option. In fact, we can observe this in
Figure 2.9 where increasing b to more than 1 gives better results, even for very
low distances (the upper graph is for <5,000).

In the course of our image-level search experiments, we did test various values
of k. For the easy StirMark variants, the value can be set very low, 1-5 was giving
good results. But for the harder variants, where distortions are more severe, we
need to allow a little bit larger k. Our conclusion was that for our vote aggregation
policy of one-vote-per-neighbor in k, the size should be set between 10 and 30
and our default setting is k=20.

We have another reason for wanting to keep k low. In our distance calculations
we use the current farthest distance to early terminate each distance evaluation
during the scan of a cluster. If k is large, that means true distance to the kth most
similar descriptor is high and that reduces the pruning power of this optimization.

6. For example, the weighted voting policy relies heavily on that low proximity is strongly
correlated with a correct match.



76 eCP

Finally, as we shall see when we use the set of small images (only 150px on
wider edge), the main reason for keeping k low is to keep down the �noise-level�
created by false-positive votes. When only a handful of query descriptors are
extracted from the query image, the correct database image is often found with
even fewer correct matches. There is therefore no room for a high �noise-level�,
as a handful of correct matches can easily be drowned by the random �noise�.

2.6 Discussion

By now we have established that our extended Cluster Pruning, or eCP, is
actually two algorithms: indexing and searching. We should also know that the
two have very di�erent operational characteristics.

Summary The database construction is a long laborious process of assigning
the entire collection of descriptors, each to it's most similar cluster. Using the
top-down index and the CF policy the CPU bound process can bene�t greatly
from a deep index hierarchy L.

For quality, the use of search expansions, b and treeA, play a more signi�cant
role. Looking again at Figure 2.9; We see that while index dept L has some
in�uence, the search expansions treeA and b matter more.

The performance bene�t of a deep index L for search is minimal, but so far
the increased depth has not caused a signi�cant loss in quality either. Doing all
the index traversals are typically only a fraction of the total CPU overhead, ts
tends dominate the cost.

However, the true performance limitation of the search is that it is I/O bound
on retrieving all the clusters in random order. We can see this in Table 2.6,
column 3. The average time per image using the optimal 256KB ts setting drops
from 5.3 seconds per image on magnetic disks to 1.8 seconds using the Intel SSD.
If the search was CPU bound, the better performance of the underlying hardware
should not matter at all. We showed that using both better hardware, like the
SSDs, and using an early-halting policy (see column 4 of the same table), the task
can still be solved within a reasonable response time.

The eCP algorithm is simple and yet both �exible and extendable. We see this
both in the extension we proposed, described and evaluated and we will shortly
give further evidence for this by showing its application to other domains and
how it can be easily altered to mimic the behavior of other algorithms, like BoF
or the NV-Tree.

It should also be clear that keeping the all the vector information in the
clusters and doing Euclidean distances calculations in the scanning process is a
choice, not a necessity. Using Euclidean distance makes eCP easier to understand
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and to monitor what is going on. For example, tracking the e�ects of a particular
attack on an image can be done easily. We can track exactly the distance of
each query descriptors distortion and analyze the e�ects of that distortion on our
algorithms behavior. On the index level we can trace the paths of descriptors
through the index and even quantify how likely one descriptor is to stray from
the path. 7 And on the cluster level, we have perfectly ranked k-nns based on the
actual distance between descriptors, regardless how many clusters are scanned.

eCP con�guration In setting eCPs parameters, the trickiest is the target-
size (ts) of clusters on disk. It represents a complicated balancing act between
indexing time, search time and search quality that also hinges on the performance
of the underlying hardware.

In our experiments so far, we �nd that a ts of 128KB-256KB has the best
trade-o�.

The aggressiveness of index depth L we can use is only limited by the need to
leave enough clusters on the top-level of the index. Otherwise we risk poor initial
discrimination and an early branching mistake is a lot of wasted e�ort.

As for search expansions, we �nd that treeA=3 is a good default setting that
is worth the added overhead. The �exibility of being able to set b at search-time
is also a great advantage.

Usefulness in other domains eCP is clearly not domain speci�c, we are
ourselves adapting it from the CP algorithm that was designed for text corpora.
It will actually work on any high-dimensional vectorial data.

We have already show how it can do single point experiments and we have
also converted it to index and search 36-dimensional �oat-based audio features.
A conversation that took less then one day.

In addition, like the M-tree family of algortihms [CPZ97, TTSF00, SPS04],
eCP can be used to index and search data in Metric space because we abandoned
the use of calculated leaders like centroid or mediod.

eCP, prototypical CBIR algorithm As we work with eCP more and more
we have come to appreciate how prototypical this simple algorithm is. With fairly
minor changes we can imitate the behavior of other algorithms.

eCP could for example be used as the quantizer for the Bag-of-Words algo-
rithm. Or we even keep the eCP system and just skip the full scanning of clusters,
returning just all the imageID's assigned to it instead.

7. We do this by comparing the distance between the �correct� branch and the most similar
�wrong� path.



78 eCP

eCP can also be made to imitate the behavior of the NV-tree. The simplest
way would be to store in the cluster a tuple of the imageID and the distance to the
cluster leader instead of the full descriptor. By retaining only the imageIDs and
the distance we have almost the same data as the NV-Tree stores in its segments.
At search time the queries distance-to-leader is used to �nd the top k ImageIDs
with most similar distance-to-leader, almost exactly like the NV-Tree does with
its distance to last projection.

The authors of NV-tree realized that this is a very rough distance estimation
and thus k had to be large. They propose to improve quality by using 3 indexes
and OMedRank [FKS03] the results, i.e. two of the three indexes have to agree
before adding the imageID to k.

Instead of having three eCP indices, we can simply use both a=3 for data on
disk, and expand the search to b=3 clusters at search-time. This will cause data
to overlap where the queries are most similar and that is exactly what we want.
We can then use OMedRank, just like the NV-Tree, to �lter the most similar
imageIDs into the top k results.

Some experimental implementations have been done that keep distance values
instead of the full descriptor vector (in the spirit of what we described above)
but we never took it far enough to have a full discussion or experimental results
on this topic. It remains on our list of unexplored avenues of research.

The bottom line is that eCP is simple and yet �exible. It is by choice that we
keep all the data and do all the hard work, solving what could be called a �worst
case scenario�.

Scaling-Up will require Scaling-Out: Our long term goal is to do CBIR at
a very large scale, using datasets with billions of SIFT descriptors, representing
tens or hundreds of millions of images.

So far, the deepest index has been L=5, used on the largest dataset of 1 billion
descriptors (the ANN_SIFT1B set). Even with a dataset of that size, L=5 only
left 16 leaders on the top-level. There is thus a huge potential in applying eCP to
massive datasets, even without the need to increase the index depth much above
what we have already tested.

Even with the deep index hierarchy, our goal of indexing 100M images (or
more) is a formidable task. The storage capacity for terabytes of data and com-
putational power necessary to index such large collections is a job for more than
a single CPU. Parallel and even distributed computing are necessary tools to
incorporate in a modern day CBIR system.



Chapter 3

Scalable CBIR, Parallelism

In this chapter we will develop the eCP algorithm to harness the power of large
powerful multi-core servers. We will be doing this both for the CPU intensive
indexing as well as for the search.

We will start the chapter with a background section where we discuss relevant
hardware topics, like multi-core CPUs, SMT and the memory hierarchy.

Multi-threading the indexing process makes a lot of sense due to the fact that
it is a CPU bound process. In the second section we will develop and discuss
a parallelized indexing algorithm, where we focus on multi-threading the CPU
intensive assignment phase and evaluate our algorithm on a powerful multi-core
server on 1TB of data.

The third section is devoted to the eCP search. To spend e�ort on parallelizing
an I/O bound search process may sound a bit strange at �rst, but multi-threading
the search is not the only change to the algorithm that we make. We will develop
and discuss in detail a bulk loading eCP search algorithm that will search up to
100,000 images in a single batch. Large batches will shift the search from being
I/O bound to CPU bound and that is where the multi-threaded search becomes
valuable.

In the fourth and last section we summarize the chapter and draw conclusions.

3.1 Background

In this section we will look at some of the key evolutions in hardware that
in�uence the performance of the parallelized eCP algorithm that we will be de-
veloping in this chapter.
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3.1.1 Multi-core CPUs

For a long time, the mainstream CPU development was focused on making
CPUs faster and faster. Around the arrival of the new millennium, CPU ven-
dors could not get over the 4GHz barrier without overheating problems. They
instead reached more computing power by multiplying the number of processing
units. Multi-core CPUs were not new as they have been around for a long time
in specialized systems. But around 2005, multi-core architectures hit the mass
market and by now, every new laptop, desktop and even some mobile phones
come equipped with many cores by default.

Today, a standard desktop has 2�4 cores, and a single server can have 1�4
CPUs, where each CPU has 4�24 cores.

3.1.2 Simultaneous multi-threading, SMT

The basic idea behind SMT, also well known under Intel's brand name of
Hyper-Threading Technology HT or HTT, is to get better utilization of each core
by scheduling multiple tasks at the same time at the level of the core (i.e. this
is done regardless of what the OS is doing with regards to multi-tasking). If
the core task currently running is blocked, another task can be run, utilizing the
otherwise wasted cycles. For each real physical processing core in the CPU, the
operating system will see and address two (or more) logical cores. The OS then
schedules work on both cores and the CPU will try its best to share the physical
processor between the two workloads.

The increased productivity will depend a lot on the algorithms running and
their access pattern to data. CPU intensive tasks that require little data and
have predictable access patterns will not leave any slack for other tasks to pick
up. Data intensive tasks that frequently block during long periods of time, waiting
for data to be brought into the CPU cache from RAM or disk, will create a lot
of slack and the other tasks will get a lot of work done.

SMT has been around for several years but since 2002, when Intel introduced
Hyper-Threading in their CPUs, SMT moved from the realm of specialized sys-
tems into the mainstream. In the early days, HT was considered not very useful
and frequently disabled on most systems. 1 This was because the cost of doing the
context switching was too high. In cases where switching was frequent, little gain
was to be had and even, in the worst case, overall performance could degrade.

In latest processors, the switching is done at a very low level, inside the CPU
cores, greatly reducing the e�ort involved and making SMT much more useful. In
today's implementation of Intel's Hyper-Threading, the CPU keeps track of two

1. SMT is a functionality of the CPU and can typically be enabled or disabled in the com-
puter's BIOS settings.
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contexts (tasks) and the OS therefore sees two logical cores for each real physical
core of the CPU (e.g. a 6 core machine will make the OS report 12 cores).

3.1.3 The memory hierarchy and caching

As the CPUs got faster and faster, the memory modules of the RAM could
not keep up and a gap was created between the clock speed of the memory and
the CPU. To bridge the gap, the CPU tries to predict what data will be needed
and use faster but smaller memory modules to cache the needed data.

Various types of memory modules are in use today and typically there is a
memory hierarchy bridging the performance gap between CPU and RAM, where
very fast but small modules are at the top and as you go down the levels of
caching, the modules get ever larger but slower. The smallest and fastest cache
is level one (L1), typically 64KB, and is embedded with the core. Next is level
2 (L2), which can either be exclusive or partially shared between cores that are
on the same die. The size per core can be 256�1024KB but, when shared, the
dedicated part is small while the total size is 2�6MB. The most recent level is
level three (L3) cache. It's large, 1-20MB and is typically shared between all
cores of the CPU.

The search for data starts at the top (L1) and if the data is not found there,
lower levels are probed at ever greater cost. When data on one level is not found,
it is called a �miss�. It is therefore common to see reported the % of cache misses
per instruction or per 100 instructions executed.

It is possible to give some perspective on the costs of accessing the various
levels of the memory hierarchy. As the cache modules are often inside the CPU
chips, or very close to the cores, the access time is counted in the number of
cycles that pass (i.e. number of times the CPU could have done computations).
Accessing the L1 cache takes 4 cycles of the CPU. Accessing the L2 cache takes
3 times that (12 cycles) and for L3 cache it takes 9 to 11 times longer (36 to
46 cycles). The access to RAM is measured in nanoseconds and, depending on
the memory-bus, it typically takes between 65-200ns. to access it. The faster the
CPU clocking speed, the more cycles will have elapsed during the wait for the
data. If we assume 2.66GHz CPU than the 65-200ns. amount to between 172 and
532 cycles, or 43 to 133 time more than accessing the L1 cache. Also, when the
memory controller makes the request to load the data from RAM, it will already
have paid the 46 cycle penalty for checking the cache levels.

Since we are on the topic, accessing the data on disk is measured in millisec-
onds, where magnetic disks take between 6ms. and 20ms. (seek time + rotational-
delay) to read a disk page. That would amount to between 15,960 and 53,200
idle CPU cycles.
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3.1.4 High performance computing and access patterns

The performance of an application will depend on the nature of its task,
how it is implemented, the hardware used and the access patterns to data. High-
performance computing (HPC) is typically made of complicated iterative/recursive
computations where a very large number of computations are needed to solve the
task at hand, but relatively small amount of data. Once the computation starts,
the calculations are typically very predictable. This kind of applications and
access pattern are the best case scenario for the memory hierarchy described
above. Most of the data will be accessed from high levels of the cache (L1 or
L2) and therefore rarely block for long periods of time. Thus, the CPU(s) are
kept constantly busy, even without SMT technology, as the cache misses should
be rare.

For the eCP algorithm this is not at all the case, neither for the indexing nor
the search. The access pattern for the search is to read a lot of data from disk for
a very small amount of query descriptor. This results in an I/O bound algorithm
that spends most of the time waiting for the data to arrive from disk. The
indexing is CPU intensive and with the CF policy it is CPU bound. However,
it is also very data intensive, as the amount of computations for each descriptor
is relatively light (depending on how deep we set the index depth L). Thus, the
nature of eCP's indexing and search algorithms and their access patterns do not
�t a HPC application pro�le. What we will be looking for is wasted CPU cycles,
high frequency of cache misses and what can be done about it.

3.2 Parallelized eCP indexing algorithm

In this section we will parallelize the eCP indexing algorithm. We start with
a brief overview of how this is accomplished before we go into details on the
implementations in the following subsection. Then we will show and discuss our
experimental results and we end this section with a short summary of the topic.

The searching of the indexed databases will be discussed in Section 3.3.

3.2.1 Parallel indexing: Overview

We should start by noting that we only consider using the CF disk access
policy for parallelized indexing. As we saw in the last chapter, the eCP database
construction can be split into three phases:

Phase #1: Index creation. During this phase, cluster representatives are
picked from the collection and organized in an in-memory L deep hierarchy.
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Phase #2: Assignments. Descriptors are assigned to clusters in rounds of
executions, each round creating a sorted chunk-sized temporary �le.

Phase #3: Merging. This phase creates the database, where the main task
is to merge all the sorted temporary �les into an indexed data �le.

Of the three, phase #2 is a particularly good candidate for parallelization as
that is where most of the CPU work is done. In each round of assignments, a

Figure 3.1: The 3 phases of eCP: #1 Index creation, #2 Assignments and #3 Merge

large chunk of data is read from disk, assigned to the most similar clusters using
the L deep index (CPU intensive) and written back to disk as an intermediate
temporary �le.

In contrast to phase #2, phase #3 is almost solely I/O intensive as merging
requires few and cheap calculations. The I/O cost could be substantial but using
bu�ered reading will minimize that cost as it greatly reduces the number of issued
random I/Os. For I/O intensive tasks, an I/O parallelization (using multiple
threads to read/write to di�erent storage devices in parallel) is possible, but this
requires complicated I/O management and will have very limited scalability due
to restrictions on the number of devices possible per machine. A much more
common option (and the one we will use) is to arrange the disks available in a
disk volume using RAID, controlled with a dedicated RAID controller.

Parallelizing phase #1 is not feasible for three reasons. The �rst is that this
phase is only a fraction of the overall cost. Secondly, the main bottleneck is not
CPU but I/O as the picked leaders have to be read from disk. Thirdly reason
is the order dependence of the top-down construction as it makes parallelization
complicated. Picking the same leaders in a di�erent order would result in a very
di�erent hierarchy and we desire the index construction to be reproducible.

The key to fast parallel descriptor assignments in phase #2 is to make the
index hierarchy a read only structure. This reduces the memory requirements as
all the threads can share the same index structure and a read only structure does
not need the costly synchronization mechanisms like semaphores and blocking
code segments. The bookkeeping necessary to create the indexed database, which
was previously done during the assignments, is postponed until phase #3, when
we read all the data back for the �nal merge.
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3.2.2 Parallel indexing: Implementation details

We will start by discussing the structure of the index hierarchy, how we build
it and how the design can create unnecessary pressure on the cache memory and
therefore degrade performance. We then turn to how we make use of multiple
threads in the assignment process.

Index structure implementation When indexing large a collection, the eCP
index created will be very large. The by far largest factor is the number of cluster
representatives created, or the leaders created on the bottom level of the index.
In theory, every level of the eCP index hierarchy could be sampled independently
(randomly picked descriptors). To keep the memory requirements down however,
we use only descriptors from the bottom level as then the upper levels can share
the memory for the descriptor by way of pointers. I.e. we initially pick all the
bottom-level leaders that will become cluster representatives and store them in
an array. We then pick subsets from the array for the upper levels of the index
and then we start building the hierarchy, top-down, using pointers to the array
instead of allocating more memory for each descriptor.

Figure 3.2: Here we see the start of the index hierarchy construction. The bottom level of

cluster representatives is �rst selected, labeled R. Then the upper layers are created, labeled

L2 and L1. The links between layers show assignments, and here only the automatic �self

assignments� have been done. The colors indicate that the same memory segment is used,

i.e. L11 and L21 are both pointers to R1. Note that the blue R6-R15 each have their own

memory segment as well.

In Figure 3.2 we see the beginning of building an L = 3 deep index. First,
labeled R, the bottom level cluster representatives are randomly picked and ar-
ranged in an array. Then, the upper levels of the index are created. Edges indicate
assignments and the next step is to �nish building the index structure by doing
them (see Section 2.3.4 in Chapter 2 for full details on eCP's top-down index
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construction). 2 We do however see some edges already, those are the automatic
�self assignments� we do when we pick the leaders for each level, assigning the
leader below to �it self� on the level above.

Figure 3.3: Here we see the completed index hierarchy construction that was started in

Figure 3.2.

In Figure 3.3 we can see the completed index structure with all the assignment
edges added. To this index, the traversal start by scanning the top layer, L11 and
L12 that happen to be next to each other in the array. If the branch of L11 more
proximate we next scan L21 and L25, jumping over 3 descriptors. We branch once
more, following the L21 branch we now scan R1, R10 and R13 and essentially we
are jumping all over the array.

When the index structure is small, such that it can �t in the processors L2
og L3 cache, this jumping about the array does not matter. But if the jumping
around is causing cache misses the performance will degrade.

In Figure 3.4 we have the same index structure but this time each sub-branch is
allocated its own memory block and the descriptors are full copies (not pointers).
Each color represents a block of memory. When we traverse this structure, there
is no big array to jump around in and there should therefore be less pressure on
the CPUs cache. The down side is that assigning each branch its own memory
block requires more memory. Also, using treeA > 1means a copy must be created
for each assignment at each level.

Also, there may still be signi�cant pressure on the CPU cache as each as-
signment is fairly quick, and each descriptor takes a unique path through the
index and thus there will be a lot of jumping between sub-branch memory blocks
anyway. Indexing those descriptors that have similar paths would decrease the
cache pressure, but we have no way of knowing the likely path for each descriptor

2. We complete �rst the second level by assigning L23,L24 and L25 to the most proximate
leader on the top-level, and then we complete the bottom level by assigning the R6-R15, search-
ing the already constructed upper levels .
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Figure 3.4: Here we have a completed index hierarchy that allocates memory for each sub-

branch of the hierarchy. Each colored area indicates an aligned block of memory. Leaders

on each level, under each sub-branch, are grouped together (re-ordered) using multiple copies

instead of pointers. This way, random access is minimized during index traversal and less

pressure is created on the CPU cache.

a priori. To know that would require grouping them by similarity, but that is
precisely the task of our indexing.

We made implementations of both versions, but our main body of experiments
is based on the version that uses a single array and pointers.

Multi-threading Once the index structure is made read-only, the threading of
the assignments is fairly straight forward. What we did was to allow the number
of threads used for assignments to be set as a runtime parameter. We create a
thread-pool for the assignment threads, and then, in each round, we simply divide
the number of descriptors in the in-bu� evenly between all the threads and run
the assignments. Once every thread is done, a single thread handles the �ushing
and �lling of in-bu� between rounds.

This works �ne while the threads do not exceed the number of real cores, but
when they do, we get a problem.

The threads running on the second logical core (i.e. a HT core) take longer
to �nish their equal size task. If we run 7 threads on a 6 real core machine,
one core will have two logical cores active. By the time the thread on the high-
priority logical core is done, the second (the 7th thread) still has work to do and
is bumped to �rst priority. But, by the time this happens, the other 5 real cores
have �nished their tasks and are just idle.

Thus, if the work is divided evenly between threads, and one (or a few) of those
threads run on the Hyper-Threading second logical core, the task may actually
take longer than running it with fewer threads on real cores only. The problem is
not the Hyper-Threading, but our assumption of dividing the work evenly. What
is actually recommended is to create many more small tasks and allow some cores
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Images Image size Dataset size
Set in set wide edge descriptors descriptors on disk

110M 100K 512px. 1100 110M 13.6GB
8.1B 25M 150px 300 8.1B 1TB

Table 3.1: The two SIFT-based data sets used in this round of experiments.

(real) to complete more task while others (HT) complete fewer.
We simply changed the implementation such that a thread is assigned a small

batch of descriptors and then it runs. If there is more work to be done when the
thread completes its batch, it is assigned another, and so on, until all the work
is done.

3.2.3 Parallel indexing: Experiments and results

The experiments are run on a Dell r710 rack server with two Intel X5650
2.67GHz CPUs. Each CPU has 6 real cores and each core has 256KB of L2 cache
and the 6 cores share a 12MB L3 cache. With Hyper-Threading enabled, the
number of cores that the OS �sees� is doubled, to 24 (12 real and 12 HT). The
RAM consists of 18x8GB 800Mhz RDIMM chips for a total of 144GB of RAM.
This RAM is very large, but relatively slow (200ns access time) compared to
modern standards. For secondary storage we have a Dell PowerVault MD 1200
with 12x 15k-rpm, 600GB SAS disks organized in a single RAID6 con�guration
by a Dell PERC H800 controller for a total of 5.7TB usable disk space.

Note that most, but not all, experiments are run in isolation, i.e. with no
other user on the machine. We will specify clearly when experiments are not run
in isolation.

In our experiments we use two image collections, the 110M set that we have
seen before as well as a collection that has 8.1B descriptors (approximately 25M
images) and requires about 1TB of disk space. This is a subset of a larger 30.2B
collection (100 million images) that is the ultimate goal to index and search. For
now, we limit ourselves to a 1TB subset, as the storage capacity and scalability
of our hardware is limited. See Table 3.1 for more details.

Part of the evaluation of the database construction is to search the database.
We will however postpone that part of our discussion until Section 3.3 where we
focus on multi-threaded batch search.

Evaluating scalability The goal of the �rst experiment is to determine the
scalability when using an increasing number of cores. For this experiment we
index the 110 million SIFT collection, always using the same con�guration of
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Figure 3.5: Relative response time of parallelized eCP indexing using 2 to 24 virtual cores.

L = 3, treeA= 3 and creating 111,424 clusters on disk. The index created is only
14.5MB and almost all of it can �t in the 12MB L3 cache. Since our machine has
24 logical cores (12 real and 12 HT), we split the experiment into two parts. In
the �rst part, we disable the Hyper-Threading and can thus only use the 12 real
cores. We enable HT in the second part and use all 24 virtual cores.

The results for both parts can be seen in Figures 3.5 and 3.6. In both the
graphs, drawn in blue, we have the wall clock running time but in Figure 3.5 it
is relative, using 2-core setting as the reference point. In Figure 3.5 we have also,
in yellow, the optimal scale-up trend line (i.e. all cores do the same amount of
work). As we start using the Hyper-Threading (i.e. more than 12 threads with
HT enabled), we know that such threads cannot realistically be expected to do
the same amount of work. Intel's material about HT says that a maximum of
30% additional work should be expected of the HT-cores if the application is data
intensive. Therefore, to give a reference to how well our parallel eCP indexing
scales, we show two trend lines. In yellow we have an optimal trend line that
assumes all cores are equally powerful and in orange we have a �corrected� trend
line that only expects the HT-cores to accomplish 30% of the work of a real core.

In addition to the wall clock time in Figure 3.6, we have also the reported
user time (the cumulative amount of time the CPUs are reported as busy) shown
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Figure 3.6: In this graph we see the wall clock (Real) time in blue and the CPU (User) time
in green, as reported by the Linux time command. The blue line (wall clock time) in this graph
corresponds to the blue line (relative wall clock time) in the graph in Figure 3.5.

in green.

Our �rst observation from Figure 3.5 is that overall our algorithm follows the
trend quite closely, indicating that the parallelized eCP indexing scales quite well.
We see this also in Figure 3.6, as the reported user time for the �rst 12 cores is
relatively stable around 200 minutes of CPU time. As we move to the right on
the x-axis, toward 24 cores, we see that the amount of reported work rises sharply
when we use the HT cores. This is because the OS does not distinguish between
virtual cores, whether they are real or HT. Therefore, while the HT thread is
busy, doing only ≈30% of the work, it is reported as 100% busy in units of time
that the time command is accumulating as the user time. This also happens in
other popular commands, for example, if we use top on a HT enabled machine.
The reported CPU load % is based on that all cores are equal. Thus, when top
reports 50% load it actually is much closer to 70-80%.

The second observation is that as we move right on the x-axis of Figure 3.5,
toward using all 24 cores, we can see that the gap between the blue and orange
lines is getting very narrow. This would indicate that the HT cores are actually
doing more work than the expected (orange line) 30%. That also means that our



90 Parallel eCP

code must be blocking, such that the second thread has a chance to get its work
done. This is exactly what the HT is designed for, to use otherwise wasted CPU
cycles.

The implementation shown, in both the graphs, is the one where we divided
the work evenly between all threads. Therefore, it actually takes longer to index
with 14 threads, using 12 real and 2 HT cores, than it took using only 12 threads,
all real cores. We see this in Figure 3.5 as a small �bump� in the relative running
time around the 14 core setting on the x-axis. As we already discussed in the
previous section on implementation details, this is not a problem of HT, but
rather our division of labor between the threads. When we divide the work
between threads into small loads, this bump goes away and follows the trend line
quite closely again.

Large scale indexing and monitoring cache pressure The goal of this
experiment is to index the 8.1B collection as well as to monitor the performance
of the indexing when the size of the index is much larger than the CPU cache.
We are particularly interested in �nding and assessing the potential bottleneck(s)
in the pointer based index structure.

To do this we need to monitor low-level information during the execution of
the eCP indexing. For this purpose, we use the tool TipTop [Roh11], developed
by Erven Rohou. TipTop was developed to extend standard monitoring tools
(like top) especially to facilitate the monitoring of parallelized applications and
it enables us to monitor several things like IPC (instructions per cycle), cache
misses for both level 2 and level 3 cache, etc.

We focus on evaluating our default index structure when using a single array
and pointers, described in Section 3.2.2. The issue we would like to monitor is
how much pressure is created on the cache in traversing the index, when the
sub-branches are pointing to descriptors all over the bottom-level array of cluster
representatives (see Figure 3.3 in Section 3.2.2).

We build 4 index structures for the collection. Two of them are realistic
settings for later search, while the other two are used more as a reference for
the �rst two. The 162K and the 16K settings have a huge ts, 50K and 500K
descriptors respectively, that results in a narrow index but clusters that are too
large to make the search viable. We use the small index size as a reference for
evaluating cache pressure, while the large ts can be used as a reference for search
quality.

The �rst viable index is the 8.1M, that has 8.1 million clusters on disk, a ts
of 1,000 descriptors and a L=5 deep index structure. The other viable index is
the 1.6M, that has 1.6 million clusters on disk, a ts of 5,000 descriptors and a
L=4 deep index structure. See columns 1-4 in Table 3.2 for more details on all 4
index structures.
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ts
Clusters

L
Index Traversal Indexing

IPC
Cache miss%

on disk size #Dist. calc. time(h) L2 L3
500K 16K 2 2MB - - 1.25 0.9 0.0
50K 162K 3 22MB 382 33.05 0.88 0.8 0.2
5K 1.6M 4 212MB 357 40.06 0.73 0.9 0.4
1K 8.1M 5 1.1GB 313 42.71 0.68 0.8 0.4

Table 3.2: Columns 1-4 are information on the index structure. Column 5 shows
the estimated indexing time using 12 cores, in isolation. Columns 6-8 are the
results measured with TipTop: Instructions per cycle and the level 2 and level 3
cache misses per cycle.

Clearly, the pressure on randomly accessing the descriptor array of the 8.1M
index is going to be substantial. It is by far the largest structure and it requires
over 1GB of RAM. For the 1.6M index of 212MB, only 5.6% of the index will
�t in the 12MB L3 cache. The two smallest index structures, 162K and 16K,
require 22MB and only 2MB of RAM respectively. About half of the 162K index
structure �ts in the L3 cache and the 16K index is 6 times smaller than the L3
cache and should therefore never get a L3 cache miss.

The results are presented in columns 5-8 in Table 3.2. In column 5 we es-
timate the indexing time to build the full databases in isolation. We have to
estimate this as we could not have the machine to ourselves long enough to �nish
all the experiments. The estimate is based on indexing a 4.28% subset (347M
descriptors or 43GB of data) on 12 cores in isolation. We validated our estimate
by indexing both subsets and full set of smaller collections, and the estimates
are very accurate. The full construction of the databases was run in a shared
environment, using only 4 cores, and it took several days.

During the indexing of the 4.28% subset, we used TipTop to monitor the
threaded eCP code. In columns 6-8 we report the measured IPC and the L2 and
L3 cache load misses per instruction, obtained with TipTop.

As was expected, there is a signi�cant loss in the IPC as the size of the index
grows. We can also see that the bigger the index is, the more pressure there is on
the level 3 cache. This causes the CPU to be starved, as more cycles are spent
idle, waiting for data to arrive from RAM, and thus the IPC drops.

We also made a preliminary evaluation of memory block per sub-branch ver-
sion of the index structure using the large 8.1M clusters on disk con�guration.
This structure required much more RAM, but there was less pressure on the L3
cache and therefore the IPC was also higher. However, a better implementation
and more experiments are needed. We grouped descriptors in aligned memory as
much as the current design allowed, but with a redesign an even better descriptor
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grouping and memory alignment is possible. If we can spare the RAM during the
indexing, and the time to re-design and re-implement eCP again, we can make
an improvement over the results reported here.

3.2.4 Parallel indexing: Summary

Overall, we showed the scalability of eCP by indexing a much larger dataset
(8.1B descriptors), using a deeper index (L = 5) and using up to 24 (12 real +
12 HT) logical cores.

We evaluated the index structure and, as we expected, there is signi�cant
pressure on the cache both because of the throughput of data and the way we
implement the index structure.

Indexing the full 8.1B (1TB) descriptor set using a viable index setting (like
the 8.1M or the 1.6M) takes over 40 hours.

As we see in the last two columns of Table 3.2, even when using the deep
L=5 and L=4 settings for the index, that should give us less calculation per
index traversal and thus a lower indexing cost, the reality is that it takes more
time to process the wider index. This is caused by the imbalanced cluster size
distribution in the upper levels of the index hierarchy.

The increased cache pressure of using a wider index results in a loss in response
time, as cache misses become more frequent. The randomness of the memory
accesses that cause the cache pressure is due to how we use pointers in the index
hierarchy to keep down the amount of RAM it requires. It is possible to reduce
the pressure on the cache by allocating a block of memory each sub-branch of
the index, and copy the leaders into that memory block instead of using arrays
of pointers into one very large memory block with all the cluster representatives.
However, that will require eCP to use a lot more memory for the index structure,
especially if treeA>1, as each branch of the index will have a copy of its leaders
in its memory block, e�ectively treeA folding the memory requirement.

3.3 Parallel search and batching

The goal of this section is to develop a multi-threaded batch eCP search. We
start with the motivation for doing batch search, describing how we can trade
response time for throughput. Then we describe some implementation details,
followed by a presentation of our experiments and results. Finally we end this
section with a short summary of it.
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3.3.1 Parallelized eCP batch search: Motivation

As we saw in Chapter 2, the eCP search process is heavily I/O bound when
only a single image is searched. This is because only a small subset of all the
clusters are needed and retrieved from disk, making the access to disk a random
read pattern. We also saw how better hardware (SSD) and the early-halting search
policy can reduce the response time without sacri�cing quality. Nevertheless,
searching su�ers from the randomness of the I/Os.

Another way to address search response time would be to do disk management
with parallel access to multiple disks. However, when there are several disks in
a single machine it is most common to use specialized hardware, like a RAID
controller, to arrange the disks in a RAID volume that provides varying degrees
of parallel access and fault tolerance. Also, the number of storage devices in a
machine is limited without the specialized controllers, and thus also the scalability
doing the I/O management in the eCP algorithm. For our experiments, we do
in fact have 15 high performance (15K-rpm SAS) magnetic disks and they are
arranged in a single RAID6 volume controlled with a high-end RAID controller.

The one thing we can do with regards to the disk access patterns of the eCP
search process is to increase the size of the query. What we mean here is that
we can batch multiple image queries together and run them all at the same time
as a single search. The advantages are that some query descriptors will have
overlapping cluster requests and by reordering the requests for clusters, we get
better contiguity of the disk access. Thus, we are trading the response time of
each individual image for greater throughput.

The overlapping cluster requests and better disk access was well described in
Section 2.3.4 on optimizing the image-level search, from Chapter 2. Essentially,
that discussion still holds true with regard to the batching of multiple images
into a single search. One of the conclusions was that the second optimization, of
reading the clusters in order, would not do much good for a single query on a
large database with many clusters on disk. The scarcity of the clusters requests
was such that the in order reading was a random access pattern anyway, due to
the large o�sets between the clusters read.

However, in the batch search, we can increase the number of requests (by
adding more images to the batch) until we get better contiguity of disk access
and start to bene�t from the prefetching of the OS.

As the batch becomes larger and more and more clusters are prefetched by
the OS (because of the good contiguity) the search process shifts from being
I/O bound on random I/O to being I/O bound on the cost of reading the data
sequentially. At �rst, this shift happens only temporarily, when a few clusters are
read from the same region of the data �le. But at some point, the cost stabilizes
at the �xed cost of sequentially reading the whole data �le.
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At this point, when we keep adding more images to the batch, the search
process will quickly become CPU bound on doing the scanning of the clusters.
This is where the multi-threading comes in as an important factor. With multiple
cores and threaded scanning, the average wall clock time needed per image will
keep dropping. At least until we run out of computing power, by which time the
search process is truly CPU bound.

Please note that even if we are reading the whole data �le, we are still only
scanning the b most similar clusters for each query descriptor in the batch and
thus we are nowhere near doing any kind of sequential scanning of all the data
against all the query descriptors.

3.3.2 Parallelized eCP batch search: Implementation

If we recall the eCP search process, we have three steps. First is the index
traversal of all the query descriptors and the creation of a lookup-table where we
can know what descriptors should be scanned against each cluster. Second we
have the in-order loading and scanning of those clusters that are needed, creating
the k-nn results for each query descriptor. And third and last step is the vote
aggregation of all the k-nn results into an image-level ranked result.

To be able to load multiple images in a batch we need to add an identi�er for
each query image, such that we can separate them again before we do the vote
aggregation. The search process is essentially not changed from the description
in Section 2.4, except we need to add the step of identifying query images (step
2) and create a ranked image-level result for each image (step 6). The search
process can therefore be described in the following 7 steps:

1. All query images in the batch are read from disk and the query descriptors
are extracted. 3

2. Uniquely identify each image and its descriptors in the batch.

3. All the clusters to retrieve and scan are identi�ed by traversing the eCP
index structure for each query descriptor.

4. A lookup-table is created such that for each cluster, the query descriptors
that want to scan that cluster can quickly be found.

5. The clusters to retrieve are accessed in-order, to maximize contiguity of the
I/Os, and scanned against the requesting descriptors, to �ll their k-nns.
This is the core of the search process.

6. Do a vote aggregation for each query image in the batch, creating the image-
level ranked results.

3. In our case the extraction has already been done and we read the query descriptors directly
from a �le on disk.
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7. The image-level results are written as text to a result �le on disk, one per
query image in the batch.

The main implementation change to the eCP search algorithm is in multi-
threading the process. We devote one thread to do all the loading of clusters and
we have a pool of threads to do the scanning. The loading-thread goes through
all the clusters, in order, and loads any cluster that the lookup-table shows a
request for. For the scanning of clusters we create a pool of threads. Once a
cluster has been loaded, one of the scanning-threads is assigned to process it and
populate the k-nn of the requesting query descriptor(s). This is essentially a
FIFO producer-consumer protocol where the loader-thread produces clusters in
memory and the scanning-threads consume them.

3.3.3 Parallelized eCP batch search: Experiments

For our experiments we use the 8.1M and the 1.6M databases that we created
in Section 3.2.3 and are described in Table 3.2.

The size of the 8.1M index was no arbitrary choice. The ts of 1,000 points
corresponds roughly to an average size of clusters of 128KB. Essentially, we are
applying the same settings of ts as we did before, on a more than 73 times larger
collection. To cope with this vast increase in the number of cluster representatives,
the depth of the index structure is deeper than before or L=5. At that depth, the
estimated cost of traversing the index structure is only 313 distance calculations.

The other index that we will be using, the 1.6M, has a ts of 5,000 descriptors
per cluster (average size of 665KB on disk) and is L=4 levels deep. The estimated
number of distance calculations in traversing this index is 357.

We mention the estimated cost of traversing the index structure, even if we
know it is not a very accurate estimate (this is because of the clustering size
distribution imbalance). Having this estimate can still be useful. For example,
when we do indexing we use it as a guideline to set the index depth L. It is
however also useful in the search process. For example, it tells us approximately
how many clusters on the lowest level we are scanning and thus can be used as
and a rough estimate of the approximation that we do.

We will explain with an example using the 8.1M settings and treeA=3. If
we had used L=1 for that index structure, we would have to scan all 8,122,260
cluster representatives, but we would be guaranteed to �nd the most similar one
every time (indexing with this setting would have taken a very very long time).
At L=2 we do 11,400 calculations in total, but only 8,550 of them are to scan
the bottom-level cluster representatives. Using the L=5 setting that we use, of
the 313 distance calculations, only 72 of them spent scanning the bottom-level
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cluster representatives. I.e. we are picking the most similar cluster(s) based on
checking 72 of the 8,122,260 cluster representatives or only ≈0.0009% of them. 4

We also do some searching on the 162K, ts=50,000 descriptors. This is how-
ever not a viable database as the scanning of such huge clusters takes a long time.
The smaller and shallower index should be less prone to errors and we can use it
as a point of reference for evaluating the loss of quality due to errors in the index
traversals.

To evaluate the quality of our databases we use again the copyright detection
scenario. We use two evaluations sets. Both are based on randomly picked
pictures altered with StirMark and from each image, we create several query
images.

The CopyDays set is based on a random selection of 127 images, each altered
with 9 crop variants, 9 jpeg compressions and a strong variant. Included in the
strong label are several manual attacks. In total, the CopyDays query set has
3055 queries.

The second set, called 49K, contains 48,883 query images derived from 1,000
randomly picked database images. There are 49 di�erent StirMark attacks used:
a�ne transformation(3), conversion(2), cropping(2), jpeg compression(2), median
transformation(1), adding noise(1), PSNR(1), rescaling(6), RML(4), rotation(8),
rotation and cropping(8), rotation and rescaling(8) and SS(3).

As before, we only consider a �true match� the case when the correct database
image is the top ranked (P@1) image-level result returned.

Evaluating search quality Previously, in Table 3.2, we described how we
built three indexed databases over a collection of 8.1B descriptors. A mandatory
task is to evaluate the search quality of those databases, especially the 8.1M and
the 1.6M indexes. In Table 3.3 we have the search quality and average running
time per image, using all three indexes using both b=1 and b=3.

Please note that for this set of experiments, the running times where not
obtained in isolation. I.e. other users could use the machine at the same
time. We must keep this in mind as we asses the results. All experiments
where repeated several times and the best runs are reported.

The �rst observation is that the search quality is very good. We know that
a 100% correct identi�cation is impossible. From some StirMark variants no or
only a few query descriptors can be extracted; 31 of the 3055 CopyDays variants

4. This is not the only approximation, as then, assuming we use b=1, we are going to
populate the k-nn of each descriptor by only fully scanning (on average) only 1,000 descriptors
of the 8.1 billion in the database. That is ≈0.000012% of the full set.
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DB settings CopyDays, all 3,055 query images
Clusters b=1 b=3

ts on disk L treeA time/image P@1/R@1 time/image P@1/R@1
50K 162K 3 3 1.16s. 90.11% - -
5K 1.6M 4 3 0.93s. 86.68% 1.45s. 90.11%
1K 8.1M 5 3 0.64s. 84.48% 0.88s. 87.33%

DB settings 49K set, all 48,883 query images
Clusters b=1 b=3

ts on disk L treeA time/image P@1/R@1 time/image P@1/R@1
50K 162K 3 3 - 96.58% - -
5K 1.6M 4 3 0.18s. 95.03% 0.22s. 96.57%
1K 8.1M 5 3 0.18s. 93.58% 0.23s. 96.56%

Table 3.3: Search quality and running times of batch search using the CopyDays
and 49K query sets. The three databases are built indexing the 8.1B descriptor
collections using the 8.1M, the 1.6M and the 162K index structures described in
Table 3.2. The search loads the full query set in a single batch and the k-nn size
is set to k=20.

have less than 8 query descriptors extracted. Also, many variants are severely
altered, making them very hard to match to the original image. An example
of this is the manually attacked Strong category in CopyDays. If we exclude it
from our results, the overall quality for all the other variants is increased 4% on
average.

The second observation is that again, we see that picking many small clusters
is both faster and gives the same, or even better, quality as scanning a single
large cluster (see 8.1M b=1 vs. 1.6M b=3 in the result table). This indicates that
the cause of quality loss lies more in the last step of traversing the index, i.e. in
the choice of cluster representative, than in the scanning of clusters or the size of
k-nns. When we run the same searches with k=100 the quality tended to drop,
in some cases as much as 2%.

To dig deeper into what happens at the query point level, we pick one of the
49K query images and look at what is happening for each of the 49 variants for
all three index structures. The original image consists of 339 SIFT descriptors.
When all 49 variants are searched against the di�erent databases, we get the
following:

� On 162K we have 100% recall as the correct database image is the top-
ranked result for all 49 variants. The average number of votes for the
correct image was 80.89 with a maximum of 294 and a minimum of 12.

� On 1.6M we have 98% recall as one variant did not �nd the original image
as its top ranked result. The average number of votes for the correct image
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was 56.45 with a maximum of 274 and a minimum of 4. There was thus a
reduction of 24.53 votes on average.

� On 8.1M we have again 100% recall. The average number of votes for the
correct image was 47.18 with a maximum of 263 and a minimum of 6. The
�lost� variant was regained, but the correct image is getting fewer votes on
average, 33.80 less votes than we got using the 162K index. The k-nn is
always the same size, so the loss here is only due to the search not accessing
the correct cluster to scan.

Clearly we are loosing recall at the point-level but our search requires only
a few points to make a positive identi�cation, so for many of the variants we
�can a�ord� the loss. We also need to keep in mind that the scale-up di�erence
between the 162K and the 8.1M cluster index is a factor of 50. At least we have
shown that a level 5 index, of 8,122,260 clusters on disk, is still providing quite
good quality results for a collection of 8.1B descriptors, extracted from ≈25M
thumbnail-sized (150px on wider edge) images that have on average only 300
SIFT descriptors per image.

Evaluating throughput in batch search Our theory is that there are two
advantages we should expect from searching large batches. With more query
descriptors, we can reduce the total number of cluster requests as redundant
request, that overlap, can be merged. The second advantage is that as the number
of clusters requested grows, we are more likely to bene�t from better contiguity
and the prefetching of data.

What we do not know is how large the batch must be to get better throughput.
This will depend on the size of the dataset (the number of clusters on disk), how
frequently cluster the requests overlap and the amount of prefetching that is being
done by the OS.

We use the two �reasonable� databases, the 1.6M and the 8.1M (see Table 3.2),
that we created in the multi-threaded indexing experiments described earlier. 5

Our goal is to run multiple searches, with ever larger batches, on these two
databases and measure the performance of the multi-threaded eCP batch search.

We use three query sets. The �rst two are the CopyDays set and the 49K set
that we used in the previous search experiment and we have already reported the
search quality, see Table 3.3. The third set, that we call the Unique set, consists
of 100K unique images downloaded from Flickr that are NOT in the database.
There is therefore no need to report the search quality for this set.

5. We do not search the 162K database, that has a ts of 50,000 descriptors, as it is too large
to be considered feasible. It would simply make more sense to search more clusters (b>1) using
the 1.6M database as we have shown it to give better quality and be more responsive.
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We should recall how the �rst two sets are created. The large number of
query images we create using StirMark are in fact derived by altering a smaller
set of randomly selected images that are in the database (the CopyDays set is
created from only 127 database images and the 49K set from 1,000). Because
each variant is an altered version of the original image, the query descriptors
extracted from them are likely to be similar to the descriptors extracted from
the original image (i.e. there should be a one-to-one correspondence). As this
relationship is transitive (A≈B, B≈C therefore A≈C) all the variants are also
similar to each other. When we batch query images, and many variants of the
same original image are included, there will be much higher overlap between of
cluster requests than could be considered a �normal payload� of equal size where
all the images are unrelated or unique. This is why we include the third set of
unique random images, i.e. to establish a realistic baseline for a realistic payload.

We should also be aware of a subtle di�erence between the batches of the 49K
set and Copydays set. The order of the query images in the 49K batch is by
imageID and thus the �rst 49 queries are all variants of the same original image.
This will create the maximum overlap with even the smallest of batches. The
batch of CopyDays images is sorted by variant, and thus the �rst 127 queries are
from unique original images.

In Table 3.4 show information on the batch structure and how it relates to
the database. The rows are the batches we use, range from 10 - 100,000 images
(2,455 to 31,170,600 query descriptors). In the �rst column we have the query
set size in images. Then, for each query set, we show 4 columns:

1. The number of query descriptors in the batch (Query desc.).

2. The number of cluster requests issued (Clst. req.).

3. The ratio of descriptors that do not issue a cluster request (Q-desc. overlap).

(#descriptors−#cluster requests)
#descriptors

4. The ratio of database clusters requested and accessed (Clst. % accessed).

If the size of every cluster was the cluster target-size, the ratio of clusters accessed
(Clst. % accessed) would also tell us the ratio of the data that was relevant to
some query descriptor in the batch. However, we know that the size distribution
of clusters is imbalanced. In fact, we are more likely to access the larger clusters
and thus, the ratio of the data that is relevant to the batch is probably higher
than this ratio indicates.

Let us dig into the content of Table 3.4 by focusing on one database, the 1.6M,
and the overlap of cluster requests (Q-desc. overlap).

With only 10 images in the batch for the 49K set, 32.43% of the 2,892 query
descriptors have overlapping requests (i.e. 938 query descriptors want to scan
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Figure 3.7: In this graph we are searching the batches for the Unique image set on the 1.6M
database. In blue we have the average wall clock time per image during the cluster retrieval
and scanning only. In orange we have the average CPU time per image for that same process.
The yellow dashed line represents the full average wall clock time (i.e. including the cluster
discovery and vote aggregation). The search is not expanded, i.e. b=1.

the same cluster as some other query descriptor). The same batch size in the
CopyDays set and Unique set, have only a ≈5.0% requests overlap. Even for the
small batches, the main gain for the 49K set is this reduction in the number of
cluster requests it needs to do. The bene�t of prefetching and contiguity of access
requires higher density of requests than 1,954 out of 1.6M clusters on disk (the
average jump between clusters is over 500MB).

With a batch of 3,000 images (the 3K row) the descriptors in the batch have
grown to ≈950K descriptors (967K for Unique set, 955K for CopyDays and 940K
for the 49K). For this batch size the Unique set has a 39.48% overlap, and is
accessing 36.02% of the database, while the CopyDays has more overlap, 56,00%,
it is only accessing a quarter (25.86%) of the clusters (same applies to the 49K set,
61.43% overlap and 22.33% clusters accessed). While the Unique set may not gain
much from overlapping requests, it is increasing the density of cluster requests
much faster and will start to gain from prefetching earlier than the batches from
the other two sets.

As the number of images in the batch becomes larger, and there are more
query descriptors, the overlap is increased as well. With a batch of 5,000 images
(the 5K row) the Unique set has 1.6M query descriptors, or exactly the number of
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Table 3.4: Statistics for various batch sizes, no search expansion is used (b=1).
First is a set of Unique images, then the CopyDays set and last is the 49K set.
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clusters on disk in this dataset. Here we can see that almost half (48.24%) of the
descriptors are overlapping their cluster requests. One row below, with a batch
of 10,000 images and 3.1M query descriptors, the query descriptors outnumber
the clusters almost two-to-one and the overlap has grown to 65.56%. We must
also remember to take into account that the imbalance of cluster size distribution
and that the smallest clusters are least likely to be requested. Therefore 65.56%
of clusters may represent a much higher proportion of the data.

In Figure 3.7 we can see the time to do the �retrieve and scan clusters� part
of the search, using the Unique set of images and the 1.6M indexed database.
Reported are both the wall clock time per image (blue) and the reported CPU
time per image (orange). I.e. the vote aggregation and cluster discovery are not
included in those times. As we can see, the yellow dashed line that shows the
average �full wall time� follows the �scan wall time� exactly. This shows that the
dominating cost factor is the retrieval and scan process. We can therefore talk
about the average scan wall clock time as if that is the only time that matters.

The Unique set of images is the set of queries that has the least amount of
cluster request overlap, and thus we are using it to evaluate how large the batch
must be for it to start bene�ting from the prefetching. To tell exactly when this
happens is impossible, some batches may switch between being I/O bound on the
random I/O to being I/O bound on the cost of sequentially reading. It will take
a lot of query descriptors to keep all the 24 logical cores busy. But we can tell for
sure that any batch below 2,000 images (630K query descriptors) is I/O bound.
This is because after the 2K mark, the eCP search is reporting more CPU time
used than the wall clock running time. However, as our search is multi-threaded
we may still be waiting on I/O for the larger batches.

The average wall clock time is dropping the whole time, from around 5.3
seconds per image in the 10 image batch to only 81.46 milliseconds per image
in the batch of 100,000 images. Some of this gain is due to the cluster request
overlap.

As the batch grows, the search process goes through stages of bottlenecks.
First it is I/O bound on doing random I/O, jumping all over the data�le to
retrieve the few and scattered clusters that are relevant and need to be scanned.
Then the bottleneck becomes less and less the randomness of the I/O and more
on the cost of doing the sequential I/O. Ultimately, if there are enough query
descriptors wanting to scan each cluster, it will become CPU bound, as all the
cores are kept busy for most of the running time.

We can tell that this has not happened yet, as we have 12 real cores and 12
HT cores we can estimate that the gap between measured wall clock time and
CPU time, should be 15.6 times higher (assuming the HT cores do 30% work).
The reported di�erence here, using a batch of 100,000 images, is only 5.42 times
(81.46ms. wall clock vs. 441.65ms. CPU clock). We should thus be able to run
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Figure 3.8: In this graph, the batches of query images come from the Unique set of images
and we are searching the 1.6M database, showing both b=1 and b=3. This is in fact one graph,
the second image is just a zoom in of the �rst graph. In solid blue we have the average �scan�
wall clock time per image and in solid orange we have the average scan CPU time per image
for searching with b=1 (the same values as in Figure 3.7). In addition, we have added the same
values for searching with b=3, using the same colors but dashed lines.
Please note the CPU time for the largest batch (100K) using b=3. The reported time is going
up, indicating that the search is, or is near to, being CPU bound. The increased CPU time is
caused by the �misreporting� HT cores, and they are only used signi�cantly when the real cores
are already in full use.
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at least 200,000 images in a single batch and still be gaining more throughput on
this hardware.

A di�erent approach is to divide the measured wall clock and CPU time by the
number of cluster requests we issue (i.e. by the number of clusters retrieved and
scanned). By dividing with the wall clock time, we get the average time it takes
to do both retrieval and scanning per cluster, while dividing by the CPU time,
we only get the average time it takes to do the scanning the clusters retrieved.

In this data we see a steady cost of ≈15ms. per cluster that starts dropping at
1K (11.4ms) to the lowest value at 3.9ms. at 20K batch size. As the batch grows
larger, this value grows slightly again, but that is understandable. The largest
batches are accessing almost all clusters (>90% for 50K and 100K) and there are
simply more query points to process per cluster.

In Figure 3.8 we report the running times for the batches of the Unique image
set, using both b=1 (as before) and b=3. The most interesting thing about this
graph is that the 100K batch using b=3 is the �rst time we see an increase in
the average reported CPU time per image. This is strong evidence that we are
CPU bound (or very close to it) as we are starting to using the HT cores that are
�misreporting the CPU times� (see discussion in Section 3.2.3). The gap between
the reported wall clock time and the CPU time for this batch is 15.22 times more
CPU time (164.43ms. wall clock vs. 1889.39ms. CPU clock per image), almost
the 15.6 estimate that we calculated earlier as the maximum before we would be
CPU bound.

We should also note that when the I/O cost stabilizes at a �xed cost of reading
the whole database sequentially, the b=1 or b=3 do not matter either; We see
this happen when the solid blue and the dashed blue lines meet at the 10K batch
size. The setting of b does not matter because the multiple-threads are capable
of doing the added CPU work, at least until the batch becomes so large that we
are truly CPU bound. This is just starting to happen with the 100K batch for
the b=3 setting.

In Figure 3.9 we see the average wall clock time and average CPU time per
image when we scan the Unique set on the 8.1M database. Essentially, this is the
same graph as we showed for the 1.6M set in Figure 3.8.

From the graph for the 8.1M database, i.e. Figure 3.9, we can see that scanning
the 5 times smaller clusters (ts=1,000 instead of 5,000) requires much less CPU
power and the average CPU times are much lower over the whole range of batch
sizes. Unlike before, the b=3 setting for the largest batch has no increase in CPU
time. Therefore, we should be able to increase the batch sizes well beyond the
the size of 100,000 images and still improve on the average wall clock processing
time per image.

We should also note that it takes much more images in the batch before the
wall clock time line crosses the CPU time line, indicating that the search has
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Figure 3.9: In this graph, the batches of query images come from the Unique set of images
and we are searching the 8.1M database, showing both b=1 and b=3. This is essentially the
same kind of graph as we showed for the 1.6M database in Figure 3.8.
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shifted from being I/O bound to be CPU bound on a single core (i.e. without
parallelization we would be CPU bound).

3.4 Discussion

In this chapter, we have shown that the eCP indexing process can be par-
allelized and that it scales very well on a powerful multi-core machine (see Fig-
ure 3.5). If we take care, and follow the recommendation for Hyper-Threading,
we even manage to squeeze a little extra work out of the second logical core in
our HT enabled CPUs.

Despite the good scalability, both the low IPC and the cache pressure we ob-
served, columns 7-9 in Table 3.2, indicate that our pointer-based index structure
can be improved upon. The key optimization is to focus the memory access during
index traversal on blocks of memory that are small enough to be cached. How-
ever, because of how treeA works, this calls for a much larger memory footprint
that may become a limitation for scalability.

The standard one-image-at-a-time search process will not bene�t from ad-
ditional cores as that process is I/O bound. However, we have proposed and
evaluated a batching search process that trades response time for throughput.
As the size of the batch grows, more and more clusters are requested from disk
and the density and contiguity of the I/O shifts from being a random I/O pat-
tern to a sequential read of all the data. The increased throughput initially comes
from less I/O cost per cluster, with overlapping requests being merged and the
in-order reading of clusters bene�ting from OS prefetching.

As we grow the size of the batch further, we shift the process more and
more from being I/O bound to CPU bound (on scanning the clusters). This
is where multi-threading the search becomes important, as from this point on,
the increased throughput is coming from making full use of the 24 logical cores
available to us. We therefore multi-threaded the search process, harnessing the
available CPU power for those batches that are large enough to need it.

As it turns out, we use almost all the available cores when we scan a batch
of 100K query images from the Unique set (31.2 million query descriptors), using
b=3 on the 1.6M database. We can see this clearly in the lower graph of Figure 3.8,
where the dashed orange line, that represents the average CPU time per image,
is going up because the search is using the HT-cores that �over� report the CPU
time. This indicates that we are close to fully using all the available CPU power.

In those same graphs of Figure 3.8, we can also see that with a batch of 500
query images we are already getting twice the throughput of a 10 image batch and
with a batch of 5,000 query images we are below 1 second per image, regardless
of weather we do b=1 or b=3.
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One possibility we did not explore, but is quite possible, is to include the
early-halting policy into the batch search process. This could be a challenging
and yet very interesting combination.

When using a multi-core architecture, there are a few issues that we should
be aware of and that we can draw lessons from. They are the following:

1. The latency of the RAM is important. The latency can become a signi�cant
bottleneck when cache misses are frequent and pages of memory have to be
brought in often.

2. Task management of threads is important: many small tasks are best. We
tested several thread spawning and work load policies and the best one was
to rely on a pool of threads that is created only once. Then, each thread is
given a small task again and again. This way, the slowest of the sub-tasks
(HT cores) can not signi�cantly delay the overall running time of the full
job.

3. Having taken care of the threads task-size, using Hyper-Threading can help,
but not that much. The problem is basically this: If your task is very well
optimized, there will be little or no unused CPU cycles for the second task
to run. If however (as is our case) your code is blocking very frequently for
a many cycles (like waiting from RAM) both your threads are likely to be
waiting in a blocked state. In the future, it is not unlikely that we will see
processors that will support a multiple (or even a dynamic setting) of how
many logical cores will be available for each real core.

4. From a practical point of view, the traditional Unix tools for performance
measurements are of limited use when measuring multi-core applications
that are using the processor SMT cores.

In connection with the last point, we highly recommend a monitoring tool called
TipTop, that is built on the Unix top command. TipTop gives non-expert users
a few simple low level metrics that help them gage their code and making the
right design decisions when implementing and optimizing on multi-core architec-
tures [Roh11].



108 Parallel eCP



Chapter 4

Scalable CBIR, Distribution

In the previous chapter we showed that the parallelized eCP could harness the
processing power of a multi-core machine quite well, indicating good scalability.
We indexed a dataset of 8.1B SIFT descriptors extracted from over 25 million
images, or 1TB of data on disk. However, even with all 24 logical cores (12 real),
the database construction takes over 40 hours. The scalability of a single machine
is limited by the amount of hardware we can put in a single box.

The web-scale CBIR systems have to be able to cope with hundreds of millions
of images, or tens to hundreds of billions of descriptors. For eCP to be a viable
solution for this amount of data, we need more computing power than a single
machine can provide. Therefore, it is our goal in this chapter to harness the power
of distributed computing. In Section 4.2 we develop a distributed eCP indexing
algorithm.

The standard image-at-a-time search process is bound on random I/O and will
thus not bene�t directly from having more CPU power available. Distributed in-
frastructures can provides more than just increased computing power. Typically,
but not always, each machine will have its own local secondary storage. For the
search process, the main advantage a distributed system has to o�er, and the
one we will seek to exploit, is that there are several hard drives available. How-
ever, those drives are distributed over several machines and only connected over
a limited and potentially costly network. Harnessing them will thus neither be
straight forward nor a simple matter.

In the previous chapter, we proposed a parallelized batching search process
that shifts the bottleneck from the random I/O toward sequential I/O and using
more and more CPU power. This kind of search, if the batch is large enough,
can take full advantage of both more disks and more CPU power. We develop a
distributed version of the batch search process in Section 4.3.

We did look into distributing the one-image-at-a-time search. However, when
we consider the gains of using an early-halting policy and/or SSD devices that we
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demonstrated in Section 2.5.5 of Chapter 2, we dismissed ideas of this kind. We
think it will be hard to get competitive response times in a distributed environ-
ment that has to deal with network delays and coordination overhead. Developing
such a solution remains on our list of future work.

The �nal section of this chapter is devoted to summarizing the content of
the chapter, drawing lessons from our work and experiments. This discussion is
found is Section 4.4.

To make a web-scale distributed CBIR system, there are certain capabilities
that are desirable. Among them are: automatic distribution, fault-tolerance, re-
execution of failed subtasks and network and I/O management that prevents I/O
bottlenecks, just to name a few.

Implementing this full range of capabilities is an enormous task using tradi-
tional distributed computing programming models, like Open MP. Therefore, we
start the chapter with a background section, where we look at the state-of-the-art
in automatically distributing systems that have most, if not all, of the desired
functionality already built in to their systems.

4.1 Background

There are several programming models available that provide variable degrees
of assisted and/or automated distribution of computations. In this section we will
introduce and discuss three such frameworks.

We start with two systems the exploit �data independence� to automate the
distribution of calculations. First we have the Hadoop framework that is based on
the Map-Reduce programming paradigm. Hadoop is a large framework developed
in JAVA in an open source community under the guidance of the Apache Software
Foundation or ASF. 1 We then brie�y describe a similar system from Microsoft,
called Dryad.

The third system we will discuss, called GraphLab, takes a very di�erent
approach. This system was proposed to address the needs of algorithms that do
not have data independence that can be exploited to automate the distribution of
the calculations. What is proposed instead is a priority based sub-task execution
with an elaborate locking mechanism, where the user needs to a priori de�ne the
dependencies in the form of a graph.

We will however start our discussion with an introduction to the Map-Reduce
programming paradigm that Hadoop is based upon.

1. ASF is most famous for its HTTP servers, but in 1999 it turned into a not-for-pro�t
community that actively supports several open source projects.
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4.1.1 Map-Reduce

Figure 4.1: The Map-Reduce Pipeline, showing the �ow of data from GFS input �le(s) to

GFS result �le(s).

The Map-Reduce programming paradigm [DG08] was published by Je�rey
Dean et al. (Google) in 2008. It is designed to e�ciently process extremely
large datasets on a cluster of machines. This is achieved by exploiting data
independence to split the work into subtasks that can be automatically run in
parallel in the distributed environment.

In Figure 4.1 we have a picture of the so called Map-Reduce pipeline, showing
the �ow of data from input to output. The developer is tasked with implementing
only two functions, the Map and the Reduce functions. The job's input data is
distributed in blocks to the participating machines using the distributed Google
File System or GFS [GGL03]. When a job is launched, the system automatically
spawns as many Map functions as there are blocks of data to process. Each
Mapper reads the data iteratively as a key-value pair record. It then processes it
and, if necessary, outputs a new key-value pair record that is bound for aReduce
function. All records with the same key go to the same Reduce task.

The framework thus includes a sort-copy-merge data step that is called �the
Shu�e�, where data from several Mappers gets directed to speci�c reducers de-
pending on their key (in Figure 4.1 this is indicated by di�erent colors for the
data that is in the Shu�e). Once enough data is locally available to reducers,
they process the records and produce the �nal output.

The Map-Reduce run-time environment transparently handles the partition-
ing of the input data, schedules the execution of tasks across the machines and
manages the communications between processing nodes when sending/receiving
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the records to process. The run-time environment also deals with failed task by
restarting them, possibly on a di�erent machine and/or by reading a di�erent
replica of the block of data that is to be processed. The framework uses as lit-
tle network bandwidth as possible by processing data where it resides or at the
nearest available machine, using rack-awareness to pay attention to the network
topology and minimizing reading over machine-rack boundaries.

4.1.2 Hadoop and HDFS

Hadoop is an open-source framework implementation of the Map-Reduce pro-
gramming paradigm. The development is being done under the Hadoop project
that is maintained by the Apache Software Foundation that is also supported
by Yahoo!. Hadoop has rapidly gained popularity in the area of distributed
data-intensive computing. The core of Hadoop consists of the Map-Reduce im-
plementation and the Hadoop Distributed File System (HDFS). Hadoop is now
the de-facto reference Map-Reduce implementation that is publicly available.

The architecture of Hadoop consists of a single master jobtracker and multiple
slave tasktrackers. The jobtracker's main role is to act as the task scheduler of the
system, by assigning work to the tasktrackers. Each tasktracker has of a number
of available slots for running tasks. Every active Map or Reduce task takes up
one slot, thus a tasktracker usually executes several tasks simultaneously.

When dispatching Map-tasks to tasktrackers, the jobtracker strives at keeping
the computation as close to the data as possible. This technique is enabled by
the data-layout information previously acquired by the jobtracker. If the work
cannot be hosted on the actual node where the data resides, priority is given
to nodes closer to the data (belonging to the same rack). The jobtracker �rst
schedulesMap-tasks, as the Reducers must wait for theMap execution to generate
the intermediate data. The jobtracker is also in charge of monitoring tasks and
dealing with failures.

Another feature that can be enabled is �speculative execution�. When this
is enabled, the jobtracker is allowed to schedule the same Map-task on multiple
machines at the same time. Only the output of the task that is �rst completed
is delivered to Reducers. This feature is especially useful near the end of jobs,
when straggling tasks can potentially delay the entire process, while most of the
tasktrackers are idle.

HDFS [Bor07] is based on the Google File System [GGL03] and was built
with the purpose of providing storage for huge �les with streaming data access
patterns, while running on clusters of commodity hardware. HDFS implements
concepts commonly used by distributed �le systems: data is organized into �les
and directories, a �le is split into �xed-size blocks that are distributed across the
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cluster nodes. The default blocks size is 64 MB, but this is con�gurable on a per
�le basis.

The architecture of HDFS consists of several datanodes storing the blocks of
data and a centralized namenode that is responsible for keeping track of the �le
metadata as well as the locations of each �les data blocks. HDFS handles failures
through block-level replication (by default 3 copies are kept of each block). When
distributing the replicas to the datanodes, HDFS employs a rack-aware policy:
The �rst block is stored on the local disk of the originating datanode if possible,
otherwise on a datanode of that is in the same rack; The second copy is always
written to a namenode on a di�erent rack, as part of an e�ort to maximize fault
tolerance; 2 The third copy is then written to a di�erent namenode on the same
rack as the �rst copy. If the replication factor is set higher than 3, the version of
Hadoop that we use (0.20.2) will randomly select a another namenode to store it
on, even if that namenode has a copy of that block of data already.

Map-Reduce is a very simple yet extremely e�ective programming model
adopted by many large scale applications designers today. On top of the core
of Hadoop, described above, several specialized applications have been developed
that aid developers to run speci�c tasks in a distributed environment with min-
imal e�ort. For example: a data warehouse system called Hive, scalable and
fault tolerant database systems like Hbase and Cassandra; and a system that is
targeted for machine learning algorithms called Mahout, just to name a few.

In addition to being used in cluster computing, Hadoop is becoming a de-facto
standard for big-data applications running in the Cloud computing. The generic
nature of Clouds allows resources to be purchased on-demand, especially to aug-
ment local resources for speci�c large or time-critical tasks. Several organizations
o�er cloud compute cycles that can be accessed via Hadoop. For example, Ama-
zon's Elastic Compute Cloud contains tens of thousands of virtual machines and
supports Hadoop with minimal e�ort.

4.1.3 Dryad

Dryad [IBY+07] is an alternative to Map-Reduce, proposed by Michael Isard
et al. of Microsoft Research. Dryad was targeted to run on Microsoft's cloud
services and to be able to run applications developed in C# and managed C++.
However, the last publication on Dryad was in early 2009 and the project seems
to have been abandoned (at least temporarily) for the much more popular and
freely available open-source Hadoop framework.

The main di�erence between Map-Reduce and Dryad is that Dryad allows
for a more a �exible pipeline. In Dryad, the developer can de�ne how many

2. Even if an entire rack of machines is lost, the HDFS �les are still intact.
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�functions� he wants to use and at each step, it is possible to use multiple input
sources. In addition, the data can reside on various kinds of media ranging from
local storage to FTP.

4.1.4 GraphLab

Both Dryad and Hadoop exploit the data independence, i.e. the fact that the
calculations on the data are independent of one another, and thus the work can
easily be parallelized and distributed automatically. There are many algorithms
where the calculations are dependent on the data, i.e. the results of one calculation
will a�ect the outcome of consequent calculations and therefore the order and even
the number of calculations are dependent on the previous results. This is very
common in machine learning algorithms and it is even applicable to the halting
condition of the k-means clustering algorithm.

In light of how di�cult it is to adapt machine learning algorithms to bene�t
from Hadoop, Yucheng Low et al. proposed an alternative system they called
GraphLab [LGK+10, LGK+12].

The core of GraphLab is a user provided data graph, a directed acyclic graph
or DAG, that encodes both the problem speci�c sparse computational structure
and directly modi�able program state. I.e. the graph captures both the data
dependencies and the nature of the computations. A shared data table is also
used to capture any global state of the algorithm.

There are two ways to do computations, an �Update function and a �Sync
mechanism�. The �Update function� is a stateless user-de�ned function, much
like the Map-ReduceMap function. The �Sync mechanism� is a three step process
of Fold-Merge-Apply that can be seen as replacing �the Shu�e� and the Reduce
function of the Map-Reduce. The Fold function sequentially aggregates data
across vertices, the Merge function is an optional user provided function that
combines results from parallel folds and �nally the Apply function �nalizes 3 the
new value before it replaces the old one that is being updated.

In the DAG, the modi�able variables of the program state can be arbitrarily
associated with both graph vertexes and edges. Around each vertex v a neigh-
borhood Sv is de�ned as the vertices and edges (both inbound and outbound)
connecting to v. The neighborhood data DSv is also de�ned, i.e. all blocks of
data associated with vertices and edges in Sv. The scope of the user-de�ned Up-
date Function is de�ned this DSv, i.e. the maximal range of data manipulation
invoking the Update Function on v.

The consistency of the data is guaranteed by using the DAG and denying the
parallel execution of overlapping scopes. However, with three models, Full (all
edges and all vertices may be updated and are therefore locked), Edge (v and

3. Decay or discounting would be done at this step for example.
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all edges may be updated and are therefore locked) and vertex (only v may be
updated), the true e�ective range of the scope can be de�ned more speci�cally.

Graphlab provides several schedulers to run the jobs, like synchronized (ev-
erything updated in parallel at the same time), round-robin (fair) or prioritized
scheduling where each task can reschedule itself with a new priority (fast conver-
gence). What scheduler should be used will depend on the nature of the algorithm
and what best suites the problem at hand.

Initially, GraphLab was only working on a single multi-core machine. It has
since been extended to run in distributed environments [LGK+12]. Partitioning of
the user-provided DAG between the participating machines is a potential problem
as it can cause sever communication overhead if many edges fall across machines.
GraphLab does not provide its own distributed �le system, but has been adapted
to run on HDFS.

4.2 Distributed eCP indexing

In this section we develop a distributed eCP indexing algorithm.
In Section 3.2.1 of Chapter 3 we showed that the eCP indexing process could

be split into three phases, and that it was phase #2 where we do all the as-
signments of the descriptors to clusters that is the one that bene�ts most from
being run in parallel. The task is therefore to run this phase in a distributed
environment and hopefully taking full advantage of all the available hardware.

We will start by doing an overview where we analyze what problems we are
facing and describe what assumptions we will be making. Then we develop the
distributed eCP indexing and give the details of our implementation. We evaluate
our algorithm in the following subsection and �nally we conclude this section with
a short summary and discussion its content.

We move to distributed eCP indexing next.

4.2.1 Distributed eCP indexing: Overview

We will start by listing both our assumptions and the problems we face and
then we will discuss and come up with a solution to the issues raised.

The assumptions we make are:

1. The size of the collections at web-scale is such that both the raw data and
the indexed database will have to reside on secondary storage.

2. No single machine has the storage capacity for web-scale collections. Only
a NAS or a DFS have a su�ciently large storage capacity.
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3. We will be able to use a large amount (≈100) of multi-core machines with
a lot of RAM (but only a few GB of RAM per core).

4. Machines are interconnected via a relatively slow Ethernet network (typi-
cally 1Gbps).

And the problems we need to address are the following:

1. One of our main problems is to solve the issue of storage. A centralized
storage, like the NAS we used in previous experiments, has the advantage
of large capacity but its limited network link will quickly become saturated
as we scale to a number of machines. The only realistic alternative is to use
a DFS where the whole interconnectivity of the networks can be utilized.

2. We need to have task scheduling and management that keep the available
computing power busy.

3. There is also the question of how to detect and re-launch failed tasks and
provide fault-tolerance for data.

4. A �nal consideration is how do we keep down the network communication
and overhead such that it does not become a bottleneck.

All of the above issues are addressed in the Hadoop framework and, as we
saw in the previous chapter, the eCP indexing algorithm has the advantage of its
clustering being fully data independent. The HDFS can solve our storage problem
and Hadoop provides fault-tolerance, failure detection and re-start services as
well. Last but not least, Hadoop provides a fully automatic distribution and
parallel execution of the assignment tasks for us, making sure all the processing
power is harnessed. Therefore, the obvious choice for us is to use Hadoop as the
platform that we develop our distributed eCP on.

As has been discussed previously, eCP is representative of other state-of-the-
art algorithms that rely on unstructured quantization of high-dimensional descrip-
tors, like Video Google [SZ03] and the Product Quantizing NN-search described
in [JDS11]. It is our hope that our work in extending eCP for Hadoop can func-
tion as a guide for future adaptations of other algorithms. While traditional
indexing schemes based on k-means are iterative, eCP is not. Thus, it �ts well
with the single-pass all-in-one-go behavior of Haddop. Distributing iterative or
data-dependent algorithms, like k-means or the NV-Tree, will be more di�cult
and perhaps a system like Mahout or GrapLab is better suited for such a task.

In Figure 4.2 we have a familiar picture from Chapter 3, where we show the
three phases of the eCP indexing algorithm. In the picture we see how the Map-
Reduce pipeline can be used to do both phase #2 and #3.

We can also see that phase #1, the building of the index hierarchy, is done
outside the Hadoop process, before it starts. In Section 3.2.1 of Chapter 3 we
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Figure 4.2: Here we see a familiar image of the three phases of eCP indexing and how they �t

on the Map-Reduce pipeline. Map functions do the assignments of phase #2 and �the Shu�e�

does the merge-sort of phase #3 for us. The data, both the raw descriptor collection (source)

and the indexed database, is stored on HDFS.

gave justi�cation why we did not parallelize this process and the reasoning for
not distributing it are essentially the same.

The CPU intensive phase #2, that we previously parallelized, is now han-
dled by the Map function. Unlike the parallelized indexing, the distributed Map
functions do not share memory (even if they are running on the same machine).
Therefore, each Mapper needs to load the index from �le when it is invoked.

The raw collection of SIFT descriptors is stored on HDFS, where it is split
up into blocks of data. For each block of data, a Map function will be invoked
to process it. Therefore, the logical choice for eCP is to do the assignments in
the Mappers. Once the Mapper has discovered the most similar cluster(s) for a
SIFT descriptor, by traversing the index structure, it is emitted from the Mapper
into �the Shu�e� as a key-value pair. The value is the SIFT descriptor itself
(with vector and imageID) and the key is the clusterID of the cluster that the
descriptor was assigned to. 4

As it turns out, the sort-copy-merge process of �the Shu�e� can be used to
do phase #3 for us. Each Reducer is responsible for a range of clusterIDs and
�the Shu�e� will all the hard work for us, namely the sorting of descriptors and
grouping them by the key (i.e. the cluster they are assigned to). Therefore, each
Reduce function only has to do some simple bookkeeping, like count the number

4. If soft-assignment is used (a>1) the Mapper simply emits each descriptor a times, each
time with a di�erent clusterID as key.
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of descriptors in each cluster etc., and pass the key-value pairs on to be written
back down to HDFS as the �nal indexed database.

We should now have an overview of how the distributed eCP algorithm works
on Hadoop. In the next section will give a more detailed description on how the
distributed eCP indexing algorithm is adapted to and implemented on Hadoop.

4.2.2 Distributed eCP indexing: Implementation details

Despite how nicely the eCP indexing �ts the Map-Reduce pipeline, there are
several issues that still have to be addressed. We will discuss each problem that
we have to solve as they occur as we move over the Map-Reduce pipeline from
left to right, starting with the input data residing on HDFS.

4.2.2.1 Binary data and SequenceFiles

The raw collection of descriptors is binary data, 4byte imageID and 128byte
descriptor vector. As the HDFS splits the data into �xed size blocks (default
setting of 64MB) there is a risk that our binary descriptors may fall on a block-
boundary and it data could get split between blocks. We cannot allow this to
happen as the reading of the second block would be corrupted.

Hadoop provides special SequenceFiles for working with binary data. When
using SequenceFiles, padding is used in the block-splitting process to protect
the block boundaries, making sure that individual binary records are never split
between two blocks. A SequenceFile consists of a header and at least one key-
value pair record. The header contains metadata that HDFS uses to parse the
records when they are read (for example by the Map functions). A SequenceFile
record is �xed in size and is de�ned as a key-value pair (i.e. the de�ned input for
Map-tasks). SequenceFiles also have several features (such as support for block
compression and sync markers that for seeking to record boundaries) that make
them an optimal choice for processing binary data with Hadoop.

We therefore implemented a conversion mechanism to create SequenceFiles
from our original binary data. In the conversion process, we set the 4 byte
imageID as the key and the 128 byte vectors as the value.

4.2.2.2 Indexing in the Map function: I/O access and RAM footprint

As we already described, each time a Map function is invoked it has to start
by loading the index. There are two potential problems with this. The �rst is
that we frequently load the index from disk and that �le may exceed the size of
the block of data to process. The second problem is each Map function keeps its
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own private copy of the index structure. When the index structure is large, there
is not enough RAM for all the Mappers.

As for the loading of the index structure from disk, we use a functionality of
Hadoop called the �distributed cache� that is optimized to deliver large read-only
�les to all the participating nodes (or machines) before the sub-tasks of the job
are executed. This prevents network hot-spots during the execution process as
a copy of the �le is already stored on the local disk. Also, as each machine is
running several Mappers and the �le with the index structure is read frequently,
if there is RAM available, the OS is very likely to cache the �le in memory for us.

The second problem is that despite the index being a read-only structure, by
default, each Map function loads its own copy and thus we need enough RAM
to hold as many copies of the index as there are cores in each machine. When
the index is large (order of multiple GB) we simply run out of RAM and have to
reduce the number of cores we use.

Instead of having an independent Map-task-per-core, what we need are multi-
threadedMappers. Hadoop actually supports threadedMap functions in the form
of a class called MultithreadedMapRunner, where a pool of threads are used to do
work otherwise done by a single thread. The threaded version is still processing
only a single block of data, so the number of invocations (i.e. Map-tasks) is the
same.

While we do solve the RAM limitation issue, and all cores could be fully
utilized, we still do not get the decreased running time we were hoping for. The
Hadoop version of eCP is written in JAVA and unlike our previous parallelized
code, written in C++, we are having problems with parallel scalability. This
is due to the overhead of locking mechanisms in JAVA (both in our code as
well as in the Hadoop framework). For example, we observed better running
times with running two 4-thread Mappers than a single 8-thread one, indicating
the limitation of thread scalability. Essentially, the threaded-mappers are still a
work in progress.

4.2.2.3 Shu�ing all the data

As we said before the Mappers output key-value pairs that contain all the
data, both clusterID (key) and the SIFT descriptors and imageID (value). In the
sort-copy-merge process of �the Shu�e� all of this data has to be moved across the
network. Hadoop will do its best to fully utilize all the available bandwidth but
Hadoop also supports compressing during this transfer. As we are using binary
data, the amount of compression is limited, (20-30%) but this is an optimization
that is highly recommended for data intensive tasks as it can save both on network
load and transfer times.
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4.2.2.4 Writing the output data

As we described in Section 4.1.2, HDFS default replication factor is to make
3 copies of each block of data. With rack-awareness enabled and con�gured
(and a Hadoop-cluster that spans more than one rack), one of the replicas is
always written to a remote rack. This is part of the fault-tolerance scheme,
as this way, an entire rack of machines can be lost without compromising the
integrity of the data. However, if the network link(s) between racks is limited,
this can signi�cantly delay the time it takes to do the writing. This can delay
the completion of Hadoop jobs as the �nal output is written to HDFS with
replication. It is however possible to set the replication factor on a per-�le basis.
Therefore, it is possible to use one replication factor setting for the output data,
for example no-replication (replication factor 1), and another setting for the input
�le(s). Having a high replication factor for the input data is important because
that will bene�t Hadoop in �nding available cores to run theMap functions where
the data is located.

4.2.3 Distributed eCP indexing: Experiments

We will now look at the results of our experiments with distributed eCP. First
however, we will describe the datasets and index con�guration that we will use,
and look at the hardware that we have available to us.

4.2.3.1 Datasets, index con�guration and the Grid'5000

Dataset information Index settings
Set Images Descriptors Size on disk Clusters L Traversing Index size
1 100M 30.2B 4TB 6M 5 296 1.8GB
2 25M 7.8B 1.0TB 1.5M 4 354 461MB
3 10M 3.3B 0.5TB 652K 4 285 193MB

Table 4.1: Dataset information and index con�guration used in the experiments
in this chapter.

Dataset Available to us is a very large (web-scale) collection of 30.2 billion
SIFT descriptors extracted from a collection of 100 million images. This dataset
was provided to us by Exalead as part of the Quaero project. 5 We have in fact
already mentioned this dataset in Chapter 3, as the 8.1B descriptor dataset we

5. Quaero is a research and innovation program addressing automatic processing of multi-
media and multilingual content.
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used in our parallel eCP experiments, see Table 3.1 of Section 3.2.3, was a subset
this 30.1B descriptor set.

Please note that unlike the previous chapter, where we referred to the
datasets by the index structure used, in this chapter we will refer to the
datasets by their size. Each dataset will be indexed and searched with
only a single index-structure and therefore the size is a more descriptive
name.

The three datasets used in our distributed eCP experiments are described on
the left side of Table 4.1. The �rst set, seen in row 1, is the full collection, while
the other two are subsets of it. In row 2 we have a ≈25% subset that contains
7.8B descriptors. This is almost the same size as the 8.1B descriptor set we used
before, but because the padding of the SequenceFiles, we reduce the number of
descriptors to keep the �le size below 1TB on disk. As we will discuss shortly, it
is not possible to run a lot of experiments with the full set. We therefore need a
small set to use for iterative experiments, where we tune parameters etc. In row
3 we have the set that was used for this purpose. It consists of 3.3B descriptors
or ≈11% of the full set.

Index con�guration For each of the three datasets we de�ne a hierarchical
index structure to use. The details of each index structure can be found on the
right side of Table 4.1. The cluster target-size is 5,000 descriptors for each dataset
and for the full set of 30.2B descriptors that results in a index of over 6M clusters
on disk and thus the same number of cluster representatives on the bottom-level
of the L=5 level deep index structure.

While this is not the largest index we have used, the ts=1,000 for the 8.1B set
resulted in 8.1M clusters on disk, this is by far the largest amount of data that
we will be indexing with such a wide and deep index.

The available hardware: Grid'5000 Grid'5000 [JLLa06] is a widely-distributed
infrastructure devoted to providing an experimental platform for the research
community. The platform is spread over ten geographical sites located through
the French territory and one in Luxembourg. For our experiments we have access
to the three clusters of machines that belong to the Rennes-site of Grid'5000. In
total the three machine-clusters have 129 machines but there are almost always
some machines down due to failures or maintenance. The speci�cations of the
hardware can be found in Table 4.2.

Each node of every cluster is connected to a Cisco Catalyst 6509-E router/switch
that has 288 1Gbps Ethernet ports. In addition, the nodes of the Parapluie and
Parapide clusters are interconnected with 10Gbps In�niband connections (but
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Cluster
#Nodes #CPU@Freq

#Cores
RAM

Local
name /CPU Disk

Paradent 64 2 Intel@2.50GHz 4 32GB 138GB
Parapide 25 2 Intel@2.93GHz 4 24GB 433GB
Parapluie 40 2 AMD@1.70GHz 12 48GB 232GB

Table 4.2: Hardware speci�cations for the three machine cluster at the Rennes-
site of Grid'5000.

those are not used in our experiments). For permanent storage we have access to
a 7TB NAS volume that is connected to the clusters via the 1Gbps Ethernet of
the Cisco Catalyst switch.

The Grid'5000 is run on a reservation based system where users reserve hard-
ware ahead of time. There is both a limitation on time and number of reservation
possible per-user. During the week-days, day-time reservations are limited to just
a few hours at a time. Therefore, the only possible time to run our large-scale
experiments on the full collection of data is during the week-ends when it is pos-
sible to make long reservations of a large amount of hardware. However, there is
competition between users for the long reservation time-slots and each user can
only have two active reservations at the same time. This limits our ability to run
a large body of full-scale experiments.

4.2.3.2 Experiments and results

The goal of the �rst set of experiments is to evaluate the scalability of our
implementation as we scale-out to using more and more machines from the
Grid'5000. For this task we use the 3.3B descriptors set and range the num-
ber of machines from 20 to 50 computing nodes (that is 160-400 cores running
Map-tasks).

In the second set experiments we scale-up, by indexing the 7.8B descriptor set.
We also scale-out, by using all the machines available to us, or over 100 machines
(that is over 800 cores running Map-tasks) from all three machine-clusters of the
Rennes-site. 6

Finally, in the third set of experiments, we scale-up again, this time going all
the way and indexing the full 30.2B descriptor set using, again, all the machines
available to us.

In all of the following experiments we use 128MB HDFS block size for our �les

6. In a large collection of machines, like the Rennes site of Grid'5000 is, there are always a
few machines down for maintenance. Therefore, the number of machines available to use may
vary by a few machines at any given time.
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Scalability of indexing

#Nodes Time(min) Work(min)
20 149.3 2,986
30 95.7 2,871
40 61.8 2,472
50 45.2 2,260

Table 4.3: Scalability experiments using the 3.3B descriptor set and using an L=4
deep index structure with 652K leaders. In orange we have wall clock time and
in blue we have the amount of work needed (running time × #machines). In the
graph on the right, the times are relative to the 20 machine setting and in yellow,
we also show a trend line (the baseline setting of 20 machines/ the current # of
machines).

stored on HDFS (both input and output). This is twice the size of the default
setting of 64MB, but it is the recommended setting for data intensive jobs.

Evaluating the scalability Our �rst set of experiments is to determine the
scalability of our distributed eCP implementation. We use the 3.3B descriptor set,
described in row 3 of Table 4.1, and index it using 652K cluster-representatives
(i.e. leaders on the bottom-level of the index), arranged in an L=4 deep hierar-
chical index structure.

Three machines are dedicated to manage the Hadoop cluster (for the task
management and managing the HDFS). We run the indexing on 20-50 machines
(takstrackers) using machines from the Paradent machine-cluster (see row 1 of
Table 4.2). Each machine has 8 cores so we con�gure Hadoop to allow at most
8 Mappers and 2 Reducers to run in parallel at any given time on each machine
(this is done by assigning 8 Map-slots and 2 Reduce-slots).

The input data, i.e. the 3.3B set, is stored on the HDFS and, with the 128MB
block size, this 0.5TB �le is split into 3,478 blocks. With a replication factor
of 3, 10,434 blocks are created that require ≈1.3TB of disk space. The number
of Map-tasks will equal the number of blocks, and thus 3,478 Mappers will run
during the course of the job, each one loading the 193MB index �le from the local
disk.

The results of this set of experiments are shown in Table 4.3. We present
the reported wall clock time of each job (orange) and we also sum up the total
amount of work done (blue) by multiplying the running time with the number of
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machines. On the left hand side we have a table with measured running times
and on the right we have included a graphical representation of the relative times,
using the 20 machine setting as the baseline reference point (1.0). In the graph,
we have the number of machines used on the x-axis (from 20 to 50). We have
also added a trend line (yellow), i.e. the baseline setting of 20 machines divided
with current number of machines used in each setting.

The amount of work is an interesting measure, as it indicates how well we
are scaling-out to using more and more hardware. If we are scaling linearly, the
amount of total amount of work should remain the same (regardless of the number
of machines used). If, on the other hand, we are have problems with scaling, the
total amount of work should increase as we use more and more machines.

To our surprise, the results show that we are actually doing better than a
linear scale-out, as the total amount of work is actually reducing as we use more
machines. There seems to be some economy of scale going on and we think that
there are several factors that are contributing to this phenomenon.

We should start by pointing out that we have more and more machines but the
amount of data is always the same. The �rst factor is that with more machines,
we also have more RAM to do caching, there is more overall bandwidth in the
network etc. Any time wasted on waiting for the few and slow I/O devices (both
network and disk) should therefore be reduced.

Another factor may be the length of the sequence of tasks that need to be
done by each core. We can calculate how many Map-tasks each core will have
to do (this is also referred to as the number of �waves� of Map-tasks). With 20
machines, each machine will have to process 174 blocks, and with 8 cores, that is
a sequence of ≈22 blocks per core. With 40 machines, the length of this sequence
is twice as short, only ≈11 blocks of data per core. Each machine will have to
sort and cache less data before it is delivered to the copy-phase of �the Shu�e�,
this decreased the need to write intermediate data to disk and thus also to read
it back from disk when the Reducer is invoked. Also, if there is a �xed overhead
of doing the I/Os needed for each Map-task (i.e. reading the block of data and
loading the index �le), a shorter sequence could a�ect the total running time.

Other factors that may contribute are: that �speculative execution� is perhaps
more e�ective when we have more machines available; as there are more Reduce-
slots available, that may incline the jobtracker to start the Reducers earlier and/or
more frequently and that can reduce the pressure on both disk and network use.

Scaling-up and -out, 7.8B descriptors indexed on > 100 machines In
the second set of experiments we index the 7.8B descriptor subset that requires
almost 1TB of storage space. On HDFS, with the 128MB HDFS block size, we
get 8,178 blocks/Map-tasks to run and with replication factor 3, we get in total
24,534 blocks that requires almost 3TB of HDFS disk space.
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We extended the deployment setup, using 57 nodes from Paradent, 15 from
Parapide and 36 from Parapluie (see Table 4.2), for a total of 108 machines. Here
again, 3 machines are dedicated to managing the system, leaving 105 tasktrackers
to do the work. As before, each machine is con�gured for 8 Map-slots and 2
Reduce-slots.

Aside the obvious di�erences in the hardware and the size of the data set
used here, we must highlight a key di�erence between this set of experiments and
the previous one. This time, the number of leaders and the size of the index
hierarchy is much larger, 461MB index �le instead of the previous 193MB. The
ratio between the HDFS block size and the size of the index is getting much larger
and potentially, each Mapper will take longer to read the index �le from the local
disk and load the index hierarchy into memory.

Also, with the increased index size, each Mapper requires more RAM, leaving
less of it available for the Hadoop framework and the operating system (for ex-
ample to cache the index �le for us). As we are using the same index depth L, the
larger index also means that doing the assignments is more costly as traversing
the index simply involves more distance calculations.

On top of that, the imbalance in the size of clusters in the index hierarchy is
also a contributing factor for added index traversal overhead, especially in large
and deep index structures. We should therefore not be surprised if the overall
work needed for clustering the 7.8B subset is greater than what we observed for
the 3.3B subset.

The result of indexing the 7.8B subset, using 105 machines (or 840 cores) is
that it took 71 minutes to complete the indexing job. The total amount of work
done was 7,455 minutes.

Compared to the previous set of experiments, using the 3.3B subset, the 7.8B
subset is 2.36 times larger and the index structure is more the twice as wide
(1.5M vs. 652K). To get some point of reference, we can compare the amount of
work it took to do the indexing of the 7.8B set vs. the 3.3B set. The ratio of
how much more work was needed to index the larger set ranges from 2.50 times
more (20 machine setting) to 3.30 times more (50 machine setting). Overall, we
cannot say that indexing the 7.8B set is signi�cantly worse, even if the index
structure requires 461MB of RAM and has to be loaded 8,178 times (once for
each Map-task).

Indexing at web-scale In this third set of experiments, we take the scale-up
all the way and index the full set of 30.2 billion SIFT descriptors, extracted from
100 million images. As before, we use all the machines available to us.

The eCP index structure for this task contains over 6 million cluster represen-
tatives at the bottom-level of the index and the L=5 level deep index structure
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requires roughly 1.8GB of space, both in RAM and on disk (in the form of the
index �le each Map-task has to load).

This index structure is in fact so large that we are forced to reduce the number
ofMap-slots per machine by half, as there is not enough RAM to run both Hadoop
and load 8 instances of the index. We therefore set the number of Map-slots per
machine to only 4 and our 105 machine Hadoop cluster can now only run 420
Map-tasks in parallel, instead the 840 parallel Map-tasks we could run previously.

This limitation is the main motivation for our work on implementing a multi-
threaded Map function, such that each core does not need its own copy of the
index structure.

With the settings described above, it took about 600 minutes (10 hours) to
run the job and cluster 30.2B descriptors. We calculate also the work done by all
the machines, 600min. × 105 = 63,000min. Again, it is hard to compare the task
of indexing the various datasets. To get some comparison we can again compare
the amount of work done.

The full dataset, 30.2B descriptors, is 3.85 times larger than the 7.8B subset.
Also, the 6M index structure is vastly larger than the 1.6M index structure used
for the 7.8B or 3.75 times more clusters on disk. Indexing the full set took 8.45
times more work then we observed in indexing the 7.8B descriptor subset using
the 1.5M index structure. Because we sum up the work done by multiplying the
measured running time by the number of machines (not the cores) we should
take into account that each machine only had half the number of cores available.
When we do this, the ratio between indexing the full set vs. the 7.8B subset is to
4.23 times more work. The di�erence between the size ratio of 3.85 and the work
ratio of 4.23 is tells us that indexing with the L=5 deep index of 6M clusters
is only 0.38 (4.23-3.85) times harder than indexing with the L=4 deep index of
1.5M clusters. Overall, we are quite happy with this result.

A careful analysis of the logs show that 99% of the reduce tasks where com-
pleted after 520 minutes, and the remaining 1% took an additional 80 minutes to
complete. The reason behind this behavior is in part the uneven size distribution
of clusters. But the main explanation is to be found in the content of the dataset.
Upon further analysis of the data collection, we discovered that it contains hun-
dred thousands of identical distracting images that turn out to come from a set
of explicit web sites that all have di�erent URLs but are redirecting to (or have
duplicates of) the same images. This is unfortunate, but it is a good example of
what happens in the real world when indexing images collected of the Internet. It
would have been possible to �lter these images out, but this would have required
a speci�c ad hoc process that we may very well integrate in the future. The direct
impact of so many duplicates is that there is a small set of clusters into which the
descriptors of these images accumulate, creating very large, unbreakable clusters,
and writing them to disks is what is causes the last 1% reduction taskt to take
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so long.

It is also interesting to analyze a bit the loading of the index structure, as
seen from the machine level. The input data for the 30.2B descriptor set consists
of 4TB of of data that is split into over 32,000 128MB blocks in HDFS. That also
means, as we know, that over 32,000 Map-tasks will be run by our 105 machines.
Each Map-task must start by loading the 1.8GB index �le from the local disk,
and thus the index is loaded in total more than 32,000 times during the course
of the job. On average, the 1.8GB index �le is loaded 305 times per machine, or
76 times per core. Thus, on average, the index �le is read from the local disk of
each machine every 118 seconds.

If the local disk can be read at 70MB/sec. (this is probably overly generous) it
would take about 26 seconds to sequentially read the �le from disk, once. Doing
it 305 times might take as much as over 8,000 seconds. Clearly, it is of great
importance to leave some memory available for the OS to cache our index �le,
such that it must not be read from disk every time a Map-task is invoked. This is
yet another strong motivation to reduce the memory footprint of our algorithm
by implementing a multi-threaded Map function.

Larger HDFS block size In the experiments so far, we have been using the
recommended setting of 128MB HDFS blocks. When the index �le is very large,
intuitively, we would like to make the block size larger, such that each mapper
would process more data for every time the index had to be loaded and also to
reduce the total number of times the index has to be loaded from disk.

We ran some preliminary experiments where used larger HDFS blocks. The
settings and dataset are the same as in our second set of experiments, the �Scaling-
up and -out...�, i.e. the 7.8B subset and 1.5M index. 7 We increased however the
HDFS block size to 512MB.

The indexing took 69 minutes and the amount of work done was 7,314 minutes
of work, compared to 71min. and 7,455min. of work before. I.e. there was no
signi�cant gain observed.

We also indexed the full 30.2B set, using the same settings for that set (6M
index and 4 Map-slots etc.) as we used before, except we use 512MB blocks on
HDFS.

This time it took 507 minutes or 53,742 minutes of work. While this is a
improvement over our previous 600min./63,000min. result, we also did other op-
timizations of Hadoop settings as well. For example, we increased the Map-side
sort bu�er and we used compression in the shu�ing process. Both optimizations

7. This time, 1 extra machine was available, giving us 106 instead of 105.
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of these settings should facilitate the issue we observed with the 1% last reduc-
ers taking such a long time. Perhaps a more fair comparison would be to the
520min./54,600min. mark when the experiment using the 128MB block size was
99% done.

In any case, and to our surprise, increasing the block size did not provide
the improvement we had hoped for. For the smaller index (461MB), the OS �le
caching could simply be so good that loading the index is not a big factor, but for
the 1.8GB index of the full set we were expecting a more signi�cant di�erence.
Perhaps, because we reduced the Map-slots to only 4, there is su�cient RAM
available to OS to cache even the 1.8GB index �le. A deeper analysis of what
is going on is necessary, but it is not easy to monitor and analyze such a long a
widely distributed task.

In our discussion and analysis of the distributed batch search, later in this
chapter, we will encounter a very similar problem. For now, we will leave this as
an unsolved mystery.

4.2.4 Distributed eCP indexing: Summary and discussion

There is a myriad of additional indexing experiments that we would have
liked to do, especially on the web-scale, 30.2B descriptor, dataset. However,
as we described in Section 4.2.3.1, experiments that require long reservations of
Grid'5000 hardware are limited to run only in week-ends. In addition, we are not
the only researchers that want or reserve the hardware of the Grid'5000 for long
periods of time and thus there where only a few week-ends that all the machines
of the Rennes-site where available to us.

Running the 30.2B set with a smaller number of machines was not feasible due
to both disk space limitations, we need a minimum of 16TB of HDFS disk space,
and because even the maximum week-end reservation time would not su�ce to
run the full scale job with only a few machines. This is not only because the
added job running time, but because we need a lot of time to deploy the Hadoop
cluster and get the 4TB of input data from the NAS, our permanent storage,
to the HDFS via the limited network link between our NAS and the machine
clusters. This 4TB transfer takes about 8 hours, one way.

Essentially, we can say that running the experiments on Hadoop was the easy
part of our work, it is all the �everything else� that is making things complicated.

In our �rst set of experiments, and as we can see in Table 4.3, we showed that
our distributed eCP can scale-out, to use more hardware, very well. In fact, we
were surprised by the fact that the total amount of work necessary is reduced
as we use more hardware and the response time is actually below the reference
trend line (see graph on right hand side of Table 4.3).
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We also showed that our distributed eCP can scale-up to index larger datasets.
First by indexing the 7.8B set on 105 machines, using 840 cores. And then by
indexing the full set of 30.2B descriptors on 105 machines, using 420 cores. When
we indexed the full set, with the 1.8GB index structure, we did run into a scale-
out problem. As we have limited amount of RAM per machine, and in this version
of distributed eCP, each Mapper needs to load an instance of the index structure,
we had to reduce the number of Map-slots by half, from 8 to 4.

However, as we discussed in Section 4.2.2.2, we are working on a multi-
threaded Map function that does the descriptor assignments with multiple cores
but using only a single instance of the index structure. This has proved to be a
non-trivial task as unlike the parallelized eCP that we developed in Chapter 3,
the multi-threaded implementation of distributed eCP in JAVA, and the threaded
integration with the Hadoop framework, is not giving the same good parallel scal-
ability as we got before. Using multi-threaded Mappers does however solve our
scale-out issue and and getting better performance out of the multi-threded JAVA
implementation is a work in progress.

We will now change the topic to searching and develop a distributed version
of the batch search that can run on Hadoop.

4.3 Distributed batch search

In Section 3.3 of Chapter 3 we introduced a batch search process that sacri�ces
individual query-image response time for throughput of the entire batch. We
showed how large batches, tens- or hundreds of thousands of images, shift the
search process from being bound on random I/O toward sequential I/O and using
ever more computing power. The largest batches of 100,000 unique query images,
see Figure 3.8 in Section 3.3, was right at the brink of using all the 24 logical
cores (12 real + 12 HT) of the machine we used for the experiments. Searching a
larger batch on that particular database, using those settings, would need more
processing power to keep reducing the average response time per image. Also,
even if the average response time per image of parallel eCP's batch search is low,
the total running time of the large batches is still high. For example, the 100,000
image batch that we see in Figure 3.8 took 12,123 seconds using b=1 and 16,443
seconds using b=3.

It is therefore motivating to harness the power of distributed computing to
do batch searching.

In this section we will start with giving an overview of how we implement
distributed eCP batch search on Hadoop, followed by a section with implemen-
tation details and a discussion on the speci�c problems of adapting the batch
search process to the Map-Reduce paradigm.
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We then shift the focus on to evaluating the distributed eCP batch search. The
quality of web-scale search is evaluated by searching the 49K query set and the
CopyDays query set, the same image query sets that we used in Chapter 3, on the
30.2B descriptor database that we built in our distributed indexing experiments
(see Table 4.1). We also evaluate the distributed search process on Hadoop, where
we try to gage the scalability, e�ciency and identify limiting factors in running
on the Map-Reduce paradigm.

We conclude this section with a summary and discussion on the topics covered.

4.3.1 Distributed batch search: Overview

Hadoop, being a batch processing framework, requires signi�cant amount of
time just to launch a job and is therefore never going to be good for answering
individual image queries. It is however well suited for processing massive tasks
that require a lot of data and processing power. As we saw in Chapter 3, an
image query batch typically consists of 104�107 query descriptors and searching
a web-scale database, that consists of several Terabytes of data, requires both
the reading of a lot of data and a lot of CPU power to do the numerous distance
calculations. Searching large batches of query images, on web-scale databases,
should therefore be a prime task adapt to Map-Reduce and run on Hadoop.

Already in Section 2.3.4 of Chapter 2, where we discussed image-level opti-
mizations for the search process, we de�ned an order for the process of searching.
The �rst step is to discover all the cluster requests, such that redundant requests
can be merged and the data on disk can be processed in order. While this gave
limited bene�t for an individual query, this is the key idea behind the batch search
process we developed in Section 3.3 of Chapter 3.

In the Map-Reduced batch search we follow the same execution order and in
fact we discover all the cluster requests for all the query descriptors outside the
Map-Reduce pipeline. The result from this process is stored as a lookup-table
where each query descriptor that requests a speci�c clusterID can quickly be
looked up and retrieved.

In Figure 4.3 we can see how we implement the batch search process on the
Map-Reduce pipeline. The input data for the batch search pipeline is the indexed
data of the database. The database is stored as SequenceFiles on HDFS, where the
content is stored as key-value pairs in HDFS data blocks. The key is the clusterID
and the value is the SIFT descriptor (4byte imageID + 128byte vector).

The Map functions is tasked with populating the query descriptors k-nn by
scanning the cluster content that is read from the HDFS data block. However,
the Map function also needs access to the query descriptors and to know what
cluster(s) each descriptor should be scanned against. We solve this by �rst loading
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Figure 4.3: Here we see how the distributed eCP batch search can be adapted to the Map-

Reduce pipeline. Outside the pipeline, a lookup-table is created that contains query descriptors

and the clusters they request for scanning. The Map functions uses the lookup-table, populates

the k-nns by scanning the clusters in its block of data and emitting the completed k-nns. �The

Shu�e� groups k-nns of each query image for us (the query-imageID is used as the key) and

the Reduce function does the vote-aggregation, creating the �nal ranked image-level result.

the lookup-table that was created a priori. The process of loading this lookup-
table is very similar to the way we load the index structure in the distributed
indexing process. When the k-nn has been populated, the Mapper emits it as a
key-value pair, using the query-imageID as the key and the k-nn as the value.

The shu�e process (sort-copy-merge) picks up all the k-nns from all the map-
pers, groups them by query-imageID for us, and passes them on for Reduction.
The Reduce functions task is then to take the data from �the Shu�e� and do
the vote-aggregation for those images it is responsible for and produce the �nal
ranked image-level results.

4.3.2 Distributed batch search: Implementation details

The Map-Reduce version of batch searching does not use the index structure
nor does it need the �le o�set information that was previously used to retrieve
individual clusters from disk. This is because the distributed part only scans
the clusters and does the vote-aggregation. The index traversal is done in an
a priori step that creates a lookup-table, mapping clusterIDs to the requesting
query descriptors. As for the information about where the clusters are on disk,
this information is not needed. All the data will be read by the Map-Reduce
process, regardless of cluster requests, as that is what the Map-Reduce paradigm
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is optimized for. What we do is simply to keep the clusterID in the database
data, where we use it as the key for the key-value pairs that will be read and
passed to the Map functions.

This would be a major issue if we intended to search small batches, but we
are not building such a system. We are building a system for processing very
large batches, where most, if not all, the clusters will be relevant to some query
descriptor (we can see this in the two �Q-Desc. overlap� columns in Table 3.4 of
Section 3.3.3 from Chapter 3).

As we saw in the overview section, we load the lookup-table in the beginning
each Map function from the distributed cache (i.e. reading the local disk), much
like we loaded the index structure in the Map function in the distributed eCP
indexing. There is a risk that we may run into the same scalability issues as we
had with the indexing Mappers. Also, the loading large �les for each invocation
of a Map function could be a potential bottleneck.

In our �rst implementation, that we will be testing, there is a single large
lookup-table loaded by each Mapper. As the key-value pairs are processed by the
Mapper (reading the block of data one pair at a time), the key (i.e. the clusterID)
is used to look-up the queries in the lookup-table and those query descriptors
k-nns are populated.

However, unlike the indexing process, the whole lookup-table is not needed
by every Mapper. Only the information for those clusters that reside in the
Mappers block of data will be needed by that particular Mapper. The problem
is to know what clusters are in each block of data. If we make sure to keep all
the clusters of the database HDFS �les in ascending (or descending) order (by
clusterID), it becomes su�cient for the Mapper to check the �rst key-value pair.
From that clusterID of the �rst key, the Mapper can know the range of clusters
it can expect to see in its block of data and thus only load the relevant subset of
the full lookup-table. We are still working on such a version of the distributed
eCP search.

We should also note that a pre-processing step is needed in our Reduce func-
tions, that merges multiple k-nns for the same query descriptor, before the vote-
aggregation process. This is because some clusters may fall across HDFS block
boundaries (i.e. some of the descriptors are at the end of one block, while the
rest are at the beginning of another) and then two half completed k-nns will be
created by two separate Map-tasks. Also, if b>1 is used, this is bound to happen
frequently.

For this reason, our Mappers should include in the emitted k-nns both the dis-
tance values to the neighbors and information that uniquely identi�es the query
descriptor the k-nn is based on. This allows the Reducers to quickly identify mul-
tiple k-nns for the same query descriptor and to merge them with minimal e�ort.
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4.3.3 Distributed batch search: Experiments and results

We start by evaluating the quality of the large-scale databases that we built
with the distributed eCP algorithm (see Table 4.1). For this purpose we search it
with the CopyDays (3055 query images) and 49K (48,883 query images) query sets
that we also used in Section 3.3.3 of Chapter 3. We then evaluate the e�ciency
by increasing the number of query images in the batch.

Search quality In this set of experiments we deploy our Hadoop cluster on 108
machines from the Rennes-site of the Grid'5000. Three machines are reserved for
cluster management and thus 105 machines are running tasktrackers and each
such machine is con�gured to have 8 Map-slots and 2 Reduce-slots (same as we
did for the indexing experiments).

In �rst experiment we use the CopyDays query set and search both the 7.8B
and 30.2B databases. The databases are stored on HDFS where they are split
into 128MB blocks.

The quality is shown in Figure 4.4, where we have the average quality by
variant as well as the average score (on the far right). As before, we only consider
a �correct match� for the query image when the original image is the top-voted
database image in the ranked result.

As we can see, there is almost no di�erence between searching the full 30.2B
(green line) sized set and the 7.8B (red line) subset. On the far right we have the
overall results, averaged over all the variants, for both sets. For the 7.8B set it is
82.68% and 82.16% for the full 30.2B set. We can also see that eCP returns high
quality results, except for some severely attacked images, such as when 80% of
the original image is cropped and then it is rescaled to its original size, or when
strong manual variants are applied.

We also evaluated the quality for the 49K query set on the 30.2B database.
Overall we had a P@1/R@1 score of 91.65% using b=1. This is only a few percent
lower than we saw in Chapter 3, see Table 3.3 of Section 3.3.3. The di�erence is
that this time the size of the database is more than 3.7 times larger.

The Hadoop job of searching of all the CopyDays query images (955K query
descriptors) in a single batch on the 30.2B database took 1,623 seconds, or 531
milliseconds per image, and on the 7.8B database it took 388 seconds, or 127
milliseconds. It is interesting to note that the same batch size running on our
parallelized C++ eCP batch search and searching the similar sized 1.6M database
(8.1B descriptors and same ts) took 2,977 seconds, or 974 milliseconds per image.
Even with the overhead of launching the Hadoop job etc., a batch of �only� 3055
images (or less than 1M descriptors) is still giving almost twice the throughput
than we got running on a single multi-core machine with very high-end NAS disks
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Figure 4.4: Here we have the quality results by variant for the CopyDays set, searching both
the 30.2B (green) and the 7.8B (red) descriptors databases. As we can see, there is almost no

di�erence between searching the full 30.2B sized set and the 7.8B subset. On the far right we

have the overall results, averaged over all the variants, for both sets. For the 7.8B set it is

82.68% and 82.16% for the full 30.2B set.

organized in a RAID5 disk volume. On the other hand, the distributed Hadoop
cluster does consist of over 100 machines, 100 hard drives and over 800 cores.

Large batch size Because we are loading the entire lookup-table in each Map-
task, we are limited to a maximum batch size of 12,000 images, and even with
that setting we had to reduce the number of Map-slots per machine by 2, from 8
to 6. Running the batch sizes we are designing the system for will have to wait
until we solve the issues with partial loading of the lookup-table.

For this task we had available 90 machines from the Rennes-site of Grid'5000,
3 for managing Hadoop and 87 tasktrackers. Each tasktracker is con�gured with
just 6 Map-Slots so we are using 522 CPU cores. We have also increased the
HDFS block size of the input data (i.e. the database) to 256MB.

As we have fewer machines and di�erent settings, we re-run as well the 3053
images of the CopyDays set for comparison.

Even though we have 18 machines less than before, the running time for the
3K images took 1,405 seconds, or 218 seconds less. The main reason for this
di�erence is the use of larger HDFS blocks. It is more e�cient as fewer Map-
tasks are invoked and thus the lookup-table has to be loaded fewer times. Also,
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using only 6 cores may cause less competition for the disk access and we also made
some tweaking and tuning of other Hadoop settings, to optimize the performance
between the initial experiment and this one.

The running time for the 12,000 batch size was 2.520 seconds. If we look at
the average time per image, the 3K batch took 460ms. while the 12K batch took
only 210ms.

Even if we are not able to do the really large batches, we already have the
evidence for the potential running distributed eCP on Hadoop. We can look at
the running times of the parallel eCP batch search for comparison. While we
do not have a 12,000 image batch, we can compare to the 10,000 image batch
running on the 1.6M database (that is most similar to our current settings). For
the 49K set, the 10,000 batch size was running at 430ms. per-image and with the
unique image set the average time per-image was at 490ms. The distributed eCP,
running on 90 Grid'5000 machines and the 30.2B database requires only half that
time, or 210ms.

With a better implementation of the eCP batch search, which does not su�er
from memory limitations and can run the batch sizes that it was initially designed
to do; we expect vastly improved throughput.

4.3.4 Distributed batch search: Summary and discussion

In this section we have shown that eCP can provide very good search quality
at web-scale.

As part of the Quaero Project, we had to have an external evaluation of our
results. The evaluation is based on both the 49K and CopyDays query sets. Of the
three contributing partners to our sub-task, we had the highest precision/recall
and mAP results. For the full scale 30.2B descriptor set, our mAP was 92.61%
and we had a P@1/R@1 score of 91.44%. For Recall@10 our score had increased
to 94.80%.

The throughput results of large batch size look promising, but the current
implementation of our distributed eCP batch search is severely limited by not
being able to process a batch larger than 12,000 images. Yet, searching a 3.72
times larger database using 90 Grid'5000 machines is already twice as fast as the
results we observed when doing our experiments wtih the parallelized eCP batch
search on the very powerful single multi-core server with top-of-the-line SAS disks
in a RAID5 volume and a dedicated high-end RAID-controller.
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4.4 Discussion

In this chapter we have developed a distributed version of both the eCP in-
dexing algorithm and the eCP batch search algorithm. In both cases we adapt
the algorithm to the Map-Reduce programming paradigm and we have evaluated
them by doing experiments with a Hadoop cluster of over 100 machines, using
over 800 CPU cores.

We indexed the web-scale dataset of 30.2 billion SIFT descriptors extracted
from over 100M images using very similar settings as we did when we indexed the
8.1 billion descriptor subset of this collection back in Chapter 3. The target-size
of clusters is only 5,000 descriptors (665KB on disk), creating 6,052,988 clusters
on disk. The indexing with 100 machines took 10 hours. We also evaluated the
quality of this database by searching both the 3055 query images of the CopyDays
set and the 48,883 query images of the 49K set. Our quality results were also
evaluated by a third party as part of the compliance with our participation in
the Quaero project. Overall we had a 91.44% P@1/R@1, the best quality of the
three contributing partners.

This results shows the eCP algorithms has the ability to cope with very large
scale datasets and yet deliver very high quality results.

Regarding distributed eCP's ability to scale-out, i.e. to using more hard-
ware, we showed in Figure 4.3 that the indexing scales even better then we ex-
pected. However, there is a limitation in our current implementation regarding
the memory-footprint of the Map function, both for indexing and search. This
limitation is caused by the auxiliary data that we need to load. In the indexing
this data is the index-structure and in the batch search it is the lookup-table that
tells us what query descriptors want to scan what clusters. However, in both
cases we have proposed ways to adapt our algorithms to avoid these issues.

For the indexing algorithm we are working on a multi-threaded Map function
that will eliminate the need to load an instance of the index for every core, just
to keep all cores busy. We have already implemented a working version, but the
e�ciency of this version is still not adequate.

For the batch search algorithm, a multi-threaded Mapper will not be a suf-
�cient as a long term solution. In large batches there are simply many query
descriptors and even a single Map-task per machine will run out of RAM and
thus a limit will be on the scalability. However, it is not necessary to load the
entire table, as there are only so many clusters in each block of data. Once the
Mapper reads the �rst entry, and knows what range of clusters he can expect from
a single block of data, only the relevant parts of the lookup-table can be loaded
and thus only a fraction of the RAM is needed.
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Lessons we can draw from working with Hadoop on Grid'5000 In our
discussion so far, we have focused on the distributed eCP algorithm, its evaluation
and results. We would also take some time to discuss various lessons that we draw
from our work with the Grid'5000 and the running of a Hadoop cluster.

Lesson #1. There is a potential for degrading performance when two condi-
tions are met: (i) the input data occupies many HDFS blocks and hence, many
Map-tasks will have to be run; And (ii), each Map-tasks needs to load large �les
from disk with auxiliary information at startup time (like we do with the index
structure). It is key to reduce as much as possible the overhead payed by each
Map-task at invocation time. We do this by using the distributed cache, reading
data from the local disk, and leaving enough RAM available for the OS to cache
the �le(s) for us.

Another possible option is to increase the size of the blocks of data to a value
that is signi�cantly larger than the ones recommended by Hadoop, i.e. above
maximum recommended settings of 128MB. Setting this to 512MB or few even a
few GB will in turn reduces the number of Map-tasks to invoke and thus poten-
tially reduce the proportion of the time wasted when each Map-task starts. Note,
however, that using large block sizes may e�ect other aspects of the Map-Reduce
pipeline, some of which are not under our control. For example, the Shu�e pro-
cess stores and copies data in blocks as well. It is also useful to compress as
much as possible that auxiliary information to reduce its load time and to gen-
erously replicate it across the system to avoid disks/network hot-spots during
deployment.

Lesson #2. By default, Hadoop's Map-tasks are completely independent of
each other and do not support the sharing of resources like memory. Therefore
we need to load the index structure in each one during our indexing. When this
auxiliary information is large, each Map-task will consume a signi�cant portion
of the available RAM. This in turn can lead to us having to limit the number of
Map-tasks, as to not exceed the available RAM, and thus also we are giving up
part of the computing power that is available to us.

It is unfortunate to have to waste some of the processing power by leaving
cores idle, all because there is no good way to share data between Mappers run-
ning on the same machine (especially read-only data like our index structure is).
One possible solution, if the Map-tasks job is CPU intensive enough, is to use
multi-threaded Mappers. This is way more complicated to implement but it is
one option for using all the processing power of machine while circumventing
Hadoop's (and JAVA's) in�exible architecture. However, as we have experienced,
implementing an e�cient multi-threaded Map function is no trivial task.
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Lesson #3. In our experiments, we have observed that most of the Mappers
read the data locally, only about 1% of reads are remote (i.e. the block of data to
process is read over the network from a di�erent machine). The level of replication
is a factor in this, and we experimented with various replication settings. The
conclusion of those experiments was that having no replication was a little worse
(roughly 8 to 10% remote reads) but we did not observe any signi�cant advantage
of having the replication factor set higher than 2.

Rack awareness is also relevant to remote reads as with rack awareness, Map-
pers can be spawned as close to the data, preventing unnecessary network load
over limited network links. 8 Rack awareness and replication are good for perfor-
mance, and not only for coping with failures. We would also like to note that we
did experience several nodes failures during our experiments and happily observed
that Hadoop re-ran tasks, eventually completing all the runs and the job.

Lesson #4. We have also tried re-blocking the database before running searches.
By re-blocking the indexed database �les (that we use as input for the search jobs),
we can evaluate the impact of using larger HDFS blocks during the search. This
is an alternative method to our idea of �partial loading of the lookup-table� that
was easy to run as it does not requirer any additional coding (re-blocking HDFS
�les can be done with a Hadoop command-line command and can be done on a
per-�le basis). The goal of this idea is to minimize the number of times we have
to load the auxiliary by having fewer Map-tasks invoked during the search job
and this is achieved by setting the HDFS block size to a larger value. Please note
that this is essentially the only way we have to in�uence the number of Map-tasks
Hadoop will invoke.

We tried this with our indexing code with inconclusive results, we did not
observe a signi�cant improvement. However, we also tested this on the searching
jobs. When we use a block size of 512MB, we observed a signi�cant reduction in
response time for the search of a batch of 12,000 images where the roughly 3.7M
query descriptors result in a 1GB lookup-table.

As we are searching with 8 Map-slots, the machines with the least amount of
RAM per-core may have enough RAM available for the OS to cache the 1GB �le.
Therefore, when we load the lookup-table, we are frequently having to actually
read it from the local disk and we are simply I/O bound on reading this �le
instead of the input data. An alternative to this approach would be to make sure
the �le is in RAM when it is accessed by writing it to RAM (like /dev/shm on
Linux). On the other hand, that could also cause our system to start thrashing
(due to the lack of RAM) or simply crashing with �out of memory errors�.

The lesson is thus: if your task is under unavoidable RAM pressure because

8. However, all write operations are more expensive with rack awareness enabled.
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of auxiliary data that has to be loaded from the local disk in each Map-task,
increasing the HDFS block size of your input data can at least mitigate the
problem by reducing the number of Mappers that are invoked.

Lesson #5. As we discussed in Chapter 3, the batch search process is domi-
nated by I/Os until the batch has enough points to keep the CPU extremely busy
doing distance calculations. Hadoop's architecture is such that all the blocks of
data are read every time, but this time by multiple machines in parallel. There-
fore, the search jobs take almost equally long regardless of the runs batch size
(while the batch is small and we are not running into the RAM shortage issues).
Using the 7.8B descriptor database and 512MB blocks, we have ran batches con-
taining only one query image (312 query descriptors) to create a minimal baseline
of how long it takes just to read the data. This took 323 seconds. With all the
CopyDays images in a batch (955K query descriptors) the running time was 388
seconds. Thus, the additional 3052 query images (and almost all of the 955K
descriptors) only added 65 seconds to the running time, and probably a good
proportion of that time was spent on loading the much bigger auxiliary lookup-
table �le from disk. Much like we saw in the batch searching of Chapter 3, we
think the CPU work is entirely hidden by the cost the I/Os.
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Chapter 5

Conclusions

In this thesis we have developed the extended ClusterPruning algorithm or
eCP. We have come a long way from the initial implementation, which could
handle only a few thousand images and used only a single CPU core. But the
basic and simple ideas behind the process remain unchanged.

Contribution

Our main contribution has been the development and evaluation of the eCP
algorithm in the context of content based image retrieval, at very large scale.
Both in terms of scaling-up, to index and search very large datasets (100 million
images or 30.2 billion descriptors), and in scaling-out, both with a parallelized
C++ version that can run on a powerful multi core machines and with a Map-
Reduce version that can run in large distributed environments.

We also proposed a batch search process that sacri�ces response time for vastly
improved throughput. With the parallelized eCP batch search we experimented
with batches of up to 100,000 images (31.2M descriptors) and observed average
processing time per image of less than 100ms. The distributed eCP batch search
looks very promising, but it true potential will not be known until we have im-
plement and evaluated the �partial-loading of the lookup-table� variant that we
have proposed and described.

We have also discussed, and gave examples, of how eCP can be easily altered
to mimic the behavior of other established algorithms like BoF and the NV-
tree. It is therefore our opinion that eCP is a prototypical clustering-based CBIR
algorithm.

eCP will work equally well on large datasets as on small datasets. The ideas
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behind it are simple and it is fairly easy to replicate and alter at will. 1 We
use Euclidean distance, but this can easily be changed to any distance metric
by changing a single function. It can also be applied to any high-dimensional
problem, even in metric-space (as we do not use calculated centroids etc.). 2

Therefore, we think it could make very good platform for research and devel-
opment on CBIR related topics and even in other �elds that have to tend with
high-dimensional vectors. All the descriptors (vectors) are kept and k-nns return
actual distance values. This makes it easy to monitor, evaluate and track any
changes that are made either in images, index structure, clusters or any step in
between.

It can also be used in the classroom for teaching purposes or as student
projects. That is after all how this whole story started.

Lessons and conclusions

We have showed that eCP algorithm can cope very well with large datasets
while still giving very good image-level search quality.

As part of the Quaero Project, the participating labs submitted their results
to be evaluated by an external 3rd party. The evaluation was done on both the
49K and the CopyDays image query sets, searching an indexed database of all
30.2B descriptors. We submitted the results for the 6M index described Table 4.1,
see Section 4.2.3.1 in Chapter 4.

Of the three partners that participated, we had the highest search quality.
Our mean average precession (mAP) score was 93.2% for the 49K set, 83.93% for
CopyDays and 92.61% over both sets. The P@1/R@1 scores were 92.07% on the
49K set, 82.16% on CopyDays and 91.44% for both sets. Thus, almost all of our
mAP score comes from the correct original image being the top voted one.

When we take into consideration that the images are only 150px. on the
wider edge, how few descriptors are sometimes extracted from each image and
the severity of some of our alterations, the search is no easy task.

The index structure we use creates 6M clusters on disk, of which we will only
check one per query descriptor. The cluster target-size is 5,000 descriptors, so
out of the 30.2B descriptors in the dataset, only 5,000 are scanned per query
descriptor. The index structure is also 5 levels deep and traversing it requires an
estimated 296 distance calculations. However, only 23 of those are actually scan-
ning cluster-representatives, the other 273 distance calculations are to traverse
the 4 upper levels of the index. I.e. out of the 6,052,988 clusters, only 23 of them

1. We have for example not used weighted voting nor have we used post processing steps
like geometrical veri�cation, but both can very easily be included with minimal e�ort.

2. We altered eCP to index and search 36-dimensional audio features in a single day.



Conclusions 143

are actually considered during the index traversal. In total, the cost per query
descriptor is an estimated 5,296 distance calculations (traversing + cluster scan).

This is an unbelievably low number. One cannot help but be amazed that it
actually works, but, it does.

We have also showed that eCP can scale-out to use more hardware, both
multi-core and distributed.

Because the eCP indexing is both non-iterative and fully data independent,
it scales and distributes quite well. In Chapter 3 we showed that the parallelized
C++ implementation scales very well to multiple cores and therefore we are con�-
dent that the threading issues with the MultiThreadedMappers, that we discussed
in Chapter 4, can be overcome.

For eCP, the classical single-image-at-a-time search is totally I/O bound. We
did however show that both early-halting and better storage devices can signi�-
cantly improve the performance, making it capable of real-time response (at least
at small scale).

The batch search process, both parallelized and distributed, is a great option
for search scenarios where throughput is more important than individual response
time. In Chapter 3, we showed that a single powerful server, running very large
batch, can get an average processing time per image below 100ms. Much for
the same reasons as the distributed eCP indexing, the distributed eCP batch
search, developed in Chapter 4, ran into scalability problems. However, we are
certain that we can solve those issues with a better implementation. The 12,000
image batch we could search showed great potential and we thing a large-scale
distributed eCP search is capable of extremely good throughput.

As we think eCP can be adapted to other domains, this vast potential for
throughput could very useful, for example in a data mining task.

In Section 4.4 of Chapter 4 we gave several lessons that we draw from our
experience of working with Hadoop and the Grid'5000. We will not repeat that
discussion here, but we would like to emphasize that careful thought must be put
into how algorithms are implemented and optimal performance may require some
tuning of the default parameters of Haddop.

Because of the Grid'5000 reservation system, we had to deploy our Hadoop
cluster for each set of experiments. It is interesting to highlight that it took us
almost the same amount of time to transfer the 4TB of data to HDFS as it took to
index the full 30.2B descriptor set. Big Data and Cloud computing are currently
very popular topics and it is not uncommon to hear Hadoop mentioned in that
same sentence. But one wonders how the �big data� is supposed to transferred
to and from Clouds without excessive delays and a hefty price tag.
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Open issues and future work

As we have pointed out throughout the previous chapters, there are many
topics and avenues of research still unaddressed in, or related to, eCP.

Especially pressing are the Map-task scalability issues we encountered in
Chapter 4 as we believe that neither the distributed indexing nor the distributed
batch search have reached their potential.

We would also like to mention two other open issues that are related to dis-
tributed search. The �rst is to speed up the response times for the batch search by
adapting an early-halting policy into it and the second is to be able to do respon-
sive singe-image-at-a-time search, using the distributed disks without creating to
much network communication overhead.

Another avenue of research would be to improve the quality of the deep index
structure that eCP builds. We have the ability to trace the path of descriptors
through the eCP index structure, and know both where two paths diverge and
even quantify the margin of error at each sub-branch step (using the distances
values). This information remains mostly unexplored, but it could be used to
create a better and more reliable index structure, hopefully without adding too
much overhead.

We have also proposed that eCP is a prototypical algorithm and the potential
is there to change its behavior. We could for example reduce the amount of data
retained in the clusters, mimicking either BoF, the NV-Tree or use some other
idea. Regardless of the speci�c way we change eCP, a great advantage is that the
current system would provide a very good baseline for comparison.

Applying eCP to other domains that require large scale search is also a very in-
teresting task. Because eCP does not use domain speci�c information to compress
or distort the data, any task that can be formulated as a set of high-dimensional
vectors and where a distance function can be de�ned to measure similarity of
those vectors, can be searched with eCP.
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Résumé étendu

Introduction

Les volumes de données multimédia ont cru ces dernières années de manière
spectaculaire. Facebook stocke plus de 100 milliards d'images, et près de 200
millions d'images sont ajoutées chaque jour. Cela oblige les systèmes de recherche
d'images par le contenu à s'adapter pour fonctionner à ces échelles. Les travaux
présentés dans ce manuscrit vont dans cette direction.

Deux observations essentielles cadrent nos travaux. Premièrement, la taille des
collections d'images est telle, plusieurs téraoctets, qu'il nous faut obligatoirement
prendre en compte les contraintes du stockage secondaire. Cet aspect est central.
Deuxièmement, tous les processeurs sont maintenant multi-coeurs et les grilles de
calcul largement disponibles. Du coup, pro�ter de parallélisme et de distribution
semble naturel pour accélérer tant la construction de la base que le débit des
recherches par lots.

Cette thèse décrit une technique d'indexation multidimensionnelle s'appelant
eCP. Sa conception prends en compte les contraintes issues de l'usage de dis-
ques et d'architectures parallèles et distribuées. eCP se fonde sur technique de
quanti�cation vectorielle non structurée et non itérative. Durant l'indexation,
un index hiérarchique est construit pour ensuite rapidement séparer les données
en petits groupes. La recherche identi�e à partir de la requête le groupe le plus
similaire, y accède sur disque, l'analyse pour y trouver les k-plus-proches voisins.

eCP s'appuie sur une technique de l'état de l'art qui est toutefois orientée mé-
moire centrale. Notre première contribution se compose d'extensions destinées à
permettre de traiter de très larges collections de données en réduisant fortement
le coût de l'indexation et en utilisant les disques au mieux. La seconde contri-
bution tire pro�t des architectures multi-coeurs et détaille comment paralléliser
l'indexation et la recherche. Nous évaluons cet apport sur près de 25 millions
d'images, soit près de 8 milliards de descripteurs SIFT. La troisième contribution
aborde l'aspect distribué. Nous adaptons eCP au paradigme Map-Reduce et nous
utilisons Hadoop pour en évaluer les performances. Là, nous montrons la capacité
de eCP à traiter de grandes bases en indexant plus de 100 millions d'images, soit
30 milliards de SIFT. Nous montrons aussi la capacité de eCP à utiliser plusieurs
centaines de coeurs.

Chapitre 2 : concevoir et développer eCP

Dans le chapitre 2, nous présentons le principe de notre algorithme d'indexation
eCP. Cet algorithme comporte naturellement un aspect création d'index multi-
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dimensionnel et aussi un aspect recherche par similarité grâce à l'index. Nous
nous sommes �xés plusieurs contraintes pour mettre au point eCP. Nous voulons
que cet algorithme puisse fonctionner e�cacement à l'échelle du Web, c'est à dire
sur des volumes d'images très importants (plusieurs dizaines de millions) en gar-
dant tous les descripteurs extraits de ces images. Par conséquent, l'utilisation de
disques est obligatoire dans notre approche puisque c'est là que sont stockés les
descripteurs.

Notre algorithme s'inspire d'une approche proposée par Chierichetti et al. [CPR+07]
originellement créée pour indexer de faibles volumes de données textuelles de
très grande dimension. Ce premier chapitre motive d'abord notre désir de nous
appuyer sur cet algorithme, puis analyse �nement son comportement à grande
échelle, révélant ainsi divers goulot d'étranglement. Cette analyse permet de
proposer di�érentes extensions destinées à permettre l'indexation multidimen-
sionnelle à très grande échelle. Ces extensions sont de nature di�érente :

1. l'algorithme original minimise les coûts de traitements, alors qu'il nous faut
minimiser le coût des accès disques. Les formules de modèle de coût sont
donc changées. Le nouveau modèle intègre le coût des entrées-sorties et
permet de dé�nir des clusters dont la taille en minimise le coût.

2. à très grande échelle il est obligatoire d'utiliser un processus hiérarchique
pour rapidement déterminer dans quel cluster doit être stocké un descrip-
teur. Cela permet de réduire fortement le nombre de calculs de distance à
e�ectuer, qui diminue exponentiellement avec la profondeur de la hiérarchie.

Preuve de validité : indexer avec eCP

Un premier ensemble d'expériences est mené pour évaluer eCP et prouver
la validité des extensions proposées. Nous avons indexé avec eCP un ensemble
de 100 000 images (soit 110 millions de descripteurs SIFT) en utilisant un seul
processeur et di�érents types de disques durs, magnétiques, basés sur des mémoire
Flash, des disques SSD donc, une série de disques orchestrés en RAID et un
volume NAS.

Ces expériences utilisent deux implémentations di�érentes du processus d'assignation
des descripteurs aux clusters, qui se di�érencient par la manière dont elles gèrent
les �chiers temporaires en cours d'indexation. La première, baptisée TF , tend à
faire de très nombreuses entrées-sorties aléatoires mais est très simple à mettre
en oeuvre alors que l'autre nommée CF privilégie les écritures séquentielles et
lectures aléatoires.

Dans nos expériences, nous avons observé que la stratégie TF est limitée
par les entrées-sorties et ne permet pas une indexation e�cace. L'utilisation
de disques SSD en lieu et place de disques magnétiques s'avère améliorer les
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performances de manière spectaculaire, puisque le coût habituellement élevé des
entrées-sorties aléatoires n'existe pas dans ce cas. Lorsque l'on utilise des SSD,
alors TF n'est plus limitée par les performances des entrées-sorties.

L'autre stratégie, CF n'est pas confrontée à ces mêmes limitations. CF est
limitée par les besoins en calcul, et cela quels que soient les supports de stockage
utilisés. Il est facile de contourner ce problème en en développant une version
parallèle. Les bonnes performances de cette stratégie nous la font adopter pour
le reste du manuscrit.

Une des conclusions de cette première étude est qu'il est extrêmement béné-
�que pour les performances d'utiliser des disques SSD en remplacement des dis-
positifs traditionnels magnétiques. Malheureusement, la capacité de ces nouveaux
supports de stockage est encore limitée et leurs prix est encore fort. Ils seront
certainement au centre des futurs systèmes de recherche d'images par le contenu,
après que la technologie ait progressé.

Preuve de validité : la qualité de la recherche avec eCP

La véritable validation de la viabilité de eCP est la qualité de la recherche.
Nous utilisons pour cela un scénario de détection de copie, où l'on considère la
recherche comme étant un succès si l'image originale correspondant à la requête
quasi-copie est retournée en première position dans la liste résultat. C'est ainsi le
rappel à 1 qui est la métrique qualité qui nous intéresse soit R@1. L'évaluation a
été e�ectuée en utilisant deux ensembles de requêtes, l'un avec 26 variantes Stir-
mark (redimensionnement, recadrage, compression, rotation, etc) de 120 images
ou 3 120 images requêtes au total. L'autre est un ensemble beaucoup plus petit de
seulement 533 images requêtes créées à partir de 11 images originales, également
dé�nies par des variantes StirMark. Il faut noter que certaines des variantes util-
isées dans la première série sont des versions très distordues des images originales
et sont donc très di�ciles à trouver.

Le R@1 que l'on observe pour le premier jeu de tests varie entre 0,70 et 0,76,
en fonctions de di�érents réglages que nous avons e�ectué. Le R@1 pour l'autre
jeu de données est supérieur à 0.98. Globalement, ces résultats qualitatifs sont
très bons, surtout parce que certaines images sont très abîmées.

Preuve de validité : le temps de réponse des recherches

Nous avons également montré que les temps mis par l'algorithme de recherche
eCP, lorsqu'il fonctionne selon un mode une requête à la fois, est totalement
dépendant des performances des entrées-sorties. Nous avons toutefois diminué
ce temps en augmentant au maximum la séquentialité des accès, mais le gain
reste faible. L'utilisation de disques magnétique permet de rechercher les images
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similaires à une requête en 5,34 secondes et l'on descend à 1,84 en utilisant des
SSD.

Le temps dans le cas magnétique n'est pas une surprise, les délais liés à la
mécanique sont très importants. De plus, il y a près de 1 000 descripteurs dans
une requête, et donc 1,000 clusters doivent être lus, faisant certainement autant
d'entrées-sorties aléatoires. Les SSD n'en sou�rent pas.

Preuve de validité : optimisations au niveau image

Nous avons également présenté et évalué une stratégie d'abandon précoce de
la recherche. L'idée est de faire de multiples agrégations de votes pendant le
processus de recherche et de stopper la recherche dès que le score d'une image
domine largement les autres. Arrêtant la recherche, on évite de lire d'autres
clusters et on économise de nombreux calculs de distance.

Pour rendre cela possible, nous utilisons des méthodes statistiques pour es-
timer quelle est la probabilité que l'analyse à venir de données puisse changer
l'issue de l'agrégation actuelle des votes. Un score très fortement dominant in-
dique que l'on a trouvé, et un score qui ne décolle pas bien que de nombreux de-
scripteurs requête aient été utilisés indique qu'aucune image est similaire. Cette
technique réduit très fortement les temps de réponse. Il a par exemple permis
de descendre à des temps de traitement par image de l'ordre de 388ms pour les
accès magnétiques et 250ms. sur le disque SSD, sans perte de qualité.

Preuve de validité : la qualité des recherches au niveau descripteur

Nous avons également analysé le comportement de l'algorithme lorsque l'on
e�ectue des recherches au niveau de descripteurs individuels. Pur cela, nous avons
utilisé la base ANN_SIFT qui contient un milliard de descripteurs SIFT pour
lesquels les 1 000 plus proches voisins de 10 000 points requête ont été déterminés
par un algorithme exact exhaustif.

Le rappel que nous observons en menant cette expérimentation n'est pas très
bon. Il semble que cela relève plus d'un problème de dé�nition de la base et de
la vérité terrain que d'un problème intrinsèque à l'algorithme de recherche. En
e�et, les requêtes sont tirées au hasard, et donc sont parfois peu représentatives
de réelles variations de similarité. Les plus proches voisins sont souvent très loin
dans l'espace, accentuant l'importance du bruit et réduisant la qualité. Lorsque
l'on se limite à observer les performances des recherches de points de voisinage
relativement faible, alors les résultats sont excellents.
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eCP, un algorithme représentatif

eCP est un algorithme d'indexation représentatif de ceux que l'on peut trouver
dans la littérature. Il est simple de le modi�er pour lui faire adopter un fonc-
tionnement analogue à celui du NV-Tree ou des techniques basées sur le modèle
BoF. Nous avons par ailleurs utilisé avec succès eCP sur d'autres descripteurs,
de dimension 36, et caractérisant des �ux audio.

Chapitre 3 : paralléliser eCP

Le chapitre 3 développe une version parallèle de eCP, tant pour l'indexation
que pour la recherche.

Indexation parallélisée

Nous avons du diviser en trois phases le processus d'indexation pour ensuite
le paralléliser.

Durant la phase #1, nous construisons de manière descendante la structure
hiérarchique de l'index en choisissant au hasard des représentants de clusters. Ce
processus est peu cher et ne nécessite aucune parallélisation.

Durant la phase #2, nous utilisons la hiérarchie construite pendant la phase #1
pour assigner chaque descripteur de la collection au bon cluster. C'est cette phase
que nous allons paralléliser. D'abord, elle est très gourmande en CPU puisque de
nombreux calculs de distance sont faits durant l'assignation. De plus, le proces-
sus est intrinsèquement parallélisable puisque les traitements sont indépendants
les uns des autres. Il est donc aisé d'avoir plusieurs exécutions simultanées, cha-
cune assignant des descripteurs indépendants dans des clusters temporaires. Il
faut noter que diverses précautions doivent être prises pour ne pas introduire
d'erreurs dues à des écritures concurrentes.

Durant la phase #3, les clusters temporaires doivent être fusionnés pour for-
mer la base �nale. Cette phase ne fait aucun calcul, juste des entrées-sorties, et
il est inutile de la paralléliser.

Indexation parallélisée : ajout de hardware

Nous avons évalué la capacité de eCP à fonctionner sur une architecture où l'on
augmente le nombre de processeurs, a�n de véri�er si l'algorithme se comporte
bien lorsque l'on ajoute des dispositifs matériels. Nous avons utilisé une machine
puissante ayant 12 coeurs physiques et 24 coeurs logiques. Nous avons indexé un
ensemble de données �xé en faisant croître le nombre de coeurs utilisés, et nous
avons mesuré les temps mis par les di�érentes indexations.
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Nous avons observé que les performances de notre implémentation suit de
très près la courbe optimale où le travail est divisé par le nombre de coeurs. eCP
s'adapte bien à une évolution matérielle.

Indexation parallélisée : augmentation du volume de l'index

Nous avons également évalué eCP en variant les con�gurations de l'index, le
créant plus ou moins grand selon les réglages. Nous avons utilisé plusieurs con-
�gurations, certaines réalistes, d'autres irréalistes mais juste destinées à mettre
en avant le comportement de l'algorithme.

Nous avons utilisé un jeu de test de 8,1 milliards de SIFT et créé des index dont
les clusters contiennent en moyenne 1 000, 5 000, 50 000 et 500 000 descripteurs.
Cela change bien évidemment le nombre de représentants dans la hiérarchie et
le nombre de clusters sur le disque. Dans le cas de clusters ayant 1 000 points,
nous créons 8 122 260 clusters de 128Ko. L'index ainsi créé est appelé 8.1M. Sa
profondeur est 5. L'index comportant des clusters de 5 000 descripteurs possède
1 624 452 clusters d'environ 665Ko, de profondeur 4. Il s'appelle 1.6M. Les deux
autres index ont respectivement 162 446 et 16 245 clusters. Il est intéressant de
noter que ce dernier, comportant peu de représentants, peut tenir dans le cache
L3 de notre machine.

Nous avons ensuite lancé les di�érents processus d'indexation, en scrutant les
performances au travers d'un outil spéci�que aux machines parallèles, TipTop,
et donnant des informations sur les défauts mémoire, le nombre d'instructions
par cycle, etc. Il en ressort que les index ayant de nombreux représentants en
mémoire sont plus lents que les plus petits, ceci s'expliquant par le plus grand
nombre de défaut de cache à résoudre. Nous avons testé di�érentes variantes
d'implémentation, une basée pointeurs et une autre basée copie. Cette dernière,
bien que beaucoup plus gourmande en mémoire, est plus rapide à utiliser car
elle évite le parcours aléatoire de la RAM et maximise le nombre de fois où l'on
trouve directement en cache ce dont on a besoin. Cette solution ne passe pas à
l'échelle lorsque l'on veut indexer de très gros ensembles de données où le nombre
de représentants doit être très élevé.

Indexation parallélisée : qualité de la recherche

Nous avons également évalué la qualité de la recherche sur les di�érentes
structures d'index (1,6M et 8,1M) pour les 8,1 milliards de descripteurs.

Nous utilisons pour cela deux ensembles de requêtes, CopyDays qui se compose
de 3055 variantes de 127 images originales, et 49K qui se compose de 48.883 images
requêtes créées à partir de 49 variantes de 1.000 images.

Pour CopyDays, et en utilisant l'index appelé 8,1M, le rappel est à 0,8448 si
on analyse juste un cluster et à 0,8733 si on en analyse trois. Ce taux monte au
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dessus de 0,9 si on exclue les variantes très dégradées particulièrement di�ciles
à trouver. Les performances en rappel pour l'index 1.6M sont respectivement de
0,8668 et de 0,9011. Pour l'ensemble 49K, le rappel est de 0,9358 avec l'index
8,1M et monte à 0,9503 avec l'index 1.6M.

Nous pouvons dire que la recherche est de très bonne qualité. Passons main-
tenant à ses performances.

Recherche parallélisée : faire des recherches par lots

Le chapitre précédent nous montre les limites de recherches individuelles. Ici,
nous défendons une approche de recherche par lots où de très nombreuses images
requête sont accumulées puis cherchées en une seule fois. Le traitement par lot
accroît certes le nombre d'entrées-sorties à e�ectuer, mais il accroît aussi le degré
de séquentialité des accès disques si l'on s'autorise leur réordonnancement. De
plus, plusieurs requêtes peuvent accéder le même cluster, factorisant ainsi les
coûts.

Plus la taille du lot augmente, plus les performances migrent d'un coût lié
aux accès disques vers un coût lié aux calculs de distance. On se trouve alors
dans une situation propice à la parallélisation. On maximise ainsi le débit, au
détriment du temps de réponse.

Recherche parallélisée : mise en oeuvre

La recherche détermine d'abord, pour tous les descripteurs des requêtes du
lot, quel est le clusters dont chacune a besoin. Ceci est mis dans une structure de
données permettant de savoir, pour un cluster particulier, quelles sont les requêtes
concernées.

Un pool de threads est ensuite créé. Un thread lit ensuite les clusters exigés
dans l'ordre et les passe à d'autres threads de traitement qui font les calculs de
distance entre les points du clusters et les vecteurs requête pertinents. On suit
ici un protocole producteur-consommateur.

Une fois tous les clusters nécessaires traités, on procède à l'agrégation des
votes.

Recherche parallélisée : évaluation des performances

Nous avons déjà parlé de la qualité des recherches. Nous discutons ici de
leurs performances. Nous utilisons bien entendu les jeux de données présentés
ci-dessus, à savoir CopyDays et 49k. Nous avons aussi utilisé un autre ensemble
d'images n'ayant aucune correspondances dans la base, et composé de 100 000
images téléchargées de Flickr.
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Chercher en parallèle les 3 055 requêtes de CopyDays permet de traiter chaque
requête en 640ms. Nous sommes à 180ms avec les images de 49k. La réduction
du temps vient du fait que le nombre de clusters demandés par ce dernier jeu
est proportionnellement plus petit que dans le cas de CopyDays, la diversité des
images étant moindre. Avec le lot de 100 000 images, le temps converge et se
stabilise vers 100ms, ce qui correspond au temps nécessaire pour lire tous les
clusters séquentiellement.

Chapitre 4 : distribuer eCP

Dans le chapitre 4, nous avons développé une version distribuée de eCP
qui fonctionne sur le principe du paradigme Map-Reduce. Notre algorithme
d'indexation est distribué, tout autant que notre recherche par lot. Nous avons
évalué notre approche en utilisant Hadoop qui est une implémentation libre de
Map-Reduce, en Java.

Selon le principe Map-Reduce, le programmeur ne doit développer que deux
fonctions qui sont la fonction Map et la fonction Reduce. La fonction Map est
exécutée pour chaque bloc de donnée source. Le résultat est envoyé au travers du
réseau à des instances de fonctions Reduce qui �nissent de les traiter. Une fonction
Reduce particulière ne traite que les données ayant une clé de valeur spéci�que, les
autres données de clé di�érente étant orientées vers d'autres instances de fonction
Reduce.

Indexation distribuée

Dans notre mise en oeuvre distribuée de l'indexation, les données d'entrée sont
stockées sur HDFS et le processus d'assignation des descripteurs se fait dans les
fonctions Map. Chacun assigne à des clusters temporaires les descripteurs stockés
dans le bloc de données qui doit être traité.

Pour faire cette assignation, la fonction Map a besoin de charger la struc-
ture hiérarchique de l'index comme données auxiliaires. Nous réalisons cela e�-
cacement via le système de cache distribué de Hadoop qui précharge les disques
locaux à chaque machine. Ainsi, lorsqu'une fonction Map demande cette hiérar-
chie, l'accès est local et non au travers du réseau. Nous évitons ainsi un goulot
d'étranglement.

Une fois attribué à un cluster, chaque descripteur est émis par le Mapper en
utilisant l'identi�ant du cluster comme clé. Tous les enregistrements émis avec la
même valeur de clé se retrouvent traités par la même fonction Reduce. Celle ci
se contente de les écrire sur disque.



Résumé étendu 153

Indexation distribuée : performances et résultats

Nous avons commencé par faire des expériences qui visaient à évaluer la capac-
ité d'eCP à fonctionner sur une architecture distribuée de taille croissante. Pour
cela, nous avons utilisé un petit jeu de test comprenant 3,3 milliards de descrip-
teurs indexés dans 625k clusters. La hiérarchie correspondante est de profondeur
4 et occupe 193Mo de RAM. Nous avons utilisé un parc de 20 à 50 machines, soit
de 160 à 400 coeurs.

Les résultats des expériences montrent que le coût global de l'exécution diminue
lorsque le nombre de machine croît. Ceci s'explique par le fait que la quantité
de données est constante alors que nous utilisons de plus en plus de matériel.
Ainsi, il y a globalement plus de RAM pour plus e�cacement cacher les données,
plus de bande passante réseau, plus d'accès aux disques en parallèle, etc. Notons
toutefois que les temps de traitement sont parfois augmentés parce que certaines
machines sont particulièrement lentes.

Nous avons aussi réalisé des expériences où c'est la taille des données à traiter
qui augmente. Pour cela, en plus de notre jeu de 3,3 milliards de descripteurs,
nous avons indexé :

1. Un ensemble de 7,8 milliards de descripteurs indexés avec 1,5M de représen-
tants, de profondeur 4, et dont la hiérarchie occupe 461Mo.

2. Un ensemble des 30,2 milliards de descripteurs indexé par 6,0M de représen-
tants, de profondeur 5, et dont la hiérarchie occupe 1,8Go.

Pour indexer ces deux ensembles de 7,8 et 30,2 milliards, nous avons utilisé plus
de 100 machines provenant de 3 grilles du site Rennais de Grid'5000.

L'indexation de 7,8 milliards de descripteurs n'a posé aucun problème.
Chacune des 105 machines a été con�gurée pour permettre à 8Map et 2 Reduce

de s'exécuter en parallèle par machine. Nous disposions ainsi d'au maximum de
840 Map en parallèle. L'indexation a demandé 71 minutes, soit 7 455 minutes de
travail (71min.×105 machines).

L'indexation de l'ensemble de 30,2 milliards de descripteurs a révélé un prob-
lème de passage à l'échelle de notre implémentation. Hadoop exécute toutes
les fonctions Map sur une même machine de manière totalement indépendante.
Aussi, chacune doit alors charger la hiérarchie nécessaire à la phase d'assignation.
Une machine où 8 Map s'exécutent en parallèle doit réserver 8 segments mémoire,
un pour chaque Map, où sera stockée exactement le même contenu, cette hiérar-
chie. Lorsque celle-ci est de taille importante, comme lorsque nous indexons ces
30,2 milliards de descripteurs, alors la mémoire disponible est insu�sante. En
e�et, chaque hiérarchie occupe 1,8Go. Il nous a donc fallu réduire le nombre de
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fonction Map tournant en parallèle au sein de chaque machine de 8 à 4, augmen-
tant la mémoire disponible pour chacune. Au total, nous avons ainsi pu exécuter
seulement 420 fonctions Map en parallèle sur les machines 105 disponibles.

L'indexation de cet énorme jeu de données a pris 600minutes, soit 10 heures,
et il a fallu 63,000 minutes de travail. Cette tâche a accompli 4,23 fois plus de
travail pour indexer ce jeu de descripteur que le jeu de 7,8 milliards qui est lui
3,85 fois plus petit. Il faut bien entendu tenir compte du fait que cette tâche
avait seulement la moitié du nombre de processeurs disponibles.

Notre conclusion est que l'indexation ainsi distribuée fonctionne très bien. Il
faut toutefois régler ce problème d'empreinte mémoire pour les grosses hiérarchies
d'index. Nous avons une idée sur la façon de remédier à ce problème, et nous avons
déjà fait quelques expériences pour la valider. L'idée générale est de multithreader
les fonctions Map, permettant d'exécuter moins de fonctions au sein de chaque
machine, mais d'avoir des threads sur tous les coeurs, partageant la mémoire.

Recherche distribuée : principes et performances

La recherche distribuée suit la ligne de la version parallèle où nous avons
observé les bonnes performances de la recherche par lots. Ici, ce sont les calculs
de distance qu'il faut distribuer. Ils seront donc faits dans les fonctions Map.

Comme pour la version parallèle, nous construisons d'abord une structure de
données permettant de savoir quels sont les clusters exiges par les requêtes, et
inversement. Cette structure est distribuée à toutes les machines participantes et
constitue ainsi les données auxiliaires à utiliser durant la recherche.

Chaque fonction Map lit le bloc de données qui lui échoit, véri�e si celui-ci
contient des clusters exigés par les requêtes. Si c'est le cas, alors les calculs de
distances sont e�ectués et les structures mémorisant les plus proches voisins mises
à jour. À la �n, ces structures sont envoyées vers les fonctions Reduce qui font
alors l'agrégation de votes.

Cette mise en oeuvre se heurte exactement au même problème que celui ren-
contré pour l'indexation, c'est à dire la consommation mémoire importante par
machine. Ici, c'est la structure auxiliaire assurant la correspondance requêtes-
clusters qui est en jeu. En présence de très gros lots à traiter, cette structure
demande beaucoup de mémoire.

Une solution existe pour contourner ce problème. On peut aisément hacher
cette structure de données et chaque Map n'accédera qu'aux paquets pertinents
pour les cluster de son bloc de données en cours de traitement. Une mise en
oeuvre complète de cette idée est en cours.

Les plus gros lots que nous avons pu traiter sans être pénalisés par ce prob-
lème de mémoire regroupaient 12 000 images. Dans ce cas, le temps moyen de
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traitement d'une requête est de 210ms. Cela est bien meilleur que ce que nous
avons pu observer sur le serveur parallèle. L'abondance de matériel sur cette
grille est très avantageux.

Recherche distribuée : résultats qualitatifs

Nos travaux se placent dans le cadre du projet Quaero. Là, nos résultats
qualitatifs sont évalués par un partenaire extérieur selon un protocole standardisé.
Ce protocole s'appuie sur les ensembles CopyDays et 49k, décrits ci-dessus.

Nous avons noyé ces ensembles dans 100 000 000 d'images, soit les 30,2 mil-
liards de descripteurs. L'index créé comporte 6M de clusters. Les résultats qual-
itatifs nous mettent en tête des participants à ces évaluations contrôlées. Les
valeurs de mAP que nous obtenus sont 0,9320 pour le jeu 49k, de 0,8393 pour
CopyDays et de 0,9261 pour les deux jeux, globalement.

Ce sont de très bons résultats, surtout si l'on réalise qu'il s'agit là de retrouver
de toutes petites vignettes de 150 pixels, et donc ne créant que quelques dizaines
de vecteurs, parmi 30 264 937 722 autres descripteurs, regroupés en petits paquets
d'approximativement 5 000 vecteurs.

Chapitre 5 : conclusion et travaux futurs

Globalement, eCP fonctionne très bien et permet d'e�ectuer des recherches
d'images par similarité à très grande échelle. Nous avons avec succès indexé
100 millions d'images. Pour atteindre cet objectif, nous avons successivement
développé eCP et enrichi son algorithmique pour lui permettre de fonctionner
d'abord de manière parallèle, ensuite de manière distribuée.

Di�érentes pistes permettent de prolonger ces travaux. Il faut bien entendu
terminer les mises en oeuvre multithread des fonctions Map et aussi permettre
aux recherches de ne charger qu'une partie de la structure cluster-requête.

Nous désirons aussi améliorer la qualité des recherches en changeant la manière
dont l'index est construit. Il faut plus de précision dans l'établissement des rela-
tions de proximité. Nous pouvons certainement nous appuyer sur les notions de
plus proches voisins partagés.

Finalement, le caractère assez générique de l'approche suivie par eCP nous
permet de penser que l'on peut l'utiliser avec d'autres descripteurs, selon d'autres
techniques (BoF, NV-Tree, etc).
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Abstract

The scale of multimedia collections has grown very fast over the last few years.

Facebook stores more than 100 billion images, 200 million are added every day. In

order to cope with this growth, methods for content-based image retrieval must adapt

gracefully. The work presented in this thesis goes in this direction.

Two observations drove the design of the high-dimensional indexing technique pre-

sented here. Firstly, the collections are so huge, typically several terabytes, that they

must be kept on secondary storage. Addressing disk related issues is thus central to our

work. Secondly, all CPUs are now multi-core and clusters of machines are a common-

place. Parallelism and distribution are both key for fast indexing and high-throughput

batch-oriented searching.

We describe in this manuscript a high-dimensional indexing technique called eCP. Its

design includes the constraints associated to using disks, parallelism and distribution.

At its core is an non-iterative unstructured vectorial quantization scheme.

eCP builds on an existing indexing scheme that is main memory oriented. Our �rst

contribution is a set of extensions for processing very large data collections, reducing

indexing costs and best using disks. The second contribution proposes multi-threaded

algorithms for both building and searching, harnessing the power of multi-core proces-

sors. Datasets for evaluation contain about 25 million images or over 8 billion SIFT

descriptors. The third contribution addresses distributed computing. We adapt eCP

to the MapReduce programming model and use the Hadoop framework and HDFS for

our experiments. This time we evaluate eCP's ability to scale-up with a collection of

100 million images, more than 30 billion SIFT descriptors, and its ability to scale-out

by running experiments on more than 100 machines.

Résumé

Les volumes de données multimédia ont fortement crus ces dernières années. Face-

book stocke plus de 100 milliards d'images, 200 millions sont ajoutées chaque jour. Cela

oblige les systèmes de recherche d'images par le contenu à s'adapter pour fonctionner à

ces échelles. Les travaux présentés dans ce manuscrit vont dans cette direction.

Deux observations essentielles cadrent nos travaux. Premièrement, la taille des col-

lections d'images est telle, plusieurs téraoctets, qu'il nous faut obligatoirement prendre

en compte les contraintes du stockage secondaire. Cet aspect est central. Deuxième-

ment, tous les processeurs sont maintenant multi-coeurs et les grilles de calcul largement

disponibles. Du coup, pro�ter de parallélisme et de distribution semble naturel pour

accélérer tant la construction de la base que le débit des recherches par lots.

Cette thèse décrit une technique d'indexation multidimensionnelle s'appelant eCP.

Sa conception prends en compte les contraintes issues de l'usage de disques et d'architectures

parallèles et distribuées. eCP se fonde sur technique de quanti�cation vectorielle non

structurée et non itérative.

eCP s'appuie sur une technique de l'état de l'art qui est toutefois orientée mémoire

centrale. Notre première contribution se compose d'extensions destinées à permettre de

traiter de très larges collections de données en réduisant fortement le coût de l'indexation

et en utilisant les disques au mieux. La seconde contribution tire pro�t des architectures

multi-coeurs et détaille comment paralléliser l'indexation et la recherche. Nous évaluons

cet apport sur près de 25 millions d'images, soit près de 8 milliards de descripteurs SIFT.

La troisième contribution aborde l'aspect distribué. Nous adaptons eCP au paradigme

Map-Reduce et nous utilisons Hadoop pour en évaluer les performances. Là, nous

montrons la capacité de eCP à traiter de grandes bases en indexant plus de 100 millions

d'images, soit 30 milliards de SIFT. Nous montrons aussi la capacité de eCP à utiliser

plusieurs centaines de coeurs.


