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le 17 mai - 2013

Automate d’ordres : Théorie et applications:
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Résumé

Les automates d’ordres, plus connus sous le nom de Message sequence Charts (MSC),
ont connu une énorme popularité depuis les années 1990. Ce succès est à la fois
académique et industriel. Les raisons de ce succès sont multiples : le modèle est sim-
ple et s’apprend très vite. De plus il possède une puissance d’expression supérieure
à celle des automates finis, et pose des problèmes difficiles. L’apparente simplicité
des MSCs est en fait trompeuse, et de nombreuses manipulations algorithmiques se
révèlent rapidement être des problèmes indécidables.

Dans ce document, nous revenons sur 10 années de recherches sur les Message Se-
quence Charts, et plus généralement sur les langages de scénarios, et tirons quelques
conclusions à partir des travaux effectués. Nous revenons sur les propriétés formelles
des Message Sequence charts, leur décidabilité, et les sous-classes du langage permet-
tant la décision de tel ou tel problème. L’approche classique pour traiter un problème
sur les MSCs est de trouver la plus grande classe possible sur laquelle ce problème
est décidable. Un autre challenge est d’augmenter la puissance d’expression des
MSCs sans perdre en décidabilité. Nous proposons plusieurs extensions de ce type,
permettant la crétion dynamique de processus, ou la définition de protocoles de type
”fenêtre glissante”.

Comme tout modèle formel, les MSCs peuvent difficilement dépasser une taille
critique au delà de laquelle un utilisateur ne peut plus vraiment comprendre le dia-
gramme qu’il a sous les yeux. Pour pallier à cette limite, une solution est de travailler
sur de plus petits modules comportementaux, puis de les assembler pour obtenir des
ensembles de comportements plus grands. Nous étudions plusieurs mécanismes per-
mettant de composer des MSCs, et sur la robustesses des sous-classes de scénarios
connues à la composition. La conclusion ce cette partie est assez négative: les
scénarios se composent difficilement, et lorsqu’une composition est faisable, peu de
propriétés des modèles composés sont préservées.

Nous apportons ensuite une contributions à la synthèse automatique de pro-
grammes distribués à partir de spécification données sous forme d’automates d’ordres.
Cette question répond à un besoin pratique, et permet de situer un role possible des
scénarios dans des processus de conception de logiciels distribués. Nous montrons
que la synthèse automatique est possible sur un sous ensemble raisonnable des au-
tomates d’ordres.

Dans une seconde partie de ce document, nous étudions des applications possi-
bles pour les MSCs. Nous regardons entre autres des algorithmes de model-checking,
permettant de découvrir des erreurs au moment de la spécification d’un système
distribué par des MSCs. La seconde application considérée est le diagnostic, qui
permet d’expliciter à l’aide d’un modèle les comportement d’un système réel instru-
menté. Enfin, nous regardons l’utilisation des MSCs pour la recherche de failles de
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CHAPTER 0. RÉSUMÉ

sécurité dans un système. Ces deux applications montrent des domaines réalistes
d’utilisation des scénarios.

Pour finir, nous tirons quelques conclusions sur les scénarios au regard du contenu
du document et du travail de ces 10 dernières années. Nous proposons ensuite
quelques perspectives de recherche.
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Abstract

Partial order automata are more known under their standardized name ”‘Message
Sequence Charts (MSCs). They have met a considerable interest during the last 15
years. This success is both industrial and academic, and has several reasons. First,
the model is rather simple and can be learned very easily by engineers. Second,
despite its apparent simplicity (MSCs are for instance more expressive than finite
state automata), it has an interesting expressive power, and raises many difficult
problems. Indeed, many algorithmic applications rapidly turn to be undecidable
problems.

In this document, we collect and sumarize a part of the work accomplished on
MSCS during the last decade, and draw some conclusions from the obtained results.
We first focus on formal properties of MSCs, the decidability of several standard
problems, and the definition of subclasses of the language allowing for the decision
of some problems when the general case is undecidable. The standard approach
to work with MSCs is to find the larger subclass of the language allowing for the
decision of a given problem. Another challenge is to increase the expressive power
of MSCs without loosing decidability of too many problems. We propose several
extensions to the formalism allowing dynamic creation of processes, or allowing for
the design of protocols comporting sliding windows behaviors.

As many formal models, MSCs can not exceed a limit size after which a dia-
gram is not understandable for a human designer. A solution is then to build a
specifcation in a modular way, and then to assemble the modules to obtain larger
sets of behaviors. We propose several mechanisms to compose MSCs, and study the
robustness of MSC sub-classes to composition. We then draw some conclusions from
the properties of composition mechanisms described in this part of the document.
Overall, composition is seldomly effective, and does not preserve formal properties
of partial order automata.

In a second part of this document, we study possible applications for MSCs. We
consider model checking problems, that can be used to discover design errors during
distributed systems specification. The second application considered is diagnosis,
which allows to retreive out of a model the explanations of some partial observation
of an instrumented system. Last, we consider the applicability of MSCs to the search
for security breaches in distributed systems.

To complete the work, we provide some conclusions on scenario models, based
on the content of this document and on the experience gained these last 10 years.
We then propose future research directions.
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Introduction

The term ”scenario” in the formal methods community refers to many objects,
ranging from a simple word w ∈ Σ∗ depicting in a sequential way the execution of a
system which actions belong to an alphabet Σ, to more complex diagrams including
control structures, data manipulation, time, exceptions, etc. Even if the interpre-
tations may differ, the term scenario supposes a partial and abstract representation
of some behavior. And most of the time, what people have in mind when using the
term scenario is a graphical representation of the behavior of a distributed system.
Many dialects have been proposed to define such collections of behaviors: Mes-
sage Sequence Charts [81], Live Sequence Charts [38], interworkings [102], UML’s
sequence diagrams [119],... These formalisms are frequently designated under the
very generic term ”scenario language”. This document addresses the theme of sce-
narios from a focused point of view, which is that scenario languages are formal
models that depict (potentially infinite) sets of partially ordered multisets, obtained
by assembling elements from a finite set of finite pomsets. This assembling mech-
anism can have the form of finite state automata labeled by pomsets (we will then
talk about partial order automata), or equivalent models called MSC graphs, or
High-level MSCs. More elaborated assembling mechanisms have been proposed (for
instance using grammars), and the assembling rules can also be modified to enhance
the expressive power of the model.

Scenario languages, and more precisely partial order automata such as High-level
Message Sequence Charts have met a considerable interest from the mid 90’s to the
beginning of the 21st century. This popularity came both from the industrial world
and from the academic community. These models have engendered a consequent
literature, on properties of partial order automata, their formal manipulation, ex-
tensions of the models, etc. In some sense, on may consider that scenarios benefited
from a whole corpus of knowledge accumulated around language theory, commu-
nicating machines, traces, and many other formal models. As scenarios started to
gain popularity in industry, it was the right time to equip them with formal se-
mantics [126,127] and algorithms, and to highlight which problems were feasible or
conversely untractable (see for instance [13, 14, 112, 113, 115]) for scenario descrip-
tions.

From an industrial point of view, scenarios have been originally designed to show
execution traces of distributed systems modeled with SDL [83]. This language was
called Message Sequence Charts (MSCs). A preliminary version called MSC’92 was
published in 1992. It was then standardized by the International Telecommunication
Union (ITU) as the Z.120 recommendation. In their early version, MSCs were
nothing more than simple chronograms that all computer science engineers draw
to explain how components of a distributed protocol interact. Indeed, MSC’92
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comport only two graphical elements: processes are represented by vertical lines, and
exchange asynchronous messages, that are represented by arrows from the sending
process to the receiving process. This basic model was then used as a basis for the
TTCN test language, and extended with several composition operators, allowing
sequential composition of scenarios, iterations, choices, etc. The enhanced model was
then called MSC’96 (due to the fact that a standardized version of the language was
published by the ITU in 1996). The latest version of standard Z.120 was published in
February 2011 [81]. In parallel, a similar kind of diagram called Sequence Diagrams
was developed for the Unified Modeling Language [119].

The appealing and intuitive aspect of Message Sequence Charts is usually the
reason given to explain why MSCs gained such a popularity. Indeed, only a few con-
cepts are needed to design a MSC, and a small chronogram is usually understood in
no time by any user familiar with distributed protocols. Figure 1-a gives an example
of the kind of chronograms used in MSCs to describe interactions among processes.
However, as for many other models, intuitivity of the language is questionable when
the size of models increases to dozens of interacting processes exchanging hundreds of
messages. Furthermore, the composition operators of MSC’96 increase the complex-
ity of the model even if a clear and formalized semantics was written [126]. Despite
this complexification of scenarios, MSC’96 were used at large scale at Motorola to
discover design errors in the initialization protocols of their cellular phones [18]. One
may wonder if this success story is due to the language itself or to the huge modeling
effort, and if similar work could have been done with another language. Yet, this
remains a success story for the language.

Figure 1: An example MSC a), and an equivalent interleaved representation b)

Another argument in favor of MSCs is the old debate between interleaved and
non-interleaved formalisms as a model for concurrency [34]. Indeed, a model such as
MSCs use partial orders as basic building construct of the language. It is well known
that a partial order representation is more concise than an equivalent interleaved
model. Let us compare a description provided by a diagram in the MSC’92 formal-
ism (i.e. a partial order), and an automaton depicting the same set of executions,
i.e. in which concurrency is represented by interleaving all transitions symbolizing
each event. Then, the size of the automaton can be exponential in the size of the
MSC’92 model. The example of Figure 1-a) and its interleaved counterpart in Fig-
ure 1-b) illustrate this phenomenon. MSCs can hence be exponentially more concise
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than automata. We do not claim here that one way of representing executions is
better than the other: modeling with partial orders also has a cost. For instance,
checking global behavioral properties of an MSC model (such as model checking
an LTL formula) can only be done by considering all possible configurations of the
model, that is computing the states of the equivalent interleaved model. Hence,
the supposed exponential gain for a partial order representation is clearly lost when
the addressed problems need can only be addressed by computing an interleaved
model. However, when the properties to check on an MSC are of more local nature,
for instance considering sequences of events occurring on a single process, causal
dependencies in a specification, or verifying that a sequence of messages occurs in a
MSC, there is no need to compute an equivalent interleaved representation. Hence,
when some property to consider can be expressed in terms of a property of some
partial order, modeling with MSCs results in a high complexity gain. Another ad-
vantage in using MSCs is that causality in systems is explicitly represented. This
information usually disappears in interleaved models such as automata. We will
show in chapter 10 of this document that causality is important to address some
information flows problems.

The last argument in favor of MSCS is their expressive power. Standard finite
state automata can only represent systems with a finite state space (or an approxi-
mation of infinite state systems). Partial order automata can be used to represent
systems with infinite state space. Of course, this expressive power has a cost: many
verification problems are undecidable for MSCs. This does not mean however that
formal analysis of MSCs is always untractable, or that MSCs are not usable as a for-
mal modeling tool. First of all, some problems that are undecidable for models such
as Turing Machines, communicating automata, or counter machines have a solution
(and even is some cases a trivial solution) in partial order automata. Furthermore,
experience shows that many problems have solutions for non-trivial subclasses of
partial order automata. This is for instance the case for globally-cooperative HM-
SCs [56], that allow for some kind of model checking. Interestingly, non-globally
cooperative specifications are usually seen as degenerate models, and this observa-
tion frequently applies to a given problem and its associated decidable subclass. We
address decidability issues and define existing subclasses of partial order automata
in chapter 2, and provide decidable verification techniques in chapter 8.

When modeling distributed systems with scenarios, one should keep in mind the
incomplete and abstract nature of the model. Scenarios are not a programming
language, and it seems difficult to build a complete distributed system only via a
partial order automaton definition. This raises several issues: first of all, if a single
partial order automaton describes only a partial and abstract set of behaviors, can
we cover a larger subset of all the behaviors of a system by composing several
automata? Can we slightly extend the model to allow the design of more elaborated
behaviors? The second issue is verification: once again, if a scenario specification
describes only an abstract view of a system, model checking techniques should be
used with care: the model and the property to check should address behaviors at
the same abstraction level. Furthermore, if scenarios describe only a subset of all
possible behaviors of a system, proving a property of the model does not necessarily
implies that this property holds on the real system. The last issue is the relationship
between scenario languages and the implementation that they represent. In the
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worst situation, the model and the implementation are designed at different moments
by different actors, and nothing guarantees coherence of the two objects. However,
it seems reasonable to consider that scenarios have been proposed at requirement
time, and then used to program the system, or conversely that the running system’s
execution traces have been used to build the scenario model. In these more favorable
cases, scenarios should depict (yet at an abstract level) a reasonable subset of all
behaviors of the running system, hence making pertinent some formal analyzes. One
way to ensure that a scenario and an implementation have similar behaviors is to
perform automatic synthesis of code from scenarios. Yet, all existing techniques
address only a restricted subset of specifications. Furthermore, scenarios are not a
programming language, and the synthesis step should be seen as a first step in the
design process to produce a code skeleton. We address the synthesis problem in
chapter 7 of this thesis.

Even if scenarios are seen as a subset of all possible behaviors of a real system,
several interesting applications remain. Diagnosis is one of these applications. Di-
agnosis algorithms are used to recover explanations from a partial observation of
a real execution. This technique is useful to provide explanations when a system
has crashed, or to detect that a fault has occurred. One can also use diagnosis
techniques to detect that no explanation exists for an observed run of a system in
a proposed scenario model. Detecting that an observed run of a system is not con-
tained in the scenario model is a crucial point: it helps comparing a model and a
running application, and can be used as a way to enrich an existing model. In some
sense, scenarios are well adapted to problems that aim at proving the existence of
good/bad properties of a system. We will also show (chapter 10) that diagnosis
techniques can be used as a monitoring tool to detect security breaches.

In this document, we present the research accomplished from 2001 to 2011, which
aimed at a better understanding and better usability of partial order automata and
close scenario models. This work can be classified into three main research directions:

• increase the expressive power of partial order automata, without loosing too
much decidability.

• Solve new problems on partial order automata and their variants, and when
these problems are undecidable, find the largest decidable subclass of the model
for the considered problem.

• Find new practical and effective applications that go beyond simple protocol
modeling.

This document is organized as follows: Chapter 1 is a rapid introduction to
partial order automata and to their semantics. Chapter 2 lists several well known
problems for partial order automata, such as model checking, etc. In this chapter,
we also show that many interesting problems are indeed undecidable, and show for
some problems the syntactic subclasses of partial order automata for which some
problems become decidable.

Chapter 3 shows that the expressive power of standard HMSCs is not sufficient to
model very common protocols that use sliding windows mechanisms. This chapter
also shows a way to extend the initial model to overcome this problem, and recalls
some results originally proved in [58]. The proposed extension consists in allowing
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the sending of a message and the corresponding reception to appear in separate
diagrams (which is not allowed in the standard model)

Chapter 4 proposes another way to extend HMSCs to model sliding windows.
The extension relies on closure of the behavior of each process by a commutation
relation. This extension also solves the expressive power problem highlighted in
chapter 3.

Chapter 5 shows several approaches to enrich partial order automata with stan-
dard operators that are frequently seen in process algebra : product, shuffle, pro-
jections. This chapter assembles the contributions of several papers, and provides
a feedback on all these composition schemes. Among several things, this chapter
shows that the syntactic subclasses of partial order automata defined in chapter 2
are in general not closed under product, shuffle or projection, and that consistency
of views defined as partial order automata is in general undecidable. This hinders
the practical use of such operators.

Chapter 6 introduces another extension of HMSCs to allow for the description
of protocols involving an arbitrary number of participating threads, created online
during execution of the protocol.

Chapter 7 addresses the implementation problem: for a given HMSC, describing
the behavior of a fixed number of processes, can we derive by simple projection
an implementation (a set of communicating machines) with identical behavior ?
In general, the answer to this question is no. This implementation problem is of
major importance for practical use of MSCs, as outside the embedded and critical
software world, engineers are very often reluctant to design a model when it can not
be translated easily into code.

The second part of the document is devoted to more practical aspects of partial
order automata, and shows several application domains for the models described in
the first part of the thesis.

Chapter 8 addresses verification of partial order automata using partial order
logics. The first logic that we consider is MSO for MSC. This model only expresses
facts on the shape of the partial orders generated by a partial order automaton;
We show that MSO for MSCs is decidable for partial order automata, but also for
dynamic MSCs. A practical consequence of this decidability result is that diagnosis,
which can be expressed as a model checking problem, is also decidable for dynamic
MSCs. However, satisfiability of MSO over MSCs is undecidable, except with re-
strictions on the shape of MSCs that can be models of a formula. This fixes the
limits of partial order assembling, and completes the picture of chapter 5: if one
can not decide if a specification is consistent (i.e. described at least a run), then the
considered formalism is not adapted to system design. In this chapter, we also pro-
pose a partial order logic, which is a kind of LTL with finite orders replacing usual
atomic propositions. This logic can be used to express collections of known facts
about a system, of the form : ”when behavior A occurs, then behavior B always
occurs in the future”. This model is very expressive, and mimics in some sense the
template MSCs that were proposed in [58]. Unsurprisingly, many problems such as
diagnosis or existence of a run satisfying a formula are undecidable for specifications
given with this partial order logic. However, we show that with a finite horizon,
diagnosis becomes decidable.

Chapter 9 shows how to use HMSCs to perform diagnosis of distributed imple-
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mentations. Considering a HMSC as a faithful model of the running application,
the question addressed in this work is how to recover all explanations for a failure
of the system from a partial observation collected before a fault. This problem is
decidable in HMSCs, and the solution can be expressed as another partial order
automaton, opening the way to compositional diagnosis.

The last application for scenarios is security, and is considered in chapter 10.
We consider two main applications, for which scenarios seem to be well adapted.
The first one is covert channels detection. A covert channel is a mean to transfer
information from one user to another in a system among parties that should not
communicate otherwise (or should only communicate via specified and monitored
means). Scenarios are well adapted to find such security leaks, as causality helps
highlighting intentional information passing. The second security application con-
sidered is anomaly detection. First of all, as scenarios are a partial specifications
of usual behaviors of a system, comparing the actual behavior of a running system
with partial order models provides a way to detect when the system is used in an
abnormal way. We show in this chapter that anomaly detection form scenarios can
be brought back to a simplified instance of diagnosis.

The last chapter of this document draws several conclusions on the model from
the experience gained during this decade. We also sketch some perspectives on
applications and formal development for the model, and propose future research
directions.
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Chapter 1

Preliminaries

Là, tout n’est qu’ordre et beauté, luxe, calme et volupté.
Here, everything is beauty and order, luxury, quietness and delight.

[Charles Baudelaire, l’initiation au voyage]

1 Introduction

In this chapter, we recall all basic models and notations that will be used throughout
the document. We present a formal definition for partial order automata, and several
semantics for this language, defined in terms of pomsets, words, and transition
systems. The formalism is usually defined using two specification layers. At the
lowest layer, partially ordered multisets describe finite interactions of a finite set of
processes. These diagrams are often called basic MSCs (or bMSCs for short), but
throughput the document, we will simply call them MSCs. MSCs can be composed
by the second layer of the formalism, namely partial order automata. Partial order
automata are simply finite automata labeled by MSCs. In the Z.120 standard, these
partial order automata are called High-level MSCs (HMSCs for short), and we will
use interchangeably the terms partial order automata and HMSCs.

This chapter first defines MSCs and their semantics, and then considers some
formal properties and definitions attached to these basic diagrams that will be used
later in the document. We then give a formal definition of partial order automata
and their semantics.

2 Message Sequence Charts

Message Sequence Charts is a language standardized by the International Telecom-
munication Union (ITU) [82]. The language is composed of simple and intuitive
elements that are combined to define the behavior of processes that communicate
asynchronously. In a MSC diagram, processes are represented by vertical lines, and
message exchanges by horizontal arrows from the sending process to the receiving
process. Local actions executed by a process are represented by boxes, localized on
the executing process, and labeled by the name of the action. Each process has its
own clock, and is independent from all others. All communications among processes
are performed via asynchronous message exchanges. The actions and communica-
tion events localized on the same process are ordered from top to bottom. Figure 1.1
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shows an example of MSC in which three processes Sender, Medium and Receiver
exchange messages of type Data, Info and Ack. This MSC also contains an atomic
action a.

Figure 1.1: An example MSC

As one can easily see from the above diagram, MSCs describe the covering re-
lation of some pomset. In the following definition, we however differentiate the
ordering originating from local ordering of events on a process, and the ordering due
to message exchanges.

Definition 1 A Message Sequence Chart over a set of processes P is a tuple M =
(E, (<p)p∈P , α, µ, φ), in which E represents a set of events. E =

⊎
Ep = ES ⊎

ER ⊎ EA can be partitioned according to the process that executes each event (Ep =
{e ∈ E | φ(e) = p}, or according to the type of event considered : message sending,
reception, internal action (also called atomic action). We then have ES = {e ∈ E |
∃f, (e, f) ∈ µ}, ER = {e ∈ e | ∃f, (f, e) ∈ µ} and EA = E \ (ES ∪ ER).

For every process p ∈ P, the relation <p⊆ Ep ×Ep is a total ordering on events
located on process p. The mapping µ : ES −→ ER associates a sending event with
the corresponding reception.

α : E −→ Σ is a function that associates a label to each event, φ : E −→ P is a
function that localizes each event on a process (i.e. φ(e) is the process that executes
e). The labels attached to events also denote the type of an event. We will write
α(e) = p!q(m) iff e ∈ ES is the sending of message m by process p to process q,
α(e) = q?p(m) iff e ∈ ES is a reception of a message m sent by process p on process
q, and α(e) = p(a) iff e is the execution of an atomic action a by process p. The
labeling of an event must be coherent with the message mapping, that is if f = µ(e)
then α(e) = p!q(m) and α(f) = q?p(m) for some p, q,m.

Usually, several additional assumptions are done on MSCs. From the definition,
every local ordering on processes <p must be a total order. However, we also impose
that ≤=

(⋃
<p ∪µ

)∗
, a relation called the causal order relation of M is a partial

order over E. In this document, we will also use the covering relation of ≤, that is
<= {(e, f) ∈≤| ∄x, x 6= e, x 6= f, e ≤ x ≤ f}. For a MSC M , we will denote by
Min(M) = {e ∈ E|∀e′ ∈ E, e′ ≤ e ⇒ e′ = e} the set of minimal events for the
causal order relation, i.e the set of events that have no causal predecessor. Similarly,
we will denote by Max(M) = {e ∈ E | ∀e′ ∈ E, e′ ≥ e ⇒ e′ = e} the set of event
that have no causal successor in M . We will also denote by Minp(M) the unique
event on process p (if it exists) that has no predecessor on p, and by Maxp(M) the

8 2. MESSAGE SEQUENCE CHARTS



CHAPTER 1. PRELIMINARIES

unique event on process p (if it exists) that has no successor on p. We will denote
by |M | the size of M , that is the number of events in M .

The Z.120 standard does not impose anything on communications, but simply
indicates that messages are asynchronous. It is also frequently assumed that com-
munication between processes are implemented via FIFO buffers. Communications
between a pair of processes are then FIFO (there is one single FIFO buffer from p
to q, and all messages from p to q are received in the order they were sent) or weak-
FIFO (there is one FIFO buffer per type of message). In a FIFO setting, message
overtaking is not allowed, and in the weak-FIFO setting, overtaking of messages of
the same kind is forbidden.

• FIFO : ∀e, f, e′, f ′ such that e, f ∈ Ep, e
′, f ′ ∈ Eq and e′ = µ(e), f ′ = µ(f)

e <p f ⇐⇒ e′ <q f
′.

• Weak-FIFO : ∀e, f, e′, f ′ such that λ(e) = λ(f) = p!q(m), λ(e′) = λ(f ′) =
q?p(m) e, f ∈ Ep, e

′, f ′ ∈ Eqet e
′ = µ(e), f ′ = µ(f), e <p f ⇐⇒ e′ <q f

′

The most used hypothesis is the FIFO one. In the rest of this document, we will
denote by Mǫ the empty MSC (i.e. that contains no event).

As one can figure from the example of Figure 1.1, MSCs have a visual and
intuitive aspect. As suggested by the formal definition, a MSC M can be seen as
a labeled pomset (E,≤, λ). These pomsets can be linearized to obtain the set of
executions (sequences of actions) that are compatible with the causal order ≤.

Definition 2 A linear extension of a MSC M = (E, (<p)p∈P , α, µ, φ) with n events
is a sequence ei1 .ei2 . . . ein of events of M such that for every j > k eij � eik . A
linearization of a MSC M is a word w of Σ∗ such that there exists a linear extension
ei1 .ei2 . . . ein of M and w = α(ei1).α(ei2) . . . α(ein). The language defined by a MSC
is the language L(M) of all linearizations of M .

3 Formal Properties of MSCs

3.1 Bounds

Bounds on the contents of communication channels is a major question to address
for distributed systems. The intuitive meaning of an action p!q(m) is that a new
message is sent from p to q. This message will transit through a network, and will be
buffered by q before consumption. Hence, every time a new message is sent, the size
of a reception buffer may increase. A desirable property is that a system can run
with a finite amount of memory dedicated to communication buffers: if no bound is
guaranteed at execution time, the communication buffers can be overloaded. When
this situation occurs, messages can be lost, but buffers overload can also lead to
machines failure, or even be exploited to create security breaches. In this setting,
the property to ensure is that no run of a system can let a buffer content exceed a
maximal size (we hence talk about universal bounds on runs).

Bounds are also important for implementation reasons. Ensuring that a (po-
tentially infinite) set of scenarios X can be executed with some maximal bound on
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buffer contents is one of the first properties to ensure to guarantee that the specifi-
cation is safely implementable. Even if no universal bound exists for the whole set
X , it is still interesting to guarantee that every MSC in X can be executed without
exceeding fixed maximal buffers sizes. Existence of such bound ensures that buffer
overloading is not enforced by some run of a MSC in X . Within this setting, we
hence talk about existential bound.

For a single finite execution, and for a finite set of finite MSCs, a maximal bound
always exists, and one can easily compute the maximal size of communication buffers
during an execution. Note however that existence of universal or existential bounds
is not always a decidable property for infinite state systems. For instance, deciding
if a reset Petri net is (universally) bounded is undecidable [45]. In this document,
we will show that boundedness problems are often decidable properties of scenario
models.

Definition 3 Let w be a word of Σ∗, and p, q ∈ P be two processes. Let us denote by
|w|p!q the number of messages sent from p to q in word w, and by |w|p?q the number
of messages received on p and sent by q in w. A linearization of Σ∗ is a word
w ∈ Σ∗ such that for any prefix v of w, and every pair of process p, q, |v|q?p ≤ |v|p!q
(there is no more reception of messages than sendings). A linearization w ∈ Σ∗ is
b-bounded if and only if for every pair of processes p, q ∈ P and any prefix v of w,
|v|p!q−|v|q?p ≤ b. A MSC M is existentially b-bounded if and only if there exists a b-
bounded linearization of M . A MSC M is universally b-bounded if and only if every
linearization of M is b-bounded. A MSC is existentially bounded (resp. universally
bounded) if and only if there exists some b ∈ N such that M is existentially (resp.
universally) b-bounded.

Definitions of existential and universal boundedness extends to sets of MSCs the
obvious way: a set of MSCs X is existentially b-bounded (resp. universally b-bounded
) if all MSCs X ∈ X are existentially b-bounded (resp universally b-bounded); X
is existentially (resp. universally) bounded if it is existentially (resp. universally)
b-bounded for some b.

Theorem 1 [96] Checking if a MSC M is existentially b-bounded can be done
in linear time. Checking that a MSC M is universally b-bounded can be done in
O(|M |2)

The intuition for the first part of the theorem is that any b-bounded prefix of
a linearization of a b-bounded MSC can be extended to a b-bounded linearization.
Hence it is sufficient to linearize M while enforcing bound b on every channel. The
second result comes from the fact that enforcing a bound on all executions is equiv-
alent to requiring that on a channel, the n + bth sending must occur after the nth

reception. If adding such dependency makes execution impossible, then M is not
universally b-bounded. This property is checked by detecting cycles in the extended
dependency relation, whence the quadratic complexity.

Definition 4 Given a MSC M = (E, (<p)p∈P , α, µ, φ) and a non-negative integer b,
let Revb be the binary relation on E such that eRevb e

′ if and only if, for some p and
q in P and m ∈ M, e is the i-th event on process p with the label λ(e) = p ? q (m)
and e′ is the i + b-th event on process q with the label λ(e′) = q ! p (m). We also
define Rev≥b = ∪b′≥bRevb′.

10 3. FORMAL PROPERTIES OF MSCS



CHAPTER 1. PRELIMINARIES

Proposition 1 (lemma 2 in [96]) A MSC M is ∃-B-bounded if and only if the
relation < ∪RevB is acyclic, if and only if the relation < ∪Rev≥B is acyclic.

If M is ∃-b-bounded then M is ∃-b′-bounded for all b′ ≥ b, because Revb′ is
included in the least order relation containing Revb and

⋃
p∈P <p. Let us consider

a MSC M with linearization p!q(m1)
b (q!p(m2) p?q(m2))

b q?p(m1)
b) for some fixed b.

Let (si, ri) denote the i
th pair of events (p!q(m1), q?p(m1)) and (s′i, r

′
i) the i

th pair of
events (q!p(m2), p?q(m2)), then sb <p r1Rev(b−1) s

′
b <q r1Rev(b−1) sb is a cycle, and

one can conclude that M is not existentially b-bounded.
This construction of the Revb relation will be used in chapter 5 to check if a

composition of HMSCs remains existentially bounded. In the next chapter, we will
also show that under some restrictions, it suffices to consider linearizations of MSC
up to some bound on channels to check some properties. To this extent, we define
the notion of bounded restriction of a language.

Definition 5 Let M be a MSC, with linearization language L(M). The restriction
of L(M) to bound n ∈ N is denoted by Lb(M) and is the restriction of L(M) to
b−bounded words.

3.2 Concatenation, atoms

So far, we have mainly addressed properties of finite MSCs. To obtain more elabo-
rated sets of scenarios, one need to add to MSCs usual composition operators that
are frequently seen is process algebra: choices, sequence, iteration, ... The first
useful operator is sequence of MSCs, also called weak sequential composition in the
literature. This operation allows for the merging of two diagrams, and is the basic
construct for HMSCs, MSC graphs and all their variants. All other operators will
be obtained with partial order automata.

Definition 6 Let M1 = (E1, (<1,p)p∈P , α1, µ1, φ1) and M2(E2, (<2,p)p∈P , α2, µ2, φ2)
be two MSCs defined over disjoint sets of events. The sequential composition of M1

and M2, denoted M1 ◦M2 is the MSC M1 ◦M2 = (E1 ∪E2, (≤1◦2,p)p∈P , α1 ∪α2, µ1 ∪
µ2, φ1 ∪ φ2), in which ≤1◦2,p= (≤1 ∪ ≤2 ∪{(e1, e2) ∈ E1 × E2 | φ(e1) = φ(e2)})∗,
where f1 ∪ f2 denotes a function defined over Dom(f1) ∪Dom(f2), that associates
f1(x) to every x ∈ Dom(f1) and f2(x) to every x ∈ Dom(f2).

Let us underline the fact that L(M1).L(M2) ⊆ L(M1 ◦M2), but that in general,
both languages are not equal. Indeed, in M1 ◦M2, events of M2 can be executed
before all events of M1 are executed.

The sequential composition of MSCs is defined for MSCs over disjoint sets of
events. However, a MSC over a set of events E can be considered as a representant
for an infinite class of isomorphic MSCs over other arbitrary sets of events. For
two MSCs M and M ′, we will write M = M ′ when M and M ′ are isomorphic,
that is when there exists an injective map h from E to E ′ that preserves locality,
local ordering, messages, and labeling. If we define events as integers, and if we
fix an arbitrary order on processes, we can define a canonical representant for each
isomorphism class of MSCs. Similarly, slightly abusing the definition of sequential
composition, we will write M ◦M ′ without checking that M and M ′ are defined
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Figure 1.2: An example of sequential composition

over disjoint sets of events, that is we consider that in M ◦ M ′, the MSC M ′ is
systematically an isomorphic copy of M ′ defined over event that do not appear in
M . This will allow us to write expressions of the form M ◦M . Notice that many
MSCs can be expressed indifferently as a single diagram, or as a concatenation of
several smaller MSCs. This immediately raises the question of whether a given MSC
can be decomposed into smaller factors.

Definition 7 A MSC M = (E, (<p)p∈P , α, µ, φ) is an atom if an only if, for every
pair of MSCs N,N ′ such that M = N ◦ N ′, we have N = M and N ′ = Mǫ or
N = Mǫ and N ′ = M . An atomic partition of M is a set of MSCs {N1, . . . , Nk}
defined over sets of events {E1, . . . Ek} such that E =

⋃
i∈1..k

Ei, and there exists

i1, i2, . . . , ik,M = Ni1 ◦ · · · ◦Nik . MSCs in a partition of M are called atoms of M .

Definition 8 Let M = (E, (<p)p∈P , α, µ, φ) be an MSC over set of events E. The
connection graph Conn(M) = (E,→Conn) of M is defined by v1 →Conn v2 if either
φ(v1) = φ(v2) and v1 ⋖ v2, or one of (v1, v2), (v2, v1) is a message in M (edges are
added from receives to associated sends).

Proposition 2 [71] An MSC M is atomic if and only if the connection graph
Conn(M) is strongly connected.

This property is rather straightforward: a MSC is an atom if it can not be
separated into two (or more) non-trivial pieces without cutting a message. It will be
important later in chapter 5 to test whether a chosen linearization of a projection
of a MSC is an atom. Indeed, we will also show that a connection graph can be
maintained online while unfolding a HMSC, hence allowing for online construction
of atoms. Furthermore, it gives us the following result:

Theorem 2 [59,71] Let M = (E,≤, λ, µ, φ) be a MSC. Checking whether M is an
atom and finding an atomic partition of M can be done in O(|E|+ 2.| ≤ |).

The proof for this theorem is rather simple: checking atomicity or finding a
partition resumes to finding connected components in the connection graph of M .
It can be done using Tarjan’s algorithm [133]. We do not detail this algorithm, and
refer interested readers to [71]. Figure 1.3 shows a decomposition of a non-atomic
MSC into atoms (denoted by dashed lines).

12 3. FORMAL PROPERTIES OF MSCS



CHAPTER 1. PRELIMINARIES

Figure 1.3: Decomposition of a MSC into atomic factors

Note that an atomic partition may contain isomorphic atoms. For a MSC M , we
will denote by Atoms(M) the quotient of the partition of M modulo isomorphism.
Slightly abusing the notation, we will consider that each element of Atoms(M) is a
MSC, and is a canonical representative of it isomorphism class.

Definition 9 Let M be a non atomic MSC, and let Atoms(M) = {M1, . . . ,Mk}.
The atomic language of M is the language Lat(M) composed of words Mi1. . . .Mik ⊆
Atoms(M)∗ such that Mi1 ◦ · · · ◦Mik = M .

Note that the atomic language of a MSC may contain several words. We will say
that two MSCs M and M ′ are independent if they are defined over distinct sets of
processes. When two MSCs M and N are independent, their order of concatenation
does not change the obtained MSC : M ◦N = N ◦M . Reusing the vocabulary from
traces, we will say that M and N commute, and write M ||N . Of course, these defini-
tions apply to atoms. We will say that two sequences of atoms are equivalent if they
generate the same MSC. Using this commutation relation, one can rewrite a sequence
of atoms M1 . . .Mi.Mi+1 . . .Mk into an equivalent sequence M1 . . .Mi+1.Mi. . . .Mk

as soon as Mi||Mi+1. The equivalence class [M1 . . .Mi.Mi+1 . . .Mk]|| is defined as
the closure of {M1 . . .Mi.Mi+1 . . .Mk} by the rewriting rule up to commutation.

3.3 An useful abstraction: the communication graph

Sometimes, reasoning on MSCs does not imply studying linearizations nor a partial
order, but only who communicates with whom. This information can be represented
as a communication graph, i.e. a directed graph which edges are processes, and which
vertices symbolize the fact that a process communicates with another process. We
will show in the next chapter that interesting subclasses of partial order automata
are defined from properties of communication graphs.

Definition 10 Let M = (E,≤, λ, µ, φ) be a MSC over a set of processes P. The
communication graph of M is a graph CGM = (P, V ), where V ⊆ P2, and (p, q) ∈ V
if and only if there exists (e, f) ∈ µ ∩ Ep × Eq.

3. FORMAL PROPERTIES OF MSCS 13
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Figure 1.4 shows the communication graph for the MSC of Figure 1.1. It con-
tains the three processes Sender, Medium, Receiver, and edges from Medium to
Receiver, from Sender to Medium, and from Medium to Sender.

Figure 1.4: An example of communication graph

Communication graphs have interesting properties with respect to concatenation.
Indeed, we have

CGM1◦M2 = CGM1 ∪ CGM2 = CGM1◦M2

4 Partial order automata, HMSCs

As indicated in previous section, MSCs alone are not sufficient to express interest-
ing MSC languages, and a designer rapidly needs control structures such as loops,
choices, etc. to design requirements. The usual way to obtain infinite MSC lan-
guages comporting orders of arbitrary sizes is to use partial order automata (or
a close variant called MSC graphs), often called High-level MSCs (or HMSCs for
short). Other higher-level structures such as inline expressions have also been pro-
posed to extend MSCs with adequate control structures. In the rest of this chapter,
we will only focus on partial order automata, and more precisely on HMSCs.

Figure 1.5: An example HMSC

Definition 11 A High-level MSC (HMSC) is a tuple H = (N,−→,M, n0, F ),
where N is a set of nodes, −→⊆ N × M × N is a transition relation, n0 ∈ N
is the initial node of H, and F is a set of accepting nodes.

Roughly speaking, HMSCs are automata labeled by MSCs. As for any kind of
automaton, we can define concepts such as transitions, paths, languages, etc.

Definition 12 Let H = (N,−→,M, n0, F ) be a HMSC. A path ρ of H is a sequence
of transitions t1.t2 . . . tk such that for every i in 1..k, ti ∈−→ is of the form ti =
(ni,Mi, n

′
i), and for every i in 1..k−1, n′

i = ni+1. A path ρ is initial if and only if it
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starts from node n0 (i.e., t1 = (n0,M1, n
′
1)), and it is an accepting path if and only

if it terminates on a node of F (i.e., tk = (nk−1,Mk, nk) for some nk ∈ F ). A path
is a cycle if and only if it starts and ends on the same node. A path ρ is a prefix
of another path ρ′ if and only if ρ′ is of the form ρ′ = ρ.ρ′′ for some ρ′′. A path is
maximal if and only if it starts from the initial node of H, and it is not the prefix
of another path (a maximal path can be finite or infinite).

Definition 13 Let ρ = t1.t2 . . . tk be a path of a HMSC H. The MSC associated
to path ρ is the MSC Mρ =

(
. . . (M1 ◦ φ2(M2) · · · ◦ φk(Mk)

)
where each φi is an

isomorphism that guarantees φi(Ei) ∩
⋃

j∈1..i−1

Ej = ∅.

More intuitively, the MSC associated to a path is obtained by concatenating
MSCs encountered along this path. In the sequel, to simplify notations, we will
forget the isomorphisms used at concatenation time, and we will simply write Mρ =
M1 ◦M2 ◦ · · · ◦Mk, even if some MSCs Mi and Mj are occurrences of the same MSC
diagram. The automaton structure as well as the concatenation operator allows for
the definition of : a set of path, a set of MSCs, and a set of linearizations.

Definition 14 A HMSC H = (N,−→,M, n0, F ) defines:

• A set of accepting paths, denoted PH

• A set of sequences of MSCs L(H) = {M1.M2 . . .Mk | ∃ρ = t1. . . . tk ∈ PH∧∀i ∈
1..k, ti is of the form (n,Mi, n

′)}

• A partial order family, or MSC language: FH = {Mρ | ρ ∈ PH}

• A linearization language: L(H) =
⋃

M∈FH

L(M)

One may immediately notice that the linearization language of a HMSC is not
necessarily regular. For instance, the HMSC of Figure 1.6 describes behaviors of the
formClient!Server(Data)n.Client!Server(Disconnect).Server?Client(Data)n.Server?Client(D
Note also that none of the languages defined in definition 14 take into account the
control structure of the automaton. We will however see that this control structure
is a central element to define syntactic subclasses of HMSCs.

Figure 1.6: A HMSC with non-regular set of linearizations.
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Definition 15 Let H = (N,−→,M, n0, F ) be a HMSC. A node c ∈ N is a choice
node if and only if there exists two distinct path ρ1, ρ2 starting from c.

Choice nodes in HMSCS allow for the definition of alternatives. Note however
that choices can not always be interpreted as a local branching in the control flow
of one single process. Indeed, choosing a scenario or another involves all processes
that carry minimal events in one branch of the choice. Consider for instance the
HMSC H1 of Figure 1.7. Node n0 is a choice node. However, processes A,B and
C,D do not communicate. To realize H1, these processes have to decide globally
the branch that they want to follow. This situation is called non-local choice, and
will be discussed more in detail in the next chapter. This remark highlight the fact
that even if HMSCs are automata, their control structure should not be strictly
interpreted as a control flow of some program. For instance, the semantics of a path
ρ = (n,M, n′)(n′, N, n′′) is Mρ = M ◦ N . Hence, in the behavior described by ρ,
some events of N might be executed before M has completely been executed. And
when M and N are independent, N might be completely executed before M . Hence,
sequence can not be interpreted as M is executed before N (even if this behavior is
allowed).

Similarly a too operational interpretation of HMSCs choices supposes that all
involved processes reach an agreement on which branch to execute as soon as one of
the processes executes the first event in one branch. Implicitly, this supposes that
there exists a global memory mechanism that lets all processes know which sce-
nario was chosen. However, here is no bijection between the set of paths Paths(H)
of H and the partial order family FH that H generates, and the same MSC can
be obtained as a concatenation of distinct sequences of MSC concatenated along
distinct branches. Consider for instance the HMSC H2 of Figure 1.7. The path
ρ1 = (n0,M1, n1)(n1,M4, n2)) and ρ2 = (n0,M2, n1)(n1,M3, n2)) generate the same
behavior containing two occurrences of message msg and of message query. Hence
considering a choice in the higher level structure is not always a safer interpretation.
A safe interpretation is then to see HMSCs as generators for MSC languages.

4.1 Bounds and atoms in HMSCs

One can immediately notice that HMSCs are more expressive than finite automata:
the linearization language of a HMSC is not necessarily regular. This is for instance
the case for the example of Figure 1.6, which linearizations can not be recognized by
a finite automaton. However, a HMSC with a single process and labeled by MSCs
that contain atomic actions only is an automaton.

Definition 16 A HMSC H is universally bounded by some integer b iff L(H) is
universally b-bounded. H is existentially b-bounded iff for every M in FH , there
exists a b-bounded linearization of M .

Note that a HMSC H = (N,−→,M, n0, F ) is necessarily existentially bounded
for some value bH that is the maximal value among minimal existential bounds for
MSCS inM. Indeed, for sequence of MSCs M = M1 ◦M2 ◦ · · · ◦Mk allowed by H ,
the word u1.u2 . . . uk, where each ui is a linearization of Mi is a linearization of M .
In particular, one can chose each ui as a word that minimizes the buffer contents.
We will call this value bH the existential bound of H .
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Figure 1.7: Choice nodes in two HMSCs H1 and H2

Definition 17 Let H = (N,−→,M, n0, F ) be a HMSC. For every b ∈ N we will
denote by Lb(H) the restrictions L(H) to b-bounded linearizations. We will denote
by Atoms(H) =

⋃
M∈M

Atoms(M) the set of atoms appearing in some MSC of H. We

will call the atomic language of H and denote by Lat(H) =
⋃

M∈FH

Lat(M) the set of

all sequences of atoms in Atoms(H)∗ which concatenation is a MSC in FH .

Note that in general, Lb(H) and Lat(H) need not be regular languages, even when
considering that b is the existential bound of H . Let us emphasize that the non-
regularity of HMSCs linearizations is not simply due to the fact that communication
buffers are not always universally bounded. The simple example of figure 1.8 below
shows a situation in which only one communication between two processes p and
q occurs (an hence communication buffers are universally bounded by one). The
linearization language of this example is L = {u.p!q(m).v.p?q(m) | |u.v|a = |u.v|b},
which is not regular, but universally 1-bounded. Considering the atomic language
does not yield a regular language either.

Figure 1.8: A non-regular and 1-bounded HMSC
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4.2 A transition system recognizing L(H)

HMSCs linearizations can be recognized by an infinite transition system, which
states are configurations of the HMSC. Configurations memorize a part of a path
in a HMSC, and the events that have not yet been executed in the MSCs labeling
transitions of the followed path. This information is kept as a sequence of segments.

Definition 18 Let H be a HMSC. A segment is a couple (T,DoneT ) where: T =
t1. . . . tk is a path of H, which transitions are respectively labeled by M1, . . . ,Mk, and
DoneT : P × |T | → N is a function that associates to every pair (p, i) an integer
that memorizes the rank of the last event executed on process p ∈ P in transition ti
of T . We furthermore require that:

• Each process that has executed an event of a MSC Mi has completed all its ac-
tions in preceding MSCs of the segment, i.e., ∀p ∈ P, ∀i ∈ 1..k,DoneT (p, i) >
0 =⇒ ∀j < i,Done(j, p) = |{e ∈ Ej | φ(e) = p}|

• The restriction of every Mi, i ∈ 1..k to already executed events is closed by
causal precedence, i.e. calling eMi,j,p the jth event on process p, then ∀q, ∀p, | ↓
(eMi,Done(i,p),p) ∩ {e ∈ Ei | φ(e) = q}| ≤ DoneT (i, q)

• any transition in T comports at least one event that is not yet executed: ∀i ∈
1..k, ∃p,DoneT (i, p) < |{e ∈ Ei | φ(e) = p}|

A configuration can be seen as a memory containing all events that remain to be
executed so that a started linearization belongs to L(H). Configuration are defined
as sequences of segments, plus the last node visited along a path of H .

Definition 19 A configuration of a HMSC is a pair C = (S1 . . . Sk, n), where
S1 . . . Sk is a sequence of segments, and n is a node of H. Let C = (S1 . . . Sk, n) and
C ′ = (S ′

1 . . . S
′
k′, n

′) be two configurations. We will say that a move from C ′ to C ′

with action a exists and write C
a
−→ C ′ when one of the following cases holds:

• there exists a segment Si = (Ti, Donei) of C that contains a transition ti,j is
which more that one event remains to be executed. There exists an event
e = eMi,Donei(j,p)+1,p such that α(e) = a and all events on process p have already
been executed in segments S1. . . . Si−1, as well as in all transitions preceding
ti,j in Ti. C

′ is the configuration C in which Done′i(j, p) = Donei(j, p) + 1. In
particular, (Ti, Donei) remains a segment.

• there exists a segment Si = (Ti, Donei) of C that contains a transition ti,j in
which e = eMi,Donei(j,p),p is the last event to execute in Mj, α(e) = a, and
such that all events on process p have been executed in segments T1. . . . Ti−1 as
well as in all transitions preceding tij in Ti. C ′ is the configuration
(S1 . . . Si−1.S.Si+1 . . . Sk, n), where S is the segment obtained by removing ti,j
from Ti (this needs recomputing Donei).

• There exists a path ρ starting from n, ending in a node n′, and an event e,
minimal in Mρ such that:
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α(e) = a, and no prefix ρ′ of ρ contains e. All event on φ(e) have been executed
in S1 . . . Sk. C

′ = (S1 . . . Sk.(ρ,Donek+1),n’) whereDonek+1(j, p) = 0 for every
process p 6= φ(e) or if Mj does not contain event e, and Donek+1(j, φ(e)) = 1
if Mj contains e.

A configuration is final if and only if it is of the form (ǫ, n) with n ∈ F : intu-
itively, all events along a final path of H have been executed. A transition system
recognizing linearizations of H is obtained by building inductively the set of config-
urations CH and the transitions δH ⊆ CH × Σ × CH between these configurations,
starting from the initial configuration (ǫ, n0). Obviously, a word w ∈ Σ∗ is a word of
L(H) if and only if allows a sequence of moves from the initial configuration (ǫ, n0)
to a final configuration. One can notice that the transition system defined this way
can be infinite, non-deterministic, and that the set of configurations that can be
reached in one move from a given configuration C can also be infinite.

5 Conclusion

In this chapter, we have defined the main objects that will be used throughout
this document: MSCs, HMSCs and their languages, atoms,... In the next chapter,
we will focus on classical problems frequently addressed on formal models, such as
model checking, minimality of a model, existence of bounds, etc.

An important thing to remember at this stage of the document is that a HMSC
is a finite state automaton, labeled by partial orders, and that can be seen as the
generator of a (potentially infinite) partial order family FH that may contain partial
orders of arbitrary size. This partial order family can also be seen as a compact
representation for the language L(H), that contains all linearization of partial orders
in FH , and can be of exponentially greater size. This language can be recognized
by a potentially infinite and infinitely branching transition system.

The problems addressed on HMSCs will usually find efficient solutions when they
can be solved by checking a syntactic property of the considered HMSC, or solved on
a reasonably small subset of orders in FH , or words in L(H). If a question needs to
consider the whole interleaved language L(H), or the underlying transition system,
then the problem will often be undecidable (this is for instance the case for model
checking of global temporal logics). Even in the decidable cases, the complexity due
to considering all interleavings is rapidly redhibitory.

5. CONCLUSION 19
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Chapter 2

Standard problems for partial
order automata

Il n’y a pas de problèmes ; il n’y a que des solutions. L’esprit de l’homme invente
ensuite le problème. Il voit des problèmes partout.

There is no problem. There are only solutions. Then man’s mind invents a
problem. It sees problems everywhere.

[André Gide]

1 Introduction

In this chapter, we address standard problems for formal models: comparison of
two models, comparison of a model with regular languages, search for a canonical
representation,....

We first recall several well known results that show that many problems are unde-
cidable for partial order automata. These negative results are mainly due to the ex-
pressive power of the formalism, that can encode rational relations or Mazurkiewicz
traces. All these negative results could definitely hinder practical use of partial order
automata. However, we also show in this chapter that several reasonably expres-
sive and decidable subclasses of the language allow for the decision of most of the
addressed problems.

2 Negative results

2.1 HMSC Comparison

Comparing the semantics of two distinct models is an natural question. This ques-
tion is even more crucial for partial order automata, as we have seen in chapter 1
that a non-atomic MSC can be generated by concatenations of different sequences
of MSCs. Even if HMSCs are a graphical model, finding that two models are equiv-
alent is not always straightforward. A question that is hence frequently addressed is
whether, for two specifications H1, H2 we can say that H2 is a refinement of H1 (i.e.
FH1 ⊆ FH2). Another usual question is whether FH1∩FH2 = ∅. Intuitively, one may
consider H1 as a set of behaviors that must be avoided, and H2 as a specification
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under study. Answering the problem FH1 ∩FH2 = ∅? means checking if H2 contains
none of the bad behaviors collected in H1.

Theorem 3 Let H1, H2 be two HMSCs, and let R be a regular language. The
following problems are undecidable:

Orders Linearizations Regularity

i) FH1 ∩ FH2 = ∅? [115] iv) L(H1) ∩ L(H2) = ∅? vii) R ∩ L(H1) = ∅? [14]
ii) FH1 = FH2? [58] v) L(H1) ⊆ L(H2)? viii)L(H1) ⊆ R? [33]
iii) FH1 ⊆ FH2? vi) L(H1) = L(H2)? ix) R ⊆ L(H1)? [33]

x) is L(H1) regular? [33,74]

Most of the above mentioned undecidability results come from the relation be-
tween HMSCs and rational traces [43]. We refer interested readers to the references
given for items i), ii)vii), x) for more information. The decidability of iii) would
imply that ii) is also decidable, so iii) is undecidable. Items iv), v), vi) are direct
consequences of i), ii), iii) as the existence of a MSC in FH1 ∩FH2 implies the exis-
tence of a word in L(H1) ∩ L(H2), and the converse also holds if we assume FIFO
MSCs. These undecidability properties have also been demonstrated in [33], by re-
duction from undecidable problems on rational relations. Indeed, a HMSC labeled
by MSCs that comport two processes and atomic actions can encode very easily a
rational relation in X∗ × Y ∗. The first process carries actions from alphabet X and
the second process actions from alphabet Y . Each MSC hence encodes a relation
between a word of X∗ and a word of Y ∗. Decidability of item viii) would imply
that on can decide whether the intersection of Σ∗ \ R and L(H1) is empty or not,
which would imply that problem vii) is decidable. Last, ix) can be used to encode
a universality problem for rational trace languages.

The proofs of some items in Theorem 3 refer to rational traces, rational relations,
etc. Undecidability in HMSCs can however be brought back to undecidability of well
known problems. For instance, FH1 ∩FH2 = ∅ can be used to encode an occurrence
of the well know Post’s correspondence problem (PCP). We give a reduction from
PCP to this intersection problem in appendix. The reason why we highlight this
proof in particular is that undecidability in HMSCs can frequently be brought back
to this encoding.

2.2 Confluence

The confluence problem is a standard question for several models such as traces. The
main question addressed by confluence is whether two distinct choices from a given
configuration depicting independent behaviors describe the beginning of maximal
runs that should be considered as equivalent. We will write M ⊑ M ′ if M is a prefix
of M ′.

Definition 20 Let H be a HMSC. H is said confluent if and only if, for every pair
ρ, ρ′ of maximal paths of H such that Mρ et Mρ′ are independent, there exists a path
γ of H such that Mρ ⊑Mγ et Mρ′ ⊑Mγ

The intuition behind confluence is that when a choice between independent be-
haviors exist (Mρ and M ′

ρ in the definition), then performing one behavior should
not prevent the other one to occur, and there is a behavior including Mρ and M ′

ρ.
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Theorem 4 [113] Checking whether a HMSC is confluent is undecidable.

This problem can easily be brought back to an intersection problem (and hence
encode a PCP) as we are looking for a common behavior Mγ . The confluence
problem is tightly connected to the interpretation of choices in HMSCs. Very often
in specification languages, an alternative between two behaviors is considered as a
control point in a system where some decision is taken. However, this is exactly the
meaning of choices in HMSCs. Considering HMSCs as generators for partial orders,
choices are means to append more than one scenario to an already generated prefix.
Considering a choice as a control point is sometimes dangerous, as the decision to
behave according to a scenario or according to another is a global decision involving
several processes. This global decisions is not necessarily distributable, as we shall
see in chapter 7.

2.3 Useless Branches

As we have seen in previous chapter, there is more than one way to obtain the same
MSC by concatenation of atoms (or even of non-atomic MSCs). A natural question
to address is whether a HMSC contains distinct runs generating the same partial
order. This can help, for instance reducing the size of the model, or even generating
a canonical version of a HMSC. We will show however that this problem is again
undecidable.

Definition 21 Let H be a HMSC, and c be a choice node of H. Let ρ be a finite path
of H starting from node c. Path ρ is a useless branch if and only if, for every path
ρ′ such that ρ.ρ′ is an accepting path starting from c, there exists another accepting
path γ that does not have ρ as prefix, and such that Mγ = Mρ.ρ′.

Obviously, detecting a useless branch of a HMSC resumes to testing inclusions
of the set of MSCs F1 = {Mρ.ρ′ | ρ.ρ′ maximal path starting at node c} into the
set of MSCs F2 = {Mγ | γ maximal path starting from c∧ γ 6= ρ.γ′}. This problem
is hence clearly undecidable. This means in particular that when a new branch is
appended at a choice node in a HMSC, one can not decide if this new branch adds
some behavior to the original specification.

2.4 Races

Race is often described as a semantical weakness of MSCs [13, 113]. The usual
interpretation of the ordering along a process line is that all events depicted in
a certain order on a process must occur in that order in any execution of the
considered MSC. Muscholl et al [113] remark that this assumption implicitly means
that receiving a message is in fact a consumption of this message from a buffer,
that is decided by the receiving process according to the total ordering described
in the MSC. However, some systems may work without buffering mechanisms, and
reception of a message hence means the ”physical arrival” of the message on an
agent. If the message is not consumed immediately, it might be lost. Hence, strict
ordering of two receptions of messages coming from different agents may not be
implementable. For this reason, Muscholl et al [113] propose two interpretations of
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ordering in MSCs. The visual order on events, which is the standard interpretation
of MSCs, and the causal order, which does not impose ordering of receptions for
messages originating from distinct processes. An MSC contains a race when both
orders are not equal. One can consider that races are ambiguities in models that
may lead to wrong interpretations at implementation time, and hence should be
avoided, or at least documented.

For HMSCs, the definition of races is more involved. A HMSC H may define a
behavior M in which two receptions e = p?q(m) and f = p?r(n) are visually, but
not causally ordered. This will not be considered as a race if H contains another
MSC M ′ that differs from M only by reordering f ≤ e. The main intuition is that
if a visual ordering is ambiguous, but the additional behaviors that are allowed by
the causal ordering are visually represented in another path of H , then the visual
ordering can not be misinterpreted.

Definition 22 Let M be a MSC. The visual order of M is the order ≤= (
⋃
p∈P

<p

∪µ)∗. The causal order of M is the ordering ≺= (µ ∪
⋃
p∈P

<p \{(e, f) ∈ E2
p ∩ (ES ×

ER∪ER×ER)}∪{(e, f) ∈ E∩ER | φ(e) = φ(f)∧∃e′ <q f
′, e = µ(e′), f = µ(f ′)})∗.

M contains a race if and only if ≤6=≤.

Despite the apparently complex definition of visual ordering, the intuition is
rather simple: the visual ordering relaxes the order among sendings and receptions,
and among receptions on the same process, except when the received messages orig-
inate from the same sending process. In such case, Muscholl et al consider that
FIFO ordering holds, and can help receiving messages in their order of emission.
Checking if a MSC M contains a race can be done in O(|M |2). There has been sev-
eral definitions for races [13,15,113,125], but all definitions highlight a discrepancy
between the visual ordering that orders all event sequentially along processes, and a
semantic variant of this interpretation of MSCs that relaxes ordering on receptions.

As the ordering among events changes depending on whether the interpretation
for ordering is causal or visual order, we will distinguish two sets of linearizations
for a MSC, and denote by Lin≤(M) the set of linearizations of the visual order of
M . Recall that this is the standard semantics of MSCs, and when no ambiguity can
arise, we will simply write Lin(M) instead of Lin≤(M). Similarly, we will denote
by Lin≺(M) the set of linearizations of ≺. Note that by definition, for any MSC
M , we have ≺⊆≤.

Definition 23 Let H be a HMSC. H is race-free if and only if Lin≺(H) = Lin≤(H)

Theorem 5 Deciding is a HMSC H is race-free is undecidable.

The proof of this theorem comes from the fact that checking equality of Lin≺(H)
and Lin≤(H) can encode an equivalence problem for traces with two distinct com-
mutation relation, which is know undecidable. Details of the proof can be found
in [113].
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3 Positive results

All the negative results listed in previous section could be seen as a huge drawback
for order automata, and mean that HMSCs are in fact not adapted as a specification
language. Fortunately, there are several decidable syntactic subclasses of HMSC for
which most of the properties listed in this chapter are decidable. Before reviewing
some of these classes, we show some positive results that apply to HMSCs without
restriction.

3.1 The message problem

Let us define a trivial problem for HMSCs, that consists in deciding whether a
message of a chosen type is sent an received in some behavior of a specification
given as a HMSC H .

Definition 24 Let H = (N,−→,M, n0, F ) be a HMSC, m be a message type, and
p, q ∈ P two processes of H. The message problem consists in deciding whether
there exists a MSC M ∈ FH that contains a sending of m by p and the corresponding
reception on process q.

A solution for this problem is trivial, and simply consists in exploring all MSCs
in M, and check if one of them contains a message m from p to q. This prob-
lem alone has little interest. However, one may notice that this problem is already
undecidable for Communicating Finite State Machines [31]. This means that com-
municating finite state machines and HMSCs are distinct languages with a priori
different expressive powers and distinct decidability results. Furthermore, we will
show in chapter 9 that undecidability of the message problem implies undecidability
of diagnosis in general.

3.2 Divergence

The divergence problem is a standard question in a distributed system. Processes
composing a system can be of very different nature, and run on different machines.
Consequently, some processes can be faster than others. In producer/consumer
situations, where a group of processes P continuously sends messages to another
group of processes P ′ and no acknowledgment is sent from P ′ to P, if the processes
in P ′ are slower than those in P, then the communication buffers can be rapidly
overflown. This situation can result in message losses or memory overflows, and
should be avoided.

Definition 25 A HMSC H is divergent if and only if there exists no universal
bound on the contents of communication buffers in L(H).

Theorem 6 [23] A HMSC H is divergent if and only if for every simple loop ρ of
H, the transitive closure of the communication graph CGMρ is symmetric.

Theorem 7 [14] Checking that a HMSC is not divergent is a co-NP complete
problem.
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A proof of this theorem can be found in appendix. Though we do not want
to include all existing results on HMSCs, this proof is representative of standard
proof techniques for co-NP completeness in partial order automata, and can be
reused to prove that deciding if a HMSC belongs to the class of regular or globally
cooperative HMSCs is also in Co-NP. Indeed, one can easily encode a SAT problem
as connectivity question on the communication graph of some path in a HMSC H
built from the SAT problem.

Note that non-divergent HMSCs need not have regular linearization languages,
as shown by the example of Figure 1.8.

4 Syntactic subclasses of HMSCs

4.1 Regular HMSCs

The term regular HMSC is not very well chosen, as it lets reader think that an
HMSC is a regular HMSC if and only if its linearization language is regular (which
is undecidable in general, as shown by [33, 74]). We will show in this section that
this term designates a decidable sub-class of HMSCs (i.e. it is decidable whether
a HMSC belongs to this syntactic sub-class of the whole formalism), and not an
undecidable property of linearization languages. Regular HMSC are also called
bounded HMSCs [14], loop connected HMSCs or locally synchronized [113].

Definition 26 Let H be a HMSC. H is a regular HMSC if and only if, for every
cycle ρ of H, the communication graph of Mρ is strongly connected.

Theorem 8 [14,113] Let H be a regular HMSC. Then, L(H) is a regular language.
Furthermore, L(H) is recognized by an automaton with at most 2(|P|−1).m.(m.n.|P|)|P|

states, where m is the number of transitions in H and n is the maximal number of
events in a MSC of H.

Theorem 9 [14, 113] Checking if a HMSC is regular can be done in O(m.n.2|P |)
and is a co-NP-complete problem.

The Co-NP completeness proof uses the same argument as for divergence: A
SAT problem can be encoded as a search for a cycle with a strongly connected
communication graph.

The algorithm given in [14] is as follows:
Chose a partition of P into two sets P,Q of processes. Remove from H all

transitions labeled by HMSCs with communications from a process in P to a process
in Q. In the resulting graph, find all strongly connected components. If one of these
components C involves processes from both P and Q, then any cycle of C has a
communication graph that is not strongly connected.

One can alternatively chose a subset X of M, check that the union of com-
munication graphs of MSCs in X is not strongly connected. Then, restrict H to
transitions labeled by a MSC in X , and check if the resulting graph contains cycles.
This algorithm was initially proposed in [53], and yields a complexity in O(m.n.2|M|).

Of course, regular HMSCs enjoy all good properties of regular languages. For
two regular HMSCs H1, H2 and a regular language R, one can decide if FH1 ⊆ FH2 ,
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FH1 ∩ FH2 = ∅, L(H1) ⊆ L(H2), L(H1) ∩ L(H2) = ∅, L(H1) ⊆ R, R ⊆ L(H2),
L(H1) ∩ R = ∅. Note that some HMSCs with regular linearization languages do
not belong to the class of regular HMSCs. Consider for instance the HMSC of
Figure 2.1. Its linearization language is (a + b)+, which is a regular linearization
language. However, from definition 26, it is not a regular HMSC. As deciding is a
HMSC has a regular linearization language is undecidable, one can not either decide
if there exists a way to transform a HMSC into an equivalent regular one, nor design
an effective procedure to compute such transformation.

Figure 2.1: A HMSC with regular linearization language

4.2 Globally cooperative HMSCs

The class of regular HMSCs is quite restrictive: first of all it is limited to regular
specifications only. Then, it is only a syntactic subclass of HMSCs, and does not
capture the whole class of HMSC with a regular linearization language. A strictly
greater and more interesting class of HMSC is the class of globally cooperative HM-
SCs, that was defined in [56, 109].

Definition 27 A HMSC H is globally cooperative if and only if, for every cycle ρ
of H, the communication graph of Mρ is a connected graph.

Unsurprisingly, verifying that a HMSC is globally cooperative is a Co − NP
complete problem. The proof (available in appendix) reuses the SAT encoding used
for the divergence problem. The class of globally cooperative HMSCs enjoys some
useful decidability results:

Definition 28 Let H be a HMSC, and let X ⊆ L(H). We will say that X is a set
of representatives for H if and only if for every M in F(H) we have L(M)∩X 6= ∅.

Theorem 10 [55] Let H be a globally cooperative HMSC. Then there exists an
integer b such that Lb(H) is a regular set of representatives.

In fact, the result given by [55](Thm 4.1) is more general, and addresses any
existentially bounded MSC language. Indeed is a set of MSCsM is existentially b-
bounded, then it is equivalent forM to be the language of a CFM, to be the language
of some globally cooperative HMSC, and to have a regular set of representatives
Lb(M).
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Theorem 11 [56] Let H be a globally cooperative HMSC. Then, Lat(H) is rec-
ognized by a non-deterministic automaton of size at most 2O(n.k.p), where k is the
maximal size of some MSC in M, n is the number of transitions in H, and p the
number of processes.

Corollary 1 Let H1,H2 be two HMSC, and let H2 be globally cooperative. Then
checking whether FH1 ⊆ FH2 and FH1 ∩ FH2 6= ∅ is decidable, and are respectively
EXPSPACE and PSPACE complete.

Similar results hold for checking L(H1) ⊆ L(H2) and L(H1) ∩ L(H2) 6= ∅. The
complexity comes from the fact that checking FH1 ⊆ FH2 amounts to checking that
Lat(H1) ⊆ Lat(H2). Furthermore, it is sufficient to consider a set of representants
X1 such that [X1]|| = L

at(H1) to check inclusion, as Lat(H2) is regular, and closed
by commutation( from theorem 11, sequences of atoms of H2 are recognized by a
finite automaton). We can hence compute from H1 a new HMSC H ′

1 that replaces
each transition labeled by a MSC M fromM1 by any sequences of transitions la-
beled by an atomic decomposition of M . We can similarly compute a HMSC H ′

2

labeled by atoms, and its commutative closure H ′′
2 . It is then sufficient to check

that L(H ′
1) ⊆ Lat(H ′′

2 ). A similar property holds for intersection, where it suffices to
check L(H ′

1)∩L
at(H ′′

2 ). Both procedure yields the EXPSPACE and PSPACE com-
plexities. The hardness part for inclusion comes easily, as one can easily encode the
universality problem from loop-connected automata [113] with HMSCs inclusion.
For the intersection, [56] encodes computations of polynomially space-bounded Tur-
ing Machines with HMSC inclusion.

The more important property of globally cooperative HMSCs is that their lin-
earizations can be represented by a finite structure.

Theorem 12 [61] Let H be a globally cooperative HMSC, and let b be the maximal
existential bound obtained for a bMSC labeling some transition of H. Then, Lb(H)
is a regular set of representatives for L(H), and can be recognized by an automaton
of size Hb2·|P|4·|H|.

This property gives a way to effectively check whether intersection or inclusion
of linearization languages of HMSCs.

Definition 29 A HMSC is locally-cooperative iff, for every pair of transitions
(n,M1, n1) and (n1,M2, n2), the communication graphs of M1,M2, and M1 ◦ M2

are weakly connected.

Obviously, checking that a HMSC is locally-cooperative is linear in the size of
the considered HMSC. Furthermore, locally-cooperative HMSCs admit smaller rep-
resentations of atomic languages.

Theorem 13 [56] Let H be a locally cooperative HMSC. Then, Lat(H) is recognized
by a non-deterministic automaton of size k.n.2p.(p + 1)p, where k is the maximal
size of some MSC inM, n is the number of transitions in H, and p the number of
processes.

28 4. SYNTACTIC SUBCLASSES OF HMSCS



CHAPTER 2. STANDARD PROBLEMS FOR PARTIAL ORDER AUTOMATA

The class of globally-cooperative and locally cooperative HMSCs are totally dis-
joint. Indeed, a HMSC without loops is necessarily globally cooperative, but can
be non-locally cooperative. Similarly, one can find a HMSC with two consecutive
transitions t1, t2 of a HMSC such that the concatenation of both has a disconnected
communication graph, and such that t2 is a connected loop and t1.t2 is not a cycle.

The subclass of globally cooperative HMSCs is tightly connected to the so-called
recognizable HMSCs introduced by [109]. However, as we show below, global co-
operation is a decidable syntactic criterion, while recognizability is an undecidable
semantic notion.

Definition 30 Let H be a HMSC over a set M of MSCs, and L be an MSC
language. H is recognizable if and only if there exists a finite automaton over
Atoms(M) (i.e. a HMSC) that recognizes FH .

Theorem 14 [109] Let H be a HMSC. Then it is undecidable to know whether H
is recognizable.

The reason for this undecidability comes from the relation between MSC lan-
guages and traces. Let Γ be a finite set of atomic bMSCs, ant let || be the indepen-
dence relation among MSCs. Then, the relation that maps each trace [a1 ˙. . .an] ∈M
to the MSC a1 ◦ . . . an is an isomorphism. This relation between traces and HMSC
sheds a new light on decidability problems for HMSCs, as recognizability, universal-
ity, etc. are notoriously undecidable problems for traces.

Theorem 15 [109] Let L be a MSC language. Then L is recognizable if and only
if there exists a globally cooperative HMSC H such that FH = L.

Let us comment on this theorem. It means that every globally cooperative
has a recognizable language. This is not a surprising result, as one can always
transform a HMSC H into another HMSC Hat labeled by atoms, by decomposing
all MSCs in H into atomic sequences. Of course, nothing forces the atom language
of an arbitrary HMSC Hat to be recognizable. Now, if H is globally cooperative,
the atomic language of Hat falls into the class of star-connected expressions [43],
which enjoys some nice decidability properties. In particular, one can compute an
automaton A over Atoms(H) that recognizes the language of atomic decomposition
of MSCs in FH [113]. From this latter work, we also know that the size of A is
in (n2.2a)n.a+n+1, where n is the size of Hat and a the size of Atoms(H). Note
also that global cooperation is a purely syntactic property. Consider for instance
the two HMSCs of Figure 2.2. HMSC H1 is not globally cooperative, as actions
a and b in MSC U2 are independent atoms. However, one can easily show that
this HMSC generates MSC with an arbitrary number of actions a on process p and
b on process q. This can be easily represented by the HMSC H2 of Figure 2.2,
which is globally cooperative. As recognizability of a HMSC is undecidable, this
also means that there exists no generic algorithm to transform a recognizable non-
globally cooperative HMSC into a globally cooperative one.
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Figure 2.2: A non-globally cooperative HMSC H1 and an equivalent globally coop-
erative HMSC H2

4.3 Local-choice HMSCs

The last subclass of HMSCS addressed in this chapter is the class of Local-choice
HMSCs. This class is interesting, as it allows for automated implementation tech-
niques that transform HMSCs into equivalent finite state machines. This implemen-
tation problem will be addressed in more details in chapter 7 of this document. As
already mentioned in chapter 1, alternatives in HMSCs should be handled with care,
as two distinct branches of a choice may generate the same behavior. However, if
two branches of a choice are different behaviors, one can interpret alternatives in
HMSCs as alternatives in the control flow of a distributed program. At the descrip-
tion level addressed by HMSCs, a choice may involve several processes, that ”agree”
to perform one scenario rather that another. Consider for instance the HMSC of
Figure 2.3. In this example, there is an alternative between a behavior in which
process A can decide to send message m, and then this message is received by pro-
cess B, and another one in which process B sends message n, which is received by
process A. In each scenario, either A or B take a decision , and the other process
should behave accordingly. In a distributed ans asynchronous context, enforcing
these two behaviors only can be achieved by some election or consensus mechanism
between A and B. Otherwise, careless implementation of this specification can lead
to a deadlock, if A send message m and B sends message n simultaneously. This
situation is called non-local choice, and was first identified in [23]. Locality of choices
an HMSC is an interesting property : it helps ensuring implementability. It was also
shown in [56] that locality of all choices of an HMSC has an impact on complexity
and decidability of intersection and inclusion problems. We recall the definition of
local choice HMSCs and complexity results hereafter.

Roughly speaking, a choice node in a HMSC is local if and only if one single
process can decide which scenario will be followed by all the process participating
to the specification after this choice. A MSC can have several minimal instances,
called deciding instances. The set of deciding instances in a bMSC M is simply
φ(Min(M)). They carry the first events that happen in M , and execution one of
these events can be interpreted as the decision to execute M . Obviously, these events
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Figure 2.3: A non-local HMSC

cannot be message receptions.
The situation depicted in Figure 2.3 generalizes to choices with an arbitrary

number of branches. There are several path starting from a choice node, and each
path defines a MSC, with its deciding instances. According to the semantics of HM-
SCs, the deciding instances must choose to perform exactly the same behavior, and
the other non-deciding instances have to conform to this choice. We can formalize
local choices as follows:

Definition 31 (Local choice node) Let H = (N,−→,M, n0, F ) be an HMSC,
and let c ∈ N . Choice c is local if and only if for every pair of (non necessarily

distinct) paths ρ = c
M1−→ n1

M2−→ n2 . . . nk and ρ′ = c
M ′

1−→ n1
M ′

2−→ n′
2 . . . n

′
k there is

a single minimal instance in Mρ and in Mρ′ (i.e. φ(Min(Mρ)) = φ(Min(M ′
ρ)) and

|φ(Min(Mρ))| = 1). H is called a local-choice HMSC if all its choices are local.

Intuitively, the local-choice property [23] guarantees that every choice is con-
trolled by a unique instance. Note however that this definition addresses pairs of
path starting from a node, and chosen from an set of path that need not be finite.
Fortunately, remarking that φ(min(M ◦M)) = φ(min(M)), one needs not consider
twice the same transition. Hence checking locality of a choice can be brought back
to properties from a finite set of paths.

Theorem 16 (Deciding locality) Let H be an HMSC. H is not local iff there
exists a node c and a pair of acyclic paths ρ, ρ′ originating from c, such that Mρ

and Mρ′ have more than one minimal instance.

Corollary 2 (Complexity of local choice) Deciding if an HMSC is local-choice
is in co−NP .

From theorem 16, an algorithm that checks locality of HMSCs is straightfor-
ward. It consists in a width first traversal of acyclic paths starting from each node
of the HMSC. If at some time we find two paths with more than one minimal in-
stance, then the choice from which these paths start is not local. Note that minimal
instances need not be computed for the whole MSC labeling each path, and can
be updated at the same time as paths. Indeed, if ρ = ρ1.ρ2 is a path of H , then
φ(Min(Mρ)) = φ(Min(Mρ1)) ∪ (φ(Min(Mρ2)) \ φ(Mρ1)). It is then sufficient for
each path to maintain the set of instances that appear along this path, and the
set of minimal instances, without memorizing exactly the scenario played. As we
consider only acyclic paths of the HMSC the following algorithm terminates.
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The following algorithm was originally proposed in [79]. It builds a set of acyclic
paths starting from each node of an HMSC. A non-local choice is detected if there
is more than one deciding instance for a node c. The algorithm remembers a set of
acyclic paths P , extends all of its members with new transitions when possible, and
places a path ρ in MAP as soon as the set of transitions used in ρ contains a cycle.

Algorithm 1 LocalChoice(H)

for c node of H do
P = {(t, I, J) | t = (c,M, n) ∧ I = φ(min(M)) ∧ J = φ(M)}
MAP = ∅ /*Maximal acyclic Paths*/
while P 6= ∅ do
MAP = MAP ∪ {(w.t, I ′) | w = t1...tk ∧ tk = (nk−1,Mk, nk), t = (nk,M, n) ∧
t ∈ w ∧ (w, I, J) ∈ P ∧ I ′ = I ∪ (φ(min(M))− J)}
P = {(w.t, I ′, J ′) | (w, I, J) ∈ P,w = n1...nk ∧ tk = (nk−1,Mk, nk), t =
(nk,M, n) ∧ t 6∈ w ∧ J ′ = J ∪ φ(M) ∧ I ′ = I ∪ (φ(min(M))− J)}

end while
DI =

⋃
(w,I)∈MAP

I /*Deciding Instances*/

if | DI | >1 then
H contains a non-local choice c

end if
end for

The class of Local-choice HMSCs is particularly interesting, as only a few restric-
tions to this class allow to defines scenarios that can be implemented (i.e. translated
into communicating finite state machines) by simply projecting the specification on
each process. We will address the synthesis problem more in detail in chapter 7 of
this document. Beyond the synthesis problem, local-choice HMSCs have interesting
decidability and complexity issues.

Theorem 17 [56] Let H1, H2 be two local-choice HMSCs, and let s1, s2 denote
respectively the sum of the sizes of MSCs inM1 andM2. Deciding whether L(H1) ⊆
L(H2) is NLOGSPACE-complete. This problem can be solved deterministically in
time O(p2.(s1 + s2)

2). Deciding whether L(H1) ∩ L(H2) = ∅ is PSPACE-complete
in s2.

Note that the class of local choice HMSCs defined in [56] slightly differs from
ours: it imposes that the first MSC appearing along a path starting after a choice
node has a minimal event located on a process that is active in the MSC preceding
the choice. It also imposes that every MSC generated by H starts with a single
minimal event. There is also an implicit assumption that the HMSC is designed
in such a way that all processes play a role between two choices. This assumption
facilitates the implementation of local-choice HMSCs, as we shall see in chapter 7.
The definition of [56] also allows for the transformation of local-choice HMSCs into
equivalent HMSCs laying in a subclass of locally-cooperative HMSCs, which yields
more efficient model checking results. Note however that the complexity results
defined in [56] still hold for our definition of local-choice HMSCs, as one can always
transform a local choice HMSCs H into a HMSC H ′ that meet the requirements
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of [56] while preserving the results for the intersection and inclusion problems. This
can be achieved by concatenating all MSCs between two choice nodes, and adding
an initial ”fake” transition labeled by an MSC in which an arbitrary chosen process
sends a message to all processes appearing in H1, H2. This fake transition does not
affect the results nor the complexity.

5 Conclusion

We have seen in this chapter that even if many interesting problems (vacuity of
intersection of two HMSC languages, inclusion, etc. ) are undecidable for HMSCs
in general, there are decidable syntactic subclasses for which these problems are
decidable. An interesting fact that should be noticed is that these subclasses do not
restrict to HMSCs with regular linearization languages. As indicated previously,
classifying a HMSC as globally-cooperative, divergent, regular, ... can be done by
analyzing the properties of its cycles. Hence, it is not surprising that all these
classes are not disjoint. Indeed, any regular HMSC is also globally cooperative and
non-divergent. However, a globally cooperative HMSC can be divergent or not (one
can easily build a HMSC with a simple loop that iterates the sending of a message
m from a process p to a process q, which is divergent, but globally cooperative).
Local-cooperation is decided on pairs of transitions of the HMSC, and local-choice
does not depend on cycles, so these properties are clearly orthogonal to cycle-based
properties. It has also been shown [56] that a HMSC is regular if and only if it is
globally cooperative, and has a universal bound on its channel contents, that is it
also not divergent.

The Figure 2.4 below summarizes the relations among syntactic subclasses of
HMSCs that were defined in this chapter. Unsurprisingly, regular and locally coop-
erative HMSCs are also globally cooperative. Note also that a locally-cooperative
HMSC that is not regular is necessarily divergent, as there exists a cycle with a con-
nected (but not strongly connected) communication graph in this HMSC, labeled
by a MSC with at least two processes.
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Figure 2.4: A classification of HMSC subclasses
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Chapter 3

An extension of partial order
automata: splitting messages

Toute tentative en vue de diviser quoi que se soit par deux devrait, a priori, nous
inspirer une extrême méfiance.

Attempts to divide anything into two ought to be regarded with much suspicion.
[Charles Percy Snow, The two cultures]

1 Introduction

In the first two chapters of this document, we have shown that partial order automata
are a powerful modeling formalism: they can encode traces, rational relations,...
Unsurprisingly in this context, many usual problems that are decidable on automata
become undecidable for partial order automata. We have seen that reasonable and
decidable syntactic subclasses allow for the decision of interesting problems, and
that the expressive power of these subclasses go beyond regular languages. One
may think that using models outside of these classes resumes to trading expressive
power for decidability. However, even in their full generality, HMSCs can not model
very simple protocols that are frequently used in distributed systems, the so-called
sliding windows protocols.

A sliding window protocol between two processes can be seen as a sequence of
questions/answers: a process p asks a question to another process q, which returns
his answer. In order to speed up the exchanges between p and q when there is
more than one question, process p can send some questions in advance, without
waiting for q′s answer. To avoid losses, and also to ensure correctness of a sequence
of answers, messages exchanged between p and q are labeled by identifiers. Each
process sends to his partner his message tagged by such identity, plus the identity
of the last message received in a lossless sequence. With this tagging mechanism,
a process can detect that one of his messages was lost, and retransmit it, or get a
confirmation of receptions, and then decide to send more messages in advance. The
number of messages sent in advance is called the ”‘size of the window”. Protocols
such as TCP-IP use this kind of mechanism.

One important fact to notice for executions of this kind of protocol is that some
executions may have the form of braids. Furthermore, these braids consist of atoms
of arbitrary sizes. Such sets of executions of arbitrary size can not be represented
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as concatenations from a finite set of atomic MSCs. Consider for instance the two
MSCs of Figure 3.1. This figure describes exchanges of questions/answers between
a process p and a process q. In MSC M , the answer to a question arrives before
the sending of the next question. Clearly, such execution with an arbitrary number
of exchanges n can be modeled as n concatenations of a MSC containing a message
from p to q followed by a message from q to p. Now, let us consider the MSC N
in the same figure. In a systematic way after the second question, the reception of
question n occurs just after the sending of answer n−1, and the reception of answer
n occurs just after the sending of question n + 1. Hence, the last 2n − 1 messages
of this kind of execution form an atom. A MSC language containing such behaviors
can not be expressed as a concatenation of finite atoms of bounded sizes, and hence
is not the set of MSCs generated by some HMSC.

Figure 3.1: Finitely generated MSC language (M) and non-finitely generated MSC
language (N)

Definition 32 Let F be a (possibly infinite) set of MSCs. We will say that F is
finitely generated if and only if there exists a finite set of MSCs X = {M1, . . . ,Mk}
such that every MSC M of F can be expressed as a concatenation of a finite number
of MSCs chosen from X.

One can immediately notice that the MSC languages designed using HMSCs
are finitely generated. One can also notice that an MSC language comporting all
MSCs of the form of MSC N in Figure 3.1 (i.e. with an arbitrary number of ques-
tions/answers) is not finitely generated, and hence can not be described by a HMSC.
This is clearly a limitation of HMSCs, as many protocols use sliding windows. A
question that immediately arises is whether some extension to HMSCs can allow
for the modeling of sliding windows. Another question is the preservation of de-
cidability/complexity results for such extension. In this chapter, we describe a first
proposal, namely compositional MSCs, that consists in allowing incomplete com-
munications in MSCs. In the next chapter, we propose another extension that does
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not split communications. The role of this chapter is mainly to define the different
subclasses of compositional MSCs that will be needed in the next chapter. For a
complete study of compositional MSCs, we refer interested readers to [58].

2 Compositional HMSC

A solution originally proposed by [65] and studied by B. Genest [58] is to autho-
rize incomplete communications in MSCs, and to complete messages during MSC
concatenation. The obtained model is called Compositional MSCs.

Definition 33 A compositional MSC (or CMSC for short) is a tuple C = (E, (<p

)p∈P , α, µ, φ) where E = ES ∪ER ∪Ea is a set of events, each <p is a total ordering
on events located on process p, φ : E −→ P associates a locality to each event, and
µ : ES −→ is a partial function from sending events to receiving events, such that
if f = µ(e), then α(e) is of the form p!q(m) and α(f) is of the form q?p(m).

As for MSCs, we require that the message mapping satisfies the FIFO assump-
tion. Similarly, we define the causal order in a CMSC as the closure ≤= (

⋃
<p ∪µ)∗,

and require ≤ to be a partial order. We can immediately notice that MSCs are a
subclass of CMSCs for which µ is a total function from ES to ER. When µ is a
total function in a CMSC C, we will say that C is communication-closed. How-
ever, nothing forces CMSCs to have a bijective message mapping, nor to comport
an equal number of sending and receiving events in the general case. Sendings that
are not associated to a reception (ES \ µ

−1(ER)) and conversely receptions that
are not associated with a sending event (ER \ µ(ES)) are called incomplete mes-
sages. As MSCs, CMSCs can be composed to obtain larger specifications. During
concatenation, incomplete messages are used to create complete communications.

Definition 34 Let C1 = (E1, <1,p, α1, µ1, φ1) and C2 = (E2, <2,p, α2, µ2, φ2) be two
CMSCs (defined over disjoint sets of events). A sequential composition of C1 and
C2 is a CMSC C = (E1 ∪E2, (<p), α1 ∪ α2, µ, φ1 ∪ φ2), where : The ordering <p on
each process p ∈ P is defined as:

<p= (<1,p ∪ <2,p ∪{(e, f) ∈ E1 × E2 | φ(e) = φ(f) = p})

The message mapping µ is defined as:

µ(e, f) =





µ1(e, f) if e, f ∈ E1,
µ2(e, f) if e, f ∈ E2

is an element of
(E1 ∪ E2) \ (µ

−1
1 (E1) ∪ µ−1

2 (E2))
×(E1 ∪ E2) \ (µ1(E1) ∪ µ2(E2))

or is undefined otherwise

Of course, as C = C1◦C2 is a CMSC it must satisfy the conditions on consistency
between message mapping and labeling, meet the FIFO assumption, and guarantee
that ≤ is a partial order (that is newly created message mappings should not create
cycles in the causal dependency relation). Note also that a message sent in C2 can
be received in C1. The sequential concatenation of two CMSCs may result in several

2. COMPOSITIONAL HMSC 37



CHAPTER 3. AN EXTENSION OF PARTIAL ORDER AUTOMATA: SPLITTING
MESSAGES

CMSCs, as the message mapping need not be total. However, it was proved in [58]
that for a given sequence of CMSCs C1.C2 . . . Ck, there exists at most one MSC in
C1 ◦ C2 ◦ · · · ◦ Ck.

The notion of communication graph defined in chapter 1 needs to be adapted
for CMSCs. For a given CMSC C = (E,≤, α, µ, φ), the communication graph
CG(C) = (P, V ) is a graph such that p ∈ P if and only if there exists an event
e ∈ E such that α(e) = p!q(m) or α(e) = q?p(m) for some q,m. Similarly, (p, q) ∈ V
if and only if there exists an event e ∈ E such that α(e) = p!q(m) for some m.

Definition 35 A compositional HMSC (or CHMSC for short) is a HMSC which
transitions are labeled by compositional MSCs. The partial order family FH gener-
ated by a CHMSC is the set of MSCs obtained by concatenation of CMSCS along
accepting paths of H. The linearization language of a CHMSC is the union of lin-
earizations of MSCs in FH .

With this definition of CHMSCs, we can define a CHMSC H such that FH = ∅.
Consider for instance a HMSC H∅ = ({n0, n1},−→, {C1}, n0, {n1}) with a single
transition (n0, C1, n1), and a single CMSC C1 depicted in Figure 3.2. Clearly, as C1

is not communication-closed, there is no path of H∅ generating a complete MSC,
and FH∅

= ∅. This phenomenon can occur as soon as some message sending can not
be properly mapped to a reception (or the converse) in any path of the CHMSC.
One can easily see that CHMSCs are strictly more expressive than HMSCs (HMSCs
are CHMSCs which labels are CMSCs with total message mappings). However, this
gain in expressive power has a cost: some problems that can be easily decided on
HMSCs become undecidable for CHMSCs.

Figure 3.2: A example CHMSC that generates the infinite set of braids of Figure 3.1
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Theorem 18 [58] CHMSCs are strictly more expressive than communicating finite
state machines and HMSCs.

Transforming a set of communicating finite state machines A1, . . .Ak into a
CHMSC is straightforwards. Each Ai can be transformed into a CHMSC Hi with
the same number of transitions as Ai, labeled by CMSCs that contain only one
event, located on process i, and labeled by the same action name as in the corre-
sponding automaton transition. Then, serializing all H ′

is in any order produces a
CHMSC with the same language as A1, . . .Ak.

Theorem 19 Let H be a compositional HMSC. The following problems are unde-
cidable:

• Check if FH = ∅ ?

• Is there a MSC M in FH such that a given message m is sent and received in
M ? (message problem, see chapter 2)

• for a given b ∈ N, is FH existentially b−bounded ?

This theorem can be proved easily, as emptiness, existential boundedness or
the message problem are already undecidable for communicating finite state ma-
chines [31,32] (one can easily encode a PCP with any of these problems). However,
as usual for scenario languages, several syntactic restrictions to the model helps
avoiding this undecidability, while preserving an interesting expressive power.

As for HMSCs, subclasses of CHMSCs can be found by considering properties
of it cycles. This requires a light adaptation of the definition of communication
graph introduced in chapter 1, as in CMSCs, communications can be split. The
communication graph of a path ρ is a graph in which vertices are processes appearing
in ρ and vertices pairs of processes (p, q) such that there exist an action labeled
p!q(m) and and action labeled q?p(n) for some m,n.

Definition 36 Let H be a compositional HMSC. We will say that H is safe if
and only if for every accepting path ρ of H, the concatenation of CMSCs along ρ
contains a MSC. We will say that H is well-balanced if and only if for every cycle
ρ of H, and every pair of processes p, q, the number of messages sent from p to q is
equal to the number of messages received by q from p in ρ. We will say that H is
globally cooperative if and only if it is safe, and the communication graph of every
loop is connected. We will say that H is regular if and only if it is safe, and the
communication graph of every loop is strongly connected.

As for HMSCs, detecting global cooperation and regularity are co-NP complete
problems. The partial order families generated by safe CHMSCs and well-balanced
CHMSCs are equivalent [58]. Safe CHMSCs are existentially bounded, i.e. they
generate only existentially b-bounded MSCs for some b. For a given safe CHMSC
G we will denote this existential bound by bG. Furthermore, deciding if a CHMSC
is safe or well-balanced is decidable in polynomial time [65]. Note that globally
cooperative or regular CHMSCs are again defined by syntactic criteria. Furthermore,
the globally cooperative or regular subclasses of HMSCs are strictly included in their
CHMSC counterpart.
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Figure 3.3: An unsafe CHMSC and the partial order family it generates

Of course, being safe is not sufficient to ensure decidability of model-checking
problems, as HMSCs are guaranteed to be safe CHMSCs, and one has to rely on
the globally cooperative subclass to provide decision procedure for problems on safe
CHMSCs.

Theorem 20 [55,58] Let G be a safe CHMSC, and let H be a globally cooperative
CHMSC. Then L(G) ∩ L(H) = ∅ is decidable and is PSPACE-complete in |H|, bG
L(G) ⊆ L(H) is decidable, and is EXPSPACE-complete in |H|, bG, where bG is the
existential bound for G.

The decision procedure relies on the fact that LbH (H) is regular, and that one
can associate a bG-bounded linearization to every path of G, that is one can com-
pute a regular language L of bG-bounded representative linearizations for G (even
if LbG(G) is not regular), and compare it to the regular LbH (H). Note that the
difference between bounds bG and bH is not a problem, as for every b > bH , H is
also existentially b-bounded.

3 Conclusion

In this chapter, we have described a way to increase the expressive power of HMSCs
by splitting messages, and recomposing them at concatenation time. In particular,
this allows for the definition of partial order families that are not finitely generated.
We will not give more details on this model, and refer interested reader to [58] for
a more complete study of its properties. A drawback of compositional HMSCs is
that composing orders that are not communication closed means embedding the
expressive power of communicating automata and all their undecidability results.
This problem is circumvented by defining a subclass of safe, globally cooperative and
regular CHMSCs. In the next chapter, we will propose an alternative to CHMSCs,
that allows for the definition of non-finitely generated partial order families without
splitting messages.
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Chapter 4

Extension of partial order
automata with commutations

Le désordre est le meilleur serviteur de l’ordre établi.
Disorder is the best servant of established order.

[Jean-Paul Sartre]

1 Introduction

In chapter 3, we have shown that partial order automata were not expressive enough
to describe the so-called sliding windows protocols, and we have described an exten-
sion called Compositional HMSCs, that allows composing finite pieces of behaviors
that are not communication-closed. This extension allows for the modeling of par-
tial order families that are not finitely generated. A drawback of this formalism
is that it embeds the expressive power of communicating finite state machines [32]
and consequently inherits all their undecidability results. A more decidable class of
CHMSCs called safe CHMSCs has been proposed.

Another solution consists in preserving the communication closed characteristics
of MSCs, compose them with an order automaton as usual, but modify the concate-
nation operation in such a way that the respective ordering of events on a process
can be rearranged according to a commutation relation. This chapter describes this
extension and its properties.

We first extend the notion of an MSC to a causal MSC in which the events be-
longing to each lifeline (process), instead of being linearly ordered, are allowed to be
partially ordered. To gain modeling power, we do not impose any serious restriction
on the nature of this partial order. However, we assume a suitable Mazurkiewicz
trace alphabet [43] for each lifeline and use this to define a composition operation
for causal MSCs. This leads to the notion of causal HMSCs.

The existential boundedness property in HMSCs or safe CHMSCs leads to proof
techniques using regular representative sets of linearizations for establishing decid-
ability results. As we will show later in this chapter, a causal HMSC (i.e. the MSC
language associated with a causal HMSC) is a priori not existentially bounded.
Hence the proof techniques relying on the computation of a finite state automaton
recognizing a language of b-bounded representatives can not be used to obtain de-
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cidability results. Instead, we need to generalize the methods of [113] and of [56] in
a non-trivial way.

The first major result presented in this chapter is to formulate natural -and
decidable- structural conditions which ensure that a causal HMSC generates a regu-
lar MSC languages. The second major result is that the inclusion problem for causal
HMSCs is decidable for causal HMSCs using the same Mazurkiewicz trace alpha-
bets, provided at least one of them is globally-cooperative (the definition of global
cooperation is adapted to the context of causal HMSCs). Furthermore, we prove
that the restriction that the two causal HMSCs have identical Mazurkiewicz trace
alphabets associated with them is necessary. These results constitute a non-trivial
extension for causal HMSCs of comparable results on HMSCs [14, 76, 113] and [56].

The last result presented is this chapter is the identification of a property called
“window-bounded” which appears to be an important ingredient of the “braid”-like
MSC languages generated by many protocols. Intuitively, this property bounds the
number of messages a process p can send to a process q before having received an ac-
knowledgment to the earliest message. This is a desirable property of communication
protocols that is usually enforced by counters in their implementations. We show
that we can decide if a causal HMSC generates a window-bounded MSC language.
Finally, we compare the expressive power of languages based on causal HMSCs with
HMSCs and CHMSCs, and prove that causal HMSCs and compositional HMSCs
are rapidly incomparable.

This chapter is organized as follows: in the next section we introduce causal
MSCs and causal HMSCs. We also define the means for associating an ordinary
MSC language with a causal HMSC. In the subsequent section we develop the basic
theory of causal HMSCs. To this end, we identify the subclasses of regular (syntac-
tically regular) and globally-cooperative causal HMSCs and develop our decidability
results. In section 3.3, we identify the “window-bounded” property, and show that
one can decide if a causal HMSC generates a window-bounded MSC language. In
section 4 we compare the expressive power of languages based on causal HMSCs
with other known HMSC-based language classes.

This work was performed jointly with P.S. Thiagarajan, B. Genest, T. Gazag-
naire, and S. Yang within the context of the CASDS and DST associated teams,
and during T. Gazagnaire’s PhD [51]. It led to two publications [53, 54].

2 causal MSCs

For this chapter, we fix a finite nonempty set P of process names with |P| > 1.
For convenience, we let p, q range over P and drop any subscript p ∈ P when
there is no confusion. We also fix finite nonempty sets Msg , Act of message types
and internal action names respectively. We define the alphabets Σ! = {p!q(m) |
p, q ∈ P, p 6= q,m ∈ Msg}, Σ? = {p?q(m) | p, q ∈ P, p 6= q,m ∈ Msg}, and
Σact = {p(a) | p ∈ P, a ∈ Act}. The causal MSCs introduced hereafter are defined
over P with alphabet Σ = Σ! ∪ Σ? ∪ Σact . We define the location of a letter a in Σ,
denoted loc(a), by loc(p!q(m)) = p = loc(p?q(m)) = loc(p(a)). For each process p
in P, we set Σp = {a ∈ Σ | loc(a) = p}.
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Definition 37 A causal MSC over (P,Σ) is a structure B = (E, {⊑p}, α, µ, φ),
where E is a finite nonempty set of events, α : E → Σ is a labeling function,
φ : E → P assigns a process to each event, and the following conditions hold:

• For each process p, ⊑p ⊆ Ep × Ep is a partial order, where Ep = {e ∈ E |
α(e) ∈ Σp}. We let ⊑̂p ⊆ Ep×Ep denote the least relation such that ⊑p is the

reflexive and transitive closure of ⊑̂p (⊑̂p is the Hasse diagram of ⊑p).

• µ ⊆ E! × E? is a bijection, where E! = {e ∈ E | α(e) ∈ Σ!} and E? = {e ∈
E | α(e) ∈ Σ?}. Furthermore, labeling is consistent with messages, that is for
each (e, e′) ∈ µ, α(e) = p!q(m) iff α(e′) = q?p(m).

• The transitive closure ≤ of the relation
( ⋃
p∈P

⊑p

)
∪ µ is a partial order.

• loc(α(e)) = φ(e) (the locality of an event is consistent with its labeling).

For each p, the relation ⊑p dictates the “causal” order in which events of Ep may
be executed. As for MSCs, the mapping µ : ES 7→ ER identifies pairs of message-
emission and message-reception events. We also denote by |B| the size of B, that is
the number of events in B.

We will say that a causal MSC B = (E, {⊑p}, α, µ, φ) is weak-FIFO iff for any
f = µ(e), f ′ = µ(e′) such that α(e) = α(e′) = p!q(m′) (and thus α(f) = α(f ′) =
q?p(m)), we have either e ⊑p e′ and f ⊑q f ′; or e′ ⊑p e and f ′ ⊑q f . Note that
we do not demand a priori that a causal MSC must be weak-FIFO. Testing (weak)
fifoness of a causal MSC of size b can be done in at most O( b

2

8
− b

4
), by considering

all pairs of messages in the MSC.
A linearization of B is a word a1a2 . . . aℓ over Σ such that E = {e1, . . . , eℓ} with

α(ei) = ai for each i; and ei ≤ ej implies i ≤ j for any i, j. We let Lin(B) denote the
set of linearizations of B. Clearly, Lin(B) is nonempty. We set Alph(B) = {α(e) |
e ∈ E}, and Alphp(B) = Alph(B) ∩ Σp for each p.

The leftmost part of Figure 4.1 depicts a causal MSC M . In this diagram, we
enclose events of each process p in a vertical box and show the partial order ⊑p in the
standard way, that is using its Hasse Diagram. In case ⊑p is a total order, we place
events of p along a vertical line with the minimum events at the top and omit the box.
In particular, in M , the two events on p are not ordered (i.e. ⊑̂p is empty) and ⊑q is
a total order. Members of µ are indicated by horizontal or downward-sloping arrows
labeled with the transmitted message. Both words p!q(Q).q!p(A).q?p(Q).p?q(A) and
q!p(A).p?q(A).p!q(Q).q?p(Q) are linearizations of the causal MSC M in Figure 4.1.

Obviously, a causal MSC B = (E, {⊑p}, α, µ, φ) is an MSC if every ⊑p is a total
order. In an MSC B, the relation ⊑p must be interpreted as the visually observed
order of events in one sequential execution of p. Let B′ = (E ′, {⊑′

p}, α
′, µ′, φ′) be a

causal MSC. Then we say the MSC B is a visual extension of B′ if E ′ = E, α′ = α,
⊑′

p ⊆ ⊑p, µ
′ = µ and φ′ = φ. We let Vis(B′) denote the set of visual extensions

of B′. Note that as visual extensions are MSCs, for every process p, ⊑p is a total
order.

In Figure 4.1, Vis(M) consists of MSCs M1,M2. The idea of visual ordering
is inspired by the difference between visual and causal orders originally highlighted
by [13], and discussed in chapter 2.2.4. In causal MSCs, instead of defining a total
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Figure 4.1: A causal MSC M and its visual extensions M1,M2.

ordering along an process lifeline, and then interpreting a weaker version of this
ordering, we define directly an unambiguous interpretation of events ordering along
a process. Lack of ordering among events of the same process can be interpreted as
concurrency if a process is seen as a high level description of an entity with some
kind of parallelism, or as a lack of information on the relative ordering between
events, which can be explicitly set as any of the visual extensions.

Note that the set of visual extensions of a causal MSC B is not necessarily the
union of instance per instance linearizations, as an extension of a causal MSC must
remain a MSC, i.e., the relation among the events has to remain a partial order.
Consider for example, the causal MSC of Figure 4.2, and its visual extensions in
Figure 4.3: we cannot have e2 ⊑p e1 and f1 ⊑q f2 at the same time in a visual
extension of this causal MSC.

Figure 4.2: An example of causal MSC B: the set of visual extensions of B is not
the instance per instance commutative closure of any visual extension of B.

Figure 4.3: Visual extensions of the causal MSC B of Figure 4.2.

2.1 Concatenation of causal MSCs

So far, causal MSCs alone are not more expressive than finite collections of MSCs,
as one can express the same set of behaviors using a causal MSC B, or with a finite
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set of visual extensions (i.e. MSCs) V is(B). The whole expressive power of causal
MSCs appears when assembling sequences of causal MSCs.

In standard MSCs, concatenation imposes a total ordering on events located on
the same process. To keep the spirit of causal MSCs, concatenation of two causal
MSCs M1 and M2 should not impose such ordering. Indeed, in such a case, a causal
HMSC (that we will define later in this chapter) would not be more expressive
than a HMSCs in which every causal MSC is replaced by an alternative between
all its visual extensions. We hence propose a concatenation that preserves some
independence between events of the two assembled diagrams. To express whether
there should be a dependency or not, for each process p in P, we fix a concurrent
alphabet (Mazurkiewicz trace alphabet [43]) (Σp, Ip) for each process p ∈ P, where
Ip ⊆ Σp×Σp is a symmetric and irreflexive relation called the independence relation
over the alphabet of actions Σp. We denote the dependence relation (Σp × Σp)− Ip
by Dp.

Following the usual definitions of Mazurkiewicz traces [43], for each (Σp, Ip), the
associated trace equivalence relation ∼p over Σ

⋆
p is the least equivalence relation such

that, for any u, v in Σ⋆
p and a, b in Σp, a Ip b implies u.a.b.v ∼p u.b.a.v. Equivalence

classes of ∼p are called traces. For u in Σ⋆
p, we let [u]p denote the trace containing

u.

Note that the definition of causal MSCs does not take into account this notion
of independence, as the ordering among events is not defined according to their
labels. However, we can define some consistency between a causal MSC and the
independence. Let B = (E, {⊑p}, α, µ, φ) be a causal MSC. We say ⊑p respects the
trace alphabet (Σp, Ip) iff for any e, e′ ∈ Ep, the following hold:

(i) α(e) Dp α(e′) implies e ⊑p e
′ or e′ ⊑p e

(ii) e ⊑̂p e′ implies α(e) Dp α(e′)

A causal MSC B is said to respect the trace alphabets {(Σp, Ip)}p∈P iff ⊑p re-
spects (Σp, Ip) for every p. In order to gain modeling power, we have allowed each
⊑p to be any partial order, not necessarily respecting (Σp, Ip). However, as we will
show later, the fact that causal MSCs respect or not independence relations has an
influence on the relations between causal orders, visual orders, and linearizations
generated by a high-level graph. We can now define the concatenation operation of
causal MSCs using the trace alphabets {(Σp, Ip)}p∈P .

Definition 38 Let B = (E, {⊑p}, α, µ, φ) and B′ = (E ′, {⊑′
p}, α, µ

′, φ′) be causal
MSCs. We define the concatenation of B with B′, denoted by B⊚B′, as the causal
MSC B′′ = (E ′′, {⊑′′

p}, α
′′, µ′′, , φ′′) where:

• E ′′ is the disjoint union of E and E ′. α′′ is given by: α′′(e) = α(e) if e ∈ E,
α′′(e) = α′(e) if e ∈ E and µ′′ = µ ∪ µ′.

• For each p, ⊑′′
p is the transitive closure of

⊑p

⋃
⊑′

p

⋃
{(e, e′) ∈ Ep × E ′

p | α(e)Dp α
′(e′)}
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Clearly, ⊚ is a well-defined and associative operation. Note that in case B and B′

are MSCs and Dp = Σp ×Σp for every p, then the result of B ⊚B′ is the sequential
composition of B with B′ seen in definition 6 in chapter 1. Note that when B
and B′ are weak FIFO causal MSCs, then their concatenation is also weak FIFO.
This property comes from the irreflexive nature of the independence relations. This
remark also holds for the concatenation of MSCs. This remark does not hold for
strong FIFOness, as two messages of different kind may overtake in a visual extension
of B ⊚ B′, even when B and B′ are FIFO. We also remark that the concatenation
of causal MSCs differs from the concatenation of traces. The concatenation of trace
[u]p with [v]p is the trace [uv]p, that is uv is closed by commutation, which allows
to switch ordering among letters in u or v. However, a causal MSC B needs not
respect {(Σp, Ip)}p∈P . Consequently, for a process p, the projection of Lin(B) on
Alphp(B) is not necessarily a trace.

Figure 4.4 shows an example of sequential composition of two causal MSCs
B1 and B2, with the dependency relations Dp and Dq being the commutative
and reflexive closure of

{(
p!q(m), p!q(n)

)
,
(
p!q(n), p?q(u)

)}
and

{(
q?p(n), q!p(v)

)}

respectively. Note that although the dependence relation Dp contains the pair(
p!q(m), p!q(n)

)
, sendings of messages m and n by process p in B1 are unordered

(B1 does not respect (Σp, Ip)), and remain unordered after composition.

Figure 4.4: Concatenation example.

2.2 Causal HMSCs

As for MSCs and compositional MSCs, we can extend the concatenation mechanism
using an automaton labeled by causal MSCs, to produce scenario languages. These
automata will be called causal HMSCs. Let us fix a set P of process names and a
family {(Σp, Ip)}p∈P of Mazurkiewicz trace alphabets.

Definition 39 A causal HMSC over (P, {(Σp, Ip)}p∈P) is a structure H = (N,−→,B, n0, F )
where N is a finite nonempty set of nodes, n0 ∈ N is the initial node, B a finite
nonempty set of causal MSCs, −→ ⊆ N × B × N is the transition relation, and
F ⊆ N is the set of final nodes.

Causal HMSCs and HMSCs do not differ in their definition, but rather in their
semantic interpretation. The notions of paths, cycles, accepting paths, etc in causal

HMSCs are the same as in HMSCs. Let H be a causal HMSC and ρ = n0
B1−→
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n1
B2−→ · · ·

Bℓ−→ nℓ be a path of H . The causal MSC generated by ρ, denoted ⊚(ρ),
is B1 ⊚B2 ⊚ · · ·⊚ Bℓ. We let caMSC (H) denote the set of causal MSCs generated
by accepting paths of H . We also set Vis(H) =

⋃
{Vis(M) | M ∈ caMSC (H)}

and Lin(H) =
⋃
{Lin(M) | M ∈ caMSC (H)}. Obviously, Lin(H) is also equal

to
⋃
{Lin(M) | M ∈ Vis(H)}. We shall refer to caMSC (H), Vis(H), Lin(H),

respectively, as the causal language, visual language and linearization language of
H .

HMSCs can be considered as causal HMSCs labeled with MSCs, and equipped
with empty independence relation (for every p ∈ P, Ip = ∅). Hence, a path ρ of
a HMSC H generates an MSC by concatenating the MSCs along ρ with operation
◦. In such case, Vis(H) is exactly the MSC language denoted by FH in chapter 1.
Let us recall a basic limitation of HMSCs: their visual languages are finitely gen-
erated. We can easily show that causal HMSCs generate MSC languages that are
not finitely generated, and hence are strictly more expressive than HMSCs. This
is an important feature of causal HMSCs. We have already mentioned that many
protocols contain sliding windows for efficient messages exchanges. These typical
behaviors are not finitely generated. Consider for instance the causal HMSC H over
(P = {p, q}, {(Σp, Ip)(Σq, Iq)}) in Figure 4.10, with independence relations given
by Ip = {((p!q(Q), p?q(A)), (p?q(A), p!q(Q)))} and Iq = ∅. Clearly, Vis(H) is not
finitely generated, as it contains infinitely many MSCs similar to the sliding window
behavior shown in chapter 3, Figure 3.1.

Figure 4.5: An HMSC over two MSCs

2.3 Semantics for causal HMSCs

As things stand, a causal HMSC H defines a set of path PH and a set of sequences of
causal MSCs L(H), with the same definition as for HMSCs, plus three syntactically
different languages, namely its linearization language Lin(H), its visual (MSC) lan-
guage Vis(H) and its causal MSC language caMSC (H). The next proposition shows
that they are also semantically different in general. It also identifies the restrictions
under which they match semantically.

Proposition 3 Let H,H ′ be two causal HMSCs over the same family of trace al-
phabets {(Σp, Ip)}p∈P . Consider the following six hypotheses:

(i) caMSC (H) = caMSC (H ′) (i)’ caMSC (H) ∩ caMSC (H ′) 6= ∅
(ii) Vis(H) = Vis(H ′) (ii)’ Vis(H) ∩Vis(H ′) 6= ∅
(iii) Lin(H) = Lin(H ′) (iii)’ Lin(H) ∩ Lin(H ′) 6= ∅
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Then we have:

• (i) ⇒ (ii), (i)′ ⇒ (ii)′, (ii) ⇒ (iii) and (ii)′ ⇒ (iii)′ but the converses
do not hold in general.

• If every causal MSC labeling transitions of H and H ′ respects {(Σp, Ip)}p∈P,
then (i)⇔ (ii) and (i)′ ⇔ (ii)′.

• If every causal MSC labeling transitions of H and H ′ is weak FIFO, then
(ii)⇔ (iii) and (ii)′ ⇔ (iii)′.

A proof of this proposition can be found in appendix. Let us illustrate this
proposition with instructive examples, shown in Figure 4.6. We have Vis(G1) =
Vis(H1) but caMSC (G1) 6= caMSC (H1). We also have Lin(G2) = Lin(H2) but
Vis(G2) 6= Vis(H2). One can immediately notice that these inequalities hold for all
independence relations.

Figure 4.6: Relations between linearizations, visual extensions and causal orders

For most purposes, the relevant semantics for a causal HMSC seems to be its
visual language. Indeed, for every causal HMSC H , V is(H) is an MSC language,
that avoids any ambiguity on the ordering of events that may appear in causal MSC
languages. With respect to linearizations, is has the advantage of conciseness of
partial order models. Properties of visual languages always imply similar properties
of linearization languages, and in case of FIFO ordering (which is a reasonable as-
sumption), visual extensions and linearizations of H have similar properties. Note
that proposition 3 only relates the semantics of causal HMSCs, and does not mean
that inclusion or intersection is decidable in general. In the rest of the chapter, we
focus on decidability and regularity issues. We first consider regularity of the lin-
earization languages of causal HMSCs in section 3.1. Then, we focus in section 3.2
on the causal language properties. Using the above proposition 3, it is then straight-
forward to translate these properties to the visual language of causal HMSCs, when
the right hypothesis apply.
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3 Decidability for causal HMSCs

3.1 Regular sets of linearizations

It is undecidable in general whether an HMSC has a regular linearization lan-
guage [113], but a syntactic subclass of regular HMSCs [14,113]) has been identified.
Similar syntactic regular class has been identified for compositional HMSCs, and we
will show that a decidable syntactic regular subclass also exists for causal HMSCs.
The key notion characterizing regular HMSCs is the communication graph of an
MSC. Nice syntactic subclasses of HMSCs and compositional HMSCs rely of the
decidable fact that communication graphs of MSCs labeling cycles have connected
or strongly connected communication graphs. We can define a similar notion for
causal MSCs. As processes do not necessarily impose an ordering on events, it is
natural to focus on the associated Mazurkiewicz alphabet. Thus the communication
graph is defined w.r.t the dependency relations {Dp}p∈P used for the concatenation
while the dependencies among letters of the same process are disregarded.

Definition 40 Let B = (E, α, {⊑p}, µ, φ) be a causal MSC. The communication
graph of B is denoted by CGB, and is the directed graph (Q, ), where Q = α(E)
and  ⊆ Q×Q is given by: (x, y) ∈ iff

• x = p!q(m) and y = q?p(m) for some p, q ∈ P and m ∈ Msg, or

• xDpy.

Figure 4.7: Communication graph for causal MSC B1 ⊚B2 of Figure 4.4.

The example of figure 4.7 shows the communication graph for the causal MSC
B1 ⊚ B2 in Figure 4.4. For instance, there are arrows between q?p(n) and q!p(v)
since q?p(n) Dq q!p(v). However, there is no arrow between q?p(m) and q?p(n),
even though some events of B1 ⊚ B2 labeled by q?p(m) and q?p(n) are dependent.
Note that for a pair of causal MSCs B,B′, the communication graph CGB⊚B′ =
(Q, ) can be computed from the communication graphs CGB = (QB, B) and
CGB′ = (QB′ , B′) as follows: Q = QB ∪QB′ and  = B ∪ B′ ∪

(
Q2 ∩

⋃
p∈P

Dp

)
.

Hence, for a fixed set of independence relations, if a causal MSC B is obtained by
sequential composition, that is B = B1 ⊚ B2 ⊚ · · · ⊚ Bk, then the communication
graph of B does not depend on the respective ordering of B1, · · ·Bk, nor on the
number of occurrences of each Bi. Hence, for any permutation f on 1..k and any
B′ = Bf(1) ⊚ Bf(2) ⊚ · · ·⊚Bf(k), we have that CGB = CGB′ .
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In the sequel, we will say that the causal MSC B is tight iff its communication
graph CGB is weakly connected. We say that B is rigid iff its communication
graph is strongly connected. We will focus here on rigidity and study the notion of
tightness in section 3.2.

Definition 41 Let H = (N,−→,B, n0, F ) be a causal HMSC. We say that H is
regular (resp. globally-cooperative) iff for every cycle ρ in H, the causal MSC ⊚(ρ)
is rigid (resp. tight).

Figure 4.8: A non finitely generated regular causal HMSC and its communication
graph.

As for HMSCs or compositional HMSCs, the definitions of regular/globally co-
operative causal HMSCs rely on properties of cycles. And as for HMSCs, we can
use properties of communication graphs w.r.t. composition to bring the definition
back to properties of elementary cycles. Indeed, we have CGB⊚B = CGB, and as
already discussed, the rigidity of B1 ⊚ . . . ⊚ Bℓ does not depend on the order in
which B1, . . . , Bℓ are listed. Hence, we can use the following equivalent definition to
obtain an algorithm: H is regular (resp. globally-cooperative) iff for every strongly
connected subgraph G of H with {B1, . . . , Bℓ} being the set of causal MSCs appear-
ing in G, we have B1 ⊚ . . . ⊚ Bℓ is rigid (resp. tight). It is easy to see that the
simple protocol modeled by the causal HMSC of Figure 4.8 is regular, since the only
elementary cycle is labeled by two local events a, b, one message from p to q and one
message from q to p. The communication graph associated to this elementary cycle
is strongly connected. Note that the visual language of this causal HMSC is not
finitely generated, as messages m and n can cross between two occurrences of a and
b. The alternative definition leads to a co-NP-complete algorithm to test whether a
causal HMSC is regular.

Theorem 21 Let H = (N,−→,B, n0, F ) be a causal HMSC. Testing whether H is
regular (respectively globally-cooperative) can be done in time O((|N |2 + |Σ|2) · 2|B|).
Furthermore these problems are co-NP complete.
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The proof of this theorem can be found in appendix. It follows the same lines
as the one in [56, 113] (one can find a subgraph of H and check its communication
graph in polynomial time, hardness comes from an encoding of a SAT problem).

Theorem 22 Let H = (N,−→,B, n0, F ) be a regular causal HMSC. Then Lin(H)
is a regular subset of Σ⋆, i.e. we can build an automaton AH over Σ that recognizes
Lin(H). Furthermore, the number of states of AH is at most in

(
|N |2 · 2|Σ| · (Σ + 1)K·M · 2f(K·M)

)K
,

where K = |N | · |Σ| · 2|B|, M = max{|B| | B ∈ B} (recall that |B| denotes the size
of the causal MSC B) and the function f is given by f(n) = 1

4
n2 + 3

2
n+O(log2 n).

A complete proof of this theorem can be found in appendix. The main idea of
the proof is to show that for every path ρ = B1 . . . B2 . . . BK of a regular causal
HMSC H that is long enough, there is only a finite number pairs of causal MSCS
Bi, Bj, i < j and events e ∈ Bi, e

′ ∈ Bj such that e � e′. Dependencies among events
arise from the fact that cycles necessarily occur in a long enough path, and hence,
as H is s − regular, the communication graph of each cycle is strongly connected,
and creates a causal dependency from events on φ(e) to events on φ(e′).

The last step of the proof is to show that each linearization of a path of H can be
represented by a sequence of transitions between configurations (these transitions are
labeled by letters from Σ). For a given path ρ followed in H configurations only need
to memorize subsequences of transitions in ρ in which all events have not yet been
executed together with the set of its not-yet executed events. When H is s-regular,
this information is bounded and contains at most Kresidue = |N | · |Σ| ·2|B| ·max{|B| |
B ∈ B} events.

3.2 Inclusion and Intersection of causal HMSC Languages

As shown in chapter 2, problems of inclusion, equality and non-emptiness of the
intersection of the MSC languages associated with HMSCs are all undecidable. Ob-
viously, these undecidability results also apply to the causal languages, visual lan-
guages, and linearization languages of causal HMSCs. As in the case of HMSCs,
linearizations inclusion and intersection problems are decidable for regular causal
HMSCs since their linearization languages are regular. These decidability results
can be brought back to visual languages if the considered behaviors are all weak
FIFO, and to causal languages if causal MSCs of B respect {(Σp, Ip)}p∈P .

It is natural to ask whether we can still obtain positive results for these prob-
lems beyond the subclass of regular causal HMSCs. In the setting of HMSCs and
compositional HMSCs, there is a bound b such that b-bounded linearizations of any
globally-cooperative HMSC form a regular set of representative linearizations. Un-
fortunately, the results of [55] uses Kuske’s encoding [91] into traces that is based on
the existence of an (existential) bound on communication channels. Consequently,
this technique does not apply to globally-cooperative causal HMSCs, as the visual
language of a causal HMSC needs not be existentially bounded. For instance, con-
sider the causal HMSC H of Figure 4.9. It is globally-cooperative and its visual
language contains MSCs shown in the right part of the figure: in order to receive
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the first message from p to r, the message from p to q and the message from q to r
have to be sent and received. Hence every message from p to r has to be sent before
receiving the first message from p to r, which means that H is not existentially
bounded.

Figure 4.9: A globally-cooperative causal HMSC that is not existentially bounded

This does not mean however that inclusion and intersection are undecidable
outside the class of regular causal HMSCs, but rather that we need to rely on
different proof techniques. We shall instead use atoms [3,71], and adapt the notion
of atomic language from [56], that we have recalled in chapter 1. As for HMSCs, we
want to compare automata labeled by atoms rather than a set of linearizations. First
of all, we need to adapt the notion of MSC atom defined in chapter 1, definition 7
to causal MSCs.

Definition 42 A causal MSC B is a basic part (w.r.t. the trace alphabets {(Σp, Ip)}p∈P)
if there do not exist causal MSCs B1, B2 such that B = B1 ⊚B2.

Note that we have required in definition 37 that the set of events of a causal
MSC is not empty, which simplifies the definition of a basic part. Basic parts are
like atoms in MSCs, but in addition to the requirement of avoiding message splitting,
they have to preserve concurrency and dependencies among events that can not be
obtained by concatenation. Now for a causal MSC B, we define a decomposition of
B to be a sequence B1 · · ·Bℓ of basic parts such that B = B1 ⊚ · · ·⊚ Bℓ. For a set
B of basic parts, we associate a trace alphabet (B, IB) (w.r.t. the trace alphabets
{(Σp, Ip)}p∈P) where IB is given by: B IB B′ iff for every p, for every a ∈ Alphp(B),
for every a′ ∈ Alphp(B

′), it is the case that a Ip a
′. As for MSCs, when B IB B′, we

have B ⊚B′ = B′ ⊚B.

We let ∼B be the corresponding trace equivalence relation and denote the trace
containing a sequence u = B1. . . . .Bℓ in B⋆ by [u]B (or simply [u]). For a language
L ⊆ B⋆, we define its trace closure [L]B =

⋃
u∈L

[u]B. We can prove (see [54] for

details) that the decomposition of any causal MSC B is unique up to commutation.
More precisely, when B1 . . . Bk is a decomposition of a causal MSC B, then the
set of decompositions of B is [B1 . . . Bk]. It is thus easy to compute the (finite)
set of basic parts of a causal MSC B, denoted Basic(B), since it suffices to find
one of its decompositions. Decomposition can be performed as for MSCs atoms
using a connected components algorithms, but taking into account the dependencies.
Unsurprisingly, we then have:
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Proposition 4 For a given causal MSC B, we can effectively decompose B in time
O(|B|2).

Using the result of Proposition 4, we can consider, without loss of generality,
that causal HMSCs are automata labeled by basic parts. Indeed, we can simply
decompose each causal MSC in H into basic parts and decompose any transition of
H into a sequence of transitions labeled by these basic parts. Given a causal HMSC
H over a set of causal MSCs B, we let Basic(H) be the set of basic parts labeling
transitions of H , that is
Basic(H) = {B | ∃X ∈ B, B1, . . . , Bk causal MSCs , B1...B...Bk is a decomposition of X}.
Trivially, a causal MSC is uniquely defined by its basic part decomposition. Then
instead of the visual language we can use the basic part language of H , denoted
by BP(H) = {B1 . . . Bℓ ∈ Basic(H)⋆ | B1 ⊚ . . . ⊚ Bℓ ∈ caMSC (H)}. Notice that
BP(H) is closed by commutation, that is BP(H) = [BP(H)]. We can also view H
as a finite state automaton over the alphabet Basic(H), and denote by LBasic(H) =

{B1 · · ·Bℓ ∈ Basic(H)⋆ | n0
B1−→ n1 · · ·

Bℓ−→ nℓ is an accepting path of H} its associ-
ated (regular) language.

We show in appendix that BP(H) = [LBasic(H)]. As for HMSCs, when a causal
HMSC is globally cooperative, the closure [LBasic(H)] is a star-connected language
of basic parts, that is recognized by a finite automaton, and we can use the results
of [113] to obtain the following decidability and complexity results:

Theorem 23 Let H,H ′ be causal HMSCs labeled by basic parts and defined over
the same family of trace alphabets {(Σp, Ip)}p∈P. Suppose H ′ is globally-cooperative.
Then we can build a finite state automaton A′ over Basic(H ′) such that LBasic(A

′) =
[LBasic(H

′)]. Moreover, A′ has at most 2O(n·b) states, where n is the number of nodes
in H and b is the number of basic parts in Basic(H). Consequently, the following
problems are decidable:

(i) Is caMSC (H) ∩ caMSC (H ′) = ∅?

(ii) Is caMSC (H) ⊆ caMSC (H ′)?

Furthermore, the complexity of (i) is PSPACE-complete and that of
(ii) is EXPSPACE-complete.

The above theorem shows that we can model-check a causal HMSC against a
globally-cooperative causal HMSC specification. If H and H ′ are not labeled by
basic parts, one can easily transform them in equivalent causal HMSCs labeled by
basic parts (this can be done in O((t.gb2 + t′.gb′2), where t (resp t’) is the size of
the transition relation of H (resp. H ′), and gb is the size of the largest causal
MSC labeling H (resp H ′). If the causal HMSCs H,H ′ in theorem 23 satisfy the
additional condition that every causal MSC labeling the transitions of H and H ′ re-
spects {(Σp, Ip)}p∈P , then we can compare the visual languages Vis(H) and Vis(H ′),
thanks to Proposition 3 of this chapter.

Note that we can only apply Theorem 23 to causal HMSCs defined with the
same independence relation. If the independence relations are different, the atoms
of H and H ′ are unrelated, and the results on traces of [113] do not apply. Even
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worse, the following Theorem 24 states that comparing the MSC languages of two
globally-cooperative causal HMSCs H,H ′ using different independence relations is
actually undecidable. The only way to compare causal HMSCs with distinct inde-
pendence relations is then to compare their linearization languages. Currently for
this problem, a solution exists only for regular causal HMSCs.

Theorem 24 Let G,H be globally-cooperative causal HMSCs with respectively fam-
ilies of trace alphabets {(Σp, Ip)}p∈P and {(Σp, Jp)}p∈P, where for each p, Ip and Jp

are allowed to differ. Then determining if Vis(G) ∩Vis(H) = ∅ is undecidable.

3.3 Window-bounded causal HMSCs

The main interest of causal HMSCs is to allow the specification of behaviors contain-
ing braids of arbitrary size such as those generated by sliding windows protocols.
Very often, sliding windows protocols appear in a situation where two processes
p and q exchange bidirectional data. Messages from p to q are of course used to
transfer information, but also to acknowledge messages from q to p. If we abstract
the type of messages exchanged, these protocols can be seen as a series of query
messages from p to q and answer messages from q to p. Implementing a sliding
window means that a process may send several queries in advance without needing
to wait for an answer to each query before sending the next query. Very often, these
mechanisms tolerate losses, i.e. the information sent is stored locally, and can be
retransmitted if needed (as in the alternating bit protocol). To avoid memory leaks,
the number of messages that can be sent in advance is often bounded by some integer
k, that is called the size of the sliding window. Note however that for scenario lan-
guages defined using causal HMSCs, such bound on window sizes does not always
exist. This is the case for example for the causal HMSC depicted in Figure 4.10
below with independence relations Ip = {((p!q(Q), p?q(A)), (p?q(A), p!q(Q)))} and
Iq = {((q?p(Q), q!p(A)), (q!p(A), q?p(Q))}. The language generated by this causal
HMSC contains scenarios where an arbitrary number of messages from p to q can
cross an arbitrary number of messages from q to p, and conversely, as shown in the
figure.

Usually, communication protocols impose a bound on the number of messages
that can be sent to an distant process without receiving an acknowledgment. When
this number is reached, the protocol delays the next sending until it receives the
expected acknowledgment, and may also start resending messages that have not yet
been acknowledged. A question that naturally arises is to know if the number of
messages crossings is bounded by some constant in all the executions of a protocol
specified by a causal HMSC. This information is useful, for several reasons; First
of all, when a protocol is modeled with causal HMSCs, detecting that the number
of messages crossed by a single message is bounded is a good indication that the
model is close to a realistic situation. The second reason is that an implementa-
tion of a sliding windows protocol will necessarily impose such bound. When a
reasonably small bound is guaranteed by the specification, there is no need to count
messages and impose an arbitrary limit on the number of unacknowledged messages
sent, which could result in unnecessary delays. In the following, we formally define
message crossings, give several results on windows bounds that appeared in [54].
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Figure 4.10: A causal HMSC with unbounded message crossings

Figure 4.11: Window of message m1
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Definition 43 Let M = (E, (<p)p∈P , α, µ, φ) be an MSC For a message (e, f) in M ,
that is, (e, f) ∈ µ, we define the window of (e, f) in M , denoted WM (e, f), as the
set of messages {(e′, f ′) ∈ µ | φ(e′) = φ(f) and φ(f ′) = φ(e) and e ≤ f ′ and e′ ≤ f}.

We say that a causal HMSC H is K-window-bounded iff for every M ∈ Vis(H)
and for every message (e, f) of M , it is the case that |WM(e, f)| ≤ K. H is said to
be window-bounded iff H is K-window-bounded for some K.

Figure 4.11 illustrates notion of window, where the window of the message m1

(the first answer from q to p) is symbolized by the area delimited by dotted lines.
It consists of all but the first message Q from p to q. Clearly, the causal HMSC H
of Figure 4.10 is not window-bounded, as for a chosen K, one can always exhibit
an execution of this HMSC in which one message A from q to p is crossed by more
than K messages from p to q. However, we can show that window-boundedness of
a causal HMSC can be effectively checked.

Theorem 25 Let H = (N,−→,B, n0, F ) be a causal HMSC. Then we have:

(i) If H is window-bounded, then H is K-window-bounded, where K is at most
b · |N | · |Σ|, where b = max{|B| | B ∈ B}.

(ii) Further, we can effectively determine whether H is window-bounded in time
O(s · |N |2 · 2|Σ|), where s is the sum of the sizes of causal MSCs in B.

The proof of this theorem if provided in appendix. The principle is to build an
automaton that follows paths of H (that is which transitions are labeled by causal
MSCs). It chooses randomly a message m, and then its states memorize the kind
of messages that can still overtake m. The number of overtaking message types is
decreasing along paths of this automaton, as dependency relations may forbid future
crossings. If the automaton contains a cycle in which at least one kind of message
can overtake m infinitely often, then the causal HMSC is not window bounded. A
similar automaton construction is performed, considering transitions backwards, to
handle overtaking of messages appearing before m along a path.

A similar technique can be used to detect if the visual language of a causal HMSC
contains only FIFO behaviors.

4 Relationship with Other Scenario Models

Causal HMSCs are a powerful model, that allows for the modeling of sliding windows-
like behaviors. It was shown in chapter 3 that this kind of behavior can not be
modeled by High-level Message Sequence Charts, but can be represented by Com-
positional HMSCs. An immediate question is whether causal HMSCs and composi-
tional HMSCs have the same expressive power. We will show later in this section
that causal HMSCs can not model any Communicating Finite State Machine, even
for the restricted class of bounded machines. On one hand, this could be considered
as bad news, as causal HMSCs can not be seen as an implementation model. On the
other hand, as causal HMSCs do not embed the whole expressive power of CFMs,
more problems might be tractable for causal HMSCs than for cHMSCs. Indeed we
can easily show the following theorem.
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Theorem 26 (simple message problem for causal HMSCs) Let H be a causal
HMSC. Then one can decide in linear time if there exists a MSC M in V is(H) con-
taining a message m.

Though this theorem is trivial, it has some importance, as one has to remember
that this problem was in general undecidable for compositional HMSCs. This prob-
lem becomes decidable for safe compositional HMSCs, as it can be brought back to
a pattern matching problem proved decidable in [58](proposition 23).

In the rest of this section, we compare the expressive power of HMSCs and
cHMSCs subclasses with causal HMSCs subclasses. For comparison, we will only
consider weak-FIFO scenario languages, that is HMSCs that are labeled by weak
FIFO MSCs and causal HMSCs that are labeled by causal MSCs which visual ex-
tensions are weak FIFO. Compositional HMSCs generate only weak-FIFO MSCs,
by definition. A first reason to consider only weak-FIFO MSC languages is that
non weak-FIFO scenarios can be seen as a little degenerate descriptions, as they
can be differentiated by their visual languages, but not by their linearization lan-
guages. A second reason is that one can easily impose weak FIFOness in definitions
of HMSCs causal HMSCs. The last argument is that checking weak-FIFOness of the
MSC language of a HMSC or causal HMSC is decidable, and hence one can easily
partition known subclasses according to the character of the communications. So,
we do not consider FIFOness as an element of comparison. This facilitates compar-
isons with compositional HMSC subclasses. Furthermore, within this weak-FIFO
setting, the comparisons established in this section holds both for visual languages
and linearization languages.

An important question is the class of Communicating Finite State Machine cor-
responding to scenario languages implementations. It has been shown in [76] that
regular (compositional) HMSCs corresponds to universally bounded CFSMs. The
natural model to compare causal HMSCs and CFSMs could be asynchronous cellu-
lar automata with type [25], also called mixed machine in [51], which are networks
of asynchronous automata. It has been shown in [51] that using the same regular
definition as in this chapter, universally bounded mixed model and regular causal
(compositional) HMSCs coincide.

Let us first compare subclasses of causal HMSCs. Obviously, a regular causal
HMSC is also globally cooperative. Figure 4.9 shows a globally-cooperative causal
HMSC which is not in the subclass of regular causal HMSCs. Thus, regular causal
HMSCs form a strict subclass of globally-cooperative causal HMSCs.

Let us now compare causal HMSCs and HMSCs. By definition, causal HMSCs,
regular causal HMSCs and globally-cooperative causal HMSCs extend respectively
HMSCs, regular HMSCs and globally-cooperative HMSCs, as a HMSC is simply a
causal HMSC with total causal orderings on processes and dependency relation of
the form Dp = Σp × Σp. Recall that when a HMSC H is globally-cooperative [56],
there exists a K, such that the set of K-bounded linearizations form a regular rep-
resentative set. In other words, one can build an automaton AH such that for every
M ∈ FH , there exists a linearization of M that is K-bounded and recognized by AH .
The class of globally cooperative causal HMSCs does not enjoy such a good prop-
erty: the visual language of the (globally cooperative) causal HMSC in Figure 4.9
is not existentially bounded, and cannot be recognized by a finite state machine.
Hence, there exist globally-cooperative causal HMSCs which visual languages are
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not languages of HMSCs.
Last, Figure 4.8 displays a regular causal HMSC whose visual language is not

finitely generated, and therefore can not be defined as the language of a HMSC. It
follows that (regular/globally-cooperative) causal HMSCs are strictly more powerful
than (regular/globally-cooperative) HMSCs.

Let us now compare causal HMSCs and compositional HMSCs. Recall that
as for HMSCs, a CHMSC H generates a set of MSCs, denoted FH obtained by
concatenation of compositional MSCs along a path of the graph, but that some
accepting paths of a CHMSC may not generate a correct MSC. The class of CHMSC
for which each path generates exactly one MSC is the class of safe CHMSC, and is
a strict extension of HMSCs. Regular and globally-cooperative HMSCs have also
their strict extensions in terms of safe CHMSCs, namely as regular CHMSC and
globally-cooperative CHMSCs. It was also shown (see for instance [58], proposition
21) that safe CHMSCs generate only existentially bounded MSC languages.

Figure 4.12: A regular (but not finitely generated) set of MSCs

We can now show that the class of regular causal HMSCs is strictly contained
in the class of regular compositional HMSCs. It is not hard to build a regular
compositional HMSC which MSC language can not be defined with a causal HMSC.
An example is a CHMSC H that generates the visual language Vis(H) = {Mi |
i = 0, 1, . . .}, where each Mi consists of an emission of a message m from p to r,
then a sequence of i blocks of three messages: a message n from p to q followed by
a message o from q to r then a message s from r to p. And at last the reception
of message m on r. This MSC language is represented in Figure 4.12. This visual
language can be easily defined with a CHMSC, by separating emission and reception
of m and iterating a MSC containing messages n, o, s an arbitrary number of times.
Clearly, this FH is not finitely generated, and it is not either the visual language of
a causal HMSC. Assume for contradiction, that there exists a causal HMSC G with
Vis(G) = FH . Let k be the number of messages of the biggest causal MSC which
labels a transition of G. We know that Mk+1 is in Vis(G), hence Mk+1 ∈ Vis(⊚(ρ))
for some accepting path ρ of G. Let N1, . . . , Nℓ be causal MSCs along ρ, where ℓ ≥ 2
because of the size k. It also means that there exist N ′

1 ∈ Vis(N1), . . ., N
′
ℓ ∈ Vis(Nℓ)

such that N ′
1◦· · ·◦N

′
m ∈ Vis(G). Thus, N1◦· · ·◦Nℓ = Mj for some j, a contradiction

since Mj is a basic part (i.e. cannot be the concatenation of two MSCs). That is
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(regular) compositional HMSCs are not included into causal HMSCs. On the other
hand, regular causal HMSCs have a regular set of linearizations (Theorem 22). Also,
it was shown in [76], theorem 3.15 that a MSC language is regular if and only if
there exists a bounded CFM with the same linearization language (or equivalently
a CHMSC that defines this language). It is then immediate that the class of visual
languages of regular compositional HMSCs captures all the MSC languages that
have a regular set of linearizations. Hence the class of regular causal HMSCs is
included into the class of regular compositional HMSCs. Last, we already know with
Figure 4.9 that globally-cooperative causal HMSCs are not necessarily existentially
bounded, hence they are not included into safe compositional HMSC.

Figure 4.13: Comparison of Scenario languages

The relationships among these scenario models are summarized by Figure 4.13,
where arrows denote strict inclusion of visual languages. Two classes are incom-
parable if they are not connected by a transitive sequence of arrows. From this
diagram and the preceding results, one can immediately notice that causal HMSCs
and compositional HMSCs differ as soon as globally cooperative classes of speci-
fications are considered. This is an important property of the model, as globally
cooperative specifications can be seen as a reasonable subclass of scenario languages
with respect to decidability and modeling power. However, within these classes,
causal HMSCs and compositional HMSCs define disjoint sets of MSC languages.

5 Conclusion

This chapter has considered an extension of HMSCs with commutations called causal
HMSCs, that allows for the modeling of braids, such as those appearing in sliding
window protocols. Unlike compositional HMSCs, this formalism does not split mes-
sages, but extends usual HMSCs using commutations on events located on the same
process. As for HMSCs and compositional HMSCs, we have identified decidable
syntactic subclasses, namely regular and globally cooperative causal HMSCs with
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the same decidable problems as for their HMSC or compositional counterpart. An
interesting class that emerges is globally-cooperative causal HMSCs. This class is
incomparable with safe compositional HMSCs because the former can generate sce-
nario collections that are not existentially bounded. Yet, decidability results for
verification (inclusion, intersection,...) can be obtained for this class.

Let us consider the merits of causal HMSCs beyond the nice theoretical expres-
siveness and decidability results. Specifying partially ordered events on a process in
MSCs was already allowed by the Z.120 standard, using a mechanism called gener-
alized coregion. However, concurrency in coregions remains limited to a finite set of
events enclosed within a MSC. Causal HMSCs extend HMSCs with commutation
relations, hence generalizing the concept of coregion to sets of events of arbitrary
sizes. Though the concept of commutation might be rather complex, there is no need
to understand the whole theory of traces to use causal HMSCs. Indeed, commuta-
tions can be presented as the fact that the sequential ordering among events of some
type is not strict. We believe that in many protocols, that are reactive, distributed
behaviors can be seen as interleavings of protocol phases, that can be perceived
as some closure by commutation of a behavior obtained by ordering strictly these
phases. In addition to the material presented in this chapter, a simplified model of
the TCP-IP protocol has been designed in [54], to demonstrate the usefulness of the
language.

Two interesting problems remain: one is whether the visual language of a causal
HMSC is finitely generated. To solve this problem, we shall consider the technique
used in [59], where linearizations of atoms of compositional HMSCs are recognized
by finite automata (this technique is also presented in chapter 5 of the document).
However, it is not yet clear whether such technique can be adapted to CaHMSCs.

A second interesting problem is wheter a causal HMSC can be represented by an
equivalent HMSC. Of course, this problem is undecidable in general: the projection
of a HMSC on a single process is a regular language, and the projection of a caHMSC
on a process is a rational trace language. As regularity is undecidable in general
for rational trace languages, one can not decide if a causal HMSC has an HMSC
equivalent. However, the problem may find solutions for subclasses of the language.

Another interesting issue is to consider the class of causal HMSCs whose visual
languages are window-bounded. The set of behaviors generated by these causal
HMSCs seems to exhibit a kind of regularity that could be exploited. Here, regularity
shall not be understood as ”recognizable by a finite automaton”, but rather as the
fact that, considering all MSCs in FH as graphs, these graphs seem to be definable as
the productions of a graph rewriting system using only a finite number of patterns.
One can also note that window boundedness is required for causal HMSCs to be
finitely generated. Hence, syntactic subclasses of window-bounded causal HMSCs
may provide solutions to the finite generation problem mentionned above.

Finally, designing suitable machine models (along the lines of Communicating
Finite Automata [32]) and synthesis algorithms for this model is also an important
future line of research.
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Chapter 5

Towards a partial order algebra ?

On dit qu′ on apprend avec ses erreurs, mais à mon avis c′est une erreur... et si je
me trompe au moins j′ aurai appris quelque chose !

One often says that we learn from our errors, but I think this statement is wrong.
And if I am wrong, at least I will learn something.

[Philippe Geluck]

1 Introduction

In previous chapters, we have introduced partial order automata, and shown several
ways to assemble finite orders to obtain very expressive formalisms defining MSC
languages. The scenario formalisms addressed so far (HMSCs, compositional MSCs
and causal MSCs) take as initial paradigm an assembling of finite partial orders by
means of automata. The main variants use MSCs that are not communication closed
(cHMSCs), or change the way MSCs met along a path of the support automaton are
assembled by a sequential composition operator (causal HMSCs). These improve-
ments radically increase the expressive power of partial order automata without
changing the nature of their decidable subclasses, nor the complexity classes of de-
cidable problems.

The next step is to define high-level operators for partial order automata. Being
able to compose HMSC specifications as in process algebra would allow to use this
formalism as a modular specification language, with a global view of interactions
and a strong emphasis on concurrency. The usual operators encountered in process
algebra are sequence, parallel composition, and projection, and obviously one would
like to obtain similar operators for HMSCs. The sequence of two HMSCs is a trivial
operation, and preserves most of good properties of a specification. However, it does
not bring new modeling power to the model. Projection can be a useful operator to
compare partial order automata on their common events, or to extract information
on causal dependencies is a large specification.

The most needed operator is a composition of views, that is a parallel composi-
tion operator that shuffles MSC languages. Indeed, even an intuitive specification
such as Message Sequence Charts has to face the limits of users understanding. Sce-
narios avoid state space explosion problem, thanks to the explicit representation of
concurrency as partial orders. However, one can not expect a HMSC with hundreds
of nodes to be understood by human readers. A possible approach is to decompose a
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specification into views of a system, that abstract away processes or internal details
of a distributed system. The main idea is that the overall system is an object which
projection on chosen set of processes and events is one of the specified views.

In this chapter we will study projections and parallel compositions of HMSCs.
We will first show that parallel composition and projection of HMSCs are not easy
to define, as a projection of a HMSC of the parallel composition of two HMSCs may
not be expressible as a new HMSC. Furthermore, in general, these operations do
not preserve properties of the composed models.

For this reason, we consider a more pragmatic way to assemble scenarios, called
fibered product. This product is some kind of synchronous product of HMSCs, in
which transitions of two HMSCS are assembled pairwise. We will however show
that this kind of composition may produce ill-formed HMSCs, and that defining it
synchronized pairs of transitions and how to assemble them can be cumbersome.

The work presented in this section was realized in cooperation with A. Muscholl,
B. Genest, P. Darondeau, B. Caillaud. J. Klein, and led to three publications [39,
59, 88].

2 Trivial operators : sequential composition and

iteration of HMSCs

The sequencing of two HMSCs is a purely syntactic operation, and is rather straight-
forward. It is defined as the standard composition of automata.

Definition 44 Let H1 = (N1,−→1,M1, n
1
0, F1) and H2 = (N2,−→2,M2, n

2
0, F2)

be two HMSCs defined over disjoint sets of nodes N1 and N2. The sequencing of
H1 and H2 is denoted H1.H2 and is the HMSC H1.H2 = (N1 ∪ N2,−→1 ∪ −→1.2

,M1 ∪M2, n
1
0, F2), where: −→1.2=−→1 ∪ −→2 ∪{(n,Mǫ, n

2
0) | n ∈ F1} and Mǫ is

the empty MSC.

Obviously, concatenation of HMSCs does not introduce new cycles. As a con-
sequence, concatenation preserves global cooperation, regularity, and divergence.
Furthermore, if H1 is existentially bounded for some bound b1, and H2 is existen-
tially bounded for some bound b2, then obviously H1.H2 is max(b1, b2) existentially
bounded. However, even if H1 and H2 are local HMSCs, the concatenation of H1

and H2 needs not be local.
As for concatenation, we can easily define the iteration of a HMSC H .

Definition 45 Let H = (N,−→,M, n0, F ) be a HMSC. The iterated version of H
is a HMSC H∗ = (N,−→′,M, n0, F ), where −→′=−→ ∪{(n,Mǫ, n0) | n ∈ F}.

As for concatenation, iteration may change some properties of a HMSC, as it
creates new cycles. The iteration of a regular, globally cooperative, or non-divergent
HMSC is not necessarily regular, globally cooperative, or non-divergent. A non-
regular, non-globally cooperative, or divergent HMSC remains non-regular, non-
globally cooperative, or divergent. Even when H is a local-choice HMSC, H∗ can
be non-local. Indeed, a final node for instance can be a choice node too, and hence
iterating H connects new branches to this node, possibly with distinct deciding
instances.

622. TRIVIAL OPERATORS : SEQUENTIAL COMPOSITION AND ITERATION OF
HMSCS
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3 Projection

Even if HMSCs are frequently seen as abstract descriptions of systems, the definition
of a projection operator remains very useful. First of all, abstraction can help
decreasing the complexity for automatic verification of large systems [35, 64, 122],
by reducing the state space, interleavings, and so on. In general, the role of a
projection is to reduce the size of a system while preserving some property to check.
Then, verifying this property on the projected model can be brought back to a
verification of the complete model. Projections are also frequently used to define
security properties. Non-interference, for instance,is expressed as the capacity for
an attacker to distinguish between a fully described system, and a projected version
in which secrets (particular actions that should remain hidden to non-authorized
users) are abstracted. We will come back to security issues later in chapter 10.

Scenarios are also supposed to remain rather concise. However, in some cases
they may have been designed with too many details, which are not relevant for the
property to check. Moreover, the details may hide important information concerning
the causalities. Finally, a motivation for projecting an HMSC is to be able to verify
properties on a model that is hopefully smaller.

Abstraction for HMSCs can be performed by collapsing nodes of the High-level
graph, as for standard word automata. Usually, state aggregation is done in order
to preserve behaviors and build an equivalent (bisimilar) specification (this can be
done by using standard partitioning algorithms [120]). For HMSCs, bisimilarity of
two HMSCs is undecidable, so one can not expect to use bisimulation to quotient
the node space of HMSC and then build comparable canonical models. Yet, one
can always build minimal (w.r.t bisimulation) HMSCs labeled by atoms. This does
not bring in general new comparison means, but may help reducing the size of
the automata that shall be built to model-check regular of globally cooperative
HMSCs. Note however that very often in HMSCs, there is a bijection between the
transitions −→ and the alphabetM of HMSCs and that quotienting a HMSC does
not necessarily result in huge space gain. When nodes aggregation is performed
regardless of any equivalence, the abstraction can produce more behaviors than the
initial model. Hence, this results in an over approximation of the set of behaviors.

Another solution is to simply forget transitions, that is replace a pair of transi-
tions (n,M1, n′).(n′,M2, n′′) by a single transition (n,M1, n′′). With this projection
on the set of transition, some causal dependencies may be lost. Thus the result when
model-checking properties on the set of remaining transitions and events is only up
to rough approximation. Consider for instance the example of Figure 5.1, and let
us define as Π1 a mechanism that abstracts away from HMSC H the transition of
the HMSC labeled by MSC M2. The result of Π1 is a new HMSC H1 with MSC
language FH1 = M1 ◦M3. In the original model, event a occurred before events b
and c, which is not the case anymore in the projected HMSC.

Abstraction can also be defined by projecting away some events or instances
in each MSC of M, without changing the graph. This abstraction of an HMSC
is still an HMSC, but has as a negative side effect the loss of certain causalities
between events. Consider for instance the example of Figure 5.1, and the projection
Π2 that hides from MSCs the sending and reception of message m1. We then have
Π2(M1) = M ′

1, Π2(M2) = M2 and Π2(M3) = M3. The result of projecting the
original HMSC H is a HMSC H2 such that FH2 = {M ′

1 ◦M2 ◦M3}. According to
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FH2, event a is not a causal predecessor of events b and c anymore. In general, one
can remark for such projection that Π2(M1 ◦M2) 6= Π2(M1) ◦ Π2(M2).

Figure 5.1: Two ”bad” projection mechanisms (w.r.t. causal dependencies)

The projection mechanisms Π1 and Π2 defined above are simple syntactic pro-
jections and, the semantics of the projected model is again an over approximation
of projection of real behaviors of the original model. A property referring to causal
ordering of events (for instance ”it is always the case in FH that a is a causal
predecessor of b”) may not be preserved.

In this section, we present a projection mechanism that gives an exact abstraction
of HMSCs. This abstraction hides (projects away) specified events while preserving
the causalities among remaining events. This can have several benefits. First, it can
provide a better comprehension of the interactions between particular instances (see
if actions performed by a process can have an influence of the actions performed by
another one). Second, when comparing two MSCs, a designer might be interested
in comparing the behaviors involving common features of both scenarios. Hiding
information while preserving causal dependencies becomes then a central point for
this kind of comparison.

In this section, we propose an abstraction that preserve the causal order, hence
the property ”a precedes b and c”’ of the example above.

The main problem raised by projections of HMSCs that preserve the causalities
is the representation of the projected HMSC. First, the projection of an MSC is not
always an MSC, as hiding may produce events that represent at the same time sends

64 3. PROJECTION



CHAPTER 5. TOWARDS A PARTIAL ORDER ALGEBRA ?

and receives. A more severe problem is that, projected HMSCs (even bounded ones,
[14,113]) cannot be represented by means of a finite HMSC , in general. However, in
this section, we first show that we can always represent the projection of an HMSC
by a safe compositional HMSC (cHMSCs, [65]). Moreover, we give an algorithm
that tests whether the projection of an HMSC can be represented by an HMSC : we
can decide in polynomial space whether a safe cHMSCs (in particular, the projection
of an HMSC) can be represented by an HMSC. This result is then used to give an
effective construction of an HMSC representing the projection of the original HMSC,
whenever this is possible. We then show that model-checking projections of HMSCs
is decidable under some reasonable assumptions.

3.1 Projections of MSCS and HMSCs

Let us illustrate on an example how a ”semantic” projection works. Figure 5.2-a
shows an example of MSC projection. This MSC can be seen as a partial order,
which Hasse diagram is represented in Figure 5.2-b. The projection of this example
on events e1, e2, e3, e5, e8 is shown in Figure 5.2-c, and is simply the projection of the
partial order on remaining events. Note that the dependency from e1 to e5 is not
a message anymore, but this difficulty can be dealt with by extending event types,
that is allow an event in a MSC to be at the same time a set of receptions from a
set of processes and a set of sendings to another set of processes.

e1
e4

Data

Act1

ReceiverMediumSender

e2

msc example

e3
Ack

e7 e8
Infoe6

e5 Act2

e1

e2

e3

e4
e1

e2

e3

e5
e8

e5

e7

e6

e8

Figure 5.2: a) MSC example b) partial order associated c) projection

Let us now formally define projections of MSCs and HMSCs.

Definition 46 Consider an MSC M = (E, (<p)p∈P , α, µ, φ) and a subset of events
E ′ ⊆ E. The projection of M on E ′ is denoted πE′(M), and is the restriction
of the poset M to E ′, defined as πE′(M) = (E ′, (<′

p)p∈P , α
′, µ′, φ′), where <′

p, α
′, φ′

are the restrictions of (<p)p∈P , α, φ to E ′. We also set µ′ = {(e, f) ∈ E ′ × E ′ |
e⋖′ f and P (e) 6= P (f)}. Events from the set E ′ will be called non-erased events.

Intuitively, the projection of M on E ′ is obtained by erasing the events in E \
E ′, and inheriting the causal dependencies from M . The set E ′ can represent for
example all the events located on a subset of processes (instances). Note that
projecting on a subset of events E ′ ⊆ E can break communications, as E ′ need
not be communication-closed. The causal dependency among events in a projected
MSC is not simply a restriction of the original ordering relation. Slightly abusing
our notation, we denote causality among events located on different processes in a
projection by a causality (aka message) relation µ′. However, µ′ is usually a larger
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relation that simply µ ∩ E ′ × E ′. Indeed, (e, f) ∈ µ′ if e and f are events located
on different processes, e < f in M and there is no intermediate non-erased event
g ∈ E ′ with e < g < f . The projection of an MSC will be called a pMSC for short.

Note that a pMSC is not necessarily an MSC, since an event in the projection
may gather several actions of the initial MSC (these events will be called multi-
type events). The example of Figure 5.2-c shows the projection of the MSC in
Figure 5.2-a on E ′ = {e1, e2, e3, e5, e8}. Event e5, which is associated with a sending
action in the original MSC can be considered as a “merge” of e4 ,e5, e6 and e7 in
the projection. Since e1⋖ e5, we have to create a message between e1 and e5 to keep
ordering. Similarly, as e5 ⋖ e8, we have to create a message between e5 and e8. In
the projection, event e5 has several types: it represents a receive from the Sender
process and two sends to Receiver and Sender. However, multi-type events are not
a real problem for modeling, as pMSCs are still partially ordered event sets, with
information on locality of events. The sequential composition of pMSCs is defined
alike that of MSCs.

We can define atomic pMSCs similarly to MSCs: A pMSC M is atomic if
the connection graph Conn(M) is strongly connected. For example, the pMSC
M ′ = π{e1,e2,e3,e5,e8}(M) in Figure 5.2-c is atomic. Thus, in addition to the edges
represented in the Hasse diagram of Figure 5.2-c the connection graph CG(M ′) con-
tains the back edges (e5, e1), (e3, e5) and (e8, e5), and is strongly connected. Note
that projections do not preserve atomicity nor atoms sizes and number. In general,
atoms of πE(M) can be larger than those of M . This can be easily seen of the
example of Figure 5.2: each message and atomic action is an atom in the original
MSC, that is there are 5 atoms of size at most 2. The pMSC obtained by projection
is an atom of size 5.

Projection of a MSCM simply consists in defining a subset of E ′ ⊆ E to preserve,
project ordering, and labeling on E ′, and build a new message relation. We can
define a similar notion of projection a HMSC H , but as already mentioned, we need
to define a ”semantic” projection that is we consider projection of MSCs generated
by H , i.e. projection will occur after concatenation. Within this setting, a MSC of
FH to project may contain several copies of the same MSC formM.

Let H = (N,−→,M, n0, F ) be a HMSC, and let EM =
⋃

M∈M

EM . To de-

fine a projection of H , we choose a subset E ′ ⊆ EM. For a given path ρ =
(n0,M1, n1).(n1,M2, n2) . . . (nk−1,Mk, nk) of H , one can associate a concatenation
of MSCs M1 ◦M2 ◦ · · · ◦Mk. Each Mi is an isomorphic copy of some MSC M from
M, and two MSCs Mi 6= Mj are defined over distinct set of events. Hence, for path
ρ, one can define k isomorphisms φ1, . . . φk, so that each φi is a partial bijections
from EM to EMi

. Projecting Mρ = M1 ◦M2 ◦· · ·◦Mk on E ′ ⊆ EM means projecting
Mρ on all copies of E ′. We denote E ′(ρ) =

⋃
i∈1..k

φi(E
′) as the set of isomorphic copies

of events from E ′ appearing in a MSC of path ρ. We can then define πE′(Mρ) as
the MSC projection πE′(ρ)(Mρ).

Definition 47 The projection of a HMSC H = (N,−→,M, n0, F ) on a subset of
events E ⊆ EM is called a pHMSC, and is denoted πE(H). An event of pHMSC will
be called a non-erased event. The set of pMSCs defined by the pHMSC H ′ = πE(H)
is the set

FπE(H) = {πE(ρ)(Mρ) | ρ is an accepting path of H }
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With this definition of projection for HMSCs, we ensure that for every Mρ ∈ FH ,
and for every pair of events e, f in the projection N = πE(ρ)(Mρ), e ≤N f if and
only if e ≤Mρ f .

3.2 Comparing pHMSCs with HMSCs

The description of a pHMSC by an HMSC, together with a projection function,
has several drawbacks. First, since causal dependencies are only implicitly given
by the HMSC, a projected scenario is difficult to understand. Second, an implicit
representation is not convenient for algorithmic manipulations. Third, by projecting
an HMSC we usually want to obtain a smaller object, with a more compact repre-
sentation. An immediate question appears when projecting an HMSC H to some
pHMSC H ′ = πE(H), namely whether there exists some equivalent HMSC G, i.e.,
such that L(G) = L(H ′)? In particular, if H ′ is equivalent to some HMSC, then
there exists a finite set X of generators for L(H ′). That is, there exists a finite set
X of MSCs such that every M ∈ L(πE(H)) is a sequential composition of elements
from X . We show below two situations that can prevent the existence of such a set
X .

The first case is called an unbounded crossing. Intuitively, a pHMSC contains
an unbounded crossing if there is a communication pattern that can be iterated an
arbitrary number of times between two events situated on different processes that are
causally related. For example, the HMSC of Figure 5.3-a generates an unbounded
crossing for a projection on the instances A and B. Figure 5.3-b shows the partial
orders generated by the HMSC of Figure 5.3-a, and Figure 5.3-c shows the partial
orders after the projection on A and B. The MSCs in the projection are all atomic,
hence there is no finite set generating them.
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Figure 5.3: a) HMSC generating an unbounded crossing b) MSC c) pMSC

A second situation ruling out a finite representation is called a crown, and is a
pattern similar to the braids described in chapter 3. Let us illustrate the presence
of a crown on an example. Consider the HMSC of Figure 5.4. This HMSC describes
scenarios for data transmission and acknowledgment for a multicast protocol called
RMTP2 [108], and is an excerpt from a more complete example that can be found
in [68]. The RMTP2 network is organized as a tree, propagating data packets
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Figure 5.4: A part of RMTP2 protocol and a crown generated by hiding instance
Parent

from a data source in the network, and aggregating acknowledgments in order to
retransmit missed packets. Some nodes are designated to store a copy of the data
sent, and retransmit each missed packet to the child subnetwork, if necessary. When
a child receives a data packet, it may send an acknowledgment message Hack to its
parent. A receiver may also decide to send an acknowledgment after a certain delay
tHackval. The situation depicted by HMSC of Figure 5.4 shows communications
between a node and two children. Child1 always sends an acknowledgment to its
parent upon data reception, while Child2 always acknowledges data packets after
the delay expiration. Furthermore, packets are never missed, but Child1 can receive
corrupted data, and retransmission and Hack packets may cross. The left part of
Figure 5.4 shows the partial order associated with (Hack incomplete ◦ Crossing)∗.
The right part of Figure 5.4 shows the same order after hiding the Parent, and all
timer events. It is clear that without breaking messages (or more precisely causal
dependencies between distinct instances) the order obtained after projection can
not be defined as a composition of finite communication patterns. This example
also shows that crowns appear in HMSCs projections that correspond to real-life
protocols, and are not only an artifact of ill-formed HMSCs.

Obviously, if a projection does not abstract away complete messages in a HMSC,
one is more likely to obtain a compositional HMSC than HMSCs by projection.
Actually, both situations described above can be easily described by cHMSCs, and
we will show that pHMSCs and safe cHMSCs have equal expressive power (up to
redefinition of event types to allow multi type events). Since pHMSCs involve in
general multi-type events we actually need enriched versions of MSCs and cMSCs, by
allowing multi-type events. For simplicity, in the rest of this section, we will assume
that the projections do not generate multi-type events when comparing pHMSCs
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and cHMSCs. However, our constructions can be easily adapted to situations where
sending events and receptions are collapsed to form multitype events.

Of course, pHMSCs are more expressive than HMSCs (the pHMSC πEM
(H)

is exactly the HMSC H . We will show later that cHMSCs are more expressive
than pHMSCs, and that one can decide whether a given pHMSC is equivalent to
an HMSC. Note that this question is undecidable in general for cHMSCs. Indeed,
CHMSCs embed the expressive power of communicating finite state machines, and
the question of whether a CFSM is equivalent to some HMSC was shown undecidable
by [114].

Figure 5.5 below is an example of cHMSCs that cannot be expressed as the
projection of an HMSC. In the cHMSC in the left part of Figure 5.5 two or more
isolated send events α are matched after an arbitrary number of β messages. If
we have to describe this behavior using a pHMSC, we would need for each event α
a new process, that disappears through projection (processes C1, C2 in the middle
part of Figure 5.5). More formally, for matching a sequence e1 < · · · < en of sends
on process A with a sequence f1 < · · · < fn of receives on process B, we need for
each pair ei, fi a new process Ci. If for instance C1 = C2, then e1 < e2 < f1 < f2,
hence we do not have e2 ⋖ f2, that is we do not create a message from e2 to f2.
Since the number of processes is fixed we therefore cannot describe the behavior of
the cHMSC in the right part of Figure 5.5 by a pHMSC.

A B A C

A B

B

α

α

α

α

ββ

α

α

C21

α

C C21

A B

A B

A B

α

β

α

A B

A B

?
α

H

Figure 5.5: The cHMSC in the right part is not a pHMSC.

From the previous examples, we can see that cHMSCs seem good candidates for
describing pHMSCs without multi-type events. We can indeed show that pHMSCs
correspond precisely to the subclass of safe cHMSCs. Given a pHMSC, we can
build a cHMSC which transitions are labeled by a single event. The cHMSC is built
online while following a linearization of the projected HMSC, and the type of each
non-erased is guessed (one can not ensure online whether an event will have a causal
successor on a process). Incorrect guesses restricting the transition relation of the
cHMSC.

Theorem 27 [59] Let H be an HMSC with n nodes over a set of processes P, and
consider a projection H ′ = πE(H). Then we can construct a safe cHMSC G that is
equivalent to H ′, of size n2O(℘3). Moreover, G is |P|2-bounded.

A sketch for the proof of this theorem is given in appendix, and a complete proof
can be found in [59].
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We now know that any HMSC projection can be translated to a safe and ℘2-
bounded CHMSC. We can also show that any safe CHMSC can be seen as a projec-
tion of some HMSC. Indeed, we can construct a pHMSC from a cHMSC by intro-
ducing new processes remembering that a message was sent but not yet received. As
for any path of a safe CHMSC, only a finite number of such events exists, we only
need to use a finite number of processes processes memorizing unreceived messages
in the projected HMSC.

Consider for instance the pHMSC of Figure 5.6-a). It is safe, and can be trans-
lated as a projection of the HMSC in Figure 5.6-b on events located on processes
A,B,C. Note that as two messages of type m can be transiting from A to B, one
needs to use two additional processes AB1 and AB2 to simulate message passing.

Figure 5.6: A safe CHMSC -a) and an equivalent pHMSC (projected on A,B,C)
-b)

Theorem 28 safe cHMSCs and pHMSCs (without multi-type events) have the same
expressive power.

This result is not really surprising, as projecting a HMSC can not generate be-
haviors of the form of figure 4.9 in chapter 4. Indeed, in pHMSCs, a sending of a
message which is a non-erased event from a MSC Mi in a path of H is necessarily
received in a MSC Mj , j ≥ i of the same path. This theorem gives additional infor-
mation on pHMSCs. First as safe CHMSCs are existentially bounded, any pHMSC
is also existentially bounded. Concerning cHMSCs, we know from theorem 28 that
a safe CHMSC can be seen as the projection of some HMSC.

3.3 Finitely generated pHMSCs and cHMSCS

The next question that immediately arises when projecting a HMSC is whether the
projected language can be expressed as a HMSC. This may not be the case, as
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illustrated by the examples of figures 5.3 and 5.4, which are not the MSC languages
of HMSCs. However, in some cases, the languages obtained by projection can be
represented by a HMSC. To be representable by a HMSC, a MSC language L must
be finitely generated, that is there must exist a finite set of MSCs X such that every
MSC M ∈ L must be expressible as a concatenation of MSCs chosen from X . In
addition, L must be recognizable by a finite HMSC over X (some finitely generated
MSC languages are not recognizable, as for instance the language L = {Mn

1 ◦M
n
2 |

n ∈ N} where M1 and M2 are finite MSCs).

Theorem 29 Let G be a safe cHMSC, and let Atoms(G) be the set of atomics
factors in FG. Then we can construct effectively a finite automaton Agen(G) that
accepts only linearizations of Atoms(G), and such that for every M ∈ Atoms(G) at
least one linearization of M is accepted by Agen(G).

Using the automaton constructed in Theorem 29 we can test whether a given
safe cHMSC (or a pHMSC) is equivalent to an HMSC in polynomial space:

Theorem 30 Checking whether Atoms(G) is finite for a given safe cHMSC G
(pHMSC G, resp.) can be done in PSPACE. Moreover, the problem is co-NP-hard.

Note that the construction of the automaton Agen(G) of theorem 29 does not
apply for non-safe CHMSCs, as the construction relies of a bound on the number of
send and not yet received messages.

3.4 From safe cHMSCs to HMSCs

Theorem 30 gives an algorithm for checking whether the MSC language of a safe
cHMSC G (or equivalently of a pHMSC) is finitely generated. The following theo-
rem shows that cHMSCs with finitely generated languages always generate HMSC
languages. The proof of the theorem and an effective construction of an equiva-
lent HMSC H for safe CHMSCs with finitely generated languages are provided in
appendix.

Theorem 31 Let G be a cHMSC where Atoms(G) is finite. Let n be the number of
nodes of G, e the number of events, maxsize the maximal size of MSCs in Atoms(G)
and b the maximal number of unmatched sends on initial paths of G. Then we can
construct an equivalent HMSC H from G of size O((n2b · 2℘b · e)maxsize).

Since there are at most 2O(maxsize) atoms, H is of exponential size. A priori,
maxsize can be exponential in the size of the pHMSC, yielding an HMSC of doubly
exponential size, but we believe this to be very unlikely.

3.5 Model-Checking HMSC projections against HMSCs

Validating HMSCs specifications against regular properties or against other HM-
SCs is undecidable in general, as shown is chapter 2 (see also [14, 113]), except
for the subclasses of bounded HMSCs [14,113], and for the larger family of globally
cooperative HMSCs [56]. This section considers model-checking pHMSCs against
HMSC properties and we show two settings for which the problem is decidable, with
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the same complexity as for HMSCs. The next theorem shows that model-checking
becomes decidable if a pHMSC is arbitrary, but a HMSC property is globally coop-
erative:

Theorem 32 Let G be a globally cooperative HMSC, H an HMSC and πE(H) a
projection of H. Then we can check in PSPACE whether L(πE(H)) ∩ L(G) = ∅,
and in EXPSPACE whether L(πE(H)) ⊆ L(G).

This theorem is a straightforward consequence of decidability of the same prop-
erties for globally-cooperative cHMSCs (see theorem 20 chapter 3), as pHMSCs are
a subset of safe cHMSCs. Even if the complexities we stated are rather high, note
that in practice both the HMSC property and the reduced specification (the HMSC
projected on a small part) can be reasonably small.

Theorem 33 Let G be a regular HMSC, H an HMSC and πE(G), πE′(H) their re-
spective projections. Then we can check in PSPACE whether L(πE(G))∩L(πE′(H)) =
∅, and in EXPSPACE whether L(πE′(H)) ⊆ L(πE(G)).

This second decidability result is based on the fact that the projection of a
regular HMSC preserves boundedness. Hence, one can compare a regular set of
representants for L(πE′(H)) and the regular language L(πE(G)). This result shows
that we can compare two projections of HMSCs (e.g. in order to find common
parts), as long as one of them is regular, with the same complexity as for regular
HMSCs.

3.6 Conclusion on HMSC projections

Let us summarize the results obtained on HMSC projections. Existentially bounded
CFSMs, safe CHMSCs and pHMSCs have the same expressive power (up to some
adequate typing of events). One can also decide if a pHMSC or a safe CHMSC has
a finitely generated language, which ensures that it can then be represented as an
HMSC. As already pointed out, projections may produce larger HMSCs than the
original specification. However, this is just a worst-case estimation that is unlikely
in practice. The size of the projection depends on the chosen set of non-erased
events. For example, hiding a complete instance would probably have a greater
impact on the shape of the projection than a random choice of the hidden events.
Model checking of pHMSCs is not always possible, and a projection of globally
cooperative HMSC is not always globally cooperative. Hence, deciding properties
such as L(πE′(H))

⋂
L(πE′(H ′)) 6= ∅ is not decidable in general, even for a pair of

globally cooperative HMSCs. However, projection can be compared with globally
cooperative HMSCs, and two projections can be compared is one specification is
regular.

Even when model-checking is not possible, HMSC projections may still be a use-
ful design tool to extract causality information from scenario descriptions. More-
over, the presence of unbounded crossings or crowns may reveal some properties of
the system under study. For example, when a projection hides a communication
medium, the presence of a crown can indicate the impossibility to save a consistent
global snapshot of the system in some executions, which may call for a redesign of
a protocol.

Let us now consider how projection preserves syntactic properties of HMSCs.
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Figure 5.7: Projection of a divergent HMSC

• Locality Unfortunately, local-choice HMSCs do not necessarily remain local
choice after projection. Consider a HMSC with a single local choice, and
project it on events that are not located on the deciding instance. Obvi-
ously, this HMSC is not local-choice anymore. Similarly, for a non-local choice
HMSC, projection can help erasing instances when a choice is non-local, yield-
ing a local-choice projection.

• Existential bounds HMSCs are always existentially bounded, and remain
existentially bounded after projection. Though this statement might look
surprising, recall that pHMSCs are a subset of safe cHMSCs. Furthermore,
erasing a receptions does not increase an existential bound, as it forces to
redefine the type of the corresponding sending.

• Universal bounds Similarly, HMSCs with universal bounds have regular
linearization language. The projection of a regular language is also a regular
language, so the linearization language of a pHMSC is also regular. pHMSCs
also remains regular, as communication graphs of cycles remain connected after
projection. This is explained by the fact that projection performs a transitive
closure of the ordering, and hence of connected communication graphs. Note
that events that were seen as sendings in the original HMSC, but that have
no corresponding receive in the projection are seen as atomic actions.

• global cooperation Projection does not necessarily preserve connectivity
among instances appearing in a cycle. However, if no instance of a cycle is
completely erased a globally cooperative HMSC (safe cHMSC) remains glob-
ally cooperative after projection.

• divergence Divergence is the third property that is not preserved by projec-
tion. Consider a simple divergent HMSC, composed of an simple loop in which
a message m is sent from a process p to a process q. Clearly, this HMSC is di-
vergent. Now, removing m by projection transforms this divergent HMSC into
a non-divergent one. Note that unlike for locality, a non-divergent HMSC can
not become divergent by projection. However, non-divergent HMSCs remain
non-divergent after projection. Consider the example of Figure 5.7 which is a
divergent HMSC. Its projection on event a produces a non-divergent model.
This example also shows that non-regular specification can become regular by
projection.
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4 Products

HMSCs have been designed to be graphical, intuitive, and rather concise. The state
space explosion problem which is rapidly met with interleaved models such as finite
state machines can be avoided up to a certain limit. However, the size of HMSCs
that a designer can draw, understand, and display remains limited. A solution to
deal with complexity is to build a set of partial views of a system, and then assemble
them automatically. The actual specification should then be designed as a set of
tractable size descriptions (for instance one per functionality of a system) or views.
However, designing a system this ways supposes tools to give a semantics to a set of
views, or to assemble them to provide a larger description, preferably using the same
language as the one used to define the view, to provide incremental composition.

In this section, we tackle the problem of assembling views defined as HMSCs. We
first propose a product of MSC-languages, assuming that views do not share mes-
sages but can share internal events. The product we choose is the mixed product
of MSCs, that amounts to shuffling their respective events on each process, simul-
taneously and independently, except for the shared events that are not interleaved
but coalesced. The objective of the work started here is to be able to compute the
aggregation of MSC-graph descriptions of subsystems, thus yielding support to the
modular design of distributed systems.

As shown in previous chapters an important feature of MSC-graphs is existential
boundedness [96], that is the existence of an upper bound on the contents of the
message channels, within which all MSCs in the language can be run. CHMSCs
that are not existentially bounded are hard to implement with usual implementation
models such as CFMS. So, it is a desirable property that HMSC views are defined
by existentially bounded MSC formalisms, and furthermore that the product of
two views remains existentially bounded. Note also that in order to have an HMSC
representation, a product of HMSCs must be existentially bounded. However, results
on view composition show that knowing whether the product of two MSC-graphs is
existentially bounded is undecidable. However, if the shared events belong to only
one process, then this question becomes decidable. Once a product is known to be
existentially bounded, results on representative linearizations of [55] can be used.
Given two globally cooperative CMSC-graphs such that their product is existentially
bounded, this product can be represented with a globally cooperative CMSC-graph,
and hence all decidability results seen in chapter 2 apply to the product.

4.1 Background

In this section, we will consider weakly FIFO cHMSCs defined over a set of pro-
cesses P, messagesM, and actions A. This choice of weak FIFO specification is not
mandatory, but allows for easier definition of CHMSC products. Note however, that
results presented in this section apply in a FIFO setting, albeit with more techni-
calities. Note that the weak FIFO assumption suffices to ensure that a linearization
corresponds to a unique (up to isomorphism) CMSC. Processes may perform send
events S, receive events R and internal events I. That is, the set of types of events
of an MSC is E = S ∪ R ∪ I where S = {p ! q (m) | p, q ∈ P, p 6= q,m ∈ M},R =
{p ? q (m) | p, q ∈ P, p 6= q,m ∈ M}, and I = {p (a) | p ∈ P, a ∈ A}. For each
p ∈ P, we let Ep = Sp ∪ Rp ∪ Ip where Sp, Rp, and Ip are the restrictions of S, R,
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and I, respectively, to the considered process p (e.g., p ? q (m) ∈ Sp). Hence, for
fixed P,M, and A, CMSCs will be defined as partial orders labeled by E

Given a MSC X we recall that L(X) is the set of its linearizations (hence a set
of words of E∗). For a set X of MSCs, let L(X ) denote the union of L(X) for all
X ∈ X . Linearizations can be defined irrespective of MSCs as follows:

Definition 48 Let Lin ⊆ E∗ be the set of all words w such that for all p, q and m,
the number of occurrences q ? p (m) is at most equal to the number of occurrences
p ! q (m) in every prefix v of w, and both numbers are equal for v = w.

Any linear extension w of an MSC belongs to Lin. Conversely, a word w =
ǫ1 . . . ǫn ∈ Lin is a linear extension of Msc(w) = ({1, . . . , n}, (<p)p∈P , α, µ, φ) with:

• i <p j if and only if i < j and φ(i) = φ(j)

• α(i) = ǫi and i <p j if i < j & ǫi, ǫj ∈ Ep,

• φ(i) = p if and only if α(i) ∈ ǫp

• µ(i) = j if the letter ǫi = p ! q (m) occurs n times in ǫ1 . . . ǫi and the letter
ǫj = q ? p (m) occurs n times in ǫ1 . . . ǫj for some p, q,m, n.

Note that thanks to the weak FIFO assumption, the mapping µ is unique, and
hence so is Msc(w).

Definition 49 Two words w,w′ ∈ Lin are equivalent (notation w ≡ w′) if Msc(w)
and Msc(w′) are isomorphic. For any language L ⊆ Lin, we write [L] = {w | w ≡
w′, w′ ∈ L}. A language L ⊆ Lin(X ) is a representative set for X if L∩Lin(X) 6= ∅
for all X ∈ X , or equivalently, if [L] = Lin(X ).

We deduce the following properties. For any MSC X , Lin(X) is an equivalence
class in Lin. For any MSC X and for any w ∈ Lin, w ∈ Lin(X) if and only if X is
isomorphic to Msc(w). A similar property does not hold for arbitrary CMSCs. For
instance, (p ! q (m)) (q ? p (m)) (q ? p (m)) belongs to Lin(X) for two different CMSCs
X , where the send event is matched by µ either with the first or with the second
receive event.

Figures 5.8 and 5.9 show two HMSCs. Concatenating OK and the local event
sync gives an MSC with 3 events. The reception of OK and the event sync are
unordered (in G1). On the contrary, the event sync and the reception of Void are
ordered (in G2).

A safe CHMSC G may always be expanded into a safe single-event CHMSC-
graph G′, that is a graph in which each transition is labeled with a single event
CMSC, such that L(G) = L(G′). In the following, every safe CHMSC is assumed
to be single-event. The expansion yields because one can always build a regular
representative set for L(G).

4. PRODUCTS 75



CHAPTER 5. TOWARDS A PARTIAL ORDER ALGEBRA ?

Login

NOK

OK

sync

Client Server Client Server

Figure 5.8: Identification Scenario
G1.
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Figure 5.9: Searching Scenario G2.

4.2 Mixed Product of MSC-languages

In order to master the complexity of distributed system descriptions, it is desirable
to have at one’s disposal a composition operation that allows to weave different
aspects of a system. When system aspects are CMSC-graphs with disjoint sets of
processes, the concatenation of their MSC-languages can be used to this effect. Else,
some parallel composition is needed: we propose here to synchronize shared events
and shuffle non-shared events per process. All shared events are internal events
(messages are never shared).

Before entering into formal details, let us illustrate how a mixed product of MSCs
should work. Consider the two MSCs M1 and M2 in Figure 5.10. They contain one
common instance, and two common events, represented as internal actions a, b. The
result of a product of M1 and M2 is the MSC language L = {M3,M4}.

Figure 5.10: Mixed product of two MSCs M1,M2
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First, we recall the definition of the mixed product L1 ‖ L2 of two languages
L1, L2 of words (see [44]), defined on two alphabets Σ1,Σ2 not necessarily disjoint.
Let Σ = Σ1∪Σ2. For i = 1, 2 let πi : Σ

∗ → Σ∗
i be the unique monoid morphism such

that πi(σ) = σ for σ ∈ Σi and πi(σ) = ε otherwise. Then L1 ‖ L2 = {w | πi(w) ∈
Li, i = {1, 2}} is the set of all words w ∈ Σ∗ with respective projections πi(w) in Li.
E.g., {ab} ‖ {cad} = {cabd, cadb}.

Definition 50 For i = {1, 2}, let Xi be a MSC-language over Ei, such that x ∈
E1∩E2 implies x = p(a) for some p, a. The mixed product X1 ‖ X2 is Msc (Lin(X1) ‖
Lin(X2)) and it is a MSC-language over E1 ∪ E2 .

The mixed product operation may serve to compose the languages of two CHM-
SCs that share only internal events, as is the case for the CHMSCs G1, G2 of Fig-
ures 5.8,5.9. The synchronization on the shared events sync ensures that in any
MSC in FG1 ‖ FG2, the server never answers a search request from the client unless
the client is logged in. Note that even though X1 and X2 are MSCs, {X1} ‖ {X2}
may contain more than one MSC, as illustrated by Figure 5.10, where M1 ‖ M2 =
{M3,M4}. Also note that w1 ‖ w2 ⊆ Lin for w1 ∈ Lin and w2 ∈ Lin. Mixing all
linearizations pairwise yields all linearizations of a product:

Proposition 5 Lin(X1 ‖ X2) = Lin(X1) ‖ Lin(X2) = [Lin(X1) ‖ Lin(X2)]

Note however that, by considering two particular linerizations of two MSCs
X1, X2 and computing their mixed product, one obtains a set of linearizations that
may not be representative for the mixed product of X1 and X2. Indeed, for fixed
representations w1 ∈ Lin(X1) and w2 ∈ Lin(X2), {X1} ‖ {X2} may be larger than
Msc (w1 ‖ w2). consider the following example :

w1 = (p ! q (m1)) (q ? p (m1)) (p ! q (m1)) (q ? p (m1)),
w′

1 = (p ! q (m1))
2 (q ? p (m1))

2,
w2 = (q ! p (m2)) (p ? q (m2)) (q ! p (m2)) (p ? q (m2)),
w′

2 = (q ! p (m2))
2 (p ? q (m2))

2,
w3 = (p ! q (m1))

2 (q ! p (m2))
2 (p ? q (m2))

2 (q ? p (m1))
2.

and X1 = Msc(w1) = Msc(w′
1), X2 = Msc(w2) = Msc(w′

2) , X3 = Msc(w3).
Now X3 ∈ Msc(w′

1 ‖ w′
2), but X3 /∈ Msc(w1 ‖ w2). This observation shows that

products must be handled with care, and can not be dealt with by only considering
one representative word per MSC. Indeed, w1 is a representative for X1, w2 is for
X2, but w1 ‖ w2 is not a set of representatives for X1 ‖ X2.

4.3 Mixed products and existential bounds

The next question to address is of course how mixed products change bounds on
shuffled languages, on MSC languages, and on MSC languages defined using par-
tial order automata. Being B-bounded for an MSC language is important, as it
means that this language has a chance to be implementable by standard CFMS. For
CHMSCs, we have shown that safe CHMSCs have existentially bounded MSC lan-
guages. Safe CHMSCs can be represented by a regular set of representative words,
which may allow for verification (when the considered CHMSC is also globally co-
operative). Hence, preservation of a bound during product is essential to allow for
verification of products of CHMSCs.
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Proposition 6 Linb(X1 ‖ X2) = Lin
b(X1) ‖ Lin

b(X2).

The above result shows that mixed product behaves nicely with respect to
bounded linearizations. If X1 and X2 are ∀-B-bounded, then Lin(Xi) = Lin

B(Xi),
and their product is also ∀-B-bounded. However, it may occur that both X1 and
X2 are ∃-B-bounded but their mixed product is not existentially bounded. For
instance let for all j Xj

1 be the MSC with j messages m1 from p to q and Xj
2

be the MSC with j messages m2 from q to p. Both MSCs are ∃-1-bounded since
(p!q(m1)q?p(m1))

j is 1-bounded. Define X1 = {X
j
1 | j > 0} and X2 = {X

j
2 | j > 0},

thus X1, X2 are ∃-1-bounded, but X1 ‖ X2 is not ∃-B-bounded for any B since
Msc(p!q(m1)

B(q!p(m2)p?q(m2))
Bq?p(m1)

B)
∈ X1 ‖ X2, but is not ∃-(B − 1)-bounded.

An important question regarding MSC-languages and their products is verifica-
tion. Most often, in decidable cases [56, 113], verifications performed on a MSC-
language X amount to check the membership of a given MSC X , or to check that
Lin(X ) has an empty intersection with a regular language L (representing the com-
plement of a desired property). In the case of a product language X1 ‖ X2, mem-
bership can be checked using the projections, since X ∈ X1 ‖ X2 if and only if
πi(X) ∈ Xi for i = 1, 2. In order to check regular properties of L(G1) ‖ L(G2), one
often needs computing a safe CMSC-graph G such that L(G) = L(G1) ‖ L(G2),
and in particular an existential bound B for the product. The example above shows
that in general, one can not expect products to preserve bounds. A key question is
then whether the MSC language obtained as a product of two safe CHMSCs has an
existential bound. Unfortunately, the theorem below shows that one cannot decide
whether such G exists when G1 and G2 share events on two processes or more.

Theorem 34 Let G1, G2 be two HMSCs. It is undecidable whether L(G1) ‖ L(G2)
is existentially bounded.

The proof of this theorem again relies on a PCP encoding. One can easily show
that mapping sequences of events from distinct HMSC specifications can be used
to encode equality of words. This proof (provided in appendix) is similar to the
proof that L(G1) ∩ L(G2) = ∅ is undecidable for generic MSC-graphs G1, G2 [115].
As it builds on emptiness of intersection of languages, the following corollary is
immediate.

Corollary 3 Let H1, H2 be two HMSCs. It is undecidable whether L(G1) ‖ L(G2) =
∅.

Of course, these results are bad news for view composition, as one can not even
decide if a specification given in terms of a set of HMSCs contains at least one
behavior. This seems an essential property to ensure, as a pair of views may define
contradictory ordering for similar events, and such inconsistency should be detected.
Even worse, these negative results already hold for globally cooperative HMSCs (the
PCP encoding of theorem 34 need globally cooperative HMSCs only). This means
that the powerful view composition mechanism we were looking for does not exist,
and that we have to rely on weaker composition mechanisms.
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4.4 Monitored product of MSC-languages

The negative results of Theorem 34 and 3 motivate the introduction of a a monitor
process mp and a monitored product in which all shared events are internal events
located on the monitor process.

Definition 51 Let X1,X2 be two sets of MSCs defined over alphabets E1 and E2.
The monitored product X1 9 X2 with monitor process mp is defined as the mixed
product α1(X1) ‖ α2(X2) where α1, α2 are two bijective renamings such that the
shared alphabet SE after renaming by α1, α2 is included in {mp(a) | a ∈ A1 ∩A2}.

Intuitively, in a monitored product, SE describe which events should be consid-
ered as common events in both views, with the requirement that all these common
events are atomic actions of the monitored process mp. For instance, with the cHM-
SCs of Fig. 5.8 and Fig. 5.9, we can chose mp = server and SE = {mp(sync)} in
FG1 9FG2 . The adequacy of the monitored product to weave aspects of a distributed
system is confirmed by the following theorem.

Theorem 35 [39] Given two safe CHMSCs G1, G2, one can decide in co-NP
whether the monitored product of FG1 9 FG2 is ∃-bounded.

The proof of the theorem follows from the following propositions:

Proposition 7 Given two safe CHMSCs G1 and G2, the MSC-language FG1 9FG2

is existentially bounded if and only if it is existentially B-bounded for B = (2 |P|+
2)2 × (|G1| + 1)× (|G2| + 1)×K, where |Gi| is the number of events in Gi and K
is the square of the sum 2 |P|+ (|P|)2/2× ( |M1| × |G1|+ |M2| × |G2|).

Proposition 8 Given two safe CHMSCs G1, G2 and an integer B, one can decide
in co-NP whether FG1 9 FG2 is ∃-B-bounded.

We do not give the complete proof of the propositions, which are rather long and
can be found in [39], and in an extended version of this work [40]. However, a proof
sketch is provided in appendix.

When FG19FG2 is ∃-bounded, one may wish to compute a safe CHMSC represen-
tation of this MSC-language. This representation can then be used to help designers,
but also serve as input to existing tools for model-checking and realization. In [55]
a correspondence was established between globally cooperative CMSC-graphs [56],
and MSC-languages X with regular representative sets LinB(X ) for some B > 0.

As already mentioned, the undecidability result of theorem 34 holds even when
composed views are globally cooperative. Quite remarkably, FG1 ∩ FG2 = ∅ is
decidable as soon as G1 or G2 is globally cooperative [56]. This decidability comes
from the fact that globally cooperative models can be equivalently represented by
equivalent regular sets of representatives. The results in [55] hold for FIFO cHMSCs
with a single message type, but we can extend them to weak-FIFO CHMSCs with
message contents. We do not detail the proof, which can be found in [39], but give an
intuition for it. One can encode a message sending of the form p!q(m) by a message
sending p!pqm, in which pqm is a new process, which role is to simulate labeling
of messages. Similar translation can be performed for receptions. As a result, we
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obtain a cHMSC with FIFO buffers and one single message type. One can then built
a CHMSC with one message and FIFO communications from an arbitrary cHMSC.
Furthermore, we can show that there exists a bijective correspondence between the
two kinds of model. Then, as an extension of [55] we obtain:

Theorem 36 [39] Let X be a set of (weak-FIFO) MSCs. The following are equiv-
alent:
– X = FG for some globally cooperative CMSC-graph G,
– LinB(X ) is a regular representative set for X for sufficiently large B > 0. More-
over, B and a finite automaton recognizing LinB(X ) can be computed effectively
from G. Conversely, G can be computed effectively from LinB(X ).

Now let G1, G2 be two globally cooperative CMSC-graphs. If L(G1) 9 L(G2)
is ∃-bounded, then this MSC-language is ∃-B-bounded for the bound B defined in
Prop. 7. Therefore, LinB(L(G1)9L(G2)) is a representative set for L(G1)9L(G2).
By proposition 6, LinB(L(G1)9L(G2)) = Lin

B(L(G1))9Lin
B(L(G2)). Since both

G1, G2 are globally cooperative, both LinB(L(G1)) and LinB(L(G2)) are regular
and effectively computable. Since the shuffle of regular language is regular, we get
the following.

Theorem 37 Let G1, G2 be two globally cooperative CMSC-graphs such that L(G1)9
L(G2) is ∃-bounded. Then one can effectively compute a globally cooperative CMSC-
graph G with L(G) = L(G1)9L(G2). Moreover, G is of size at most exponential in
the size of |G1|, |G2|.

Proposition 9 Let H1, H2 be two HMSCs, let X1 ∈ FH1 and X2 ∈ FH2 be two
MSCs such that ΠSE(X1) = ΠSE(X2). Then L(X1 9 X2) 6= ∅.

An immediate consequence of this proposition is that one can effectively test
if the monitored product of two HMSC languages is empty or not. Indeed, the
projection of a HMSC over a subset of events located on a single process forms a
regular language. Hence, ensuring that L(G1) 9 L(G2) 6= ∅ amounts to checking
whether L(ΠSE(G1)) ∩ L(ΠSE(G2)) = ∅. We then have the following result:

Theorem 38 Let H1, H2 be two HMSCs. Deciding if FH1 9 FH2 6= ∅ is PSPACE-
complete.

The monitored product, although less powerful than the product of (c)HMSCs
is more decidable. One can check that existential bounds are preserved during com-
position, and when this is the case, if the composed views are globally cooperative,
then one can compute a product, which is also globally cooperative. When the com-
posed views are HMSCs, a simple test allows to decide if the two views describe at
least a common consistent run.

4.5 Conclusion on CHMSC and HMSC products

We have shown in this section that assembling of HMSC views by a shuffle operation
does not work in practice, as deciding if a product of two globally cooperative HM-
SCs has an empty language is already undecidable. This may seem surprising, as
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globally cooperative HMSCs already allow for model checking. The main reason for
undecidability is that in products, HMSCs can be seen as rational relation among
observable events located on distinct processes. This immediately gives the unde-
cidability, regardless of the fact that some messages allow for global cooperation in
loops.

To overcome this problem, one solution is to enforce common events in views
to appear on a single designated process. In this case, we obtain what we called a
monitored product of HMSCs or safe CHMSCs, for which it is decidable whether
the product language is bounded. Note that monitored product does not necessarily
preserve boundedness of the composed views. When the composed graphs are glob-
ally cooperative, if an existential bound for the MSCs generated by the monitored
product exists, then the monitored product can be represented by a globally coop-
erative CHMSC. However, the size of the composed model can be exponential in
the size of the original models. Beyond the theoretical results brought by this study
of HMSC products, these results are rather disappointing in terms of feasibility or
practical use of view composition for partial order automata.

5 Fibered Product

The previous section has addressed two notions of products for (c)HMSCs, namely
mixed product, and monitored product. Mixed product can not be used to produce
a new CHMSC specification out of two CHMSC components, so it is a rather in-
tentional operator. Monitored product can compose safe and globally cooperative
CHMSCs, and in some cases outputs a safe and globally cooperative product CHM-
SCs. This seems more usable in practice, as the class of globally cooperative partial
order automata allows for model-checking, implementation, and remains quite ex-
pressive. Furthermore, when assembling pieces of a specification, it seems reasonable
that each functionality is safe and globally cooperative, and that the result remains
globally cooperative too. However, even when a safe and globally cooperative spec-
ification can be maintained, section 4.4, theorem 37 shows that a product can be
of exponential size (w.r.t the sizes of the composed models). This rapidly hinders
applicability of monitored product if monitored product is used several times to
design a complete specification.

In this section, we define a less powerful operator, namely a fibered product of
HMSCs, but which properties help mastering the size of a product. This product is
a kind of synchronous product of HMSCs (with the usual meaning of [16]), where
synchronized transitions are labeled by a MSC that merges orderings defined in the
MSCs labeling the synchronized transitions. Though this composition seems more
limited than a mixed product or monitored product, we will show that is has nice
properties with respect to existential and universal bounds and to finite generation.

Another motivation for this work was to be able to design in a compact way spec-
ifications with a lot of redundancy, and then build and study complete model by
assembling specializations of theses parts. Indeed, a drawback of standard scenario
formalisms is that the number of participants in a given interaction cannot be pa-
rameterized. With a fixed number of objects in an interaction, it is hard to describe
behaviors of systems with dynamic architectures. Message Sequence Charts propose
instance creation, but the mechanism proposed in the Z.120 standard needs to know
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a priori the instances that will be created. This problem will be addressed in the
next chapter, where we propose a notion of dynamic MSCs handling dynamically
an arbitrary number of instances. However, we will show that fibered product can
be efficiently used to define and assemble parametric models that depict redundant
functionalities of a system.

The fibered product of HMSCs proposed in this section builds a new HMSC from
two HMSC operands. Hence, our product is endogenous. The product described
needs to clearly specify common and identical parts in composed scenarios. It first
identifies pairs of transitions that must be “synchronized” in two HMSCs, and re-
alizes their union with an amalgamated sum of MSCs labeling the synchronized
transitions. Common parts and synchronizations are defined though the notions
of MSC and HMSC morphisms, that guarantee that a product of two HMSCs is
unique, and is the smallest model to contain both views.

The benefits of scenario merging do not only concern view composition. In fact,
an endogenous merge operator can be used to propose formal and well founded
model transformations and design patterns for scenarios. In this section, we first
defined the notion of fibered product of HMSCs, and we then show the usefulness
of this construction on a concrete application, ie, the introduction of a consensus
algorithm to localize choices in a HMSC.

5.1 Amalgamated Sum of MSCs

In the sequel, our formal definition of MSC sums will be based on the notions of
preorder : preorder on a set of elements E is a relation R ⊆ E2 that is reflexive (ie.
∀e ∈ E, eRe) and transitive (ie. ∀e, f, g ∈ E, eRf ∧ fRg =⇒ eRg). A partial order
is an antisymmetric preorder (ie. ∀a, b ∈ E, aRb ∧ bRa =⇒ a = b).

The standard composition operations for MSCs are usually parallel or sequential
composition, iteration or choice. Other operations on MSCs have been proposed,
such as instance refinement [103], message refinement [46], virtuality [128], or pro-
jections [59] (also addressed in section 3 of this chapter). As shown in former section,
when two MSCs depict different viewpoints of the same behavior, the intended de-
signed behavior is some kind of merged MSC that contains both scenarios without
creating copies of similar elements. In previous section, such product was defined
as a mixed product of MSCs, and also as a monitored product (a mixed product in
which similar events of the composed MSC are necessarily on a designated process).
These operators assume that all events with common labels should have compatible
orderings in the composed scenarios. We propose another merge operator for MSCs
called amalgamated sum. Amalgamated sum is a MSC product in which common
events are explicitly defined. This allows to define a merge of two scenarios contain-
ing two occurrences of the same event, each one coming from one operand. This
amalgamated sum uses basic concepts of category theory. First, we need to define
the notion of MSC morphisms, that will be essential to specify common parts in
scenarios.

Definition 52 (MSC Morphism) An instance set morphism is an injective map-
ping l : I → I ′ from an instance set I to another instance set I ′. Let I and I ′ be
two finite sets of instances and l : I → I ′ an instance set morphism. A MSC mor-
phism along l, from M = (E, (<p)p∈P , α, µ, φ), a MSC over I, to M ′ = (E ′, (<′

p
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)p∈P , α
′, µ′, φ′), MSC over I ′, is a pair of mappings γ = (γ1, γ2) where γ1 : E → E ′

is injective, γ2 : A→ A′ is a renaming mapping, and:

i) ∀(e, f) ∈ E2, e ≤ f ⇒ γ1(e) ≤′ γ1(f)

ii) ∀(e, f) ∈ E2, f = µ(e)⇒ γ1(f) = µ′(γ1(e))

iii) l ◦ φ = φ′ ◦ γ1

iv) γ2 ◦ α = α′ ◦ γ1

Intuitively, i) means that morphisms preserve ordering, ii) means that mor-
phisms preserve messages. Property iii) means that the event morphisms is consis-
tent with the instance morphism. It also means that all events located on a single
instance of M are sent by γ1 on a single instance of M ′. Last, property iv) means
that the event morphisms γ1 is consistent with the labellings of M and M ′ and the
label morphism γ2. Note that is many sums that will be defined hereafter, the la-
beling morphism will be the identity morphism id. When no instance set morphism
is specified, MSC morphisms are defined by triples γ = (l, γ1, γ2) such that (γ1, γ2)
is a MSC morphism along l.

Figure 5.11-b shows an example of MSC morphism f =< f0, f1, f2 > from a
MSC M to a MSC M ′. For the sake of clarity, we have represented f0 as a plain line
from an instance to another, f1 as dotted lines from events of M to events of M ′,
but f2 is omitted. In this example, f0 send instance A onto instance A, but instance
B is sent onto B′. However, event localization is respected. Similarly, message m2
in M is sent onto a message n in M ′.

Figure 5.11: MSC morphism example

Definition 53 (Amalgamated Sum of Two Sets) Let I, J and K be three fi-
nite sets. Let f : I → J and g : I → K be two injective maps. The amalgamated
sum J f +g K is defined as J f +g K =

(
J\f(I)

)⊎(
K\g(I)

)⊎
I. The amalgamated

sum yields two injections f̃ : J → J f +gK and g̃ : K → J f +gK defined as follows:

{
∀i ∈ f(I), f̃(i) = f−1(i)

∀i ∈ J \ f(I), f̃(i) = i

{
∀i ∈ g(I), g̃(i) = g−1(i)
∀i ∈ K \ g(I), g̃(i) = i
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Note that as we use ⊎ (disjoint union) in our definition, the result of an amal-
gamated sum can contain several copies of similar elements. Amalgamated sums of
sets will be used to amalgamate sets of instances, events or actions of two MSCs to
be composed. This mechanism allows for the definition of a product where events
with similar labels in two operands can be nevertheless duplicated.

Definition 54 (Amalgamated Sum of two MSCs) LetM0 = (E0, (<0,p)p∈I0, α0, µ0, φ0)
M1 = (E1, (<1,p)p∈I1, α1, µ1, φ1) M2 = (E2, (<2,p)p∈I2, α2, µ2, φ2) be three MSCs re-
spectively defined over three sets of instances I0, I1, I2, and f = (f0, f1, f2) be a MSC
morphism from M0 to M1, g = (g0, g1, g2) be a MSC morphism from M0 to M2. The
amalgamated sum of M1 and M2 wrt. f and g is denoted M = M1 f +g M2, and is
a tuple M = (E,≤, λ, µ, φ) where:

• I = I1 f0 +g0 I2; E = E1 f1 +g1 E2 ; A = A1 f2 +g2 A2 ;

• Preorder relation ≤ is the transitive closure of f̃1(≤1) ∪ g̃1(≤2) ;

• ∀e ∈ E, λ(e) =





λ1(e) if e ∈ E1\f1(E0)
λ2(e) if e ∈ E2\f2(E0)
λ0(e) otherwise

, φ(e) =





φ1(e) if e ∈ E1\f1(E0)
φ2(e) if e ∈ E2\f2(E0)
φ0(e) otherwise

• µ = f̃1(µ1) ∪ g̃1(µ2).

The MSC M0 is called the interface of the amalgamated sum M1 f +g M2.

Note that M = M1 f +g M2 is not always an MSC, as ≤ need not be a partial
order. Indeed, f̃1(≤1)∪ g̃1(≤2) can be a preorder (i.e it can contain cycles) if M1 and
M2 disagree on the respective order of two events e, f that belong to the interface.
When ≤ is a partial order we will say that the amalgamated sum M1 f +g M2 is
well-formed. Obviously, checking well-formedness of an amalgamated sum of MSC
can be done in O(E2). If we relax the assumption that events along a process
are totally ordered (that is if we allow coregions in MSCs), well-formed sums can
be considered as MSCs, as one can compute the relations (<p)℘ ∈ I by setting
<p= {(e, f) ∈≤| φ(e) = φ(f) = p}.

Let us illustrate the use of amalgamated sum on the example of Figure 5.12. Con-
sidering MSCs M1 = (E1, (<1,p)p∈I1 , α1, µ1, φ1) and M2 = (E2, (<2,p)p∈I2, α2, µ2, φ2)
as two partial observations of the same system, we want to produce a behavior that
contains M1 and M2. Let us also suppose that even if M1 and M2 have different
instance sets, instance X in M2 and instance sender in M1 (resp. Y and medium)
represent the same object in the system. Intuitively, merging M1 and M2 then
amounts to inserting an atomic action between send reception and return sending
in M1, and renaming the instances. Formally, the merge consists in the definition
of an interface that identifies the common elements (events, action name, and in-
stances) in M1 and M2 and renames them. For our example, this is done using a
new MSC M0 = (E0, (<0,p)p∈I0, α0, µ0, φ0), and two MSC morphisms f : M0 → M1

and g : M0 → M2 defined below.

• Morphism f = (f0, f1, f2) from M0 to M1 is a triple where:

– f0 : I0 → I1 is the identity,

84 5. FIBERED PRODUCT



CHAPTER 5. TOWARDS A PARTIAL ORDER ALGEBRA ?

– f1 : E0 → E1 sends respectively e1, e2, e3, e4 onto d1, d2, d3, d4,

– f2 : A0 → A1 is the identity.

• Morphism g = (g0, g1, g2) from M0 to M2 is a triple where:

– g0 : I0 → I2 sends sender onto X and medium onto Y ,

– g1 : E0 → E2 sends respectively e1, e2, e3, e4 onto r1, r2, r3, r4,

– g2 : A0toA2 sends respectively Sender!Medium(send),Medium?Sender(send),
Medium!Sender(return,Sender?Medium(return) ontoX !Y (m1), Y ?X(m1),
Y !X(m2), X?Y (m2).

Figure 5.12: An example of amalgamated sum

The result of the amalgamated sum M1 f +g M2 is the MSC M3 of Figure 5.12.
Note that the names of the resulting instances on common parts are defined by the
instance names of the interface. Other conventions are possible, such as defining
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e′b
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e′a
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M1 M2

M0

a b

Figure 5.13: An amalgamated sum that is not well-formed

new instance names of the form “X + Sender” instead of keeping Sender in the
amalgamated sum.

As already mentioned, the ≤ relation in an amalgamated sum of two MSCs is
not always well-formed, as the least preorder containing ≤1 and ≤2 may not be
antisymmetric. Let us consider an example of amalgamated sum that is not well-
formed, as in Figure 5.13. MSC M1 imposes that ea ≤ eb while MSC M2 states that
e′b ≤ e′a. Clearly, if ea and e′a are images of a single event a in the interface M0 via
f and g, and if if eb and e′b are also images of a single event b in M0 via f and g,
then the orders defined in M1 and M2 are contradictory, and summing them creates
a symmetry. In such case, the two scenarios are considered incompatible, at least
with the proposed morphisms f and g. In this example, we need to remove only one
event (either a or b) from the interface to obtain a well-formed sum.

The result of the amalgamated sum highly depends on the interface and on how
it is mapped onto composed MSCs by morphisms. Hence, there can be several way
to assemble a pair of MSCs. Event if this number is finite, it can grow very fast.
If we want to build interfaces automatically, we need to focus on elements with
identical labels in both operands. An algorithm to identify the largest interfaces
allowing an amalgamated sum was proposed in [69]. However, assembling two views
with distinct alphabets describing similar concepts will need human interaction to
specify a non-trivial interface.

5.2 Fibered product of HMSCs

As for standard products, it is not sufficient to assemble finite MSCs to design inter-
esting models, and we want to extend the amalgamated sum approach to HMSCs,
or to languages of MSCs generated by HMSCs. An obvious and immediate idea is
to work on the set of MSCs generated by a HMSC, that is define an amalgamated
sum of MSC languages. The composition of two sets of MSCs would be the set
of well-formed amalgamated sums obtained by merging pairs of MSCs from each
set. However, to precisely define this question, one needs to be able to define au-
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tomatically an interface for two operands. If we use as interfaces any isomorphic
sub-order in both operands, the obtained language will not be meaningful, as any
pair of MSCs can be assembled with the empty interface. One can also rely on
construction of maximal interfaces, but as an interface to assemble two MSCs need
not be unique, this composition is also likely to bring an exponential explosion in
the number of generated orders. Another bothering aspect of such composition is
that the resulting language is not necessarily existentially bounded, nor the lan-
guage of a safe cHMSC. Consider, for example, the two HMSCs of Figure 5.14. One
of them generates the MSC language L1 = {M1 ◦Mk

2 ◦ M3 | k ∈ N}, while the
other only generates L2 = {M}. As any MSC in L1 contains only one occurrence
of a and b, an intuitive interpretation for the sum of both languages is the language
L3 = {N fN +gM M}, where fN (reps gM) is a mapping from a MSC that contains
only two atomic actions a and b onto N (resp M), with the obvious mappings on
events, instances, and labels.

The set of MSCs in L3 is represented in Figure 5.15. Note that there is no order-
ing between the receipt and sending of the message m, and the events corresponding
to the messages n. However, L3 is not generated by a HMSC, as the messages of
type m can cross an arbitrary number of messages of type n. This kind of specifica-
tion can be expressed by means of Compositional Message Sequence Charts [65], or
Extended compositional Message Sequence charts [92], but not with HMSCs. From
this example, one can also easily design an example generating an MSC language
that is not existentially bounded, i.e. can not be represented as a safe CHMSC.

B
bMSC M2

n

A

A B
bMSC M

m
M1

M2 M3

M

A

B

bMSC M1

bMSC M3

b

a

b

a

Figure 5.14: Event by event matching
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n m
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Figure 5.15: Result

Hence, languages of HMSCs and even languages of safe CHMSCs are not closed
under amalgamated sum. This is not so surprising, as amalgamated sum of MSC
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languages is another way to define mixed products of HMSCs. Keeping in mind the
objective of defining a product such that HMSCs are closed under this operation,
we propose hereafter a weaker operator, namely the fibered product of HMSCs.
This syntactic operator is based on the fibered product of asynchronous transition
systems proposed in [20].

The fibered product of HMSCs is defined through two composition mechanisms.
First, transitions of the two support automata are partially synchronized. Then, the
amalgamated sums of the MSCs attached to the transitions being synchronized are
computed to create new MSCs. As for the amalgamated sum, the formal definition
of the fibered product of HMSCs relies on a notion of morphism.

As for MSCs, we can define a notion of morphism for HMSCs. HMSC morphisms
can be defined, as triples of morphisms or mappings: i) a morphism of instance sets,
ii) a morphism of labeled transition systems and iii) a mapping that associates MSC
morphisms to transitions.

Definition 55 (HMSC morphism) Let H1 = (N1,−→1,M1, n
1
0, F1), H2 = (N2,−→2

,M2, n
2
0, F2), be two HMSCs, respectively defined over sets of instances I1,and I2.

A HMSC morphism f from H1 to H2 is a quadruple f = (f0, f1, f2, f3), where

• f0 : I2 → I1 is an instance set morphism,

• f1 : N1 → N2 is a total function from nodes of H1 to nodes of H2, and
f2 : T1 ⇀ T2 is a partial function from transitions of H1 to transitions of H2

which satisfy:

i) f1(n
1
0) = n2

0;

ii) t1 = (n, a, n′) in −→1 and f2(t1) defined imply ∃b ∈ Σ2, f2(t1) = (f1(n), b, f1(n
′))

in −→2;

iii) t1 = (n, a, n′) in T1 and f2(t1) undefined imply f1(n) = f1(n
′) in S2.

Condition i) ensures that morphisms preserve initial states. According to con-
ditions ii) and iii), any transition t ∈ T1 of S1 is mapped to a transition of S2
via f2 if f2 is defined in t. In other words, f2 defines which transitions of H1

have observable effects in H2. For convenience, we can add an artificial empty

transition q
Mǫ−→ q to each state q ∈ S. With this convention, transitions of

H1 for which f2 is not defined are mapped to an empty transition of H2, and
f2 becomes a total function. Hence, we can succinctly rewrite the second and
third conditions as follows: if t = (p, a, q) is a transition of −→1, then there
exists a′ ∈ Σ2 ∪ ǫ such that f2(t) = (f1(p), a

′, f1(q)) is a transition of −→2.

We will use this convention in the rest of the chapter, and hence assume that

there exists a transition of the form q
Mǫ−→ q for every state q of a transition

system.

• f3 maps each transition (n1,M, n′
1) ∈−→1 to MSC morphisms from M ′ ∈M2

to M , where M ′ is the MSC labeling transition (n2,M
′, n′

2) = f2((n1,M, n′
1))

.
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We can now use this notion of HMSC morphism to define a fibered product of
HMSCs. Despite the apparent complexity of HMSC morphisms and product, the
intuition is rather simple. To compose two HMSCs H1, H2, an interface HMSC
H0 is designed. Transition of H1 and H2 that are sent onto the same transition of
H0 are descriptions of similar interactions: they are hence synchronized, and the
resulting transition is labeled by a sum of the MSCs labeling the synchronizes MSC
labels. In the rest of the section, we will consider that the obtained sums are always
well-formed. Note that the synchronization of HMSC transitions can be seen as a
partially synchronized product of labeled transition [16] (in which synchronizations
are defined using synchronization vectors).

Definition 56 (Fibered product of HMSCs) Let H0, H1 and H2 be three HM-
SCs, and let f = (f0, f1, f2, f3) : H1 → H0 and g = (g0, g1, g2, g3) : H2 → H0

be two HMSC morphisms. The fibered product of H1 and H2 over f and g is noted
H1f×gH2, and is the HMSC H1f×gH2 = (N,−→,M, n0, F ), defined over instances
I = I1 f0 +g0 I2, and where:

• N = N1 ×N2, n0 = (n1
0, n

2
0), F = F1 × F2

• −→= {
(
(n1, n2),M, (n′

1, n
′
2)
)
| ∃t1 = (n1,M1, n

′
1) ∈−→2, t2 = (n2,M2, n

′
2) ∈−→2

, f2(t1) = g2(t2) ∧M = M1 f3(t1) +g3(t2) M2}

• M = {M1 f2(t1) +g2(t2) M2 | ∃t1 = (n1,M1, n
′
1) ∈−→2, t2 = (n2,M2, n

′
2) ∈−→2

, f1(t1) = g2(t2).

Roughly speaking, a fibered product of H1 and H2 contains one transition for
each pair of transitions (t1, t2) of−→1 × −→2 that are sent onto the same transitions
t0 = (n0,M0, n

′
0) of −→0. This transition is labeled by the amalgamated sum of

MSCs labeling t1 and t2, which uses as interface MSC M0. The morphisms from M0

to labels of t1 and t2 are provided by f3(t1) and g3(t2).
Let us illustrate our fibered product of HMSCs on a simple example. Figure 5.16

shows three HMSCs H0,H1 andH2, with silent transitions, labeled by an empty MSC
Mǫ. Dotted arrows from H1 to H0 depicts a morphism f2 from transitions of H1

to transitions of H0, and a morphism g2 from transitions of H1 to transitions of
H0. Amalgamated sums that use empty interfaces are simply unions of operands
(events sets, and ordering relations), and for every M , and every pair of morphisms
f, g, we have M = M f +g Mǫ. Letting M1, M2, M0, f and g be the MSCs of
example 5.12, the fibered product obtained is the HMSC H3. Note that in H3,
transitions labeled by the empty MSC are not represented. Note also that node
(n0, n

′
1) is not final and that no final node can be reached from it. Hence, the

transition
(
(n0, n

′
1),M6, (n0, n

′
1)
)
can be removed from the model without changing

its semantics (no MSC in FH3 starts with M6).
HMSCs are closed under fibered product. Their size grow polynomially, but their

existential bounds grow linearly.

Proposition 10 Let H1, H2 be two HMSCs, with n1 nodes (resp n2) m1 transitions
(resp m2 and existential bound b1 (resp b2), and with MSCs of size at most s1 (resp
s2). Then, form any HMSC morphisms and interface, the fibered product of H1 and
H2 is an HMSC with at most n1.n2 nodes, m1.m2 transitions, labeled by MSCs of
size at most s1 + s2 and an existential bound of s1+s2

2
.
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Figure 5.16: an example of fibered product of HMSC

90 5. FIBERED PRODUCT



CHAPTER 5. TOWARDS A PARTIAL ORDER ALGEBRA ?

5.3 Applications of fibered product

The fibered product should be considered as a syntactic operator, as it merges
transitions of two HMSCs H1, H2 to create a new model. Hence, it considered the
way MSC in FH1 and in FH2 are produced. Another inconvenient of the operator is
that an interface for the composed HMSCs have to be defined, which can be a tedious
task: one have to specify how MSCs in H1 andH2 synchronize, and also to define the
MSC morphisms from the MSCs in the interface to the MSCs in the operand. These
drawbacks are clearly limiting the use of mixed product, but proposition 10 shows
that product allows to master the size of specifications, and preserves boundedness.
So even if mixed product is not a very powerful operator and can be tedious to use,
it has some nice properties. We show below that this product can also have nice
practical applications for model design.

Non-local choices suppression

The first application we consider for mixed product is localization of HMSCs. As
already mentioned in chapter 2, local choice can be a problem to implement a
specification given as an HMSC. Considering an HMSC as an abstraction of a more
complex systems in which processes unambiguously decide which scenario should
be played, it seems natural to build a new HMSC in which this choice is made
explicit. Making a distributed choice explicit consists in adding messages in such a
way that the obtained HMSC becomes local. As we will show in chapter 7, all local
choice HMSCs can be implemented. To implement a system described by a non-
local HMSC, an experimented programmer would certainly add some well known
distributed consensus protocol to the original HMSC. We can use a fibered product
of HMSCs to integrate automatically a consensus protocol in a non-local HMSC.
An interesting property of this HMSC transformation is that it can be used for an
arbitrary number of instances participating to a non-local choice.

Let us consider the non-local HMSC H1 of figure 5.17. Let H2 be a protocol that
involves processes A,B plus an additional supervisor, which role is to query A and
B for the next scenario to execute. The chosen scenario depends on the first answer
returned by process A or B. The morphisms from H1 to an interface H0 and from
H2 to H0 are depicted as dotted arrows. The fibered product of H1 and H2 with
interface H0 produces HMSC H3. In this new HMSC, if the first returned answer
is Choice(1), either by A (MSC C1) or by B (MSC C2), then the next scenario
to perform is M1. Similarly, if the first returned answer is Choice(2), either by A
(MSC C3) or by B (MSC C4), then the next scenario to perform is M2. One can
notice that H3 is a local-choice HMSC. Hence, the local choice problem was solved
by insertion of a given protocol before M1 and M2.

Insertion of a HMSC into another one can hence be seen as a fibered product
operation. Admittedly, this product is not trivial, and designing an interface for an
insertion took as much time as designing H3 from scratch. However, such insertion
scheme can be automated and provided as a high-level instruction, and the interface
can also be computed automatically.
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Figure 5.17: localization of a HMSC using a fibered product

Renaming and extension

The following examples illustrate two interesting features of fibered product. Very
often in communication protocols, processes have symmetric roles, and exhibit iso-
morphic behaviors up to some renaming. Amalgamated sum allows for renaming
of processes in a MSC. Consider for instance the example of Figure 5.18. MSC
M1 depicts a simple interaction where A sends a message m to B. If we define a
MSC M0 over A,B with no events, and MSC morphisms f =< f0,⊥,⊥ >, (where
f0(A) = B, f0(B) = A, and ⊥ denotes an empty morphism) from M0 to M1 and
g =< id,⊥,⊥ > from M0 to M0, then we have M2 = M1 f +g M0. In MSC M2 the
roles of A and B have been exchanged. We can use similar trick to rename messages,
or to instantiate a protocol for a given set of processes out of a generic one. For
instance, MSCs C1, C2, C3, C4 in Figure 5.17 can be generated from the same MSC
pattern, simply by assigning instance names to roles defined in a generic behavior.

Of course, renaming does not need the full mechanism of MSC morphism, and
could be achieved a more simple way. However, is is an element that can be used
to define and instantiate a generic behavior over an arbitrary number of processes.
Consider for instance the MSC M1 of Figure 5.19. This MSC can be composed with
M2, assuming a common instance Sender. Note that M2 can be obtained from M1
via a renaming. The amalgamated sum of M1 and M2 is the MSC M3, that depicts
a scenario where process Sender sends the same message to two processes R1 and
R2 (no ordering is specified among sendings). Repeating this operation k times, one
can obtain a scenario modeling a broadcast communication for a group of processes,
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Figure 5.18: Exchanging roles with an amalgamated sum

starting only from a single generic MSC (M1) and a description of the composition
of the broadcast group.

Figure 5.19

All these examples of fibered product and sums show that these operators can be
useful to build models of systems from generic behavioral parameterized pieces, and
a description of the systems components. This is frequently called self-modeling, and
may be an appropriate answer to the lack of modeling during the development of
real systems. Of course, it seems illusory to ask a designer to define MSC and HMSC
morphisms. However, fibered product can be used as a formal ingredient to define
high-level operators, defined in terms of sums or products, and which morphisms
can be automatically computed, or defined with little help from end-users. The
renaming and broadcast examples illustrate the kind of high-level operator that
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could be provided this way.

5.4 Conclusion on fibered product

The fibered product described in this section is an answer to the undecidability of
mixed product, and to the closure properties of monitored product. Indeed, as soon
as events types are respected by MSC morphisms (sending events, reception events
and atomic actions are respectively mapped to sending events, reception events and
atomic actions of the target MSC) well-formed sums are MSCs. Furthermore, well-
formedness is decidable. Similarly, fibered products of HMSCs are still HMSCs.

The definition of fibered product mainly relies on the definition of appropriate
morphisms, which can be considered rather complicated at first sight. Furthermore,
morphisms force some synchronization between MSCs, which can be considered as
an arbitrary solution (remember that due to the meaning of sequential composition,
there are several ways to obtain similar orderings between events, and hence that
decomposition of scenarios into MSCs is not always meaningful). A clue to refine
merging is to define HMSC morphisms not only as transition morphisms but rather
as path morphisms, as is done in [20]. Note also that amalgamated sums define
explicitly events that coincide in both views. This can be considered as a drawback,
but relying on events labeling to detect similarities and assemble MSC languages
immediately leads to compositions such as the mixed product, and to undecidability
of important properties in a modular design framework. For instance, it seems
essential to have procedures to detect whether a product of (c)HMSCs has an empty
language or not. Furthermore, for most cases where fibered product can be applied,
the morphisms are rather simple. They can often be computed automatically, and
more elaborated fibered products can be provided as higher-level constructs, as
shown for the localization example. Clearly, fibered product can be used as a design
tool to create automatically large scenario specifications from a finite set of generic
behavioral patterns, and some information on processes of a system. scenarios.
These concrete scenarios could then be used for testing or diagnosis purposes.

6 Conclusion

Before concluding this chapter, it seems interesting to summarize properties of dif-
ferent HMSC operators considered in this chapter, and to recall the properties that
they preserve. Among the considered properties, we are of course interested in global
cooperation, locality of choices, regularity, divergence, and whether a composition of
HMSCs remains finitely generated, existentially or universally bounded. For mixed
and monitored product, considering global cooperation, locality, regularity and so
on only makes sense in contexts where the composition of two HMSCs produces an
MSC language that is still finitely generated, and preserve in some way the structure
of the original HMSC. This is not always the case, as we have already seen.

The table 5.1 below summarizes the properties preserved by projection. For
simplicity, and uniformity of the conclusion, we only consider as input HMSCs.
However, safe CHMSCs usually enjoy the same properties as HMSCs, except of
course for finite generation. The left column lists possible properties of a HMSC H ,
and the right column the corresponding property of its projection.
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Properties of HMSC H Properties of Π(H)
Local local or non local
non Local local or non local
regular regular
non regular regular or non regular
globally cooperative g.coop or non-g.coop
non globally cooperative g.coop or non-g.coop
divergent divergent or non divergent
non divergent non divergent
L(H) regular L(Π(H)) regular
L(H) not regular L(Π(H)) regular or non regular
Univ. bounded univ. bounded
non Univ. bounded univ.bounded or non univ.bounded
exist. bounded (by definition) exist. bounded (Π(H) is a safe cHMSC)
finitely generated (by definition) fin.gen or non fin. gen

Table 5.1: Properties of HMSC projections

Furthermore, we can recall that it is decidable whether the projection of a HMSC
is finitely generated, in which case it can be represented as another HMSC.

The table below summarizes the properties of HMSC products : mixed product
‖, monitored product (9), and fibered product ×.

H1, H2 H1 ‖ H2 H1 9 H2 H1 ×H2

Local local or non local local or non local local or non local
non Local local or non local local or non local local or non local
regular regular regular regular or non regular
non regular regular or non regular regular or non regular regular or non regular
glob. cooperative glob. coop. glob. coop. glob. coop or non glob. coop

(when a model exists) (when a model exists)

non glob. cooperative g.coop or non g.coop g.coop or non g.coop g.coop or non g.coop
divergent divergent or non divergent divergent or non divergent divergent or non divergent
non divergent non divergent non divergent non divergent
L(H) regular L(H1 ‖ H2) L(H1 9 H2) L(H1 ×H2)

regular regular regular or non regular

L(H) not regular L(H1 ‖ H2) L(H1 9 H2) L(H1 ×H2)
regular or non regular regular or non regular regular or non regular

∀-bounded ∀-bounded ∀-bounded ∀-bounded
non ∀-bounded ∀-bounded or non ∀-bounded ∀-bounded or non ∀-bounded ∀-bounded or non ∀-bounded
∃-bounded ∃-bounded or non ∃-bounded ∃-bounded or non ∃-bounded ∃-bounded ( s1+s2

2
)

finitely generated fin.gen or non fin. gen. fin.gen or non fin. gen. fin.gen

Table 5.2: Porperties of Products

We furthermore recall that, given two HMSCs H1, H2, it is undecidable whether
L(H1 ‖ H2) = ∅. This property is important, as it means that composition ofH1 and
H2 still has some meaning (it contains at least one behavior). One can not decide
either if L(H1 ‖ H2) is existentially bounded. Moving to the more restricted setting
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of monitored product, existential boundedness is decidable for safe cHMSCs (and
hence for HMSCs), and emptiness is decidable for HMSCs. Mixed and monitored
product do not necessarily preserve existential boundedness. For fibered products,
emptiness may arise due to the fact that amalgamated sums are not well-formed,
or if final states become unreachable after synchronization. Hence, emptiness is
decidable. An existential bound is guaranteed by construction of the product (one
can compute a tighter bound as the maximal existential bound over all MSC labeling
the product).

At first sight, it may seem surprising that products may transform non regular
or non- globally cooperative HMSCs into regular or globally cooperative products.
However, one should recall that M ∈ FG1‖G2 if it can be projected on the alphabet
of G1 and G2 to obtain two MSCs M1 ∈ FG1 and M2 ∈ FG2. If a path ρ of G1 can
only be merged with path of G2 that disagree on the ordering of common events
that appear in Mρ, then the behavior in path ρ simply disappears from the merged
specification. Hence, mixed and monitored product can be used to select a subset of
paths of a HMSC, which may change non-regular/non-local/divergent/non-globally
cooperative specification to regular/local/non divergent/globally cooperative ones.
Conversely, fibered product may amalgamate components from distinct processes
without communications, hence MSCs labeling loops may become non (strongly)
connected even if the operands were.

Last, note that though the nature of the proposed product may focus on se-
mantics or (for monitored and mixed product) or syntax (for fibered product) of
HMSCs, the differences in terms of modified properties is not obvious from the ta-
ble. Non-divergence and universal bounds seem to be the only properties preserved
by all operations. Monitored and mixed product preserve (assuming an equivalent
(c)HMSC specification exists for the product) global cooperation, as one can only
create new cycles in a product by synchronizing connected cycles of the operands.
This property is usually an interesting property for model checking. However, mixed
and monitored product do not preserve existential boundedness in general, which is
a bad property with respect to implementation. Fibered product preserves existen-
tial boundedness, but at the cost of not preserving global cooperation. Specification
that are not globally cooperative are not implementable as they are, as indepen-
dent groups of processes are supposed to perform identical number of occurrences
of HMSC loops without communication. If one considers a product as a way to
refine a specification, loosing global cooperation during a product operation is a bad
property of the operator.

Last comparing the cost of each operator in terms of the size of the built model
and in terms of complexity of use, one can note that composing two specifications
with mixed or monitored product does not require any additional information from
end-users, but that the size of the specification built using a monitored product
(and hence also a mixed product) is redhibitory. Fibered product is a way to master
the size of the products. However, defining a fibered product means defining the
morphisms that are used to synchronize MSCs and to amalgamated them, which is
a tedious tasks. Monitored and mixed product do not require such an effort from
the designer. An first attempt to build the morphisms automatically was proposed
in [69]. We furthermore think that several High-level macros for HMSCs can be
defined as fibered products which interfaces can be automatically computed.
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Overall, none of the usual operations (projection, product) needed to design
a partial order automata algebra has all desired properties. This a disappointing
conclusion, but one should recall that HMSCs and their variants are models that
define non-regular behaviors. So one could not expect HMSCs to exhibit the nice
algebraic properties of automata. However, we believe that monitored product and
fibered product may still find useful application to design large models out of a
few behavioral elements, but only when the sizes of the models can be mastered in
monitored product, and when morphisms for fibered composition can be computed
automatically.
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Chapter 6

Dynamic MSCs

La description est déjà prête, il faut seulement que vous combliez deux ou trois
lacunes, pour que les choses soient en ordre; il n’y a pas d’autre but et aucun autre

but ne saurait être atteint.
The record is already complete, there are only two or three omissions which you
must fill in for the sake of order; There is no other object in view, and no other

object can be achieved.
[Franz Kafka, Le Château(1926)]

1 Introduction

In chapters 3 and 4, we have seen two ways to extend expressiveness of partial order
automata in a tractable way: splitting messages or allowing commutations to allow
description of modern protocols such as sliding windows. This extension of HMSCs
semantics allows for the definition of the same syntactics classes as for HMSCs,
and hence allow for the definition of syntactic subclasses of the languages for which
some problems (model checking, intersection vacuity, ...) are decidable. Chapter 5
has considered different ways to assemble HMSC specification, with disappointing
results, as none of the compositions proposed preserve syntactic subclasses. Note
that so far, we have only considered extensions of partial order automata for fixed
sets of processes. MSCs were originally created in a telecommunication context,
and were seen as descriptions of protocols. However, nowadays, many applications
rely on threads, and most protocols are designed for an open world, where all the
participating actors are not known in advance. Hence, integrating dynamic process
creation in scenarios is needed to adapt the formalism to current sate of distributed
systems.

This chapter is dedicated to the extension of HMSCs to allow dynamic process
creation. This chapter mainly considers expressiveness issues, but realizability of
dynamic scenario specifications is also considered in the chapter dedicated to imple-
mentation of scenarios

A first step towards MSCs over an evolving set of processes was made by Leucker,
Madhusudan, and Mukhopadhyay [92]. Their fork-and-join MSC grammars allow
for dynamic creation of processes and have good properties, such as decidability
of MSO model checking. However, it remains unclear how to implement fork-and-
join MSC grammars. In particular, a corresponding automata model with a clear
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behavioral semantics based on MSCs is missing. Dynamicity of scenarios and their
realizability are then two important issues that must be considered jointly.

The work described in this chapter is a joint work with B.Bollig, and was pub-
lished in [26]. We introduce dynamicity in HMSCs using dynamic MSC grammars
(DMG for short) as a specification language. It is inspired by the fork-and-join
grammars from [92] but closer to an implementation. We keep the main idea of [92]:
when unfolding a grammar, MSCs are concatenated on the basis of finitely many
process identifiers. While, in [92], the location of identifiers can be changed by means
of a very general and powerful split-operator, our grammars consider an identifier
as a pebble, which can be moved locally within one single MSC. Then, rewriting
rules append behaviors and new processes to the pebbled processes. The gram-
mars proposed in this work are more ”linear” than the grammars of [92], that is
they assemble MSCs and produce processes from left to right along productions of
a grammar, while fork-join MSC grammars allows more general recursive schemes.
However, fork-join grammars were not designed to produce implementable specifi-
cations, and and implementation model was not proposed in [92]. We will show an
implementation model, and consider realizability for dynamic MSCs in chapter 7.

2 MSC grammars

In order to introduce dynamic process creation in Message Sequence Charts, we need
to describe behaviors without relying on process identities, but rather as interactions
among processes playing a role.

The main principle of MSC grammars is to assemble anonymous partial orders
while instantiating process names at concatenation time. To this extent, we will
define MSC pieces, that contain messages, as usual, a threading mechanism that
emphasizes thread creation (which can be seen as a particular spawn message) and
birth of threads, represented as a particular start action.

2.1 dynamic MSCs, partial MSCs

Dynamic MSCS are simply a variant of MSCs allowing process creation. Thread
creation was already a feature of the Z.120 standard, but was not addressed as a
part of the language in theoretical studies before [92].

Definition 57 A dynamic MSC (dMSC for short)is a tuple M = (P, E, (<p)p∈P , µ, <s

, α, ϕ) where

(a) P ⊆ N is a nonempty finite set of processes,

(b) E :=
⋃

p∈P Ep, where the Ep are disjoint nonempty finite sets of events,

(c) α : E → {p!q(m), p?q(m), spawn, start} assigns a type to each event, and

(d) <p, and µ are binary relations on E with the same meaning as in MSCs
(successor on the same process, message relation).

(e) <s is a spawning relation. It is a binary relation on E that associates a spawn-
ing event (i.e. an event e such that α(e) = spawn with a start event (i.e. an
event f such that α(f) = start).
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As for MSCs, we require that≤ := (<p∪<s∪µ)∗ is a partial order. The relation µ
is a bijection from send events to receive events (that is, dMSCs are communication
closed), and associates a send event to a receive on a different thread. For simplicity,
we will also assume that dynamic MSCs are FIFO. The main change with respect
to MSCs is the introduction a new event types (start and spawn), and of new
constraints attached to these types. We require each start events to be the first
event on a process α−1(start) = {e ∈ E | there is no e′ ∈ E such that e′ <p e}, and
similarly, we require that each process has a start event as minimal event. Last,
we require that (E,≤) has a unique minimal element, denoted by start(M) (which
is of course a start event). The relation <s relates a spawn event e ∈ Ep with the
(unique) start action of a different thread q 6= p, meaning that p has created q. <s

induces a bijection between λ−1(spawn) and λ−1(start) \ {start(M)}, that is each
process in a dynamic MSC was created during the depicted interaction, except for
an original process that from which all other threads were created. Note that most
of these requirements are notational conventions.

M 1 2 3 4

start

spawn start

spawn start

spawn start

? !

? !

? !

! ?

Figure 6.1: A dynamic MSC.

Figure 6.2, shows a dynamic MSC M with set of processes P = {1, 2, 3, 4}.
Processes 2,3, and 4 are created during the execution of M . MSC grammars that
we define is this chapter will be used to assemble dMSCs out of a set of finite
behavioral patterns. Though we want to design grammars which productions are
dMSCs, we do not require each assembled pattern to be a dMSC, and work with
partial dMSCs.

Definition 58 (pMSC) Let M = (P, E, (<p)p∈P , µ, <s, α, ϕ) be a dMSC and let
E ′ ⊆ E be a nonempty set satisfying E ′ = {e ∈ E | (e, ê) ∈ µ ∪ <s ∪ ≤

−1 for
some ê ∈ E ′} (i.e., E ′ is an upward-closed set containing only complete messages
and spawning pairs). Then, the restriction of M to E ′ is called a partial dMSC
(PMSC). In particular, the new process set is {p ∈ P | E ′ ∩ Ep 6= ∅}. The set of
PMSCs is denoted by P, the set of dMSCs by M.

Partial MSCs suffixes of dMSCs. They do not necessarily have start events on
each process. Consider Figure 6.2. It depicts the simple MSC Ip, with one start

2. MSC GRAMMARS 101



CHAPTER 6. DYNAMIC MSCS

event on process p. Moreover, M1,M2 are pMSCs, but not dMSCs. These patterns
can not be defined over fixed process identities, as otherwise, we could not model
process creation. We hence consider that pMSCs are defined over roles. Roles are
defined alike processes in MSCs, but keeping in mind that they can be renamed
at derivation time (i.e., when a pMSC pattern is appended during application of a
rule, role are assigned an definitive identity). We will detail later how identities are
managed during rewriting steps.

Defining behaviors over dynamically evolving sets of processes of arbitrary sizes
has several implications. First, a process in P does not have the same meaning
as in MSCs. A process p ∈ P should be interpreted as a way to assign a thread
identity to a sequence of events. This identity is known only at runtime, so the fact
that a process has identity 1,2,3, or 4 is less important than the fact that events
located on process 1 and 2 (for instance) are events from distinct threads. The
second implication of unbounded dynamicity is that to define behaviors, we will
have to reason in terms of assembling of behavioral patterns, and possibly rename
processes. Note that pMSCs are communication closed. Note also that as a suffix
of a dMSC, a pMSC has at most one start event per process, and that this event
should be minimal on the considered process. This is important as it means that
one can not assemble any pair of patterns.

We next define a concatenation operator to append a partial MSC to a dMSC.
Let M = (P, (Ep)p∈P , <p, <s, µ, λ) be a PMSC. For e ∈ E, we recall that ϕ(e) is the
unique process p ∈ P such that e ∈ Ep. For every p ∈ P, there are a unique minimal
and a unique maximal event in (Ep,≤ ∩ (Ep × Ep)), which we denote by minp(M)
and maxp(M), respectively. We let Proc(M) = P. By Free(M), we denote the set of
processes p ∈ P such that λ−1(start) ∩ Ep = ∅. Finally, Bound(M) = P \ Free(M).
Intuitively, free processes of a PMSC M are processes that are not initiated in M .
In Figure 6.2, Bound(Ip) = {p}, Free(M1) = {1}, and Free(M2) = {1, 2}.

Definition 59 (pMSC concatenation) For i = 1, 2, letM i = (P i, Ei, (<p)
i
p∈P , µ

i, <i
s

, αi, ϕi) be PMSCs. Consider the structure M = (P, E, (<p)p∈P , µ, <s, α, ϕ) where
E = E1 ⊎ E2 and <p = <1

p
∪ <2

p
∪ {(maxp(M

1),minp(M
2)) | p ∈ P with E1

p 6= ∅
and E2

p 6= ∅}. The other sets and relations are defined as simple unions. If M is
a PMSC, then the concatenation of M1 and M2 is defined, and denoted M1 ◦M2.
We furthermore set M1 ◦M2 := M . Otherwise, M1 ◦M2 is undefined.

Visually, concatenation of PMSCs corresponds to drawing identical processes one
below the other. A concatenation of two pMSCs M1,M2 is undefined if a process p
of M2 contains a start event, and E1

p 6= ∅. Let us consider the pMSCs Ip, M1 and
M2 of figure 6.2. The concatenation M1 ◦M2 is defined, and consists of a pMSC in
which process 1 spawns process 2, and process 2 then sends a message to process 1.

As mentioned in the definition, concatenation of patterns might be undefined.
In particular, M1 ◦M2 is not defined if Bound(M1) ∩ Bound(M2) 6= ∅. Consider
the pattern M1 of figure 6.2. Assembling twice this pattern produces a structure in
which process 2 is created twice, and has two start events.

2.2 MSC grammars

We can now introduce dynamic MSC grammars (DMGs). They are inspired by the
grammars from [92], but take into account that we want to implement them in terms
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p

startIp

1 2

spawn startM1

1 2

? !M2

Figure 6.2: (Partial) message sequence charts

of communicating threads. This means in particular that all processes occurring in
a specification will be spawned from an initial original process. Roughly speaking,
MSC grammars can be seen as graph grammars that append pMSCs, and which
productions are dMSCs. We keep the main idea of [92] and use process identifiers to
tag active processes in a given context. Roughly speaking, MSC grammars append
successively finite pieces of behaviors, and process identifiers are used to remember
some processes to which such piece of behavior can be appended.

Definition 60 Let Π be a nonempty and finite set of process identifiers. A named
MSC over Π is a pair (M, ν) where M is an MSC and ν : Π→ Proc(M) assigns a
process identifier to some processes of M . An in-out PMSC over Π is a pair (M,µ)
where M is a PMSC and µ : Π ⇀ Free(M)×Proc(M) is a partial mapping. In the
sequel, we will denote by nM the set of named MSCs over Π, and by mP the set of
in-out PMSCs.1 We will also let M range over named MSCs and M over in-out
PMSCs.

Intuitively, a named MSC is an MSC M plus an assignment of process identifiers
to processes appearing in M . Processes that are not assigned any identifier will
not be appended any piece of behavior by future rewritings of non-terminals of the
grammar. As for word grammars, MSC grammars will be used to derive a final
production (namely a dMSC) from an initial axiom, and using a set of rules. As
usual, a rule rewrites a non terminal N into an expression Exp, defined over non-
terminals and named MSCs. More formally, letting N be a set of non-terminals, and
Π be a set of process identifiers, an expression over N and Π is a sequence expr ∈
(mP ∪ N )∗ of the form u0.(M1, µ1).u1 . . . (Mk, µk).uk, k ≥ 1 and ui ∈ N ∗, such that
M(expr) := M1 ◦ . . .◦Mk ∈ P. We let Proc(expr) := Proc(M(expr)), Free(expr) :=
Free(M(expr)), and Bound(expr) := Bound(M(expr)). Intuitively, free processes
in the right part of a rule should have been defined before the application of the
rule, and bound processes are created and assigned an identity during application
of the rule.

Let us consider the rule Rule2 in Figure 6.3. It is the graphical representation of
a rule that rewrites a non-terminal called A. This rule is of the form (A,M1.A, f),
whereM1 is a named MSC, with two processes (say {1, 2}), that migrate identifier
π2 from process 1 to process 2. Mapping f is only defined for process 1, and we have
f(1) = π2, which means that process 1 is the process carrying identifier π2 when this
rule is applied. In the rest of this chapter, we will indicate mapping f by attaching
a set of labels to each process line. We will define identifiers migration by labeling

1We omit the index Π, which will always be clear from the context.

2. MSC GRAMMARS 103



CHAPTER 6. DYNAMIC MSCS

messages or spawn relation by the label that is attached to a new process (in our
example, π2 labels the spawn relation inM1.

Definition 61 A dynamic MSC grammar (DMG for short) is a quadruple G =
(Π,N , S,−→) where Π and N and are nonempty finite sets of process identifiers
and non-terminals, S ∈ N is the start non-terminal, and −→ is a finite set of
rules. A rule is a triple r = (A, expr, f) where A ∈ N is a non-terminal, expr is an
expression over N and Π with Free(expr) 6= ∅, and f : Free(expr)→ Π is injective.
We may write r as A −→f expr.

The size of a DMG is denoted |G|, and is defined as |G| = |Π|+
∑

A−→fexpr
(|expr|+

|Proc(expr)|), where |expr| denotes the length of expr as a word. We also set
Proc(G) :=

⋃
A−→f expr

Proc(expr).

Let us give an intuitive interpretation of a rule r = (A, expr, f). Application of
rule r replace a non-terminal A, that has to be appended to a named MSC (this
rewriting mechanism is formalized hereafter). A is hence replaced by expr. All
processes in Bound(expr) should be assigned a new fresh identity, but every free
process p of expr is assigned an existing identity, more precisely the identity of the
process carrying identifier f(p).

Let us consider the example grammar of Figure 6.3. This grammar defines sets
of behaviors in which an arbitrary number of processes are created sequentially (
process 1 creates process 2, ..., process n − 1 creates process n) and then the last
created process sends a messagem to the first process. The language of this grammar
contains all similar behaviors for an arbitrary number n > 1 of processes.

2.3 Semantics of Dynamic MSC grammars

The semantics of a DMG G = (Π,N , S,−→) is defined as the set of dMSCs that
can be derived from the axiom S using rules in −→. Applying a rule is called a
rewriting. It applies on a configuration, and produces a new configuration of the
grammar.

Definition 62 A configuration of DMG G = (Π,N , S,−→) is a pair (M, β) where
M ∈ nM and β ∈ (mP ∪ N )∗. If β = ε, then the configuration is said to be final.
Let ConfG be the set of configurations of G. A configuration is initial if it is of the
form ((Ip, ν), S) for some p ∈ N, where Ip is the MSC depicted in Figure 6.2 and
ν(π) = p for all π ∈ Π.

In a configuration (M, β), the named MSC M represents the scenario that has
been executed so far, and β is a sequence of non-terminals that will be evaluated
later and in-out PMSCs that will be appended later, proceeding from left to right.
Note that in a configuration, process identities are fixed as soon as a pMSC appears
in β.

A derivation of a DMG is a sequence of configurations (M, β). A derivation of a
DMG is obtained by application of rewriting rules and concatenations, following the
semantics defined hereafter. A derivation is final if it reaches a final configuration.
We distinguish two kinds of steps in derivations:
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Figure 6.3: A simple MSC grammar, and one of its productions

Terminal concatenation If β =M.γ for some in-out PMSCM, then the next
configuration is (M ◦M, γ). However, the concatenation M ◦ M is defined only if
M andM are compatible. Formally, we define a partial operation ◦ : nM × mP ⇀
nM as follows: Let (M1, ν1) ∈ nM and (M2, µ2) ∈ mP. Then, (M1, ν1) ◦ (M2, µ2)
is defined if M1 ◦M2 is defined and contained in M, and, for all π ∈ Π such that
µ2(π) = (p, q) is defined, we have ν1(π) = p. If defined, we set (M1, ν1) ◦ (M2, µ2) :=
(M, ν) where M = M1 ◦ M2, ν(π) = ν1(π) if µ2(π) is undefined, and ν(π) =
q if µ2(π) = (p, q) is defined. This means that a configuration (M,M.γ) may
have no successor, and hence from this configuration, no sequence of rewritings and
concatenations can reach a final configuration. We will call such configuration a
deadlocked configuration.

Terminal concatenation allows for the definition of a relation
e

=⇒G over sets of
configurations. For configurations C = (M,M.γ) and C′ = (M′, γ), we let C

e
=⇒G C′

if M′ = M ◦ M (in particular, M ◦M must be defined).

Non-terminal replacement Now consider a configuration (M, A.γ), where A is
a non-terminal. Replacing A with a sequence expr includes a renaming of processes
to make sure that free processes appearing in expr that have identifier π have the
same name as an existing process of M identified as π. In particular, processes that
occur free in expr take identities of processes from M. This is achieved by renaming
processes.

A renaming is a bijective mapping σ : N → N. For an in-out PMSC M =
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(M,µ) with M = (P, E, (<p)p∈P , µ, <s, α, ϕ), we letMσ = (Mσ, µσ) where Mσ =
(σ(P), E, (<σ−1(p))p∈σ(P), µ, <s, α, σ(phi)) and µσ(π) = σ(µ(π)) for π ∈ Π. For a
rule r = (A, expr, f) with expr = u0.M1.u1 . . .Mk.uk, we set rσ to be the rule
(A, exprσ, fσ) where exprσ = u0.M1σ.u1 . . .Mkσ.uk and fσ(q) = f(σ−1(q)) for
q ∈ Free(exprσ).

Non-terminal replacement allows for a set of relations {
r

=⇒G}r∈−→ over config-
urations indexed by rules r ∈ −→. For configurations C = (M, A.γ) and C′ =
(M, expr.γ), M = (M, ν), and r ∈ −→, we let C

r
=⇒G C

′ if there is a renaming
σ such that rσ = (A, expr, f), ν(f(p)) = p for all p ∈ Free(expr), and Proc(M) ∩
Bound(expr) = ∅.

Semantics The semantics of G is given as the set of (named) MSCs appearing in
final configurations that can be derived from an initial configuration by means of
relations

r
=⇒G ⊆ ConfG × ConfG (for every rule r) and

e
=⇒G ⊆ ConfG × ConfG.

We define =⇒G to be
e

=⇒G ∪
⋃

r∈−→

r
=⇒G. The dMSC language of G is the set

FG := {M ∈M | C0 =⇒∗
G ((M, ν), ε) for some initial configuration C0 and ν}.

Figure 6.4: A dynamic MSC grammar

Let us illustrate the formal definition of MSC grammars and derivations through
a second example. Figure 6.4 depicts a DMG with non-terminals N = {S,A,B},
start symbol S, process identifiers Π = {π1, π2}, and five rules. Any rule has a
left-hand side (a non-terminal), and a right-hand side (a sequence of non-terminals
and PMSCs). In a derivation, the left-hand side can be replaced with the right-
hand side. This replacement, however, depends on a more subtle structure of a
rule. The bottom left one, for example, is actually of the form A −→f expr with
expr =M1.A.M2, where f is a function that maps the first process of expr, which
is considered free, to the process identifier π2. This indicates where expr has to be
inserted when replacing A in a configuration. To illustrate this, consider a derivation
as depicted in Figure 6.5, which is a sequence of configurations, each consisting of an
upper and a lower part. The upper part is a named MSC [92], an MSC where some
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processes are tagged with process identifiers. The lower part, a sequence of PMSCs
and non-terminals, is subject to further evaluation. In the third configuration, which
is of the form (M, A.β) (with named MSC M), replacing A with expr requires a
renaming σ of processes in expr: the first process of expr, tagged with π2, takes
the identity of the second process of M, which also carries π2. The other process
of expr is considered newly created and obtains a fresh identity. Thereafter, A can
be replaced with exprσ so that we obtain a configuration of the form (M,M.γ),
M being a PMSC. The next configuration is (M ◦ M, γ) where the concatenation
M ◦ M is simply performed on the basis of process names and does not include any
further renaming. Process identifiers might migrate, though. Actually,M is a pair
(M,µ) where M is a PMSC and µ partially maps process identifiers π to process
pairs (p, q), allowing π to change its location from p to q during concatenation (cf.
the fifth configuration in Figure 6.5-bottom right, where π2 has moved from the
second to the third process).

Figure 6.5: A derivation

To conclude this section, let us formalize the DMG G = (Π,N , S,−→) depicted
in Figure 6.4. Given the PMSCs M1 and M2 from Figure 6.2, we letM1 = (M1, µ1),
M2 = (M2, µ2), andM12 = (M1◦M2, µ1) be in-out PMSCs with µ1(π1), µ2(π1), µ2(π2)
undefined and µ1(π2) = (1, 2). Then, −→ is composed of the rules

S −→fS M1.A.M2.B S −→fS M12.B B −→fB M2

A −→fA M1.A.M2 A −→fA M12

where fS(1) = fB(1) = π1 and fA(1) = fB(2) = π2. A sequence of configurations
starting in Ip and linked by the relation =⇒∗

G is graphically depicted in Figure 6.5.
In any configuration, the part above the first non-terminal (if there is any) illustrates
its named MSC.
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2.4 Comparison of DMGs, HMSCs and existing dynamic

models

Let us now compare the respective expressive power of HMSCs and DMGS, and
fork-join grammars. Strictly speaking, HMSCs and DMGS are incomparable, as we
have required any production of a DMG to be a dynamic MSC with a single minimal
start event, and as HMSC do not start each process with a start action. However,
this is mainly a notational convention to represent threads, avoid duplicate process
creation during dMSC construction.

As grammar rules can refer to MSCs, and as a grammar is more powerful that a
finite state machine, one can easily create a grammar that simulates a HMSC H . For
every HMSC H over a set of processes P, one can design a dynamic MSC grammar
GH with process identifiers Π = {π1, . . . πp} which derivations all start with a rule
spawning all processes in P, followed by sequences of rewritings that produce some
MSC in L(H). Figure 6.6 is such a translation for a simple HMSC. However, HMSCs
define behaviors over a fixed set of processes; Hence, we can compare both models
and claim that Dynamic MSC grammars are strictly more expressive than HMSCs.

Figure 6.6: A HMSC H and a grammar GH that simulates it

Let us now compare the expressiveness of DMGS w.r.t. the fork-join grammars
of [92]. Some MSC languages of fork-join grammars can not be implemented by
DMGs. For instance, partial orders of the form of Figure 6.7 in which pairs of
newly created processes send messages to the same pair of processes can be easily
modeled with a fork-join grammar, but not with a DMG. In fork-join grammars,
named MSCs are assembled according to process identifiers, but a specific split
operator allows to distribute disjoint subsets of operators overs subexpressions. For
instance, in the expression M.split{A,B}{C,D}(N,N ′).M ′, in which M,M ′, N,N ′ are
named MSCs, the behavior started on A in M continues as described in N , and
if a process is labeled A in N ′, it is considered as a new process. This allows for
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instance creation of processes without explicit spawn action. This is one of the
difference with our grammars (in DMGs new processes are necessarily spawned by
existing ones). Furthermore, in DMGs, when a non-terminal is replaced by the
corresponding expression, identities of processes in terminal MSCs are fixed once
for all. In fork-join grammar, a terminal named MSC is appended with different
processes identities depending on how a preceding subexpression is evaluated. Note
that in fork-join grammars, processes no not explicitly ”migrate” as with DMGs.
However, this is not limiting, and recursive patterns such as the one in figure 6.3
can be easily defined by fork-join grammars. We think that DMGs languages can
be produced by fork-join grammars at the cost of using more process identifiers
to ”store” the identity of processes before developing a non-terminal. We hence
conjecture that DMGs are strictly less expressive than fork-join grammars.

Figure 6.7: A set of behaviors that can not be modeled by a DMG.

3 Properties of DMGs, verification

In this section, we address the properties of Dynamic MSC grammars. First of all,
as DMGs embed the expressive power of HMSCs, all properties that are undecidable
for HMSCs (regularity, intersection emptiness, language inclusion,....) are also unde-
cidable for DMGS. However, many decidable properties of HMSCs remain decidable
for DMGs.

Before considering properties of DMGs, we can note several syntactic properties
of the model.

• In a configuration of the form (M, β) where M = (M, ν) ∈ nM and β ∈
(mP ∪ N )∗, every process such that ν(πi) = p contains a start event. This
remark is important, as it allows to decide without considering M whether
some concatenation M ◦M is defined or not.

• In a configuration of the form (M, β) where M = (M, ν) ∈ nM and β ∈
(mP ∪ N )∗, if β = M.β ′ for some M = (M ′, µ), then M ◦ M is defined if
and only if for every process identifier πi, if µ(πi) = (p, q), then ν(πi) = p,
and furthermore, M ◦M′ is defined (i.e. each process in M,M ′ has one single
minimal start event. Clearly, both conditions can be checked without knowing
M .
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• let A −→f expr be a rule of a grammar, and (M, A.β) a configuration. Let
expr = M1.u.M2. Applying rule r means choosing a renaming of processes
inM1,M2, and replacing A byM1.u.M2. At the time of rewriting, the iden-
tity of processes in both M1,M2 are chosen. If rules are written correctly,
one should expect f to be compatible with µ1, but the fact that M2 can be
appended to a configuration may still depend on how u is rewritten. That is,
a derivation of a grammar is not a derivation corresponding to G seen as a
word grammar, and process identifiers mappings may prevent application of
some rules to lead to final configurations. Consider for instance the simple
grammar of Figure 6.8. After application of rule (r1) to the axiom, we reach
a configuration C = ((M, ν), β), where (M, ν) is a named MSC containing
tow processes (say 1, 2), a creation from 1 to 2. We also have ν(π1) = 1 and
ν(π2) = 2, and β = A. After application of rule r2, we obtain a configuration
C ′ = ((M ′, ν ′), β ′), where M ′ is the MSC M followed by a message from 1 to
2 and an answer from 2 to 1. Moreover, we have ν ′(π1) = 2,ν ′(π2) = 1, and
β ′ = B.(N, µ), where N is an MSC containing a simple message exchange from
process 1 to process 2, and µ(π1) = (1, 1) µ(π1) = (2, 2). This configuration
is represented in Figure 6.9. Note that between C and C ′, processes 1 and 2
have exchanged their identities. Hence, if we apply rule r3, we reach a con-
figuration C ′′ that is not a final configuration, and from which the remaining
in-out MSC (N, µ) can not be appended to reach a final configuration. On
the other hand, applying rule r4 swaps again the identifiers of processes, and
allows for the replacement of non-terminal B using rule r3, and then for the
concatenation of (N, µ). Hence, any sequence of rule applications of the form
r1.r2.(r4.r2)2.n+1.r3 where n ∈ N leads to a final configuration, but sequences
of the form r1.r2.(r4.r2)2.n.r3 contain deadlocked configurations, and hence
can never reach a final configuration.

S −→




π1

spawn start
π2

A




A −→




π1 π2

! ?
π1

? !π2

B

! ?




B −→




π1 π2

? !




(r1) (r2) (r3)

B −→




π1 π2

A

! ?




(r4)

Figure 6.8: A dynamic MSC grammar which derivations can deadlock.
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


π2 π1

start

spawn start

! ?

? !

B
π1 π2

! ?




Figure 6.9: A derivation for the grammar of Figure 6.8

This last remark highlights one important fact: while in HMSCs, all path of
the underlying automaton can be associated an MSC obtained by concatenation
of MSC along the transitions of the path, some derivations of an MSC grammars
my never reach a final configuration. Even worse, one can design a DMG G such
that L(G) = ∅. Consider for instance the example of Figure 6.8, and remove rule
r4. Then, the only possible derivation is the sequence of rules r1.r2.r3, and we
have already seen that one can not reach a final configuration using this sequence of
rewritings. Hence, there is no sequence of rule applications leading to a well-defined
concatenation of µ-MSCs.

For a specification formalism, this is particularly harmful, as one can design a
model that has no meaning. We hence define the emptiness problem as follows:
given an MSC grammar G, check whether L(G) = ∅.

Theorem 39 The emptiness problem for Dynamic MSC grammars is decidable in
EXPTIME.

The idea of the proof is to build a tree automaton AG that recognizes derivation
trees for a DMG G. However, states of this tree automaton contain labels associated
to terminal MSCs, non-terminal letters, plus some information on how processes
should migrate during rewriting of a non-terminal. The construction of the tree
automaton leads to an exponential blowup is the size of the initial grammar. Then
checking emptiness of AG can be done in O(|Q|.(|Q|.δ)). A more detailed proof
sketch can be found in appendix.

An immediate corollary of this result is that one can also decide whether all
derivations of an MSC grammar lead to a M. This can be achieved by building a
tree automaton Aword

G that recognizes parse trees of G seen as a word grammar, and
use the automaton AG built in theorem 39. Then checking that Lword(AG) ⊆ L(AG)
can be performed in EXPTIME.

4 Conclusion

In this chapter, we have introduced a dynamic scenario model, namely Dynamic
MSC grammars. DMGs are strictly more powerful than HMSCs, and we conjecture
that they are strictly less powerful than the fork-join grammars proposed by [92].
In the next chapter, we will propose an implementation model for dynamic MSC
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grammars, and show that for a subset of the language, one can decide whether there
exists a dynamic implementation for a given DMG.

Verification problems for MSC grammars inherit all undecidable properties of
HMSCs. However, one can decide the vacuity of the language generated by a gram-
mar. The technique relies on the construction of tree automata, that which size can
be exponential in the size of the original grammar. An interesting issue would be
to consider standards decision problems for subclasses of DMGs, and see if usual
subclasses (regular, globally cooperative, ...) defined for HMSCs can also be defined
for this model.

Several other issues for DMGs remain open. First, we would like to study regular
MSC grammars. Regular sets of MSCs over a fixed number of processes have already
been studied [74] (a set of MSCs is called regular if the associated linearization
language is a regular language). We would like to define a robust notion of regularity
that takes thread creation into account. Preferably, any regular set of dynamic MSCs
should have an implementation in terms of a dynamic communicating automaton.
Note however that the linearizations of a set of (dynamic) MSCs are words over an
infinite alphabet. Techniques borrowed from [93] might help in the characterization
of dynamic MSC languages.
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Implementation

Le désordre simulé suppose une discipline parfaite.
Simulated disorder postulates a perfect discipline.

[Lao Tseu]

1 Introduction

MSCs and their variants are usually described as intuitive, easy to learn models,
etc. However, one can see from the bibliography on MSCs, sequence diagrams,
etc, that scenario models are often used to design simple finite use-cases, and less
frequently complete protocols in industrial contexts. HMSCs were successfully used
as a model to find bugs in cell-phones initialization phases at Motorolla [18] but
up to now, we are not aware of software production that started from HMSCs to
derive running code. We are convinced that automatic implementation techniques
are a key element to promote scenarios usage during software production. Of course,
HMSCs are frequently designed at a high level of abstraction, but even though, they
can be used to model intuitively and formally control flows of distributed programs.

Previous chapters have mentioned decidability issues, expressiveness problems
and possible extensions of the language to overcome them, and subclasses of sce-
nario models to allow verification. However, verification of scenarios can be per-
formed on models that can not yet be implemented on a distributed architecture.
We are convinced that implementability of a model, and synthesis problems are
other important factors to consider. Roughly speaking, implementability consists
in deciding whether a formal model can be implemented on a network of machines,
and the synthesis problem consists in generating a distributed program for these
machines.

This chapter addresses implementability and synthesis issues for HMSCs and
dynamic HMSCs. Implementability and synthesis are practical concerns: when
automatic and correct implementation solutions exist for a formal model, the time
spent on a formal models benefits to the code design phase. Designing a formal
model for a future ”real” system is a heavy and costly task. If no code can be
generated from a specification, then all verifications performed on a formal model
are hindered by the fact that the coding phase may end up with a program that
does not respect the specification, and hence may not satisfy the good properties
of the model. Within this context, there are good chances that a formal model of
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a system will never be designed. The same arguments can be considered from a
more theoretical point of view: does it make sense to study properties of models
that are connected in any way to real distributed system (and continue to call them
”models of distributed systems”)? How far is a class of scenarios from real running
application (and hence how pertinent is a verification solution for this subclass) ?

A good way to reconciliate verification and implementation is to define (auto-
matic) code synthesis techniques that generate a code skeleton, and preserve prop-
erties of a specification. However, synthesis should output programs that exhibit
exactly the same behavior as the original specification. This is usually not the
case for HMSCs : either the synthesis process needs to add new messages and
synchronizations to ensure correct scheduling of all events appearing in the HMSC
behaviors, or the generated implementation uses exactly the same sets of events and
messages, and the synthesized behaviors allow more executions that in the original
specification. Solutions to overcome this problem are usually:

• to restrict to subclasses of the considered scenario language that guarantee
correct synthesis, or

• to consider additional behaviors as part of the semantics of the specification
(hence changing the semantics of the model). We will show later that addi-
tional behaviors usually appear when two branches of a choice can be initiated
by distinct processes. The implementation semantics proposed in the litera-
ture consists in including so called implied scenarios, that are shuffles of the
scenarios depicted by conflicting branches [134, 136]. This implementation
semantics corresponds to an implementation of a HMSC by communicating
machines synthesized by projection of the original specification.

We think that the second option is less appealing, at least when considering
HMSC specifications. The first reason is that the behaviors of an HMSC spec-
ification with ”additional behaviors” is larger than the set of intended specified
behaviors. Calling Limpl(H) the ”implementation” semantics of H , that is the set
of linearizations defined by communicating processes that implement H , we neces-
sarily have L(H) ⊆ Limpl(H). The usual Interpretation of an implementation for
HMSCs is that the implementation model is a communicating finite state machine.
However, we can easily prove the following properties:

• Limpl(H) is not always the language of a safe CHMSC.

• Limpl(H) \ L(H) is not always the language of a safe CHMSC.

• One can not decide whether Limpl(H) = L(H) [12]

The first point may raise verification problems. We have seen in former chapters
that verification of globally cooperative (C)HMSCs is decidable, but that verification
of simple problems outside the class of safe CHMSCs is in general impossible. We will
show in the next sections that choosing an implementation semantics for HMSCs and
their extensions leads to undecidability. The second point means that, the language
of additional behaviors is not representable by a safe CHMSC either. Hence, one
can not in general represent the additional behaviors as a separate model, and
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analyze the properties of the additional behaviors. Combined with the third point,
we can deduce that even if a formal model allows for a finite representation of
Limpl(H) \ L, then one can not decide whether this model has an empty set of
behaviors or not. Hence, considering HMSCs equipped with an implementation
semantics is a dangerous solution. It introduces a discrepancy between between the
modeled behavior and the supposed semantics (this situation can be compared to
the race problem introduced in chapter 2). Second, the implementation semantics
can not be represented by models with decidable properties, even when the original
model was a simple HMSC. Last, discrepancies between can not be represented nor
analyzed (and in particular lack of such differences) and there exist no algorithm
computing a ”closure of a cHMSC by implementation”.

To conclude on the implementation semantics, the properties listed above show
that a designer relying on this semantics has no way to know if a designed model
has good properties or even behaves as expected. In a design process, in which
an abstract model is mapped onto a real architecture, mastering the discrepancies
between the specification an an implementation is a key issue, and implementation
semantics does not offer this possibility, as all properties that could help deciding if
a model conforms to users expectations are undecidable.

In this chapter, we adopt another point of view: instead of considering partial
order automata with their semantics up to implementation, we want to consider
HMSCs for which an equivalent implementation exists. For this, we can not con-
sider the semantic properties of a model, as one can not decide in general if a HMSC
has an equivalent CFSM implementing it [12]. Hence, we propose to consider syn-
tactic subclasses of HMSCs for which an equivalent implementation always exists.
We will consider in particular the class of local-choice HMSCs, for which simple syn-
tactic restrictions allow an implementation by communicating automata obtained
by a simple projection. Without these restrictions local-choice HMSCs can be im-
plemented by a variant of CFSM that maintains vectorial clocks. For Dynamic MSC
grammars, we will show that a subclass of ”local DMGs” can be implemented by a
variant of CFSMs that allows for the creation of threads.

The work presented hereafter on implementation of HMSCs is a joint work with
Claude Jard, Rouwaida Abdallah, and the work on implementation of DMGs is a
joint work with Benedikt Bollig.

2 A canonical model for implementation ?

Most of works on HMSCs implementation assume that the implementation is done
with communicating finite state machines (CFSM) introduced by Brand & Zafirop-
ulo [32]. For the sake of completeness, we introduce this well-known model here-
after. CFSMs are a natural implementation model for several reasons: first, HMSCs
describe the behavior of independent agents, which continuously run sequences of
communication events and atomic actions. Hence, if we want to respect the indepen-
dence of agents in the architecture depicted in an HMSC, an implementation model
must allow for the definition of parallel components. Models such as Petri nets or
networks of automata communicating via shared actions fulfill these requirements.
However, scenario models clearly depict agents that communicate asynchronously,
which rules out communications using shared actions. One can also notice that
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HMSCs semantics can enforce messages between a pair of processes to respect FIFO
ordering, which can not be enforced by Petri nets. In fact, it has been shown that
synthesis of Petri nets from HMSCs usually produces an over approximation of the
initial HMSC language [33]. All these considerations call for the use of CFSMs as
target architecture.

Similarly, synthesis of CFSM is very often interpreted as a projection of the
HMSC on each of its processes. Let us recall that for models such as HMSCs
and CHMSCs, the language

⋃
M∈L(H)

πp(M) is a regular language, and can hence

be seen as the language of a finite state machine which transitions are labeled by
communication events or atomic actions. The CFSM obtained by projection of a
HMSC/CHMSC on each of its processes is often called the canonical implementation,
and realizability of some HMSC is usually defined w.r.t. this canonical model [11,95].
However, we will see in sections 4 that extensions of CFSMs can also be used as
implementation model for larger decidable syntactic subclasses of HMSC, and even
of dynamic MSCs.

Let us now introduce formally Communicating Finite State Machines (CFSM) [32].
A CFSM A is a network of finite state machines that communicate over unbounded,
non-lossy, error-free and FIFO communication channels. We will write A = ‖

i∈P

Ai

to denote that A is a network of machines describing the behaviors of a set of ma-
chines {Ai}i∈P . A communication buffer B(i,j) is associated to each pair of instances
(i, j) ∈ P2. Buffers will implement messages exchanges defined in the original
HMSC. More formally, we can define a communicating automaton as follows:

Definition 63 A communicating automaton associated to an instance p is a tuple
Ap = (Qp, δp,Σp, q0,p) where Qp is a set of states, q0,p is the initial state, Σp is an
alphabet with all letters of the form p!q(m) p?q(m) or p(a), symbolizing message
sending to a process q, reception from a process q, an atomic action a executed
by process p, or a silent move ε. The transition relation δp ⊆ Qp × Σp × Qp is
composed of triples (q, σ, q′) indicating that the machine moves from state q to state
q′ when executing action σ. A CFSM A = ‖

i∈I

Ai is a composition of communicating

automata.

Figure 7.1: Two communicating machines

Note that our definition of CFSM does not contain final states. The reason is
that we will consider implementation of MSC languages that are closed by prefix.
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Figure 7.1 describes a CFSM composed of two finite state machines AClient and
AServer. The initial states of these two machines are denoted by a dark incoming
arrow. Each run of a set of communicating machines defines a prefix, that can be
built incrementally starting from the empty prefix, and appending one executed
event after the other (i.e. it is built from a total ordering of all events occurring
on the same process, plus a pairing of messages sendings and receptions). Then,
the language L(A) of a set of communicating machines is the set of all prefixes
associated to runs of A.

Let us formalize the semantics of a network of communicating automata. A
configuration of a network of automata A = ‖

i∈P

Ai is a pair C = (L,W ) where L is a

sequence of sates q1 . . . q|P| depicting the local state of each communicating machine,
and W = {w11, . . . w1|P|, w21, . . . w2|P|, . . . w|P||P|} is a set of |P|2 words depicting the
contents of message buffers. Each wij is a sequence of message names, and depicts
the contents of the queue from Ai to Aj. Then, the behavior of A is defined as
follows:

• all machines start from their initial states with all communication buffers
empty, that is the initial configuration is C0 = (L0 = q0,1. . . . .q0,|P|,W0 =
{ε, . . . ε}).

• From a configuration C, a machine Ap can send a message m to a machine
Aq if Ap is in local state qp, there exists a transition (qp, p!q(m), q′p) in Ap.
Executing this action p!q(m) simply appends m to the buffer wp,q from p to q
and changes Ap’s local state to q′p in the configuration. Hence, if C = (L,W )
with L = q0 . . . qp . . . q|I| and W = {w11, . . . wp,q . . . w|P||P|}, executing p!q(m)
results in a configuration C ′ = (L′,W ′) with L′ = q0 . . . q

′
p . . . q|P| and W ′ =

{w11, . . . wp,q.m . . . w|P||P|} Local actions of communicating automata change
the local state of a single machine and leave the buffer contents unchanged.

• From a configuration C, Ap can receive a message m from process q, if Ap

is in local state qp, there exists a transition (qp, p?q(m), q′p) in Ap, and the
first letter of wq,p is m (which means that m is the first message that has to
be received in the queue from q to p). Executing this action p?q(m) simply
removes m from the buffer wp,q from p to q and changes Ap’s local state to
q′p in the configuration. Hence, if C = (L,W ) with L = q0 . . . qp . . . q|P| and
W = {w11, . . . wp,q = m.w . . . w|P||P|}, executing p?q(m) results in a confi-
guration C ′ = (L′,W ′) with L′ = q0 . . . q

′
p . . . q|P| and W ′ = {w11, . . . wp,q =

w . . . w|P||P|}.

This way, CFSMs define sequences of actions σ1. . . . σk that can be executed by
their local components from their initial states. Each action moves the communi-
cating machines from one configuration to another. However, CFSM are concurrent
models, and their executions can be represented in a non-interleaved way by MSC
prefixes.

In the next sections, we will consider incomplete executions of MSCs in which
some messages have been sent and not yet received. This notion of incomplete
execution is captured by the definition of pieces and prefixes.
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Definition 64 (prefix, suffix, piece of MSCs) Let M = (E, (<p)p∈P , α, µ, ϕ) be
a MSC. A prefix of M is a tuple (E ′, (<′

p)p∈P , α
′, µ′, ϕ′) such that E ′ is a subset of

E closed by causal precedence (i.e. e ∈ E ′ ∧ f ≤ e =⇒ f ∈ E ′) and <′
p, α

′, µ′, ϕ′ are
restrictions of <p, α, µ, ϕ to E ′. A suffix of M is a tuple (E ′, (<′

p)p∈P , α
′, µ′, ϕ′) that

E ′ is closed by causal succession (i.e. e ∈ E ′ ∧ e ≤ f =⇒ f ∈ E ′) and <′
p, α

′, µ′, ϕ′

are restrictions of <p, α, µ, ϕ to E ′. A piece of M is the restriction of M to a set of
events E ′ = E \X \ Y , such that the restriction of M to X is a prefix of M and the
restriction of M to Y is a suffix of M .

Note that prefixes, suffixes and pieces are not always MSCs, as their message
mappings m are not necessarily bijections from sending events to receiving events.
In the rest of the chapter, we will denote by Pref(M) the set of all prefixes of a
MSC M , and for an MSC language L, Pref(L) will denote the prefix closure of L.
We will denote by Oε the empty prefix, i.e. the prefix that contains no event. For
a particular type of action a, we will denote by Oa a piece containing a single event
of type a. The examples of Figure 7.2 shows a MSC M involving three processes
P,Q,R, a prefix Pr, a suffix S, and a piece Pc. Observe that Pc is obtained by
erasing Pr and S fromM . Note also that Pr, S and Pc contain incomplete messages.

(a) (b)

(c) (d)

Figure 7.2: A MSC (a), a prefix (b), a suffix (c) and a piece (d)

Prefixes and pieces of MSCs can be concatenated as MSCs, but with an additional
phase that rebuilds the message mappings. Let O1 be a prefix of a MSC, and O2

be a piece of MSC. Then, the concatenation of O1 and O2 is denoted by O1 ◦O2 =
(E,≤, C, ϕ, t,m), where E,≤, C, ϕ, and t are defined as for sequential composition
of MSCs (see definition 6 in chapter 1) and m is a function that associates the nth

sending event from p to q to the nth reception from p on q for every pair of processes
p, q ∈ P. Note that this sequencing is not defined if for some p, q, n, the types of
the nth sending and reception do not match, that is one event is of the form p!q(m)
and the other one q?p(n) with n 6= m. In particular, we will denote by O ◦ {e} the
prefix obtained by concatenation of a single event e to a prefix O.
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Definition 65 Let A = ‖
i∈P

Ai be a CFSM. The language of A is denoted by F(A)

and is the set of MSC prefixes defined inductively as follows :

• the prefix associated to an empty sequence of actions is the empty prefix Oε,

• the prefix associated to a sequence of actions σ1. . . . σk.σk+1 of A is the prefix
O ◦ {e} where e is an event labeled by σk+1 and O is the prefix associated to
σ1. . . . σk.

3 realizability of HMSCs

Before entering the details of implementation, let us recall some well known results
on the the implementability of HMSCs. Consider for instance the MSCs of Figure 7.3
(example borrowed from [11]). The MSC M1 describes a behavior in which message
m is received before message n on process P2 and similarly on P3. The MSC M2
describes a behavior in which message n is received before message m on process
P2 and similarly on P3. As P2 and P3 do not communicate, in an implementation
that uses only messages m and n, one can not avoid the implied behavior Mimplied

in which m is received before n on P2 and n is received before m of P3. A similar
scenario with the converse orders on P2 an P3 is also unavoidable.

Figure 7.3: Two MSCs, and an additional implied scenario

Definition 66 Let M be a MSC. The projection of M on process p ∈ P is denoted
Πp(M) A set of MSCs L weakly implies a MSC M if for every process p of P, there
exists an MSC Mp ∈ L such that Πp(M) = Πp(Mp). The set Lw is the set of all
MSCs that are implied by MSCs in L. A set of MSCs L is weakly realizable iff
L = Lw.

Being weakly realizable for an MSC language is close to being implementable: it
guarantees that there exists a set of communicating finite machines that implements
all local (process wise) behaviors of MSCs in L, and that their composition produces
behaviors that are also in L. Note also at this point that realizability in expressed
in terms of projections, which are regular for finite MSC languages, HMSC and
CHMSC languages. Hence, the implementation model for a scenario specification is
frequently assumed to be the set of communicating machines obtained by projection
of the specification on each of its processes, and is called the canonical implementa-
tion. Realizability then amounts to checking whether the canonical implementation
of an MSC language realizes exactly the specification. One can easily see that weak
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realizability for a finite set of MSCs L can be checked in O(m.|L||P|+1), where m
is the size of the largest MSC in L. Indeed, a weak-FIFO MSC M can be rep-
resented by the set of its projections (π1(M), . . . π|P|(M)). Checking that a finite
MSC language L is weakly realizable consists in building all possible combinations
(π1(Mi1), . . . π|P|(Mi|P|

)), and then checking that the obtained structure is an MSC
and more precisely a MSC from L. Solving this problem is also in co-NP [10], as
one can build a combination of projections in polynomial time and return a nega-
tive answer as soon as a witness is found. However, the decidability for finite MSC
languages does not extend to HMSCs.

Theorem 40 ( [11]) Let H be a regular HMSC. Then checking whether FH is
weakly realizable is undecidable.

The proof of this theorem is again based on an encoding of a PCP variant, and
can be found in [11]. This result is very strong, as it holds even for regular HMSCs.
A weaker notion of realizability called safe realizability was also proposed [11,94,95].
Safe realizability of an MSC language L asks that for every MSC M obtained as a
combination of projections of MSCs in L, there exists a MSC M ′ ∈ L such that M
is a prefix of M ′. In terms of implementation, this is equivalent to requiring that
the canonical implementation of the considered MSC language L is deadlock free.
Safe realizability is decidable (and EXPSPACE complete) for regular and globally
cooperative HMSCs [94]. For a finite MSC language L, it can be performed in
O(|L|2.|P| + r.|P|), where r is the number of events in MSCs of L [10]. However,
safe realizability remains undecidable in the general case.

From a software engineering perspective, these undecidability results are both-
ering to start building software from HMSCs. Starting from a HMSC specification
that satisfies a given property ϕ, an algorithm synthesizing CFSM, or distributed
programs may produce communicating machines that implement all the specified
behaviors, plus additional, undesired, behaviors that violate property ϕ. More both-
ering, one can not decide in general if the synthesized machines contain unspecified
behaviors.

To overcome this problem, the software engineering community has proposed
to test the synthesized machines with respect to the original HMSC. Indeed, for a
given MSC M over a set of processes P, there exists an algorithm to test if M ∈ FH

that runs in O(|H|.|M ||P) [12]. So the approach proposed for instance in [136] to
eliminate implied scenarios is to use the following loop:

1. Synthesize a canonical implementation AH from H

2. run AH to obtain an MSC M 6∈ Pref(FH)

3. if some implied MSC M was found, add it to H and go to 2

4. if not, then stop, F(AH) = Pref(FH)

The objectives of such simulation loops is to change the original specification
in such a way that at the end of the algorithm, Pref(FH) = F(AH). However,
following the undecidability results above, one can not decide whether this equality
holds. Hence, in general, this loop is only a semi-algorithm. Other tricky issues are
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that finding M 6∈ FH is not a tractable problem in general, except in the considered
H is regular (this is the solution proposed in [135]). Indeed, finding such M amounts
to solving the realizability question. The last tricky issue it how to add M to an
existing specification. Of course, one can easily add a new branch for M in an
existing HMSC, but there might be an infinite number of implied scenarios for a
given HMSC H . Even worse, the implied semantics is not necessarily representable
as another HMSC. So, closure by addition of implied behavior works only in very
restricted contexts.

In the rest of this chapter, we will adopt a different approach. We will restrict
synthesis to sub-classes of HMSCs for which correct synthesis is guaranteed, or at
least can be achieved by slight adaptations of the canonical target model.

4 Controlled implementation of HMSCs

In this section, we revisit the problem of program synthesis from specifications de-
scribed with local HMSCs. We assume as synthesis scheme the usual algorithm that
builds one machine per process by projecting the original HMSC on this process
(the canonical implementation of H).

We show that in the subclass of local HMSCs, differences that arise between a
HMSC and its canonical implementation are due to loss of ordering among messages.
We then show that the exact set of behaviors specified by a local HMSC can be
preserved by addition of communication controllers, that intercept messages to add
stamping information before resending them, and deliver messages to processes in
the order described by the specification.

Note that in a very general setting, restricting a technique to a syntactic sub-
class of HMSCs to obtain decidability is acceptable from a software engineering
point of view only if the considered subclass is reasonably expressive. Restricting to
bounded HMSCs [14], for instance, reduces the expressive power of HMSCs to that
of finite automata, which is in general too restrictive for the kind of asynchronous
applications that are usually modeled with scenarios. Our goal in this section is to
propose an implementation mechanism for a class of HMSCs that is general enough.
Canonical implementation by projection has been proved correct for subclasses of
HMSCs : reconstructible HMSCs of [79] is a subclass of local HMSCs that impose
restrictions on the way loops and choices are used. The solution in [56] starts form
local-choice HMSCs, and derives a distributed implementation but with potential
deadlocks.

Other implementation techniques implement exactly the language of a bounded
HMSC, but with deadlocks [111], or avoid deadlocks but need several initial states
in the synthesized machines [19]. In our opinion, deadlocks should not be allowed in
an implementation of an HMSC: it amounts to deciding at runtime that an ongoing
execution is not valid, as it does not belong to the specification. For this reason,
the definition of CFSM in previous section does not contain accepting states. In
fact, we do not question correctness of synthesis techniques that use deadlocks, but
rather practical use of deadlocking CFSMs. Considering the synthesized CFSM as a
program that should run on a network means in general that any sequence on actions
of the implementation is part of the implemented behavior, while deadlocked runs are
simply removed from the semantics of a CFSM. brings a different light to synthesis.
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There are solutions to invalidate a distributed run of a system at runtime (hence
implement an equivalent of non-terminating runs removal in the theoretical model),
but it is a difficult task, implemented by complex compensation and backtracking
mechanisms. Clearly, such techniques are out of the scope of this chapter.

Coming back to the definitions of realizability of this chapter, this means that
the correct notion of realizability should be safe realizability (which is undecidable
in general). We hence consider that a distributed system implements an HMSC if
the prefix closure of the behaviors of the original specification and of the synthesized
machines are identical.

In this section, we propose an implementation mechanism for local message se-
quence charts, that is HMSC specifications that do not require distributed consensus
to be implementable. The proposed technique is to project an HMSC on each pro-
cess participating to the specification, without additional contents to message. It
is well known that this solution produces programs with more behaviors than in
the specification [79]. Discrepancies between the original and synthesized model
can be avoided by adding message content to synthesized automata, that avoid any
ambiguity when a local machine has to take a decision. Indeed, for local-choice
specification, the first process to take a decision can choose a particular accepting
path of the original HMSC, and this decision is then attached to all messages. All
processes conform to this initial choice. Even if correct, this solution has many
drawbacks: first, the possible number of tags attached to messages in not bounded,
and the resulting model can hence be considered as a CFSM with infinite state space
(each CFSM starting with an unbounded number of transitions fixing the chosen
path). Second, even if this techniques can be used to guarantee language equality,
choices are anticipated. Such solution of anticipated choices is not acceptable from
a practical point of view, for instance if choices model users decision. Hence, we
will mainly consider solutions for which choices are performed online during the
execution of the CFSM.

Hence, the solution proposed hereafter respects the architecture of the original
HMSC, works with finite state machines (but with infinite sets of tags for mes-
sages), and avoids deadlocks. The projections of the original HMSCs are composed
with local controllers, that intercept messages between processes and tag them with
sufficient information to avoid the additional behaviors that appear in the sole pro-
jection. The main result of this work is that the projection of the behavior of the
controlled system on events of the original processes is equivalent (up to a renaming)
to the behavior of the original HMSC.

4.1 The synthesis problem

The objective of the synthesis algorithm from an HMSC H is to obtain a CFSM A
that behaves exactly as H . Let S(.) be a synthesis algorithm that takes as input a
HMSC and outputs a CFSM. We will say that S(.) is correct if for every HMSC H
we have

Pref(FH) = F(S(H))

.
We have assumed some restrictions on the scenarios that we implement. Some

of them are introduced for the sake of readability, and some of them are essential
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to ensure a solution to the synthesis problem. We consider that HMSCs are de-
terministic, and that two MSCs labeling distinct transitions of a local HMSC start
with distinct messages. We use this assumption to differentiate branches at runtime.
We could achieve a similar result by introducing additional tags during synthesis.
However, this mild restriction simplifies the notations and proofs.

MSCs also allow behaviors with message overtaking, i.e. in which messages
are not received in the order of their emission. In this paper, we consider only
FIFO architectures as a target for synthesis. This is hence a natural restriction
to consider that all MSCs are FIFO. However, synthesis technique could easily be
adapted to allow overtaking. This requires some modifications to the communication
architecture, to allow automata to look at the whole contents of their buffers rather
that consuming the first incoming message. Such semantics exists for instance in
extended automata models such as SDL.

An obvious solution is to project the original HMSC on each instance, that is if
H is defined over a set of instances P, we want to build a CFSM AH = ‖

i∈P

Ai such

that Pref(FH) = F(AH).
The principle of projection is to copy the original HMSC on one particular in-

stance, and to remove all the events that do not belong to the considered instance.
This operation preserves the structure of the HMSC automaton: Starting from an
automaton labeled by MSCs, we obtain an automaton labeled by (possibly empty)
sequences of events located on the considered instance. This object can be con-
sidered as a finite state automaton by adding intermediary states in sequences of
events (recall that projections of an HMSC language of a single process is a regular
language). Empty transitions can be removed by the usual ε-closure procedure for
finite state automata (see for instance chapter 2.4 of [80]).

Definition 67 (Projection) Let us consider an HMSC H = (N,→,M, n0). The
set of events of a MSC M is denoted by EM , and the set of events of M located
on instance i by EMi. The set EMi is totally ordered by ≤i. We denote its el-
ements by e1, · · · , e|EMi|. The finite state automaton Ai, result of the projection
of H onto the instance i is Ai = (Qi,→i, Ei ∪ {ε}, n0). We encode states of Ai

as tuples (n,M, n′, i) ∈ N ×M × N × N, the first three components designating
an HMSC transition and the last one designating the index of the last event ex-
ecuted by Ai in M during this transition, or simply as a reference to an HMSC
node n (designating configuration in which Ai has not yet started the execution of
a MSC from n). We then have Qi = {n} ∪ {(n,M, k, n′) | (n,M, n′) ∈−→ ∧k <
|EMi
|}, and Ei =

⋃
M∈MEMi. We can then define the transition relation −→i as

−→i = {(n, ε, n′) | ∃(n,M, n′) ∈−→ ∧|EMi
| = 0}

∪ {(n, t(e1), n′) | ∃(n,M, n′) ∈−→ ∧|EMi
| = 1}

∪ {(n, t(e1), (n,M, n′, 1)) | (n,M, n′) ∈−→ ∧|EMi
| ≥ 2}

∪ {((n,M, n′, k − 1), t(ek), (n,M, n′, k)) | (n,M, n′) ∈−→ ∧2 ≤ k < |EMi
|}

∪ {((n,M, n′, k − 1), t(ek), n
′) | (n,M, n′) ∈−→ ∧k = |EMi

|}

Note that the synthesized machines do not use additional message contents, and
communicate only using events that were originally specified in the original HMSC.
The synthesis by projection from the HMSC of Figure 7.4 produces the CFSM of
Figure 7.5. Note that as instance D is not active in MSCM1, there is an ε-transition
in the automaton associated to D.
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Figure 7.4: An example of HMSC

Figure 7.5: The instance automata projected from the HMSC of Fig. 7.4.

4.2 implementation problems

Figure 7.6: An example of non-local HMSC a) and a non-gc HMSC b)

We can now state the main difficulty when moving from HMSCs to local ma-
chines. In an HMSC, the possible executions are built by concatenating MSCs one
after another. Hence in an execution of an HMSC, all processes conform to a single
sequence of MSCs collected along a path. In a CFSM setting, when two processes
have to take a decision to perform scenario M1 or M2, they can of course take
concurrently the same decision, but conversely, one instance can decide to perform
scenario M1 while the other instance decides to perform M2. Consider for instance
the HMSC of Figure 7.6-a. The synthesis from the HMSC of Figure 7.6-a) produces
the CFSM of Figure 7.1. In this model, the CFSM can behave as specified in sce-
narios M1 and M2. However, Aclient can also decide to send a Data message while
AServer sends a logout message. This situation was not specified in the HMSC of
Figure 7.6-a)(it is an implied scenario), and can lead to a deadlock of the system.
So, the CFSM of Figure 7.1 cannot be considered as a correct implementation. The
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HMSC in Figure 7.6-b also raises problems. According to the specification, pro-
cesses Client and Server must execute the same number of local action ”‘count”’
before exchanging message Check. Obviously, this last specification is not local nor
globally cooperative.

In general, the projection of an HMSC on its instances can define more behaviors
than the original specification, but can also deadlock. Hence, synthesis by projection
on instance is not correct for any kind of HMSC. It was proved in [79] that the
synthesized language contains all runs of the HMSC specification. One may think
that using globally cooperative and local HMSCs only, all implementation problems
are solved. However this is not the case, as show in the following theorem.

Theorem 41 ( [79]) Let H be an HMSC and let A be the CFSM obtained by pro-
jection of H on its instances. Then Pref(FH) ⊆ F(AH). Furthermore, there exist
local HMSCs such that Pref(FH) ⊂ F(AH).

In the rest of the paper, we will only consider local HMSCs. However, this is
not sufficient to ensure correctness of synthesis. Let us consider the projection of
H in Figure 7.4 on all its instances given in Figure 7.5. A correct behavior of H is
shown in Figure 7.7-a), while a possible but incorrect behavior of the synthesized
automata is shown in Figure 7.7-b). We can see that message m2 sent by machine
B to machine C can be delayed and arrive later than message m4 from machine D,
hence mixing two different scenarios. Machine C does not have enough information
to decide to delay the reception of m4, and hence may violate the HMSC semantics.

(a) (b)

Figure 7.7: a)A correct behavior of the HMSC of Fig. 7.4, and b) a possible distortion
due to the loss of information on projected instances.

This example proves that in general, even for local HMSCs, the synthesis by
projection is not correct. Problems arise when an instance does not have enough
information on the sequences of choices that have occurred in the causal past of
a message reception event. In some sense, the projection of an HMSC on local
components breaks the global coordination between deciding instances and the other
instances in the system. In [79], a subclass of local-choice HMSCs for which synthesis
by projection is correct was identified. This class is called reconstructible HMSCs.

Definition 68 Let H be a local HMSC and c be a choice node of H. Let ρ be a
cyclic path starting from c, and ρ′ be any acyclic path starting from c. Let Hc be the
HMSC with two nodes c, c′, two transitions (c, Oρ, c) and (c, O′

ρ, c
′). Let Ac be the

CFSM obtained by projection from Hc. We will say that c, ρ, ρ′ is a sequence-loss
witness iff Pref(FHc) 6= F(Ac).
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We will say that an HMSC is reconstructible if and only if it is local and has no
sequence-loss witnesses. One does not have to simulate all runs of communicating
automata in Ac to detect that L(Hc) 6= L(Ac). Reconstructibility of a HMSC H can
be decided as a simple criterion on simple cycles and acyclic paths of H , and is in co-
NP. Indeed, sequence losses can be detected by checking if the sequential ordering of
events along a non-deciding instance in prefix Oρ ◦Oρ′ can be lost during projection.
To avoid technical details, will not show in this paper how the sequence losses can be
found from Oρ ◦Oρ′, but rather illustrate the approach on an example. We refer in-
terested readers to [79] for formal details. Let us consider the example of Figure 7.4,
with a single choice node n0, and the path (n0,M1, n0).(n0,M2, n1). According to
the semantics of HMSCs, reception of messages m2 and m4 on instance C should
occur in this order in a correct implementation of the example. Now let us con-
sider the automata obtained by projection of H on instances, as in Figure 7.5. After
executing A!B(m1).B?A(m1).B!C(m2).A!D(m3).D?A(m3).D!C(m4), the CFSM is
in configuration (L = q1,A.q0,B.q0,C .q2,D,W = {ε, . . . wBC = m2, wDC = m4, . . . ε}).
From this configuration, the automaton corresponding to instance C can receive m2,
which is the expected behavior, or conversely receive m4 which is wrong according to
the choices that were performed by instance A. Hence n0, (n0,M1, n0), (n0,M2, n1)
is a sequence loss witness. This can easily be seen from M1 ◦M2: If one removes
the ordering between the reception of m2 and the reception of m4, there is no way
to infer this ordering from remaining causalities.

One important fact is that synthesis by projection is correct for the subclass of
reconstructible HMSCs.

Theorem 42 ( [79]) Let H be a local and reconstructible HMSC, and AH be the
CFSM obtained from H by projection. Then, Pref(FH) = F(AH).

According to theorem 42, the communicating automata synthesized from re-
constructible HMSCs are correct implementations. However, we show in the next
section, that all local HMSCs can be implemented with the help of additional con-
trollers. This allows for the following synthesis approach: first check if an HMSC is
reconstructible. If the answer is yes, then synthesize the CFSM by simple projection
as proposed in section 4.1. If the answer is no, then synthesize the CFSM with their
controllers, as proposed in section 4.3.

4.3 Implementing HMSCs with message controllers

The class of reconstructible HMSCs shown in section 4.1 is contained in the class of
local HMSCs. This subclass is quite restrictive (for instance, the HMSC of Figure 7.4
is not reconstructible, and hence can not be implemented by a simple projection).
Note also that the difference between the languages of an HMSC and of the synthe-
sized machines comes from the fact that some communicating automata consume
a wrong message instead of waiting for the arrival of the message specified by the
HMSC. This problem is clearly avoided if a path of the implemented HMSC is chosen
from the initial configuration, but as already explained, this solution is not satisfac-
tory from a practical point of view if one sees semantics of choices as a decision that
is taken at the last moment (i.e. when a minimal event on a branch is executed).
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A solution to avoid discrepancies between a local HMSC specification and its
canonical implementation is to instrument the synthesized machines with controllers.
We associate a local controller to each communicating machine that can tag messages
and delay their delivery. As synthesis fails because of reception of messages in
the wrong order, each controller will receive messages destinated to the machine it
controls, and decide whether it should deliver it to the controlled machine, or delay
its delivery. This decision is taken depending on additional information carried by
messages, namely a vector clock. Vector clocks is a well known mechanism, and
helps keeping track of global progress in distributed systems.

This new mechanism allows for the implementation of any local HMSC H , with-
out syntactic restriction, and with online choices. The architecture is as follows: For
each process, we compute an automaton, as shown in previous section by projection
of H on each of its instances. The projection is the same as previously, with the
slight difference that the synthesized automaton communicates with its controller,
and not directly with other processes. To differentiate, we will denote by K(Ai)
the “controlled version” of Ai, keeping in mind that Ai and K(Ai) are isomorphic
machines. Then, we add to each automaton K(Ai) a controller Ci, that will receive
all communications from K(Ai), and tag them with a stamp. In every automaton
K(Ai) we replace each transition of the form

(
(n1,M1, k, n2), p!q(m), (n3,M2, k

′, n4)
)

(respectively
(
(n1,M1, k, n2), p?q(m), (n3,M2, k

′, n4)
)
) in Ai, by a transition of the

form
(
(n1,M1, k, n2), p!Cp(q,m, b), (n3,M2, k

′, n4)
)
(respectively(

(n1,M1, k, n2), p?Cp(q,m, b), (n3,M2, k
′, n4)

)
), where b indicates the branch to which

the sending or the reception belongs. A controller Ci can receive messages of the
form (q,m, b) from his controlled process K(Ai). In such cases, it tags them with
a clock (the contents of this clock is defined later in this section), and sends them
to controller Cq. Similarly, each controller Ci will receive all tagged messages des-
tinated to K(Ai), and decide with respect to its tag whether a message must be
sent immediately to K(Ai) or delayed (i.e. left intact in buffer). Automata and
their controllers communicate via FIFO channels, which defines a total ordering on
message receptions or sendings. Controllers also exchange their tagged messages via
FIFO buffering. In this section, we first define the distributed architecture and the
tagging mechanism that will allow for preservation of the global specification. We
then define control automata and their composition with synthesized automata. We
then show that for local HMSCs the controlled local system obtained by projection
simulates the original specification.

Distributed architecture

We consider the n = |P| automata {K(Ai)}1≤i≤n obtained by projection of the
original HMSC on the different instances, and a set of controllers {Ci}1≤i≤n. Each
communicating automaton K(Ai) is connected via a bidirectional FIFO channel to
its associated controller Ci. The controllers are themselves interconnected via a
complete graph of bidirectional FIFO channels. We will refer to these connections
among communicating automata as ports. A machine K(Ai) communicates with its
controller via a port P , and for all i 6= j, port Pj of controller Ci is connected to
the port Pi of controller Cj. Note that even if machines share common port names,
for every instance name k, port Pk of a controller Ci and port Pk of a controller Cj

designate different physical connections. This architecture is illustrated in Figure 7.8
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for three processes i, j, k. This architecture is quite flexible: All the components run
asynchronously and exchange messages, without any other assumption on the way
they share resources, memory or processors. The implementation described hereafter
was successfully implemented using Promela code, but also with a JAVA+REST
implementation on very distributed or centralized architectures mapping processes
on physical machines.

Figure 7.8: The distributed controlled architecture.

Tagging mechanism

Vector clocks are a standard mechanism to record faithfully executions of distributed
systems (see for instance [48, 100]), or to enforce some ordering on communication
events [124]. Usually, vector clocks count events that have occurred on each process.
In the controlled synthesis architecture, each controller maintains a vector clock
that counts the number of occurrences of each branch of an execution of the original
HMSC it is aware of.

To allow for faithful recording of branches chosen along an execution we have to
set up a total ordering on branches of HMSCs. Let H be an HMSC. We will denote
by BH the branches of H , and fix an arbitrary total ordering ✁ on BH . We use this
arbitrary order on branches to index integer vectors that remember the number of
occurrences of branches that have occurred during an execution of an HMSC. Let
us consider the example of Figure 7.4, that contains two branches b1 = (n0,M1, n0)
and b2 = (n0,M2, n1). We can fix b1✁b2, and associate to every execution a vector τ
of two integers, where τ [bi], i ∈ 1, 2 represents the number of occurrences of branch
bi in the execution.

Definition 69 (Choice clocks) A choice clock of an HMSC H is a vector of NBH .

Let ρ = n0
M1−→ n1

M2−→ n2 . . .
Mk−→ nk be a path of H. The choice clocks labeling of

Oρ is a mapping τ : EOρ −→ NBH such that for every i ∈ 1..k, e ∈Mi, τ(e)[b] is the
number of occurrences of branch b in M1 ◦ · · · ◦Mi.

Intuitively, choice clocks count the number of occurrences of each choice in a
path of H . In the rest of this section, we will show that communicating automata
and their controllers can maintain locally a choice clock along the prefix that they
are executing, and that choice clocks carry all the needed information to forbid the
execution of prefixes that are not in L(H).
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The usual terminology and definitions on vectors apply to choice clocks. A vector
V2 is an immediate successor of a vector V1 of same size, denoted V1⋖V2, if there is a
single component b such that V1[b]+1 = V2[b], and V1[b

′] = V2[b
′] for all other entries

b′. We will say that vectors V1 and V2 are equal, denoted V1 = V2, if V1[b] = V2[b]
for every entry b. We will say that V2 is greater than V1, denoted V1 ≺ V2, iff
V1[b] = V2[b] for some entries b, and V1[b] < V2[b] for all others.

For a given path ρ = n0
M1−→ n1

M2−→ n2 . . .
Mk−→ nk, we will call the choice events

of Oρ the minimal events in every Mi, i ∈ 1..k. It is rather straightforward to see
that when an HMSC H is local, then for every path ρ of H , the set of choice events
in Oρ is totally ordered. Note also that for a pair of events e, f in Oρ, τ(e) = τ(f)
if and only if e, f belong to the same MSC Mi. From these facts, the following
proposition is straightforward:

Proposition 11 Let H be a local HMSC, ρ be a path of H, and τ be the choice
clock labeling of Oρ. Then, (τ(EOρ),≺) is a totally ordered set.

This proposition is important: maintaining locally a consistent tagging of mes-
sages allows a controller that has two tagged messages available in two of its buffers
to decide which one should be delivered first. Unlike in the solution of [56], we
allow MSCs labeling H to be defined over arbitrary sets of processes. Hence, some
processes may be inactive is a branch.

Definition 70 (Concerned instances) Let b = (c,M, n) be a branch of an HMSC
H. We will say that instance p ∈ P is concerned by branch b if and only if there
exists an event of M on p (EMp 6= ∅). Let K ∈ NBH be a choice clock, and let p ∈ P
be an instance of H. The vector of choices that concern p in K is the restriction of
K to branches that concern p, and is denoted by [K]p.

In the example in Figure 7.4, the choice clock is a integer vector indexed by
b1, b2, where b1 = (n0,M1, n0) and b2 = (n0,M2, n1). In this example, instances A,C
are concerned by both branches (they are active in M1 and M2), but instance C is
concerned only by b1 and instance D is concerned only by b2.

For a given instance i, the controller Ci associated with the projected automaton
K(Ai) will receive the messages sent byK(Ai) and by the other controllers. Messages
exchanged between the automata and the controllers are triples (j,m, b) where j ∈ P
is the destination automaton, m ∈ C is the message name, and b the branch in which
the sending event has occurred. In other words, in our controlled architecture,
an automaton executes p!Cp(q,m, b) instead of p!q(m). The messages exchanged
between controllers are tagged and represented by pairs (m, τ) where m is a message
name and τ ∈ NBH a choice vector. In addition, the controller Ci maintains several
local variables:

• τi ∈ NBH , its locally known choices vector. It is initialized to the null vector,
and updated upon consumption of incoming messages.

• numEvt, which counts the remaining number of communication events of the
instance i to be treated in the current branch that is being processed.
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• Rec is a sequence of reception events. numEvt and Rec are initialized with
constant values (that depend on the chosen branch) when dealing with the
first event of a branch on process i.

• currentb, which memorizes the branch of H that is currently executed by
process i.

Let us denote by πi(M) the sequence of events obtained by projection of M on
instance i ∈ P, and by πi,?(M) the restriction of this sequence to receptions. For a
sequence of events w, we will denote by tail(w) the sequence of events obtained by
removing the first event from w, that is if w = a.v, then tail(w) = v. The generic
algorithm for a controller Ci is composed of two rules, which are always active
(see Algorithm 2). Rule 1 applies to communications from K(Ai) to Ci. First case
corresponds to minimal events controlled by the projected automaton K(Ai). When
dealing with the first event of the MSC (branch b) to be processed, the only role
of the controller is to compute the tag (increment of the corresponding component
of τi) and to initialize the variables numEvt and Rec. Consuming a message from
Ai is always allowed, as it may not cause wrong behaviors. The currently processed
branch is stored in variable currentb. The other case deals with communications
from K(Ai) that are not choices of K(Ai). These events are generated in correct
order by construction of the projection.

The second rule applies for every port Pj, j 6= i, and aims at controlling the
order of the different receptions of messages arriving in the buffers between controller
i and all other controllers. Note that these messages arrive in a distinct buffer for
each neighbor controller. As we have seen for HMSCs that are not reconstructible,
consuming messages in an unspecified order produces unspecified behaviors. Hence,
a message will be consumed only when its tag shows that this is the next message
to be received. Tags verification is the main objective of the controller. There are
three cases:

• The first case occurs when a branch of H has already been started, that is
a controller Ci has received (i.e. consumed) a message indicating the choice
performed by the deciding instance of this branch, and a valid message arrives.
In this situation, all the components concerning K(Ai) of the current tag τi and
of the tag τ labeling the incoming message must be equal, and this incoming
message must be the next expected message (i.e. the next reception in Rec) in
the currently executed branch. Then the message can be consumed by Ci and
forwarded to K(Ai). The fact that there is only one FIFO channel between
the controller Ci and the projected automatonK(Ai) ensures the correct order
of receptions on this automaton.

• The second case is when the incoming message is the first communication
signaling a new choice. The controller then checks if the received message
defines the next branch of H that must be executed by K(Ai). This is done
by verifying if the received tag is the next tag to be treated (considering only
the components that concern K(Ai)), that is [τi]i ⋖ [τ ]i. In that case, the
current tag can be updated. The current branch is retrieved by considering
the component that differs between [τ ]i and [τi]i. Then the remaining number
of events that should be executed within this branch (the number of events on
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the instance i in the MSC of the current branch, minored by one) is set, as well
as the expected sequence of receptions, before transmission of the message to
K(Ai).

• The third case applies when none of the above situations hold, that is the
incoming message on port Pj can not yet be consumed, either because it is not
the next reception expected (another reception on another port should occur
before this one) or the incoming message signals that a new branch has been
started, but more events from formerly chosen branches must occur before
consuming it. In such case, the controller does nothing, and waits for other
messages on other ports.

The algorithm 2 executed by every controller is presented next page.
Now that we have defined controlled automata and their controllers, we can

define formally how they compose. Recalls that K(Ai) is a finite state machine
with the same states as Ai, but in which each transition (q, i!j(m), q′) is replaced
by a transition (q, i!Ci(j,m, b), q′) (where b denotes the names of the branch cur-
rently executed by Ai, and each transition (q, i?j(m), q′) is replaced by a transition
(q, i?Ci(j,m), q′). Each controller Ci is not a communicating automata, but yet it
is a machine that sends and receives messages. The composition K(Ai) | Ci of a
machine with its controller is a pair of communicating machines with a FIFO buffer
from K(Ai) to Ci, and another from Ci to K(Ai). Then, the composition of con-
trolled machines ‖

i∈I

K(Ai)|Ci) is the union of all K(Ai)|Ci, with communication

buffers from each Ci to each Cj, for i 6= j in P. Note that K(Ai)
′s communicate

only with their controllers. This composition is illustrated in Figure 7.8, where
the depicted architecture is

(
K(Ai) | Ci

)
‖
(
K(Aj) | Cj

)
‖
(
K(Ak) | Ck

)
. At this

point, let us note that our controlled implementation is not a CFSM anymore. How-
ever, our controllers, which are currently defined with several lines of code, could
be easily be defined as communicating finite state automata with a communication
policy allowing to read messages without consuming them, and with variables. All
these features exist for instance in SDL [83], in which variables are allowed, and for
which the save construct allows to read messages without consumption. Last, note
that adding controllers to our synthesis architecture does not really increase the
expressive power of the machines, as CFSMs can already simulate Turing machines.

We can now show correctness of the controlled synthesis. Of course, adding
controllers to the system means adding the controllers’ actions to the executions.
Hence, we can not require that Pref(FH) = F( ‖

i∈I

K(Ai)|Ci) anymore. An adequate

notion of correctness should abstract of controllers. As communications among
processes in the controlled architecture are implemented via controllers, we can
easily define a renaming function that replaces a communications (q,m, b) from a
process p to his controller by a communication of a message m from p to q (and
similarly for receptions).

Theorem 43 Let H be an HMSC, and let Acont = ‖
i∈I

K(Ai)|Ci be its controlled

synthesis. Then, Acont simulates H (up to renaming).

The detailed proof can be found in the appendix.
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Algorithm 2 Controller Ci

RULE 1: when (j,m, b) available on port Pi

/* There is a message from K(ai) in the buffer from K(ai) to Ci*/
consume (j,m, b)
if numEvt = 0 then
τi[b]++
numEvt := |Πi(Mb)| − 1
Rec = Πi,?(Mb)
send (m, τi) on port Pj

else
numEvt - -
send (m, τi) on port Pj

end if

RULE 2: when there exists a port Pj with (m, τ) available on port Pj

/* There is a message from controller Cj in the buffer between Cj and
Ci*/
if ([τi]i = [τ ]i) ∧ (Rec = Ai?Aj(m).w) then
/* continuation of an already started branch */
consume (m, τ)
numEvt - -
send (j,m) on port Pi

Rec = w
else
if (numEvt = 0) ∧ ([τi]i ⋖ [τ ]i) then
/* A new branch b was started, and this is the next */
/* branch that Ai should execute (i is concerned by b)*/
consume (m, τ)
τi := τ
currentb := b s.t. [τ ][b] − [τi][b] 6= 0
numEvt := |Πi(Mcurrentb)| − 1
Rec := tail(Πi,?(Mcurrentb))
send (j,m) on port Pi

end if
/* The last situation is when the message can not be consumed
because it does not have the right sequence number */

end if

5 Realizability of Dynamic MSC Grammars

We have introduced a dynamic model of MSCs in chapter 6, and a natural question is
whether this model can be implemented. Dynamicity raises several particular issues.
First, the implementation model should be able to create new threads, which is not
the case of standard CFSMs. Second, process identities are not known a priori,
and defined at runtime. As a process can only send a message to another thread if
it knows it identity (or equivalently its address), the implementation model should
take into account the knowledge each thread has about its neighbors. Furthermore,
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some scenarios that seem implementable may not be realizable as one thread has
no way to know the exact identity of a neighbor to whom it is supposed to send a
message.

In this section, we first define an implementation model for Dynamic Message
sequence Charts, and then show that the addressing problems in a MSC grammar
specification can be detected.

5.1 Dynamic Communicating Automata: an implementa-

tion model for MSC grammars

Dynamic communicating automata (DCA), as introduced in this section, extend
classical communicating finite-state machines [32]. They allow for the dynamic
creation of processes, and asynchronous FIFO communication between them. Each
thread p holds a set of process variables, that denotes the set of processes that p
remembers at a given time. Their values represent process identities and allow a
thread to communicate with them. This model is close to the threading mechanism
in programming languages such as JAVA and Erlang, but also borrows elements
of the routing mechanisms in protocols implemented over partially connected mesh
topologies. Threads will be represented by dynamically created copies of the same
automaton. At creation time, the creating thread will pass known process variables
to the created thread. A thread can communicate with another one if both threads
know each other, i.e., they have kept their identities in memory.

Definition 71 A dynamic communicating automaton (or simply DCA) is a tuple
A = (X,Msg , Q,∆, ι, F ) where

• X is a set of process variables,

• Msg is a set of messages,

• Q is a set of states, ι ∈ Q is the initial state,

• F ⊆ Q is the set of final states, and

• ∆ ⊆ Q× ActA ×Q is the set of transitions.

Here, ActA is a set of actions of the form x ← spawn(s, η) ( spawn action),
x ! (m, η) ( send action), x ? (m, Y ) ( receive action), and rn(σ) ( variable renaming)
where x ∈ X, s ∈ Q, η : (X ⊎ {self})X , σ : XtoX, Y ⊆ X, and m ∈ Msg.

We say that A is finite if X, Msg, and Q are finite.

Figure 7.9 is an example of DCA, with sets of process variables X = {x1, x2, x3}
(every process will have its own copy of X), messages Msg = {m}, states Q =
{s0, . . . , s6} where s0 is the initial state, final states F = {s3, s4, s6}, and transitions,
which are labeled with actions. Each process associates with every variable in X
the identity of an existing process. We will denote by proc(p)[x] the value (process
identity) that process p associates with variable x ∈ X .

Let us detail on an example how DCA work. At the beginning, a single process
exists, say 1. Moreover, all process variables are bound to 1, i.e., (x1, x2, x3) =
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(1, 1, 1). When process 1 moves from the initial state to s1, it executes x1 ←
spawn(s0, (1, 1, 1)), which creates a new process, say 2, starting in state s0. In
the creating process, x1 is then bound to 2. In process 2, on the other hand,
(x1, x2, x3) will have the value (1, 1, 1). So far, this scenario is captured by the
first three events in the MSC M of Figure 6.2. Process 2 itself might now spawn
a new process 3, which, in turn, can create a process 4 in which we initially have
(x1, x2, x3) = (3, 3, 1). Now assume that, instead of spawning a new process, 4 moves
to s5 executing 3 ! (m, (self, x2, x3)), which sends the message (m, γ) to process 3,
with γ = (4, 3, 1). Recall that process 3 is in state s1 and that (x1, x2, x3) = (4, 2, 1).
Thus, 3 can execute 4 ? (m, {x1}), i.e. receive (m, (4, 3, 1)) and bind x1 to 4. We
then have (x1, x2, x3) = (4, 2, 1) on process 3. The DCA accepts the behavior M
depicted in Figure 6.2.

s0

s1 s2

s3

s4

s5 s6

x1 ← spawn(s0, (self, self, x3))

x2 ! (m, (self, x2, x3))

x2 ! (m, (x1, x2, x3))

x1 ? (m, ∅)

x1 ? (m, {x1})

x3 ! (m, (x1, x2, x3))

Figure 7.9: A dynamic communicating automaton

We can now formalize the semantics of DCA as a word language over Σ. This
language is the set of linearizations of some set of MSCs and therefore yields a
natural semantics in terms of MSCs.

Let A = (X,Msg , Q,∆, ι, F ) be some DCA.
A configuration of A is a quadruple (P, state , proc, ch) where P ⊆ N is a fi-

nite set of active processes (or identities), state : PtoQ maps each active process
to its current state, proc : PtoPX contains the identities that are known to some
process, and ch : (P × P)to(Msg × PX)∗ keeps track of the channels contents.
The configurations of A are collected in ConfA. We define a global transition
relation =⇒A ⊆ ConfA × (Σ ∪ {ε}) × ConfA as follows: For a ∈ Σ ∪ {ε},
c = (P, state , proc, ch) ∈ ConfA, and c′ = (P ′, state ′, proc′, ch ′) ∈ ConfA, we let
(c, a, c′) ∈ =⇒A if there are p ∈ P and p̂ ∈ N with p 6= p̂ (the process executing a and
the communication partner or spawned process), x ∈ X , s0 ∈ Q, η : (X ⊎ {self})X ,
Y ⊆ X , σ : XtoX , and (s, b, s′) ∈ ∆ such that state(p) = s, and one of the cases
in Figure 7.10 holds (c and c′ coincide for all values that are not specified below a
line).

An initial configuration is of the form ({p}, p 7→ ι, proc, (p, p) 7→ ε) ∈ ConfA for
some p ∈ N where proc(p)[x] = p for all x ∈ X . A configuration (P, state , proc, ch)
is final if state(p) ∈ F for all p ∈ P, and ch(p, q) = ε for all (p, q) ∈ P × P, i.e.,
each process is in a final state and all messages have been received yielding empty
channels.

A run of DCA A on a word w ∈ Σ∗ is an alternating sequence c0, a1, c1, . . . , an, cn
of letters ai ∈ Σ ∪ {ε} and configurations ci ∈ ConfA such that w = a1.a2 . . . an, c0
is an initial configuration and, for every i ∈ {1, . . . , n}, (ci−1, ai, ci) ∈ =⇒A.

1 The

1Here and elsewhere, u.w denotes the concatenation of words u and v. In particular, a.ε = a.
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spawn
a = spawn(p, p̂) b = x← spawn(s0, η)

P ′ = P ⊎ {p̂}
state ′(p) = s′

state ′(p̂) = s0

ch ′(q, q′) = ε
if p̂ ∈ {q, q′}

proc′(p)[x] = p̂

proc′(p̂)[y] =

{
proc(p)[η[y]] if η[y] 6= self

p if η[y] = self

for all y ∈ X

send
a = !(p, p̂) b = x ! (m, η) p̂ = proc(p)[x]

state ′(p) = s′ ch ′(p, p̂) = (m, γ).ch(p, p̂)

where γ ∈ PX with

γ[y] =

{
proc(p)[η[y]] if η[y] 6= self

p if η[y] = self

receive
a = ?(p̂, p) b = x ? (m, Y ) p̂ = proc(p)[x]

state ′(p) = s′ there is γ ∈ PX such that[
ch(p̂, p) = ch ′(p̂, p).(m, γ)

∧ for all y ∈ Y proc′(p)[y] = γ[y]

]

renaming
a = ε b = rn(σ)

state ′(p) = s′ proc ′(p)[y] = proc(p)[σ(y)]
for all y ∈ X

Figure 7.10: Global transition relation of a DCA

run is accepting if cn is a final configuration. The word language of A, denoted
L(A), is the set of words w ∈ Σ∗ such that there is an accepting run of A on w.
Finally, the (MSC) language of A is F(A) := {M ∈ M | Lin(poset(M)) ⊆ L(A)}.
Figure 7.9 shows a finite DCA. It accepts the MSCs that look like M in Figure 6.2.

Note that DCA actually generalize the classical setting of communicating finite-
state machines with a fixed number of processes [32]. To simulate them, the starting
process of a DCA can first spawn the required number of processes and then broad-
cast the identity of any process to any other process by sending additional messages.

5.2 Implementability of Dynamic MSC Grammars

Dynamic process creation raises new issues, both in DMGs and in DCAs. Indeed,
process identities can only be known at runtime. To communicate, two threads must
know each other, in order to allow buffered communications. Now, a DMG may
specify that a communication occurs between two threads that can not know each
other. Another problem is that supposing a limited number of available variables,
an thread may have to forget identities of its neighbors. In some situations, it might
be impossible with a fixed number of variables to implement all communication
patterns prescribed by the Dynamic MSC Grammar.

Definition 72 Let L ⊆ M be an MSC language. We call L well-formed if there is
a DCA A such that L = F(A). For B ∈ N, we say that L is B-realizable if there is
a DCA A = (X,Msg , Q,∆, ι, F ) such that L = F(A) and |X| ≤ B.
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1 2 3

start

spawn start

spawnstart

?!

Figure 7.11: not well-formed

1 2 3

start

spawn start

spawnstart

?!

?!

Figure 7.12: 2-well-formed

Consider the examples of Figure 7.12. The language L = {M}, where M is the MSC
of Figure 6.2 is 3-well-formed. It is, however, not 2-well-formed. If we consider the
language L2 = {M2}, where M2 is the MSC from Figure 7.11, we have that L2 is
not well-formed. The reason is that when process 3 is created, process 1 is not know
from process 2, and hence process 3 has no way to know process 1’s identity. In
the semantics, we forbid receptions from unknown processes. This semantics can be
relaxed to allow message receptions from any process, but a similar problem arises if
process 3 has to send a message to process 1. A slight change in the MSC, as shown
in Figure 7.12, where a message from 2 to 3 is inserted after creation of 1 solves the
problem. The reason is that this new message can be seen as carrying the identity
of the newly created process.

Theorem 44 For a DMG G, one can decide in doubly exponential time if L(G) is
well-formed.

As for emptiness, the proof for well-formedness is obtained by decorating the
parse trees of MSC grammars by structures that represents process identifiers mi-
grations, and in addition the knowledge that a process may have of its neighbors.

5.3 Local Dynamic MSC Grammars

Well-formedness is close to realizability, so one may wonder why a property that
is undecidable for HMSCs becomes decidable for DMGs. A first fact to notice
is that DMGs start from a single process. A second remark is that decidability
of well-formedness checks that all MSCs recognized by an MSC grammar G are
such that threads can have enough knowledge about their neighbors to perform
communications prescribed by the grammar. Within this setting, nothing is said
about the number of states of a DCA needed to implement a grammar. A well-
formed DMG is not necessarily implementable in terms of a finite DCA, for several
reasons. First, the behavior of a single process depicted by a DMG need not be
regular. Second, the MSCs in the language of a DMG all have a single starting
process, with a single start event, and all subsequent events are causal consequences
of this initial event. This mimics the shape of orders described by local-choice
HMSCs, and the initial process can hence choose a particular derivation of the
grammar and communicate its choice to all other processes at spawn time. This can
be seen as an anticipation of choices, and again results in an infinite state space for
the DCA implementation.

Hence, the real challenge is to propose an implementation with online choices
using a DCA with finite number of states. As DMG can simulate HMSCs, all
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implementation problems of HMSCs such as non-reconstructible choices may also
appear in DMGs. However, we can exhibit a non-trivial class of DMGs that is close
to local HMSCs.

Our class will restrict DMGs with right-linear rules. A rule A −→f expr is
right-linear if expr is of the formM or M.B. Our implementable class of DMGs
inspires from local-choice HMSCs as introduced in [79]. Local choice HMSCs are
scenario descriptions over a fixed number of processes in which every choice of the
specification is taken by a root process for that choice. This root is in charge of
executing the minimal event of every scenario starting at this choice, and the subse-
quent messages can then be tagged to inform other processes about the choice. Note
that locality allows for a deadlock-free implementation if we deal with a fixed num-
ber of processes [57]. However, in our setting, deadlock-freeness is not guaranteed
in general.

To adapt the notion of local-choice to DMGs, we essentially replace the notion of
“process” in HMSCs by that of “process identifier”. It means that the root process
that choses the next rule to be applied must come with a process identifier π that
is active in the current rule. For a right-linear rule r = A −→f (M,µ).expr, we let
Active(r) = f(Free(M)) ∪ dom(µ).

Definition 73 A DMG (Π,N , S,−→) is local if, for every rule r = A −→f expr,
r is right-linear and M(expr) has a unique minimal element. Moreover, if expr =
M.B, then there is π ∈ Active(r) such that, for all B-rules B −→g β, M(β) has a
unique minimal element e satisfying g(ϕ(e)) = π.

The projection of a local MSC grammar on a single process is a regular language,
and when a non-terminal is rewritten, its is replaced by pMSCs that contain a
single deciding thread. This is a good start to demonstrate implementability of
local DMGs. We conjecture that local DMGs contains a reconstructible subclass,
and can be implemented with deadlocks, using techniques close to that of [56]. We
also think that the implementation mechanism using tags proposed in section 4
of this chapter can be adapted by circulating the same vectors, and maintaining
some information on which process identifiers are attached to each threads. If this
information is available, a thread can decide whether he is concerned by a message,
and also whether it should consume it. This might be implementable if identifiers
migrations are performed during messages or spawns.

6 Conclusion

In this chapter, we have considered synthesis of independent communicating ma-
chines from HMSCs. Synthesis of CFSMs by a simple projection mechanism is
correct for reconstructible HMSCs. A controlled synthesis allows to build a system
of communicating entities that simulate the original specification. We think that the
class of local HMSCs is a good compromise between the abstraction that is required
in a specification formalism, and the preciseness that is needed for a model to be
implementable. Indeed, imposing local choices avoids considering in the synthesis
some heavy synchronization mechanisms among instances to ensure that distant
processes behave according to the same chosen scenario. The class of local HMSCs
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seems expressive enough to model many interesting protocols, and furthermore, lo-
cality of HMSCs is decidable. The synthesis algorithms have been implemented in
our tool SOFAT [66], to generate a formal description of the CFSM from an HMSC,
Promela code, or even java code for all the instances and controllers needed in the
system.

Possible extensions of the controlled synthesis techniques could consider intro-
duction of time or data issues in the model. Inserting manipulation of local data
in the internal actions of processes can be done easily by mixing the language of
MSCs with a data manipulation language. The code attached to actions can then
be copied as it is in the generated code, which does not really impact the synthe-
sis process. However, if data are shared and used to guard choices in HMSCs, the
projection technique does not necessarily work, and additional synchronization and
consistency mechanisms are needed to ensure that the synthesized processes work
with the same data values.

Time issues are also complex to handle. If we consider for instance as an input
model a time-constrained MSC [8], synthesizing a correct model means synthesizing
machines that meet all the time constraints expressed in the specification. This
imposes in particular that controllers should also play the role of timed schedulers.
In such a context, using equality or simulation as notions of correctness for synthesis
seems too constraining. However, we could consider different correctness criteria,
such as untimed language equivalence.

One may have noticed that the controllers used in our implementation solution
only delay messages. Hence, a similar result could have been achieved by allowing
tags in the canonical implementations of HMSCs, and changing the semantics of
receptions. However, we think that controllers, with some additional power, might
be used for different purposes, such as monitoring, or to enforce some simple safety
properties.

We have introduced an implementation model for dynamic MSC grammars,
namely the model of dynamic communicating automata. Several issues remain open.
Even if a class of local MSC grammars that seem implementable has been defined,
it remains to show that this class is indeed implementable. We think that the con-
trolled synthesis technique used for local HMSCs could be used to implement DMGs.
Another way to find implementation techniques is to find regular subclasses of MSC
grammars. Regular sets of MSCs over a fixed number of processes have already been
studied [74] (a set of MSCs is called regular if the associated linearization language
is a regular language). We would like to define a robust notion of regularity that
takes thread creation into account, and is implementable by dynamic communicating
automata.

A more general issue concerns more global properties of scenarios. It seems that
all implementable classes of scenarios have languages with similar shapes. The runs
of local HMSCs or local DMGs can be viewed as sequences of finite lower semi-
lattices. One may wonder if such property can not be used to characterize a large
subclass of scenario languages that can be implemented without deadlocks.
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Application 1: Verification

Mais il faut tout de même voir qu’il y a des ordres apparents qui recouvrent, qui
sont les pires désordres.

One should see that some apparent orders cover or even are the worst disorders.

[Charles Peguy, Notre jeunesse ]

1 Introduction

Partial order automata are formal models used to represent distributed systems
such as protocols, transaction systems, etc. Hence, it seems natural to adapt formal
verification techniques to this model, i.e. given a formal model M , and a property
to check ϕ, check whether M satisfies ϕ?

Before entering in technicalities, we should discuss the objectives of verification
techniques for scenario models. We have seen in chapters 3 and 4 that HMSCs alone
can only express finitely generated families of partial orders. Splitting messages al-
lows more complex behaviors (see chapter 3), but embeds the expressive power of
CFSMs in HMSCs, hence making all verification problems undecidable. To allow
model-checking, one has to restrict to subclasses of CMSCs, and hence assume that
an HMSC specifications can be incomplete subsets of behaviors of a larger specifi-
cation. Using commutations among events located on one instance (see chapter 4)
forces to consider all legal interleavings of events: to define an MSC language that
contains a braid, one also have to include a finitely generated scenario in which the
order of events follow exactly a sequential order imposed by paths of the support
HMSC. Again, to be able to mode-check a causal MSC specification, one needs to
ensure that this specification belongs to a subclass. Furthermore, composition op-
erators, as we have shown in chapter 5, seldomly preserve syntactic subclasses of
HMSCs. As highlighted in the conclusions of chapter 5, one should consider par-
tial order automata more as an abstract representation of known behaviors of a
distributed system than as a complete specification language. If partial order au-
tomata are only a partial and abstract view of the behaviors of a distributed system,
what does verification of such models mean ? Why should one care for verification
of logical properties at all?

In the next chapter, we will show that some model checking techniques can be
useful, not necessarily as a verification techniques per se, but as a tool to answer more
practical questions. For instance, diagnosis and model checking of MSO formulae
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are tightly connected problems.
In this chapter, we will show that verification for partial order automata is not

a straightforward enhancement of model checking techniques for regular models.
This chapter is organized as follows: We first recall known undecidability results
for verification of regular properties of HMSCs, and restrictions that allow for some
easier forms of model checking.

In a second section we show an extension of MSO to describe properties of MSCs,
that was originally proposed by Leucker et al [92]. MSO for MSCs is decidable for
HMSCs, but also for Dynamic MSCs, and dynamic MSC grammars. This important
result will prove very useful in the next chapter, as it allow for diagnosis techniques
for scenarios.

We next show that for several attempts to relax the automaton support to gen-
erate infinite sets of MSCs leads in general to undecidability. This is the case for
template MSCs, and also for a particular MSC logic that was proposed as a model
for diagnosis.

2 Standard Results

Model checking for MSCs can be understood in several ways. The first question
one may ask is, given a HMSC H a formula ϕ in modal temporal logic (CTL, LTL,
µ − calculus,...), does H satisfies ϕ ? While such questions have found an answer
for models with regular sets of behaviors, for HMSCs and all their extensions, model
checking of modal logics is in general undecidable [14], except for the subclass of
regular HMSCs. Obviously, any extension of HMSCs suffers the same drawback.
Model checking scenario properties either calls for a use of weak subclasses of the
considered scenario language (usually with regular behaviors), or for weaker logics,
that do not consider global states of the modeled system. Many works change the
semantics of HMSCs to stay within the context of regular models. The changes
in the semantics are usually to consider communications as synchronous, and to
consider strong sequential composition rather that weak sequential composition,
that is define:

Lin(M1 ◦M2) = {w = w1.w2 | w1 ∈ Lin(M1) ∧ w2 ∈ Lin(M2)}

Strong sequential composition assumes some kind of ”‘synchronization” among
instances at the ens of each MSC. We consider that partial order automata are by
nature asynchronous models of distributed systems. Synchronous communications
and strong sequential composition make sense in a context where instances rep-
resent components of a modular system and messages intercomponents calls, and
in a centralized environment. However, in our context, we are targeting systems
with independent processes, where such semantics can only be seen as an under-
approximation of the behaviors of a system.

A way to allow verification beyond regular HMSCs is to address simpler proper-
ties such as vacuity of intersections of HMSC languages, of inclusion. Such properties
are decidable for globally cooperative HMSCs [55]. The reason why these properties
become decidable is that the linearizations of these subclasses can be represented
by regular sets of bounded linearizations, hence allowing most of formal verification
usually feasible for regular models.
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The intersection problem can be formalized as follows: Given H1, a speci-
fication HMSC, and H2, a ”safety” HMSC collecting unwanted behaviors, does
L(H1) ∩ L(H2) = ∅ ? This problem makes sense if we consider H1 and H2 as
defining collections of behaviors with the same level of abstraction. Again, this
problem was proved undecidable [115]. However, for globally cooperative subclasses
of HMSCs, CHMSCs, and causal HMSCs, this problem becomes decidable [55] (more
precisely, one only asks that H2 is globally cooperative). The answer returned for an
intersection problem can be seen as a safety property forH1, but has to be considered
modulo precision and completeness of H1 and H2. However, if L(H1)∩L(H2) 6= ∅,
this means that the causal ordering between events represented in H1 not allowed,
and hence that a system implementing this causal ordering is not safe. Note that
the class of globally cooperative HMSCs (CHMSCs, causal HMSCs) contains non-
regular specifications, and is a reasonably large subclass of the language.

As for intersection, one can wonder if a specification is ”included” in another
one, that is given H1, H2, does L(H1) ⊆ L(H2) ? The problem is undecidable
in general, and becomes decidable for globally cooperative subclasses of scenario
languages (more precisely as soon as H2 is globally cooperative). Let us now discuss
the practical use of this verification problem. L(H1) ⊆ L(H2) means that H2 is a
refinement of H1, as it allows more behaviors than H1. However, if H1 and H2 are
incomplete collections of behaviors of systems up to abstraction, inclusion means
that the all causal ordering on events seen in H1 still appear in H2. However, if
H1 and H2 have distinct alphabets, inclusion is likely to fail, due to events of H2
that are not represented in H1. Hence H1 and H2 should have the same level of
abstraction, which is not an ideal property for refinement questions. H1 can not be
included in H2 if all runs of H2 stat with an single unique event which is not part
of the alphabet of H1. Even worse, the projection of a globally cooperative HMSC
needs not be globally cooperative behavior of the real systems, that is one can not
”hide” the events of H2 that never appear in H1 and then check inclusion. Hence
inclusion checking is of limited practical use.

Another possibility is then to consider ”‘local logics”’, that address properties of
MSCs in a languages withouts consideration for their global states.

3 MSO for MSCs

Model checking MSO properties for HMSCs was originally proposed by [98], to
focus on structural properties of MSCs generated by HMSCs. One theorem given
by Madhusudan states that, given an HMSC H and an MSO formula ϕ where
relations depict message exchanges, execution of an internal action, or immediate
successor relation on a process, one can decide if ϕ is satisfied by all MSCs generated
by H . As MSO is closed by negation, one can also check whether there exists at
least one MSC in L(H) satisfying ϕ, etc. A more specialized version of MSO, called
MSO for MSCs was also used by [92]. The same paper proves that MSO over MSCs
is decidable for dynamic MSCs. We give below the syntax of this logic and some
explanations, and state several results.

The syntax of MSO over MSCs is given by
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ϕ ::= laba(x) | (u, x)→ (v, y) | x⋖ y | x ∈ X | u ∈ U
| ¬ϕ | ϕ1 ∧ ϕ2 | ∃x ϕ | ∃X ϕ | ∃u ϕ | ∃U ϕ

Intuitively, variables of the form x, y, z.... designate events, variables of the form
u, v, ... designate a process name, variables of the form X, Y, Z, ... designate sets of
events, and U, V, ... designate sets of processes. The meaning of a formula of the
from (u, x) → (v, y) is that x is a send event located on process u, and y is the
corresponding receive event located on process v. The meaning of laba(x) is that x
is an event labeled by action name a ∈ Σ, where Σ is the usual set of labels that
can appear in MSCs. The meaning of x⋖ y is that x and y are located on the same
process p, and x is an immediate predecessor of y on p.

Satisfaction of an MSO formula is checked by considering an MSC M = (E, (<p

)p∈P , α, µ, ϕ) as a labeled graph which nodes are E, which edges are the relations µ
and

⋃
p∈P

⋖p, and with labeling α. An interpretation I over M is a function that maps

variables x, y, ... to events in E, bound variables X, Y, ... to subsets of events of E,
variables u, v, ... to processes in P and U, V, to subsets of P. We will say that M
satisfies ϕ under interpretation I, and write M |=I ϕ iff one can show inductively
truth of ϕ, starting from atomic subformulae. Let M = (E, (<p)p∈P , α, µ, ϕ) be a
MSC over a set of processes P. Then, we have:

• M |=I (u, x) → (v, y) if there exists a process p = I(u), a process q = I(v),
an event e = I(x) located on p, an event f = I(y) located on q and f = µ(e)
in MSC M ,

• M |=I x⋖ y if there exists a process p ∈ P such that I(x) <p I(y),

• M |=I laba(x) iff α(I(x)) = a,

• M |=I x ∈ X , where x is an event variable, and X an event set variable if
I(x) ∈ I(X),

• M |=I u ∈ U , where u is a process variable and U is a process set variable, if
I(u) ∈ I(U),

• M |=I ¬ϕ iff it is not the case that M |=I ¬ϕ,

• M |=I ϕ1 ∧ ϕ2 iff M |=I ¬ϕ1 and M |=I ϕ2

• M |=I ∃x, ϕ iff ∃e ∈ E,M |=I[x/e] ϕ, where I[x/e] is the interpretation that
maps x to e, and agrees with I on other variables.

• M |=I ∃X,ϕ iff ∃E ′ ⊆ E,M |=I[X/E′]
ϕ, where I[X/E′] is the interpretation

that maps X to E ′, and agrees with I on other variables.

An MSC M satisfies a formula ϕ iff one can find an interpretation I such that
M |=I ϕ. We will also denote by Fϕ the set of all MSCs that satisfy formula ϕ

Definition 74 Let H be an HMSC, and ϕ be an MSO formula over MSCs. We
will say that H satisfies ϕ iff for every M ∈ L(H), M |= ϕ.
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Theorem 45 [98] Let H be a HMSC, and ϕ be an MSO formula over MSCs. Then,
the problem of checking whether all MSCs in FH satisfy ϕ is decidable.

The MSO checking problem and its decidability has also been extended to un-
foldings of HMSCs [97], and safe CHMSCs [98]. These results hold without any
restriction on HMSCs, and also with sensible restrictions on CHMSCs. This re-
sults have an intuitive explanation: as soon as one does not consider global states
properties, the MSCs in the families of partial orders generated by HMSCs or safe
CHMSCs can be considered as graphs. Even better, HMSCs and CHMSCs can
be seen as context free graph grammars (in the spirit of [70], with decidable MSO
properties.

In 2002, [92] has introduced a class of dynamic MSCs, that can describe be-
haviors over unbounded sets of processes with fork-join grammars. Each fork can
be seen as a way to generate new threads starting from the existing processes, and
each join between two expressions selects which threads from each operand will still
be active after join. Again, one can see dynamic MSCs as a context free graph
grammar generating scenarios, and obtain the following result. We have described
MSC grammars in chapter 6 to generate MSC languages over unbounded sets of
processes.

Theorem 46 [92] Let H be a dynamic MSC, and ϕ be an MSO formula over MSCs.
Then, the problem of checking whether all MSCs in FH satisfy ϕ is decidable.

The proof by Leucker & al is as follows: a dynamic MSC is some kind of gram-
mar. One can build a tree automaton that recognize parse trees of this grammar.
Then, one can refine the sates of the tree automaton attached to leaves to model
interpretation, and states attached to inner nodes to model sub-formulae inherited
from the subtree recognized at some node. A formula holds if one can attach to the
root a state which synthesized formula part implies ϕ. We refer interested readers
to [92] fro more details. Note that proving a formula of the form ¬ϕ needs first to
built an automaton for ϕ, and then complement it, which may impose an exponential
blowup in the size of the tree automaton.

We can apply a similar technique to dynamic MSC grammars. One can reuse
the automaton AG built in chapter 6, theorem 39 to check emptiness of a DMG G.
We can similarly attach interpretations and sub-formulae to leaves and nodes of a
parse tree recognized by AG, and obtain a tree automaton that recognizes all MSCs
that satisfy ϕ. As one can check emptiness of a tree automaton (in linear time) [37],
we have the following result:

Theorem 47 Let G be a dynamic MSC grammar, and ϕ be an MSO formula over
MSCs. Then, the problem of checking whether all MSCs in FG satisfy ϕ is decidable.

One can notice that the simple message problem of chapter 2 can be encoded as a
property of the form : ϕMsgProb ::= ∃x, y, u, v, (u, x) −→ (v, y)∧ lab!m(x)∧ lab?m(y).
So MSO is undecidable for non-safe CHMSCs. As one can see, decidability of MSO
comes from some kind of regularity in the structure defining how to compose MSCs,
but also in a possibility to bound the number of receptions that need to be matched
in a sub-expression recognized by a (tree) automaton. If this property is not satisfied,
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then there is no bound on the number of sent and not yet received if a represen-
tative set of MSC generated by the model, and the (tree) automaton recognizing a
representative set of MSCs need an infinite number of states. This restriction is eas-
ily guaranteed in HMSCs, Dynamic MSCs, and dynamic MSC grammars, as these
structures compose only communication-closed patterns. For CHMSCs, a bound
exists only if the considered specification is safe.

4 Partial order logics : Dropping the automaton

support

As shown in the former section, decidability of MSO for MSCs in HMSCs safe
CHMSCs and MSC grammars comes from regularity (regularity of an automaton
support, or regularity of the parse tree language for MSC grammars) and also from
existential bounds on communication channels that are guaranteed by the models.
These restrictions either allow for the definition of a regular set of representatives,
or for decoration of tree automata with interpretations, without consideration on
whether communications are correctly mapped. A natural question is whether one
can drop the automaton or grammar structure to design MSC languages. So far,
we have introduced composition mechanisms that are very sequential, and describe
the execution of a protocol from a start to its end, by appending communication
patterns one after another. Such formalisms is not always adapted in very early
phases of systems design, and one should notice that even if MSCs (or their vari-
ants) are very often used to describe and document systems, higher level constructs
composing them are less used. An interesting question is whether one can drop this
too sequential view of composition, and define scenario descriptions as a collection
of known facts on a distributed system composing communication patterns, and if
one can still get decidable properties for such models.

Dropping the regular structures to generate MSC languages, we can imagine
logical formalisms to collect users knowledge about systems behaviors, under the
form of ”correlations” between pieces of behaviors. For instance one would like to
describe situations such as ”whenever a message Acknowledge is exchanged between
p and q, then a message Data was send from q to p some time before”, or ”A data
message must occur between two consecutive acknowledgments”,.... But beyond the
wish to specify with logical statement, we need tools to check if a given specification
is consistent. As we have seen for MSC grammars (chapter 6), CHMSCs (chapter 3),
the question of whether a specification described using a particular formalism defines
a non-empty set of behaviors is a crucial sanity check. This question is undecidable
for CHMSCs, but becomes decidable for safe CHMSCs, MSC grammars, and is
trivial for HMSCs or causal HMSCs. For shuffles of HMSCs, this question was
also undecidable (see chapter 5). Hence, emptiness is a very discriminant test for
MSC formalisms, and should be guaranteed by the model. We will also see in
the next chapter that satisfiability is a key ingredient for diagnosis. We will now
review several potential logical formalisms, namely MSO for MSCs, template MSCs,
and a new logic of partial order computations, and for each of them consider the
requirements needed to ensure consistency checking.
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Specifying with MSO for MSCs

A good candidate as logical specification formalism is of course MSO for MSCs. Cast
in the MSO context, the consistency check mentioned above is in fact a satisfiability
problem. Let ϕ be a MSO formula over MSCs. We will say that ϕ is satisfiable iff
there exists an MSC M such that M |= ϕ (or written differently, does Fϕ = ∅?).
However, it was shown that this question is undecidable.

Theorem 48 [50] The satisfiability problem for MSO over MSCs is undecidable.

An easy way to prove this theorem is again to define a PCP encoding. One can
indeed define formulae over three processes p, q, r, such that one formula ϕp describe
sequences of u′

is in a PCP, one formula ϕq describe sequences of v′is, (each letter
and index is encoded as a message sending in ui and located on p, or as a reception
reception and located on q for v′is), and an additional process ensures equality of
sequences of indexes and letters on p, q.

This means that MSO for MSCs is not a suitable specification formalism. In-
terestingly, if one assumes that the MSC that shall satisfy ϕ are concatenations of
MSCs chosen from a finite setM, then satisfiability becomes decidable. Decidabil-
ity also holds if one slightly changes the problem, and gives as input of the problem
a bound B and imposes that the considered MSCs satisfying ϕ are existentially
B-bounded.

Theorem 49 [55] Let B be an integer, ϕ be an MSOMSC formula. Then one can
decide if there exists a ∃B-bounded MSC M that satisfies ϕ

The proof comes from the fact that one can represent the set of all existentially
B-bounded MSCs as a CFSM. The results in [55] also sow that, denoting by MSCB

the set of ∃B−bounded MSCs, and given a CFSM A, one can check whether FA ∩
MSCB ⊆ Fϕ. This means that one can check if MSCB ⊆ F¬ϕ, which solves the
satisfiability problem for ∃B-bounded MSCs.

Template MSCs

The first attempt in the MSC world to drop the automaton structure is called
template MSCs [60]. Template MSCs define ”MSCs with holes”. This formalism
can define templates of the form assume/guarantee, i.e. pairs of MSCs of the form
(M,M ′), meaning that when MSC M is observed, then MSC M ′ will occur in
the future. In addition, template MSCs are extended with a logic that combines
templates. Such kind of template specification was also proposed for live sequence
charts (LSCs) [38], where in a pair (L, L′) of LSCs, the pre-chart L (usually a single
message) is seen as triggering LSC L′. However, LSCs have a synchronous semantics
that can be described as finite state machines.

Definition 75 A template MSC is a tuple (P,E,Γ, C, λ,m,≤), where (P,E, C, λ,m,≤
) is a CMSC, Γ is a set of boxes, λE ∪ Γ → Σ is a mapping that associates a type
to events, and a set of allowed types to boxes. The ordering relation ≤ is a partial
order over events and boxes, and is a total order on each process.

4. PARTIAL ORDER LOGICS : DROPPING THE AUTOMATON SUPPORT 145



CHAPTER 8. APPLICATION 1: VERIFICATION

The intuitive meaning of template MSCs is that boxes in Γ are ”holes” (unspec-
ified parts) in a MSC. One can fill a box γ ∈ Γ with CMSCs which events are all of
type λ(γ) and build a message mapping that satisfies fifo ordering on messages to
obtain a complete MSC. A single template MSC T defines a potentially infinite set
of MSCs denoted by FT .

Figure 8.1: A template MSC

Figure 8.1 shows an example of template MSC with two boxes γ1, γ2. By simply
setting λ(γ1) = λ(γ2) =

⋃
σ∈Σ

p!q(σ) ∪ q!p(σ) ∪ p?q(σ) ∪ q?p(σ), the template MSC of

Figure 8.1 represents all MSCs with messages of type Σ that contain at least one
occurrence of message m from p to q. One can immediately notice that template
MSC languages are not necessarily existentially bounded, and hence can be difficult
to analyze or implement.

Template MSCs have been extended with a simple logic called assume-guarantee
template MSC. Expressions of this logic are of the form Ta → Tb and Ta → ¬Tb.
The semantics of these expressions are again MSC languages:

FTa→Tb
= {M | for every factorization M=N.N’, N 6∈ L(Ta) or N

′ ∈ L(Tb)}
FTa→Tb

= {M | for every factorization M=N.N’, N 6∈ L(Ta) or N
′ ∈ L(Tb)}

This logic can be extended with conjunction, to obtain expressions of the form
ϕ =

∧
i Ti −→

∨
j ±Tj , where ±Tj stands for either Tj or ¬Tj . The meaning of this

formula is that a MSC belongs to Fϕ if for every Ti there exists one Tj (respectively
¬Tj) such that M ∈ FTi−→Tj

(respectively M ∈ FTi−→¬Tj
). Such expressions are

called template MSCs formula. However, satisfiability of template MSCs formula is
undecidable:

Theorem 50 [60] Satisfiability of a template MSC fomula ϕ is undecidable. Given
a bound B, one can decide if there exists a ∃B-bounded MSC in Fϕ.

Again, the undecidability comes from an encoding of a PCP. We refer inter-
ested readers to [60] and [58] for more results on template MSCs. Undecidability
of template MSC formulas show that it is hard to design specifications with this
logic (at least without restriction), as one can not decide if a formula has an MSC
model. Template MSCs are strictly included in FO [58], hence there are many MSO
properties that do not have a counterpart in Template MSCs.
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We note that the satisfiability problem of several local temporal logics in the
literature are undecidable. These include m-LTL [104], a local temporal logic on
Lamport diagrams. Similarly, satisfiability for TLC−, a fragment of MSO for MSCs
proposed in [121] is known to be undecidable [50].

LPOC: a Logic of Partially Ordered Computations

One may wonder if the problem with template MSCs does not come from the fact
that we are considering messages, and furthermore FIFO communications, which
are well known to introduce undecidability (CFSMs can encode Turing machines
using their queues as a tape). We hence have considered a slightly different logic
called LPOC (Logic of Partial order Computations), that aims at defining causal
dependencies among local states in distributed computations [138], without men-
tioning explicitly communications. The main idea driving this work was to propose
a language to collect knowledge of a system without the need to describe an oper-
ational model specifying runs of a system from its initial configuration. The goal
of this formalism was also to define behaviors up to some abstraction: messages,
changes of phases of protocols, etc are not necessarily observable, nor precisely
specified. This can be particularly true in a context where a part of a system may
have been designed by external developers, and in such a way that design details are
not precisely documented. Hence, one can not always reason on a system in terms
of messages, MSCs etc. MSO for MSCs partially answers this problem, by describ-
ing relations among events that can occur at any place during a computation, but
does not emphasize this notion of causal pattern. Furthermore, we already know
that satisfiability of MSO is undecidable. Template MSCs is another alternative,
but emphasizes messages, and furthermore, satisfiability is also undecidable. The
LPOC formalism presented hereafter describes a system in terms of causal depen-
dencies patterns, and in terms of relations between these patterns, expressed using
a temporal logic.

In this section we will drop the assumption that behaviors of distributed systems
are necessarily described with MSCs. Considering this, we have proposed a logic-
based models that take causal relations among identified local states of a system
as building bocks. More precisely, we represent behavioral patterns of distributed
systems with restricted partial orders which define cause-effect relations among local
states. These partial orders are called partially ordered computations. We then
propose a temporal logic over partially ordered computations and call it simply the
logic of partially ordered computations (LPOC). The main feature of LPOC is to
reason about evolution of patterns of causal orders. We use temporal operators
similar to Computation Tree Logic [36], and use them to combine patterns, that is
finite partial orders (depicting for instance short sequences of message exchanges).

We will consider that LPOC formulae are defined for a known and nonempty set
P of process names, and AP a finite nonempty set of atomic propositions. We let
p, q range over P.

Definition 76 A partially ordered computation (or computation for short) over
(P,AP) is a tuple (S, η,≤, V ) where:

• S is a finite set of (local) states.
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• η : S → P identifies the location of each state. For each p ∈ P, we define
Sp = {s ∈ S | η(s) = p}.

• ≤ ⊆ S × S is a partial order, called the causality relation. Furthermore, for
each p, ≤ restricted to Sp × Sp is a total order.

• V : S → 2AP is a labeling function which assigns a set of atomic propositions
to each state. We call V (s) the valuation of s.

Intuitively, a computation (also called Lamport diagram in the literature [104])
represents the causal ordering among local states in a distributed execution, in which
states of each process are sequentially ordered. The valuation of local state s collects
the atomic propositions that hold at s. Such propositions can denote the type of the
last event executed on some process, some known facts about variables assignments
in the local state, ... Figure 8.2-a) shows a computation. States are designated by
black dots with associated name s1, . . . , s6. Processes P,Q,R are represented by
vertical lines, and states located on a process line are ordered from top to bottom.
Finally, valuations of states take value in {a, b, c}, and are represented between two
brackets near the associated state. Note that we consider only finite computations.
We will say that two computations (S, η,≤, V ) and (S ′, η′,≤′, V ′) are isomorphic iff
there is a bijection f : S → S ′ such that η(s) = η′(f(s)) for any s ∈ S, s1 ≤ s2 iff
f(s1) ≤′ f(s2) for any s1, s2 ∈ S, and V (s) = V ′(f(s)) for any s ∈ S. We identify
isomorphic computations and write W ≡W ′ if Wand W ′ are isomorphic.

s1

s2

s3

P Q R

s5

s6

{a, b}

{a}

{b}

{b, c}

{b}

s4

{c}
{a}

{b}

P

s5

{b, c}

R

s2

s3

Figure 8.2: a) A computation W b) the 1-view of s3 in W

Let (S, η,≤, V ) be a computation, and s, s′ ∈ S. As usual, we write s < s′

when s ≤ s′ and s 6= s′. For each p ∈ P, we define ≪p⊆ S × S as: s ≪p s′ iff
s, s′ ∈ Sp, s < s′, and there does not exist s′′ ∈ Sp with s < s′′ < s′. That is, ≪p

is the “immediate” sequential ordering of states belonging to p. We let ⋖ ⊆ S × S
be the least relation such that ≤ is the reflexive and transitive closure of ⋖. For
each p, q ∈ P with p 6= q, let us define ≪pq⊆ S × S as follows: s ≪pq s

′ iff s ∈ Sp,
s′ ∈ Sq, and s ⋖ s′. We also define ≪= (∪p∈P ≪p)

⋃
(∪p,q∈P,p 6=q ≪pq). We note

that < is in fact the transitive closure of ≪. If s ≪ s′, we say s′ is a (causal)
successor of s, and call s a (causal) predecessor of s′. We emphasize that ≪ is not
equal to ⋖. Indeed, ⋖ does not necessarily capture the relations defined by the local
ordering on processes. Consider for instance states s5 and s6 in Figure 8.2-a: we
have s5 ≪ s6, but not s5 ⋖ s6. A state s is minimal if it has no predecessor, and
maximal if it has no successor. A causal chain is a sequence s1s2 . . . sn of states
where s1 ≪ s2 ≪ . . .≪ sn.

148 4. PARTIAL ORDER LOGICS : DROPPING THE AUTOMATON SUPPORT



CHAPTER 8. APPLICATION 1: VERIFICATION

In the sequel, we define a temporal logic of partial-order computations (called
“LPOC” for short) to reason about distributed behaviors. It has two basic features.
First, at a state s of a computation, atomic formulae assert that a “pattern” occurs
in a bounded past or bounded future of s. Secondly, we consider a branching time
framework with CTL-like operators and reason along sequences of causally ordered
states.

Definition 77 Let (S, η,≤, V ) be a computation, and m be a natural number. The
m-view of s ∈ S, denoted ↓m(s), is the collection of states s′ in S such that there
exists a causal chain of length at most m starting from s′ and ending at s. More
precisely, ↓m(s) = {s′ | ∃s0, . . . sn ∈ S, n ≤ m and s′ = s0 ≪ s1 ≪ . . . ≪ sn = s}.
Similarly, the m-frontier of s, denoted by ↑m(s), is the collection of states s′ in S
such that there exists a causal chain of length at most m starting from s and ending
at s′.

Intuitively, the m-view of a state described the causal past of a state, and m-
frontier the causal future. Figure 8.2-b) shows an example of m-view. Note that
the 0-view and 0-frontier of a state s are both the singleton set {s}. Each state s
has at most |P| successors, one belonging to each Sp. Thus, inductively, the m-view

and m-frontier of s contains at most Nm =
∑m

i=0 |P|
i = 1−|P|m+1

1−|P|
states. In order to

reason about the “pattern” of a computation, we also need a notion of projection.

Definition 78 Let W = (S, η,≤, V ) be a computation over (P,AP), and let A ⊆
AP. The projection of W onto A is the computation W ′ = (S ′, η′,≤′, V ′) where
S ′ = {s ∈ S | V (s)∩A 6= ∅}, and η′, ≤′, are the respective restrictions of η,≤ to S ′

and V ′(s) = V (s) ∩ A for every s ∈ S ′.

The atomic formulae of our logic will assert that the projection of the computa-
tion formed from the m-view or the m-frontier of a state is isomorphic to a given
computation. We are now ready to define the logic LPOC.

Definition 79 The set of LPOC formulae over a set of processes P and a set of
atomic propositions AP, is denoted by LPOC (P,AP), and is inductively defined as
follows:

• For each p ∈ P, the symbol locp is a formula in LPOC (P,AP).

• Let m be a natural number, A be a subset of AP, and T = (S, η,≤, V ) be a
computation such that V (s) ⊆ A for every s ∈ S. Then ↓m,A(T ), ↑m,A(T ) are
formulae in LPOC (P,AP).

• If ϕ, ϕ′ are formulae in LPOC (P,AP), then EXϕ, EU(ϕ, ϕ′) are formulae in
LPOC (P,AP).

• If ϕ, ϕ′ ∈ LPOC (P,AP), then ¬ϕ and ϕ ∨ ϕ′ are formulae in
LPOC (P,AP).

From now on, we shall refer to formulae in LPOC (P,AP) simply as formulae.
Their semantics is interpreted at local states of a computation. For a computation
W and a given state s of W , we write W, s |= ϕ when W satisfies ϕ, which is defined
inductively as follows:
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• W, s |= locp iff the location of s is p (i.e. η(s) = p),

• W, s |=↓m,A(T ) iff the projection of ↓m(s) onto A is isomorphic to T .

• W, s |=↑m,A(T ) iff the projection of ↑m(s) onto A is isomorphic to T .

• W, s |= EXϕ iff there exists a state s′ in W such that s′ is a causal successor
of s and W, s′ |= ϕ.

• W, s |= EU(ϕ, ϕ′) iff there exists a causal chain s1s2 . . . sn in W with s = s1.
Further, there exists an index i in {1, 2, . . . , n} with W, si |= ϕ′, and W, sj |= ϕ
for every j in {1, 2, . . . , i− 1}.

The semantics for boolean combinations and negations of formulae is as usual.
We assume the standard boolean operators. We define some derived temporal oper-
ators as follows: EFϕ ≡ EU(true , ϕ), EGϕ ≡ EU(ϕ, ϕ∧¬EXtrue), AXϕ ≡ ¬EX(¬ϕ),
AFϕ ≡ ¬EG(¬ϕ), and AGϕ ≡ ¬EF¬ϕ. We can also assert the truth of an atomic
proposition a at a state of a computation with ϕa =

∨
p∈P

(
locp∧ ↓0,{a}(Tp,a)

)
, where

each Tp,a is the computation containing a singleton state of location p and valuation
{a}. We have chosen the existential until operator because it is essential in assert-
ing properties such as “whenever some pattern T occurs, some other pattern T ′ will
follow”. More precisely, this demands that along every causal chain, whenever a
pattern T occurs, pattern T ′ should occur later and no more pattern T can occur
again before the point at which the pattern T ′ has occurred. This kind of properties
are commonly needed in practical applications.

For a computation W and a LPOC formula ϕ, we say that W satisfies ϕ, written
W |= ϕ, iff there exists some minimal state smin of W such that W, smin |= ϕ. We
say that ϕ is satisfiable iff there exists a computation W such that W |= ϕ.

Let us define a simple example with LPOC. We define a formula meaning that
whenever a connection phase described by a pattern Tconn occurs between two pro-
cesses Client and Server, then a data transfer described by a pattern Tdata neces-
sarily occurs later. This formula can be expressed by AGϕ, where :

ϕ = (locClient∧ ↑2,A(Tconn))
⇒ (EX(locClient ∧ EX(EU(locClient, locClient∧ ↑2,A′(Tdata))))

,

A = {disc, noclient, client, connected}, andA′ = {DataSent,DataRecv,DataAck},
and the patterns Tconn and Tdata are described in Figure 8.3.

Figure 8.3: Two patterns

We can also define the notion of a computations satisfying a collection of for-
mulae, one for each process. Formally, for a computation W = (S, η,≤, V ) and a
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P-indexed family of formulae {ϕp}p∈P , we say W satisfies {ϕp}p∈P , written W |=
{ϕp}p∈P by abuse of notation, iff the following condition holds: for each p ∈ P,
Sp 6= ∅ and W, sp |= ϕp where sp is the minimum state in Sp (i.e. sp ≤ s for every
s ∈ Sp). Note that W |= {ϕp}p∈P iff W |=

∧
p∈P

EU(¬locp, locp ∧ ϕp).

The LPOC logic presented above satisfies most of the requirements we have for
representation of partial knowledge of a system. However, one can easily show that
this logic is too expressive.

Theorem 51 [138] Satisfiability of an LPOC formula is undecidable.

The proof uses the same PCP encoding used to prove undecidability of satisfia-
bility for MSO over MSCs. Letting ϕp, ϕq, ϕr be LPOC formulae encoding properties
of a distributed system with processes P = {p, q, r}. ϕp can be used to encode the
behavior of one process that choses indexes and sequences of messages in a PCP,
ϕq the behavior of another one, and ϕr to ensure that the two processes choose the
same indexes and the same sequences of messages. Then, deciding if there exists
a run of the system satisfying ϕp, ϕq,and ϕr is undecidable. We refer interested
readers to the appendix for proofs of this theorem. This is not really a surprise, as
satisfiability TLC−, a logic that describes properties of a single causal chain in a
MSC (that is LPOC formulae that use only 0-views) is already undecidable.

As one can see, LPOC suffers the same drawback as MSO for MSCs, and tem-
plate MSCs. There are two usual ways to overcome this undecidability problem.
The first one is to consider a decidable fragment of the logic. Note however, that
encoding a PCP becomes possible as soon as there is a way to describe sequences
of properties located on a given process, and to define a mapping of states on dif-
ferent processes that respects the ordering. This is why in most cases very small
fragment of partial order logics become undecidable when no restriction is imposed
on the kind of model considered. Then, the question that naturally arises is whether
we can identify a subclass of computations for which LPOC diagnosis is tractable.
Again, one can rely on bounds to ensure decidability. However, bounds for MSCs-
based languages are defined in terms of channel contents. Such definition of bounded
runs does not directly apply to distributed behaviors in which the notion of message
is not necessarily specified. However, there is another way to restrict the set of
computations that we consider: for a given K, we limit explanations to so-called
K-influencing distributed behaviors in which each process causally influences every
other process in a bounded manner. Within this setting satisfiability of an LPOC
fomlula is decidable (for the given K).

Definition 80 Let W = (S, η,≤, V ) be a computation, and p, q ∈ P with p 6= q.
The causal degree of p towards q in W is the maximum integer n ∈ N for which
there exist s1, s2, . . ., sn in Sp, and s′1, s

′
2, . . ., s

′
n in Sq such that:

(i) s1 < s2 < . . . < sn and s′1 < s2 < . . . < s′n.

(ii) for i = 1, 2, . . . , n, si ≪ s′i, that is, si is a predecessor of s′i.

(iii) s′1 ≮ sn.
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For K ∈ N, W is K-influencing iff for any pair of processes p, q in P with p 6= q,
the causal degree of p towards q is at most K.

Intuitively, the causal degree of p towards q is the maximal number of events
that precede some event on q that p can execute without having to wait for q. The
general shape of K−influencing computations is illustrated in Figure 8.4. We now
state the main result of this section.

P Q R

s1
s′1

r1n ≤ K

sn+1

r2

s2
s′2

sn

s′
n

Figure 8.4: K−influencing computations

Theorem 52 Given a P-indexed family {Φp}p∈P of LPOC formulae, and an in-
teger K ∈ N, one can effectively determine whether there exists a K−influencing
computation W which satisfies {Φp}p∈P.

The main idea of the proof is that one can build an automaton that recognizes
linearizations of allK-influencing computations (over a set of processes P and atomic
propositions AP). Then, one can build a two-way alternating automaton Altϕ
recognizing K−influencing computations that satisfy ϕ. This automaton can then
be translated to a finite state machine Autϕ.

It may seem surprising that one needs to restrict computations to regular models
to gain satisfiability, while satisfiability of MSO for MSCs is decidable as soon as
we restrict to existentially bounded MSCs. The reason for this is that a single
linearization of an MSC uniquely determines this MSC. Then restricting to existen-
tially B-bounded MSCs allows to represent each MSC by a B-bounded represen-
tative linearization, and the set of existentially B-bounded MSCs can be described
as a regular set of representatives. In partially ordered computations, a lineariza-
tion may correspond to several computations, and hence we may need to consider
an arbitrary set of linearizations to define uniquely concurrency and causality in
computations, even if the computations have properties similar to existential K-
boundedness.

Even with the restriction to K-influencing computations, satisfiability and in
general verification of LPOC is very expensive (several exponential in the size of the
formula and exponential in the size of the observed behavior). This high complexity
could mean that most of problems (diagnosis, verification) addressed with LPOC are
intractable. Note however that this complexity is in the worst cases. We strongly
believe that if the m-views (resp. frontiers) in fromulae is bounded by some small
integer, the complexity is more tractable. We could also consider a fragment of the
logic. Note however that most of the modalities chosen for LPOC seem important.
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The simple example of Figure 8.3 shows that the Until operator is essential to express
properties of the form “when T1 occurs, T2 will occur later”. One may also try to
restrict the use of negation, that is LPOC formulae would only be conjunctions of
positive assertions on the occurrence of patterns.

5 Comparison of different models

As LPOC uses the existential until operator, for a given K, LPOC restricted to K-
influencing computations is not definable in the first order logic over the Mazurkiewicz
traces encoding K-influencing computations. An interesting work would be to look
for a fragment that is expressively complete for the first order logic over the traces
encoding K-influencing computations. We furthermore think that one can define an
MSO logic of partially ordered computations (using suitable relations of successor
on the same process and on distinct process) and define LPOC as a fragment of this
logic.

In [121], D.Peled shows that model checking TLC− formulae on High-level Mes-
sage Sequence charts (HMSCs) is decidable. TLC− is a subset of TLC that only
contains next and until temporal operators, and describes the shape of causal chains
in all the partial orders generated by a HMSC. It is also a subset of MSO [98]. TLC−

is clearly less expressive than LPOC, but satisfiability of TLC− formulae is already
undecidable [50].

The Propositional Dynamic Logic (PDL) for message passing systems proposed
by [27, 28], extends dynamic LTL for traces [75]. PDL is a proper fragment of
MSO, and model checking PDL properties over HMSCs is PSPACE complete. [104]
proposes a local logic LD0 and several extensions over computations, with future and
past modalities, and show that in the general case, satisfiability of PDL formulae is
undecidable. LD0 can be seen as an extension of PDL that allows to navigate causal
relation backwards. PDL and LD0 are subsets of MSO. They become decidable when
considering models of bounded size, or when computations can be organized as
successive layers of finite message exchanges. LD0 only describes chains of causally
related events occurring in the future or in the past of a local state, while the
template matching in LPOC allows to describe a complete partial order in a bounded
future or past of a local state. For instance, the fact that at some state, the causal
future (the m-view) of a local state forms a lattice can not be expressed in LD0
(nor in PDL). LPOC is then more discriminating than LD0, and if we restrict our
models to Message Sequence Charts (a partial order where locality of events and
messages are explicitly represented), it is also more expressive and discriminating
than TLC− and PDL (as these logics consider properties of a single causal path).
On the other hand, LD0 allows definition of formulae that describe properties of
local states occurring arbitrarily far in the past of a local state. So, LPOC and LD0
are incomparable.

Note also that for TLC−, PDL, or LD0, partial orders are seen as models of
formulae, but not as elements of the logic itself. The closest approach mixing logic
and partial orders is clearly Template Message Sequence Charts [60]. Note however
that the models of template MSC formulas are MSCs. As shown previously, the
logic is very expressive, but satisfiability is undecidable when no bound is assumed
on the set of MSCs considered. Models for template MSC formulae are MSCs, while
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models for LPOC formulae are arbitrary computations. Even if we only consider
LPOC formulae over MSCs, LPOC and template MSCs remain incomparable. On
one hand, holes in template MSCs are not necessarily descriptions of what happens
in the future or in the past of an event. By filling hole, one may add concurrent
events, i.e. it is possible to say with template MSCs that whenever an action a
occurs on process p, a concurrent action b occurs on process q. Clearly, this kind of
formula can not be expressed with LPOC. On the other hand, some LPOC formulae
that use the until operator do not find their equivalent in template MSC.

Note also that the works in [121], [27, 28] and [60] rely on the existentially
bounded nature of models to ensure decidability of model checking (which existence
is guaranteed by HMSCs). In general, existential bound suffice This is not sufficient
in our case to obtain decidability for LPOC, as the PCP encoding used to prove
undecidability is indeed existentially bounded. The K-influencing restriction is then
closer to the universal bound on MSCs (the contents of communication channels in
all linearizations of MSCs is bounded by some integer b) needed to model check
HMSCs with global logics [14]. It might be interesting to see whether the layered
computation restriction of [104], that imposes computations can be represented as
finite layers of local states located at equal distance from an set of initial states, is
sufficient to make diagnosis with LPOC formulae decidable.

6 Conclusion

In this chapter, we have recalled that most global logics were undecidable for HMSCs
and their variants. Indeed, undecidability arises as soon as one considers regular
model checking, except if the model checking problem is applied for a subset of the
scenario language with regular set of linearizations.

Considering local makes most of model-checking problem decidable: for instance
verification of properties of MSOMSC is decidable for HMSCs, dynamic MSCs, safe
CHMSCs, and MSC grammars. Though local logics are usually considered as less
powerful than global logics, an furthermore are often expensive, this is certainly the
price to pay to equip scenarios with verification tools. Furthermore, it seems logical
to model check local properties of specification that do not rely on global states to
model a distributed system.

To go further, one could hope to use logical formalisms as specification language,
or as a way to capture users knowledge and reason formally on this knowledge base.
However, satisfiability of local logics is rapidly undecidable. As one can not decide
in general if a logical specification describes at least a run, logic-based specification
is not a viable technique. Solutions exist when additional assumptions (such as
existential B-boundedness for a fixed B) are imposed to the runs of the considered
system. Considering other restrictions, including for models that are not MSCs is a
challenging issue.

Even though modeling with MSO or more generally with local logics is not
feasible in full generality, decidability of verification for models that enjoy regular
composition mechanisms is a good news, and will be used in the next chapter to
show decidability of diagnosis.
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Chapter 9

Application 2 : Diagnosis

L’ordre est le plaisir de la raison: mais le désordre est le délice de l’imagination.
Order is reason’s pleasure, but disorder is imagination’s delight

[Paul Claudel, Le Soulier de satin]

1 Introduction

This chapter is devoted to the application of scenario models to diagnosis. Diagnosis
consists in building explanations from a model and an observation of a running
system. Such explanations can be provided as a set of runs of the model, or as a
generator for such this set. The problem has been addressed with several models,
but the HMSC-based approach detailed hereafter showed to be efficient and scalable.
In particular, it provided a solution to the non-observable cycles problem that raises
termination problems for diagnosis techniques based on unfoldings.

This chapter is organized as follows: we first recall the main objectives of di-
agnosis, and then focus on a HMSC-based solution, that was originally proposed
in [77]. We then show that in general diagnosis can be brought back to model-
checking of an MSO formula built out of an observation, and that hence Dynamic
Message Sequence Charts or Dynamic MSC grammars can be used for diagnosis.
The work presented in this chapter summarizes a joint works with Blaise Genest,
Thomas Gazagnaire, Hervé Marchand, and Benedikt Bollig.

2 Diagnosis

Complexity of distributed systems calls for automated techniques to help designers
and supervisors in their tasks. Before correcting a system’s software, or taking a
decision (for instance a reconfiguration of a network), stakeholders need to obtain
information on what occurred in a network before entering a faulty configuration,
on the current state of the system, etc. The role of diagnosis is to provide a feedback
to supervisors of a system (this can be online, to obtain some information on the
current status of a running system, or offline, to know why a fault occurred and
then correct the incriminated part of the system).

Usually, diagnosis relies on observation of the system (for instance some infor-
mation stored in log files during execution), and on some a priori knowledge of the
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behaviors of a system. However, observations can only be partial: distributed sys-
tems are now so complex that monitoring every event in a running system is not
realistic. In telecommunication networks, for example, the size of complete logs
recorded at runtime grows fast, and can rapidly exceed the storage capacity of any
machine, or the computing power needed to analyze them. Furthermore, observing
a system may impose additional delays to execution of programs or to communica-
tions. The time penalty due to observation of a system also advocates for a partial
observation. Hence, monitoring a system means choosing an appropriate subset of
observable events, and equip the implemented system to record occurrences of these
events. This can be achieved by inserting lines of codes (frequently called software
probes) to report the execution of a particular part of a program, adding physical
mechanisms that listen to communications and report a specific kind of communi-
cation between chosen processes, .... The choice of a particular set of events to be
observed is clearly part of the design of a complex system.

Several techniques are frequently called “diagnosis” while addressing different
goals. Any kind of technique that provides online or offline information on a system
to a supervisor can be called diagnosis, but we will focus more precisely on two of
them, namely fault diagnosis, and history diagnosis. Fault diagnosis answers the
question whether a system is faulty, i.e it has reached some bad configuration or
executed some events that should have not occurred. The main challenge in fault
diagnosis is to decide whether for given sets of faults and observable events the
system is diagnosable, i.e. the occurrence of a fault can eventually be detected after
a finite number of observations [131]. Diagnosis is then performed by an observer
that monitors observable actions and raises an alarm when needed.

History diagnosis reconstructs an actual set of possible executions of a system
from a partial observation. The a priori knowledge on the system available for this
is defined as a model of system’s behaviors. The objective is then to build a set of
plausible explanations (runs of the model) that comply with the observations [24].
Then, these potential explanations can be exhaustively checked to find a fault, or to
provide feedback to system’s supervisor. Note that fault and history diagnosis try
to solve different problems: fault diagnosis tries to infer if a fault has occurred (and
very often which fault), while history diagnosis may provide several explanations
(faulty or not) for a given observation. Throughout this chapter, we mainly address
history diagnosis. Hence, for simplicity, will only use the term ”diagnosis” instead
of ”history diagnosis”.

Roughly speaking, the history diagnosis problem can be defined as follows: given
a model M of a running distributed system, an observation alphabet ΣObs and an
observation O produced during a run of the system, find all executions of M which
projections on ΣObs embed O. A major difficulty of diagnosis is to find plausible
occurrences of non-observed events. These events are explicitly represented in the
model of the system, but do not appear in the collected observation O.

The major objective of the work presented in this chapter is to exploit the non-
interleaved representation of scenarios to avoid combinatorial explosion, and provide
efficient algorithms for diagnosis. Observation of a distributed system needs not be
an interleaved model, and as long as an analysis of a system does not need to study
all global states, true concurrency models should provide efficient solutions. We will
show later that diagnosis with HMSCs can be performed without referring to global
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states of the system. We will however see that one can not avoid an exponential
blowup in the size of the observation, which linearizations may have to be considered.

The authors of [24] already address history diagnosis with a partial order model
(safe Petri nets). In this approach, diagnosis is performed as an incremental con-
struction of an unfolding of the net model. The incremental aspect of this approach
is clearly well adapted for online diagnosis. However, unfoldings are an explicit
representation of explanations. In some cases, the unfolding depicting all possible
explanations provided by a net is infinite, and the incremental construction may not
terminate. Consider for instance the Petri net of Figure 9.1-a. Supposing that this
simple model is a model for a real system, and that the only observable event is
action b, then the explanation for an observation O containing a single occurrence
of b is the infinite unfolding of Figure 9.1-b. Indeed

Figure 9.1: a) An example of Petri net, and b) the (infinite) unfolding explaining a
single occurrence of action b

As we are considering distributed systems, it is natural to consider that observa-
tions of a monitored system are provided as a partial order. The algorithm detailed
in this chapter takes as input an observation O given as a partial order, an HMSC
model H of the possible behaviors of the system, and the knowledge of the type
of events that have been recorded in O to build a product between O and H that
generates all possible explanations.

We do not impose restrictions on the observation architecture: observed events
occurrence may be collected in a centralized way, or separately by distributed ob-
servers. However, we will consider that for a given process, all observed events are
totally ordered, that is, probes assign at least a sequence number to each event
observed on their monitored process. In addition, probes can implement vectorial
clocks à la Fidge& Mattern [47, 101], which allows to recover faithfully causalities
among events occurrences. Even when no vectorial clock is implemented by probes,
some causal dependencies can be inferred from packets numbering (sending necessar-
ily precedes reception of a packet with identical number), etc... Hence an observation
O may contain some particular ordering between events that is not only induced by
sequence number on each process. This additional information can be used to re-
fine the set of explanations provided by the model. Indeed, if an event e happens
before an event e′ in the observation, then in any possible explanation provided by
the model, e must be causally related to e′. We also assume that the observation
mechanisms inserted in the distributed system are lossless. That is, if an observable
event does not appear in the observation, then we have the information that it did
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not occur.

Figure 9.2: Scenario-based diagnosis framework

Figure 9.2 shows an usual diagnosis architecture. The monitored system is com-
posed of 4 processes P1, P2, P3 and P4, represented by white squares. Communica-
tions between these processes are symbolized by arrows between processes. Some
sites in the system are equipped with sensors or software probes, represented by
dark squares in the figure, that detect the occurrence of some events (a message is
sent or received, a timeout has occurred, a program has reached a specified point
in its control flow, ...). These events are sent to a centralized mechanism, the diag-
noser. The communications to the diagnoser can use the communication means of
the monitored system, or another network dedicated to this task. We only suppose
that no observed event is lost, and that all messages that are sent from a process
to the diagnoser respect a FIFO ordering (this can be easily achieved by tagging
the information sent with the clock of the monitored process). Only a subset of
everything that occurs on a process is monitored. The diagnoser uses a model (in
our case a HMSC H) that describes all possible behaviors of the system (or at least
a reasonably large subset of them), and builds an observation from the set of all
events that it receives. The role of the diagnoser is to output a new model (the
diagnosis) that defines the set of all executions of the model that are consistent with
the observation (the explanations). In our case, the output of the diagnoser is a new
HMSC that describes all possible explanations of an observation.

As we will show in the next sections an advantage of using HMSCs is that we can
finitely represent the set of runs of a distributed system that explains a particular
observation O. As demonstrated by the example of Figure 9.2, this is not true
for any kind of model. With HMSCs H as model of a system, the diagnosis for
an observation O is not a set of explanations, but rather a finite generator of all
executions of H for which the projection on observed events is compatible with O.
More precisely, we show that the set of explanations can be described by another
HMSC. This gives the basis of a diagnosis algorithm.

A second interesting result is that a global explanation of an observation involv-
ing several processes can be reconstructed from a set of local diagnosis performed
for the same observation projected on subsets of processes. This allows for an easy
partition of the diagnosis problem into smaller tasks, and hence for a distribution
of a global diagnosis task to several diagnosers running in parallel. Within this
setting, each diagnoser computes separately the set of executions that can explain
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what it has observed. At the end of all local diagnosis, a last step combines the
local explanations to produce a global explanation.

3 Observation

Let us now define the essential notions that will be used to find explanations of an
observation. An observation O performed during an execution of a system should be
an abstraction of an existing execution (i.e. an abstraction of a MSC). We will sup-
pose that on each instance of our distributed system, a subset of events is monitored:
every time a monitored event e is executed, a message is sent by a local observer to
the supervision mechanism. In the following, we will only suppose that observations
are lossless (all events that are monitored are effectively reported when they occur),
faithful (observers never send events that did not occur to the supervising architec-
ture, and do not create false causalities), and received within a bounded delay tobs.
The set of types of monitored events is defined as an observation alphabet Σobs. The
observations can contain additional ordering information (built from local observa-
tions and additional information such as packet numbers, vectorial clocks,...), and
are thus considered as labeled partial orders. We consider systems composed of a set
P of communicating processes. Events are not observed on all instances, hence we
define a set Pobs ⊆ P on which events are monitored (i.e. Pobs = ϕ(α−1(Σobs))). We
will also consider that for each observed process, the observation is a sequence, and
that reporting events to the supervision mechanisms does not change the observed
ordering, that is, the communication between local observers and the supervision
architecture is FIFO. Formally, observations can be defined as labeled partial orders
as follows.

Definition 81 An observation is a tuple O = (EO,≤O, αO, µO, ϕ0), where EO,≤O

, αO, ϕO have the usual meaning in MSCs and µO is a partial application that pairs
events of EO. Observations have to define a total order ≤Op on each process, as for
MSCs, and satisfy the inclusion (µO ∪

⋃
p∈P <Op)

∗ ⊆≤O.

From this definition, observations are a relaxed version of MSCs with less constraints
on ordering: they are not necessarily communication-closed, as some emissions of
EO!

may not have an image through µO, and some receptions may not be the image
of an emission. This is justified by the fact that we do not want to enforce that both
the sending and reception of messages are observed. Furthermore, it is not required
that the union of local ordering and message mapping forms a transitive reduction
of ≤O as in MSCs. Indeed, all events are observed locally, and nothing guarantees
that message sendings are mapped to the corresponding reception, nor that both
ends of a message are observed. However, vectorial stamping, packet numbering or
similar information exchanged among processes can help building a causal order that
is richer than a simple collection of sequences of observed events on each process.
Observations can be composed like MSCs using the ◦ operator. In the sequel, we
will adopt the following graphical convention for observations. Processes will be
represented as in MSCs, but without the black rectangle ending the process line.
Events will be represented as boxes labeled by the event type, and the covering of
the ordering relation will be depicted as arrows between causally related events.
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Figure 9.3: An example observation

Figure 9.3 shows an example of observation. Processes P and Q are monitored.
In this observation, two events have occurred on P : an atomic action a and the
sending of a message m to Q. A single event has occurred on Q, an atomic action b.
Note that the sending of message m precedes action b, but that the corresponding
reception is not observed. However, any MSC explaining this observation should
contain this reception, which necessarily occurs before b in order to explain why
P !Q(m) and b are ordered.

For an arbitrary partial order O = (EO,≤O, αO, µO), we will denote by <O the
covering of relation ≤O, i.e x <O y iff ∄z ∈ EO \ {x, y}, x ≤O z ≤O y. For a given
event e ∈ EO, we will denote by ↓ (e) the set of all causal predecessors of e. We
will also denote by max≤(p) the maximal event located on process p. Furthermore,
slightly abusing the notation, for a set of events E, we will denote by O \ E the
restriction of O to EO \E, and write e ∈ O instead of e ∈ EO. Finally, we say that
a set of event E ⊆ EO is a downward closed subset of of EO if for all a ≤O b with
b ∈ E, then a ∈ E.

Now that we have defined the observations that are produced by the probes and
collected by our diagnosis architecture, let us show how MSCs and HMSCs can be
used to explain observations. Intuitively, an MSC M is an explanation of some
observation O if M and O agree on the sequences of observed events, and on their
respective causal ordering. This is captured formally using notions of projection,
prefixes, and suborders. As the definition of projection used in this chapter slightly
differs from the definition of chapter 5, we propose a new definition below. It shall
be clear that projection in current chapter refers to this new definition.

Definition 82 Let M = (E, (<p)p∈P , α, µ, ϕ) be a MSC over a set of processes P
and a set of actions Σ. Let Σobs ⊆ Σ be an observation alphabet. The projection of
M on Σobs is an observation denoted by ΠΣobs

(M) = (EO,≤O, αO, µO, ϕO) such that
EO = E ∩α−1(Σobs), ≤O=≤ ∩ (EO×EO), and αO (resp. µO, ϕO) is the restriction
of α (resp. µ, phi) to EO.

Note that an MSC is also an observation (but the converse is not true). However,
what a monitoring system observes from these executions are just projections. In-
deed, it is not possible in practice to instrument a system in such a way that any
instruction or event occurring on every process is recorded. This also holds for the
causal relationships between observed events. Hence, the observed order among
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observed events might be smaller than the actual causal ordering of the projected
execution. This is captured by the notion of sub-order defined below. Clearly, this
means that observations are sub-orders of projections of executions on observed
events. Furthermore, as the systems described are supposed to be networks of ma-
chines communicating asynchronously, the observation mechanisms can also report
observed events asynchronously. Some events that have been observed on each site,
and sent to the supervision mechanism may not have been received when a diag-
nosis task is launched. Hence, we have to take into account that the observation
collected so far might be extended with events that will arrive later at the diagnosis
mechanism. This is captured by the notion of prefix.

Definition 83 Let O = (EO,≤O, αO, µO, ϕO) be an observation. A prefix of O
is an observation O′ = (E ′

O,≤
′
O, α

′
O, µ

′
O, ϕ

′
O) such that E ′

O ⊆ EO is a downward
closed subset of EO and ≤′

O, α
′
O, µ

′
O, ϕ

′
O are restrictions of ≤O, αO, µO, ϕO to E ′

O. A
sub-orderof O is an observation O′ = (EO,≤′

O, αO, µ
′
O, ϕ

′
O) such that ≤′

O⊆≤O and
µ′
O ⊆ µO.

We will say that an MSC M and an observation O are consistent when the observa-
tion is something that might have been collected during the execution of M . This
can be defined by a matching relation between O and M :

Definition 84 Let O = (EO,≤O, αO, µO, ϕ0) be an observation, and M = (E,≤
, α, µ, ϕ) be a MSC over a set of processes P and a set of actions Σ. O matches M
with respect to an observation alphabet Σobs (denoted by O ⊲Σobs

M) if and only if
O is a prefix of a sub-order of ΠΣobs

(M).

Whenever O⊲Σobs
M , we will say that M is an explanation of O (w.r.t observation

alphabet Σobs). Let us detail this definition. We require O to be a sub-order of a
prefix of the projection of M . The prefix requirement imposes that when an event is
observed in O, all the observable preceding events on the same process have also been
observed. This is a straightforward consequence of the assumption that observed
events are not lost. Note however that M can still contain observable events that
have not yet been observed. The sub-order requirement imposes that any causal
ordering found in O is actually an ordering described in M (but the converse needs
not hold). Note that this matching definition is close to the definition of matching
proposed by [112, 115] for verification purposes. The definition of [112, 115] uses a
notion of matching relation between two MSCs M and N , that is define a morphism
from EM to EN . We can define an equivalent notion in our setting, that is build a
function that sends events of an observation O onto events of an MSC M . Indeed,
the diagnosis from HMSCs will mainly consist in building such matchings.

Proposition 12 O ⊲Σobs
M if and only if there exists a matching function hO,M :

EO −→ EM that sends events of EO onto events of M such that:

• hO,M respects the labeling (α(hO,M(e)) = αO(e)), the causal ordering of O
(e ≤O f =⇒ hO,M(e) ≤M hO,M(f)), and the locality of O (ϕ(hO,M(e)) =
ϕO(e)).

• for every pair of events e ≤M f in M located on the same process, and such
such that α(e) ∈ Σobs and α(f) ∈ Σobs, hO,M(f) defined implies that hO,M(e)
is also defined.
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Furthermore, when hO,M exists, this function is unique.

Proposition 13 Let O be an observation and M be a MSC. Then, checking whether
O ⊲Σobs

M can be done in O(|M |+ | ≤O |.| ≤M |).

Let us illustrate matching on the examples of Figure 9.4, where Σobs = {a, b},
O1, O2, O3, O4 are observations, M1,M2,M3,M4 are MSCs, and the matching rela-
tion hOi,Mi

that sends an observation onto an execution is represented by dotted
arrows when it exists.

Figure 9.4: Two matching examples w.r.t {a, b} and two counter examples

• Let us consider O1 and M1: there is an injective mapping from the observation
to a prefix of the explanation. a’s and b are concurrent in the observation, but
the order O1 can clearly be injected in M1, hence O1 ⊲Σobs

M1.

• For the pair O2, M2, there is also an injective mapping that maps O2 to a
prefix of the projection of M2 onto Σobs. c does not have to be matched, as it
is not an observed event.

• For the pair O3, M3, a and b are unordered in the explanation M3 and hence
the observation O3 can not be injected in M3.

• For the pair O4, M4, there is no injective mapping satisfying the three condi-
tions of the morphism defined in proposition 12. Indeed, an occurrence of b
should have been observed between two a’s. Hence, M4 is not an explanation
of O4.

From these examples, one may notice that the observation of some events provides
information on whether a peculiar execution M is an explanation of what has been
observed, but also that the causal ordering of some events in the observation or their
absence can also be used to rule out some possible explanations (this is the case for
the pairs (O3,M3) and (O4,M4)).
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4 Diagnosis with HMSCs

We can now extend the notion of explanation of an observation O to sets of expla-
nations for O provided by a HMSC.

Definition 85 Let O be a partial order over Σobs and H be an HMSC. The set of
explanations provided by H for an observation O is the set of paths PO,H ⊆ PH

such that ∀ρ ∈ PO,H, O ⊲Σobs
Mρ.

Notice that the set of explanations provided by H is not always finite. Its lineariza-
tion language is not necessarily regular, but we will prove that it can be described
by an HMSC in theorem 53. The main objective of our diagnosis approach is to
extract from an HMSC H a generator for the set of explanations PO,H of an ob-
servation O. These explanations are path of H that generate MSCs that embed
O. We will show that we can define a generator for all MSCs that embed O as
a product AO,H between the HMSC and the observation, with synchronization on
monitored events. The states of this product are of the form (n,E, γ), where n is a
node of H , E a subsets of events of O found so far in a MSC generated by a path
that ends in n, and γ some information needed to ensure compatibility of MSCs
generated along paths and of the observation. Accepting states of the product are
obviously of the form (n,EO, γ), that show that a complete explanation for O was

found. Transitions of the product are of the form (n,E, γ)
M
−→ (n′, E ′, γ′), such that

(n,M, n′) is necessarily a transition of H , so we can define LH,AO,H
as the projection

of accepting paths of the product AO,H on its first component (nodes). We refer
interested readers to the appendix for a detailed construction of this product. We
can now state the main result of this section:

Theorem 53 Let H be a HMSC, and O be an observation. Then, one can compute
a HMSC AO,H such that for every path ρ ∈ PH , Then O ⊲Σobs

Mρ iff ρ ∈ LH,AO,H
.

Moreover, AO,H is of size O(|H| × |O||P|×|PObs|).

More intuitively, this theorem says that the set of explanations for O provided by
H is exactly LH,AO,H

, that is LH,AO,H
= PO,H. Hence, for every accepting path ρ of

AO,H, we have O⊲Mρ. Note also that paths in LH,AO,H
contain all paths embedding

O, and not only the minimal paths embedding O. This property is important for
compositionality issues.

4.1 Offline Existence

The diagnosis problem can be simplified to answer a simpler question : is there an
explanation for an observation O in H? In the sequel, we will refer to this question
as the existence problem, which can be formalized as follows: given an HMSC H , an
observation alphabet ΣObs and an observation O, ∃?ρ ∈ LH,AO,H

, O ⊲ Mρ.

Theorem 54 Let H be a HMSC, Σobs be an observation alphabet, and O be an
observation. Deciding whether there exists an explanation for O in H w.r.t. Σobs is
an NP-complete problem.
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Theorem 53 shows that the complexity of diagnosis increases with the size of the
observation, and Theorem 54 shows that even a simpler problem such as existence of
an explanation can rapidly become difficult to solve. To handle this complexity, we
can reduce the size of the observed alphabet, which will hopefully produce smaller
observations, or try to split a problem into smaller ones and then combine the
results. The following proposition shows that limiting the observation capacities of
the system does not produce wrong negatives for the existence problem.

Proposition 14 [77] Let H be a HMSC, Σobs be an observation alphabet, and O
be an observation. Let Σ′

obs ⊆ Σobs. Then if ΠΣ′
obs
(O) has no explanation from H

w.r.t. Σ′
obs, then O has no explanation w.r.t. Σobs from H.

This property possibly reduces the time needed to give a negative answer to
the existence problem and will be useful later on in the next section to divide the
diagnosis problem into smaller sub-problems, and hence reduce the time needed to
build a complete diagnosis.

4.2 Splitting the diagnosis problem

The diagnosis framework proposed in section 2, figure 9.2 is centralized (all obser-
vations are sent to a central diagnoser that computes the generator for the set of
explanations) and offline (the production of a diagnosis is performed once for all
from a fixed observation). The main objective of the approach is to perform all
calculi on partial order models, and avoid the state space explosion due to an in-
terleaved search in the execution model. Indeed, the interleaved behaviors of the
model are never studied, as the construction never considers linearization of MSCs
labeling the model H (we refer to the appendix for details on the construction of the
diagnosis). However, in worst cases, one may have to consider all linearizations of an
observation. Furthermore, the centralized diagnosis amounts to build an automaton
of exponential size in the number of considered processes.

A solution to resolve this problem is to split the diagnosis computation into sev-
eral simpler subproblems, distribute them to a pool of machines, and then combine
the results returned by each machine. In this section, we will show a distribution
schema that does not change the result of centralized diagnosis nor its worst case
complexity, but can allow for a faster detection of non-existence when no explanation
of an observation exists.

The main idea is to separate the diagnosis into smaller problems using projections
of the observation on subset of processes. From proposition 14, we know that it
is sufficient to find no diagnosis for an observation O projected on an alphabet
Σ′ ⊆ Σobs to be sure that no diagnosis exists for O. In particular, this applies to
the case when Σ is the restriction of Σ′

obs to events that are observable on a chosen
subset of processes. The hard technical point is then to combine local diagnosis, and
show that their combination produces the same result as the centralized version.

Let p, q ∈ P be a pair of instances and O = (O,≤O, αO, µO) be an observation.
The local diagnosis for instances p, q is the automaton Ap,q = AπΣ′(O),H with the
observation alphabet Σ′ = Σobs ∩ (Σp ∪Σq). Since an explanation of an observation
for some alphabet Σ is still an explanation for any alphabet Σ′ ⊆ Σ, we have that
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LH,AO,H
⊆ LH,Ap,q . Hence, a finer diagnosis can be obtained from successive compo-

sitions of local diagnosis. This composition ⊗ is simply an intersection, defined as
a synchronous product of two diagnosis automata.

Definition 86 Let AO,H = (Q, δ,M, q0, F ) and A′
O′,H = (Q′, δ′,M, q′0, F

′) be two
diagnosis automata. The synchronous product of AO,H and A′

O′,H is denoted by
AO,H⊗A′

O′,H , and is the automaton AO,H⊗A′
O′,H = (Q×Q′, δ′′,M, (q0, q

′
0), F×F

′),

where
(
(v, w),M, (v′, w′)

)
is a transition of δ′′ iff (v,M, v′) ∈ δ and (w,M,w′) ∈ δ′,

and the two transitions refer to the same transition of H .

Slightly abusing the notations, we can define LH,AO,H⊗A′
O′,H

an the set of path of

H followed jointly by the two local diagnosis. The next proposition shows that when
a run belongs to every Ap,q, for pairs of processes in Pobs then it is an explanation
of O:

Theorem 55 For every HMSC H and observation O, we have
LH,AO,H

= LH,A⊗ , where A⊗ =
⊗

p 6=q∈PObs
Ap,q.

From Theorem 53, we know that the size of Ap,q is in O(|O|2|P|.|H|). Let us
detail how this can impact the diagnosis and existence problems. An immediate
idea stemming from theorem 55 is to split computation of AO,H from O and H into
|PObs|2 sub-problems, that is compute Ap,q from ΠΣobs∩(Σp∪Σq)(O) for each pair of
processes p 6= q ∈ PObs, and then compute the product of these local diagnosis. To
obtain the final diagnosis, we then have to compute a product of |PObs|2 automata
if none of the local results is empty. Note that the size of a local automaton is
not necessarily smaller than the size the original diagnosis automaton computed in
the centralized version. The size of the whole product is exactly the same as in
the original version. However, the time needed to complete diagnosis is enhanced
if some local problems can be computed in parallel, or in any case when one of
the local diagnosis returns an empty diagnosis. Indeed, if LH,Ap,q = ∅ for some pair
p, q ∈ P2

Obs, then LH,AO,H
= ∅, and there is no need to compute other local diagnosis.

This allows for a decentralized version of our initial diagnosis architecture, depicted
in Figure 9.5.

In this new architecture, there is still a central diagnoser that collects all the
observation. Its role is to compute a projection ΠΣobs∩(Σp∪Σq)(O), and send it to
local diagnosers. Each local diagnoser owns a copy of H , and upon reception of
an observation ΠΣobs∩(Σp∪Σq)(O), computes a diagnosis Ap,q and returns it to the
central diagnoser. The central diagnoser computes incrementally the product A⊗

of the |PObs|
2 after each reception of a local result, and returns the final result when

all local diagnosis have been completed. It can also return the empty diagnosis
as soon as one local diagnoser returns an empty diagnosis. Note that there is no
need for |PObs|2 local diagnosers, as each of them can compute more that one local
diagnosis.

We have shown in theorem 55 that the diagnosis problem can be brought back to
a product of smaller local diagnosis problems. A question that immediately arises is
whether the existence problem can also be decentralized, and even more interesting,
be seen as the conjunction of boolean answers to local existence problems. For the
existence problem, we know that as soon as a local diagnosis is empty, H provides
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Figure 9.5: Decentralized Diagnosis/Existence problem

no explanation for O. However, a product of all local results have to be computed
to make sure that a global explanation exists for O in H . As for diagnosis, the
product can be built incrementally from local diagnosis computed concurrently, and
a negative answer can be returned as soon as a local diagnoser returns an empty
diagnosis. Note however that there are cases where all diagnosis compute a diagnosis
automaton with non-empty language (i.e. LH,Ap,q 6= ∅ for every pair p, q ∈ P2

Obs)
but where the global diagnosis is nevertheless an automaton with empty language
( i.e. LH,AO,H

=
⋂

p,q∈P2
Obs

LH,Ap,q = ∅) . Consider for instance the HMSC H and

the observation O of figure 9.6. For each pair of processes p, q in {P1, P2, P3} ×
{P1, P2, P3}, it is possible to find an explanation for ΠΣobs∩(Σp∪Σq)(O). However, H
does not contain execution that exhibits at the same time events a, b, c.

Figure 9.6: An example that shows that computing a product is still needed for
decentralized existence

Another solution to decentralized diagnosis is to consider process by process
diagnosis, that is compute the automaton Ap = AπΣobs∩Σp (O),H that provides all
explanations of H for πΣobs∩Σp(O) for each p ∈ Pobs. This is particularly interesting,
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as the projection of L(H) on a single process is a regular language, which can greatly
simplify the construction of AπΣobs∩Σp(O),H . Computing this set of automata gives a
less precise solution than with pairs of processes, because ordering between events
of O located on distinct processes cannot be used to discriminate some paths of H .
Indeed, in general LAp,q ⊆ LAp ⊗ LAq , but equality does not hold. However, the
initial step computing Ap is performed with complexity in O(|O| × |H|). Notice
that Ap,q has to be computed only for those p 6= q ∈ Pobs for which there exist
two events e, f ∈ EO respectively located on p and q and such that e ≤O f . If
no such ordering from p to q exists in O, then Ap,q = Ap ⊗ Aq. This leaves room
for improving efficiency of decentralized diagnosis. Such situation can occur if the
observation mechanisms only record one sequence of events per observed process,
that is the observation can be described as a set of strings.

4.3 Online Diagnosis

The previous section shows how to address diagnosis from HMSCs starting from
an observation that is considered as definitive. Such a setting applies post-mortem
that is when a system has crashed, and one wants to know which run of the system
has been played before crashing, to find explanations for the failure. However,
one is frequently interested in online diagnosis that is maintaining incrementally a
diagnosis of the running system. Such diagnosis can be used to take decisions (for
instance deciding to launch some curative actions in a system when the occurrence
of a fault seems unavoidable).

A naive approach is to store in memory the observation collected, and rebuild a
complete diagnosis when a new event is collected by the diagnosis system. However,
this operation is obviously too costly, as it consists in recomputing a new diagnosis
from scratch when a new event arrives. In [52], we show an algorithm that updates
a diagnosis when a new event is observed, and removes from memory the part of the
observation that becomes useless (i.e. that have already found an explanation, and
can not be used anymore to discard future potential embeddings), and the part of
the diagnosis that can not be refuted even if new events and causalities are observed.
The information removed from memory (in the observation and in the diagnosis)
can be stored for later use to build a complete diagnosis. The algorithm can be
adapted for online existence checking: in this case, the information removed from
memory need not be stored, and hence the algorithm maintains only the information
needed to guarantee soundness of the existence check (i.e. the information needed to
guarantee that at least one path of the HMSC model explains current observation).

Even if the online setting seems appealing, the worst case complexity to incre-
ment a diagnosis is redhibitory. We show in [52] that incrementing a diagnosis of
size K can be done in O(K×|P|× |H|×2|P|). Hence, computing online a diagnosis
for an observation O can be done in

O


 ∑

i∈1..|O|

|H| × (i− 1)|P|×|PObs| + dh(i−1) × |H| × |P| × 2|P|




where h(i) is the maximal height of the diagnosis automaton built at step i, and d
is the outgoing degree of HMSC H .
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In fact, incremental online diagnosis can be efficient only if one can ensure that
the part of diagnosis that is kept in memory remains bounded. Such a situation
is not even guaranteed for regular HMSCs. Overall, the expected gain for online
diagnosis was not so appealing, and the online algorithm was not implemented.

5 Diagnosis as a verification problem

Intuitively, an observation describes everything that is “recorded” during the exe-
cution of some prefix of a computation. A computation embeds an observation if
and only if one can find a prefix of the computation which projection is a partial
order that contains O. We can immediately notice that all runs of a model should
embed the empty observation. So, if a model has at least one run, it provides an
explanation for the empty observation. As a consequence, the diagnosis and exis-
tence problems are undecidable for all formalisms for which the emptiness problem
(given a model M does L(M) = ∅?) is undecidable. This gives the following result:

Theorem 56 Existence is an undecidable problems for systems described with LPOC,
MSOMSC, (non-safe) CHMSCs, CFSMs, or mixed products of HMSCs. Further-
more, for such systems, there is no effective procedure to build a generator of all ex-
planations of an observation O under the form of a HMSC, DMG, or safe CHMSC.

A second remark is that the embedding relation can be easily translated to an
MSO formula. Let us consider an observation O = (EO,≤O, αO, µO, ϕ0). Then we
can compute an MSOMSC formula ϕO such that a MSC M embed O if and only if
M |=ϕ

O.

• for every event e ∈ EO create a variable xe, and denote the set of all event
variables by XE .

• for every event e ∈ E, let labe ::= labα(e)(x)

• for every pair of events (e, f) ∈ µO, let ϕmsg(e,f) ::= ∃u, v, (u, xe)→ (v, xf)

• for every pair of events (e, f) ∈≤O, let ϕe,f ::= xe ≤ xf . One can encode ≤
relation as an MSOMSC formula :

x ≤ y ::= ∃X, [x ∈ X∧y ∈ X∧∀z(z ∈ X∧z 6= y ⇒ ∃z′(z′ ∈ X∧z⋖z′∨ϕmsg(z,z′)))]

Similar properties denoting closure of a relation can be found in [29, 55].

At this point, we have enough ingredients to describe all events, labels, messages
and ordering of an observation with an MSOMSC formula. However, we have to
enforce that a pattern described starts at the first observable events on each process,
and that an interpretation association variables of the MSO formula with events
of an MSC does not miss any observable action. For this, we assume a macro
SameProcess(x, y) that holds if events denoted by variables x and y are located
on the same process. Such macro can be easily implemented using properties of
labeling, if we assume that the observation alphabet is disjoint for each pair of
processes. Otherwise, we can rely on the property that two events located on the
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same process are linked by a causal chain that uses only the direct successor relation
⋖ on the same process. We are now ready to define the embedding, using the
following fomulae:

• for every pair of events e, f in direct causal successor relation on the same pro-
cess in O, impose SameProcess(xe, xf). We denote by ϕsame the conjunction
of all formulae of this kind.

•
ϕem1 ::= ∄xe, xf ∈ XE , y 6∈ XE,

labΣobs
(y) ∧ SameProcess(xe, xf )

∧SameProcess(xe, y) ∧ xe ≤ y ≤ xf

, where labΣobs
(y) denotes the

fact that event denoted by y is an observable action (this can be encoded as
disjunction of atomic label formulae).

• ϕem2 ::= ∀xe ∈ XE , ∄y, y 6∈ XE ∧ labΣobs
(y) ∧ SameProcess(y, xe) ∧ y ≤ xe

We then let ϕO ::= ϕsame ∧ ϕem1 ∧ ϕem2 ∧
∧
e∈E

labe ∧
∧

e≤Of

ϕe,f ∧
∧

(e,f)∈µO

ϕmsg(e,f)

Intuitively, M satisfies ϕO means that the pattern O can be observed (embedded)
on a subset of processes of M . We implicitly assume that interpretations map dis-
tinct event variables to distinct events, which can be either enforced by the diagnosis
algorithm, or explicitly specified by additional formulae of the form xe 6= xf . Note
also that so far, processes identities are not fixed in ϕO. One can hence refine ϕO to
fix processes identities through labeling, or by adding new atomic formulae of the
form locp(x) that indicate that the event represented by x is located on process p.
However, process identities are considered as important for models such as HMSC,
CHMSCs, causal HMSCs, that is for models defining behaviors over a finite and a
priori known set of processes. As soon as processes identities are not addressed nor
considered as important, there is no need to refine ϕO, one can adapt the diagnosis
problem to formalisms such as Dynamic MSC grammars.

Definition 87 Given a Dynamic MSC grammar G and an observation O over a
set of processes P ⊆ N, the diagnosis of O from G is the set of MSCs Diag(G,O) =
{M ∈ FG | ∃σ : N → N, σ(M) ⊲ O}. The diagnosis problem for dynamic MSC
grammars consists in building a recognizer for Diag(G,O), and the existence problem
consists if deciding whether Diag(G,O) = ∅

Note at this point that we know that in general Diag(G,O) is infinite, as there
can be infinitely many ways to name processes during dynamic creation. Further-
more, if M embeds O, any larger MSC M ◦M ′ also embeds O. Obviously, we have
Diag(G,O) = {M |M |= ϕO}. As we already know that MSOMSC is decidable for
dynamic MSC grammars, we easily obtain the following result:

Theorem 57 Let G be a DMG, and O be an observation. Then one can effectively
build a tree automaton AG,O that recognize all parse trees of MSCs in Diag(G,O).
Furthermore, one can effectively check if Diag(G,O) = ∅.

The principle to build AG,O is to start from the automaton AG that recognizes
legal parse trees of G, as defined in Theorem 39 of Chapter 6. This tree automaton
can then be reused to build a recognizer for parse trees of MSCs that satisfy ϕO,
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following the construction of [92] (adapted to DMGs). As for HMSCs, this gives a
way to produce a generator rather than a set of MSCs.

So far, we have left as an open issue the question of computing a Dynamic MSC
grammar from the tree automaton recognizing the parse trees for Diag(G,O). Note
that for a context-free language given by a context free grammar G, one can always
compute a tree automaton that recognizes the parse trees of words in L(G) [37]
(theorem 2.4.3). This is also true for the sequences of all possible concatenations
of partial MSCs generated by a Dynamic MSC grammar. However, it is not true
in general that all tree automata are recognizers for parse trees of some context
free languages (the language recognized by a tree automata need to be a local tree
language for the converse property to hold).

However, we conjecture that the set of trees recognized by AG,O remains a set of
derivation trees of some context free grammar. If this property holds, computing a
new grammar from AG,O can be done at the cost of changing non-terminals, that is
defining a grammar which non-terminals are named after states of AG,O, and which
rules are derived from the transitions of AG,O. Indeed, a rule of a tree automaton
AG,O is of the form q ← A(q1, . . . qn), where A is some non-terminal of G or its axiom.
We hence need to compute rules and axioms for every kind of state. However,
embedding of ϕO in the original tree automaton AG may need complementation
steps, and decorating a derivation tree with sub-formulae of ϕO. It means generating
new sates that do not exist in AG. Hence, states AG,O are not necessarily referring
only to non-terminals of G. Note also that each complementation may result in
an exponential blowup of the number of states used to model check a sub-formula
of ϕO. We conjecture that the obtained tree language remains local, which would
allow for the design of a (large) DMG, with one derivation rule per transition of the
automaton AG,O, that generates sequences of partial MSCs which concatenation
embeds O.

A first remark is that the number of states of AG,O grows at least exponentially
at each negation in the formula ϕO. Hence, the obtained grammar is so large
that it can not provide useful synthetic information to designer, and hence presents
few interest. Furthermore, negations seem unavoidable, as every x ≤ y contains a
universal quantifier ∀z, (...). A second remark is that computing such a grammar GO

has less interest than for HMSCs. Indeed, consider a DMG G, and two observations
O1, O2 of the same run of a system produced by distinct sets of probes located
at distant sites of a network. One can compute AG,O1 and AG,O2, and get back
to equivalent grammars, say G1 and G2. However, G1 and G2 are defined over
distinct non-terminals, and one can not decide in general whether there exists an
MSC recognized by G1 and G2. To decide if some run of G explains both O1 and O2,
we can however check ϕO1∧ϕO2 with respect to AG. But existence can not be done a
priori in a modular way. Similarly, as modular existence looks undecidable, one can
not compute a diagnosis from G1 and G2, that is a tree automaton that recognizes
derivations of G producing a MSC recognized by both G1 and G2. Indeed, checking
emptiness of this diagnosis tree-automaton would resume to a modular existence.

Hence, diagnosis from DMG is decidable, but with a high complexity. Contrarily
to HMSCs, one can not rely on a projection of an observation O to master complex-
ity. Note however that the MSO machinery used to prove decidability of diagnosis
is not necessarily needed. Indeed, considering MSO in its full generality, the tree
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automaton that is computed for diagnosis may have states referring to subsets of
states of AG and subsets of sub-formulae of ϕO. Hence, the number of states grows
very fast, and takes an exponential factor at each complementation. However, the
way an interpretation is mapped onto partial MSCs when interpreting event and
process variables need not be chosen randomly, and has can take into account the
ordering imposed by processes. Similarly, states may not need to recall all formulae
proved true in a subtree, and it might be sufficient to recall the first and last event
for each process of an observation that are embedded in a subtree recognized at some
node, and may be the causal relations among them. Also, note that if O is simply
a set of sequences of events, sub-formulae of the form x ≤ y may not appear in
ϕO, and hence one may avoid costly complementations. Hence, we strongly believe
that diagnosis from DMGs can be performed much more efficiently than within a
purely MSO context. The decidability results proved in this chapter shall hence be
considered as a first step, and we can now look at efficient algorithms and precise
bounds for diagnosis from DMGs.

6 Conclusion

We have seen in this chapter that High-level Message sequence charts provide a nice
algebraic framework for diagnosis. From a specification HMSCH and an observation
O, we can build an HMSC HO which is a generator for all explanations of O provided
by H . Similarly, one can check for the existence of an explanation in H for an input
observation. Diagnosis composes well: the new HMSC HO can then be used to find
explanations for another observation coming from different source than O, and so
on. Similarly, one can perform diagnosis for pairs of processes, and assemble the
binary results to build the diagnosis HMSC HO. A similar technique can be used
for existence, and the algorithm can stop as soon as one binary diagnosis for a pair
of processes p, q fails to provide an answer to πp,q(O). This property can be used to
distributed and speed up the diagnosis and existence checking problems.

Overall, HMSCs provide a nice framework for diagnosis:

• it is endogenous : a diagnosis for an observation O from an HMSC H is an
HMSC

• it has nice properties w.r.t. projection: for Σ1,Σ2 ⊆ ΣObs letting i ∈ 1, 2 we
have

L(HπΣi(O)
) ⊇ L(HπΣ1(O)

)⊗ L(HπΣ2(O)
) ⊇ L(HO)

The complexity of diagnosis from HMSCs is exponential in the number of pro-
cesses, and grows with the size of the observation, which is in some sense unavoid-
able. Note however that observation’s width is bounded by the number of observed
processes. In the worst case, that is when processes in a HMSC are independent,
nodes of a diagnosis HMSC may have to remember up to |O| events, leading to the
|O||P| factor in the complexity. However, if processes never communicate, events
located on distinct processes are never causally ordered, and diagnosis can be per-
formed process wise, leading to a better complexity. Similarly, processes in a HMSC
may produce observable events at similar rates. In this case, the number of nodes
built in a diagnosis is not as large as indicated in theorem 53. However, giving a
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finer complexity measure is difficult, and have to take into account the structures
of the HMSC and of the observation. In practice, the HMSC diagnosis algorithm
was implemented in our tool SOFAT [66], and showed good performance, even for
large HMSCs and large observations. The experiments conducted used HMSCs with
up to 10 processes, and observations with thousands of events. There is however
still a gap to fill between this algorithm and an potential industrial application, as
logs generated by real distributed systems (networks management systems, etc. )
contain gigabytes of information.

The techniques used for HMSCs have been adapted for causal HMSCs [51], and
work for many other formalisms of partial order automata. We have also shown that
diagnosis from Dynamic MSC grammars is decidable. However, the decidability
results use a translation of the observation to an MSOMSC property. We strongly
believe that this framework can be enhanced, and that the usual complexity blowup
that stems from MSO checking can be avoided. Yet, one can not hope to obtain
better complexity than for HMSCs, as any HMSC can be simulated by a DMG.
However, diagnosis from DMGs does not appear to compose well

History diagnosis as introduced in this chapter can be adapted to provide solu-
tion for fault diagnosis. Within a HMSC, one can consider some actions or some
behaviors as faulty events or faulty scenarios. A fault diagnosis can use the expla-
nation generators to check if a faulty event or a faulty scenario has occurred in some
run allowed by the computed diagnosis. This can be done by a simple inspection of
transitions of the diagnosis for HMSCs or causal HMSCs, or simply by adding a sub-
formula asking for the presence of faulty event/scenario in the context of Dynamic
MSC grammars.

An interesting question is whether one can extend diagnosis to formalisms that
do not use an automaton-like support to compose basic diagrams. We have seen
that satisfiability of a set of formulae in a logic-based scenario formalisms is rapidly
undecidable (see chapter 8), except if one imposes restrictions on the considered runs
(universal bounds for LPOC, existential bounds for template MSCs or MSOMSC).
Satisfiability and existence problems are close: satisfiability is existence of an ex-
planation for the empty observation. So, existence is in general undecidable for
logic-based scenario formalisms. As for diagnosis, one can not expect to have an
effective generator for the set of MSCs explaining an observation (otherwise exis-
tence would be decidable). However, checking that a MSC satisfies an MSOMSC

formula (and similarly for all other logics described in chapter 8) is decidable. So,
the diagnosis question can be slightly adapted: the model can be seen as a descrip-
tion of all the knowledge collected about the implementation. For a given MSC M
and an observation O, one can to decide if M is a plausible explanation, that is if
it is a model of the logical description that embed O. Within this setting, the key
question is how to generate candidate scenarios in such a way that interesting set of
explanations can be built.

Several other question remain open. A first question is whether one can syn-
thesize monitors for the occurrence of faults from a scenario specification. Indeed,
rather than explaining how a fault occurred in a system, it seems useful to equip
a system with mechanisms that raise alarms when some undesired behavior occurs.
However, such monitoring frameworks will face two major difficulties : first, if we
keep as observation architecture the asynchronous observation framework described
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in this chapter (see Figure 9.2), nothing guarantees that a monitor can always work
with finite memory, even if the observed system is described by a regular HMSC.
Indeed, if observable events from distinct processes are reported with different delays
to a monitor, the memory needed to faithfully check that a faulty run is compatible
with the events observed so far can grow unboundedly. This comes from the fact
that any MSC met along a run which observable events have not yet been observed
have to be remembered. The last difficulty is to check whether a monitor can always
detect a fault in a finite amount of time or after a finite number of observed events
have been sent to the supervision mechanisms. When this property holds, we say
that the system is diagnosable). Within the context of finite automata, diagnos-
ability has been considered [131], and amounts to checking whether there exists an
observation and two infinite runs ρ1 and ρ2 of the automaton explaining the observa-
tion such that one of them contains a fault and the other one does not. Brought back
in the context of HMSCs, this resembles an intersection or a confluence problem, so
diagnosability is likely to be undecidable in general.

Another challenge to make scenario-based diagnosis more usable is to be able
to work with abstraction of large logs. As already mentioned, many distributed
systems that are monitored (network equipments for instance) produce huge logs
(gigabytes of stored information). Within this stored information, many things are
not interesting, and can be filtered. Similarly, some recurrent sequences of events
can be aggregated to form macro-events. Aggregated logs depict causal relations,
but the resulting object is not necessarily a partial order. A difficult challenge is to
address diagnosis and all related formal activities within this context.
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Chapter 10

Application 3 : security

Pour se servir de sa raison, on a besoin de sécurité et de quiétude.
To make use of one’s reason one truly needed both security and quiet.

[Patrick Süskind, Le parfum]

1 Introduction

In this chapter, we show an a priori unexpected application of scenario models to
security. More precisely, scenarios have shown to be of practical use to detect infor-
mation flows, or abnormal behaviors (that are sometimes symptoms of an intrusion
in a system). Unlike model checking, information flow detection or intrusion de-
tection may accept some imprecision, abstraction, and incompleteness of models.
Indeed, security leaks can appear due to specification errors, particular implemen-
tation choices, or even be a side effect of a particular system, software, or hardware
containing a security breach. Hence, it is commonly admitted that an analysis too
can not discover all flaws, and that a certain amount of uncertainty is accepted, pro-
vided the technique used is clearly described as optimistic, and may miss security
flaws, or pessimistic, and may raise some wrong alarms (one also talks about wrong
positives). This possibility to emit a verdict up to some imprecision clearly suits
with the characteristics of scenarios, when they are interpreted as incomplete and
abstract specifications of a system.

Let us consider the following problem. The behaviors of a real running system R,
with set of processes P is modeled by a specification S. Information flow problems
ask, for a pair of processes p, q ∈ P whether some classified information can be
leaked from p to q. Within this setting, p is seen as an user of a system with
access to classified information that q should not access. The anomaly detection
problem consists in observing R as in a diagnosis framework, compare observations
collected at runtime, and raise an alarm when no run of the model S can explain
an observation O. Intuitively, the model of the system describes normal behaviors,
and if there is no explanation for some observation in these normal behaviors, then
something wrong (may be an attack) is occurring in the system. The techniques
used to recognize an attack range from Bayesian networks, statistical methods, fuzzy
inference systems, to data mining techniques.

As highlighted in this document, scenario specification usually represent a subset
of possible behaviors of a system. Hence, all results proved with scenarios are up to
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incompleteness of the model. However, this should not be seen as a limitation in a
security context. For information flows, it is usually admitted that no technique can
encompass all kinds of flows, that may appear as a side effect of shared resources,
through observation of the discrete or timed behavior of a system. The popular
typing techniques(see for example [137] use coarse grain typing rules for programs
to detect information flows (a well-typed program is flow-free), and can hence raise
wrong alarms. Similarly, many anomaly detection tools raise alarms when an ob-
served behavior resembles an attack schema, and can also raise wrong alarms. This
however should not be considered as a weakness of formal security tool: once a sus-
pect behavior is detected by a formal tool, a human operator should ensure that the
problem raised by the tool reflects a realistic situation. Even though, formal tools
for security are one additional element to increase security.

Scenario-based information flow and anomaly detection techniques presented
hereafter have the same limitation, but also have many advantages. First, sce-
narios emphasize causal dependencies. We will show in the first section that this
is an important property to address detection of hidden communication channels.
Second, they allow working with a non-interleaved model describing infinite state
behaviors. Wrong anomalies can hence not be raised due to arbitrary limitation
imposed by a finite state machine (for instance a bounded buffer contents). The
non-interleaved nature of scenarios can also help reducing the time needed to search
for explanations and emit a verdict.

The works presented in the next section are joint work with Aldric Degorre,
Thomas Gazagnaire, and Hervé Marchand.

2 Information flows

Information flows is a problem that raised in the 70’s [21, 22], that is in the middle
of the cold war. The major fear at this period was that some classified information
stored in military information system may leak. Several formal models and analyzes
have been proposed to detect some information flows. We can cite, for instance,
the Bell& La Padulla model [21, 22], the shared matrices [87]. These early tech-
niques represent resources, their security level, and access rights of users (mainly
read or write) on resources, and detect if an authorized user can provide classified
information to unauthorized ones using legal accesses of the system to resources.

Nowadays, the information leak problem is not a military problem, but is more a
personal issue. The very actual question is how to protect individual data ? Nowa-
days, formal analyzes use typing techniques and the notion of non-interferences to
address the question of information leak. Typing techniques [137] are defined as
a type system that accepts programs written in a pseudo language, with while, if,
control structure, variables, and operations on these variables. Variables are classi-
fied according to a security level. High-level variables should be kept confidential,
and low-level variables are considered as public. A typing system types correctly a
program P if there is no execution of P that can leak information on the value of
confidential variables to public ones.

In the next paragraph, we rapidly define non-interference, in order to highlight
the difference between interference-based techniques and the covert channel detec-
tion algorithms proposed in [67]. Readers interested by formal techniques for secu-
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rity, non-interference, and typing may consult [129] for a survey.

2.1 Non-interference, the traditional approach

Non-interference originally introduced in [62]. Informally, the definition given by
Goguen & Messeguer was:

” An user p interferes with a user q in a system S if what p does in S can affect
what q can observe or do.”

Let us formalize this intuitive notion. Consider a system S given as a formal
specification. S can be seen as a Labeled Transition System S = (Q, q0,Σ, δ, ϕ),
where Q is a (not necessarily finite) set of states, q0 is an initial state, Σ is a set of
actions of the system, δ ⊆ Q×Σ×Q is a transition relation, and ϕ : Σ→ P localizes
each action on a particular process. The projection of S on events of process p ∈ P
is πp(S) = (Q,Σ, δ′, ϕ) where δ′ replaces occurrences of actions in ϕ−1(P \ {p}) by
an unobservable action ε, and leaves other transitions unchanged. In short, πp(S)
hides all actions that are not observed/executed by p.

The restriction of S to transitions that are not performed by process p ∈ P is
S\{p} = (Q,Σ, δ′, ϕ) where δ′ = {(q, σ, q′) | ϕ(σ) 6= p} forbids transitions labeled by
an action of p. Intuitively, πp(S) is what process p can observe from a system, and
S\{p} is what the system S can do when p does not perform any action.

Let ⊲⊳ be an equivalence relation over labeled transition systems. Such equiv-
alence can be trace equivalence, bisimulation, etc,... We will say that p interferes
with q in system S for a chosen relation ⊲⊳ iff:

πq(S) ⊲⊳ πq(S\{p})

Intuitively, this formulation means that q can differentiate a system in which
p performs no action from the original system in which p behaves normally. One
can notice that there exists a notions of interference for each equivalence of LTS. In
some sense, choosing a particular equivalence ⊲⊳ characterize the observation power
of process p. We refer interested readers to [49] for a classification of interferences,
and to [129] for a survey on information flow properties.

Figure 10.1: Examples of systems

It is frequently written that interference can be used to characterize covert chan-
nels. Let us recall that a covert channel appears when a pair of user can have
unauthorized information exchanges through legal use of the system. According
to [110], a covert channel is ”the capacity for a process p to transfer a message of
arbitrary size to another process q in a bounded amount of time”. This definition
really differs from that of interference. First, it supposes a deliberate will to send
information, and second, in also supposes that the information sent can be of arbi-
trary size. An interference from p to q is detected as soon as a process q can detect
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that process p has executed one action. That is, if p performs one action and them
remains inactive, the system is still interferent. Another drawback of interference
is that this notion does not distinguish deliberate actions from p performed to es-
tablish a covert flow to q, an action of p which consequences can be observed by q
non-intentionally, and coincidence between behaviors of p and q that are not even
causally related.

Let us consider the examples of Figure 10.1. The system starts in state 0, action
a is performed by process p, and actions b, c, d are performed by process q. Let us
chose as equivalence the trace equivalence : Si is equivalent to Sj iff L(Si) = L(Sj).
According to the definition of non-interference, p interferes with q in system S1, q
interferes with p in S2, and S3 has an interference in both directions. However,
should these systems be considered as containing a covert channel. Obviously, in
S1 process q can simply learn if action a has occurred. In S2, process q can learn if
at least one action in ,

¯
c, d} has occurred. These are not covert channels. The third

system S3 may provide some covert communications if the time elapsed between
occurrences of actions can be observed. However, no notion of time appears in the
model nor in the chosen equivalence.

Millen has proposed a framework [107] in which covert flows of information are
defined using mutual information. Considering two random variables X and Y with
values respectively in X and Y , and a joint probability distribution, p(X, Y ) (the
probability to see a pair of values for X, Y from X × Y . The mutual information
between X and Y is defined as:

I(X, Y ) = H(X) +H(Y )−H(X, Y )

where

H(X) = Σ
xinX

p(x)log(p(x))

H(X) is known as the entropy of X , and represents the level of uncertainty of
variable X . Millen’s definition applies to finite sate machines, and states that for se-
quences of actionsWk of length at most k allowed by a system, if I(πp(Wk), πq(Wk)) >
0, then a covert channel exists.

Though mutual information may reveal whether some actions of a process can be
observed by another (and provide a quantitative measure on this kind of leak), this
definition does not yet suits the definition of covert channel. Consider, for instance
the example of Figure 10.2, where a, b are actions of process p, c, d are actions of
process q, and x, y actions of a third process r. Clearly, from what q observes, he
can infer immediately the sequence of actions played by p. The mutual information
between sequences of actions of p and q is obviously not null. However, actions of q
are not consequences of actions of p, but rather consequences of a choice of another
process r; Hence this situation can not be considered as a covert channel from p to
q, because there is no causal relation from events of p to events of q.

2.2 The covert channel game

Considering the limitations of non-interference frameworks, we have proposed a
covert channel detection framework based on local HMSCs [67]. The proposed def-
inition says that a covert channels from p to q exists in an HMSC H if there is a
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Figure 10.2: A finite state system that contains interferences, but not a covert
channel

strategy for process p to perform an arbitrary number of binary decisions (that is
choose one branch of a choice among two possible branches) such that the causal
consequences of choosing one branch or the other induces different observable con-
sequences on process q.

Let us start with the introductory example of Figure 10.3 This HMSC is a
simple communication protocol to transfer data from a process Sender to a process
Receiver. Transfers use short or long data packets, that are chosen according to the
network’s congestion. Once a session is opened, a user can send short data packets,
which are forwarded as data packets to the receiver, or long data packets, which
are split into two kinds of packets: DataInc, meaning incomplete Data packets,
followed by Data Packets.

Now, by choosing long or short data packets regardless of the network’s status,
process Sender can encode 0 and 1, and hence add information over a legal data
flow. The receiving process can then decode a message by observing the respective
order between Data and DataInc packets. Note that information transfer is only
possible if processes Sender and Receiver have agreed on a protocol for sending
information. Note also that as a message can be of arbitrary length, one needs
to be able to perform an arbitrary number of decisions for encoding it. Note also
that being able to perform two decisions is not sufficient to transmit information.
The choices must have different observable consequences for the receiver. Suppose
that DataInc packet are replaced by Data packets. Then, upon reception of 3 data
packets, it would become impossible for a receiver to be sure whether message “0.1”
or message “1.0” was sent. Hence, despite the two possible decisions, the covert
protocol cannot be used to transfer reliably covert data. Of course, the example of
Figure 10.3 is rather simple, and a use of this channel can be easily discovered, as
the sending process does not react properly to network congestion, as required by
the protocol.

We can define informally a covert channel from p to q in a HMSC H as a way to
encode covert information with decisions of p , and decoded it on process q. In fact,
the receiving process q must observe what happens in the system, and deduce the
choices performed by the sending process p. We will discuss several ways to decode
information at the end of this section. A simple strategy to encode data is to perform
choices that ensure that the protocol will eventually get back to the same decision
point. This was proposed as a first covert channel identification procedure in [78].
The main idea behind this definition of covert channels is that corrupted users can
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Figure 10.3: The DummyIP protocol

exploit iterations in protocol’s behavior to get back to states from which a decision
can be taken by the sender in the covert channel, and which causal consequences
can be observed by the receiver.

However, with some knowledge of a system, a pair of attackers may have more
elaborated strategies to transfer covert data, for which monitoring becomes difficult.
These strategies consist in moving the systems towards multiple decision points from
which information transmission is always possible. In the rest of this section, we
will formalize this definition of covert flows in HMSCs. Consider the example of
Figure 10.4, supposing that processes Sender and Receiver are dishonest users
trying to transfer covert data. Let us decide that encoding 0 at choice node n1 can
be performed by choosing scenario Data, and 1 by scenario Wait . Both corrupted
processes can agree to get back systematically to decision node n1 by executing
scenario Restart from node n2, after choosing scenario Wait , hence allowing another
bit transmission. However, at node n2, executing Restart or Resume is another
encoding possibility. This gives the possibility to enrich the set of behaviors used
to pass covert information, and hence make detection harder. Note that a covert
channel can be implemented if the communicating parties agree on a set of choice
nodes that will be used to encode information, and on which behavior must be
executed to encode a bit in each decision node. In fact, these encoding strategies
can be considered as a game between a pair Sender/Receiver, and the rest of the
protocol. The attackers win if they can transmit any message of arbitrary length,
and the protocol wins if it can prevent messages from being passed.

A cover channel can be seen as a strategy of the sender process to pass infinitely
often through choice nodes that can be used to encode information. For every choice
node n controlled by process S, the process can deliberately chose to avoid a subset
of branches of the HMSC starting from n. This can be encoded as a memoryless
strategy σ : N → 2T (where T denotes the set of transitions).

Given a HMSC H and a strategy σ, one can compute a subgraph of H denoted
by Hσ, that describes the possible behaviors of the system when process S follows
strategy σ.

Definition 88 Let H be a local HMSC, p, q ∈ P be a pair of processes, and σ be a
strategy of S for p. Let n be a node of H controlled by process p. Then, node n is
an encoding node for processes p, q w.r.t strategy σ if it for every pair of paths ρ1,
ρ2 of Hσ starting with distinct transitions t1, t2 ∈ σ(n), πq(ρ1) 6= πq(ρ2).
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Figure 10.4: Protocol containing a covert channel involving two decision points

Definition 89 There exists a potential covert channel in node n from process p to
process q iff starting from node n, p has a strategy σ that allows to pass infinitely
often through encoding nodes of p, q in Hσ.

Theorem 58 One can effectively decide the existence of a potential covert channel.

The decision procedure can be brought back to some kind of Muller game. The
full algorithm to compute the strategy is not presented here, but can be found in [67].
The main difficulty of the algorithm is that defining a strategy decides at the same
time if some nodes will be reachable, and if some other nodes are encoding nodes.

At this stage, we have only considered encoding of information. The process p,
chosen as a sender in a covert communication protocol takes decisions that might
be observed by the receiver q of the cover flow. Taking decisions means choosing
a set of path {ρ1, ...ρn}, as even if reaching encoding states in a finite number of
decisions after a decision of p is guaranteed, some decisions in Hσ can be taken by
other processes. Now, the question is whether, for a fixed ρ, path of Hσ, process q is
able to retrieve from πq(ρ) the sequence of decisions taken by p. There is no unique
solution to guarantee it. In [67], we show that one can build a transducer T that
takes as input accepts as inputs the possible observations of q in Hσ and outputs
sequences of decisions of p. If T is functional, that is is outputs a single sequence
of choices per input word, then the potential covert channel is effective. Another
possibility is to use information theory. Indeed, if one can show that the capacity of
an information channel that takes as input actions of p and outputs observations of
q is not null, then the potential channel discovered in H is effective. An advantage of
using information theory is that efficient techniques to build encoders and decoders
for a channel while maximizing the capacity of the transmission are known. This
setting was used, but in the context of finite automata in [72].

Coming back to the differences between interference problems and covert channel
detection, let us consider the example

The work on covert information flows highlighted interesting features that were
not considered in standard covert flow detection techniques proposed for finite state
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Figure 10.5: A HMSC that does not contain a covert channel from Client1 to
Client2.

systems. First of all, local HMSCs allow for specifications with infinite state space,
and yet, covert flow detection remains decidable. Second, this work showed the
importance of causality in the definition of covert information flows. This study
showed that scenarios can be of practical interest for security applications, and also
demonstrated that causality is an important aspect for security. An important re-
mark is that the covert channel definition proposed in this section uses local HMSCs.
As demonstrated in chapter 7, local HMSCs can be implemented. It then means
that a covert channel appearing in a local HMSC specification is likely to appear in
a correct implementation of this HMSC.

3 Anomaly detection with diagnosis techniques

The diagnosis framework shown in previous sections is originally designed to help
debugging a distributed application when a fault has occurred. In this section, we
address another possible application of diagnosis for security. In a diagnosis frame-
work, the model represents the expected behavior of the system. We have already
mentioned that the diagnosis obtained from an observation may produce an empty
set of explanations. In a debugging context, this can be bothering, and means that
our model is not complete enough to provide explanations for a given observation.
If on the contrary, we consider that our model is a complete representation of the
normal use of a system, then, finding no explanation for a given observation means
that the currently observed execution is not a normal behavior, and that our system
may have security problems: it is attacked by an intruder, a process is corrupted, ...
We will show in this section how diagnosis can be used in the context of anomaly
detection.

Since the 80’s several intrusion detection systems (IDS) have been proposed.
These systems recognize attacks by monitoring message exchanges in a system,
and comparing them with signatures (abstract representation) of attacks. Huge
databases of attacks have been collected [42, 118].

However, IDS are trained from datasets, and hence can not discover novel attacks.
For this reason, a new complementary solution called anomaly detection has been
proposed. Anomaly detection relies on comparison of observations with a description
of a normal situation. The assumption is that when an attack occurs, it usually
exploits weaknesses of a system, that are rarely used in normal conditions. This
is peculiarly true for denial of service attacks, where the rate of some requests
suddenly becomes unusual. Hence, a detection of some unusual behavior in a system
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is assumed to be a potential attack, and raises an alarm. The main challenge here
is to establish a profile of normal behaviors. This can be done in the same ways as
for IDS, using statistical techniques [130], or with a specification-based approach.
[90] proposes a logical framework to define normal behaviors, and [132] proposes a
definition of normal behaviors using extended finite state machines. Several surveys
on IDS and anomaly detection have already been published, and we refer interested
readers to [17, 85, 86] for more information.

The scenario-based anomaly detection framework proposed hereafter uses par-
tial order diagnosis techniques to detect abnormal behaviors while avoiding costly
interleaved representations. The main idea behind the solution proposed in this
section is to observe the running system, and to compare the observation with a set
of predetermined “standard” behaviors, defined as a collection of HMSCs. When an
observed run can not be described as a superposition of standard executions, then
it is considered as suspect. This can be compared with diagnosis techniques, and we
will show in the sequel that scenario-based anomaly detection can be brought back
to the existence problem.

3.1 Monitoring architecture

The anomaly detection framework proposed hereafter relies on the diagnosis tech-
nique and on the architecture proposed in chapter 9 to compare the observations
with HMSCs descriptions of normal behaviors. The framework we consider is a dis-
tributed system, composed of several sites (or processes) P = P1, . . . , Pn, providing
distributed applications D = A1, . . . , Ak to a set of users U = U1, . . . , Uq. This
system is monitored by inserting probes on each site as described in chapter 9, with
the only difference that the diagnoser will compare observed executions with several
models.

Each user can run several applications of the system, according to a predefined
policy. Whenever a user Ui, i ∈ 1..q uses an application Aj , j ∈ 1..k, we depict the
normal use of application j by user i as a HMSC Hij, and define an observation
alphabet Σij . Indeed, it has been observed that an user’s behavior is very often the
same when using an application: only a subset of functionalities is used, frequently in
a certain order, etc. All these facts can be collected as a profile, and in our case as a
profile HMSC Hij. We set Hij = (Nij ,−→ij,Mij, n0ij, Fij), where all MSCs inMij,
are defined over a subset of Pij = Ui∪P. More intuitively, the interactions depicted
do not involve other users of the system. We also require that Σi,j∩Σk,l = ∅ for every
(i, j) 6= (k, l). This may seem restrictive, but if we consider that all communications
and events during the use of an application are tagged with a unique identifier (for
instance the pair (i, j) of user identity and application), this property is immediately
met. Note also that we could use more general HMSCs involving several users and
several applications without changing the techniques described hereafter.

The system is instrumented to detect the occurrence of some events with sig-
nature in

⋃
i∈1..q,j∈1..k

Σij and to send them to a centralized diagnoser that logs all

events. This is the usual diagnosis architecture defined in chapter 9. Here again,
the observation mechanisms can provide some causal ordering among events, and
events located on a given process are totally ordered. The collected observation is
compared with the models of legal use of all applications by the diagnoser. This
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monitoring architecture is depicted in Figure 10.6.

Figure 10.6: Architecture of the anomaly detection framework

3.2 Anomaly detection with Diagnosis techniques

The main difference with the framework of chapter 9 is that observations collected
to detect anomalies mix uses of several applications by several users. We hence need
to recover the order associated to each pair (user, application) that is contained in
an observation, but forget the causal ordering that is due to messages exchanges
from other users and applications. This is however not captured by the definition
of projection, and we need to define a new restriction operation to separate the
observation of different users and applications:

Definition 90 Let O = (EO,≤O, αO, µO) be an observation defined over a set of
processes P and over an alphabet Σ = Σij ∪ Σ′. The restriction of O to Σij is an
observation RΣij

(O) = (EO′,≤O′, αO′, µO′) such that EO′ = EO ∩ α−1(Σij), µO′ =

µO ∩ E2
O′ and ≤O′=

(
{(e, e′) ∈ E2

O′∩ ≤O| ϕ(e) = ϕ(e′)} ∪ (E2
O′∩ <O)

)∗

The restriction preserves the ordering on processes, but only the covering or
the ordering relation for events with label in Σi,j , to avoid the causal dependencies
inherited from other applications or users. Indeed, we may find a sequence e ≤O

f ≤O g ≤O h such that e, h have labels in Σi,j, f , g have labels in another alphabet
Σi′,j′. As the ordering in O is closed transitively, we have e ≤O h. However, we can
not use this information confidently, as this ordering may occur even if e does not
precede h in any use of application j by user i according to Hij . Let us now show
how the existence algorithm can be used for anomaly detection. Considering that
a HMSC H model represents all legal behaviors, a negative answer to the existence
problem for an observation O can be interpreted as the fact that O is an observation
of an illegal behavior. The detection can be performed either:

• offline, that is after recording an execution, the anomaly detection algorithm
is run to discover whether this execution contains an attack

• online, that is a monitoring systems analyzes current execution and raises a
warning as soon as an anomaly is detected.

Based on the observation architecture described in section 4, we can define an
offline detection framework for unusual behaviors. First of all, we can notice that if
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we use a HMSC Hij to describe the behaviors attached to user ui and to the system
when running application j, we need to allow this user to run this application several
times. Furthermore, an attack is not necessarily contained in a single use of an
application. We then have to compare several successive (mis-)use of an application
with normal use. This can be defined by computing a cyclic version of Hij denoted
by H∗

ij , that is simply the iteration of Hij, as defined in chapter 5.
We will consider that there is an anomaly when an observed behavior can not

be explained as a mix of all legal behaviors defined by HMSCs in {H∗
ij}i∈1..q,j∈1..k.

This is justified for anomaly detection, as we can consider that an attack exploits
unknown (and then unused) weaknesses of a system, and that an attacker does not
necessarily have enough knowledge of the system and of users profiles to generate
an attack that resembles a legal use of the system.

Definition 91 Let U1, . . . Uq be a set of users of a system composed of processes
P1, . . . , Pn and applications A1, . . . Ak. Let O be the observed behavior of the system.
Then Ui has an unusual behavior in O when using application Aj if RΣij

(O) has no
explanation in H∗

ij . An observed behavior contains an anomaly if and only if at least
one user Ui, i ∈ 1..q has an unusual behavior when using an application Aj , j ∈ 1..k.

From this definition, we can immediately derive an anomaly detection algorithm.
From an observation O fro every pair of users and applications i, j run the existence
algorithm of chapter 9 using RΣij

(O) and H∗
ij . If the existence algorithm returns a

negative answer, then there is an illegal use of application j by user i. Using the
results of theorem 53, we immediately obtain the following complexity:

Theorem 59 Let {Hij}i∈1..k,j∈1..q be a set of normal behaviors of a system composed
of q users, k applications, and n processes. Then, offline anomaly detection in an
observation O can be performed in O(k.q.h.|O|(n.pobs), where h is the size of the
largest HMSC in all Hij’s and pobs is the maximal number of process observed in all
Hij’s.

We have assumed for convenience and efficiency that all observation alphabets
were disjoint. Within this setting, the conclusion of the analysis is obvious: when
all restrictions RΣij

(O) have their explanation in H∗
ij, no alarm is raised, and when

a single projection have no explanation, an alarm must be raised. Hence, if we
consider that observations are faithful, that is all observed events really occurred,
no observation is lost by the supervision architecture, and the order among them is
contained in the order of the execution, then we can not have wrong positives: when
an alarm is raised, the actual execution that has produced the observation is not a
mix of MSCs provided by the models. Note however that wrong negatives can still
occur. This is not surprising, as observations only record a subset of all events that
have occurred during an execution, and similarly only a subset of causal ordering that
occurred among the observed events. Hence, an observation might be compatible
with some MSC generated by each model, but not the actual execution that lead
to this observation. Hence, the causal ordering among events in an execution might
contradict any explanation provided by the models (it may contain different events,
and different causal ordering among observed actions), but the recorded information
might still allow for explanations.
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The disjoint alphabets assumption can be relaxed, but forces considering all pos-
sible assignment of each event of O to a pair i, j of user and application. This means
that in the worst case (when all Σij are equal), we have to apply diagnosis tech-
niques to up to (q.k)|O| different interpretations of the observation. The exponential
blowup is not the only problem with overlapping observation alphabets. If none of
the possible assignments show unusual behaviors, then the observation corresponds
to an interleaving of projections of normal executions. If some (but not all) as-
signments exhibit an anomaly, then two possible verdicts can be returned by the
algorithm: one can consider that as there is a possibility of abnormal behavior an
alarm should be raised, or conversely, as at least one assignment of events provides
an explanation for the observation, the observed execution was normal.

Offline detection can be used when something went wrong in a system, to make
sure that the reason for a failure, for data corruption, or something bad that occurred
is not due to an attack. However, detection mechanisms find their full interest when
they can be used online to monitor ongoing executions. Online detection mechanisms
must raise alarms when an anomaly is detected. Then a supervisor, that might be
an automatic process or a human operator has to analyze the threat and react
accordingly. The decision that follows an alarm depends on the analysis performed
by other detection mechanisms, on the severity of the supposed attack, but also
on the security level that one wants to provide for a system, and may range from
closing a session, banishing an user or an IP address from the system, to switching
off the whole system.

Similarly to offline anomaly detection, online anomaly detection is an adaptation
of the online existence problem. The main difficulty here is to maintain several copies
of the online existence algorithm (one per H∗

ij), and to feed these monitors with the
correct observed events. In a setting where all observation alphabets are disjoint,
this is not a problem. In case these alphabets are not disjoint, the solution consists
in assigning an observed event to a pair (user,application) and create a copy of
all diagnosers for every possible assignment. However, the cost of this solution is
rapidly prohibitive.

4 Conclusion

This chapter shows that scenario models can be of practical interest for security ap-
plication. Traditional approaches usually ignore causality aspects, which is (in our
opinion) an important aspect to characterize fr instance covert information flows.
Similarly, when security properties of distributed systems are defined in terms of
pattern matching techniques (as for anomaly detection), one should try to use non-
interleaved representations with decidable properties, and HMSCs are good candi-
dates. We shall be more careful with properties defined in terms of equivalences of
models, such as non-interference. In the equivalence concerns one single process,
then non-interference may be decidable for all scenarios models which projections
on processes are regular. However, this is not the case for causal HMSCs, or MSC
grammars.

It is not yet clear how results on security aspects of this chapter can be applied to
extensions of HMSCs. Anomaly detection clearly applies to any extension for which
MSOMSC is decidable. Information flow techniques could be improved by adding
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quantitative evaluation of leakage. Indeed, knowing that a covert flow exists is not
sufficient. If the detected flow has a very low capacity, then no action should be
taken to correct it. On the contrary, if a covert flow is important, something should
be done to close it. Possible solution may come by considering quantitative games,
where moves may provide rewards in terms of improvement of a channel capacity.

Anomaly detection techniques find their full interest when they can be used
online. However, online diagnosis techniques with scenarios are memory consuming.
So a natural question is how to improve the anomaly detection framework proposed
in this chapter to bound the amount of memory used by the detection algorithm,
may be at the cost of some imprecision.
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Chapter 11

Conclusion and future work

Sauf pour les dictateurs et les imbéciles, l’ordre n’est pas une fin en soi.
Except for dictators and fools, order can not be an end in itself.

[Michel Audiard]

1 Some side material

It is always difficult, when writing a summary of 10 years of research to choose
elements of interest in the available material. Most of my research conducted this
last decade was around scenarios, and appears in this document. However, some
side works on security, web-services, or robustness of models influenced the research
conducted on scenarios, and helped us draw some conclusions on the efficiency and
effectiveness of scenario based approaches, and on future research directions. In
this last chapter of the document, we first mention works that seem important
around security, time, robustness, and Web Services. We then synthesize some
lessons learned from the research on scenarios. We then conclude with some research
directions.

1.1 Security

A line of research has been devoted to finding hidden information flows from formal
models of protocols. The work in [78] was the first attempt to find covert channels
in HMSC descriptions, and was later improved in [67], where we showed that covert
channel detection could be brought back to the existence of a winning strategy in
a game, with an encoding/decoding scheme derived from this strategy. The lessons
learned from this work were that causality is an important aspect to consider in in-
formation flow to differentiate between leakage and covert channels. This experience
was published in [73]. However, the work in [67] was preliminary, and led us to con-
sider information theory as a more general tool to discover covert flows. Our primary
intent was to use scenario descriptions and quantitative games. The main idea was
to see rewards as gains in terms of mutual information between a sending process
and a receiver in a covert channel. However, this idea was not tractable for scenario
models such as HMSCs, because the mutual information gained at each MSC con-
catenation depends on the whole past. We hence considered weaker models, namely
finite state machines with distribution of actions on processes [72]. Even in this
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context, the channel models to consider are complex, and covert channels capacity
can only be approximated.

One lesson learned from our work on security, and more particularly on covert
channels is that causality is an important property for security aspects. We are also
convinced that information theory is the right tool to characterize the severity of
leaks (and not only in scenario models), but that one can only expect approximations
of leaks capacities for realistic models.

1.2 Robustness, time and realism of models

Another line of research have addressed robustness issues for models. Question fre-
quently asked when a new model is proposed are: ”how realistic is your model ?
”, ”do you have real case studies or industrial applications?”. Very often, in asyn-
chronous and distributed systems, models that are expressive enough to implement
are undecidable, and models for which some decision procedures exist are not ex-
pressive enough to program a real system. We are convinced that models need not
be real applications, they can be abstractions of real systems, or collect the incom-
plete knowledge of some experts, requirements, etc. However, a reasonable question
to ask is whether a model reflects a plausible (sub)set of behaviors of a real system.
This was for instance one of the reasons to choose as prefix-closed semantics for
HMSCS and CFSMs in our work on synthesis (presented in chapter 7).

There are several ways to ensure that a model is plausible. Realizability can be
seen as an extreme case of plausibility for a model. Another simple sanity check is
to verify that a specification describes at least one behavior (i.e. for a given model
M , check that L(M) 6= ∅). As we have seen for scenarios, this simple problem is
not always decidable.

Recently, a particular attention has been paid to timed robustness. A typical ex-
ample of non-robust timed models is specifications containing Zeno behaviors, that
is in which an unbounded number of actions can occur in one time unit. Obviously, a
specification that contains Zeno behaviors should be considered as ill-formed. Simi-
larly, timed models often have an idealized visions of time: clocks progress at a single
rate, never drift, measurement of time is exact, actions are fired instantaneously as
soon as some guard becomes true, etc .... In a real distributed application, each
machine has its own clock, clocks may have different rates. So, exact measurement
of time and instantaneous decisions are not possible.

Timed robustness is tightly related to this discrepancy between the idealized
vision of time and a more realistic interpretation of timed mechanisms (called im-
perfect time assumption). Since the seminal work by Puri [123], a lot of attention
has been devoted to analysis of timed automata under imperfect time assumption.
Roughly speaking, timed robustness issues compare the semantics of a timed model
with idealized interpretation of time, and with imperfect time. Robustness of a
model can be defined in several ways: One may require that the set of reachable
states of a model under perfect and imperfect time assumptions are the same. One
can also require to preserve the untimed language of the model of some safety prop-
erties under imperfect time assumption, etc. In several works, we have considered
extensions of true concurrency models with time and their semantics under realistic
time assumption and under architectural constraints.
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In [4,5], we have considered time-constrained MCS. This model decorates HMSCs
with time constraints, that can state that the difference between the occurrence
dates of two events lays within a given interval. Adding time constraints to HMSCs
changes the semantics of the model, and some accepting paths generate MSCs that
are inconsistent with respect to the timing constraints defined in the specification.
In general, consistency of time-constrained MSC specifications (i.e. the question
of whether the specification generates at least one consistent MSC) is undecidable.
As very often with scenarios, there is a sub-class of regular TC-MSCs for which
consistency is decidable [9]. In [5], we have shown that with the simple and verifiable
assumption that no MSC appearing in a HMSC can be forced to take more that K
time units to complete, consistency is decidable. Coupled with the assumption that
the system can not be forced to execute more that Z events in one time unit, runs
of a time-constrained HMSC can be represented by a regular set of representative
timed behaviors [4]. We think that these works open the way for more elaborated
verification techniques on time constrained MSCs..

We also have considered robustness issues for timed Petri nets (TPN) [105], and
their semantics under guard enlargement [7]. We have identified several subclasses of
TPNs for which robustness issues are decidable. So far, all decidable results on state
robustness or language robustness rely on existence of a bound on markings of the
considered net. When such bound exists (which is undecidable for TPNs in general),
then the considered net can be translated into an equivalent timed automaton for
which several decidability results were already proved [30]. Another study with time
Petri nets considers constraints due to distribution and architectures, and resources
limitations [6]. These constraints are modeled by a TPN which can prevent an action
from being fired (due to time or resources constraints). This allows for instance
to model time-sharing architectures. Given a specification net and architectural
constraints, the question is then if the behavior of the specification is preserved under
the given architectural constraints. Untimed language preservation is shown to be
PSPACE complete, and timed language inclusion is also decidable (and strongly
believed to be PSPACE complete too).

1.3 Specification and verification of Web Services

The last aspect of our research that does not appear explicitly in this document
concerns Web Services. The main challenges to address in Web Services are com-
position, contract elaboration, and of course, verification of formal properties of a
system. Since 2006, we have conducted a line of research on a declarative model
for applications distributed over the web. This model, originally proposed by Serge
Abiteboul [1,2] is called active documents, and consists of guarded rules that either
rewrite locally structured documents, or call services from other sites. In its full
generality, this model is very powerful, but tuning the power of guards or rules, one
can verify some simple reachability properties, or ensure that two modules compose
well [99].

Session management is another important notion to address in Web Services.
In a transactional system (web store), a client can interact with a commercial site
using the Http protocol. However, several clients can access the site concurrently,
and a client can access several sites at the same time. So, distinct transactions have
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to be uniquely identified in a system. Http was not originally designed to handle
this notion of transaction, and nowadays, many sites work by storing cookies on
clients personal computers to remember a unique identifier for a transaction. The
drawback of such unique identifier for sessions is that all models incorporating ses-
sion identifiers management mechanisms need more or less to store counters, which
rapidly leads to undecidability. Languages such as BPEL address the notion of
session through correlations, that are filters to redirect a message to a particular
process. However, BPEL is now a programming language, and is already too power-
ful to allow for automated reasoning. We have proposed an intermediate model [41]
called session systems, which central paradigm is sessions, and that allows to design
transactional systems over a finite set of agents, running an arbitrary number of
sessions. The main idea is that agents accept to play a role within a session, that
becomes private to all participants that have joined it. Sessions are described as
regular models, and can be for instance finite automata of acyclic HMSC. In a confi-
guration of a session system, an arbitrary number of sessions can coexist. Session
systems can be implemented using shared memories, and furthermore coverability of
some configuration is a decidable property of the model. Though coverability may
seem a weak property, it is sufficient to model conflicts of interest, and several other
interesting properties in a Web Services world.

2 Lessons learned

Before drawing some sketches for future work, let us summarize the lessons learned
from 10 years of study of partial order automata. First of all, most of the models
studied in this thesis (HMSCs, CHMSCs causal HMSCs, dynamic HMSCs) share
common features beyond the fact that they compose partial orders. They all com-
port decidable syntactic subclasses of regular and globally-cooperative models, for
which interesting properties are decidable. Let us also note that scenario models
outside the globally cooperative classes are very often specifications that can be
considered as ill-formed or too abstract.

We have seen that diagnosis is decidable for HMSCs and dynamic MSCs, but not
for CHMSCs in general. We conjecture that diagnosis is decidable for all scenario
models that compose communication closed patterns, and for which the projec-
tion on each process exhibits some regularity. We have show that scenarios can be
practically applied, for diagnosis, but also for security issues. Indeed, the explicit
representation of causality in scenarios seems to ideally characterize intentional in-
formation leaks, where notions such as interference can not distinguish between
causal relationship between events and coincidence.

Overall, scenarios seem well adapted to applications where only a partial knowl-
edge of the system is required. The more satisfactory results are those on diagnosis,
which exploit the compactness of non-interleaved representation.

Should we extend existing scenario models ?

Before answering this question, let us summarize all the features that appear in the
already considered scenario models: scenarios use asynchronous FIFO communica-
tions (by default), can allow sliding windows modeling (with CHMSC ans causal
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MSCs), thread creation (with Dynamic MSCs,and MSC grammars). All these mod-
els have been studied with respect to theoretical concerns: expressiveness, verifica-
tion,.... We must also consider them with respect to their potential interest as a
modeling tool for designers of real-life systems. Many of the scenario models listed
above reach the limits of human comprehension: a causal HMSC remains intuitive
if commutations are limited to a single MSC, or to its immediate neighbors. When
commutations allow for the definition of non-regular local process behaviors, we
think that most designers would simply not understand the meaning of their spec-
ification. Similar concerns hold for dynamic MSCs. Hence, one still may imagine
fancy ways of composing partial orders, but extensions of composition have a limit
in terms of human understanding and practical use.

In our opinion, reasonable and needed extension of HMSCs and their variant
should deal with time and probabilities. Indeed, many problems that are considered
as solved in the untimed setting raise new issues in the timed case. Let us consider
for instance time constrained HMSCs. This variant of HMSCs defines timed execu-
tions, that associates dates to events in the generated scenarios. These dates must
satisfy some constraints (time intervals between events). In this simple and intuitive
model, globally cooperative HMSC may not have a regular set of representant of
timed behaviors. The reason is that time constraint disallow some executions that
would have been legal in the timed case. The second direction for further studies is
probabilities. The study of probabilities in HMSCs is still in its infancy, but is really
needed. Among the expected information that one can expect from a systems’s de-
signer, one expects him to be able do describe which scenario is more probable than
the other. Similarly, in HMSCs, messages sent are considered as eventually received,
which is not true in a real life situation: messages get lost with some probability.
Last, we have seen in chapter 9 that the size of a diagnosis grows with that of the
observation. A good way to deal with this growth is to restrict diagnosis to the most
probable explanations.

How to design large scenario models ?

The main idea behind all the works of chapter 5 was to design a complex model
as a composition of simple and small HMSCs. However, scenarios do not compose
well. First of all, none of the studied operations preserve the desirable properties
of HMSCs and their extensions (global cooperation, locality, ...), accepts if the
considered scenarios are restricted to regular HMSCs. This is clearly not sufficient.
Then, one can not decide in general if two views of a system described by two
simple scenario specifications comport at least one consistent run. This is clearly a
drawback that hinders all compositional approaches to scenario modeling.

As we know that no human being will be able to design large models, and that
composition of HMSC has many drawbacks, another research direction is model
learning. From a set of collected traces of a running system, it seems interesting
to build scenario models that embed all collected behaviors. Of course, the learned
model would certainly be very complex. However, it is not necessarily meant to be
read by human users, and could be used as a tool for diagnosis or security analysis.
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Should we implement scenario models ?

In chapter 7, we have shown a way to implement any local choice HMSC, and this
topic has been widely studied in the past. However, one has to remember that
HMSCs are an abstraction of a distributed system’s behavior. Implementing an
HMSC means providing a code skeleton, that will be filled afterwards, introducing
new features and wasting the verification performed on the original specification.
Admittedly, HMSCs represent the initial stage of a more complex system’s design.
However, behaviors described in the HMSC should be executed by the model, up
to some abstraction. This means in particular that diagnosis performed with an
abstract model on a real running application derived from it should provide useful
hints to debug code. Furthermore, if model and implementation have derived too far
away from one another, the failure of the existence problem is a good indication for
it. So, we believe that automatic generation of code from scenarios can be very useful
is this techniques starts from specifications that are precise enough specifications.

Specifying with logics and orders ?

Chapter 8 of this document has shown that satisfiability of a set of formulae de-
scribed using a partial order logic is rapidly undecidable, except with strong re-
strictions on the shape of models for the formula. Such restriction usually bringing
back the decision procedure to regular models that either represent the whole set of
possible models of the formula (for instance the K-influencing restriction for LPOC
allows for the specification of a regular language of computations) or a set of repre-
sentative runs (setting an existential bound for MSCs reduces the search fr a model
to a regular set of representative linearizations).

However, without restriction, emptiness of the designed MSC language is un-
decidable for logic-based scenario specifications. As for compositional specification
with scenarios, undecidability of emptiness tolls the bell for a fully general use of
such declarative formalisms for scenarios. Considering restrictions to the models
may help providing solutions. For instance, requiring that the models of a formula
are existentially bounded MSCs, means is some sense restricting to specifications of
systems that implemented in terms of existentially bounded CFSMs. Such limitation
does not look too severe.

3 Future work

To end this document, we would like to draw some future research directions. The
general motivation for our future work is to stay connected to real-life problems, and
provide useful formal tools to reason on models of distributed systems. Indeed, we
can continue increasing the expressive power of scenario while exhibiting features
that are not needed, nor represent any real situation in a distributed system. Simi-
larly, event when decidable classes of a scenario variant are found, there are decision
procedures with such a high complexity that they can not be used in practice. A
good test for practicality of a model is whether the model can be implemented on a
network of machines. We do not feel that a model should always be implementable:
this often means that no automated verification technique applies, and we also want
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to use verification tools. However, we feel that models should always represent some
real running system up to abstraction or incompleteness.

Of course, this remark does not apply specifically to scenarios, and we plan
to consider other models, still with this realisms requirement in mind. Current
distributed systems include huge networks, web-service platforms, but also organi-
zations workflows. Partial order automata were originally created and used in the
area of protocols modeling, but we think that they have reached some maturity, and
also some limits in this domain. Changing the application domain for partial order
automata also means changing needs, semantics rules, possible restrictions, etc to
the model.

3.1 Scenario-based formalisms with practical restrictions and

semantics variants

While we have considered variants of scenarios with many features (time, dynamic
process creation, etc.), a few work has been devoted to searching sound restrictions
to the behaviors depicted by a partial order model. A first step in this direction
is of course the assumption of an existential bound for runs of a model. Used for
verification purposes, this property ensures that one can represent an infinite set
of behaviors by a set (not necessarily finite nor regular) of bounded representative
linearizations. Existential bound also guarantees that an implementation can not be
forced to store an arbitrary number of messages in its communication buffers, which
seems a safe restriction. Furthermore, it allows for decidability of more properties.
Considering existentially bounded MSCs as models of MSOMSC formulae allows for
decidability of satisfiability.

In a timed context, we have proposed close restrictions saying that a basic sce-
nario can not be forced to take an arbitrarily long time to be completely executed.
This looks realistic and plausible if one considers a basic scenario as some phase of
a protocol. Hence, loosing a little generality is scenarios semantics, one can gain
decidability. Hence, it seems interesting to continue considering this tradeof between
expressiveness and decidability. However, one should at the same time ensure that
the proposed restrictions can be accepted in a targeted applications domain. For
instance, requiring HMSCs to be regular in the context of asynchronous protocols
modeling is too restrictive. The subclasses of HMSCs are now well known, so we
think that very few sensible subclasses can be proposed. However, in the context of
Time Constrained MSCs, verification is still in its infancy, and a lot of work remains
to be done.

Another way to relate scenario models to real world situations is to adapt their
semantics. Indeed, in a Web Services context, for instance, noting guarantees that
communications between machines are FIFO anymore. Processes can hence be
seen as communicating with bags rather than with queues. Slightly changing the
semantics of scenarios to take into account the specificities of an application domain
may result in changes in the decidability and complexity of many problems.
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3.2 Robustness

Work on robustness also answers the realism demand. Indeed, even if a model is
considered as a partial, abstract, and incomplete specification of the behaviors of
a system, as soon as some architectural information is available, one should check
that the requirements are consistent with the architecture. Following our former
results on Time Petri Nets, we would like to consider timed robustness for other
models. As the preliminary results show, robustness issues are rapidly undecidable
for models with infinite numbers of configurations. However, robustness can be seen
as some kind of sanity check, ran before starting any implementation. Such check
can be performed up to a sound abstraction. Furthermore, one can also rely on
semi-decision algorithms to answer a robustness question, as demonstrated in [7].

Interesting lines of research are time robustness for Time Constrained scenarios.
Indeed, robustness checking on scenarios can be very useful to test design hypotheses
at very early stages of a design. So, the question to address is what happens to
scenarios if one considers that time measurement by processes is imperfect, that some
processes share physical machines via time-sharing mechanisms, that each process
has it own independent clock, etc ? Indeed, using even incomplete information
on a system’s resources and architectural constraints may rapidly show that some
requirements can not be implemented, or that the specification becomes inconsistent.

Leaving the scenario world, robustness issues should also be considered for vari-
ants of Petri nets that allow to associate time to tokens (in Time Petri nets, time
is attached to transition, and measures time since enabling). Of course, most issues
should be undecidable, but we believe that this feature is essential to model transac-
tions in distributed systems, where one can not afford to forget time progress when
disabling a transition. We should hence consider tools to check robustness for such
models, probably at the cost of some abstraction or approximation.

3.3 Web services

Web services is an interesting domain to consider for formal modeling of distributed
systems, for several reasons. First, they are distributed systems, and hence inter-
esting objects to consider. But of course, this is not sufficient to build a research
project on this topic. Another remark is that contrarily to low-level protocols based
on TCP-IP, for instance, web-services architectures seldomly assume that commu-
nications are FIFO. Indeed, clients requests are not necessarily served in their order
of arrival, and communication overs the World Wide Web do not necessarily guar-
antee FIFO links between two sites. This has one important consequence: the FIFO
assumption, which is often source for undecidability, is dropped. Hence models for
Web-services are close to Petri nets variants, and might be somehow more amenable
to verification.

Note however that even without FIFO communications, Web-services comport
difficult points to address. Web-services own and share data, and very often, the
dynamics of a system depends on this data. We note that data was not seriously
addressed within the MSC community, but also that introducing data is often at
the cost of new undecidable results. In the future, we would like to consider Web
services, seen as communicating rewriting rules for distributed documents. Every
specification is implementable (it is simply a set of local rules applied locally to data,
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generating communications). So, implementability is guaranteed, and the interesting
questions are rather compatibility between services (does a service fulfills the needs
of a infrastructure for some functionality), and Quality of Service (does a service
returns an answer of the expected quality, for instance within the required delay
and with a value ranging in a predetermined domain?).

Compatibility of services can be presented as follows: one wants to use a web
service W that provides some function in an environment E that expects a service
to be provided. The questions that arise are: does W accepts all inputs that may be
sent by E ? Does all answers returned by W are expected by E ? Does W terminate
for any input provided by W ? The first two questions are of purely static nature,
and can be seen as some query inclusion problem (see for instance [63, 106, 116,
117]), for which solutions have been provided for a long time, even for complex data
description. The last question is more a termination problem. Formal verification of
web-based systems is a close issue. We are convinced that complex logics (CTL, µ-
calculus, etc) are not suited to the size of web-based systems. However, coverability
of some undesired configuration was shown decidable for some Web Services models
(see [41]), and this question is already an interesting feedback for systems designer.
Techniques inherited from coverability decision techniques can be reused to prove
more elaborated properties describing successive configuration in a run of the system.

Termination is an issue, but one also has to consider QoS, that is in particular if
a service replies in a reasonable amount of time, if the data returned satisfies some
quality criteria, etc. Such questions can not be addressed in a purely qualitative
manner. If a service is answered with a decent delay for a high percentage of the
calls, then it can be considered as correct, even if if some exceptional cases it may
not answer. Hence, we need to consider assembling services if they agree on the
exchanged data, but also on a the executed QoS.

The last interesting paradigm is that Web-based systems are open systems.
Indeed, most of transactional systems accept request form external users, for which
the arriving data, kind, and rate of requests can not be controlled. Furthermore,
a web services architecture is build by assembling services, and among them, some
services might be provided by external stakeholders. In such situation, only an
interface to the services (input data accepted, output data returned, ...) is provided,
and the specification of the whole systems is not available. Nevertheless, it is possible
to reason formally on an open system with holes, by assuming properties of the
services that will be called. Hence, rather that trying to solve question of the form
”does service f terminates?” that are likely to be undecidable, we would like to
consider proof techniques that accept and generate hypotheses. Hence, the questions
to ask would be of the form ”does f terminates under the assumption that g always
returns integers smaller than 12?”. Answers could be conditional results, i.e. contain
new proof obligations ”‘yes, f terminates iff g terminates”. The condition to satisfy
can be a synthesized proof obligation, or more simply a new fact entered by an user to
allow progress of the proof system. We think that such approach have huge interest
if one can mix qualitative and quantitative aspects of the form ”the distribution of
response times for f is below distribution F () iff the distribution of response times
for g is below G().

In an open world, specification of interfaces for services can be seen as contract.
Contract allow to reason in a compositional way, assuming that a service provider
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by an external stakeholder will be fulfilled. Once contracts have been established,
the remaining question is how to ensure that they are fulfilled ? The answer is to
monitor web-based systems, but ideally, monitors for contracts should be generated
automatically.

Overall, the world of Web services seems an interesting area to provide useful
applications for formal models and verification techniques, in a real distributed and
asynchronous context. Preliminary results and models [41, 99] for Web services
show that even in a difficult context mixing openness, data, infinite configuration
space, etc. some solutions can be found to coverability or composition problems.
The models that we plan to consider are mainly declarative rule based models to
manipulate structured data. However, transactions on the Web can be intuitively
depicted by simple scenarios. We think that variants of scenarios adapted to the Web
Services world, as well as the experience gained during the last decade of research
on scenarios might provide some useful help.
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sage sequence charts. Research Report 6258, INRIA, 2008.

BIBLIOGRAPHY 201



BIBLIOGRAPHY
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Chapter 12

Appendix

This chapter contains the proofs for some of the theorems that appear through
the document. All proofs are not included, in particular when a theorem is a direct
consequence of statements appearing before in the document, when it was thoroughly
demonstrated in a paper (in which case we mention this work).

1 Proofs for chapter 2

1.1 Undecidability for FH1
∩ FH2

= ∅?

Proof for (a part of) Theorem 3

A PCP can be formulated as follows. Let u1, . . . , un and v1, . . . , vn be two sets
of finite words over an alphabet Σ with at least two letters. The question asked in
a PCP is whether there exists a non empty finite sequence of indexes i1, . . . , ik such
that ui1.ui2 . . . .uik = vi1 .vi2 . . . .vik .

This problem is undecidable. We can easily reduce it to HMSC languages/families
intersection. We will design two HMSCs H1, H2 over a set of processes {p, q}. For
a given word u = a1. . . . ak ∈ σ∗, let us call q(u) the sequence of atomic actions
q(a1). . . . q(ak). We design two sets of MSCSM1 = {U1, Un} andM2 = {V1, . . . Vn}
such that each Ui (respectively Vi) contains a single atomic action p(indi) on pro-
cess p and the sequence q(ui) of atomic actions on process q. We then design H1
and H2 as follows: H1 comports three nodes n0, n1, with n1 final, transitions from
n0 to n1 labeled by each Ui, and transition from n1 to itself labeled by each Ui.
The HMSC H2 comports one node n0 which is final, and transition from n0 to it-
self labeled by each Vi. Such construction is illustrated in Figure 12.1 for instance
u1 = aab, u2 = bb, u3 = baa v1 = aa, v2 = abb, v3 = bba of the PCP. It can be seen
immediately that an instance of the PCP has a solution if and only if there exists a
MSC M in FH1 ∩ FH2 . In M one can chose a sequence of letters on process p that
corresponds to indexes of u′

is, v
′
is. Each letter chosen on p yields a unique transition

in H1 or H2. Furthermore, as M ∈ FH1 ∩ FH2, H1 and H2 agree on the unique
sequence of letters that have to appear on process q in M . Hence M ∈ F1∩F2, and
F1 ∩F2 6= ∅. Note that H1 is not only composed of loops, so the empty MSC is not
recognized by H1, and can not be a solution of the intersection problem.
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Figure 12.1: encoding a PCP with HMSCs intersection

1.2 Divergence is a co-NP Complete problem (theorem 7)

This Co-NP completeness proof for divergence is a rather standard proof that ap-
pears with some variant for classification of a HMSC in a syntactical class. We hence
give details for this proof only, and will only give the small changes in the proof for
similar problems.
Theorem 7 Checking that a HMSC is not divergent is a co-NP complete problem.

Figure 12.2: Gadget for the demonstration of co-NP completeness of non-divergence

Let us first show that finding a divergent cycle is an NP problem. For a cycle ρ of
H , checking symmetry of the closure of a graph CGMρ mainly consists in detecting
connected component in a non-directed version of CGMρ and in its directed version.
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If the number of components coincide, then every message sent in is acknowledged
directly or indirectly during an execution of Mρ or at the next occurrence of Mρ.
If there are more components in the directed version of CGM , then some messages
are never acknowledged. This verification can be done in polynomial time using
standard connected components algorithms [133]. For a given HMSC, computing
the set of all elementary cycles and hence choosing one of them can be done in
polynomial time [84]. Hence, exhibiting a counter example showing that a HMSC
is divergent is in NP .

For the hardness part, we can proceed by reduction from the well-known 3CNF-
SAT problem, that consists in checking satisfiability of a boolean formula in con-
junctive normal form. This problem is known to be NP-Complete. The 3CNF-SAT
problem is given as follows. Let ϕ be a formula of the form ϕ = C1 ∧ C2 ∧ . . . Cn

with n clauses over a set of variables V = v1, . . . vk. Each clause is a disjunction of
three literals, i.e. each Ci is of the form Ci = xi1 ∨ xi2 ∨ xi3, where each xi1, xi2, xi3

is either vj or vj . The 3CNF-SAT problem consists in deciding whether there exists
a valuation of variables v1, . . . vk such that ϕ holds for this valuation.

The reduction from 3CNF-SAT to a divergence problem can be done as follows.
One can build in polynomial time a HMSC Hdiv with k + 3 nodes, as illustrated in
Figure 12.2. The StartingGadget MSC contains 2.n+2 processes: two processes P
and P ′ and for each clause Ci, two processes P 1

i , P
2
i . In this MSC, process P sends

a message m to each process P 1
i , then P 1

i sends a message m to process P 2
i , and

last P 2
i sends a message m to process P ′. For every i ∈ 1..n, and each j ∈ 1..k each

MSC Tj contains a message from P 1
i to P if the first literal of Ci is xj , a message

from P 2
i to P 1

i if the second literal of Ci is xj , and finally a message from P ′ to P 2
i

if the last literal of Ci is xj .

For every i ∈ 1..n, and each j ∈ 1..k each MSC Fj contains a message from P 1
i

to P if the first literal of Ci is xj , a message from P 2
i to P 1

i if the second literal of
Ci is xj , and finally a message from P ′ to P 2

i if the last literal of Ci is xj .

MSCs Tj and Fj respectively correspond to choosing value true or false in a
valuation for variable xj . Forcing a literal in a clause to be false by choosing a
valuation results in a message between two processes.

The EndingGadget is simply the empty MSC. Formula ϕ is satisfiable if and
only if there exists a valuation such that for every clause Ci, i ∈ 1..n, at least one of
the literals is evaluated to true. In terms of the designed MSCs, it means that either
a message from P ′ to P 2

i from P 2
i to P 1

i or from P 1
i to P is missing along a path from

n1 to nk+1. Each of these path is a simple cycle of H , hence ϕ is satisfiable implies
that there exists a simple loop in H which communication graph is not strongly
connected. Note that H is divergent if and only if there exists a simple cycle ρ from
node n0 to node nk+2, such that the communication graph of Mρ is not strongly
connected, as Mρ is already connected, due to the startinggadget MSC. Hence, it
means that one of the messages in the starting gadget is not acknowledged (directly
or transitively). Note that as soon as there exists some i ∈ 1..n such that a messages
exists from P ′ to P 2

i P 2
i to P 1

i and P 1
i to P in Mρ, then the communication graph

of Mρ is strongly connected, and clause Ci evaluates to false (and consequently the
whole formula). Hence, finding a valuation for ϕ resumes to finding a divergent
cycle in Hdiv. �
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1.3 Co−NP completeness of regular and globally coopera-

tive HMSCs (Theorem9 )

Unsurprisingly, verifying that a HMSC is regular or globally cooperative is a Co−NP
complete problem. Indeed, one can replace in the drawing of Figure 12.2 the starting
gadget by a MSC containing

• only one message from P to P ′. If there exists a clause in the modeled formula
with its three literals false, then there exists a cycle which communication
graph is not strongly connected.

• only one atomic action on instance P , and another one on P ′. If there exists
a clause in the modeled formula with its three literals false, then there exists
a cycle which communication graph is not connected.

1.4 Local choices

Theorem 16 Let H be an HMSC. H is not local iff there exists a node c and a
pair of acyclic paths ρ, ρ′ originating from c, such that Mρ and Mρ′ have more than
one minimal instance.

Proof: One direction is straightforward: if we can find a node c and two (acyclic)
paths with more than one deciding instance, then obviously, c is not a local choice,
and H is not local. Let us suppose now that for every node c, and for every pair of
acyclic paths of H originating from c, we have only one deciding instance. Now, let
us suppose that there exist a node c1 and two paths ρ1, ρ

′
1 such that at least one (say

ρ1) of them is not acyclic. Then ρ1 has a finite acyclic prefix w1. The set of minimal
instances in Mw1 and in Mρ1 is the same, as ϕ(min(M ◦M)) = ϕ(min(M)). Hence,
c, ρ1, ρ

′
1 are witnesses for the non-locality of H iff c, w1, ρ

′
1 are also such witnesses.

�

Corollary 2 Deciding if an HMSC is local-choice is in co−NP .

Proof: The objective is to find a counter example, that is two paths originating from
the same node with distinct deciding instances. One can choose in linear time in the
size of H a node c and two finite acyclic paths ρ1, ρ2 of H starting from c, that is
sequences of MSCs of the form M1 . . .Mk. Note that to compute deciding instances
in the MSC Mρ attached to a path ρ, one does not need to compute the whole causal
orderings in Mρ. We can build incrementally the set of deciding instances of Mρ as
follows:

• If p is a process appearing in Min(M1 ◦Mi) then it is also a minimal process
of M1 ◦Mi ◦Mi+1.

• If p is a process of Min(M1 ◦Mi) that is not minimal, then it is not minimal
either in M1 ◦Mi ◦Mi+1.

• Last, if p is a process of Min(Mi+1) and does not appear in M1 ◦Mi, then it
is minimal in M1 ◦Mi ◦Mi+1.

Finding minimal processes of an MSC can be done in polynomial time in the maximal
number of events appearing in a MSC of H . Hence, maintaining the set of minimal
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instances incrementally along a path can be performed in polynomial time in the
size of H and in the size of MSC labeling H . Once the sets of minimal instances
are built, one comparison suffices to decide whether two paths witness a non-local
choice. �

2 Proofs for chapter 4

Proposition 3 Let H,H ′ be two causal HMSCs over the same family of trace al-
phabets {(Σp, Ip)}p∈P . Consider the following six hypotheses:

(i) caMSC (H) = caMSC (H ′) (i)’ caMSC (H) ∩ caMSC (H ′) 6= ∅
(ii) Vis(H) = Vis(H ′) (ii)’ Vis(H) ∩Vis(H ′) 6= ∅
(iii) Lin(H) = Lin(H ′) (iii)’ Lin(H) ∩ Lin(H ′) 6= ∅

Then we have:

• (i) ⇒ (ii), (i)′ ⇒ (ii)′, (ii) ⇒ (iii) and (ii)′ ⇒ (iii)′ but the converses
do not hold in general.

• If every causal MSC labeling transitions of H and H ′ respects {(Σp, Ip)}p∈P,
then (i)⇔ (ii) and (i)′ ⇔ (ii)′.

• If every causal MSC labeling transitions of H and H ′ is weak FIFO, then
(ii)⇔ (iii) and (ii)′ ⇔ (iii)′.

The implications (i) =⇒ (ii) and (ii) =⇒ (iii) follow from the defini-
tions. However, as shown in Figure 4.6, Vis(G1) = Vis(H1) but caMSC (G1) 6=
caMSC (H1). And Lin(G2) = Lin(H2) but Vis(G2) 6= Vis(H2). Note that the
independence relations are immaterial in these examples.

If every causal MSC labelling transitions ofH andH ′ respects {(Σp, Ip)}p∈P , then
one can define an equivalence relationM ≡M ′ on MSCs iff there exists a causal MSC
C with M,M ′ ∈ Vis(C). Then, for any causal MSC B in caMSC (H)

⋃
caMSC (H ′),

Vis(B) is an equivalence class of that relation, and (i) ⇔ (ii) and (i)′ ⇔ (ii)′.
If every causal MSC labelling transitions of H and H ′ is weak FIFO, as re-

marked earlier, we know that all MSCs in V is(H) ∪ V is(H ′) are weak FIFO since
the independence relations are irreflexive. Now, for each linearization w, one can
reconstruct a unique weak FIFO MSC. Hence, if Lin(M1) = Lin(M2) for M1 andM2

are in V is(H) ∪ Vis(H ′), they are weak FIFO, and we necessarily have M1 = M2,
and (ii) ⇔ (iii) and (ii)′ ⇔ (iii)′. �

2.1 Proof of Theorem 21

Theorem 21 Let H = (N,−→,B, n0, F ) be a causal HMSC. Testing whether H is
regular (respectively globally-cooperative) can be done in time O((|N |2 + |Σ|2) · 2|B|).
Furthermore these problems are co-NP complete.

Proof: We use the ideas in the proofs of [56, 113], improving the deterministic
complexity implied by the proof in [56], which was exponential in the number of
transitions of the HMSC (there is at least one transition per label (else we can
delete the useless labels)).
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We first guess a subset X = {B1, · · ·Bk} ⊆ B of causal MSCs and check that
the communication graph of B1 ⊚ · · · ⊚ Bk is not strongly connected (respectively
disconnected). Using Tarjan’s algorithm [133], this can be done in time linear in
the number of edges of the communicating graph, that is quadratic in |Σ|. Then,
we decompose the graph HX into maximal strongly connected components in time
O(|N |2) using Tarjan again, where HX is the restriction of H to transitions labeled
by causal MSCs in X . Then it suffices to check in time |N |2 whether one of this
maximal strongly connected component uses all the labels from X . If it is the case,
then we have a witness that H is not s-regular (resp. globally-cooperative). We thus
obtain a co-NP algorithm. As there are 2|B| subsets X , this gives the deterministic
time complexity.

The hardness part follows directly from the co-NP hardness result for HMSCs,
as shown in chapter 2, theorem 9 (and from similar property for checking whether a
HMSC is globally cooperative). Indeed any HMSC can be seen as a causal HMSC
where the independence relation of each process is empty. �

2.2 Proof of Theorem 22 (Regular Causal HMSCs

In [91], the regularity of linearization languages of s-regular HMSC was proved
by using an encoding into connected traces and building a finite state automaton
which recognizes such connected traces. In our case, finding such embedding into
Mazurkiewicz traces seems impossible due to the fact that causal MSCs need not be
FIFO. Instead, we shall use techniques from the proof of regularity of trace closures
of loop-connected automata from [43, 113].

The rest of this subsection is devoted to the proof of Theorem 22. We fix a
s-regular causal HMSC H as in the theorem, and show the construction of the finite
state automaton AH over Σ which accepts Lin(H).

First, we establish some technical results.

Lemma 1 Let ρ = θ1 . . . θ2 . . . θ|Σ| be a path of H, where for each i = 1 . . . |Σ|, the

subpath θi = ni,0
Bi,1
−→ ni,1 . . . ni,ℓi−1

Bi,ℓi−→ ni,0 is a cycle (these cycles need not be

contiguous). Suppose further that the sets B̂i = {Bi,1, . . . , Bi,ℓi}, i = 1, . . . , |Σ|, are
equal. Let e be an event in ⊚(θ1) and e′ an event in ⊚(θ|Σ|). Let ⊚(ρ) = (E, λ, {⊑p

}, µ). Then we have e ≤ e′.

Proof:
First of all notice that when (σ, σ′) is an edge of CGB, then for every causal

MSC B′, in the causal MSC B⊚B′, every event e of B such that λ(e) = σ precedes
all events e′ of B′ such that λ(e′) = σ′. Indeed, if σ and σ′ belong to the same Σp,
then (σ, σ′) is an edge of CGB if and only if σDpσ

′, and we necessarily have e ≤ e′ in
B⊚B′. Similarly, if σ and σ′ label events located on different processes, then σ is of
the form p!q(m) and σ′ of the form q?p(m). Hence, there exists an event e′′ of B such
that eµe′′ and λ(e′′) = σ′. As the dependence relations are reflexive, we also have
e′′ ≤ e′. Similarly, for two cycles θi,θi+1 of ρ, if (σ, σ′) is an edge of CGBi,1⊚···⊚Bi,li

,
then all events in ⊚(θi) labelled by σ precede events of ⊚(θi+1) labelled by σ′. As H
is rigid, CGBi,1⊚···Bi,li

is strongly connected, and contains a path (σ1, σ2) · · · (σk−1, σk)
of length at most |Σ| from σ1 = λ(e) to σk = λ(e′), and we can find one event ei,
i ∈ 1..|Σ| for each cycle such that λ(ei) = σi and e = e1 ≤ e2 ≤ · · · ≤ e|Σ| = e′.
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Let ρ = n0
B1−→ · · ·

Bℓ−→ nℓ be a path in H , where Bi = (Ei, λi, {⊑i
p}, µi) for

i = 1, . . . , ℓ. Let ⊚(ρ) = (E, λ, {⊑p}, µ,≤). A configuration of ρ is a ≤-closed
subset of E. Let C be a configuration of ρ. A C-subpath of ρ is a maximal subpath

̺ = nu
Bu+1
−→ . . .

Bu′−→ nu′, such that C ∩ Ei 6= ∅ for each i = u, . . . , u′. For such a
C-subpath ̺, we define its C-residue to be the set (Eu+1 ∪ Eu+2 ∪ · · · ∪ Eu′) − C.

Figure 12.3 illustrates these notions for a path ρ = n0
B1−→ n1

B2−→ n2
B3−→ n3

B4−→

n4
B5−→ n5

B6−→ n6
B7−→ n7. Each causal MSC is represented by a rectangle. Events

in the configuration C are indicated by small filled circles, events not in C but the
C-residues are indicated by small blank circles, and events that are not in C nor
in its residues are indicated by blank squares. Note that the configuration contains
only events from B1, B3, B4 and B5. The two C-subpaths identified on Figure 12.3

are the sequences of transitions ρ1 = n0
B1−→ n1 and ρ2 = n2

B3−→ n3
B4−→ n4

B5−→ n5

that provide the events appearing in C. One can also notice from this example that
C-subpaths do not depend on the length of a the considered path, and that the suffix
of each path that does not contain an event in C can be ignored.

Figure 12.3: An example of path, a configuration C, and its C-subpaths.

Lemma 2 Let ρ be a path in H and C be a configuration of ρ. Then,

(i) The number of C-subpaths of ρ is at most Ksubpath = |N | · |Σ| · 2|B|.

(ii) Let ̺ be a C-subpath of ρ. Then the number of events in the C-residue of ̺ is
at most Kresidue = |N | · |Σ| · 2|B| ·max{|B| | B ∈ B}.

Proof:

(i) Suppose the contrary. Let K = |Σ| · 2|B|. We can find K + 1 C-subpaths
whose ending nodes are equal. Let the indices of these K +1 ending nodes be
i1 < i2 < . . . < iK+1. For h = 1, . . . , K, let θh be the subpath of ρ from nih

to nih+1
; and let B̂h be the set of causal MSCs appearing in θh. Hence we can

find θj1, θj2, . . ., θj|Σ|
, j1 < j2 < . . . < j|Σ|, such that B̂j1 = B̂j2 = . . . = B̂j|Σ|

.
Pick an event e from ⊚(θj1) with e /∈ C. Such an e exists, since, for example,
none of the events in the first causal MSC appearing in θj1 is in C. Pick an
event e′ from ⊚(θj|Σ|

) with e′ ∈ C. Applying Lemma 1 yields that e < e′. This
leads to a contradiction, since C is ≤-closed.

(ii) Let ̺ = ni
Bi+1
−→ . . .

Bi′−→ ni′ . Let Êj = Ej − C for j = i+ 1, . . . , i′. By similar

arguments as in (i), it is easy to show that among Êi+1, . . ., Êi′ , at most
|N | · |Σ| · 2|B| of them are nonempty. The claim then follows.
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We are now ready to define the finite state automaton AH = (S, Sι,Σ, Sfi ,⇒)
which accepts Lin(H). As usual, S will be the set of states, Sι ⊆ S the initial
states, =⇒ ⊆ S × Σ × S the transition relation, and Sfi ⊆ S the final states. Fix
Ksubpath , Kresidue to be the constants defined in Lemma 2. If B = (E, λ, {⊑p}, µ) is
a causal MSC and E ′ a subset of E, then we define the restriction of B to E ′ to be
the causal MSC B′ = (E ′, λ′, {⊑′

p}, µ
′) as follows. As expected, λ′ is the restriction

of λ to E ′; for each p, ⊑′
p is the restriction of ⊑p to (E ′ ∩Ep)× (E ′ ∩Ep); and µ′ is

the restriction of µ to E ′.

Intuitively, for a word σ in Σ⋆, AH guesses an accepting path ρ of H and checks
whether σ is in Lin(⊚(ρ)). After reading a prefix σ′ of σ, AH memorizes a sequence
of subpaths from which σ′ was “linearized” (i.e the C-subpath of a path ρ such that
C is a configuration reached after reading σ′ and ⊚(ρ) contains C). With Lemma 2,
it will become clear later that at any time, we should remember at most Ksubpath

such subpaths. Moreover, for each subpath, we need to know only a bounded amount
of information, which will be stored in a data structure called “segment”.

A causal MSC B = (E, λ, {⊑p}, µ) is of size lower than K if |E| ≤ K. A segment
is a tuple (n,Γ,W, n′), where n, n′ ∈ N , Γ is a nonempty subset of Σ, andW is either
a non-empty causal MSC of size lower than Kresidue , or the special symbol ⊥. The
state set S of AH is the collection of finite sequences θ1θ2 . . . θℓ, 0 ≤ ℓ ≤ Ksubpath ,
where each θi is a segment. Intuitively, a segment (n,Γ,W, n′) keeps track of a
subpath ̺ of H which starts at n and ends at n′. Γ is the collection of letters of
events in ⊚(̺) that have been “linearized”. Finally, W is the restriction of ⊚(̺)
to the set of events in ⊚(̺) that are not yet linearized. In case all events in ⊚(̺)
have been linearized, we set W = ⊥. For convenience, we extend the operator ⊚
by: W ⊚⊥ = ⊥⊚W = W for any causal MSC W ; and ⊥⊚⊥ = ⊥.

We define AH = (S, Sι,Σ, Sfi ,=⇒) as follows:

• As mentioned above, S is the collection of finite sequence of at most Ksubpath

segments.

• The initial state set is Sι = {ε}, where ε is the null sequence.

• A state is final iff it consists of a single segment θ = (n,Γ,⊥, n′) such that
n ∈ Nι and n′ ∈ Nfi (and Γ is any nonempty subset of Σ).

• The transition relation =⇒ of AH is the least set satisfying the following
conditions.

—Condition (i):

Suppose n
B
−→ n′ where B = (E, λ, {⊑p}, µ,≤). Let e be a minimal event in

B (with respect to ≤) and let a = λ(e). Let θ = (n,Γ,W, n′) where Γ = {a}.
Let R = E − {e}. If R is nonempty, then W is the restriction of B to R;
otherwise we set W = ⊥. Suppose s = θ1 . . . θkθk+1 . . . θℓ is a state in S where
θi = (ni,Γi,Wi, n

′
i) for each i. Suppose further that, e is a minimal event in

W1 ⊚W2 ⊚ . . .⊚Wk ⊚W .

– (“create a new segment”) Let ŝ = θ1 . . . θkθθk+1 . . . θℓ. If ŝ is in S, then
s

a
=⇒ ŝ. In particular, for the initial state ε, we have ε

a
=⇒ θ.
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– (“add to the beginning of a segment”) Suppose n′ = nk+1. Let θ̂ =

(n,Γ∪Γk+1, Ŵ , n′
k+1), where Ŵ = W⊚Wk+1. Let ŝ = θ1 . . . θkθ̂θk+2 . . . θℓ.

If ŝ is in S, then s
a

=⇒ ŝ.

– (“append to the end of a segment”) Suppose n = n′
k. Let θ̂ = (nk,Γk ∪

Γ, Ŵ , n′), where Ŵ = Wk ⊚W . Let ŝ = θ1 . . . θk−1θ̂θk+1 . . . θℓ. If ŝ is in
S, then s

a
=⇒ ŝ.

– (“glue two segments”) Suppose n = n′
k and n′ = nk+1. Let θ̂ = (nk,Γk ∪

Γ∪Γk+1, Ŵ , n′
k+1), where Ŵ = Wk⊚W⊚Wk+1. Let ŝ be θ1 . . . θk−1θ̂θk+2 . . . θℓ.

If ŝ is in S, then s
a

=⇒ ŝ.

—Condition (ii):

Suppose s = θ1 . . . θkθk+1 . . . θℓ is a state in S where θi = (ni,Γi,Wi, n
′
i) for i =

1, 2, . . . , ℓ. Suppose Wk 6= ⊥. Let Wk = (Rk, ηk, {⊑k
p}, µk,≤k) and e a minimal

event in Wk. Suppose further that e is a minimal event in W1⊚W2⊚ . . .⊚Wk.

Let θ̂ = (nk,Γk∪{a}, Ŵ , n′
k), where Ŵ is defined as follows. Let R̂ = Rk−{e}.

If R̂ is nonempty, then Ŵ is the restriction of W to R̂; otherwise, set Ŵ = ⊥.
Let ŝ = θ1 . . . θk−1θ̂θk+1 . . . θℓ. Then we have s

a
=⇒ ŝ, where a = ηk(e). (Note

that ŝ is guaranteed to be in S.)

We have now completed the construction of AH . It remains to show that AH

recognizes Lin(H).

Lemma 3 Let σ ∈ Σ⋆. Then σ is accepted by AH iff σ is in Lin(H).

Proof: Let σ = a1a2 . . . ak. Suppose σ is in Lin(H). Let ρ = n0
B1−→ . . .

Bℓ−→ nℓ

be an accepting path in H such that σ is a linearization of ⊚(ρ). Hence we may
suppose that ⊚(ρ) = (E, λ, {⊑p}, µ,≤) where E = {e1, e2, . . . , ek} and λ(ei) = ai
for i = 1, . . . , k. And ei ≤ ej implies i ≤ j for any i, j in {1, . . . , k}. Consider the
configurations Ci = {e1, e2, . . . , ei} for i = 1, . . . , k. For each Ci, we can associate
a state si in AH as follows. Consider a fixed Ci. Let ρ = . . . ̺1 . . . ̺2 . . . ̺h . . .
where ̺1, ̺2, . . ., ̺h are the Ci-subpaths of ρ. Then we set si = θ1 . . . θh where
θj = (nj,Γj ,Wj, n

′
j) with nj being the starting node of ̺j , and Γj the collection of

all λ(e) for all events e that are in both ⊚(̺j) and Ci. Let Rj be the Ci-residue of
̺j . If Rj is nonempty, Wj is the causal MSC (Rj , ηj, {⊑

j
p}, µj,≤j) where ηj is the

restriction of λ to Rj ; ⊑j
p is the restriction of ⊑p to those events in Rj that belong

to process p, for each p; and µj the restriction of µ to Rj. If Rj is empty, then set
Wj = ⊥. Finally, n′

j is the ending node of ̺j .

Now it is routine (though tedious) to verify that ε
a1=⇒ s1 . . . sk−1

ak=⇒ sk is
an accepting run of AH . Conversely, given an accepting run of AH over σ, it is
straightforward to build a corresponding accepting path of H .

With Lemma 3, we establish Theorem 22. As for complexity, the number of states
in AH is at most (Nseg)

Ksubpath, where Nseg is the maximal number of segments. Now,
Nseg is |N |2 · 2|Σ| ·Nres, where Nres is the possible number of residues. Recall that
a residue is of size at most Kresidue. According to Kleitman & Rotschild [89], the
number of partial orders of size k is in 2f(k) where f(k) = 1

4
k2 + 3

2
k+O(log2(k)). It
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follows that the number of |Σ|-labeled posets of size k is in 2f(k) · |Σ|k. All residues
of size up to k can be encoded as a labeled poset of size k with useless events,
labelled by a specific label ♯. Hence the number of residues Nres is lower than
2f(Kresidue) · (|Σ| + 1)Kresidue . Combining the above calculations then establishes the
bound in theorem 22 on the number of states of AH.

2.3 Proof of Proposition 4

Proposition 4 A causal MSC B can be effectively decomposed in time O(|B|2).
Proof: Let B = (E, α, {⊑p}, µ). We describe the decomposition of B, which is
analogous to the technique in [71]. We consider the directed graph (E,≤ ∪R),
where R is the symmetric closure of µ ∪

(⋃
p∈P R′

p ∪R′′
p

)
, with

R′
p = {(e, e

′) ∈ Ep × Ep | e⊑̂pe
′ and α(e) Ip α(e′)} ,

R′′
p = {(e, e′) ∈ Ep ×Ep | e 6⊑p e′ and e′ 6⊑p e and α(e) Dp α(e′)} .

Intuitively, R′
p denote pairs of events that are ordered in B, but which labels

are independent in Ip. As this ordering can not be obtained via composition, this
ordering should appear in the decomposition of B, that is e and e′ should belong
to the same basic part. Similarly, relation R′′

p contains pairs of events that are
unordered in B, but which labels are dependent.

For each strongly connected component E ′ of (E,≤ ∪R), we associate a structure
C = (E ′, α′, {⊑′

p}, µ
′), where α′ is the restriction of α to E ′, ⊑′

p is the restriction of
⊑′

p to E ′, and µ′ is the restriction of µ to E ′. It is easy to see that C is a causal
MSC, since each receive needs to be in the same strongly connected component
than its associated send (since the relation includes the symmetric closure of µ).
We first prove that C is a basic part. By contradiction, otherwise, we would have
C = B1 ⊚ B2, which by definition of ⊚ means that no edge of ≤ ∪R can go from
one event of B2 to one event of B1, which contradicts the fact that E ′ is strongly
connected.

Let E1, . . . , En be the set of basic parts obtained. We order them such that there
is no edge of ≤ ∪R from any event of Ej to some event of Ei with i < j (it is always
possible, else Ei, Ej would be in the same strongly connected component). It is now
clear that B = E1⊚ · · ·⊚En, since no event of Ej can be before an event of Ei, i < j
(else there would be an edge of ≤ from Ej to Ei). Notice that the decomposition
in strongly connected components with Tarjan’s Algorithm is in linear time in the
number of edges, that is linear in |B| +

∑
p∈P | ⊑p | ≤ |B| + |B|2, where |B| is the

number of events of B. For comparison, recall that the complexity of decomposing
an MSC B in atoms [71] is in O(2|B|) (the immediate successor relation in MSCs is
the union of the message pairing relation and the total ordering on instances, that
is there are at most 2 immediate successors for a given event).�

2.4 Proof of theorem 23

Proposition 15 Let H be a causal HMSC. Then BP(H) = [LBasic(H)].

Proof: First, let us take a word w in [LBasic(H)]. Thus w = B1 . . . Bk ∼ Bi1 . . . Bik

such that Bi1 . . . Bik ∈ LBasic(H). As LBasic(H) ⊆ BP (H) and B1 ⊚ . . . ⊚ Bk =
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Bi1⊚ . . .⊚Bik we conclude that [LBasic(H)] ⊆ BP (H). Second, let us take a word w
in BP (H). Let us note ⊚(w) its corresponding causal MSC, i.e. for w = B1 . . . Bk,
⊚(w) = B1 ⊚ . . . ⊚ Bk. Then this word is generated by an accepting path ρ =

n0
P1−→ n1 . . .

Pl−→ nl of H such that ⊚(w) = P1 ⊚ . . .⊚ Pl. We know that any other
decomposition of ⊚(w) belongs to [B1 . . . Bk], and in particular, the one we choose.
Thus we obtain that BP (H) ⊆ [LBasic(H)].�

Assuming we know how to compute the trace closure of the regular language
LBasic(H), we can obtain BP(H) with the help of Proposition 15. In general, we
cannot effectively compute this language. However if H is globally-cooperative,
then [LBasic(H)] is regular and a finite state automaton recognizing [LBasic(H)] can
be effectively constructed [43, 113]. Indeed, [113] shows that when a finite sate
automaton A over an alphabet Σ is loop conected with respect to and independence
alphabet I, that is when every loops of A are labeled by a word w that can not be
defined as suffle of independant subwords (or equivalently, the letters of w connected
by the dependency relation D = Σ × Σ \ I form a connected graph) , then one
can compute a finite automaton B that recognizes [A]. Let us consider globally-
cooperative causal HMSCs as finite state automata over basic parts. When a causal
HMSC H is globally cooperative, then for every loop of H labeled by a sequence of
basic parts B1, . . . , Bk, we have that ({B1, . . . , Bk}, DB}) forms a connected graph,
as B1⊚ . . .⊚Bk is tight. We can then apply [113] to obtain the following decidability
and complexity result of theorem 23

2.5 Proof of Theorem 24

Theorem 24 Let G,H be globally-cooperative causal HMSCs with respectively fam-
ilies of trace alphabets {(Σp, Ip)}p∈P and {(Σp, Jp)}p∈P, where for each p, Ip and Jp

are allowed to differ. Then determining if Vis(G) ∩ Vis(H) = ∅ is undecidable.
Proof: A PCP problem can be reduced to the emptiness of the intersection of the
visual languages of two (globally-cooperative) causal HMSCs, if we do not assume
that both causal HMSCs use the same independence relation.

Let J be a finite set and (vi, wi)i∈J be an instance of PCP, with vi, wi ∈ {a, b}∗\ε
for all i ∈ J . We will use two causal HMSCs H1 and H2 to encode the PCP.
The intuition for the reduction is that the causal HMSC H1 generates sequences of
CaMSCs of the form (ViWi)

∗, where CaMSCs Vi and Wi represent respectively the
words vi and wi. The causal HMSC H2 generates sequences of the form (AĀ∨BB̄)∗,
where the causal MSCs X and X̄ represent an x letter in v and w respectively, with
x ∈ {a, b}.

We have three process, P1, P2 and P3. The causal MSCs A,B are made of a single
message from process P1 to process P3, respectively labeled by a and b. The causal
MSCs Ā, B̄ are made of two messages both labeled by the same letter (respectively
ā and b̄). The first message is from process P1 to P2, and the second message is
sent after the reception of the first message, from process P2 to process P3. For
each pair (vi, wi) in the PCP instance, we build two causal MSCs Vi and Wi. If vi
is of the form vi = xyz, the causal MSC Vi is made of the concatenation of X, Y, Z.
Similarly, Wi is made of the concatenation X̄, Ȳ , Z̄, when wi = xyz. These causal
MSCs are depicted in Figure 12.4.

Let us denote by V the labels appearing in Vi’s and by W the labels appearing
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Figure 12.4: PCP encoding with two causal HMSCs
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in Wi’s. The independence relation I1 for H1 states that all events on process P2

and P3 commute. On process P1, events labeled by a letter of V (namely P1!P3(a)
and P1!P3(b) commute with events labeled by a letter of W (namely P1!P2(ā) and
P1!P2(b̄). There is no commutation among events labeled by a letter of V , and
no commutations among events labeled by a letter of W . In the same way, the
independence relation I2 for H2 states that no events on process 1 and 2 commute.
On process 3, events from v (namely 3?1(a) and 3?1(b) commute with events from
w (namely 3?2(ā) and 3?2(b̄). There is no commutations among events from v, and
no commutations among events from w.

It is easy to check that both H1 and H2 are globally-cooperative. Indeed, notice
first that the letters a and b behave exactly the same. We can then forget about
them for global cooperativeness, and draw the communication graph considering
only 6 letters P1!P2, P2?P1, P2!P3, P3?P1, P1!P3, P3?P1. Every elementary cycle of H1

contains a Vi and a Wi. Since vi, wi are non empty words, every of these 6 letters
appear in every loop of H1. In particular, we have the undirected relation P1!P2 −
P2?P1−P2!P3−P3?P2−P3?P1−P1!P3, which proves that the graph is connected. In
the same way, every loop of H2 contains a XX̄ , hence every of the 6 letters appear
in every elementary cycle (and loop) of H2. This time, the graph is connected, but
through another undirected path: P3?P1 − P1!P3 − P1!P2 − P2?P1 − P2!P3 − P3?P2.
Hence, both H1 and H2 are globally-cooperative.

Assume that Vis(H1) ∩ Vis(H2) 6= ∅. Let M ∈ Vis(H1) ∩ Vis(H2). Let v
be the projection of M on alphabet P1!P3(a), P1!P3(b), and w the projection of M
on alphabet P1!P2(ā), P1!P2(b̄). Now, because M ∈ Vis(H2) and since there is no
commutation on process P1 allowed by I2, we get that v = w, confusing P1!P2(ā)
with P1!P3(a) and P1!P2(b̄) with P1!P3(b).

Second, because M ∈ Vis(H1), there exists a sequence i1 · · · in ∈ J∗ with M ∈
V is(Vi1⊚Wi1⊚ · · ·Vin⊚Win). Since by I1, there is no commutation among letters of
v, the projection v of M on alphabet P1!P3(a), P1!P3(b) is the same as the projection
of Vi1 ⊚Wi1 ⊚ · · ·Vin ⊚Win. That is, v = vi1 · · · vin (confusing letter a with P1!P3(a)
and letter b with P1!P3(b)). In the same way, w = wi1 · · ·win (confusing letter a
with P1!P2(ā) and letter b with P1!P2(b̄)). That is vi1 · · · vin = v = w = wi1 · · ·win,
which proves that it is a solution for the PCP problem.

Now, assume that the instance (vi, wi)i∈I of PCP has a solution vi1 · · · vin =
wi1 · · ·win = x1 · · ·xm. Consider the following MSC M . We describe M process
by process (which is enough to uniquely define M since all MSCs in V is(H1) and
V is(H2) are weak FIFO). On process P1, M is of the form
P1!P3(x1)P1!P2(x̄1) · · ·P1!P3(xm)P1!P2(x̄m). On process P2, M is of the form
P2?P1(x̄1)P2!P3(x̄1) · · ·P2?P1(x̄m)P2!P3(x̄m). On process 3, M is of the form
P3?P1(a1)P3?P1(b1)P3?P1(c1)P3?P2(d̄1)P3?P2(ē1)P3?P1(f̄1) · · ·P3?P1(an)
P3?P1(bn)P3?P1(cn)P3?P2(d̄n)P3?P2(ēn)P3?P1(f̄n), where for all j, vij = ajbjcj and
wij = djejfj . It is easy to see that M ∈ Vis(H1) ∩ Vis(H2), which ends the proof.

2.6 Proof of Theorem 25

The main principle is to build a finite state automaton whose states remember the
labels of events that must appear in the future of messages (respectively in the past)
in any MSC of Vis(H).
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Formally, for a causal MSC B = (E, α, {⊑p}, µ) (e, f) ∈ µ a message of B, we
define the future and past of (e, f) in B as follows:

FutureB(e, f) = {a ∈ Σ | ∃x ∈ E, f ≤ x ∧ α(x) = a}
PastB(e, f) = {a ∈ Σ | ∃x ∈ E, x ≤ e ∧ α(x) = a}

Notice that for a message m = (e, f), we always have α(e) ∈ PastB(m) and
α(f) ∈ FutureB(m). For instance, in Figure 4.11, PastB(m1) = {p!q(Q), q?p(Q), q!p(A)}.

Intuitively, if a letter of the form p!q(m) is in the future of a message (e, f) in
a causal MSC B, then any occurrence of message m that is appended to B is in
the future of (e, f). Hence, this message can not appear in the window of (e, f).
Note that a symmetric property holds for the past of (e, f). Furthermore, from the
definition of future and past of a message, we easily obtain the following proposition.

Proposition 16 Let B = (E, α, {⊑p}, µ) and B′ = (E ′, α′, {⊑′
p}, µ

′) be two causal
MSCs, and let m ∈ µ be a message of B. Then we have:

FutureB⊚B′(m) = FutureB(m) ∪ {a′ ∈ Σ | ∃x, y ∈ E ′

∃a ∈ FutureB(m) s.t. α(y) = a′ ∧ x ≤′ y ∧ a Dloc(a) α(x)}

PastB′⊚B(m) = PastB(m) ∪ {a′ ∈ Σ | ∃x, y ∈ E ′

∃a ∈ FutureB(m) s.t. α(y) = a′ ∧ y ≤′ x ∧ a Dloc(a) α(x)}

This proposition is important, as it can be used to show that the futures and past
of a message can be computed incrementally. Let H = (N,−→,B, n0, F ) be a causal
HMSC. Consider a path ρ of H with ⊚(ρ) = B1 ⊚ · · ·⊚Bℓ and a message m in B1.
First, the sequence of sets FutureB1(m), FutureB1⊚B2(m), . . ., FutureB1⊚···⊚Bℓ

(m) is
non-decreasing. Using proposition 16, these sets can be computed on the fly and
with a finite number of states. Similar arguments hold for the past sets. Now
consider a message (e, f) in a causal MSC B labelling some transition t of H . With
the above observation on Future and Past , we can show that, if there is a bound
K(e,f) such that the window of a message (e, f) in the causal MSC generated by
any path containing t is bounded by K(e,f), then K(e,f) is at most b|N ||Σ| where
b = max{|B| | B ∈ B}. Further, we can effectively determine whether such a bound
K(e,f) exists by constructing a finite state transition system whose states memorize
the future and past of (e, f). We are now ready to prove Theorem 25.

Theorem 25 Let H = (N,−→,B, n0, F ) be a causal HMSC. Then we have:

(i) If H is window-bounded, then H is K-window-bounded, where K is at most
b · |N | · |Σ|, where b = max{|B| | B ∈ B}.

(ii) Further, we can effectively determine whether H is window-bounded in time
O(s · |N |2 · 2|Σ|), where s is the sum of the sizes of causal MSCs in B.

Proof:[of Theorem 25(i)] Suppose that H is not k-window-bounded, where k =
b · |N | · |Σ|. Let B ∈ B be a causal MSC in caMSC (H), and let the pair (e, f)
be a message of B. Let ρ be a path of H , and V ∈ Vis(⊚(ρ)) be an MSC such
that the message (e, f) is crossed by k + 1 messages in V . Recall that a causal
MSC contains at most b/2 messages. Then, ρ contains at least 2|Σ| occurrences of
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a node n′, such that the label of n′ contains at least a message m′ that crosses (e, f)
in V . Without loss of generality, we can consider that n′ is repeated at least |Σ|
times after B in ρ (else we apply a symmetric proof, considering repetitions of B′

occurring before B). That is, ρ is of the form · · ·n0→· · ·n1→· · ·n2→· · ·n|Σ|→· · · ,
where n1 = · · · = n|Σ| = n′.

Let us denote by Ei the label of the prefix · · ·n0→· · ·n1→· · ·n2→· · ·ni of ρ,
for i = 0, 1, 2, . . . , |Σ|. Consider the sequence of sets Fi = FutureEi

(e, f), i =
0, 1, . . . , |Σ|. Each Fi is a subset of Σ and the sequence F0, F1, . . . , F|Σ| is non-
decreasing. Hence, we can find ℓ ≤ |Σ| such that Fℓ = Fℓ+1. This means that the
path ρ′, which is computed from path ρ by repeating twice the cycle between nℓ

and nℓ+1 (nℓ excluded but nℓ+1 included), have at least one more message m′ which
crosses m. Thus, we can exhibit a new execution V ′ ∈ Vis(⊚(ρ′)) such that (e, f)
is crossed by at least k + 2 messages. As we can iterate this construction, it means
that H is not window-bounded.

We next establish Theorem 25(ii). We shall show that for a given message m,
one can decide in an efficient way whether there is a window bound, by constructing
a finite state transition system that memorizes Future(m) and Past(m).

For a given causal HMSC H = (N,Nι,B, Nfi ,−→) and a message (e, f) of some
causal MSC B ∈ B, we build the following transition systemA(e,f) = (Q,Qι,B, Qfi , δ)
that computes the possible futures of (e, f), where:

• Q = N × 2Σ is a set of states, recalling a node in H and a future,

• Qι = {(n, ∅) | n ∈ Nι} is the set of initial states,

• (n,X) ∈ Qfi if and only if n ∈ Nfi .

• δ ⊆ Q× B ×Q is the least transition relation such that:

–
(
(n, ∅), B, (n′, ∅)

)
∈ δ if n

B
−→ n′

–
(
(n, ∅), B, (n′,FutureB(e, f))

)
∈ δ if n

B
−→ n′ and (e, f) belongs to B.

–
(
(n,X), B, (n′, X ′)

)
∈ δ, where B = (E, λ, {⊑p}, µ,≤), if n

B
−→ n′, and

X ′ = X ∪ {λ(y) | ∃x, y ∈ E, ∃a ∈ X ∧ a D λ(x) ∧ x ≤ y}.

Note that the first rule in the construction of the transition relations of A(e,f)

simply copies the transitions of H . The second rule perform a random choice of
a message in a random occurrence of a transition of H labelled by B. This rule
is important, as it allows to chose nondeterministically an occurrence (e, f) of a
message after an arbitrary path in the HMSC. The last rule updates the futures
or pasts after the choice of a message occurrence. A state q = (n,X) in A(e,f)

represents a possible set X of labels in Future⊚(ρ)(e, f) for some path ρ that ends
(respectively starts) at node n in H , and contains a message (e, f). Slightly abusing
the notation, we will denote by Future(q) (resp. Past(q)) the set X . Note that
in any strongly connected subset C = {q1, . . . , qk} of A(e,f) (respectively A′

(e,f)),

Future(q1) = Future(q2) = · · · = Future(qk) (resp. Past(q1) = Past(q2) = · · · =
Past(qk)). Hence, we will denote by Future(C) (resp. Past(C)) the set of observed
labels on any state of C.
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We can also build a finite state transition system A′
(e,f) that computes the pos-

sible pasts of (e, f), by a backward search in the causal HMSC H .
More precisely, A′

(e,f) = (Q′, Q′
ι,B, Q

′
fi , δ

′) where

• Q′ = N × 2Σ

• Q′
ι = Nfi × {∅}

• Q′
fi = Nι × 2Σ

• δ′ ⊆ Q× B ×Q is the least relation such that:

–
(
(n, ∅), B, (n′, ∅)

)
∈ δ if n′ B

−→ n

–
(
(n, ∅), B, (n′,PastB(e, f))

)
∈ δ n′ B

−→ n and (e, f) belongs to B.

–
(
n,X), B, (n′, X ′)

)
∈ δ, where B = (E, λ, {⊑p}, µ,≤), if n′ B

−→ n, and
X 6= ∅, and X ′ = X ∪ {a′ ∈ Σ | ∃x, y ∈ E, ∃a ∈ PastB(e, f), λ(y) =
a′ ∧ y ≤ x ∧ a D λ(x)}

We observe the following properties of the finite state automata A(e,f) and A
′
(e,f).

Lemma 4 Let H = (N,Nι,B,−→, Nfi) be a causal HMSC. Let B be a causal MSC
in B and (e, f) a message in B with the label of e being p!q(m). Consider the finite
state automata A(e,f) and A

′
(e,f) as constructed above. Then, H is window-bounded

iff both of the following conditions hold:

• There does not exist a strongly connected component C in A(e,f) and a letter
q!p(m′) ∈ Σ such that q!p(m′) is in Alph(B)−Future(C) for some causal MSC
B labelling a transition in C.

• There does not exist a strongly connected component C in A′
(e,f) and a letter

q!p(m′) ∈ Σ such that q!p(m′) is in Alph(B)− Past(C) for some causal MSC
B labelling a transition in C.

Proof: One direction is straightforward. If any of these strongly connected compo-
nents exists (either before or after m), then there is an unbounded number of path
generating an unbounded number of occurrences of q!p(m′) that are not causally
related to m. Hence, for each of these path, there is a visual extension where all
m′ generated by occurrences of the cycle cross m, and the window size of m is not
bounded. The other direction is a direct consequence of Theorem 25(i).

Thus Theorem 25(ii) follows from Lemma 4. It remains to establish the com-
plexity claim in Theorem 25(ii). The transition system A(e,f) has at most |N | × 2|Σ|

states, and we have to analyze strongly connected components of A(e,f). However,
as noticed before, every strongly connected component of A(e,f) enjoys the property
to have a second component which is constant. Hence we need to test the property
only for maximal strongly connected components. Indeed, if C is a strongly con-
nected component of A(e,f) such that q!p(m′) is the label of an event in a causal
MSC labeling a transition of C but that is not in Future(C), then we can consider
the maximal strongly connected component D of A(e,f) containing C (it exists since
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the union of two non disjoint strongly connected components is again a strongly
connected component). Since D is a strongly connected component, its second com-
ponent Future(D) is constant, hence Future(D) = Future(C). Since C ⊆ D, we
have that q!p(m′) is a label of an event of D and is not in Future(C) = Future(D).

Using Tarjan’s algorithm [133], we can compute in quadratic time the partition
of A(e,f) into maximal strongly connected components (for each set X ⊆ 2Σ, we
partition the subpart of A(e,f) with a constant second component being X). Then
for each maximal strongly connected component (C,X), it suffices to compute λ(C)
and to compare it with X , which is linear in n. Hence, the overall complexity of the
algorithm is in O(|N |2 · 2|Σ|). As, we build the two automata A(e,f) and A(e,f) for
each occurrence (e, f) of a message in each causal MSC labeling a transition of H ,
we obtain a complexity in O(s.|N |2.2|Σ|), where s is the sum of the sizes of causal
MSCs in B.
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3 Proofs for chapter 5

3.1 Proof sketch for theorem 27

Proof sketch The main idea of this proof is to build a structure labeled by MSC
projections. An event in the original model can be an atomic action, a send, or
a receive event. A non-erased event becomes a new event of a different type. For
instance, an event e which is a send to a process p may become the immediate
predecessor of another event located on a process q. Hence, the type of e in the
projection should be a send to process q. The construction of the CHMSC then
works by memorizing for a subset of non-erased event of the path a guess on their
type. Such guesses have to be verified when new MSCs are appended to the path.
We can show that for any MSC labeling a path of H , only the last node of the path,
a finite number of guesses (at most ℘2) during projection and for each guess the
information on whether an immediate successor of an non-erased event can appear
on a process p ∈ ℘ in the projection. This can be recorded for any path as a triples
(n, to, Live,Dead) where n is the last node of a path ofH , to is a guess on the type of
an event of the followed path (yet unproved guesses), and Live,Dead are mappings
from the set of events with unproved guesses to subsets of ℘. The exact nature and
place of events with unverified guesses in the path need not be remembered, yielding
the finiteness of the construction and the complexity statement. Transitions from a
node to another is allowed iff it does not contradict the guesses. Accepting nodes
are nodes in which all guesses have been proved correct. We refer interested readers
to [59] for more details on the construction.

Our construction can be easily modified in the presence of multi-type events to
obtain a safe cHMSC (actually an extendion of the model to allow multitype events).

3.2 Proof of Theorem 29

Let us first address the question of the finiteness of the set of generators for a given
safe cHMSC. We show below how to construct a compact representation of the
generators (atoms) of a given safe cHMSC G. This problem is directly related to
the construction for a given safe cHMSC G (or a pHMSC) of an equivalent HMSC,
if it exists, and it involves the computation of the smallest MSCs that are factors of
some MSC M ∈ L(G).

Formally, given a safe cHMSC G we want to compute the set Gen(G) of genera-
tors of G defined as follows. An atomic MSC M belongs to Gen(G) if N = N1MN2

for some N ∈ L(G) and some MSCs N1, N2.
Clearly, for a safe cHMSC to be equivalent to an HMSC, Gen(G) needs to be

finite. At the end of this section we will show that if Gen(G) is finite, then we can
construct effectively an equivalent HMSC.

An Automata-Based Representation of Generators

We show now how to construct for a given safe cHMSC G a finite automaton A(G)
that accepts only linearizations of Gen(G) and such that for every M ∈ Gen(G),
at least one linearization of M is accepted by A(G). The idea is to have a non-
deterministic automaton A(G) that works as follows. Given an execution z ∈ L(G),
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the automaton guesses a factor w of z containing a generator M ∈ Gen(G) and
extracts the events of M from w. Note that since we cannot choose the linearization
z, such a generator M won’t be itself a factor of z.

The automaton A(G) must check two conditions in the definition of the gener-
ating set Gen(G). First, we guess for each event e of the linearization z above a
type k ∈ {0, 1, 2}, telling whether e belongs to N1 (k = 0), to M (k = 1) or to N2

(k = 2). Note that if an event e belongs to N1, then all its predecessors on the same
process must also belong to N1. Similarly, when an event belongs to N2, then all its
successors on the same process must belong to N2.

In addition, we check whether the guessed type is consistent w.r.t messages as
atoms shall not cut messages. That is, every send mist be of the same type as its
associated receive. By maintaining such consistency, we can guarantee guarantee
that N1, N2 and M are all complete MSCs. We recall that safe cHMSCs are exis-
tentially bounded for some bound b, that is there exists an automaton Ab(G) that
recognizes all b-bounded linearizations of G. To each state q of Ab(G), one can
associate a set S(q) of at most b send event which have not yet been matched to
a receive event, a mapping statP : ℘ −→ {0, 1, 2} that indicates whether events
seen on process p after the current state will belong to N1, M , or N2, and a map
statS : S(q) −→ {0, 1, 2} that indicates whether a send event for which the cor-
responding reception is not yet executed belonged to N1, M , or N2. With this
extension, we to obtain a new automaton Bb(G). Note that S(q) is an information
that is already contained in the states of Ab(G). Transitions of Bb(G) are of the
form (q, S, statP, statS)

e
−→ (q′, S ′, statP ′, statS ′) in which:

• q
e
−→ q′ is a transition of Ab(G).

• for every p ∈ ℘ we have statP (p) ≤ statP ′(p)

• if e is a send event, then S ′ = S ∪ {e} and statS(e) = statP ′(ϕ(e))

• if e is a reception, and f is the corresponding event, then we require that
statP (ϕ(e)) = statS(f). Hence, if an incorrect guess was made (i.e prede-
cessors of e were declared as part of the wrong factor), the reception can not
occur. Then S ′ = S \ {e}.

• final states of Bb(G) are states of the form (q, S, statP, statS) in which q
is a final state of Ab(G). Initial states of Bb(G) are states of the form
(q0, ∅, statP, statS) in q0 is the initial state of Ab(G), and for every p ∈ ℘,
statP (p) ∈ {0, 1, 2}.

The automaton Bb(G) recognizes b-bounded linearizations of G, and can be used
to recognize inner factors of these linearizations. These inner factors are sub-words
recognized by transitions of the form (q, S, statP, statS)

e
−→ (q′, S ′, statP ′, statS ′)

where StatP (ϕ(e)) = 1, i.e. transitions performed when the process executing e
is chosen to start recognizing M . Note that nothing guarantees in Bb(G) that M
is atomic. Proposition 2 gives an algorithm for verifying that a given MSC M is
atomic, checking that the connection graph Conn(M) is strongly connected.

We have now to test whether an MSC M is atomic using a finite automaton, that
takes as input some arbitrary linearization of M . However, we cannot use directly
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the algorithm of [71], since the number of connected components in a linearization is
not a priori bounded. In order to handle this, we restate the result of [71] as follows:

Proposition 17 Let M be an MSC. Then M is atomic if and only if for every pair
of processes p, q, there is a path in Conn(M) from the last event of p to the first
event of q.

We say that an event e of M sees another event f if there exists a path from
e to f in Conn(M). To ensure that the last event in the inner factor M sees the
first event of M , we add two other components to Bb(G), namely a set X that
recalls the last events on each process seen in the inner factor M , plus a set MS
of unmatched send events that belong to M . Let lastp denote the last event on
process p seen so far in X . Now, for each pair (x, p) ∈ X × {1, . . . , ℘} we record an
integer T (x, p) ∈ {0, 1, 2} telling whether x sees the first event on process p in M
(T (x, p) = 2), or whether x sees lastp but not the first p-event in M (T (x, p) = 1),
or whether it sees no p-event in M at all (T (x, p) = 0). For every event x ∈ X we
also record the unmatched send events seen by x, using a function TS : X −→ 2MS.

Then, we can obtain an automaton A(G) which states are tuples of the form
(q, S, statP, statS,X,MS, T, TS), with initial states (q0, S, statP, statS, ∅, ∅, T, TS)
for which (q, S, statP, statS) in an initial state of Bb(G). The final states of A(G) are
states such that (q, S, statP, statS) is accepting in Bb(G) and furthermore T (x, p) =
2 for every pair x, p ∈ X × ℘. Now, transitions of A(G) are of the form

(q, S, statP, statS,X,MS, T, TS)
e
−→ (q′, S ′, statP ′, statS ′, X ′,MS ′, T ′, TS ′)

, where (q, S, statP, statS)
e
−→ (q′, S ′, statP ′, statS ′), is a transition of Bb(G), and :

• X ′ = X if statP (ϕ(e)) ∈ {0, 2} and X ′ = X \ lastp ∪ {e} otherwise.

• MS ′ = MS if statP (ϕ(e)) ∈ {0, 2} and MS ′ = MS ∪ {e} is a send event.
MS ′ = MS \ {f} if e is a receive event and f is the corresponding matched
send event.

• TS ′ = TS if statP (ϕ(e)) ∈ {0, 2}. If e is a send event, and statP (ϕ(e)) = 1,
then for every x ∈ X , TS ′(x) = TS(x) ∪ {e} if T (x, ϕ(e)) > 0 and TS ′(x) =
TS(x) ∩MS otherwise. TS ′(e) = ∅ If e is a receive event corresponding to
a sending event f ∈ MS, then TS ′(x) = TS(x) ∪ {e} if T (x, ϕ(e)) > 0 ans
TS ′(e) = TS(f).

• T ′(x, p) = T (x, p) if statP (ϕ(e)) ∈ {0, 2}. If statP (ϕ(e)) = 1 and e is a send
event, then T ′(e, p) = 0 for every p 6= ϕ(e), T ′(e, ϕ(e) = 1 and T ′(x, ϕ(e)) =
T ′(x, phi(e)) for every x ∈ X . If statP (ϕ(e)) = 1 and e is a reception of a
message m from p to q, and e matched a send event f ∈ MS, then for every
x ∈ X , such that f ∈ TS(x) we have T ′(x, ϕ(e)) = max(T (x, ϕ(e)), 1). We
also set T ′(e) = T (f).

Clearly, computing the functions T and TS for each event lastp suffices for
deciding whether Conn(M) is strongly connected. Indeed, if for every p, q ∈ ℘,
TS(lastp, q) = 2, then the factor M currently recognized by A(G) is an atom. If we
project A(G) on transitions that recognize events of factor M , then we obtain an
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automaton Agen(G) that recognizes linearizations of atoms of G. Then, by checking
if Agen(G) recognizes finite words, one can decide if Gen(G) is finite.

We are now ready to prove Theorem 29:
From the construction, it is obvious that Agen(G) accepts only (b-bounded)

linearizations of Gen(G). Now, it remains to show that every atom in Gen(G) has
at least one linearization in Agen(G). Suppose that an atomM of G is not recognized
by Agen(G). then, as M is an atom, there exists an accepting path ρ of G such that
ρ generates a MSC Mρ = N1 ◦M ◦N2. A b-bounded linearization w of Mρ mapping
correctly events of M is accepted by Bb(G), as M , N1, and N2 are is closed. Hence,
M is not recognized if and only if the suword w′ corresponding to events of M in w
leads to a state in which there exists p, q such that T (lastp, q) 6= 2. We can show by
induction on the size of atoms that such situation can not occur.

3.3 Proof of theorem 30

The PSPACE complexity comes from the fact that we have a bound on the size
of Agen(G), and hence we can perform a random walk in the automaton while
rembering the number of events of M . If this number exceeds the bound, then a
witness was found. If the run stops after a number of steps lower than the bound,
no witness was found. As the size needed to remember a state is polynomial, we
obtain a NPSPACE algorithm.

Co-NP-Hardness comes from a reduction from the Hamiltonian path problem.
Indeed, G is not finitely generated iff one can find a path in Agen(G) with more than
|Agen(G)| transitions. A graph of size n contains no Hamiltonian path if every path
of size n contains at least twice th same node. We do not give here the complete
reduction, that can be found in an extended version of [59].

3.4 From finitely generated safe cHMSCs to HMSCs

For simplicity, we will assume that transitions of G are labeled by single events.
This results in no loss of generality, as from a general safe CHMSC, one can always
split cMSCs to obtain a larger CHMC labeled by CMSCs with only one event.

We first describe intuitively the construction. Let Gen(G) be the finite set of
atoms of the safe cHMSC G, and maxsize be the size of the largest atom of Gen(G).
Let b be the bound on unmatched sends on paths of G. The HMSC H will have
states labeled by the atomic MSCs in Gen(G). In addition, we will label each state
with some information concerning paths of G that can correspond to the sequence
of atoms read so far in H . This additional information consists of a sequence of
segments of a path (i.e. a set of consecutive transitions) of G (i.e. a sub-path), that
match this sequence of atoms. That is, each time we read an atom A ∈ Gen(G),
we guess new segments of the path of G that correspond to the MSC A. We keep
track of path segments by recording only the first/last node of each segment and
the processes occurring in the segment. Hence, all we need to ensure finiteness of H
is to ensure that the number of segments is bounded (which is shown in the claim
below).

Let us define H more formally. A segment is a triple (s, f, P ), where s, f are
nodes of G and P ⊆ ℘ is a set of processes such that there exists a path ρs,f from
s to f in G, labeled by a CMSC over a set of events located on processes P . If
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two segments (s, f, P ) and (s′, f ′, P ′) are consecutive, that is f = s′, then their
concatenation is a new segment (s, f ′, P ∪ P ′). Let a = (s, f, P ) and b = (s′, f ′, P ′)
be two non-consecutive segments. Then the insertion of a segment c = (x, y, Q)
between a and b is allowed iff there exists a path from f to s that passes through
x and y in G, and Q ∩ P ′ = ∅. The result of the insertion is either a path a.b.c if
f 6= x and y 6= s′, a path d.c, where d = ab is the concatenation of a and b if f = x
and y 6= s′,a path a.d′, where d′ = bc is the concatenation of b and c if f 6= x and
y = s′, or a segment (s, f ′, P ∪Q ∪ P ′) otherwise.

Let Path be the set of sub-paths of G consisting of at most (b + 1) · maxsize
segments. The set of nodes of H is V = Gen(G) × Path. A node (A, ρ) ∈ V is
labeled by A.

Moreover, there is an edge in H from a node (A, ρ) = (s1, f1, P1) . . . (sk, fk, Pk) to
(A′, ρ′) = (s′1, f

′
1, P

′
1) . . . (s

′
k′, f

′
k′, P

′
k′) iff one can find a path ξ = (s′′1, f

′′
1 , P

′′
1 ) . . . (s

′′
q , f

′′
q , P

′′
q )

labeled by A′, and such that :

• f1 = s′′1 and (s′1, f
′
1, P

′
1) = (s1, f1, P1).(s

′′
1, f

′′
1 , P

′′
1 )

• for every i ∈ 2..k, Pi ∩ P ′′
1 = ∅

• (s′2, f
′
2, P

′
2) . . . (s

′
k′, f

′
k′, P

′
k′) is a path obtained by successively inserting seg-

ments of ξ in (s2, f2, P2) . . . (sk, fk, Pk). Each new insertion of a segment
(x, y, Q) at index i is performed if

⋃
j∈i+1..k′

Pj ∩ Q = ∅ such that places . Note

that this insertion is a guess on how atoms should be interleaved, and all
guesses have to be proved correct by eventually reaching an accepting state.

The initial node is (∅, ε), and the final nodes (A, ρ) are those where ρ is a one-
segment, accepting path of G. If one can go from the initial node to an accepting
one by reading atoms, guessing subpath, and eventually reaching a single complete
path from the initial node of G to one of its accepting nodes, then obviously, the
guess was correct.

Proof of Theorem 31 Let M ∈ L(H), then there exists an initial path of G
labeled by M . Conversely, let us consider an MSC M = A1 · · ·An, where each Ai

belongs to Gen(G). This MSC labels an accepting path ρ = v1 → · · · → vk of G.
For simplicity, we extend the visual order of M to the atoms Ai by letting

Ai ≤ Aj if there are some events e in Ai, f in Aj with e < f . Now, we will assume
w.l.o.g. that for every i < j such that Ai 6≤ Aj the first event of Ai in ρ comes
before the first event of Aj in ρ. That is, we choose an ordering of the atoms of M
according to their first occurrence in ρ.

Claim: Let l ∈ {1, . . . , n} and let ρl be the sequence of segments of ρ labeled
by A1 · · ·Al. Then ρl consists of at most (b+ 1) ·maxsize segments.

proof of the claim: We denote by ρ̂j the longest prefix of ρ that contains no event
of Aj. Let also m be such that ρ̂m is the longest prefix ρ̂j with j ≤ l.

The pMSC labeling ρ̂m has at most b unmatched sends, among which b′ sends
belong to ρl. Thus, b′′ = b − b′ is the number of unmatched sends in ρ̂m \ ρl (the
difference of two paths is obtained by deleting the nodes of the second path from
the first one).
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ρl

Al AlAm Am

ρ
m

lρ

ρ

We claim first that there is no complete atomic MSC Ap in ρ̂m \ ρl. To see
this, note first that such a complete MSC Ap must satisfy p > l. However, it can
satisfy neither (Ap 6≤ Am and Am 6≤ Ap), by the choice of the ordering A1 · · ·An, nor
Am < Ap, since ρ̂m has an empty intersection with Am. Since each incomplete atom
of ρ̂m \ ρl contributes with at least one unmatched send in ρ̂m, we obtain that there
are at most b′′ · (maxsize − 1) events in ρ̂m \ ρl, thus at most b′′ · (maxsize − 1) + 1
segments in ρl ∩ ρ̂m.

Moreover, by definition of m there is just one new atom starting in ρl \ ρ̂m,
namely Am. Hence there are at most b′+1 different atoms in ρl \ ρ̂m (b′ that started
already in ρ̂m plus Am). This yields at most (b′+1) ·maxsize events in ρl \ ρ̂m, hence
at most (b′+1) ·maxsize segments. Therefore, we conclude that ρl contains at most
(b′ + b′′ + 1) ·maxsize = (b+ 1) ·maxsize segments.

Concerning the size of H , for each path segment it suffices to remember the
first/last node, and the processes that occurred in the segment. This gives at most

(|G|2 · 2℘)b·maxsize = 22b(log(|G|)+℘)maxsize paths consisting of less than b · maxsize
segments.

Let us illustrate the construction of a HMSC from a CHMSC with finitely gen-
erated projections. Consider the CHMSC of Figure 12.5. This CHMSC is defined
over two processes {p, q}, and contains 4 nodes n0, n1, n2, n3, and transitions labeled
by two MSCS M1 and M2, which describe respectively process A sending message
m to process B, and process B receiving message m from process A. Transitions
of the CHMSC are (n0,M1, n1), (n1,M2, n3), (n1,M2, n2) and (n2,M1, n1). Let M
be the atom consisting of the message m exchanged between A and B. The set of
atoms of G is {M}, hence each state of H is labeled by M (or ∅). Let us describe
the nodes of the HMSC obtained following our construction.

• s0 is the initial node (ε, ∅)

• s1 is the node ([n0, n1, {A}][n2, n3, {B}])

• s2 ([n0, n1, {A}][n3, n4, {B}]). Actually, this is a bad choice, as any path from
n1 to n3 needs to include an occurrence of CMSC M2, and hence can not be
used to extend this path, as process B appears in the second segment.

• s3 is the node [n0, n3, {A,B}][n2, n3, {B}]. This node is obtained by assembling
path in s1 with path ([n1, n2, {A}]n2, n3, {A}]) (which creates a complete path
fron n0 to n3.

• s4 is the accepting state ([n0, n4, {A,B})]). This node can be obtained from
s1 or from s3 by inserting the path ([n1, n2, {A}], [n3, n4, {B}]).

• Last, there is a transition from s3 to itself, as insertion of ([n3, n2, {A}][n2, n3, {B}])
in s3 gives s3
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Figure 12.5: Building a HMSC from a finitely generated safe CHMSC

3.5 Proof of Proposition 5

Proof: We know that for any MSC X , Lin(X ) is an equivalence class, hence
Lin(X1 ‖ X2) = [Lin(X1) ‖ Lin(X2)] is immediate.

Lin(X1) ‖ Lin(X2) ⊆ Lin(X1 ‖ X2) also follows from the properties of Lin(X ),
because X1 ‖ X2 = Msc (Lin(X1) ‖ Lin(X2)). Now let w ∈ Lin(X) and X ∈
Msc (Lin(X1) ‖ Lin(X2)) for some Xi ∈ Xi (i = 1, 2). Again, using the properties
of Lin(X ), we know that X = Msc (w). Therefore, w ∈ Lin(X1) ‖ Lin(X2) by
lemma 5 (see below). �

Lemma 5 Lin(X1) ‖ Lin(X2) is closed under the equivalence ≡ (see Def. 49).

Proof: Let w ∈ Lin(X1) ‖ Lin(X2). We want to show that for any w′ in Lin
(Def. 48), if Msc (w) and Msc (w′) are isomorphic, then w′ ∈ Lin(X1) ‖ Lin(X2).
Let w = ε1 . . . εn. From Def. 48, w′ = ε′1 . . . ε

′
n and there exists a bijection f :

{1, . . . , n} → {1, . . . , n} such that εi = ε′f(i). For j = 1, 2 let Ej = {i | 1 ≤ i ≤

n ∧ εi ∈ E j} and E ′j = {i | 1 ≤ i ≤ n ∧ ε′i ∈ E
j}, then f restricts and co-restricts

to bijections fj : E
j → E ′j , hence Msc (πj(w)) and Msc (πj(w

′)) are isomorphic for
j = 1, 2 (where πj(w) and πj(w

′) are the respective projections of w and w′ on E j
∗
).

Therefore, πj(w
′) ∈ Lin(Xj) for j = 1, 2 and w′ ∈ Lin(X1) ‖ Lin(X2). �

3.6 Proof of proposition 6

Proposition 6 is an immediate corollary of proposition 5. Indeed, Linb(X1 ‖ X2) =
{w ∈ Lin(X1) ‖ Lin(X2) | w is b-bounded . We know that w is b-bounded iff
the projections π1(w) and π2(w) are b-bounded. Hence Linb(X1 ‖ X2) = {w ∈
Linb(X1) ‖ Lin

b(X2) | w is b-bounded
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3.7 Proof of Proposition 34

Proof: We show that the Post correspondence problem may be reduced to the
above decision problem. Given two finite lists of words u1, . . . , uk and w1, . . . , wk

on some alphabet Σ with at least two symbols, the problem is to decide whether
ui1ui2 . . . uit = wi1wi2 . . . wit for some non empty sequence of indices ij . This problem
is known to be undecidable for k > 7. Given an instance of the Post correspondence
problem, i.e. two lists of words u1, . . . , uk and w1, . . . , wk on Σ, consider the two

HMSCs G1 = (= N,→,M1, n0, nf) G2 = (N,→,M2, n0, nf), with the same
underlying graph (N,→, n0, nf ), constructed as follows (G1 is partially shown in
Figure 12.6).

Figure 12.6: Encoding a PCP with a mixed product.

Define N = {n0, nf},M1 = {Mi, i ∈ 1..k} ∪Mf ,M2 = {M ′
i , i ∈ 1..k} ∪ {M ′

f}.
For each i ∈ 1..k we define Mi as the MSC that starts with a message m1 from
process p to process q. Furthermore, Mi contains an action p(i) located on process
p following the sending of m1, that represent index i of a pair of words (ui, wi).
Last, Mi contains a sequence of |ui| atomic actions occurring after reception of m1

on process q, respectively labeled by q(σi,1), . . . , q(σi,|ui|). This sequence of actions
represents ui = σi,1 σi,2 . . . σi,|ui|. Mf is a MSC containing a message m1 from A to
B.

Similarly, we define for each i ∈ 1..k MSC M ′
i as the MSC that starts with a mes-

sagem2 from process p to process q. Furthermore, M ′
i contains an action p(i) located

on process p following the sending ofm2, and a sequence of |wi| atomic actions occur-
ring after reception of m2 on process q, respectively labeled by q(σ′

i,1), . . . , q(σ
′
i,|wi|

)
representing wi = σ′

i,1 σ
′
i,2 . . . σ

′
i,|wi|

. M ′
f is a MSC containing a message m2 from A

to B.
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We then define Mf as the MSC that contains a single message m1 from p to q,
and M ′

f as the MSC that contains a message m2 from q to p. We define −→1=
{(n0,Mi → n0) | Mi ∈ M1} ∪ {n0,Mf , nf} ∪ {nf ,Mf , nf} and −→2= {(n0,M

′
i →

n0) |M
′
i ∈M2} ∪ {n0,M

′
f , nf} ∪ {nf ,M

′
f , nf}.

For i = 1, 2 let Xi = L(Gi), then Lin
1(Xi) is a regular representative set for

Xi. If the Post correspondence problem has no solution, then X1 ‖ X2 is empty,
hence it is existentially bounded. In the converse case, X1 ‖ X2 contains for all B
some MSC including a crossing of B messages m′

1 by B messages m′
2, hence it is not

existentially bounded. �

3.8 Proof sketch for propositions 7 and 8

Proof Sketch: We use a graph representation of product of MSCs in L(G1) 9
L(G2). A MSC X in the product can be seen as an interleaving of two MSC X1, X2

respectively in L(G1) and L(G2), where common events in X1 and X2 are merged.
For X , we build a graph (V,→9) which vertices are events of X1 and X2, and which
edges are pairs (e, f) such that :

• e, f represent a common event in X1, X2, or

• e <p f in X1, or

• e <p f in X2, or

• e <p f in X .

The only cycles in this graph should be pairs of common events, as X is an MSC,
so X is not existentially b-bounded if adding the RevB relation (see chapter 1,
proposition 1) creates a cycle. Then one can show that if a cycle exists, then there
is a cycle that contains at most 2 events on each process. Then, we can show that
there exists a bound K such that if two path ρ1 and ρ2 of G1 and G2 producing
an existentially b-bounded MSC X while ”synchronizing”’ more than K times on
common events, then one can repeat (or remove) a subset of transitions from ρ2 to
obtain a new path ρ′2 such that Mρ1 9Mρ′2

is also a b-bounded MSC of the product.
Hence, it shows that if a cycle using RevK relation exists for a sufficiently large
bound K, appearing in pairs of sufficiently long path to allow such RevK edges,
then there exists a cycle for a bound that does not exceed B, and smaller witness
paths.

Proposition 8 is proved by showing that it is sufficient to build an automaton
which states remember:

• the last node of a pair of path ρ1, ρ2 from G1, G2, that agree on their common
events.

• A set E of events randomly selected to become witnesses of an existing cycle
in the graph representing the shuffled path plus the RevB relation.

• The restriction on E of the orderings and RevB relations.
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Transitions of this automaton select a transition from G1, or from G2, or from
both if the two transitions share the same common event (recall that we assume
safe CHMSCs which transitions are labeled by single events. States are updated
accordingly, and randomly choose to remember the last event (it must not be a
common event, and at most 2 events per process need to be remembered). Final
states are states for which the graph (E,< ∪RevB) contains a cycle. Obviously, if
the language accepted by this automaton is empty, then G1 9G2 is B-bounded. co-
NP-completeness comes from a reduction from 3-CNF-SAT, close to the reduction
of chapter 1 used to check regularity, or global cooperation.

3.9 Proof of proposition 9

We can see the construction of a MSC X in L(X1 9 X2) as the union of ordering
relations ≤1 and ≤2, plus a choice of a linearization ≤mp of events on the monitor
process such that ≤1 ∩E2

mp ⊆<mp and ≤2 ∩E2
mp ⊆<mp. This construction can also

be seen as a graph G = (E, V ), where E = E1 ∪E2 and V =<1 ∪ <2 ∪ <mp. X is a
MSC if and only if G is acyclic. Let us suppose that for a choice of <m p, there exists
a cycle ρ = e1 . . . en in G (i.e. X is not an MSC). Clearly, this cycle is not contained
in <1 nor in <2, nor in <mp. As E1 and E2 are located on disjoint instances, except
for the monitor process, there exists a path from an event a ∈ E1 to an event binE2

if and only if there exists an event located on mp appearing in this path. Hence,
the cycle can be decomposed as follows ρ = α1.β1.α1 . . . βk, where α1, βk can be
the empty word, elements of αi’s belong to X1 and elements of βi’s belong to X2.
Without loss of generality, we will consider that α1 is not empty. Each αi is of
the form es(i) . . . en(i), and for i ∈ 2..k − 1, es(i) and en(i) are located on the monitor
process. For every pair e, f of consecutive events in αi, we have e <1 f . We also have
en(1) located onmp and en(k) is also necessarily located onmp if βk 6= ε. Similarly, we
have βi = fs(i) . . . fn(i), and for i ∈ 1..k−1, fs(i) and fn(i) are located on the monitor
process. Let us suppose βk is empty. As ρ is a cycle, we have (en(k), es(1)) ∈ V ,
that is, (en(k) <1 es(1)). We also have es(1) <1 en(1) <1 es(2) <1 · · · <1 en(k), hence
<1 contains a cycle, which is a contradiction. If βk 6= ε, then fn(k) or es(1) is on
process mp, as any path from an event of E1 to and event of E2 passe through mp,
and conversely. Now as ρ is a cycle, then either fn(k) <mp es(1), but then <mp is
cyclic (a contradiction) fn(k) <1 es(1) i.e. fn(k) is a shared event, but then <mp is
cyclic again. The last possibility is if fn(k) <2 es(1), i.e. es(1) is a shared event. But
then, one can show that <2 becomes cyclic. �
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4 Proofs for chapter 6

4.1 Proof sketch for Theorem 39

Proof sketch A DMG G is a grammar. For every legal derivations of G (that is a
derivation that leads to the production of a dMSC), one can compute a derivation
tree that explains how non-terminals were successively replaced to achieve this legal
production. The language of derivation trees of a grammar G is a recognizable tree
language, and can be recognized by a bottom-up tree automaton AG. We then
have L(AG)) = ∅ iff L(G) = ∅. Let G = (Π,N , S,−→). The tree automaton that
recognizes legal derivation trees of G is AG = (Q,QF ,F , δ), where Q = {qM | M ∈
M} ∪ {(qN , C) | N ∈ N} is a set of states, QF = {(C0, qax, C)} is a final state. In
(qN , C), C is a communication structure, that details how processes identifiers shall
migrate when replacing non terminal N .

Such communication structure can be represented as a function from Π to Π ∪
{⊥}. Intuitively (π1, π2) means that the identifier π1 migrates to the process known
as π2, and (π1,⊥) means that the identifier π1 migrates to a process created during
rewriting of the non-terminal. In an expresion, expr if one attaches a commucication
structure to all non-terminal, one can check if the replacement of a non-terminal by
expr produces results in process identifiers migration declared in a communication
structure C. We can also check if the expression can be associated a valid MSC only
by looking at terminal MSCs and communication structures labeling non-terminals.
There can be up to |Π|+ 1|Π| such structures.

The transition relation δ is built as follows. All leaves of the tree are labeled
by states (qM), where M is the MSC recognized at that leave. Other nodes of the
tree are labeled by states (qN , C). The transition relation is of the form (qN , C)←
q1, . . . qk. Each qi represents a recognized terminal or non-terminal and its associated
communication structure, that follows the ordering of terminals and non-terminals
in some rule rewriting N . Furthermore, the sequence q1, . . . qk shall contains sates
(i.e refer to MSCs and communication structures) that guarantee that a valid MSC
is produced by this rewriting. Last, the communication pattern realized by MSCs
and communicatiàn structures in this sequence of states should be C.

The construction of the tree automaton leads to an exponential blowup is the size
of the initial grammar. Then checking emptiness ofAG can be done inO(|Q|.(|Q|.δ)).
�
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5 Proofs for chapter 7

This appendix provides a proof for theorem 43, that is we want to show that the
original specification given as a HMSC and the synthesized controlled machines ex-
hibit the same behaviors. We proceed in several steps. We first show (lemma 6 that
in the synthesized machines, all choices (i.e. events corresponding to the first event
of some bMSC) are causally ordered in any execution. We then show (Lemma 7)
that for every configuration of a HMSC H reachable after an execution, there ex-
ists a finite set of configurations of the synthesized machines reachable by observing
the same execution. The last steps show inclusion of specification and implementa-
tions languages in both directions by contradiction. Supposing that one can reach
a configuration (after executing a prefix O), where H allows firing of an event a but
not corresponding configuration of the CFSM allow a leads to a contradiction for
all types of events. We consider each type of events and show that the allowing a
in one language but not in the other contradicts either the fact that O is a prefix
of both the original specification and of the synthesized language, or the fact that
choices are ordered.

Let us first define formally how controllers events can be replaced by silent tran-
sitions, and how communications are renamed.

Definition 92 Let O = (E,≤, t, ϕ,m) be a prefix in L( ‖
i∈I

K(Ai)|Ci). The restric-

tion of O to non-control events is a restriction of O to events located on K(Ai)’s.
We will denote this restriction by Unc(O). The uncontrolling of O = (E,≤, t, ϕ,m)
is a renaming function Ru() that replaces communications to and from the controller
of a process by direct communications with the process concerned by the sent/received
message, and builds the message mapping. Ru(O) = (E,≤, t′, ϕ,m′), where t′(e) =
p!q(m) if t(e) = K(Ap)!Cp(m, q, c), t′(e) = p?q(m) if t(e) = K(Ap)?Cp(m, q), and
t′(e) = t(e) otherwise. Function m′ maps the ith sending from p to q with the ith

reception on q from p for every pair of processes.

Note that for a prefix O in L(K(Ai)|Ci) (i.e. located on a single instance), the
message mapping in Unc(O) is an empty relation.

One of the first things to show that all choices in the synthesized machines are
causally ordered. Once this property is demonstrated, the rest of the correctness
proof is not surprising, as controllers simply enforce correct message receptions using
the total order imposed by choice events.

Lemma 6 For each local HMSC H, the choices events in any behavior of the syn-
thesized communicating machines are totally ordered.

Proof: We prove this property by induction. Let us denote by Pn the property: For
all H , local HMSC, the choices in any behavior of the synthesized communicating
machines in a run containing n choices are totally ordered.

Let us first verify this property for n = 2. As H is local, then there is only one
CFSM that can perform an action (a message sending) from the initial configuration.
The next choice can then only be performed after the first one. Hence, the first two
choices are ordered.
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Let us suppose that the property is verified up to n, and prove that it also holds
for n + 1. Let us suppose a prefix O ◦ O′ from L(‖ K(Ai)|Ci) with n + 1 choices,
such that O contains n choices. Then, O is of the form O = {c1} ◦O1 . . . {cn} ◦On,
where each ci is a choice event, and such that {c1} ◦O1 is an execution of a prefix of
the first bMSC M1 appearing in this run. Then, O ◦ O′ can be completed by piece
P1 such that O ◦O′ ◦P1 contains a complete execution of the first bMSC M1 by the
controlled CFSM (so far, nothing forces M1 to be completely executed in O ◦O′).

We can now use a nice property of FIFO bMSCs: every bMSC M can be repre-
sented by one of its linearizations. Hence, knowing the respective ordering of actions
on each process is sufficient to draw a bMSC. Let us now consider any bMSC of the
form M = P ◦ Pa ◦ Pb ◦ P ′, where P, P ′ are pieces of bMSC, Pa and Pb are pieces
containing only actions a and b, respectively. Then, if a and b are located on distinct
instances, then M can also be written as M = P ◦ Pb ◦ Pa ◦ P ′. This property also
applies to pieces of bMSCs, and also to CFSM executions, which can be seen as
bMSC pieces.

In the behavior O ◦ O′ ◦ P1, all actions of P1 are concurrent with actions from
{c2} . . .On ◦ O

′, as otherwise at least one action in do not need to wait for the
execution of an event in P1 to be fireable, and O ◦O′ would not be an execution of
our CFSM.

So, O ◦ O′ ◦ P1 can be equivalently rewritten as O ◦ O1,1 ◦ . . . O1,n ◦ P1 ◦ {c2} ◦
O′

2 . . . {cn} ◦O
′
n ◦O

′, where each O1,i is the part of Oi that belongs to M1 and O′
i =

Oi \O1,i. Note that P1 is ensured to be a legal continuation of O ◦O′ as no machine
can start executing events with tags greater than 0BH before executing all its tasks in
M1. This also means that one does not have to change the tag of messages appearing
in P1 to rewrite O ◦O′ ◦ P1 into O ◦O1,1 ◦ . . . O1,n ◦ P1 ◦ {c2} ◦O

′
2 . . . {cn} ◦O

′
n ◦O

′

(all messages between controllers in P1 will be tagged by a vector associating 0 to
all branches except the branch labeled by M1 in H).

Let us denote by P2,n = {c2} . . . {cn}◦O′
n ◦O

′ the tagged piece starting at choice
event c2, and by P ′

2,n the same piece, where all tags are decremented on component
M1. P ′

2,n is a run with n choices of an HMSC H ′, which is a copy of H where the
initial node is the node reached in H after M1. Hence, all choices in P ′

2,n are ordered,
and so are choices in w′. Hence, all choices in O ◦O′ are totally ordered. �

As choice events are the only moment when a tag is updated, this lemma also
means that the set of tags that can appear in an execution is the set of tags labeling
choice events, and hence that the tags produced in any run that belongs both to
L(H) and L(‖ K(Ai)|Ci) are the same.

A configuration of an HMSC H is an element of L(H) (i.e. a bMSC piece). Note
that each configuration in L(H) is a prefix of a bMSC generated by a unique minimal
path ρP of H , as choice events uniquely designate chosen branches (this is ensured
by our restrictions). We will say that an action a is fireable from a configuration P
of H iff P ◦ {a} ∈ L(H) (where {a} is the bMSC piece that contains only action
a. This means that either P ◦ {a} is a prefix of OρP , or that there exists a path
ρ′ = ρP .(n,M, n′) such that P ◦ {a} is a prefix of Oρ′.

We can now show that for every prefix O that belongs to the language of H and
to the language of the synthesized machines, one can find a finite sets of executions
of the controlled architecture that are equivalent to O after renaming and erasing
of controllers’ events.
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Lemma 7 Let O ∈ Ru(Unc(L(‖ K(Ai)|Ci))) ∩ L(H) be an execution. Then,
there exists a finite set of executions X = {O1, . . . , Ok} of (‖ K(Ai)|Ci) such that
Ru(Unc(X)) = {O}.

Proof: The events of the controlled automata in executions of the CFSM can be
obtained from O by replacing every action on a process p by an action labeled by
RU−1 in the CFSM execution (for instance p!q(m) becomes p!Cp(q,m, b) for some
branch b). The behavior on each controller simply consists in receiving messages
from the automaton it controls, and forwarding them to the next controller, or con-
versely receiving messages from a controller and forwarding them to the automaton
they control in the order specified by the branches. Then, every complete message
from p to q in O can be mapped to a sequence of 3 messages that ”simulate” the
sending from a process p to a process q. So, if O has no unreceived message, then all
automata in (‖ K(Ai)|Ci) are in a configuration with empty communication buffers,
and each automaton and controller can only be in one state. Now if there is at
least one message m sent from p to q in O but not received, then this means that
(‖ K(Ai)|Ci) is in a configuration where a message (q,m, b) can be transiting be-
tween p and Cp, a message (m, τ) can be transiting between Cp and Cq, or last a
message (p,m, b) can be transiting between Cq and q. Figure 12.7-a) shows an exe-
cution of some HMSC in which a message m3 is sent but not yet received. There can
be three configurations corresponding to such situation, and Figure 12.7-b) shows
one of them in which a message of type m3 is transiting between the controllers
of B and A. Hence, the number of configurations in which CFSMs can be while
observing O ∈ Ru(Unc(L(‖ K(Ai)|Ci))) ∩ L(H) and the size of X are finite and
depend on the number of unreceived messages.�

From this lemma, one can also deduce that there exists a correspondence between
each configuration reachable in the semantics of H and a finite set of configurations
of the synthesized machines.

(a) (b)

Figure 12.7: Relating HMSCs executions and CFSMs

We are now ready to prove language equality, by showing two inclusions.

Lemma 8 Let H be a HMSC, {Ai}i∈I and {Ai}i∈I be respectively the projection of
H on its instances, and the synthesized controllers. Then, Ru(Unc(L(‖ K(Ai)|Ci))) ⊆
L(H)

Proof: For short, we write L1 ⊆ L2 instead of Ru(Unc(L(‖ K(Ai)|Ci))) ⊆ L(H).
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Suppose that there exists a prefix O ◦ {a} ∈ L1 such that O ∈ L2, but O ◦ {a} 6∈
L2. O is a configuration of H , and as O ∈ L1, there exists a set XO of possible
executions of the synthesized CFSM such thatRU(Unc(XO)) (from lemma 7). There
also exists at least one execution Oi ∈ XO such that after executing Oi, the CFSM
is in a configuration CA in which automaton K(Ap) is in a state allowing firing of a
transition (s, σ, s′) with Ru(σ) = a.

Suppose that a is a sending event from p to q, i.e. a = p!q(m) for some m, and
σ = K(ap)!Cp(m, b) for some branch b. The sequence of events in O on p and in
Oi on K(Ap) are identical, up to renaming. Hence, this means that p and K(Ap)
follow the same path ρ of H until the end of Oi (recall that transitions of projected
automata are defined from transitions of H). Then, all predecessors of σ in Oi

allowing to reach state s have been executed, and all predecessors of a in Oρ have
been executed too in O. Hence, O is a configuration of H that allows for the firing
of action a on process p, as projection preserves (up to renaming due to control)
sequences of events on each process. This contradicts the fact that a is a sending
event. A similar case holds for atomic actions. Hence, a can only be a receive action,
i.e. a is of the form a = p?q(m) for some q,m, and σ = K(Ap)?Cp(q,m). This means
that Oi is an execution that brings the CFSM in a configuration in which the FIFO
queue from Cp to K(Ap) has a message m as head (otherwise (q, σ, q′) can not be
fired).

As mentioned in lemma 7, messages in Ru(Unc(Oi)) are simulated by three
messages in Oi. Then, Oi is of the form O1 ◦ {σ1} ◦ {σ2} ◦ {σ3} ◦ {σ4} ◦ {σ5} ◦ O2,
where O1 is a prefix and O2 is a piece. We furthermore have σ1 = K(Aq)!Cq(p,m, b)
for some branch b, σ2 = Cq?K(Aq)(p,m, b),σ3 = Cq!Cp(m, τ), σ4 = Cp?Cq(m, τ),
and σ5 = Cp!K(Ap)(q,m, b). If any of these actions is missing in Oi, then σ can not
be fired. Such situation is depicted in Figure 12.8-a).

Let us now consider O as a configuration of H . There is a message m sent from
q to p but not yet received in O. Event a is not allowed by H from configuration
O, however, message m was sent. Hence, a is forbidden because according to the
chosen path in H , there are some events α1, . . . αk to execute on instance p before
a (i.e. there is piece of bMSC Pa such that O ◦ {a} is not a configuration of H , but
O ◦ Pa ◦ {a} is). This situation is depicted in Figure 12.8-b).

After execution Oi, the automaton K(Ap) has reached a state s, which means
that s is reachable in K(Ap) by reading the controlled version of the actions ap-
pearing on p in O (i.e. the sequence Ru−1(πp(O))). As there exists a transition by
(s, σ, s′) in K(Ap) and as we know that α1, . . . αk can be executed by process p after
O, then state s is a choice, from which at least two transitions (s, σ, s′) and (s, c, s1),
where c is an action of the automata corresponding to α1 (i.e. RU(c) = α1), can be
fired. Note that as all choices in H are local, c is necessarily a message reception
event.

Events c and σ belong to different branches of the same choice of H , and we
have that τ(c) 6= τ(a), as events of Pa located on p have to be executed before a.
From lemma 6 we know that all choices in an execution of the CFSM are totally
ordered. Furthermore the tags associated to an execution of an HMSC and to an
execution of the synthesized communicating automata are the same. We then have
τ(c) < τ(a). As c and a are events of choices that concern p, the communication
σ4 = Cq!Cp(m, τ = τ(a), b) that must occur in Oi before σ can not be executed by
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K(Ap) as the message received by Cp at event σ4 is tagged by a vector τ which is
not the expected successor tag on Cp. Hence Cp can not consume it and forward m
to K(Ap), unless it has received and forwarded the messages corresponding to the
second branch of H , which does not appear in O. Then, receptions on this branch
must be executed by K(Ap) before σ. We then have a contradiction, and L1 ⊆ L2.�

(a) (b)

Figure 12.8: Illustration of the proof of Lemma 8

(a) (b)

Figure 12.9: Illustration of the proof of Lemma 9

Lemma 9 Let H be a HMSC, {Ai}i∈I and {Ai}i∈I be respectively the projection of
H on its instances, and the synthesized controllers. Then, L(H) ⊆ Ru(Unc(L(‖
K(Ai)|Ci)))

Proof: For short, we write L2 ⊆ L1 instead of L(H) ⊆ Ru(Unc(L(‖ K(Ai)|Ci))).
Let us suppose there exists O ◦ {a} such that O ◦ {a} ∈ L2, O ∈ L1 but O ◦

{a} 6∈ L1. From lemma 7, there exists an execution Oi of the CFSM such that
Ru(Unc(Oi)) = O. If a is a sending of a message or an atomic action on process p,
then K(Ap) must be in a state q from which an transition (q, σ, q′) with RU(σ) = a
is fireable, as the sequence of controlled events corresponding to the projection of O
on p is recognized by K(Ap), and as K(Ap) is a deterministic machine. Transition
(s, σ, s′) is fireable as soon as K(Ap) is in state s, which is the case, and Oi ◦{σ} is a
behavior of the CFSM. So, if a is a sending event or an atomic action, O ◦{a} ∈ L1,
which contradicts the initial hypothesis.

Then, a is a reception a = p?q(m), an O looks like the execution represented in
Figure 12.9-b). As shown in lemma 7, a message m from p to q in a configuration
of H corresponds to a sequence of three messages in the CFSM execution: s1 =
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K(Aq)!Cq(p,m, b), r1 = Cq?K(Aq)(p,m, b), s2 = Cq!Cp(m, τ), r2 = Cp?Cq(m, τ),
s3 = Cp!K(Ap)(q,m, b), r3 = K(Ap)?Cp(q,m, b) (with Ru(Unc(r3 = a))). As the
sending of m from q to p appears in execution O, the corresponding sending event
s1 executed by K(Aq) also appears in Oi.

We can now proceed as follows: we first prove that there exists an execution
O′ of the synthesized CFSM such that Ru(Unc(O′)) = O, and such that in the
configuration reached by the CFSM after O′, controller Cp is ready to execute event
r2 if a message is buffered with appropriate tag. We then show that such message
exists, and that it is correctly tagged, and hence allows for the reception of r2,
followed by s3 and r3.

Execution O is a prefix of a concatenation of bMSCs labeling branches of H , i.e.
a sequence of bMSCs M1 ◦M2 ◦ . . .Mn. Among these bMSCs, process p is concerned
only by a subset Mi1, . . .Mik of them, and process q by another subset Mj1, . . .Mjk′.
Sending and reception of message m is O belongs to a bMSC Mpq appearing in both
sets. From Lemma 7, as O ∈ L1 ∩ L2, there exists an execution Oi of the CFSM
such that Ru(Unc(Oi)) = O. After Oi, the CFSM is in a configuration in which
automaton K(Ap) can fire a transition (s, r3, s

′) provided the head of the queue from
Cp to K(Ap) is a message m.

One can note that the controller Ck of an automaton K(Ak) systematically
receives messages sent by K(Ak) (rule R1) and forwards them to another controller.
Similarly, if Ck receives a message from another controller, it forwards it to K(Ak).
This means that when Ak receives a message and this reception belongs to a branch
b of H , then Ck has necessarily counted this branch in its vectorial clock τk, that
remembers the number of occurrences of choices concerning k that have occurred so
far. This also means that Ck has accepted an incoming message (m, τ) coming from
another controller, and that τ was a valid tag at the time of this message reception.

Let us consider again Oi. This execution is a partial execution of M1 ◦ . . .Mn by
the CFSM, and contains some elements of Mpq, including event s1. Considering the
sequence of events executed byK(Ap) andK(Aq) in Oi, one can also get the sequence
of sendings/receptions executed by the controllers Cp and Cq, as for every event of the
form p!q(m) in O there exists a pair of events K(Ap)!Cp(m, b).Cp?K(Ap)(m, b), and
for every event of the form p?q(m) inO there exists a pair of events Cp!K(Ap)(i,m, b).K(Ap)?Cp(i,m, b)
in Oi. However, this does not mean that Cq is ready to execute(or has already exe-
cuted) r1 or Cp is ready to execute (or has already executed)r2 , as some messages
may still need to be consumed in the message queues of Cp and Cq. Let us sup-
pose that Cq must receive at least one message, either from another controller, or
from K(Aq) before receiving message m. Let us call this reception β and the fol-
lowing retransmission β ′. In the first case, β must be executed before r1 if and
only if it is a reception of a message that have to be executed to comply with the
sequence of receptions defined in some branch of H . In this case, β ′ is a sending
of a message to K(Ap), and as it has to be executed before r1, then it means that
some reception on K(Aq) must be executed before s1, and then we cannot have
Ru(Unc(Oi)) = O ∈ L1 ∩ L2. In the latter case, as reception of messages from
controlled automata can be performed without waiting (according to rule R1 of the
controllers), then there exists an execution Oi ◦ {β} ◦ {β ′} of the CFSM from which
r1 can be executed, and such that Ru(Unc(Oi ◦ {β} ◦ {β

′})) = O. Similarly, if Cp

is in a configuration from which r3 can not be fired because a reception α followed
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by a retransmission of message α′ must occur before r3, then one can show that
either this implies that Ru(Unc(Oi)) 6∈ L1 ∩ L2, or that there exists an execution
Oi ◦ {α} ◦ {α′} such that Ru(Unc(Oi ◦ {α} ◦ {α′})) = O. Figure 12.9-a) illus-
trates this situation. The argumentation extends for arbitrary sequences of actions
wp = α1.α

′
1 . . . αi.α

′
i and wq = β1.β

′
1 . . . βj .β

′
j, i, j ∈ N that have to be executed by

Cp and Cq before the execution of r1 and r2: mandatory reception from a controller
implies Ru(Unc(Oi)) 6∈ L1∩L2, and mandatory reception from K(Ap) or K(Aq) can
be performed to obtain a larger execution. Note that in the sequences of missing
events wp and wq Cp and Cq can not be forced to exchange a message, which would
imply a reception from another controller, and hence Ru(Unc(Oi)) 6∈ L1 ∩ L2. So
events in wp are independent from events in wq, and one can find an execution of
the CFSM O′ that includes Oi, the sequences wp, wq, and the two events r1 and s2.
Hence, after O′, controller Cp is in a configuration allowing it to receive the message
(m, τ) sent by Cq if τ is a correct tag. This reception corresponds to rule (R2) of the
controller. If r2 can not be executed by Cp but [τp]p = [τ ]p, then it usually means
that r2 is not the next reception to perform according to the chosen branch, and
that there are remaining actions to perform on Cp before allowing r2. However, we
have ruled out this possibility after execution of O′. Hence, the only case remaining
is when [τp]p 6= [τ ]p, and [τ ]p is not an immediate successor of [τp]p. However, we
know that s1 is a causal consequence of all choices that have been performed in O′

up to bMSC Mpq, as one can establish a correspondence between messages in O and
sequences of messages in O′. So, τ [b] is exactly the number of occurrences of branch
b in M1 ◦ · · · ◦Mpq. As Cp has executed all events in wp required before execution
of r2, that is corresponding to events in M1 ◦ · · · ◦Mpq−1 in execution O′, and more
precisely all receptions of messages coming from other controllers, we necessarily
have [τp]p[b

′] = [τ ]p[b
′] for every branch b′ 6= b of H , and [τp]p[b] + 1 = [τ ]p[b]. This

contradicts the fact that r2, necessarily followed by s3 and r3 can not be executed
from O′, and hence contradicts O ◦ {a} 6∈ L1. �

Theorem 43 Let H be an HMSC, and let Acont = ‖
i∈I

K(Ai)|Ci be its controlled

synthesis. Then, Acont simulates H (up to renaming).

Proof: The proof of this theorem is is straightforward, as we clearly have a relation
between configuration and ations of both models using (lemmas 8 and 9).

5.1 Proof of theorem 44 (well formedness of DMGs

Theorem 44 For a DMG G, one can decide in doubly exponential time if L(G) is
well-formed.

Proof:[sketch] Let G = (Π,N , S,−→) be a DMG. We have seen in the proof of
theorem 39 how to build a tree automaton AG that accepts all parse trees that
correspond to successful derivations of G. Thus, we have L(AG) = ∅ iff L(G) = ∅.
To answer the well-formedness question, we build a tree automaton L(BG) for those
parse trees that give rise to well-formed MSCs (considering an MSC as a singleton
set). One can show that L(G) is realizable iff all MSCs in L(G) are realizable. We
deduce that G is well-formed iff L(AG) \ L(BG) = ∅.

As forAG, the construction of BG will use a communication structure, that recalls
which process is known. To illustrate the main idea of BG, we use the DMG G from

5. PROOFS FOR CHAPTER 7 245



CHAPTER 12. APPENDIX

Figure 6.4. The left hand side of Figure 12.10 depicts a parse tree t of G. More
precisely, t is the parse tree that corresponds to the derivation depicted in Figure 6.5.
We, therefore, call t legal. Note that, for technical reasons, the functions f from a
rule A −→f expr are located at the non-terminal A to which the rule is applied. The
crucial point of the construction is to record, during a derivation, only a bounded
amount of information on the current communication structure of the system. A
communication structure is basically a partitioning of the set of process identifiers
together with a binary relation that provides information on what processes know
of other processes. The right hand side of Figure 12.10 depicts a run of BG on t.
States, which are assigned to nodes, are framed by a rectangle. A state is hence
either a pair of communication structures (together with a non-terminal, which is
omitted), or an element from mP that occurs in G. Our automaton works bottom-
up. Let us have a look at the upper right leaf of the run tree, which is labeled
with its state M12. Suppose that, when it comes to executing M12, the current
communication structure C0 of the system contains two processes carrying π1 and
π2, respectively, that know each other (represented by the two edges). When we
applyM12, the outcome will be a new structure, C1, with a newly created process
that does not carry a process identifier anymore. Henceforth, the process carrying
π1 is known to that carrying π2, but the converse does not hold. Names of nodes
are omitted; instead, identical nodes are combined by a dotted line. We conclude
that applying the rule A −→fA M12 can have the effect of transforming C0 into
C1. Therefore, (C0, A, C1) will be a state that can be assigned to the (A, fA)-labeled
node, as actually done in our example run. It is very important here to note that
the first structure C0 of a state (C0, A, C1) is reduced meaning that it can restrict
to nodes carrying process identifiers. The structure C1, however, might keep some
unlabeled nodes, but only those that stem from previously labeled ones. Hence, the
set of states of B will be finite, though exponential in the size of G. Like elements
of mP, a triple (C0, A, C1) can be applied to a communication structure so that the
sequence of states that label the successors of the root transform D0 into D1. We
can reduce D1 towards D2 by removing the middle node, as it does not carry a
process identifier nor arises from an identifier carrying node. Thus, (D0, S,D2) is
the state assigned to the root. It is final, as D0 consists of only one process, which
carries all the process identifiers. A final state at the root finally ensures that the
run tree represents a derivation that starts in the initial configuration gathering all
process identifiers, and ends in a well-formed MSC. �
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Figure 12.10: A legal parse tree of G and a run of BG

6 Proofs for chapter 8

6.1 Undecidability for satisfiability of LPOC

Theorem 51 Satisfiability of LPOC formulae is an undecidable problem.

proof This theorem is proved by reduction from the Post Correspondence Problem
(PCP). The reduction is similar to that used in decision problems related to message
sequence charts (see for instance [60]).

Consider an instance of PCP with Σ a finite alphabet such that |Σ| > 1, and
(g1, h1), . . . , (gn, hn) a finite sequence of pairs of words over Σ. A solution (if it exists)
is a finite sequence of indices j1, j2, . . . , jt in {1, 2, . . . , n} such that gj1gj2 . . . gjt =
hj1hj2 . . . hjt . The reduction is as follows. We pick P = {p, q, r}. Let APp = {ap |
a ∈ Σ} ∪ {ip | i ∈ {1, 2, . . . , n}}, APq = {aq | a ∈ Σ} ∪ {iq | i ∈ {1, 2, . . . , n}},
and APr = {ipr, iqr | i ∈ {1, 2, . . . , n}}. We take APex = APp ∪ APq ∪ APr, and
APob = ∅. Let O be the empty observation, that is, a computation with no states.
Thus, any computation is an explanation for O.

We encode solutions to the PCP instance by computations which have the form
illustrated in Figure 12.11. The total ordering of states on each process is drawn as
a vertical line with the minimum state at the top. The downward-sloping arrows
represent pairs (s, s′) of states in the successor relation such that s, s′ are on different
locations. The label of each state indicates its valuation. We can construct formulae
Φp,Φq,Φr such that {Φp,Φq,Φr} is satisfiable iff there exists a computation W with
W |= {Φp,Φq,Φr} and W represents a solution to the PCP instance. It will then
follow that the PCP instance has a solution iff there exists an explanation for O
satisfying {Φp,Φq,Φr}.

In the sequel, we outline the construction of Φp, Φq and Φr. For A ⊆ APp, we
write VAL(p, A) for the formula locp∧ ↓ 1,APp(T ) where T is the computation with a
singleton state of location p and valuation A. In other words, the formula VAL(p, A)
asserts that the current state has location p and valuation A. We define the notations
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Figure 12.11: Encoding solutions to PCP with computations

VAL(q, A), VAL(r, A) in the same way. The formula Φp is the conjunction of the
following formulae.

(P1)
∨

i∈{1...n}

VAL(p, {ip}). It asserts that the valuation of the minimum state of Sp is

{ip}, for some i in {1 . . . n}.

(P2) EGp(
∧

i∈{1...n}

(VAL(p, {ip})→ ϕi)) where each ϕi is given as follows. Let gi,j be the

j-th letter of gi, for j = 1, . . . , |gi|. Then ϕi asserts that there exist m states
s1, s2, . . ., s|gi| in Sp with s1 being a successor of the current state, and sj+1

a successor of sj for j = 1, . . . , |gi| − 1. Furthermore, the valuation of sj is
{gpi,j} for j = 1, 2, . . . , |gi|, and either s|gi| has no successor in Sp, or s|gi| has a
successor in Sp whose valuation is {ℓp} for some ℓ in {1, . . . , n}.

More precisely, ϕi =↓ |gi|+1,Ap(T ) ∨ (∨ℓ=1,2,...,n ↓ |gi|+1,Ap(T
′
ℓ)), where T is the

computation ({t1, t2, . . . , t|gi|}, ηT ,≤T , VT ) with ηT (tj) = p for every j = 1, 2, . . . , |gi|,
t1 ≤T t2 ≤T . . . ≤T t|gi|, and VT (tj) = {g

p
i,j} for every j = 1, 2, . . . , |gi|. Simi-

larly, for each ℓ = 1, 2, . . . , n, T ′
ℓ is the computation ({t1, t2, . . . , t|gi|, t|gi|+1}, ηT ′,≤T ′

, VT ′
ℓ
) with ηT ′

ℓ
(tj) = p for every j = 1, 2, . . . , |gi|+1, t1 ≤T ′

ℓ
t2 ≤T ′ . . . ≤T ′ t|gi|+1,

VT ′
ℓ
(tj) = {g

p
i,j} for every j = 1, 2, . . . , |gi|, and VT ′

ℓ
(t|gi|+1) = {ℓp}.

(P3) EGp(
∧
a∈Σ

(VAL(p, {ap}) → EXqVAL(q, {aq}))). Intuitively, this asserts that ev-

ery state of valuation {ap} of p is “matched” by a state of q with valuation
{aq}. We emphasize that the matchings are guaranteed to be one-to-one and
order-preserving. This is due to the fact that for every pair p, q of processes
<<pq is “fifo”, that is one-to-one and order-preserving. More precisely, for
each state s of Sp, there is at most one state s′ of Sq such that s << s′ (and
thus s << pqs′). Similarly, for each state s of Sq, there is at most one state s′

of Sp such that s′ << s ( and thus s′ << pqs). Finally, for any s1,s2 of Sp, s
′
1,

s′2 of Sq such that s1 << s′1, s2 << s′2, we have that s1 ≤ s2iffs
′
1 ≤ s′2.

(P4) EGp(
∧

i∈{1,2,...,n}

(VAL(p, {ip}) → EXrVAL(r, {ipr}))). That is, for every state of p

with valuation {ip}, there is a “matching” state of r with valuation {ipr}.
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The formula Φq asserts the conjunction of the following conditions.

(Q1) The valuation of the minimum state of q is {iq} for some i in {1, 2, . . . , n}.
This is similar to case (P1) in the construction of Φp.

(Q2) For each i ∈ {1, 2, . . . , n}, if a state of q has valuation {iq}, then there exist
|hi| subsequent states s1, s2, . . ., s|hi| of q, whose valuations are, respectively,
{hq

i,j}, with hi,j being the j-th letter of hi, for j = 1, 2, . . . , |hi|. Further, either
s|hi| has no successor of location q, or s|hi| has a successor of location q and
valuation {ℓq} for some ℓ in {1, 2, . . . , n}. The detailed formula of this case
can be constructed in the same way as case (P2) in the construction of Φp.

(Q3) For each a ∈ Σ, if a state s of q has valuation {aq}, then ↓1,APp(T ) holds at
s, where T is the computation containing a singleton state of location p and
valuation {ap}. That is, every state of valuation {aq} of q is “matched” by a
state of valuation {ap} of p.

(Q4) For each i ∈ {1, 2, . . . , n}, if a state of q has valuation {iq}, then it has a
successor of location r and valuation {iqr}. This is similar to case (P4) of Φp.

Finally, Φr asserts the conjunction of the following conditions.

(R1) The minimum state of r has valuation {ipr} for some i in {1, 2, . . . , n}.

(R2) For each index i ∈ {1, 2, . . . , n}, if a state of r has valuation {ipr}, then it has
a successor state, say, s, of location r and valuation {iqr}. Further, either s
has no successor of location r, or s has a successor of location r and valuation
{ℓpr} for some ℓ ∈ {1, 2, . . . , n}. The detailed formula can be constructed in
the same way as case (P2) of Φp.

(R3) For each i ∈ {1, 2, . . . , n}, if a state s of r has valuation {ipr}, then ↓1,APp(T )
holds at s, where T is the computation containing a singleton state of location
p and valuation {ip}.

(R4) For each i ∈ {1, 2, . . . , n}, if a state s of r has valuation {iqr}, then ↓1,APq(T )
holds at s, where T is the computation containing a singleton state of location
p and valuation {iq}.

It is easy to see that the constructions of Φp, Φq, Φr encode a PCP instance, and
that there exists a computation satisfying Φp, Φq, Φr if and only if the corresponding
instance of PCP has a solution. Even if one considers a single formula starting from a
single minimal state, a similar encoding enforcing Φp, Φq, Φr at immedaite successors
of the minimal state can be used. This completes the proof for Theorem 51. �
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7 Proofs for chapter 9

7.1 Proof of Proposition 12

Proof: It is easy to see that if hO,M exists, then it is the (unique) function hO,M :
EO → EM that sends the k-th event of EO on instance p onto the k-th event of
πΣobs

(M) on instance p for all k ∈ N and p ∈ Pobs (due to the fact that O is totally
ordered on each process, and must be closed by precedence). If hO,M does not
preserve causal ordering for some events located on distinct processes, then O can
not be a sub-order of a prefix of M . Conversely, if O is a sub-order of a prefix of M ,
then for every ordered pair of events e ≤O f in O, we have hO,M(e) ≤M hO,M(f).�

Corollary 4 Given an observation O such that O ⊲Σobs
M and an observation O′

such that O′ is a prefix of O or O′ is a sub-order of O, then O′⊲Σobs
M . Furthermore,

if O′ = ΠΣ′(O) for some alphabet Σ′ ⊆ Σobs, then O′ ⊲Σ′ M

Proof: The proof is straightforward, as it is sufficient to consider the restriction of
hO,M to events of O′ to obtain a matching relation from O′ to M .�

7.2 Proof of Proposition 13

Proposition 13 Let O be an observation and M be a MSC. Then, checking whether
O ⊲Σobs

M can be done in O(|M |+ | ≤O |.| ≤M |).

Proof: The first step to verify a matching relation is to build the mapping hO,M

from O to M , that is compare sequences of observable events along each process.
This can be computed in linear time in the size of M . Then, for each pair of events
(a, b) appearing in ≤O we have to verify that hO,M(a) ≤M hO,M(b). �

7.3 Proofs for diagnosis algorithms (section 4)

In this part of the appendix, we will detail how to build an automaton that rec-
ognizes explanations for an observation O contained in a HMSC H . As already
mentioned, observations may be collected either in a centralized or a distributed
way, and observed events can be sent to supervising mechanisms via asynchronous
communications. Hence, the model of our system can describe runs which projec-
tions are all larger than the observation collected so far. Note however that thanks
to the prefix condition, our framework does not impose observations to be complete
projections of an MSC labeling an accepting path of H , but should only embed into
an explanation.

Our goal is to build incrementally the set of all explanations provided by a
HMSC. This means in particular that if we study MSC concatenations, we should
be able to test whether it is worth or not continuing along a path of a HMSC. This
leads us to introduce the notion of compatibility defined as follows:

Definition 93 A MSC M is compatible with an observation O if and only if there
exists a MSC M ′ such that O ⊲Σobs

M ◦M ′. Given a HMSC H and a path ρ ∈ PH ,
then Mρ is compatible with an observation O (w.r.t HMSC H) if and only if there
exists ρ′ such that ρρ′ ∈ PH and O ⊲Σobs

Mρρ′ .
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When H is clear from the context, we will drop the reference to H and simply
write that Mρ is compatible with O, or even ρ is compatible with O. It is worthwhile
noting that when M and O are compatible, then there exists a unique maximal
embedding function h that sends a prefix of O onto events of M , and such that any
embedding h′ of O into M ◦M ′ is an extension of h. Hence, the unique embedding
h of O into some MSC in FH can be built incrementally.

We will build a new automaton whose nodes are product of a node of the original
HMSC with the subset of events of O observed so far, that will be called the progress
of the observation. For instance, a path leading to the product state (v, EO) should
generate an execution that embeds O.

Next we outline some difficulties we will face up in order to build this au-
tomaton. First, we can remark that it is not possible to say that a path ρ =

n0
M1−→ n1 . . .

Mk−→ nk is not an explanation of O just by considering the projec-
tions ΠΣobs

(M1), . . . ,ΠΣobs
(Mk). This is basically due to the fact that in general

ΠΣobs
(M1 ◦M2) 6= ΠΣobs

(M1) ◦ ΠΣobs
(M2): the former may provide more ordering

on projected events than the latter (see for instance the MSCs M1 and M2 in Fig-
ure 12.12). For similar reasons, we cannot use as a basis for diagnosis a copy of the
original HMSC which transitions are labeled by projections of MSCs.

Second, another difficulty is to know the influence of unobservable events and
of concatenation on the causal ordering of observable events. As already men-
tioned, valid explanations may contain an arbitrary number of unobserved events.
Fortunately, we can always keep an abstract and bounded representation of these
unbounded orders, by projecting runs of our models on observable events, and recall-
ing some causalities. This abstraction of runs will be modeled by a partial function
gO,M : P −→ 2O that associates to each instance p ∈ P the observed events of O
preceding the last event (observed or not) on instance p at the end of the MSC label-
ing some path of H . More formally, for an observation O and a MSC M compatible
with O, we have

gO,M(p) = h−1
O,M

(
↓
(
max≤M

(p)
))
∩Dom(hO,M),

where hO,M is the (unique) maximal embedding of prefixes of O in M . Notice that
function gO,M defines an abstraction of an MSC that is not redundant with the order
contained in O, since M can contain more ordering on observed events than O.

Let us illustrate the use of function g with an example. Consider the two MSCs
of figure 12.12, and the observation alphabet Σobs = {a, b, b′, c, c′}. O1 and O2 are
the the projections of M1 and M2 on Σobs. We can remark that ΠΣobs

(M1 ◦M2) and
O1 ◦ O2 comport isomorphic sets of events, but define different causal orderings on
theses events (b and c′ are causally ordered in ΠΣobs

(M1 ◦M2) but not in O1 ◦ O2.
The reason is that the causality from Medium to Receiver induced by message
Info is lost during projection. Let us suppose that MSC M1 has been played as
an explanation of observation O1. Then, the function gO1,M1 computed after M1 to
explain observation O1 associates event a to process sender, events {a, b} to process
Medium, and events {a, b, c} to process Receiver.

Let us now show that for a given observation O, the projections and the function
g can be computed incrementally. To do so, we first show how to compute the
projection of M1 ◦M2 according to the projections of M1 and M2 (i.e ΠΣobs

(M1) and
ΠΣobs

(M2)) and the function gO,M1:
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Figure 12.12: Concatenation and Projection

Proposition 18 Let M1 = (E1,≤1, α1, µ1, ϕ1), M2 = (E2,≤2, α2, µ2, ϕ2) be two
MSCs, and let ΠΣobs

(M1) ◦ΠΣobs
(M2) = (E,≤, α, µ, ϕ). Then for any observation O

such that M1 is compatible with O,

ΠΣobs
(M1 ◦M2) = (E,≤′, α, µ, ϕ), where

≤′=

(
≤ ∪{(x, y) ∈ ΠΣobs

(M1)× ΠΣobs
(M2) | ∃z ≤2 y, x ∈ gO,M1(ϕ(z) )}

)∗

Proof: Let us suppose that there exists (x, y) that are ordered in ΠΣobs
(M1 ◦M2),

but not in ≤′. Then, obviously x ∈ E1 and y ∈ E2, and furthermore, ϕ(x) 6= ϕ(y).
As (x, y) are ordered in ΠΣobs

(M1 ◦M2) without being on the same process, then
there exists an event x′ ∈ E1 such that x ≤ x′, and event y′ ∈ E2 such that
ϕ(x′) = ϕ(y′). Hence, we have that x ∈ g(ϕ(x′)), and x ≤′ y, contradiction. �

The next step is to show that we can compute the function gO,M1◦M2 from gO,M1 and
M2.

Proposition 19 Let M1 = (E1,≤1, α1, µ1, ϕ1), M2 = (E2,≤2, α2, µ2, ϕ2) be two
MSCs such that M1 ◦M2 is compatible with O. Then, for every p ∈ P,

gO,M1◦M2(p) = gO,M1(p) ∪ {gO,M1(ϕ(e)) | e ≤2 e
′, ϕ(e′) = p}

∪ {e ∈ h−1
O,M1◦M2

(πΣObs
(M2) ∩ O) | e ≤2 e

′, ϕ(e′) = p},

where hO,M1◦M2 is the largest embedding of prefixes of O into M1 ◦M2.

Proof: Suppose that there exists a process p ∈ P and a event e ∈ O such that
e ∈ gO,M1◦M2(p) but e is not in the incremental computation of g. Then, clearly
e 6∈ gO,M1(p). If e ∈ M1, then e ∈ gO,M1◦M2(p) if and only if there exists a causal
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chain of events hO,M1◦M2(e) < e1 < ...ei < ej < ... < en in M1 ◦ M2 such that
en ∈ E2 and is located on process p, ei ∈ M1 and ej ∈ M2 are located on the
same process. Hence by definition, e ∈ gO,M1(ϕ(ei)) and also belongs to the incre-
mental construction of gO,M1◦M2(p). If e ∈ M2, then e ∈ gO,M1◦M2(p) if and only
if there exists a causal chain hO,M1◦M2(e) < ... < en in M2 such that en ∈ E2 is
located on process p. This case is also captured by the incremental construction. �

Hence it is sufficient when studying an arbitrary long path ρ of a HMSC that is
compatible with an observation O to memorize the finite set of observed events in
Mρ and gO,Mρ to be able to build incrementally a faithful projection of the MSC
labeling any continuation of this path (and make sure that this continuation is still
compatible with the observation). We are now ready to build the product AO,H of
an observation O on an alphabet Σobs and a HMSC H :

Definition 94 Given a HMSC H and an observation O on an alphabet Σobs, AO,H

is an automaton defined by: AO,H = (Q, δ,M, q0, F
′), where δ is a new transition

relation, Q ⊆ N × Prefix(O)×F , where F is the set of functions from P to 2O.

• q0 = (ni,Mε, g∅), where g∅ is a function over an empty domain.

•

(
(n,E, g),M, (n′, E ′, g′)

)
∈δ with E 6= O iff

– n
M
−→ n′,

– For every process p, either E ′′
p is a prefix of EOp, or EOp is a prefix of

E ′′
p , where E ′′ = E ⊎ πΣObs

(M). When this property holds, then E ′ =
EO∩h−1(E ′′), where h is the largest partial mapping of events of EO onto
events of E ′′ that preserves local ordering ≤p, and labeling. Note that E ′

is necessarily a prefix of O. When the property does not hold for MSC
M , then the transition is not allowed.

– g′(p) = g(p) ∪ {g(ϕ(e)) | e ≤M e′, ϕ(e′) = p} ∪ {e ∈ πΣObs
(M) | e ≤M

e′, ϕ(e′) = p},

– For all a, b ∈ E ′ with a <0 b, either a, b ∈ E (in this case, the ordering of a
and b has already been checked in former transitions), or h(a) ≤M h(b), or
∃c ≤M h(b) with a ∈ g(ϕ(c)) (the existence of a causal ordering between
a and b is ensured by proposition 18).

•

(
(n,EO, g),M, (n′, EO, g)

)
∈ δ iff n

M
−→ n′.

• F ′ = {(n,EO, g) | n ∈ F},

Note that g(p) is updated only when the explanation provided at a given state is
incomplete. It is updated to memorize the observable events in the causal past
of the last event (observed or not) executed by each instance. Similarly, we make

sure during construction of a transition

(
(n,E, g),M, (n′, E ′, g′)

)
∈ δ that any

order a <O b is preserved in E ′: either h(a), h(b) are predecessors of all events of
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M and their ordering was already checked, or they are ordered in M , or h(a) is
in M and h(b) is a successor of an event that necessarily occurs after h(a). We
hence ensure by construction that for any path ρ of AO,H, Mρ is compatible with

O. Transitions of AO,H of the form

(
(n,E, g),M, (n′, E ′, g′)

)
∈ δ can be projected

to obtain transitions of the form (n,M, n′) that are used in H to move from one
state to another. We denote by LAO,H

the set of accepting paths of AO,H, and
by LH,AO,H

⊆ PH the set of paths of H that are projections of LAO,H
on the first

component of each state.
We are now ready to prove theorem 53

Theorem 53 [77] Let AO,H be the HMSC computed from O and H, and ρ ∈ PH .
Then O ⊲Σobs

Mρ iff ρ ∈ LH,AO,H
. Moreover, AO,H is of size O(|H| × |O||P|×|PObs|).

Proof: It is obvious from the construction of δ that any accepting path ρ of LH,AO,H

generates a MSC Mρ such that O⊲Σobs
Mρ, as we forbid any transition where a <O b

and hO,Mρ(a) �Mρ hO,Mρ(b). Reciprocally, consider ρ /∈ LH,AO,H
, then either ρ /∈ H

and we are done or ρ ∈ H but 6 ∃ρ′ ∈ LH,AO,H
such that ρ is the restriction of ρ′ on

its first component. Consider ρ1 and ρ2 such that ρ = ρ1ρ2 and ρ1 is the greatest
prefix of ρ that is compatible with a prefix of ρ′. Thus ρ2 is of the form (n,M, n′).ρ3
and Mρ1 ◦M is not compatible with O, which is thus also the case for ρ.

For the complexity statement, notice that a prefix can be uniquely represented
by remembering its last event on each observed instance. Hence the number of
prefixes of O is lower than |O||PObs|. Moreover, notice that g associates to every
instance i a prefix of O. At last, notice that for every state (n,E, g), we have E =⋃

p∈P g(p), hence E is superfluous as it can be computed from g. We however kept
the prefixes of the observation in the definition of states for the sake of readability
of the construction of AO,H.�

Theorem 53 means in particular that LH,AO,H
= PO,H . Hence, AO,H is the

generator of all explanations of observation O provided by the HMSC model H .
The restriction of AO,H to coaccessible states of F ′ is the diagnosis provided for
observation O from the HMSC model H .
Remark: Note however that paths in LH,AO,H

are not the minimal paths em-
bedding O, as AO,H allows any transition of H from its accepting states. To
consider only minimal paths, one should consider only the relation δ′ = δ ∩
{
(
(n,E, g),M, (n′, E ′,M ′)

)
| E 6= EO}, and the set of accepting nodes F ′ = {(n,EO, g)}.

For a centralized offline diagnosis performed with a complete observation, this has
no importance. However, we will see in section 4.2 that when the diagnosis prob-
lem is split into sub-problems, it is important to return all paths embedding the
observation.

Let us now show the construction of the diagnosis automaton on an example
Consider the HMSC H and the observation O of Figure 12.13. The HMSC describes
the behavior of three processes P1, P2, P3. Let us denote by e1 the occurrence of
action a in O and by e2 the occurrence of action b.

Let us suppose that we have equipped a distributed system to observe any oc-

currence of actions a and b and that we obtain the observation O. Clearly, n0
M1
−→

n0
M2
−→ n1 is not an explanation of O for the observation alphabet Σobs = {a, b}, as

a and b are not causally related in M1 ◦M2. The automaton AO,H computed from
O and H with this observation alphabet is given in Figure 12.14. The transitions
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Figure 12.13: A HMSC example and an observation

with a dark cross symbolize transitions of the original HMSC that cannot be fired
in the diagnosis automaton. For example, from the initial state, the transition la-
beled by M2 cannot be used, as any path ρ starting with this transition would not
allow a matching from O to Mρ. One can easily verify that O matches any MSC
composition of the form M3∗ ◦M1 ◦M3 ◦M3 ◦M3∗ ◦M2. Note that if we choose
as observation alphabet Σobs = {a, b, !m}, the observation O has no explanation in
H .

7.4 Offline existence- proof of theorem 54

Theorem 54 Let H be a HMSC, Σobs be an observation alphabet, and O be an
observation. Deciding whether there exists an explanation for O in H w.r.t. Σobs is
an NP-complete problem.
Proof: First, let us show that the existence problem is in NP . There exists an
explanation for O in H if and only if we can exhibit a path ρ of H such that
O ⊲Σobs

Mρ. Let us suppose that ρ is a path of length greater than |O|2.|P|.|H|.
Whenever, ρ is an explanation for O, this path has at most |O| transitions labeled
by an MSC which contains an event e that is the image of some event of O via
the matching function hO,Mρ. Hence, we can exhibit a subsequence of consecutive
transitions in ρ of size greater than |O|.|P|.|H| that are only labeled by unobservable
MSCs, or which labeling MSCs are not used to explain O (that is they comport only
events which are not in hO,Mρ(EO)). Then, two cases can appear. Either ρ′ is a
suffix (resp. a prefix) of ρ, or not. If ρ′ is a suffix (resp. a prefix), then we can
remove it from ρ to obtain a smaller explanation. If not, then ρ is of the form
ρ = ρ1.ρ

′.ρ2. As ρ′ is of size greater than |O|.|P|.|H|, it necessarily contains at
least |O|.|P| cycles of H , and hence it is a sequence of transitions of the form
ρ′ = u1.β1.u2.β2 . . . β|O|.|P|.u|O|.|P|+1, where each βi is a cycle of H . Note that each
path ρ corresponds to a path of AO,H, but that loops of H are not necessarily loops
of AO,H, as nodes of AO,H contain a reference to an HMSC node, plus a function
g (observed events sets are redundant with g, as shown in theorem 53, and can
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Figure 12.14: A diagnosis automaton
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be forgotten). Hence, each βi is a cycle from a node ni to a node ni in H , and
is mapped to a path from a node (ni, E, gi) to a node (ni, E, gi+1) in AO,H. If
gi = gi+1, then this path of AO,H is a cycle, and can be removed from ρ to obtain
a smaller explanation ρ1.u1β1 . . . βi−1.ui.ui+1.βi+1 . . . u|O|.|P|+1.ρ2. If gi 6= gi+1, then
there exists at least one process such that |gi(p)| > |gi+1(p)|. Let us suppose that
for every i ∈ 1..|O|.|P| − 1, we have that βi is mapped to a path of AO,H from
(ni, E, gi) to (ni, E, gi+1) with gi 6= gi+1. Then, we necessarily have g|O|.|P|−1(p) = E
for every p, and β|O|.|P| is mapped to a loop of AO,H, and can be removed from ρ to
obtain a smaller explanation ρ1.u1β1 . . . β|O|.|P|.u|O|.|P|+1.ρ2. Hence, if an explanation
exists for an observation O, then there is necessarily an explanation of length at
most |O|2.|P|.|H|.

Now let us show that for a path ρ = n0
M1−→ n1 . . .

Mk−→ nk, we can check in
polynomial time whether O ⊲Σobs

Mρ. First, the sequential concatenation of all
MSCs to obtain Mρ can be computed in polynomial time in the size of the path.
Let m be the maximal size of the causal ordering relation, and n be the maximal
number of events in all MSCs of H . We can use the following algorithm to compute
the concatenation M1 = (E,≤, α, µ, ϕ) of two MSCs Mi = (Ei,≤i, αi, µi, ϕi), with
ni events and causal ordering of size mi, i ∈ 1, 2 .

• Compute E = E1 ⊎ E2

• initalize ≤ with ≤1 ⊎ ≤2

• for every process p ∈ P, find the maximal event x on p in M1 and the minimal
event on p in M2, and add x ≤ y to the ordering relation. Then compute
the closure : for every z ≤1 x and every y ≤2 z′, add z ≤ z′ to the ordering
relation.

This gives a complexity of O(n1+n2+m1+m2+ p.(n1.m1+n2.m2+m1.m2))
for concatenation. Computing Mρ resumes to k concatenations of MSCs with less
than k.n events and a causal ordering relation of size smaller than (kn)2, and can
hence be performed in polynomial time, and results in a MSC with at most kn
events and a causal ordering relation of size at most (kn)2. Then, from proposition
13, verifying that O ⊲Σobs

Mρ can be done at most in O(k.n+ | ≤O |.(k.n)
2). Hence,

we can guess a path of H to explain O in polynomial time, and check in polynomial
time whether it is an explanation for O. So, the existence problem is in NP .

Now, let us show that the existence problem is NP -hard. We proceed by reduc-
tion from the 3SAT problem. Let ϕ = C1 ∧ · · · ∧ Cm be a conjunctive formula in
normal form over n variables v1, . . . , vn, with m clauses, and where each clause Ci

is of the form Ci = l1i ∨ l2i ∨ l3i , and each literal lji refers to a variable in v1, . . . , vn
or its negation, that is lji = vk or lji = vk, for some k ∈ 1..n. We can build a HMSC
H with n + 3 nodes, 2n + 2 transitions and 2n+2 MSCs, an observation alphabet
Σobs and an observation O such that ϕ is satisfiable iff O has an explanation in
H w.r.t. Σobs. The observation and the HMSC are defined over a set of processes
P = {Pv1 , . . . , Pvn} ∪ {Pc1, . . . , Pcn}. The observation alphabet Σobs is composed of
m+1 letters {a0, ac1, . . . , acm}. The observation O comports one occurrence of each
letter in Σobs, and is such that the occurrence of a0 is located on process Pv1 , the
occurrence of each aci is located on process Pci and the event labeled by a0 causally
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precedes all other events (see Figure 12.15). The HMSC H , also depicted in Fig-
ure 12.15, comports a set of nodes Q = {q0, qe, qf}∪{qv1 , . . . , qvn}, and is labeled by
MSCs Start, End and Tv1 , . . . , Tvn , Fv1 , . . . , Fvn . The MSC Start consists in a single
occurrence of action a0 located on process Pv1 . The MSC End consists in one occur-
rence of action aci on each process Pci, i ∈ 1..m. Each MSC Ti = X1 ◦ · · · ◦Xm ◦ Vi

is a concatenation of m+ 1 MSCs. Each Xj is either an MSC that contains a mes-
sage from Pvi to Pcj if one of the literals of clause Cj is vi, and is the empty MSC
otherwise. MSC Vi is a message from process Pvi to process Pvi+1

if i < n and the
empty MSC otherwise. Each MSC Fi = Y1 ◦ · · · ◦Ym ◦Vi is a concatenation of m+1
MSCs. Each Yj is either an MSC that contains a message from Pvi to Pcj if one
of the literals of clause Cj is vi, and is the empty MSC otherwise. Finally, there is
a transition from q0 to qv1 labeled by Start, a transition from qe to qf labeled by
End, and two transitions from qvi to qvi+1

respectively labeled by Ti and Fi for every
i ∈ 1..n − 1, and two transitions from qvn to qe respectively labeled by Tn and Fn.
Clearly, an occurrence of each action in Σ appears in an explanation ρ of O if and
only if ρ is a path from q0 to qf .

Figure 12.15: Encoding SAT problems with an existence problem

Clearly, ϕ is satisfiable iff there is a variable assignment such that for every clause
Cj, not all literals l

1
j , l

2
j , l

3
j are evaluated to false, and hence iff there is an explanation

that embeds a causal ordering from a0 to every acj . �

Proposition 14 [77] Let H be a HMSC, Σobs be an observation alphabet, and O be
an observation. Let Σ′

obs ⊆ Σobs. Then if ΠΣ′
obs
(O) has no explanation from H w.r.t.

Σ′
obs, then O has no explanation w.r.t. Σobs from H.

Proof: Suppose that there exists no explanation for an observation O, with alpha-
bet Σ′

obs, but that we can build an automaton AO,H with observation alphabet Σobs.
In particular, it means that for every path ρ of H , there is no embedding of O into
Mρ w.r.t. Σ′

obs. If no embedding exists, then either there exists a process p such
that ΠΣ′

obs∩Σp(O) is not a prefix of ΠΣ′
obs∩Σp(M), and then M does not embed O with

observation alphabet Σobs, or there exist two events x ≤O y with labels α(x), α(y) ∈
Σ′

obs. As projection preserves ordering, x and y are ordered both in O and ΠΣ′
obs
(O),
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and M can not embed O. �

7.5 Splitting the diagnosis

Theorem 55 For every HMSC H and observation O, we have LH,AO,H
= LH,A⊗ ,

where A⊗ =
⊗

p 6=q∈PObs
Ap,q.

Proof : For every pair of processes p, q in Pobs, the observation alphabet Σ′ =
Σobs ∩ (Σp ∪ Σq) is contained in Σobs. Hence, from corollary 4, it is obvious that
for every path ρ of H , if Mρ is an explanation of an observation O, then Mρ is
also an explanation for the projection Π′

Σ(O) on a the smaller observation alphabet
Σ′. Hence PO,H ⊆ LH,Ap,q for all p, q ∈ PObs, and we have the first inclusion
LH,AO,H

= PO,H ⊆ LH,A⊗ .
For the second inclusion, let ρ ∈ LH,A⊗ . This means in particular that ρ ∈

LH,Ap,q for every pair p, q in Pobs. Let hO,Mρ : EO → EMρ be the (unique) function
such that the k-th event of E0 on instance p is sent by hO,Mρ to the k-th event of
α−1
Mρ

(ΣObs) on instance p for all k and p ∈ PObs. We can denote by hp,q the restriction
of hO,Mρ to events located on p, q ∈ PObs. Clearly, hp,q is also the unique mapping
defined by πΣObs∩(Σp∪Σq)(O) ⊲ Mρ.

We have easily that for every p, q ∈ PObs, for every event e located on p, αO(e) =
αMρ(hO,Mρ(e)) = αMρ(hp,q(e)). Then, for every pair of events e, f ∈ EO located on
p, we have that e ≤O f implies that hO,Mρ(e) = hp,q(e) ≤Mρ hp,q(f) = hO,Mρ(f).

Now, assume that e, f ∈ O are causally ordered and located on different in-
stances, p and q. Since ρ ∈ LH,Ap,q , and since the projection of O on a pair of
processes preserves the ordering on projected events, we have hO,Mρ(e) = hp,q(e) ≤
hp,q(f) = hO,Mρ(f).

At last, assume by contradiction that hO,Mρ(EO) is not a prefix of πΣobs
(Mρ).

Then there exists e, f ∈ Mρ, located on processes p and q, and of type in Σobs such
that e ≤M f , e /∈ hO,Mρ(EO) and f ∈ hO,Mρ(EO). However, since ρ ∈ LH,Ap,q , we
know that hp,q(EO) is a prefix of some sub-order of πp,q(πΣobs

(Mρ)), which gives us
a contradiction. �
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