A. , !. , !. , !. , !. et al., CM c !e!do!CM s! de!cada!segmento! corporal!de!animais!de!várias!espécies!e!de!seres!humanos, !, 1993.

!. Minetti, !. Nardello-!, . Variação, and . De-!-energia-!-!, ! 2011)! buscandoTse,! assim,! entender! melhor! o! funcionamento!das!estruturas!internas!como!músculos, 1998.

!. Estudos, !. , !. , !. , !. et al., ! Durante! esse! processo! o! CM c ! se! desloca! e! há! trocas!constantes!de!energia!! Para!quadrúpedes,!esse!mecanismo!se!parece!mais!com!dois!pêndulos!invertidos:!um!deles! nos!membros!anteriores!e!outro!nos!membros!posteriores! as! energias! não! variam! como! nos! bípedes!e,!por!existirem!quatro!apoios!e!não!somente!dois,!há!maior!balanço!do!CM c !durante! a! locomoção! em! quadrúpedes!, !!!!!!, 1963.

!. Foster, !. C. Lucia, and !. A. , !Running!economy:!the!forgotten!factor!in!elite!performance, !Sports!Med!, vol.37, issue.4T5, pp.316-325, 2007.

!. Saunders, !. Pu, !. Pyne, !. Db, !. Telford et al., Factors Affecting Running Economy in Trained Distance Runners, Sports Medicine, vol.68, issue.6, pp.465-85, 2004.
DOI : 10.2165/00007256-200434070-00005

!. Morgan, !. Dw, !. Craib, and !. , Physiological aspects of running economy, Medicine & Science in Sports & Exercise, vol.24, issue.4, pp.456-61, 1992.
DOI : 10.1249/00005768-199204000-00011

!. Bailey, !. Sp, !. Pate, and . Rr, Feasibility of Improving Running Economy, Sports Medicine, vol.12, issue.4, pp.228-264, 1991.
DOI : 10.2165/00007256-199112040-00002

!. Morgan, !. Dw, !. Martin, !. Pe, !. Krahenbuhl et al., Factors Affecting Running Economy, Sports Medicine, vol.7, issue.5, pp.310-340, 1989.
DOI : 10.2165/00007256-198907050-00003

!. Rubner and !. , ! Über! den! einfluss! der! körpergrösse! auf! stoff! und! kraftwechsel, ! Z! Biol!, vol.19, pp.536-62, 1883.

!. Chirinos, !. Ja, !. P. Segers, !. De, !. Buyzere et al., Left Ventricular Mass: Allometric Scaling, Normative Values, Effect of Obesity, and Prognostic Performance, Hypertension, vol.56, issue.1, pp.91-99, 2010.
DOI : 10.1161/HYPERTENSIONAHA.110.150250

!. Vanderburgh, !. Pm, !. Katch, !. Fi, !. Schoenleber et al., Multivariate! allometric! scaling! of! men's! world! indoor! rowing! championship! performance, ! Med! Sci! Sports! Exerc!, vol.28, issue.5, pp.626-656, 1996.

!. Heil and !. Dp, !Scaling!of!submaximal!oxygen!uptake!with!body!mass!and!combined!mass!during! uphill!treadmill!bicycling, !J!Appl!Physiol!, vol.85, issue.4, 1998.

!. Loftin, !. M. , !. Sothern, !. M. , !. Trosclair et al., )!peak!in!obese! and!nonTobese!girls, !Obes!Res!, vol.9, issue.25, pp.290-296, 2001.

!. Jensen, !. K. , !. Johansen, !. L. , !. Secher et al., Influence of body mass on maximal oxygen uptake: effect of sample size, European Journal of Applied Physiology, vol.84, issue.3, pp.201-206, 2001.
DOI : 10.1007/s004210170005

!. Gooseyttolfrey, !. Vl, !. Batterham, !. Am, and !. Tolfrey, ! Scaling! behavior! of! VO2peak! in! trained! wheelchair!athletes, !Med!Sci!Sports!Exerc!, vol.35, issue.12, 2003.

!. Chamari, !. K. , !. Moussatchamari, !. I. , !. Boussaidi et al., Appropriate interpretation of aerobic capacity: allometric scaling in adult and young soccer players, British Journal of Sports Medicine, vol.39, issue.2, 2005.
DOI : 10.1136/bjsm.2003.010215

!. Jobson, !. Sa, !. Woodside, !. J. , !. Passfield et al., Allometric Scaling of Uphill Cycling Performance, International Journal of Sports Medicine, vol.29, issue.09, pp.753-760, 2008.
DOI : 10.1055/s-2007-989441

!. Lamberts, !. Rp, !. Lambert, . Mi, !. J. Swart et al., Allometric scaling of peak power output accurately predicts time trial performance and maximal oxygen consumption in trained cyclists, British Journal of Sports Medicine, vol.46, issue.1, 2012.
DOI : 10.1136/bjsm.2010.083071

!. Von, !. Dobeln, and !. W. , !Maximal!oxygen!intake,!body!size,!and!total!hemoglobin!in!normal!man, ! Acta!Physiol!Scand!, vol.38, issue.2, pp.193-202, 1956.

!. Sjodin, !. B. , !. Svedenhag, and !. J. , ! Oxygen! uptake! during! running! as! related! to! body! mass! in! circumpubertal!boys:!a!longitudinal!study, !Eur!J!Appl!Physiol!Occup!Physiol!, vol.65, issue.2, pp.150-157, 1992.

!. Jones, !. Jh, !. Lindstedt, and !. Sl, Limits to Maximal Performance, Annual Review of Physiology, vol.55, issue.1, pp.547-69, 1993.
DOI : 10.1146/annurev.ph.55.030193.002555

!. Suarez, !. Rk, !. Darveau, !. Ca, !. Childress et al., Metabolic scaling: a many-splendoured thing, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, vol.139, issue.3, 2004.
DOI : 10.1016/j.cbpc.2004.05.001

!. Kleiber and !. , Body size and metabolism, Hilgardia, vol.6, issue.11, pp.315-53, 1932.
DOI : 10.3733/hilg.v06n11p315

!. Taylor, !. Cr, !. Schmidttnielsen, !. K. , !. Raab et al., !Scaling!of!energetic!cost!of!running!to!body!size!in! mammals, Am!J!Physiol!, vol.219, issue.4, pp.1104-1111, 1970.

!. Kleiber and !. M. , Body!size!and!metabolic!rate, 511T41.!! Allometry and performance in distance runners 54, 1947.

!. Dodds, !. Ps, !. Rothman, !. Dh, !. Weitz et al., ! ReTexamination! of! the! ''3/4T! law''! of! metabolism, ! J! Theor!Biol!, vol.209, issue.1, 2001.

!. White, !. Cr, !. Seymour, and . Rs, !Mammalian!basal!metabolic!rate!is!proportional!to!body!mass!2/3, ! Proc!Natl!Acad!Sci!U!S!A!, vol.100, issue.7, pp.4046-4055, 2003.

!. Nevill and !. Am, ! The! need! to! scale! for! differences! in! body! size! and! mass:! an! explanation! of! Kleiber's!0.75!mass!exponent, J!Appl!Physiol!, vol.77, issue.6, 1994.

!. Weibel, !. Er, !. Bacigalupe, !. Ld, !. B. Schmitt et al., Allometric scaling of maximal metabolic rate in mammals: muscle aerobic capacity as determinant factor, Respiratory Physiology & Neurobiology, vol.140, issue.2, pp.115-147, 2004.
DOI : 10.1016/j.resp.2004.01.006

!. Barbosa, !. La, !. Castro, !. Silva, !. A. et al., Scaling relations in food webs, Physical Review E, vol.73, issue.4, p.41903, 2006.
DOI : 10.1103/PhysRevE.73.041903

!. Banavar, !. Jr, !. Maritan, !. A. Rinaldo, and !. A. , ! Size! and! form! in! efficient! transportation! networks, Nature!, vol.399, issue.6732, 1999.

!. Hochachka, !. Pw, !. Darveau, !. Ca, !. Andrews et al., Allometric cascade: a model for resolving body mass effects on metabolism, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol.134, issue.4, 2003.
DOI : 10.1016/S1095-6433(02)00364-1

!. Nevill, !. Am, !. Jobson, . Sa, !. Palmer et al., ! Scaling! maximal! oxygen! uptake! to! predict! cycling!timeTtrial!performance!in!the!field:!a!nonTlinear!approach, !Eur!J!Appl!Physiol!, vol.94, pp.705-715, 2005.

!. Heglund, !. Nc, !. Fedak, !. Ma, !. Taylor et al., ! Energetics! and! mechanics! of! terrestrial! locomotion.!IV.!Total!mechanical!energy!changes!as!a!function!of!speed!and!body!size!in!birds! and!mammals, J!Exp!Biol!, vol.97, pp.57-66, 1982.

!. Taylor, !. Cr, !. Heglund, !. Nc, !. Maloiy et al., !Energetics!and!mechanics!of!terrestrial!locomotion.!I.! Metabolic!energy!consumption!as!a!function!of!speed!and!body!size!in!birds!and!mammals, J.! Exp!Biol!, vol.97, 1982.

!. Hausswirth, !. C. , !. Brisswalter, and !. J. , !Strategies!for!improving!performance!in!long!duration!events:! Olympic!distance!triathlon, !Sports!Med!, vol.38, issue.11, 2008.

!. Lazzer, !. S. , !. Salvadego, !. D. , !. Rejc et al., !The!energetics!of! ultraTendurance!running, !Eur!J!Appl!Physiol!, vol.112, issue.5, pp.1709-1724, 2012.

!. Sjodin, !. B. , !. Svedenhag, and !. J. , Applied Physiology of Marathon Running, Sports Medicine, vol.2, issue.2, pp.83-99, 1985.
DOI : 10.2165/00007256-198502020-00002

!. Jones and !. !. Am, A five year physiological case study of an Olympic runner, British Journal of Sports Medicine, vol.32, issue.1, 1998.
DOI : 10.1136/bjsm.32.1.39

!. Conley, !. Dl, !. Krahenbuhl, and !. Gs, Running economy and distance running performance of highly trained athletes, Medicine & Science in Sports & Exercise, vol.12, issue.5, 1980.
DOI : 10.1249/00005768-198025000-00010

!. Svedenhag and !. J. , !Maximal!and!submaximal!oxygen!uptake!during!running:!how!should!body! mass!be!accounted!for?!Scand, J!Med!Sci!Sports!, vol.5, issue.4, 1995.

!. Svedenhag, !. J. , !. Sjodin, and !. , !Maximal!and!submaximal!oxygen!uptakes!and!blood!lactate!levels! in!elite!male!middleT!and!longTdistance!runners, !Int!J!Sports!Med!, vol.5, issue.5, pp.255-61, 1984.

!. Lucia, !. A. Estevetlanao, !. J. , !. Olivan, !. J. et al., ! Physiological! characteristics! of! the! best! Eritrean! runnersTexceptional! running! economy, ! Appl! Physiol!Nutr!Metab!, vol.31, issue.5, 2006.

!. Saltin, !. B. Larsen, !. H. , !. Terrados, !. N. et al., Aerobic exercise capacity at sea level and at altitude in Kenyan boys, junior and senior runners compared with Scandinavian runners, Scandinavian Journal of Medicine & Science in Sports, vol.61, issue.4, 1995.
DOI : 10.1111/j.1600-0838.1995.tb00037.x

!. Coetzer, !. P. , !. Noakes, !. Td, !. Sanders et al., Superior!fatigue! resistance!of!elite!black!South!African!distance!runners, !J!Appl!Physiol!, vol.75, issue.4, 1993.

!. Larsen and !. Hb, ! Kenyan! dominance! in! distance! running, ! Comp! Biochem! Physiol! A! Mol! Integr! Physiol!, vol.136, 2003.

!. Bosch, !. An, !. Goslin, !. Br, !. Noakes et al., Physiological differences between black and white runners during a treadmill marathon, European Journal of Applied Physiology and Occupational Physiology, vol.12, issue.1-2, 1990.
DOI : 10.1007/BF00236696

!. Cavagna, !. Ga, !. Kaneko, and !. , Mechanical work and efficiency in level walking and running, The Journal of Physiology, vol.268, issue.2, pp.467-81, 1977.
DOI : 10.1113/jphysiol.1977.sp011866

!. Willems, !. Pa, !. Cavagna, !. Ga, !. Heglund et al., ! External,! internal! and! total! work! in! human! locomotion, !J!Exp!Biol!, vol.198, 1995.

!. Steudeltnumbers, !. Kl, !. Weaver, !. Td, !. Walltscheffler et al., ! The! evolution! of! human! running:! effects!of!changes!in!lowerlimb!length!on!locomotor!economy, !J!Hum!Evol!, vol.53, issue.2, 2007.

!. Ferretti, !. G. , !. Atchou, !. G. , !. Grassi et al., Energetics of locomotion in African pygmies, European Journal of Applied Physiology and Occupational Physiology, vol.33, issue.1, pp.7-10, 1991.
DOI : 10.1007/BF00635625

!. Svedenhag, !. J. , !. Sjodin, and !. B. , BodyTmassTmodified!running!economy!and!step!length!in!elite!male! middleT!and!longTdistance!runners, !Int!J!Sports!Med!, vol.15, issue.6, 1994.

!. Vanderburgh, !. Pm, !. Dooman, and !. , ! Considering! body! mass! differences,! who! are! the! world's! strongest!women?, !Med!Sci!Sports!Exerc!, vol.32, issue.1, 2000.

!. Saltin, !. B. , !. Astrand, and !. Po, !Maximal!oxygen!uptake!in!athletes, J!Appl!Physiol!, vol.23, issue.3, pp.353-361, 1967.

!. Glazier, !. Ds, !. Beyond611t62, !. , !. et al., !(2011)!!suggests! that!there!is!an!interaction!between!running!efficiency!and!mechanical!work.!! Physiologically,!oxygen!uptake!at!a!given!submaximal!running!velocity!is!not!proportional!to! body! mass;! i.e.,! the! oxygen! uptake! per! kg! of! body! mass! displayed! an! inverse! relationship! to! body!mass!!1991)!and!this!is!in!agreement!with!data!from!animal!studies!(Taylor! et!al.,!1982),!as!well!as!from!experiments!involving!humans!(Thorstensson,!1986)!In!one!of!the! first!studies!that!used!an!allometric!exponent!to!express!running!efficiency,!Bergh!et!al.!(1991)! found! that! oxygen! consumption! during! running! is! better! related! using! specific! allometric! exponents,!for!example,!kg ?3?4 !and!kg ?2?3 ,!than!to!kg T1 .!! In! mechanical! terms,! experimental! evidence! confirms! that! the! contribution! of! elastic! energy! to! the! mechanical! work! of! locomotion! does! not! increase! as! rapidly! with! size! as! the! massTspecific! energy! storage! capacity,! suggesting! that! the! percentage! contribution! of! elastic! energy!to!the!mechanical!work!of!locomotion!decreases!with!size.!The!reason!for!this!is!that! the!mechanical!work!of!locomotion!per!kilogram!of!body!mass!is!directly!proportional!to!the! distance! travelled! (Blickhan,! 1989),! so! that! subjects! with! larger! body! size,! with! their! longer! strides,! must! perform! relatively! more! work! per! stride.! Because! each! tendon! can! store! and! return!elastic!energy!only!once!per!stride, Biol!Rev!!!, vol.80, issue.1, 1991.

!. Foster, !. , and !. Lucia, may! produce! erroneous!interpretations!when!comparing!individuals!or!groups!who!differ!in!body!mass.!In! weightTsupported! events,! studies! have! indicated! that! mechanical! efficiency,! dependent! on! mechanical! work! (in! J . kg T1. m T1 ),! is! clearly! an! important! predictor! of! endurance! running! performance.!Studies!have!demonstrated!that!allometric!scaling!can!improve!the!relationship! between!running!efficiency!and!performance,!but!the!relationship!between!mechanical!work! and! performance! has! not! yet! been! reported! in! scientific! literature.! This! study! revealed! that! mechanical!work!may!predict!recreational!longTdistance!performance!and!an!allometric!model! may!improve!this!prediction,!suggesting!that!the!use!of!allometric!scaling!is!limited!according! to! the! aerobic! capacity! or! morphofunctional! parameters! of! an! individual, 2007.

7. !. Practical, !. Application-!-!-differences, and !. 70%, !of!the!differences!observed!in!VO 2max !and! running!efficiency!in!recreational!runners.!Generally!measured!per!unit!mass!basis,!it!reduces! the!obvious!disparities!that!will!be!observed!in!runners!of!differing!total!body!mass.!However,! while! expressing! VO 2max ! or! running! efficiency! on! a! per! unit! weight! basis! will! control! for! differences! in! total! body! mass,! it! does! not! eliminate! the! differences! in! body! composition,! demonstrates! that! an! indiscriminate! use! of! kg T1 ! is! inappropriate! to! compare! subjects! with! different! body! characteristics.! The! findings! of! the! current! study! demonstrate! that! the! allometric! model! is! a! good! method! to! determine! and! compare! the! endurance! performance! prediction! in! recreational! endurance! runners

!. Alexander, !. Rm, !. Bennettclark, and . Hc, Storage of elastic strain energy in muscle and other tissues, Nature, vol.271, issue.5590, 1977.
DOI : 10.1007/BF00343160

!. U. Bergh, !. Sjodin, !. B. , !. Forsberg, !. A. Svedenhag et al., The relationship between body mass and oxygen uptake during running in humans, Medicine & Science in Sports & Exercise, vol.23, issue.2, 1991.
DOI : 10.1249/00005768-199102000-00010

!. Biewener and . Aa, Scaling body support in mammals: limb posture and muscle mechanics, Science, vol.245, issue.4913, 1989.
DOI : 10.1126/science.2740914

!. Biewener, !. Aa, !. Farley, !. Ct, !. Roberts et al., Muscle mechanical advantage of human walking and running: implications for energy cost, Journal of Applied Physiology, vol.97, issue.6, 2004.
DOI : 10.1152/japplphysiol.00003.2004

!. R. Blickhan, The!springTmass!model!for!running!and!hopping, !J!Biomech,!, vol.22, 1989.

!. J. Brisswalter, !. Legros, !. P. Durand, and !. , !Running!economy,!preferred!step!length!correlated!to!body! dimensions!in!elite!middle!distance!runners, !J!Sports!Med!Phys!Fitness!, vol.36, 1996.

!. Bullimore, !. Sr, !. Burn, and . Jf, Scaling of elastic energy storage in mammalian limb tendons: do small mammals really lose out?, Biology Letters, vol.1, issue.1, 2005.
DOI : 10.1098/rsbl.2004.0243

!. Cadore, !. El, !. Pinto, !. Rs, !. Alberton et al., Neuromuscular Economy, Strength, and Endurance in Healthy Elderly Men, Journal of Strength and Conditioning Research, vol.25, issue.4, 2011.
DOI : 10.1519/JSC.0b013e3181d650ba

!. R. Candau, !. Belli, !. A. Millet, !. Gy, !. D. Georges et al., Energy cost and running mechanics during a treadmill run to voluntary exhaustion in humans, European Journal of Applied Physiology, vol.77, issue.6, 1998.
DOI : 10.1007/s004210050363

!. Cavagna and . Ga, !Symmetry!and!asymmetry!in!bouncing!gaits.!Symmetry, !, issue.2, 2010.

!. Cavagna, !. Ga, and !. Kaneko, Mechanical work and efficiency in level walking and running, 467T481! Allometry and performance in distance runners 78, 1977.
DOI : 10.1113/jphysiol.1977.sp011866

!. Darveau, !. Ca, !. Suarez, !. Rk, !. Andrews et al., Allometric cascade as a unifying principle of body mass effects on metabolism, Nature, vol.69, issue.6885, 2002.
DOI : 10.1016/S0300-9629(97)00020-0

!. Figueroa, !. Pj, !. Leite, !. Nj, !. Barros et al., A flexible software for tracking of markers used in human motion analysis, Computer Methods and Programs in Biomedicine, vol.72, issue.2, pp.155-165, 2003.
DOI : 10.1016/S0169-2607(02)00122-0

!. C. Foster and !. A. Lucia, ! Running! economy:! the! forgotten! factor! in! elite! performance, ! Sports! Med,!, vol.37, 2007.

!. Howley, !. Et, !. Bassett, !. Dr, . Jr et al., ! Criteria! for! maximal! oxygen! uptake:! review! and! commentary, !Med!Sci!Sports!Exerc,!, vol.27, 1995.

!. Ingham, !. Sa, !. Whyte, !. Gp, !. C. Pedlar et al., !Determinants!of!800Tm!and! 1500Tm!running!performance!using!allometric!models, !Med!Sci!Sports!Exerc,!, 2008.

!. K. Jensen, !. Johansen, !. L. , !. Secher, and !. Nh, Influence of body mass on maximal oxygen uptake: effect of sample size, European Journal of Applied Physiology, vol.84, issue.3, 2001.
DOI : 10.1007/s004210170005

!. Kleiber, !Body!size!and!metabolic!rate, !Physiol!Rev,!, vol.27, 1947.

!. G. Markovic, !. Vucetic, !. V. , !. Nevill, and !. Am, ! Scaling! behaviour! of! VO2! in! athletes! and! untrained! individuals, !Ann!Hum!Biol,!, vol.34, 2007.

!. Minetti, !. Ae, !. Ardigo, !. Lp, and !. Saibene, ! Mechanical! determinants! of! the! minimum! energy! cost! of! gradient!running!in!humans, !J!Exp!Biol,!, 1994.

!. Minetti, !. Ae, !. C. Capelli, !. Zamparo, !. P. et al., Effects of stride frequency on mechanical power and energy expenditure of walking, Medicine & Science in Sports & Exercise, vol.27, issue.8, 1995.
DOI : 10.1249/00005768-199508000-00014

!. A. Nevill, !. T. Rowland, !. Goff, !. D. , !. Martel et al., ! Scaling! or! normalising! maximum! oxygen! uptake!to!predict!1Tmile!run!time!in!boys, !Eur!J!Appl!Physiol,!, vol.92, 2004.

!. Roberts, . Tj, !. Marsh, !. Rl, !. Weyand et al., Muscular Force in Running Turkeys: The Economy of Minimizing Work, Science, vol.275, issue.5303, 1997.
DOI : 10.1126/science.275.5303.1113

!. Rubner, !Concerning!the!influence!of!body!size!on!energy!metabolism, Z.!Biol.,!, vol.19, pp.536-562, 1883.

!. F. Saibene, !. Minetti, and !. Ae, Biomechanical and physiological aspects of legged locomotion in humans, European Journal of Applied Physiology, vol.88, issue.4, 2003.
DOI : 10.1007/s00421-002-0654-9

!. Saunders, !. Pu, !. Pyne, !. Db, !. Telford et al., Factors Affecting Running Economy in Trained Distance Runners, Sports Medicine, vol.68, issue.6, 2004.
DOI : 10.2165/00007256-200434070-00005

!. Tartaruga, !. Mp, !. Medeiros, !. Mhd, !. Alberton et al., Application of the allometric scale for the submaximal oxygen uptake in runners and rowers, 297T300! Allometry and performance in distance runners 79, 2010.
DOI : 10.5604/20831862.927496

!. Taylor, !. Cr, !. Heglund, !. Nc, !. Maloiy et al., ! Energetics! and! mechanics! of! terrestrial! locomotion.! I.! Metabolic!energy!consumption!as!a!function!of!speed!and!body!size!in!birds!and!mammals, ! J!Exp!Biol,!, vol.97, 1982.

!. A. Thorstensson, !Effects!of!moderate!external!loading!on!the!aerobic!demand! of!submaximal! running!in!men!and!10!yearTold!boys, !Eur!J!Appl!Physiol!Occup!Physiol,!, vol.55, 1986.

!. West, !. Gb, !. Brown, !. Jh, !. Enquist et al., A General Model for the Origin of Allometric Scaling Laws in Biology, Science, vol.276, issue.5309, 1997.
DOI : 10.1126/science.276.5309.122

!. Willems, . Pa, !. Cavagna, !. Ga, !. Heglund et al., !External,!internal!and!total!work!in!human!locomotion, !J! Exp!Biol,!, vol.198, 1995.

!. The, !. Me, and !. Furusawa, ! In! this! study,! W tot ! during! sprinting! was! estimated! by! calculating! the! propelling! force! (i.! e.! 0.7! multiplied!by!body!mass!and,!subsequently!by!distance),!while!energy!cost!was!estimated!by! directly!measuring!oxygen!uptake!during!the!recovery!period.!Using!this!method,!Furusawa!et! al.![11]! reported!ME r ! values!of!35%!to!45%.!Currently,!the!W tot ! accomplished!during!running! locomotion!has!been!estimated!using!kinematic!methods![12].!This!approach!is!based!on!the! theory!that!the!changes!in!kinetic!and!potential!energy!resulting!in!W tot !(the!time!integral!of! mechanical!power)![4].! Various!physiological!and!morphological!factors,!such!as!VO 2max ![13],!AT![4],!cost!of!running! (C r )! [14]! and! body! weight! [15],! have! been! proven! to! influence! ME r ! and,! consequently,! numerous! investigations! that! focus! on! these! dynamic! parameters! have! been! published.! Likewise,! mechanical! factors,! such! as! W int ! and! W ext, 1927.

!. Minetti, !. , !. W. , !. Me, !. et al., ! However,!despite!the!fact!that!the!impact!that!ME r !has!on!running!performance!has!been! recognized!since!the!1920s,!the!relationships!between!mechanical!work,!specifically!W int !and! W ext ,! and! ME r ! in! longTdistance! running! athletes! has! been! poorly! examined.! Similarly,! the! effects! of! body! size! and! anaerobic! contribution! on! the! relationship! between! C r ! and! ME r ,! consequently! running! performance,! remains! relatively! ignored! in! existing! scientific! literature! compared! to! other! performance! factors,! in! particular,! (1)! a! high! value! of! VO 2max ;! (2)! a! high! fraction! of! VO 2max ,! which! can! be! sustained! throughout! the! competition;! and! (3)! a! better! RE! [18].! Authors! tried! to! demonstrate! that! an! indiscriminate! use! of! the! unit! ml . kg T1. min T1 ! is! inappropriate! for! the! purposes! of! comparing! RE! between! subjects! with! different! body! characteristics![19]!or!performance!level![20],!and!suggested!the!use!of!kg 0.75 !or!kg b ,!were!b!is! the! allometric! or! specific! allometric! exponent.! In! addition,! an! estimate! of! anaerobic! energy! Allometry and performance in distance runners 82" expenditure!should!be!considered!in!the!computation!of!metabolic!power!when!determining! ME r ![4].! Therefore,! to! achieve! a! better! understanding! of! the! relationships! between! ME r ! and! longT distance!running!performance,!we!analyzed!the!influence!of!mechanical!work!and!C r !on!ME r !on! longTdistance!runners,!both!morphologically!and!metabolically.!Our!hypothesis!was!that!ME r ,! morphologically! independent,! is! overestimated! with! the! exclusion! of! anaerobic! energy! expenditure! and,! consequently,! the! relationship! between! ME r ! and! longTdistance! running! performance!is!modified!during!treadmill!running.!Furthermore,!recent!indirect!evidence!that! energy! is! partly! conserved! in! human! running! thanks! to! an! elastic! bounce! of! the! body! [21]! allows! us! believe! that! the! ME r ! is! strongly! influenced! by! the! mechanical! work,! particularly! external! mechanical! work.! We! hypothesized! that! the! greater! ratio! mechanical! work/energy! expenditure,!ME r ,!ascribed!to!major!amount!of!elastic!energy!stored!and!high!economy,!would! be!related!to!a!better!performance!in!longTdistance!running!performance

!. Anthropometric, !. Scales, !. , !. , !. Urano et al., !while!the!runners!wore!minimal!clothing.!The! percentage!of!body!fat!was!calculated!using!the!Siri!equation![22].!Subjects!were!familiarized! 4.4.3.6.!METABOLIC!DATA! ! For! each! session! of! treadmill! running,! metabolic! power! (in! J . s T1 )! was! obtained! while! considering! contributions! from! both! aerobic! (AE;! from! VO 2max )! and! anaerobic! (AnE;! from! accumulated! O 2 Tdeficit)! energy! expenditure! as! described! in! detail! by! Reis! and! Carneiro! [23]!

!. W. , !. , !. W. , E. Okinawa, . Japan et al., !France)!was!used!to!perform!signal! processing.!A!lowTpass!Butterworth!filter!was!used!with!automatic!cutToff!frequency!selection! for!each!marker.!The!range!of!cutToff!frequencies!was!8!to!11!Hz.!Linear!and!angular!velocity!of! each! segment! and! linear! velocity! of! body! centre! of! mass! was! determined! by! numerical! differentiation.!Values!for!segment!mass,!centre!of!mass!position!and!radius!of!gyration!were! taken!from!standard!tables!that!were!produced!byT1 m T1 )! was! obtained! by! calculating! the! sum! of! W int ! and! W ext ! considering!the!energy!transfer!between!segments![5,!6].!W int !represents!the!work!necessary! to! accelerate! the! limbs! reciprocally! with! respect! to! the! body! centre! of! mass! during! human! locomotion![14]!and!W ext !represents!the!work!necessary!to!lift!and!accelerate!the!body!centre! of!mass!within!the!environment![6].! Positive! W int ! was! computed! using! the! method! presented! by! Cavagna! and! Kaneko! [5].! In! order!to!account!for!the!kinetic!energy!changes!of!the!segments!for!which!the!movements!do! not! affect! the! position! of! the! overall! centre! of! mass! (i.e.! symmetrical! limb! displacements),! König's!theorem!from!mechanics!was!applied.!This!theorem!states!that!the!total!kinetic!energy! (KE)! of! a! multiTlink! system! can! be! divided! into! two! parts:! (a)! the! KE! of! the! segments! arising! knowledge,! no! study! has! examined! the! relationships! between! mechanical! work,! specifically! W int !and!W ext !in!separated,!and!ME r !in!longTdistance!running!athlete,!as!well!as!the!effects!of! body!size!and!anaerobic!contribution!in!ME r !and!running!performance.! The!first!finding!of!this!study!was!an!observed!change!in!the!metabolic!rate!and!body!mass! relationship! as! an! organism! moves! in! maximal! and! submaximal! metabolic! conditions.! In! the! maximal! metabolic! condition,! we! observed! an! allometric! exponent! of! 0.76! and,! in! the! submaximal!condition,!a!b!value!of!0.84.!Similar!scaling!behaviour!of!metabolic!rate!in!athletic! population!was!also!observed!by!Paterson!et!al.![33],!Bergh!et!al.![19]!and!Markovic!et!al.![20],! who! reported! submaximal! metabolic! rate! scales! with! higher! mass! scaling! exponent! than! maximal! metabolic! rate.! These! results! suggest! that! the! cardiovascular! system! of! smaller! athletes!has!a!greater!capacity!to!raise!metabolic!rate!above!those!at!rest,!not!larger!ones,!as! suggested!by!Weibel![34]!and!experimental!results![35,!36].! C r !showed!significant!positive!correlation!with!longTdistance!running!performance,!and!the! allometric!model!did!not!affect!this!relationship.!RE,!which!is!classically!assessed!in!terms!of! the! energy! required! to! run! at! a! given! submaximal! velocity! [37]! or! the! metabolic! energy! expended!per!unit!of!distance![38],!is!an!important!factor!that!can!be!used!to!predict!middleT! and!longTdistance!running!performance![9,!39T42].!According!to!initial!reports!by!Daniels![10],! RE! can! vary! by! more! than! 30%! among! runners! who! have! a! similar! VO 2max ,! and! its! relative! contributions! are! not! affected! by! alterations! to! body! weight! [43,! 44].! However,! a! consensus! has!not!yet!been!reached!on!this!argument.!Bergh,!Sjodin,!Forsberg!and!Svedenhag![19]!found! that!oxygen!consumption!during!running!is!better!related!using!specific!allometric!exponents,! for! example,! kg T¾ ! and! kg T? ,! than! to! kg T1 .! Another! possible! confusing! factor! in! the! use! of! allometric! scaling! to! assess! oxygen! consumption! could! be! due! to! differences! in! aerobic! capacity! among! subjects! (i.e.! untrained! or! moderately! trained! vs.! runners! that! compete! at! a! high! level)! [20].! In! a! recent! study! that! analyzed! the! allometric! relationship! between! oxygen! consumption!(ranging!from!rest!to!maximal!condition)!and!body!mass!in!trained!and!untrained! individuals,!Markovic!et!al.![20]!found!that!the!allometric!model!may!be!useful!as!a!means!of! assessing! oxygen! consumption! in! untrained! individuals,! whereas! it! has! no! effect! on! trained! athletes.! The! mechanical! work,! especially! the! W ext ! and! W tot ,! showed! significant! correlations! with! longTdistance! running! performance,! and! these! relationships! were! affected! by! allometric! model.!Effects! of! body! dimensions! on! mechanical! work! are! probably! due! to! the! influence!of! body! size! on! biomechanical! variables! of! running! technique! [9];! for! example,! the! angle! of! contact!with!the!ground!(i.e.!the!angle!of!the!link!between!the!point!of!contact!and!the!hip,! relative!to!the!vertical)!and!its!relationship!with!the!deceleration!of!the!body!each!step!and,! consequently fact,! runners! with! better! RE! may! present! higher!values!of!mechanical!work!and,!consequently,!better!ME r ![47].! The!relative!contributions!of!energy!release!from!AnE!and!AE!that!were!observed!for!each! percentage! of! vVO 2max ! (Figure! 2)! are! consistent! with! previous! reports! [4,! 48].! Estimating! the! accumulated!O 2 Tdeficit!is!a!noninvasive!indirect!method!of!obtaining!AnE!during!running!bouts! [24]!and!has!been!used!in!the!past!to!determine!AnE!during!brief!exercise!sessions.!While!it!is! acknowledged!that!the!accumulated!O 2 Tdeficit!method!used!in!the!current!study!is!not!without! its!shortcomings,!it!remains!the!best!noninvasive!method!of!quantifying!AnE!during!a!session! of!constantTspeed!exercise![49].! Using!the!proposed!model,!ME r !was!significantly!different!form!50%!vVO 2max !at!the!90%!and! 110%! relative! speeds;! however,! no! other! differences! were! observed! with! respect! to! speed.! The!ME r !values!during!treadmill!running!obtained!within!the!current!investigation!are!similar!in! magnitude!to!those!obtained!in!existing!literature!(~40T75%)![4,!5,!49].!The!maximal!value!of! ME r ! of! the! contracting! muscle! during! locomotion! has! been! considered! to! be! approximately! 30%![47].!The!high!value!of!ME r !(~55T65%)!obtained!in!the!current!study!may!stem!from!the! kinematic!method!applied!in!quantifying!mechanic!power![4].!Nevertheless,!the!contribution! of!AnE!expenditure!cannot!be!overlooked!when!calculating!the!metabolic!power!component!of! treadmill!running!and!likely!other!forms!of!human!locomotion.! The! principal! finding! of! this! study! concerned! the! strong! relationships! between! metabolic! and! mechanical! parameters! and! ME r .! Significant! positive! correlations! between! mechanical! work!and!ME r ,!and!an!inverse!correlation!between!C r !and!ME r ,!were!verified!(see!Figure!3).!The! multiple!linear!regression!analysis!(Table!4)!showed!that!mechanical!work!and!C r !are!predictors! of!ME r ,!with!an!overall!predictive!power!of!99, 8%.! In!adults

!. Midgley, !. A. Mcnaughton, !. L. Jones, and !. A. , ! Training! to! enhance! the! physiological! determinants!of!longTdistance!running!performance:!can!valid!recommendations!be!given! to! runners! and! coaches! based! on! current! scientific! knowledge?! Sports! Med, 2007.

!. Sjodin, !. B. Svedenhag, and !. J. , !Applied!physiology!of!marathon!running.!Sports!Med, pp.83-99, 1985.

!. Kyrolainen, !. H. Komi, !. P. Belli, and !. A. , Mechanical efficiency in athletes during running, Scandinavian Journal of Medicine & Science in Sports, vol.17, issue.4, 1995.
DOI : 10.1111/j.1600-0838.1995.tb00036.x

!. Keir, !. D. Zory, !. R. Boudreautlariviere, !. C. Serresse, and !. O. , !Mechanical!efficiency!of!treadmill! running! exercise:! effect! of! anaerobicTenergy! contribution! at! various! speeds, ! Int! J! Sports! Physiol!Perform, vol.7, 2012.

!. Cavagna, !. G. Kaneko, and !. M. , Mechanical work and efficiency in level walking and running, The Journal of Physiology, vol.268, issue.2, pp.467-481, 1977.
DOI : 10.1113/jphysiol.1977.sp011866

!. Saibene, !. F. Minetti, and !. A. , Biomechanical and physiological aspects of legged locomotion in humans, European Journal of Applied Physiology, vol.88, issue.4, 2003.
DOI : 10.1007/s00421-002-0654-9

!. Morgan, !. D. Baldini, !. F. Matin, and !. P. , !DayTtoTday!stability!in!running!economy!and!step! length!among!wellTtrained!male!runners!(abstract), !Int!J!Sports!Med, vol.8242, 1987.

!. Cavanagh, !. P. Kram, and !. R. , !The!efficiency!of!human!movementTTa!statement!of!the!problem, ! Med!Sci!Sports!Exerc, vol.17, 1985.

!. Tartaruga, !. M. Brisswalter, !. J. Peyrettartaruga, !. L. Avila, !. A. Alberton et al., The Relationship Between Running Economy and Biomechanical Variables in Distance Runners, 367T375.! Allometry and performance in distance runners 93, 2012.
DOI : 10.1080/02701367.2012.10599870

!. Daniels and !. J. , ! A! physiologist's! view! of! running! economy, ! Med! Sci! Sports! Exerc, vol.17, 1985.

!. Kaneko and !. M. , Mechanics and energetics in running with special reference to efficiency, Journal of Biomechanics, vol.23, 1990.
DOI : 10.1016/0021-9290(90)90041-Z

!. Winter and !. D. , ! A! new! definition! of! mechanical! work! done! in! human! movement, ! J! Appl! Physiol, vol.46, 1979.

!. Mayhew and !. J. , Oxygen cost and energy expenditure of running in trained runners., British Journal of Sports Medicine, vol.11, issue.3, 1977.
DOI : 10.1136/bjsm.11.3.116

!. Cavagna and !. G. , A.! Symmetry! and! asymmetry! in! bouncing! gaits.! Symmetry, pp.1270-1321, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01286105

!. Cureton, !. K. Sparling, !. P. Evans, !. B. Johnson, !. S. Kong et al., !Effect!of! experimental! alterations! in! excess! weight! on! aerobic! capacity! and! distance! running! performance, !Med!Sci!Sports, vol.10, 1978.

!. Cavagna, !. G. Legramandi, !. M. Peyrettartaruga, and !. L. , Old men running: mechanical work and elastic bounce, Proceedings of the Royal Society B: Biological Sciences, vol.198, issue.6, 2008.
DOI : 10.1113/jphysiol.2003.044966

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2596824

!. Minetti, !. A. Capelli, !. C. Zamparo, !. P. Di, !. Prampero et al., Effects of stride frequency on mechanical power and energy expenditure of walking, Medicine & Science in Sports & Exercise, vol.27, issue.8, 1995.
DOI : 10.1249/00005768-199508000-00014

!. Lazzer, !. S. Salvadego, !. D. Rejc, !. E. Buglione, !. A. Antonutto et al., ! The! energetics!of!ultraTendurance!running, !Eur!J!Appl!Physiol, vol.112, 2012.

!. Bergh, !. U. Sjodin, !. B. Forsberg, !. A. Svedenhag, and !. J. , The relationship between body mass and oxygen uptake during running in humans, Medicine & Science in Sports & Exercise, vol.23, issue.2, 1991.
DOI : 10.1249/00005768-199102000-00010

!. Markovic, !. G. Vucetic, !. V. Nevill, and !. A. , !Scaling!behaviour!of!VO2!in!athletes!and!untrained! individuals, !Ann!Hum!Biol, vol.34, pp.315-328, 2007.

!. Legramandi, !. M. Schepens, !. B. Cavagna, and !. G. , Running humans attain optimal elastic bounce in their teens, Scientific Reports, vol.266, 1310.
DOI : 10.1038/srep01310

!. Siri and !. W. , ! Body! composition! from! fluid! spaces! and! density:! analysis! of! methods.! 1961.! Nutrition, 1993.

!. Reis, !. V. Carneiro, and !. A. , !Methodology!to!estimate!the!accumulated!oxygen!deficit, !Braz!J! Sci!Mov, vol.13, 2005.

!. Medbo, !. J. Mohn, !. A. Tabata, !. I. Bahr, !. R. Vaage et al., !Anaerobic!capacity! determined!by!maximal!accumulated!O2!deficit, !J!Appl!Physiol, vol.64, 1988.

!. Barros, !. R. Brenzikofer, !. R. Leite, !. N. Figueroa, !. P. Braz et al., !Development!and!evaluation!of!a! system!for!threeTdimensional!kinematic!analysis!of!human!movements, 79T86.! Allometry and performance in distance runners 94, 1999.

!. Dempster, !. W. Gabel, !. W. Felts, and !. W. , The anthropometry of the manual work space for the seated subject, American Journal of Physical Anthropology, vol.59, issue.204, 1959.
DOI : 10.1002/ajpa.1330170405

!. Minetti, !. A. Ardigo, !. L. Saibene, and !. F. , Mechanical determinants of gradient walking energetics in man., The Journal of Physiology, vol.472, issue.1, p.472, 1993.
DOI : 10.1113/jphysiol.1993.sp019969

!. Minetti, !. A. Ardigo, !. L. Saibene, and !. F. , ! Mechanical! determinants! of! the! minimum! energy! cost!of!gradient!running!in!humans, !J!Exp!Biol, vol.195, 1994.

!. Mian, !. O. Thom, !. J. Ardigo, !. L. Narici, !. M. Minetti et al., Metabolic cost, mechanical work, and efficiency during walking in young and older men, Acta Physiologica, vol.16, issue.2, 2006.
DOI : 10.1002/mus.10279

!. Smith and !. R. , Allometric! scaling! in! comparative! biology:! problems! of! concept! and! method, Am!J!Physiol, vol.246, 1984.

!. Darveau, !. C. Suarez, !. R. Andrews, !. R. Hochachka, and !. P. , ! Allometric! cascade! as! a! unifying!principle!of!body!mass!effects!on!metabolism.!Nature, 2002.

!. Tartaruga, !. M. Peyréttartaruga, !. L. Coertjens, !. M. Medeiros, !. M. Kruel et al., The influence of the allometric scale on the relationship between running economy and biomechanical variables in distance runners, Biology of Sport, vol.26, issue.3, 2009.
DOI : 10.5604/20831862.894791

!. Paterson, !. D. Mclellan, !. T. Stella, !. R. Cunningham, and !. D. , ! Longitudinal! study! of! ventilation! threshold! and! maximal! O2! uptake! in! athletic! boys, ! J! Appl! Physiol, vol.62, 1987.

!. Weibel and !. E. , Physiology:!the!pitfalls!of!power!laws.!Nature, 2002.

!. Bishop and !. C. , The maximum oxygen consumption and aerobic scope of birds and mammals: getting to the heart of the matter, Proceedings of the Royal Society B: Biological Sciences, vol.266, issue.1435, 1999.
DOI : 10.1098/rspb.1999.0919

!. Weibel, !. E. Bacigalupe, !. L. Schmitt, !. B. Hoppeler, and !. H. , Allometric scaling of maximal metabolic rate in mammals: muscle aerobic capacity as determinant factor, Respiratory Physiology & Neurobiology, vol.140, issue.2, 2004.
DOI : 10.1016/j.resp.2004.01.006

!. Bassett, !. D. Howley, and !. E. , Limiting factors for maximum oxygen uptake and determinants of endurance performance, Medicine & Science in Sports & Exercise, vol.32, 2000.
DOI : 10.1097/00005768-200001000-00012

!. Di, !. Prampero, !. P. Atchou, !. G. Bruckner, !. J. Moia et al., ! The! energetics! of! endurance! running, !Eur!J!Appl!Physiol, vol.55, 1986.

!. Foster, !. C. Lucia, and !. A. , ! Running! economy:! the! forgotten! factor! in! elite! performance.! Sports! Med, 2007.

!. Saunders, !. P. Pyne, !. D. Telford, !. R. Hawley, and !. J. , !Factors!affecting!running!economy! in!trained!distance!runners.!Sports!Med, 2004.

!. Morgan, !. D. Craib, and !. M. , Physiological aspects of running economy, 456T461.! Allometry and performance in distance runners 95, 1992.
DOI : 10.1249/00005768-199204000-00011

!. Bailey, !. S. Pate, and !. R. , ! Feasibility! of! improving! running! economy.! Sports! Med, 1991.

!. Davies and !. C. , Metabolic cost of exercise and physical performance in children with some observations on external loading, European Journal of Applied Physiology and Occupational Physiology, vol.110, issue.2-3, 1980.
DOI : 10.1007/BF00421316

!. Cooke, !. C. Mcdonagh, !. M. Nevill, !. A. Davies, and !. C. , !Effects!of!load!on!oxygen!intake!in! trained!boys!and!men!during!treadmill!running, !J!Appl!Physiol, vol.71, 1991.

!. Schepens, !. B. Willems, !. P. Cavagna, !. G. Heglund, and !. N. , Mechanical power and efficiency in running children, Pfl??gers Archiv, vol.442, issue.1, 2001.
DOI : 10.1007/s004240000511

!. Candau, !. R. Belli, !. A. Millet, !. G. Georges, !. D. Barbier et al., Energy cost and running mechanics during a treadmill run to voluntary exhaustion in humans, European Journal of Applied Physiology, vol.77, issue.6, pp.479-485, 1998.
DOI : 10.1007/s004210050363

!. Lloyd, !. B. Zacks, and !. R. , The mechanical efficiency of treadmill running against a horizontal impeding force, The Journal of Physiology, vol.223, issue.2, 1972.
DOI : 10.1113/jphysiol.1972.sp009851

!. Billat and !. L. , ! Interval! training! for! performance:! a! scientific! and! empirical! practice.! Special! recommendations!for!middleT!and!longTdistance!running.!Part!I:!aerobic!interval!training.! Sports!Med, 2001.

!. Noordhof, !. D. De, !. Koning, !. J. Foster, and !. C. , ! The! maximal! accumulated! oxygen! deficit! method:!a!valid!and!reliable!measure!of!anaerobic!capacity?!Sports!Med, pp.285-302, 2010.

!. Cooper, !. D. Weilertravell, !. D. Whipp, !. B. Wasserman, and !. K. , ! Aerobic! parameters! of! exercise!as!a!function!of!body!size!during!growth!in!children, !J!Appl!Physiol, vol.56, 1984.

. Tartaruga, . Brisswalter, . Peyré-tartaruga, . Ávila, . Alberton et al., Feasibility of improving running economy, Sports Medicine, vol.12, pp.228-236, 1991.

G. A. Cavagna, N. C. Heglund, and P. A. Willems, Effect of an increase in gravity on the power output and the rebound of the body in human running, Journal of Experimental Biology, vol.208, issue.12, pp.2333-2346, 2005.
DOI : 10.1242/jeb.01661

P. R. Cavanagh and K. R. Williams, The effect of stride length variation on oxygen uptake during distance running, Medicine & Science in Sports & Exercise, vol.14, issue.1, pp.30-35, 1982.
DOI : 10.1249/00005768-198201000-00006

P. R. Cavanagh, M. L. Pollock, and J. Landa, A BIOMECHANICAL COMPARISON OF ELITE AND GOOD DISTANCE RUNNERS, Annals of the New York Academy of Sciences, vol.92, issue.1, pp.328-345, 1977.
DOI : 10.1007/BF00934423

T. C. Chen, K. Nosaka, M. J. Lin, H. L. Chen, and C. J. Wu, Changes in running economy at different intensities following downhill running, Journal of Sports Sciences, vol.17, issue.11, pp.1137-1144, 2009.
DOI : 10.1055/s-2005-837461

K. A. Clarke, Swing time changes contribute to stride time adjustment in the walking rat, Physiology & Behavior, vol.50, issue.6, pp.1261-1262, 1991.
DOI : 10.1016/0031-9384(91)90593-D

D. L. Conley and G. S. Krahenbuhl, Running economy and distance running performance of highly trained athletes, Medicine & Science in Sports & Exercise, vol.12, issue.5, pp.357-360, 1980.
DOI : 10.1249/00005768-198025000-00010

D. A. Dainty and R. W. Norman, Standardizing biomechanical testing in sport, 1987.

G. M. Dallam, R. L. Wilber, K. Jadelis, G. Fletcher, and N. Romanov, Effect of a global alteration of running technique on kinematics and economy, Journal of Sports Sciences, vol.63, issue.5, pp.757-764, 2005.
DOI : 10.2165/00007256-199622010-00002

D. Prampero and P. E. , The Energy Cost of Human Locomotion on Land and in Water*, International Journal of Sports Medicine, vol.07, issue.02, pp.55-72, 1986.
DOI : 10.1055/s-2008-1025736

D. Prampero, P. E. Atchou, G. Bruckner, J. C. Moia, and C. , The energetics of endurance running, European Journal of Applied Physiology and Occupational Physiology, vol.213, issue.3, pp.259-266, 1986.
DOI : 10.1007/BF02343797

W. O. Fenn and B. S. Marsh, Muscular force at different speeds of shortening, The Journal of Physiology, vol.85, issue.3, pp.277-297, 1935.
DOI : 10.1113/jphysiol.1935.sp003318

C. Foster and A. Lucia, Running Economy, Sports Medicine, vol.31, issue.4, pp.316-319, 2007.
DOI : 10.2165/00007256-200737040-00011

G. W. Gleim, N. S. Stachenfeld, and J. A. Nicholas, The influence of flexibility on the economy of walking and jogging, Journal of Orthopaedic Research, vol.214, issue.11, pp.814-823, 1990.
DOI : 10.1002/jor.1100080606

A. Gollhofer, P. V. Komi, M. Miyashita, and O. Aura, Fatigue During Stretch-Shortening Cycle Exercises: Changes in Mechanical Performance of Human Skeletal Muscle, International Journal of Sports Medicine, vol.08, issue.02, pp.71-78, 1987.
DOI : 10.1055/s-2008-1025644

C. Hausswirth and J. Brisswalter, Strategies for Improving Performance in Long Duration Events, Sports Medicine, vol.2, issue.8, pp.881-891, 2008.
DOI : 10.2165/00007256-200838110-00001

C. Hausswirth, A. X. Bigard, and C. Y. Guezennec, Relationships between Running Mechanics and Energy Cost of Running at the End of a Triathlon and a Marathon, International Journal of Sports Medicine, vol.18, issue.05, pp.330-339, 1997.
DOI : 10.1055/s-2007-972642

C. Hausswirth, J. Brisswalter, J. M. Vallier, D. Smith, and R. Lepers, Evolution of Electromyographic Signal, Running Economy, and Perceived Exertion During Different Prolonged Exercises, International Journal of Sports Medicine, vol.21, issue.6, pp.429-436, 2000.
DOI : 10.1055/s-2000-3832

R. Hinrichs, Upper Extremity Function in Running. II: Angular Momentum Considerations, International Journal of Sport Biomechanics, vol.3, issue.3, pp.242-263, 1987.
DOI : 10.1123/ijsb.3.3.242

D. W. Hosmer and S. Lemeshow, Applied logistic regression, 2000.
DOI : 10.1002/0471722146

E. T. Howley, D. R. Bassett, . Jr, and H. G. Welch, Criteria for maximal oxygen uptake, Medicine & Science in Sports & Exercise, vol.27, issue.9, pp.1292-1301, 1995.
DOI : 10.1249/00005768-199509000-00009

A. S. Jackson and M. L. Pollock, Generalized equations for predicting body density of men, British Journal of Nutrition, vol.95, issue.03, pp.497-504, 1978.
DOI : 10.1051/animres:19720107

G. A. King, J. E. Mclaughlin, E. T. Howley, D. R. Bassett, . Jr et al., Validation of Aerosport KB1-C Portable Metabolic System, International Journal of Sports Medicine, vol.20, issue.05, pp.304-308, 1999.
DOI : 10.1055/s-2007-971135

L. M. Knutson, G. L. Soderberg, B. T. Ballantyne, and W. R. Clarke, A study of various normalization procedures for within day electromyographic data, Journal of Electromyography and Kinesiology, vol.4, issue.1, pp.47-59, 1994.
DOI : 10.1016/1050-6411(94)90026-4

C. Krogh-lund and K. Jorgensen, Changes in conduction velocity, median frequency, and root mean square-amplitude of the electromyogram during 25% maximal voluntary contraction of the triceps brachii muscle, to limit of endurance, European Journal of Applied Physiology and Occupational Physiology, vol.56, issue.1, pp.60-69, 1991.
DOI : 10.1007/BF00760803

H. Kyrolainen, A. Belli, and P. V. Komi, Biomechanical factors affecting running economy, Medicine and Science in Sports and Exercise, vol.33, issue.8, pp.1330-1337, 2001.
DOI : 10.1097/00005768-200108000-00014

P. E. Martin, G. D. Heise, and D. W. Morgan, Interrelationships between mechanical power, energy transfers, and walking and running economy, Medicine & Science in Sports & Exercise, vol.11, issue.4, pp.508-515, 1993.
DOI : 10.1249/00005768-199304000-00014

O. S. Mian, J. M. Thom, L. P. Ardigo, M. V. Narici, and A. E. Minetti, Metabolic cost, mechanical work, and efficiency during walking in young and older men, Acta Physiologica, vol.16, issue.2, pp.127-139, 2006.
DOI : 10.1002/mus.10279

A. E. Minetti, L. P. Ardigo, and F. Saibene, Mechanical determinants of the minimum energy cost of gradient running in humans, Journal of Experimental Biology, vol.195, pp.211-225, 1994.

W. H. Montgomery, M. Pink, and . J. Perry, Electromyographic Analysis of Hip and Knee Musculature During Running, The American Journal of Sports Medicine, vol.22, issue.2, pp.272-278, 1994.
DOI : 10.1177/036354659402200220

J. B. Morin, P. Samozino, K. Zameziati, and A. Belli, Effects of altered stride frequency and contact time on leg-spring behavior in human running, Journal of Biomechanics, vol.40, issue.15, pp.3341-3348, 2007.
DOI : 10.1016/j.jbiomech.2007.05.001

A. Nummela, T. Keranen, and L. O. Mikkelsson, Factors Related to Top Running Speed and Economy, International Journal of Sports Medicine, vol.28, issue.8, pp.655-661, 2007.
DOI : 10.1055/s-2007-964896

A. Nummela, H. Rusko, and A. Mero, EMG activities and ground reaction forces during fatigued and nonfatigued sprinting, Medicine & Science in sports & Exercise, vol.26, issue.5, pp.605-609, 1994.
DOI : 10.1249/00005768-199405000-00013

L. A. Peyré-tartaruga, M. P. Tartaruga, M. Coertjens, G. L. Black, A. R. Oliveira et al., Physiologic and kinematical effects of water run training on running performance, International Journal of Aquatic Research and Education, vol.3, pp.135-150, 2009.

S. K. Powers, S. Dodd, R. Deason, R. Byrd, T. !. Mcknight et al., Ventilatory threshold, running economy and dis- Copyrighted Material: Not for Reprint or Redistribution Copyrighted Material: Not for Reprint or Redistribution Tartaruga PM Allometry and performance in distance runners 109, p.0, 1983.

. Tartaruga, . Brisswalter, and . Peyré-tartaruga, and Kruel tance running performance of trained athletes, Research Quarterly for Exercise and Sport, vol.54, pp.179-182

P. U. Saunders, D. B. Pyne, R. D. Telford, and J. A. Hawley, Factors Affecting Running Economy in Trained Distance Runners, Sports Medicine, vol.68, issue.6, pp.465-485, 2004.
DOI : 10.2165/00007256-200434070-00005

B. J. Sawyer, J. R. Blessinger, B. A. Irving, A. Weltman, J. T. Patrie et al., Walking and Running Economy, Medicine & Science in Sports & Exercise, vol.42, pp.2122-2127, 2010.
DOI : 10.1249/MSS.0b013e3181de2da7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944919

W. E. Siri, Body composition from fluid spaces and density: Analysis of methods, Nutrition, vol.9, pp.480-491, 1993.

G. Solberg, B. Robstad, O. H. Skjonsberg, and F. Borchsenius, Respiratory gas exchange indices for estimating the anaerobic threshold, Journal of Sports Science and Medicine, vol.4, pp.29-36, 2005.

L. A. Tartaruga, M. P. Tartaruga, J. L. Ribeiro, M. Coertjens, L. R. Ribas et al., Correlation between running economy and kinematic variables in high level runners, Brazilian Journal of Biomechanics, vol.5, pp.51-58, 2004.

F. W. Thompson and R. T. Floyd, Manual of structural kinesiology, 1998.

B. R. Umberger, Effects of suppressing arm swing on kinematics, kinetics, and energetics of human walking, Journal of Biomechanics, vol.41, issue.11, pp.2575-2580, 2008.
DOI : 10.1016/j.jbiomech.2008.05.024

P. A. Willems, G. A. Cavagna, and N. C. Heglund, External , internal and total work in human locomotion, Journal of Experimental Biology, vol.198, pp.379-393, 1995.

K. R. Williams and P. R. Cavanagh, Relationship between distance running mechanics, running economy, and performance, Journal of Applied Physiology, vol.63, pp.1236-1245, 1987.

D. A. Winter, Processing of raw kinematic data, Biomechanics of human movement, pp.24-39, 1990.

D. Basset, E. T. Jr, and . Howley, Limiting factors for maximum oxygen uptake and determinants of endurance performance, Medicine & Science in Sports & Exercise, vol.32, pp.70-84, 2000.
DOI : 10.1097/00005768-200001000-00012

J. Brisswalter, P. Legros, and M. Durand, Running economy, preferred step length correlated to body dimensions in elite middle distance runners, J.Sports Med.Phys.Fitness, vol.36, pp.7-15, 1996.

S. Brody, Bioenergetics and Growth. Reinhold, New York Allometry and performance in distance runners 123, 1945.

P. R. Cavanagh and R. Kram, The efficiency of human movement???a statement of the problem, Medicine & Science in Sports & Exercise, vol.17, issue.3, pp.304-308, 1985.
DOI : 10.1249/00005768-198506000-00002

C. A. Darveau, R. K. Suarez, R. D. Andrews, and P. W. Hochchka, Allometric cascade as a unifying principle of body mass effects on metabolism, Nature, vol.69, issue.6885, pp.166-170, 2002.
DOI : 10.1016/S0300-9629(97)00020-0

. De-la-rosa, C. R. Fjbd, and . Rodriguz-añez, O estudo das características físicas do homem por meio da proporcionalidade, Revista Brasieira de Cineantropometria e Desempenho Humano, vol.1, pp.53-66, 2002.

J. F. Gillooly, J. H. Brown, G. B. West, V. M. Savage, and E. L. Charnov, Effects of Size and Temperature on Metabolic Rate, Science, vol.293, issue.5538, pp.2248-2251, 2001.
DOI : 10.1126/science.1061967

V. L. Goosey-tolfrey, A. M. Batterham, and K. Tolfrey, Scaling Behavior of &OV0312;O2peak in Trained Wheelchair Athletes, Medicine & Science in Sports & Exercise, vol.35, issue.12, pp.2106-2111, 2003.
DOI : 10.1249/01.MSS.0000099106.33943.8C

W. L. His, C. Lan, and J. S. Lai, Normal standards for cardiopulmonary responses to exercise using a cycle ergometer test, J.Formosan Med.Assoc, vol.97, pp.315-322, 1998.

K. Jensen, L. Johansen, and N. H. Secher, Influence of body mass on maximal oxygen uptake: effect of sample size, European Journal of Applied Physiology, vol.84, issue.3, pp.201-205, 2001.
DOI : 10.1007/s004210170005

M. Kleiber, Body size and metabolism, Hilgardia, vol.6, issue.11, pp.315-353, 1932.
DOI : 10.3733/hilg.v06n11p315

H. Kyröläinen, A. Belli, and P. V. Komi, Biomechanical factors affecting running economy, Med.Sci.Sports Exerc, vol.33, pp.1330-1337, 2001.

P. Larsson, P. Olofsson, E. Jakobsson, L. Burlin, and K. Henriksson-larsén, Physiological predictors of performance in cross-country skiing from treadmill tests in male and female subjects, Scandinavian Journal of Medicine & Science in Sports, vol.5, issue.30, pp.347-353, 2002.
DOI : 10.1034/j.1600-0838.2002.01161.x

M. Loftin, M. Sothern, L. Trosclair, A. O-'hanlon, J. Miller et al., Scaling VO2 Peak in Obese and Non-obese Girls, Obesity, vol.9, issue.5, pp.290-296, 2001.
DOI : 10.1038/oby.2001.36

R. D. Martin, M. Genoud, and C. K. Hemelrijk, Problems of allometric scaling analysis: examples from mammalian reproductive biology, Journal of Experimental Biology, vol.208, issue.9, pp.1731-1747, 2005.
DOI : 10.1242/jeb.01566

D. F. Mcmiken and J. T. Daniels, Aerobic requirement maximal aerobic power in treadmill and track running, Med.Sci.Sports Exerc, vol.8, pp.14-17, 1976.

M. H. Pestana, E. Gageiro-jn-powers, S. , S. Dodd, R. Deason et al., Análise de dados para ciências sociais: a complementaridade do SPSS, Lisboa 19 Ventilatory threshold, running economy, and distance running performance of trained athletes, Res.Q.Exerc.Sport, vol.54, pp.179-182, 1983.

J. Svedenhag and B. Sjödin, Body-Mass-Modified Running Economy and Step Length in Elite Male Middle- and Long-Distance Runners, International Journal of Sports Medicine, vol.15, issue.06, pp.305-310, 1994.
DOI : 10.1055/s-2007-1021065

L. A. Tartaruga, M. P. Tartaruga, J. L. Ribeiro, M. Coertjens, L. R. Ribas et al., Correlações entre economia de corrida e variáveis cinemáticas em corredores de alto nível, Revista Brasieira de Biomecânica, vol.9, pp.51-58, 2004.

G. B. West, J. H. Brown, and B. J. Enquist, A General Model for the Origin of Allometric Scaling Laws in Biology, Science, vol.276, issue.5309, pp.122-126, 1997.
DOI : 10.1126/science.276.5309.122

C. R. White and R. S. Seymour, Allometric scaling of mammalian metabolism, Journal of Experimental Biology, vol.208, issue.9, 2005.
DOI : 10.1242/jeb.01501

. Vo, kg -1 -min -1 ) 53, pp.96-0145

. Consumo-máximo-de-oxigênio, expoentes alométricos (exp) para corredores de 0,986 e remadores de 0,690; massa magra (mm) de cada sujeito. Valores percentuais referentes ao VO 2máx .(a) diferenças estatisticamente significativas, calculadas a partir do teste t-Student para amostras independentes, entre corredores e remadores; (b) diferenças estatisticamente significativas, calculadas a partir do teste t-Student para amostras dependentes, entre o consumo de oxigênio no limiar anaeróbio determinado pela ventilação e pela lactacidemia em remadores, 1969.

R. Bibliográficas-baptista-rr, O. Lgd, F. Gbd, C. Jr, L. Jfe et al., Limiar de Lactato em Remadores: Comparação entre Dois Métodos de Determinação.R e v i s t aB r a s i l e i r ad eM e d i c i n ad oE s p o r, pp.247-50

B. Dr and H. Et, Limiting Factors For Maximum Oxygen Uptake and Determinants of Endurance Performance, Medicine and Science in Sport and Exercise, vol.32, issue.1, pp.70-84, 2000.

C. B. , K. H. Snyder-ac, K. Ha, J. A. , and H. M. , AN e wA p p r o a c hf o rt h e Determination of Ventilatory and Lactate Thresholds, International Journal of Sports Medicine, vol.13, issue.7, pp.518-540, 1992.

C. Dl and K. Gs, Running Economy and Distance Running Performance of Highly Trained Athletes, Medicine and Science in Sport and Exercise, vol.12, issue.5, pp.357-60, 1980.

C. Dl, Physiology of Marathon Running, Jama, vol.221, issue.9, pp.1024-1033, 1972.

C. Je, D. Ct, E. Og, H. Mj, and T. Jm, Factors Relating to the Aerobic Capacity of 46 Healthy British Males and Females, Ages 18 To 28 Years, Proceedings of the Royal Society of London, vol.174, issue.34, pp.91-114, 1996.

D. Ca, A. Suarez-rk, H. Rd, and . Pw, Allometric Cascade as a Unifying Principle of Body Mass Effects on Metabolism, Nature, vol.417, issue.6885, pp.166-70, 2002.

D. Ja, V. P. , W. Jh, V. J. , and K. P. , Anaerobic Threshold and Maximal Aerobic Power for Three Modes of Exercise, Journal of Applied Physiology, vol.41, issue.4, pp.544-50, 1976.

D. Bs, Consumo Máximo de Oxigênio: Fatores Determinantes e Limitantes, Revista Brasileira de Atividade Física e Saúde, vol.1, issue.1, pp.85-94, 1995.

D. C. , F. R. , P. P. , G. A. , and L. Jr, Effect of 40 weeks of Endurance Training on the Anaerobic Threshold, International Journal of Sports Medicine, vol.3, issue.4, pp.208-222, 1982.

F. Pa, W. Jh, C. Ef, C. Billing-je, and . Dl, Plasma Lactate Accumulation and Distance Running Performance, Medicine and Science in Sports, vol.11, issue.4, pp.338-382, 1979.

F. Jj and F. Mr, AComparisonofLactateConcentrationinPlasmaCollectedfromtheT oe,EarandFingertip after a Simulated Rowing Exercise, British Journal of Sports Medicine, vol.34, issue.1, pp.35-43, 2000.

H. Et, W. Bassett-dr-jr, and . Hg, Criteria for Maximal Oxygen Uptake: Review And Commentary, Medicine and Science in Sport and Exercise, vol.27, issue.9, pp.1292-301, 1995.

H. Wl, L. Lan-c, and . Js, Normal Standards For Cardiopulmonary Responses To Exercise Using A Cycle Ergometer Test, Journal of the Formosan Medical Association, vol.97, issue.5, pp.315-337, 1998.

J. As and P. Ml, Generalized Equations for Predicting Body Density of Men, The British Journal of Nutrition, vol.40, issue.3, pp.497-504, 1978.

J. K. , J. L. , and S. Nh, Influence of Body Mass on Maximal Oxygen Uptake: Effect of Sample Size, European Journal of Applied Physiology, vol.84, issue.3, pp.201-206, 2001.

J. Pr and P. J. , Anthropometric Determination of Leg Fat and Muscle Plus Bone Volumes in Young Male and Female Adults, The Journal of Physiology, vol.204, issue.2, pp.63-69, 1969.

K. H. , B. A. , and K. Pv, Biomechanical Factors Affecting Running Economy, Medicine and Science in Sport and Exercise, vol.33, issue.8, pp.1330-1337, 2001.

S. M. Loftin-m, T. L. , O. Hanlon-a, and U. J. Millerj, Scaling VO2 Peak in Obese and Non-obese Girls, Obesity, vol.9, issue.5, pp.290-296, 2001.
DOI : 10.1038/oby.2001.36

M. Tm and J. I. Reliability, Reproducibility and Validity of the Individual Anaerobic Threshold, EuropeanJournal of Applied Physiology and Occupational Physiology, vol.67, issue.2, pp.125-156, 1993.

M. T. , W. Jp, S. J. , and K. W. , Maximal Oxygen Uptake During Field Running Does Not Exceed that Measured During Treadmill Exercise, European Journal of Applied Physiology, vol.88, pp.4-5387, 2003.

N. Rm and S. Gg, Indices of Lactate Threshold and their Relationship with 10-Km Running Velocity, Medicine and Science in Sport and Exercise, vol.33, issue.2, pp.339-381, 2001.

N. Tf, The Biomechanics of Running, Gait Posture, vol.7, issue.1, pp.77-95, 1998.

N. At, P. Lm, S. K. Lambert-mi, N. , and R. Hk, Neuromuscular Factors Determining 5 Km Running Performance and Running Economy in Well-Trained Athletes, European Journal of Applied Physiology, vol.97, issue.1, pp.1-8, 2006.

O. Ah, A. Lr, S. Hg, M. Acd, N. Fy et al., Comparação entre Limiar Anaeróbio Determinado por Variáveis Ventilatórias e pela Resposta do Lactato Sangüíneo em Ciclistas, Revista Brasileira de Medicina do Esporte, vol.12, issue.1, pp.39-44, 2006.

P. Sk, D. S. , D. Byrd-r, and M. T. , Ventilatory Threshold, Running Economy and Distance Running Performance of Trained Athletes, Research Quarterly for Exercise and Sport, vol.54, issue.2, pp.179-82, 1983.

S. B. and A. Po, Maximal Oxygen Uptake in Athletes, Journal of Applied Physiology, vol.23, issue.3, pp.353-361, 1967.

S. We, Body Composition from Fluid Spaces and Density, :NationalAcademyofScience(Techniques for measuring body composition), 1961.

T. Lap, C. M. , T. Mp, M. Mhd, and K. Lfm, Influence of the Allometric Scale on the Relationship Running Economy and Biomechanical Variables in Runners, Medicine and Science in Sport and Exercise, vol.39, issue.5, pp.208-209, 2007.

T. Lap, T. Mp, R. Jl, C. M. , R. Lr et al., Correlação entre Economia de Corrida e Variáveis Cinemáticas em Corredores de Alto Nível, Revista Brasileira de Biomecânica, vol.5, issue.9, pp.51-59, 2004.

V. Pm and D. C. , Considering Body Mass Differences, Who Are the World's Strongest Women?, Medicine and Science in Sport and Exercise, vol.32, issue.1, pp.197-201, 2000.

W. Wasserman-k, K. Bj, B. Sn, and . Wl, Anaerobic Threshold and Respiratory Gas Exchange During Exercise, Journal of Applied Physiology, vol.35, issue.2, pp.236-279, 1973.

W. A. and K. Vl, Relationship between the Onset of Metabolic Acidosis (Anaerobic Threshold) and Maximal Oxygen Uptake, The Journal of Sports Medicine and Physical Fitness, vol.19, issue.2, pp.135-177, 1979.

W. Gb, E. Brown-jh, and . Bj, A General Model for the Origin of Allometric Scaling Laws iIn Biology, Science, vol.276, issue.5309, pp.122-128, 1997.

W. , E. , and H. Ej, Sub Maximal Oxygen Uptake Related to Fat Free Mass and Lean Leg Volume in Trained Runners, British Journal of Sports Medicine, vol.10, issue.4, pp.223-228, 1976.