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A20  TNFAIP3: Tumor necrosis factor, alpha-induced protein 3 
AP-1  Activator protein 1 
ARD  Ankyrin repeat domain 
BCL10  B-cell CLL/lymphoma 10 
BCR  B-cell receptor 
CARD  Caspase recruitment domain 
CARMA1 CARD and MAGUK scaffold protein 1 
CBM  CARMA1-MALT1-BCL10 complex 
CD40  Cluster of differentiation 40 
cIAP  cellular Inhibitor of apoptosis 
CK1α  Casein Kinase 1α 
CYLD  Cylindromatosis 
DLBCL Diffuse large B-cell lymphoma 
DUB  Deubiquitinylase 
ER  Endoplasmic reticulum 
ERK  Extracellular signal-regulated kinase 
HECT  Homologous to the E6-AP Carboxyl Terminus 

IFN  Interferon 
IKK  IκB kinase 
IL  Interleukin 
IRAK  Interleukin-1 receptor-associated kinase 
IκB  Inhibitor of NF-κB 
JNK  JUN N-terminal kinase 

LPS  Lipopolysaccharide 
LUBAC Linear ubiquitin chain assembly complex 

MAGUK Membrane-associated guanylate kinase 
MALT1 Mucosa associated lymphoid tissue lymphoma translocation gene 1 
MAPK  Mitogen-activated protein kinase 
MEF  Mouse embryonic fibroblast 
MEKK  Mitogen-activated protein kinase kinase 
MTDH  Metadherin 
MYD88 Myeloid differentiation primary response protein 88 
NEMO  NF-κB essential modulator 
NF-κB  Nuclear factor of immunoglobulin κ-light chain enhancer in activated B-cells 
NFAT  Nuclear factor of activated T-cells 
NIK  NF-κB inducing kinase  
NLR  NOD-like receptor 
NOD  Nucleotide-binding oligomerisation domain 
NUTs  NF-κB ubiquitinylated transmitters 

OTU  Ovarian tumour domain 
PKC  Protein kinase C 
PTM  Post-translational modification 
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RIP  Receptor-interacting protein kinase 
RLR  RIG-I-like receptor 
RNF  RING-finger protein 
RPS3  Ribosomal protein S3 
SCF  SKP1-CUL1-F-box-protein 
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Abstract 

Large signalosome assembly is a prerequisite for NF-κB signaling upon engagement of 
various immunoreceptors. Adaptor proteins containing protein-protein interaction domains 
oligomerise in response to such stimuli in order to propagate signaling. Each immunoreceptor 
uses distinct adaptors, as well as common ones, to achieve that. The main characteristic 
shared by these proteins is their ability to undergo poly-ubiquitinylation in a non-degradative 
manner, leading to optimal NF-κB activation. In this work, we aimed to identify novel 
deubiquitinylating enzymes that control ubiquitinylation status. That is how USP34 came up 
to be a negative regulator of NF-κB signaling in TCR-activated Jurkat cells, a T lymphocyte 
cell line. Our data suggest a model whereby USP34 prevents excessive NF-κB activation by 
acting rather late, directly or indirectly on the NF-κB:IκBα dimers, downstream of IKK, 
altering transcription factor DNA binding affinity. In parallel, studies of the endocellular 
membrane microenvironment that hosts mature signalosomes in response to TCR-, TNFR- 
and CD40 ligation led to the identification of an ER-residing protein, Metadherin (MTDH), 
which seems to globally integrate signaling before forwarding it to downstream pathway 
components able to activate IKK. 

 

 

Résumé 

L’activation de la signalisation NF-κB par de nombreux immunorécepteurs met en jeu un 
large signalosome. Afin de propager cette signalisation en réponse à différents stimuli, 
l’oligomérisation d’adaptateurs pourvus de domaines d’interaction protéine-protéine est 
nécessaire. Alors que certains adapteurs sont communs d’autres sont spécifiques à un 
immunorécepteur donné. Une des principales caractéristiques partagées par toutes ses 
protéines est leur capacité à être poly-ubiquitinylé de façon non-dégradative afin d’aboutir à 
une activation optimale de NF-κB. Ce projet avait pour objectif d’identifier de nouvelles 
déubiquitinylases impliquées dans la signalisation NF-κB. C’est ainsi que nous avons 
identifié USP34 comme étant un régulateur négatif de la signalisation NF-κB induite par le 
TCR dans des cellules Jurkats, une lignée de lymphocytes T immortalisés. Nos données 
suggèrent un modèle dans lequel USP34 permet d’éviter l’activation excessive de NF-κB, en 
agissant directement ou indirectement sur les dimères NF-κB/IκBα, en aval d’IKK, et en 
modulant l’affinité du facteur de transcription pour l’ADN. Parallèlement, l’étude du 
microenvironnement des membranes endocellulaires responsables du recrutement des 
signalosomes formés en réponse à l’activation du TCR, du TNFR et du CD40 a permis 
l’identification d’une protéine - clé de la signalisation NF-κB, la MTDH. Cette protéine du 
RE s’est révélée être un relais déterminant pour l’activation d’IKK et donc la propagation du 
signal NF-κB.  
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nce upon a time there were many little primitive cells living in the vast oceans of 
planet Earth. Their life was not that peaceful, as they had to compete with each other day and 
night for the uptake of the limiting amount of nutrients in order to survive in a hostile and 
frightful environment. 

As time was flowing some of them made up new ways to use more rapidly and efficiently 
the available nutrients or get a safe sanctuary to get protected from the tremendous ancient 
face of the planet, giving them a selective advantage in survival. Life continued silently and 
unnoticed, soon all of them had developed different ways to earn their living. Little by little, 
step by step they even managed to change their whole environment which has turned much 
more friendly. 

At that moment they decided to get organised in smaller or larger societies living 
altogether and cooperating for their common good and well-being. Nothing has been the same 
ever since, as this was the initial event for the creation of multicellular organisms and the 
onset of the exponential increase of biodiversity permitting to living organisms spread around 
all heights and depths of the planet, resulting in all the living things we can (or still cannot) 
see around us today. 

 
Multicellularity could only be achieved after satisfying some very essential needs such as 

regulated cell replication and growth, programmed cell death, cell-cell and cell-matrix 
adhesion, regulated developmental processes, cell type specialisation and alloreactivity-
immunity. These adaptations could offer to that organism ideal advantage for survival. 
Markedly the NF-κB transcription factor is implicated in regulation of all these processes by 
controlling proliferation, antiapoptotic protein synthesis, adhesion molecules expression, 
development driving, cell specialisation and most commonly regulation of inflammation and 
immune response. Immunity in a multicellular organism consists of many defence 
mechanisms against rapidly growing, invading pathogens that can disrupt the organism’s 
integrity leading to a potentially lethal infectious disease. It also offers protection against 
noxious chemicals, radiation and other threats to normal function. The first line of defence 
against environmental danger consists of innate immune response mechanisms, highly 
conserved amongst species from the most primitive metazoans to the fruit flies and mammals. 
Adaptive immune response found in higher vertebrates together with innate immune response 
are both critical for survival and are essentially regulated by NF-κB [1, 2]. 
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I. Historic overview 
 
It has been 27 years since the first publication in 1986 (Figure 1), identifying the Nuclear 

Factor of immunoglobulin κ-light chain enhancer in activated B-cells (NF-κB) as a 
transcription factor present in the nuclei of mature B-lymphocytes and plasma cells, able to 
bind on the enhancer sequence 5’-GGGACTTTCC-3’ of this gene [3]. 

 
Figure 1: First publication on NF-κB in 1986, in Cell journal by Ranjan Sen and David Baltimore. Bottom right: 
Schematic representation of the essential 475bp AluI-AluI fragment containing the κ enhancer as defined by Picard and 
Schaffner (1984)… [3]. 

The initial goal of that project was to understand the mechanisms of enhancer function and 
their role in the activation of tissue-specific genes. The Immunoglobulin (Ig) enhancers were 
the first found to be tissue-specific with the Ig gene expression to be governed by three types 
of tissue-specific sequences. These sequences (promoter, enhancer, an extra intragenic 
sequence in the case of µ heavy chain gene) share an octameric motif (ATTTGCAT) located 
at a characteristic distance of all sequenced variable region genes. The fact that a nuclear 
factor had been found to interact with that sequence and the definition of enhancer sequences 
in viruses that potentiate transcription from a variety of promoters had already given rise to 
the idea of the existence of trans-acting factors that recognise these cis-regulatory DNA 
elements to regulate gene transcription. That is how this group tried to identify nuclear factors 
interacting with Ig µ and κ enhancer sequences by using an electrophoretic mobility shift 
assay (EMSA). 

Initially, studies on the κ enhancer interactions with nuclear extracts deriving from 
different types of mouse cells showed that nucleoprotein complexes were only present in B 
lymphoid cells. Further tests on B-cell lines have been performed in nuclear extracts deriving 
from different developmental stages such as pre-B cell lines (HAFTL, 38B9, 70Z, PD), 
mouse (WEHI 231, AJ9) and human (EW) B-cell lines, mouse (SP2-0, MPC11) and human 
(KR12, 8226) plasma cell lines and T-cell lines. This nucleoprotein complex was named NF-
κB, as it was only detected in the B-cell lines and the plasma-cell lines revealing not only 
tissue-specificity in B lymphoid lineage but also stage-specificity [3]. The theory was 
broadened right away as nucleoprotein complex could also be detected in nuclear extracts of 
pre-B cells (70Z/3) upon lipopolysaccharide (LPS) stimulation and non-lymphoid cells 
(HeLa) upon phorbol ester stimulation. Furthermore, translation inhibitors could not prevent 
this induction, even partially promoted it, showing that gene transcription is activated by post-
translational modifications of pre-existing precursor molecules [4]. 
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Soon after NF-κB discovery, in 1988 it became clear through a series of studies including 
EMSA experiments that NF-κB is located in the cytosolic fraction of unstimulated cells in a 
form where DNA-binding activity can be activated by dissociating agents. In phorbol ester 
stimulated cells, NF-κB activity is almost quantitatively recovered in the nuclear fraction. 
Taken together with the previous observations, it was proposed that NF-κB binding activity 
could be due to covalent modifications or conformational changes or release from an 
inhibitor. The latter idea, being more compatible with existing data, was further expanded 
proposing either that an inhibitor could cover DNA-binding site and nuclear translocation 
signal of NF-κB or maintain it in a low-DNA-affinity and hidden-nuclear-localisation-signal 
conformation [5]. 

Further experiments indicated the presence of this inhibitor in cytosolic fractions treated 
with a dissociating agent and depleted of NF-κΒ, in a gel filtration elution fraction able to 
block nucleoprotein complex formation detected by EMSA. They have further shown that the 
Inhibitor of NF-κB (IκB) is a protein that can form a stoichiometric complex with NF-κB and 
convert it into an inactive form in a reversible, saturable and specific reaction. Function of 
Hormone Receptors, and more specifically Glucocorticoid Receptor, was already known at 
that time. After substrates previously bound by inhibitors are released, translocation into the 
nucleus and gene transcription follows. Thus the proposed molecular mechanism for NF-κB 
activation, was that of “inducible gene expression by which a transcription factor:inhibitor 
complex is dissociated by the action of TPA (phorbol ester 12-O-tetradecanoylphorbol 13-
acetate) presumably through the activation of PKC (Protein Kinase C). The dissociation event 
results in activation and apparent nuclear translocation of the transciption factor. It would 
appear that IκB is the target for the TPA-induced dissociation reaction” [6]. 

 
Figure 2: Milestones in IκB research. The timeline represents a selection of major advances in the understanding of the 
molecular functions of IκB family proteins. [7] 

PKC activation by phorbol esters was already known, so it was hypothesised that IκB 
undergoes phosphorylation in order to dissociate from NF-κB. This event would somehow 
permit nuclear translocation, bringing together the information reflecting the cytoplasmic 
activation state of PKC and possibly of other signaling systems. Several studies demontrated 
IκB phosphorylation but all efforts to identify the responsible kinase, as PKC was not the one, 
were in vain. This “ghost” protein mediating this absolutely necessary modification was only 
revealed after intensive research, several years later. In 1996, it was proposed that 
phosphorylation is performed by a 700 kDa multisubunit kinase [8]. In 1997, several papers at 
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the same time described a kinase subunit able to phosphorylate IκBα upon stimulation with 
TNFα and IL-1. This previously characterised protein (CHUK) was renamed as the IκB 
Kinase α (IKKα) or IKK1. Practically at the same time, IKKβ or IKK2 was described as 
another catalytic subunit of the IKK signalosome, phosphorylating IκBs upon TNFα 
stimulation [9-13]. A third component of the IKK complex was also characterised as IKKγ or 
NEMO (NF-κB essential modulator) as it could interact with IKKα and IKKβ and is needed 
for activation of the complex upon various stimuli [14, 15]. 

Current model of NF-κB activation proposes that upon phosphorylation-induced 
degradation of IκB, deliberated NF-κB can translocate into the nucleus. There it bind on 
specific DNA sequences (cis elements) of 9-10 nucleotides, called the κB sites, according to 
the pattern 5’-GGGRNNYYCC-3’ (where R is a purine, Y a pyrimidine and N can be any 
nucleotide) to initiate transcription. No other transcription factor has ever attracted more 
experimental attention, counting more than 40.000 published articles (Figure 3). Today NF-
κB is synonymous with immunity and inflammation, development and apoptosis, survival and 
proliferation. 

 
Figure 3: 25 years of NF-κB literature [16] 
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II. Why to study NF-κB? 
 

II.1. Latency - Rapidity 
 
What was astonishing in the first place (and still is) about NF-κB is the fact that it is a pre-

existing system, retained in a latent state. All basic components, already present and poised 
for induction in the cell’s surface, cytoplasm and nucleus, await the right stimulus to initiate a 
response. A cascade of aggregation events and enzymatically catalysed biochemical reactions, 
involving many types of post-translational modifications, takes place during signal 
transmission, thus offering the privilege of instantaneous response, winning precious time that 
could be fatal for a cell waiting for protein synthesis to be completed [2]. 

 
II.2. Induction by various stimuli 
 
Another fact concerning NF-κB transcription factor, is the large variety of potential 

inducers (more than 150 [17]), recognised by receptors (either cell-surface or endocellular 
ones) that mediate bridging of the environmental conditions with the nucleus. As such have 
been characterised some pathogen sensors and some proinflammatory cytokines (e.g. IL-1 
(Interleukin-1) which acts on macrophages and fibroblasts), that also introduce feedback 
loops in the system. Antigens are a different category of inducers, in the case of B- and T-
cells, and glutamate, in the case of neurons. DNA-damage caused by ionising irradiation or 
genotoxic chemical compounds also participate in NF-κB induction [1, 2]. All these inducers 
generate various and complex transduction pathways, that often crosstalk with each other, 
finally converging, independently of the origin, in the regulation of NF-κB:IκB complex 
stability and localisation. 

 
II.3. Activation of innumerous targets 
 
Nowadays, several κB binding sites have been detected in a plethora of genes promoters 

and enhancers (more than 150 [17, 18] out of the approximately 20.000 encoded by the 
human genome), responsible for synthesis of proteins implicated in various fundamental cell 
processes including antimicrobial peptides, inflammatory cytokines, chemokines, interferons, 
acute phase response proteins, cell adhesion molecules, growth factors, stress-response 
proteins, anti-apoptotic proteins and viral proteins. 

Cytokines are the messenger molecules starring in immune response regulation, 
contributing in promotion of proliferation and differentiation of specific cells (e.g. 
macrophages, granulocytes, T-cells, B-cells), acute phase response induction in inflammation 
and antiviral protection of healthy cells [2]. They are mainly produced by and secreted from 
the immune system cells, either to act locally in an autocrine way, introducing positive 
feedback loops, paracrine manner, activating neighbouring cells, or globally in an endocrine 
way. 

Overall NF-κB controls events at multiple levels. First it ensures constant availability of 
pathway components like NF-κB and IκB proteins, so that the pathway can be readily 
responsive at any moment (κB sites are present in the promoters of such genes). In addition, 
NF-κB controls activation of the signal-originating cell as well as activation and intercellular 
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communication with neighbouring cells through cytokines and other far away located cells 
through chemokines. Secreted NF-κB-dependent products of activated cells can further drive 
third target cells, through additional NF-κB-dependent processes, to code for proteins 
necessary for migration and adhesion in the spot of the signal origin. When all kinds of 
activated cells are present in the source of signal induction, they all start a party of NF-κB-
activating and NF-κB-guided events in order to produce molecules necessary for the initiation 
and control of the inflammatory response at the beginning, and resolution at the end of the 
alarm. 

 

II.4. Resolution 
 

An additional factor one has to keep in mind is that inflammation, as mentioned earlier, is 
the most essential part of the immunological response. The series of events is perfectly 
orchestrated and coordinated by the immune system cells whose communication depends on 
protein production from NF-κB-controlled genes. Inflammation is the only way to repel and 
eliminate pathogens, viruses, genetically or physically damaged cells etc. and it can only be 
successful if it is accurate in space and time. A too much localised or delayed immune 
reaction is as dangerous and critical for tissue health as an extensive or prolonged one. The 
latter is highly undesirable as it may damage nearby tissues risking their integrity. So, 
inflammation must be self-limiting and self-resolving. Proinflammatory effects are also 
accompanied by anti-inflammatory ones. Consequently, successful response does not only lie 
in its onset but also in the elegant ability to precisely control it at all stages till resolution. 
Thus, the ability to self-deteriorate is of great importance when potential danger has 
disappeared. Setting the system in the default condition follows, where NF-κB-dependent 
genes are only expressed in basal levels. The importance of this mechanism is underscored by 
the fact that the same transcription factor drives the expression of both inflammation initiation 
and resolution genes. Furthermore, inflammation is important not only for clearing intruders 
but also for the turnover and repair of damaged tissues [1]. 

 

II.5. NF-κB and diseases 
 

II.5.a. Inflammation-related diseases 
 

Chronic inflammation, autoimmunity, 
immunodeficiency and allergies are 
pathological conditions charecterised by 
NF-κB malregulation. Many systemic 
syndromes and diseases have been 
characterised as such, symptomatology of 
which varies from mild signs during early 
stages of development to more severe 
forms as it they advance. There are 
examples affecting all tissues and organs. 
[18] 

 

 
Tissue/organ/system Disease 
Intestine Inflammatory Bowel 
Pancreas Diabetes Mellitus type I 
Bones and joints Rheumatoid Arthritis 
Skin Psoriasis 
Cardiovascular Atherosclerosis 

Muscles Muscular Dystrophy, 
Asthma 

Central nervous Alzheimer’s, 
Multiple Sclerosis 

Ectoderm-derived Incontinentia Pigmenti 
CD4+ T-cells HIV 
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II.5.b. Cancerogenesis 
 
Indications for the oncogenic action of NF-κB in human had already appeared since the 

dawn of its discovery, as a result of the homology of c-Rel protein with the retroviral v-Rel 
oncogene causing cancer in avian lymphoid cells (avian reticuloendotheliosis viral oncogene 
homolog) [18-22]. Somatic mutations, genomic amplifications and deletions, chromosomal 
translocations lead to constitutively active NF-κB in a variety of haematological malignancies 
and solid tumours (Table 1). These kinds of malfunctions are often followed by constitutive 
signaling originating from receptors and pathway components or permanent inactivation of 
inhibitory proteins involved in the signaling cascades. In human, lymphomas are usually 
caused by malignant B-lymphocytes (90%) at various differentiation stages and less often 
(10%) derive from T-lymphocytes. Classification is mainly based on patient’s symptoms and 
phenotype. Some of these diseases (e.g. ABC DLBCL) are addicted to constitutive, aberrant 
NF-κB activity in order to survive [23-25]. 

Human cancers that have been linked to constitutive NF-κB activation 
Various haematological malignancies and solid tumours that exhibit constitutive nuclear factor κB (NF-κB) 
activation are listed below: 

Haematological malignancies. Multiple myeloma (1% of all cancers and more than 10% of total 
haematological malignancies), mantle cell lymphoma, MALT lymphoma, diffuse large B-cell lymphoma 
(DLBCL) (25% of all lymphoma cases) [subcategorised in germinal center B-cell-like (GCB) DLBCL, 
activated B-cell-like (ABC) DLBCL and primary mediastinal B-cell lymphoma (PMBL)], Hodgkin’s 
lymphoma, myelodysplastic syndrome, adult T-cell leukaemia (HTLV-1), acute lymphocytic leukaemia, 
acute myeloid leukaemia, chronic lymphocytic leukaemia and chronic myeloid leukaemia. 

Solid tumours. Breast, cervical, prostate, renal, lung, colon, liver, pancreatic, oesophageal, gastric, 
laryngeal, thyroid, parathyroid, bladder and ovarian cancers. Also, melanoma, cylindroma, squamous cell 
carcinoma (skin, and head and neck), oral carcinoma, endometrial carcinoma, retinoblastoma and 
astrocytoma/glioblastoma. 

Table 1: Human cancers that have been linked to constitutive NF-κB activation. (Adapted from [23] with information 
from [1 , 18 , 25, 26 ]) 

Even more crowded is the group of malignancies where activated NF-κB is largely 
detected in the cells nuclei, pointing out the effect of either mutations that affect components 
of upstream signaling pathways of the malignant cells, or the presence of proliferation 
promoting factors in a tumor microenvironment. In other words carcinogenesis can occur by 
two mechanisms. First, by the multistage, mutation accumulating process, involving the 
classical sequence of tumor initiation and tumor progression events in the case of chemical-
caused tumorigenesis. Second, it can be facilitated through chronic tumor-promoting 
inflammation by creating a microenvironment that allows cells with cancer-causing mutations 
to thrive, before any tumor initiation events. These events are actually believed to be more 
widespread, as chronic inflammation can create a microenvironment favourising 
transformation of healthy cells, angiogenesis to feed the malignancy and tumor cell growth 
and invasion [1, 18, 23]. 

 
II.5.c. Medical treatment 

 
Chronic inflammation diseases and cancers are currently treated with a wide range of 

pharmaceutical substances that mainly block inflammatory events, or the proliferative activity 
of cells through inhibition of NF-κB activating signaling pathways. Glucocorticosteroids have 
been used as immunosuppressive and anti-inflammatory drugs, since they can induce IκB 
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synthesis. Non-steroidal anti-inflammatory drugs like aspirin have also been used to prevent 
IκB degradation and extensive NF-κB activation.  The same approach is followed by the use 
of naturally occurring or synthetic proteasome inhibitors like lactacystin, peptide aldehydes 
and boronic acid peptides. Genotoxic agents and irradiation are also used in order to introduce 
genetic damage in rapidly proliferating cancer cells, thus promoting their elimination by 
apoptosis. Other examples are anti-TNF or anti-IL1 therapy for chronic inflammation diseases 
[1, 27]. 

Most anticancer approaches though have a small therapeutic index and do not discriminate 
between malignant and normal cells. The ones mentioned above, have a broad range of 
action, affecting essentially all rapidly growing cell populations. Cancer cells are not the only 
type of rapidly growing cells that need active NF-κB, since stem cells of the skin epithelium, 
the intestine epithelium and the bone marrow, self-renew and proliferate in a continuous way 
to maintain homeostasis. Inevitably, agents that affect cell proliferating capacity in a general 
manner and block the pleiotropic effects of NF-κB also cause serious side effects on healthy 
cells, not to mention that resistance and subsequent relapse of the disease is highly possible. 
Furthermore all pathological conditions described earlier are multifactorial, meaning 
practically that similar phenotypes and disease classification do not derive from the same 
genetic and molecular background, making each patient a unique case. Cancer is not one but 
many different diseases. In addition this type of drugs do not act in a well-known way and 
they can affect many different processes in cells. Very often, combinatorial drug therapy is 
provided so as to equilibrate the undesireable and harmful side effects caused [18, 23]. 

During the last few years, new approaches and therapies are being applied, focusing on 
more specific stages of action in signal transduction pathways. IKK-specific, IκB 
phosphorylation and proteasome-specific inhibitors are clinically tested. The use of inhibitors 
specific for TCR pathway-restricted molecules that only affect adaptive immunity is also 
being tested [24]. The advantage of these approaches lies in the fact that they have a more 
specific way of action as they specifically target intermediate factors and signal transducers 
participating in the NF-κB activation pathway. Thus they can sensitise cancer cells to standard 
chemotherapy-induced death. New class of compounds acting as multitarget drugs has 
attracted clinical attention, acting on diverse regulatory pathways that are essential for 
proliferation and survival of cancer cells [HSP90 (Heat shock protein 90) blockers and HDAC 
(Histone deacetylases) and ubiquitin-proteasome system inhibitors] [1]. Like that, non-
specific effects in signaling can be reduced. New antitumoral therapies also focus on targeting 
the inflammatory components of the tumour rather than the malignant cells (as they undergo 
mutations rapidly and develop drug resistance) depriving it from proliferating signals [1, 23]. 
Side effects on healthy cells still come up though. 

That makes an absolute necessity the direction towards an individualised, molecular-
targeting treatment adapted to each patient’s needs in the future. NF-κB-based therapies 
against cancer or chronic inflammation conditions will require molecular profiling to 
determine disease subtype, presence of genetic lesions in NF-κB regulators and NF-κB 
activity in the pathway. Expression of biomarkers and bioinformatic analysis of this kind of 
information, would offer the possibility to predict if a patient can benefit and respond to NF-
κB inhibition treatment. For this goal many signaling pathways need to be further illuminated 
in order to have a better understanding and a deeper insight, so as to design an accurate and 
specific treatment with maximal efficiency and minimal side effects [23, 24]. A characteristic 
example of targeted therapy is MALT1. MALT1 is necessary for CARMA1-BCL10-MALT1 
complex formation (see chapter IV.4.b) and signal propagation. Chromosomal translocations 
of this gene have been found in several ABC-DLBCL patients (55% of MALT-type 
lymphomas), leading to constitutive activation of NF-κB and subsequent increased 
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proliferation rate and resistance to apoptosis. These lymphomas are often specifically addicted 
to MALT1 cleavage activity, as MALT1 can cleave and neutralise signal-inhibitory factors. 
The benefits from targeting MALT1 as anti-cancer therapy lay in the fact that it is the only 
paracaspase that cleaves after arginine, unlike caspases that cleave after aspartate. Its 
implication in NF-κB signaling only through antigen receptors (BCR-TCR) renders it an ideal 
target. So far, screening for small molecule inhibitors have revealed some very good 
candidates (MI-2, phenothiazine derivatives) able to kill or sensitise ABC-DLBCL cells due 
to their high specificity, pharmacokinetic properties and manageable toxicity [25, 28]. 
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III. NF-κB core components and activators 
 
III.1. REL family 
 

 
Figure 4: Mammalian NF-κB/REL family members. All mammalian REL-related proteins - RELA/p65, c-REL, RELB, 
p105, p50, p100 and p52 - contain REL homology domains (RHDs). The amino-terminal portion of the RHD is responsible 
for both backbone and sequence-specific contacts within the major groove of the κB enhancer. The carboxy-terminal portion 
of the RHD mediates dimerization with other NF-κB/REL-family members and forms the site for physical docking to the 
IκBs. Only RELA, c-REL and RELB contain carboxy-terminal transactivation domains (TADs). The p105 and p100 proteins 
contain ankyrin repeats (indicated by pink circles), as well as glycine-rich regions (GRRs). The GRRs are important for co-
translational processing of p105 to p50 and post-translational processing of p100 to p52. Phosphorylation of RELA at serines 
(S)276, S311, S529 and/or S536 is required for optimal NF-κB transcriptional activity. Acetylation of RELA at lysines 
(K)122, K123, K218, K221 and K310 regulates distinct functions of NF-κB, including DNA binding, IκBα association and 
RELA-mediated transactivation. The leucine zipper (LZ) of RELB is required for transactivation by RELB [29]. 

The NF-κB family of eukaryotic transcription factors consists of five members in 
mammals: RELA or p65 or NF-κB3, RELB, c-REL, NF-κB1 (p50 and the precursor molecule 
p105), NF-κB2 (p52 and the precursor protein p100) [Figure 4]. RELA and NF-κB1 are 
ubiquitously expressed, NF-κB2 expression is restricted to stomach epithelium and areas of 
haemopoietic organs [30], RELB expression is restricted to dendritic cells and lymphoid 
tissue [31] and c-REL expression is generally restricted to haematopoietic cells  [27, 32, 33]. 
Active form of the transcription factors is their combination in hetero-dimeric or homo-
dimeric complexes, each one with distinct functions. RELB is an exception, as it cannot form 
homodimers in vivo and fails to form heterodimers with either RELA or c-REL [16] (see table 
2). These proteins share a highly conserved 300-amino-acid Rel Homology Domain (RHD) 
on the amino terminus, previously named NRD (NF-κB/Rel/Dorsal). This domain is 
responsible for dimerisation, DNA-binding as well as IκB interaction [34]. Within the RHD 
lies a Nuclear Localisation Signal (NLS) motif (a conserved cluster of positively charged 
amino acids), responsible for translocation into the nucleus. Additionally, RELA, RELB and 
c-REL possess a transactivation domain (TAD), on the carboxy terminus, that guides strong 
transcriptional activation in target genes [16, 27, 35, 36]. p50 and p52, that lack the TAD, can 
only promote transcriptional activation by interacting with Rel or even non-Rel proteins that 
do contain this domain. Otherwise, in the form of homodimers, they function as 
transcriptional repressors either by binding constitutively on κΒ DNA, limiting access to other 
transcription factors, or by antagonising transcriptionally active complexes for binding. 
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Table 2: NF-κB dimer combinations and functions [29] 

Dimers transfer into the nucleus through the importins system (importin α3 and α4) and 
out of it by the exportin protein XPO1 (CRM1 homolog) [37-39]. Each dimer complex binds 
on DNA with different specificity, affinity and activation potential, resulting from different 
threedimensional structure and stereochemistry of the dimers interacting with the respective 
DNA sequences [18, 36] (Figure 5). In other words, specificity derives from the structure of 
amino acid side chains of the transcription factor dimers contacting DNA bases of the κB site 
[40]. The most abundant and stable NF-κB dimer in cells is p65:p50 [36]. Homologs of Rel 
genes such as Dif, Dorsal and Relish or v-Rel oncogene also exist in other organisms 
(Drosophila or chicken virus respectively). A system similar to Dorsal/Dif even exists in 
plants upregulating pathogenesis resistance proteins. Nuclear Factor of Activated T cells 
(NFAT) is the closest relative of the NF-κB transcription factors as it contains a Rel-
homology domain [36, 41]. 

 
Figure 5: NF-κB:DNA complex structure [40] 

The role of NF-κB in physiological processes in the organism has been extensively studied 
by the generation of knockout (KO) mice for each one of the Rel-family members. RELA-KO 
mice die at day 16 of gestation due to massive liver degeneration driven by extensive 
apoptosis in embryo’s liver cells.  This shows a critical role in the developmental stage either 
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due to apoptosis promotion or because of lack of proliferating factors. Surprisingly RELA-/- 
fetal liver stem cells were able to reconstitute haematopoietic lineages in lethally irradiated 
mice, meaning that RELA is not needed for development and differentiation of blood cells. 
RELB KO mice grow normally until 10 days postnatally, when lethal multi-organ 
inflammation develops. KO of the other REL proteins permits normal development but causes 
defective lymphocyte activation and other malfunctions [33, 42-47] (further details are 
available on Table 3). Generating double KO mice, which in general results in more severe 
phenotypes, reveals redundant and complementary action of the NF-κB proteins. The 
detection of genetic mutations of the NF-κB subunits in cancer, also outline their important 
role in cancerogenesis, as indicated in Table 4. Taken together, these data outline the 
important role of NF-κB in many biological events such as development and immune 
response [18, 27, 36]. 

 
Table 3: Phenotype of NF-κB KO mice [27] 

 
Table 4: NF-κB subunit mutations and cancer. [48] 
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III.2. IκB family 
 
According to the classical model, potentially active NF-κB dimers are sequestered in the 

cytoplasm in complexes with the IκB family proteins that cover their NLS motif, thus 
preventing nuclear localisation and DNA binding. As research has moved forward on the field 
and new, quite heterogeneous, roles of these proteins have been revealed, a more precise 
characterisation is that of NF-κB co-factors or chaperones that promote formation of 
otherwise unstable NF-κB-dimers in either the cytoplasmic or the nuclear compartment of the 
cells. IκBs can influence co-activator recruitment on the NF-κB:DNA complexes, altering 
transcriptional intensity, or mediate cross-talk between NF-κB and other signal transduction 
pathways. They are even able of removing DNA-bound NF-κB, thus terminating the 
transcriptional response [7, 16, 49]. NF-κB-free IκB molecules are quite unstable themselves 
as their half-life is very short, of approximately 10 minutes for IκBα, so complex formation 
with their respective partners is a matter of their own stability [7, 50, 51]. 

 
Figure 6: IκB family members. Domain organization and structural motifs found in human IκB proteins are depicted. The 
illustrated IκBβ protein represents the human isoform-1. The UniProt database (http://www.uniprot.org) was used as a 
reference for protein sequence information of all IκB family members. [7] 

Typical or professional proteins of this group are IκBα, IκBβ and IκBε, which are 
ubiquitously expressed with increases in certain tissues. There are also other members in this 
family, called atypical, such as IκBζ, BCL-3 etc whose expression is low in various types of 
cells but is induced upon stimulation [5, 6, 52-59]. The family’s common characteristic is the 
presence of multiple ankyrin-repeat domains (ARD) mediating protein-protein interactions 
(Figure 6). The precursor molecules p105 and p100 also possess these domains, together with 
the RHD, functioning both as inhibitors and activators of transcription [7, 36]. 

Activation of NF-κB takes place once dimers dissociate from the IκBs. The onset is 
phosphorylation of the inhibitors on serine residues located in generally conserved patterns 
named “destruction boxes” or “degron motifs” (-DSGXXS-) [60, 61]. This step permits 
recognition of the phosphorylated substrate by ubiquitinylating systems, leading to 
supplemental ubiquitin tagging of the IκBs for further digestive processing or destruction by 
the proteasome. Deliberated transcription factor dimers can then translocate into the nucleus 
and regulate gene expression [7, 16, 62]. 
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III.2.a. Typical/professional IκBs: IκBα, IκBβ, IκBε 
 

The first and best characterised NF-κB inhibitor is IκBα. It preferentially associates to 
p65:p50 dimers both in the cytoplasm, preventing them from translocating into the nucleus, 
and also in the nucleus, displacing them from DNA and exporting them out of it thanks to a 
nuclear export signal (NES) it possesses (Figure 7). Actually it has been shown that the 
IκBα:p65:p50 complex can shuttle constantly between cytoplasm and nucleus. This dynamic 
state favours cytoplasmic localisation in resting conditions. Upon certain types of stimulation, 
NF-κB-bound IκBα undergoes rapid phosphorylation on serines 32 and 36 in the degron 
motif. IκBα phosphorylation is a necessary but not enough event to release NF-κB. IκBα must 
further be ubiquitinylated and degraded by the proteasome in order to achieve activation. The 
phosphorylated form is then recognised by βTrCP and processed by the SCF complexes of E3 
ligases where polyubiquitin chains are conjugated on this substrate [63-65]. Proteasomal 
degradation of IκBα follows, consequently releasing p65:p50 to translocate into the nucleus, 
bind on DNA and promote transcription of target genes. The sequence of events is IκBα 
phosphorylation→IκBα degradation→NF-κB release and not IκBα phosphorylation→NF-κB 
release→IκBα degradation [66-69]. Impressively, NF-κB drives transcription and neo-
synthesis of its own inhibitor, as several κB sites are present in the promoter of the NFKBIA 
gene (coding for IκBα protein), introducing a negative feedback loop in the system [7, 16]. 
This loop allows close control and adjustment of response intensity, termination of 
transcriptional activity and system reset to default conditions. This critical point highlights the 
necessity of continuous control of inflammatory events as mentioned earlier, since the fragile 
equilibrium of inflammation benefits and dangers has to be maintained to avoid extensive 
damage in tissues [7].  

 
Figure 7: NF-κB:IκBα complex structure. PEST: proline, glutamic acid, serine, threonine rich region, responsible for NF-
κB binding and inhibiting DNA binding, ARD: Ankyrin repeat domain [40] 

While IκBε (discovered in 1997 [53-55]) seems to act in a similar way to IκBα, IκBβ 
(discovered in 1990 [52]) acts as a cytoplasmic inhibitor only in a constitutively 
phosphorylated state. It then undergoes signal-induced phosphorylation (in the two serine 
residues of the destruction box) and degradation, like IκBα. At the same time, de novo 
synthesised hypophosphorylated form of IκBβ acts as an activator by migrating to the nucleus 
and stabilising DNA-bound NF-κB dimers and protecting them from IκBα, thus augmenting 
late transcription of certain genes [7, 16, 70, 71]. All three typical IκB family members have 
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similar properties and their manner of action follows the same principles. On the contrary, 
induction, degradation and re-synthesis kinetics vary and partner preference (i.e. NF-κB 
dimers) differs, as shown in Table 5 [72]. 

 
Table 5: IκBs functions and properties [7] 

Several KO mice have been generated in order to study the role of the ΙκB proteins. IκBα 
KO pups are born normally but die a few days postnatally due to abnormal development. 
They display extensive granulopoiesis and skin defects, possibly because of rapid 
differentiation of skin basal layer cells. Thymocytes and splenocytes have significantly 
elevated nuclear NF-κB levels in contrast to brain and fibroblasts where NF-κB levels are 
only slightly elevated. NF-κB activation also leads to up-regulation of only a part of target 
genes [73]. These events are attenuated in IκBα/p50 double KO mice, suggesting that 
constitutive nuclear NF-κB is the source of abnormalities in the IκBα KO mice. Mouse 
embryonic fibroblasts (MEFs) do not need IκBα for signal-dependent activation of NF-κB, 
but it is absolutely required in order to down-regulate NF-κB after activation [74]. Tables 6 
and 7 include additional information for the phenotypes of the various IκB KO mice, 
outlining their important roles. Triple knockdown (KD) experiments of the typical IκB family 
members in MEFs have shown that the dynamic NF-κB shuttling equilibrium (i.e. distribution 
in the two compartments, favouring the cytosolic) is generally not affected, probably because 
of the inhibitory action of p100 and p105 that compensate for the absence of IκBα, IκBβ and 
IκBε. Basal DNA-binding activity is increased but there is no induction upon stimulation 
compared to wild type cells [75]. This means that professional IκBs are essential for 
preventing NF-κB:DNA complex formation under resting conditions, as NF-κB:IκB 
complexes shuttle constantly between nucleus and cytoplasm. Furthermore these proteins are 
essential for stimulus responsiveness as in their absence, association of NF-κB with other 
cellular factors prevents DNA binding. So the existence of typical IκBs allows on one hand 
inhibition of basal NF-κB DNA-binding activity and on the other hand renders NF-κB 
responsive to certain external stimuli [7, 16, 75]. 
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Table 6: Phenotype of IκBs KO mice [7] 

 
Table 7: Phenotype of IκBs KO mice. MEFs: Mouse embryonic fibroblasts, ΔC: carboxy-terminal deletion [27] 

 

III.2.b. Atypical IκBs 
 

Additional IκB family members also participate in regulation of transcriptional activity of 
NF-κB. BCL-3 can function both as transcriptional repressor and activator (as it possesses a 
transactivation domain) depending on its localisation and post-translational modifications 
(PTMs). IκBζ is an inducible transcription activator and IκBNS is an inducible transcription 
repressor. All together they adjust and participate in the fine-tuning of transcriptional 
response. Complexity of the system at the level of IκBs can be understood by the data of 
Table 7, where the different members of this family can be induced rapidly or slowly by NF-
κB, be or not its targets, preferably bind certain type of dimers against others, be distributed in 
different proportions in cytoplasm and nucleus, function in an activating or inhibiting manner 
[7]. 

 
III.3. Bifunctional members NF-κB1 and NF-κB2 
 
NFKB1 gene codes for the p105 protein that undergoes constitutive processing to p50 by 

the proteasome, at co-translational and post-translational level. Full-length protein contains 
both RHD and ARD motifs. A glycine-rich region of p105 serves as a stop signal for 
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proteolysis, permitting release of the p50 fragment from the proteasome, which only contains 
the RHD motif [76-80]. The fate and final role of the synthesised protein depends on the pool 
of binding partners available at a given time in cells. One possibility is that the p105 acts as a 
classical IκB by binding to existing NF-κB dimers, while constitutive processing is inhibited. 
Another possibility is that, in presence of free NF-κB subunits, p65 for example, formation of 
p105:p65 dimers is favoured, leading to proteasomal processing that gives rise to p50:p65 
dimers. p105 can also participate in formation of higher-order complexes (e.g. 
p105:p65:p105:p65) [16, 81]. Obviously the distinct role of p105/p50 adds an additional 
regulation layer on the overall mechanism. As shown in the triple KD experiment mentioned 
above, in the absence of professional IκBs, p105 concentration in the cell is increased, 
probably due to association with NF-κB dimers in order to prevent overactivity and extensive 
gene expression. The ability of the same protein to act in opposite ways is remarkable. 

NFKB2 gene encodes the p100 protein, that also contains both RHD and ARD motifs. 
Similar to p105, it can act as a typical IκB maintaining principally cytosolic localisation of the 
NF-κBs or it can undergo proteasomal processing to give rise to the p52 that contains the 
RHD and is able to bind on DNA. NFKB2 can be induced by certain types of stimulation, 
usually different from those regulating stability of professional IκBs. Both p105 and p52 can 
dimerise with any of the NF-κB subunits and particularly with RELB, contributing to their 
stabilisation. The RELB:p52 dimer can promote late transcription as it is resistant to IκBα’s 
inhibitory action. In certain cases RELB can repress gene transcription [7, 16, 82]. To 
conclude, the fate of both p105 and p100 depends on the pool of NF-κB subunits present in 
the cell. 

 

III.4. IKKs – Canonical and non-canonical activation pathways 
 

As mentioned above, IκB degradation can only be performed after it has been 
phosphorylated. Proteins responsible for this activity are the IκB Kinases (IKKs). Several 
groups have described the IKK as a 550-900 kDa complex consisting of at least three 
different subunits. IKKα and IKKβ are the subunits with the catalytic activity since they 
possess a Kinase Domain (KD) [8-15]. IKKγ or NEMO (NF-κB essential modulator) is the 
regulatory subunit of the complex (Figure 8). The exact stoichiometry of the complex is 
unknown but IKKα:IKKβ heterodimers and NEMO homodimers are thought to exist in a 
proportion of 1:1:2 (IKKα1:IKKβ1:NEMO2), together with other not yet characterised partners 
[16, 83, 84]. 
 

 

Figure 8: Members of the IKK 
complex. The IKK complex consists of 
IKKα (IKK1 or CHUK), IKKβ (IKK2), 
and NEMO (IKKγ). Relevant domains 
of each protein are indicated. (LZ) 
leucine zipper domain, (SDD) 
scaffolding and dimerization domain, 
(ULD) ubiquitin-like domain, (Z) zinc 
finger domain, (CC) coiled-coil domain, 
(NBD) NEMO-binding domain, (α) α-
helical domain, (IBD/DimD) IKK-
binding domain/dimerization domain, 
(MOD/UBD) minimal oligomerization 
domain/ubiquitin-binding domain [16] 

IKKα and IKKβ also contain a scaffold/dimerisation domain (SDD), an Ubiquitin-like 
domain (ULD) and a NEMO Binding Domain (NBD). NEMO contains a C-terminal minimal 
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oligomerisation domain (MOD) and a N-terminal dimerisation domain (DimD) together with 
a N-terminal IKK binding domain (IBD) and 2 Ubiquitin binding domains (UBD) [Figure 8]. 
These domains mediate interaction with IKKα and β and also allow formation of NEMO 
dimers, trimers, tetramers etc. Each domain offers distinct characteristics to each subunit and 
permits complex assembly and activation, which can be regulated in a positive or negative 
way through phosphorylation of NBD of IKKα and β or phosphorylation of DimD-IBD of 
NEMO respectively [16, 83, 85, 86]. 

Dimerisation of the catalytic subunits is necessary for inducible activation. IKK activity 
can be induced by phosphorylation of certain residues in both IKKα and IKKβ and more 
specifically on Ser176 and Ser180 or Ser177 and Ser181 respectively. Organisation in high-
order multi-IKK structures upon stimulation may provide the conditions to undergo trans 
auto-phosphorylation and auto-activation. At the same time aggregation of various molecules 
also increases proximity with IKK kinases (IKK-K). The only known IKK kinases (IKK-K) 
are the TGFβ-activated kinase 1 (TAK1) and the NF-κB Inducing Kinase (NIK) that upon 
certain conditions can phosphorylate and activate IKK complex subunits. According to signal 
origin, activity of the IKK complex can be modulated in different ways. Certain signals 
involve direct trans auto- or TAK1-mediated phosphorylation and activation of IKKs, in order 
to successfully transduce the signal through IKKβ-dependent phosphorylation of IκBα [87]. 
These pathways are called canonical or classical, and NEMO participation is necessary. 
Alternative or non-canonical activation can occur by stimuli that lead to trans-auto- or NIK-
mediated phosphorylation and activation of IKKα and further IKKα-mediated 
phosphorylation of p100 when in complex with RELB. NEMO does not participate in the 
alternative pathway, which is usually working with slower kinetics. Some signals induce both 
the canonical and noncanonical pathways 

NEMO gene locus lies in the X chromosome and several gene mutations or deletions have 
been linked with genetic disorders in human, while gene KO in mice leads to lethality due to 
massive apoptosis in the liver, as observed in the case of IKKβ or RELA KO mice. In the case 
of Incontinentia Pigmenti syndrome where NEMO is mutated, female heterozygous 
individuals develop skin lesions with hyper-proliferation and increased apoptosis of 
keratinocytes and abnormal hair, teeth and central nervous system (CNS) development and 
function, while male foetuses die in uterus [18, 88]. 85% of the patients produce a truncated 
form of NEMO devoid of activity. Several other genomic abnormalities of the NEMO gene 
locus have been identified in X-linked ectodermal dysplasia with immunodeficiency 
syndrome [88, 89]. More details for the phenotypes of mice lacking the IKK genes are 
available in the following table. 

 
Table 8: Phenotype of IKK KO mice [27] 
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III.4.a. TAK1 and canonical pathway 
In addition to IKK trans auto-phosphorylation and auto-activation, TAK1 is also able to 

phosphorylate IKK. TAK1 is implicated in the canonical NF-κB activating pathways, at the 
level they converge to IKK activation. TAK1 is a member of the MAPKKK family proteins 
and is needed for proper activation and survival of T and B cells by inducing nuclear 
localisation of NF-κB and activation of MAPK pathways. Mice lacking TAK1 die during 
gestation due to abnormal development of the neural tube (Table 9). Εmbryonic fibroblasts 
derived from TAK1-null mice exhibit dramatically impaired NF-κB and JNK activation 
through TNFR, IL-1R and TLR signaling. In another model of inducible KO mice, massive 
apoptotic cell death was observed in haematopoietic cells in the bone marrow, spleen, thymus 
and hepatocytes leading to lethality a few days after KO induction [90, 91]. It has also been 
suggested that, similarly to NEMO, ubiquitinylation of TAK1 is required for its full activity 
[92, 93]. 

Complexes consisting of TAK1 and TAB (TAK1 binding) adaptor proteins need to be 
formed so as to promote TAK1 activity. TAK1 is constitutively bound on TAB1. Upon 
stimulation an additional subunit, TAB2 or the homologous TAB3, becomes part of the 
complex in order to acquire full kinase activity. TAB1-deficient mice embryos die at later 
stages of gestation due to abnormal cardiovascular and lung morphogenesis whereas TAB2-
deficient ambryos die earlier because of liver degeneration and apoptosis (Table 9). IKK 
activation and NF-κB or JNK activity upon stimulation are not affected in cells lacking TAB1 
or TAB2. Another study though has shown that simultaneous silencing of TAB2 and TAB3 is 
able to inhibit IKK and JNK activation, supporting perhaps abundant roles [90]. 

 
Table 9: Phenotype of TAK1, TAB1, TAB2 KO mice [90] 

These events outline the importance of TAK1 and TAB proteins during development but 
also point out unique functions of the subunits, independent from each other, as embryos do 
not develop the same phenotypic characteristics. This is further supported by the fact that only 
TAK1 plays a direct and vital role in NF-κB signaling [90]. 

Sixteen years since the discovery of the IKKs have not been sufficient to answer questions 
concerning their activation, inactivation and substrate specificity. What is sure, and has been 
proposed in many publications, is that the assembly of large complexes plays a key role in 
NF-κB activity regulation, especially in the canonical pathways [16, 83]. 

 

III.4.b. NIK and noncanonical pathway 
 

Historically, NIK was the first IKK-K to be characterised. Soon it was shown that it is 
implicated in noncanonical NF-κB-activating pathways, by phosphorylating the p100 subunit. 
For more details concerning the mechanism see chapter IV.6. 
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IV. Ubiquitin-dependent regulation of NF-κB 
 
IV.1. Ubiquitinylation, general concepts 
 
Ubiquitin is, as the name states, a ubiquitously expressed small protein of 76 amino acids 

long. High degree of evolutionary conservation among species, along with the fact of co-
transcription/co-translation with ribosomal proteins, outlines its importance and has attracted 
researchers attention for more than 30 years (Figure 9). Ubiquitin is encoded by four genes in 
mammals. Ubiquitinylation is a post-translational modification (PTM) through which 
ubiquitin can be covalently attached on target proteins, altering their properties and functions. 
Approximately 80% of all cellular proteins are targeted by ubiquitin. It contributes in 
regulation of events like protein half-life and degradation, DNA repair, endocytosis, 
autophagy, subcellular distribution and trafficking, transcription, signal transduction, 
immunity, inflammation and virtually every cellular process [16, 89, 94-96]. 

 
Figure 9: Timeline of the discovery of the Ubiquitin-Proteasome system (UPS). The diagram shows sum of the pivotal 
discoveries and milestones that historically lead to the identification of the UPS intracellular protein degradation. At present, 
several diseases related to protein misfolding and defect in protein degradation have been identified, and specific inhibitors of 
the UPS are now in clinical trials [97]. 

The machinery capable of tagging proteins with ubiquitin, through a multistep procedure, 
consists of three types of enzymes. The E1 enzyme activates Ubiquitin in an ATP-dependent 
manner. Activated Ubiquitin is then forwarded to the E2 conjugating enzyme (or UBC-
ubiquitin conjugating) and the E3 ligation enzyme (Figure 10). In humans there are 2 E1 
enzymes, around 40 E2 and 600-700 E3 ligases. Concerning the latter, they are subdivided in 
two categories, the around 30 HECT (Homologous to the E6-AP Carboxyl Terminus) E3s and 
the more abundant (>600) RING (Really Interesting New Gene) E3s. The difference lies in 
the mechanism of catalysis for isopeptide bond formation between ubiquitin and the acceptor 
protein. The active site of HECT E3 ligases forms an intermediate with ubiquitin before 
covalent binding to the target (Figure 11, left panel). On the other hand, RING E3s mostly act 
as scaffolds, mediating direct ubiquitin transfer from E2 conjugating enzyme to substrate 
(Figure 11, right panel) [16, 89, 95, 96]. 
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Figure 10: Ubiquitinylation series of reactions [96] 

 
Figure 11: HECT E3 ligase (left) and RING E3 ligases (right). Ub: Ubiquitin (yellow), E2 conjugating enzyme (green), 
HECT domain (light blue), RING domain (red)  [96] 
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Isopeptide bond formation takes place between the C-terminal glycine residues (G76) of 
Ubiquitin and the ε-amino group of the target proteins lysine. Additional nucleophilic amino 
acids have been described to work as ubiquitin acceptors, including threonine, serine and 
cysteine. Substrates can either be mono-ubiquitinylated (conjugation of a single ubiquitin 
molecule) once or multiple times (multi-mono-ubiquitinylation), or poly-ubiquitinylated. In 
the last case, long chains are sequentially formed either on the substrate-attached Ubiquitin or 
on E2-E3 enzymes and further transferred to substrates en bloc [16, 89, 95, 96, 98]. 

Ubiquitin contains 7 lysine (Lys or K) residues that can serve as ubiquitin acceptors 
themselves, for chain formation (see figure 10). N-terminal methionine (Met or M) acts also 
as an acceptor. As a result there are 8 different types of poly-ubiquitin chains according to the 
acceptor site: K6, K11, K27, K29, K33, K48, K63 and M1 or linear or head-to-tail chains. 
Each type has a different impact on the fate of the protein, for example K48 or K11 chains 
usually tag proteins for proteasomal degradation whereas K63-tagged proteins or linear (M1) 
ubiquitin conjugates are implicated in non-proteolytic functions, usually acting as scaffolds 
for signaling complexes to assemble [16, 89, 95, 96, 99-102]. Heterotypic and mixed chain 
types also exist, their roles though remain poorly understood. 

Free Ubiquitin molecules adopt a structure of a mainly polar globular surface with a large 
hydrophobic area centered on the Leu8-Ile44-Val70 residues, conformation though changes in 
in the form of ubiquitin chains. For example K48 chains adopt a closed conformation in 
solution, where the hydrophobic patch is buried within the protein, but the structure remains 
rather dynamic. On the other hand, K63 and linear chains have an extended conformation and 
hydrophobic surfaces are fully exposed. Thus, it is clear that different linkages between 
ubiquitin moieties alter molecular topology and probably chain properties, dictating signaling 
outcome [89]. 

While the E3 ligases guide target specificity, it is the E2 enzymes that dictate the type of 
polyubiquitin chain that will be assembled. Furthermore, RING E3s can be present and active 
as monomers, homodimers, heterodimers or multi-subunit complexes. The latter case further 
increases target range and specificity as shown by the example of the tripartite SCF E3 ligases 
that count up to 69 different complexes in mammals [95, 96], Of note, SCFβTrCP is the E3 
ligase complex that ubiquitinylates IκB for degradation upon stimulation (see figure 11, right 
panel). Very often the E3 ligases are organised in complexes together with E2 enzymes 
resulting in high enzymatic processivity. Some proteins even possess both E2 and E3 
activities in the same molecule. 

Various motifs called Ubiquitin Binding Domains (UBD) are present in proteins and 
mediate interactions with ubiquitin-tagged substrates, in the same way phosphorylated 
substrates can be recognised by the respective motifs. A large variety of UBDs exists and are 
classified in approximately 20 families, according to their three-dimensional structure. Most 
of them bind on the hydrophobic patch of ubiquitin around Ile44 but they also recognise 
adjacent surfaces, altering specificity. Certain UBDs are responsible for recognition of mono-
ubiquitinylated substrates whereas others preferentially bind long chains and can even 
discriminate linkage type. Some of them for example preferentially associate to K48 ubiquitin 
chains, others to K63 type, linear etc [89]. 

Binding affinity of individual domains for ubiquitin monomers is generally very low 
(which is logical considering the high concentrations in cells). For this reason various 
strategies have been developed to augment the binding capacity of ubiquitinylated proteins to 
the respective receptor proteins. A single ubiquitin molecule can be recognised by a complex 
of 2 or more UBDs combined together (1ub by >1ubd). One ubiquitin can equally be 
recognised by a single UBD (1ub by 1ubd). Two or more ubiquitin molecules can also 
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interact with a single UBD (>1ub by 1ubd). By keeping in mind that any combination of 
UBDs can occur in a protein and that any association of such proteins with one another is 
possible, it becomes clear that recognition and interaction with ubiquitinylated substrates can 
occur with extremely high avidity [89]. 

Interactions can be further enhanced by the presence of many mono-ubiquitin 
modifications, or by formation of long polyubiquitin chains on a protein, or even by 
oligomerisation of poly-ubiquitinylated proteins. Combining at the same time the synergistic 
strength of bond affinities together with similarly grouped together ubiquitin molecules in the 
form of polymers, results in a quite complex organisation level of the machinery involving 
ubiquitin-tags and ubiquitin-receptors [89]. 

As mentioned earlier, the type of poly-ubiquitin chain attached to a protein dictates their 
fate. Processing and degradation of ubiquitin-tagged proteins is mediated by the proteasome, a 
large multi-subunit complex. Chain length and type of linkage play an important role in the 
process, as short chains or type K63 ones do not contain the appropriate signal for 
degradation. K63 or linear poly-ubiquitin chains though are indispensable for some signal 
transduction pathways and especially those responsible for activation of the transcription 
factor NF-κB [89]. 

 
IV.2. Ubiquitinylation at the IKK and IKK-K level 
 
All signal transduction pathways include cascades of substrate phosphorylation and 

aggregation events. In the case of NF-κB activation, ubiquitinylation plays an additional key 
role [8]. Not only IKK members, i.e. NEMO, undergo ubiquitinylation, but also various 
adaptor molecules acting upstream of IKK in NF-κB-activating pathways (and whose effects 
converge on its phosphorylation-dependent activation) [103]. The implication of ubiquitin 
receptors is also indispensable in the regulation of NF-κB. The IKK-K TAK1 and even 
NEMO interact with ubiquitinylated proteins in order to promote phosphorylation and 
induction of IKKβ enzymatic activity [104]. 

 
IV.2.a. Ubiquitinylation and NEMO 

 
NEMO undergoes poly-ubiquitinylation in a K63 manner in response to various stimuli 

like TCR engagement or NOD2 and TLR binding on bacterial products [86]. The E3 ligase in 
not yet known, it is speculated though to be TRAF6. There is controversial data concerning 
the role of NEMO ubiquitinylation in activation of NF-κB. A paper of 2004 shows that 
NEMO needs to undergo K63-type multiubiquitinylation on K399 when mimicking TCR 
stimulation, in order to fully activate NF-κB since lysine to arginine mutants show lower 
activity. So this event is important during antigen stimulation, probably to mediate 
recruitment of upstream regulators, like IKK-Kinases, or to induce IKK autophosphorylation 
[105]. In contrast, a publication of 2008 opposes this model. Lysine 392 to arginine mutation 
in murine NEMO (equivalent of K399 in human) was introduced into mouse germline and 
NEMO-K392R mice were generated, in which K63-linked ubiquitinylation of NEMO was 
disrupted. These mice have no apparent defect in antigen receptor signaling. However, 
primary macrophages and dendritic cells exhibit weakened cytokine production responses to 
TLR (Toll-like receptor) agonists. Of note, no skin disorders or immunodeficiency developed 
as in the case of NEMO mutations in humans. NF-κB and MAPK signaling are largely 
unaffected in cells from these mice despite the decreased levels of cytokine production upon 
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LPS stimulation. Thus, the proposed role of K63 ubiquitinylation of NEMO is that of a 
rheostat for TLR-dependent responses in innate immunity, that does not go through NF-κB 
activation [106]. 

At the same time, NEMO undergoes a newly characterised modification, that of linear 
ubiquitinylation by the LUBAC (linear ubiquitin chain assembly complex) in response to 
cytokines (TNFα) and some bacteria [107]. LUBAC consists of three subunits: the E3 ligases 
RNF31 (RING Finger Protein 31, also called HOIP) and RBCK1 (also known as HOIL-1), 
and Sharpin [108]. At present time, RNF31 is the only E3 ligase known to catalyse linear 
ubiquitinylation. Some studies support that in Sharpin-deficient cells LUBAC is unstable 
failing to activate IKK and this defect causes cell death that further triggers inflammatory 
diseases [109-111]. However others reported normal or even hyperactivated cells without the 
LUBAC. The exact role of NEMO ubiquitinylation is not clear and needs further 
investigation, especially when considering that on the same lysine residues both linkage type 
ubiquitin chains can be attached [112-114].  

 
Figure 12: NEMO mutations in 
human pathology. Mutations 
generating Incontinentia Pigmenti 
(IP) (red), Ectodermal Dysplasia 
with immunodeficiency (EDA-
ID) (blue) and 
immunodeficiencies without EDA 
(ID) (green) are indicated. To 
simplify the figure, frameshift 
mutations are not presented. 
Basically, those mutations located 
before the proline-rich (PR) 
domain of NEMO (indicated by a 
black bar near the ZF) generate 
IP, whereas those located after PR 
generate EDA-ID. Frameshift 
mutations located inside PR tend 
to generate IP when the number 
of extra amino acid (aa) that is 
added is large and EDA-ID when 
it is limited. Δ37 represents a 
mutation that produces a protein lacking the first 37 aa. Δ(IP) represents the most frequent mutation found in IP that is due to 
a genomic rearrangement of the NEMO locus. Δ271–276 and Δexon 9 are caused by splicing mutations. The X420W 
mutation changes the stop codon to a Trp codon, also adding 27 aa, and is responsible for the OL-EDA-ID (EDA-ID with 
Osteopetrosis and Lymphedema) syndrome. CC, coiled coil; LZ, leucine-zipper; ZF, zinc finger. ‘C’ and ‘H’ labels indicate 
cysteine and histidine residues that tetra-coordinate the zinc in the ZF [115]. 

NEMO contains two UBDs, able to bind linear but also K63 and K11 polyubiquitin chains. 
Mutations in such domains are found in multiple pathological conditions, indicating the 
importance of ubiquitin sensing in NF-κB activating pathways (Figure 12) [88, 89]. In 
experiments performed on a fragment of NEMO containing the one UBD, it was shown that it 
preferentially recognises linear di-ubiquitin chains to K63 ones with very high affinity. In 
contrast, structural studies performed on the other UBD (carboxy-terminal ZF domain) 
showed that this motif has no preference for chains of any linkage type. Whatismore, full 
length NEMO, containing both UBDs, interacts stronger with K63-linked chains, most likely 
because of cooperative binding, and binds longer K63-linked chains with increased affinity. 
NEMO thus may act as a multifunctional ubiquitin receptor recognising either short linear or 
longer K63-, K11-linked ubiquitin chains. Linkage type specificity may depend on local 
concentration of ubiquitin chains conjugated to substrates in defined subcellular 
compartments, a matter that needs further investigation [89, 112, 113]. 
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Although there is no concrete explanation of the above events for the moment, the dual 
role of NEMO in NF-κB pathways is undeniable. Especially when considering that alterations 
of its ubiquitin-modification capacity (of either linear or K63 ubiquitinylation or recognition 
of poly-ubiquitin chain types) leads to severe signaling malfunctions and pathological 
phenotypes [112]. 

 
IV.2.b. Ubiquitinylation and TAB:TAK1 complex 

 
Similarly to NEMO, the adaptor proteins TAB2 and TAB3 contain UBDs that recognise 

and facilitate binding on K63-linked poly-ubiquitin chains. Upon stimulation 
TAK1:TAB1:TAB2/3 complex can bind on a variety of ubiquitinylated substrates, deriving 
by various receptors engagement through signal transduction pathways. This anchoring event 
leads to enzymatic activation of TAK1 which is then able to process IKKβ phosphorylation 
and IKK-complex-mediated activation of the NF-κB transcription factors [116]. Overall the 
current model proposes that TAK1 acts upstream of IKK maybe by branching signal 
transduction from upstream complexes to NF-κB and MAPK pathways [104]. Interestingly, 
TAK1 also seems to integrate signals originating from various canonical NF-κB activating 
pathways in order to activate IKKβ, whereas non-canonical i.e. through NIK-IKKα, are 
TAK1-independent [90, 116]. 

So far, the importance of ubiquitinylation in the regulation of the NF-κB activation 
pathways is evident at many levels. K48-linked poly-ubiquitinylation of IκBα is necessary for 
proteasomal degradation in order to promote transcriptional activation. In the non-canonical 
pathway, K48 ubiquitinylation of p100 by NIK-activated IKKα is necessary in order to 
undergo proteasomal processing for the production of active p52:RELB dimers. In the 
canonical pathways TAK1-activated ΙΚΚβ and NEMO are indispensable. NEMO acts as a 
receptor of K63 and linear ubiquitin chains in the complex with IKKα/β together with the 
TAB subunits that act as K63-linked ubiquitin receptors, complexed with TAK1. Indeniably 
ubiquitin sensing is necessary to achieve activation and signal transduction. 

Each signaling pathway, originating from distinct signal sensors that launch a series of 
events, passes through ubiquitinylation of various adaptor molecules in order to finally 
activate NF-κB transcriptional activity. These adaptors act as ubiquitinylated signal 
transmitters as this modification can be recognised by central regulators (NEMO, TAB2/3) 
mediating maximal IKK activity and subsequent NF-κB activation. There are some specific 
and some common adaptors in each pathway that undergo ubiquitinylation. There have been 
several models proposed in order to explain these observations. 

 
IV.3. Role of Signalosomes 
 
As described above, signaling in most canonical NF-κB-activating pathways proceeds 

through aggregation and oligomerisation of a series of adapter proteins possessing protein-
protein interaction domains, for the formation of oligomers, such as CARDs (Caspase 
Recruitment Domains), TRAFs (TNF Receptor Associated Factor), DDs (death domains), 
BIRs (baculoviral inhibition of apoptosis protein repeats), RHIMs (RIP homotypic interaction 
motifs) etc. Conformational changes of distinct receptors, triggered by binding of the 
respective ligand, facilitate distinct as well as common adapter proteins’ access, providing 
links to downstream components. In addition to signalosome formation, these subunits are 
ubiquitin-tagged in a way that does not condemn proteins for proteasomal degradation but 
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rather promotes signal transmission to activate NF-κB by bridging otherwise diffuse and 
remote proteins. Various models are currently proposed to explain how these events finally 
converge in regulation of oligomerisation-mediated, phosphorylation-dependent IKK 
activation status [16, 117, 118]. 

1-NEMO ubiquitinylation or ubiquitin binding of upstream poly-ubiquitinylated adaptors 
might function in the same way as phosphorylation i.e. induce conformational changes in the 
IKK complex leading to IKKβ phosphorylation and activation. 

2-Induced proximity model can explain how IKK phosphorylation occurs, as scaffolds of 
many ubiquitinylated proteins grouped together can serve as recruiting plattforms for even 
more proteins containing UBDs. The TAK1 complex, through TAB2/3, and the IKK 
complex, through NEMO, may be found close enough to allow IKK phosphorylation by 
TAK1 and trans-autophosphorylation of IKK subunits by neighbouring IKK complexes. 

3-Alternatively, non-degradative K63 poly-ubiquitinylation might increase signalosome 
stability either by preventing K48 ubiquitinylation and degradation of intermediate molecules 
or by physically stabilising and fixing complexes through “cross-linking” of UBD-containing 
proteins. 

4-Yet another poorly explored hypothesis is that non-degradative ubiquitinylation can be 
separated from but necessary for signaling to occur. Ubiquitin linkages other than K48 could 
target signalosomes components, rendering them recognisable by appropriate chaperones in 
order to disassemble these multiprotein complexes and reset signaling pathways to default 
conditions. This could guarantee immediate disposal of the subunits in case of reappearence 
of the stimulating signal [16]. 

Research at the present stage cannot clearly exclude any of these models or even the 
possibility that all can be true. Many questions await to be answered. 

 

IV.4. Ubiquitinylation during antigen receptor-mediated NF-κB activation 
 

IV.4.a. Overview of early TCR signaling 
 

T-cell receptor (TCR) is a plasma membrane protein complex consisting of various dimers 
of non-polymorphic CD3 proteins together with a single heterodimer of the variable TCRα 
and β chains. The latter are responsible for recognition of linearised antigenic peptides bound 
on major histocompatibility complex (MHC) of antigen presenting cells (APCs), whereas 
CD3 subunits mediate interactions with intracellular proteins. Upon antigen presentation, 
TCR aggregation and conformational alterations initiate signal transduction. CD3 proteins 
possess cytoplasmic tails containing ITAMs (immunoreceptor tyrosine-based activation 
motifs) [119]. These motifs undergo phosphorylation on tyrosine residues, serving as docking 
sites able to recruit cytosolic PTKs (protein tyrosine kinases) like ZAP70 [120]. PTKs may 
further phosphorylate a spectrum of substrates leading to downstream signals that when 
appropriately integrated, together with signals from co-receptors, can lead to activation of T 
lymphocytes (Figure13). Following TCR engagement and phosphorylation cascades, PLCγ1 
(Phospholipase C γ1) is found in the proximal signaling complex where it undergoes 
activating phosphorylation. PLCγ1 can then hydrolyse its substrate, producing the second 
messenger molecules IP3 (inositol triphosphate) and DAG (diacylglycerol), each with distinct 
functions in signal transduction. The second messenger IP3 induces enrichment of the 
cytoplasm with another second messenger, Ca2+. IP3-induced ion channels opening of the 
endoplasmic reticulum leads to Ca2+ release in the cytoplasm. Emptying endoplasmic 
reticulum stores further triggers a sustained influx of extracellular Ca2+ through plasma 
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membrane channels [121]. Increased cytoplasmic concentration of Ca2+ results in activation 
of calcium-sensitive proteins that regulate activity of various transcription factors such as 
NFAT (nuclear factor of activated T cells) family [122]. NFAT translocates into the nucleus 
where it can form complexes with a variety of other transcription factors, usually AP-1 
(activator protein-1), resulting in differential gene expression profiles and functions (Figure 
13) [123]. 

 
Figure 13: Early tyrosine phosphorylation events in response to TCR ligation (left) and schematic overview of TCR-
originating signalling pathways (right). Engagement of TCRs and costimulatory CD28 receptors promote signalling 
cascades of kinases and adaptor proteins (left panel and yellow). They trigger pathways resulting in the activation of the 
transcription factors NFATc (red), NF-κB (green) and AP-1 (blue). These transcription factors cooperate with each other 
during the activation of several genes, e.g. IL-2. DAG: diacylglycerol; IP3: inositol-1,4,5-trisphosphate; PIP2: 
phosphatidylinositol-4,5-bisphosphate; PKCθ: protein kinase C theta; PLCγ: phospholipase C gamma. [123, 124] 

Second messenger DAG leads to activation of two major pathways through recruitment of 
the Ser/Thr kinase PKCθ (Protein Kinase C θ) to the plasma membrane. In that location it can 
initiate Ras-dependent MAPK phosphorylation cascades, leading to activation of the AP-1 
transcription factors [125]. PKCθ activation also leads to the activation of the NF-κB 
transcription factors by promoting assembly of high-order signaling complexes that activate 
IKK [126]. Despite the high specificity and affinity between TCR and the antigenic peptide 
bound on the MHC of APCs, the signal is not enough to achieve maximal stimulation of T 
cells. It would rather cause anergy, a state in which T cells are refractory to restimulation. 
Costimulatory signals mediated by co-receptors are also needed. Magnitude of response is 
considerably augmented in the case of CD28 co-ligation. This latter event promotes 
expression of genes favouring survival, maximises transcriptional activity of NFAT, enhances 
Ca2+ flux and subsequently all downstream events etc [127]. In laboratory conditions, the use 
antibodies against CD3 and CD28 can activate T cells. For a long time it has been known that 
phorbol esters, like PMA, together with ionophores, like ionomycin, activate PKCθ, causing 
Ca2+ release and mimicking TCR activation effects. In addition, TCR signaling initiates a 
program of cytoskeletal rearrangements that results in polarisation and activation of T 
lymphocytes. Affinity and avidity of integrins for their ligands also increase as a result of 
TCR-mediated biochemical events [123]. 
 

IV.4.b. TCR and canonical NF-κB signaling 
 

So after TCR engagement, parallel proximal signaling cascades, implicating kinase 
activation and integration of adaptors and phospholipases, converge in the generation of 
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second messengers that activate PKC [123]. Whereas early signals are transduced by 
successive tyrosine phosphorylation events, after PLCγ1 activation and IP3 and DAG 
production, signal-propagation strategies change. Signaling events like serine/threonine 
phosphorylation and lysine ubiquitinylation take place downstream of PKC, promoting 
complex formation that, in the case of NF-κB activation, culminate in IKK complex 
activation. According to the current model, activated PKCθ phosphorylates the protein 
CARMA1 [caspase recruitment domain (CARD) and membrane-associated guanylate kinase 
(MAGUK)-containing scaffold protein 1] (Figure 14a) [128, 129]. 

 
Figure 14: Model for protein-kinase-C-mediated CARMA1 activation. a | A fraction of cellular CARMA1 (caspase-
recruitment domain (CARD)–membrane-associated guanylate kinase (MAGUK) protein 1) resides in lipid rafts, probably 
recruited by interactions between the SH3 (SRC-homology 3) domain of CARMA1 and an unknown protein(s). Domains of 
CARMA1 that are required to trigger the oligomerization of downstream components – such as the coiled-coil (CC), CARD 
and possibly guanylate kinase (GUK) domain – are inaccessible to their binding partners. Protein kinase C-β (PKCβ) or 
PKCθ activated by antigen-receptor signals phosphorylate specific serine residues in the PKC-regulated domain (PRD) of 
CARMA1. b | The phosphorylation of CARMA1 (indicated by red stars) destabilizes inhibitory intramolecular interactions, 
allowing binding interactions with downstream molecules such as B-cell lymphoma 10 (BCL10), and CC-driven 
oligomerization of CARMA1. c | Oligomerization of CARMA1 recruits additional CARMA1 molecules from the cytosol or 
membrane. The oligomerization of CARMA1 triggers a downstream oligomerization cascade (through BCL10) that is 
necessary for IKK (inhibitor of nuclear factor-κB (IκB) kinase) activation. d | Further amplification of the antigen-receptor 
signal might be gained by a higher-order multimerization of CARMA1 proteins by intermolecular MAGUK interactions –  
comprised of PDZ (PSD95, DLGA and ZO1 homology), SH3 and GUK domains – as described for other MAGUK proteins 
[130]. 

CARMA1 is a multi-domain scaffold protein (Table 10), specifically expressed in 
lymphocytes, a fraction of which is constitutively localised in plasma membrane lipid rafts 
(regions of specific constitution) [131]. After its phosphorylation, CARMA1 undergoes 
conformational changes that permit interaction with other proteins through the CARD motif, 
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as well as oligomerisation with additional CARMA1 units, which are further recruited at the 
membrane layer through the coiled-coil (CC) domain (Figure 14b-c). The GUK domain 
modulates homotypic interactions, subsequently promoting multimerisation of CARMA1 
oligomers so as to shape higher-order signaling complexes (Figure 14d). Lymphocytes from 
CARMA1-deficient mice are unable to proliferate or activate IKK complex or JNK through 
TCR engagement, outlining its importance in the signaling pathway [132-134]. Mutations in 
CARMA1 have been identified in ABC DLBCL patients, in some cases in exons coding for 
the coiled-coil domain. Mutations in this domain promote constitutive NF-κB activation in 
lymphoma cell lines and enhanced activity upon antigen receptor engagement [135]. In 
similar cases, gain-of-function mutations of CARMA1 were reported to lead to constitutive 
NF-κB activation in B-cells likely due to spontaneous oligomerisation [136]. 

 
Table 10: The structural domains of some of the CARMA1-signalosome components are shown, together with known 
functional data relating to these domains. aa, amino acids; BCL-10, B-cell lymphoma 10; CARD, caspase-recruitment 
domain; CARMA1, CARD–membrane-associated guanylate kinase (MAGUK) protein 1; CC, coiled-coil; CUE, cue-1 
homologous; DD, death domain; GUK, guanylate kinase; Ig, immunoglobulin; IKK, inhibitor of nuclear factor-κB (IκB) 
kinase; LZ, leucine zipper; MALT1, mucosa-associated-lymphoid-tissue lymphoma-translocation gene 1; NUB, NEMO 
(IKKγ) ubiquitin binding; PDZ, PSD95, DLGA and ZO1 homology; PRD, protein-kinase-C-regulated domain; RING, really 
interesting new gene; SH3, SRC-homology 3; S/T kinase, serine/threonine kinase; S/T rich, serine/threonine rich; TAB, 
TAK1-binding protein; TAK1, transforming growth factor-β (TGFβ)-activated kinase 1; TRAF, tumour-necrosis factor 
receptor (TNFR)-associated factor; ZnF, zinc finger. [130] 

CARMA1 structural reconfiguration and oligomerisation renders its protein-protein 
interaction domains accessible to downstream binding partners such as BCL10 (B-cell 
CLL/lymphoma 10) and MALT1 (mucosa-associated-lymphoid-tissue lymphoma-
translocation gene 1), forming the CARMA1:BCL10:MALT1 (CBM) complex, a big 
signalosome that promotes IKK activation  (Figure 15) [137, 138]. Additional proteins are 
also recruited on this complex such as CK1α (Casein Kinase 1α), TRAF2 (TNF receptor-
associated factor 2), TRAF6, TAK1 and NEMO, which are also key effector molecules 



I N T R O D U C T I O N  

43 

regulating signal transduction. Ectopic expression of these proteins leads to their spontaneous 
oligomerisation, mimicking the configuration they normally acquire upon stimulation. 
Therefore this is sufficient to cause IKK activation in the absence of inducers [130, 139]. 
Studies have shown that CARMA1 also participates in an intrinsic feedback control 
mechanism that counteracts and finally attenuates excessive NF-κB activation. This is 
achieved because receptor-activated CARMA1 undergoes K48-linked poly-ubiquitinylation 
and further proteasomal degradation [140]. 

BCL10 is a small CARD-containing protein (Table 10). After stimulation BCL10 can 
interact with CARMA1 through their CARD motifs. BCL10 oligomerisation then mediates 
signal transmission towards the IKK complex [137]. Overexpression of BCL10 has been 
detected in many MALT lymphomas, where constitutive NF-κB activity is observed. Bcl10 
KO mice either die during gestation, due to impaired apoptosis and neural tube malformation, 
or are born with severe immunodeficiency. Bcl10-/- lymphocytes are unable to activate NF-
κB in response to antigen receptor engagement even if early phosphotyrosine induction, 
MAPK activation, AP-1 activation and calcium flux are normal. Another study in Bcl10-
deficient mice showed that Bcl10 is necessary for B cell maturation and differentiation, as 
well as function. Marginal zone B cells from these mice were unable to fully proliferate or 
activate NF-κB in response to LPS stimulation [92, 116, 130, 137, 141]. 

Upon direct or TCR/CD28-induced PKC activation, BCL10 undergoes ubiquitinylation, 
followed by degradation. This is not observed in the case of TNFα or LPS stimulation. It was 
initially reported that BCL10 degradation was not affected by proteasome inhibitors but was 
rather accompanied by transient localisation to lysosomes for degradation signal termination 
[142]. This negative feedback loop was proposed to be due to phosphorylation of BCL10 by 
activated IKK, which leads to β-TrCP-dependent ubiquitinylation of BCL10. In contrast 
another study showed that proteolysis is proteasome-dependent [143]. More recently, BCL10 
poly-ubiquitinylation has been found to be of the K63-type, a modification that promotes 
interaction with ubiquitin receptors like NEMO or TABs 2 and 3 [92, 116, 130, 144-146]. 
Lysines 31 and 63 of BCL10 have been identified as ubiquitin-acceptors, since mutation of 
these residues did not affect CBM complex assembly, but did prevent its ubiquitinylation, 
NEMO recruitment and NF-κB activation [145]. These models keep evolving and new data is 
added. For example, it was shown that TCR-induced K63 poly-ubiquitinylation of BCL10 
causes association with an autophagy factor, required for both NF-κB signaling initiation at 
first, and gradual autophagic degradation later on, in order to attenuate the signal. The 
proposed role of this activity is to protect cells from excessive NF-κB activation and negative 
consequences such as cellular senescence in primary effector T cells, as it is only observed in 
these cells and not in naive ones [146]. 

In resting cells, BCL10 is present in the form of heterodimers in complex with the 
paracaspase MALT1 through its immunoglobulin domains (Table 10). As the name states, 
this latter is a gene commonly translocated in MALT lymphomas. Lymphocytes from Malt1 
KO mice present defective proliferation and IKK activation upon TCR ligation, revealing its 
key role in the NF-κB signal transduction pathway [138, 147, 148]. Following TCR 
stimulation, MALT1 undergoes K63 poly-ubiquitinylation via TRAF6. It is recruited together 
with BCL10 on the CARMA1 scaffold, resulting in the formation of the CBM complex, 
enabling signal transmission [92, 116, 130, 149]. 

The CBM complex is also thought to recruit TRAF2 and TRAF6 oligomers through 
MALT1, as well as RIP1, contributing to maximal signalosome activity (Table 10, Figure 15). 
These adaptors are also used in NF-κB-activating pathways of the innate immunity. Many 
theories exist on how TRAFs promote this function. TRAFs contain coiled-coil domains that 
mediate homotypic and heterotypic protein-protein interactions. They also possess RING 
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finger domains suggesting an E3 ligase function. TRAF2 and 6 have been shown to undergo 
themselves K63-linked poly-ubiquitinylation (is this a meaningless coincidence?) the latter 
being auto-ubiquitinylated. The role of TRAF2 and TRAF5 in TNFR-mediated NF-κB 
activation is well established, since double-KO cells are defective in IKK activation. The 
same is true for TRAF6 in IL-1R and TLR signaling towards IKK activation.  TRAF6 knock 
down in other cells mildly impairs IKK activation following TCR ligation, whereas the 
double knock down of TRAF2 and TRAF6 causes a more severe impairment. These findings 
confirm the cooperation between innate and adaptive immunity key molecules and strategies 
in order to activate NF-κB [16, 116, 117, 130].  

 
Figure 15: Model of the CARMA1-signalosome oligomerization cascade and IKK activation. Activated, trimerized 
CARMA1 (caspase-recruitment domain (CARD)-membrane-associated guanylate kinase (MAGUK) protein 1) binds BCL10 
(B-cell lymphoma 10), which in turn binds MALT1 (mucosa-associated-lymphoid-tissue lymphoma-translocation gene 1). 
This positions the TRAF (tumour-necrosis factor (TNF)-receptor-associated factor)-binding sites of MALT1 into a 
configuration mimicking that of three TNF receptors bound to the pseudotrimeric TNF ligand. Interaction with the trimerized 
MALT1 activates TRAF6 (a) and TRAF2 (b), perhaps by stabilizing TRAF trimerization or by inducing a conformational 
shift of existing TRAF trimers. TRAF6 and TRAF2 contribute equally to IKK (inhibitor of NF-κB (IκB) kinase) activation in 
T cells. TRAF6 catalyses auto-K63-linked polyubiquitylation (a), whereas activated TRAF2 targets RIP1 (receptor-
interacting protein 1) for K63-linked polyubiquitylation (b). The resulting K63-linked polyubiquitin moieties in both 
pathways probably recruit the ubiquitin-binding proteins IKKγ and TAB2 (TAK1-binding protein 2) or TAB3 of the TAK1 
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(transforming-growth-factor-β-activated kinase 1) complex. Recruitment of IKKγ to TRAF6 or RIP1 could trigger K63-
linked polyubiquitylation of IKKγ (which is required for IKKγ activation). Binding of the TAK1 complex to K63-linked 
polyubiquitylated IKKγ would place TAK1 in direct proximity to its substrate, IKKβ. Activation of TAK1 by intermolecular 
and intramolecular autophosphorylation would then allow its phosphorylation of IKKβ and thus, subsequently, IκB 
phosphorylation (not shown). c | TRAF2 trimerization is mediated by parallel coiled-coil (CC)-domain interactions. The 
TRAF-homology domain forms a trefoil of β-sheets that bind to upstream TRAF-binding sites. d | The IKKγ trimer is formed 
of a 6-helix bundle composed of anti-parallel α-helices made up of the CC2 and leucine-zipper (LZ) domains of each IKKγ 
molecule (shown in cross section). The IKKγ (NEMO) ubiquitin-binding (NUB) domain is localized to one face of the IKKγ 
trimer. At the other face of the trimer are the N- and C-termini; the N-terminus contains a binding site for IKKα and IKKβ, 
and the C-terminus consists of a zinc finger (ZnF) that is K63-linked polyubiquitylated downstream of MALT1. UBC13, 
ubiquitin-conjugating enzyme 13; UEV1A, ubiquitinconjugating enzyme E2 variant 1A; RING, really interesting new gene 
domain [130]. 

The model of oligomerisation and assembly of ubiquitinylated adaptors for the formation 
of signalosomes is observed in all canonical NF-κB activating pathways. BCR (B-cell 
receptor) is the membrane-bound form of immunoglobulins, or most commonly antibodies, 
able to recognise the epitopes of soluble antigens in their three-dimensional conformation. In 
the case of BCR engagement, the pathway is highly similar to that of TCR with the difference 
that PLCγ2 is responsible for second messengers’ production, to activate PKCβ that will 
phosphorylate CARMA1 [16, 130]. 

The following schema symmarises the cascade of TCR-originating (similar to those of 
BCR) events and depicts the most important molecules implicated in NF-κB activation. 

 
Figure 16: Overview of the TCR-NF-κB pathway. Lys-48-linked ubiquitin chains are shown in red, and Lys-63-linked 
ubiquitin chains are shown in green. [150] 
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IV.5. Other canonical NF-κB pathways 
 

Figure 17: NF-κB-activating stimuli and 
composition of the respective IKK-
activating complexes. In response to ligand 
stimulation, receptors that activate NF-κB 
recruit intracellular proteins to initiate 
signal transduction. (A) TNFR1 recruits 
TRADD, RIP1, TRAF2, cIAP1 and 2, and 
LUBAC (which comprises SHARPIN, 
HOIP and HOIL1). Formation of ubiquitin 
chains allows the TAB–TAK and IKK 
complexes to be recruited. (B) The CD40-
associated IKK-activating complex consists 
of TRAF3, TRAF2, cIAPs, LUBAC and the 
TAB–TAK and IKK complexes. (C) 
Stimulation of IL1R or TLRs induces 
recruitment of MYD88 and the kinases 
IRAK1 and IRAK4. IRAK4-mediated 
phosphorylation of IRAK1 causes 
dissociation of IRAK1 from the receptor 
and formation of a secondary complex that 
contains IRAK1, TRAF6 and pellino and 
the TAB–TAK and IKK complexes. (D) 
Following TCR engagement, activated 
protein kinase C (PKC) phosphorylates 
CARMA1. A complex composed of 
CARMA1, BCL10, MALT1, TRAF2 and 
TRAF6 is assembled, which recruits the 
TAB–TAK and IKK complexes. (E) 
Binding of bacterial peptidoglycans to 
NOD1 or NOD2 results in the assembly of a 
complex consisting of RIP2, TRAF6, 
TRAF2, cIAP, XIAP and the TAB–TAK 
and IKK complexes. (F) TRIM25-mediated 
ubiquitylation of RIG-I allows association 
with MAVS and recruitment of TRAF6, 
TRAF2 and the TAB–TAK and IKK 
complexes. (G) DNA doublestrand breaks 
(DSBs) induced by ionizing radiation are 
sensed by poly(ADP-ribose) polymerase 1 
(PARP1) and ATM. This triggers formation 
of a nuclear complex, phosphorylation and 
sumoylation of NEMO and the export of 
ATM to the cytoplasm. Here, a complex 
containing TRAF6, cIAP and the TAB–
TAK and IKK complexes is assembled. 
(H) DSBs induced by chemotherapeutic 
agents are sensed as in G, but lead to 
coupled nuclear export of ATM and NEMO 
and to the formation of an XIAP- and 

ELKS-containing complex which mediates IKK activation. K63-linked ubiquitylation is shown in blue, with linear chains in 
red. Green circles marked ‘P’ represent phosphorylation, sumoylation is indicated by purple circles marked ‘S’ and yellow 
circles in G and H indicate ADP-ribosylation. PIASγ, protein inhibitor of activated STAT protein gamma; IR, ionizing 
irradiation [92]. 

Upon TNFα binding to the TNFR (Figure 17A), a huge signalosome is assembled at the 
level of the receptor, consisting of various scaffolding and adaptor proteins. cIAP1 and 2 (cell 
inhibitors of apoptosis) are the ubiquitinylated transmitters restricted to this canonical 
pathway, associating with RIP1 and TRAF2 that are common to other NF-κB activating 
pathways. These proteins undergo K63-linked poly-ubiquitinylation promoting TAK1 and 
IKK activation. LUBAC is recruited as well, to mediate linear ubiquitinylation of RIP1 and 
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NEMO. RIP1 has also been mentioned to undergo K11 and K48 ubiquitinylation but their 
roles remain unclear [92, 95, 113, 116, 117]. 

In the case of IL-1R or TLRs (Figure 17C), MYD88 serves as adaptor for TRAF6 and 
IRAK1 that undergo K63 ubiquitinylation for successful signal transmission and TAK1 and 
IKKβ activation. RIP1 also participates in a similar way upon stimulation of TLR3 or TLR4. 
These receptors belong to the same family and they function as sensors of cytokine IL-1 and 
extracellular pathogen-associated molecular patterns of bacterial, viral or fungal origin 
respectively [92, 95, 113, 116, 117]. 

RLRs (RIG-I-like receptors) are cytosolic receptors that recognise viral RNA present in 
infected cells and promote activation of NF-κB and of IRF3 (via IKKε and TBK1) that 
mediate transcriptional induction of type I interferons (IFN I). Similarly, RIG-I (retinoic acid-
inducible gene-I) undergoes K63 ubiquitinylation in order to activate TAK1 and IKKβ 
(Figure 17F). RIP1 is also important in this pathway. [92, 95, 113, 116, 117]. 

NLRs (NOD-like receptors) (Figure 17E) are a large family of evolutionarily conserved 
intracellular receptors that detect bacterial peptidoglycans or toxins in the cytoplasm. Engaged 
NOD2 (nucleotide-binding oligomerisation domain 2 protein) recruits RIP2 and they both 
undergo K63 ubiquitinylation. Together with K63-ubiquitinylated TRAF6 they further 
activate TAK1 complex, IKK complex (through IKKβ phosphorylation) and subsequently 
NF-κB [92, 95, 113, 116, 117]. 

IKK can also be activated in the case of DNA damage (Figure 17G and H) through a series 
of SUMOylation and ubiquitinylation of fractions of the regulatory subunit (NEMO) lying in 
the nucleus, followed by its nuclear export, binding and activation of the catalytic subunits 
(IKKα and β). RIP1 is also implicated in this process [92, 95, 113, 116, 117]. 

Additional information concerning the KO of key molecules of the NF-κB pathways in 
mice and their phenotypes are summarised in the following table. 

 
Table 11: Phenotype in KO mice of various components of NF-κB signaling pathways [27] 
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IV.6. Noncanonical NF-κB pathways 
 

 
Figure 18: Canonical and 
noncanonical activation of NF-κB. 
Upon CD40 stimulation, TRAF2/5 
targets cIAP1/2 for K63-linked 
polyubiquitination, which then mediate 
K48-linked polyubiquitination of 
TRAF3, which targets it for 
proteasomal degradation. This 
prevents the constitutive degradation 
of NIK by TRAF3, allowing NIK-
mediated IKKα activation and IKKα-
mediated phosphorylation of p100. 
This leads to partial processing of 
p100 into the p52 NF-κB subunit. The 
noncanonical NF-κB dimer p52/Rel-B 
then translocates to the nucleus. [151] 

Activation of NF-κB through the noncanonical pathway is 
also dependent on ubiquitinylation but in another context. 
The current model proposes that NIK in resting cells forms a 
complex with TRAF2, TRAF3 and cIAP1/2. This interaction 
leads to the constitutive TRAF3-dependent K48 poly-
ubiquitinylation of NIK and its subsequent proteasomal 
degradation [152]. For example, upon engagement of 
receptors like CD40 in B-cells, both canonical (Figure 17B) 
and noncanonical NF-κB pathways are activated (Figure 18). 
The complex consisting of NIK:TRAF2:TRAF3:cIAP1/2 is 
recruited to the receptor [153] and this event promotes 
displacement and release of NIK from the complex. 
Alternatively, this conformation provokes TRAF2-mediated 
activation of cIAP1/2 through K63 ubiquitinylation that 
further mediates ubiquitinylation of type K48 of TRAF3 
leading to its degradation. After NIK is released and rescued 
from degradation, it can phosphorylate and activate IKKα 
[16, 82, 95, 117, 154]. 

IKKα then mediates phosphorylation of p100. This 
modification promotes recognition of p100 by the E3 ligase 
complex SCFβTrCP that ubiquitinylates its substrate in a K48-
linked manner. Thus p100 is taken to the proteasome where it 
undergoes processing, producing finally the p52 NF-κB 
component that can dimerise with RELB, translocate into the 
nucleus and regulate gene expression. Noncanonical 
pathways are activated and resolved with slower kinetics than 
the canonical ones [16, 82, 95, 117, 154-157]. 
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V. DUBs in termination of NF-κB signaling 
 
Ubiquitinylation is a reversible reaction that is performed by the Deubiquitinylating 

enzymes (DUBs), which hydrolyse the isopeptide bond between ubiquitin molecules in chains 
or between ubiquitin and targeted proteins. This process participates in the maturation of 
ubiquitin molecules (as they are cotranslated with ribosomal proteins in a premature form), 
ubiquitin disassembly, recycling and homeostasis. DUBs participate in various biological 
events such as cell cycle control, DNA repair, histone modification and chromatin 
remodelling, receptor degradation and recycling, endocytosis, secretion, signaling, regulation 
of transcription and RNA processing. DUBs can mediate editing of ubiquitin conjugates in 
order to alter or terminate signal transduction and change protein fate either by sending them 
to the proteasome or by saving them from degradation [158, 159]. 

Almost 100 DUBs are encoded in the human genome and have been classified into 6 
families (Figure 19), according to the structure of their catalytic domain (Figure 20) and 
consequently the mechanism through which they catalyse deconjugation of ubiquitin. The 
largest DUB family in humans consisting of about 60 members is that of the Ubiquitin-
Specific Peptidases (USPs), which contain highly conserved USP domains. There are also 4 
members in the UCH family (ubiquitin carboxy-terminal hydrolase), 14 OTUs members 
(ovarian tumour proteases), 4 MJDs (Machado-Joseph disease protein domain proteases), 7 
MCPIPs (monocyte chemotactic protein-induced protein), 4 JAMMs (JAB1/MPN/Mov37 
metalloproteases). All of them are cysteine proteases apart from the last group that belongs to 
the catalytic class of zinc-metalloproteases [89, 159, 160]. 

 

Figure 19: Classification of 
human DUBs. Human DUBs are 
classified into six families 
represented by different colors: 
USPs, UCHs, OTUs, MJDs, 
JAMMs and MCPIPs. The 
catalytic core domain of each 
individual enzyme is indicated in 
plain light red if the DUB is active 
and stripped if inactive. Additional 
common domains are also shown 
in different colors. Proteins are 
represented with their N termini 
oriented towards the center of the 
circle. The length of each DUB 
corresponds to the size of the 
protein in amino acids. USPs, 
ubiquitin-specific proteases; 
UCHs, ubiquitin carboxy-terminal 
hydrolases; OTUs, ovarian-tumor 
proteases; MJDs, Machado–Joseph 
disease protein domain proteases; 
JAMMs, JAMM/MPN domain-
associated metallopeptidases; 
MCPIPs, monocyte chemotactic 
protein-induced proteins [159]. 
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The exact mechanisms that determine selectivity of each DUB family for a certain 
ubiquitin-linkage have not been elucidated yet. Structural and functional analyses indicate that 
USPs and OTUs recognise both K48 and K63-linked poly-ubiquitin chains or even K11-
linked ones. JAMMs and MJDs are K63 specific [159]. It is known that specificity is altered, 
depending on the partners and adaptor proteins that participate in substrate recognition. 
Specificity is determined by the recognition mechanism of both the target protein and the 
attached ubiquitin moiety. Subcellular localisation and partner interaction also contribute to 
target selection [95, 160]. 

 
Figure 20: Structures of the catalytic domains of subclasses of Ub-Specific Proteases (Yellow) with Ub (Blue). 
Structures show the remarkable variability in secondary structure between the DUB classes. Catalytic centers are shown as 
Van der Waals spheres (carbon, gray; nitrogen, blue; oxygen, red; sulfur, orange; zinc, purple) and have been aligned for 
easy comparison [160]. 

In general DUBs are synthesised as active enzymes but they only assume the appropriate 
conformation when bound to ubiquitin. Their availability and activity is tightly regulated by 
various mechanisms acting at different levels: 

1-Transcriptional control (Figure 21, left panel). 
2-PTMs: as many proteins, several DUBs can undergo phosphorylation, ubiquitinylation, 

proteolytic cleavage, modifications by reactive oxygen or nitrogen species etc (Figure 21, 
right panel). 

3-Changes in subcellular localisation facilitate interaction with specific substrates. 
4-DUBs interactions with other domains, proteins and co-factors lead to allosteric 

conformation changes (Figure 21, right panel). Many of them contain UBDs that mediate 
activity and specificity. Others contain ubiquitin-like domains within their catalytic region 
controlling auto-inhibition. Their regulation and specificity though largely depends on 
association with other subunits forming higher-order macromolecular complexes as in the 
case of the proteasome [159, 160]. 

 

Figure 21: DUBs regulation. DUB activity is 
regulated at various levels, including 
transcription (left panel), degradation, and 
binding to stimulatory or inhibitory cofactors 
(right panel). The exact mechanism whereby 
these co-factors regulate DUB activity is 
unknown but may occur at multiple levels (for 
example, phosphorylation, subcellular 
localization), stimulating conformational 
changes or conferring specificity [160]. 

Ubiquitinylation/deubiquitinylation reactions are usually coupled, permitting rapid and fine 
adjustment of signaling events involving ubiquitin conjugation and deconjugation, which 
outline once more the dynamic and reversible nature of this kind of PTMs. For example, a 
DUB can dimerise with an E3 ligase in order to antagonise and counteract its possibly auto-
ubiquitinylating activity, preventing excessive degradation or signaling events (Figure 22, left 
panel). In other cases, proximity between E3 and DUB can offer simultaneous regulation 
through ubiquitinylation of the substrate together with its respective deubiquitinylase to adjust 
and control substrate’s destiny (Figure 22, middle panel). Furthermore DUB-E3 association 
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can offer specificity on the DUB through E3 ligase binding on the respective target (Figure 
22, right panel). In the case of the OTU protease A20, ubiquitin ligase and deubiquitinylating 
activity are even hosted on the same polypeptide, permitting A20 to edit ubiquitin linkage 
type of its substrates from one type to another (see next chapter). Like most enzyme-substrate 
interactions, DUB-target interactions are generally weak and transient, possibly justifying 
why such methods that promote binding have evolved [159, 160]. 

Figure 22: Processivity – DUB/E3 
interactions. DUBs and E3 are often found in a 
complex together. These interactions, which 
occur between USP7 and HDM2, for example, 
serve to reverse E3-mediated autoubiquitination 
(left panel) or allow the E3 to regulate the target 
and its DUB simultaneously as in the case of 
USP20 and pVHL (middle panel). 
Alternatively, DUB/E3 interactions confer 

specificity to the DUB, as in the case of Ubp2 and Rsp5 (right panel). E3 Ub-ligase and Ub-protease activity is indicated with 
black arrows and red arrows, respectively. Ub conjugated to E2 is not shown for clarity [160]. 

 

V.1. DUBs and NF-κB 
 

So far two DUBs have been extensively studied as they were proven to intervene at 
different levels of the NF-κB-activating pathways. Both proteins have been implicated in 
several genetic disorders and pathological conditions like cancer. Those are A20 or TNFAIP3 
(TNFα-induced protein 3), an OTU family member, and CYLD (familial cylindromatosis), a 
USP family member, description of which will follow. Other DUBs implicated in NF-κB 
regulation have also been studied but in less extent, examples of some will be also given. 

 
V.1.a. A20 

 
A20 or TNFAIP3 is a cytoplasmic protein, ubiquitously expressed in low levels and can be 

rapidly induced in response to various NF-κB activating stimuli. On the contrary, in resting 
thymocytes and peripheral T lymphocytes, it is highly expressed but is downregulated in 
response to TCR ligation. Thus its protein levels can be both regulated in the transcriptional 
and post-translational level. It is made of various domains such as the OTU domain, 
responsible for ubiquitin deconjugation, UBD, for ubiquitin attachment, and even a domain 
that permits interaction with E2 enzymes, so as to function as an E3 ligase, promoting 
ubiquitinylation. There are also domains that mediate interactions with proteins that have 
been mentioned earlier, like TRAF2, TRAF6 and RIP1 (Figure 23) [95, 161]. 

 
Figure 23: Biochemical characteristics of A20 protein function. The de-ubiquitylating (DUB) activity of A20 is mediated 
by the catalytic cysteine at position 103 (C103) within the OTU domain. A20 also contains seven zinc fingers (ZFs), which 
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mediate its E3 ubiquitin ligase activity (via ZF4) and its ubiquitin-binding activity. Indeed, A20 binds to ubiquitylated E2 
enzymes such as UBCH5A via ZF4–ZF7, to K63-linked polyubiquitin chains via ZF4 and to linear polyubiquitin chains via 
ZF7. A20 also interacts with substrates such as receptor-interacting protein 1 (RIP1) via ZF1–ZF3 (with ZF1 being crucial 
for binding), with E3 enzymes such as TNFR-associated factor 6 (TRAF6) via the OTU domain, and with ubiquitin-binding 
proteins such as TAX1-binding protein 1 (TAX1BP1), IκB kinase-γ (IKKγ), A20-binding inhibitor of NF-κB activation 1 
(ABIN1) and ABIN2 via the ZF domain. Some of these latter interactions may occur through the mutual binding of A20 and 
the interacting protein to ubiquitin chains. The regions that mediate the interaction of A20 with the E3 enzymes RING-finger 
protein 11 (RNF11) and ITCH, as well as with itself, have not been clearly defined. In addition to their other functions, the 
C103 and ZF4 motifs have been shown to support the degradation of E2 enzymes. A20 also undergoes post-translational 
modifications; for example, a site of A20 phosphorylation by IKKβ is indicated. Human A20 is cleaved by the paracaspase 
MALT1 at the site indicated by an asterisk. The site at which mouse A20 is cleaved has not been precisely determined, but 
the region where it is cleaved is indicated by a bracket. [161] 

A20-deficient mice die perinatally due to multi-organ inflammation showing an important 
role of A20 in the inflammatory process [162]. Those mice could be rescued when treated 
with broad-spectrum antibiotics and revealed hypersensitivity of TLR signaling in response to 
intestinal flora in the absence of A20 [163]. MEFs derived from A20-/- mice exhibit persistent 
TNFα and IL-1-induced NF-κB activity due to prolonged IKK activation and ΙκBα 
degradation. Further studies performed in conditionally KO mice in a lineage-specific and 
temporally controlled way have confirmed intitial findings showing immune defects in some 
cases [161]. Human genetic studies have shown a correlation between single nucleotide 
polymorphisms (SNPs) of the TNFAIP3 gene and multiple inflammatory and autoimmune 
diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis, psoriasis etc 
(Figure 24) [164]. This has also been shown in mice expressing reduced A20 levels that 
develop spontaneous inflammation, dictating a protective-inhibitory action. Polymorphisms in 
the A20 gene have been accused of promoting oncogenic transformation and malignancies 
development like glioma or lymphomas, as 18% of B-cell lymphomas (ABC-DLBCL, MALT 
and Hodgkin’s) possess biallelic mutations of TNFAIP3 gene [95, 161, 165]. 

 
Figure 24: Polymporphisms and mutations in TNFAIP3 gene and related diseases. The figure shows a schematic of the 
TNFAIP3 gene locus, which encodes A20. Exons encoding the amino-terminal OTU domain are shown in orange and exons 
encoding the carboxy-terminal zinc fingers (ZFs) of A20 are shown in green. The C103, ZF4 and ZF7 motifs are highlighted. 
Non-coding exons, including AT-rich sequences at the end of exon 9, are shown in brown. Human germline single-
nucleotide polymorphisms (SNPs) in the TNFAIP3 locus that are associated with autoimmune and autoinflammatory 
diseases are indicated (labelled with their reference SNP (rs) numbers), as are somatic mutations that have been identified in 
the coding exons of TNFAIP3 in human B cell lymphomas [161]. 

At the molecular level, A20 seems to control cell death as well as a variety of signal 
transduction pathways, the best studied being the NF-κB pathway. The domains that this 
protein possesses render it the ability to interact with ubiquitinylated substrates and remove or 
add ubiquitin moieties. NF-κB is negatively regulated by A20 either by K63-linked ubiquitin 
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removal and degradation tagging of signal mediators (Figure 25A) or by disrupting complexes 
of E2 UBCs with E3s that positively regulate the pathway like TRAFs (Figure 25B) [166]. Of 
note, A20 gene is a NF-κB target, so it part of a negative feedback loop [95, 161]. 
Furthermore, it has been shown that A20 can directly impair IKK activation in a non-catalytic 
fashion, by sensing ubiquitin chains. It can specifically recruit NEMO and this event is 
sufficient to block IKK phosphorylation by TAK1 [167]. 

 
Figure 25: Mechanisms of 
A20 inhibition of NF-κB. 
(A) The ubiquitin-editing 
function of A20. In response 
to TNF stimulation, A20 
expression is induced and 
inhibits NF-κB in a negative 
feedback loop in a two-step 
manner. (1) A20 first 
hydrolyzes K63-linked 
polyubiquitin chains on 
RIP1 in an OTU-dependent 
manner to inhibit IKK and 
NF-κB signaling. (2) A20 
then conjugates K48-linked 
polyubiquitin chains onto 
RIP1 to trigger its 
proteasomal degradation. 
(B) Disruption of E2:E3 

ubiquitin enzyme complexes by A20. The E3 ligase TRAF6 inducibly interacts with the E2 enzymes Ubc13 and UbcH5c 
upon IL-1R ⁄ TLR4 stimulation. (1) A20 interacts with Ubc13, UbcH5c, and TRAF6 and disrupts the binding between 
TRAF6 and the E2 enzymes. (2) A20 then conjugates K48-linked polyubiquitin chains on Ubc13 (and UbcH5c) to trigger its 
proteasomal degradation. [93] 

Upon TNFα stimulation, A20 binds to K63-ubiquitinylated RIP1 and removes the chain. 
RIP1 is not further able to recruit signal promoting mediators like TAB:TAK1 and 
NEMO:IKK, so signal is attenuated. Surprisingly, not only does it remove K63-linked chains, 
but also mediates K48-ubiquitinylation of RIP1 and promote its degradation, contributing thus 
in definite signal termination (Figure 25A) [168-170]. In the case of TRAF2, TRAF6 and 
cIAPs, their interaction with their respective E2 enzyme is disrupted by A20, preventing 
substrate ubiquitinylation. Regarding TRAF2, A20 also promotes its lysosomal degradation 
and as far as TRAF6, A20 can mediate its K63-tagged deubiquitinylation, in IL-1R and TLR 
activated pathways, in a quite different manner as it mediates entire chain cleavage rather than 
step-wise ubiquitin dissociation [166, 171-173]. Of note, A20 preferentially processes 
unanchored K48-linked poly-ubiquitin chains, but not K63-linked ones, to mono-ubiquitin. 
RIP2 and TBK1 (TANK-binding kinase 1) are also deubiquitinylated by A20 in NLR-
originating signalling [174]. Of note, NF-κB signaling in response to TCR, BCR and CD40 
stimulation is also controlled by A20. As A20 is expressed in high basal levels in 
lymphocytes, in contrast to other cell types, it is downregulated upon TCR engagement to 
allow proper signal transmission. A20 can remove poly-ubiquitin chains from MALT1 to 
inhibit interactions with downstream components of the pathway, whereas MALT1 cleaves 
recruited A20 to impair its inhibitory action [175, 176]. Balance between these counteracting 
and mutually exclusive events can guide the outcome of the response. The exact mechanisms 
through which all these events are regulated remain ill defined and are a subject of further 
research studies [93, 95, 161]. 

The activity and the specificity of A20 are regulated through interaction with various 
proteins forming the large macromolecular “A20 ubiquitin-editing complex” (Figure 26). 
ABIN1 (A20-binding inhibitor of NF-κB 1) for example, is thought to act as an A20-adaptor, 
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altering its substrate choice and action and mainly inhibit TRAF3-dependent signals. Of note, 
ABIN1 contains a UBD highly similar to that of NEMO and bridges A20 with the latter. A20 
activity can also be regulated via activatory phosphorylation by IKKβ that leads to less NF-
κB activity, introducing an additional negative feedback loop in the system [93, 95, 161]. 
More partners-members of the “A20 ubiquitin-editing complex” have been characterised, as 
TAX1-binding protein 1 (TAX1BP1) for example, which is essential for NF-κB and JNK 
signaling termination upon TNFα, IL-1 and LPS stimulation. TAX1BP1-deficient mice die 
during gestation and MEFs show elevated and persistent IKK and JNK activation upon the 
above stimuli, due to enhanced ubiquitinylation of RIP1 and TRAF6. This occurs because of 
the inability of A20 to recruit RIP1 and deubiquitinylate TRAF6 [177]. ITCH is another E3 
ligase, member of the editing complex needed for termination of TNFR signaling by 
mediating A20 recruitment and inactivation of RIP1 [178]. Similarly, RNF11 knockdown 
leads to persistent NF-κB and JNK signaling in response to TNFα and LPS treatment. The 
explanation lies in the fact that RNF11 interacts with A20 and TAX1BP1 in a stimulus-
dependent manner, in order to negatively regulate RIP1 and TRAF6 ubiquitinylation upon 
TNF and LPS stimulation respectively [179]. 

 
Figure 26: Activation and 
assembly of the A20 ubiquitin-
editing complex. TNF 
stimulation activates NF-κB and 
induces A20 expression as part 
of a negative feedback loop. 
IKKα phosphorylates 
TAX1BP1, which nucleates the 
A20 ubiquitin-editing complex 
and is required for interactions 
between TAX1BP1, Itch, 
RNF11 and A20. The A20 
ubiquitin-editing complex 
inhibits RIP1 K63-linked 
polyubiquitination to terminate 
NF-κB signaling downstream of 
TNFR1 [93]. 

 

 
V.1.b. CYLD 

 
CYLD is an ubiquitously expressed USP family member and a well-characterised regulator 

of NF-κB signaling pathways as well as antiviral signaling, MAPK pathways, proximal TCR 
signaling, cell cycle and calcium signaling. It is the product of a unique tumour suppressor 
gene in humans, mice, flies and worms that was first found in 1995 to be mutated in a rare 
genetic disease called Cylindromatosis. In 2003, three groups described CYLD association 
with NF-κB activating pathways, showing that it interacts with NEMO. CYLD is able to 
negatively regulate the activation of NF-κB following stimulation of various receptors such as 
nerve growth factor receptors (EDAR, XEDAR), TNF superfamily receptors (TNFR, CD40, 
LMP1), and Toll/IL-1 superfamily receptors. Regulation of NF-κB activity by CYLD is 
achieved by removing non-K48-linked polyubiquitin chains from TRAF2 adaptor and to a 
lesser extent TRAF6, thus attenuating signal transmission. CYLD truncations in 
cylindromatosis result in reduced enzymatic activity, which is related to pathology. CYLD 
KD augments basal and inducible NF-κB activity and renders resistance to apoptosis, 
demonstrating a possible role in oncogenesis [180-184]. 
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Figure 27: CYLD mutations 
in human pathology. The 
mutations of CYLD reported 
in the literature are indicated 
together with the various 
structural/functional domains 
of CYLD. Frameshift 
mutations are represented by a 
thick arrow, nonsense 
mutations are represented by a broken arrow and splicing mutations are indicated by a thin arrow. The two identified 
missense mutations are also indicated. Mutations found in cylindromatosis and MFT are shown in black and red, 
respectively. CAP-gly domains (CAP) have been described as microtubule-binding domains, but no evidence for CYLD 
interacting with the cytoskeleton has yet been provided. Instead, the third CAP-gly domain of CYLD represents the binding 
site for NEMO. A PXQXS/T-like motif that allows interaction with TRAF-2 is indicated between the 2nd and 3rd CAP 
domains. A phosphorylation site cluster also lies within this region (not indicated). ‘C’ and ‘H’ boxes are subdomains of the 
USP catalytic domain that contain the active cysteine and histidine residues (adapted from [115] with info from [95]). 

Individuals with Cylindromatosis suffer from benign tumours in hairy parts of the body as 
hair producing follicles and associated glands are sensitive to transformation events. These 
inactivating CYLD gene mutations lead to excessive NF-κB activation and, as a consequence, 
an increased proliferation rate (Figure 27) [185]. Another genetic disease called Multiple 
Familial Trichoepithelioma (MTF) gives rise to similar phenotypes and was found to be also 
dependent on mutations of the same genetic locus [186]. Inactivating mutations have also 
been detected in several cancers as well, such as T-cell acute lymphoblastic leukemia (T-
ALL), melanoma, colon, lung and hepatocellular carcinoma etc. CYLD gene is frequently 
mutated in multiple myeloma, and quite rarely in B-cell lymphomas, unlike A20 mutations 
[94, 95, 115]. The following table shows the physiology of Cyld genetic models, confirming 
its important role in immunity and NF-κB activation. 

Genetic model Phenotype 
Cyld-/- Drosophila shorter lifespans 

CyldΔ9/Δ9 mice die postnatally because of respiratory problems 

Cyld-/- mice susceptibility to chemically-induced skin tumours, sterile males due to testicullar 
atrophy (NF-κB activation and induction of anti-apoptotic protein Bcl2) 

Cyld-/- T-cells fewer CD4+ and CD8+ (defect in proximal TCR signaling), impaired development of 
NKT, spontaneous activation of peripheral T lymphocytes 

Cyld-/- Keratinocytes elevated Cyclin D1 expression and higher proliferation rates 

Cyld-/- B-cells spontaneous activation and inflammation (constitutive NF-κB activation) 

Cyld-/- Macrophages hypersensitivity to TLR, anti-CD40 and TNF (enhanced NF-κB activation and 
proinflammatory cytokine production) 

Cyld-/- Dendritic Cells hyperactive phenotype (augmented NF-κB activation) 

Cyld-/- Osteoclasts abberant differentiation causing severe osteoporosis 
Table 12: Phenotype of Cyld genetic models. Δ9: mutant lacking exon9 that encodes for the catalytic domain [93, 94 ]. 

The amount of CYLD in cells is regulated both at the transcriptional, post-transcriptional 
and the post-translational level. Since TNFα and microbes can trigger CYLD expression, it is 
considered as an NF-κB-dependent event, introducing an auto-regulatory feedback 
mechanism through TRAF2 and TRAF6 deubiquitinylation. This permits tight control of NF-
κB activity and prevents extensive tissue damage from uncontrolled inflammation reactions. 
Apart from recruitment of activators and repressors on the promoter region, epigenetic 
controls including DNA methylation and histone deacetylation also alter CYLD mRNA levels 
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in many pathological conditions [94]. Of note, eight different alternative splicing variants 
have been discovered in human to date and five in Drosophila. Deubiquitinylating activity 
and specificity of CYLD also depends on post-translational modifications and protein-protein 
interactions, as in the case of A20. IKKα and β in the NF-κB pathway and IKKε in the 
interferon pathways (following TLR, NLR or RLR activation) can phosphorylate CYLD in 
order to permit accumulation of ubiquitinylated TRAF2 and signal amplification. Regulation 
of the level of CYLD protein through ubiquitinylation-dependent proteasomal degradation has 
been reported in many studies [93, 94]. 

Excessive activation of TAK1 and its downstream targets (IKK-NF-κB, JNK-AP-1, 
NFAT), can be prevented by CYLD as it selectively removes K63-linked poly-ubiquitin 
chains from several proteins. Concerning the NF-κB pathways, CYLD-dependent 
deconjugation of K63-type polyubiquitin chains from TRAF2, TRAF6, RIP1 and NEMO, 
attenuates IKK activity and signal transmission. Removal of K48-linked chains from TRAF2 
preventing its degradation has also been reported. In mature T lymphocytes, CYLD restrains 
IKK and NF-κB activation in the TCR pathway by removing K63-linked chains from TAK1 
[187, 188]. It also cleaves both K48 and K63-linked ubiquitin chains lck kinase, linking it 
with its substrate ZAP70 (proximal TCR signaling). Interestingly, it affects an atypical NF-
κB-activating pathway by preventing BCL3 (an IκB protein) ubiquitinylation. K63 
polyubiquitinylation of BCL3 leads to its nuclear translocation and complex formation with 
p50 or p52 dimers that activate cyclin D1 expression to promote cell cycle G1 to S phase 
transition and subsequently cell proliferation [189]. This is the case in many tumour cell lines 
where CYLD activity is downregulated and there is an excessive production of cyclin D1 [93-
95, 112, 159, 190]. 

Similarly to A20, CYLD requires adaptor molecules to interact and deubiquitinylate 
TRAF6 in diverse NF-κB activating pathways. One example is p62 protein. In murine 
neuronal cells deficient in p62, an accumulation of insoluble ubiquitinylated proteins and 
more specifically K63-ubiquitinylated tropomyosin-related kinase A (TrkA) receptor was 
observed. This was attributed in part to diminished activity of CYLD. It seems that p62 acts 
as an adapter, permitting interaction of CYLD with TRAF6 in order to form a complex of an 
active CYLD fraction, so as to remove the K63-linked polyubiquitin chains from TrkA and 
attenuate NF-κB activity. Thus p62 has an equilibrating role, regulating the counteracting 
effects of the CYLD:p62:TRAF6 complex in order to balance the turnover of K63-tagged 
proteins as in the case of TrkA [191, 192]. Optineurin is another example of a protein-partner 
of CYLD that alters its activity. Optineurin normally competes with NEMO for binding to 
ubiquitinylated RIP in order to prevent NF-κB activation and it was known to interact with 
CYLD. A mutant though (H486R, common event in glaucomas) is unable to inhibit TNFα-
dependent induction of NF-κB. In experiments where Optineurin was mutated or silenced, 
CYLD was no more capable of inhibiting NF-κB signaling and showed drastically reduced 
interaction with ubiquitinylated RIP, whose level was increased. So Optineurin mediates 
interaction with ubiquitinylated RIP facilitating its deubiquitinylation, subsequently reducing 
NF-κB activity [193]. 

 
V.2. Other DUBs implicated in NF-κB regulation 

 
Although CYLD and A20 have some common substrates, there is little functional 

redundancy between them. CYLD is most important in basal NF-κB activity control whereas 
A20 plays a limiting role towards inducibly activated NF-κB. Several DUBs have been 
reported that, in a lesser extent, may play a role at various levels of NF-κB regulation. These 
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DUBs are Cezanne, hydrolysing K11-linked polyubiquitin chains of RIP1 [194, 195], USP11 
targeting RIP1 and IκBα [196], USP15 removing IκBα ubiquitin tags [197], USP7 targeting 
TRAF6, NEMO or p65 [198, 199], MCPIP1 targeting TRAF2, TRAF6 and RIP1 etc [93, 95, 
159, 200]. USP9X has recently been described as a positive regulator of the TCR signaling 
pathway, as in vivo KD attenuates T-cell proliferation. It interacts with and removes ubiquitin 
chains from Bcl10 facilitating association with Carma1 and CBM complex formation [201]. 
What should be kept in mind is that all DUBs have still not been identified. A novel DUB 
called OTULIN or gumby has been recently identified as mediating dissociation of linear 
poly-ubiquitin chains formed by the LUBAC. It interacts with components of the Wnt 
pathway and RNF31 of NF-κB pathways, altering NEMO association with RIP1 and linear 
ubiquitinylation of RIP2 [202-204]. 
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VI. Project goals 
 
NF-κB is a transcription factor that has been extensively studied throughout the last 

decades. Diverse stimuli lead to activation of NF-κB through various signal transduction 
pathways, all converging in regulation of IKK activity. Active IKK can phosphorylate IκB, 
which is degraded, so that NF-κB can be released from inhibition and can translocate into the 
nucleus to initiate gene transcription. Expression of a broad range of target-genes, which are 
implicated in many fundamental processes like cell proliferation and immune response, is 
controlled by this transcription factor. As a consequence NF-κB has also been implicated in 
various pathological conditions like cancer, due to disregulation of its activity. 

Despite the diversity of activators, all pathways use similar basic principles. Upon 
induction, adaptor molecules oligomerise and organise in large signalosomes through specific 
protein-protein interacting domains. These molecules need to undergo ubiquitinylation in a 
non-degradative manner, forming large polyubiquitin chains that facilitate aggregation of 
additional complexes able to further transmit the signal. Such events are highly regulated in 
order to mediate responses of accurate intensity and duration. Signalosome assembly is 
controlled at various levels including spatiotemporal availability of the components and their 
status of activation. Moreover, Ubiquitin conjugation is also strictly controlled by the E3 
ligases and the DUBs that mediate ubiquitinylation and deubiquitinylation respectively. 

Knowing the importance of ubiquitinylation in signal transduction pathways that activate 
NF-κB, this project was planned in order to identify and characterise additional DUBs 
implicated in regulation of signaling outcome and intensity upon TCR ligation in the human 
T-cell line Jurkat. A siRNA library screening was performed with sequences targeting most of 
the deubiquitinylating enzymes encoded by the human genome. The impact of gene silencing 
on the TCR-dependent NF-κB pathway was measured by luciferase assays, after transfecting 
Jurkat cells with the respective siRNA. In parallel, identification of additional proteins that 
participate in signal transduction and impact NF-κB activity through a mass spectrometry 
analysis contributed to the identification of additional NF-κB partners. We tried to answer 
fundamental questions like how are ubiquitinylated molecules regulated in the pathway, how 
they are recycled or set to default conditions, by which proteins, and at which level. Also we 
tried to understand how membrane-associated clusters transmit the signal to cytoplasmic 
components, how is this regulated and by which kind of proteins. 

The major goal of these studies was to get a better insight in regulatory mechanisms of NF-
κB activation at the molecular level. Research is an investment for the future and the 
knowledge acquired may be used to provide patients with the appropriate treatment, adapted 
to the molecular background of their disease, in order to increase therapeutic efficiency and 
minimise undesired reactions. Newly identified pathway components may serve as potential 
anti-tumoural targets with these advantages. 
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Article: Negative regulation of NF-κB signaling in T lymphocytes by USP34 
 

We have screened 98 deubiquitinylating enzymes encoded by the human genome in order 
to identify new proteases implicated in TCR-dependent NF-κB signaling regulation. To 
achieve this, we used Jurkat E6.1 human T-cell line, transfected with siRNAs from a library 
with two sequences targeting each candidate molecule. By using a NF-κB-responsive, firefly 
luciferase-coding vector, we were able to evaluate NF-κB activity, by a luciferase assay, in 
response to stimulation with PMA/ionomycin agents and anti-CD3/anti-CD28 antibodies. 
Cells were lysed and after substrate addition, luminescence values were obtained. Values 
were normalised with a second plasmid stably and independently coding for Renilla 
luciferase. 

Silencing of the protein called Ubiquitin-specific protease 34 (USP34) was found to 
increase NF-κB activity upon TCR stimulation. USP34 is a non-nuclear, non-organellar 
protein (as we have shown by performing fractionation experiments) of molecular weight of 
404 kDa, with only one characterised domain, the catalytic. Cells were transfected with an 
additional siRNA sequence in order to verify successful and specific silencing and lysates 
were analysed by immunoblot (IB). Confirmation of the importance of this discovery came by 
additional knockdown experiments, where NF-κB targets were also upregulated upon 
stimulation, compared to non-targeting siRNA transfected cells. NFKBIA, IL-2 and TNF-R 
mRNA levels were increased, as revealed by RT-PCR (reverse transcription-polymerase 
chain reaction). The same holds true for IL-2 protein production and secretion, as measured in 
cell culture supernatants by ELISA (enzyme-linked immunosorbent assay). Cells were then 
transfected with a construct coding for the catalytic domain of USP34, stimulated and 
resubmitted to a luciferase assay. The reverse experiment had indeed the reverse result, 
meaning that overexpressed USP34 catalytic domain is enough to dampen NF-κB activity 
upon TCR stimulation. 

After determining the role of USP34 in the negative control of NF-κB activity, we tried to 
get an insight in signaling events at the molecular level. Proximal signaling events like global 
tyrosine phosphorylation, assembly of CBM complex and ubiquitinylation of the adaptors 
BCL10 and MALT1 were unaltered by the silencing of USP34. No interaction with core 
components of the NF-κB pathway was observed by co-IP. In addition, parallel signaling 
diverging from TCR towards activation of the NFAT and MAPK-dependent AP-1 
transcription factors was mainly unaffected as assessed by IB (phospho-ERK profile) and 
luciferase assay respectively. Nuclear extracts from unstimulated and stimulated USP34-
silenced cells were analysed by IB and were compared to extracts from non-targeting siRNA 
transfected cells and were also subjected to non-radioactive EMSA (electrophoresis mobility 
shift assay). This experiment revealed a similar pattern of nuclear distribution of the p65 NF-
κB component [also visualised by immunofluorescence experiment (not shown)] in terms of 
time and quantity, but with altered affinity for κB DNA, as in USP34-silenced cells this was 
enhanced. It was also observed in cytoplasmic fractions and in whole cell lysates that IκBα 
resynthesis after degradation was attenuated and delayed in USP34-silenced cells. 

This led us to test if the same events are observed upon stimulation by TNFα and 
genotoxic stress induction (additional NF-κB-activating signals converging with the TCR-
originating one, at the TAB:TAK/IKK level). Luciferase assay again showed a two-fold 
increase in NF-κB activity in USP34-silenced cells upon treatment. TNFα-stimulated cell 
lysates were also subjected to IB. The same attenuated and delayed IκBα resynthesis pattern 
was observed in USP34-KD cells. Since the effect on IκBα resynthesis and NF-κB activity is 
shared in these pathways, we directly assessed IKK activity (the first common step of these 
pathways) by verifying IKKα/β phosphorylation status, as this reflects its activity. This was 
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unaffected in non-targeting compared to USP34-targeting siRNA transfected cells after 
PMA/ionomycin and TNFα stimulation, if not attenuated in the case of PMA/ionomycin 
treatment, possibly due to a negative feedback loop resulting from NF-κB overactivation. 

Overall, the strictly cytoplasmic and large USP34 protein was shown to negatively regulate 
specifically NF-κB signaling, in response to TCR and other stimuli, by acting downstream of 
IKK, stabilising resynthesised IκBα and suppressing overt NF-κΒ (p65) DNA affinity. 
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Unpublished data 

 
 
 

 
 

Phosphorylation and degradation of IκBα in USP34-silenced Jurkat cells upon TNFα 

stimulation. 

Jurkat cells were transfected with non-targeting (n.t.) and USP34-targeting siRNA sequences 

and were then stimulated with 10 ng/ml TNFα for the time shown. Cell extracts were 

prepared and analysed by immunoblot as indicated. Molecular weight figures on the right. 
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Article: The Endoplasmic Reticulum Acts as a Platform for Ubiquitylated 
Components of Nuclear Factor κB Signaling 

 

Distinct adaptor molecules, following similar activation principles, need to oligomerise to 
form high-order complexes and undergo ubiquitinylation in order to propagate signaling in 
response to various NF-κB-activating stimuli. Such proteins are RIP1, TRAF2, BCL10, RIP2, 
IRAK1 in TNFR-, CD40-, TCR-, NOD2-, TLR4-originating pathways respectively. We use 
the term NUTs (NF-κB Ubiquitinylated Transmitters) to describe these key adaptors. It has 
been shown that some signalosomes tend to crystallise on organelles’ surface. By performing 
differential centrifugations of mechanically lysed cells in isotonic buffer, we isolated heavy 
membrane (HM) fractions in an effort to isolate those signalosomes in order to study their 
structure, composition and formation mechanisms and potentially identify new molecules 
implicated in NF-κB pathways. 

TNFα-stimulated ΗΕK293T (kidney) cells, CD40L-stimulated BL41 (B lymphocytes), and 
PMA/ionomycin-stimulated Jurkat E6.1 (T lymphocytes) were submitted to subcellular 
fractionation and IB analysis. Ubiquitinylated NUTs were only after stimulation detected in 
the HM fraction but not in the cytosolic one. Disruption of CBM complex assembly (by 
CARMA1 or MALT1 KD) prevented poly-ubiquitinylation of BCL10, whereas downstream 
interventions (NEMO-silencing) did not alter ubiquitinylation profile. Overexpression of 
ubiquitinylation-prone, wild type BCL10, led to enrichment of the HM fraction with the 
ubiquitinylated form, whereas when ubiquitinylation-resistant, lysine-mutated BCL10 was 
used, this event was prevented. This suggests that NUTs ubiquitinylation is a pre-requisite for 
their HM accumulation. Similar results were obtained in MDP-treated (muramyl dipeptide, a 
bacterial wall peptidoglycan), Poly(I:C)-treated (Polyinosinic-polycytidylic acid, a synthetic 
double strand RNA analog), and LPS-treated HEK293T cells, where RIP2, RIP1, IRAK1 
ubiquitinylated species respectively (through NLR, TLR3 and TLR4 signaling) were detected 
in HM fraction. 

Further analysis was needed to identify the organelles recruiting NUTs, as HM fractions 
contain several membrane compartments. Additional centrifugation and gradient density 
centrifugation steps led to stepwise exclusion of plasma membrane contamination, lysosome 
and mitochondria, with the help of organelle specific protein-markers, suggesting that 
inducible NUT accumulation takes place in the ER. Trypsin treatment of HM fraction 
eliminated this phenomenon as shown by IB, indicating NUT accumulation in the cytosolic 
side of the ER. 

In order to verify the presence of the molecular information necessary for signal 
propagation, a cell-free experimental system was used. In an ATP-supplemented in vitro 
reaction, IκBα phosphorylation induction (thus IKK activation) in cytosolic fractions from 
unstimulated cells was assessed in the presence of HM fractions from HEK293T, BL41 and 
Jurkat cells stimulated with TNFα, CD40L and anti-CD3/anti-CD28 respectively. Activated 
HM fractions were able to induce IκBα phosphorylation of non-activated cytosolic fractions 
in a dose-dependent manner. This effect was lost in trypsin-treated HM fractions. 
Experiments with ER-enriched fractions from activated cells confirmed the ER implication in 
signal transmission process. 

Further research led to the identification of the transmembrane, ER-residing protein 
Metadherin (MTDH), through an IP experiment of BCL10 and RIP1 in stimulated Jurkat and 
HEK293T cell lysates followed by mass spectrometry proteomic analysis. As shown by IF 
experiments, MTDH is located in the ER and its localisation is not affected by TNFα or 
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PMA/ionomycin stimulation. Co-IP experiments of RIP1 and BCL10, together with TRAF2 
confirmed modest but reproducible MTDH interaction with these proteins, in a signal 
inducible manner. The reverse IP, that of MTDH, confirmed interaction with ubiquitinylated 
species of RIP1 in response to TNFα stimulation in HeLa cells. MTDH was also shown to 
preferentially bind synthetic K63-linked polyubiquitin chains in vitro to K48-linked ones. The 
domain mediating these interactions lies in the region between the 200th and the 300th aa. So 
ubiquitinylated NUTs can be sensed and recruited by MTDH at the level of ER in response to 
cytokine stimulation and TCR engagement, possibly via K63-type of ubiquitin chains. 

The implication of MTDH in NF-κB activity was then tested by RNA interference 
experiments. MTDH-silenced, TNFα-stimulated HEK293T cells were used for NF-κB 
luciferase assay. Diminished NF-κB activity was observed, compared to cells transfected with 
non-silencing siRNA. This was confirmed by the reduced amounts of IL-8 secretion, as 
detected by ELISA. The significance of these findings lie in the fact that MTDH KD causes a 
decrease of NF-κB activity, similar to that of KD of essential molecules of the pathway like 
RIP1 and TRAF2. Nuclear translocation of the RELA subunit is impaired and IκBα 
phosphorylation and degradation is attenuated whereas MAPK/ERK pathway is unaffected. 
The same holds true for HeLa cells stably expressing shRNA against a non-coding region of 
MTDH mRNA, stimulated with TNFα. This defect was partly restored by introducing a 
construct coding for MTDH in these cells. In BL41 cells stimulated with CD40L the effect of 
MTDH KD on NF-κB activity was the same. IB analysis has shown that JNK pathway was 
also impaired whereas non-canonical NF-κB pathway events, like p100 to p52 processing or 
degradation of TRAF2 and TRAF6, were not affected. 

The effect of MTDH-silencing was the same even in Jurkat cells in response to 
PMA/ionomycin stimulation. Phosphorylated Tyrosine pattern, a marker of TCR proximal 
signaling upon engagement, and calcium flux were not altered in the absence of MTDH 
meaning that early events and later signal divergence are not affected. These results were also 
acquired in primary T lymphocytes where less proliferation and reduced activation marker 
CD25 expression was observed in response to TCR stimulation. Further experiments testing 
the effect of MTDH KD in intitial experiments (stimulation with MDP, Poly(I:C), LPS, Sentai 
virus) has again confirmed and fortified  the hypothesis of a rather broad effect of MTDH on 
signal transduction and upregulation of NF-κB activity. 

ER morphology and function was not altered in the absence of MTDH and NF-κB 
activating ER-stress sensors KD did not have any impact on NF-κB activation, revealing that 
no general defects of the ER occur in the absence of MTDH. By revisiting the cell-free 
system, it was shown that HM fraction from activated MTDH-silenced cells was not able 
anymore to drive IκBα phosphorylation in cytoplasmic fraction from unstimulated cells. 
Accumulation of NUTs ubiquitinylated species on the HM fraction was also disrupted even if 
their ability to undergo ubiquitinylation was not affected. 

Overall, it becomes clear that the MTDH-dependent ER participation is necessary for 
assembly of ubiquitinylated adaptors, the NUTs, in order to propagate signaling of a broad 
range of NF-κB activators. 
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A. USP34 
Many parameters remain ill defined and several questions unanswered regarding USP34. 

Its rather unusual way of action regulating IκBα stability and NF-κB nuclear activity from the 
cytoplasm remain intriguing. 

 

A.1. USP34 is a highly conserved protein involved in NF-κB signaling 

Ubiquitin-specific protease 34 or ubiquitin carboxy-terminal hydrolase 34 or KIAA0729 or 
KIAA0570 are the various names given to USP34, an impressively large protein encoded by 
the genetic locus 2p15 of 283260 base pair long. This gene product pre-mRNA undergoes 
splicing of 65 exons to form the mature mRNA molecule of 11326 bp (NM_014709.3). The 
coding region consists of 10640 bp, which is translated to a protein (NP_055524.3) of 3546 
amino acids (i.e. 404 kDa). The only characterised domain of USP34 so far is the UCH 
(Ubiquitin carboxy-terminal hydrolase, aa 1891-2236) catalytic segment, which belongs to the 
cysteine peptidase family C19. It is classified as a USP deubiquitinylase according to the 
structure of this domain. USP34 is the largest between the other USPs and all 
deubiquitinylating enzymes in general. Human USP34 is 99,8% identical to chimpanzee 
Usp34 (JAA43377.1) and 96,5% identical to mouse Usp34 (NP_001177330.2), as obtained 
by pairwise multiple sequence alignment of the protein sequences using protein BLAST 
algorithm with the default parameters. The catalytic domain of human USP34 (346aa) is 
100% identical (!) to fragment of the in silico translated CG5794-RF transcript of the Usp34 
gene in Drosophila, as revealed by pairwise alignment performed as above. These facts reveal 
high conservation of USP34 among species, suggesting an important role. 

 
Figure 28: USP34 genetic locus on human chromosome 2 (top) and on mouse chromosome 11 (bottom). Neighbouring 
genes like XPO1 and REL are also depicted (National Center for Biotechnology Information - www.ncbi.nlm.nih.gov/gene 
and Mouse Genome Informatics - www.informatics.jax.org). 
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So far only a few papers exist describing USP34 and its roles. It was discovered and 
characterised as a deubiquitinylating enzyme in 2003, together with 21 novel USP enzymes, 
by screening the human genome databases with the BLAST algorithm looking for DNA 
sequences encoding novel putative USPs, similar to previously described family members. 
USP34 expression was tested in brain where USP34 transcripts could be amplified by RT-
PCR. Enzymatic activity was assayed after cloning and expression of catalytic domain or full-
length proteins to verify which of them were functional. USP34 catalytic domain did 
demonstrate enzymatic activity (Figure 29) [205]. 

 
Figure 29: Enzymatic analysis of the identified 
human USPs. For each experiment, XL1-Blue cells 
expressing a GST-USP fusion protein and Ub-M-β-
gal were lysed and subjected to immunoblotting 
with an antib-gal antibody. The arrows indicate non-
processed recombinant Ub-M-β-gal (a), USP-
processed recombinant β-gal (b), and endogenous β-

gal (c). The result of each experiment is indicated below the corresponding lane. (+), active; (-), inactive. [205] 

Since, USP34 has been reported to interact with the protein AXIN1 by a study aiming to 
the identification of novel components of AXIN1 and AXIN2 complexes by mass 
spectrometry analysis (AXIN destabilises β-catenin when in the cytoplasm and promotes 
DNA-binding when in the nucleus). This group proposed that USP34 silencing enhances 
AXIN1 degradation and β-catenin-mediated transcription [206]. It has also been proposed that 
USP34 undergoes phosphorylation in an irradiation-inducible and ATM/ATR-dependent 
manner, functioning as a potential G1 checkpoint regulator [207]. Another group has also 
reported USP34 implication in regulation of TGFβ/BMP signaling by controlling R-Smad 
protein levels through ubiquitinylation [208]. 

Our results now demonstrate that USP34 also exerts a negative role in NF-κB activation, 
as witnessed by increased binding to DNA, gene reporter activity, NF-κB target genes mRNA 
and cytokines secretion when USP34 is silenced and cells are TCR-stimulated [209]. Cloning 
and further overexpression of full-length USP34 protein was not attempted given its size. To 
circumvent this issue, we subcloned the catalytic domain into a eukaryote expression vector. 
The main goal was to test if USP34 overexpression would have the opposite effect (i.e. 
diminished NF-κB activity upon stimulation) and if the catalytic domain alone would be 
sufficient. High expression of USP34 catalytic domain (CD) in cells is indeed sufficient to 
attenuate TCR-induced NF-κB signaling. Apparently the 346aa long CD (which is quite long 
for a single motif region) not only is it functional but it is also able to interact with its cognate 
substrate, modifying finally NF-κB signaling. Whether signal attenuation is due to an 
excessive amount of the CD or to the absence of an activity-modulating domain (via a PTM 
or interaction with an additional regulatory molecule) is unclear and needs further 
investigation. 

 
A.2. USP34 selectively governs NF-κB activation 

As mentioned earlier, CYLD impacts proximal phosphorylation events in T lymphocytes, 
by interacting with Lck, deubiquitinylating it and promoting interaction with its downstream 
substrate ZAP70 [190]. By contrast, no overt changes in phospho-tyrosine profiles were 
observed in USP34-silenced Jurkats, in response to TCR stimulation, as shown in Figure 30. 
Hence, Tyrosine phosphorylation pattern is not affected by USP34. 
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Figure 30: P-Tyr pattern in CYLD-/- 
thymocytes upon stimulation with anti-
CD3/anti-CD28. Arrows indicate reduced 
phosphorylation. [190] 

 

 

Figure 31: Example of NFAT/NF-κB binding sites. The core of the 
NFAT binding site is shown in bold. [41] 

In addition to NF-κB, TCR signaling also diverges toward MAPK (mitogen activated 
protein kinase) pathways involving p38, JNK, Fos, ERK, in order to adjust and regulate the 
activity of AP-1 or other transcription factors [123]. CYLD also impacts activation of those 
pathways, modifying activity of JNK and ERK [190, 210]. Again, this is not the case in 
USP34-KD cells, as this does not affect ERK phosphorylation pattern upon stimulation and it 
only slightly increases NFAT activity, as detected by luciferase assay. This contrasted with T 
cells from CYLD-deficient mice, which exhibit hyperactive NFAT responses [211]. As for 
the slight increase after USP34 KD, NFAT contains a DNA binding domain with strong 
structural similarity to the DNA binding domain of NF-κB, i.e. RHD, so we can imagine that 
when the latter is overactivated, it may also interact with the NFAT-specific promoters, 
technically leading to enhanced luminescence emission. A typical example of dual 
recognition by the two families of transcription factors is the κ3 element of the TNFα 
promoter, which binds NFAT dimers as well as certain REL-containing ones in vitro. The 
same holds true for the p50/RELA-specific promoter of the HIV-1 (human immunodeficiency 
virus) long terminal repeat that also supports weak NFAT binding (figure 31) [41]. In 
conclusion, we show that USP34 has a NF-κB-specific effect upon TCR stimulation. 

 
A.3. USP34 functions downstream or in parallel of the CBM-IKK nexus 
As extensively discussed in the introduction part, assembly of the CBM  

(CARMA1:BCL10:MALT1) complex is a key element for propagation of the signal towards 
the IKK complex. Cooperation-communication between the two signalosomes is mediated by 
oligomerisation and poly-ubiquitinylation of several adaptor molecules and their further 
identification by the various UBDs [212]. As mentioned before, DUBs like A20 and CYLD 
do intervene and do mediate regulation of these steps. As USP34 is another DUB, we tested 
whether these events are affected. CBM assembly, as shown by CK1α and BCL10 co-IP 
experiments, occurs normally upon stimulation, regardless of USP34 presence. 
Ubiquitinylation pattern of MALT1, as assessed by MALT1 IP, immunoblotted with anti-
Ubiquitin, is also unaffected during stimulation, passing from a non-ubiquitinylated form into 
an ubiquitinylated one, with the same intensity. Non-degradative ubiquitinylation and 
deubiquitinylation of BCL10 upon TCR stimulation occurs normally [144], with or without 
USP34, as detected in heavy membrane cell fractions enriched with the ubiquitinylated form 
of BCL10. Co-IP experiments (data not shown) did not reveal any interaction of USP34 
neither constitutive nor inducible with key elements of the pathway like CARMA1, MALT1, 
BCL10, TAK1, IKKβ, RELA, IκBα, newly characterised LUBAC (RNF31, Sharpin, 
RBCK1), TRAF2, TRAF6, GSK3β (common kinase with the Wnt–β-catenin pathway). It is 
clear though that formation of transient structures cannot be easily detected by co-IP. Only 
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CK1α was found to constitutively and strongly interact with USP34. However, since CBM 
assembles normally in the absence of USP34, we infer that USP34 binds a different pool of 
CK1α, which is not regulating CBM [139]. Overall we have shown that USP34 acts 
downstream of the CBM complex level and does not interact with core components of 
the pathway. 

Although suprising at first glance, no difference in the translocation rates of the RELA NF-
κB subunit was detected in terms of time and quantity during stimulation. That is how we 
inferred that the “quality” of NF-κB is altered in the absence of USP34. This was indeed the 
case as resulted by non-radioactive EMSA analysis of the nuclear extracts. Stimulation of 
USP34-silenced cells leads to enhanced affinity of NF-κB to DNA, and specifically that of the 
RELA subunit. Another observation made was the retarded and less intense reappearance of 
IκBα in cytosolic fractions after stimulation, also obvious in whole cell lysates. About 30 
minutes after stimulation of Jurkat, we get maximum elimination of IκBα (due to 
phosphorylation, K48-polyubiquitinylation and proteasomal degradation) and later an 
increase of protein levels under normal conditions. NFKBIA is a target gene of NF-κB so 
transcriptional activation of this gene rapidly increases its mRNA levels, as part of a negative 
feedback loop (mentioned earlier). As shown in paper figure 1F, mRNA levels indeed 
increase after PMA/ionomycin stimulation and further increase in cells lacking USP34. So the 
fact that NFKBIA mRNA levels are extensively present in these cells is not compatible with 
delayed and low neo-synthesised IκBα protein levels. Somehow USP34 alters NF-κB DNA 
binding activity and modulates newly synthesised IκBα stability upon TCR stimulation. 

 
A.4. USP34 ensures NF-κB fine-tuning downstream of various immunoreceptors 

Figure 32: Signal convergence at the TAK1-IKK level 
[116] 

One important question was “is this effect 
restricted to TCR-dependent NF-κB 
activation, or does it occur in other activating 
pathways”. The fact that AgR-specific CBM 
complex was not affected made this idea look 
very attractive. NF-κB activity was measured 
by luciferase assay in response to different 
factors like TNFα stimulation or induction of 
genotoxic stress with the topo-isomerase 
inhibitor agent etoposide (VP16). Enhanced 
NF-κB activity was again observed in 
USP34-KD cells compared to non-targeting 
siRNA transfected ones. The same effect on 
neo-synthesised IκBα was observed in lysates 

of TNFα-stimulated cells. All these pathways converge in the regulation of the IKK activity 
(Figure 32) that phosphorylates IκBα, the onset event leading to its proteasomal elimination. 
As mentioned earlier IKK activity can be regulated by its phosphorylation status either due to 
auto- or TAK1-dependent phosphorylation. Thus phosphorylated form of the IKKs would 
reflect catalytic activity. As TAB:TAK1 and IKK complexes are the first molecules shared in 
these pathways, we verified the IKK phosphorylation status by IB in cells stimulated with 
PMA/ionomycin and TNFα, in the presence or absence of USP34. Clearly the hypothesis of 
enhanced-prolonged IκBα degradation due to overactivated IKK collapsed, as IKK phospho-
status was the same with or without USP34. In fact, upon PMA/ionomycin stimulation, IKK 
phosphorylation was attenuated in the absence of USP34, probably as a secondary effect of 
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NF-κB overactivation, as part of an auto-inhibitory mechanism to fine-tune signal intensity. 
Thus we consider that USP34 acts downstream of the IKK level to regulate NF-κB activity, 
a mechanism shared by TCR-, TNFR- and DNA damage-induced signaling. 

Keeping in mind that USP34 is strictly cytoplasmic it seems that whatever the implication 
in regulation of the pathway, it must take place before translocation of NF-κB into the 
nucleus. After the IKK complexes and before nuclear translocation of NF-κB, the only well-
characterised complexes so far are those of the NF-κB dimers with the various IκBs. Thus, it 
is highly possible that USP34 primarily regulates cytoplasmic NF-κB conformation and 
secondarily IκBα stability, directly or most probably indirectly, through a third intermediate 
molecule. There are several parameters that could modulate transcription factor activity, 
analysis of which will follow. 

 
A.5. A working Model for USP34 in the regulation of NF-κB 
Transcription is a fundamental biologic process that is finely regulated. Several classes of 

molecules are needed for successful transcription initiation including (1) transcription factors 
that are able to bind on DNA sequences of gene promoters and enhancers, (2) proteins that 
associate with and regulate transcription factor activity called coactivators or corepressors, (3) 
proteins that architecturally support and facilitate recruitment of these proteins on DNA 
molecules, and (4) basal transcription apparatus constituted by RNA polymerase II and 
general transcription factors that recognise general patterns that are common in all promoter 
sequences (e.g. TATA-box). Supramolecular complexes constituted of these components that 
can function and initiate transcription are called enhanceosomes (see example in next figure) 
[213, 214]. 

Figure 33: Model of the TNFα-induced E-selectin enhancer. 
After induction by cytokine, heterodimers of NF-κB bind to the 
promoter, which is constitutively occupied by an ATF-2/c-Jun 
heterodimer. In parallel with nuclear accumulation of NF-κB, 
ATF-2 and c-Jun are phosphorylated by p38 kinase and c-Jun N-
terminal kinase, respectively. The binding of HMG I(Y) at 
multiple sites increases the binding of NF-κB and bends DNA in a 
way that facilitates the formation of a higher-order complex. The 
transcriptional activators make extensive protein–protein contacts 
with the coactivator and the basal complex. Indicated are 
interactions between the transactivation region of p65 and the N- 
and C-terminal regions of CBP, an association between c-Jun and 
the coactivator, and interactions between TFIIB and CBP. 
Collectively, these events place multiple transcriptional activators 
in a favorable architecture to complete for the coactivator that is 

present in limiting amounts. Because RNA polymerase II is constitutively associated with CBP/p300, binding of the 
coactivator to the E-selectin enhancer may also efficiently recruit the polymerase. [213] 

Enhanceosome constitution depends on many parameters, like DNA sequence and its 
methylation-acetylation status, combination of diverse transcription factors and their PTMs, 
coactivators and correpressors association and their PTMs respectively are only a few (!) 
examples. So what would happen to this sensitive-equilibrium complex if one of these 
parameters changed? That is where our model of USP34 regulation is based. Several PTMs 
and association of various partners have been reported for the NF-κB transcription factors, 
thus altering its activity by different ways. A PTM of NF-κB might directly alter DNA 
affinity or indirectly partner recruitment, leading to different transcriptional potential. 
Reversly, a PTM of partners might directly affect association with the transcription factor and 
indirectly NF-κB transcriptional capacity (Table 13). Only for the RELA subunit the PTMs 
reported so far include phosphorylation on at least 8 residues (T254, S276, S311, T435, S468, 
T505, S529, S536), acetylation on at least 5 residues (K122, K123, K218, K221, K310), 
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methylation on at least 3 residues (K37, K218, K221), ubiquitinylation, SUMOylation, 
poly(ADP-ribo)sylation (PARsylation), S-Nitrosylation etc [16, 27, 29, 48, 83, 214-216]. 

 
Table 13: PTMs of the NF-κB family members that regulate binding activity. [215] 

A PTM on a NF-κB subunit can cause a conformational change that directly favours or 
blocks κB DNA binding. Instead or additionally this conformational change may indirectly 
alter interactions with other molecules necessary for NF-κB activity. Those molecules could 
either be their well-known partners, IκBs, or any other interacting protein like coactivators 
and corepressors or heterologous trancription factors (Figure 34). Serine 536 phosphorylation 
of RELA, for example, catalysed by various kinases, weakens the interaction with newly 
synthesised IκBα, leading to a dramatic increase of RELA nuclear export further prolongating 
κB DNA access. The same event takes place upon inducible acetylation of RELA on lysines 
218 and 221. By having this in mind, together with the fact that free IκBα is very unstable 
with a half-life of less than 10 minutes in contrast with its great stability when complexed 
with NF-κB, we can hypothesise that a USP34-dictated PTM on NF-κB can regulate IκB 
binding ability, and subsequently transcription duration and intensity. Alternatively and/or 
additionally, a PTM can alter the recruitment capacity of associating factors (e.g. coactivators 
like CBP or other transcription factors like c-Jun) necessary for enhanseosome formation and 
transcription initiation (Table 14). Additional experiments will be needed to identify USP34’s 
partners and targets and mouse models will reveal an in vivo effect in mammals. A screening 
for mutations on cancer patients might even reveal an unexpected correlation with the disease. 

USP34 KD effect Active Passive 

NF-κB-direct Increase DNA binding affinity Prevent IκB/corepressor recruitment or 
enhanceosome stabilisation 

NF-κB-indirect Increase coactivator-mediated DNA 
binding (e.g. RPS3) 

Prevent IκB/corepressor recruitment or 
enhanceosome stabilisation 

Table 14: Effect of USP34 silencing and their potential cause 
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An interesting point is that native NF-κB of nuclear extracts (>200 kDa) has more than a 
hundred times higher DNA affinity compared to p65:p50 reconstituted heterodimers from 
purified monomers (115 kDa). This means that there are additional factors attached to NF-κB, 
critically contributing to transcriptional activity. The NF-κB complex consists of REL and 
synergistically interacting non-REL subunits (Table 15). This is the case of RPS3. Despite 
nuclear localisation of p65, RPS3 silencing in cells results in failed recruitment on gene 
regulatory sites and transcription induction [217]. In contrast with CBP, which is not 
incorporated into the DNA binding complex, RPS3 physically associates with p65, p50, and 
IκBα in resting cells and specifically translocates into the nucleus in response to TCR and 
TNF stimulation [215].  

 
Table 15: NF-κB-associating proteins that regulate DNA binding activity. [215] 

 
Figure 34: Crosstalk mechanisms involving NF-κB subunits. The transcriptional activity of NF-κB subunits is subject to 
regulation via a variety of PTMs, including phosphorylation, acetylation and methylation. As PTMs have the potential to 
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modulate the interaction of NF-κB with coactivators, corepressors and IκB proteins, as well as the binding of NF-κB to 
cooperatively functioning, heterologous transcription factors, they represent a major determinant of selectivity in the induced 
gene expression signature and are thought to be critical for integration of non-NF-κB pathways and contextual tailoring of the 
transcriptional response. The formation of NF-κB-containing enhanceosomes at the promoters of target genes requires 
cooperative action between transcription factors, which facilitates both the integration and regulation of non-NF-κB 
pathways. NF-κB activity also affects heterologous pathways, such as the Jnk and p53 pathways, through transcriptional 
regulation of signaling pathway components. Gadd45β, growth-arrest and DNA damage–inducible protein; MnSod, 
manganese superoxide dismutase; Fhc, ferritin heavy chain; XIAP, X-linked inhibitor of apoptosis protein. [214] 

 
A.6. A role for USP34 in Drosophila? 

 
Remarkably, basic innate immunity signaling pathways are conserved among species in 

terms of structure and function. Signal transduction initiating from TLRs, NLRs, IL-1R as 
pathogen sensors together with signal transducers and amplifiers such as IRAK, MYD88, 
TRAF, IKK and REL transcriptional regulators are even present in early metazoans, sponges, 
sea anemones and jelly fish. Of note, RLR family originated much later and probably exists 
only in vertebrates [1]. Two well-characterised NF-κB-like signaling pathways in Drosophila 
show great similarities in terms of organisation with mammalian pathways and are necessary 
for immune responses against pathogens by promoting production of humoral antimicrobial 
peptides. 

IMD (immune deficiency) pathway mainly functions in immune defenses maintaining 
Drosophila homeostasis against Gram-negative bacterial infection. Bacterial peptidoglycans 
bind on the appropriate receptors and scaffold protein IMD is recruited. IMD is a death 
domain (DD)-containing protein (homologous to mammalian RIP1), which mediates 
recruitment of other DD-containing proteins. Two complexes can be formed, one recruiting 
Dredd (Caspase-8 homolog) and another one recruiting the E3 ligase Iap2 (like TNFR 
complexes I and II). IMD:Iap2 complex induces Drosophila TAB2:TAK1 (dTAB2:dTAK1) 
activation that further activates Drosophila IKK complex consisting of Ird5 (immune 
response deficient 5) and Kenny or Key, IKKβ and NEMO homologs respectively. 
Subsequently Dredd and Key phosphorylate the NF-κB-like factor Relish that undergoes 
ubiquitinylation and proteasomal processing, similar to its mammalian homologs p105 and 
p100. Truncated-activated Relish (Rel-68) translocates into the nucleus promoting production 
of several antimicrobial peptides (Figure 35). IMD pathway also bifurcates to the Drosophila 
JNK pathway [218-220]. 

Toll pathway (homolog of human Toll-like receptors TLR) on the other hand responds to 
Gram-positive bacteria or fungi and it is involved in innate immunity and developmental 
processes. In the presence of these pathogens, ligand of Toll receptor is produced rapidly 
leading to its activation. dMYD88 adaptor is recruited via TIR (TLR/IL-1R) domains. As a 
result, dMYD88-Tube-Pelle heterotrimeric complex is formed through DD-mediated 
interactions. Assembly of this complex is necessary for phosphorylation (possibly by Pelle) of 
the IκB-like protein Cactus and its subsequent proteasomal degradation. This last event is the 
onset for release of the NF-κB-like transcription factors Dorsal and/or Dif (Dorsal-related 
immunity factor) and their translocation into the nucleus to initiate transcription of genes 
rendering antimicrobial protection (Figure 35) [218-220]. 

As in humans, ubiquitin-related factors are important for negative regulation of IMD 
signaling including dCYLD, dUSP36, dSCF E3 ligase complex etc. Drosophila CYLD 
specifically binds Key and is able to down-regulate antimicrobial peptides gene expression. 
dUSP36 prevents constitutive IMD-dependent signal activation through its catalytic activity, 
acting upstream or at the level of IMD. In a PhD study focusing on identification of additional 
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Drosophila DUBs implicated in NF-κB regulation, a dsRNA library was created targeting 23 
DUBs in Drosophila genome that possess a close human homolog. Immune competent S2 
cells were transfected with the respective sequences and NF-κB activity was measured in the 
presence or absence of immune challenge. Out of this screening, Drosophila USP34 
(Dmel/CG5794) was found to negatively regulate IMD and Toll pathways, as dUsp34 
silencing led to overactive NF-κB either with or without stimulation. dUSP34 was proposed 
to act downstream of IMD. Inducible KD was performed in adult flies in order to study the 
effect in vivo. IMD pathway activation was observed in the absence of immune challenge, 
showing that dUSP34 is necessary in order to prevent its constitutive activation, whereas Toll 
pathway was unaffected under the same conditions. Reversly, overexpression of the gene in 
vivo led to increased fly sensitivity to both Gram-negative and Gram-positive bacterial 
infection. Subcloning of catalytic domain and ectopic expression in bacteria failed as no 
catalytic activity was observed. Local gene inactivation was also performed so as to study the 
effect of dUsp34-silencing in wing development, where slight malformations were observed 
[218]. Although Drosophila NF-κΒ pathways are not as well characterised as the human 
pathways, it is highly possible that USP34 acts in diverse NF-κB pathways in an 
evolutionarily conserved manner, targeting common downstream molecules. 

 
Figure 35: 
Parallelisation of 
NF-κB pathways in 
mammals and 
Drosophila. Genes 
encoding additional 
homologs of 
components of the 
mammalian TLR/IL-
1R (Toll) and TNFR 

(PGRP-LC) 
pathways exist in 
flies: these include 
homologs of RIP1 
(IMD), MYD88 
(dMYD88), FADD 
(dFADD), TRAF2 
and TRAF6, which 
are components of 

receptor-associated 
complexes in 
mammals, homologs 
of TAB2 and TAK1 
(dTAB2 and 

dTAK1), which regulates IKKβ and NEMO homologs (Ird5 and Key respectively). Some of these putative Drosophila genes 
function in the Toll and IMD pathways. Abbreviations: ANK, ankyrin domain; DD, death domain; DED, death effector 
domain; FADD, Fas-associated death-domain-containing protein; PGRP-LC, Peptidoglycan recognition proteins; IRAK, IL-
1R-associated kinase; Rel, REL homology domain; RIP, receptor-interacting protein; TIR, Toll/IL-1R domain; TRADD, 
TNFR-associated death-domain-containing protein; TRAF, TNFR-associated factor. (adapted from [219] with [220]) 

 

B. MTDH 
 

Signalosome formation upon stimulation occurs through several steps that culminate in 
NF-κB activation. Adaptor proteins containing certain protein-protein interacting domains are 
oligomerised and recruited close to the ignition site to further organise in high-order 
complexes able of propagating signaling and activate IKK and downstream components 
(Figure 18). Ubiquitinylation is of major importance as analysed above. How apical 
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signalosomes finally achieve cytoplasmic NF-κB activation remains poorly understood. A 
two-step model has been proposed, in which signalosomes undergo maturation after their 
formation and are subsequently released in the cytosol to transfer and transmit signals (Figure 
36) [153]. Our work suggests that signaling hubs released from their immunoreceptors 
crystallise at the surface of the ER, and that this organelle functions as a gateway to ensure 
NF-κB fine-tuning. Upon TNFα, CD40 and TCR stimulation (the latter being the part where I 
contributed in this work), ubiquitinylated RIP1, TRAF2 and BCL10 respectively were 
recruited on heavy membranes, free from other signalosome components such as TRADD and 
cIAP1 in the case of TNFR or cIAP1 in the case of CD40, which strictly remain in the 
cytosolic fractions. The same holds true for RIP2, as immature signalosome components stay 
in the cytosolic fraction (i.e. NOD2). This, along with previous observations, suggests that 
signalosomes mature, are liberated from the membranes, and only certain information-
containing/information-transmitting molecules (i.e. NUTs) are recruited on organelles. 
However, the notable absence of IKK or NF-κB in ER fractions suggests that these 
complexes likely further evolve to propagate signalling. Our work therefore urges us to 
reevaluate the initial two-steps model and unveils the spatio-temporal plasticity of NF-κB 
signalosomes. 

What drives the dissociation of these complexes from their initial receptor remains elusive. 
The release of the IKK-MEKK1-activating complex from CD40 relies on TRAF3 
proteasomal degradation [153]. However, we found that pre-treatment with the proteasome 
inhibitor MG132 does not preclude BCL10 ubiquitinylation at the ER, suggesting that 
alternative mechanisms exist. In that view, IKKβ was shown to phosphorylate BCL10 within 
the CBM, causing destabilisation of the complex [221]. Hence, future works will be aimed to 
define how apical complexes are released from their receptors. 

 

Figure 36: A two-stage signaling 
mechanism. (a) In nonstimulated B 
cells, only CD40 is membrane-
associated. (b) Receptor engagement 
induces trimerization and recruitment of 
TRAF2, TRAF3, c-IAP1/2, and Ubc13. 
(c) Next to be recruited into this complex 
are IKKγ and MEKK1. Interactions 
between IKKγ and MEKK1 and K63-
linked polyubiquitin chains catalyzed by 
TRAF2 and Ubc13 stabilize the 
complex. (d) c-IAP1/2 catalyze K48-
linked polyubiquitination of TRAF3 
whose proteasomal (26S) degradation 
results in translocation of the receptor-
assembled signaling complex into the 
cytosol where MEKK1 is activated and 
in turn activates downstream 
components of its signaling module. 
[153] 

 

Mass spectrometry identified MTDH as an ER component involved in recruiting the 
ubiquitinylated NUTs. MTDH possesses one transmembrane span at the amino-terminal side 
and most of the protein is oriented towards the cytosol [222]. Although initially characterized 
as an ER resident, MTDH was later found on cell surface, or moving from the ER to the 
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nucleus in response to TNFα stimulation. In our hands, MTDH is constantly located at the 
ER. Discrepancies can be explained by the fact that previous studies have mostly used 
overexpression approaches, possibly forcing the protein to localise elsewhere from its native 
environment. MTDH overexpression has been reported in various cancers and despite 
promoting metastasis and rendering resistance to chemotherapy, it has never attracted 
attention as a treatment target. Ectopic MTDH has been linked to aberrant activation of NF-
κB, ERK, p38, PI3K/Akt and autophagy. We now report that endogenous MTDH participates 
in innate and adaptive NF-κB signalling. Interaction experiments together with the KD 
experiments showed that it is part of the signal transduction mechanism through 
recognition of K63-ubiquitinylated substrates. In vivo models will reveal whether 
compensatory mechanisms exist and if MTDH-targeting therapy could be applied in cancer 
patients to dampen NF-κB. 

We found no overt impact of MTDH knockdown on some unrelated ER functions, 
suggesting that MTDH does not participate to the ER homeostasis. In that view, growing 
evidences show that the ER beds various other biological processes, as speculated by the 
presence of proteins with ER-unrelated functions. This is for example the case for the ER 
multi-pass protein STING, which governs type I IFN production in reponse to pathogen-
derived cytoplasmic DNA.  Hence, MTDH and STING can be considered as a new class of 
ER proteins, not involved in ER-related functions, but rather in collecting and converting 
apical signals into biological responses. 

The exact mode of function of MTDH remains unclear. It is believed that signals from the 
plasma membrane towards intracellular components, organellar or cytoplasmic, are 
transmitted in a contact-dependent manner. ER is a dynamic structure and, as is the case of T 
lymphocytes, it is able to get close to the plasma membrane to regulate the Ca2+ flux, 
mediated by contact of the ER protein STIM1 and the plasma membrane, channel protein 
Orai1. Since the ER is found in extreme proximity to other cell compartments (only 10-25 nm 
away from the plasma membrane for example), we favor a model in which MTDH collects 
ubiquitinylated NUTs to increase their local concentration and authorize NF-κB activation. 
ER can be the bridge that permits contact between the various plasma membrane receptors 
and MTDH. MTDH can bind ubiquitin chains, despite the absence of a typical UBD. Motifs 
able to interact with ubiquitin and ubiquitinylated substrates are still to be discovered [223]. 

What could be the benefit of signal integration at intermediate sites (ER in specific) during 
the cascade of reactions through additional energy- and time-consuming steps and not 
promote direct activation of downstream pathway components? This may offer an additional 
checkpoint in signal transduction regulation. It can smoothen spontaneous activation of the 
receptors preventing erroneous NF-κB signaling, which can be dangerous for cells and 
tissues. Similar to the need of costimulatory molecules (e.g. CD28 costimulation additionally 
to TCR), a need to accumulate and centralise activated molecules can guarantee reponse 
induction only if stimulation is of a given intensity, in an “all-or-nothing” mechanism. ER 
centralisation can also act as an additional control point contributing to fine-tuning of 
signaling outcome. Another question is what happens to the ubiquitinylated NUTs and how 
the response is mediated. There are about 50 E3 ligases that possess transmembrane domains 
possibly able of modifying membrane-bound proteins. We can consider that there are also 
transmembrane DUBs implicated in signal termination and setting of the system at default 
conditions, as inhibition of the proteasome does not alter ubiquitinylation and 
deubiquitinylation pattern of BCL10. Further research is needed to illuminate all these signal 
transduction steps. 
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C. Last words 
 
Overall, this project contributes in the scientific community to go one step further towards 

deeper understanding of another aspect of the multi-level regulation in signal transduction 
pathways and specifically those activating NF-κB. It also highlights the complexity of these 
systems and reinforces the belief of tight regulation and fine-tuning, selected by nature 
throughout centuries of Life evolution. Immune responses can be as beneficial as dangerous. 
The proof for this lies in the fact that several cancers and inflammatory diseases originate 
from or result in NF-κB malregulation. Treatment of those diseases at a molecular level, 
specifically targeting the branch of the pathway that has gone out of control, can reduce side-
effects of widely used therapies and also sensitise malignant cells to cytotoxic drugs in 
combinatorial therapies. Therapeutic efficacy of proteasome inhibitors for treatment of 
multiple myeloma or mantle cell lymphoma points the ubiquitin-proteasome system as an 
attractive target for development of new anticancer strategies [159]. 

In the case of DUBs with a positive regulatory role on NF-κB, their excessive activity can 
lead to persistent inflammation or enhanced proliferation rate. Reducing their enzymatic 
activity or availability in cells could counteract this effect. The use of inhibitors, specifically 
targeting active sites of those enzymes, could block their activity. Additionally, agents 
intervening at the level of extracellular factors, signal transduction pathways or nuclear 
factors in the mechanisms controlling their synthesis and regulation, could reverse their 
effects [159]. 

In the case of DUBs acting as negative regulators of NF-κB (tumour protective DUBs like 
CYLD, A20, potentially USP34), new therapeutic approaches could be introduced aiming to 
upregulate their activity, possibly lost during tumour progression. At the transcriptional level, 
agents promoting DNA demethylation could counteract promoter hypermethylation that 
silences tumor-suppressor genes in cancers, as in the case of A20 in several lymphomas. In 
other pathological cases, expression of anti-tumour/anti-inflammatory genes is maintained at 
the same levels as under healthy conditions due to the presence of repressors. Inhibiting 
repressor expression could induce a more strict control in the system. For example, reduced 
CYLD expression in basal cell carcinomas was reversed by downreagulating its repressor 
(Snail). Similarly, elimination of factors as kinases, phosphatases or binding partners that 
inhibit tumour protective action of a DUB, could also alter cancerogenic phenotype. Another 
approach would be synthetic lethality induction. This is a condition between two genes in 
which loss of one gene does not affect cell viability, whereas loss of both results in cell death. 
So targeting a DUB gene that is synthetic lethal to a cancer-relevant mutation on malignant 
cells should specifically eliminate cancer cells without affecting the healthy ones [159]. 

As for MTDH and ER, we could benefit from the fact that it plays a role of a control centre 
for NF-κB activating pathways in order to achieve optimal signaling. Targeting MTDH or 
ER, without affecting its physiology, could dampen NF-κB signaling in cancers where it is 
overactivated. Additional studies are needed because the same role of central regulation could 
lead to undesired side effects. 

For the development of any kind of treatment, well understanding of signaling pathways 
regulation, crosstalk and correlation at the molecular level, is a prerequisite step. This can 
permit accurate prediction of the effect of an approach in the system, avoiding as much as 
possible side effects. Deubiquitinylating enzymes can offer this possibility, but many 
challenges remain. Further understanding of their way of action and answering to the 
upcoming questions can serve this purpose. 
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Nicolas Bidère1,2*
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Abstract

Background: Beside their established function in shaping cell architecture, some cell polarity proteins were proposed to
participate to lymphocyte migration, homing, scanning, as well as activation following antigen receptor stimulation.
Although PALS1 is a central component of the cell polarity network, its expression and function in lymphocytes remains
unknown. Here we investigated whether PALS1 is present in T cells and whether it contributes to T Cell-Receptor (TCR)-
mediated activation.

Methodology/Principal Findings: By combining RT-PCR and immunoblot assays, we found that PALS1 is constitutively
expressed in human T lymphocytes as well as in Jurkat T cells. siRNA-based knockdown of PALS1 hampered TCR-induced
activation and optimal proliferation of lymphocyte. We further provide evidence that PALS1 depletion selectively hindered
TCR-driven activation of the transcription factor NF-kB.

Conclusions: The cell polarity protein PALS1 is expressed in T lymphocytes and participates to the optimal activation of NF-
kB following TCR stimulation.

Citation: Carvalho G, Poalas K, Demian C, Hatchi E, Vazquez A, et al. (2011) Participation of the Cell Polarity Protein PALS1 to T-Cell Receptor-Mediated NF-kB
Activation. PLoS ONE 6(3): e18159. doi:10.1371/journal.pone.0018159

Editor: Jean Kanellopoulos, University Paris Sud, France

Received December 17, 2010; Accepted February 21, 2011; Published March 30, 2011

Copyright: ! 2011 Carvalho et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from ANR, Fondation de France, Association pour la Recherche contre le Cancer, Université Paris Sud, and Ligue
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Introduction

Establishment and maintenance of cell polarity is chiefly
orchestrated by a tightly regulated interplay between three
multi-protein complexes: i) Scribble (SCRIB)/Discs Large
(Dlgh1)/Lethal giant larvae (Lgl) complex, ii) partitioning-defective
(PAR) 3 and PAR6/ atypical protein kinase C (aPKC) complex,
and iii) Crumbs (CRB)/ Protein Associated with Lin Seven 1
(PALS1)/ PALS1-associated tight junction protein (PATJ) com-
plex [1,2]. However, each complex is not exclusive, as PAR6 links
PALS1 to PAR3/PAR6/aPKC [3]. In T lymphocytes, cell
polarity proteins were shown to partition the leading edge from
the uropod at the cell rear, and therefore participate to cell
migration, homing, and scanning [4,5,6]. In addition, SCRIB and
Dlgh1 are transiently recruited to the nascent immunological
synapse formed with an antigen-presenting-cell (APC) [4]. Their
depletion in lymphocytes has been associated with an alteration of
antigen receptor-mediated activation [7,8,9,10].
The adaptor PALS1 is crucial for cellular architecture as it

maintains the apico-basal polarity in epithelial cells and authorizes
indirect interactions between CRB and PATJ [11,12]. Interestingly,
Dlgh1 and PALS1 share a COOH-terminal part composed of a
PSD-95/Dlg/ZO-1 (PDZ) domain followed by an SH3 domain
adjacent to an inactive Guanylate kinase (GK) homology region [2].
This unique sequence of PDZ/SH3/GK defines the so-called

membrane-associated guanylate kinase (MAGUK) proteins family,
a group of molecules that serve as scaffolds to organize multi-protein
signalosomes through their protein-protein interaction domains
[13]. For example, the MAGUK-containing CARMA1 emerges as
a central regulator of lymphocytes activation and proliferation
downstream of antigen receptor stimulation [14]. Indeed,
CARMA1 operates as scaffold to recruit the heterodimer BCL10/
MALT1 (CBM complex), a key step for conveying NF-kB signaling
[14,15,16]. In addition to its established role in polarity, Dlgh1 was
shown to modulate lymphocyte proliferation upon T-cell receptor
ligation, possibly through p38 recruitment or via the transcription
factor NF-AT [9,10,17,18].
Although the MAGUK PALS1 plays a central role in the

establishment of cell polarity, its contribution to lymphocyte
activation remains elusive [8]. Here we show that PALS1 mRNA
and protein is expressed in human lymphocytes. Furthermore,
knocking down of PALS1 with small interfering RNAs (siRNAs)
led to a decreased proliferation of human T lymphocytes, resulting
from a reduced activation of the transcription factor NF-kB.

Results and Discussion

PALS1 expression in T lymphocytes
Although several cell polarity proteins have been characterized

in lymphocytes [4,5], PALS1 expression in T cells remains to be
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determined [8]. To address this question, we first performed RT-
PCR analysis on resting human CD3+ T cells and Jurkat
lymphocytes extracts, and detected mRNA for PALS1
(Figure 1A). These mRNA were efficiently translated into
protein, as antibodies against PALS1 detected a band, which
was absent from PALS1-siRNA transfected primary T lympho-
cytes lysates (Figure 1B). Similar results were obtained with
Jurkat T cells (Figure 1B). Of note, PALS1 levels remained
unchanged in cells stimulated with antibodies to CD3 and CD28,
or with PMA and ionomycin (Figure 1C). We next investigated
PALS1 subcellular location by confocal microscopy. In contrast
to epithelial cells where it accumulate to tight junctions [12],
PALS1 did not reach membrane domains and remains essentially
cytosolic with punctuate structures. Additional staining revealed

that these structures coalesced with the Golgi apparatus
(Figure 1D and Figure S1). Accordingly, Brefeldin A-triggered
disassembly of the Golgi apparatus also disrupted PALS1
punctuate structures (Figure 1D). This is reminiscent of PALS1
relocation to the Golgi apparatus in cells infected with SARS
coronovirus [19]. Last, we observed that TCR-mediated
stimulation only promoted a discrete redistribution of PALS1
within the cytosol of Jurkat cells (Figure S1). Altogether, our
results suggest that similarly to Dlgh1, SCRIB, CRB3, and PKCf
[4,5], the cell polarity protein PALS1 is expressed in lymphocytes
at both mRNA and protein level.

Requirement of PALS1 for optimal T cell activation and
proliferation
Because SCRIB and Dlgh1 were proposed to modulate

lymphocyte proliferation [7,8,9,10], we evaluated whether PALS1
might also participate to T cell activation. To this end, peripheral
blood lymphocytes (PBL) were purified on Ficoll-isopaque
gradients. Primary human T cells were nucleofected for three
days with siRNA targeting PALS1, prior stimulation with anti-
CD3 and anti-CD28 antibodies. PALS1 knockdown led to a
significant decrease in TCR-mediated induction of the activation
markers CD69 and CD25 on cell surface (Figure 2A, B). This was
accompanied by a reduction in Carboxyfluorescein Succinimydyl
Ester (CFSE) dilution, which reflects cell proliferation (Figure 2C).
Collectively, these data suggest that PALS1 participates to the
optimal lymphocyte activation and subsequent proliferation upon
TCR stimulation.

Role of PALS1 in TCR-mediated signaling
To further explore how PALS1 impacts on lymphocyte

proliferation, early signaling pathways emanating from the TCR
were examined in Jurkat cells transfected with PALS1 siRNA. We
did not detect major alteration in the general pattern of tyrosine
phosphorylation, or mitogen-activated protein kinase (MAPK)
extracellular signal-regulated kinases (ERK) 1/2 phosphorylation
upon TCR stimulation (Figure 3A). Only a slight but consistent
increase in TCR-mediated phosphorylation of p38 was noted
(Figure 3A). Moreover, CD3-induced calcium mobilization was
largely normal in PALS1-knockdown Jurkat cells (Figure 3B).
We next analyzed TCR-mediated activation of NF-AT and NF-

kB transcription factors. siRNA-treated Jurkat T cells were co-
transfected with firefly luciferase constructs driven by NF-AT or
NF-kB binding sequences and with a renilla luciferase control.
PALS1 knockdown had only a marginal effect on NF-AT activity
following stimulation with PMA and ionomycin, or with
antibodies to CD3 and CD28 (Figure 3C and Figure S2). In
sharp contrast, NF-kB activity was significantly reduced without
PALS1 (Figure 3D). Interestingly, tumor necrosis factor-a (TNFa)-
induced NF-kB activation remained essentially unaffected,
underscoring the selective involvement of PALS1 in the TCR-
NF-kB pathway (Figure S3). Altogether, our data unveiled an
unexpected role for PALS1 in TCR-mediated NF-kB activation.

PALS1 participates to the optimal activation of NF-kB
upon TCR stimulation
To gain insights on how PALS1 modulate NF-kB, we first

investigated the transcription factor binding ability by electropho-
retic mobility shift assay (EMSA). Less NF-kB bound to its specific
probe in nuclei extracts from PALS1–siRNA transfected cells
following TCR stimulation (Figure 4A). As expected, Oct-1
binding remained unchanged without PALS1. Consistent with a
diminished NF-kB activity, both the phosphorylation and

Figure 1. Expression of the cell polarity protein PALS1 in
human T lymphocytes. A, Analysis of PALS1 mRNA in primary
human T lymphocytes, and Jurkat cell line by Reverse Transcriptase
Polymerase Chain Reaction (RT-PCR). B, Immunoblot analysis of PALS1
in cell lysates from human T lymphocytes and from Jurkat cells. The
specificity of PALS1 antibodies was validated with lysates from cells
transfected with siRNA against PALS1. Tubulin was used as a loading
control. C, Immunoblot analysis of cell extracts from Jurkat cells
stimulated as indicated with 1 mg.ml21 anti-CD3 and anti-CD28, or with
40 ng.ml21 PMA together with 300 ng.ml21 ionomycin (P/I). GAPDH
served as a loading control. D, Confocal microscopy pictures of PALS1
and 58K Golgi protein in Jurkat T lymphocytes either untreated or
incubated with 10 mg.ml21 Brefeldin A (BFA).
doi:10.1371/journal.pone.0018159.g001

Role of PALS1 during TCR-Mediated NF-kB Activation
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subsequent proteasomal degradation of NF-kB inhibitor, IkBa,
were severely decreased in the absence of PALS1 (Figure 4B).
Because TCR-induced NF-kB activation relies on the assembly of
the CBM complex [15], BCL10 was immunoprecipitated from
nonspecific (NS-) and PALS1-siRNA transfected Jurkat cells.
MALT1, which forms an heterodimer with BCL10, coprecipitated
with BCL10 regardless of stimulation. Although PALS1 was not
found bound to BCL10, its absence diminished CARMA1
recruitment (Figure 4C, and data not shown). Hence, our data
suggest that PALS1 participates to the optimal translocation and
activation of NF-kB upon TCR stimulation, possibly by favoring
the CBM assembly.

Role of PALS1-associated proteins during TCR-mediated
NF-kB
Since PALS1 nucleates a ternary complex containing CRB3 and

PATJ, and further binds PAR6 to maintain cell polarity [3,20,21],
their contribution to TCR-mediated NF-kB was evaluated. Similarly
to PALS1, mRNA for PATJ, CRB3, PAR6, were efficiently detected
by RT-PCR (Figure 5A). The same hold true for the unrelated cell
polarity protein SCRIB (Figure 5A). siRNA-based knockdown of
PALS1 and CRB3 significantly decreased NF-kB activation in cells
treated by antibodies against CD3 and CD28, or with a mixture of
PMA and ionomycin. Although less dramatic, similar results were
observed with PAR6 or PATJ knockdown. By contrast, NF-kB was
normally activated in the absence of SCRIB (Figure 5B). In
agreement, IkBa phosphorylation was diminished in lysates from
CRB3-depleted cells, and to a lesser extent from PATJ- or PAR6-
siRNA transfected cells, and not from SCRIB-depleted cells. Again,
ERK phosphorylation occurred normally (Figure 5C, D, E, and F).
Altogether, our data suggest that PALS1 implication in the TCR-NF-
kB pathway is inextricably linked to its cell polarity partners.
In summary, our data show that the cell polarity protein PALS1

is expressed in lymphocytes and contributes to their optimal
activation. Although Dlgh1 and SCRIB were proposed to
modulate NF-AT or p38 [9,10,17,18] and NF-AT [7] respectively,
a distinct scenario likely occurs for PALS1. Our results support a
model in which PALS1 participates to NF-kB activation, upstream
of IkBa phosphorylation and degradation. However, how precisely
PALS1 modulates NF-kB remains unclear. Because MAGUK
function as scaffold units to organize and integrate multi-molecular

signaling complexes [13], it is tempting to speculate that PALS1
nucleates its own signalosome. For example, CARMA1 anchors a
.900 kDa complex including the heterodimer BCL10/MALT1
[22], and Dlgh1 was reported to bind to Lck, Zap70, Wasp [17],
and p38 [10]. In our hands, PALS1 did not integrate the CBM,
but its absence reduced CARMA1 binding to BCL10. It will
therefore be interesting to identify PALS1 partners in the context
of lymphocyte activation. In line with this, CRB3, PATJ and
PAR6, which all bound PALS1 to maintain cell polarity [2], also
participate to NF-kB signaling upon TCR ligation in lymphocytes,
and might therefore complex with PALS1 in lymphocytes.
Altogether, our results strengthen the unexpected function of cell
polarity proteins in lymphocyte proliferation [7,8,9,10], and unveil
an original role for PALS1 during TCR-mediated NF-kB
activation.

Materials and Methods

Cell culture and reagents
Jurkat T cells E6.1 were purchased from ATCC. CD3+ human

T lymphocytes from healthy donors (Etablissement Francais du
Sang) were isolated with the MidiMacs system (Miltenyi Biotec).
Cells were activated with a mixture of soluble anti-CD3e (HIT3a,
BD Biosciences) and anti-CD28 (BD Biosciences), or with 20–
40 ng.ml21 phorbol 12-myristate 13-acetate (PMA, Sigma) and
300 ng.ml21 ionomycin (Calbiochem). Carboxyfluorescein Succi-
nimydyl Ester (CFSE) and Brefeldin A were purchased from
Sigma, and the calcium-sensitive dye Fluo-4 was from Invitrogen.

Cell lysates preparation, immunoprecipitations, and
immunoblots
Cells were washed twice with PBS 1X and lysed with 50 mM

Tris pH 7.4, 150 mM NaCl, 1% Triton X-100, 1% Igepal, 2 mM
EDTA, supplemented with complete protease inhibitors (Roche).
Lysates were cleared by a centrifugation at 10,000g at 4oC, and
protein concentration determined (micro BCA kit, Pierce).
Samples were resolved on 5–20% SDS-PAGE gels and transferred
to nitrocellulose membranes (Amersham). For Immunoprecipita-
tions, samples were precleared with protein G-sepharose beads
(Roche) for 30 min prior to overnight incubation with antibodies
and additional protein G-sepharose beads at 4uC, as previously

Figure 2. PALS1 requirement for optimal activation and proliferation in lymphocytes. A and B, Human peripheral blood T lymphocytes
were transfected with siRNA for PALS1 or nonspecific (NS) siRNA. Three days later, cells were stimulated with 1 mg.ml21 anti-CD3 and anti-CD28. CD69
and CD25 induction at the cell surface were examined 6 hours and 16 hours post-stimulation, respectively. C, Cells as in (A) were loaded with
Carboxyfluorescein Succinimidyl Ester (CFSE), and stimulated with 1 mg.ml21 anti-CD3 and anti-CD28 for 72 hours. The percentage of CD69- and
CD25-positive cells, and of dividing cells, is shown. These data are representative of four independent experiments.
doi:10.1371/journal.pone.0018159.g002
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described [23]. Antibodies to BCL10 (A-6), IkBa (C-21), MALT1
(B-12), Tubulin (TU-02), PALS1 (H-250), SCRIB (C-6), PAR6 (G-
9) and p65 (C-20) were purchased from Santa Cruz. Phospho-
specific antibodies against IkBa, ERK, p38, and antibodies to
CARMA1 and to ERK were from Cell Signaling Technologies.
Anti-phosphorylated Tyrosine (4G10, Millipore), anti-GAPDH
(Sigma), and Immobilon (Millipore) chemiluminescent substrates
were also used.

Luciferase assays
Firefly luciferase constructs downstream of promoters for NF-

kB or NF-AT were co-transfected with renilla luciferase pRL-TK
(Int-) plasmid (Promega). Luciferase activities were analyzed using
the Dual-Luciferase Kit (Promega), with firefly fluorescence units

normalized to renilla luciferase fluorescence units (BMG micro-
plate reader).

siRNA and transfections
All siRNA used were from Invitrogen (Stealth). PALS1.1, 59-

CCAAGGAAACAGUAAUCCAUGUAAA-39; PALS1.2, 59-GA-
GGAGAUCUUAACCUAUGAGGAAA-39; PALS1.3, 59-CAG-
AACAAUGGCCACUACUUUGAUA-39; CRB3, 59-CCAUCA-
CUGCUAUCAUCGUGGUCUU-39; PATJ, 59-GCAUGAAU-
UUCUGACUCCUAGAUUG-39; SCRIB, 59-UGGGAGGCAA-
CGAUCUGGAAGUGCU-39; PAR6 59-GAGCGGGUUCCAG-
GAAUCUUCAUCU-39. Jurkat cells were transfected by electro-
poration with a BTX ECM 830 apparatus (BTX, Harvard
Apparatus), as previously described [16]. For primary cells, PBL

Figure 3. Role of PALS1 on early TCR-mediated signaling. A, Jurkat cells were transfected with nonspecific (NS)- and PALS1-siRNA, and left
three days prior stimulation with 1 mg.ml21 anti-CD3 and anti-CD28 for 0, 10, 20, and 30 min. Cell lysates were prepared and immunoblots were
performed as indicated. GAPDH, and p65 served as loading controls. Five other experiments provided same results. B, NS- and PALS1-siRNA
transfected Jurkat cells were loaded with the calcium-sensitive dye Fluo-4 and stimulated with 1 mg.ml21 anti-CD3 (closed symbol), or with 1 mg.ml21

ionomycin (open symbol). Shown is the mean6 s.d. of triplicate measurements (one out of two independent experiments). C, D, Jurkat lymphocytes
were transfected with NS- or with three individual siRNA sequences targeting PALS1. After three days, cells were co-transfected with siRNA and with
NF-AT or NF-kB firefly luciferase reporter gene together with a control Renilla plasmid for an additional 24 hours. Cells were then stimulated with 20
or 40 ng.ml-1 PMA and 300 ng.ml21 ionomycin (P/I), or 0.5 mg.ml21 anti-CD3 and anti-CD28. Histograms represent the mean 6 s.d. of triplicate
experiments. RLU, relative light units. The inset immunoblot shows the level of PALS1 knockdown. Data shown are representative of at least five
independent experiments.
doi:10.1371/journal.pone.0018159.g003
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Figure 4. Involvement of PALS1 in TCR-mediated activation of NF-kB. A, Jurkat cells were transfected with nonspecific (NS)- and PALS1-
siRNA. Three days later, cells were stimulated with 1 mg.ml21 anti-CD3 and anti-CD28 for 0, 45, and 90 min. Nuclear extracts were prepared to analyze
the binding of NF-kB and Oct-1 by electrophoretic mobility shift assays (EMSA) with specific probes (closed circles). Free probe is also indicated (open
circles). B, Cells as in (A) were stimulated with 1 mg.ml21 anti-CD3 and anti-CD28 for 0, 10, 20, and 30 min. Cell extracts were prepared and
immunoblots were performed as indicated. C, Cells as in (A) were stimulated with 1 mg.ml21 anti-CD3 and anti-CD28 for 0, 10, 20 min. BCL10 was
immunoprecipitated (IP) from cell lysates, and the binding of CARMA1, and MALT1 was assessed by immunoblot. Data shown are representative of at
least three independent experiments.
doi:10.1371/journal.pone.0018159.g004

Figure 5. Role of PALS1 cell polarity partners in NF-kB signaling. A, Expression of cell polarity proteins PALS1, CRB3, PATJ, PAR6, and SCRIB
by RT-PCR in Jurkat T lymphocytes. B, Jurkat were transfected with nonspecific (NS)-, CRB3-, PAR6-, PATJ- and SCRIB-siRNA. After three days, cells were
then co-transfected with siRNA and with NF-kB firefly luciferase reporter gene together with a control Renilla plasmid. 24 hours later, cells were
stimulated with 0.5 mg.ml21 anti-CD3/CD28 or with 20 ng.ml21 PMA and 300 ng.ml21 ionomycin (P/I). Shown is the mean 6 s.d. of triplicate
experiments. RLU, relative light units. C–F, Immunoblots as indicated of NS-, CRB3-, PAR6-, PATJ- and SCRIB-siRNA transfected Jurkat cells stimulated
with 1 mg.ml21 anti-CD3 and anti -CD28 for 0, 10, 20, and 30 min. Data shown are representative of three independent experiments.
doi:10.1371/journal.pone.0018159.g005
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were purified from blood on Ficoll-isopaque gradients. PBL were
nucleofected with the Nucleofactor system and T cell solution
(Amaxa, program U14), and left for three days in culture medium
prior treatment.

Nuclear protein extraction and electrophoretic mobility
shift assay (EMSA)
4 mg of nuclear extracts from Jurkat cells were examined for

NF-kB- and Oct1-binding activity by electromobility shift assay
(Panomics kit). Samples were resolved on a 6% native polyacryl-
amide DNA retardation gel in 0.5X TBE buffer and analyzed
using a FUJI LA4000 system.

Reverse transcriptase PCR
2 mg of total RNA from purified human blood T cells or Jurkat

were used for the RT-PCR reactions (RNeasy and OneStep kits,
Quiagen). Primers were designed as follows: PALS1: Forward (F),
59-CTCCTTCATGCAACAGACCA-39 and Backward (B), 59-
CACTTTTACTGGCCCACGAT-39; CRB3: F, 59-CACCT-
GCTCCTCGCTACTG-39 and B, 59-CACTGTTTTGCCTT-
CATCCA-39; PATJ: F, 59-CAACGAGCATCCTGACTGAA-
39 and B, 59-GGCGTGGTTGTGAGGACTAT-39; PAR6: F,
59-GTTGCCAACAGCCATAACCT-39 and B, 59-CAGGT-
CACTGCTGTCATCGT-39; SCRIB: F, 59-CGCAAGGACA-
CACCTCACTA-39 and B, 59-CCTCCTCCTGAGGAC-
TACCC-39.

Confocal microscopy
Cells were left for 10 min on poly-lysine coated slides (Thermo

Scientific) prior fixation with PBS1X containing 4% parafor-
maldehyde. For TCR crosslinking experiments, cells were
incubated with 5 mg.ml21 anti-CD3 at 4uC for 15 min. After
two washes, cells were incubated with 5 mg.ml21 of goat anti-
mouse (Jackson) for 20 min either at 4uC or 37uC. To
disassemble Golgi apparatus, cells were treated with 10 mg.ml21

Brefeldin A for 60 min. Samples were permeabilized with 0.05%
Triton-X100 in PBS1X for 5 min, and non-specific sites blocked
with 10% FCS in PBS1X. Antibodies used were: PALS1
(Millipore), 58K Golgi (Abcam), Alexa-488 conjugated goat
anti-rabbit IgG or Alexa-594 conjugated goat anti-mouse IgG
(Invitrogen). Samples were analyzed using a Leica confocal
microscope SP6.

Cell surface staining
Cells were incubated for 30 min at 4uC with FITC- and PE-

conjugated antibodies against CD25 and CD69 (ImmunoTools)

and the respective isotype controls in PBS containing 0.5% BSA.
After one wash with ice-cold PBS-BSA, cells were analyzed by flow
cytometry with a FACSCalibur (BD Biosciences).

Supporting Information

Figure S1 Impact of stimulation on PALS1 subcellular
location. A, Jurkat were stimulated 30 min with
40 ng.ml21 PMA and 300 ng.ml21 ionomycin. Shown are
confocal microscopy pictures of PALS1 and 58K golgi protein.
B, CD3 was crosslinked at the plasma membrane of Jurkat cells
either at 4 or 37uC for 20 min. Micrographs show double staining
for CD3 and PALS1.
(EPS)

Figure S2 PALS1 is dispensable for TCR-mediated NF-
AT activation. Jurkat lymphocytes were transfected with NS- or
with PALS1-siRNA. After three days, cells were co-transfected
with siRNA and with NF-AT firefly luciferase reporter gene
together with a control Renilla plasmid for an additional 24 hours.
Cells were then stimulated with 20 ng.ml21 PMA and
300 ng.ml21 ionomycin (P/I), or with 1 mg.ml21 anti-CD3 and
anti-CD28. Histograms represent the mean 6 s.d. of triplicate
experiments. RLU, relative light units.
(EPS)

Figure S3 Role of PALS1 cell polarity partners on TNFa-
induced NF-kB activation. A, Jurkat were transfected with
nonspecific (NS)-, PALS1-, CRB3-, PAR6-, and PATJ-siRNA for
three days. Cells were then co-transfected with siRNA and with
NF-kB firefly luciferase reporter gene together with a control
Renilla plasmid. 24 hours later, cells were stimulated with
10 ng.ml21 TNFa for 6 hours. Shown is the mean 6 s.d. of
triplicate experiments. RLU, relative light units.
(EPS)
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