

Signal	Model
Sensor j output at frequency f :	
$r(f,j) = \sum_{p=1}^{P} c_p(j) s(f) \exp(-2i\pi f (\tau_{j,p}) + \underline{n(f,j)}_{\text{noise}}) + \underbrace{n(f,j)}_{\text{noise}}$	Sensor
mixture of P echoes of a known signal can be modelled as:	\mathbf{I} or as: $\mathbf{r}(j) = \mathbf{\Lambda} \mathbf{A}$
$\mathbf{r}(f) = \mathbf{A}(f)\mathbf{s}(f) + \mathbf{n}(f)$	• $\mathbf{r}(j) = [r]$
• $\mathbf{r}(f) = [r(f)(1), \cdots, r(f)(N)]^T$,	$\bullet \Lambda = dia$
• $\mathbf{A}(f) = [\mathbf{a}(f, \theta_1, \rho_1), \mathbf{a}(f, \theta_2, \rho_2),, \mathbf{a}(f, \theta_P, \rho_P)]$	• $\mathbf{A}(j) =$
• $\mathbf{s}(f) = [c_1 s(f), c_2 s(f),, c_P s(f)]^T$	$\bullet \mathbf{c}(j) = [\bullet$
• $\mathbf{n}(f) = [n(1, f), n(2, f),, n(N, f)]^T$	$\mathbf{I} \qquad \mathbf{\bullet} \mathbf{n}(j) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
$\mathbf{\Gamma}(f) = E[\mathbf{r}(f)\mathbf{r}^H(f)]$	$\Gamma(j) = E[$

CONCLUSION

One of the main targets of array processing is the estimation of the parameters: bearings of the buried objects and the objects-sensors ranges. The proposed localization algorithm treats the impinging signals sensor by sensor, the different time of arrival of the received signals are estimated. Then, by considering the spatial evolution of these times of arrival the object ranges and bearings are obtained. This method also works in a situation where there is less sensors than sources. The obtained results on scaled tank tests are promising, showing a better accuracy than for usual methods.

Ecole Centrale Marseille, Institut Fresnel / UMR CNRS 7249, D. U. de Saint-Jérôme, 13397 Marseille cedex 20, France

Ов	JECI	$\Gamma S'$	F	ΈA	JT	JR	ES					
	E	$_{1},\ldots$	$,E_4$ v	with	$(O_1, 0)$	$(O_2), \cdot$	$\cdots, (O_7)$	$V, O_8)$			-	
$\begin{array}{c} \textbf{OBJECTS' FEATURES} \\ E_1, \dots, E_4 \text{ with } (O_1, O_2), \cdots, (O_7, O_8) \\ \text{and } XX' \text{ fixed at } 0.2 m \\ E_5, \dots, E_8 \text{ with } (O_1, O_2), \cdots, (O_7, O_8) \\ \text{and } XX' \text{ fixed at } 0.4 m \\ \textbf{Shells:} \\ \textbf{c}, \\ \textbf{shells:} \\ \textbf{c}, \\ \textbf{shells:} \\ \textbf{vater,} \\ \textbf{c}, \\ \textbf{blexp(^{\circ})} \\ 20 \\ 22 \\ 9.2 \\ 20 \\ 5.8 \\ \textbf{c}, \\ \textbf$										1		
	E	$5, \cdots$	$,E_8$ v	with	$(O_1, 0)$	$(O_2), \cdot$	$\cdots, (O_7)$	(O,O_8)				
shells:					and Z	XX^{\prime} f	fixed at	0.4 m				
r,		E_1	E_2	E_3	E_4	E_5	E_6	E_7	E_8			
shells:	$ heta_{1exp}(\ ^\circ\)$	20	23	33.2	32.4	-50	-52.1	-70	-51.6			
vater,	$\rho_{1exp}(\mathbf{m})$	0.3	0.24	0.26	0.26	0.65	0.65	1.24	0.65		_	
shells:	$ heta_{2exp}(\ ^\circ\)$	22	9.2	20	5.8	-22	-41	-65.3	-49	- Ter		
r,	$\rho_{2exp}(m)$	0.32	0.22	0.24	0.22	0.45	0.56	1.17	0.64		-	
				Obje	cts po	osition	ns			1	*	12

REFERENCES

R. O. Schmidt, Multiple emitter location and signal parameters estimation, IEEE Transactions on Antennas and Propagation, 34(3):276–280, March 1986 Z. Saidi and S. Bourennane, Cumulant-based coherent signal subspace method for bearing and range estimation, EURASIP Journal on Advances in Signal Processing, 2007(1):84576, 2007. B] G. Villemin, C. Fossati and S. Bourennane, Spatio-temporal-based joint range and angle estimation for wideband signals. EURASIP Journal on Advances in Signal Processing, 2013(1):131, 2013 4] G. Villemin, C. Fossati and S. Bourennane, Efficient time of arrival estimation in the presence of multipath propagation J. Acoust. Soc. Am., 134, EL301, October $\overline{2013}$.

Results												
	E_1	E_2	$E_3 \mid E_4$		$E_5 \mid E_6$		E_7	E_8				
Coherent Signal Subspace Method												
$\overline{ heta_{1est}}(\ ^\circ\)$	20	23	33	32	-49	-52	-70	-52				
$\rho_{1est}(\mathbf{m})$	0.31	0.25	0.29	0.28	0.65	0.63	1.21	0.63				
$ heta_{2est}(\ ^\circ\)$	22.5	9	20	6	-22	-40	-65	-50				
$\rho_{2est}(\mathbf{m})$	0.33	0.25	0.25	0.23	0.44	0.53	1.2	0.63				
Incoherent Sensor by Sensor Method												
$\overline{ heta_{1est}}(\ ^\circ \)$	20	23	33	32	-50	-52	-70	-51				
$\rho_{1est}(\mathbf{m})$	0.31	0.24	0.25	0.26	0.65	0.64	1.25	0.64				
$ heta_{2est}(\ ^\circ\)$	22.1	8.95	20	5.9	-22	-41	-65	-49				
$\rho_{2est}(\mathbf{m})$	0.32	0.23	0.23	0.22	0.45	0.55	1.2	0.64				
The estimated values of object range and bearing												

