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Abstract

Application development in the Internet of Things (IoT) is challenging because it involves

dealing with a wide range of related issues such as lack of separation of concerns, and lack of

high-level of abstractions to address both the large scale and heterogeneity. Moreover, stakehol-

ders involved in the application development have to address issues that can be attributed to

different life-cycles phases when developing applications. First, the application logic has to be

analyzed and then separated into a set of distributed tasks for an underlying network. Then,

the tasks have to be implemented for the specific hardware. Apart from handling these issues,

they have to deal with other aspects of life-cycle such as changes in application requirements

and deployed devices.

Several approaches have been proposed in the closely related fields of wireless sensor network,

ubiquitous and pervasive computing, and software engineering in general to address the above

challenges. However, existing approaches only cover limited subsets of the above mentioned

challenges when applied to the IoT. This thesis proposes an integrated approach for addressing

the above mentioned challenges. The main contributions of this thesis are : (1) a development

methodology that separates IoT application development into different concerns and provides a

conceptual framework to develop an application, (2) a development framework that implements

the development methodology to support actions of stakeholders. The development framework

provides a set of modeling languages to specify each development concern and abstracts the

scale and heterogeneity related complexity. It integrates code generation, task-mapping, and

linking techniques to provide automation. Code generation supports the application develop-

ment phase by producing a programming framework that allows stakeholders to focus on the

application logic, while our mapping and linking techniques together support the deployment

phase by producing device-specific code to result in a distributed system collaboratively hosted

by individual devices. Our evaluation based on two realistic scenarios shows that the use of our

approach improves the productivity of stakeholders involved in the application development.
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Chapter I

Introduction

“The 19th century was a century of empire, the 20th century was a century of nation

states and the 21st century will be a century of cities.”

- Former Denver Mayor W. Webb

Cities are the future of humankind, with more than 50% of the world’s population now living

in cities [Harrison and Donnelly, 2011]. By 2050, the UN predicts this number will increase to

70% due to massive economical growth in the current urban areas [Nations, 2010]. Some of

this growth will be in 27 mega cities with greater than 10 million people, but more than

this half of the growth will be in cities that have fewer than 500,000 people [Naphade et al.,

2011]. This urban growth and migration are putting significant stress on city infrastructure and

raising challenges in domains including energy, transportation, healthcare, safety, and security

of citizens [Haubensak, 2011].

A possible solution of the above challenges may be in recent technological advances in com-

puter and communication technology. These advances have been fueling a tremendous growth

in the number of smart objects (or things) [Vasseur and Dunkels, 2010, p. 3]. In 2010, the

number of everyday physical objects was around 12.5 billion. Cisco forecasts that this number

is expected to double to 25 billion in 2015 as the number of smart devices per person increase,

and to a further 50 billion by 2020 [Evans, 2011]. Figure I.1 illustrates the electronic skin of

the city consisting of millions of smart objects : temperature sensors, lights, smoke detectors,

smart phones, fire alarms, air pollution controllers, car, parking space controllers, etc. These

smart objects sense the physical world by obtaining information from sensors, affect the physi-

cal world by triggering actions using actuators, engage users by interacting with them whenever

necessary, and process captured data and communicate it to outside world.

As a means to realize the above vision, the Internet of Things (IoT) enables a variety of

physical objects or things – such as sensors, actuator, mobile phones, etc. – to communicate

with each other and cooperate with their neighbors to reach a common goal [Atzori et al., 2010].

1
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Figure I.1 – Smart objects in urbanized areas (figure credit : http://www.libelium.com/)

Though the precise definition of the IoT is still evolving, we base our work on the definition

below, proposed by the CASAGRAS project 1 :

“[The Internet of Things is a] global network infrastructure, linking physical and

virtual objects through the exploitation of data capture and communication capabili-

ties. This infrastructure includes existing and evolving Internet and network deve-

lopments. It will offer specific object-identification, sensor and connection capability

as the basis for the development of independent cooperative services and applica-

tions. These will be characterized by a high degree of autonomous data capture,

event transfer, network connectivity and interoperability.”

In the IoT, “things” acquire intelligence thanks to the fact that they access information that

has been aggregated by other things. For example, a building interacts with its residents and

surrounding buildings in case of fire for safety and security of residents, offices adjust themselves

automatically accordingly to user preferences while minimizing energy consumption, or traffic

signals control in-flow of vehicles according to the current highway status [de Saint-Exupery,

1. http://www.grifs-project.eu/data/File/CASAGRAS%20FinalReport%20(2).pdf

2
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2009].

As evident above, IoT applications will involve interactions among extremely large numbers

of disparate devices, many of them directly interacting with their physical surroundings. An

important challenge that needs to be addressed in the IoT, therefore, is to enable the rapid

development of IoT applications with minimal effort by the various stakeholders involved in the

process. Similar challenges have already been addressed in the closely related fields of Wireless

Sensor Networks (WSNs) [Vasseur and Dunkels, 2010, p. 11] and ubiquitous and pervasive

computing [Vasseur and Dunkels, 2010, p. 7], regarded as precursors to the modern day IoT.

While the main challenge in the former is the large scale – hundreds to thousands of largely

similar devices, the primary concern in the latter has been the heterogeneity of devices and

the major role that the user’s own interaction with these devices plays in these systems (cf.

the classic “smart home” scenario where a user controls lights and receives notifications from

his refrigerator and toaster.) It is the goal of our work to enable the development of such

applications. In the following, we discuss one of such applications.

1 Application example

As discussed above, smart cities present an excellent platform for the execution of IoT

applications. We discuss below the details of one such application, many of which will come

together to empower smart cities. We first give a general idea about the domain, followed by

the details of the smart building application.

Building automation domain. The authors in [Vasseur and Dunkels, 2010, p. 361] say that

“Building automation is the instrumentation, mechanization, and data aggregation of a variety

of discrete building systems to make monitoring and controlling of building equipment more

efficient.” This building system might consist of several buildings, with each building in turn

consisting of one or more floors, each with several rooms. It may consist of a large number

of heterogeneous devices equipped with sensors to sense environment, actuators to influence

the environment, storage that stores the persistent information, and user interfaces through

which users interact with other devices. Figure I.2 describes the building automation domain

with various devices. Many applications can be developed using these devices, one of which we

discuss below. Details of our applications can be found in Chapter V.

Smart building application. In 2004, building consumption in European Union was 37% of

total energy, greater than 28% in industry and 32% in transport [Nguyen and Aiello, 2012].

The improvement in buildings has the potential to save a considerable amount of energy, and

3
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Figure I.2 – A cluster of multi-floored buildings with deployed devices with (1) temperature sensor,
(2) heater, (3) badge reader, (4) badge, (5) alarm, (6) smoke detector, (7) sprinkler, (8) light, (9) data
storage, and (10) monitor.

therefore money. Data shows that much of the energy consumption by commercial buildings is

spent on lighting (26%), followed by heating and cooling is 13% and 14% respectively [Chen

et al., 2009; Perez-Lombard et al., 2008]. Therefore, switching off lights and heating and cooling

systems within a building when rooms become unoccupied would be one of the ways to save

energy. Another way to save energy is to engage the residents of the building [Smith et al.,

2011]. A system can generate situation awareness by displaying general information about the

building such as current temperature or energy usage of the building on dashboard placed on

a central location of a building. It can thus encourage residents to save energy to reduce the

overall energy demand [Chen et al., 2009].

We consider a hypothetical building utilized by a company. To accommodate an increasingly

mobile work force, the company has designated its sites for mobile workers. A mobile worker

4
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does not have a pre-assigned office. On a typical day, he finds a convenient room based on

personal preferences such as the amount of sunlight available in the room, or the proximity to

other employees working on the same project. To accommodate the mobile worker’s preference

in the reserved room, a database is used to keep the profile of each worker, including his preferred

lighting and temperature level. A badge reader in the room detects the worker’s entry event

and queries the database for the worker’s preference. Based on this, the thresholds used by

the room’s devices are updated. To reduce electricity waste when a person leaves the room,

detected by badge disappeared event, lighting and heating level are automatically set to the

lowest level; all according to the building’s policy. The system may also include user interfaces

that allow a late worker to control heater of his room and request the profile database to get

his lighting and temperature preferences.

Moreover, the system generates the current status (e.g., temperature, energy consumption)

of each room, which is then aggregated and used to determine the current status of each floor

and, in turn, the entire building. A monitor installed at the building entrance presents the

information to the building operator for situational awareness.

2 IoT application characteristics

This section identifies the characteristics of IoT applications, as gleaned from our analysis of

applications such as the one discussed in the previous section, and provides a necessary basis for

discussing the challenges in IoT application development. While most of these characteristics are

present in all software applications and have been identified and analyzed in software engineering

literature, the IoT context does bring in some peculiarities that have not been addressed in

recent work. In our view, IoT applications have the following characteristics :

Commonality at various levels. We note that there are a significant amount of common

features between different IoT systems. These arise from commonality between the different

deployments of the same application (e.g., the same building management system deployed

across two companies’ offices), and between different applications in the same domain (e.g.,

two applications in the building automation domain). A domain manifests itself in applications

concerned with similar entities of interest. An entity of interest is an object (e.g., room, book,

plant), including the attributes that describe it, and its state that is relevant from a user or

an application perspective [Haller, 2010, p. 1]. For instance, the building automation domain

contains entities of interest such as rooms, floors, and buildings. This forms the basis for breaking

down development effort into concerns and responsibilities of stakeholders, which underpin our

5
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approach.

Multiple concerns. An IoT application may involve a number of concerns : (1) domain-

specific features (e.g., the smart building application reason in terms of rooms and floors, the

smart city applications are expressed in terms of sectors.), (2) application-specific features (e.g.,

regulating temperature, fire detection), (3) operating system-specific features (e.g., Android-

specific APIs to get data from sensors, vendor-specific database such as MySQL), and (4)

deployment-specific features (e.g., understanding of the specific target area where the applica-

tion is to be deployed, mapping of processing components to devices in the target deployment).

Heterogeneous devices. An IoT application may execute on a network consisting of different

types of devices. For example, the smart building application consists of devices, including

sensing devices (e.g., temperature sensor, badge reader), actuating devices (e.g., heater, light),

user interface devices (e.g., smart phone, monitor), storage devices (e.g., profile storage on

different database systems such as MySQL or MongoDB).

Heterogeneous platforms. An IoT application may execute on a network with heteroge-

neous platforms. These platforms are operating system-specific. For instance, a device could be

running Android mobile OS, Java SE on laptops, or a server OS such as GNU/Linux etc.

Heterogeneous interaction modes. The devices could be different in terms of how data can

be accessed from them. The interaction mode could be one of the following :
– Publish/Subscribe : It provides subscribers with the ability to express their interest in

an event, generated by a publisher, that matches their registered interest [Eugster et al.,

2003]. For instance, a badge detect event is notified to subscribers, when a user enters

into a room.

– Request/Response : A request is a one-to-one interaction with a return value. In order

to fetch data, a requester sends a request message containing an access parameter to a

responder. The responder receives and processes the request message, ultimately returns

an appropriate message as a response [Berson, 1996]. For instance, in the smart building

application, profile data is retrieved by querying the profile storage.

– Command : This is a unidirectional mode of communication, an instance of message

passing [Andrews, 1991], used for controlling actuators. In contrast to request/response,

no values are returned from the receiving software component. For instance, in the smart

building application, a “set temperature” command is given to regulate a temperature

level in a room.

Scale. An IoT application may execute on a network consisting of hundreds to thousands

of devices, and its goal is usually obtained by composing multiple activities. For instance,
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temperature values are computed at per-room and then per-floor levels to calculate an average

temperature value of a building.

Evolution. Over time, IoT applications may need to be modified in response to the changes

in the application requirements or the underlying hardware. When this happens, all or parts

of the applications need to be re-developed. For instance, it could be changes in functionality

of an application (e.g., the smart building application is extended by including fire detection

functionality), addition and replacement of devices (e.g., more temperature sensors are added to

sense accurate temperature values in the building), technological advances with new software

features (e.g., the smart building application is extended by providing support for Android

devices), or changes in distribution of target devices (e.g., moving temperature sensing devices

from one floor to other).

3 IoT application development challenges

This section reviews the application development challenges due to the IoT application

characteristics discussed in the previous section. As earlier, we note that although the software

engineering community has discussed and analyzed similar challenges in the general case, this

has not been applied to the case of IoT in particular. The challenges we address in this work

are as follows :

Lack of division of roles. IoT application development is a multi-disciplined process where

knowledge from multiple concerns intersects. Traditional IoT application development assumes

that the individuals involved in the application development have similar skills. This is in

clear conflict with the varied set of skills required during the process, including domain ex-

pertise, deployment-specific knowledge, application design and implementation knowledge, and

platform-specific knowledge, a challenge recognized by recent works such as [Chen et al., 2012;

Picco, 2010].

Heterogeneity. IoT applications execute on a network consisting of heterogeneous devices

in terms of types, interaction modes, as well as different platforms. The heterogeneity largely

spreads into the application code and makes the portability of code to a different deployment

difficult. Ideally, the same application should execute on a different deployment (e.g., the same

smart building application on different offices with different devices).

Scale. As mentioned above, IoT applications execute on distributed systems consisting of hun-

dreds to thousands of devices, involving the coordination of their activities. Requiring the ability

of reasoning at such levels of scale is impractical in general, as has been largely the view in the
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WSN community. Consequently, there is a need of adequate abstractions that allow stakeholders

to express their requirements in a compact manner regardless of the scale.

Different life cycle phases. Stakeholders have to address issues that are attributed to different

life cycles phases, including development, deployment, and maintenance [Bischoff and Kortuem,

2007] illustrated in Figure I.3. At the development phase, the application logic has to be

analyzed and separated into a set of distributed tasks for the underlying network consisting

of a large number of heterogeneous entities. Then, the tasks have to be implemented for the

specific platform of a device. At the deployment phase, the application logic has to be

deployed onto a large number of devices. Apart from handling these issues, stakeholders have

to keep in mind evolution issues both in the development (e.g., change in functionality of an

application) and deployment phase (e.g. adding, removing devices in deployment scenarios) at

the maintenance phase. Manual effort in all above three phases for hundreds to thousands of

heterogeneous devices is a time-consuming and error-prone process. Ideally, automation should

be provided that can reduce this manual effort by stakeholders.

Development Deployment

Maintenance

Figure I.3 – Different life cycle phases of IoT application development

Lack of special-purpose modeling languages. An IoT application corresponds to a specific

application domain (e.g., building automation) consisting of domain-specific features (e.g., the

applications in the building automation domain reason in terms of room and floors). Existing

modeling languages for IoT application development remain general purpose (e.g., the modeling

language proposed by PervML [Serral et al., 2010] relies on generic UML notations). Thus,

they provide little guidance to stakeholders about the application domain. We believe that

further customization of this approach is needed with respect to domain-specific features. In

this manner, domain-specific knowledge should be available to stakeholders and can be reused

across applications.

The challenges discussed above are not completely new. In fact they have been investigated

at length in the domains of software engineering and model-driven design, and more specifically

in wireless sensor network macroprogramming, the precursor to our work. In the next section,

we summarize the application development techniques from those domains, which we base our
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work on.

4 Application development approaches

This section studies existing application development approaches available to stakeholders

for IoT application development. Throughout this thesis, we will use the term stakeholders as

used in software engineering to mean – people, who are involved in the application development.

Examples of stakeholders defined in [Taylor et al., 2009] are software designer, developer, domain

expert, technologist, etc. The various application development approaches currently available

to stakeholders are discussed next. For a detailed discussion of various systems available for

application development, we refer the reader to Chapter II.

4.1 Node-centric and Macro-programming

Currently, development in the IoT is performed at the node level, by experts in embedded

and distributed systems, who are directly concerned with operations of each device individually.

They think in terms of activities of individual devices and explicitly encode their interaction

with other devices. For example, they write a program that reads sensing data from appropriate

sensor devices, aggregates data pertaining to the some external events, decides where to send

it addressed by ID or location, and communicates with actuators if needed. Stakeholders in

WSN, for example, use general-purpose programming languages (such as nesC [Gay et al.,

2003], galsC [Cheong and Liu, 2005], or Java) and target a particular middleware API or

node-level service [Costa et al., 2007; Frank and Römer, 2005; Whitehouse et al., 2004]. The

Gaia [Román et al., 2002] distributed middleware infrastructure for pervasive environments

supports application development using C++.

Although node-centric programming allows for the development of extremely efficient sys-

tems based on complete control over individual devices, it is not easy to use for IoT applications

due to the large size and heterogeneity of systems. For instance, to develop an IoT application,

stakeholders have to specify functions individually at each device – one each for sensing the

environment, communicating with other devices, processing sensed data, as well as controlling

actuators attached to each device.

An alternative approach to development of IoT applications comes from the WSN domain

in the form of sensor network macroprogramming. This approach aims to aid stakeholders by

providing the ability to specify their applications at a global level rather than individual nodes.

In macroprogramming systems, abstractions are provided to specify high-level collaborative
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Figure I.4 – Comparing node-centric and macroprogramming

behaviors, while hiding low-level details such as message passing or state maintenance from

stakeholders. Stakeholders describe their application using these abstractions, which is then

compiled to node-level code. Pathak et al. [Pathak et al., 2007] define this compilation process as

the semantic-preserving transformation of a high level application specification into a distributed

software system collaboratively hosted by the individual nodes.

As illustrated in Figure I.4, stakeholders using WSN macroprogramming reason at a high-

level of abstraction compared to node-centric programming, while the process of transforming

the high-level specification to a node-level code is delegated to a compiler. Consequently, macro-

programming is a viable approach compared to the node-centric programming, as demonstrated

by the several efforts [Bakshi et al., 2005; Hnat et al., 2008; Newton et al., 2007]. However, most

of macroprogramming systems largely focus on development phase (cf. Figure I.4) while igno-

ring the fact that it represents a tiny fraction of the application development life-cycle [Bischoff

and Kortuem, 2007; Losilla et al., 2007]. The lack of a software engineering methodology to

support the entire application development life-cycle commonly results in highly difficult to

maintain, reuse, and platform-dependent design, which can be tackled by the model-driven

approach discussed in the next section.
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4.2 Model-driven development

The primary goal of Model-driven development (MDD) approach is to allow specifications

of applications independently of specific implementation platforms such as programming lan-

guages and middleware [France and Rumpe, 2007; Mellor et al., 2003; Schmidt, 2006]. This

approach applies the basic separation of concerns [Parnas, 1972] principal vertically by separa-

ting the specification of the system functionality from its specification on a specific platform.

The former is defined as a platform independent model (PIM), the latter as platform specific

model (PSM). (The object management group (OMG) defines a platform as “a set of subsystem

and technologies that provide a coherent set of functionality through interfaces and usage pat-

terns”.) Examples of platforms are operating systems, programming languages, vendor specific

databases, user interfaces, middleware solutions, etc. Figure I.5 illustrates the relationship bet-

ween PIM and PSM. The mapping from PIM to PSM is performed using model transformation.

In this view, code generation is regarded as a special kind of model transformation, as the code

really is a model description in accordance with the meta-model of the actual programming

language [Solberg et al., 2005].

PIM

PSM PSM

E.g. J2EE E.g. .Net

transformation
Vertical 

separation of concern

Figure I.5 – OMG’s Model-driven development : main concepts

Several MDD approaches [Kulkarni and Reddy, 2003; Solberg et al., 2005] argue that vertical

separation is not enough to reduce application development complexity, and mechanisms for

both vertical and horizontal separation of concerns should be provided. Vertical separation

reduces the application development complexity through abstraction and horizontal separation

of concern reduces it by describing the system using different system views, each view describing

a certain facet of the system. Kulkarni et al. describe this concept in graphical form shown

in Figure I.6. Application development starts with an abstract specification A, which is to

be transformed into a concrete implementation C. A can be separated into different views

A1 . . . An, each view defining a set of properties corresponding to the concern it models. Each

Ai can be transformed into Ci, with application level composition of C1 . . . Cn giving C, the
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intended implementation of A.

A

A1

C1

C

...

...

A2 AnPIM

PSM

Vertical 

separation

Horizontal 

separation

C2 Cn

Transformation

Figure I.6 – Model-driven development : horizontal and vertical separation of concerns

By following MDD guideline, numerous benefits can be achieved [Picek and Strahonja, 2007].

These benefits came from the basic idea that by separating different concerns of a system

at a certain level of abstraction, and by providing transformation engines to convert these

abstractions to a target code, productivity (e.g., reusability, maintainability) in the application

development process can be improved.

5 Aim of thesis

The aim of this thesis is to make IoT application development easy for stakeholders as is

the case in software engineering in general, by taking inspiration from the MDD approach and

building upon work in sensor network macroprogramming. In particular, the aim of thesis is to

achieve the following objectives :
– To separate IoT application development into different concerns, so stakeholders can deal

with them individually at evolution and reuse them across applications.

– To integrate the identified development concerns into a well-defined and structured deve-

lopment process, so stakeholders have a precise sequence of steps to follow, thus smoothing

the application development.

– To provide high-level modeling languages addressing IoT characteristics. This helps sta-

keholders to reduce both complexity and development effort associated with IoT applica-

tions.

– To automate IoT application development where possible. This helps to reduce develop-

ment effort of stakeholders.
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6 Thesis contributions

This thesis proposes a development methodology 2 for IoT application development, based

on techniques presented in the domains of sensor network macroprogramming and model-driven

development. It separates IoT application development into different concerns and integrates

a set of high-level languages to specify them. This methodology is supported by automation

techniques at different phases of IoT application development. We now present the contributions

of this thesis described below :

Development methodology. We propose a development methodology that defines a precise

sequence of steps to be followed to develop IoT applications, thus facilitating IoT application

development. These steps are separated into four concerns, namely, domain, functional, de-

ployment, and platform. This separation allows stakeholders to deal with them individually

and reuse them across applications. Each concern is matched with a precise stakeholder ac-

cording to skills. The clear identification of expectations and specialized skills of each type of

stakeholders helps them to play their part effectively.

Development framework. To support the actions of each stakeholder, the development me-

thodology is implemented as a concrete development framework 3. It provides a set of modeling

languages, each named after “Srijan”, 4 and offers automation techniques at different phases of

IoT application development, including the following :

– A set of modeling languages. To aid stakeholders, the development framework inte-

grates three modeling languages that abstract the scale and heterogeneity-related complex-

ity : (1) Srijan Vocabulary Language (SVL) to describe domain-specific features of an

IoT application, (2) Srijan Architecture Language (SAL) to describe application-specific

functionality of an IoT application, (3) Srijan Deployment Language (SDL) to describe

deployment-specific features consisting information about a physical environment where

devices are deployed. SAL and SDL are customized with respect to concepts defined

using SVL. This enables knowledge sharing and reusability of domain knowledge across

IoT applications.

2. Sommerville [Sommerville, 2010, 9th edition] defines development methodology as“a set of related activities
that leads to the production of a software product.”These involves phases, including software specification, design,
implementation, validation, and evolution.

3. It includes support programs, code libraries, high-level languages or other software that help stakeholders
to develop and glue together different components of a software product. Various literature use different terms
in different context such a software framework, tool-driven development methodology, compilation framework,
etc. We use term “development framework” in this thesis.

4. Srijan is the sanskrit word for “creation”, and our work builds upon ideas introduced in the Srijan toolkit
for sensor network macroprogramming [Pathak and Gowda, 2009].
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– Automation techniques. The development framework is supported by code-generation,

task-mapping, and linking techniques. These three techniques together provide automa-

tion at various phases of IoT application development. Code generation supports the

application development phase by producing a programming framework that reduces the

effort in specifying the details of the components of an IoT application. Mapping and lin-

king together support the deployment phase by producing device-specific code to result

in a distributed system collaboratively hosted by individual devices.

Our work on the above is supported at the lower layers by a middleware that enables delivery

of messages across physical regions, thus enabling our abstractions for managing large scales in

the Internet of Things.

7 Thesis structure

The remainder of this thesis is organized as follows :
– Chapter II reviews related work. We explore state of the art approaches for developing

IoT applications and compare them with respect to the research challenges.

– Chapter III presents our development methodology and its development framework. This

includes details of on modeling languages, automation techniques, and our approach for

handling evolutions.

– Chapter IV presents an implementation of our development framework. We present tools,

technologies, and programming languages used to implement this development framework.

– Chapter V evaluates the development framework in a quantitative manner. We explore

three aspects to evaluate our approach : effort to develop applications using our approach,

reusability of implementations and specification across applications, and code quality of

the framework generated by our approach.

– Chapter VI summarizes this thesis and describes briefly some future directions of this

work.

– For completeness, we include the grammar of three modeling languages (SVL, SAL, and

SDL) in Appendix 1. Two application specifications of the building automation domain

written using these modeling languages are presented in Appendix 2.
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Related work

This chapter focuses on existing works in literature that would address the research chal-

lenges discussed in Chapter I. As stated earlier, while the application development life-cycle has

been discussed in general in the software engineering domain, a similar structured approach is

largely lacking in the IoT for the development of Sense-Computer-Control (SCC) [Taylor et al.,

2009, p. 97] applications. Consequently, in this chapter we present existing approaches gea-

red towards the IoT, but also its precursor fields of Pervasive Computing and Wireless Sensor

Networking. These are mature fields, with several excellent surveys available on programming

models [Mottola and Picco, 2011; Sugihara and Gupta, 2008] and middleware [Henricksen and

Robinson, 2006]. We organize this chapter based on the perspective of the system provided to

the stakeholders by the various approaches. Section 1 presentes the node-level programming

approaches, where the developer has significant control over the actions of each device in the

system, which comes at the cost of complexity. Section 2 summarizes approaches that aim to abs-

tract the entire (sensing) system as a database on which one can run queries. Section 3 presents

the evolution of these approaches to macroprogramming inspired by general-purpose program-

ming languages, where abstractions are provided to specify high-level collaborative behaviors

at the system-level while hiding low-level details from stakeholders. Section 4 then describes the

macroprogramming approaches more grounded in model-driven development techniques, which

aim to provide a cleaner separation of concerns during the application development process.

Finally, Section 5 compares the discussed approaches with respect to the research challenges

discussed in Chapter I.

1 Node-centric programming

In this approach, which is most commonly used, stakeholders think in terms of single device

activities and explicitly encode its interaction with other devices. For example, they write a
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program in nesC for TinyOS [Levis et al., 2005] that reads sensing data from appropriate

sensing devices, aggregates data pertaining to the some external events, decides where to send

it addressed by ID or location, and communicates with actuators if needed. Stakeholders use

general-purpose programming language (e.g., Java, C++) and target a particular middleware

API or node-level service to develop an application. The node-centric programming makes

it possible to develop extremely efficient applications by allowing control over each device.

However, due to a large size of the systems, continuous evolution in hardware and software

components, and a limited expertise of stakeholders, this approach is not easy to use for IoT

application development. In the following, we present systems that adopt the node-centric

approach.

In the pervasive computing domain, Olympus [Ranganathan et al., 2005] is a programming

model on top of Gaia [Román et al., 2002] – a distributed middleware infrastructure for pervasive

environments. Stakeholders write a C++ program that consists of a high-level description about

active space entities (including service, applications, devices, physical objects, and locations)

and common active operations (e.g., switching devices on/, starting/stopping applications). The

Olympus framework takes care of resolving high-level description based on properties specified

by stakeholders. While this approach certainly simplifies the SCC application development

involving heterogeneous devices, stakeholders have to write a lot of code to interface hardware

and software components, as well as to interface software components and its interactions with

a distributed system. This makes it tedious to develop applications involving a large number of

devices.

The Context toolkit [Dey et al., 2001; Salber et al., 1999] simplifies the context-aware ap-

plication development on top of heterogeneous data sources by providing three architectural

components, namely, widgets, interpreters, and aggregators. These components separate appli-

cation semantics from platform-specific code. For example, an application does not have to be

modified if an Android-specific sensor is used rather than a Sun SPOT sensor. It means stake-

holders can treat a widget in a similar fashion and do not have to deal with differences among

platform-specific code. Although context toolkit provides support for acquiring the context data

from the heterogeneous sensors, it does not support actuation that is an essential part of IoT

applications.

Henricksen et al. [Bettini et al., 2010; Henricksen and Indulska, 2006] propose a middleware

and a programming framework to gather, manage, and disseminate context to applications.

This work introduces context modeling concepts, namely, context modeling languages, situation

abstraction, and preference and branching models. This work presents a software engineering

process that can be used in conjunction with the specified concepts. However, the clear separa-
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tion of roles among the various stakeholders is missing. Moreover, this framework limits itself

to context gathering applications, thus not providing the actuation support that is important

for IoT application development.

Physical-Virtual mashup. As indicated by its name, it connects web services from both the

physical and virtual world through visual constructs directly from web browsers. The embed-

ded device runs tiny web servers [Duquennoy et al., 2009] to answer HTTP queries from users

for checking or changing the state of a device. For instance, users may want to see tempera-

ture of different places on map. Under such requirements, stakeholders can use the mashup

to connect physical services such as temperature sensors and virtual services such as Google

map. Many mashup prototypes have been developed that include both the physical and vir-

tual services [Blackstock and Lea, 2012; Castellani et al., 2012; Ghidini et al., 2012; Guinard

et al., 2010; Gupta et al., 2010]. The mashup editor usually provides visual components re-

presenting web service and operations (such as add, filter) that stakeholders need to connect

together to program an application. The framework takes care of resolving these visual com-

ponents based on properties specified by stakeholders and produces code to interface software

components and distributed system. The main advantage of this mashup approach is that any

service, either physical or virtual, can be mashed-up if they follow the standards (e.g., REST).

The Physical-Virtual mashup significantly lowers the barrier of the application development.

However, stakeholders have to manage a potentially large graph for an application involving

a large number of entities. This makes it difficult to develop applications containing a large

number of entities.

2 Database approach

Since a large part of these systems consists of devices that sense the environment, a natural

abstraction for thinking of their functionality at a high level is that of a database, providing

access to sensed data. This approach views the whole sensor network as a virtual database

system. It provides an easy-to-use interface that lets stakeholders issue queries to a sensor

network to extract the data of interest.

In TinyDB [Madden et al., 2005] and Cougar [Yao and Gehrke, 2002] systems, an SQL-

like query is submitted to a WSN. On receiving a query, the system collects data from the

individual device, filters it, and sends it to the base station. They provide a suitable interface

for data collection in a network with a large number of devices. However, they do not offer much

flexibility for introducing the application logic. For example, stakeholders require extensive
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modifications in the TinyDB parser and query engine to implement new query operators.

The work on SINA (Sensor Information Networking Architecture) [Shen et al., 2001] over-

comes this limitation on specification of custom operators by introducing an imperative language

with an SQL query. In SINA, stakeholders can embed a script written in Sensor Querying and

Tasking Language (SQTL) [Jaikaeo et al., 2000] in the SQL query. By this hybrid approach,

stakeholders can perform more collaborative tasks than what SQL in TinyDB and Cougar can

describe.

The TinyDB, Cougar, and SINA systems are largely limited to homogeneous devices. The

IrisNet (Internet-Scale Resource-Intensive Sensor Network) [Gibbons et al., 2003] allows stake-

holders to query a large number of distributed heterogeneous devices. For example, Internet-

connected PCs source sensor feeds and cooperate to answer queries. Similar to the other da-

tabase approaches, stakeholders view the sensing network as a single unit that supports a

high-level query in XML. This system provides a suitable interface for data collection from a

large number of different types of devices. However, it does not offer flexibility for introducing

the application logic, similar to TinyDB and Cougar.

Semantic Streams [Whitehouse et al., 2006] allows stakeholders to pose a declarative query

over semantic interpretations of sensor data. For example, instead of querying raw magnetome-

ter data, stakeholders query whether a vehicle is a car or truck. The system infers this query and

decides sensor data to use to infer the type of vehicle. The main benefit of using this system is

that it allows people, with less technical background to query the network with heterogeneous

devices. However, it presents a centralized approach for sensor data collection that limits its

applicability for handling a network with a large number of devices.

A number of systems have been proposed to expose functionality of devices accessible

through standardized protocols without having worry about the heterogeneity of underlying

infrastructure [Mohamed and Al-Jaroodi, 2001]. They logically view sensing devices (e.g., mo-

tion sensor, temperature sensor, door and window sensor) as service providers for applications

and provide abstractions usually through a set of services. We discuss these examples below.

TinySOA [Avilés-López and Garćıa-Maćıas, 2009] is a service-oriented architecture that

provides a high-level abstraction for WSN application development. It allows stakeholders to

access WSNs using service-oriented APIs provided by a gateway. The APIs provide functions

to obtain information about the network, listing devices, and sensing parameters. The gateway

component acts as a bridge between a WSN and an application. The gateway consists of a

WSN infrastructure registry and discovery components. Through these components, the gate-

way allows stakeholders to access data from a WSN without dealing with low-level details. This

system provides suitable interfaces from a large number of different types of devices for data
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collection. However, every device in TinySOA is pre-configured and sends data to the base sta-

tion only. Thus, the flexibility for in-network processing is limited, similar to TinyDB, Cougar,

and IrisNet.

Priyantha et al. [Priyantha et al., 2008] present an approach based on SOAP [Box et al.,

2000] to enable an evolutionary WSN where additional devices may be added after the initial

deployment. To support such a system, this approach has adopted two features. (1) structured

data : the data generated by sensing devices are represented in a XML format for that may

be understood by any application. (2) structured functionality : the functionality of a sensing

device is exposed by Web Service Description Language (WSDL) [Chinnici et al., 2007]. While

this system addresses the evolution issue in a target deployment, the authors do not demons-

trate the evolution scenarios such as a change in functionality of an application, technological

advances in deployment devices.

A number of approaches based on REST [Fielding, 2000] have been proposed to overcome the

resource needs and complexity of SOAP-based web services for sensing and actuating devices.

TinyREST [Luckenbach et al., 2005] is one of first attempts to overcome these limitations. It

uses the HTTP-based REST architecture to access a state of sensing and actuating devices.

The TinyREST gateway maps the HTTP request to TinyOS messages and allows stakeholders

to access sensing and actuating devices from their applications. The aim of this system is

to make services available through standardized REST without having to worry about the

heterogeneity of the underlying infrastructure; that said, it suffers from a centralized structure

similar to TinySOA.

3 General-purpose macroprogramming languages

To provide a flexibility for any-to-any device collaboration (one of limitations of database

approach) while preserving global network abstractions, a number of macroprogramming lan-

guages have been proposed. They allow stakeholders to specify an application as a global pro-

gram, which can then be decomposed into smaller programs that execute on devices. In the

following, we present macroprogramming languages for IoT application development, which

are grounded in traditional general purpose programming langauges (whether imperative or

functional) in order to provide developers with familiar abstractions.

Kairos [Gummadi et al., 2005] allows stakeholders to program an application in a Python-

based language. The Kairos developers write a centralized program of a whole application.

Then, the pre-processor divides the program into subprograms, and later its compiler compiles
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it into binary code containing code for accessing local and remote variables. Thus, this binary

code allows stakeholders to program distributed sensor network applications. Although Kairos

makes the development task easier for stakeholders, it targets homogeneous network where each

device executes the same application.

Regiment [Newton et al., 2007] provides a high-level programming language based on Haskell

to describe an application as a set of spatially distributed data streams. This system provides

primitives that facilitate processing data, manipulating regions, and aggregating data across

regions. The written program is compiled down to an intermediate token machine language

that passes information over a spanning tree constructed across the WSN. In contrast to the

database approaches, this approach provides greater flexibility to stakeholders when it comes

to the application logic. However, the regiment program collects data to a single base station.

It means that the flexibility for any-to-any device collaboration for reducing scale is difficult.

MacroLab [Hnat et al., 2008] offers a vector programming abstraction similar to Matlab for

applications involving both sensing and actuation. Stakeholders write a single program for an

entire application using Matlab like operations such as addition, find, and max. The written

macroprogram is passed to the MacroLab decomposer that generates multiple decompositions

of the program. Each decomposition is analyzed by the cost analyzer that calculates the cost of

each decomposition with respect to a cost profile (provided by stakeholders) of a target deploy-

ment. After choosing a best decomposition by the cost analyzer, it is passed to the compiler that

converts the decomposition into a binary executable. The main benefit is that it offers flexibi-

lity of decomposing code according to cost profiles of the target platform. While this system

certainly separates the deployment aspect and functionality of an application, this approach

remains general purpose and provides little guidance to stakeholders about the application

domain.

4 Model-based macroprogramming

As an evolution of the approaches discussed above which are based on general-purpose

programming languages, model-driven approaches to macroprogramming aim to provide greater

coverage of the software development lifecycle. They aim to specify an application using high-

level abstract models that can be transformed into concrete implementations by automated code

generators. A number of model-driven approaches have been proposed to make IoT application

development easy.

PervML [Serral et al., 2010] allows stakeholders to specify pervasive applications at a high-
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level of abstraction using a set of models. This system raises the level of abstraction in program

specification, and code generators produce code from these specifications. Nevertheless, it adopts

generic UML notations to describe them, thus provides little guidance to stakeholders about

the specific application domain. In addition to this, the main focus of this work is to address

the heterogeneity associated with pervasive computing applications, and the consideration of a

large number of devices in an application is missing. PervML integrates the mapping process at

the deployment phase. However, stakeholders have to link the application code and configure

device drivers manually. This manual work in the deployment phase is not suitable for IoT

applications involving a large number of devices. Moreover, the separation between deployment

and domain-specific features are missing. These limitations would restrict PervML to a certain

level.

DiaSuite [Cassou et al., 2012] is a suite of tools to develop pervasive computing applications.

It combines design languages and covers application development life-cycle. The design language

defines both a taxonomy of an application domain and an application architecture. Stakeholders

define entities in a high-level manner to abstract heterogeneity. However, the consideration

of a large number of devices in an application is largely missing. Moreover, the application

deployment for a large number of heterogeneous devices using this approach is difficult because

stakeholders require manual effort (e.g., mapping of computational services to devices).

Our work takes inspiration from ATaG [Pathak and Prasanna, 2011], which is a WSN is

a macroprogramming framework to develop SCC applications. The notion of abstract task,

abstract data item, and abstract channel are the core of this framework. An abstract task

encapsulates the processing of data items. The flow of information among abstract tasks is

specified in terms of input and output data items. Abstract channels connect abstract tasks

to data items. ATaG presents a compilation framework that translates a program, containing

abstract notations, into executable node-level programs. Moreover, it tackles the issue of scale

reasonably well. The ATaG linker and mapper modules support the application deployment

phase by producing device-specific code to result in a distributed software system collaboratively

hosted by individual devices, thus providing automation at deployment phase. Nevertheless, the

clear separation of roles among the various stakeholders in the application development, as well

as the focus on heterogeneity among the constituent devices are largely missing. Moreover, the

ATaG program notations remains general purpose and provides little guidance to stakeholders

about the application domain.

RuleCaster [Bischoff and Kortuem, 2006, 2007] introduces an engineering method to provide

support for SCC applications, as well as evolutionary changes in the application development.

The RuleCaster programming model is based on a logical partitioning of the network into spatial
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regions. Each region is in one discrete state. A rule-based language is used to specify a transition

of the state, where each rule consists of two parts : (1) body and (2) head. The body part

specifies a fire condition, and the head part specifies one or more actions when the condition

becomes true. The RuleCaster compiler takes as input the application program containing

rules and a network model that describes device locations and its capabilities. Then, it maps

processing tasks to devices. Similar to ATaG, this system handles the scale issue reasonably

well by partitioning the network into several spatial regions. Moreover, it supports automation

at the deployment phase by mapping computational components to devices. However, the clear

separation of roles among the various stakeholders, support for application domain, as well as

the focus on heterogeneity among the constituent devices are missing.

Pantagruel [Drey et al., 2009] is a visual approach dedicated to the development of home

automation applications. The Pantagruel application development consists of three steps : (1)

specification of taxonomy to define entities of the home automation domain (e.g., temperature

sensor, alarm, door, smoke detector, etc.), (2) specification of rules to orchestrate these entities

using the Pantagruel visual language, and (3) compilation of the taxonomy and orchestration

rules to generate a programming framework. The novelty of this approach is that the orchestra-

tion rules are customized with respect to entities defined in the taxonomy. While this system

reduces the requirement of having domain-specific knowledge for other stakeholders, the clear

separation of different development concerns, support for large scale, automation both at the

development and deployment phase are largely missing. These limitations make it difficult to

use for IoT application development.

5 Chapter summary and conclusion

This chapter has investigated existing works for IoT application development. Table II.1

compares approaches with respect to the challenges discussed in Chapter I. The symbol “
√

”

means the challenge is supported by the approach, “×” means “not supported”, and “∼” means

“no adequately supported”. Due to similarity, we pick one representative system in some cases.

For instance, TinyDB and Cougar have adopted SQL-based interface for collecting data. So,

we take only TinyDB as a representative example.

As illustrated in Table II.1, our investigation has revealed that many ideas have been propo-

sed for addressing the research challenges individually. However, none of the examined approach

addresses all of the identified challenges to a sufficient extent. More specifically, we note the

following observations based on our literature survey :
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Division of roles. Most of the application development approaches do not divide roles of

stakeholders to a sufficient extent. This is in clear conflict with the varied set of skills required

during IoT application development, including domain expertise, deployment-specific know-

ledge, application design and implementation skill, and ability to deal with operating system

and hardware-specific details. The clear identification of expectations and specialized skills of

each type of stakeholder is necessary to play their part effectively to smoothen the application

development.

Heterogeneity and Scale. Existing approaches address the scale and heterogeneity challenge,

but individually. None of the examined approach addresses these two challenges to a sufficient

extend. IoT applications are heterogeneous in terms of device types, interaction modes, and dif-

ferent implementations. Moreover than this, they may execute on systems consists of hundreds

to thousands of devices. Therefore, it is important to address both the issues in one approach.

General purpose modeling languages. Some approaches customize modeling languages

with respect to an application domain. However, most of approaches remain general purpose

(e.g., a modeling language proposed by PervML relies on generic UML notations), thus provide

little guidance to stakeholders about the application domain. The key advantage of the custo-

mization is that domain-specific knowledge is made available to stakeholders and can be reused

across applications of the same application domain, and thus the “one-size-fits-all” approach

needs to be revisited for IoT application development.

Evolution. An IoT application may involve a number of changes such as technological advances

with new software features and changes in a distribution of devices in a target deployment,

deployment of the same application on a different deployment, changes in functionality of an

application. Existing approaches do not address these evolutionary changes to a sufficient extent.

Therefore, it is necessary to consider them comprehensively for IoT application development.

Automation at development phase. IoT applications involve a large number of heteroge-

neous devices. Consequently, stakeholders face the prospect of spending a lot of time in manual

effort that is attributed to the development and deployment phases of the application develop-

ment. While some approaches address poor automation problem at development phase to allow

stakeholders to focus on the application logic, they do not address automation at deployment

phase to a sufficient extend. Therefore, automation at both the deployment and development

phase remains missing in the existing approaches.

In conclusion, there is a need of designing a new approach that utilizes advantages and

promising features of the existing works to develop a comprehensive integrated approach while

focusing on ease of IoT application development.
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Chapter III

Our approach to IoT application development

Chapter I presented the challenges for IoT application development. Chapter II investigated

the existing works. The investigation revealed that many ideas have been proposed for addres-

sing the research challenges individually. However, none of the examined approaches addresses

all of the identified challenges to a sufficient extent. This chapter presents a novel IoT appli-

cation development approach that addresses the identified research challenges in an integrated

manner.

This chapter is organized into three sections. Section 1 provides an overview of our ap-

proach. Section 2 describes our approach in detail. Finally, Section 3 concludes this chapter by

summarizing how the identified research challenges are addressed by our approach.

1 Overview

A conceptual model often serves as a base of knowledge about a problem area [Fowler, 1996].

It represents the concepts as well as the associations among them and also attempts to clarify

the meaning of various terms. Leveraging the conceptual model for IoT applications we present

in Section 1.1, Section 1.2 presents our overall development methodology.

1.1 Conceptual model

Applying the separation of concerns design principal from software engineering, we break

the identified concepts and associations into different categories. We note that we are not the

first ones who have used separation of concerns as a fundamental method for implementing

applications. Taking inspiration from previous efforts [Bischoff and Kortuem, 2007; Cassou

et al., 2012; Doddapaneni et al., 2012], we have identified four major concerns for IoT applica-

tion development. Figure III.1 illustrates the concepts and their associations along with these
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Chapter III. Our approach to IoT application development

four separate concerns : (1) domain-specific concepts, (2) functionality-specific concepts, (3)

deployment-specific concepts, and (4) platform-specific concepts.

1.1.1 Domain-specific concepts

The concepts that fall into this category are specific to a target application domain (e.g.,

building automation, transport, etc.). For example, the building automation domain is reasoned

in terms of rooms and floors, while the transport domain is expressed in terms of highway

sectors. Furthermore, each domain has a set of entities of interest (e.g., average temperature

of a building, smoke presence in a room), which are observed and controlled by sensors and

actuators respectively. Storages store information about entities of interest, and user interfaces

enable users to interact with entities of interest (e.g., receiving notification in case of fire in a

building, controlling the temperature of a room). We describe these concepts in detail below :
– An Entity of Interest (EoI) is an object (e.g., room, book, plant), including attributes

that describe it, and its state that is relevant from a user or an application perspec-

tive [Haller, 2010, p. 1]. The entity of interest has an observable property called pheno-

menon. Typical examples are the temperature value of a room and a tag ID.

– A resource is a conceptual representation of a sensor, an actuator, a storage, or a user

interface. We consider the following types of resources :
– A sensor has the ability to detect changes in the environment. Thermometer and tag

readers are examples of sensors. The sensor observes a phenomenon of an EoI. For

instance, a temperature sensor observes the temperature phenomenon of a room.

– An actuator makes changes in the environment through an action. Heating or cooling

elements, speakers, lights are examples of actuators. The actuator affects a pheno-

menon of an EoI by performing actions. For instance, a heater is set to control a

temperature level of a room.

– A storage has the ability of storing data in a persistent manner. The storage stores

information about a phenomenon of an EoI. For instance, a database server stores

information about an employee’s temperature preference.

– A user interface represents tasks available to users to interact with entities of interest.

For the building automation domain, a task could be receiving a fire notification in case

of emergency or controlling a heater according to a temperature preference.

– A device is located in a region [Tubaishat and Madria, 2003]. The region is used to

specify the location of a device. In the building automation domain, a region (or location)

of a device can be expressed in terms of building, room, and floor IDs.
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1.1.2 Functionality-specific concepts

The concepts that fall into this category describe computational elements of an application

and interactions among them. A computational element is a type of software component, which

is an architectural entity that (1) encapsulates a subset of the system’s functionality and/or

data, (2) restricts access to that subset via an explicitly defined interface [Taylor et al., 2009,

p. 69]. We use the term application logic to refer a functionality of a software component.

An example of the application logic is to open a window when the average temperature value

of a room is greater than 30◦C.

The conceptual model contains the following functionality-specific software component, a

computational service, which is a type of software component that consumes one or more

units of information as inputs, processes it, and generates an output. An output could be

data message that is consumed by others or a command message that triggers an action of an

actuator. A computational service is a representation of the processing element in an application.

A software component communicates-with other software components to exchange data

or control. These interactions might contain instances of various interaction modes such as

request-response, publish-subscribe, and command. Note that this is in principle an instance of

the component-port-connector architecture used in software engineering.

1.1.3 Deployment-specific concepts

The concepts that fall into this category describe information about devices. Each device

hosts zero or more resources. For example, a device could host resources such as a temperature

sensor to sense, a heater to control a temperature level, a monitor to display a temperature

value, a storage to store temperature readings, etc. Each device is located-in regions. For

instance, a device is located-in room#1 of floor#12 in building#14. We consider the following

definition of a device :
– A device is an entity that provides resources the ability of interacting with other devices.

Mobile phones, and personal computers are examples of devices.

1.1.4 Platform-specific concepts

The concepts that fall into this category are computer programs that act as a (operating

system-specific) translator between a hardware device and an application. We identify the

following platform-specific concepts :
– A sensor driver is a type of software component that operates on a sensor attached

to a device. It accesses data observed by the sensor and generates the meaningful data
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that can be used by other software components. For instance, a temperature sensor driver

generates temperature values and its meta-data such as unit of measurement, time of

sensing. Another software component takes this temperature data as input and calculates

the average temperature of the room.

– An actuator driver is a type of software component that controls an actuator attached

to a device. It translates a command from other software components and actuates the

actuator appropriately. For instance, a heater driver translates a command “turn the

heater on” to regulate the temperature level.

– A storage service is a type of software component that provides a read and write

access to a storage. A storage service provides access to the storage. Other software

components access data from the storage by requesting the storage service. For instance,

MySQL storage service provides access to a database server.

– An end-user application is a type of software component that is designed to help a

user to perform tasks (e.g., receiving notifications, submitting information). It provides

access to available tasks. For instance, in the smart building application a user could

provide his temperature preferences using an application installed on his smart phone.

The next section presents a development methodology that links the above four concerns

and provides a conceptual framework to develop IoT applications.

1.2 A development methodology for IoT applications

To make IoT application development easy, stakeholders should be provided a structured and

well-defined application development process (referred to as development methodology). This

section presents a development methodology that integrates different development concerns

discussed in Section 1.1 and provides a conceptual framework for IoT application development.

In addition to this, it assigns a precise role to each stakeholder commensurate with his skills

and responsibilities.

As stated in chapter I, IoT application development is a multi-disciplined process where

knowledge from multiple concerns intersects. So far, IoT application development assumes that

the individuals have similar skills. While this may be true for simple/small applications for

single-use deployments, as the IoT gains wide acceptance, the need for sound software enginee-

ring approaches to adequately manage the development of complex applications arises.

Taking inspiration from ideas proposed in the 4+1 view model of software architecture [Kruch-

ten, 1995], collaboration model for smart spaces [Chen et al., 2012], and tool-based methodology

for pervasive computing [Cassou et al., 2012], we propose a development methodology that pro-
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vides a conceptual framework to develop an IoT application (detailed in Figure III.2). The

development methodology divides the responsibilities of stakeholders into five distinct roles

—domain expert, software designer, application developer, device developer, and network ma-

nager. Note that although these roles have been discussed in the software engineering literature

in general, e.g., domain expert and software designer in [Taylor et al., 2009, p. 657], application

developer [Cassou et al., 2012, p. 3], their clear identification for IoT applications is largely mis-

sing. Due to the existance of various, slightly varying, definitions in literature, we summarize

the skills and responsibilities of the various stakeholders in Table III.1

Role Skills Responsibilities

Domain expert Understands domain concepts, inclu-
ding the data types produced by the
sensors, consumed by actuators, acces-
sed from storages, user’s interactions,
and how the system is divided into re-
gions.

Specify the vocabulary of an applica-
tion domain to be used by applications
in the domain.

Software designer Software architecture concepts, inclu-
ding the proper use of interaction
modes such as publish-subscribe, com-
mand, and request-response for use in
the application.

Define the structure of an IoT applica-
tion by specifying the software compo-
nents and their generate, consume, and
command relationships.

Application developer Skilled in algorithm design and use of
programming languages.

Develop the application logic of the
computational services in the applica-
tion.

Device developer Deep understanding of the inputs/out-
puts, and protocols of the individual
devices.

Write drivers for the sensors, actua-
tors, storages, and end-user applica-
tions used in the domain.

Network manager Deep understanding of the specific tar-
get area where the application is to be
deployed.

Install the application on the system at
hand; this process may involve the ge-
neration of binaries or bytecode, and
configuring middleware.

Table III.1 – Roles in IoT application development

An application corresponds to a specific application domain (e.g., building automation,

health-care, transport) consisting of domain-specific concepts. Keeping this in mind, we separate

the domain concern from other concerns (see Figure III.2, stage 1). The main advantage of

this separation is that domain-specific knowledge can be made available to stakeholders and

reused across applications of a same application domain.

IoT applications closely interact with the physical world. Consequently, changes in either of

them have a direct influence on the other. The changes could be technological advances with

new software features, a change in functionality of an application, a change in distribution of
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devices, and adding or replacing devices. Considering this aspect, we separate IoT application

development into the platform, functional, and deployment concern at the second stage (see

Figure III.2, stage 2). Thus, stakeholders can deal with them individually and reuse them

across applications. The final stage combines and packs the code generated by the second stage

into packages that be deployed on devices (see Figure III.2, stage 3).

2 Multi-step IoT application development process

2.1 Overview

To support actions of stakeholders, the development methodology discussed in Section 1.2

is implemented as a concrete development framework. This section presents this development

framework that provides a set of modeling languages, each named after Srijan 1, and offers

automation techniques at different phases of IoT application development for the respective

concerns.

2.1.1 Domain concern

This concern is related to domain-specific concepts of an IoT application. It consists of the

following steps :

– Specifying domain vocabulary. The domain expert specifies a domain vocabulary

using the Srijan Vocabulary Language (SVL). The vocabulary includes specification of

resources, which are responsible for interacting with entities of interest. In the vocabu-

lary, resources are specified in a high-level manner to abstract low-level details from the

domain expert. Moreover, the vocabulary includes definitions of regions that define spatial

partitions (e.g., room, floor, building) of a system.

– Compiling vocabulary specification. Leveraging the vocabulary, the development

framework generates : (1) a vocabulary framework to aid the device developer, (2) a

customized architecture grammar according to the vocabulary to aid the software designer,

and (3) a customized deployment grammar according to the vocabulary to aid the network

manager. The key advantage of this customization is that the domain-specific concepts

defined in the vocabulary are made available to other stakeholders and can be reused

across applications of the same application domain.

1. the Sanskrit word for “creation”
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2.1.2 Functional concern

This concern is related to functionality-specific concepts of an IoT application. It consists

of the following steps :

– Specifying application architecture. Using a customized architecture grammar, the

software designer specifies an application architecture using the Srijan Architecture Lan-

guage (SAL). SAL is an architecture description language (ADL) designed for specifying

computational services and their interactions with other software components. To faci-

litate scalable operations within IoT applications, SAL offers scope constructs. These

constructs allow the software designer to group devices based on their spatial relationship

to form a cluster (e.g., “devices are in room#1”) and to place a cluster head to receive

and process data from that cluster. The grouping and cluster head mechanism can be re-

cursively applied to form a hierarchical clustering that facilitates the scalable operations

within IoT applications.

– Compiling architecture specification. The development framework leverages an ar-

chitecture specification to support the application developer. To describe the application

logic of each computational service, the application developer is provided an architecture

framework, pre-configured according to the architecture specification of an application,

an approach similar to the one discussed in [Cassou et al., 2009].

– Implementing application logic. To describe the application logic of each computa-

tional service, the application developer leverages a generated architecture framework.

It contains abstract classes 2, corresponding to each computational service, that hide in-

teraction details with other software components and allow the application developer to

focus only on application logic. The application developer implements only the abstract

methods of generated abstract classes.

2.1.3 Deployment concern

This concern is related to deployment-specific concepts of an IoT application. It consists of

the following steps :

– Specifying target deployment. Using a customized deployment grammar, the net-

work manager describes a deployment specification using the Srijan Deployment Lan-

guage (SDL). The deployment specification includes the details of each device, including

its regions (in terms of values of the regions defined in the vocabulary), resources hos-

2. We assume that the application developer uses an object-oriented language.
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ted by devices (a subset of those defined in the vocabulary), and the type of the device.

Ideally, the same IoT application could be deployed on different target deployments (e.g.,

the same inventory tracking application can be deployed in different warehouses). This

requirement is dictated by separating a deployment specification from other specifications.

– Mapping. The mapper produces a mapping from a set of computational services to a set

of devices. It takes as input a set of placement rules of computational services from an

architecture specification and a set of devices defined in a deployment specification. The

mapper decides devices where each computational service will be deployed.

2.1.4 Platform concern

This concern is related to platform-specific concepts of an IoT application. It consists of the

following step :

– Implementing device drivers. Leveraging the vocabulary, our system generates a vo-

cabulary framework to aid the device developer. The vocabulary framework contains

interfaces and concrete classes corresponding to resources defined in the vocabulary. The

concrete classes contain concrete methods for interacting with other software components

and platform-specific device drivers. The interfaces are implemented by the device deve-

loper to write platform-specific device drivers.

2.1.5 Linking

The linker combines and packs code generated by various stages into packages that can be

deployed on devices. It merges generated architecture framework, application logic, mapping

files, device drivers, and vocabulary framework. This stage supports the application deployment

phase by producing device-specific code to result in a distributed software system collaboratively

hosted by individual devices, thus providing automation at the deployment phase 3.

2.1.6 Handling evolution

Evolution is an important aspect in IoT application development where new resources and

computational services are added, removed, or extended. To deal with these changes, our de-

velopment framework separates IoT application development into different concerns and allows

an iterative development [Sommerville, 2010] for these concerns.

3. We assume that a middleware is already installed on the deployed devices. The installed middleware
enables inter-device communication among devices.
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This next section provides the details of our approach including three modeling languages (SVL,

SAL, and SDL), programming frameworks to aid stakeholders, and an approach for handling

evolution. This section refers to the building automation domain discussed in Chapter I for

describing examples.

2.2 Specifying domain concern with the Srijan vocabulary language

(SVL)

The domain concern describes an application domain of an IoT application. The domain

expert specifies it using SVL. A vocabulary includes specification of resources that are respon-

sible for interacting with entities of interest, including sensors, actuators, storages, and user

interfaces. Moreover, it includes region definitions specific to the application domain. We now

present SVL for describing the domain concern.

SVL is designed to enable the domain expert to describe a domain vocabulary domain. It

offers constructs to specify concepts that interact with entities of interest. Figure III.3 illustrates

domain-specific concepts (defined in the conceptual model Figure III.1) that can be specified

using SVL. These concepts can be described as V = (P ,D,R). P represents the set of regions,

D represents the set of data structure, and R represents the set of resources. We describe these

concepts in detail as follows :

Region
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  1..*   1..*   1..*

*
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Figure III.3 – Class diagram of domain-specific concepts

regions (P). It represents the set of regions that are used to specify locations of devices. A

region definition includes a region label and region type. For example, the building automation is
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reasoned in terms of rooms and floors (considered as region labels), while the transport domain

is expressed in terms of highway sectors. Each room or floor in a building may be annotated

with an integer value (e.g. room : 1 interprets as room number 1) considered as region type.

This construct is declared using the regions keyword. Listing III.1 (lines 1-4) shows region

definitions for the building automation domain.

data structures (D). Each resource is characterized by types of information it generates or

consumes. A set of information is defined using the structs keyword (Listing III.1, line 5).

For instance, a temperature sensor may generate a temperature value and unit of measure-

ment (e.g., Celsius or Fahrenheit). This information is defined as TempStruct and its two

fields (Listing III.1, lines 9-11).

resources (R). It defines resources that might be attached with devices, including sensors,

actuators, storages, or user interfaces. It is defined as R = (Rsensor,Ractuator,Rstorage,Rui).
Rsensor represents a set of sensors, Ractuator represents a set of actuators, Rstorage represents

a set of storages, and Rui represents a set of user interfaces. We describe them in detail as

follows :
– sensors (Rsensor) : It defines a set of various types of sensors (e.g., temperature sensor,

smoke detector). A set of sensors is declared using the sensors keyword (Listing III.1,

line 13). Sgenerate is a set of sensor measurements produced by Rsensor. Each sensor (S ∈
Rsensor) produces one or more sensor measurements (op ∈ Sgenerate) along with the data-

types specified in the data structure (D). A sensor measurement of each sensor is declared

using the generate keyword (Listing III.1, line 17). For instance, a temperature sensor

generates a temperature measurement of Tempstruct type (lines 16-17) defined in data

structures (lines 9-11).

– actuators (Ractuator) : It defines a set of various types of actuator 4 (e.g., heater, alarm).

A set of actuators is declared using the actuators keyword (Listing III.1, line 18). Aaction

is a set of actions performed by Ractuator. Each actuator (A ∈ Ractuator) has one or more

actions (a ∈ Aaction) that is declared using the action keyword. An action of an actuator

may take inputs specified as parameters of an action (Listing III.1, line 21). For instance,

a heater may has two actions. One is to switch off the heater and second is to set the

heater according to a user’s temperature preference illustrated in Listing III.1, lines 19-21.

The SetTemp action takes a user’s temperature preference shown in line 21.

4. Since a deployment infrastructure may be shared among a number of different IoT applications and users,
it is likely that these applications may have actuation conflicts. This work assumes actuators are pre-configured
which can resolve actuation conflicts.
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– storages (Rstorage) : It defines a set of storages 5 (e.g., user’s profile storage) that

might be attached to a device. A set of storages is declared using the storages key-

word (Listing III.1, line 22). ST generate represents a set of retrievals of Rstorage. A re-

trieval (rq ∈ ST generate) from the storage (ST ∈ Rstorage) requires a parameter. Such a

parameter is specified using the accessed-by keyword (Listing III.1, line 24). For ins-

tance, a user’s profile is accessed from profile storage by his unique badge identification

illustrated in Listing III.1, lines 23-24.

– user interfaces (Rui) : It defines a set of tasks (e.g., controlling a heater, receiving

notification from a fire alarm, or requesting preference information from a database server)

available to users to interact with other entities. A set of user interfaces is declared using

the user interfaces keyword (Listing III.1, line 25). The user interface provides the

following tasks :
– command (Ucommand) : It is a set of commands available to users to control actuators,

represented as Ucommand. A user can control an actuator by triggering a command (e.g.,

switch off the heater) declared using the command keyword (Listing III.1, line 27).

– action (Uaction) : It is a set of actions that can be invoked by other entities to notify

users, represented as Uaction. The other resources may notify a user (e.g., notify the cur-

rent temperature) by invoking an action provided by the user interface. The notification

task is declared using the action keyword (Listing III.1, line 28).

– request (Urequest) : It is a set of request though which a user can request other resources

for data, represented as Urequest. A user can retrieve data by requesting a resource (e.g.,

retrieve my temperature preference). This is declared using the request keyword (Lis-

ting III.1, line 29).

1 regions:

2 Building: integer;

3 Floor: integer;

4 Room: integer;

5 structs:

6 BadgeDetectedStruct

7 badgeID: string;

8 timeStamp: long;

9 TempStruct

5. Even though IoT applications may include rich diverse set of storages available today on the Internet (e.g.,
RDBMs and noSQL databases, using content that is both user generated such as photos as well as machine
generated such as sensor data), we restrict our work to key-value data storage services.

37



Chapter III. Our approach to IoT application development

10 tempValue: double;

11 unitOfMeasurement: string;

12 resources:

13 sensors:

14 BadgeReader

15 generate badgeDetected: BadgeDetectedStruct;

16 TemperatureSensor

17 generate tempMeasurement: TempStruct;

18 actuators:

19 Heater

20 action Off();

21 action SetTemp(setTemp: TempStruct);

22 storages:

23 ProfileDB

24 generate profile: TempStruct accessed -by badgeID:

string;

25 userinterfaces:

26 EndUserGUI

27 command Off();

28 action DisplayData(displayTemp: TempStruct);

29 request profile(badgeID);

Listing III.1 – Code snippet of the building automation domain using SVL. Keywords are printed in
blue. For a full Listing of the vocabulary specification, see Appendix 2.

The regions (P), data structures (D), and resources (R) defined using SVL in the vocabulary

are used to customize the grammar of SAL, and can be exploited by tools to provide support

such as code completion to the software designer, discussed next.

2.3 Specifying functional concern

This concern describes computational services and how they interact with each other to

describe functionality of an application. We describe the computational services and interactions

among them using SAL (discussed in Section 2.3.1). The development framework customizes

the SAL grammar to make domain-specific knowledge defined in the vocabulary available to the

software designer and use it to generate an architecture framework. The application developer

leverages this generated framework and implements the application logic on top of it (discussed

38



III.2 Multi-step IoT application development process

in Section 2.3.2).

2.3.1 Srijan architecture language (SAL)

Based on a vocabulary, the SAL grammar is customized to enable the software designer to

design an application. Specifically, sensors (Rsensor), actuators (Ractuator), storages (Rstorage),

user interfaces (Rui), and regions (P) defined in the vocabulary become possible set of values

for certain attributes in SAL (see underlined words in Listing III.2). Appendix 1 presents a

customized SAL grammar with respect to the building automation domain.

Figure III.4 illustrates concepts related-to a computational service that can be specified

using SAL. It can be described as Av = (C). C represents a set of computational services. It is

described as C = (Cgenerate, Cconsume, Crequest, Ccommand, Cin−region, Chops). Cgenerate represents a set

of outputs produced by computational services. Cconsume is a set of inputs consumed by compu-

tational services. The inputs could be data produced by other computational services or sen-

sors (Rsensor). Crequest represents a set of request by computational services to retrieve data from

the storages (Rstorage). Ccommand represents a set of commands to invoke actuators (Ractuator)

or user interfaces (Rui). Cin−region is a set of regions (Rregion) where computational services can

be placed. Chops is a set of regions (Rregion) where computational services receive data. In the

following, we describe these concepts in detail.
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Figure III.4 – Class diagram of functionality-specific concepts

consume (Cconsume) and generate (Cgenerate). These two concepts together define publish/-
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subscribe interaction mode that provides subscribers with the ability to express their interest

in an event, generated by a publisher, that matches their registered interest. A computational

service represents the publish and subscribe using generate and consume concept respectively.

We describe these two concepts in details as follows :
– consume : It represents a set of subscriptions (or consumes) expressed by computa-

tional services to get event notifications generated by sensors (Sgenerate) defined in the

vocabulary specification or other computational services (Cgenerate) defined in the archi-

tecture specification. Thus, Cconsume can be Cgenerate ∪ Sgenerate. A consume (c ∈ Cconsume)

of a computational service is expressed using the consume keyword. The computational

service expresses its interest by an event name. For instance, a computational service

RoomAvgTemp, which calculates an average temperature of a room, subscribes its interest

by expressing event name tempMeasurement illustrated in Listing III.2, line 9.

– generate : It represents a set of publications (or generates) that are produced by compu-

tational services. A generate (g ∈ Cgenerate) of a computational service is expressed using

the generate keyword. The computational service transforms data to be consumed by

other computational services in accordance with the application needs. For instance, the

computational service RoomAvgTemp consumes temperature measurements (i.e., tempMea-

surement), calculates an average temperature of a room, and generates roomAvgTempMea-

surement (Listing III.2, lines 7-9) that is used by RoomController service (Listing III.2,

lines 11-12).

request (Crequest). It is a set of requests, issued by computational services, to retrieve data from

storages (Rstorage) defined in the vocabulary specification. A request is a one-to-one synchronous

interaction with a return values. In order to fetch data, a requester sends a request message

containing an access parameter to a responder. The responder receives and processes the request

message, ultimately returns an appropriate message as a response. An access (rq ∈ Crequest) of

the computational service is specified using request keyword. For instance, a computational

service Proximity (Listing III.2, line 5), which wants to access user’s profile data, sends a

request message containing profile information as an access parameter to a storage Profi-

leDB (Listing III.1, line 24).

command (Ccommand). It is a set of commands, issued by a computational service to trigger

actions provided by actuators (Ractuator) or user interfaces (Rui). So, it can be a subset of

Aaction ∪ Uaction. The software designer can pass arguments to a command depend on action

signature provided by actuators or user interfaces. Moreover, he specifies a scope of command,

which specifies a region where commands are issued. A command is specified using the com-
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mand keyword. An example of command invocation is given in line 14 of Listing III.2. The

room controller service (i.e., roomController), which regulates temperature, issues a SetTemp

command with a preferred temperature as an argument (i.e., settemp) to heaters (Listing III.1,

line 21).

in-region (Cin−region) and hops (Chops). To facilitate the scalable operations within an IoT

application, devices should be grouped to form a cluster based on their spatial relationship [Shen

et al., 2001] (e.g.,“devices are in room#1”). The grouping could be recursively applied to form

a hierarchy of clusters. Within a cluster, a computational service is placed to receive and

process data from its cluster of interest. Figure III.5 shows this concept for more clarity. The

temperature data is first routed to a local average temperature service (i.e., RoomAvgTemp),

deployed in per room, then later per floor (i.e., FloorAvgTemp), and then ultimately routed to

building average temperature service (i.e., BuildingAvgTemp).

Floor#N

Room#1

Room#2
Room#3

Floor#(N-1)

Floor#1

B
u

ild
in

g

RoomAvgTemp

FloorAvgTemp

FloorAvgTemp

FloorAvgTemp

BuildingAvgTemp

RoomAvgTemp

RoomAvgTemp

[1]

[1]

[1]

Figure III.5 – Clustering in the smart building application. The device with temperature sensor is
numbered as [1].

SAL offers scope constructs to define both the service placement (Cin−region) and its data

interest (Chops). The service placement (defined using the in-region keyword) is used to govern
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a placement of computational service in a cluster. The service placement can be in regions

defined in a vocabulary specification. So, it is a subset of P .

The data interest of a computational service is used to define a cluster from which the

computational service wants to receive data. The data interest can be in regions defined in

the vocabulary specification. So, it is a subset of P . It is defined using the hops keyword. The

syntax of this keyword is hops : radius : unit of radius. Radius is an integer value. The unit

of radius is a cluster value. For example, if a computational service FloorAvgTemp deployed on

floor number 12 has a data interest hops : i : Floor, then it wants data from all floors starting

from 12-th floor to (12+i)-th floor, and all floors starting from 12-th floor to (12-i)-th floor .

Figure III.6 shows the layered architecture of the smart building application. Computational

services are fueled by sensing components. They process inputs data and take appropriate de-

cisions by triggering actuators. We illustrate SAL by examining a code snippet in Listing III.2,

which describes a part of Figure III.6. This code snippet revolves around the actions of the

Proximity service (Listing III.2, lines 2-6), which coordinates events from the BadgeReader

with the content of ProfileDB storage service. To do so, the Proximity composes informa-

tion from two sources, one for badge events (i.e., badge detection), and one for requesting the

user’s temperature profile from ProfileDB, expressed using the request keyword (Listing III.2,

line 5). Input data is declared using the consume keyword that takes source name and data

interest of a computational service from logical region (Listing III.2, line 4). The declaration of

hops : 0 : room indicates that the computational service is interested in consuming badge events

of the current room. The Proximity service is in charge of managing badge events of room.

Therefore, we need Proximity service to be partitioned per room using in-region : room (Lis-

ting III.2, line 6). The outputs of the Proximity and RoomAvgTemp are consumed by the Room-

Controller service (Listing III.2, lines 11-15). This service is responsible for taking decisions

that are carried out by invoking commands declared using the command keyword (Listing III.2,

line 14).

1 computationalServices:

2 Proximity

3 generate tempPref: UserTempPrefStruct;

4 consume badgeDetected from hops :0: Room;

5 request profile( badgeID);

6 in -region: Room;

7 RoomAvgTemp

8 generate roomAvgTempMeasurement:TempStruct;
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Figure III.6 – Layered architecture of the smart building application.

9 consume tempMeasurement from hops :0: Room ;

10 in -region: Room;

11 RoomController

12 consume roomAvgTempMeasurement from hops :0: Room;

13 consume tempPref from hops :0: Room;

14 command SetTemp( setTemp) to hops :0: Room;
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15 in -region: Room;

Listing III.2 – A code snippet of the architecture specification for the smart building application using
SAL. The language keywords are printed in blue, while the keywords derived from vocabulary are printed
underlined. For the full listing of the architecture specification, see Appendix 2.

2.3.2 Implementing application logic

Leveraging the architecture specification, we generate a framework to aid the application

developer. The generated framework contains abstract classes corresponding to the architecture

specification. The abstract classes include two types of methods : (1) concrete methods to in-

teract with other components transparently through the middleware and (2) abstract methods

that allow the application developer to program the application logic. The application develo-

per implements each abstract method of generated abstract class. The key advantage of this

framework is that a framework structure remains uniform. Therefore, the application developer

have to know only locations of abstract methods where they have to specify the application

logic.

Abstract methods. For each input declared by a computational service, an abstract method

is generated for receiving data. This abstract method is then implemented by the application

developer. The class diagram in Figure III.7 illustrates this concept. This class diagram uses

italicized text for the Proximity class, which represents an abstract class, and onNewbadgeDe-

tected() that represents abstract method. Then, it is implemented in the SimpleProximity

class.

Listing III.3 and III.4 show Java code corresponding to the class diagram illustrated in

Figure III.7. From the badgeDetected input of the Proximity declaration in the architecture

specification (Listing III.2, lines 2-6), the onNewbadgeDetected() abstract method is generated

(Listing III.3, line 16). This method is implemented by the application developer. Listing III.4

illustrates the implementation of onNewbadgeDetected(). It updates a user’s temperature pre-

ference and sets it using settempPref() method.

1 public abstract class Proximity {

2 private String partitionAttribute = "Room";

3 public void notifyReceived(String eventName , Object arg) {

4 if (eventName.equals("badgeDetected")) {

5 onNewbadgeDetected (( BadgeDetectedStruct) arg);

6 }

7 }
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Proximity
partitionAttributes : String = "Room"
notifyReceived(eventName : String, arg : Object)
subscribeBadgeDetected()
getProfile(arg : String)
onNewbadgeDetected(arg : BadgeDetectedStruct)
setTempPref(newValue : userTempPrefStruct)

SimpleProximity
onNewbadgeDetected(arg : BadgeDetectedStruct)

Figure III.7 – Class diagram represents (1) the abstract class Proximity with its abstract method
onNewbadgeDetected() illustrated in italicized text, and (2) the concrete implementation of onNewbadge-
Detected() method is the SimpleProximity class.

8 public void subscribebadgeDetected () {

9 Region regionInfo = getSubscriptionRequest(

10 partitionAttribute , getRegionLabels (), getRegionIDs ());

11 PubSubMiddleware.subscribe(this , "badgeDetected",

regionInfo);

12 }

13 protected TempStruct getprofile(String arg) {

14 return (TempStruct) PubSubMiddleware.sendCommand("

getprofile", arg , myDeviceInfo);

15 }

16 protected abstract void onNewbadgeDetected(

BadgeDetectedStruct arg);

17 protected void settempPref(UserTempPrefStruct newValue) {

18 if (tempPref != newValue) {

19 tempPref = newValue;

20 PubSubMiddleware.publish("tempPref", newValue ,

myDeviceInfo);

21 }

22 }
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23 }

Listing III.3 – The Java abstract class Proximity generated from the declaration Proximity in the
architecture specification.

1 public class SimpleProximity extends Proximity {

2 public void onNewbadgeDetected(BadgeDetectedStruct arg) {

3 long timestamp = ((long) (System.currentTimeMillis ())) *

1000000;

4 UserTempPrefStruct userTempPref = new UserTempPrefStruct(

5 arg.gettempValue (), arg.getunitOfMeasurement (), timestamp);

6 settempPref(userTempPref);

7 }

8 }

Listing III.4 – The concrete implementation of the Java abstract class Proximity from Listing III.3,
written by the application developer.

Concrete methods. The compilation of an architecture specification generates concrete me-

thods to interact with other software component transparently. The generated concrete methods

has the following two advantages :

1. Abstracting heterogeneous interactions. To abstract heterogeneous interactions among

software components, a compiler generates concrete methods that takes care of hete-

rogeneous interactions. For instance, a computational service processes input data and

produces refined data to its consumers. The input data is either notified by other com-

ponent (i.e., publish/subscribe) or requested (i.e., request/response) by the service itself.

Then, outputs are published. The concrete methods for these interaction modes are ge-

nerated in an architecture framework. The lines 2 to 6 of Listing III.2 illustrates these

heterogeneous interactions. The Proximity service has two inputs : (1) It receives bad-

geDetect event (Listing III.2, line 4). Our framework generates the subscribebadgeDe-

tected() method to subscribe badgeDetected event (Listing III.3, lines 8-12). Moreover,

it generates the implementation of notifyReceived() method to receive the published

events (Listing III.3, lines 3-7). (2) It requests profile data (Listing III.2, line 5). A

sendcommand() method is generated to request data from other components (Listing III.3,

lines 13-15).

2. Abstracting large scale. To address the scalable operations, a computational service

annotates (1) its inputs with data interest, and (2) its placement in the region. Service pla-

cement and data interest jointly define a scope of a computational service to gather data.
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A generated architecture framework contains code that defines both data interest and

its placement. For example, to get the badgeDetected event notification from the Bad-

geReader (Listing III.2, line 4), the subscribebadgeDetected() method (Listing III.3,

lines 8-12) is generated in the Proximity class. This method defines the data interest of

a service from where it receives data. The value of partitionAttribute (Listing III.3,

line 2), which comes from the architecture specification (Listing III.2, line 6), defines the

scope of receiving data. The above constructs are empowered by our choice of middleware,

which is a variation of the one presented in [Mottola et al., 2007], and enables delivery of

data across logical scopes.

2.4 Specifying deployment concern

This concern describes information about a target deployment containing various attributes

of devices (such as location, type, attached resources) and locations where computational ser-

vices are executed in a deployment, described using SDL (discussed in Section 2.4.1). In order

to map computational services to devices, we present a mapping technique that produces a

mapping from a set of computational services to a set of devices (discussed in Section 2.4.2).

2.4.1 Srijan deployment language (SDL)

Figure III.8 illustrates deployment-specific concepts (defined in the conceptual model Fi-

gure III.1), specified using SDL. It includes device properties (such as name, type), regions

where devices are placed, and resources that are hosted by devices. The resources (R) and

regions (P) defined in a vocabulary become a set of values for certain attributes in SDL (see

the underlined words in Listing III.5). Appendix 1 presents a customized SDL grammar with

respect to the building automation domain. SDL can be described as Tv = (D). D represents

a set of devices. A device (d ∈ D) can be defined as (Dregion,Dresource,Dtype,Dmobile). Dregion

represents a set of device placements in terms of regions defined in a vocabulary. Dresource is a

subset of resources defined in a vocabulary. Dtype represents a set of device type (e.g., JavaSE

device, Android device) that is used to pick an appropriate device driver from a device driver

repository. Dmobile represents a set of two boolean values (true or false). The true value indicates

a location of a device is not fixed, while the false value shows a fixed location. Listing III.5 illus-

trates a deployment specification of the smart building application. This snippet describes a

device called TemperatureMgmt-Device-1 with an attached TemperatureSensor and Heater,

situated in building 15, floor 11, room 1, it is JavaSE enabled and non-mobile device.
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Figure III.8 – Class diagram of deployment-specific concepts

Note that although individual listing of each device’s attributes appears tedious, i) we envi-

sion that this information can be extracted from inventory logs that are maintained for devices

purchased and installed in systems, and ii) thanks to the separation between the deployment

and functional concern in our approach, the same deployment specification can be re-used across

IoT applications of a given application domain.

1 devices:

2 TemperatureMgmt -Device -1:

3 region:

4 Building: 15 ;

5 Floor: 11;

6 Room: 1;

7 resources: TemperatureSensor , Heater;

8 type: JavaSE;

9 mobile: false;

10 ...

Listing III.5 – Code snippet of a deployment specification for the building automation domain using
SDL. The language keywords are printed in blue, while the keywords derived from a vocabulary are printed
underlined. For a full Listing of a deployment specification, see Appendix 2.

2.4.2 Mapping

This section presents our mapping algorithm that decides devices for a placement of com-

putational services. It takes inputs as (1) a list of devices D defined in a deployment specifi-
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cation (see listing III.5) and (2) a list of computational services C defined in an architecture

specification (see listing III.2). It produces a mapping of computational services to a set of

devices.

We presents the mapping algorithm (see Algorithm 1) that comprises two steps. The first

step (lines 4-9) constructs the two key-value data structures from a deployment specification.

These two data structures are used in the second step. The second step (lines 10-20) selects

devices randomly and allocates computational services to the selected devices 6. In order to give

more clarity to readers, we describes these two steps in detail below.

The first step (Algorithm 1, lines 4-9) constructs two key-value data structures regionMap

and deviceListByRegionV alue from D. The regionMap (line 6) is a key-value data structure

where regionName (e.g., Building, Floor, Room in the listing III.5) is a key and regionV alue (e.g.,

15, 11, 1 in the listing III.5) is a value. The deviceListByRegionV alue (line 7) is a key-value

data structure where regionV alue is a key and device (e.g., TemperatureMgmt-Device-1 in

the listing III.5) is a value. Once, these two data structures are constructed, we use them for

the second step (lines 10-20).

The second step (Algorithm 1, lines 10-20) selects a device and allocates computational

services to the selected device. To perform this task, the line 10 retrieves all keys (in our example

Building, Floor, Room) of regionMap using getKeySet() function. For each computational

service (e.g., Proximity, RoomAvgTemp, RoomController in listing III.2), the selected key from

the regionMap is compared with a partition value of a computational component (line 12). If the

value match, the next step (lines 13-17) selects a device randomly and allocates a computational

service to the selected device.

Computational complexity. The first step (Algorithm 1, lines 4-9) takes O(mr) times, where

m is a number of devices and r is a number of region pairs in each device specification. The

second step (Algorithm 1, lines 10-20) takes O(nks) times, where n is a number of region

names (e.g., building, floor, room for the building automation domain) defined in a vocabulary,

k is a number of computational services defined in an architecture specification, and s is a

number of region values specified in a deployment specification. Thus, total computational

complexity of the mapping algorithm is O(mr + nks).

6. A mapping algorithm cognizant of heterogeneity, associated with devices of a target deployment, is a part
of our future work. See future work for detail.
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Algorithm 1 Mapping Algorithm

Input: List D of m numbers of devices, List C of k numbers computational services
Output: List mappingOutput of m numbers that contains assignment of C to D

1: Initialize regionMap key-value pair data structure
2: Initialize deviceListByRegionV alue key-value pair data structure
3: Initialize mappingOutput key-value pair data structure
4: for all device in D do
5: for all pairs (regionName, regionV alue) in device do
6: regionMap[regionName]← regionV alue // construct regionMap with regionName

as key and assign regionV alue as Value
7: deviceListByRegionV alue[regionV alue]← device
8: end for
9: end for

10: for all regionName in regionMap.getKeySet() do
11: for all computationalservice in C do
12: if computationalservice.partitionV alue() = regionName then
13: for all regionV alue in regionMap.getV alueSet(regionName) do
14: deviceList← deviceListByRegionV alue.getV alueSet(regionV alue)
15: selectedDevice← selectRandomDeviceFromList(deviceList)
16: mappingOutput[selectedDevice]← computationalservice
17: end for
18: end if
19: end for
20: end for
21: return mappingOutput

2.5 Specifying platform concern

This concern describes software components that act as a translator between a hardware

device and an application. Because these components are operating system-specific, the device

developer implements them by hand. To aid the device developer, we generate a vocabulary

framework to implement platform-specific device drivers. In the following section, we describe

it in more detail.

2.5.1 Implementing device drivers

Leveraging the vocabulary specification, our system generates a vocabulary framework to

aid the device developer. The vocabulary framework contains concrete classes and interfaces

corresponding to resources defined in a vocabulary. A concrete class contains concrete me-

thods for interacting with other software components and platform-specific device drivers. The
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interfaces are implemented by the device developer to write platform-specific device drivers.

In order to enable interactions between concrete class and platform-specific device driver, we

adopt the factory design pattern [Gamma et al., 1995]. This pattern provides an interface for a

concrete class to obtain an instance of different platform-specific device driver implementations

without having to know what implementation the concrete class obtains. Since the platform-

specific device driver implementation can be updated without necessitating any changes in

code of concrete class, the factory pattern has advantages of encapsulation and code reuse. We

illustrate this concept in the following paragraph with a BadgeReader example.

The class diagram in Figure III.9 illustrates the concrete class BadgeReader, the inter-

face IBadgeReader, and the associations between them through the factory class BadgeReader-

Factory. The two abstract methods of the IBadgeReader interface (Listing III.8, lines 1-4) are

implemented in the AndroidBadgeReader class (Listing III.9, lines 1-10). The platform-specific

implementation is accessed through the BadgeReaderFactory class (Listing III.7, lines 1-10).

The BadgeReaderFactory class returns an instance of platform-specific implementations accor-

ding to request by the concrete method registerBadgeReader() in the BadgeReader class (Lis-

ting III.6, lines 12-15). In the following, we describe this class diagram with code snippet.

«interface»
IBadgeReader

getbadgeDetected():BadgeDetectedStruct
getbadgeDetected (handler : ListenerbadgeDetected)

AndroidBadgeReader
getbadgeDetected():BadgeDetectedStruct
getbadgeDetected(handler : ListenerbadgeDetected)

BadgeReader
setbadgeDetected(newValue : BadgeDetectedStruct)
registerBadgeReader()

BadgeReaderFactory
getBadgeReader(BadgeReaderImpl : String) : IBadgeReader

Figure III.9 – Class diagram representing (1) the interface IBadgeReader and the implementation of
two abstract methods in the AndroidBadgeReader class, (2) the concrete class BadgeReader that refers the
AndroidBadgeReader through the BadgeReaderFactory factory class.

Concrete class. For each resource declared in a vocabulary specification, a concrete class is

generated. This class contains concrete methods for interacting with other components trans-

parently (similar to discussed in Section 2.3.2) and for interacting with platform-specific imple-

mentations. For example, the BadgeReader (Listing III.6, lines 1-16) class is generated from the

BadgeReader declaration (Listing III.1, lines 14-15). The generated class contains the regis-

terBadgeReader() method (Listing III.6, lines 12-15). This method first obtains a reference

of one (in our example Android) of platform-specific implementations, then uses that reference

to create an object of that device-specific type (Listing III.6, line 13). This reference is used to

disseminate badgedetect event (Listing III.6, lines 6-11).
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1 public class BadgeReader {

2 protected void setbadgeDetected(BadgeDetectedStruct newValue)

{

3 ...

4 PubSubMiddleware.publish("badgeDetected", newValue ,

DeviceInfo);

5 }

6 badgeDetected badgeDetectEvent = new badgeDetected () {

7 public void onNewbadgeDetected(BadgeDetectSt resp) {

8 BadgeDetectSt sBadgeDetectSt = new BadgeDetectSt(resp

.getbadgeID (), resp.gettimeStamp ());

9 publishbadgeDetectedEvent(sBadgeDetectSt);

10 }

11 };

12 protected void registerBadgeReader (){

13 IBadgeReader objBadgeReader = BadgeReaderFactory.

getBadgeReader("Android");

14 objBadgeReader.getbadgeDetected(badgeDetectEvent);

15 }

16 }

Listing III.6 – The Java BadgeReader class generated from the BadgeReader declaration in the
vocabulary specification.

Interfaces. For each resource declared in a vocabulary specification, interfaces are generated.

Each interface contains synchronous and asynchronous abstract methods corresponding to a

resource declaration. These methods are implemented by the device developer to write device-

specific drivers. For example, our development system generates a vocabulary framework that

contains the interface IBadgeReader (Listing III.8, lines 1-4) corresponding to the BadgeRea-

der (Listing III.1, lines 14-17) declaration in the vocabulary specification. The device developer

programs Android-specific implementations in the AndroidBadgeReader class by implementing

the methods getbadgeDetected() and getbadgeDetected(handler) of the generated inter-

face IBaderReader (Listing III.9, lines 1-10).

1 public class BadgeReaderFactory {

2 public static IBadgeReader getBadgeReader(String

nameBadgeReader) {
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3

4 if(nameBadgeReader.equals("Android"))

5 return new AndroidBadgeReader ();

6

7 if (nameBadgeReader.equals("PC"))

8 return new PCBadgeReader ();

9 }

10 }

Listing III.7 – The Java BadgeReaderFactory class.

1 public interface IBadgeReader {

2 public BadgeDetectedStruct getbadgeDetected ();

3 public void getbadgeDetected(ListenerbadgeDetected handler);

4 }

Listing III.8 – The Java interface IBadgeReader generated from the BadgeReader declaration in the
vocabulary specification.

1 public class AndroidBadgeReader implements IBadgeReader {

2 @Override

3 public BadgeDetectedStruct getbadgeDetected () {

4 // The device developer implements platform -specific code

here

5 }

6 @Override

7 public void getbadgeDetected(ListenerbadgeDetected handler) {

8 // The device developer implements platform -specific code

here

9 }

10 }

Listing III.9 – The device developer writes Android-specific device driver of a badge reader by
implementing the IBadgeReader interface.

2.6 Handling evolution

Evolution is an important aspect in IoT application development where resources and com-

putational services are added, removed, or extended. To deal with these changes, we separate
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IoT application development into different concerns and allows an iterative development for

these concerns. We now review main evolution cases in each development concern and how our

approach handles them.

2.6.1 Evolution in functional concern

Evolution could be addition, removal, or extension of computational services. To deal with

them, we adopt an iterative development approach, similar to the work in [Cassou et al., 2012],

illustrated in Figure III.10. A change in an architecture specification requires recompilation of

it. The recompilation generates a new architecture framework and preserves the previously writ-

ten application logic. This requires changes in the existing application logic implementations.

The application developer commits changes manually. Moreover, the changed architecture spe-

cification is compiled by the mapper to generate new mapping files that replaces old mapping

files.
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Architecture 
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Figure III.10 – Handling evolution in the functional concern

We now review main evolution cases in the functional concern.

Changing functionality. It refers to a change in behaviors of an application. For example,

while an application might be initially defined to switch on an air-conditioner when a tempe-

rature of room is greater than 30◦C, a new functionality might be to open a window. This case

requires to write a new architecture specification and application logic.

Adding a new computational service. It refers to the addition of a new computational

service in an architecture specification. The application developer implements the application

logic of the newly added computational services.
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Removing a computational service. It refers to the removal of an existing computation

service from an architecture specification. The application developer has to manually remove

application logic files of the removed computational service.

Adding a new input source. A new input of a computational service, represented as consume

keyword, can be added. The application developer implements a generated abstract method

corresponding to a new input in application logic files.

Removing a input source. An input can be removed from a computational service. In this

case, the abstract method that implements the application logic becomes dead in application

logic files. The IDE automatically reports errors. The application developer has to remove this

dead abstract method manually.

Removing an output or command. An output (generate keyword) or command (command

keyword) can be removed from an architecture specification. In this case code, which deals with

output or command, becomes dead in application logic files. The application developer has to

manually remove dead code.

2.6.2 Evolution in deployment concern

The evolution could be change in a deployment (e.g., the smart building application is

deployed on different buildings with different deployment scenarios.), changes in a distribution

of devices (e.g., device is transferred from a floor#12 to floor#14), addition or removal of

devices in a deployment.

Figure III.11 illustrates our approach to cope with the above evolution cases in the de-

ployment concern. Initially, the mapping files are generated by the mapper module. In case of

changes, the network manager does not require any code changes beyond a deployment speci-

fication. Then, re-mapping of devices and computational services generates new mapping files

that replace old mapping files.

2.6.3 Evolution in platform concern

Evolution in the platform concern refers to a change in device drivers. An application may

be updated when new platform-specific software features of device drivers are available. For

instance, a new Android API for a location sensor is available that senses a device location

more accurately. Figure III.12 illustrates our approach to cope with these evolutions. Initially,

an individual device-specific code is produced from the functional, deployment, and platform

concern by the linker module. In case of addition or removal of device drivers, the device
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Figure III.11 – Handling evolution in the deployment concern

developer does not need to make code changes beyond device drivers. Then, re-linking with

other concerns generates device-specific code.
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Figure III.12 – Handling evolution in the platform concern

2.6.4 Evolution in domain concern

Evolution in this concern could be addition, removal, or extension of resources. To cope with

them, our approach allows an iterative development illustrated in Figure III.13. The compilation

of a vocabulary specification generates three artifacts : (1) a vocabulary framework that aids

the device developer to write device drivers, (2) a customized architecture grammar according to

a vocabulary specification that aids the software designer to write an architecture specification,
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and (3) a customized deployment grammar according to a vocabulary specification that aids the

network manager to write a deployment specification. A change in the vocabulary specification

requires recompilation of it. The re-compilation generates a new vocabulary framework and

preserves previously written device drivers. This requires changes in the existing device driver

implementations. The device developer has to commit changes manually. Moreover, the re-

compilation generates a new customized architecture and deployment grammar, which replace

old grammar files.
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Figure III.13 – Handling evolution in the domain concern

We now review main evolution cases in the domain concern.

Adding new resources. New resources can be added in a vocabulary specification. This re-

quires re-compilation of a vocabulary specification. This results into availability of new resources

to a deployment and architecture grammar. Moreover, a vocabulary framework is updated. The

device developer requires an implementation of new device drivers on top of the generated vo-

cabulary framework.

Removing resources. This requires re-compilation of a vocabulary specification. The code in

device drivers associated with removed resources becomes dead. The device developer has to

manually remove source files associated with resources.

Extending resources. Existing resources in a vocabulary specification can be extended with

additional functionality. This extension does not require any changes in device drivers besides

implementing new functionality on top of a generated vocabulary framework. The extended

functionality of resources are now available to a architecture and deployment grammar for

further use.
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3 Chapter summary

This chapter presents our approach for IoT application development. It separates IoT appli-

cation development into different concerns and integrates a set of high-level modeling languages

to specify them. This approach is supported by automation techniques at different phases of IoT

application development and allows an iterative development to handle evolutions in different

concerns. Our approach thus addresses the challenges discussed in Chapter I in the following

manner :
Lack of division of roles. Our approach identifies roles of each stakeholder and separates

them according to their skills. The clear identification of expectations and specialized skills of

each stakeholder helps them to play their part effectively, thus promoting a suitable division of

work among stakeholders involved in IoT application development.

Heterogeneity. SAL and SVL provide abstractions to specify different types of devices, as well

as heterogeneous interaction modes in a high-level manner. Further, high-level specifications

written using SAL and SVL are compiled to a programming framework that (1) abstracts

heterogeneous interactions among software components and (2) aids the device developers to

write code for different platform-specific implementations.

Scale. SAL allows the software designer to express his requirements in a compact manner

regardless of the scale of a system. Moreover, it offers scope constructs to facilitate scalable

operations within an application. They reduce scale by enabling hierarchical clustering in an

application. To do so, these constructs group devices to form a cluster based on their spatial

relationship (e.g., “devices are in room#1”). Within a cluster, a cluster head is placed to receive

and process data from its cluster of interest. The grouping could be recursively applied to form

a hierarchy of clusters. The scale issue is thus handled, thanks to the use of a middleware that

supports logical scopes and regions.

Different life cycle phases. Our approach is supported by code generation, task-mapping,

and linking techniques. These techniques together provide automation at different life cycle

phases. At the development phase, the code generator produces (1) an architecture framework

that allows the application developer to focus on the application logic by producing code that

hide low-level interaction details and (2) a vocabulary framework to aid the device developer to

implement platform-specific device drivers. At the deployment phase, the mapping and linking

together produce device-specific code to result in a distributed software system collaboratively

hosted by individual devices. To support maintenance phase, our approach separates IoT ap-

plication development into different concerns and allows an iterative development, supported

by the automation techniques.

58



III.3 Chapter summary

Lack of special-purpose modeling languages. Our approach separates the domain concern

from other concerns and customizes a architecture specification (functional concern) and de-

ployment specification (deployment concern) with respect to domain concepts defined in a

vocabulary specification. The advantage of this customization is that domain-specific know-

ledge is made available to stakeholders. This guides stakeholders for describing specifications

with respect to an application domain.
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Chapter IV

SrijanSuite: implementation of our approach

In Chapter III, we have proposed a development framework. Since the main goal of this

research is to make IoT application development easy for stakeholders, we believe that our

development framework should be supported by tools to be applicable it in an effective way.

This chapter presents an implementation of the development framework, realized as a suite of

tools. We call it as SrijanSuite system.

This chapter is structured as follows. Section 1 provides an overview of SrijanSuite sys-

tem that consists of five components : editor, compiler, mapper, linker, and runtime system.

These components are individually discussed in Section 2.1 (editor), Section 2.2 (compiler),

Section 2.3 (mapper), Section 2.4 (linker), and Section 2.5 (runtime system). Section 3 pre-

sents Eclipse plug-in that integrates these components. Finally, this chapter is concluded with

a summary in Section 4.

1 System overview

Figure IV.1 shows the various components of SrijanSuite that stakeholders can use. This

system consists of the following components.

1. Editor : It helps stakeholders to write high-level specifications, including vocabulary,

architecture, and deployment specification.

2. Compiler : It parses the high-level specifications and translates them into the code that

can be used by other components in the system.

3. Mapper : It maps computational services described in an architecture specification to

devices listed in an deployment specification.

4. Linker : It combines and packs code generated by various stages of compilation into

packages that can be deployed on devices.
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5. Runtime system : It is responsible for a distributed execution of an application.

We present the above mentioned components in detail in the following sections.

Domain 
Expert

Software
Designer

Network 
Manager

Device
Developer

Application
Developer

Runtime 
System

 

Domain 
Concern

Platform 
Concern

Deployment
Concern

Functional
Concern

Stage 1

Stage 2

Stage 3

 

Vocabulary 
Framework

Customized 
deployment  

grammar 

Customized
architecture 

grammar 

Deployment 
Spec.

Architecture 
Spec.

Architecture
framework

Vocabulary 
Spec. 

Architecture 
Framework

+
Application 

Logic

Vocabulary 
Framework

+
Device 
Drivers 

Mapping 

Runtime 
System

Runtime 
System

Device 0
Code

Device 1
Code

Device n
Code

Compiler for 
architecture spec.

Linker

Editor for
Vocabulary spec.

Editor for
Architecture spec.

Editor for
Deployment spec.

Eclipse IDE for 
implementing

Application logic 

Eclipse IDE for 
implementing
device driver 

Architecture 
Spec.

Compiler for 
vocabulary spec.

Mapper

Figure IV.1 – Overview of components in SrijanSuite.
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2 System components

This section discusses each of SrijanSuite components in detail.

2.1 Editor

The SrijanSuite editor provides supports for specifying high-level textual languages with

the facilities of syntax coloring and syntax error reporting. The editor support is provided at

differ phases of IoT application development to help stakeholders illustrated in Figure IV.1 :
(1) editor for a vocabulary specification to aid the domain expert, (2) editor for an architecture

specification to aid the software designer, and (3) editor for a deployment specification to aid

the network manager.

We take the editor for vocabulary specification as an example to demonstrate an editor

support provided by SrijanSuite. Figure IV.2 illustrates the editor for writing a vocabulary

specification. The zone 1 shows the editor, where the domain expert writes vocabulary. The

zone 2 shows the menu bar, where the domain expert invokes the compiler for vocabulary to

generate a vocabulary framework, a customized architecture and deployment grammar. We use

Xtext 1 for a full fledged editor support, similar to work in [Bertran et al., 2012]. The Xtext is a

framework for a development of domain-specific languages, and provides an editor with syntax

coloring by writing Xtext grammar.

2.2 Compiler

The SrijanSuite compiler parses high-level specifications and translates them into code that

can be used by other components in the system. This component is composed of two modules :
(1) parser. It converts high-level specifications into data structures that can be used by the

code generator. (2) code generator. It uses outputs of the parser and produces files in a target

code. In the following, each of these modules are discussed.

Parser. It converts high-level specifications (vocabulary, architecture, and deployment speci-

fication) into data structures that can be used by the code generator. The conceptual model

shown in Figure III.1 directly corresponds to data structures from the high-level specifications.

Apart from this core functionality, it also checks syntax of specifications and reports errors

to stakeholders. The SrijanSuite parser is implemented using ANTLR parser generator [Parr,

2007]. The ANTLR parser is a well-known parser generator that creates parser files from gram-

mar descriptions. Appendix 1 shows three grammar files for parsing a vocabulary, architecture,

1. http://www.eclipse.org/Xtext/
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Figure IV.2 – SrijanSuite editor support for writing vocabulary specification.

and deployment specification. The whole parser including the implementation of conceptual

model is written in 777 lines of code. The lines of code is measured using EclEmma 2.2.1 plug-

in 2 that counts actual Java statement as lines of code and does not consider blank lines or lines

with comments.

Code generator. Based on parser outputs, the code generator creates the required files. It

is composed of two sub-modules : (1) core-module, (2) plug-in. The core-module manages a

repository of plug-ins. Each plug-in is specific to a target implementation code. The target

code could be in any programming language (e.g., Java, Python). Each plug-in is defined as

template files, which the core-module uses to generate code. The key advantage of separating

core-module and plug-in is that it simplifies an implementation of a new code generator for a

target implementation.

2. http://www.eclemma.org/
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The SrijanSuite core-module is 1221 lines of Java SE 1.6. code. The plug-ins are implemen-

ted using StringTemplate Engine, 3 a Java template engine for generating source code or any

other formatted text output. In our prototype implementation, the target code is in the Java

programming language compatible with Eclipse IDE. However, the code generator is flexible to

generate code in any object-oriented programming language, thanks to the architecture of the

SrijanSuite code generator that separates core-module and plug-ins.

We build two compilers to aid stakeholders shown in Figure IV.1. (1) compiler for a voca-

bulary specification. It translates a vocabulary specification and generates a vocabulary frame-

work, and a customized architecture and deployment grammar to aid stakeholders. (2) compiler

for an architecture specification. It translates an architecture specification and generates an ar-

chitecture framework to aid the application developer. The both generated frameworks are

compatible with Eclipse IDE. For example, Figure IV.3 shows a generated architecture fra-

mework containing Java files ( 1 in Figure IV.3) in Eclipse IDE. 2 in Figure IV.3 shows a

generated Java file in the architecture framework for a RoomAvgTemp. Note that the genera-

ted framework contains abstracts methods ( 3 in Figure IV.3), which are implemented by the

application developer using Eclipse IDE shown in Figure IV.4.

2.3 Mapper

The mapper produces a mapping from a set of computational services to a set of devices.

Figure IV.5 illustrates the architecture of the mapper component. This component parses a

deployment and architecture specification. The parser converts high-level specifications into

appropriate data structures that can be used by the mapping algorithm. The mapping algorithm

maps computational services described in the architecture specification to devices described in

the deployment specification and produces mapping decisions into appropriate data structures.

The code generator consumes the data structures and generates mapping files that can be used

by the linker component.

In our current implementation, this module randomly maps computational services to a set

of devices according to the algorithm presented in Section 2.4.2 of Chapter III. However, due

to generality of our framework, more sophisticated mapping algorithm can be plugged into the

mapper component. The mapping functionality is implemented in 193 lines of Java SE 1.6,

measured using EclEmma 2.2.1 plug-in for Eclipse IDE.

3. http://www.stringtemplate.org/
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Figure IV.3 – Generated architecture framework in Eclipse

2.4 Linker

The linker combines and packs code generated by various stages of compilation into packages

that can be deployed on devices. It merges a generated architecture framework, application

logic, mapping code, device drivers, and vocabulary framework. This component supports the

deployment phase by producing device-specific code to result in a distributed software system

collaboratively hosted by individual devices.

The current version of the SrijanSuite linker generates Java source packages for Android and

Java SE platform. Figure IV.6 illustrates packages for Java SE target devices ( 1 in Figure IV.6)

and Android devices ( 2 in Figure IV.6) imported into Eclipse IDE. In order to execute code,

these packages still need to be compiled by a device-level compiler designed for a target platform.

The linking functionality is implemented in 94 lines of Java SE 1.6, measured using EclEmma

2.2.1 plug-in for Eclipse IDE.
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Figure IV.5 – Architecture of the mapper component in SrijanSuite.

2.5 Runtime system

The main responsibility of the SrijanSuite runtime system is a distributed execution of IoT

applications. It is divided into three parts : (1) middleware, running on each device and provides

a support for executing distributed tasks. (2) wrapper, plugging into packages, generated by the

linker module, and middleware. (3) support library, separating packages produced by the linker

component and underlying middleware by providing interfaces that are implemented by each
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1

2

 

 

Device-specific code for  

Android devices

Device-specific code for  

Java SE-enabled devices 

Figure IV.6 – Packages for target devices in Eclipse

wrapper. The integration of a new middleware into SrijanSuite consists of an implementation

of the following interfaces in the wrapper :
– publish(). It is an interface for publishing data from a sender. The definition of this

interface contains : an event name (e.g., temperature), event data (e.g., a temperature

value, Celsius), and publisher’s information such as location.

– subscribe(). It is an interface for receiving event notifications. An interest of events is

expressed by sending a subscription request, which contains : a event name (e.g., tempe-

rature), information for filtering events such as regions of interest (e.g., a RoomAvgTemp

component wants to receive events only from a current room), and subscriber’s informa-

tion.

– command(). It is an interface for triggering an action of an actuator. A command contains :
a command name (e.g., switch-on heater), command parameters (e.g., set temperature of

heater to 30◦C), and a sender’s information.
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– request-response(). It is an interface for requesting data from a requester. In reply, a re-

ceiver sends a response. A request contains a request name (e.g., give profile information),

request parameters (e.g., give profile of person with identification 12), and information

about the requester.

The current implementation of SrijanSuite uses the iBICOOP middleware [Bennaceur et al.,

2009]. It enables interactions among Android devices and Java SE enabled devices. Both the

wrapper and support library are implemented in 191 and 110 lines of Java SE 1.6. code res-

pectively. The current wrapper implementation for the iBICOOP middleware is available at

https://github.com/pankeshlinux/ToolSuite.

3 Eclipse plug-in

We have integrated the system components as Eclipse plug-in to provide end-to-end support

for IoT application development. The current prototype is available at http://web-tutorials.

gr/iotsuite/download. Figure IV.7 illustrates use of our plug-in at various phases of IoT

application development :

1. IoT domain project ( 1 in Figure IV.7) – using which the domain expert can describe

and compile a vocabulary specification of an application domain.

2. IoT architecture project ( 2 in Figure IV.7) – using which the software designer can

describe and compiler an architecture specification of an application.

3. IoT deployment project ( 3 in Figure IV.7) – using which the network manager can des-

cribe a deployment specification of a target domain and invoke the mapping component.

4. IoT Linking project ( 4 in Figure IV.7) – using which the network manager can combines

and packs code generated by various stages of compilation into packages that can be

deployed on devices.

4 Chapter summary

Since the main goal of this research is to make IoT application development easy for sta-

keholders, we believe that our development framework should be supported by tools to be

applicable in an effective way. Therefore, this chapter presents an implementation of our deve-

lopment framework as a suite of tools, called as SrijanSuite. It consists of five components to

aid stakeholders : (1) Editor : It helps stakeholders to write high-level specifications, including
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Figure IV.7 – Eclipse plug-in for IoT application development.

vocabulary, architecture, and deployment specification. (2) Compiler : It parses these high-level

specifications and translates them into code that can be used by other components in the sys-

tem. (3) Mapper : It maps computational services describes in the architecture specification to

devices in the deployment specification. (4) Linker : It combines and packs code, generated by

various stages, into packages that can be deployed on devices. (5) Runtime system : It is res-

ponsible for a distributed execution of an application. All these five components are integrated
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into SrijanSuite system. The system is provided as Eclipse plug-in that integrates the support

for different phases of IoT application development.
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Chapter V

Evaluation

The main aim of this thesis is to devise an approach that would make the IoT application

development process easy for stakeholders. In order to achieve this task at hand, we identified

the application development challenges discussed in Chapter I. Then, we proposed an approach

that addresses these challenges presented in Chapter III.

The goal of this chapter is to describe how well the proposed approach addresses our aim in

a quantitative manner. Unfortunately, the goal is very vague because quality measures are not

well-defined and they do not provide a clear procedural method to evaluate development ap-

proaches in general. We explore three aspects that are vital for the productivity of stakeholders,

following the pattern in [Cassou et al., 2012] :
– Development effort : It indicates effort required to create a new application.

– Reusability : It indicates reuse of specifications and implementations across applications.

– Code quality : It measures the quality of generated framework. A framework with good

code quality can be evolved and maintained easily, thus improving productivity.

The above set of measures is not exhaustive. However, they reflect principal quantitative

advantages that our approach provides to stakeholders involved in IoT application development.

This chapter is structured as follows : Section 1 describes metrics to measure the producti-

vity in a quantitative manner. Section 2 discusses two IoT applications used for the evaluation.

Section 3 evaluates our approach on development effort to develop a new application. Sec-

tion 4 demonstrates reusability of our approach. Section 5 evaluates code quality of generated

framework. Finally, this chapter concludes with a summary in Section 6.

1 Evaluation metrics

Many publications that propose new programming frameworks or development environments

evaluate their system in lines of code [Mottola and Picco, 2011, p. 50]. Hence, we consider it
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as a metric for measuring development effort and demonstrate reusability of our approach.

While the lines of code metric is useful, a number of limitations have been noted. It depends

heavily on programming languages, styles, and stakeholder’s skills. Moreover, it does not capture

difficulties of maintaining code. In view of this, we believe that code quality must be captured as

it is vital for code maintenance. In order to measure code quality, we use some of the standard

and well-known metrics : Cyclomatic complexity [McCabe, 1976] and Code coverage, detailed

in Section 5. We believe that these standard metrics together with lines of code metric would

help to get a better picture of the productivity provided by our approach.

2 Applications for evaluation

To evaluate our approach we consider two representative IoT applications : (1) the smart

building application described in Chapter I and (2) a fire detection application, which aims to

detect fire by analyzing data from smoke and temperature sensors. When fire occurs, residences

are notified on their smart phones by an installed application. Additionally, residents of the

building and neighborhood are informed through a set of alarms. Figure V.1 shows a layered

architecture of the fire detection application. A fire state is computed based on a current

average temperature value and smoke presence by a local fire state service (i.e., roomFireState)

deployed per room, then a state is sent to a service (i.e., floorFireState) deployed per floor,

and finally a computational service (i.e., buildingFireController) decides whether alarms

should be activated and users should be notified or not. Table V.1 summarizes the types of

components used by each application.

3 Development effort

In order to measure effort to develop an application, we evaluate our approach on the

following : (1) automation, evaluating a percentage of a total number of lines of code generated

by our approach and (2) large scale, evaluating effort to develop an application involving a large

number of devices using our approach.

Evaluating automation. The primary aim is to evaluate automation provided by our ap-

proach. More specifically, we answer this question : how complete is the code automatically ge-

nerated by our approach ? To answer this question, we have implemented two IoT applications

discussed in Section 2 using our approach. These applications are implemented independently.

We did not reuse specifications and implementations of one application in other application.
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Figure V.1 – Layered architecture of the fire detection application.

We deployed the two applications on 10 simulated devices running on top of a middleware that

simulates network on a single PC dedicated to the evaluation.

We measured development effort using Eclipse EclEmma 2.2.1 plug-in 1. This tool counts

actual Java statement as lines of code and does not consider blank lines or lines with comments.

Our measurements reveal that more than 82% of the total number of lines of code is generated

in two applications (see Table V.2).

1. http://www.eclemma.org/
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Component
Type

Smart building Fire detection

Sensing
TemperatureSensor TemperatureSensor
BadgeReader SmokeDetector

Actuating
Heater Alarm
Light -

Storage ProfileDB none

Computational

RoomAvgTemp RoomAvgTemp
Proximity RoomFireState
FloorAvgTemp FloorFireState
BuildingAvgTemp BuildingFireController
RoomController -

End-user
DisplayData GetNotification
ProfileRequest -
ControlHeater -

Table V.1 – List of components of smart building and fire detection applications

Handwritten (lines of code) Generated (lines of code)

Application
Name

Vocab
Spec.

Arch.
Spec.

Deploy.
Spec.

Device
driver

App.
logic

Mapping
code

Archi.
fram.

Vocab.
fram.

generated
handwritten+generated

(devices=10)

Smart building 41 28 81 98 131 561 408 757 81.99%

Fire detection 27 21 81 53 72 528 292 476 83.61%

Table V.2 – Lines of code in smart building and fire detection applications

Evaluating development effort for a large number of devices. The above experiment

was conducted for 10 simulated devices. It does not demonstrate development effort using our

approach for a large number of devices. Therefore, the primary aim of this experiment is to

evaluate effort to develop an IoT application involving a large number of devices.

In order to achieve the above aim, we have developed the smart building application on

a set of simulated device running on top of the middleware dedicated to the evaluation. The

assessments were conducted over an increasing number of devices. The first development effort

assessment was conducted on 10 devices instrumented with heterogeneous sensors, actuators,

storages, and user interfaces. In the next subsequent assessments, we kept increasing the number

of devices equipped with sensors and actuators. In each assessment, we have measured lines of

code to specify vocabulary, architecture, and deployment, application logic, and device drivers.

Table V.3 illustrates the assessment results containing a number of devices involved in the

experiment and hand-written lines of code to develop the smart building application.
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Handwritten (lines of code)

Number of
devices

Vocab
Spec.

Arch.
Spec.

Deploy.
Spec.

Device
driver

App.
logic

10 41 28 81 98 131

34 41 28 273 98 131

50 41 28 401 98 131

62 41 28 497 98 131

86 41 28 689 98 131

110 41 28 881 98 131

200 41 28 1601 98 131

300 41 28 2401 98 131

350 41 28 2801 98 131

500 41 28 4001 98 131

Table V.3 – Number of devices involved in the development effort assessment and hand-written lines of
code to develop the smart building application.

In Table V.3, we have noted the following two observations and their reasons :

1. As the number of devices increases, lines of code for vocabulary and architecture specifi-

cation, device drivers, and application logic remain constant for a deployment consisting

a large number of devices. The reason is that our approach provides the ability to specify

an application at a global level rather than individual nodes.

2. As the number of devices increases, lines of code for a deployment specification increase.

The reason is that the network manager specifies each device individually in the deploy-

ment specification. This is a limitation of SDL. Our future work will be to investigate how

a deployment specification can be expressed in a concise and flexible way for a network

with a large number of devices. We believe that the use of regular expressions is a possible

technique to address this problem.

4 Reusability

This section demonstrates reusability of specifications and implementations across applica-

tions of a same application domain in our approach. We consider two evolutionary cases and

demonstrate development effort to handle them : (1) a change in the target deployment. It
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demonstrates reusability of specifications and implementations when an existing application is

deployed to other deployment (detailed in Section 4.1). (2) evolution in the functionality. It

demonstrates reusability of specifications and implementations when functionality of an appli-

cation is changed (detailed in Section 4.2).

4.1 Change in target deployment

The primary aim of this section is to answer the question : How effective is our approach

in case of a change in a target deployment ? To answer this question, we consider user’s requi-

rement of developing an application on different deployments. To illustrate it, we have chosen

three hypothetical target deployments. We have developed the smart building application dis-

cussed in Chapter I on them and measured effort to develop this application.

Deployment scenarios. The smart building application is deployed at site I. One day, director

of site G and site S visit the site I. They are very impressed with the smart building application

deployed at site I. They both want to deploy the same smart building application in their sites.

Given that we are discussing the building automation domain, we assume that all these sites

describe their buildings in terms of room, floor, and building and they have the same types of

devices.

We show a deployment scenario at site I in Table V.4. Total 10 devices are deployed at this

site with 3 floors. We consider the following aspects to show how deployment scenarios at site G

and site S differ from deployment scenario at site I.

– Deployment scenario at site G. It differs from I in terms of the distribution of devices.

For instance, in the deployment I, 4 devices are deployed in Floor : 11, while in the

deployment G, 6 devices are deployed in Floor : 11 illustrated in Table V.5.

– Deployment scenario at site S. It differs from I in terms of the attached resources

with devices. For instance, in deployment I, heater and temperature sensor are attached

to different devices, while in the deployment S heater and temperature sensor are attached

to same devices deployed in Room : 0 and Room : 2, illustrated in Table V.6.

Development effort for deployment scenarios. To measure the effort for developing the

same application for different deployments, we have simulated the smart building application

on a set of simulated devices running on top of the middleware dedicated to evaluation. Ini-

tially, when the smart building application is developed using our approach at site I, we have

written vocabulary, deployment, and architecture specification, device drivers, and deployment

specification for I from scratch. The first row of Table V.7 shows development effort for de-

veloping the smart building application. However, reusability of vocabulary and architecture
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Floor : 11 | Floor : 12 | Floor : 13

Room : 0 | Room : 1 | Room : 2 | Room : 3 | Room : 4

Resources Device 1 Device 2 Device 3 Device 4 Device 5 Device 6 Device 7 Device 8 Device 9 Device 10

Temperature
sensor

1 1 1 1 1 1 1 1

Badge
reader

1 1 1 1

Heater 1 1 1 1

Light 1 1 1 1

Storage 1

EndUser
GUI

1

Table V.4 – Deployment scenario at site I.

Floor : 11 | Floor : 12 | Floor : 13

Room : 0 | Room : 1 | Room : 2 | Room : 3 | Room : 4

Resources Device 1 Device 2 Device 3 Device 4 Device 5 Device 6 Device 7 Device 8 Device 9 Device 10

Temperature
sensor

1 1 1 1 1 1 1 1

Badge
reader

1 1 1 1

Heater 1 1 1 1

Light 1 1 1 1

Storage 1

EndUser
GUI

1

Table V.5 – Deployment scenario at site G

specification, application logic, device drivers become apparent when we have deployed the

smart building application at site G and site S. To develop subsequent applications, we only

need to specify target deployments. The second and third row of Table V.7 show the drastic

reduction in development effort for deployment G and S.

We conclude that the primary reason of drastic reduction of development effort in next

two sites using our approach is separation of concerns. Our approach separates IoT applica-

tion development into well-defined concerns. Therefore, stakeholders achieve high reusability

of specifications and implementations across applications of a same application domain, thus

reducing development effort.
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Floor : 11 | Floor : 12 | Floor : 13

Room : 0 | Room : 1 | Room : 2 | Room : 3 | Room : 4

Resources Device 1 Device 2 Device 3 Device 4 Device 5 Device 6 Device 7 Device 8 Device 9 Device 10

Temperature
sensor

1 1 1 1 1 1 1 1

Badge
reader

1 1 1 1

Heater 1 1 1 1

Light 1 1 1 1

Storage 1

EndUser
GUI

1

Table V.6 – Deployment scenario at site S

Handwritten lines of code

Domain Deployments Vocab.
spec.

Arch.
spec.

Deploy.
spec.

App.
logic

Device
driver

Development
effort

Building
Automation

Site I 41 28 81 131 98 379

Site G 0 0 81 0 0 81

Site S 0 0 81 0 0 81

Table V.7 – Development effort to deploy the smart building application on different sites

4.2 Evolution in functionality

The primary aim of this section is to answer the question : How effective is our approach

when there is a requirement of developing a new functionality ? To answer this question, we

consider user’s requirement of adding a new functionality into an existing deployment. To illus-

trate it, we have developed the two applications of the building automation domain described in

Section 2. We have deployed them on a set of simulated devices running on top of a simple midd-

leware dedicated to the evaluation. Initially, when the smart building application was developed

using our approach, we have written vocabulary and deployment specification, device drivers,

an architecture specification of the smart building and its application logic from scratch. The

first row of Table V.8 shows development effort for the smart building application. However,

reusability of the vocabulary and deployment specification, and device drivers become appa-

rent when we develop the fire detection application. To develop the fire detection application,

we only need to specify an architecture specification and application logic. The second row of

Table V.8 shows the drastic reduction in development effort for the fire detection application.
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We conclude that the primary reason of drastic reduction of development effort in the fire

detection application using our approach is separation of concerns. Our approach separates IoT

application development into well-defined concerns. Therefore, stakeholders achieve high reusa-

bility of specifications and implementations across applications of a same application domain,

thus reducing development effort.

Handwritten lines of code

Domain Applications Vocab.
spec.

Arch.
spec.

Deploy.
spec.

App.
logic

Device
driver

Development
effort

Building
Automation

Smart building 41 28 81 131 98 379

Fire detection 0 21 0 72 0 93

Table V.8 – Development effort to program two applications of the building automation domain

5 Code quality

The lines of code metric measures development effort. However, it does not capture the

quality of the generated framework. A program with good quality can be maintained easily.

Code quality is thus critical for the cost of a software system as maintenance accounts for more

than 85% of the total cost of the application [Erlikh, 2000]. In order to measure code quality of

our generated framework, we use two code metrics : (1) Code Coverage, measuring usefulness of

code (detailed in Section 5.1) and (2) Cyclomatic Complexity, measuring structural complexity

of code (detailed in Section 5.2).

5.1 Code coverage

The measure of lines of code is only useful if the generated code is actually executed. We

measured code coverage of the generated programming frameworks of two applications (see

Table V.9) using the EclEmma 2 Eclipse plug-in. Our measures show that more than 90% of

generated code is actually executed, the other portion being error-handling code for errors that

did not happen during the experiment. This high value indicates that most of the execution is

spent in generated code and that, indeed, our approach reduces development effort by generating

useful code.

2. http://www.eclemma.org/
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Application Generated code

Smart building 92.22%

Fire detection 90.38%

Table V.9 – Code coverage of generated programming frameworks

5.2 Cyclomatic complexity

The more complex the structure of code is, the harder it is to test or maintain, and more

likely to contains bugs. So, it is important to measure structural complexity of code. One of me-

thods to measure structural complexity is to calculate the number of different execution paths

in a flow of the program. More specifically, code with a single path (i.e., no conditional state-

ments or no loop statements) has a minimum possible cyclomatic complexity number (CCN)

value. The CCN is increased with conditional, loop statements, and other code features. It is

a well-known measure proposed by McCabe to guide the testing process and gives a minimum

number of test cases for a program. McCabe notes that the CCN in the 1 to 10 range implies

high testability and the cost and effort to maintain the code is less. CCN greater than 10

indicates poor testability, which hampers code maintenance.

We used Metrics 3 1.3.6 Eclipse plug-in to measure code quality of our target IoT applica-

tions. We measured code complexity of a generated framework that contains mapping, architec-

ture, and vocabulary frameworks. Table V.10 illustrates our measurements. Our measurements

reveal that code complexity of the generated framework in both applications remains lower than

2. These results demonstrate that our generated programming framework guides stakeholders

through a well-structured and easy to test code.

Application CCN of generated code

Smart building 1.45

Fire detection 1.56

Table V.10 – Code complexity of generated programming framework

6 Chapter summary

This chapter evaluates our approach and shows its ability to facilitate stakeholders in IoT

application development. The goal of this evaluation is to demonstrate how our approach makes

3. http://metrics.sourceforge.net
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IoT application development easy for stakeholders. Unfortunately, this goal is very vague be-

cause quality measures are not well-defined, and they do not provide a clear procedural method

to evaluate development approaches in general. Therefore, in order to evaluate our work in a

quantitative manner we have established three measures : (1) development effort, evaluating

effort to develop a new IoT application, (2) reusability, evaluating reuse of specifications and

implementations across applications of a same application domain. (3) code quality, attributing

quality of a generated programming framework. In the following, we summarize experiments

for these measures and their results :

1. To measure effort required to develop a new IoT application, we evaluate our approach

on two aspects :
– Automation. The experiment results reveal that our approach generates a significant

percentage of total lines of code. Thus, it provides a high-level of automation in IoT

application development.

– Large scale. The experiment results show that lines of code that need to be written for

vocabulary and architecture specification, device drivers, and application logic remain

constant (i.e., independent of a number of devices in an application). Thus, our ap-

proach reduces the effort needed to develop IoT applications involving a large number

of devices.

2. To measure effectiveness of our approach to handle evolutions, we consider some evolu-

tionary scenarios and demonstrate development effort to handle them. Our experiment

results shows that our approach shows high reusability of specifications and implementa-

tions across applications of a same application domain, thus improving the productivity

in IoT application development.

3. We measure code quality of generated frameworks for two applications. We use the stan-

dard and well-known metrics of code coverage and cyclomatic complexity. Our measu-

rement reveals that code coverage of generated frameworks is high, which indicates our

approach actually generates a useful code. The low cyclomatic complexity of the genera-

ted frameworks demonstrates that it guides stakeholders through a well-structured and

easy to test code.

In conclusion, our evaluation reflect principal quantitative advantages that our approach

provides to stakeholders involved in IoT application development.
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Conclusion and future work

1 Summary

Application development in the IoT involves dealing with a wide range of related issues

such as lack of separation of concerns, and lack of high-level of abstractions to address both

the large scale and heterogeneity. Moreover, stakeholders involved in application development

have to address issues that can be attributed to different life-cycles phases when developing

applications. First, the application logic has to be analyzed and then separated into a set of

distributed tasks for an underlying network. Then, the tasks have to be implemented for the

specific hardware. Apart from handling these issues, they have to deal with other aspects of

life-cycle such as changes in application requirements and deployed devices.

We note that although the software engineering, MDD, WSN, and pervasive computing

community have discussed and analyzed similar challenges in the general case, this has not

been applied to the case of IoT in particular. Therefore, this work proposes a new approach

that utilizes advantages and promising features of the existing works to develop a comprehensive

integrated approach while focusing on ease of IoT application development.

This thesis presents a development methodology for IoT application development, based on

techniques presented in the domains of sensor network macroprogramming and model-driven

development. It separates IoT application development into different concerns and integrates

a set of high-level languages to specify them. This methodology is supported by automation

techniques at different phases of IoT application development. Our evaluation based on two rea-

listic IoT applications shows that our approach generates a significant percentage of the total

application code, drastically reduces development effort for IoT applications involving a large

number of devices, shows high reusability of specifications and implementations across applica-

tions, and generates a high quality of code that can be maintained and tested easily. Thus, our

approach improves the productivity of stakeholders involved in IoT application development.
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2 Future work

This thesis addresses the challenges, presented by the steps involved in IoT application

development, and prepares a foundation for our future research work. Our future work will

proceed in the following complementary directions, discussed below.

Mapping algorithms cognizant of heterogeneity. While the notion of region labels is

able to reasonably tackle the issue of scale at an abstraction level, the problem of heterogeneity

among the devices still remains. We will provide rich abstractions to express both the properties

of the devices (e.g., processing and storage capacity, networks it is attached to, as well as

monetary cost of hosting a computational service), as well as the requirements from stakeholders

regarding the preferred placement of the computational services of the applications. These will

then be used to guide the design of algorithms for efficient mapping (and possibly migration)

of computational services on devices.

Developing concise notion for SDL. In the current version of SDL, the network manager is

forced to specify the detail of each device individually. This approach works reasonably well in

a target deployment with a small number of devices. However, it may be time-consuming and

error-prone for a target deployment consisting of hundreds to thousands of devices. Our future

work will be to investigate how the deployment specification can be expressed in a concise and

flexible way for a network with a large number of device. We believe that the use of regular

expressions is a possible technique to address this problem.

Testing support for IoT application development. Our near term future work will be

to provide support for the testing phase. A key advantage of testing is that it emulates the

execution of an application before deployment so as to identify possible conflicts, thus redu-

cing application debugging effort. The support will be provided by integrating an open source

simulator in SrijanSuite. This simulator will enable transparent testing of IoT applications in

a simulated physical environment. Moreover, we expect to enable the simulation of a hybrid

environment, combining both real and physical entities. Currently, we are investigating open

source simulators for IoT applications. We see Siafu 1 as a possible candidate due to its open

source and thorough documentation.

Run-time adaptation in IoT applications. Even though our approach addresses the chal-

lenges posed by evolutionary changes in target deployments and application requirements, sta-

keholders have to still recompile the updated code. This is common practice in a single PC-based

development environment, where recompilation is generally necessary to integrate changes. Ho-

1. http://siafusimulator.org/
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wever, it would be very interesting to investigate how changes can be injected into the running

application that would adapt itself accordingly. For instance, when a new device is added into

the target deployment, an IoT application can autonomously include a new device and assign

a task that contributes to the execution of the currently running application.

Integration of modeling language for user interfaces. To aid stakeholders, our approach

integrates a three modeling languages : (1) SVL to describe the domain concern, (2) SAL to

describe the functional concern, and (3) SDL to describe the deployment concern. However,

currently the platform concerns such as details of the user interfaces are described as part

of the domain vocabulary. We have come across a significant amount of work in the area of

cross-platform DSLs [Guerrero-Garcia et al., 2009; Pohja, 2010; Souchon and Vanderdonckt,

2003]. These languages describe device properties at a higher level of abstractions than code

used to write device drivers and code generator transform them into platform-specific code. For

instance, many User Interface Description Languages (UIDLs) allow to specify the properties

of User Interfaces into XML and the code generator transform the specification into a variety

of heterogeneous platforms (e.g., PC-based UI, Android-based UI). Our future goal will be to

integrate the existing DSLs into our methodology to further reduce development effort.
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.1 Grammars of modeling languages

1 Grammars of modeling languages

1.1 SVL grammar

1 vocabSpec :

2 ’regions ’ ’:’ (region_def)+

3 ’structs ’ ’:’ (struct_def)+

4 ’resources ’ ’:’ (abilities_def)+

5 ;

6 region_def :

7 CAPITALIZED_ID ’:’ dataType ’;’

8 ;

9 struct_def:

10 CAPITALIZED_ID

11 (structField_def ’;’)+

12 ;

13 structField_def:

14 lc_id ’:’ dataType

15 ;

16 abilities_def :

17 ’sensors ’ ’:’ (sensor_def)+

18 ’actuators ’ ’:’ (actuator_def)+

19 (’storages ’ ’:’ ss_def)*

20 (’userinterfaces ’ ’:’ gui_def)*

21 ;

22 sensor_def:

23 CAPITALIZED_ID

24 (sensorMeasurement_def ’;’)+

25 ;

26 sensorMeasurement_def :

27 ’generate ’ lc_id ’:’ CAPITALIZED_ID

28 ;

29 actuator_def:

30 CAPITALIZED_ID

31 (action_def ’;’)+
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32 ;

33 action_def:

34 ’action ’ CAPITALIZED_ID ’(’ (parameter_def)? ’)’

35 ;

36 parameter_def :

37 lc_id ’:’ CAPITALIZED_ID (’,’ parameter_def )?

38 ;

39 ss_def:

40 CAPITALIZED_ID

41 (storageDataAccess_def ’;’)+

42 ;

43 storageDataAccess_def :

44 storageGeneratedInfo_def ’accessed -by’ storagedataIndex_def

45 ;

46 storageGeneratedInfo_def :

47 ’generate ’ lc_id ’:’ CAPITALIZED_ID

48 ;

49 storagedataIndex_def:

50 lc_id ’:’ dataType

51 ;

52 gui_def:

53 CAPITALIZED_ID

54 (gui_command_def ’;’)*

55 (action_def ’;’)*

56 (gui_request_def ’;’)*

57 ;

58 gui_request_def :

59 ’request ’ lc_id ’(’ gui_request_param_def ’)’

60 ;

61 gui_request_param_def :

62 lc_id (’,’ gui_request_param_def)?

63 ;

64 gui_command_def :

65 ’command ’ CAPITALIZED_ID ’(’ (cntParameter_def)? ’)’

66 ;
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67 cntParameter_def :

68 lc_id (’,’ cntParameter_def )?

69 ;

70 lc_id: ID

71 ;

72 dataType:

73 primitiveType

74 ;

75 primitiveType:

76 (id=’integer ’ | id=’boolean ’ | id=’string ’ | id = ’double ’ |

id = ’long’)

77 ;

78 ID : ’a’..’z’ (’a’..’z’ | ’A’..’Z’ )*

79 ;

80 INT : ’0’..’9’(’0’..’9’)*

81 ;

82 CAPITALIZED_ID: ’A’..’Z’ (’a’..’z’ | ’A’..’Z’ )*

83 ;

84 WS: (’\t’ | ’ ’ | ’\r’ | ’\n’ | ’\u000C’)+ {$channel = HIDDEN ;}

85 ;

1.2 Customized SAL grammar for building automation domain

1 archSpec :

2 (’structs ’ ’:’ struct_def)*

3 ’softwarecomponents ’ ’:’ swcomponent_def

4 ;

5 struct_def:

6 CAPITALIZED_ID

7 (structField_def ’;’)*

8 ;

9 structField_def:

10 lc_id ’:’ dataType

11 ;

12 swcomponent_def :
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13 ’computationalServices ’ ’:’ (cs_def )+

14 ;

15 cs_def:

16 CAPITALIZED_ID

17 (csGeneratedInfo_def ’;’)*

18 (csConsumeInfo_def ’;’)+

19 (csRequest_def ’;’)*

20 (csCommand_def ’;’)*

21 partition_def ’;’

22 ;

23 csGeneratedInfo_def:

24 ’generate ’ lc_id ’:’ struct_vocabulary

25 ;

26 csConsumeInfo_def:

27 ’consume ’ generateInfo_vocabulary ’from’ ’hops’ ’:’ INT ’:’

region_vocabulary

28 ;

29 csRequest_def :

30 ’request ’ generateInfo_vocabulary ’(’ requestParameter_def ’)’

31 ;

32 csCommand_def :

33 ’command ’ action_vocabulary ’(’ (cntrlParameter_def)? ’)’ ’

to’ ’hops’ ’:’ INT ’:’ region_vocabulary

34 ;

35 cntrlParameter_def :

36 action_parameter (’,’ cntrlParameter_def )?

37 ;

38 partition_def :

39 ’in-region ’ ’:’ region_vocabulary

40 ;

41 generateInfo_vocabulary :

42 ’tempMeasurement ’ | ’badgeDetected ’ | ’badgeDisappeared ’ |’

profile ’| ’smokePresence ’ | lc_id

43 ;

44 struct_vocabulary :
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45 ’TempStruct ’ | ’BadgeDetectedStruct ’| ’BadgeDisappearedStruct ’

| ’UserPrefStruct ’ | ’LightStruct ’ | ’SmokePresenceStruct ’ |

’FireState ’ | CAPITALIZED_ID

46 ;

47 region_vocabulary :

48 ’Building ’ | ’Floor’ | ’Room’

49 ;

50 action_vocabulary :

51 ’SetTemp ’ | ’Off’ | ’Display ’ | ’OffLight ’ | ’SetLight ’ | ’

Activate ’ | ’DeActivate ’ | ’DisplayData ’ | ’GetNotification ’

52 ;

53 action_parameter :

54 ’setTemp ’ | ’setLight ’ | ’displayTemp ’ | ’fireState ’ | ’

badgeID ’

55 ;

56 requestParameter_def :

57 request_parameter (’,’ requestParameter_def )?

58 ;

59 request_parameter:

60 ’badgeID ’ | lc_id

61 ;

62 lc_id: ID

63 ;

64 dataType:

65 primitiveType

66 ;

67 primitiveType:

68 (id=’Integer ’ | id=’Boolean ’ | id=’String ’ | id = ’double ’ |

id = ’long’ | id=’boolean ’ )

69 ;

70 ID : ’a’..’z’ (’a’..’z’ | ’A’..’Z’ )*

71 ;

72 INT : ’0’..’9’(’0’..’9’)*

73 ;

74 CAPITALIZED_ID: ’A’..’Z’ (’a’..’z’ | ’A’..’Z’ )*
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75 ;

76 WS: (’\t’ | ’ ’ | ’\r’ | ’\n’ | ’\u000C’)+ {$channel = HIDDEN ;};

1.3 Customized SDL grammar for building automation domain

1 deploymentspec:

2 ’devices ’ ’:’

3 (device_def)+

4 ;

5 device_def:

6 deviceName = (ID|CAPITALIZED_ID) ’:’

7 ’region ’ ’:’ (location_def)+

8 ’type’ ’:’ device_type ’;’

9 ’resources ’ ’:’ (resources_def)* ’;’

10 ’mobile ’ ’:’ mobile_def ’;’

11 ;

12 location_def :

13 region_vocabulary ’:’ INT ’;’

14 ;

15 device_type :

16 CAPITALIZED_ID

17 ;

18 mobile_def :

19 ’true’ | ’false’

20 ;

21 resources_def :

22 ’TemperatureSensor ’ | ’Heater ’ | ’ProfileDB ’ | ’BadgeReader ’ |

’SmokeDetector ’ | ’Light’ | ’Alarm ’ | ’EndUserGUI ’

23 ;

24 region_vocabulary :

25 ’Building ’ | ’Floor’ | ’Room’

26 ;

27 ID : ’a’..’z’ (’a’..’z’ | ’A’..’Z’ )* (’0’..’9’)*

28 ;

29 INT : ’0’..’9’(’0’..’9’)*
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30 ;

31 CAPITALIZED_ID: ’A’..’Z’ (’a’..’z’ | ’A’..’Z’ )* (’0’..’9’)*

32 ;

33 WS: (’\t’ | ’ ’ | ’\r’ | ’\n’ | ’\u000C’)+ {$channel = HIDDEN ;};
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2 Application domain: building automation

2.1 Building automation: vocabulary specification

1 regions :

2 Building : integer ;

3 Floor : integer;

4 Room : integer;

5 structs:

6 TempStruct

7 tempValue : double;

8 unitOfMeasurement : string;

9 LightStruct

10 lightValue : double;

11 unitOfMeasurement : string;

12 BadgeDetectedStruct

13 badgeID : string;

14 timeStamp : long;

15 BadgeDisappearedStruct

16 badgeID : string;

17 timeStamp : long;

18 UserPrefStruct

19 tempValue: double;

20 lightValue : double;

21 SmokePresenceStruct

22 smokePresence : boolean;

23 timeStamp : long;

24 FireState

25 firePresence : boolean;

26 timeStamp : long;

27 resources :

28 sensors:

29 TemperatureSensor

30 generate tempMeasurement : TempStruct;

31 BadgeReader
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32 generate badgeDetected : BadgeDetectedStruct;

33 generate badgeDisappeared : BadgeDisappearedStruct;

34 SmokeDetector

35 generate smokePresence : SmokePresenceStruct;

36 actuators:

37 Heater

38 action Off();

39 action SetTemp(setTemp: TempStruct);

40 Light

41 action OffLight ();

42 action SetLight(setLight:LightStruct);

43 Alarm

44 action Activate ();

45 action DeActivate ();

46 storages:

47 ProfileDB

48 generate profile : UserPrefStruct accessed -by

badgeID : string;

49 userinterfaces :

50 EndUserGUI

51 command Off();

52 command SetTemp(setTemp);

53 action DisplayData(displayTemp:TempStruct);

54 action GetNotification(fireState:FireState);

55 request profile(badgeID);

Listing 1 – Vocabulary Specification of the building automation. Keywords are printed in blue.

2.2 Smart building application: architecture specification

1 softwarecomponents:

2 computationalServices:

3 RoomAvgTemp

4 generate roomAvgTempMeasurement: TempStruct;

5 consume tempMeasurement from hops :0: Room;

6 in -region: Room;
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7 FloorAvgTemp

8 generate floorAvgTemp: TempStruct;

9 consume roomAvgTempMeasurement from hops :0: Floor;

10 in -region: Floor;

11 Proximity

12 generate tempPref: UserPrefStruct;

13 consume badgeDetected from hops :0: Room;

14 consume badgeDisappeared from hops :0: Room;

15 request profile( badgeID);

16 in -region: Room;

17 BuildingAvgTemp

18 consume floorAvgTemp from hops :0: Building;

19 command DisplayData( displayTemp) to hops :0:

Building;

20 in -region: Building;

21 RoomController

22 consume roomAvgTempMeasurement from hops :0: Room;

23 consume tempPref from hops :0: Room ;

24 command Off() to hops :0: Room;

25 command SetTemp( setTemp) to hops :0: Room;

26 command OffLight () to hops :0: Room;

27 command SetLight( setLight) to hops :0: Room;

28 in -region: Room;

Listing 2 – Architecture specification of the smart building application using SAL. Language keywords
are printed in blue, while keywords derived from vocabulary are printed underlined.

2.3 Fire detection application: architecture specification

1 softwarecomponents:

2 computationalServices:

3 RoomAvgTemp

4 generate roomAvgTempMeasurement : TempStruct;

5 consume tempMeasurement from hops : 0 : Room;

6 in -region : Room;

7 RoomFireState

8 generate roomFireState : FireState;
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9 consume smokePresence from hops :0: Room;

10 consume roomAvgTempMeasurement from hops : 0 : Room;

11 in -region : Room;

12 FloorFireState

13 generate floorFireState : FireState;

14 consume roomFireState from hops :0: Floor;

15 in -region : Floor;

16 BuildingFireController

17 consume floorFireState from hops :0: Building;

18 command GetNotification( fireState) to hops :0: Building;

19 command Activate () to hops :0: Building;

20 command DeActivate () to hops :0: Building;

21 in -region : Building;

Listing 3 – Architecture specification of the fire detection application using SAL. Language keywords
are printed in blue, while keywords derived from vocabulary are printed underlined.

2.4 Building automation: deployment specification

1 devices:

2 D1 :

3 region :

4 Building : 15;

5 Floor : 1511;

6 Room : 15110;

7 type : JavaSE;

8 resources : TemperatureSensor , BadgeReader ,

SmokeDetector;

9 mobile : false;

10 D2:

11 region :

12 Building : 15;

13 Floor : 1511;

14 Room : 15110;

15 type : JavaSE;

16 resources : TemperatureSensor , Heater , Light;

17 mobile : false;
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18 D3 :

19 region :

20 Building : 15;

21 Floor : 1511;

22 Room : 15111;

23 type : JavaSE;

24 resources : TemperatureSensor , BadgeReader ,

SmokeDetector;

25 mobile : false;

26 D4:

27 region :

28 Building : 15;

29 Floor : 1511;

30 Room : 15111;

31 type : JavaSE;

32 resources : TemperatureSensor , Heater , Light;

33 mobile : false;

34 D5 :

35 region :

36 Building : 15;

37 Floor : 1512;

38 Room : 15122;

39 type : JavaSE;

40 resources : TemperatureSensor , BadgeReader ,

SmokeDetector;

41 mobile : false;

42 D6:

43 region :

44 Building : 15;

45 Floor : 1512;

46 Room : 15122;

47 type : JavaSE;

48 resources : TemperatureSensor , Heater , Light;

49 mobile : false;

50 D7 :
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51 region :

52 Building : 15;

53 Floor : 1512;

54 Room : 15123;

55 type : JavaSE;

56 resources : TemperatureSensor , BadgeReader ,

SmokeDetector;

57 mobile : false;

58 D8:

59 region :

60 Building : 15;

61 Floor : 1512;

62 Room : 15123;

63 type : JavaSE;

64 resources : TemperatureSensor , Heater , Light;

65 mobile : false;

66 D9 :

67 region :

68 Building : 15;

69 Floor : 1513;

70 Room : 15134;

71 type : JavaSE;

72 resources : ProfileDB , Alarm;

73 mobile : false;

74 D10:

75 region :

76 Building : 15;

77 Floor : 1513;

78 Room : 15134;

79 type : Android;

80 resources : EndUserGUI;

81 mobile : true;

Listing 4 – Target deployment specification in building using SDL. Language keywords are printed in
blue, while keywords derived from vocabulary are printed underlined.
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Avilés-López, E. and Garćıa-Maćıas, J. 2009. TinySOA : a service-oriented architecture
for wireless sensor networks. Service Oriented Computing and Applications 3, 2 (June),
99–108. 18

Bakshi, A., Prasanna, V. K., Reich, J., and Larner, D. 2005. The abstract task graph :
A methodology for architecture-independent programming of networked sensor systems. In
Proceedings of the 2005 workshop on End-to-end, sense-and-respond systems, applications
and services. USENIX Association, Berkeley, CA, USA, 19–24. 10

Bennaceur, A., Singh, P., Raverdy, P.-G., and Issarny, V. 2009. The iBICOOP
middleware : Enablers and services for emerging pervasive computing environments. In IEEE
International Conference on Pervasive Computing and Communications. 69

Berson, A. 1996. Client/server architecture (2. ed.). McGraw-Hill. 6

Bertran, B., Bruneau, J., Cassou, D., Loriant, N., Balland, E., and Consel, C.
2012. DiaSuite : a Tool Suite To Develop Sense/Compute/Control Applications. Science of
Computer Programming, Fourth special issue on Experimental Software and Toolkits . 63

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Rangana-
than, A., and Riboni, D. 2010. A survey of context modelling and reasoning techniques.
Pervasive Mob. Comput. 6, 2 (Apr.), 161–180. 16

Bischoff, U. and Kortuem, G. 2006. Rulecaster : A macroprogramming system for sensor
networks. In Proceedings OOPSLA Workshop on Building Software for Sensor Networks. 21

105



References

Bischoff, U. and Kortuem, G. 2007. Life cycle support for sensor network applications.
In Proceedings of the 2nd international workshop on Middleware for sensor networks. ACM,
1–6. 8, 10, 21, 25

Blackstock, M. and Lea, R. 2012. WoTKit : a lightweight toolkit for the web of things.
In Proceedings of the Third International Workshop on the Web of Things. ACM, 3. 17

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F.,
Thatte, S., and Winer, D. 2000. Simple object access protocol (SOAP) 1.1. 19

Cassou, D., Bertran, B., Loriant, N., Consel, C., et al. 2009. A generative pro-
gramming approach to developing pervasive computing systems. In GPCE’09 : Proceedings
of the 8th international conference on Generative programming and component engineering.
137–146. 33

Cassou, D., Bruneau, J., Consel, C., and Balland, E. 2012. Toward a tool-based deve-
lopment methodology for pervasive computing applications. IEEE Transactions on Software
Engineering 38, 6, 1445–1463. 21, 25, 29, 30, 54, 73

Castellani, A. P., Dissegna, M., Bui, N., and Zorzi, M. 2012. WebIoT : A web appli-
cation framework for the internet of things. In WCNC Workshops. IEEE, 202–207. 17

Chen, C., Helal, S., de Deugd, S., Smith, A., and Chang, C. K. 2012. Toward a
collaboration model for smart spaces. In SESENA. 37–42. 7, 29

Chen, H., Chou, P., Duri, S., Lei, H., and Reason, J. 2009. The design and implemen-
tation of a smart building control system. In IEEE International Conference on e-Business
Engineering. ICEBE’09. IEEE, 255–262. 4

Cheong, E. and Liu, J. 2005. galsC : A Language for Event-Driven Embedded Systems. In
DATE (2005-04-13). IEEE Computer Society, 1050–1055. 9

Chinnici, R., Moreau, J.-J., Ryman, A., and Weerawarana, S. 2007. Web services
description language (WSDL) version 2.0 part 1 : Core language. W3C Recommendation 26.
19

Costa, P., Mottola, L., Murphy, A., and Picco, G. 2007. Programming wireless sensor
networks with the teeny lime middleware. Middleware 2007 , 429–449. 9

de Saint-Exupery, A. 2009. Internet of things, strategic research roadmap. Tech. rep. 2

Dey, A., Abowd, G., and Salber, D. 2001. A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human–Computer Interac-
tion 16, 97–166. 16

106



References

Doddapaneni, K., Ever, E., Gemikonakli, O., Malavolta, I., Mostarda, L., and
Muccini, H. 2012. A model-driven engineering framework for architecting and analysing
wireless sensor networks. In Third International Workshop on Software Engineering for
Sensor Network Applications (SESENA). IEEE, 1–7. 25

Drey, Z., Mercadal, J., and Consel, C. 2009. A taxonomy-driven approach to visually
prototyping pervasive computing applications. In Domain-Specific Languages. Springer, 78–
99. 22

Duquennoy, S., Grimaud, G., and Vandewalle, J.-J. 2009. The Web of Things : in-
terconnecting devices with high usability and performance. In International Conference on
Embedded Software and Systems (ICESS). 323–330. 17

Erlikh, L. 2000. Leveraging Legacy System Dollars for E-Business. IT Professional 2, 3
(May), 17–23. 81

Eugster, P., Felber, P., Guerraoui, R., and Kermarrec, A. 2003. The many faces of
publish/subscribe. ACM Computing Surveys (CSUR) 35, 2, 114–131. 6

Evans, D. 2011. The internet of things : How the next evolution of the internet is changing
everything. CISCO white paper . 1

Fielding, R. T. 2000. Architectural styles and the design of network-based software archi-
tectures. Ph.D. thesis, University of California. 19

Fowler, M. 1996. Analysis Patterns : Reusable Object Models. Addison-Wesley Longman,
Amsterdam. 25

France, R. and Rumpe, B. 2007. Model-driven development of complex software : A research
roadmap. In 2007 Future of Software Engineering. IEEE Computer Society, 37–54. 11
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