
HAL Id: tel-00927252
https://theses.hal.science/tel-00927252v1

Submitted on 12 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Monte Carlo Tree Search for Continuous and Stochastic
Sequential Decision Making Problems

Adrien Couetoux

To cite this version:
Adrien Couetoux. Monte Carlo Tree Search for Continuous and Stochastic Sequential Decision Making
Problems. Data Structures and Algorithms [cs.DS]. Université Paris Sud - Paris XI, 2013. English.
�NNT : �. �tel-00927252�

https://theses.hal.science/tel-00927252v1
https://hal.archives-ouvertes.fr

Monte Carlo Tree Search for Continuous and

Stochastic Sequential Decision Making Problems

by

Adrien Couëtoux

Submitted to the Departement d’Informatique de l’Universite Paris
Sud

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

UNIVERSITE PARIS SUD

September 2013

c© Universite Paris Sud 2013. All rights reserved.

Author .
Departement d’Informatique de l’Universite Paris Sud

September 30th, 2013

Certified by. .
Olivier Teytaud

Chargé de recherche
Thesis Supervisor

Accepted by .
Nicole Bidoit

Directrice de l’école doctorale d’informatique de Paris Sud (EDIPS)

Monte Carlo Tree Search for Continuous and Stochastic
Sequential Decision Making Problems

by
Adrien Couëtoux

Submitted to the Departement d’Informatique de l’Universite Paris Sud
on September 30th, 2013, in partial fulfilment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

In this thesis, I studied sequential decision making problems, with a focus on the
unit commitment problem. Traditionnaly solved by dynamic programming methods,
this problem is still a challenge, due to its high dimension and to the sacrifices made
on the accuracy of the model to apply state of the art methods. I investigated on
the applicability of Monte Carlo Tree Search methods for this problem, and other
problems that are single player, stochastic and continuous sequential decision making
problems. In doing so, I obtained a consistent and anytime algorithm, that can easily
be combined with existing strong heuristic solvers.

Thesis Supervisor: Olivier Teytaud
Title: Chargé de recherche

2

Acknowledgments

I am immensely grateful for the support I have received during these past three years.
I have been lucky to be surrounded by a loving family, true friends, brilliant colleagues,
and an exceptional advisor.

I want to thank Olivier Teytaud for having introduced me to the wonderful and
intimidating world of research. The more time passes, the more I realize how great he
is at mentoring students. I have had the pleasure to work with him, and not for him.
By treating me as an equal and listening to all my ideas and questions, Olivier helped
me develop curiosity and critical thinking, without the fear of making mistakes.

I thank Louis Wehenkel and Philippe Preux for their thorough review of my
manuscript and their comments; they made this manuscript much more readable
than it originally was. I also thank Nicolas Sabouret, Tristan Cazenave, Olivier
Buffet, Simon Lucas and Marc Schoenauer for being members of the comity, and for
their questions.

I want to thank all the member of the TAO team, at INRIA Saclay, for the won-
derful work environment they all contributed to build. Thank you Fabien, Romaric,
and Jean-Baptiste for having taken good care of me when I first joined the team.
Many thanks to Hassen, who helped me many, many times to perform experiments
on more cores than I count, and helping the rookie I was to deal with terminal com-
mand lines. Thanks also to Anne and Nikolaus for training me during my initial
internship. Thank you Marc and Michèle for the insightful suggestions and advice;
in particular for the preparation of my defense. Thanks to everyone who made the
coffee race a real challenge: Jialin, Marie-Liesse, Sandra, Jean-Marc, and Philippe. I
will also never thank Marie Carol enough for her outstanding work as the secretary
of the team. I owe most of the experimental results here to Grid5000.

Special thanks also to Damien Ernst, who through the years, despite the distance,
has always been there for me, whether I needed scientific advice or professional guid-
ance.

This work would also not have been what it is if I had not visited National Univer-
sity of Tainan and Dong Hwa University, for two semesters. The welcome I received
there was beyond any expectations, thanks to Prof. Lee, Prof. Yen, the OASE lab,
Ada, Cherry, Tom, Yuki, Orlando, and Meng-Zheng. I also owe my survival there to
Maggie, my amazing Chinese teacher.

I would not have kept my sanity without my friends, who magnificently dealt
with the person I was at all times, including the unpredictable, stressed and needy
deadline-minus-two-days me. In alphabetical order, thanks to: Agnès G., Alice G.,
Armel P., Benjamin B., Erika P., Fabien D., François S., Grégory L., Guillaume L.,
Julie P., Julien P., Julien L., Marc H., Marjorie W., Mica P., Olivier B., Pauline G.,
Pierre G., Sébastien M., Solène G., Solenne B., Thibault V., Thomas B., Vincent G.,
Viviane N., Yixin C. Thanks to Sarah for joining me on this ride and supporting me
through its most difficult times.

Enfin, je remercie ma famille, qui m’a toujours soutenu durant mes études, psy-
chologiquement et financièrement. Merci à mes parents Franceline et Löıc, mon frère
Basile.

3

Contents

1 Introduction 11
1.1 Outline of the manuscript . 11
1.2 Motivation: energy stock management 12

1.2.1 Hydrothermal Scheduling (HS) 12
1.2.2 Challenging features . 14
1.2.3 Multi-stock formulation . 16

1.3 Modelling sequential decision making problems 17
1.3.1 Decision epochs . 18
1.3.2 State variables . 19
1.3.3 Action variables . 20
1.3.4 Random processes . 20
1.3.5 Transition function . 21
1.3.6 Reward function . 22

2 Algorithms for Sequential Decision Making 23
2.1 Decision making under uncertainty 23

2.1.1 Policies . 24
2.1.2 Value function . 25
2.1.3 Action-Value function. 26

2.2 The finite case . 26
2.2.1 Bellman equations . 26
2.2.2 Basic Dynamic Programming algorithm 27
2.2.3 Value iteration . 28
2.2.4 Policy iteration . 29
2.2.5 Q learning . 30
2.2.6 SARSA . 30

2.3 The large scale case: RL and approximate DP 32
2.3.1 Approximate Value Iteration 33
2.3.2 Approximate Policy Iteration 36
2.3.3 Policy search . 39
2.3.4 Actor critic methods . 39
2.3.5 Mathematical programming for unit commitment 40

4

3 Continuous MCTS 43
3.1 Finite MCTS . 43

3.1.1 Algorithm description . 44
3.1.2 Improvements in MCTS applied to games 49

3.2 Infinite domain: continuous MCTS 50
3.2.1 MCTS-SPW for infinite action space 51
3.2.2 Why MCTS-SPW fails on infinite state space 53
3.2.3 Proposed solution: DPW . 54
3.2.4 The Trap problem . 56
3.2.5 Conclusion . 57

3.3 Exploring infinite action spaces . 58
3.3.1 Existing methods . 58
3.3.2 Our contribution: Blind Value (BV) 59
3.3.3 Experimental comparison . 61
3.3.4 Conclusion . 63

3.4 Generalization: continuous RAVE . 64
3.4.1 Rapid Action Value Estimation: the finite case 64
3.4.2 Continuous Rapid Action Value based Estimation 65
3.4.3 Experimental Validation . 66

4 Theoretically consistent MCTS 73
4.1 Specification of the Markov Decision Tree setting 73
4.2 Specification of the Polynomial Upper Confidence Tree algorithm . . 74
4.3 Main result . 76
4.4 From Decision Nodes to Random Nodes 77

4.4.1 Children of Random Nodes are selected almost the same num-
ber of times . 77

4.4.2 Consistency of Random Nodes 78
4.5 From Random Nodes to Decision nodes 80

4.5.1 Children of decision nodes are selected infinitely often 80
4.5.2 Decision nodes are consistent 81

4.6 Base step, initialization and conclusion of the proof 85
4.7 Experimental validation . 86
4.8 Conclusion . 87

5 Hybridization of MCTS 88
5.1 Custom default policies . 88

5.1.1 Introduction . 88
5.1.2 Algorithms . 89
5.1.3 Experiments . 90
5.1.4 Conclusion . 95

5.2 Mixing MCTS with heuristics to solve POMPD 96
5.2.1 Belief state estimation, from Mines to mathematics 96
5.2.2 MCTS with belief state estimation 100
5.2.3 Experimental results . 101

5

5.2.4 Conclusions . 102
5.3 A Meta-bandit framework . 103

5.3.1 Review of multi-armed bandit formulas 103
5.3.2 Energy management: comparing different master plans 105
5.3.3 Discussion . 106

6 Backup operators for SDM 108
6.1 State of the art . 108

6.1.1 Related work and how it relates with MCTS 108
6.1.2 When asymptotic results are not enough 109

6.2 Finding the right balance between optimism and conservatism 111
6.2.1 Alternatives to UCB . 111
6.2.2 Empirical analysis . 114

6.3 Conclusions . 117

7 Conclusion 120

6

List of Figures

1-1 Hydroelectric Scheduling problem, with one stock and one thermal
power plant. Random processes are shown in orange. G represents
the power grid, where produced electricity is dispatched to satisfy the
demand. 14

1-2 Hydroelectric Scheduling problem, with multiple stocks and one ther-
mal power plant. Random processes are shown in orange. G represents
the power grid, where produced electricity is dispatched to satisfy the
demand. 17

3-1 Generic tree structure for sequential decision making under uncer-
tainty. In this figure, x is the initial state, the root of the tree. One of
the explored feasible actions from x is a. One of the explored possible
outcome of the pair (x, a) is x′. 45

3-2 An example of the four phases of MCTS, from (i) to (iv). The orange
color is used to indicate the parts of the tree that are used/modified
at each phase. 48

3-3 Shape of the reward function: Trap problem. 57
3-4 Mean of the reward, for the trap problem with a = 70, h = 100,

l = 1, w = 0.7, R = 0.01. The estimated standard deviations of
the rewards are STDDPW = [13.06, 12.88, 12.88, 12.06, 14.70, 0, 0] for
Double PW and STDSPW = [7.16, 7.16, 8.63, 9.05, 0, 0, 0] for Simple
PW - the differences are clearly significant, where STD means standard
deviation. 58

3-5 Median of the reward, for the trap problem with a = 70, h = 100,
l = 1, w = 0.7, R = 0.01 . 59

3-6 Reward, as a function of the computation time. Problem settings: 12
stocks, 16 time steps. MTCS with BV is 10 times faster than MCTS,
for budgets up to 10 seconds per decision. 62

3-7 Reward, as a function of the number of simulations per decision. Prob-
lem settings: 80 stocks, 6 time steps. MTCS with BV is 10 times faster
than MCTS, for all budgets. 63

3-8 The treasure hunt benchmark problem involves two options: the pres-
ence of a hole in the middle of the arena (left) and a probabilistic
transition setting (right). 68

7

3-9 Treasure hunt with 15 × 15 arena, without hole (top: deterministic
transitions; middle and bottom: probabilistic transitions with respec-
tively ε = .5 and 1). The speed up is only significant in the case of
ε = 1, where it makes the convergence about 3 times faster. 69

3-10 Treasure hunt with 5 × 5 arena, with hole (top: deterministic transi-
tions; middle and bottom: probabilistic transitions with respectively
ε = .5 and 1). In this case, the speed up is quite significant, with
MCTS+RAVE being about 10 times faster than vanilla MCTS. . . . 70

3-11 Comparative performances of UCT,discrete RAVE, cRAVEstate,
cRAVEaction and cRAVEaction,state on the energy management problem,
versus the computational budget (number of simulations). The upper
the better. 71

5-1 Performances of different variants of MCTS on the 1 river unit com-
mitment problem (left) and the binary rivers (right), with 7 stocks, 24
time steps. Y axis shows the reward (the higher the better). 93

5-2 Performances of different variants of MCTS on the randomly connected
unit commitment problem (7 stocks, 24 time steps).Y axis shows the
reward (the higher the better). 94

5-3 Results on the energy investment problem. The five DPS curves (curves
1 to 5) are very close to each other; results are better than for the
heuristic alone, and versions without the heuristic are almost the same
as versions with the heuristic. The MCTS+DPS+neural network was
the most efficient strategy, outperforming MCTS+DPS+neural net-
work+heuristic. The sums of Gaussians require more time for learning,
hence the poor results for moderate budgets. 95

5-4 A case in which choosing the next move is non-trivial. 97
5-5 Left: here, you can deduce that one of the remaining locations is a

mine. If you play in the middle location, you have an expected num-
ber of (unique) moves before losing which is, if you play perfectly, 1
(the three outcomes, losing immediately, or losing after 1 move, or
completely solving the game, are equally likely) - whereas playing the
top or bottom unknown location gives an expected number of (unique)
moves 4/3 (with probability 1

3
, it’s an immediate loss - otherwise, it’s

a complete solving). Middle: a situation with 50% probability of win-
ning. Right: this situation is difficult to analyze mathematically; our
program immediately sees that the top-right location (0,6) is a mine.
However, this could easily (and faster) be found by a branch-and-bound
optimization. More importantly, it also sees that the location just be-
low (1,6) is good; but the real good point is that it can say which
locations are more likely to lead to a long-term win than others. . . . 98

6-1 Trap problem with 3 time steps, uniform additive noise of amplitude
0.03, gap of 0.7. 110

8

6-2 Reward function shape for the trap problem with a crash probability.
x is the state variable; 0 < d < 1 is the difficulty parameter; H is the
number of time steps; d(H − 1) is the length between the initial state
0 and the gap; d is the width of the gap; the reward is obtained at the
final time step, can be equal to a, −g, h, or −K; if the final state xf
is larger than dH − 1, there is a probability p of ‘crashing’ and getting
a reward of −K. 115

6-3 MCTS-DPW set to 0.25. Trap problem with 3 time steps, uniform
additive noise of amplitude 0.03, gap of 0.7. Crash probability of 0.1. 117

6-4 MCTS-DPW set to 0.50. Trap problem with 3 time steps, uniform
additive noise of amplitude 0.03, gap of 0.7. Crash probability of 0.1. 118

6-5 MCTS-DPW set to 0.75. Trap problem with 3 time steps, uniform
additive noise of amplitude 0.03, gap of 0.7. Crash probability of 0.1. 119

9

List of Tables

4.1 Definition of coefficients and convergence rates 76
4.2 Left: Cart Pole results; episodes are 200 time steps long. Right: Unit

Commitment results, with 2 stocks, 5 plants, and 6 time steps. 86

5.1 Results of various implementations on the MineSweeper games. Re-
sults are averaged over 105 games except 16x30 which is averaged over
104 games. For OH, results are obtained with 10000 simulations per
move, except expert mode and intermediate mode (99 mines on 16x30
and 40 mines on 16x16) which use 100 simulations per move. BSSUCT
is not documented for cases in which it was too slow for being opera-
tional in [107]. 102

5.2 Left: “real” value of each arm; computed by giving MCTS a large
budget (100s). Right: expected simple regret of different bandit algo-
rithms, as a function of the budget allowed to arm plays and to T . . . 107

10

Chapter 1

Introduction

In this chapter, we first present the outline of the manuscript. We then introduce the
kind of real world application that has been the initial motivation driving our research
work: energy stock management problems. Then, we show how one can model such
Sequential Decision Making (SDM) problems, and the methods developed to solve
them. The way people define SDM problems can vary from one community to the
other (eg. from the Operations Research (OR) community to the Reinforcement
Learning (RL) community), and we will actually use sources from both.

1.1 Outline of the manuscript

This first chapter presents the framework and the motivation of our work, along with
essential definitions for sequential decision making, like state variables.

The second chapter is our attempt at explaining the state of the art in sequential
decision making. We describe some of the most famous algorithms, for finite and
infinite problems. We also mention the most popular methods used for the application
that initially motivated this work, the management of energy stocks.

The third chapter covers our main contributions to Monte Carlo Tree Search
(MCTS), after presenting it in its vanilla form (i.e. for finite and deterministic
problems). Our contributions can be summarized as follows: we extend MCTS to
continuous domains with a trick called Double Progressive Widening (DPW)[39] (I
implemented the algorithm, made experiments and participated in the writing of the
paper); we show a method called Blind Value (BV)[38] that is intended to improve
the exploration of an unknown and large set of actions (I designed the BV heuristic,
did the experimental validation, and participated in the writing of the paper); we
extend the RAVE heuristic to continuous setting[40] (I did part of the experimental
validation and writing of the paper).

The fourth chapter contains the formal proof of consistency of continuous MCTS
with polynomial exploration[12]. I participated in the proof of the main result, and
modified the paper after an initial rejection (by writing a comprehensive state of the
art section, adding experimental validation, and shortening and clarifying the paper
for a conference format).

11

The fifth chapter is about the possible hybridisations of MCTS with other meth-
ods or applications. First, we show a promising framework to use Direct Policy Search
(DPS) to improve the default policy of MCTS in an agnostic way[42]. I participated
in the design of the framework, writing of the paper and experimental validation.
Then, we show how MCTS can be used to solve Partially Observable Markov Deci-
sion Processes (POMDP), with an application to the game of Mine Sweeper[41]. I
participated to the adaptation of the code of MCTS to the POMDP setting. Some
more experimental results have been obtained later by [108], and are included in this
chapter. Finally, we present a meta-bandit framework. We compare various bandit
algorithms, to choose among a set of investments (i.e. arms), where each arm is eval-
uated by running MCTS to measure the value of the corresponding investment. This
work has been submitted and is currently under review.

The sixth chapter presents a study of alternatives to the classical Upper Confidence
Bound (UCB) formula, in the context of MCTS. We include alternative ways to back
up the rewards in the tree; some of them have been explored in the finite setting, and
we study them in the continuous setting. We obtain promising preliminary results,
and insights about the importance of a meta-parameter of the DPW trick in MCTS.
This work is currently under review.

Finally, the seventh chapter concludes, and suggests some directions for future
work.

1.2 Motivation: energy stock management

Energy management problems have received an enormous attention in the past few
decades. Among the likely reasons behind this rise of interest, we could mention
the economic weight of the energy market, the foreseeable scarcity of our energy re-
sources, the increasing share of unpredictable renewable energy sources, and possibly
the simple fact that these problems are very challenging.

According to a growing number of reports, the share of renewable sources in our
energy mix is going to keep growing, with estimates for 2050 going from 35% to
80%[86]. A recent report, by the International Energy Agency (IEA) found that
renewable sources would likely surpass natural gas by 2016[68].

First, we will present the energy management problem, and more specifically
the version that involves hydroelectric stocks. Then, we will explain our goals and
motivation, i.e. what we think are some of the current weaknesses in the state of the
art methods.

1.2.1 Hydrothermal Scheduling (HS)

What we are specifically interested in is the hydrothermal scheduling. This problem is
the one faced by an agent trying to maximize his utility function, given a certain num-
ber of energy production facilities (some hydroelectric, other thermoelectric, possibly
also some renewable energy sources), and some model of the energy market (energy
demand, fuel prices...) and of the weather conditions (temperature, inflows...). This

12

optimization is happening at the present time, but will impact future time steps. It is
thus called planning, even though there may be many opportunities to change one’s
decisions over time, as more information becomes available. This problem is well
described for a single hydroelectric stock, in [111]. We borrow their formulation and
rewrite it here:

min
T−1∑
t=1

Ψt(dt − ht) (1.1)

ht = k. [φ(vt)− θ(ut)] rt (1.2)

ut = rt + st (1.3)

vt = vt−1 + (it − ut)β (1.4)

vt ∈ Vt (1.5)

ut ∈ Ut (1.6)

rt ∈ Rt (1.7)

st ≥ 0 (1.8)

where
T : planning period;
t : index of planning stages;
Ψt(.)(*) : thermal cost function at stage t;
dt(*) : energy demand at stage t;
ht : hydro generation at stage t;
k : average specific efficiency;
φ(vt) : forebay elevation at stage t;
θ(ut): tailrace elevation at stage t;
rt : water discharged at stage t;
it(*) : inflow at stage t;
vt : reservoir volume at the end of stage t;
ut : water released at stage t;
st : water spilled at stage t;
β : conversion factor;
Vt , Ut and Rt : feasible sets representing bounds for the variables vt , ut , and rt

, respectively.
The decision variables, or actions, are the water discharged and water spilled at

each time step (the latter can be seen as a slack variable).
Variables followed by a “(*)” are very likely to be the origin of the randomness in

the process. This is to separate them from deterministic variables, or from variables
that are deterministic functions of random variables.

The thermal cost Ψt(.) is likely to be a random function, as prices of fuel tend to
fluctuate over time. The demand dt is also known for being random, following some
underlying seasonal trend (eg. more heating is needed in northern countries during
winter, many people turn on the heaters when coming back from work around 6 or

13

7pm, week days are different from week ends, etc). Finally, the inflows it depend on
the weather conditions, and are thus stochastic.

In this setting, the agent is the person (or entity) controlling the energy production
facilities: the hydroelectric plant (HP) and the thermal power plant (TPP). Every
time it is doable, the agent readjusts how these facilities are used, in order to satisfy
a random and time varying demand. Using HP is virtually free, but using TPP
has a cost. Depending on the model, this cost function may be linear, quadratic,
non continuous, etc. It also randomly changes over time, influenced by fuel price
variations. Failure to satisfy the demand incurs a prohibitive cost. A simple visual
representation of this problem is shown in Fig. 1-1.

G

Fuel costs
Inflows

Demand

Figure 1-1: Hydroelectric Scheduling problem, with one stock and one thermal power
plant. Random processes are shown in orange. G represents the power grid, where
produced electricity is dispatched to satisfy the demand.

1.2.2 Challenging features

Here are four big challenges of HS problems (this list is non exhaustive):

– high dimension, both in state and action spaces that can be continuous, and
long term time horizon;

– representation of randomness;

– non convexity of the cost function;

– non convexity of the action space.

Because of the first challenge, the industry has been attracted to mathematical
programming more than to anything else. Other very convincing approaches have
been approximation methods (see next chapter). The second challenge has been
mostly tackled by simplifying the real stochastic models, representing them as small

14

samples of possible trajectories, or even by reducing the problem to certainty equiv-
alents (i.e. replacing the randomness by some arbitrary predetermined sequence of
events). The third challenge, as far as we know, has not truly been addressed. All
methods we have seen so far consider that the cost function is convex. Sadly, even
though the models of hydroelectric stocks are never perfect, their cost function is
most likely not convex, because their efficiency decreases with the water elevation
(i.e. with the amount of water in the stock). The last challenge can make classical
convex optimization algorithms ineffective. The alternative methods (that include the
use of Monte Carlo simulations) are usually less powerful (i.e. slower) than convex
optimization methods.

Non convexity of energy problems. We briefly focus on this feature of the
hydroelectric scheduling problem. We are interested in the cost function’s behaviour
when the state value changes. Indeed, what most methods assume, in order to solve
this problem, is that the value associated with a given state of the system is a convex
function of that state[93]. Our goal here is not to prove that every hydroelectric
system ever operated is fundamentally non convex. It is simply to show that the
assumption that it is indeed convex has very good reasons not to hold in reality.
Making such an assumption should be, in our opinion, backed by solid evidence of it
being true, or it should be shown that it introduces an acceptable model error. What
follows is one example among the probably numerous reasons why the cost function
might be non convex.

Considering the model previously introduced, we notice that the hydroelectric
production ht is an increasing function of the difference between the forebay and
the tailrace elevation. This makes ht an increasing function of the current forebay
elevation, i.e. an increasing function of the current volume in the stock, vt. This cor-
responds to the well known fact that the efficiency of an hydroelectric plant increases
with its stock, due to the laws of physics. Let us write this increasing efficiency func-
tion f(vt), so that ht =

∫ vt
vt−rt f(u)du. Note that we use a more precise expression of

the hydroelectric production, where we integrate the elementary contribution per unit
of volume. We also assume the absence of inflow and spillage, for clarity’s purposes.

To look at the value of being in a given state vt, we will consider only the last
time step (the value computed at the last time step would then back propagate
through time, as it will become more clear in the next chapter that covers dynamic
programming). Assuming we neglect what happens after the final time step, the best
decision is to use all the water we have, i.e. rt = vt. The demand having to be
satisfied by thermal production is then pth = max(0, dt −

∫ vt
0
f(u)du). Then, the last

time step’s cost is Ct = Ψt(pth).
The question now is to see if that function is convex or not, with respect to the

state vt. It is straightforward to compute its second order derivative

∂2Ct
∂v2

t

=

{
−f ′(vt)Ψ′t(pth) + f(vt)

2Ψ′′t (pth), if pth > 0.

0, otherwise.
(1.9)

15

Since Ψt is an increasing function of pth, and −f ′(vt) < 0 (increasing efficiency of
a hydroelectric plant with vt), the first term is negative. The second term, depending
on the shape of the thermal costs, can be negative, null, or positive. The conclusion
is that when we include the non linearity of the electricity production from water
plants, it brings a source of non convexity in the cost function.

We did make a few reasonable assumptions to obtain this result (neglecting water
salvage costs, inflows at the last time step...), but they were mostly done for the sake
of clarity. Obviously, each power plant has its specificities, and we are not trying to
prove a general result holding for all hydroelectric plants.

This provides us with one of our motivations: to work on optimization methods
for SDM, that do not require the convexity assumption. Doing so may provide a way
to reduce the model error when dealing with HS problems. Evaluating the size of this
model error in real world instances is a challenging task. But it is an essential step
to improve the state of the art of hydroelectric scheduling.

1.2.3 Multi-stock formulation

The above formulation corresponds to a single hydroelectric stock. We write here the
straightforward extension to N stocks. We will use a N by N transfer matrix M to
model the flows between stocks. For 1 ≤ i < j ≤ N , Mi,j is the portion of the water
coming out of stock i that goes into stock j. To simplify the notations, we assume
that all the water transits in one time step. All the notations associated to one stock,
like vt (or ut, rt) are now noted vi,t for each stock i. In this case, vt will now refer to
the column vector of size N containing each stock’s variable.

min
T−1∑
t=1

Ψt(dt − ht) (1.10)

ht = k.
N∑
j=1

[φ(vj,t)− θ(uj,t)] rj,t (1.11)

ut = rt + st (1.12)

vt = vt−1 + (it − ut +M · ut−1)β (1.13)

vt ∈ Vt (1.14)

ut ∈ Ut (1.15)

rt ∈ Rt (1.16)

st ≥ 0 (1.17)

In practice, water transfer between stocks can be subject to delays or losses.
There might also be operational constraints on how much water can transit on each
connection, to avoid overflows, for example. We show a simple illustration of the
problem with multiple stocks in Fig. 1-2.

This version of the HS problem is essentially the version we have used throughout

16

this work. One can easily create small variations of this problem, by changing the
probability distribution of the inflows, the connections between the stocks, the number
of power plants, etc. We will try to make it clear when using this problem in the
following chapters.

G

Fuel costs

Inflows

Demand

: water transfer

: electricity transfer

Figure 1-2: Hydroelectric Scheduling problem, with multiple stocks and one thermal
power plant. Random processes are shown in orange. G represents the power grid,
where produced electricity is dispatched to satisfy the demand.

1.3 Modelling sequential decision making prob-

lems

In SDM problems, one often considers the following framework: there is an agent
(also known as controller) who can interact with a given environment (also know
as process), for a certain number of sequential time steps. At each time step, the
environment sends its current state to the agent, who in return, sends an action to
the environment. The environment then changes its state accordingly, and sends the
corresponding reward to the agent. The goal for the agent is to take actions such
that the expected total long term reward is as high as possible.

If we call information everything the agent obtains from the environment (state
changes, rewards...), then the problem we are dealing with unfolds as follows : initial
information - decision - new information - decision - ..., until a final state is reached

17

(i.e. where no further action is needed or taken into account). In the case of infinite
time horizons (where there is no guarantee to ever reach a final state), this process
can have no end, and the problem is usually not solved by simulation, but by applying
a discount factor to effectively neglect events that happen very far into the future.

What we call a SDM problem is also called a Dynamic Program in [96], or a
multistage decision making problem, or also decision making under uncertainty. We
choose Sequential Decision Making as it sounds the most transparent and self evident,
in our opinion. Unless specified otherwise, the reader should assume that this is all
done ‘under uncertainty’, as this is one of the key features of our original motivation
(HS problems).

In an attempt to make our definitions easier to understand, we will often make
a parallel with a simple real life example of SDM: a driver, in his car, wants to
reach a certain destination, using the shortest usable path. The agent would be the
driver, the environment would be everything that is relevant to the driver’s task: the
behaviour of his car, how roads are connected, the weather conditions, the traffic,
random accidents, etc. The time steps may be of one second each. The state, i.e.
the information available to the driver in his environment, would be his position,
the current weather condition, and possibly partial information about traffic when
listening to a radio station. The reward might be minus the time taken by the driver
to reach his destination (so that we are indeed trying to maximize said reward).

We now proceed to give definitions of the different elements composing a SDM
problem:

– decision epochs

– states

– actions

– random process

– transition function

– reward function

The definitions and notations we use in this chapter are taken from [19] and [96]
for the control and OR community, and from [97] and [112] for the RL community.

1.3.1 Decision epochs

The decision epochs are the times at which a decision should be made, i.e. at which
the agent should choose an action. In this work, we only consider the case of discrete
decision epochs (thus called time steps). The reader interested in the continuous time
settings, where decisions are made continuously, can read [19]. Discrete time steps do
not necessarily mean equally spaced decision epochs. One might define a time step to
occur each time the agent has to make a decision. In our example, this might happen
every time the driver encounters a crossroad.

18

When relevant, we will index variables with their corresponding time step t, us-
ing the convention from [96]: a variable Xt indexed by t is deterministic at time t.
However, while at time t, variable Xt+1 could be both deterministic or stochastic,
depending on the context. In the case of the driver, if Xt+1 is the age of the driver
at t+ 1, it is deterministic, but if it represents the traffic conditions at t+ 1, one can
assume some uncertainty about Xt+1. Note that in the latter case, Xt represents the
traffic conditions from t− 1 to t, and is deterministic at t. This convention can seem
a little counter-intuitive at first but avoids some confusion about what is random and
what is not.

1.3.2 State variables

The name state variable being self explanatory, it is not always clearly defined. It
can contain information about the physical state of the agent, pure information signal
received from the environment, or also information about the history. To make things
as clear as possible, we borrow the following definition from [96]:

Definition 1 (State variable). A state variable is the minimally dimensioned func-
tion of history that is necessary and sufficient to compute the decision function, the
transition function, and the contribution function.

Using this definition makes the distinction between history dependent processes
and history independent processes useless. If the history information is needed to
make better decision, to compute the next transition, or the costs, then it has to be
included in the state variable. Otherwise, it should not be included (unless one wants
to add computational complexity for free).

Similarly, if the time is important to compute the decision function (non stationary
policy), or the transition and contribution functions (non stationary processes), then
it should be included in the state. Thus, we only index variables with time, like xt
when it serves the purpose of making things clearer for the reader, or for information
that becomes available and deterministic at time t.

Also, it should be noted that according to this definition, the state variable in-
cludes enough of the observable information to compute the optimal decision (if this
one exists, and with respect to the observable information).

This definition of the state variables is maybe the most important part of this
chapter. We will come back to it in the following sections, to explain its implications.

We will generally refer to state variables as x ∈ X , with X referring to the state
space. X can be finite, infinite but countable, or infinite and uncountable. It is also
common to use s as a notation for a state variable, but it tends to imply that the
state space is finite, as it is often used by in the framework of finite Markov Decision
Processes. The nature of this space is both determined by the nature of the problem
and by the choices of the model. Some methods require to have a discrete state space,
and will thus need to first discretize a continuous state space before doing anything
else. In our example, if the state only contains information about the position of the
driver, it should be a continuous space. But, if the expected accuracy of the results

19

allow it, one may discretize the state space, by rounding up all states to integer values
in meters.

1.3.3 Action variables

Actions are the result of the agent’s decisions. They represent the lever available to
the optimizer. The goal is to try to find the best ones. We will generally denote an
action a ∈ A, A being an action space. As for states, an action space can be finite,
discrete and countable, or uncountable.

It is common to talk about feasible actions, or legal actions, to talk about actions
that are possible from a certain state x, at some time step t. This set depends on the
environment. When this set depends on the state x and the time t, we will write it
At(x). Many problems have one unique feasible action space, for all t and x; in these
cases we will simply write this space A for clarity.

As for state spaces, a continuous action space is sometimes discretized. For exam-
ple, if one dimension of the action vector is the acceleration of the car, this coordinate
could be continuous or discretized. In the latter case, the accuracy of the discretiza-
tion becomes a meta parameter of the method.

Looking at our definition of the state variables, it means that if at time t, the past
actions (at′)0≤t′≤t−1 matter to the choice of at, or to the transition, or to the random
process, then it should be included in the state variable. Otherwise, it should not.

Post decision state variable. We mention here the notion of post decision state
variable. This is the state variable after the decision has been chosen, but before the
random process and transition actually happened. We note the variable xat . In some
cases, this variable would simply be the pre decision state variable xt, augmented by
at, i.e. xat = (xt, at). But, in some cases, it can be smaller than this. Indeed, the
only information the post decision state variable needs to contain is the information
necessary to compute the random process and the transition function, but does not
require the information needed to compute the action at. In some applications, this
can be used to reduce the size of the space where the search happens.

1.3.4 Random processes

The random processes refers to the variables that take random values, influencing the
outcome of the decision making process. We consider that this flow of information
arrives continuously to the agent, and we denote by wt the information available
at time t. This random variable follows a generally unknown random distribution,
defined by a probability density function pwt(wt = w), sometimes written pwt(w) for
short. We write Ωt the set of possible realizations at t.

Depending on the problem, this process, the set of possible realization, and the
related probability distributions may depend on the time, the state (this could include
the “history”), and the actions made. In this case, one would then write the density
function pwt(wt = w|s, a), and the set of realizations Ωt(s, a).

20

Note that, according to our definition, if wt depends on the history of the process,
(w′t)1≤t′≤t−1, then this history should be included in the state variable xt. Then,
a process will be Markovian if and only if the history is not included in the state
variable.

The set Ω can be finite, discrete and countable, or uncountable. Much of the chal-
lenges posed by the random processes relies in how one can estimate its distribution.

The way the knowledge about this random process is made available can vary
from one application to the other. In data driven applications, one might be given a
fixed amount of past realizations, and try to infer the hidden distribution. In model
based approaches, one needs to have a generative model of the random process, able
to generate new realizations whenever prompted. Our work focuses on the latter case.

We will see later that the way the optimizer deals with the random process of
the problem is an extremely important choice. Some methods choose to bypass the
randomness entirely, optimizing their actions in the case of one fixed series of realiza-
tions. Others choose to optimize their action as if the random process would always
take values equal to the expectation of this process. And others are trying to make
decisions in order to minimize a given risk criterion, like the costs incurred in the
5% worst cases. Finally, some methods are simply trying to optimize the expected
cost, computed with respect to the full distribution of the random process. All these
approaches have their advantages and drawbacks. Generally speaking, one needs to
make a trade off between being theoretically consistent and optimal, and having a
fast and scalable method.

As many random processes in real applications are not Markovian, people like to
consider series of random variables rather than isolated ones. It is then convenient
to talk about random scenarios to refer to the realizations of these series of random
variables.

In our driver’s example, the random process could be the traffic conditions. This
information becomes available step by step to the driver, as he takes new roads and
sees by himself how busy they are. Given a model of the traffic conditions, one may
want to optimize the journey assuming that one fixed scenario will happen (eg. the
scenario “congested roads”). Another optimizer would consider the average traffic
conditions, and look for the best actions to choose if these were the real conditions.
One could also minimize the duration of the trip if the traffic conditions are among
the 5% worst. Finally, one could try to optimize the decision making so that the
expected time of the trip, with respect to the traffic distribution, would be minimal.

1.3.5 Transition function

The transition function models the dynamics of the problem. At time t, given a state
xt, an action at, and a random process variable wt+1 (this is the random information
that will become available between t ant t+1), the next state is given by the transition
function f , so that xt+1 = f(xt, at, wt+1).

In the stochastic case, we will often need to write the probability density function
of xt+1, and we will write it p(.|xt, at). Formally this notation means that for all
x ∈ X , p(x|xt, at) = p(f(xt, at, wt+1) = x).

21

At this point, we can illustrate the definition of state variables introduced earlier.
If the transition function f requires any observable information that is not contained
in at or in the possible realization of wt+1, then it must be included in xt. This means
that if all past actions (at′)0≤t′≤t−1 are needed to compute f , then they should be
included in xt. Similarly, if the probability distribution of wt+1 depends on (wt′)0≤t′≤t,
then it should be included in xt. Of course, if for some computational reasons, one
does not want to include all that information in xt, it is possible to truncate the
state to a more manageable size. But then, one needs to be aware that the sampled
realizations of wt+1 are very likely to be biased, and that the result of f may be far
from the true model’s result.

Non stationary transitions. Using our definition of state variables, unless we
want to make the dependence on time of f as obvious as possible, we can simply rely
on the fact that in this case, the time will be included in the state variable. When
convenient, we may still overload the notations and use ft(xt, at, wt+1), to specifically
refer to the transition function at time t.

1.3.6 Reward function

The reward function g is how one quantifies the preferences of the optimizer. In
financial applications, a common utility measure would be to minimize the cost (in
dollars, or in any other currency), or to minimize a risk, or even the cost incurred
in the worst case scenario. In the case of a driver trying to reach a destination, the
most common measure is to minimize the expected duration of the trip, thus being
called shortest path problem.

The reward function is computed as each time step by the environment, and
is noted rt = g(xt, at, wt+1). Using this notation, the objective of the agent is to
maximize the expected long term reward E(RN) = E(

∑
0≤t≤N γ

trt). For the problem
to be properly defined, we need to have E(RN) <∞.

When RN is a random quantity, the questions mentioned before arises, namely:
what are we trying to achieve? We can try to minimize the expected costs, minimize
the “worst case scenario” costs (when this even makes sense), or minimize the costs
assuming one given scenario will happen.

These are all legitimate ways of assessing the performance of a particular methods.
However, as it is the most common way to proceed, we will use, as our objective, the
maximization of the expected reward.

Non stationary reward functions. Just like with transition functions, reward
functions may depend on the time t. In this case, following our definition of state
variables, xt will include the time.

22

Chapter 2

Algorithms for Sequential Decision
Making

In this chapter, we introduce the notions of policies and value functions. We then
show how they have been used to develop methods to solve SDM problems, first in
small spaces, then in larger spaces.

2.1 Decision making under uncertainty

Using the notations previously introduced, the objective of the optimizer is, given
an initial state x0, to choose the best action possible a∗0, then receive some new
information, be in a new state x1, choose the best possible action a1, and so on.
Unlike planning in a deterministic setting where one could say that the objective is
to find one series of actions (ai)i≥0 that would be optimal, SDM under uncertainty
adds randomness, and the possibility to react to it.

This makes even formulating the problem and the objective function difficult,
using only traditional notations from the mathematical programming literature.

For instance, let us look at the following description of the problem:

(ai)i≥0 = argmax
ai∈Ai(xi),i≥0

∑
0≤t≤N

γtg(xt, at, wt+1) (2.1)

s.t.xt+1 = f(xt, at, wt+1), t ≥ 0. (2.2)

This formulation is problematic, as it suggests that one chooses all the future
actions at once. Doing so, there is no guarantee that the first new state reached, x1,
even allows a1 as a legal action. Indeed, x1, even with a0 fixed, is random. Using the
formulation above is unfit for SDM under uncertainty, and should not be used.

Intuitively, when dealing with uncertainty, one wants to choose an action now
(a0) while considering many possible futures. This means considering many possible
reachable states, and the actions that would be taken, would one be in these states.
This is what motivates the notion of policies, introduced in this section, followed by

23

the notions of value and action-value functions.

2.1.1 Policies

Policies define how, given some information, the agent makes his decisions. Once
again, we borrow the definition from [96]:

Definition 2 (Policy). A policy is a rule (or function) that determines a decision
given the available information in state xt.

It is important to notice that, given our definition of a state variable, xt contains all
the observable information useful to make decisions. For example, if only the current
physical state of the system is necessary, xt will not contain any of the (wt′)t′≥1. On
the other hand, if the knowledge of the history of the random process helps to make
better decisions, then it should be included in the state variable, and would thus be
part of the policy’s arguments.

This broad definition covers many kinds of policies. A policy can be an arbitrary
rule, a parametric or non parametric function, or a combination of both. In the case
of the driver’s problem, a policy could be “always turn right when possible”. It could
be a polynomial function of the geographical position of the driver.

Given a policy π, a time t, and a state xt ∈ X , the action chosen is at ∈ A with
probability π(xt, at). For convenience, we write π(xt) the random variable that takes
value at with probability π(xt, at).

In the case of a deterministic policy, there is one unique axt ∈ A such that
π(xt, axt) = 1, and we can write, for short, π(xt) = axt . In this case, π(xt) is simply
a deterministic function of xt.

Non stationary policies. Again, thanks to the definition of state variables intro-
duced before, if choosing an action (i.e. calling the policy) requires the knowledge of
time, then the time should be included in the state variable. However, in some cases,
like for SDP, it is also useful to define a non stationary policy π as a sequence of N
stationary policies (πi)0≤i≤N−1 = π.

Non anticipativity. An important notion when trying to find a good policy is the
non anticipativity constraint. One may or may not respect it, and it is essential to
be aware of it.

The non anticipativity constraint is respected if at time t, the optimizer makes
no assumption about what will be the actual realization of the random variable se-
ries (wt′)t′≥t+1. He can only use information about the distribution followed by the
future random process if available, or sample possible futures if a generative model is
available.

A common way to violate this constraint is to assume that a specific series of
event will apply, in a deterministic way. This means that the action chosen at time
t is chosen assuming a specific future is known. It is easy to see that this cannot be
consistent, i.e. this cannot lead to an optimal decision (unless based purely on luck).

24

Moreover, proceeding that way, one will easily act in an overly optimistic manner,
i.e. overconfident in the fact that the future will unfold in a certain way.

Our definition of a policy defines non anticipative policies. When referring to
policies that violate the non anticipativity constraint, we will use the term anticipative
policies.

2.1.2 Value function

Using all the previous notations, it is now convenient to define the value function of
a state x at time t, V π(x). Informally, this value corresponds to the reward obtained
by an agent starting in state x and applying the policy π until he reaches a final state.
It can also be seen as the “value of being in state x at time t if we follow policy π”.

Formally, V π : X 7→ R is defined by:

V π(xt0) = Eπ

(∑
t0≤t≤N

γtrt|xt0

)
(2.3)

with Eπ meaning the expectation under the assumption that at each time step,
the agent applies policy π.

Hence, if we write Π the set of all possible policies π, then given an initial state
x0, an optimal policy π∗ verifies:

V π∗(xt0) = sup
π∈Π

V π(xt0) = V ∗(xt0) (2.4)

V ∗(xt0) is called the optimal value of xt0 , the highest achievable expected reward
that one can achieve when starting in xt0 .

In the context of sequential decision making, it is especially useful because it
allows the optimizer to avoid searching forward in time. When the time horizon
is long, the computational savings can be enormous. Intuitively, when in time t,
suppose we have access, for all possible states x′ ∈ X , to V ∗(x′). Then, one could try
all possible actions a from x, look at the states x′ they lead to, and compare these
states by using the function V ∗(x′). This function would act like a fitness function,
our problem would become a classical black box noisy optimization problem, and
we would only need to choose our favourite noisy optimization algorithm (Fabian,
Evolutionary Strategies...).

This is why a many approaches to solve SDM problems try to approximate the
value function. This notion is also a cornerstone of the fundamental Dynamic Pro-
gramming approach, a term chosen by Bellman. We will cover this method in the
next section.

25

2.1.3 Action-Value function.

A very similar notion is the action-value function, or Q value Qπ : X × A 7→ R,
defined by:

Qπ(xt0 , at0) = Eπ

(∑
t0≤t≤N

γtrt|xt0 , at0

)
(2.5)

Similarly, we define the optimal action-value Q∗(xt0 , at0) = supπ∈ΠQ
π(xt0 , at0)

The two optimal value functions defined above are connected by the following
equations:

V ∗(x) = sup
a∈A

Q∗(x, a) (2.6)

Q∗(x, a) = Ew(g(s, a, w)) + γ
∑
x′∈X

p(x′|s, a)V ∗(x′) (2.7)

The notion of Q value is especially intuitive in the sense that, if the agent is in
state x at time t, and if some oracle gives him, for all possible actions a ∈ A, the corre-
sponding Q values, the problem would essentially be a one state optimization problem.
The agent could search the action space A once, looking for a∗ = argsupa∈AQ

∗(s, a).
As seen in the above equations, the knowledge of optimal values can be used to de-
rive the optimal action value functions, making them just as useful to solve the entire
problem.

In a sense, being given the Q values is more powerful than being given the value
function, because then there is no need to even use the generative model to find the
optimal action. However, it comes at a computational cost, because Q values need to
be computed for each couple (x, a), whereas value functions are only function of the
state variables.

2.2 The finite case

In this section, we investigate the case where both the state and action spaces are
finite. We present the fundamental and intuitive principle of optimality, described by
Richard Bellman in 1957, on which is based the Dynamic Programming algorithm.

2.2.1 Bellman equations

Principle of Optimality. The principle of optimality is defined as follow by [16]:
Principle of Optimality: An optimal policy has the property that whatever the ini-

tial state and initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.

It is also more formally defined in [19]:
Let π∗ = π∗0, ..., π

∗
N−1 be an optimal policy for the basic problem, and assume that

when using π∗, a given state xi occurs at time i with positive probability. Consider
the subproblem whereby we are at xi at time i and wish to minimize the cost-to-go

26

from time i to time N

E

(
gN (xN) +

N−1∑
t

g (xt, πt (xt) , wt)

)
(2.8)

Then the truncated policy π∗i , ..., π
∗
N−1 is optimal for this subproblem.

Back to the case of a driver, suppose an oracle gives the agent the exact time
needed to reach the destination if time step is a fixed t, and for any position x ∈ X .
Then, it is quite intuitive that, given his position xt−1 at time t− 1, the driver could
simply search all of his reachable positions x′, and select the one that minimizes the
time given by the oracle.

Given this principle, we know that if we slowly solve all the tail problems (starting
with the easiest one), we will eventually solve the full problem. What we need is to
make sure the initialization works, and to formalize the iterations of the process.

Bellman equation for Q-values. The Bellman equations for the Q-value function
of a policy π is obtained by decomposing the expected value of choosing action a in
state x as the expected reward of (x, a) plus the expected reward obtained from the
resulting state, if one follows π thereafter. More formally, the Q value of (x, a) with
respect to the policy π verifies:

Qπ(x, a) = Ew {g(x, a, w) + γQπ(f(x, a, w), π(f(x, a, w))} (2.9)

Similarly, the optimal Q value of (x, a), i.e. the Q value of (x, a) with respect to
an optimal policy if there exists one, verifies:

Q∗(x, a) = Ew
{
g(x, a, w) + γ sup

a′
Q∗(f(x, a, w), a′)

}
(2.10)

Bellman equation for Value function. The Bellman equations for the value
function of a policy π is obtained by decomposing the total expected reward one would
obtained starting in x and following π as the expected instant reward of following π
in state x plus the expected reward obtained from the resulting state, if one follows π
thereafter. More formally, the value function with respect to π verifies the following
equation:

V π(x) = Ew {g(x, π(x), w) + γV π(f(x, π(x), w))} (2.11)

And, the optimal value function verifies the following equation:

V ∗(x) = sup
a∈A

(Ew {g(x, a, w) + γV ∗(f(x, a, w))}) (2.12)

2.2.2 Basic Dynamic Programming algorithm

In this section, we suppose that the horizon N , the state and action spaces X and A
are all finite. Given such assumptions, one can turn the Bellman equation for value

27

function into an update rule, and be guaranteed to obtain the optimal value of all
initial states, in a finite number of steps.

This basic algorithm is formally described in [19]:
For every initial state xt0 , the optimal reward V π∗(xt0) of the basic problem is

equal to V (xt0), given by the last step of the following algorithm, which proceeds
backward in time from period N − 1 to period 0:

V (xN) = g(xN) (2.13)

V (xt) = maxat∈A(xt)Ewt+1 (g(xt, at, wt+1) + γV (f(xt, at, wt+1))) (2.14)

for t = 0, 1, ..., N − 1, where the expectation is taken with respect to the probabil-
ity distribution of wt+1, which depends on xt and at. Furthermore, if a∗t = π∗t (xt)
minimizes the right hand side of Second Equation for each xt and t, the policy
π∗ = π∗0, ..., π

∗
N−1 is optimal.

Note that we suppose here that we are able to compute the exact expectation with
respect to the w’s, and that this is only possible in the finite case (and only practical
in small scale problems).

In the remaining of this section, we present two different ways to implement the
dynamic programming idea, in the more general case of an infinite horizon, with the
assumption that 0 < γ < 1, and that the generative model is available to the agent.

2.2.3 Value iteration

This form of DP is the closest to the intuitive basic DP introduced in the previous
subsection. The idea is to iteratively derive the Q-value function, so that eventually
we have a function arbitrarily close to the optimal one. It is then straightforward to
act greedily with respect to Q∗.

The update formula is simply the right hand side of the Bellman equation. At
this point, it is convenient to introduce the Bellman operator T , a mapping from Q
to Q, with Q = RA×X being the space of all Q functions:

T (Q)t(x, a) = Ew
{
g(x, a, w) + γmax

a′
Q(f(x, a, w), a′)

}
(2.15)

There are many formalization of this algorithm, we chose to show here the one
written in [29].

Theoretical justification. This algorithm works, i.e. Ql converges asymptotically
to Q∗, when γ < 1. Under this condition, the mapping T is a contraction with
respect to the infinity norm, and has a unique fixed point, Q∗ = T (Q∗) [69]. As the
convergence is only asymptotic in the general case, one needs to choose as stopping
criterion ε > 0, or alternatively a maximum number of iterations L to ensure the
desired accuracy.

28

Algorithm 1 Q value iteration for finite MDP

Input: γ < 1, f , g, and stopping criterion ε > 0
Output: ‖Q∗ −Ql‖ < ∆(ε)

Initialize Q0 = 0Q and l = 0
repeat
l← l + 1
for all (x, a, t), do Ql(x, a)← T (Ql−1)t(x, a)

until ‖Ql −Ql−1‖ < ε
return Ql

Computational cost. The total cost of L iterations for a stochastic finite MDP is

L|X |2|A|(2 + |A|) (2.16)

2.2.4 Policy iteration

Policy iteration works as follows: first, one needs an initial policy π0. Then, one
evaluates this policy by computing its corresponding Q value function, i.e. one needs
to solve the Bellman equation corresponding to it. Then, one modifies the current
policy, making it choose actions greedily with respect to the Q value function obtained
at the previous step. This is repeated until a stopping criterion, usually when to
successive policies are almost identical. As for value iteration, policy iteration has
been described in many papers, and we chose the description made in [29].

Policy evaluation. We detail here the crucial step of policy evaluation. Given a
policy π, we want to return an Q value function that is as close as possible to the real
Q value function underlying this policy, Qπ.

Here, it is convenient to introduce the Bellman operator for a policy π, T π, a
mapping from Q to Q, with Q = RA×X being the space of all Q functions:

T π(Q)t(x, a) = Ew
{
g(x, a, w) + γmax

a′
Qπ(f(x, a, w), a′)

}
(2.17)

Algorithm 2 Policy evaluation for Q value functions in stochastic finite MDPs

Input: γ < 1, f , g, and stopping criterion ε > 0, a policy π
Output: a Q function verifying ‖Q∗ −Q‖ < ∆(ε)

Initialize Qπ,0 = 0Q and l = 0
repeat
l← l + 1
for all (x, a, t), do Qπ,l(x, a)← T π(Qπ,l−1)t(x, a)

until ‖Qπ,l −Qπ,l−1‖ < ε
return Qπ,l

29

Algorithm 3 Policy iteration for Q value functions in stochastic finite MDPs

Input: γ < 1, f , g, and stopping criterion ε > 0, a policy π
Output: a policy π verifying ‖π∗ − π‖ < ∆(ε)

Initialize π0 = 0Π and l = 0
repeat

evaluate πl, i.e. derive Qπl

improve πl into πl+1 by doing πl+1(x) ∈ argmaxaQ
πl(x, a) for all x ∈ X

until ‖πl − πl−1‖ < ε
return πl

Full algorithm and efficiency. A big advantage of policy iteration over value
iteration is that the Bellman operator used is the one associated with a specific policy
π, which means the equation to solve is a linear one. Assuming the size of the state
and action space is not too big, this can be solved quite efficiently.

Each call to policy evaluation takes about 4|X |2|A|.

2.2.5 Q learning

Q-learning [121] is an off policy algorithm that approximates the optimal Q-value
function. Although initially meant for small scale (e.g. finite space) problems, it is
possible to make it efficient for larger scale problems, via function approximations for
example.

This algorithm is essentially made of two parts:

– an update function that, given (x, a, x′, r, Q) updates Q according to the tran-
sition (x, a, x′) and instant reward obtained r.

– a way to choose x and a; this can be simply chosen from pre-generated data, or
obtained online by following some policy π chosen by the user.

Alg. 4 provides a formal description of the Q-learning algorithm (from [112] and
[113]), in the case where a generative model is available. Note that the policy
π could be anything. Common choices include the greedy policy with respect to
the current Q-value function, possibly combined with ε-greedy exploration, or the
Boltzmann scheme. The authors of [110] propose some sampling strategies with
theoretical guarantees.

One can still apply Q-learning from data, without a generative model. In this case,
for every (x, a, x′, r) available in the data, we can apply the update function. The
theoretical convergence of this algorithm was proven in [121], with the assumption
that the sampling strategy samples all actions infinitely often (asymptotically), and
that states and actions are discrete.

2.2.6 SARSA

Described in [112], and first introduced in [105], SARSA is an on policy TD algorithm,
very similar to Q-learning. The difference lies in the update function. Instead of

30

Algorithm 4 Q-learning with generative model

Input: a generative model of the problem, a policy π, a step size α > 0
Output: an approximation of Q∗

Initialize Q:(X × A) 7→ R arbitrarily for all (x, a) ∈ (X × A)
repeat

Pick an initial state x ∈ X
repeat

choose action a according to a policy π
use the generative model to obtain resulting state x′ and reward r
Q(x, a)← Q(x, a) + α (r + γmaxa′∈AQ(x′, a′)−Q(x, a))
x← x′

until x is a final state
until no more computing time
return Q

taking the maximum over all actions of the current approximation of Q, we simply
choose a′ according to the policy π chosen by the user. As before, this policy can be
a greedy policy with respect to Q, with additional exploration, or anything that can
provide a feasible action.

Alg. 5 provides a formal description of SARSA.

Algorithm 5 SARSA algorithm

Input: a generative model of the problem, a policy π, a step size α > 0
Output: an approximation of Q∗

Initialize Q:(X × A) 7→ R arbitrarily for all (x, a) ∈ (X × A)
repeat

Pick an initial state x ∈ X
repeat

choose action a according to a policy π
use the generative model to obtain resulting state x′ and reward r
Q(x, a)← Q(x, a) + α (r + γQ(x′, π(x′))−Q(x, a))
x← x′

until x is a final state
until no more computing time
return Q

This algorithm is guaranteed to converge to the real Q-value function Q∗, as long
as exploration is assured, and as long as the exploratory policy slowly becomes greedy
with respect to the Q-value function[110]. Becoming greedy too quickly would hurt
exploration, and never becoming greedy would prevent convergence.

The essential difference between Q-learning and SARSA is what the reinforcement
learning community calls on-policy and off-policy algorithms. Q-learning, because it
has two distinct policies, one to explore actions, and one that is evaluated, is called
off-policy. SARSA, on the other hand, is call on-policy because it uses the policy that

31

is being evaluated as its exploratory policy.

2.3 The large scale case: RL and approximate DP

What all the algorithms of the previous section, as they are presented, share, is that
they need to store the Q values (or V values, depending on the implementation), for
every single state and action (or just every state if using V values). For problems
where the state and action spaces are both finite and small, this is not a problem.
However, for large spaces, and in particular for continuous (thus infinite) spaces, this
proves highly impractical, if not outright infeasible.

There are a number of workarounds to solve this issue. The first one is the
approximate dynamic programming approach, that we first introduce in its generic
form. We will then present function approximations methods, that suppress the need
to store a table of infinite size in memory. The approximating function can be of
fixed dimension (like in the case of parametric function approximations), or of data
driven size (non parametric function approximations).

In DP, one recursively travels through all reachable states, backward in time, to
compute the exact value function V ∗(.). To do so, one needs to use the final states
values as initial values, and the following Bellman equation as an iteration rule:

V ∗(x) = sup
a∈A

(Ew {g(x, a, w) + γV ∗(f(x, a, w))}) (2.18)

In ADP, we aknowledge that solving this equation exactly is intractable. We can
divide the challenges of this equation in three categories:

– the state space is too large: we should approximate V (value function approxi-
mations)

– we cannot compute the expectation exactly (sampling methods, post decision
state)

– the action space is too large: we should discretize the action space, or find
efficient ways to divide it.

These challenges correspond to the curses of dimensionality, and are the focus of
most of the literature following Bellman’s work. We will divide this section as follows:
section 2.3.1 deals with the methods that simply try to approximate the value function
itself, section 2.3.2 presents methods that aim at iteratively approximate an optimal
policy, section 2.3.3 will show how some methods translate the whole problem into
a noisy optimization problem, by doing a search in the policy space, section 2.3.4
will present the famous actor-critic methods, also known as general policy iteration
methods. Finally, we will present some of the most popular methods for solving unit
commitment problems, developed by the mathematical programming community, in
section 2.3.5.

32

2.3.1 Approximate Value Iteration

In this part, we look at the various methods that revolve around the approximation of
the value function V ∗ or Q value function Q∗. Because the state and action spaces are
large, one cannot represent these functions exactly, let alone compute them exactly.

There are two main approximation approaches: parametric and non parametric.
The former uses a predetermined parameter θ to characterize an approximation func-
tion V̄θ. The latter uses data driven characterizations of the approximation function.

Parametric approximations

One way to approximate V ∗ is to project it on a user defined set of basis functions
φf , where f ∈ F represent features of the problem, and F is the feature set. Using
this idea, and some parameter vector θ ∈ RF we can write the approximate value
function as follows:

V̄θ(x) =
∑
f∈F

θfφf (x) (2.19)

Note that this approximation is linear in the parameter vector θ. The complexity
of this function can be hidden in the basis functions. The simplest basis functions
that we could think of are the powers of the state variable, so that one could write:

V̄θ(x) =
∑
i≥0

θis
i (2.20)

The size of the feature space is up to the user. May one choose to have only two
features, the previous simple approximation could be written:

V̄θ(x) = θ0 + θ1s (2.21)

The aim is then to find a parameter θ that makes the approximation as close
as possible to the real value function. Of course, one does not have access to this
real value function. One can only sample trajectories with a generative model of
the problem, or use existing samples. The generic algorithm could be described as
follows:

Algorithm 6 Generic Approximate Parametric Value Iteration

Input: a generative model or sampled trajectories, a feature function basis F
Output: an approximation of V ∗, V̄0

Initialize θ0, V̄θ0 :X 7→ R and n = 0 arbitrarily
repeat

Evaluate current approximation, and obtain either one score v̂n
Update θn according to that evaluation
n← n+ 1

until no more computing time
return V̄n

33

The two main challenges of value function approximation are:

– how to choose the set of features F (and thus the basis functions) ?

– how to optimize θ ?

The choice of basis functions is mostly an art, and problem dependent. However,
there are many papers dealing with this issue. First, some people focus on optimizing
a given set of basis functions, like in [126] where the authors use gradient-based
optimization to adapt the basis functions. Another way to proceed is to work on the
choice of basis functions. It can be done by starting with a very small set of functions,
and by slowly adding new basis functions to it, like in [118, 91, 64]. Alternatively,
one can start with a very large set of basis function, and slowly selecting a smaller
subset of it, as in [76].

There are essentially two ways to optimize θ: in an incremental manner, or from
batches of sampled trajectories. Depending on this choice, there may be different
options to both evaluate a given approximation V̄θn , and to update it according to
the evaluation. To illustrate both cases, we will present the stochastic gradient descent
and the least square fitting method.

Stochastic gradient descent. In this case, we suppose that we want to update
the value of θn after each function transition. These transition are either simulated
online or picked from a pre-sampled database.

At a given step n, and in some state x, we evaluate the current approximation
V̄θn , and obtain some value v̂(x). The way we do the evaluation would be, typically,
by selecting an action a greedily with respect to the current approximation, observing
one transition (x, a, x′, r), and using the current approximation to give a value to x′.
That way, the evaluation returns the score:

v̂(x) = r + γV̄θn(x′) (2.22)

Using the same notation as in the Bellman error minimization, we update θ as
follows:

θn+1 = θn − αn(V̄n(x)− v̂(x))φ(x) (2.23)

As presented, this method has a few difficulties:
The choice of a is done as follows:

a = argmaxEw(g(x, a, w) + γV̄θn(f(x, a, w)) (2.24)

This is the most intuitive way to select an action, but it is easy to see that this does
not favour exploration at all. In addition, it might be extremely difficult to compute
the expectation, and one would probably need to use another approximation for it.
Finally, this method requires the choice of a step size, that can be critical. A small
step size may lead to stalling, a large step size to instability. Many works revolve
around adapting this step size to avoid both dangers, and a comprehensive review of
these can be found in [58].

34

Least square fitted Q-iteration. Here, we show a method that uses a sample
of transitions D = (xm, am, x

′
m, rm)1≤m≤M . It can be either a given sample, or be

augmented online if a generative model is available. Such a method is used in [50],
where the authors use the results of each iteration of the following algorithm to update
the sample (as explained in [29]), in order to maximize the utility of the samples used
inside the value iteration step:

Algorithm 7 Least-squares fitted Q-iteration with parametric approximation

Input: a sample D of transitions , initial parameter θ0, initial value function approx-
imation Q̄0

θ0

Output: an approximation of Q∗

Initialize n = 0, Q̄θn

repeat
for m = 1 to M do
Q̂n(xm, am)← rm + γmaxa Q̄θn(x′m, a)

end for
θn+1 ← argminθ

∑
m(Q̄θ(xm, am)− Q̂n(xm, am))2

n← n+ 1
until no more computing time
return Q̄θn

In some way, the choice of the samples drives how the evaluation of a given
approximate Q-value function is done. Taking many samples sharing the same initial
state and action means that one is trying to obtain a very accurate expectation with
respect to the random process w, at the expense of not visiting many different states
and actions. At the opposite, putting only different states and actions in the sample
means that the evaluation step is very noisy, but that one explores as many states
and actions as possible.

Non Parametric

These methods rely on a given set of samples D = (xi, vi)1≤i≤m, and use that infor-
mation to infer the value of any new state x. A typical example of non parametric
approximation are the kernel-based approximators. In that case, given some kernel
KD, the nearest neighbor method for regression would give the following value to
x ∈ X :

V̄D(x) =
∑

1≤i≤m

vi
KD(x, xi)∑

1≤i≤mKD(x, xi)
(2.25)

Despite their name, non parametric methods still involve a choice of parameters,
like the choice of the kernel, and the choice of some parameters of that kernel. Some
tuning, even automatic, might still be required.

35

2.3.2 Approximate Policy Iteration

Approximate Policy Iteration is similar to approximate VI. Except than instead of
focusing on approximating the real Value function, to eventually act greedily with
respect to that approximation, one tries to directly approximate the optimal policy.
A major consequence of this difference is that a policy can be almost optimal, even
though the matching value function is far from the optimal one. The intuition is that
what matters to make a policy good is how it ranks the possible actions relatively
to one another, not the absolute value given to each state and action. Even if the
absolute values are wrong, the ranking can still be good (the inverse cannot be true).

An approximate PI algorithm is repeating two steps until the policy at hand
is satisfactory (or until we run out of time): the policy evaluation step, and the
policy improvement step. The generic approximate PI algorithm based on Q-values
is formulated in [29] as follows:

Algorithm 8 Approximate PI with Q-values

Input: some sample trajectories, and/or a generative model
Output: π̄n, an approximation of π∗

Initialize n = 0, policy π̄n
repeat

Policy evaluation : find ¯Q
¯
πn, an approximate of the true Q-value function of π̄n

Policy improvement : find a policy verifying ¯πn+1(x) ≈ argmaxa
¯Q

¯
πn(x, a) for all

x
n← n+ 1

until π̄n is satisfactory or no more computing time
return Q̄θn

The policy evaluation can be a lot like approximate value iteration. Given some
policy, one is merely trying to find its real value function, possibly by iteratively
updating a parametric approximation of this value function, for example. The policy
improvement step can be exact, when the state and action spaces are small enough to
allow a simple enumeration. But of course, as we are here interested in large spaces,
one needs to rely on approximations, in a similar fashion to how value functions are
approximated.

Policy evaluation

We will focus here on simple policy evaluation methods, but there exist several other
options, like Least Square Temporal Difference (LSTD, seen in [24] and [23]), and
Least Square Policy Evaluation (LSPE, as seen in [92] and [29]). We show one example
of policy evaluation based on a parametric Q-value approximation, and one example
of a non parametric one.

Least square fitted policy evaluation. This method is extremely similar to the
least square fitted Q-value iteration presented in Section 6. The main difference

36

is that the update of the approximate value function is done following the current
approximate policy, instead of acting greedily with respect to the value function. The
formal algorithm is shown below:

Algorithm 9 Least-squares fitted policy evaluation with parametric approximation

Input: a policy π to evaluate, a sample D
Output: an approximation of Qh

Initialize n = 0, Q̄π
θn

repeat
for m = 1 to M do
T (Q̄π

θn
)(xm, am)← rm + γQ̄π

θn
(x′m, π(x′m))

Q̂n(xm, am)← T (Q̄θn)(xm, am)
end for
θn+1 ← argminθ

∑
m(Q̄θ(xm, am)− Q̂n(xm, am))2

n← n+ 1
until no more computing time
return Q̄θn

As for methods presented before, this algorithm is sensitive to how the samples
are chosen (one needs to strike a balance between noisy estimations of each (x, a),
and exploration of many (x, a)). Also, as it is a parametric method, one needs to first
chose a set of basis functions, to find a balance between over fitting (too many basis
functions) and under fitting (too few).

Policy evaluation with rollouts. To circumvent the difficulty of choosing basis
functions, one can use a non parametric method. One example is to evaluate the
policy π with rollouts, also known as Monte Carlo simulations. It is required to
have a generative model. This approach has been proposed in [47]. The idea of this
method is that from each pair (x, a), we simulate N trajectories of length K, where
each action chosen after a follows policy π. The final estimation of the value of each
pair (x, a) is the average of the cumulated return of the N trajectories:

Q̂π(x, a) =
1

N

N∑
i=1

[
g(x, a, w(i,1)) +

K∑
k=1

γkg(x(i,k), π(x(i,k)), w(i,k+1))

]
(2.26)

where, for each trajectory i, and each step k, given a state x(i,k), the following
state is generated using the policy π and the generative model as follows: x(i,k+1) =
f(x(i,k), π(x(i,k)), w(i,k+1)).

Essential parameters of this method include the horizon K and the number of sim-
ulated trajectories N . If the problem and the policy are deterministic, then N = 1
is sufficient. However, if the problem and/or the policy have a high volatility, one
would probably need a very high value for N to obtain an estimate accurate enough to
discriminate different pairs (x, a). The length of the horizon should aim at balancing

37

computational cost and estimation error. A very short horizon would be computa-
tionally cheap, but would likely give a very biased estimate (missing important events
in the future). A very long horizon would probably allow for a smaller estimation
error, but could become computationally too expensive.

Finally, note that this evaluation method becomes highly impractical when there
are a large number of pairs (x, a) where one wants to evaluate the policy.

Policy improvement.

At this step, we use the new approximate value function Q̄πl associated to the current
policy πl, to update the policy. The first and straight forward idea is to visit each
state x and update the policy accordingly:

πl+1(x) = argmaxaQ̄
πl(x, a) (2.27)

This only works if the state space is small enough, and if finding the maximizing
action is tractable. Depending on the action space size and on the shape of Q̄πl , this
may very well be computationally too expensive.

The alternative is, of course, to parametrize the policy π, using a set of basic
functions ψi, 1 ≤ i ≤ N . The basis functions are actually policies, rules that output
an action, from the information contained in state variables. We will still use the
notation θ for the parameter vector. Using these notations, a linearly parametrized
policy would, from a state x, return the action:

a = π(x) =
N∑
i=1

ψi(x)θi = ψT (x)θ (2.28)

We then need a sample of states x1, ..., xM on which we want to fit the parametric
policy to the value function obtained at the policy evaluation step, Q̂πl .

Given this setting, there have been two ways to improve the policy πl, i.e. to
update θl (we are only considering the parametric case).

First option, separate the improvement in two steps:

– for each state xm, find the greedy action am ∈ argmaxa Q̂
πl(xm, a)

– θl+1 = argminθ
∑M

m=1

(
ψT (xm)θ − am

)2

Notice how the second step is merely a convex optimization problem, and will
usually not be the biggest challenge. However, one first needs to find all greedy
actions, something that is not guaranteed to be easy.

The second option is to directly look for the θ that maximizes the Q-value function,
i.e.

θl+1 = argmax
θ

M∑
m=1

Q̂πl(xm, ψ
T (xm)θ) (2.29)

This avoids having to search the entire action space, but it creates an optimization
problem that will generally be non linear.

38

2.3.3 Policy search

Policy search methods, as the name indicates, search in the space of policies Π for
an optimal policy π∗. To our knowledge, all these methods use parametric policies
πθ ∈ Π, where θ is some parameter to optimize. Then one can essentially divide policy
search methods into two groups: gradient based policy search when πθ is differentiable
with respect to θ, and gradient free policy search when it is not (or when one chooses
not to use any gradient for other reasons).

Gradient based policy search. These methods, like policy iteration, are divided
in two steps: policy evaluation, and policy improvement. First one initialize the
parameter (and thus the policy) to some θ0. Then, one evaluates the resulting policy,
either exactly, or by sampling many possible returns of this policy. One also needs to
evaluate the gradient of the reward of this policy. This is the core of the method, and
there has been a great deal of attention on this issue. One of the main difficulties is
to keep the variance of the estimate of the gradient small enough to make it relevant.
This what the authors of [85] focus on, in the case of finite state MDPs.

Once the gradient is properly estimated, one can apply a classic gradient ascent
to the parameter θ, and repeat.

This type of policy search offers the comforting use of gradient ascent, but suffers
from local optimum traps, and variance reduction issues.

Gradient free policy search. These methods do not use the gradient (or its
estimate) of the average reward. Instead, they consider the problem of finding a good
parameter θ as a noisy (gradient free) optimization problem. Doing so, they can
pick amongst the existing techniques, such as evolutionary optimization[14, 61] or
cross-entropy methods[83]. In [123], the authors use neuroevolutionary optimization
to automatically find function approximations.

The main advantage of gradient free policy search is that it is less vulnerable to
local optima than the previously described methods. It also dodges the problem of
gradient estimation.

2.3.4 Actor critic methods

The term actor-critic, was first used in the context of computer science in [15]. The
idea came naturally to distinguish the two types of process interacting in the value
and policy iteration methods. In the latter, one iteratively evaluates a policy by
approximating its associated value function, and improves that policy based on that
evaluation. One keeps evaluating a policy (hence the term ‘critic’), and improving
this policy by using the feedback (hence the term ‘actor’). Actor-critic methods are
doing almost the same thing, with one big difference: the improvement step is not
done by making the policy acting greedily with respect to the new value function.
Instead, one simply moves in the direction of these greedy actions. It is a less radical
step, intended to provide additional stability to the improvement step.

39

Having this in mind, one refers to the evaluation part, i.e. the part that tries to
approximate the value function of a given policy, as the critic. On the other side, the
actor receives these values from the critic, and tries to improves his current policy:
it is the policy improvement step.

Using this terminology, policy gradient methods that do not use any value function
are called actor only methods (see William’s REINFORCE algorithm [124], and [90]
[100]). Conversely, value iteration algorithms, like SARSA, can be called critic only
methods.

Most of the actor-critic algorithms so far have relied on policy gradient, or on
natural policy gradient ([95]) for the actor part. A more comprehensive survey on
actor-critic algorithms can be found in [63].

2.3.5 Mathematical programming for unit commitment

When working on unit commitment problems, as described in [93], the sizes of both
the action space becomes so large that the community working on them has often
relied on mathematical programming, and more specifically stochastic programming
[49] to handle them. Typically, these methods are extremely powerful to deal with
very large action spaces, but often rely on convexity assumptions for the reward
functions, or on other simplifications of the real problem to run correctly.

In this section, we cover quickly some of the approaches coming from the mathe-
matical programming community that have been at the center of the attention of the
practitioners.

Benders cuts

In [93], the authors use a decomposition approach, based on Benders cuts [17], to
tackle a unit commitment with multiple hydroelectric reservoirs.

This method requires a model of the problem that has a convex objective func-
tion and linear constraints. The stochasticity can be handled as a set of possible
realizations, or scenarios.

The main idea is to separate the problem into the two usual blocks: on one
side, the immediate cost function, and on the other, a value function to represent
everything that would happen later. As before, the goal is to slowly approximate the
value function, because finding the exact one is intractable. In this case, the trick is
to exploit the (assumed) convexity of the value function, to approximate it with a
relaxed linear program. Then, the dual variables of the solution are used to derive
cuts (the so called Benders cuts), that are lower bounds to the real value function.
This method is thus often called Stochastic Dual Dynamic Programming (SDDP).

For the sake of clarity, we will explain the process for a two time steps problem.
One is trying to minimize the costs, so formally, given an initial state x0:

a∗0 = argminEwg(x0, a0, w1) + γV ∗(f(x0, a0, w1)) (2.30)

40

with
V ∗(f(x0, a0, w1)) = min

a1
Ew2g(f(x0, a0, w1), a1, w2) (2.31)

subject to linear constraints on a0, a1.
As this method can work on scenario trees, we will write pi, i = 1 . . . K1 the

probability of having the ith as a realization for the first time step. Similarly, we will
write pi,j, j = 1 . . . K2 the probability of, after observing the ith realization, having
the jth realization for the second time step.

We can then rewrite the objective function as:

min
a0

K1∑
i=1

pi (g(x0, a0, w1,i) + γα∗i (x0, a0)) (2.32)

subject to linear constraints on a0, and with

α∗i (x0, a0) = min
a1

K2∑
j=1

pi,jg(f(x0, a0, w1,i), a1, w2,j) (2.33)

subject to linear constraints on a1.
Using this decomposition, one can proceed as follows:

– initialize ᾱi(x0, .) for i = 1 . . . K1 as a piecewise linear function that is a lower
bound to α∗i (x0, .)

– solve 2.32 with some linear programming solver; the resulting ā∗0 gives a cost z
that is a lower bound to the real optimum

– solve 2.33, with a0 = ā∗0; the resulting cost ẑ is an upper bound to the real
optimum

– if z − ẑ is smaller than some given tolerance, then we stop and consider the
solution satisfying; otherwise we use the second stage problem’s dual variable
to generate new approximations α∗i (x0, .) (this is the part that uses Benders
cuts), and go back to the first stage problem.

This method has been quite popular to solve hydro-thermal energy management
problems [94], because of a few reasons. First, it uses powerful mathematical program-
ming techniques, that easily scale up with very high dimensional problems. Second,
each step of the algorithm gives a tightening pair of lower and upper bounds to the
optimal cost, which gives an idea of how far the approximate solution is from the real
optimum. Finally, it pairs well with a tree based model of randomness, that allows
for non Markovian processes, commonly encountered in these problems (weather is
known to be highly non Markovian).

That being said, this method suffers from a major drawback: it requires the value
functions (on which are based the α functions above) to be convex. If this assumption
does not hold, then the Benders cuts cannot be applied to derive approximations of
the real value functions. Using this method on non convex value functions can lead
to arbitrarily large errors in the value function approximations.

41

Certainty Equivalent Control

Certainty Equivalent Control (CEC) is the term employed to cover the methods
transforming an initially stochastic problem into a deterministic problem, by replacing
the random variables by one fixed trajectory.

One variant of this, often applied to unit commitment problems, is Model Pre-
dictive Control (MPC) [98, 52]. The idea is to represent the system so that the all
variables are the variation from the desired stable state. Then, using a rolling horizon,
one tries to keep the system stable (i.e. the variables close to zero) over that short
horizon, chooses an action, receives a feedback, and moves forward in time.

42

Chapter 3

Continuous MCTS

In this chapter, we introduce Monte Carlo Tree Search algorithm for finite determinis-
tic MDPs, in Section 3.1. We then present our contributions on this topic, namely its
extension to continuous and stochastic setting. This includes the Double Progressive
Widening trick in Section 3.2, a way to improve the exploration of vast action spaces
in Section 3.3, and a technique to transport information from one branch of the tree
to the other in Section 3.4.

3.1 Finite MCTS

MCTS algorithm became popular when applied to the game of Go [54] [74, 43]. Before
its application to this game, most algorithms failed to either explore all possible games
by brute force (impossible with our current computing power) or accurately estimate
the optimal value function of any given state (i.e. a given board configuration).
Today, most, if not all algorithms of computer Go are based on MCTS.

In addition to the notations previously introduced, we will need the two following
definitions.

Generative model of the environment. We write M : X × A 7→ X × R the
function that models the environment. More precisely, given a state x and a legal
action a, it returns a couple (x′, r), x′ being the next state and r the instantaneous
reward obtained. Both x′ and r can be stochastic, and follow random distributions
unknown to the agent.

Random action sampler. We write s : X 7→ A the function that, given a state
x, returns a legal action s(x) = a. This function can be stochastic, and follow an
unknown random distribution.

We call random policy the policy that is to chose, in any state x, the first action
returned by s.

If, for any x ∈ X , the legal action space is [0, 1], then a natural candidate for
s(x) would be the uniform distribution over [0, 1]. This specific case actually allows
many other methods : biased sampling, equally spaced discretization, etc. But it

43

is important to note that our assumption (having a random action sampler) is less
strong than knowing exactly what the action space is.

We will talk about this again in Section 3.3.1, where we mention some of the
state of the art work that make use of the strong assumption that the action domain
is known. In that section, we will also explain why, for real world applications like
energy unit commitment problems, that assumption might not hold.

The state-action tree structure. We specify here what tree structure will be used
throughout this work, to represent reachable states and feasible actions. We purposely
use a general structure, that can be used for both deterministic and stochastic en-
vironment. This will simplify the explanations about the transition from finite and
deterministic to infinite and stochastic settings.

To pave the way for a clear tree structure in stochastic environments, we differ-
entiate two distinct and alternated kinds of nodes:

– decision nodes, where the agent needs to decide what action to take. These
nodes also correspond to the agent being in a certain state x ∈ X , and are then
labelled by x.

– random nodes, where the generative model is used to simulate the transition as-
sociated to a certain couple state action (x, a), with a possibly random outcome.
They will naturally be labelled as (x, a).

The root of the tree is made of the initial decision node r ∈ X , of depth d(r) = 0.
We define the depth of a node as half the distance between this node and the root.
This way, the first layer of random nodes following the root are at depth 0.5, followed
by a layer of decision nodes at depth 1, and so on.

For any node z (whether it is a decision or a random node), we write n(z) the
number of times this node has been simulated.

We show a generic representation of this tree structure, where decision nodes and
random nodes appear in successive layers, until the time horizon is reached, in Fig.

Remarks:

– in the case of a deterministic environment, each random node has one and only
one child.

– all final nodes are degenerated decision nodes, where no decision can me made

3.1.1 Algorithm description

In a nutshell, MCTS relies on the idea that, given a state x, if we have access to
Q∗(x, a) for all a ∈ A, acting greedily with respect to Q∗ will give an optimal action,
and the problem becomes a “trivial” optimization problem. The way MCTS approx-
imates Q∗ is that for all a ∈ A, it simulates random trajectories starting with (x, a).
As the number of simulation grows, one can hope that the average reward obtained
over these simulation will give a good estimate of Q∗(x, a). This can only work if, at

44

x

x'

x,a

: decision node

: random node

: time horizon

Figure 3-1: Generic tree structure for sequential decision making under uncertainty.
In this figure, x is the initial state, the root of the tree. One of the explored feasible
actions from x is a. One of the explored possible outcome of the pair (x, a) is x′.

some point, the simulations are not purely random. Otherwise, the algorithm would
asymptotically act greedily with respect to V s, the value function underlying the
random policy:

ã∗ = argmax
a∈A

(r + V s(f(x, a, w))) (3.1)

This is where the Tree comes from, in order to actually converge to Q∗, one wants
to bias the trajectories toward an optimal behaviour. This is achieved by slowly
constructing an unbalanced tree, where nodes contain visited states, and branches
represent actions. That way, as more simulations are made, one can spend most of
the simulations on promising actions, thus giving them more weight in the average
reward computation. Under certain assumptions, we will see that one can guarantee
the consistency of MCTS, i.e. that the action chosen will be an optimal one.

We divide the formal description of MCTS into 5 algorithms. There are many
other ways to describe it that can be found in the literature [35, 55]. This one is just
the way that is the most convenient to explain our contributions in the later sections.

First, there is the main loop of MCTS, Alg. 10. Given some time budget and an
initial state x, if slowly builds a tree of possible trajectories, and eventually returns the

45

best action, according to some pre-defined criterion, described in Alg. 14 (although
there exist a few options to design this part of the algorithm [106], we just chose
the most popular one, which is to pick the most simulated action). Then, we detail
the way the tree is grown in Alg. 11. During one run through the tree, we need a
function to dictate how to navigate in this tree, that we show in Alg. 12. We also
need a function that evaluates a state, in order to avoid having to add every single
visited state in memory. This last function is shown in Alg. 13.

One way to think of MCTS is to divide each iteration into four phases :

– (i) selection phase: we travel inside the tree (corresponds to a part of the
GROWTREE function, and to the SELECT function);

– (ii) expansion phase: we decide to add a new node to the tree (part of the
GROWTREE function);

– (iii) simulation phase: we use the default policy to simulate a sequence of actions
until a final state is met (EVAL function);

– (iv) back-propagation phase: we use the information gathered during the sim-
ulation to update the tree (part of GROWTREE).

Algorithm 10 MCTS algorithm for finite states and actions

Input: initial state r, time budget B, generative model M(x, a) = [x′, r], action
sampler s : X 7→ A, constant K > 0, and a default policy φ

Output: a chosen action ã∗

Initialize t0 ← t, and T ← r
while t < t0 +B do

GROWTREE(r,M(., .), α,K)
end while
return BESTACTION(T)

Important features of the algorithm. This algorithm makes a few key assump-
tions in order to work properly:

– both the action space and the state space are finite. Otherwise, the SELECT
function will keep selecting unexplored actions, and no node of depth higher
than 1 would be added.

– the agent has access to a generative model of the problem, and to a random
action sampler.

– the SDM problem has a finite horizon, at which an exact reward can be com-
puted.

46

Algorithm 11 GROWTREE

Input: current tree T , generative model M(x, a) = [x′, r], action sampler s : X 7→ A
Output: none, just updates the tree and possibly makes it grow

Initialize x← r(T), and CR← 0
repeat
a← SELECT(x,K)
Children(x)←Children(x) ∪ (x, a)
[x′, r]←M(x, a) {M() generates a random possible outcome, and a reward}
Children(x, a)←Children(x, a) ∪ x′
r(x, a)← r
x← x′

until n(x) == 0 or x is a final state
CR← EVAL(x,M, φ)
while x not root do
n(x)← n(x) + 1
(x, a)← Father(x)
CR← CR + r(x, a)
CR(x, a)← CR(x, a) + CR
n(x, a)← n(x, a) + 1

end while

Algorithm 12 SELECT

Input: state-node x, K > 0 action sampler s
Output: an action a
ax = argmaxa∈Children(x) Q̂(x, a)

with Q̂(x, a) = CR(x,a)
n(x,a)

+K
(
ln(n(x))
n(x,a)

) 1
2

if n(x, a) > 0, +∞ otherwise

return ax

Algorithm 13 EVAL

Input: state-node x, default policy ϕ, generative model M
Output: a real number R

initialize R← 0
while x not final state do
a← ϕ(x)
[x′, r]←M(x, a)
R← R + r
x← x′

end while
return R

47

Simulation
result

(i)

(iv)(iii)

(ii)

Figure 3-2: An example of the four phases of MCTS, from (i) to (iv). The orange
color is used to indicate the parts of the tree that are used/modified at each phase.

These assumptions all hold true in the case of the game of Go, for example. They
also hold true for many classical benchmark problems from the reinforcement learning
community [112].

An essential part of the algorithm is in the function SELECT. After initially ex-
ploring all possible actions from a given state x, the agent has a very noisy estimation
of the corresponding Q values. At this point, he needs to decide how to allocate sim-
ulations between the different actions. To allocate simulations uniformly between all
actions would be a way to make sure no branch of the tree is neglected. To allocate
all the simulations into the most promising action would be a risky attempt to in-
vest computing power only in the optimal action. None of these extreme choices is
perfect, and this is known as the Exploration/Exploitation dilemma (E/E dilemma),
well studied by the multi armed bandit community [77, 99, 8], and applied to MCTS
algorithms [74, 75].

48

Algorithm 14 BESTACTION
Input: a tree T
Output: an action a

return argmaxa∈Children(r(T)) n(r, a)

In our case, investing one simulation into one action can be seen as “playing one
arm”. The true expected return of this arm would be Q∗(x, a), and the sampled
return would be the result of one sampled trajectory all the way to a final state.
Under the strong assumption that the reward of all arms has a support equal to [0, 1],
the UCB1 formula [8] provides optimal cumulated regret, i.e. an optimal compromise
between exploration and exploitation. Even though these assumption do not hold, in
most cases, in MCTS, the use of UCB1 formula in the selection function have shown
very good result, and theoretical consistency [74] for finite state spaces.

One essential property of MCTS, that is sometimes overlooked, is its any-time
property. MCTS can be interrupted at any time, and will return its best current
recommended action. Of course, the longer it runs, the better the recommendation
will be. When using one of the traditional methods described in the previous chapter,
like SDDP, the running time of the algorithm is unknown, and interrupting it before
it has finished will provide a worthless solution.

On the contrary, with MCTS, there is no minimal (and unknown) time budget.
This is an especially interesting property for problems in very large dimension, like
unit commitment. One might want an answer, the best available, before a fixed time.

Another interesting feature of MCTS is that it does not require the random process
to be Markovian to work properly. Or, more precisely, the tree structure naturally
embeds the history of a state. In any given node, if one wants to access its history, one
can just travel from that node, upwards toward the root. This is as opposed to the
traditional value approximation type of methods, that need to store that information
in the state variable at all time, making it a challenge because of memory limitations.

Finally, one should note that MCTS uses an acyclic tree structure. This makes it
fairly straightforward to parallelize. This feature is particularly attractive because
most of the time, it is easier to obtain more machines than it is to increase the
computing power of one single machine.

3.1.2 Improvements in MCTS applied to games

MCTS has been successfully applied to games, but this was often the result of problem
specific improvements (even though the ideas themselves can be used on different
applications). We will cover some of the tricks that made MCTS successful in the
game of Go, and then mention some of the other accomplishments related to MCTS.

MCTS applied to computer Go. One of the biggest improvements to MCTS ap-
plied to the game of Go came from the customization of the rollouts by using domain

49

knowledge [57]. Some work has been done to learn patterns from past games, using
ELO ratings, and to use these patterns both in the rollouts and to apply pruning
in the tree [45]. In [54], the authors add offline knowledge (value function approxi-
mates) to guide exploration at the early stages of MCTS, when little online knowledge
is available. We show an extension of this method, called Rapid Value Estimation
(RAVE), to continuous domains in Section 3.4. The addition of automatically gener-
ated opening books (from past professional games or hand made opening books), in
[6, 70], is another way of adding human knowledge in MCTS, considerably improving
its performances. In [56], the authors use a tuned constant to adjust the balance
between exploration and exploitation in the game of Go, thus stepping away from the
default way that consist in exploring all actions first before starting exploitation.

Finally, MCTS is very well suited for parallelization[31, 53, 34, 71]. As an any
time algorithm, the benefits of more computing power are almost always beneficial,
even though it can be hard to predict by how much.

The very basic version of MCTS uses almost no knowledge of the problem: no
convexity hypothesis, no explicit knowledge of the feasible action space, no assump-
tion of continuity, etc. This means that in its simplest form, MCTS is essentially a
guided blind search, using a tree structure and exploration/exploitation balance to
slowly direct the search in the good direction. Most of the significant improvements
in computer Go have then been about adding offline knowledge, hand coded or gen-
erated, into the algorithm. The topic of where such heuristics should be included in
MCTS applied to computer Go is reviewed in more details in [48].

Application to other games. The idea of decisive move has been applied to
MCTS in the game of Havannah in [115] (a decisive move is a move that guarantees
a player a win, an anti-decisive move is a move required to avoid a loss). Using this
idea can lead to huge gains in computational efficiency by pruning large parts of the
tree.

To deal with large branching factors, one option is to aggregate successive moves
in move groups, also known as macro actions. This has been investigated and shown
to be successful in the game of Go in [36].

Opening books were also applied to the game of Amazons in [73].

3.2 Infinite domain: continuous MCTS

In this section, we investigate the consequences of an infinite support of the probability
distribution underlying the transition, and infinite action spaces, on MCTS. Here and
in the rest of this work, what we mean by infinite set is a set with infinite cardinal.
This set can be bounded or unbounded. Infinite action spaces are encountered in
many situation, like in problems where the action is the acceleration of a vehicle, the
amount of dollars to invest in a stock, or how much water should be stored in a hydro
electric dam. In practice, results covering the infinite action space case can be used to
handle problems where the action space is simply too large relatively to the number
of iterations.

50

Problems with infinitely many possible random outcomes in the transition function
are also easily found. One can encounter such an environment when the randomness
comes from oil price fluctuations, daily precipitations, or noisy robotic control, for
instance. In these cases, the random variables w can take infinitely many different
values. Formally, this means that for any couple (x, a) ∈ X × A, the support of
the random variables f(x, a, w) and g(x, a, w) are infinite. This means that it is
impossible to explore every single possible outcome. One can only approximate the
real distribution.

In the first part, we present some of the existing work made to extend MCTS to
continuous actions, on which some of our contributions are based. The second part
will show a simple example where this state of the art version of MCTS does not
suffice when the possible random outcomes to the transition are also infinite. Finally,
we present our contribution, a working extension of MCTS to fully continuous MDPs,
namely the Double Progressive Widening trick (DPW)[39].

3.2.1 MCTS-SPW for infinite action space

Whereas in a finite action setting, one can explore all legal actions from a state at
least once very quickly, it is not doable when the number of actions gets too big (in
particular when this number is infinite). Since one cannot explore all actions at once,
the idea is instead to progressively explore new actions. What remains to decide is
the rate at which new actions are explored.

Progressive strategies have been proposed in [45, 33] for tackling problems with big
action spaces; they have been theoretically analyzed in [119], and used for continuous
spaces in [103, 104]. We will here define a variant of progressive widening.

Simple Progressive Widening (SPW). Let us focus on the E/E dilemma men-
tioned above. The goal is for the agent to decide how to allocate simulations to the
different actions feasible from its current state x. Many papers have been published
on such problems, in particular around upper confidence bounds[78, 7]. Given some
state x, some information from past simulations, Upper Confidence Bounds, in its
simplest version, recommends to choose any unexplored action if there is still at least
one, and aUCB maximizing UCB(a) otherwise, with:

UCB(a) =
CR(x, a)

n(x, a)
+K

(
ln(n(x))

n(x, a)

) 1
2

(3.2)

Variants of the score function are termed ‘bandit algorithms’; there are plenty of
variants of the score formula.

A trouble in many mathematical works around such problems is that the set A(x)
is usually assumed small in front of the number of iterations. More precisely, the
behaviour of the algorithm above is trivial for t ≤ #A(x). [120] proposed the use
of a constant x such that n(x, a) = 0 ⇒ UCB(a) = s; this is the so-called First
Play Urgency algorithm. There are other specialized efficient tools for bandits used
in “trees” such as rapid action value estimates [54, 51]; however these tools assume

51

some sort of homogeneity between the actions at various time steps. [44, 119, 33]
proposed progressive strategies for big/infinite sets of arms.

The principle is as follows for some constants C > 0 and α ∈]0, 1[(as it is inde-
pendent of the algorithm used for choosing an action, within a given pool of possible
actions, we do not explicitly write a score function as above). We write x the state
we are currently in, A(x) the entire set of feasible actions in x, and A(x)t ⊂ A(x) the

set of explored actions at iteration t. We initialize A(x)0 = ∅. For each t ≥ 0, we
apply the following simple algorithm:

Algorithm 15 Simple Progressive Widening method

Input: state x, t ≥ 0, A(x)t ⊂ A(x)
Output: an action a

if n(x)α > #A(x)t then
a← s(x)
A(x)t+1 ← A(x)t ∪ {a}

else
a← argmaxa∈A(x)t

score(x, a)
end if
return a

The key point is that the chosen action is restricted to a finite subset of A(x).
And, progressively, A(x) increases in size, by adding to it randomly sampled actions
are increasingly rare occasions.

This algorithm has the advantage that it is any-time: we do not have to know in
advance at which value of t the algorithm will be stopped. [44] applied it successfully
in the very efficient CrazyStone implementation of Monte-Carlo Tree Search [45].
Upper Confidence Tree (or Monte-Carlo Tree Search) is not a simple setting as above:
when choosing an action, we reach a new state; one can think of Monte-Carlo Tree
Search (or UCT) as having one bandit in each possible state s of the reinforcement
learning problem, for choosing between (infinitely many) actions.

Applying the SPW technique to MCTS means that we modify the SELECT func-
tion as follows (other functions remaining unchanged):

It is important to keep in mind that the progressive widening algorithm is applied
in each visited state; some states might be visited only once, or never, and some
other states are visited very often. MCTS with progressive widening or progressive
strategies is the only version of MCTS which works in continuous action spaces [104,
103]; however, it was applied only with the property that applying a given action
a in a given state s can lead to finitely many states only. We will see that this
methodology (the algorithm above) does not work as is in the case in which there is a
null probability of reaching twice the same state when applying the same action in the
same state (i.e. typically it does not work for stochastic transitions with continuous
support).

52

Algorithm 16 SELECT with SPW

Input: state-node x, K > 0 action sampler s, parameter 1 > α > 0
Output: an action a

if n(x)α > #Children(x) then
ax ← s(x)
Children(x)← Children(x) ∪ {(x, a)}

else
ax = argmaxa∈Children(x) Q̂(x, a)

with Q̂(x, a) = CR(x,a)
n(x,a)

+K
(
ln(n(x))
n(x,a)

) 1
2

end if
return ax

3.2.2 Why MCTS-SPW fails on infinite state space

The key part of MCTS that is affected by the stochasticity of the environment is Alg.
11, in the first “while loop”, right after picking one action a. We take a look at two
simplistic ways to deal with this part of MCTS in a stochastic setting with infinite
outcomes, and explain why it is probably a bad idea.

The worst idea: apply deterministic MCTS. In the case of a deterministic
environment, the way to handle what follows the choice of an action a is quite straight
forward, and can be divided in two cases:

– the action has been explored at least once in the past, in which case (x, a, x′)
is in the tree, where x′ is the only possible outcome of this transition, and
n(x′) > 0.

– the action has never been explored before. We pass (x, a) to the model, and
obtain a new state x′, and (x, a, x′) is added to the tree.

It is relatively straightforward to see that in this case, any action a in the tree will
have only one child node. This means that each series of actions a0, ...aH represented
in the tree is only simulated once. The resulting Q values are then biased in favor of
lucky trajectories. Formally, the recursive equation implemented by this version of
MCTS is:

Q(x, a) = g(x, a, w) + max
a∈A

γQ(f(x, a, w), a) (3.3)

where w follows the distribution pw(.|x, a). There is no expectation in the equation
because only the first sampled disturbance w is taken into account for each couple
(x, a) in the tree.

The false good idea: SPW. In the case of a stochastic environment with a finite
support for the distribution followed by the disturbance, it makes sense to always
call the generative model when travelling through a random node (x, a) in the tree.

53

Indeed, one will eventually sample all possible outcomes (x, a, x′), and start building
long branches (i.e. trajectories made of more than one action).

However, when the support X(x, a) of f(x, a, w) is infinite, we have, for any
x′ ∈ X(x, a), P (f(x, a, w) = x′) = 0. This means that no decision node besides the
root node gets more than 1 visit. In other words, the tree gets wider and wider, never
growing longer than a depth 1. Any data obtained from sampled actions after depth
1 is only the result of actions chosen by the default policy. The estimate of the value
function of actions chosen from the root can be, at best, as good as this default policy.

In the case where the default policy is to chose a random action uniformly over the
feasible action set, this would mean that we evaluate all immediately reachable states
as if all actions taken after were random. Formally, the update function implemented
by such an algorithm is:

Q(x, a) = g(x, a, w) + max
a∈A

γQϕ(f(x, a, w), a) (3.4)

In the case of our car driving example, if acting randomly has a high chance of
crashing the car quickly, one can see how this method of evaluating states would give
almost no information about optimal actions. This would, however, give information
about the value of the default policy, for each (x, a) added to the tree.

3.2.3 Proposed solution: DPW

In the previous section, we presented SPW, and explained why it is not sufficient to
guarantee the consistency (i.e. convergence to the optimal action) in the case where
the support of the disturbance is infinite. In this section, we provide a solution,
namely the Double Progressive Widening method. Applied to MCTS as described
above, it requires the modification of the GROWTREE function and the addition of
a function to select decision nodes from random nodes, SELECT OUTCOME.

The idea remains similar to the one of SPW: as more simulations are allocated
to a random node (x, a), we want to maintain a balance between exploration and
exploitation. To do so, some of the simulations are spent widening the tree (adding
new random outcomes from (x, a)), and some are spent going deeper in the tree
(exploiting known occurrences (x, a, x′)).

At this point, we need to introduce an important notation: given a random node
(x, a), and a reachable state x′, we call number of occurrences of (x, a, x′) the number
of times x′ was obtained from the generative model applied to (x, a). We write this
number n(x, a, x′). Note that the following equations hold, for any random node
(x, a), and for any reachable state x′ from that node:

n(x, a) ≥
∑

x′∈C(x,a)

n(x, a, x′) and n(x′) ≥ n(x, a, x′) (3.5)

We now formally described the modified GROWTREE function and the added
function SELECT OUTCOME below:

This algorithm is not so intuitive, for the second progressive widening part. The

54

Algorithm 17 SELECT OUTCOME

Input: random node (x, a), K > 0 action sampler s, 1 > β > 0
Output: a reachable state x′ and its immediate reward r

if n(x, a)β > #Children(x, a) then
[x′, r]←M(x, a)
Children(x, a)← Children(x, a) ∪ {x′}

else
Choose a decision node x′ ∈ C(x, a) with probability n(x,a,x′)∑

xi∈C(x,a) n(x,a,xi)

r ← r(x′)
end if
return [x′, r]

Algorithm 18 GROWTREE with DPW

Input: current tree T , generative model M(x, a) = [x′, r], action sampler s : X 7→ A
Output: none, just updates the tree and possibly makes it grow

Initialize x← r(T), and CR← 0
repeat
a← SELECT(x,K)
Children(x)←Children(x) ∪ (x, a)
[x′, r]← SELECTOUTCOME(x, a)
Children(x, a)←Children(x, a) ∪ x′
r(x, a)← r
x← x′

until n(x) == 0 or x is a final state
CR← EVAL(x,M, φ)
while x not root do
n(x)← n(x) + 1
(x, a)← Father(x)
CR← CR + r(x, a)
CR(x, a)← CR(x, a) + CR
n(x, a)← n(x, a) + 1

end while

55

idea is as follows:

– If n(x, a)β is large enough, we consider adding one more child to the pool of
visited children: we simulate a transition and get a state x′. If we get an already
visited child, then we go to this child; otherwise, we create a new child.

– If n(x, a)β is not large enough, then we sample one of the previously seen chil-
dren. As they are not necessarily equally likely, we select a child proportionally
to the number of times it has been generated.

The algorithm has been designed with a “consistency” objective in mind, which
is twofold:

– Infinite visiting: we want that if a node is visited infinitely often, then we
generate infinitely many children, and each of these children is itself visited
infinitely often. By induction, this property ensures that all created nodes are
visited infinitely often. Progressive widening and the UCB formula (or many
other formulas in fact) ensure this property.

– Propagation: the average reward of any node visited infinitely often converges
to a limit and this limit (for a non-terminal node) is the average reward cor-
responding to its children which have best asymptotic average reward. This
property is ensured by the careful sampling in the progressive widening.

3.2.4 The Trap problem

We provide here some simple empirical results showing the difference between the
standard MCTS (with SPW) and our modified version, MCTS-DPW. The domain
used to compare the two algorithms is as simple as possible, but still shows the
fundamental weakness of MCTS-SPW.

Problem description.

This problem has been designed to clearly illustrate the weakness of the simple pro-
gressive widening. In this problem, one has to make two successive decisions, in order
to maximize the reward. As we will see, the optimal policy is to make a risky move at
the first step, in order to be able to obtain the maximum reward on the second (and
last) step. The state will be denoted x, and is initialized at x0 = 0. At each time
step t the decision is denoted dt ∈ [0, 1]. Let R > 0 be the noise amplitude at each
time step. At a time step t, given the current state xt and a decision dt, we have:

xt+1 = xt + dt +R× Y,

Y being a random variable following a uniform distribution on [0, 1].
The trap problem relies on five positive real numbers: the high reward h, the

average reward a, the initial ramp length l, and the trap width w. The high reward
will be given if and only if we cross the trap, otherwise we obtain 0. If we stay on the

56

initial ramp, we get the average reward. We thus define the reward function r(·) as
follows:

r(x) =

a if x < l
0 if l < x < l + w
h if x > l + w

The objective is to maximize r(x0) + r(x1), the cumulated reward.
The shape of the reward function is shown in Fig.3-3.

Figure 3-3: Shape of the reward function: Trap problem.

Experimental results.

We compare simple progressive widening and double progressive widening on the trap
problem. In our experiments, we used the following settings: a = 70, h = 100, l = 1,
w = 0.7, R = 0.01. With these parameters, the optimal behaviour is to have the
first decision d0 ∈ [0.7, 1] and d1 ≥ 1.7 − d0. If one makes optimal decisions, one
has an expected reward of r∗ = 170. That is the reward toward which the Double
progressive widening version of Monte Carlo Tree Search converges. However, the
Simple progressive widening version does not reach this optimal reward. Worse, as
we increase the computation time, it becomes less efficient, converging toward a local
optimum, 140.

The mean values of the rewards are shown in Fig. 3-4 and the medians of the
rewards are shown in Fig. 3-5. Each point is computed according to 100 simulations.

3.2.5 Conclusion

We introduced Double Progressive Widening, in order to make MCTS work on con-
tinuous domains. As our simple experiment shows, it is necessary to change the basic
version of MCTS (i.e. the simple widening version) in order to make it converge on
continuous domain. The main reason behind this is the infinite support of the random
process of the SDM. Because of it, when the probability of generating the same state

57

Figure 3-4: Mean of the reward, for the trap problem with a = 70, h = 100,
l = 1, w = 0.7, R = 0.01. The estimated standard deviations of the rewards are
STDDPW = [13.06, 12.88, 12.88, 12.06, 14.70, 0, 0] for Double PW and STDSPW =
[7.16, 7.16, 8.63, 9.05, 0, 0, 0] for Simple PW - the differences are clearly significant,
where STD means standard deviation.

twice is equal to zero, SPW-MCTS fails. In Chapter 4, we will prove the consistency
of a version of MCTS based on DPW.

3.3 Exploring infinite action spaces

In this section, we consider the challenge posed by infinite action spaces. One obvious
problem is that all actions cannot be explored. A number of solutions have been pro-
posed: discretization, SPW, and others that we will review in Section 3.3.1. Another
interesting problem is how to use the information gathered from several data points
in a large action space to guide the search in the rest of that space.

First, we will look at the state of the art methods trying to tackle infinite ac-
tion spaces, and to sometimes use it at their advantage. Then, we will present our
contribution on this topic, namely the Blind Value function[38].

3.3.1 Existing methods

Recent impressive results in the field of planning with MCTS variants in continuous
MDP have been published; most of them, as far as we know, rely on a discretization
of the action space. This the case of HOOT [84] and HOLOP [122] that both rely
on the HOO algorithm, introduced in [26]. HOO is a bandit algorithm that deals
with continuous arms by using a tree of coverings of the action space, which requires,

58

Figure 3-5: Median of the reward, for the trap problem with a = 70, h = 100, l = 1,
w = 0.7, R = 0.01

in their work, the action space to be compact, with known bounds. Other notable
contributions using a discretization of the action space are [72] and [11]. What these
methods have in common is the assumption that the action space is continuous, but
that we have enough knowledge about it to divide it in a certain number of equally
spaced actions. Or, in the case of HOO, it is required to have a compact action space
with known bounds. In toy benchmark problems like inverted pendulum, this is
straightforward. However, in more realistic applications, this can be difficult. This is
the case of the unit commitment problem, as described in [20] , where the agent needs
to decide at each time step how to use a wide array of energy production facilities:
water stocks, thermal plants, nuclear plants, etc. This problem has an action space
that cannot be easily discretized. First, it has both discrete and continuous compo-
nents (some power plants having a minimal energy output). Second, there are many
operational constraints, making the action space non convex, and the bounds hard to
find. In practice, finding feasible actions can come down to adding noise to the objec-
tive function of a simplified version of the problem, applying a Linear Programming
method on said simplified problem, and using the result as a feasible action. There
are many other options to sample a feasible action, but raw discretization is not one
of them.

3.3.2 Our contribution: Blind Value (BV)

The principle of Blind Value is to help the exploration of new decisions. One can want
to explore a new decision from any state already in the tree. Although in our case,
the optimizer cannot bias the sampling of new decisions, we propose a method that
does use the information available in the tree. More precisely, we use the information

59

about the children of the current node. In terms of states and decisions, it means:
when we want to explore a new decision from state x, we use information about all the
decisions explored from this state x in the past simulations to select a new decision
a ∈ A(x) to be explored from state x.

Note that one could use any other information in the tree: brother nodes, grand
children nodes, father node, etc. However, even the exploitation of the direct children
of a node only is computationally costly. And, the more distant in the tree some infor-
mation is, the more likely it is to be irrelevant to the node we are currently in (states
might be very different, and this type of problem is also highly time step dependant).
[54] has proposed the use of Rapid Action Value Estimates (RAVE), which are an
interesting other possibility; we will consider the mixing of blind value with RAVE
values in a further work. [54] also proposed the use of information from related nodes;
after preliminary positive results, this was later removed from the corresponding im-
plementations (for the game of Go) for correctly tuned implementations.

The idea of BV is to try to explore decisions that are far away from known decisions
during the first simulations, and then to focus on areas that have a lot of decisions
with high UCB values. This is done by sampling a number of new decisions, and
by selecting one of them according to a combination of these two criterions (explore
unknown regions and explore regions with many decisions with high UCB values in
it).

More precisely, we sample a number M ≥ 1 of random decisions, and we pick the
one that is the most interesting to explore. The way we measure the interest of a
decision is through a function from the decision space to R, denoted BV (.) (Blind
Value). This function can be defined in many different ways. In our proposed method,
at an iteration n, given a state x and a decision a ∈ A(x), we chose to define BV (a)
as the minimum over Dn(x) of the sum of two parts. The first part is the UCB value
of ai ∈ An(x), the second is the distance between a ∈ A(x) and ai ∈ An(x), multiplied
by an adaptation coefficient. We use the standard euclidean distance, but any other
distance could be used instead.

More precisely, the Blind Value of a in state x with actions ai ∈ An(x) already
explored is

BV (a) = min
ai∈An(x)

{UCB(ai) + ρdist(ai, a)} (3.6)

What follows is the detailed blind value algorithm:

60

Exploration of new decisions
Input: a state x, a set D of already explored decisions, an integer M ,
and a distance function over the decision space, dist
Output: an unexplored decision a.
Generate M random decisions. Let Apool be the set composed of these
decisions.
Compute σknown = UnbiasedStandardDeviationa∈D(UCB(a))
Compute σpool = UnbiasedStandardDeviationa∈Apool(dist(a, 0)), 0
being the center of the domain
Compute ρ = σknown

σpool

return a = argmaxy∈ApoolBV (y, ρ,D)

Computing BV (Blind Value)
Input: an unexplored decision y, a real number ρ, and D the set of
explored actions
Output: a real number BV (y, ρ,D).
return mind∈D(ρ× dist(d, y) + UCB(d))

3.3.3 Experimental comparison

Our test case is an energy management problem, as described in Section 1.2.3. There
are N energy stocks, H time steps, and a thermal power plant with a given maximum
capacity and production cost function. In our experiments, we used a quadratic cost
function. At each time step, each stock also receives an inflow. Each inflow follows
its own independent random distribution.

At each time step, the decision maker has to decide how much to produce from
each stock, and how much to produce from the thermal plant. His goal is to satisfy
a time varying demand at the lowest possible cost.

We ran two algorithms on this problem: the continuous version of MCTS, as
introduced in [39], and the same algorithm with the addition of Blind Value (MCTS-
BV), with the sample size parameter set to 20. This experiment was run with 12
stocks and 16 time steps. The results are shown in fig 3-6. In this experiment, as in
the following ones, each point is computed from 10000 runs of the algorithm on one
problem instance. The 95% confidence intervals are plotted as blue segments around
the points, even though their small size can make them very hard to see in some
cases.

This figure shows that even in dimension 12, BV already gives an edge of magni-
tude 10 to MCTS, in terms of computation time (to reach a certain level of perfor-
mance, MCTS requires 10 times as many simulations as MCTS-BV). The problem

61

-8e+06

-7e+06

-6e+06

-5e+06

-4e+06

-3e+06

-2e+06

-1e+06

-3 -2 -1 0 1 2

R
e
w
a
r
d

log10(computation time)

DPW+BV

DPW

Figure 3-6: Reward, as a function of the computation time. Problem settings: 12
stocks, 16 time steps. MTCS with BV is 10 times faster than MCTS, for budgets up
to 10 seconds per decision.

being reasonably easy, we also see that this edge decreases when the computation
time increases (but only for a computation time of about 3 minutes). This is due
to the fact that, as the budget gets bigger, both algorithms get very close to the
optimum, in terms of reward.

This is why we made a second experiment, on the same problem, with a much
higher dimension. In this experiment, there are 80 stocks, 6 time steps, and M = 640.
With the information given to the algorithms (just the transition and the sampling
functions), this problem is incredibly difficult, and naturally has very low reward (the
highest average possible reward being around −2.5×107). Given its dimension, there
is no way of exploring the entire decision space, even with a very low density. The
results are shown in Fig. 3-7.

This figure shows that BV still gives an edge of magnitude 10 to MCTS in terms
of computation time, even though we were not able to approach the optimum with
our computing capacities. One can also note that in this setting, the difference seems
to be increasing as the budget increases. This leads to think that on very difficult
problems, BV can divide by ten, or even more, the computing time necessary to reach
a certain level of performance.

62

-1.22e+10

-1.2e+10

-1.18e+10

-1.16e+10

-1.14e+10

1 1.5 2 2.5 3 3.5 4 4.5 5

R
e
w
a
r
d

log10(number of simulations)

DPW(0.5,0.6)

DPW(0.5,0.6)+BV

Figure 3-7: Reward, as a function of the number of simulations per decision. Problem
settings: 80 stocks, 6 time steps. MTCS with BV is 10 times faster than MCTS, for
all budgets.

3.3.4 Conclusion

Our contribution, Blind Value, only requires a random action sampler to work. No
assumptions on the continuity of the reward function with respect to the action
variables are made. Also, we do not use the shape of the feasible action space.
Although we do not have theoretical guarantees, it improved the convergence speed
of MCTS by a factor 10 in our experiments. It can be seen as a way to approximately
discretize the action space progressively, and slowly focus the computing effort in the
regions that return good rewards.

As a future work, we would like to work on a way to improve BV’s meta-parameters
online, as more information is gathered during simulations.

We should also investigate the case where the action space is not only of infinite
cardinal, but also unbounded. Our experiments were made on a case where actions
are bounded, and we do not know how our heuristic would perform if this was not
true.

63

3.4 Generalization: continuous RAVE

This section’s content can be, for the most part, be found in [40].
The main two heuristics combined with UCT aim at guiding the exploration strat-

egy, through limiting the number of considered actions with Progressive Widening
(PW) [45, 39, 119], and selecting the most promising actions with Rapid Action Value
Estimate (RAVE).

While RAVE is acknowledged to be a key factor of MCTS efficiency, to our best
knowledge it has been limited until now to discrete action and state spaces. Motivated
by applications in management and robotics, this contribution focuses on extending
RAVE to continuous action and state spaces using a Gaussian convolution-based
smoothing (section 3.4.2). The proposed approach is experimentally validated on
two problems, the artificial treasure hunt benchmark, and a real-world energy man-
agement problem (section 3.4.3). The paper concludes with a discussion and some
perspectives for further research.

3.4.1 Rapid Action Value Estimation: the finite case

First pioneered in the context of computer-Go [54], Rapid Action Value Estimation
(RAVE) aims at a more robust assessment of actions, through sharing the rewards
gathered along different subtrees of the game tree. Formally, let QRAV E(x, a) denote
the empirical reward averaged over all tree-walks where action a has been selected
after visiting state x, and let m(x, a) be the number of such tree-walks. A variant of
the UCT-policy is defined as follows:

πRAV E(x) = argmax

{
Q⊕RAV E(x, a) = QRAV E(x, a) + C ′

√
logm(x)

m(x, a)
, a ∈ A

}
(3.7)

with m(x) being the sum of m(x, a) over all actions a.
Although taking more tree-walks into account contributes to a faster convergence

of the action value estimate, QRAV E(x, a) is a biased estimate of Q(x, a), and should
therefore be replaced by the true estimate Q(x, a) whenever n(x, a) permits to do so
with reasonable confidence. It thus comes naturally to consider a dynamic weighted
average of QRAV E(x, a) and Q(x, a), defining

πUR(x) = argmax
{
Q⊕UR(x, a), a ∈ A

}
(3.8)

with
Q⊕UR(x, a) = β(x, a)Q⊕RAV E(x, a) + (1− β(x, a))Q⊕UCT (x, a)

β(x, a) =
√

k
3n(x,a)+k

(3.9)

where the equivalence parameter k represents the (domain-dependent) number of
tree-walks required for the unbiased QUCT (x, a) to provide as reliable an estimate as
QRAV E(x, a).

64

3.4.2 Continuous Rapid Action Value based Estimation

This section presents the proposed extension of RAVE to the case of continuous action
spaces and continuous space states.

Continuous action spaces

While the presented discrete RAVE approach supports the fast estimation of action
values, its reliability decreases as the number of actions which can be taken into
account increases everything else being equal. Indeed in a continuous action space A,
the number of times a given action is tried is 0 in expectation, which renders RAVE
useless.

It thus comes naturally to consider a smooth estimate of action values, e.g. using
Gaussian convolution. Formally, given a training set D = {(xi, yi), i = 1 . . . n, xi ∈
IRd, yi ∈ IR}, a Gaussian estimate of the value y associated to some x ∈ IRd is defined
as

ŷσ(x) =
1∑n

i=1 e
− 1
σ2
d(x,xi)2

n∑
i=1

e−
1
σ2
d(x,xi)

2

× yi

where σ is a smoothing parameter weighting the relative importance of the nearest
neighbors of x and d(x, x′) stands for the chosen distance on the space. In the re-
mainder of this section, only the Euclidean distance on IRd will be considered. In
applications, prior knowledge about the application domain is provided through the
choice of the distance.

Along this line, let lx = x.a0 . . . xi.ai . . . denote a tree walk starting in x and let
R(lx) denote the associated cumulative empirical reward. QRAV E,a(x, a) is defined
as:

QRAV E,a(x, a) =
1∑

lx, ai in lx
e
− logNa

d(a,ai)
2

αaction

∑
lx, ai in lx

e
− logNa

d(a,ai)
2

αaction ×R(lx) (3.10)

where αaction is a problem dependent parameter (proportional to the square dimension
of the action space for the sake of homogeneity); Na denotes the overall number
of actions involved in all lx, and the logNa term is meant to peak the Gaussian
convolution as the available empirical evidence increases. Counter n(x, a) is likewise
estimated using Gaussian convolutions and β(x, a) is computed from n(x, a) (Eq.
(3.9)).

Both QRAV E and QRAV E,a consider all tree-walks visiting state s and the cumu-
lative reward gathered thereafter. The difference is that QRAV E only considers those
tree-walks which have executed action a, whereasQRAV E,a considers them all with
a weight which decreases exponentially depending on the distance between the ex-
ecuted actions and the considered action a. As QRAV E,a is even more biased than
QRAV E (since it takes all actions into account, though weighted), one considers also
the dynamic combination of QRAV E and QRAV E,a as in Eq. (3.9)). One defines:

Q⊕URa(x, a) = β(x, a)Q⊕RAV E,a(x, a) + (1− β(x, a))Q⊕UCT (x, a)

65

and πURa(x) selects the action maximizing Q⊕URa(x, a).
Note that QRAV E,a(x, a) is computed for a finite subset of A only, due to the

progressive widening effects: only a finite number of actions is considered in each
state node. The associated continuous rapid action value estimate is updated after
each tree-walk.

Continuous state spaces

As already said, QRAV E,a and QRAV E alike are strongly biased as they take into
account every tree-walk conditionally to their visiting s and executing a or some
similar action thereafter, although this action might be executed in a state s′ very
different from s.

In the case of continuous state spaces, it thus comes naturally to weight the con-
tribution related to some state-action pair (xi, ai) depending on the distance between
s and si. Formally, let us define QRAV E,a,x(x, a) =

1∑
lx, si.ai in lx

e
− logNa,x

{
d(x,si)

2

αstate
+
d(a,ai)

2

αaction

} ∑
lx, si.ai in lx

e
− logNa,x

{
d(x,si)

2

αstate
+
d(a,ai)

2

αaction

}
×R(lx)

(3.11)
As in Eq. 3.10, constant αstate is problem-dependent and proportional to the square
dimension of state space, and Na,x is used to peak the Gaussian convolution as the
available evidence to estimate QRAV E,a,x increases.

Discussion

The proposed Continuous RAVE (cRAVE) heuristics involves two additional problem
dependent parameters αaction and αspace, respectively involved in Eqs. (3.10) and
(3.11). Note that QRAV E,a,x can be viewed as a generalization of QRAV E,a(by taking
αspace =∞), which itself generalizes QRAV E (αaction =∞).

Continuous RAVE can encapsulate prior knowledge on the action and space states,
through using some informed dissimilarity function on the state and/or action spaces.

3.4.3 Experimental Validation

This section reports on the empirical validation of the Continuous RAVE heuristics,
considering an artificial benchmark and a real-world problem. First, we describe the
goals of experiments, and the experimental setting.

Goals of experiment and experimental setting

The primary goal of experiments is to assess the efficiency of the action and (state,
action) cRAVE heuristics, comparatively to the MCTS/UCT baseline. Both heuris-
tics are plugged in the same MCTS/UCT algorithm with double progressive widen-
ing and default parameters [39]. After a few preliminary experiments, the value of

66

the problem-dependent parameters αaction and αstate are set to daction and 10−3dstate
where daction and dstate respectively correspond to the dimension of the action and
state spaces. The chosen distance in both action and state spaces is the Euclidean
distance.

The equivalence parameter k is set to 50.
In both problems the policy value is compared to the baseline approach for the

same computational budget (number of tree-walks used to select an action). Each
value, averaged over independent runs, is reported together with the standard devia-
tion.

The second goal of experiments is to study the sensitivity of the cRAVE heuristics
with respect to the time horizon and size of the state space.

The TreasureHunt benchmark

The artificial treasure hunt problem involves a squared arena of size D (Fig. 3-
8(a), left). The state space is X = [0, D]2. The goal of the agent, initially located
in the lower left corner, is to reach the treasure in the upper right corner. The
agent speed is fixed; its direction a varies in A = [0, 2π]. In each time step, the
agent gets an instant reward of -1; reaching the treasure location gets an instant
reward of 1,000. Two options are considered: with deterministic and probabilistic
transition probabilities; with and without hole (the square hole with size h is located
in the center of the arena). Transition probabilities P a

xx′ are defined as follows: upon
selecting action (direction) a in state x ∈ IR2, the agent arrives in state x′ = x +
(cosa, sina) + (U [−ε/2, ε/2], U [−ε/2, ε/2]), where U [a, b] denotes a random variable
uniformly drawn in [a, b] (ε = 0 in the deterministic case; Fig. 3-8(a), right). Being
in the hole yields an instant reward of -500.

A tree-walk stops when the agent reaches the treasure, or falls in the hole, or after
traveling a distance 10D. In the deterministic setting, the optimal reward thus is 1,000
minus the shortest path between the starting location and the treasure (conditionally
to avoiding the hole). Note that the optimal strategy in the probabilistic transition
setting is not straightforward.

The motivations for the treasure hunt problem is to study the scalability of the
cRAVE heuristics with respect to the size of the arena. It is worth mentioning that
quite a few planning problems (path planning) can be formulated as treasure hunt
problems in high dimensional spaces involving many holes (see e.g. [117]).

Figure 3-9(a) (top) displays the comparative results obtained by cRAVEaction,state,
cRAVEaction and UCT in the deterministic transition setting with no hole. In this
most simple setting, there is no significant difference although cRAVEaction,state sig-
nificantly improves on UCT for small time budgets. Interestingly, cRAVEaction,state

does not much improve on cRAVEaction. This is explained as the optimal trajectory
is the straight line from the initial state to the treasure location: the optimal ac-
tion does not depend on the current state in this simple problem. The advantage of
cRAVEaction,state will become significant in more complex settings when the optimal
decision depends on the current state.

Figure 3-9(b) (medium and bottom) reports on the results in the probabilistic

67

D

Treasure

Start

•
Agent

1
Possible directions

Hole

h

(a) Treasure hunt problem: the
agent must reach the treasure
while avoiding the hole.

Range of arrival state s′

ε Expected arrival state s′

(b) Probabilistic transition model: the arrival state
s′ is perturbed by a 2D uniform noise.

Figure 3-8: The treasure hunt benchmark problem involves two options: the presence
of a hole in the middle of the arena (left) and a probabilistic transition setting (right).

setting (respectively ε = .5 and 1), where the optimal action π(x) now depends on x.
In the probabilistic cases, both cRAVEaction,state and cRAVEaction clearly improve on
UCT. Unexpectedly, cRAVEaction outperforms cRAVEaction,state, all the more so as the
noise is moderate. The proposed interpretation for this finding goes as follows: on
the one hand, the estimate variance is lower when the state is not taken into account;
on the other hand, the optimal decision only slightly depends on state s; overall,
cRAVEaction thus enforces a faster convergence of the estimate while its bias remains
moderate. This interpretation is confirmed as the gap between cRAVEaction,state and
cRAVEaction decreases with the noise amplitude ε.

The results obtained for the treasure hunt with a hole are reported in Figs. 3-
10(a), 3-10(b) and 3-10(c). Clearly, the optimal move here depends on the current
state, even in the deterministic transition setting. As expected, cRAVEaction,state

significantly improves on cRAVEaction in all deterministic and probabilistic transition
settings with the hole, although the gap decreases with the noise amplitude increasing.
Further, both cRAVEaction and cRAVEaction,state improve on the baseline UCT.

Energy Management Problem

This real-world problem describes a power plant involving S stocks of energy (e.g.
hydro-electric stocks); the time horizon is T . In each time step, the possible action is
to produce a (continuous) quantity of electricity using any of the S stocks. Overall, the
energy demand is supplied with i) the energy produced from the hydro-electric stocks;
ii) if needed, the energy produced from the thermal power stations. In the latter case,
an additional super-linear cost is incurred. Historically this real-world problem is the
applicative motivation of [87]’s and [16]’s seminal works on decomposition by dynamic
programming. Refer to Section 1.2.3 for a more detailed description of the problem.

MCTS was investigated to find an optimal energy management policy within this

68

-200

 0

 200

 400

 600

 800

 1000

 10 100 1000 10000

M
ea

n
re

w
ar

d

Number of episodes

Deterministic treasure hunt

UCT
Rave Actions

Rave Actions+States

(a) Deterministic case, no trap.

-200

 0

 200

 400

 600

 800

 1000

 10 100 1000 10000

M
ea

n
re

w
ar

d

Number of episodes

Stochastic treasure hunt

UCT
Rave Actions

Rave Actions+States

(b) Stochastic case with ε = 0.5, no trap.

-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 10 100 1000 10000

M
ea

n
re

w
ar

d

Number of episodes

Stochastic Treasure hunt

UCT
Rave Actions

Rave Actions+States

(c) Stochastic case with ε = 1, no trap.

Figure 3-9: Treasure hunt with 15× 15 arena, without hole (top: deterministic tran-
sitions; middle and bottom: probabilistic transitions with respectively ε = .5 and 1).
The speed up is only significant in the case of ε = 1, where it makes the convergence
about 3 times faster.

69

-600

-400

-200

 0

 200

 400

 600

 800

 1000

 10 100 1000 10000 100000

M
ea

n
re

w
ar

d

Number of episodes

Determinist treasure hunt with trap

UCT
Rave Actions

Rave Actions+States

(a) Deterministic case, with trap.

-600

-400

-200

 0

 200

 400

 600

 800

 1000

 10 100 1000 10000 100000

M
ea

n
re

w
ar

d

Number of episodes

Stochastic treasure hunt with trap

UCT
Rave Actions

Rave Actions+States

(b) Stochastic with ε = 0.5, with trap.

-600

-400

-200

 0

 200

 400

 600

 800

 1000

 10 100 1000 10000 100000

M
ea

n
re

w
ar

d

Number of episodes

Stochastic treasure hunt with trap

UCT
Rave Actions

Rave Actions+States

(c) Stochastic with ε = 1., with trap.

Figure 3-10: Treasure hunt with 5×5 arena, with hole (top: deterministic transitions;
middle and bottom: probabilistic transitions with respectively ε = .5 and 1). In this
case, the speed up is quite significant, with MCTS+RAVE being about 10 times faster
than vanilla MCTS.

70

setting, motivated by the fact that the underlying model of the power plants is non-
linear and non-deterministic.

The experimental setting considers S = 6 stocks and T = 12 time horizon. The
problem-dependent constants αaction and αstate are set to 10 (by consistency with the
former treasure hunt problem, considering the range and dimension of action and
state spaces, and to enforce the discrimination between different states and actions).

Figure 3-11 comparatively displays the results obtained by UCT, RAVE
cRAVEaction and cRAVEaction,state on this problem. Interestingly, UCT is dominated
by all other variants, including the RAVE variant devised to deal with discrete action
spaces. Furthermore, cRAVEaction,state significantly outperforms cRAVEaction; this
finding was expected as two pairs (x, a) and (x′, a′) can only be considered similar if
similar actions a and a′ are applied on similar stock positions x and x′. For instance,
the decision of using a minimal amount of water in order to use it later on, makes
sense if and only if the stock positions are low, which is described through the current
state. Overall, the merits of the cRAVE heuristics are fully empirically demonstrated
on this simplified energy management problem.

-55000

-50000

-45000

-40000

-35000

-30000

3 3.5 4 4.5 5 5.5 6

R
e
w
a
r
d

log10(Number of iterations)

UCT

discrete RAVE

cRAVEaction

cRAVEstate

cRAVEaction,state

Figure 3-11: Comparative performances of UCT,discrete RAVE, cRAVEstate,
cRAVEaction and cRAVEaction,state on the energy management problem, versus the
computational budget (number of simulations). The upper the better.

Conclusion

The contribution proposed in this section concerns the extension of the Rapid Ac-
tion Value Estimate heuristics, originally proposed to prevent misleading explo-
ration in large action spaces. RAVE has been extended to continuous action spaces

71

(cRAVEaction, Eq. 3.10) using a Gaussian convolution; this approach was itself ex-
tended to the case of a continuous action and state spaces (cRAVEaction,state, Eq.
3.11). While these extensions can be easily plugged on the top of an UCT/RAVE
algorithm, they only involve two additional hyper-parameters. The experimental val-
idation of the approach on an artificial and a real-world problems fully demonstrates
its potentialities, and its robustness w.r.t. some changes to the hyper-parameters.

A primary perspective for further work is to apply cRAVE in discrete domains
where some distance/dissimilarity function can be defined using expert priors, e.g.
classical game test beds like Go [80], Hex [1] or Havannah [114].

A longer-term perspective concerns the coupling of cRAVEaction,state with the pro-
gressive widening (PW) heuristics. As already mentioned, PW introduces a new
action in each state node from time to time, when the number of times this state
has been visited reaches a given threshold. An interesting possibility would be to
use QRAV E,a and QRAV E,a,x as value expectation, and select the continuous action a∗

maximizing e.g. QRAV E,a,x(x, a) over the whole action space A.

72

Chapter 4

Theoretically consistent MCTS

In this section we present one version of MCTS, for which we have proved the consis-
tency, under some assumptions. This section is almost entirely published at ECML
2013 [12].

4.1 Specification of the Markov Decision Tree set-

ting

We use the classical terminology of Markov Decision Processes. In this framework,
a player has to make sequential decisions until the process stops: he is then given a
reward. As usual, the goal of the player is to maximize the expected reward. This
section considers the general case where the process, also called transition, is a fully
observable MDP, with finite horizon, and no cycles. In this setting, the only things
available to the agent are a simulator, or transition function, and an action sampler.

As per usual in this setting, there is a state space and an action space. To build a
tree in the stochastic setting, we choose to build it with two distinct and alternated
types of nodes:

– decision nodes, where a decision needs to be made, are generally noted z. The
intuition is that they correspond to a certain state where the agent might be.

– random nodes, where the transition can be called, are noted w = (z, a). They
correspond to the case where the agent was in state z and decided to take action
a (sometimes called post-decision state).

The tree will have a unique root decision node r, the initial state where the agent
starts. We define the depth of a node as half the distance from this node to the
root in the tree. Hence decision nodes have integer depth while random nodes have
semi-integer depth, e.g. to access a node of depth 2 we have the sequence of nodes
root=decision(depth 0) - random (0.5) - decision (1) - random (1.5) - decision (2).
Leaves are assumed to all have the same integer depth, denoted dmax, and bear some
deterministic reward r(z).

73

It is well known [16] that for each node z, there exists a value V ∗(z), termed
optimal Bellman value, frequently used as a criterion to select the best action in
sequential decision making problems. We will use this value as a measure of optimality
for actions. Given our distinction between decision nodes and random nodes, we use
a natural notation for optimal Bellman values for both categories of nodes.

Let w = (z, a) be a random node, and P (z′|z, a) be the probability of being in
node z′ after taking action a in node z. Then, its optimal value is:

V ∗(z, a) =

∫
z′
dP (z′|z, a)V ∗(z′) (4.1)

Let z be a decision node. Then, its optimal value is defined as follows:

V ∗(z) =

{
supaV

∗(z, a) if z is not a leaf,

r(z) if z is a leaf
(4.2)

In particular, we formally define optimality of actions as follows:

Definition 3. Let z be a non-leaf decision node, w = (z, a) be a child of z, and ε > 0.
We say that the action a, i.e. the selection of node w, is optimal with precision ε if
and only if V (w) ≥ V ∗(z)− ε.

There may be no optimal action since the number of children may be infinite.

Regularity hypothesis for decision nodes

This is the assumption that for any ∆ > 0, there is a non zero probability to sample
an action that is optimal with precision ∆. More precisely, there is a θ > 0 and a
p > 1 (which remain the same during the whole simulation) such that for all ∆ > 0,

V (w = (z, a)) ≥ V ∗(z)−∆ with probability at least min(1, θ∆p). (4.3)

4.2 Specification of the Polynomial Upper Confi-

dence Tree algorithm

We refer to [74] for the detailed specification of Upper Confidence Tree; we here define
our variant PUCT (Polynomial Upper Confidence Trees).

In PUCT, we sequentially repeat episodes of the MDP and use information from
previous episodes in order to explore and find optimal actions in the subsequent
episodes. We denote by n(z), for any decision node z, the total number of times that

node z has been visited after the nth episode. Hence a node z has been encountered
at episode n if n(z) ≥ 1, and we always have n = n(r). The notation is identical for
random nodes.

We denote by V̂ (z) the empirical average of a decision node z and V̂ (z, a) the
empirical average of a random node w = (z, a). Note that if PUCT works properly,
V̂ (z) should converge to V ∗(z) when n(z) goes to infinity.

74

How we select and construct children of a given node depends on two sequences of
coefficients: αd, the progressive widening coefficient, defined for all integer and semi-
integer depths d, and ed, the exploration coefficient, defined only for integer depths (i.e.
decision nodes). These coefficients are defined according to Table 4.1. We sometimes
indicate, as on Table 4.1, by a small “R” or “D” if a coefficient corresponds to a
random or decision node, but otherwise it should be clear from the context.

PUCT algorithm
Input: a root node r, a transition function, an action sampler, a time
budget, a depth dmax, parameters α and e for each layer
Output: an action a
while time budget not exhausted do

while current node is not final do
if current node is a decision node z then

if bn(z)αc > b(n(z)− 1)αc then
we call the action sampler and add a child w = (z, a) to z

else
we choose as an action among the already visited children
(z, a) of z, the one that maximizes its score, defined by:

V̂ (z, a) +

√
n(z)e(d)

n(z, a)
. (4.4)

end if
else

if bn(w)αc = b(n(w)− 1)αc then
we select the child of z that was least visited during the
simulation

else
we construct a new child (i.e. we call the transition function
with argument w)

end if
end if

end while
we reached a final node z with reward r(z); we back propagate all
the information in the constructed nodes, and we go back to the
root node r.

end while
Return the most simulated child of r.

With this algorithm, we see that if a decision node z at depth d has been visited
n times, then we have visited during the simulation exactly bnαDd c of its children, a
number which depends on the progressive widening constant αDd . This is the so-called
progressive widening trick [45].

For a random node z, we actually have the same property, depending on the double
progressive widening constant αRd : this is the so-called double progressive widening
trick ([39]; see also [59]).

75

Decision Node (d integer) Random Node (d semi-integer)

αDd :=
1

10(dmax − d)− 3
for d ≤ dmax − 1

ed :=
1

2p

(
1−

3

10(dmax − d)

)
for d ≤ dmax − 1

αRd :=

3

10(dmax−d)−3
for d ≤ dmax − 3

2

1 for d = dmax − 1
2

γDd :=
1

10(dmax − d)
for d ≤ dmax − 1 γRd :=

1

10(dmax − d)− 2
for d ≤ dmax −

1

2

Table 4.1: Definition of coefficients and convergence rates

4.3 Main result

Definition 4 (Exponentially sure in n). We say that some property (P) depending on
an integer n is exponentially sure in n (denoted e.s.) if there exists positive constants
C, h, η such that the probability that (P) holds is at least

1− C exp(−hnη).

Theorem 1. Define all exploration coefficients ed and all progressive widening coef-
ficients αd as in Table 4.1. There is a constant C > 0, only depending on dmax, such
that after n episodes of PUCT, for every node z at depth d we have

|V̂ (z)− V ∗(z)| ≤ C

n(z)γd
e.s. in n(z) (4.5)

Additionally, for every node w = (z, a) at depth d+ 1
2

we have

|V̂ (w)− V ∗(w)| ≤ C

n(w)
γ
d+1

2

e.s. in n(w) (4.6)

Corollary 1. After n episodes, let wn(r) be the most simulated child node of r. Then,

wn(r) is optimal with precision O
(
n−

1
10dmax

)
e.s. in n (4.7)

The proof is based on an induction on the following property and is detailed in
the following three sections. Let us define this property.

Definition 5 (Induction property Cons(γd, d)). There is a Cd > 0 such that for all
nodes at integer depth d,

|V̂ (z)− V ∗(z)| ≤ Cdn(z)−γd e.s. in n(z)

and for all nodes w at semi integer depths d+ 1
2
,

|V̂ (w)− V ∗(w)| ≤ Cd+ 1
2
n(w)

−γ
d+1

2 e.s. in n(w)

In Section 4.4, we show that if Cons(γd, d) holds for d ≥ 1, i.e. for decision nodes
in one given layer, then Cons(γd− 1

2
, d− 1

2
) holds, i.e. holds for the random nodes in

76

the above layer. In Section 4.5, we show that if Cons(γd+ 1
2
, d + 1

2
) holds for d ≥ 0,

i.e. for random nodes in one given layer, then Cons(γd, d) holds, i.e. holds for the
decision nodes in the above layer. Finally, we establish in Section 4.6 that Cons(γ, d)
holds for maximal depth dmax, which will settle the proof of Theorem 4.5.

4.4 From Decision Nodes to Random Nodes

In this section we consider a random node w with semi-integer depth d − 1
2
≥ 0.

We suppose that there exist a γDd > 0 such that Cons(γDd , d) holds for any child

node z of w. Recall that all nodes at this depth have bn
αR
d− 1

2 c constructed children
when they have been visited n times. We will show that we can define αR

d− 1
2

so that

Cons(γR
d− 1

2

, d− 1
2
) holds. For convenience, if w is a random node, we will refer to the

ith child zi of w by its index i directly. Then, the number of visits in zi after the nth

iteration of PUCT will be simply called n(i) instead of n(zi). Similarly, the empirical
value of this node will be noted V̂ (i) instead of V̂ (zi).

4.4.1 Children of Random Nodes are selected almost the
same number of times

With our politics for dealing with random nodes, described in section 4.2, the kth

child of a random node w is constructed at episode dk 1
α e. We now show that all

constructed children of w but the last one are visited almost the same number of
times.

Lemma 1. Let w be a random node with progressive widening coefficient α ∈]0; 1[.

Then after the nth visit of w in the simulation, all children zi, zj of w with 1 ≤ i, j <
bnαc satisfy

|n(i)− n(j)| ≤ 1. (4.8)

In fact, in the next section, we will only use the following consequence of Lemma 1.

Corollary 2. When a random node z is visited for the nth time, all children of z
have been selected at most n

bnαc−1
times, and all children of z but the last one have

been selected at least n
bnαc − 1 times.

Proof. Let us simply call k the kth child of w for all k ≥ 1, and denote nk the number
of visits (hereafter simply called timesteps) in w when child k was introduced. By

definition, nk = dk 1
α e. Now remark the statement of Lemma 1 is equivalent to

(4.8) is satisfied for all children of w at every timestep of the form nk − 1 for k ≥ 2 .
(4.9)

Indeed, considering the statement of Lemma 1 at time nk, where child k is au-
tomatically selected, gives (4.9). On the other hand, consider what happens if (4.9)
is true: at time nk a new child k of w appears, and will be repeatedly selected until

77

it reaches the minimal number of selection among other children, or until nk+1 is
reached. So if nk+1−nk is large enough, (4.8) will hold for all children but k in a first
period, and then for all children until nk+1.

We proceed by induction: for k = 1, statement (4.9) is trivial, and then we will
show

nk+1 − nk ≥ b
nk − 1

k − 1
− 1c. (4.10)

Indeed, if (4.9) is true, then at time nk − 1 the average number of selections among
the k − 1 first children is nk−1

k−1
, so that the number of selections that the new child

must reach is the quantity on the right.
Would the delay between to new children nk+1 − nk be non-decreasing, the result

would follow very easily. Unfortunately here, this is not the case.

Let p = b dk
1
α e−1
k−1

c. This implies dk 1
α e ≥ p(k − 1) + 1, so

k
1
α > p(k − 1). (4.11)

Also, by definition, the left hand side of (4.10) is equal to

d(k + 1)
1
α e − dk

1
α e ≥ (k + 1)

1
α − k

1
α − 1

≥ 1

α
k

1
α
−1 − 1, by using the fact that 0 < α < 1

≥ p(k − 1)

αk
− 1,

where we use (4.11) for the last inequality.
So (4.10) is settled if

p(k − 1)

αk
− 1 ≥ p− 1,

i.e. α ≤ k−1
k

. So suppose now that we are in the case α > k−1
k

: then by (4.11) we
deduce

p <
k

k
k−1

k − 1
. (4.12)

It is easily checked that the quantity on the right-hand side of (4.12) is less than
3 and so yields p ≤ 2. Fortunately in this case Eq. 4.10 is trivial.

4.4.2 Consistency of Random Nodes

Lemma 2 (Random nodes are consistent). . If there is a 1 ≥ γd > 0 such that for any
child z of the random node w we have Cons(γd, d), then we have Cons(γd− 1

2
, d− 1

2
),

with γd− 1
2

= γd
1+3γd

if we define the progressive widening coefficient αR
d− 1

2

by αR
d− 1

2

=
3γd

1+3γd
.

Proof. From now on, w is fixed in order to simplify notation; therefore, we simply
denote αR

d− 1
2

by α, and n(w) by n.

78

Fix n such that nα ≥ 3. Define i0 = bnαc as the last constructed child of node w,
and r = bnαc − 1 = i0 − 1. To prove the result, we need to prove an upper bound on
the following quantity, that holds exponentially surely in n:

|V̂ (w)− V ∗(w)| = |

(∑
1≤i<i0

n(i)

n
V̂ (i) +

n(i0)

n
V̂ (i0)

)
− V ∗(w)|

Decompose this as

|V̂ (w)− V ∗(w)| ≤ |
∑

1≤i<i0

(
n(i)

n
− 1

r

)
V̂ (i)| (4.13)

+ |
∑

1≤i<i0

1

r

(
V̂ (i)− V ∗(i)

)
| (4.14)

+ |
∑

1≤i<i0

1

r
(V ∗(i)− V ∗(w)) | (4.15)

+ |n(i0)

n
V̂ (i0)| (4.16)

First consider (4.13). By Lemma 1, there is a integer p such that all children
i = 1, · · · , i0 − 1 have been selected p or p+ 1 times, with p = O (n1−α). So, we have
for all i = 1, 2, · · · , i0 − 1,

|n(i)

n
− 1

bnαc − 1
| ≤ |p

n
− 1

bnαc − 1
|+ 1

n

The definition of p gives (i0 − 1)p ≤ n ≤ i0(p+ 1), so that

|p
n
− 1

i0 − 1
| ≤ i0 + p

(i0 − 1)n
= O

(
1

n
+

1

n2α

)
so that in the end for (4.13) we have

|
∑

1≤i<i0

(
n(i)

n
− 1

r

)
V̂ (i)| = O

(
nα
(

1

n
+

1

n2α
+

1

n

))
= O

(
1

n1−α +
1

nα

)
Consider now (4.14). Cons(γd, d) holds, so for each child i = 1, 2, · · · , bnαc− 1 of

w, Lemma 1 leads to:

|V̂ (i)− V (i)| ≤ Cdp
−γd ≤ Cd

1

bn1−αcγd
e.s. in n1−α

79

Finally for (4.14) it is exponentially sure in n that

|
∑

0≤i<i0

1

bnαc − 1

(
V̂ (i)− V ∗(i)

)
| = O

(
1

n(1−α)γd

)
. (4.17)

Now we turn to (4.15). Since w is a random node, the value V ∗(i) of each new
child i of w constructed by the algorithm is given by a random law whose mean is
V ∗(w). Thus we can apply Hoeffding’s inequality to the sum in (4.15) and we obtain
that for t > 0,

|
∑

0≤i<i0

1

bnαc − 1
(V ∗(i)− V ∗(w)) | ≤ t (4.18)

with probability at least 1− 2 exp (−2t2 (bnαc − 1)) = 1− 2 exp(−Cn
γd

1+3γd)

with t := n
− γ′

1+3γd , α = 3γd
1+3γd

, and C > 0. This proves that (4.18) is e.s. in n.

Finally consider (4.16): since the last child of w has been selected at most p times,
we have ∣∣∣∣n(i0)

n
V̂ (i0)

∣∣∣∣ =
1

n
×O

(n
nα

)
= O

(
1

nα

)
.

All in all, we have have shown that it is exponentially sure in n = n(w) that

|V̂ (w)− V ∗(w)| = O

 1

n1−α +
1

nα︸ ︷︷ ︸
(4.13)

+
1

n(1−α)γd︸ ︷︷ ︸
(4.14)

+
1

n
γd

1+3γd︸ ︷︷ ︸
(4.15)

+
1

nα︸︷︷︸
(4.16)

 . (4.19)

With α = 3γd
1+3γd

and γd ≤ 1, it is straightforward to check that the smallest

exponent is γd
1+3γd

, so that Cons(γd− 1
2
, d− 1

2
) is true with γd− 1

2
= γd

1+3γd

4.5 From Random Nodes to Decision nodes

Let z be a non leaf decision node at depth d. In this section, we will show that if the
induction property holds for all random nodes at depth d+ 1

2
, it will hold for z.

4.5.1 Children of decision nodes are selected infinitely often

Lemma 3. Let f be a non-decreasing map from N to N. Consider a stochastic
bandit setting with a countable set of children, progressive widening coefficient α and
exploration function f , i.e. the score at time n of a child i is computed by

scn(i) = V̂n(i) +

√
f(n)

n(i)
.

80

Then if i denotes the ith constructed child, for all n ≥ i
1

α(1−α) we have

n(i) ≥ 1

4
min(f(n1−α), n1−α).

In particular, all constructed children are selected infinitely often provided that
lim+∞ f = +∞.

Proof. Fix n and consider the child i0 maximizing n(i0), i.e. the most selected child
at time n. Let n′ be the last time i0 has been selected. Since there are at most nα

children at time n we have

n′(i0) = n(i0) ≥ n

nα
= n1−α (4.20)

where (i) n′(i0) is the number of times i0 has been drawn before time n′; (ii) n(i0) is
the number of times i0 has been drawn before time n. Thus we also have

n′ ≥ n′(i0) ≥ n1−α. (4.21)

Consider now any child i already constructed at time n′. Since i0 was selected at
time n′ we must have√

f(n′)

n′(i)
≤ scn′(i) ≤ scn′(i0) ≤ 1 +

√
f(n′)

n′(i0)
. (4.22)

Rewriting 4.22 and using 4.20 leads to

1√
n′(i)

≤ 1√
n1−α

+
1√
f(n′)

≤ 2√
min(f(n′), n1−α)

(4.23)

so that for all children i at time n existing at time n′ we have

n(i) ≥ n′(i) ≥ 1

4
min

(
f(n1−α), n1−α)

as announced. Finally, note that a child i existed at time n′ if i ≤ (n1−α)α ≤ n′α,
which leads to the prescribed condition.

Corollary 3. For the exploration function f(n) = ne with 0 < e < 1 we obtain

n(i) ≥ 1

4
ne(1−α) if i ≤ nα(1−α).

4.5.2 Decision nodes are consistent

Lemma 4 (Decision nodes are consistent). . If there is a 1
2
> γd+ 1

2
> 0 such that

for any child w of the decision node z we have Cons(γd+ 1
2
, d + 1

2
), then we have

Cons(γd, d) with γd =
γ
d+1

2

1+7γ
d+1

2

if we define the progressive widening coefficient αDd by

81

αDd =
γ
d+1

2

1+4γ
d+1

2

.

Proof. Let z be a decision node at depth d ≥ 0. For simplicity, we note αd = α and
ed = e. Suppose that there is a 1

2
> γd+ 1

2
> 0 such that for all random nodes w at

depth d+ 1
2
, Cons(γd+ 1

2
, d+ 1

2
) is true. To show Cons(γd, d), we will proceed in two

steps: first we establish an upper bound on V̂ (z)− V ∗(z), and then a lower bound.
Upper bound. First we obtain an upper bound on V̂ (z)− V ∗(z). Let ε < 1− α

to be fixed later. We partition the children of z in two classes:

– class I : children i such that n(i) ≤ n(z)1−α−ε ;

– class II : other children;

V̂ (z)− V ∗(z) =
∑

i in class I

n(i)

n(z)
(ˆV (i)− V ∗(z)) +

∑
i in class II

n(i)

n(z)
(ˆV (i)− V ∗(z))

≤
∑

i in class I

n(i)

n(z)
+

∑
i in class II

n(i)

n(z)
(V̂ (i)− V ∗(i))

≤ nα × n1−α−ε

n
+ Cd+ 1

2
(n)
−γ

d+1
2

(1−α−ε)
e.s. in n

−γ
d+1

2
(1−α−ε)

by induction

≤ n−ε + Cd+ 1
2
n
−γ

d+1
2

(1−α−ε)
.

We now choose ε =
γ
d+1

2
(1−α)

1+γ
d+1

2

and obtain

V̂ (z)− V (z) ≤ (1 + Cd+ 1
2
)n
−γ

d+1
2

1−α
1+γ

d+1
2 e.s. in n (4.24)

Lower bound.
We assumed that there exists a constant θ such that when we pick a new child for

z, it has a value satisfying V (i) ≥ V ∗(z)−∆ with probability at least min(1, θ∆p).
The induction hypothesis on the next level gives us a fixed coefficient γd+ 1

2
∈]0; 0.5[

such that all children w of z verify e.s. in n(w):∣∣∣V ∗(w)− V̂ (w)
∣∣∣ ≤ Cd+ 1

2
n(w)

−γ
d+1

2 .

The parameters to be fixed on this level are

– the progressive widening coefficient α :=
γ
d+1

2

1+4γ
d+1

2

;

– the exploration coefficient e := 1
1+4γ

d+1
2

− 1
γ
d+1

2

(1− 1
2p

)α = 1
2p(1+4γ

d+1
2

)
.

To these coefficients we add a parameter ξ which we define by

ξ :=
1

1 + eγd+ 1
2
(1− α)

(4.25)

82

and let ∆ :=

(
1

4
nξe(1−α)

)−γ
d+1

2

. (4.26)

First step : exponentially surely in n there exists at time dnξ(1−α)e a
child i0 of z such that

V (i0) ≥ V (z)−∆ and i0 ≤ nξ(1−α)α. (4.27)

At time step dnξ(1−α)e, the number of children of z is a at least bnξ(1−α)αc. The (true
hidden optimal) values of these children being given randomly and independently, the
probability there is not a single child i0 with V (i0) ≥ V ∗(z)−∆ at time dnξ(1−α)e is
at most

pn := (1− θ∆p)bn
ξ(1−α)αc

log pn ∼n nξ(1−α)α log(1− θ∆p)

∼n −nξ(1−α)αθ

(
1

4
nξe(1−α)

)−γ
d+1

2
p

∼n −4
γ
d+1

2
p
θn

ξ(1−α)(α−eγ
d+1

2
p)

∼n −4
γ
d+1

2
p
θnξ(1−α)0.5α.

The exponent of n in this quantity being positive, we deduce that the existence of i0
is exponentially sure in n.

Second step: e.s. in n, all children selected at a time n′ between nξ and
n have a high score.

Let n′ be such that nξ ≤ n′ ≤ n. Then n′α(1−α) ≥ nξ(1−α)α ≥ i0. And, by Corollary
3,

n′(i0) ≥ 1

4
n′
e(1−α) ≥ 1

4
nξe(1−α).

Hence there exists a C ′ > 0 by the induction hypothesis such that we have, as
long as nξ ≤ n′ ≤ n,

V̂ (i0) ≥ V ∗(i0)− C ′
(

1

4
nξe(1−α)

)−γ
d+1

2

e.s. in n′

≥ V ∗(z)− (1 + C ′)∆ e.s. in n′.

Consider any child i1 chosen by the algorithm at a time n′ ≥ nξ, i.e. the one which
has the greatest score at time n′. All values being considered at time n′, we have

V̂ (i1) +

√
n′e

n′(i1)
≥ V̂ (i0) +

√
n′e

n′(i0)
,

hence V̂ (i1) +

√
ne

n′(i1)
≥ V ∗(z)− (1 + C ′)∆ e.s. in n′. (4.28)

83

To conclude this part, all we have to do is to show that some property exponen-
tially sure in n′ is also exponentially sure in n. This easily follows from the fact that
n′ ≥ nξ and that ξ, is bounded below by some constant. One can easily check from
the definition of ξ that ξ ≥ 2

3
, since e ≤ 1

2
.

Third step : lower bound on V̂ (z).
Consider a child i1 selected after nξ. By the previous step, exponentially surely

in n, this child must either satisfy √
ne

n(i1)
≥ ∆ (4.29)

or V̂ (i1) ≥ V (z)− (2 + C ′)∆. (4.30)

Under this hypothesis we can split the children of z in three categories:

1. children i1 visited only before time nξ ;

2. children i1 visited after nξ satisfying (4.29) ;

3. children i1 visited after nξ satisfying (4.30) .

Let us use this decomposition to lower bound the sum

V̂ (z)− V ∗(z) =
∑

i=1···bnαc

n(i)

n
(V̂ (i)− V ∗(z)).

For the children in the first category, we have∣∣∣∣∣ ∑
i1in cat.1

n(i1)

n
(V̂ (i1)− V ∗(z))

∣∣∣∣∣ ≤
∑

i1in cat.1 n(i1)

n
≤ nξ

n
.

For children in the second category, since there are at most nα of these children,
we have∣∣∣∣∣ ∑

i1in cat.2

n(i1)

n
(V̂ (i1)− V ∗(z))

∣∣∣∣∣ ≤
∑

i1in cat.2 n(i1)

n
≤ nα

n

ne

∆2
=
nα+e−1

∆2
.

Finally, using (4.30) for the third category of children, we see that

V̂ (z)− V ∗(z) ≥ −(2 + C ′)∆(1− nξ−1)− nξ−1 − nα+e−1

∆2
.

Now we compare the three terms

∆, nξ−1 and
nα+e−1

∆2
. (4.31)

By (4.25) we have ξ − 1 = −ξeγd+ 1
2
(1− α), thus by (4.26), nξ−1 = 4

−γ
d+1

2 ∆ ≤ ∆.

84

This implies that the term nξ−1 in the three terms (Eq. 4.31) is O(∆). We now
compare the two other terms; from the definition of ∆, we see that we must compare

nα+e−1 and ∆3 = 4
3γ
d+1

2 n
−3ξe(1−α)γ

d+1
2 . Using the definitions of ξ, e and α, one can

check that:

1− e− α ≥
3γd+ 1

2
+ 1

2

1 + 4γd+ 1
2

≥ 1

2

and, using ξ ≤ 1, (1− α) ≤ 1, eγd+ 1
2

=
γ
d+1

2

2(1+4γ
d+1

2
)
≤ 1

8
,

3ξe(1− α)γd+ 1
2
≤ 3

8

ne+α−1 ≤ n
−3ξe(1−α)γ

d+1
2 = 4

−3γ
d+1

2 ∆3 ≤ ∆3

so that V̂ (z) − V (z) ≥ −(5 + C ′)∆. Finally, one can check that ξe(1 − a)γd+ 1
2
≥

γ
d+1

2

1+7γ
d+1

2

so that V̂ (z) − V ∗(z) ≥ −(5 + C ′)4
γ
d+1

2 n

γ
d+1

2
1+7γ

d+1
2 which can now be written

V̂ (z)− V ∗(z) ≥ −Cn−γ with C := (5 + C ′)4
γ
d+1

2 and γ =
γ
d+1

2

1+7γ
d+1

2

.

4.6 Base step, initialization and conclusion of the

proof

Let w be a random node of depth dmax− 1
2
. Its children are leaf nodes, and all have a

fixed reward in [0; 1]. These children form a ensemble of independent and identically
distributed variables, all following the random distribution associated with w, of mean
V ∗(w). Hoeffding’s inequality gives, for t > 0,

P

(
| 1
n

∑
zichildofw

V ∗(zi)− V ∗(w)| ≥ t

)
≤ 2 exp(−2t2n).

Setting the exploration coefficient αdmax− 1
2

to 1 (since there is no point in selecting

again children with a constant reward) and t to n−
1
3 , we obtain

P
(
| ˆV (w)− V ∗(w)| ≥ n−

1
3

)
≤ 2 exp(−2n

1
3)

so that | ˆV (w)−V ∗(w)| ≤ n−
1
3 is exponentially sure in n, i.e. Cons(1

3
, dmax− 1

2
) holds.

Of course one can consider a coefficient different from 1
3

for t, as long as it is less than
1
2

– we just aim so as to simplify the definition of coefficients. This gives a singular
value of αR

dmax− 1
2

= 1 and an initialization of the convergence rate as γR
dmax− 1

2

= 1
3
.

It is now elementary to check this value of 1
3

for γ at depth dmax − 1
2
, together with

recursive definitions of coefficients derived in Lemmas 2 and 4, yield the values given
on Table 4.1. This concludes the proof of Theorem 4.5.

85

Budget (s) 0.001 0.004
HOLOP -47.45 ± . .

DPS -838.7 ± 78.0 -511.0 ± 100.0
PUCT+DPS -13.84 ± 0.80 -11.11 ± 0.95

Budget (s) 0.04 0.16 0.64
DPS -8.02 ± 0.98 -7.06 ± 0.024 -6.98 ± 0.03

PUCT+DPS -7.23 ± 0.45 -6.69± 0.03 -6.57 ± 0.02

Table 4.2: Left: Cart Pole results; episodes are 200 time steps long. Right: Unit
Commitment results, with 2 stocks, 5 plants, and 6 time steps.

4.7 Experimental validation

In this section, we show some experimental results, by implementing PUCT on two
tests problems. We used fixed parameters α and e, quickly tuned by hand. We
added a custom default policy, as seen in [42], that is computed offline using Direct
Policy Search (DPS), once per problem instance. We also gave heavier weights to the
decisions with high average value when computing the empirical value of a state, as
it showed increased performances in practice. There are many ways to finely tune
PUCT that we did not explore. Our goal was simply to check that our PUCT has a
satisfying behaviour, to verify our theoretical results. We acknowledge that depending
on implementation subtleties, results can vary. Our source code is available upon
request.

Cart pole. We used the well known benchmark of cart pole, and more precisely
the version presented in [122]. As our code uses time budget, and not a limit in
the number of iterations, we only approximated their limit of 200 roll outs (on our
machine, 0.001 second per action. We took HOLOP as a baseline, that yields an
average reward of −47.45[122]. Our results are shown in Table 4.2. Though cart pole
is not as challenging as real world applications, these results are encouraging and
supporting our theoretical results of consistency.

Unit commitment. We used a unit commitment problem, inspired by ongoing
work with an industrial partner. The agent owns 2 water reservoirs and 5 power
plants. Each reservoir is a free but limited source of energy. Each power plant has
a fixed capacity, has a fixed cost to be turned on, as well as quadratic running costs
that change over time. The time horizon was fixed to 6 time steps. At each time step,
the agent decides how to produce energy in order to satisfy a varying demand, and
the water reservoirs receive a random inflow. Failure to satisfy the demand incurs a
prohibitive cost. This problem is challenging for many reasons, including: the action
space is non convex, the objective function is non linear and discontinuous, there
are binary and continuous variables, and finally, the action space can be subject to
operational constraints that make a discretization by hand very tedious. The purpose
of PUCT in this application is not to solve all of it, but rather to improve existing
solvers. This is an especially promising method, with the many powerful heuristics
available for this problem. The results are shown in Table 4.2. PUCT manages to
reliably improve the actions suggested by DPS, and its performances increase with
the time budget it is given.

86

4.8 Conclusion

[74] have shown the consistency of the UCT approach for finite Markov Decision
Processes. We have shown the consistency of our modified version, with polynomial
exploration and double progressive widening, for the more general case of infinite
MDP. [39] have shown that the classical UCT is not consistent in this case and
already proposed double progressive widening; we here give a proof of the consistency
of this approach, when we use polynomial exploration; [39] was using logarithmic
exploration.

Some extensions of our work are straightforward. We considered trees, but the ex-
tension to MDP with possibly two distinct paths leading to the same node is straight-
forward. Also, we assumed, only for simplifying notation, that the probability that
a random node leads twice to the same decision node (when drawn independently
with the probability distribution of the random node) is zero, but the extension is
possible. On the other hand, we point out two deeper limitations of our work: (i)
The reason why we switched to polynomial exploration was to make the proof easier.
We do not know if similar results can be derived without switching. This would be
an interesting direction for future research, as empirically the UCB based exploration
seems to lead to a consistent MCTS. (ii) The general case of a possibly cyclic MDP
with unbounded horizon is not covered by our result.

We have shown consistency in the sense that Bellman values are properly esti-
mated. This does not explain which decision should be actually made when PUCT
has been performed for generating episodes and estimating V values. Our result im-
plies that choosing the action by empirical distribution of play (i.e. randomly draw
a decision with probability equal to the frequency at which it was simulated during
episodes; see discussion in [21]) is asymptotically consistent. Also, choosing the most
simulated child is consistent (this is a classical method in UCT), as well as selecting
the child with best V̂ among child nodes of the root of class II; our results do not
show the superiority of one or another of these recommendation methodologies.

Our experimental results on the classical Cart pole problem show that PUCT out-
performs HOLOP; PUCT also outperformed a specialized DPS on a unit commitment
problem. This last empirical result is especially interesting because unit commitment
problems are, in practice, highly non Markovian. And, even though we worked in the
framework of MDP to relate to its abundant literature, our algorithm does not actu-
ally need the random process to be Markovian, as the history is naturally embedded
in the tree structure. Hence, PUCT could be a way to approach difficult and more
general non Markovian continuous sequential decision making problems.

87

Chapter 5

Hybridization of MCTS

In this section we present some of the works relying on the hybridization of MCTS
with other solvers. In Section 5.1, we show a method to mix MCTS with direct
policy search, in order to improve MCTS’s playouts. In Section 5.2, we explain how
MCTS can be used to solve Partially Observable MDP (POMDP), and show some
experimental results on the game of Mines, obtained by mixing it with domain specific
heuristics. Finally, in Section 5.3, we present a meta-bandit framework, to solve
problems with a high level optimization done by bandits, and microlevel problems
solved by MCTS.

5.1 Custom default policies

This section’s content can be found, for the most part, in [42].

5.1.1 Introduction

MCTS has been greatly improved by including Progressive Widening and Double
Progressive Widening[45, 33], RAVE values[54], Blind Values[38], and hand-crafted
Monte-Carlo moves[120, 80]. A crucial component is the Monte-Carlo move generator,
also known as the playout generator.

In this section, we focus on the addition of specialized Monte-Carlo moves, i.e. we
modify default policy, to help dealing with stochastic planning problems. Finding a
default policy that is optimal for all instances of a stochastic problem can be extremely
difficult and time consuming. The solution we propose here is to apply a Direct Policy
Search to the available default policy. This way, even an initially poor default policy
can be improved to fit different instances of one stochastic planning problem.

In Section 5.1.2 we describe existing algorithms for improving Monte-Carlo move
generators (subsection 5.1.2), and Direct Policy Search for improving a Monte-Carlo
move generator in Section (subsection 5.1.2). In Section 5.1.3, we experiment our
algorithms on three forms of a unit commitment problem (Section 5.1.3), and on an
investment problems (Section 5.1.3).

88

5.1.2 Algorithms

In this section we will present Direct Policy Search, and Monte-Carlo move generators
improvements.

Heuristics and Monte-Carlo move generators

Whereas in the 2-player case, it is known that making a Monte-Carlo generator
stronger (stronger in the sense: as a stand-alone policy), does not necessarily make
the MCTS built on top of it stronger (see [120]), we conjecture that in the one-player
case it is usually quite efficient.

The recent improvements in the world of Computer Go basically comes from im-
provements of the Monte-Carlo move generator, implemented so that the Monte-Carlo
simulator does not contradict life&death known results; Zen, CrazyStone, Pachi, are
examples of such strong programs, around 4 to 5 Dan for short time settings and
3 to 4 Dan for long time settings (professional human players tend to benefit from
longer time settings more than machines). Other tools have been proposed as generic
solutions for learning Monte-Carlo move generators:

– Simulation balancing [109] has been proposed for automatically learning the
Monte-Carlo move generator in 2-player games.

– PoolRave[102], in which the Monte-Carlo move is replaced, with a fixed prob-
ability p ∈ (0, 1), by a move uniformly drawn among the c moves with best
RAVE score in the last node of the simulation with at least k simulations.

– Contextual Monte-Carlo[101] in which the Monte-Carlo move-generator is im-
proved by online learning a tile-based value function.

These tools are efficient, but the main successes in Monte-Carlo Tree Search nonethe-
less come from handcrafted Monte-Carlo move generators. Here, we used a specialized
Monte-Carlo move generator, chosen specifically on our main target problem, as well
as a less specialized function. We improve them by Direct Policy Search (Section
5.1.2).

Direct Policy Search for generating Monte-Carlo Move Generators

Direct Policy Search (DPS) is an approach very different from Upper Confidence Tree;
it is based on selecting a policy among a parametric family of policies by optimization
of its parameters. The pseudo-code is as follows:

89

Procedure Simulate(s,MDP, p):
Inputs: a state s, a Markov Decision Process MDP , and a policy
p.
Output: a reward.
Method: simulate MDP from state s with policy p until a ter-
minal state and return the obtained reward.
Procedure Direct Policy Search:
Inputs: (i) a parametric policy θ 7→ π(θ), where π(θ) is a mapping
from states to actions. (ii) a Markov Decision ProcessMDP . (iii)
an initial state s.
Output: a parameter θ̂, leading to a policy π(θ̂).
Auxiliary method: a noisy optimization algorithm.
Apply the noisy optimization algorithm to the function θ 7→
Simulate(s,MDP, π(θ)); get θ̂ the approximate optimum.
Return θ̂.

Direct Policy Search is usually applied offline, i.e. a single θ̂ is obtained once
and for all. However, optimizing Θ to maximize θ 7→ Simulate(s,MDP, π(θ))
specifically for the current state s for which we look for a decision is possible. We
apply DPS and use the obtained policy π(θ̂) as a Monte-Carlo move generator in our
MCTS.

The paper in [18] proposes to apply DPS (the terminology in the paper is differ-
ent, but it is essentially DPS) based on a heuristic function obtained by experts, by
smoothing the heuristic and adding parameters in it (the smoothing is here for mak-
ing the problem easier to optimize). This is our approach here, except that we do not
smooth policies as the randomized nature of our problems makes the objective func-
tion smooth enough. We use self-adaptation[88] as a noisy optimization algorithm.
As a summary, our algorithm is as follows for choosing a move in state s within time
t:

Procedure OptimisticHeuristics(s, φ, t,MDP)
Input: a state s, a time t, a parametric family of policies φθ.
Output: an action a.
Apply DPS with time budget t/2 for choosing θ̂ (use warm start
if possible)
Apply MCTS, with φθ̂ as a default policy, and time budget t/2,
for choosing action a.

5.1.3 Experiments

Here, we compare the performances of different sequential decision making algorithms.
Namely, we implemented vanilla MCTS, MCTS with a fixed default policy, MCTS
with a default policy improved online by DPS, and DPS alone.

90

We made experiments on three different forms of the unit commitment problem,
and on a more general energy management problem called bilevel.

Unit commitment problem

We work on a stock management problem, from [116].
The main points in the problem are that: (1) Unit Commitment problems can

not be solved efficiently by traditional methods; these problems are usually simplified
so that classical methods, like Bellman’s stochastic dynamic programming, can be
applied. The motivation of our work on Unit Commitment by Monte-Carlo Tree
Search methods is that we want to work without simplifying too much the model.
(2) Unit Commitment problems exist at many time scales (from seconds, up to years
for hydroelectric stocks or tenths of years if investments are included) and many
dimensionalities (from a few stocks to thousands of state variables), depending on
the scope under analysis. We here work on small scale problems for the sake of
statistical significance (working on our full problems requires by far too much time
for reproducing runs tenths of times).

In this section, we will consider three variants of the unit commitment problem.
The significant difference between these three variants is the way the stocks are con-
nected. In the first one, they are lined up on a one dimension chain (we will call it
the one river problem). In the second one, they are linked so that they form a binary
tree, with the root being the last stock that the water goes through (we will call it
the binary rivers problem). Finally, the third one is simply a random arrangement of
the stocks, with one single constraint: no cycles are allowed.

Two different heuristics for the Unit commitment problem. The expert
parametrized heuristic that we use has been designed using knowledge about the
problem, to make it particularly efficient on the one river variant of the unit com-
mitment problem. On the other hand, the naive heuristic uses almost no knowledge
about the problem. Given a state s, it requires the current time to go t, and the
average demand at the current time step Davg. We provide below pseudo-codes of
both heuristics.

Experimental results on the Unit Commitment problem. We present here
the results obtained on all three variants of the unit commitment problem. Each time,
we compared the following algorithms: (i) vanilla MCTS, as presented in Section 3.2.3,
(ii) MCTS-naive, a MCTS using the naive heuristic as a default policy,(iii) MCTS-
expert, a MCTS using the expert heuristic as a default policy, (iv) MCTS-naive-DPS,
a MCTS using the naive heuristic improved by DPS, (v) MCTS-expert-DPS, a MCTS
using the expert heuristic improved by DPS and when relevant, (vi) the non tuned
naive and expert heuristics.

The x axis shows the time budget allocated per decision made, in logarithmic scale,
and went from 0.01 second to 2.56 second. The y axis shows the average reward. Each
average reward was computed using 1000 runs. Error bars show the 95% confidence
intervals. The higher the reward, the better the algorithm performed. It should be

91

Algorithm 19 Expert heuristic

Input: a parameter vector θ of dimension 3 (default value is [1, 0, 1]), a state S, of di-
mension N , D(t) the expected electricity demand during time step t, DtimeToGo(t)
the expected total demand after time step t, TSA(s, timeToGo) the total stock
available (this assume a 1 river structure),TI(timeToGo, averageInflows) the ex-
pected total usable water from inflows (this assume a 1 river structure).

Output: an action a.
initialize:

– total water available = TWA = (θ0 + θ1 × timeToGo)× (TSA+ TI)

– x = production by hydroelectricity = 0

– increaseWater ← true

– Savailable =
∑

0≤i≤N−1 si

while (increaseWater and x < Savailable) si being the current level of stock i do
define the marginal cost mc of increasing water, approximated as

mc = IC(x, s, t,D(t)) + θ2 × LTC(x, TWA, t,DtimeToGo(t))

where:

– IC(x, s, t,D(t)) is negative; it is the marginal benefit associated to the
reduction of thermal production.

– LTC(. . .) is the sum of thermal production cost, if expected total de-
mand DtimeToGo, decreased by the total production from the water stocks
if equally distributed on the time steps to go, is produced thermally.

if marginal cost mc > 0 then
then increaseWater ← false

else
x← x+ 1.

end if
end while
Compute q, the ratio min(0, x

Savailable
)

return the action vector a defined as follows: ∀0 ≤ i ≤ N − 1, ai = q.Li

92

Algorithm 20 Naive heuristic, polynomial with degree m

Input: a parameter vector θ of dimension m + 1 (default values are [1, 0, . . . , 0]), a
state S, of dimension N , t the remaining time steps, and Davg the average demand
after the current time step.

Output: an action a.
Compute total amount of water to use Wuse = max(0, Davg.(θ0+θ1t+· · ·+θm+1t

m))
Given S and the current level Li of each stock i, Wavailable =

∑
0≤i≤N−1 Li

Compute q, the ratio min(0, Wuse

Wavailable
)

return Return the action vector a defined as follows: ∀0 ≤ i ≤ N − 1, ai = q.Li.

-35000

-30000

-25000

-20000

-15000

-10000

-5000

-2 -1.5 -1 -0.5 0 0.5

log10(time budget)

Vanilla MCTS
MCTS+naive heuristic

MCTS+naive heuristic + DPS
MCTS+expert heuristic

MCTS+expert heuristic + DPS
Expert heuristic

-200000

-180000

-160000

-140000

-120000

-100000

-80000

-2 -1.5 -1 -0.5 0 0.5

log10(time budget)

Vanilla MCTS
MCTS+naive heuristic

MCTS+naive heuristic + DPS
MCTS+expert heuristic

MCTS+expert heuristic + DPS
Expert heuristic

Figure 5-1: Performances of different variants of MCTS on the 1 river unit commit-
ment problem (left) and the binary rivers (right), with 7 stocks, 24 time steps. Y axis
shows the reward (the higher the better).

noted that the rewards cannot be compared between different variants of the unit
commitment problem. Indeed, only the connections between the stocks change, and
changing this changes the amount of water effectively available. Our results for the
1-river problem and for the binary rivers problem are shown on the left side and the
right side of Fig. 5-1, respectively. We did not plot the results of the naive heuristic,
that scored −150000 and −380000 respectively (far below other methods), for the
sake of readability. In both experiment, MCTS-naive-DPS and MCTS-expert-DPS
outperform by a factor of at least 100 the third placed algorithm, MCTS-expert.
MCTS-naive and MCTS vanilla share the fourth and fifth places.

Our results on the random rivers problem are shown in Fig. 5-2. In this experi-
ment, the most significant difference in the results is that MCTS-naive-DPS is about
10 times faster than MCTS-expert-DPS.

Over all three versions of the unit commitment problem, the most efficient and
robust version has been MCTS-naive-DPS. Even on the one river problem, that the
expert heuristic was particularly well tuned for, we could not see huge benefits from
using it as a parametric function for DPS.

93

-380000

-360000

-340000

-320000

-300000

-280000

-260000

-240000

-220000

-2 -1.5 -1 -0.5 0 0.5

log10(time budget)

Vanilla MCTS
MCTS+naive heuristic

MCTS+naive heuristic + DPS
MCTS+expert heuristic

MCTS+expert heuristic + DPS
Naive heuristic

Expert heuristic

Figure 5-2: Performances of different variants of MCTS on the randomly connected
unit commitment problem (7 stocks, 24 time steps).Y axis shows the reward (the
higher the better).

Experiments on the investment problem

In this section we experiment our algorithm on a problem (simplified from [116]) as
follows:

– At each time step, we decide investments; there is a limited amount of money
to invest, and investments must be distributed over 7 different possible infras-
tructures. There are therefore 7 decision variables for each time step.

– At each time step, a lower level problem (the management of the energy produc-
tion system) is built and solved, and its cost is the cost of the current transition
of the investment problems.

– There are 10 time steps, the last one has a strong influence because it reflects
the long-term.

Our results compare the following strategies:

– a heuristic which gives a constant ratio of the investment on each possible
infrastructure (the parameters of the heuristic are this proportions); the default
parametrization is the same ratio for all infrastructures;

– DPS on a “sum of Gaussians” policy (parameters: positions of the Gaussians,
widths, associated decisions; see [116];

– DPS on a “neural network” policy (parameters: weights, theresholds; see [116]);

– DPS on a “sum of Gaussians” policy, added to the heuristic with default
parametrization;

94

Figure 5-3: Results on the energy investment problem. The five DPS curves (curves
1 to 5) are very close to each other; results are better than for the heuristic alone,
and versions without the heuristic are almost the same as versions with the heuris-
tic. The MCTS+DPS+neural network was the most efficient strategy, outperforming
MCTS+DPS+neural network+heuristic. The sums of Gaussians require more time
for learning, hence the poor results for moderate budgets.

– DPS on a “neural network” policy, added to the heuristic with default
parametrization;

– MCTS, on top of each of the above.

Results are presented in Fig. 5-3.

5.1.4 Conclusion

We combine DPS and MCTS. The DPS provides the Monte-Carlo simulator of the
MCTS. The resulting algorithm, has no free parameter and outperforms by far the
vanilla MCTS. We use human expertise at two levels: (i) For partial observation
handling, i.e. the belief state estimation was hand-crafted, so that the problem is
essentially a MDP rather than a partially observable MDP. The details of this are
beyond the scope of work; (ii) In the Monte-Carlo move generator, because in spite of
nice and interesting efforts in the literature, no generic algorithm, in the current state
of the art, can define a Monte-Carlo move generator as efficiently as a human expert
(in the case of Go, but also in the case of unit commitment problems). Nonetheless
our DPS could strongly improve the heuristic by optimizing its parameters. We agree
with the traditional statement that MCTS is surprisingly efficient when no human
expertise is available, but we clearly see that human expertise was an easy key for a

95

speed-up 100, as well as human expertise is the key of recent progress in MCTS for
the classical challenge of the game of Go.

Importantly, the need for human expertise is considerably reduced by the use
of DPS for optimizing the heuristics, so that our results are a step towards generic
MCTS tools.

5.2 Mixing MCTS with heuristics to solve

POMPD

A large part of this section’s contents can be found in [41], and the experimental
results in [108].

5.2.1 Belief state estimation, from Mines to mathematics

In Section 5.2.1 we present the Mines games, which is convenient as an experimental
testbed. In Section 5.2.1 we present the formalism of Markov Decision Processes and
Partially Observable Markov Decision Processes. In Section 5.2.1 we formalize the
problem of belief state estimation.

The Mines game

Consider the simple Mines game, which is well known for his free clones on several
platforms (e.g. on Linux or Windows). Mines look like a simple game, sometimes
equipped with a “hint” system, which helps you for finding a good move. However,
this hint system is usually unable to solve more than simple cases, or cheats by using
hidden information. Indeed, an exact choice of optimal move is far from being simple.

The rules of the game are as follows. This is a one player game. There are N
mines, located randomly on a p × q grid. Mines are not visible. At each move, the
player chooses one location in the grid. If there is no mine at this location, then
the number of mines in the 8-neighborhood is displayed to the player; otherwise, the
game is over. Usually, the score is the time before complete solving (i.e. all non-mines
locations are played at least once) - the smaller, the better. No score in case of game
over by playing on a mine.

We will here consider as score the number of (unique) moves before the game is
over, divided by pq − N (so that 1 means complete solving). Figure 5-4 shows that
the game is not trivial: which move would you play here ?

All players know many cases in which a move can be played for free, because it
is sure that there is no mine here - and many players know that sometimes, you can
not be sure and must play with a non-zero probability of losing the game. But not
many players know that in such cases, sometimes, some locations are more likely than
others to be mines. Specific examples, as preliminaries for the discussion on Belief
State estimation below, are given in Fig. 5-5.

96

Figure 5-4: A case in which choosing the next move is non-trivial.

Some details on the rules. The Windows version of the game ensures that the
first move is not on a mine (the mines are randomly distributed after the first move).
Some versions on the game (Gnomine, default version on many Linux distributions)
moreover ensure that the number of mines in the 8-neighbourhood is 0. In our tests
we will only consider the Windows version, i.e. when one is guaranteed that the first
move will not be on a mine, as this version is the most widely used.

The game is partially observable - the “complete” state (i.e. including the position
of the mines) is not equal to the observed state (which is only a view of the game with
covered locations and uncovered locations with a number of neighbouring mines).
When you have observations, you can estimate the probability distribution on the
internal state - this is the belief state. Therefore, it is a partially observable game.
The trouble is that many solvers, like Monte-Carlo Tree Search, are aimed at working
on fully observable Markov Decision Processes; we will see below (Section 5.2.1) the
related definitions, and we will see in Section 5.2.1 how to transform a Partially
Observable problem into a fully observable one in the 1-player case.

Markov Decision Processes and Partial Observation

Let’s now consider Markov Decision Processes (MDP) and Partially Observable MDP
(POMDP) from a more abstract point of view.

A MDP or POMDP is a directed graph, each edge being equipped with a label
(action) and a number (probability); the edge between vertex x and vertex y has
label m and number r if the probability of switching from state x to state y, when
choosing action m, is r. The sum of probabilities in outgoing edges from a state x
and equipped with a label m should be 1. By definitions, legal actions in x are labels
which can be found on at least one outgoing edge from x. Nodes with no outgoing
edge are termed terminal nodes and are equipped with a reward (in some definitions,
edges are equipped with a reward, or non-terminal nodes; this will make no difference
for this work).

Additionally, in a POMDP, each node x is equipped with an observation ox. A

97

Figure 5-5: Left: here, you can deduce that one of the remaining locations is a mine.
If you play in the middle location, you have an expected number of (unique) moves
before losing which is, if you play perfectly, 1 (the three outcomes, losing immediately,
or losing after 1 move, or completely solving the game, are equally likely) - whereas
playing the top or bottom unknown location gives an expected number of (unique)
moves 4/3 (with probability 1

3
, it’s an immediate loss - otherwise, it’s a complete

solving). Middle: a situation with 50% probability of winning. Right: this situation
is difficult to analyze mathematically; our program immediately sees that the top-
right location (0,6) is a mine. However, this could easily (and faster) be found by a
branch-and-bound optimization. More importantly, it also sees that the location just
below (1,6) is good; but the real good point is that it can say which locations are
more likely to lead to a long-term win than others.

MDP can be seen as a POMDP in which the observation is equal to the state or to a
unique state identifier. A (possibly random) sequence of actions a1, . . . , at, . . . defines
naturally a random sequence of states x1, . . . , xt, . . . and observations o1, . . . , ot; each
state and observation is obtained from the previous one using actions and probabilities
of transition.

A strategy is a (possibly random) mapping from a sequence of pairs (ac-
tions,observations) to actions. In a MDP, observations are uniquely determined as a
function of states; so, equivalently, the strategy in a MDP can be defined as a map-
ping from sequences of pairs (actions,states) to actions (one can note that it is known
that the mapping can depend only on the last state without loss of performance in
optimal strategies). Basically and informally, a MDP is therefore a POMDP in which
the player always knows in which state she is. Given a MDP or POMDP, and a strat-
egy, a random sequence of states and observations is defined, as well as a random
reward. The Mines game is a priori a POMDP; mines are not visible. Yet, it can be
rephrased as a MDP; we’ll see this in the next section.

POMDP transformed into MDP: the problem of belief state estimation

A POMDP can be rephrased as a MDP. This can be done as follows. Consider a
POMDP P . The MDP M rephrasing P is built as follows:

– The state space of M is the set of sequences of pairs (actions,observations) in
P ;

98

– In M , action a in state ((a1, o1), . . . , (at, ot)) leads to ((a1, o1), . . . , (a, ot+1))
where ot+1 is the random observation obtained when applying action a in state
s where s is the tth state, randomly drawn according to observations (o1, . . . , ot)
and actions (a1, . . . , at).

This transformation (originating in [2]) has the advantage of being consistent; a good
strategy for M is a good strategy for P - the distribution of rewards is exactly the
same. It has the drawback that it leads to a much bigger state space; possibly, M
is infinite whenever P is quite small. Moreover, the conditional law above can be
very hard to sample - we have to sample the next observation, conditionally to all
past observations. The key part of this sampling is the sampling of st, the state after
t − 1 actions and observations, conditionally to past actions and observations. This
is known as the problem of belief state estimation.

The likelihood of an observation, conditionally to the hidden state, is the prob-
ability of this observation conditionally to the hidden state; the likelihood of the
hidden state, conditionally to the observation, is the probability of this hidden state,
conditionally to the observation. As well known (Bayes formula), when the observa-
tion is given, the likelihood of the hidden state is proportional to the probability of
observation, given the hidden state.

There are several methods for this:

– Simple rejection methods: randomly sample s and reject s unless it is accepted,
which happens with probability proportional to its likelihood conditionally to
observations. This is very slow, but mathematically consistent. This is summa-
rized in Alg. 21.

Algorithm 21 The rejection method for estimating the belief state.

while True do
Randomly draw x
Let r ← likelihood of observation (given x)
Randomly draw u in [0, 1].
if u ≤ r then

Break.
end if

end while
Return x

– Markov-Chain Monte-Carlo (MCMC) [60] can be used as well; e.g. Metropolis-
Hastings, the simplest version of MCMC.

– Randomly extend the observations in order to get a “complete” state (observed
part + unobserved part); this is possible in some games, and widely used in
e.g. phantom-games or dark chess which are a quite difficult challenge in terms
of partial observability[32, 30]. This is certainly not consistent in general (i.e.
this approximation of M is not equivalent to P), unless the random choice of
the completion in a very specific manner - this is certainly not usual.

99

The purpose of this contribution is to propose new consistent methods for belief state
estimation. The main claim of this section is that, even on an a priori simple game
like Mines, a rigorous belief state estimation can provide significant improvements on
a simple constraint satisfaction problem. By “consistent” methods, we mean methods
which, at least at the limit of infinite computational power, lead to perfect estimates;
POMDP algorithms based on this algorithm should, as a consequence, be consistent
in the sense that they find, at the limit of an infinite computational power, an optimal
strategy; this will be formalized in the rest of this section.

5.2.2 MCTS with belief state estimation

In this section, we explain how MCTS, as presented in 3.1.1, can be adapted to
POMDP, by using belief state estimation (BSE) techniques. We then present some
of the possible BSE techniques that have been tried in combination with MCTS.

Combining MCTS with BSE.

MCTS is particularly well suited to be applied to POMDP, because the tree structure
it relies on naturally contains the history of each state, i.e. all explored trajectories,
without needing to increase the size of the state variables. That way, if each node of
the tree contains either an observation o or an observation-action pair (o, a), then each
node having a unique history contained in the tree, has enough information to sample
possible hidden states. What is essential at this point, and the only thing needed
in addition to the traditional MCTS algorithm, is a BSE algorithm, to provide a
generative model. Without it, MCTS cannot operate. The most important property
that the BSE algorithm needs to verify in order for the complete algorithm to be
consistent is that, given a history of observations and actions, it should generate a
possible hidden state following the true random distribution of that state.

Given a consistent BSE algorithm, it is then straightforward to include it in the
generative model, and to run MCTS on a tree whose nodes only contain observations.
A transition from a node containing only an observation can then refer to its past
actions and observations, and refer to the BSE algorithm to generate a possible hidden
state, and the associated next observation.

The first idea of BSE algorithm that we combined with MCTS was the rejection
algorithm21. But even though it is consistent, it is too slow for even medium scale
applications. We present now a few alternatives.

Faster methods

Constraint Satisfaction Problem (CSP). CSP has been used in combination
with MCTS in [108], where they give its formal description as shown in Alg. 22. Given
some observations, CSP can be used to give the exact probability of each possible
hidden state. Acting greedily with respect to CSP alone is a myopic strategy, i.e. it
does not consider the long term consequences of the immediate move. Even though

100

it can be used to detect the locations with the lowest probability of having a mine, it
is suboptimal.

Algorithm 22 The CSP algorithm for playing MineSweeper. The algorithm is intrin-
sically myopic: it only optimizes the 1-step result (minimum probability of immediate
death).

CSP-function for choosing a move on a partially visible board with M mines
for each location l of the board do
Nb(l)← 0

end for
for each positioning p of the M mines on the board consistent with observations
do

for each location l with a mine for p do
Nb(l)← Nb(l) + 1

end for
end for
Play move l uniformly chosen among the set of uncovered locations l such that
Nb(l) is minimum.

CSP with a heuristic. One of the weaknesses of CSP is that it is not equipped
to deal with ties, i.e. with situations where there are multiple locations sharing the
same lowest probability of hiding a mine. In [28], the authors introduce a heuristic,
specific to the Mines game, to help solve these ties. This is especially important for
the first move, where CSP cannot give any information. The heuristic added to CSP
in [28] can be summarized as follows:

– the first move needs to be in one of the corners;

– when there is a tie between multiple locations according to CSP, pick one of the
locations that is the closest to the frontier, i.e. the line between covered and
uncovered locations.

5.2.3 Experimental results

Results of these methods, applied to Mines, are compiled in Table 5.1, from [28]. CSP-
PGMS is the PGMS implementation of CSP1. HCSP is the implementation of CSP
with heuristic breaking ties by playing as close as possible to the frontier between
covered locations and uncovered locations[81]. BSSUCT is the implementation of
UCT from [107]. OH is our Optimistic Heuristics program.

1http://www.ccs.neu.edu/home/ramsdell/pgms/

101

Format CSP-PGMS HCSP BSSUCT OH
4 mines on 4x4 64.7 % 67.0% 70.0% ± 0.9% 67.0% ± 0.5%
1 mine on 1x3 100 % 100% 100%
3 mines on 2x5 22.6% 21.0% 25.4%± 1% 23.4% ± 0.5 %
10 mines on 5x5 8.20% 8.51% 9% (p-value: 0.14) 11.4% ± 0.4 %
5 mines on 1x10 12.93% 12.7% 18.9% ± 0.2% 17.0% ± 0.4 %
10 mines on 3x7 4.50% 4.76% 5.96% ± 0.16% 6.1% ± 0.2 %
15 mines on 5x5 0.63% 0.63% 0.9% ± 0.1% 1.15% ± 0.1 %
10 mines on 8x8 79.9 % 80.2 ± 0.48
10 mines on 9x9 80% 90.5% 89.9% ± 0.3%

40 mines on 16x16 45% 76.4% ± 0.4% 74.4% ± 0.5%
(100 sims per move)

99 mines on 16x30 34% 38.1% ± 0.5% 38.7 ± 1.8 %
(100 sims per move)

Table 5.1: Results of various implementations on the MineSweeper games. Results
are averaged over 105 games except 16x30 which is averaged over 104 games. For OH,
results are obtained with 10000 simulations per move, except expert mode and inter-
mediate mode (99 mines on 16x30 and 40 mines on 16x16) which use 100 simulations
per move. BSSUCT is not documented for cases in which it was too slow for being
operational in [107].

5.2.4 Conclusions

Rigorously estimating the belief state is a big challenge in partial observation prob-
lems. This turns out to be important even in simple games like Mines.

There are several tools for estimating belief states. From the simple and slow
but consistent rejection method, to the faster and still consistent CSP algorithm. As
these tools are used to compute the transitions, they are critical to the success of any
algorithm built on top of them. Results show that even the addition of a simple tie
breaking heuristic can improve the performances.

We also want to emphasize that the addition of UCT on top of tools like CSP
is essential to the optimality of the overall method. That might be surprising for
humans, but the best strategy does not only consists in playing a move with minimum
probability of immediate death (see Fig. 5-5), and our algorithm, in spite of drawbacks
(it can be slow for easy cases), has the strength of, asymptotically, playing optimally
these subtle cases. Our example (first move in 4x4 board) might look like an artificial
counter-example, but Fig. 5-5 (left) shows that such non-trivial phenomena also occur
late in the game. This second example can be solved manually, but it is certainly
hard for humans to solve cases like Fig. 5-5 (right) without a tool like our algorithm,
and constraint programming does not provide a solution to this.

We guess that such a rigorous approach might be important in two-player games as
well, at least with moderate size; this is a first natural further work. This is far more
complicated as in two-player games we have no direct estimate of the likelihood.
Moreover, in many games, the state space is huge, making it hard to get rid of
heuristics[125, 32, 30]. As a second further work, a direct application of this work
is also the test on industrial POMDPs; we guess that neglecting the PO part or
handling it in a computationally fast but statistically irrelevant way might lead to

102

serious troubles in real world cases.

5.3 A Meta-bandit framework

5.3.1 Review of multi-armed bandit formulas

So far, we have focused on many areas of SDM problems, on MCTS, its extension
to continuous domains, its consistency, and even its combination with other opti-
mization tools, but we have not really covered an essential part of its success: the
balance between exploration and exploitation. We did say that this balance is tradi-
tionally achieved in MCTS by using scoring formulas from the multi-armed bandits
community[74, 75], giving its name to the UCT algorithm. Here, we want to present
a short review of the works around multi-armed bandit problems. This will be one of
the two bricks necessary to understand the meta-bandit framework, and its potential
applications.

Stochastic bandits

The stochastic bandit setting can be described as follows: there are K arms, and an
agent needs to play one of these arms at each time step t ≥ 1. The arm played at
time t is noted at ∈ {1, . . . , K}. After playing arm at, the agent receives a reward
rt, that follows some unknown distribution Lt(at). Each of these distribution has a
hidden expectation, and the goal of the agent is to figure out what the best arm is.

From this setting, there are two common objective functions that can be used:
the Simple Regret, and the Cumulative Regret. The simple regret is the difference
between the mean of the best arm and the mean of the arm played at the last time
step, i.e.:

RS = max
a

E(LT (a))− E(LT (aT)) (5.1)

The cumulative regret is the same thing, but cumulated over each time step, i.e.:

RC =
T∑
t=1

(
max
a

E(Lt(a))− E(Lt(at))
)

(5.2)

Many contributions on this topic, starting with[78], focused on the stationary
case, i.e. the case where for some arm a, Lt(a) = L(a) for all t ≥ 1. The author
of [10] worked on this case, using upper confidence bounds (UCB) to minimize the
cumulative regret over a finite time horizon T . The authors of [4] introduced the use
of the empirical variance to improve the performance of the state of the art at the
time.

In the case of non stationary bandits, one can read [65], that is specially designed
to handle multi-armed bandits with large variation of the hidden distributions over
time.

Finally, these ideas where put together with MCTS in[74], giving birth to the
Upper Confidence Tree algorithm (UCT), that is essentially the algorithm shown in

103

Section 3.1.1.
An extension to the case where there are infinitely many arms (continuous bandits)

has been done by [119] and [27].
In this section, we will focus on the simple regret, as it is more relevant to our ap-

plication, and to the context of MCTS. In that context, it is important to distinguish
two phases. The first is the exploration phase, i.e. time steps from 0 to T − 1, when
the aim is to gather information, even if it means playing bad arms. The second is
the final recommendation phase, i.e. time step T , when the goal is to select the best
arm possible. We will soon present several algorithms for both phases.

We will sometimes need the following notations: L̂t(i) is the estimate, at time t,
of the regret associated to the ith arm. Similarly, Nt(i) is the number of times the ith

arm has been played up to time t.

Adversarial bandits

Adversarial bandits happen when, instead of having the rewards follow (possibly time
varying) random distributions, these rewards are decided by some adversary. It can
then be seen as a two player game. At each time step, player 1 chooses an arm
selection strategy (that could, and should be stochastic), and player 2 then chooses
rewards for each arm. In such a setting, a deterministic player 1 would do very poorly,
as player 2 can then always assign the lowest possible reward to the chosen arm, and
high rewards to all others.

In [62], authors study this setting under a game theoretical perspective, computing
the Nash equilibrium of zero sum games. [9] extended this work to an adversarial
bandit setting, leading to the EXP3 technique. Finally, in [3], authors improved the
previous algorithm and introduced Implicitely Normalized Forecaster (INF).

Algorithms for exploration

We present below several known algorithms for choosing at during the exploration
phase.

– The UCB (Upper Confidence Bound) formula is well known since [78, 10].
It is optimal in the one player case up to some constants, for the criterion
of cumulative regret. The formula is as follows, for some parameter α: at =
mod(t,K) + 1 if t ≤ K; at = arg maxi L̂t−1(i) + α

√
log(t)/Nt−1(i) otherwise.

– [25] has discussed the efficiency of the very simple uniform exploration strat-
egy in the one-player case, i.e. at = arg mini∈{1,...,K}Nt−1(i), with EBA as a
final recommendation method (see next section). In particular, it reaches the
provably optimal expected simple regret O(exp(−cT)) for c depending on the
problem. [25] also shows that it reaches the optimal regret, within logarith-
mic terms, for the non-asymptotic distribution independent framework, with
O(
√
K log(K)/T).

104

– Successive Reject (SR) is a simple algorithm, quite efficient in the simple
regret setting; it explores uniformly non-discarded arms and at some given time
steps discards the weakest arm; see [5, 37] for more details.

Algorithms for final recommendation

Choosing the final arm, used for the real case, and not just for exploration, might be
very different from choosing exploratory arms. Typical formulas are:

– Empirically best arm (EBA): picks up the arm with best average reward.
Makes sense if all arms have been tested at least once. Then the formula is
â = arg maxi L̂T (i).

– Most played arm (MPA): the arm which was simulated most often is chosen.
This methodology has the drawback that it can not make sense if uniformity is
applied in the exploratory steps, but as known in the UCT literature (Upper
Confidence Tree[74]) it is more stable than EBA when some arms are tested a
very small number of times (e.g. just once with a very good score - with EBA
this arm can be chosen). With MPA, â = argmaxiNT (i).

– Upper Confidence Bound (UCB): â = argmaxi L̂T (i) + α
√

log(T)/NT (i)
This makes sense only if T ≥ K. UCB was used as a recommendation policy
in old variants of UCT but it is now widely understood that it does not make
sense to have “optimism in front of uncertainty” (i.e. the positive coefficient for√
t/Nt(i) in the UB formula) for the recommendation step.

– As Upper Confidence Bound, with their optimistic nature on the reward (they
are increased for loosely known arms, through the upper bound), are designed
for exploration more than for final recommendation, the LCB (Lower Confi-
dence Bound) makes sense as well: â = argmaxi L̂T (i)− α

√
log(T)/NT (i)

– For SR (successive reject), there are epochs, and one arm is discarded at each
epoch; therefore, at the end there is only one arm, so there is no problem for
recommendation.

5.3.2 Energy management: comparing different master plans

Consider a problem in which the tactical level is hard. Then, the strategic level has
to decide, for each simulation at the tactical level, the computational power devoted
to this simulation. Formally, L(θ) is replaced by L(θ, c) where c is a time budget for
the simulation. c large implies more precision (less bias) on the estimation; however,
it also reduces the budget T for a given runtime, because the runtime will be nearly
T×c. Classical simple regret bounds (see e.g. [25] for a survey) show that the optimal
expected precision is ≤

√
C ×K logK/T (reached e.g. by uniform exploration and

EBA), where C is an absolute (i.e. distribution-independent) constant; therefore, if we
want a precision ε, we know that we need T such

√
C ×K logK/T ≤ ε. Deciding the

105

runtime c necessary for a bias upper bounded by ε is more difficult as existing bounds
are far from being practical on non-trivial sequential decision making problems.

In our work, we consider the following problem: the agent needs to decide how
to distribute a limited number K + 1 of sites to energy production facilities. A site
can be either a thermal power plant (TPP) or a hydro-electric plant (HEP), with
the constraint that we must have at least one of each facility. This means that there
are exactly K different possible configurations (the order does not matter): 1 TPP,
2 TPP, . . . , K TPPs. The resulting problem is a non linear stochastic sequential
decision making problem (inflows and energy demand are random).

Here, each possible configuration of the problem is an arm. The real value of such
an arm is the expected cost of such a configuration under optimal management of the
production facilities.

In our experiment, we used a version of continuous MCTS (Monte-Carlo Tree
Search[44]), as described in [39], to evaluate each arm. The longer MCTS runs, the
less noisy and the closer it gets to the optimal value of a given configuration. There
is an obvious dilemma, between spending more time on each arm evaluation, and
playing more arms. This is not the focus of this work, but we believe this should be
addressed in a future work.

We considered a problem with 8 locations, and at least one HEP and one TPP
(K = 7). The time horizon is of 5 time steps. An approximation of the real value of
each arm is shown in table 5.2.

This problem is particularly difficult for two reasons. First, all the K configu-
rations of the problem are not equally easy to solve for MCTS. Hence, for a small
tactical budget c, it is very likely that θ?c = arg maxθ EL(θ, c) will be different from
θ? = arg maxθ EL(θ). This means that if c is not big enough, the bandit algorithm is
going to converge towards a suboptimal arm. Secondly, the distribution followed by
each arm is very far from satisfying common assumptions of bounded rewards and
variances. Our problem has no informative bounds on the rewards. And, because
for small tactical budgets, MCTS will occasionally make mistakes, the distribution of
some arms is heavy tailed. This is particularly harmful to the stability of the mean
estimator, that is crucial in most bandit algorithms studied here.

We compared five different bandit strategies: UCB, Successive Reject, and uni-
form exploration, UCB and SR using the median of the rewards instead of the mean
reward. When it made sense, we used up to three different algorithms for final rec-
ommendation: LCB, EBA, and MPA. Our results are shown in table 5.2.

5.3.3 Discussion

From our results, it seems like the most determinant factor in reducing the simple
regret is the budget given to MCTS. At a MCTS budget of 3.2 or 12.8 seconds,
an increase in T actually decreases the performances of most algorithms. The only
bandit algorithm that works in this setting is SR using the median. Looking closely
at our data, it appears that the main reason for the poor performance of all the other
algorithms is due to the heavy tail distribution of the arms. In such a setting, the
mean estimator does not work. One needs to use a truncated version of the mean.

106

k Cost
1 3.54 ± 0.025
2 3.20 ± 0.015
3 2.94 ± 0.039
4 2.36 ± 0.11
5 1.94 ± 0.11
6 1.04 ± 0.14
7 4.00·102 ± 0.059

c (s) 3.2 3.2 3.2 12.8 12.8
T 16 64 256 16 64

cT (s) 51.2 204.8 819.2 204.8 819.2
UCB+EBA 1.78 ± 0.11 2.34 ± 0.056 . 0.62 ± 0.12 1.32 ± 0.12
UCB+MPA 1.86 ± 0.12 2.36 ± 0.046 . 0.50 ± 0.091 1.50 ± 0.11
UCB+LCB 1.79 ± 0.11 2.34 ± 0.055 . 0.50 ± 0.091 1.50 ± 0.11

UCB+median+MPA 1.68 ± 0.11 2.27 ± 0.075 2.40 ± 0.059 0.39 ± 0.095 1.41 ± 0.13
UE+EBA 1.03 ± 0.13 2.18 ± 0.078 . 0.21 ± 0.067 0.93 ± 0.14
UE+LCB 1.67 ± 0.16 2.19 ± 0.077 . 0.26 ± 0.093 0.93 ± 0.14

SR 1.47 ± 0.12 2.28 ± 0.068 2.40 ± 0.036 0.32 ± 0.076 1.15 ± 0.15
SR+median 1.11 ± 0.13 1.04 ± 0.15 0.70 ± 0.095 0.28 ± 0.080 0.075 ± 0.071

Table 5.2: Left: “real” value of each arm; computed by giving MCTS a large budget
(100s). Right: expected simple regret of different bandit algorithms, as a function of
the budget allowed to arm plays and to T .

Taking the median is an extreme way to truncate the mean; more subtle approaches
could be used, and would be an interesting basis for future work.

Most likely, increasing the MCTS budget to a very high value until the arms are
no longer heavy tailed would make the mean based algorithms more efficient. But this
could prove impractical. We think that an important future work would be to find an
adaptive method to progressively increase the bandit budget and the MCTS budget,
in order to avoid wasteful increases in bandit budget, as seen in our results (see table
5.2). As the number of arms played increases, it should be beneficial to increase c, the
budget given to the tactical solver, to improve its accuracy. In addition, like MCTS
itself, this framework could easily allow parallelization of the computation for each of
the sub-problems.

107

Chapter 6

Backup operators for SDM

In this chapter, we take a closer look at the way information is backed up through the
tree, after each iteration of MCTS. We start by reviewing the state of the art, mostly
focused on adversarial games. We explain our motivations to move away from the
traditional UCB formula, and show some alternatives, with some empirical results.

6.1 State of the art

In this section, we give a quick review of the backup operators in MCTS, both in two
players and single player games.

6.1.1 Related work and how it relates with MCTS

Related work for adversarial games

An interesting work on backup operators can be found in [46], where the author
reviews the common practice for backing up information in two players game trees,
and introduces the Crazy Stone algorithm for computer Go. We borrow several of
the observations made in that review.

In [22], the author uses central limit theorem, considering that the rewards of
all arms are independent and identically distributed (iid) random variables, in order
to prune branches of the tree, i.e. to focus the search in certain promising actions.
Because a radical pruning approach seemed too risky (one may turn his back on the
optimal action just because of a few unlucky initial simulations), researchers started
to use stochastic bandit tools, leading UCT, as seen in Section 3.1.1.

However, as seen in Section 5.3.1, the strong and attractive results from the multi-
armed bandit community often rely on one or more of the following assumptions:

– arms have stationary underlying distributions

– the objective is to minimize the cumulative regret

We will quickly address each of these assumptions, in the context of MCTS.

108

On the stationary distributions in MCTS Let a be some arm, i.e. one feasible
action from state x. The very first time it is simulated, it is added to the tree,
and then the default policy is applied successively until a final state is reached. At
that point, the reward is computed, and backed up through the branch that was
just used, that includes arm a from state x. Unless the default policy is already
optimal to begin with, this first reward probably follows a distribution that has a low
expectation. However, after 1000 simulations in arm a, the branch starting from it
has grown significantly, and some more information about the possible futures from
(x, a) have been explored. It means that the 1001st simulation of (x, a) will benefit of
that extra information, and will return a reward that follows a different distribution,
probably with a higher expectation and lower variance. This trend goes on as the
number of simulations in (x, a) increases. It is hard to imagine a situation in which
MCTS has its arms following stationary distribution.

On the objective of the SELECT function in MCTS The common criterion
used to measure how good bandit algorithms are is CR. Being good means choosing
bad actions a little as possible, including during the phase that could be called an
exploration phase. It is then natural to think of other objectives for the SELECT
function of MCTS. When in the root of the tree (i.e. the initial state), one probably
wants to minimize the simple regret (SR).

However, when travelling inside the tree, the objective becomes more subtle.
Then, one could aim at getting the most accurate approximation possible for the
value functions (V (.) or Q(., .)). But one also wants to focus on promising branches.
Indeed, there is no use in knowing with high certainty the value of all the states
following the worst action doable at the first time step.

These remarks do not mean that one should never use UCB for MCTS. However,
they do show that the theoretical grounds on which much of the commonly used
bandit formula are based make little sense in our context. This means that there
is probably some room for improvement in that area, as some recent research has
indicated. We show some of the recent advances made in the next subsection.

A more comprehensive investigation on how computations could, and should be
distributed in a setting like MCTS, under the name of metareasoning for MCTS, is
done in[67].

Related work from single player games

In a recent publication[82], the authors developed an automatic tool to discover new
backup operator, from a fixed set of variables (mean estimator, variance estimator,
etc) and operators (plus, minus, etc). We believe this is an interesting and powerful
method, that would be a promising future research direction.

6.1.2 When asymptotic results are not enough

Here, we quickly show some empirical results, on the toy problem called Trap, intro-
duced in Section 3.2.4. We slightly modified the problem, to allow for more than two

109

time steps. The reward function is also modified, and only depends on the last state,
so that the maximum reward is 10, the lowest −1. To obtain 10, one needs to choose
the biggest action possible at each time step, which we refer to as the risky strategy,
because doing so implies jumping over the gap. Ending in the gap returns a reward
of −1. The safe strategy, that consists in staying more or less where we start, returns
a reward of 5. This problem is a specific instance of the problem detailed in Section
6.2.2 (i.e. it has a probability of crash of 0).

In this experiment, we compared three versions of MCTS: (i) UCT (i.e. MCTS
with the classical UCB formula, as described in Section 3.2.3); (ii) MCTS+expectimax
and (iii) MCTS+mostSimulated, MCTS with two different variants of the SELECT
function that will be described in details in the next section.

Having shown the consistency of MCTS with polynomial exploration, and UCT
being similar to it (the only difference is in the exploration term, that is sensitive to
online tuning anyway), one could expect UCT to work well on such a simple problem.
Our results are shown in Fig. 6.1.2.

5

5.5

6

6.5

7

7.5

8

8.5

9

-3 -2.5 -2 -1.5 -1 -0.5 0

R
e
w
a
r
d

log10(time budget)

UCT
MCTS+expectimax

MCTS+mostSimulated

Figure 6-1: Trap problem with 3 time steps, uniform additive noise of amplitude 0.03,
gap of 0.7.

What our experiment seems to indicate is that even for a simple problem of small
size, UCT is unable to converge in a reasonable time to the optimum. Most likely,
given enough time, it would converge. But the theoretical guarantees that we proved
in Chapter 4 for polynomial MCTS depend on unknown constants, so it is hard to

110

know for sure if the convergence will happen sooner rather than later when increasing
the time budget. Instead of launching longer experiments, we decided to look for
alternative methods for the selection phase of MCTS, to improve, at least empirically,
the convergence speed of the algorithm.

6.2 Finding the right balance between optimism

and conservatism

In this section, we present two alternatives to the UCB formula to balance exploration
and exploitation, namely Expectimax-MCTS (in Section 6.2.1), and MSP-MCTS (in
Section 6.2.1). We show our experimental results in Section 6.2.2.

6.2.1 Alternatives to UCB

Expectimax-MCTS

First introduced in [89], expectimax refers to the algorithm that searches through a
game tree, backing up information as follows: when in a random node, backup the
average value of the children nodes; when in a decision node, backup the maximum
of the children’s values. This was intended for finite spaces, and was improved in [13]
to reduce the complexity of the algorithm, and later in [66]. This was more recently
successfully applied to some finite two-player games by [79].

As far as we know, there is no formal description of expectimax for MCTS in
continuous domains. Just like the application of UCB to MCTS, applying expectimax
to MCTS can only make the tree asymptotically converge to the typical expectimax
tree for finite games.

Our implementation is a straight forward attempt to approximate expectimax in
MCTS. When backing up the information from a simulation through a path of the
tree, we do the following:

– in a leaf node, put the final reward, or the reward given by the Monte Carlo
simulation that was just done (i.e. if this leaf is not a final state)

– in a random node, put the weighted average of the values stored in its explored
children

– in a decision node, put the maximum value of its explored children.

We insisted on purpose on the word explored, to remind the reader that all these
values are only as accurate as the number of explored children allows them. A random
node with only two children might give a very inaccurate vision of the probability
distribution it represents. Similarly, a decision node with only two children might be
missing important good actions, thus severely underestimating its value.

We introduce a new notation to replace CR, the cumulative reward in a node, by
EM , the expectimax value in a node. Alg. 23 shows how we modify the GROWTREE
function of MCTS, as described in Section 3.1.1.

111

Algorithm 23 GROWTREE with Expectimax

Input: current tree T , generative model M(x, a) = [x′, r], action sampler s : X 7→ A
Output: none, just updates the tree and possibly makes it grow

Initialize x← r(T), and CR← 0
repeat
a← SELECT(x,K)
Children(x)←Children(x) ∪ (x, a)
[x′, r]←M(x, a)
Children(x, a)←Children(x, a) ∪ x′
r(x, a)← r
x← x′

until n(x) == 0 or x is a final state
EM ← EVAL(x,M, φ)
while x not root do
n(x)← n(x) + 1
EM(x)← maxa∈Children(x) EM(x, a)
(x, a)← Father(x)
n(x, a)← n(x, a) + 1
EM(x, a)← 1

n(x,a)

∑
x′∈Children(x,a) n(x′)EM(x′)

end while

Modifying the GROWTREE function, and more precisely the while-loop that
back-propagates the information in the tree, allows us to store the expectimax values
in the nodes, both in decision and in random nodes. It is important to notice that the
EM values are back-propagated in the tree after each iteration of MCTS, from leaf
to root. At each random node, the estimation of the expectation of the EM values
over the children is re-computed. At each decision node, one needs to update the
ranking of the children, according to their EM values, and to update the EM value
of the decision node accordingly.

Just like UCB formula, our selection formula with expectimax has an exploration
term to guarantee that all arms are, asymptotically, visited infinitely often. The
resulting modified SELECT function is showed in Alg. 24.

Algorithm 24 SELECT with expectimax

Input: state-node x, K > 0 action sampler s
Output: an action a
ax = argmaxa∈Children(x) Q̂(x, a)

with Q̂(x, a) = EM(x, a) +K
(
ln(n(x))
n(x,a)

) 1
2

if n(x, a) > 0, +∞ otherwise

return ax

The advantage of changing UCB to this version of expectimax is that as soon as
one good action is found, even deep in the tree, the information is instantly backed up
at the decision node levels (while still being averaged at random node levels). Infor-
mally speaking, the information travels faster in depth. The corresponding drawback

112

is that the estimations might end up overly optimistic, and more simulations might
get invested in the luckiest branches. Even though as the number of simulation
grows, this overestimation should disappear, it could still be a problem during the
initial phase. In addition, as we work in continuous domains, even as the number of
simulations grows to infinity, there are always new nodes to add. This is why, even
though we do not have a proof, we suspect this method to be unstable, and to have
no convergence guarantees, unlike the algorithm shown in Chapter 4.

Most simulated paths

One way to find a compromise between the overly optimistic estimations of expec-
timax in MCTS, without being as slow as UCB, is to use the most simulated paths
(MSP) technique.

The idea is as follows: instead of backing up the value of the best action according
to its EM score, like in expectimax, one backs up the value of the most simulated
action. Meanwhile, when in a random node, proceed as in the case of expectimax, i.e.
compute a weighted average of the values of the children. We hope that, while vir-
tually pruning ‘bad’ actions from the backup operation like expectimax, this method
will be more stable with respect to lucky nodes.

We introduce the notation of MSP (.), the MSP of a node in the tree. The formal
description of the new GROWTREE function is given in Alg. 25.

Algorithm 25 GROWTREE with Most Simulated Paths (MSP)

Input: current tree T , generative model M(x, a) = [x′, r], action sampler s : X 7→ A
Output: none, just updates the tree and possibly makes it grow

Initialize x← r(T), and CR← 0
repeat
a← SELECT(x,K)
Children(x)←Children(x) ∪ (x, a)
[x′, r]←M(x, a)
Children(x, a)←Children(x, a) ∪ x′
r(x, a)← r
x← x′

until n(x) == 0 or x is a final state
MSP ← EVAL(x,M, φ)
while x not root do
n(x)← n(x) + 1
MSP (x)←MSP (x, argmaxa∈Children(x) n(x, a))
(x, a)← Father(x)
n(x, a)← n(x, a) + 1
MSP (x, a)← 1

n(x,a)

∑
x′∈Children(x,a) n(x′)MSP (x′)

end while

Like for expectimax, we want to ensure that all arms are visited infinitely of-
ten, and add an exploration term. This leads to a now familiar SELECT function,

113

described in Alg. 26.

Algorithm 26 SELECT with Most Simulated Paths

Input: state-node x, K > 0 action sampler s
Output: an action a
ax = argmaxa∈Children(x) Q̂(x, a)

with Q̂(x, a) = MSP (x, a) +K
(
ln(n(x))
n(x,a)

) 1
2

if n(x, a) > 0, +∞ otherwise

return ax

Again, we do not have a proof of consistency for this version of MCTS, but we
are more confident in its stability than in the one of expectimax-MCTS. Indeed, it
should be less subject to sudden new lucky nodes. It should also be faster than UCT,
especially as the number of time step grows.

6.2.2 Empirical analysis

In this section, we present some early empirical results to compare UCT, expectimax-
MCTS (as seen in Section 6.2.1), and MSP-MCTS (as seen in Section 6.2.1). In order
to do so, we introduce a slightly modified version of the Trap problem seen in Section
3.2.4, that we call Crash Trap, and present in Section 6.2.2. The experimental results
are shown in Section 6.2.2.

Trap problem with probability of crash

The trap problem is interesting for several reasons. First, it is easy enough to have
experiments running quickly. Second, it can be made arbitrarily difficult by changing
its parameters; it was actually more difficult for UCT than many instances of our
Stocks problem. Third, it is quite easy, for simple instances of Trap, to compute by
hand the optimal reward.

However, the version described in Section 3.2.4 lacks an important feature for
what we are interested in here: a probability distribution for the random process that
can be shaped in tricky ways. Such a feature, once added, will allow us to design a
Trap problem that can lead to underestimation and to overestimation.

By overestimation, we mean that some algorithm, when only limited information
is available (i.e. after only a few simulations), will tend to overestimate the value
of certain actions. This is actually hard to find in practice, as MCTS tends to have
increasing rewards when the number of simulations increases, because its tree grows
bigger. And a bigger tree usually means a better ‘tree policy’ (the policy followed
when travelling down the tree), but still not as good as the optimal policy, hence the
underestimation.

Overestimation will happen, however, if the good sequence of actions is easy to
find, but the probability distribution underlying the random process is hard to esti-
mate.

114

This is why we added a rare event to the Trap problem, namely the crash event.
Of course, in order for it to matter, it needs to weigh heavily in the final reward when
it actually happens. From now on, we will refer to this problem as the Trap-Crash
problem. The modified reward function shape is shown in Figure 6.2.2.

0

a

Reward

x

d

d*(H-1)

h

Probability of crash = p > 0

d*H-1 -g

-K

Figure 6-2: Reward function shape for the trap problem with a crash probability. x
is the state variable; 0 < d < 1 is the difficulty parameter; H is the number of time
steps; d(H − 1) is the length between the initial state 0 and the gap; d is the width
of the gap; the reward is obtained at the final time step, can be equal to a, −g, h, or
−K; if the final state xf is larger than dH − 1, there is a probability p of ‘crashing’
and getting a reward of −K.

This problem is similar to the previous version, with three main differences:

– the reward is only computed at the final time step

– there can be multiple time steps, and the problem scales accordingly, following
the core difficulty parameter d

– if the final state is larger than dH − 1, then with probability p, one gets a large
negative reward of −K.

This variant is thus aiming at two things: scalability in the number of time steps,
and allowing to control the difficulty on two levels: d measures how hard it is to

115

find the sequence of actions that can lead to the high plateau on the right, while p
measures how difficult it is to accurately estimate the underlying random process.

The resulting reward function is formally described in Eq. 6.1.

r(x) =

{
rnc(x) with probability 1− p
rc(x) with probability p

(6.1)

with

rnc(x) =

a if x < l
0 if l < x < l + w
h if x > l + w

and

rc(x) =

{
a if x < c
−K if c < x

Experimental results

The results shown in Fig. 6.1.2 seem to indicate that one should always use
expectimax-MCTS, rather than UCT. However, these results were obtained on a
special instance of Trap-Crash, where the probability of crash was set to 0. In do-
ing so, we made the random process almost negligible. In this section, we set the
probability of crash to p = 0.1. We also set the crash reward to −K = −60, so that
the expected reward for a state in the crash zone one action before the final time
step would be equal to 3 (when acting optimally from there, i.e. V ∗(x, t) = 3 for
x > dH − 1 and t = H − 1).

Each time, we compare UCT, expectimax-MCTS, and MSP-MCTS. They all had
progressive widening coefficients set to αD = 0.25 for decision nodes, and, depending
on the experiment, αR = 0.25, 0.5, or 0.75 for random nodes. Finally, because the
reward function does not have a lot of variance, we added an ε-greedy exploration,
with ε = 0.5

(1+n(x))
1
4

(this value was chosen after a couple of runs, without really trying

to tune it). Because of the high variance in the given rewards (the crash has a low
probability but very high weight), it is hard to obtain small confidence intervals.
Each point on the following figures is obtained after 10000 runs for each algorithm,
but more runs would be needed for more accurate results.

Our first experiment, with αR = 0.25, showed how poorly expectimax-MCTS
could behave when not properly estimating an important random process. It was
easily deceived by the problem, choosing risky actions, overestimating their value.
MSP-MCTS showed better performances, closer to UCT. Notice how even UCT strug-
gles to reach the optimal reward, 5. The results are shown in Fig. 6.2.2.

For our second experiment, we increased the progressive widening coefficient for
random nodes to αR = 0.5, hoping to improve all three versions of MCTS in terms
of how well they estimate a probability distribution. Our results are shown in Fig.
6.2.2. With this new setting of DPW, both UCT and MSP-MCTS converge to the
optimum reasonably quickly. However, expectimax-MCTS fails to converge; it even

116

3

3.5

4

4.5

-3 -2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2

R
e
w
a
r
d

log10(time budget)

UCT
MCTS+expectimax

MCTS+mostSimulated

Figure 6-3: MCTS-DPW set to 0.25. Trap problem with 3 time steps, uniform
additive noise of amplitude 0.03, gap of 0.7. Crash probability of 0.1.

diverges away from the optimum as the time budget increases. Notice however, that
all obtained average rewards here are better than the ones obtained with αR = 0.25.

Finally, we increased αR to 0.75. The results are shown in Fig. 6.2.2. With this
setting, expectimax-MCTS seems to converge to the optimum, though still slower
that MSP-MCTS and UCT. MSP-MCTS is still slightly slower than UCT, but this
looks barely significant.

6.3 Conclusions

As discussed in Section 6.1, there has already been some work done to use other
formulas than UCB in MCTS. Actually, most successful implementations of MCTS
require a certain degree of tuning for the E/E balance to work well. Having this in
mind, we think that the research direction taken by [82], where the authors use an
offline meta algorithm to automatically discover E/E formulas, is promising.

However, in that work, like in most implementations of MCTS that we have
found, the focus is on using the average reward and the variance of the rewards to
score actions. To the best of our knowledge, the use of other tools, like expectimax,
has only been done in two-player games [79], or in finite spaces[13].

Our goal here was to introduce other measures, namely expectimax and what

117

4

4.2

4.4

4.6

4.8

5

-3 -2.5 -2 -1.5 -1 -0.5 0

R
e
w
a
r
d

log10(time budget)

UCT
MCTS+expectimax

MCTS+mostSimulated

Figure 6-4: MCTS-DPW set to 0.50. Trap problem with 3 time steps, uniform
additive noise of amplitude 0.03, gap of 0.7. Crash probability of 0.1.

we called most simulated paths (MSP). These measures cannot be obtained just by
tuning UCB. As we observed in Figure 6.1.2, these two variants of MCTS can be
dramatically faster than UCT on some problems (in that case, UCT showed no sign
of convergence at all, being stuck in what looks like a local optimum). But, as we
saw when we modified our test problem, both expectimax-MCTS and MSP-MCTS
can perform worse than UCT (see Figure 6.2.2). As it turns out, one can increase the
performances of both of our variants by changing the Double Progressive Widening
coefficient (DPW), that was presented in Section 3.2.3.

It is hard to give a clear indication on what version of MCTS is better. We believe
that, as it is often the case, the choice between these various implementations is up
to the person behind the keyboard.

That being said, there is an important difference to notice, between the respective
failures of UCT on one side, and expectimax-MCTS and MSP-MCTS on the other.
When UCT failed (see Figure 6.1.2), the reason behind it was that UCB was simply
far too slow to back up a good action when it found one only 3 time steps ahead of
the root state. When the optimal action was found, somewhere down the tree, its
good reward was usually already drowned in low rewards (the ones that are obtained
when falling in the ‘gap’, see Section 6.2.2). This means that, in our opinion, playing
with the meta-parameters of UCT as it is cannot save it from failing on this specific

118

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

-3 -2.5 -2 -1.5 -1 -0.5 0

R
e
w
a
r
d

log10(time budget)

UCT
MCTS+expectimax

MCTS+mostSimulated

Figure 6-5: MCTS-DPW set to 0.75. Trap problem with 3 time steps, uniform
additive noise of amplitude 0.03, gap of 0.7. Crash probability of 0.1.

instance. Only a more drastic change, like switching to expectimax-MCTS, can make
it converge in a reasonable time.

This means that, in our opinion, when using MCTS for one player stochastic
games, one should try either expectimax-MCTS or MSP-MCTS first, and then quickly
tune its meta-parameters, i.e. the DPW coefficients, or the constants in the explo-
ration term of the E/E formula. From our early empirical results, this seemed to be
enough to provide good enough performance in both domains, especially in the case
of MSP-MCTS.

119

Chapter 7

Conclusion

Even though our initial motivation was to improve the state of the art for solving
energy unit commitment problems, and more specifically the ones involving hydro-
electricity and hard to predict renewable sources, the results are more general and
widely applicable.

In our opinion, some of the biggest problems with the existing methods to solve
hydroelectric scheduling (HS) was that they almost always relied on model simplifi-
cations. Convexity assumptions are the most common (see Benders cuts in Section
2.3.5), but simplifications of the random processes (Markovian assumption, finite
number of scenarios, etc) are also often made (see MPC in Section 2.3.5).

We do not deny that mathematical programming (MP) methods are essential to
deal with large action spaces. Indeed, relying purely on RL methods cannot work
when the action space is of a large dimension, eg. more than 10000 action variables,
with equally many constraints. In such a setting (which occurs naturally in energy
unit commitment problems), using a method like Stochastic Dual Dynamic Program-
ming is more adequate. But, as we explained in Section 2.3.5, this implies simplifying
the model. Our goal was then to explore a different approach, inspired by the RL
community, and to try to understand how MCTS could be applied to HS. This means
that we are mostly interested in two questions. How can MCTS work on continu-
ous domains? And, how can we efficiently mix it with existing suboptimal but fast
solvers, to obtain the best out of two worlds (namely, the MP and RL worlds)?

Our contributions to making MCTS viable and consistent for continuous SDM
problems can be summarized as follows.

In Section 3.2, we presented continuous MCTS, by using the Double Progressive
Widening trick. As we proved in Chapter 4, it lead to the first theoretically consistent
MCTS algorithm for continuous SDM problems, with few assumptions (we assumed
the availability of a generative model, and of an action sampler that has a non-
zero probability of sampling actions arbitrarily close to the optimum). Although one
could argue that the convergence rate guarantees are not strong (some constants in
the probability of convergence are not constrained), the importance of this result lies
in the convergence itself. To the best of our knowledge, there is no such result for
continuous SDM problems that do not require more assumptions.

In Section 3.3.2, we presented Blind Value, an online method to improve explo-

120

ration in a continuous action space, without any assumption on the knowledge of
that space. It can be seen as an attempt to discretize the action space first, and then
focus on the more rewarding areas. The method requires some meta-parameters, that
could be subject to refined tuning method.

In Section 3.4, we showed how to extend RAVE values to continuous spaces. This
is one of the ways to transport information from one branch of the tree to another.
To work properly, it requires the tuning of its meta-parameter, to adjust to the scale
of both the state and the action spaces. We believe that attempts at improving
the generalization of the information gathered during simulations (eg. transporting
information from one branch to the other) are a key part to the success of MCTS in
continuous spaces, and deserves more work.

One of the most interesting features of MCTS is that it can easily be combined
with other existing methods. This is what we showed in Section 5.1, by using Direct
Policy Search to build a better default policy to perform the rollouts of MCTS.
We obtained promising experimental results. This showed one way of integrating
powerful but suboptimal algorithms with MCTS, making it possible to improve an
existing solution, thanks to the fact that MCTS makes less simplifications on the
model of the problem.

In Section 5.2, we explained how MCTS can be used to solve POMPD. Again, the
interesting part is that we can use existing heuristic to provide suboptimal solutions,
and improve them with MCTS. This method has improved significantly the state of
the art performance of solvers for the game of Minesweeper.

Section 5.3 showed how MCTS could be used in a meta-bandit framework, acting
as a solver for the tactical part of the problem. These types of problem occur, for
example, when one wants to decide how to allocate resources for an investment in
energy facilities. The investment decision is done at a macro level, and each possible
investment is then evaluated by a tactical solver, eg. MCTS. This framework poses
the crucial question of how to divide the computing budget between the macro level
and the tactical level; it would probably be a fruitful direction for future research.

Finally, in Section 6, we present our most recent work, i.e. possible alternatives
to the common usage of the mean estimator in the selection function of MCTS. This
function drives the exploration/exploitation balance in MCTS, and is crucial to the
speed of convergence. Most implementations of MCTS need to first go through some
tuning of this function. Our suggestion, supported by early experiments, is that
one should consider using other backup operators, such as expectimax, and what we
called most simulated paths(MSP). Coupled with basic tuning of the double progres-
sive widening coefficients, these alternatives look promising, and possibly better than
UCB. This would be our next future work: making more thorough experiments to
understand how our alternatives fare for larger problems, and most importantly for
problems with many time steps, where we think UCB becomes even less efficient.

Directions for future work. Many of our contributions to MCTS introduce meta-
parameters (see Chapter 3). A good direction would be to design adaptive ways to
tune these parameters online, as more simulations are done, to adapt them to any

121

specific problem. Another way would be to use meta-algorithms techniques, similarly
to what has been done for finding custom selection formulas for MCTS in [82].

The proof of consistency presented in chapter 4 holds under certain assumptions,
and for a MCTS with polynomial exploration. It would be interesting to prove the
same result for a MCTS with UCB based exploration, since it already shows good
results empirically. Also, one could try to prove the consistency of a MSP based
MCTS (see chapter 6 for a description of MSP).

We think the framework presented in section 5.1 is very promising, in the sense
that it allows to insert expert knowledge in MCTS easily. A way to improve it would
be to design a method to improve the default policy online, during MCTS simulations,
instead of improving it separately.

The results on back up operators shown in chapter 6 are also promising, but
should undergo more thorough benchmarking. One option would be to test the UCB
alternatives presented in our work to the game of Mine Sweeper, where it is easy to
compare results to current state of the art.

The meta-bandit framework presented in section 5.3 raises a larger question: how
should one distribute computing power between the meta-level (bandit algorithm)
and the micro-level (in our case, MCTS). In our work, we used a constant ratio to
make this distribution, but it would make sense to design an adaptive method, to
avoid overspending computing power on the micro-level for example.

Finally, on the side of energy management, an important question still remains
unanswered. Namely, we do not know how much the various approximations made
on the model (e.g. making the assumption that the cost function is convex) cost.
One could start by doing meticulous experiments as follows: establish an accurate
model M of the system. From it, deduce an approximate model M̄ , that verifies the
assumptions necessary to run state of the art algorithms like SDDP. Run SDDP on
M̄ , obtain a suggested action aSDDP , apply it to M , and repeat. Use this process
to evaluate the performance of SDDP, and compare the results to the performance
of MCTS on M . Ideally, this work should be done with an industrial partner, to
have realistic models. We hope that the ongoing work of our team, with the company
Artelys, will reach this objective in the near future.

122

Bibliography

[1] Broderick Arneson, Ryan Hayward, and Philip Henderson. Mohex wins hex
tournament. ICGA journal, pages 114–116, 2009.

[2] K.J. Astrom. Optimal control of Markov decision processes with incomplete
state estimation. Journal of Mathematical Analysis and Applications, 10:174–
205, 1965.

[3] J.-Y. Audibert and S. Bubeck. Minimax policies for adversarial and stochastic
bandits. In proceedings of the Annual Conference on Learning Theory (COLT),
2009.

[4] J.-Y. Audibert, R. Munos, and C. Szepesvari. Use of variance estimation in the
multi-armed bandit problem. In NIPS 2006 Workshop on On-line Trading of
Exploration and Exploitation, 2006.

[5] Jean-Yves Audibert and Sébastien Bubeck. Best Arm Identification in Multi-
Armed Bandits. In COLT 2010 - Proceedings, page 13 p., Haifa, Israël, 2010.

[6] P. Audouard, G. Chaslot, J.-B. Hoock, J. Perez, A. Rimmel, and O. Teytaud.
Grid coevolution for adaptive simulations; application to the building of opening
books in the game of Go. In Proceedings of EvoGames, pages 323–332. Springer,
2009.

[7] P. Auer. Using confidence bounds for exploitation-exploration trade-offs. The
Journal of Machine Learning Research, 3:397–422, 2003.

[8] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47(2/3):235–256, 2002.

[9] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. Gam-
bling in a rigged casino: the adversarial multi-armed bandit problem. In Pro-
ceedings of the 36th Annual Symposium on Foundations of Computer Science,
pages 322–331. IEEE Computer Society Press, Los Alamitos, CA, 1995.

[10] Peter Auer and M. Long. Using confidence bounds for exploitation-exploration
trade-offs. Journal of Machine Learning Research, 3:2002, 2002.

123

[11] Peter Auer, Ronald Ortner, and Csaba Szepesvári. Improved rates for the
stochastic continuum-armed bandit problem. In Nader H. Bshouty and Claudio
Gentile, editors, COLT, volume 4539 of Lecture Notes in Computer Science,
pages 454–468. Springer, 2007.

[12] David Auger, Adrien Couetoux, and Olivier Teytaud. Continuous Upper Con-
fidence Trees with Polynomial Exploration - Consistency. In ECML/PKKD
2013, Prague, Tchèque, République, September 2013.

[13] Bruce W. Ballard. The *-minimax search procedure for trees containing chance
nodes. Artif. Intell., 21(3):327–350, September 1983.

[14] Danny Barash. A genetic search in policy space for solving markov decision
processes. In In AAAI Spring Symposium on Search Techniques for Problem
Solvingunder Uncertainty and Incomplete Information. AAAI Press, 1999.

[15] A.G. Barto, R.S. Sutton, and C.W. Anderson. Neuronlike adaptive elements
that can solve difficult learning control problems. Systems, Man and Cybernet-
ics, IEEE Transactions on, SMC-13(5):834–846, 1983.

[16] R. Bellman. Dynamic Programming. Princeton Univ. Press, 1957.

[17] J.F. BENDERS. Partitioning procedures for solving mixed-variables program-
ming problems. Numerische Mathematik, 4:238–252, 1962.

[18] Yoshua Bengio. Using a financial training criterion rather than a prediction
criterion. CIRANO Working Papers 98s-21, CIRANO, 1998.

[19] D.P. Bertsekas. Dynamic Programming and Optimal Control, vols I and II.
Athena Scientific, 1995.

[20] Dimitris Bertsimas, Eugene Litvinov, Xu Andy Sun, Jinye Zhao, and Tongxin
Zheng. Adaptive robust optimization for the security constrained unit commit-
ment problem. 28(1):52 – 63, 2013.

[21] Amine Bourki, Matthieu Coulm, Philippe Rolet, Olivier Teytaud, and Paul
Vayssière. Parameter Tuning by Simple Regret Algorithms and Multiple Si-
multaneous Hypothesis Testing. In ICINCO2010, page 10, funchal madeira,
Portugal, 2010.

[22] Bruno Bouzy. Move pruning techniques for monte-carlo go. In In Advances in
Computer Games 11, 2005.

[23] JustinA. Boyan. Technical update: Least-squares temporal difference learning.
Machine Learning, 49(2-3):233–246, 2002.

[24] StevenJ. Bradtke and AndrewG. Barto. Linear least-squares algorithms for
temporal difference learning. Machine Learning, 22(1-3):33–57, 1996.

124

[25] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in finitely-
armed and continuous-armed bandits. Theor. Comput. Sci., 412(19):1832–1852,
2011.

[26] Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. Online
optimization in x-armed bandits. In Daphne Koller, Dale Schuurmans, Yoshua
Bengio, and Léon Bottou, editors, NIPS, pages 201–208. Curran Associates,
Inc., 2008.

[27] Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvari. X-Armed
Bandits. Journal of Machine Learning Research, 12:1655–1695, April 2011.

[28] Olivier Buffet, Chang-Shing Lee, Woanting Lin, and Olivier Teytaud. Opti-
mistic Heuristics for MineSweeper. In Ruay-Shiung Chang, Lakhmi C. Jain,
and Sheng-Lung Peng, editors, ICS - International Computer Symposium -
2012, volume 20 of Smart Innovation, Systems and Technologies, pages 199–
207, Hualien, Täıwan, Province De Chine, 2012. Springer.

[29] Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst. Re-
inforcement learning and dynamic programming using function approximators,
volume 39. CRC Pr I Llc, 2010.

[30] T. Cazenave and J. Borsboom. Golois wins phantom go tournament. ICGA
Journal, 30(3):165–166, 2007.

[31] T. Cazenave and N. Jouandeau. On the parallelization of UCT. In Proceedings
of CGW07, pages 93–101, 2007.

[32] Tristan Cazenave. A phantom-go program. In ACG, pages 120–125, 2006.

[33] G.M.J.B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den Herik,
and B. Bouzy. Progressive Strategies for Monte-Carlo Tree Search. In P. Wang
et al., editors, Proceedings of the 10th Joint Conference on Information Sciences
(JCIS 2007), pages 655–661. World Scientific Publishing Co. Pte. Ltd., 2007.

[34] G.M.J.B. Chaslot, M.H.M. Winands, and H.J. van den Herik. Parallel Monte-
Carlo Tree Search. In Proceedings of the Conference on Computers and Games
2008 (CG 2008), 2008.

[35] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-
carlo tree search: A new framework for game ai. In Christian Darken and
Michael Mateas, editors, AIIDE. The AAAI Press, 2008.

[36] Benjamin E. Childs, James H. Brodeur, and L. Kocsis. Transpositions and
move groups in Monte Carlo tree search. 2008.

[37] Cheng-Wei Chou, Ping-Chiang Chou, Chang-Shing Lee, David Lupien Saint-
Pierre, Olivier Teytaud, Mei-Hui Wang, Li-Wen Wu, and Shi-Jim Yen. Strate-
gic Choices: Small Budgets and Simple Regret. In TAAI, Hualien, Täıwan,
Province De Chine, 2012.

125

[38] Adrien Couetoux, Hassen Doghmen, and Olivier Teytaud. Improving the ex-
ploration in Upper Confidence Trees. In Learning and Intelligent OptimizatioN
Conference LION 6, Paris, France, January 2012.

[39] Adrien Couetoux, Jean-Baptiste Hoock, Nataliya Sokolovska, Olivier Teytaud,
and Nicolas Bonnard. Continuous Upper Confidence Trees. In LION’11: Pro-
ceedings of the 5th International Conference on Learning and Intelligent Opti-
mizatioN, page TBA, Italie, January 2011.

[40] Adrien Couetoux, Mario Milone, Matyas Brendel, Hassen Doghmen, Michèle
Sebag, and Olivier Teytaud. Continuous Rapid Action Value Estimates. In
Chun-Nan Hsu and Wee Sun Lee, editors, The 3rd Asian Conference on Ma-
chine Learning (ACML2011), volume 20 of Workshop and Conference Proceed-
ings, pages 19–31, Taoyuan, Täıwan, Province De Chine, 2011. JMLR.

[41] Adrien Couetoux, Mario Milone, and Olivier Teytaud. Consistent belief state
estimation, with application to mines. In Proceedings of the TAAI 2011 confer-
ence, page in press, 2011.

[42] Adrien Couetoux, Olivier Teytaud, and Hassen Doghmen. Learning a move-
generator for upper confidence trees. In Ruay-Shiung Chang, Lakhmi C. Jain,
and Sheng-Lung Peng, editors, Advances in Intelligent Systems and Applica-
tions - Volume 1, volume 20 of Smart Innovation, Systems and Technologies,
pages 209–218. Springer Berlin Heidelberg, 2013.

[43] Rémi Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search. In P. Ciancarini and H. J. van den Herik, editors, Proceedings of the
5th International Conference on Computers and Games, Turin, Italy, 2006.

[44] Rémi Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search. In P. Ciancarini and H. J. van den Herik, editors, Proceedings of the
5th International Conference on Computers and Games, Turin, Italy, 2006.

[45] Rémi Coulom. Computing elo ratings of move patterns in the game of go. In
Computer Games Workshop, Amsterdam, The Netherlands, 2007.

[46] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree
search. In Proceedings of the 5th international conference on Computers and
games, CG’06, pages 72–83, Berlin, Heidelberg, 2007. Springer-Verlag.

[47] Christos Dimitrakakis and Michail G. Lagoudakis. Rollout sampling approxi-
mate policy iteration. Machine Learning, 72(3):157–171, 2008.

[48] Peter D. Drake and Steve Uurtamo. Move Ordering vs Heavy Playouts: Where
Should Heuristics be Applied in Monte Carlo Go. In Proc. 3rd North Amer.
Game-On Conf., pages 35–42, Gainesville, Florida, 2007.

[49] Y. Ermoliev, editor. Numerical techniques for stochastic optimization. Springer-
Verlag New York, Inc., New York, NY, USA, 1988.

126

[50] Damien Ernst, Guy bart Stan, Jorge Gonçalves, and Louis Wehenkel. Clinical
data based optimal sti strategies for hiv: A reinforcement learning approach.
In in Proc. BENELEARN, 2006, pages 65–72.

[51] Hilmar Finnsson and Yngvi Björnsson. Simulation-based approach to general
game playing. In AAAI’08: Proceedings of the 23rd national conference on
Artificial intelligence, pages 259–264. AAAI Press, 2008.

[52] E. Gallestey, A. Stothert, M. Antoine, and S. Morton. Model predictive control
and the optimization of power plant load while considering lifetime consump-
tion. Power Systems, IEEE Transactions on, 17(1):186–191, 2002.

[53] S. Gelly, J. B. Hoock, A. Rimmel, O. Teytaud, and Y. Kalemkarian. The par-
allelization of Monte-Carlo planning. In Proceedings of the International Con-
ference on Informatics in Control, Automation and Robotics (ICINCO 2008),
pages 198–203, 2008.

[54] Sylvain Gelly and David Silver. Combining online and offline knowledge in UCT.
In ICML ’07: Proceedings of the 24th international conference on Machine
learning, pages 273–280, New York, NY, USA, 2007. ACM Press.

[55] Sylvain Gelly and David Silver. Monte-carlo tree search and rapid action value
estimation in computer go. Artif. Intell., 175(11):1856–1875, July 2011.

[56] Sylvain Gelly and Yizao Wang. Exploration exploitation in go: Uct for monte-
carlo go. In NIPS-2006, Online trading between exploration and exploitation
Workshop, 2006.

[57] Sylvain Gelly, Yizao Wang, Rémi Munos, and Olivier Teytaud. Modification
of uct with patterns in monte-carlo go. Rapport de recherche INRIA RR-6062,
2006.

[58] Abraham P. George and Warren B. Powell. Adaptive stepsizes for recursive
estimation with applications in approximate dynamic programming. Mach.
Learn., 65(1):167–198, October 2006.

[59] Alfonso Gerevini, Adele E. Howe, Amedeo Cesta, and Ioannis Refanidis, editors.
Proceedings of the 19th International Conference on Automated Planning and
Scheduling, ICAPS 2009, Thessaloniki, Greece, September 19-23, 2009. AAAI,
2009.

[60] W. R. Gilks. Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC,
December 1995.

[61] Faustino Gomez, Juergen Schmidhuber, and Risto Miikkulainen. Efficient non-
linear control through neuroevolution. In Proceedings of the European Confer-
ence on Machine Learning, pages 654–662, Berlin, 2006. Springer.

127

[62] Michael D. Grigoriadis and Leonid G. Khachiyan. A sublinear-time random-
ized approximation algorithm for matrix games. Operations Research Letters,
18(2):53–58, Sep 1995.

[63] I. Grondman, L. Busoniu, G. A D Lopes, and R. Babuska. A survey of actor-
critic reinforcement learning: Standard and natural policy gradients. Systems,
Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions
on, 42(6):1291–1307, 2012.

[64] Lars Grüne. Error estimation and adaptive discretization for the dis-
crete stochastic hamilton–jacobi–bellman equation. Numerische Mathematik,
99(1):85–112, 2004.

[65] C. Hartland, S. Gelly, N. Baskiotis, O. Teytaud, and M. Sebag. Multi-armed
bandits, dynamic environments and meta-bandits. In NIPS Workshop ”online
trading of exploration and exploitation, 2006.

[66] Thomas Gordon Hauk. Search in trees with chance nodes, 2004.

[67] Nicholas Hay and Stuart J. Russell. Metareasoning for monte carlo tree search.
Technical Report UCB/EECS-2011-119, EECS Department, University of Cal-
ifornia, Berkeley, Nov 2011.

[68] International Energy Agency (IEA). Medium-term renewable energy market
report 2013 – market trends and projections to 2018. 2013.

[69] V.I. Istratescu. Fixed Point Theory: An Introduction. Springer, 2002.

[70] Guillaume M. J-B, Jean-Baptiste Hoock, Julien Perez, Arpad Rimmel, Olivier
Teytaud, and Mark H. M. Winands. Meta Monte-Carlo Tree Search for Auto-
matic Opening Book Generation. pages 7–12.

[71] Hideki Kato and Ikuo Takeuchi. Parallel monte-carlo tree search with simulation
servers. In 13th Game Programming Workshop (GPW-08), November 2008.

[72] Robert D. Kleinberg. Nearly tight bounds for the continuum-armed bandit
problem. In NIPS, 2004.

[73] Julien Kloetzer. Monte-carlo opening books for amazons. In H.Jaap Herik,
Hiroyuki Iida, and Aske Plaat, editors, Computers and Games, volume 6515 of
Lecture Notes in Computer Science, pages 124–135. Springer Berlin Heidelberg,
2011.

[74] L Kocsis and Cs Szepesvari. Bandit based Monte-Carlo planning. In 15th
European Conference on Machine Learning (ECML), pages 282–293, 2006.

[75] L. Kocsis, Cs. Szepesvári, and J. Willemson. Improved monte-carlo search.
working paper, 2006.

128

[76] J. Zico Kolter and Andrew Y. Ng. Regularization and feature selection in
least-squares temporal difference learning. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML ’09, pages 521–528, New
York, NY, USA, 2009. ACM.

[77] T. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Ad-
vances in applied mathematics, 6:4–22, 1985.

[78] T.L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules.
Advances in Applied Mathematics, 6:4–22, 1985.

[79] Marc Lanctot, Abdallah Saffidine, Joel Veness, Christopher Archibald, and
Mark H. M. Winands. Monte carlo *-minimax search. CoRR, abs/1304.6057,
2013.

[80] Chang-Shing Lee, Mei-Hui Wang, Guillaume Chaslot, Jean-Baptiste Hoock,
Arpad Rimmel, Olivier Teytaud, Shang-Rong Tsai, Shun-Chin Hsu, and Tzung-
Pei Hong. The Computational Intelligence of MoGo Revealed in Taiwan’s Com-
puter Go Tournaments. IEEE Transactions on Computational Intelligence and
AI in games, 2009.

[81] M. Legendre, K. Hollard, O. Buffet, and A. Dutech. Minesweeper: Where to
probe? Technical Report RR-8041, INRIA, 2012.

[82] Francis Maes, Damien Ernst, and Louis Wehenkel. Meta-learning of ex-
ploration/exploitation strategies: The multi-armed bandit case. CoRR,
abs/1207.5208, 2012.

[83] Shie Mannor, Reuven Rubinstein, and Yohai Gat. The cross entropy method
for fast policy search. In In International Conference on Machine Learning,
pages 512–519. Morgan Kaufmann, 2003.

[84] Christopher R. Mansley, Ari Weinstein, and Michael L. Littman. Sample-based
planning for continuous action markov decision processes. In Fahiem Bac-
chus, Carmel Domshlak, Stefan Edelkamp, and Malte Helmert, editors, ICAPS.
AAAI, 2011.

[85] Peter Marbach and John N. Tsitsiklis. Approximate gradient methods in policy-
space optimization of markov reward processes. Discrete Event Dynamic Sys-
tems, 13(1-2):111–148, January 2003.

[86] Eric Martinot, Carmen Dienst, and Liu Weiliang. Renewable energy futures:
Targets, scenarios, and pathways. ANNUAL REVIEW OF ENVIRONMENT
AND RESOURCES Book Series: Annual Review of Environment and Re-
sources, 32:205–239, 2007.

[87] P. Massé. Les Réserves et la Régulation de l’Avenir dans la vie Economique.
Herman, 1946.

129

[88] Silja Meyer-Nieberg and Hans-Georg Beyer. Self-adaptation in evolutionary
algorithms. In Fernando G. Lobo, Claudio F. Lima, and Zbigniew Michalewicz,
editors, Parameter Setting in Evolutionary Algorithms. Springer, Berlin, 2007.

[89] D. Michie. Game-playing and game-learning automata. Advances in Program-
ming and Non-numerical Computation, pages 183—-196, 1966.

[90] Rémi Munos. Policy gradient in continuous time. Journal of Machine Learning
Research, 7:771–791, 2006.

[91] Rémi Munos and Andrew Moore. Variable resolution discretization in optimal
control. Mach. Learn., 49(2-3):291–323, November 2002.

[92] A. Nedic and D. P. Bertsekas. Least squares policy evaluation algorithms with
linear function approximation. Discrete Event Dynamic Systems, 13(1-2):79–
110, 2003.

[93] M. V. F. Pereira and L. M. V. G. Pinto. Stochastic optimization of a mul-
tireservoir hydroelectric system: A decomposition approach. Water Resources
Research, 21(6):779–792, 1985.

[94] M. V. F. Pereira and L. M. V. G. Pinto. Multi-stage stochastic optimization
applied to energy planning. Math. Program., 52(2):359–375, October 1991.

[95] Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing,
71(7–9):1180 – 1190, 2008.

[96] Warren B. Powell. Approximate Dynamic Programming: Solving the Curses of
Dimensionality (Wiley Series in Probability and Statistics). Wiley-Interscience,
2007.

[97] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley-Interscience, April 1994.

[98] S. Joe Qin and Thomas A. Badgwell. A survey of industrial model predictive
control technology, 2003.

[99] Agrawal R. Sample mean based index policies with o(logn) regret for the multi-
armed bandit problem. Advances in Applied Probability, 1995.

[100] Martin Riedmiller and et al. Evaluation of policy gradient methods and variants
on the cart-pole benchmark. IN: ADPRL, 2007.

[101] Arpad Rimmel and Fabien Teytaud. Multiple Overlapping Tiles for Contextual
Monte Carlo Tree Search. In Evostar, Istanbul Turquie.

[102] Arpad Rimmel, Fabien Teytaud, and Olivier Teytaud. Biasing Monte-Carlo
Simulations through RAVE Values. In The International Conference on Com-
puters and Games 2010, Kanazawa Japon, 05 2010.

130

[103] P. Rolet, M. Sebag, and O. Teytaud. Optimal active learning through billiards
and upper confidence trees in continous domains. In Proceedings of the ECML
conference, 2009.

[104] Philippe Rolet, Michele Sebag, and Olivier Teytaud. Optimal robust expensive
optimization is tractable. In Gecco 2009, page 8 pages, Montréal Canada, 2009.
ACM.

[105] G. A. Rummery and M. Niranjan. On-line q-learning using connectionist sys-
tems. Technical report, 1994.

[106] Frederik Christiaan Schadd. Monte-Carlo Search Techniques in the Modern
Board Game Thurn and Taxis. 2010.

[107] Michèle Sebag and Olivier Teytaud. Combining Myopic Optimization and Tree
Search: Application to MineSweeper. In LION6, Learning and Intelligent Op-
timization, pages in press (14 pages, long paper), Paris, France, 2012.

[108] Michèle Sebag and Olivier Teytaud. Combining Myopic Optimization and Tree
Search: Application to MineSweeper. In Youssef Hamadi and Marc Schoenauer,
editors, LION6, Learning and Intelligent Optimization, volume 7219 of LNCS,
pages 222–236, Paris, France, 2012. Proc. LION 6, Sringer Verlag.

[109] David Silver and Gerald Tesauro. Monte-carlo simulation balancing. In Proceed-
ings of the 26th Annual International Conference on Machine Learning, ICML
’09, pages 945–952, New York, NY, USA, 2009. ACM.

[110] Satinder Singh, Tommi Jaakkola, MichaelL. Littman, and Csaba Szepesvári.
Convergence results for single-step on-policy reinforcement-learning algorithms.
Machine Learning, 38(3):287–308, 2000.

[111] T. G. Siqueira, M. Zambelli, M. Cicogna, M. Andrade, and S. Soares. Stochastic
dynamic programming for long term hydrothermal scheduling considering dif-
ferent streamflow models. In Probabilistic Methods Applied to Power Systems,
2006. PMAPS 2006. International Conference on, pages 1–6, 2006.

[112] R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction. MIT
Press., Cambridge, MA, 1998.

[113] Csaba Szepesvári. Algorithms for reinforcement learning. Synthesis Lectures
on Artificial Intelligence and Machine Learning, 4(1):1–103, 2010.

[114] Fabien Teytaud and Olivier Teytaud. Creating an Upper-Confidence-Tree pro-
gram for Havannah. In ACG 12, Pamplona Spain, 2009.

[115] Fabien Teytaud and Olivier Teytaud. On the Huge Benefit of Decisive Moves in
Monte-Carlo Tree Search Algorithms. In IEEE Conference on Computational
Intelligence and Games, Copenhagen, Denmark, August 2010.

131

[116] Olivier Teytaud. Including ontologies in monte-carlo tree search and applica-
tions - an open source platform, 2008.

[117] B. Tuffin. On the use of low discrepancy sequences in monte carlo methods.
Technical Report Technical Report 1060, I.R.I.S.A., 1996.

[118] A. Waldock and B. Carse. Fuzzy q-learning with an adaptive representation.
In Fuzzy Systems, 2008. FUZZ-IEEE 2008. (IEEE World Congress on Compu-
tational Intelligence). IEEE International Conference on, pages 720–725, 2008.

[119] Y. Wang, J.-Y. Audibert, and R. Munos. Algorithms for infinitely many-armed
bandits. In Advances in Neural Information Processing Systems, volume 21,
2008.

[120] Yizao Wang and Sylvain Gelly. Modifications of UCT and sequence-like simula-
tions for Monte-Carlo Go. In IEEE Symposium on Computational Intelligence
and Games, Honolulu, Hawaii, pages 175–182, 2007.

[121] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,
8(3-4):279–292, 1992.

[122] Ari Weinstein and Michael L. Littman. Bandit-based planning and learn-
ing in continuous-action markov decision processes. In Lee McCluskey, Brian
Williams, José Reinaldo Silva, and Blai Bonet, editors, ICAPS. AAAI, 2012.

[123] Shimon Whiteson and Peter Stone. Evolutionary function approximation for
reinforcement learning. Journal of Machine Learning Research, 7:877–917, May
2006.

[124] Ronald J. Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. In Machine Learning, pages 229–256, 1992.

[125] Shi-Jim Yen, Shih-Yuan Chiu, and I-Chen Wu. Modark wins chinese dark chess
tournament. ICGA Journal, 33(4):230–231, 2010.

[126] Huizhen Yu and Dimitri P. Bertsekas. Basis function adaptation methods for
cost approximation in mdp,” to appear. In in the proceedings of 2009 IEEE
Symposium on Approximate Dynamic Programming and Reinforcement Learn-
ing (ADPRL), 2009.

132

Index

Action variables, 18

Benders cuts, 39

Certainty Equivalent Control, 41

Decision epochs, 17
Decision Tree structure, 43

Exploration/Exploitation, 47

Hydrothermal Scheduling, 11

multi-armed bandits, 47

Random action sampler, 42

State variables, 18

133

