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GENERAL INTRODUCTION 

Tomato (Solanum lycopersicum, formerly Lycopersicon esculentum) belongs to Lycopersicon 

section, Solanum genus and the nightshade family Solanaceae. It originated from South 

America, in the Andes Mountains of Peru, Ecuador and Chile. Mexico is considered as the 

most probable region of domestication or diversification (Robertson. and Larate 2007). S. 

pimpinellifolium is thought to be the wild ancestor of cultivated tomato. S. lycopersicum var. 

cerasiforme accessions produce larger fruits (commonly red and round) than S. 

pimpinellifolium. These accessions are considered as a primitive type of cultivated tomato or 

as a transitional form between the S. pimpinellifolium wild species and the S. lycopersicum 

cultivated one. Recent genetic investigations have shown that the genome of the plants known 

as ‘cerasiforme’ (cherry type) are a mixture of wild and cultivated tomatoes, rather than the 

‘ancestre’ of the cultivated tomato (Nesbitt and Tanksley 2002; Ranc et al. 2008).  

Tomato is among the most important vegetable in human diet for its health value, due to the 

amount consumed (2/3 as fresh and 1/3 as processed product in France) and to its original 

composition of antioxidant compounds (Di Mascio et al. 1989). Including or increasing fresh 

tomato and tomato products in the diet would thus benefit to human health. Apart from being 

an economic important plant species, tomato is one of the best characterized plant systems at 

both genetic and genomic levels. It has abundant genetic and genomic resources such as 

sequenced genome (Sato et al. 2012), thousands molecular markers and many genetic maps. 

However, many markers were developed based on polymorphism in wild species, they are not 

polymorphic when used within the cultivated species (Jimenez-Gomez and Maloof 2009). 

Therefore, it is still quite important to develop new molecular markers to be used in tomato 

genetics. Single nucleotide polymorphisms (SNPs) are the most abundant markers in the 

genome. Next generation sequencing technologies (NGS) offer new capacities for producing 

high volume of sequence data which can be used to identify SNPs (Barbazuk et al. 2007). 
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These technologies evolved very fast, with the length and number of reads increasing each 

month, and it is a real opportunity to test such strategy for SNP discovery in tomato.    

Nowadays, the social demand concerns tomato fruit quality (organoleptic and nutritional 

value). The best way to answer this demand is through breeding improved cultivars. It is 

therefore important to consider the fruit quality traits in breeding schemes. For this purpose, it 

is necessary to understand the genetic bases of quality traits. Most tomato fruit quality traits 

(sweetness, sourness, aroma and texture) are complex because they are controlled by the joint 

effect of several genes of small effects. Dissection of fruit quality traits in tomato has been 

firstly achieved by QTL (Quantitative trait loci) mapping. QTL analyses were performed for 

fruit size, shape and quality traits on bi-parental populations (Paterson et al. 1991; Frary et al. 

2000; Eshed and Zamir 1995; Grandillo and Tanksley 1996; van der Knaap and Tanksley 

2001; Causse et al. 2002; van der Knaap and Tanksley 2003; Barrero and Tanksley 2004; 

Causse et al. 2004; Lecomte et al. 2004). A few genes controlling tomato fruit QTL have been 

cloned like FW2.2 (Frary et al. 2000) which controls fruit weight; Lin5 which  is responsible 

for fruit sugar content (Fridman et al. 2000) and LC which controls locule number (Munos et 

al. 2011). 

QTL mapping only allows the detect of QTLs with large effects due to restricted allelic 

variation and modest degree of recombination in bi-parental mapping population (Hall et al. 

2010). Association or linkage disequilibrium (LD) mapping represents an alternative 

approach to identify the genes and genomic regions associated with phenotypic trait variation. 

It surveys a large range of allelic variation and exploits a large number of historical 

recombination events in a diverse set of genetic resources. This method was first used in 

allogamous species or species with wide range of genetic diversity, for several traits such as 

flowering time and pathogen resistance in Arabidopsis (Aranzana et al. 2005), yield and its 

components in rice (Agrama et al. 2007), leaf architecture in maize (Tian et al. 2011), iron 
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deficiency chlorosis in soybean (Mamidi et al. 2011). Very few convincing studies were 

performed in autogamous crop species. Tomato is a highly autogamous plants and previous 

studies of genetic diversity in cultivated tomato showed that its diversity is very low. An 

intermediate level of polymorphism between the wild and the closest cultivated species was 

identified in accessions of cherry type (S. lycopersium var. cerasiforme), which may help to 

overcome the high LD in this autogamous species.  

Besides association mapping, novel approaches were also developed for the dissection of 

quantitative traits. Because DNA sequence variation (SNP or Indel) may not affect the traits 

directly. There are several intermediate levels between DNA genotypes and the phenotypes. 

The cascade of effects from DNA variation to phenotype is organized in complicated 

biological networks (Kliebenstein 2010; Sulpice et al. 2010). Intermediate molecular 

phenotypes such as transcript and protein abundance also genetically vary in populations and 

are themselves quantitative traits (Rockman and Kruglyak 2006). New analytical approaches 

proposed in the context of systems biology consist in combining information from different 

levels such as metabolome, proteome, transcriptome and genome levels. This should enable 

us to understand the biology inside the black-box of quantitative genetics relating genotype to 

phenotype in terms of causal networks of interacting genes. System approaches have been 

applied in yeast (Ideker et al. 2001), in the model plant Arabidopsis (Hirai et al. 2007) and in 

tomato (Mounet et al. 2009), at several levels.  

In this view, the objective of the study was to characterize tomato genetic diversity at the 

molecular and proteome levels and to try to identify QTLs, proteins responsible for fruit 

quality traits in tomato. For this purpose, my PhD was organized in three independent parts:  

1.  We first used Next Generation Sequencing technology (GA2 and 454 platform) to re-

sequence about 0.2% of the tomato genome of two contrasted lines in order to identify 

polymorphisms and develop new markers. 
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 2.  Technologies evolve fast and in the same time, SNPlexTM genotyping technology emerged. 

We used a SNPlexTM array, composed of 192 SNPs selected from resequencing experiment or 

from public database to genotype 188 tomato accessions characterized at phenotypic level.  

We conducted association mapping to identify SNP associated with fruit quality traits.    

3. Finally, we applied systems biology approaches focused on proteome, metabolome and 

phenotypic analysis to characterize the fruits of eight contrasted lines as well as four of their 

hybrids at two stages, cell expansion and orange red stage. 

I will present these results in chapters III to VI of this document, following a review of the 

literature and a rapid summary of the materials and methods used in this study. The results are 

presented as manuscripts to be submitted to the journals. A general discussion and a few 

prospects will then conclude this manuscript.   
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CHAPTER I: REVIEW OF LITERATURE 

 

1.1 Tomato 
1.1.1 Tomato plant biology, origin, evolution and economic importance 

Tomato (Solanum lycopersicum formerly Lycopersicon esculentum) belongs to Lycopersicon 

section, Solanum genus and the nightshade family Solanaceae. This family consists of about 

90 genera and 3000–4000 species. Almost half of them are in the large and diverse genus 

Solanum (Knapp et al. 2004). The genus Solanum includes commonly cultivated plants such 

as potato (Solanum tuberosum), pepper (Capsicum annuum), tobacco (Nicotiana tabacum) 

and tomato, and ornamental plants such as false jasmine nightshade (Solanum jasminoides). 

Some species of the Solanaceae family are known to be toxic as black nightshade (Solanum 

nigrum) or bittersweet (Solanum dulcamara). Other species are known for their psychoactive 

properties as the Mandrake (Mandragora officinarum) or belladonna (Atropa belladonna). 

The cultivated tomato was originally named Solanum lycopersicum by Linnaeus (1753). It 

was then re-classified into the newly designed Lycopersicon genus named as esculentum by 

Miller (1754) because of its distinct characteristics of anthers and leaves.  Recent taxonomic 

study of the Solanaceae has re-integrated Lycopersicon species into the genus Solanum with a 

new nomenclature (Peralta and Spooner 2001; Spooner et al. 2005; Peralta et al. 2008). Now, 

the classification of tomato to the genus Solanum has been widely accepted by most 

taxonomists (Fridman et al. 2004; Schauer et al. 2005; Mueller et al. 2009). It was supported 

by several phylogenetic studies on molecular and morphological characters (Peralta et al. 

2005; Spooner et al. 2005). 

The Solanum genus, lycopersicon section consists of cultivated tomato (Solanum 

lycopersicum), which includes the domesticated tomato and wild or weedy forms of the 

cherry type tomato (S. lycopersicum var. cerasiforme) and the 12 wild species: Solanum 

arcanum, S.cheesmaniae, S. chilense, S. chmielewshii, S.corneliomuelleri, S. galapagense, S. 

habrochaites, S. huaylasense, S. neorickii, S. pennellii, S. peruvianum, S. pimpinellifolium 

(Peralta et al. 2005; Spooner et al. 2005). Species from this section are diploid (2n=24) and 

closely related, and are to some degree inter-crossable (Taylor 1986). The principal 

ecological, botanical, and reproductive characteristics of the wild tomatoes are presented in 

Table 1-1.Tomato and its wild relatives originated from South America, in the Andes 

Mountains of Peru, Ecuador, and Chile. However, the original site of domestication and the 
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Table 1-1. Principal ecological, botanical, and reproductive features of the wild tomatoes (Solanum sect. Lycopersicon). Reviewed by Grandillo et al. 
(2011) 

Species Geographic distribution Habitat Mating systema Crossability 
to tomatob 

Distinguishing morphological featuresc 

 
S. lycopersicum 

“cerasiforme” 

 

Adventive worldwide in the tropics and 
subtropics (near sea level – 2,400 m); 

perhaps native in Andean region 
 

Usually mesic sites, often 
feral or weedy 

 

SC-autogamous BC Plants semi-erect to sprawling; 
fruits red, 

1.5–2.5 cm 

S. cheesmaniae Endemic to  Galápagos  Islands 
(sea level – 1,500 m) 

 

Arid, rocky slopes, prefers 
shaded, cooler sites 

 

SC-autogamous BC Plants semi-erect to sprawling, flowers 
very small, pale; fruit purple, greenish-yellow, 

or orange, 0.5–1.5 cm 
 

S. galapagense Endemic to  Galápagos  Islands 
(sea level – 650 m) 

 

Arid, rocky outcrops and 
slopes, sometimes near 

shoreline 
 

SC-autogamous BC Plants erect; leaves highly subdivided; 
internodes short; flowers small, pale, 

fruit orange (0.5–1 cm) 
 

S. pimpinellifolium Lowland Ecuador and coastal Peru 
(sea level – 500 m) 

 

Arid, sandy places, often near 
sources of water or on the 

edges of farm fields 
 

SC-facultative BC Plants semi-erect to sprawling, flower 
small-large; 

fruit red (0.5–1 cm) 
 

S. chmielewskii Inter-Andean valleys of central and 
southern Peru 

(1,600–3,100 m) 
 

Rather moist, well-drained, 
rocky slopes 

 

SC-facultative UI Plant sprawling or trailing; flowers small, pale; 
fruit green (1–1.5 cm) 

 

S. neorickii Inter-Andean valleys from Cusco to 
central Ecuador (1,500–2,500 m) 

 

Rather moist, well-drained, 
rocky slopes 

 

SC-autogamous UI Plants sprawling or trailing; flowers tiny, pale; 
fruit green; seeds tiny 

 
S. arcanum Northern Peru, coastal and inter-Andean 

valleys, middle watershed of  Marañón 
(500–3,000 m) 

 

Varied, but generally dry, 
rocky slopes 

 

Mostly SI, rarely 
SC-facultative 

 

UI EL Plants erect to prostrate, reduced leaflet 
no.; flowers mostly straight anther 

tubes and undivided inflorescences; 
fruit whitish-green with dark stripe 

 
S. chilense Southern Peru, northern Chile 

(50–3,500 m) 
 

Very arid and sometimes saline, 
rocky slopes or washes 

 

SI UI, EL Plants erect; leaves finely pubescent;anthers straight; 
inflorescences compound; peduncles long; 

Fruit purplish-green 
 

S. peruvianum Mostly coastal central/southern Peru and 
northern Chile (sea level – 2,500 m) 

 

Arid, sandy, or rocky dry 
washes, sometimes near 

agricultural fields 
 
 

Mostly SI, rarely 
SC-facultative 

UI, EL Plants procumbent; anthers bent; 
inflorescence simple; 
fruit purplish-green 
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Table 1-1 Continued 

aSC=self-compatible; SI= Self-incompatible; autogamous= self-pollinating; allogaous= outcrossing; facultative= may self-pollinate or outcross 
bBC=bilaterally compatible (i.e., no barrier in either direction); UI= unilateral incompatibility (cross succeed only cultivated tomato is used as the female parent); EL= embryo lethality (can usually be overcome by embryo culture);  
cExcept as noted, all spp, are indeterminate, herbaceous shrubs, with 3 leaves per sympodium; flowers have the standard “lycopersicon” morphology- petals yellow; anthers yellow and fused, with a sterile anther appendage, and lateral pollen dehiscence – and 

lack floral scent 
dValues based on Charles Rick’s notes at the time of collection, or observation made during regeneration by the TGRC 

 

Species Geographic distribution Habitat Mating systema Crossability 
to tomatob 

Distinguishing morphological featuresc 

 

S. arcanum Northern Peru, coastal and inter-Andean 
valleys, middle watershed of  Marañón 

(500–3,000 m) 
 

Varied, but generally dry, 
rocky slopes 

 

Mostly SI, rarely 
SC-facultative 

 

UI EL Plants erect to prostrate, reduced leaflet 
no.; flowers mostly straight anther 

tubes and undivided inflorescences; 
fruit whitish-green with dark stripe 

 
S. chilense Southern Peru, northern Chile 

(50–3,500 m) 
 

Very arid and sometimes saline, 
rocky slopes or washes 

 

SI UI, EL Plants erect; leaves finely pubescent; 
anthers straight; inflorescences 

compound; peduncles long; 
fruit 

purplish-green 
 

S. peruvianum Mostly coastal central/southern Peru and 
northern Chile (sea level – 2,500 m) 

 

Arid, sandy, or rocky dry 
washes, sometimes near 

agricultural fields 
 
 

Mostly SI, rarely 
SC-facultative 

UI, EL Plants procumbent; anthers bent; 
inflorescence simple; 
fruit purplish-green 

S. corneliomulleri Western Andes of central/southern Peru 
(1,000–3,000 m) 

 

Rocky or sandy slopes and 
dry washes 

SI UI, EL Erect to decumbent; leaves glandular 
pubescent; 

fruit purplish-green 
 

S. huaylasense Limited to Callejon de Huaylas, and  Río 
Fortaleza, Peru (1,000–2,900 m) 

 

Rocky slopes and waste places SI UI, EL Spreading, anthers straight, inflorescence 
compound; 

fruit purplish-green 
 

S. habrochaites Northwestern and western central Peru, 
western and southern Ecuador 

(40–3,300 m) 
 

Varied, but generally mesic 
slopes or stream banks 

 

Mostly SI, some 
SC-facultative 

 

UI Sprawling shrub or vine; densely 
pubescent; flowers large; anthers 

straight; 
fruit green with dark stripe, 

hairy 
 

S. pennellii Coastal valleys of central to southern 
Peru (near sea level to 1,920 m) 

 

Very arid, sandy or rocky 
slopes, or dry washes 

 

Mostly SI, some 
SC-facultative 

 

UI Spreading shrub; 2 leaves per 
sympodiumd; leaflets broad, round; 

foliage sticky; anthers poricidal; 
pedicel usually articulated at base 
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early events of domestication are not so clear (Peralta and Spooner 2007). Two hypotheses 

have been proposed for the original place of tomato domestication, Peruvian versus Mexican. 

Although the precise time and place of domestication are still to be proven, Mexico has been 

considered to be the most probable original place of domestication or diversification, with 

Peru as the center of diversity for wild relatives (Robertson. and Larate 2007). Spanish 

“explorers” first introduced tomato into Europe in the early 16th century. It was first grown 

for its ornamental value then taken as food by Italians and Spaniards in the 17th century and 

later by people all over the world (Figure 1-1). The earliest citation of the tomato in European 

literature appeared in an herbal written in 1544 by Pietro Andrea Mattioli, an Italian physician 

and botanist, who named it “pomo d’oro”, or "golden apple". During and following its 

domestication, tomato has undergone intensive selection particularly for fruit size, shape and 

color from its closest wild relatives, S. pimpinellifolium. This species produces red, round, 

and small fruit weighing only a few grams. By contrast, the fruit from modern tomato 

varieties may weigh up to 1kg, a nearly 1000-fold increase in weight (Tanksley 2004) (Figure 

1-2). S. pimpinellifolium is thought to be the wild ancestor of cultivated tomato. Nucleotide 

divergence comparison showed that this wild species has a similar genome sequence to that of 

its cultivated relative, with 0.6% divergence, which supports this theory (Sato et al. 2012). S. 

lycopersicum var. cerasiforme produces larger fruits (commonly red and round) than S. 

pimpinellifolium. These accessions are considered as a primitive type of cultivated tomato or 

as a transitional form between the S. pimpinellifolium wild species and the S. lycopersicum 

cultivated one. It also appears that many accessions are original feral accessions (Rick  and 

Holle 1990; Peralta and Spooner 2007). Recent genetic investigations have shown that the 

accessions classified as ‘ceraciforme’ are, at the genome level, a mixture of wild and 

cultivated accessions (Nesbitt and Tanksley 2002; Ranc et al. 2008). The cherry tomato type is 

also morphologically intermediate between S. pimpinellifolium and S. lycopersicum. 

Therefore, domestication took probably place in the following sense: from S. 

pimpinellifolium to S. lycopersicum var cerasiforme then to S. lycopersicum, followed by 

multiple intercrosses between the three groups. 

From the economic point of view, tomato is one of the most commonly consumed vegetables 

(2/3 as fresh product and 1/3 processed). It is grown in almost every countries of the world. 

Both worldwide production and harvested area of fresh market and processing tomato 

increased during the last fifty years and reached 146 million tons and 4.34 million ha in 2010 

(http://faostat.fao.org). China is the largest producer of tomato, accounting for 28% of the 

global production, followed by USA (9%), India (8%), Turkey (7%) and Egypt (6%) etc. 

http://faostat.fao.org/
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 Figure 1-1. Map showing the origin, domestication center and hypothetical diffusion of 
tomato across the world (Cox, 2000). 

 

 

Figure 1-2. Illustration of ripe (58 days after post anthesis) fruits of S. lycopersicum and S. 

pimpinellifolium (From Sato et al. 2012) 
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Tomatoes are also rich source of essential minerals, vitamins and the dietary antioxidant 

lycopene, which protects cells from oxidants, and that have been linked to protection against 

several cancers (Giovannucci 1999; Amarjeet et al. 2011; Kelkel et al. 2011). In addition, 

tomatoes also contribute to provide fiber to the diet (Davies and Hobson 1981). Including or 

increasing fresh tomato and tomato products in the diet would thus benefit to health. 

 

1.1.2 Tomato genetic and genomic resources  

Tomato is among the most important plant species not only because of its economic 

importance and nutritional value but also because it is one of the best characterized plant 

systems both at the genetic and genomic levels. Abundant genetic and genomic resources 

have been developed in tomato. These resources are detailed in the following section. 

Genetic resources 

More than 75,000 tomato accessions are conserved in gene banks around the world. 

Traditional tomato genetic resources include the twelve wild and related species, and their 

collections are publicly available worldwide, for instance, in the Asian Vegetable Research 

and Development Center (AVRDC), now referred to as the world vegetable center (Taiwan), 

in the Tomato Genetics Resource Center (Davis, CA, USA), in the Centre for Genetic 

Resources (Wageningen, Netherlands), in the USDA (Geneva, NY, USA), the N.I. Vavilov 

Research Institute of Plant Industry (St Petersburg, Russia), and in the research unit of 

genetics and improvement of fruit and vegetables (Avignon, France). Wild species have been 

used as sources of genetic variation for tomato improvement. (Rick 1995). Cultivated tomato 

has undergone a narrowing of the germplasm basis due to genetic bottlenecks and selection 

(Robertson. and Larate 2007). 

Other genetic collections such as mutants also available. This kind of collections are 

interesting for the investigation of gene function. The biggest collection is maintained by the 

TGRC (http://tgrc.ucdavis.edu/), including spontaneous and induced mutations affecting 

many aspects of plant development, disease resistance genes, protein marker stocks and other 

traits of economically importance (http://solgenomics.net/). Besides, an isogenic mutant 

library is also available in Solanaceae Genome Network (SGN). It includes a total of 13,000 

M2 families produced from tomato cv. M82 by EMS and fast-neutron mutagenesis. These 

families were phenotypically characterized and categorized into more than 3147 mutations 

(Menda et al. 2004). More recently the generation of a T-DNA insertion mutagenesis 

collection has been reported in wild tomato species (Atares et al. 2011) 

http://tgrc.ucdavis.edu/
http://solgenomics.net/
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                    Table 1-2. Comparision of the most widely used DNA markers in plants. 
 

 RFLP RAPD AFLP SSR CAPS SNP 
Genomic 

abundance 
High Very high Very high Medium High High 

Amount of DNA 
required 

High Low Medium Low Low Low 

Type of 
polymorphism 

Single base 
changes, 
insertion, 
deletion 

Single base 
changes, 
insertion, 
deletion 

Single base 
changes, 

insertion, deletion 

Changes in length 
of repeats 

Single base changes, 
Insertion, 
Deletion 

Single base 
changes, 
Insertion, 
Deletion 

Level of 
polymorphism 

Medium High High High High High 

Inheritance Co-dominant Dominant Dominant Co-dominant Co-dominant Co-dominant 
Ease of use Labor 

intensive 
Easy Difficult initially Easy Easy Easy 

Reproducibility High Intermediate High High high high 
Cost High Low Medium High Low Low 

                          RFLPs:  Restriction fragment length polymorphism  

                          RAPD:  random amplification of polymorphic DNA 

                          RFLPs:  restriction fragment  length  polymorphisms   

                         SSRs:  simple sequence  repeats 

                         CAPS: cleaved amplified polymorphic sequences 

                         SNPs: single nucleotide polymorphisms 
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Other TILLING mutant populations are obtained or under construction in several countries 

and could be used as sources of new phenotypes. Indeed, tomato TILLING populations have 

been provided for both cultivated varieties (Gady et al. 2009; Rigola et al. 2009; Minoia et al. 

2010). Tomato transformation is relatively easy and transgenic lines for delayed ripening 

(Klee et al. 1991), environmental stress tolerance (Lemaux 2008), pest resistance (Fischhoff et 

al. 1987), improved nutrition (Roemer et al. 2000), improved taste (Davidovich-Rikanati et al. 

2007) have been developed. The first commercially available genetically modified food was a 

tomato engineered to have a longer shelf life (the “Flavr Savr” variety sold in 1994 in the 

USA). Currently there are no genetically modified tomatoes available commercially, but 

scientists are developing tomatoes with new traits like increased resistance to pests or 

environmental stresses. Furthermore, there are also several other genetic collections such as 

stress tolerant, cytogenetic, cytoplasmic variants, and collections containing combinations of 

morphological markers. 

 

Genomic resources available in the tomato 

Maps, markers and high-throughput tools for marker identification 

Apart from the genetic resources, genomic resources are also rich in tomato. Tomato has been 

a model organism for fruit bearing plants for long (Giovannoni 2001). The tomato genome is 

well defined by genetic maps based on molecular markers. During the last 20 years, genetic 

maps were improved to obtain a current high density map (http://solgenomics.net/). Various 

types of markers were also developed to characterize genetic resources, construct genetic 

maps and to associate with phenotypes. The characteristics of different types of markers, 

restriction fragment length polymorphism (RFLPs), random amplification of polymorphic 

DNA (RAPD), restriction fragment length polymorphisms (RFLPs), simple sequence repeats 

(SSRs), cleaved amplified polymorphic sequences (CAPS) and single nucleotide 

polymorphisms (SNPs), are presented in Table 1-2. However, many markers were developed 

based on polymorphism in wild species and are not polymorphic when used within cultivated 

germplasm (Jimenez-Gomez and Maloof 2009). Therefore, development of markers continues 

to be important in tomato. SNPs are the most abundant variation in the genome, most of them 

are non-gel based markers, they are initially expensive markers but with the development of 

high-sequencing genotyping technologies, they are quite cost-effective and less time 

consuming markers (Rafalski 2002). Next generation sequencing (NGS) platforms now help  

http://solgenomics.net/
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Table 1-3. Comparison of next-generation sequencing technologies  

(Deschamps and Campbell 2010). 

Sequencing 

platform 

Run time Read length 

(bp) 

Reads per run 

(million) 

Throughput per run 

(Gbp) 

Roche 454 FLX 10 h 400-500 ~1 0.4-0.5 

Illumina GAIIx 55 days 100 160 16 

ABI SOLID 6-7 days 50 500 25 

Helicos HeliScope 8 days 25-55 600-800 21-28 

Polonator 80 h 28  300-400 9 
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to produce an abundance of low-cost, high volume sequence data. They allow millions of 

bases to be sequenced in one round, at a fraction of the cost relative to traditional Sanger 

sequencing (Egan et al. 2012). The main commercially available NGS technologies are 

Roche/454, Solexa/Illumina and AB SOLiD system. Recently, Helicos Biosciences has 

introduced its version of single-molecule sequencing (tSMS). These technologies present 

several ways to sequence DNA, prepare template, immobilization, nucleic acid chemistries, 

synthesis, and detection of nucleotide type and order. Comparison of the next generation 

sequencing platforms is summarized in Table 1-3. These technologies demonstrated the 

potential to overcome the limitations of Sanger sequencing. For example, sequencing can be 

multiplexed to a much greater extent by many parallel reactions at a greatly reduced cost. One 

of the first applications of NGS in plants identified over 36,000 putative maize SNPs using 

260,000 and 280,000 ESTs, sequenced using Roche 454 (Barbazuk et al. 2007). Roche 454 

technology was used to sequence and assemble 148 Mbp of EST sequences for Eucalyptus 

grandis (Novaes et al. 2008). These technologies evolved very fast, with the length of reads 

and precision increasing each month, and it is a real opportunity to test such strategy for SNP 

discovery in tomato. Parallel strategies to develop markers using high-throughput methods 

include in silico mining of SNPs from EST databases (Yang et al. 2004; Labate and Baldo 

2005), oligo-based microarray hybridization (Sim et al. 2009), and sequencing introns of 

conserved orthologous set (COS) genes (Van Deynze et al. 2007; Labate et al. 2009). 

Recently, whole transcriptome sequencing of six tomato accessions including four 

representatives of large-fruited cultivated tomato, a cherry tomato and a closely related wild 

relative led to the identification of 62,576 non-redundant putative SNPs. The utility of these 

SNPs for assessing genetic variation within cultivated and wild populations was demonstrated 

(Hamilton et al. 2012). Subsequently, the first large scale SNP genotyping array was also 

developed for tomato using 8,784 SNPs from this study. The array was optimized for 

polymorphic SNP markers within the cultivated lineages, allele frequency and genome 

coverage (Sim et al. 2012).  

Furthermore, next generation sequencing technologies 454/Roche GS FLX, SOLIDTM 

sequencer (Applied Biosystems, Foster City, CA), Illumina sequencing combined with Sanger 

sequencing technology have been used to produce the first high quality tomato whole genome 

sequence. The size of the genome is estimated at 950 Mb and contains around 35,000 genes 

which have been annotated (Sato et al. 2012). The genome sequence of domesticated tomato, 

a draft sequence of its wild relative, S. pimpinellifolium are now available to the scientific 

community. They were compared to each other, and also to potato genome. The two tomato  
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Figure 1-3 Tomato genome topography and synteny. A, Multi-dimensional topography of tomato 

chromosome 1. a, Left: contrast-reversed, 49,6-diamidino-2-phenylindole (DAPI)-stained pachytene chromosome; centre and 
right: FISH signals for repeat sequences on diagrammatic pachytene chromosomes (purple, TGR1; blue, TGR4; red, telomere 
repeat; green, Cot 100 DNA (including most repeats). b, Frequency distribution of recombination nodules (RNs) representing 
crossovers on 249 chromosomes. Red stars mark 5cM intervals starting from the end of the short arm (top). Scale is in 
micrometers. c, FISH based locations of selected BACs (horizontal blue lines on left). d, Kazusa F2-2000 linkage map. Blue 
lines to the left connect linkage map markers on the BAC-FISH map (c), and to the right to heat maps (e) and the DNA 
pseudo molecule (f). e, From left to right: linkage map distance (cM/Mb, turquoise), repeated sequences (% nucleotides per 
500 kb, purple), genes (%nucleotides per 500 kb, blue), chloroplast insertions; RNA-Seq reads from leaves and breaker fruits 
of S. lycopersicum and S. pimpinellifolium (number of reads per 500 kb, green and red, respectively), microRNA genes 
(transcripts per million per 500 kb, black), small RNAs (thin horizontal black and red lines, sum of hits-normalized 
abundances). Horizontal grey lines represent gaps in the pseudo molecule (f). f, DNA pseudo molecule consisting of nine 
scaffolds. Un-sequenced gaps (approximately 9.8Mb) are indicated by white horizontal lines. Tomato genes identified by 
map-based cloning are indicated on the right. B. Syntenic relationships in the Solanaceae. COSII-based comparative maps of 
potato, aubergine (eggplant), pepper and Nicotiana with respect to tomato genome. Each tomato chromosome is assigned a 
different color and orthologous chromosome segment(s) in other species are shown in the same color. White dots indicate 
approximate centromere locations. Each black arrow indicates an inversion relative to tomato and ‘11’ indicates a minimum 
of one inversion. Each black bar beside a chromosome indicates translocation breakpoints relative to tomato. Chromosome 
lengths are not to scale, but segments within chromosomes are. C,Tomato–potato syntenic relationships dot plot of tomato 
(T) and potato (P) genomic sequences based on collinear blocks. Red and blue dots represent gene pairs with statistically 
significant high and low (Ka/Ks) in collinear blocks, which average Ks<=0.5, respectively. Green and magenta dots represent 
genes in collinear blocks which average 0.5<Ks<=1.5 and Ks>1.5, respectively. Yellow dots represent all other gene pairs. 
Blocks circled in red are examples of pan-eudicot triplication. Inserts represent schematic drawings of BAC-FISH patterns of 
cytologically demonstrated chromosome inversions (Sato et al. 2012). 
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genomes show only 0.6% nucleotide divergence and signs of recent admixture, but they show 

more than 8% divergence from potato, with nine large and several smaller inversions (Figure 

1-3). 

During the sequencing of the genome, various genomic resources including Bacterial 

Artificial Chromosome (BAC), physical maps, a large set of molecular markers and a number 

of computational pipelines for sequence analysis and genome annotation were developed 

(Mueller et al. 2009). Meanwhile, numerous large-scale functional genomic resources have 

been developed over the past years. A collection of more than 11,000 tomato cDNA sequences 

has been released (Aoki et al. 2010). A large number of Expressed Sequence Tags (ESTs) that 

currently represent approximately 40,000 unigenes derived from more than 300,000 ESTs 

have been generated (http://www.sgn.cornell.edu). They have been used in several microarray 

platforms to study the tomato fruit at transcriptome level (Lemaire-Chamley et al. 2005). At 

the proteomic level, tomato proteome profiles during precise stages of fruit growth and 

ripening have been established by Faurobert et al. (2007). Proteomics technical platforms 

were also developed in order to characterize the differences in cell wall structure and 

composition that occur during tomato fruit development and ripening (Rose et al. 2004a; Rose 

et al. 2004b). The complete tomato genome sequence (Sato et al. 2012) will increase the 

efficiency of protein identification after their separation and subsequent mass spectrometry 

analysis. Fruit metabolite profiles have also been characterised and integrated with 

transcriptomic and phenotypic data to study the metabolic networks in order to improve 

tomato fruit quality (Carrari et al. 2006; Osorio et al. 2011). Furthermore, many other web 

resources that gather data obtained from different tomato “omics” approaches are publicly 

available and was reviewed by Barone et al. (2008).  

1.1.3 Tomato fruit quality traits   

The objective of tomato breeding initially focused on yield and ancillary traits (adaptation, 

disease resistance, earliness) as reviewed by Causse et al. (2006). Nowadays, the social 

demand concerns tomato fruit quality (organoleptic and nutritional value), but yield and 

ancillary traits remain necessary targets. Tomato fruit is mainly composed of water (95%), and 

5 % of dry matter, which comprising around 50% sugars, 10% organic acids, 8% minerals, 

7% pectin and less proportion of carotenoids and other secondary metabolites (Davies and 

Hobson 1981) (see Figure 1-4).  

 

http://www.sgn.cornell.edu/
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Figure 1-4. Composition of tomato fruit (Adapted from Davies and Hobson 1981) 
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 Fruit quality for fresh market tomato is determined by both external (size, color, and 

firmness) and internal (flavor, aroma, texture) characteristics. The relationships between fruit 

characteristics and tomato taste have been widely studied (Causse et al. 2010). Sugar content, 

acids and their ratio play an important role in determining fruit flavor (Stevens et al. 1977; 

Stevens et al. 1979; Bucheli et al. 1999). Sugar and acid contents are also related to sweetness 

and sourness (Stevens et al. 1977) and contribute to sweetness and the overall aroma intensity 

(Baldwin et al. 1998). Texture traits are more difficult to relate to instrumental measurements, 

although firmness perceived when eating is partly related to compression tests (Causse et al. 

2001). Recently, Tieman et al. (2012) used targeted metabolomics and natural variation in 

flavor-associated sugars, acids, and aroma volatiles to evaluate the chemistry of tomato fruits, 

creating a predictive and testable model of liking. This approach provides novel insights into 

flavor chemistry, the interactions between taste and retronasal olfaction, and paradigm for 

enhancing liking of natural products. Moreover, consumer preference maps were also 

constructed in different countries (Netherlands, France, and Italy) and identified the most 

important characteristics (Causse et al. 2010). The study also showed that preferences were 

homogeneous across countries. Consumers from different countries have a large range of 

preference. In addition, consumers appreciated both firm and soft tomatoes. Cherry tomatoes, 

with fruits rich in acids and sugars, are usually preferred (Hobson and Bedford 1989). In 

contrast, long shelf cultivars have been described as less tasty than traditional ones (Jones 

1986), with lower volatile content (Baldwin et al. 1991). The carotenoid pigments determine 

the color of tomato fruit. Most tomatoes produce red fruits, but a number of cultivars with 

yellow, orange, pink, purple, green, black, or white fruit are also available. Ripe fruit contain 

high levels of lycopene, the pigment that gives tomato its red color (Darrigues et al. 2008). 

Both Davis and Hobson (1981) and Stevens (1986) reviewed the literature on the genetic 

variability for quality traits in natural condition while Dorais et al. (2001) reviewed the impact 

of environmental conditions in greenhouse production. A large range of genetic variation has 

been identified for every quality components such as fruit weight, fruit firmness and sugar 

content (Davies and Hobson 1981; Langlois et al. 1996; Causse et al. 2003; Tikunov et al. 

2005). The analysis of trait inheritance shows a polygenic control for most of the quality traits 

(Stevens 1986; Causse et al. 2003). The genetic dissection of the molecular bases of quality 

traits is necessary for fruit quality improvement. Up to now, the most widely used methods for  
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this purpose are based on the identification of Quantitative Traits Locus (QTL) mapping, and 

more recently on association mapping. In addition, high-throughput sequencing/genotyping 

technologies are also opening a broad range of new prospects towards the application of 

systems biology approaches for better understanding the molecular and genetic basis of 

complex traits. 

1.2 Genetic control of quality traits 

Most quality traits of interest are quantitatively inherited. They are under the control of many 

genes. Thanks to molecular markers, genetic maps can be constructed and numerous 

quantitative trait loci (QTLs) were identified in tomato (Paterson et al. 1991; Saliba-

Colombani et al. 2001; Wang et al. 2006; Szalma et al. 2007; Orsini et al. 2012). QTL 

mapping approach allowed screening mapping populations usually derived from the cross 

between a wild species and a cultivated accession. This approach has several advantages: (i) 

no population structure in the mapping population; (ii) segregating alleles are at balanced 

frequency; (iii) it allows the detection of rare alleles and epistasis. However, the linkage 

mapping approach has several limitations: (i) restricted allelic variation in bi-parental 

mapping population; (ii) low precision due to limited recombination within the population 

(Hall et al. 2010). In the following section, we will detail the methodology of QTL mapping 

and its application in tomato mainly focused on quality traits. 

1.2.1 QTL mapping: methodology and application in tomato 

There are four main steps in QTL mapping: 1) obtaining a mapping population derived from 

two contrasted inbred lines for the phenotype of interest; 2) phenotypic characterization of a 

relatively large number of individuals from a segregating population; 3) build genetic linkage 

map using molecular markers and based on the recombination rates in the progeny; 4) statistic 

analysis to identify the loci underlying the genetic architecture of the traits of interest. Such 

mapping studies are performed to detect the tight linkage of a molecular marker to a gene 

controlling the variation of the phenotype of interest. Developing a population for QTL 

mapping involves selecting contrasted parents, crossing them with each other, then advancing 

the progeny in an appropriate manner to obtain a set of individual plants of lines segregating 

for traits of interest. Most commonly, a QTL mapping population is derived from the cross of 

two parental lines that show marked differences for the trait of interest. A typical QTL 

population consists of 100 to 300 lines or individual plants, each of which is characterized at 

both genotypic and phenotypic level. Three common types of QTL mapping population are  
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generally used: F2, recombinant inbred line, and backcross populations. The F2 population 

can be quickly obtained by selfing the F1 hybrid between two parents. The recombinant 

inbred line (RIL) population is built through single seed descent from the F2 generation.  

Backcross populations are developed by crossing an F1 individual to one of its parents. 

Introgression lines are constructed by an advanced backcross program. Molecular markers for 

construction of linkage maps in tomato have been described in genomic resources section. 

Briefly, maps initially mainly relied on the development of RFLP markers (Tanksley et al. 

1992). Then PCR-based markers such as SSR, AFLP or CAPs markers were used. During the 

past two decades, several genetic maps of tomato genome have been reported. More than 

2000 loci detected by RFLP, amplified fragment length polymorphism (AFLP), cleaved 

amplified polymorphic sequence (CAPS), and SSR markers were mapped on populations 

derived from crosses between a tomato accession and related wild species. In order to increase 

the average density of initial maps, SNP markers now replace these markers. Recently, a total 

of 1137 markers, including 793 SNPs and 344 SSR were mapped onto two mapping 

populations derived from crosses between ‘Micro-Tom’ and either ‘Ailsa Craig’ or ‘M82’ 

(Shirasawa). SNP array which contains 7720 SNPs was used to generate high-density maps 

for three interspecific F2 populations: EXPEN2000 (Solanum lycopersicum LA0925 × S. 

pennellii LA0716, 79 individuals), EXPEN2012 (S.lycopersicum Moneymaker × S. pennelli 

LA0716, 160 individuals), and EXPIM2012 (S. lycopersicum Moneymaker × S. 

pimpinellifolium LA0121, 183 individuals). The EXPEN 2000-SNP and EXPEN 2012 maps 

consisted of 3,503 and 3,687 markers representing 1,076 and 1,229 unique map positions 

(genetic bins), respectively. The EXPEN 2000-SNP map had an average marker bin interval 

of 1.6 cM, while the EXPEN 2012 map had an average bin interval of 0.9 cM. The EXPIM 

2012 map was constructed with 4,491 markers (1,358 bins) and an average bin interval of 0.8 

cM (Sim et al. 2012). 

Statistical methods for QTL mapping 

The simplest method for QTL mapping is ANOVA that assesses the relationship of a 

phenotype with a marker genotype, and thus indicates which markers are associated with the 

quantitative trait of interest (Soller et al. 1976). This method is simple while easily 

incorporates covariates, and could be extended to more complex models. Disadvantages are 

that individuals with missing genotype data are excluded, QTL location is not precise in low-

density scan and it only considers one QTL at a time. Simple interval mapping (SIM) is 

another method for QTL mapping. It uses an estimated genetic map as the framework for the 

location of putative QTL (Lander and Botstein 1989). It statistically tests for a single QTL at  
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each location incremented along the ordered markers in the genome. The results of the tests 

are expressed as LOD (logarithm of the odd ratio) scores, which compare the likelihood 

function under the null hypothesis (no QTL) with the alternative hypothesis (QTL at the 

testing position) for the purpose of locating probable QTL. The advantages of this method are 

(i) it takes into account missing data, (ii) it allows higher power in low-density scans and (iii) 

it improves the precision of QTL location. The disadvantages are greater computational effort, 

need for specialized software, and it only considers one QTL per chromosome. 

The drawback of SIM mapping was overcome by composite interval mapping (CIM) (Zeng 

1994) and MQM (multiple-QTL model) developed by (Jansen and Stam 1994). Both methods 

combine interval mapping for a single QTL in a given interval with multiple regression 

analysis on markers associated with other QTL. It considers a marker interval plus a few other 

well-chosen single markers as covariates in each analysis. The advantages of CIM are as 

follows: mapping of multiple QTLs can be accomplished by the search in one dimension; by 

using linked markers as cofactors, the test is not affected by QTL outside the region, thereby 

increasing the precision of QTL mapping; by eliminating much of the genetic variance 

controlled by other QTL, the residual variance is reduced, thereby increasing the power of 

detection of QTL. CIM is more powerful than SIM, but is yet to be extensively used in QTL 

mapping. There are three limitations for CIM mapping: 1) the use of tightly linked markers as 

cofactors can reduce the statistical power to detect QTL; 2) the test statistic in a marker rich 

region may not be compared to that in a marker poor region; 3) Estimation of the joint 

contributions of multiple linked QTL and epistasis is difficult (Zeng et al. 1999). 

Multiple interval mapping (MIM) is the extension of interval mapping of multiple QTLs, just 

as multiple regression extends analysis of variance. MLM allows one to infer the location of 

QTLs to positions between markers, makes proper allowance for missing genotype data, and 

allow interactions between QTLs to be tested. 

 

1.2.2 Mapping of QTLs for fruit quality traits in tomato 

 

In tomato, many studies have been carried out to map specially the QTLs controlling fruit 

quality related traits in progenies derived from inter-specific crosses (Grandillo et al. 2011) 

(Table 1-4). Here are the details for fruit weight, fruit shape, locule number, firmness, color 

and sugar related traits. 
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Table 1-4  Summary of QTL mapping studies conducted in Solanum sect. lycopersicon for morphological, yield, fruit quality and 
reproductive-related traits (reviewed by Grandillo et al. 2011) 

 

Wild or donor parent Main traits 
analyzed 

No. traits 
evaluated a 

No. 
QTL b 

Mapping population (pop. size)c Marker typed No. Markers Referencese 

S. arcanum LA1708 Yield, fruit quality, 
horticultural 

35 (29) 166 BC3/BC4 (200) RFLP, PCR, MO 174 Fulton et al. (1997) 

S. arcanum LA1708 Biochemical related to flavor 15 103 BC3/BC4 (200) RFLP, PCR, MO 174 Fulton et al. (2002) 

S. chmielewskii LA1028 Fruit weight, brix, pH 3 15 BC1 (237) RFLP, ISO, MO 70 Paterson et al. (1988, 1990), 
Frary et al. (2003) 

S. chmielewskii LA1028 Brix 1 nsf LA1563 (BC5S5), derived 
F2 

RFLP 60 Osborn et al. (1987) 

S. chmielewskii LA1028 Yield, brix, pH 6 ns ns LA1500-LA1503, LA1563 
(BC5S5), derived F2/F3 

RFLP, ISO 132 Tanksley and Hewitt (1988) 

S. chmielewskii LA1028 Yield, brix, fruit quality 13 ns LA1500-LA1503, LA1563 
(BC5S5), BILs 

RFLP 9 Azanza et al. (1994) 

S. chmielewskii CH6047 Flowering time 2 8 F2 (149) AFLP, CAPS/ 
SCAR/CG, SSR 

225 Jimenez-Gomez et al. (2007) 
 

S. chmielewskii LA1840 Fruit weight and composition 16 (14) 103 ILs (20) COSII, SSR 133 133 Prudent et al. (2009) 

S. galapagense LA0483 Frui size, brix, pH 3 29 F2/F3 (350) RFLP 71 Paterson et al. (1991) 

S. galapagense LA0483 Fruit quality 3 73* F8 RILs (97) RFLP, MO, ISO 135 Goldman et al. (1995) 

S. galapagense LA0483 Morphological 7 41* * F8 RILs (97) RFLP, MO, ISO 135 Paran et al. (1997) 

S. habrochaites LA1777 Sexual compatibility factors 
and 
floral morphology 

9 23 BC1 (149) RFLP 135 Bernacchi and Tanksley (1997), 
Chen and Tanksley (2004), 
Chen et al. (2007) 

S. habrochaites LA1777 Yield, fruit quality, 
horticultural 

19 121 BC2/BC3 (315/200) RFLP 122 Bernacchi et al. (1998a) 

S. habrochaites LA1777 
and  S. pimpinellifolium 
LA1589 

Yield, fruit quality, 
horticultural 

12 22 NILs RFLP nsf Bernacchi et al. (1998b), Monforte and 
Tanksley (2000), Monforte et al. (2001), 
Yates et al. (2004) 

S. habrochaites LA1777 Biochemical related to flavor 15 34 BC2/BC3 (315/200) RFLP 122 Fulton et al. (2002) 

S. habrochaites LA1777 Aroma volatiles 40 (27) 30 ILs, BILs (89) RFLP 95 Mathieu et al. (2009) 

S. habrochaites LA1777 Hybrid incompatibility, floral 
morphology 

25 22 ILs, BILs (71) RFLP 95 Moyle and Graham (2005) 
Moyle (2007) 

S. habrochaites LA0407 Stem vascular morphology 5 1 BILs (BC2S5), F2:3 (64) RFLP, PCR 67 Coaker et al. (2002) 
 

S. habrochaites LA0407 Fruit color 3 13 BILs (BC2S5)/F3, F4 (64) RFLP, PCR 63 ;394 Kabelka et al. (2004) 

S. habrochaites PI-247087 Ascorbic acid 2 5 BC2/BC2S1 (130/79,68) AFLP, RFLP, 
SSR, MO, CGAA 

217 Stevens et al. (2007) 
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Table 1-4 Continued-1

Wild or donor parent Main traits 
analyzed 

No. traits 
evaluated a 

No.QTL b Mapping population (pop. ize)c Marker typed No. Markers Referencese 

S. habrochaites LYC4 
(IL5-1 and IL5-2 lines) 
and S. habrochaites 
(IVT-line 1) 

Parthenocrapy, stigma exsertion 2 5 (two) BC5S1, F2 CAPS, COS, 
SSR 

34 Gorguet et al. (2008) 

S. lycopersicum 

“cerasiforme” Cervil 
inbred line 

Aroma volatiles (18), fruit quality 32 (26) 81 81 F7-RILs (144) RFLP, AFLP, 
RAPD, MO 
 

103 Saliba-Colombani et al.(2001), 
Causse et al (2002, 2007), 
Lecomteet al. (2004a, b), 
Chaïb et al. (2007) 

S. lycopersicum 

“cerasiforme” Cervil 
inbred line 

 
Sensory attributes (12) 

 
12 

 
49 

 
F7-RILs (144) 

 
RFLP, AFLP, 
RAPD, MO 
 

 
103 

 
Causse et al. (2001, 2002, 2007), 
Lecomte et al. (2004a, b), 
Chaïb  et al.(2007) 

S. lycopersicum 

“cerasiforme” Cervil 
inbred line 

Ascorbic acid 2 6 F7-RILs (144) RFLP, AFLP, 
RAPD, MO 
 

103 Stevens et al. (2007) 
 

S. neorickii LA2133 Yield, fruit quality, horticultural 30 199 BC2/BC3 (170) RFLP, PCR, MO 133 Fulton et al. (2000) 
S. neorickii LA2133 Biochemical related to flavor 15 52 BC2/BC3 (170) RFLP, PCR, MO 133 Fulton et al. (2002a) 

S. pennellii LA0716 Fruit weight, seed weight, stigma 
exsertion, leaflet shape 

4 21 BC1 (400 ISO 12 12 Tanksley et al. (1982) 

S. pennellii LA0716 Morphological (plant, flower, 
leaf) 

11 74 F2 (432) RFLP 98 deVicente and Tanksley (1991) 

S. pennellii LA0716 Yield, fruit quality 6 104 ILs/HILs/ILs _ Tester 
(49/50/50) 
 

RFLP 375 Eshed and Zamir (1995, 1996), 
Alpert et al.(1995), Eshed et al.(1996), 
Gur and Zamir  (2004) 

S. pennelli LA0716 Fruit shape 2 1 F2 from IL2-5 (60) RFLP 15 Ku et al. (1999) 
S. pennellii LA0716 Sensory attributes , aroma 

volatiles 
ns 1 ILS (4) RFLP ns Tadmor et al. (2002) 

S. pennellii LA0716 Leaf morphology and size 8 30 ILS (58) RFLP 375 Holtan and Hake  (2003) 
S. pennellii LA0716 Fruit color, carotenoids 6 50 ILs (75) RFLP, CG 637 (614, 

23) 
Liu et al. (2003) 

S. pennellii LA0716 and S. 
pimpinellifolium 
LA1589 

Locule number 2 4 Several F2 ns ns Barrero and Tanksley (2004) 
 

S. pennellii LA0716 Fruit size and composition 9 81 ILs (70) RFLP, CG 671 
(592,79) 

Causse et al. (2004) 
 

S. pennellii LA0716 Leaf and flower morphology 22 (18) 36 F2 (83) RFLP, SSR, 
COS 

391, (350, 10, 
31) 

Frary et al. (2004) 

S. pennellii LA0716 Fruit quality,  
 Transcriptomic analysis 

6 ns ILs (6) RFLP ns Baxter et al. (2005) 
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Table 1-4 Continued-2 

 aThe number of traits for which QTLs were identified is indicated in parenthesis 
bAn “*” indicates the number of significant markers _ traits associations 
cILH Introgression line hybrid 
dFor markers abbreviations text 
eSome of the related and/or follow-up studies are also listed 
fns not specified 
gFruit metabolism and yield-associated traits, respectively 
hper population 

Wild or donor parent Main traits 
analyzed 

No. traits 
evaluated a 

No.QTL 

b 
Mapping population (pop. ize)c Marker typed No. Markers Referencese 

S. pennellii LA0716 Fruit antioxidants 5 20 ILs (76) RFLP ~600 Rousseaux et al. (2005) 
S. pennelli LA0716 Primary metabolites 

(74), yield related 
83 889,326g ILs (76) RFLP  ~600 Schauer et al. (2006) 

S. pennelli LA0716 Yield fitness 35 841 ILs, ILHs (76; 76) RFLP ~600 Semel et al. (2006) 
S. pennelli LA0716 Aroma volatiles (23),organic acids 25 (24) 29 ILs (74) RFLP ~600 Tieman et al. (2006) 
S. pennellii LA0716 Ascorbic acid 1 12 ILs (71) RFLP ~600 Stevens et al. (2007, 2008) 
S. pennelli LA0716 Hybrid incompatibility 4 19 ILs (71) RFLP ~600 Moyle and Nakazato (2008) 
S. pennelli LA0716 Primary metabolites (74) 74 332 ILs, ILHs (68;68) RFLP ~600 Schauer et al. (2008) 
S. pennellii LA1657 Yield, fruit quality, horticultural 25 84 BC2/BC2F1 (175) RFLP 150 Frary et al. (2004) 
S. pimpinellifolium CIAS27 Fruit quality, horticultural 18 85 F2 (1,700) MO, ISO 6 6,4 Weller et al. (1988) 
S. pimpinellifolium LA1589 Fruit quality,  

flower morphology, 
flowering and ripening time 

19 54 BC1 (257)  MO, RAPD, 
RFLP 
 

120 Grandillo and Tanksley (1996),  
Alpert et al. (1995), 
 Grandillo et al.(1996), Ku et al. (2000) 

S. pimpinellifolium LA1589 Yield, fruit quality, horticultural 21 (18) 87 BC2/BC2F1/BC3 (~170/170) MO,RAPD,CAPS,RFLP 121 Tanksley et al. (1996) 
S. pimpinellifolium LA0722 Fruit quality, lycopene 7 59 BC1/BC1S1 (119) RFLP 151 Chen et al. (1999) 
S. pimpinellifolium LA1589 Fruit shape 2 2 F2 (82) RFLP 82 Ku et al. (1999) 
S. pimpinellifolium LA1589 Fruit size and shape 7 30 F2 (114) CAPS 90 Lippman and Tanskley (2001) 
S. pimpinellifolium LA1589 Fruit and ovary shape 2 1 F2 (100) RFLP, SNP 108 van der Knaap and Tanksley (2001) 
S. pimpinellifolium LA1589 Fruit quality, horticultural 22 71 BC2F6 – BILs (196) RFLP, MO 127 Doganlar et al. (2002) 
S. pimpinellifolium LA1589 Biochemical related to flavor 15 33 BC2/BC2F1/BC3 (~170) MO, RAPD, 

CAPS, RFLP 
121 Fulton et al. (2002) 

S. pimpinellifolium LA1589 Fruit shape 3 4 F2 (85) RFLP 97 van der Knaap et al. (2002) 
S. pimpinellifolium LA1589 Fruit shape and size 10 50 F2 (200) RFLP 93 van der Knaap and Tanksley (2003) 
S. pimpinellifolium LA1589 Fruit shape 15 36, 32, 

27h 
(two) F2, BC1 
27(99; 130; 100)h 

RFLP, PCR 111, 111, 
108h 

Brewer et al. (2007) 
 

S. pimpinellifolium LA1589 Fruit shape 14 20, 23, 
20h 

(three) F2 (130;106; 94) RFLP, PCR 111, 96, 97 Gonzalo and van der Knaap (2008) 

S. lycopersicum IVT KTl 
(breeding line containing  
S.pimpinellifolium and  
S.neorickii introgressions) 

Fruit size, flowering and 
ripening time 
 

6 3 F2, F3 (292) RFLP 45 Lindhout et al. (1994) 

S. pimpinellifolium 

 LA1237(the “selfer”) and 
LA1581 (the “outcrosser”) 

Flower morphology and number 6 (4) 5 F2 (147) RFLP 48 Georgiady et al. (2002) 
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Fruit weight 

In tomato, a minimum of 28 loci accounting for fruit mass has been identified (Grandillo et al. 

1999; Paran and van der Knaap 2007). Six of them fw1.1, fw2.2, fw2.3, fw3.1, fw3.2, fw4.1 

and fw9.1 are responsible for more than 20% of fruit weight variation.  However, only fw2.2 

has been cloned and studied at the molecular level so far (Tanksley 2004). fw2.2 encodes a 

protein controlling fruit growth and mutations at this locus resulted in a major increase in fruit 

size during tomato domestication (Alpert et al. 1995; Frary et al. 2000). This locus makes the 

largest contribution to the difference in fruit size between most cultivated tomatoes and their 

small-fruited wild species counterparts (Alpert et al. 1995). More recently, fw3.2 was fine 

mapped by Zhang et al. (2012) to a 51.4kb interval corresponding to a region comprising 

seven candidate genes. Fruit shape analysis indicated that fw3.2 primarily played a role in 

controlling fruit weight, with a minor effect on fruit shape (Zhang et al. 2012).     

Fruit shape 

Most of the tomato cultivars produce round fruits but many shape variants exist, either 

flattened or elongated. The major loci that have been identified as contributing to an elongated 

shape in tomato are sun (van der Knaap and Tanksley 2001; van der Knaap et al. 2002; 2004), 

ovate (Ku et al. 1999; Liu et al. 2002; van der Knaap et al. 2002) and fs8.1 (Grandilio et al. 

1996; Ku et al. 2000). Sun encodes a protein that is a positive regulator of growth factor. It 

controls elongated and pointed fruit shape and is hypothesized to alter hormone or secondary 

metabolite levels (Xiao et al. 2008). The QTL ovate was cloned and the gene corresponds to a 

new class of regulatory protein responsible for the variation of the length / width index (Liu et 

al. 2002). The QTL fs8.1 induces a square shape of the fruit. This character was used in 

breeding cultivars for industrial production because it increased the strength of the fruit during 

mechanical harvesting (Ku et al. 2000). 

Locule number 

Locule number of tomato fruit influences fruit shape and size. The locules are directly derived 

from the carpels in the flower. Two QTLs fas and locule number (lc, also named lcn2.1), have 

major effects on the phenotype. Both have been positionally cloned. Mutations in the fas gene 

are described as key factors leading to the increase in fruit size (Cong et al. 2008).  
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The lc QTL is located in a 1,600-bp region 1,080-bp downstream from 3’ end of WUSCHEL, 

which encodes an homeodomain protein that regulates stem cell fate in plants (Munos et al. 

2011). In addition to fas and lc, several QTLs controlling locule number have been mapped, 

and a candidate gene approach has been used to map genes regulating floral meristem 

development that might colocalize with known QTLs for locule number (Barrero et al. 2006). 

Firmness 

Fruit firmness is determined by a number of factors including cell wall structure, turgor 

(Saladie et al. 2007) and cuticle properties (Chaib et al. 2007) and is therefore likely to be a 

highly complex trait, involving numerous genes and pathways (Brummell and Harpster 2001). 

A total of 64 QTLs controlling firmness were mapped using seven different populations 

(Tanksley et al. 1996; Fulton et al. 1997; Bernacchi et al. 1998a; Causse et al. 2002; Doganlar 

et al. 2002; Frary and Doganlar 2003). Many candidate genes tested linked to cell wall 

modification but none validated as QTL. One QTL was fine mapped on chromosome 2 using 

the S. pennellii interspecific introgression lines (IL) and fine mapped in a population 

consisting of 7500 F2 and F3 lines from IL 2-3 and IL 2-4 (Chapman et al. 2012).   

Color 

Eight QTL that modify lycopene content in the fruit, including a major QTL accounting for 

12% of the total phenotypic variation, were identified in a segregating population involving S. 

pimpinellifolium (Chen et al. 1999). Five QTL that modify fruit color intensity were identified 

by Tanksley et al. (1996). Saliba-Colombani et al. (2001) identified three QTL for L*, a* and 

b* color parameters, two QTL for lycopene and three for carotene content. QTLs related to 

these three components were also mapped on a recombinant inbred line population S. 

lycopersicum × S. pennellii (Yong-Sheng et al. 2003). Sixteen QTLs were identified but only 

three corresponded to previously known mutations (r, B and Del) involved in lycopene 

synthesis pathway. 

Sugar and related traits 

Genomic regions carrying QTLs for sugar content or related traits (Brix, fructose, glucose, or 

sucrose content) were detected on different populations involving several species (Paterson et 

al. 1988; Paterson et al. 1990; Paterson et al. 1991; Azanza et al. 1994; Eshed and Zamir 

1995; Goldman et al. 1995; Grandillo and Tanksley 1996; Tanksley et al. 1996; Fulton et al. 

1997; Fulton et al. 2000; Fulton et al. 2002; Bernacchi et al. 1998a; Chen et al. 1999; Saliba-

Colombani et al. 2001; Doganlar et al. 2002; Causse et al. 2004) (see Figure 1-5). 
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Figure 1-5 Summary of QTL for sugar content or related traits (Brix° or hexose content) in 
one of the following progeny: S. lycopersicum × S. cheesmaniae F2 population (Paterson et 
al. 1991); S. lycopersicum ×S. cheesmaniae recombinant inbred population (Goldman et al. 
1995); S. lycopersicum × S. chmielewskii F2 and advanced backcross lines (Paterson et al. 
1988, 1990; Azanza et al. 1994);S. lycopersicum × S. habrochaites advanced backcross 
population (Bernacchi et al. 1998); S. lycopersicum × S. neorickii advanced backcross 
population (Fulton et al. 2000); S. lycopersicum × S. pimpinellifolium advanced backcross 
population (Tanksley et al.1996; Doganlar et al. 2002); S. lycopersicum × S. pimpinellifolium 

backcross populations (Grandillo and Tanksley 1996; Chen et al. 1999); S. lycopersicum × S. 

pennellii introgression lines (Eshed and Zamir 1995; Causse et al. 2004); S. lycopersicum × S. 

pennellii advanced backcross population (Frary et al. 2004); S. lycopersicum × S. peruvianum 

advanced backcross population (Fulton et al. 1997); S. lycopersicum cv cerasiforme×S. 

lycopersicumrecombinant inbred line population (Saliba-Colombani et al.2001). The data 
concerning the advanced backcross involving S. pimpinellifolium, S. peruvianum, S. neorickii 

and S. habrochaites were summarized by Fulton et al. (2002). The QTLs were positioned on 
the tomato reference map (Tanksley et al. 1992), based on the nearest marker (Adapted from 
Labate et al. 2007). 
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Some QTLs controlling sugar related traits were identified in the same chromosomic region. 

Brix9-2-5, a major QTL that increase sugar content of tomato was delimited through fine 

mapping to 484 bp of the apoplastic invertase (LIN5), which operates in sugar transport to the 

developing fruit (Fridman et al. 2000). For soluble solid content, 23 QTLs controlling the 

content in soluble solids have been mapped (Fridman et al. 2000). Causse et al. (2004) 

mapped 63 genes encoding enzymes involved in the Calvin cycle, glycolysis, the Krebs cycle, 

sugars and starch metabolism, transport and a few other functions, and a few co-localizations 

between candidate genes and QTL were detected. Lin5 (Fridman and Zamir 2003; Fridman et 

al. 2004), together with the absence of a gene regulating the ADPGppase on chromosome 9 

(Schaffer et al. 2000), supports the hypothesis that high starch accumulation in L9 was 

stimulated by the higher sucrose unloading, and hexose transport within the cells (Ho 1996; 

Schaffer et al. 1999), as observed in another study (Li et al. 2002). 

1.2.3 Positional cloning 

QTL mapping often detect QTLs within large marker intervals (>= 10cM). The next step after 

QTL detection is to localize the QTL to a precise genomic region. It is also critical to 

determine the number of QTLs segregating within the region. Fine-mapping experiments have 

been carried out to identify QTLs where a single QTL was detected. Two genes involved in 

tomato fruit size have been isolated using a positional cloning strategy, fw.2.2, the first case in 

which a quantitative trait locus (QTL) was resolved in the corresponding gene (Frary et al. 

2000) and fasciated, which affects tomato fruit size through its effect on locule number (Cong 

et al. 2008). More recently, Munos (2011) reported the map based cloning for lc, a QTL 

responsible for locule number, and identified two SNPs downstream of WUSHEL that 

controls the trait using association mapping strategy. 

 

1.2.4 Association mapping 

Although QTL mapping will continue to be an important tool for QTL detection in crops, it is 

now a classical approach. However, the development of a mapping population is time 

consuming and very costly.  The main pitfall of QTL mapping is the detection of large effect 

QTLs due to the restricted allelic variation and modest degree of recombination in bi-parental 

mapping population (Hall et al. 2010); whereas in association mapping historical 

recombination and natural genetic variation were employed for high resolution mapping (Zhu 

et al. 2008) (Figure 1-6) 
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Figure 1-6. Schematic comparison of linkage analysis with designed mapping populations 
and association mapping with diverse collections (Adapted from Zhu et al. 2008) 

 

 
 

Figure 1-7. The scheme of association mapping for tagging a gene of interest using 
germplasm accessions (Adapted from Zhu et al, 2008)  

 
  



Chapter I Review of literature 

39 
 

Association mapping also called linkage disequilibrium (LD) mapping refers to the analysis 

of statistical association between a polymorphic site and the variation of a trait in a set of 

unrelated individuals. The main steps of the procedure are illustrated in Figure 1-7. LD refers 

to non-random association between two markers (alleles at different loci), two genes or QTLs, 

a gene/QTL and a marker locus (Gupta et al. 2005). Generally, the strength of the correlation 

between two markers is a function of the distance between them: the closer two markers are, 

the stronger the LD. The resolution with which a QTL can be mapped is a function of how 

quickly LD decays over distance (Myles et al. 2009). Thus, to identify the causal 

polymorphism responsible of a trait variation, it is essential to know the pattern of LD at the 

whole genome level, and to know how LD is decreasing with the physical distance and 

genetic distance between loci. When a large LD exists at the whole genome level, one can 

hope to capture a large diversity for useful genes in sampling maximum allelic diversity at 

neutral loci (McKhann et al. 2004), but association mapping will not be much more precise 

than QTL mapping. On the contrary a limited LD for closely linked sites (few kb) will allow 

the fine mapping of the polymorphism of the candidate genes responsible of a trait variation 

(Remington et al. 2001), but hundreds of thousands SNPs will be necessary for genome wide 

association. Association mapping employs occurring variation in genetic collections thus 

overcome the limited variation that characterizes QTL mapping population. Moreover, many 

recombination events that have occurred over evolutionary history also means that linkage 

blocks are smaller in an association mapping population than in a QTL mapping population, 

hence association mapping results in much more fine-scale mapping (Nordborg et al. 2002). 

Association mapping was first implemented in human and then adapted to other organisms 

such as plants. In plants, many association studies have been published to date for several 

traits, such as flowering time and pathogen resistance in Arabidopsis (Aranzana et al. 2005), 

yield and its components in rice (Agrama et al. 2007), leaf architecture in maize (Tian et al. 

2011), iron deficiency chlorosis in soybean (Mamidi et al. 2011) as illustrated in Table 1-5. 

However, a potentially serious obstacle to association mapping is the population structure. 

Population structure may cause false positive results. The real structure of the association 

mapping population is not totally known; it has thus to be inferred with various statistical 

methods using molecular markers. Several statistic methods were developed to deal this 

problem. Pritchard et al. (2000) introduced the so-called “structured association mapping” for 

reducing confounding effect due to population structure. 
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Table 1-5.  Some successful reports of Association mapping in plants. Adapated from   
Al-Maskri et al. (2012). 

Species Mapped traits References 
 

Self-pollinated   
Arabidopsis Growth response, flowering time, 

branching architecture and pathogen 
resistance 

Caicedo et al.(2004); Oslen et al. 
(2004); Ehrenreich et al. (2007); 
Zhao et al. (2007) 
 

Rice 
 

Plant height, flag leaf length and width, 
tiller number, stem diameter, 
stigma characteristics, flowering date, 
panicle length, grain length and 
width, grain thickness, 1000-grain weight. 
 

Zhang et al. (2005); Agrama et al. 
(2007); Yan et al. (2009) 
 

Barley Plant height, heading date, flowering date, 
rachila length, yield stability, 
yield, mildew and leaf rust resistance. 
 

Igartua et al. (1999); Ivandic et al. 
(2003); Kraakman et al. (2004, 
2006)  
 

Wheat Plant height, milling quality, High 
molecular weight glutenin, 1000-kernal 
weight, protein contents, drought 
tolerance, sedimentation value, test 
weight, starch concentration, insect and 
disease resistance. 
 

Breseghello and Sorrells (2006); 
Ravel et al. (2006); Roy et al. 
(2006);  
Crossa et al. (2007); Peng et al. 
(2007); 
Reif et al. (2011); Adhikari et al. 
(2011); Zhang et al. (2011). 
 

Potato Resistance to wilt disease, phytophthora, 
bacterial blight, tuber shape, 
flesh color, under water weight and 
maturity etc. 
 

Gebhardt et al. (2004); Simko et al. 
(2004); Malosetti et al. (2007); 
D’hoop et al. (2008) 
 

Soybean Seed protein contents Jun et al. (2008) 
Tomato Fruit quality traits fruit weight, soluble 

solid content, locule number and 
morphological traits 

Nesbitt and Tanksley (2002), 
Munos et al. (2011); Ranc et al. 
(2012) ; Mazzucato et al. (2008) 

Cross-pollinated   
Maize Plant height, endosperm color, starch 

production, flowering time, maysin 
and chlorogenic accumulation forage 
quality, cell wall digestibility and 
oleic acid concentration. 

Remington et al. (2001); 
Thornsberry et al. (2001); 
Guillet-Glaude et al. (2004); 
Wilson et al. (2004); 
Anderson et al. (2007) 

Forage grasses Cold tolerance, forage quality, flowering 
time and carbohydrate contents 

Dobrowolski and Forster (2007); 
Skøt et al. (2007) 

Forest trees Early-wood micro fibril angle, wood 
growth rate, and wood density 

Thumma et al. (2005); Wicox et al. 
(2007) 
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The approach is based on first assigning individuals to subpopulations using a model-based 

Bayesian clustering algorithm, STRUCTURE, and then carrying out all analyses conditional 

on the inferred assignments. Yu et al. (2006) recently introduced a mixed linear model (MLM) 

approach to control for population structure. The key of their approach is to use a random 

effect to estimate the fraction of the phenotypic variation that can be explained by genome-

wide correlations. The individual random deviations from the population mean are 

constrained by assuming that the (phenotypic) covariance between individuals is proportional 

to their relative relatedness (or kinship), which is estimated using genome-wide marker data. 

In addition to this random effect, Yu et al. (2006) used the population assignments produced 

by the STRUCTURE algorithm (the Q matrix) as a fixed effect in the model, as in structured 

association (Pritchard et al. 2000; Thornsberry et al. 2001; Yu and Buckler 2006). Recent 

studies demonstrated that MLM models successfully corrected for the genetic relatedness in 

association mapping in maize and Arabidopsis panel data sets. However, the current available 

mixed-model suffers from computational difficulty. A new method, efficient mixed model 

association (EMMA), corrects for population structure and genetic relatedness in model 

organism association mapping (Kang et al. 2008). It allows to substantially increasing the 

computational speed and reliability of the results. Multiple corrections for multiple testing 

have been used to control significant associations. Failure to correct for multiple tests may 

produce false positive associations. Several correction approaches have been proposed to 

control the false positive results. Bonferroni correction and False Discovery Rate (FDR) are 

the two most commonly used approaches for multiple comparisons. Bonferroni correction is 

quite stringent but offers the most conservative approach to control false positives. FDR 

correction controls the expected proportion of incorrectly reject null hypotheses (type I errors) 

(Benjamini and Hochberg 2000). It is less conservative compared to Bonferroni correction. 

Permutation tests are simple and commonly used in linkage mapping to control genome wide 

error. The advantage of permutation testing is that it controls false positives due to multiple 

testing. The major drawback of this approach is that it is computationally expensive (Pattin et 

al. 2009). 

In general, LD is expected to be higher in autogamous species than in allogamous species 

because less efficient recombination events occurred in autogamous species and their 

individuals are more likely to be homozygous at a given locus than in allogamous species 

(Flint-Garcia et al. 2003). Thus, the resolution for performing association mapping in 

autogamous species is expected to be relatively lower than in allogamous species.  
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Therefore, association mapping was first used in allogamous species or species with wide 

range of genetic diversity. Several studies were carried out to assess the LD and population 

structure in tomato using different type of markers. Van Berloo et al. (2008) investigated 

population structure and LD decay along chromosomes within a diverse set of 94 cultivated 

tomato cultivars, representing a wide range of phenotypic diversity of fruit quality traits using 

882 AFLP markers. The results showed a clear substructure consistent with a grouping based 

on fruit size. LD was up to 20cM for cherry type tomato. Large fruited lines showed the 

similar LD pattern. Strong LD is limited to certain hotspots. Strong LD between markers on 

different chromosomes is rare. Ranc et al. (2008) studied the population structure in 340 

accessions consistinf of 130 S. lycopersicum, 144 S. l. cerasiforme and 66 S. pimpinellifolium 

accessions with 20 SSR markers. They showed that the 144 S. l. cerasiforme accessions were 

structure into two groups; one close to the domesticated group and one resulting from the 

admixture of the S. lycopersicum and S. pimpinellifolium genomes. Robbins et al. (2011) used 

340 PCR-based markers including SNPs to analyze the LD in 102 tomato lines representing 

wild species, landraces, vintage cultivars, and contemporary (fresh market and processing) 

varieties. The genome wide analysis showed that LD decays over 6-8cM when taking into 

account all cultivated tomatoes, including vintage and contemporary tomatoes. It was 6-14 

cM and 3-16 cM for contemporary processing varieties and fresh market varieties, 

respectively. 

A few association studies have been carried out on tomato. Nesbitt and Tanksley (2002) 

evaluated the polymorphism around the fw2.2 locus, a fruit weight QTL positionally cloned, 

in a small sample of tomato cultivars and cherry tomato accessions.  The authors failed to 

identify any association but showed the admixture structure of cherry tomato accessions. 

Mazzucato et al. (2008) studied associations between 29 SSR markers and 15 morpho – 

physiological traits in 50 tomato landraces.  The markers were selected to include a group of 

loci in regions harboring identified quantitative trait loci (QTLs) that affect fruit size and/or 

shape (Q-SSRs) and a group of markers that have not been mapped or shown to have a priori 

known linkage (NQ-SSRs). They showed that the proportion of significant associations is 

higher between the Q-SSR subset of markers and the subsets of traits related to fruit size and 

shape than for all of the other combinations. Munos et al. (2011) used association analysis to 

identify two SNP located in a small region of chromosome 2 involved in the control of locule 

number in tomato fruit. They used a combination of map-based cloning to identify the locus 

region and association mapping to refine its molecular characterization. The map based 

cloning step identified a 1,608-bp region. 
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For the association mapping step, this region was sequenced in a core collection of 88 

accessions chosen from a large genetic collections to maximize the genetic diversity. This step 

identified two SNPs that were strongly associated with the locule number phenotype. The two 

SNPs were then validated in the study of Ranc et al. (2012) who conducted a pilot association 

study using Mixed linear model focused on chromosome 2 and characterized 90 tomato 

accessions for fruit weight, soluble solid content and locule number and the 341 SNPs. They 

identified respectively 37, 13 and 3 associations for fruit weight, soluble solid content and 

locule number with a model taking into account structure and kinship based on 20SSR. 

However, lower numbers of associations (11, 3 and 3 for the three traits, respectively) were 

detected when taking into account the structure and kinship based on 341 SNPs. Their results 

illustrated the importance of the correction for population structure. They showed the 

efficiency of genome admixture in cherry tomato to overcome the low resolution of 

association mapping for inbred crop (Annexe1). Thanks to the high-throughput sequencing 

technologies and full sequence of the tomato genome, it is now possible to extend the analysis 

to the whole genome level using thousands of SNP. 

 

 

1.2.5 Novel approaches towards the improvement of important traits  

Apart from the two most commonly used approaches, linkage analysis and association 

mapping, novel approaches were also developed for the dissection of complex traits.  Two 

types of novel approaches can be underlined: (1) building genetic materials such as Nested 

association mapping (NAM) and multi-parent advanced generation intercross (MAGIC) 

population and (2) new analytical approaches referred as ‘system biology’ which consists in 

combining information from different levels such as metabolomic, proteomic, transcriptomic 

and genomic levels. The details of these approaches are described in the following 

paragraphs. 

1.2.5.1 Nested  association mapping 

Nested association mapping (NAM) approach has been proposed to combine the advantages 

of QTL mapping and association mapping approaches for identifying quantitative loci 

responsible for phenotypes of interest. It has high mapping resolution and low marker density 

requirement compared to association mapping.  
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Figure 1-8. Construction of a NAM population in maize. Diagram of genome reshuffling 
between 25 diverse founders and the common parent and the resulting 5000 immortal 
genotypes. Due to diminishing chances of recombination over short genetic distance and a 
given number of generations, the genomes of these recombinant inbred lines (RILs) are 
essentially mosaics of the founder genomes. SSD, single-seed descent. Modified from Yu et 
al. (2008). 
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Both historic and recombination events were employed in this approach (Yu et al. 2008). 

NAM population has been established in maize (Yu et al. 2008) and Arabidopsis (Brachi et al. 

2010).  The populations derives from the cross of a central parent with a panel of other 

diverse parents (Huang et al. 2011). Figure 1-8 showed an example of the construction of 

NAM population in maize. A total of 5000 NAM lines were generated from 25 families, each 

developed by crossing one of the 25 diverse maize lines to one central parent, B73 (Yu et al. 

2008; Buckler et al. 2009; McMullen et al. 2009). 

The first application of NAM to identify QTLs was reported by Buckler et al. (2009) on the 

genetic architecture of maize flowering time. This study identified 39 QTLs explaining 89% 

of the variance in days to silking and days to anthesis and 29 QTLs explaining 64% of the 

variance in the silking-anthesis interval. It showed that this approach was useful for the 

characterization of agronomic traits in maize as well as other species. However, interactions 

of QTL with genetic background may not be detected, as one parent is common to all 

subpopulations. 

1.2.5.2 Interest of building MAGIC population 

The challenge for plant geneticists is to build appropriate populations so that the calculation 

progress, analysis and profiling will be fast. The large number of parental accessions 

increases the allelic and phenotypic diversity over traditional RILs, potentially increasing the 

number of QTL that segregate in the cross. Advanced intercross (AIC) was first used in mice 

employing multiple parents to map a QTL explaining 10% of the phenotypic variation for 

anxiety in mice to a 4.8 Mb region (Yalcin et al. 2005). The complex trait consortium was 

then built to analyze complex traits in mice using eight-way funnel breeding scheme 

(Churchill et al. 2004). Cavanagh et al. (2008) proposed to use this scheme in crops which 

was named multi-parent advanced generation intercross (MAGIC) population. This approach 

is ideal: very diverse, no population structure, and suitable for both fine and coarse mapping 

(Cavanagh et al. 2008). Table 1-6 presents the comparison of classical genetic mapping 

strategies, association mapping and the use of MAGIC population. MAGIC requires two 

simple extensions to the more traditional method of QTL mapping in which both parents are 

crossed and associations are screened in the segregating progeny. Firstly, rather than simply 

crossing two lines, a population is determined by crossing several lines (8, 16 or more).  
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Table 1-6 Relative strengths and weaknesses of three methods for the identification of QTL in 
crops, bi-parental linkage analysis (linkage), association mapping (association) and Multi-
parent Advanced Generation Inter-crosses (MAGIC) (Cavanagh et al. 2008) 

 
 

 
 

 

 

 

 

 

 

Figure 1-9. Creation of a Multi-parent Advanced Generation Inter-Cross (MAGIC) 
population with 8 parental lines (Modified from Cavanagh et al. 2008)  

  

Application Linkage Association MAGIC 
    
Suitability for coarse 
mapping 

+ - + 

Suitability for fine mapping - + + 
Low genotyping requirement + - - 
Resistant to population 
 substructure 

+ - + 

Relevance to breeders - + + 
Relevance over time - + + 
Time to establish - - + 
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Secondly, rather than looking for associations immediately after crossing, the population is 

primarily recycled through several more generations of crosses (Figure 1-9) or selfing, 

increasing the number of efficient recycle. MAGIC population has been used in Arabidopsis 

thaliana to fine map development related traits (Kover et al. 2009). In this study, a set of 527 

MAGIC lines was derived from 19 diverse founders. These lines were genotyped with 1,260 

SNP. QTL responsible for 10% of the phenotypic variation could be mapped in most cases 

with an average of 300 kb confidence interval, and if the number of lines were doubled, the 

interval would be under 200 kb (Kover et al. 2009). Moreover, this approach was also used to 

study candidate genes for flowering time in 275 Arabidopsis MAGIC lines (Ehrenreich et al. 

2009). Several other MAGIC populations were produced in wheat 

(http://www.niab.com/pages/id/93/MAGIC_Populations_in_Wheat), rice (http://www.intl-

pag.org/19/abstracts/W80_PAGXIX_500.html) and also in tomato (presently created in 

INRA, GAFL). Statistical package like HAPPY has been developed to analyze heterogeneous 

stocks including MAGIC (http://spud.well.ox.ac.uk/arabidopsis). Huang and George (2011) 

have recently developed a R/mpMap package to solve the complex statistical need for 

MAGIC population. It has interface with earlier mapping platforms, R/qtl (Broman et al. 

2003) and R/happy (Mott et al. 2000). With the availability of tomato genome, next 

generation sequencing/genotyping and advanced statistical methods, MAGIC will be ideal to 

generate high density maps and to fine map QTLs in tomato. 

1.2.5.3 Systems biology approaches  

High throughput approaches have opened new and exciting prospects for analyzing biological 

systems and their complex functions at different levels including metabolomic, proteomic, 

transcriptomic and genomic (Figure 1-10). The systems biology approaches integrating 

‘omics’ resources and technologies are revolutionizing biology and offer new strategies for a 

better understanding of the molecular and genetic bases of complex traits. 

Metabolome analysis and enzymatic activities 

Metabolome is the distribution and concentration of metabolites in the cell. Few metabolomic 

studies have been performed in tomato fruit. Comparative analysis of the metabolite 

composition in leaves and fruits from six tomato species was studied by Schauer et al. (2005). 

In this study, a wide range of variation was observed for sugar content, amino acid 

composition and for secondary metabolite levels in both leaves and fruits of the wild species. 

   

http://www.niab.com/pages/id/93/MAGIC_Populations_in_Wheat
http://spud.well.ox.ac.uk/arabidopsis
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Figure 1-10. Systems biology approaches and the integration of different levels of genome 
expression 

  

What actually happens

What can happen

Genome

Transcriptome

Phenotype

Metabolome

Proteome

Bioinformatics

What appears to happen

What makes it happen

System biology
What actually happens

What can happen

Genome

Transcriptome

Phenotype

Metabolome

Proteome

Bioinformatics

What appears to happen

What makes it happen

System biology

?

?

?

?



Chapter I Review of literature 

51 
 

Carrari et al. (2006) reviewed the metabolic regulation underlying tomato fruit development 

and focused on primary metabolites and secondary metabolites that are important for tomato 

fruit quality. Moreover, Roessner-Tunali et al. (2003) identified 70 small molecular weight 

metabolites and catalogued the metabolite composition of developing fruit in three tomato 

transgenic lines. Fraser et al. (2007) studied the intermediary metabolism variation according 

to phytoene levels in tomato. Moco et al. (2007) studied the secondary metabolism in the fruit 

of commercial tomato cultivars using a combined approach of liquid chromatography (LC) 

and photo-diode array (PDA) detection, fluorescence detection (FD), and mass spectrometry 

(MS). Related metabolite profiles of peel and flesh were found between several commercial 

tomato cultivars indicating similar metabolite trends despite the genetic background. They 

also investigated metabolite profiles of different fruit tissues (vascular attachment region, 

columella and placenta, epidermis, pericarp, and jelly parenchyma) at five fruit 

developmental stages in a single tomato cultivar. Unrelated to the chemical nature of the 

metabolites, behavioral patterns could be assigned to specific ripening stages or tissues. 

Metabolite profiling has also been used to phenotype introgression lines to identify 

metabolites QTLs (Schauer et al. 2006). Causse et al. (2002) conducted a complementary 

approach on broad genetic crosses, and identified QTL for organoleptic properties of 

tomatoes. Do et al. (2010) mapped QTL for metabolites introgression lines derived from the 

cross between Solanum lycopersicum and the wild species Solanum chmielewskii in response 

to to carbon availability. 

Very little information is available for enzymatic activities in tomato fruit. Steinhauser et al. 

(2010) investigated the activity of 22 enzymes from central metabolism during fruit 

development in modern tomato cultivar Solanum lycopersicum ‘M82’ and its wild relative 

Solanum pennellii (LA0716). Enzymes showed different development response for the two 

species. Most enzyme activities decreased during fruit development in S. lycopersicum 

cultivars, they remained high or even increased in S. pennellii, particularly enzymes involved 

in organic acid synthesis. They pursued the analysis by mapping QTL for enzyme activities in 

the Introgression Lines derived from the cross of the two accessions (Steinhauser et al. 2011). 

Studies on Enzymes activitiy have been measured on other species. Gibon et al. (2004) set up 

a platform for rapid analysis and measured the activity of 23 enzymes that are involved in 

central carbon and nitrogen metabolism in Arabidopsis thaliana. The largest diurnal changes 

in activity were found for AGPase and nitrate reductase mainly because of posttranslational 

regulation. The changes of enzyme activity are strongly delayed, with the delay varying from  
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enzyme to enzyme. It is proposed that enzyme activities provide a quasi-stable integration of 

regulation at several levels and provide useful data for the characterization and diagnosis of 

different physiological states.  

Response of these enzymes to the carbon and nutrient status and to temperature (Osuna et al. 

2007; Usadel et al. 2008; Mounet et al. 2009) and to map enzyme activity QTLs in a Cape 

Verde Islands × Landsberg erecta Arabidopsis recombinant inbred line population (Keurentjes 

et al. 2008) has also been investigated. 

Proteome analysis 

Proteomics is a valuable approach for studying the biology of living organisms and their 

interaction with the environment in post genomic area (Maghuly et al. 2011). The protein 

level integrates post-transcriptional and translational modifications that modulate the quantity, 

the localization and the efficiency of the final gene product within the cell. The plasticity of a 

phenotype is driven by these altered levels of proteins and metabolites (Weckwerth 2008). 

Recently protein metabolism and especially protein stability was suggested to play a major 

role in plant growth, yield, and heterosis (Goff 2011). Thus, dissection of complex traits 

should take into account the analysis of the proteome. This has been hampered by the 

difficulty and low throughput of this approach. Thanks to the advances in the identification of 

proteins by mass spectrometry following their separation in two-dimensional electrophoresis 

and in methods for large-scale analysis of proteome variations, proteomics is becoming an 

essential methodology in various fields of plant biology. 

Knowledge on the fruit proteome is a challenging area of research, as reviewed by Palma et al 

(2011). Proteome in tomato fruit is poorly documented, partly due to technical issues. While 

custom-made or commercial arrays are available for transcript profiling and widely used 

techniques like gas chromatography-mass spectrometry and liquid chromatography-mass 

spectrometry are available for metabolite profiling, it is still a technical challenge to obtain 

quantitative information about large numbers of proteins (Rose et al. 2004a; Baerenfaller et al. 

2008). Efforts have begun to establish proteomics technical platforms in order to characterize 

the differences in wall structure and composition that occur during tomato fruit development 

and ripening (Rose et al. 2004a; Rose et al. 2004b). Samples extraction methods for tomato 

were also compared by Saravanan and Rose (2004). Faurobert et al. (in press) recently 

reviewed the tomato proteomic studies. They include: response of the plant to several 

environmental stresses (Iwahashi and Hosoda 2000; Page et al. 2010; Manaa et al. 2011; 

Marjanovic et al. 2012) and proteome variation along seed development and germination  
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(Sheoran et al. 2005) and along fruit development and ripening (Rocco et al. 2006; Faurobert 

et al. 2007). The improvement of the protein identification technologies and the availability of 

the complete high quality tomato genome sequence (Sato et al. 2012) increase the efficiency 

of protein identification after their separation and subsequent mass spectrometry analysis. 

Transcriptome analysis 

Several studies have been carried out on the transcriptome dynamics during tomato fruit 

development. Transcriptome profiling via cDNA microarray analysis identified 869 genes that 

are differentially expressed in developing tomato pericap (Alba et al. 2005). Transcriptional 

profiles at cell expansion stage of tomato fruit development were also studied by Lemaire-

Chamley et al. (2005). They performed an initial sequencing of around 1,200 sequence tags 

related to cell expansion stage. Results showed that approximately up to 35% of the expressed 

sequence tags showed no homology with available tomato expressed sequence tags and up to 

21% with any known gene. It provides a basis for tissue-specific analyses of gene function in 

growing tomato fruit. Carrari et al. (2006) studied the transcriptome changes during tomato 

fruit development. It was apparent that transcript abundance was less strictly coordinated by 

functional group than metabolite abundance. Transcriptome analysis of ovaries was also 

performed by Vriezen et al. (2008) using two complementary approaches: cDNA-amplified 

fragment length polymorphism (CDNA-AFLP) and microarray analysis. Gene expression 

profiles suggested that, in addition to auxin and gibberellins, ethylene and abscisic acid 

(ABA) are involved in regulating fruit set.  

Recent tomato genome study allowed to cluster the protein coding genes of tomato, potato, 

Arabidopsis, rice and grape into 23,208 gene groups (+2 members), around which 8,615 are 

common to all five genomes, 1,727 are confined to eudicots (tomato, potato, grape and 

Arabidopsis), and 727 are confined to plants with fleshy fruits (tomato, potato and grape). 

Relative expression of all tomato genes was determined by replicated strand-specific Illumina 

RNA-Seq of root, leaf, flower (two stages) and fruit (six stages) in S. Lycopersicon, in 

addition to leaf and fruit (three stages) of S. pimpinellifolium. Chromosomal organization of 

genes, transcripts, repeats and small RNAs (sRNAs) were very similar in the two species 

(Sato et al. 2012). 

Analysis of tomato genome structure 

Zamir and Tanksley (1988) carried out the first analysis aimed to make deductions about the 

organization and evolution of the tomato genome. In this study, fifty random clones (350-

2300 bp) were obtained from sheared DNA using Southern analysis. This work along with  
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others (Ganal et al. 1988), provided the first general sketch of the tomato genome at the 

molecular level and showed that it is comprised largely of single copy sequences (70%) and 

these sequences, together with repetitive sequences, are evolving at a rate faster than the 

coding portion of the genome. Peterson et al. (1998) characterized the tomato genome using 

in vitro and in situ DNA reassociation. Fluorescence in situ hybridization (FISH) analysis 

demonstrated that tomato heterochromatin contains substantial quantities of single-copy and 

middle repetitive DNA, while tomato euchromatin contains little if any highly repetitive 

sequences. Recently, the inbred tomato cultivar ‘Heinz 1706’ was sequenced and assembled 

using a combination of Sanger and next generation sequencing technologies. The genome of 

S. pimpinellifolium LA1589 was also sequenced and assembled de novo using Illumina shorts 

reads, yielding a 739 Mb draft genome. Estimated divergence between the wild and 

domesticated genome is 0.6% (5.4 million SNP distributed along the chromosome). 

Compared to the genomes of Arabidopsis and sorghum, tomato has fewer high-copy, full 

length long terminal repeat (LTR) retrotransposons with older average insertion ages (2.8 

versus 0.8 million years ago) and fewer high-frequency k-mers. This is consistent with 

previous studies (Peterson et al.1998; Zamir and Tanksley, 1988) that revealed that the tomato 

genome is unusual among angiosperms by being largely comprised of low-copy DNA. 

Several re-sequencing projects of tomato genome are today under way, such as 150 tomato 

genome resequencing project (http://www.tomatogenome.net/). This set of sequenced 

individuals will provide a first step in tomato research to further develop “genotyping-by-

sequencing” approaches, and to study LD, diversity, codon usage bias and recombination 

events at the sequence level. 

Integration of different levels 

Integration of -omics data allows scientists to investigate the cell networks as a whole and 

lead to the direct candidate gene discovery. However, relatively few analyses have combined 

multilevel approaches. Recent examples for the combined application of metabolic and 

transcriptional profiling in order to identify candidate genes that modify metabolites content 

has been carried out by Carrari et al. (2006). Mounet et al. (2009) explored transcriptome and 

metabolome variation in mesocarp and locular tissue of tomato fruit at cell expansion phase to 

identify regulatory genes involved in the developmental and metabolic processes that may 

affect fruit quality. Data was integrated through correlation analysis. This integration 

identified numerous correlations, common to both tissues, between the two levels and allowed 

the construction of a large network. Garcia et al. (2009) studied three transgenic tomato lines  

http://www.tomatogenome.net/
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for genes related to ascorbic acid pathway and their wild type at phenotypic and 

transcriptome, proteome and metabolome levels at two stages of fruit development. By using 

Kohonen’s self-organizing maps (SOMs) to cluster the biological data, pair-wise Pearson 

correlation analyses and simultaneous visualization of transcript/protein and metabolites 

(MapMan), this approach allowed to uncover major relationships between ascorbic acid and 

other metabolic pathways. Wang et al. (2009) compared transcriptome and targeted 

metabolome results and uncovered important features of the molecular events underlying 

pollination-induced and pollination-independent fruit set. Transcriptomic profiling identified a 

high number of genes common to both types of fruit set. The combined results allow a far 

greater comprehension of the regulatory and metabolic events controlling early fruit 

development both in the presence and absence of pollination/fertilization. Enfissi et al. (2010) 

characterized the tomato fruit at several omic levels in order to study how modulation of DE-

ETIOLATED1 (DET1) gene may be used to improve quality traits. Metabolite profiling 

revealed quantitative increase in carotenoid, tocopherol, phenylpropanoids, flavonoids, and 

anthocyanidins. Parallel metabolomic and transcriptomic analyses reveal the widespread 

effects of DET1 down-regulation on diverse sectors of metabolism and sites of synthesis. 

Correlation analysis of transcripts and metabolites independently indicated strong co-response 

within and between related pathways/processes. Steinhauser et al. (2010) analysed correlation 

between enzyme activities, metabolites and transcripts in S. lycopersicum and showed little 

connectivity between the developmental changes of transcripts and enzymes and even less 

between enzymes and metabolites. Osorio et al. (2011) investigated systems of nonripening 

(NOR), ripening inhibitor (RIN) and the ethylene receptor Never-ripe (Nr) tomato mutations 

at the transcriptomic, proteomic, and metabolomic levels during development and ripening. 

The results showed that changes of the content of metabolites from primary metabolism lead 

to decreases in metabolic activity during ripening. Integration of metabolomic, transcriptomic 

and proteomic data identified several aspects of the regulation of metabolism during ripening. 

The expression of transcripts were not frequently correlated with the abundance of 

corresponding proteins during early ripening, indicating that post-transcriptional regulatory 

mechanisms play an important role in these stages. Strong correlations between ripening-

associated transcripts and specific metabolite groups, such as organic acids, sugars, and cell 

wall-related metabolites, underlined the importance of these metabolic pathways during fruit 

ripening. In conclusion, the system biology approaches integrating ‘omic’ resources and 

technologies are revolutionizing biology research and offer new strategies for a better 

understanding of the molecular and genetic bases of complex traits.   
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1.3 Objectives and content of this study 

Molecular markers are precious tools to improve crops through marker-assisted selection. 

They allowed the characterisation of molecular diversity and relatedness in genetic resources 

as well as mapping of QTL in a wide range of plant species. In tomato, either passionate 

people or research institutes conserve large collections of accessions around the world. In 

Avignon (South of France), the INRA Research Institute characterizes and maintains more 

than 1000 heirloom varieties, which have been partly characterized at the molecular level 

(Ranc et al. 2008). For other collections, few examples report their characterization at the 

molecular level (Alvarez et al. 2001; Park et al. 2004; Van Deynze et al. 2007; Manoj and 

Uday 2010). Molecular characterization studies have shown that the rate of polymorphism in 

tomato is low in cultivated accessions. Domestication and modern breeding have strongly 

reduced tomato molecular diversity, limiting the possibility of improvement of some traits 

such as yield or fruit quality. It is thus necessary to come back to wild species and old 

germplasm and to use them as sources of new loci or new alleles. If RFLP and SSR allowed 

polymorphism to be revealed in wild species, the old cultivars or cherry tomato accessions 

were too close to the cultivated accessions to be easily studied with these markers. For this 

purpose, new molecular markers such as SNP constitute precious tools to saturate the genetic 

maps and identify QTL and associations in poorly polymorphic species like tomato.  

The objectives of this study were to characterize tomato genetic diversity at the molecular and 

proteome levels and to try to identify QTLs, proteins responsible for fruit quality traits in 

tomato. For this purpose, three independent studies were conducted leading to the discovery 

of new SNP markers, their use for association studies and finally the analysis of proteome 

diversity in relation to phenotypes. 

1. Exploration and comparison of two Next Generation Sequencing platforms to 

identify polymorphisms in tomato  

One of the challenges in genetics is to deepen our knowledge in molecular evolution and to 

improve association genetics to use it as a mapping strategy. By combining genome re-

sequencing and NGS, the high volume of polymorphisms identified between natural genetic 

resources is promising in such aims. In order to go further in the characterization of tomato 

germplasm, it is necessary to identify SNPs extensively. In order to test whether NGS could 

be appropriate to generate SNPs in tomato, we used two high throughput sequencing 
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platforms (Genome Analyser and Roche 454) to sequence 198 targeted 10kb genomic regions 

obtained by Long-Range PCR in two contrasted cultivated varieties (Heinz1706 and 

LA2675). More than 3000 SNPs were detected, but many differences were observed among 

the results of the different platforms and analysis software. To validate some of the SNPs, we 

developed CAPS markers that have been used to generate a map in a F2 segregating 

population. 

 

2. Phenotypic diversity and association mapping in cultivated tomato and its wild 

related species 

In a previous pilot study focused on one chromosome and 90 tomato accessions (Ranc et al. 

2012), we showed that association mapping was possible in tomato (Annexe I). Technologies 

evolve fast and in the same time, high-throughput genotyping technologies such as SNPlexTM 

technology has emerged. We thus attempted to develop a SNPlexTM assay (De La Vega et al. 

2005; Tobler et al. 2005) of 192 SNPs selected from re-sequencing experiments or from 

databases (Van Deynze et al. 2007). A large germplasm collection including cultivated, cherry 

type and wild accessions were characterized for both genetic diversity using the SNPlexTM 

assay, 20 SSR markers (Ranc et al. 2008) and ten phenotypic traits related to fruit quality. We 

first describe the phenotypic diversity of the accessions, then compare the genetic structure of 

the collection based on SSR and SNP markers and finally present the association mapping 

results. Associations are compared to previously mapped QTL for similar traits. Our work is 

the first example of an association study carried out using a broad sample of cultivated, cherry 

type and wild tomato accessions.  

3. Systems biology approach focusing on proteomics and metabolomics for the 
characterization of fruit quality traits in tomato 

 

DNA sequence variation (SNP or Indel) may not affect the traits directly. There are several 

intermediate levels between DNA genotypes and the phenotypes. The cascade of effects from 

DNA variation to phenotype is organized in complicated biological networks (Kliebenstein, 

2010; Sulpice et al., 2010). Intermediate molecular phenotypes such as transcript and protein 

abundance also genetically vary in populations and are themselves quantitative traits 

(Rockman and Kruglyak, 2006). High-throughput approaches have opened new prospects for 

analyzing biological systems and their complex functions at different levels including 

genomic, transcriptomic, proteomic, and metabolomic levels. Systems biology approaches 
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integrating several ‘omic’ levels offer new strategies for discovering links between co-

regulated genes and pathways and ultimately, for predicting gene function and identifying 

regulatory genes in plants (Saito et al. 2008). It should enable us to understand the biology 

inside the black-box of quantitative genetics relating genotype to phenotype in terms of causal 

networks of interacting genes. System approaches have been applied in yeast (Ideker et al., 

2001), in the model plant Arabidopsis (Hirai et al., 2007) and in tomato (Mounet et al., 2009), 

at several levels. 

We applied a systems biology approach focused on proteome, metabolome and phenotypic 

analysis to characterize eight contrasted lines as well as four of their hybrids at two stages, 

cell expansion and orange red stage in order to identify proteins responsible for fruit quality 

traits. This study is the starting point of a broader experiment including the development of a 

MAGIC population derived from the eight lines. The eight lines and hybrids were 

characterized at several levels from phenotype to metabolites (Xu et al. 2012, Acta 

Horticulturae; Annexe II). Due to time consideration, I will detail mostly the proteome and 

metabolome analysis.  

 

The second chapter will briefly present the materials and methods used in each part. Then 

results will be presented in the three next chapters presented as articles, manuscripts and 

additional data. Then prospects are presented before a general conclusion. 
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CHAPTER II: MATERIALS AND METHODS 

In this chapter, we summarize the materials and methods used in this work. Detailed    

procedures are presented in each chapter



Chapter II Materials and methods 

 

66 

 

 

  

  



Chapter II Materials and methods 

 

67 

 

CHAPTER II: MATERIALS AND METHODS 

 

2.1 Plant materials 

Three sets of plant materials were used in this thesis 

Exploration and comparison of two Next Generation Sequencing platforms to identify 

polymorphisms in tomato  

Two contrasted accessions Heinz1706 and LA2675 were selected for re-sequencing. 

Heinz1706 (S. lycopersicum var. esculentum) is a processing tomato accession with large and 

enlongated fruit (Figure 2-1). It has been used for the international tomato sequencing project 

(Sato et al. 2012). LA2675 (S. lycopersicum var. cerasiforme) is a cherry tomato accession 

producing small fruits. The F2 segregating population which consisted of 96 individuals was 

derived from the cross between the two accessions and used for mapping all the developed 

markers. A set of 23 accessions including these two accessions were chosen from genetic 

resources maintained at INRA Avignon (France) for marker validation and polymorphism 

identification.  

Phenotypic diversity and association mapping in tomato and related wild species 

A total of 188 tomato accessions were selected from a germplasm collection maintained and 

characterized at INRA Avignon (France) to perform association mapping. The sample 

consisted of 127 cherry type tomato accessions (Solanum lycopersicum var. cerasiforme, 

hereafter named S. l. cerasiforme), 44 large fruited accessions (S. lycopersicum var. 

esculentum, hereafter named S. lycopersicum) and 17 S. pimpinellifolium accessions (Figure 

2-2). Accessions were obtained from various sources, among which the Tomato Genetics 

Resource Center (Davis, USA), the Centre for Genetic Resources (Wageningen, Netherlands), 

the North Central Regional Plant Introduction Station (Ames, Iowa, USA) and the N.I. 

Vavilov Research Institute of Plant Industry (St Petersburg, Russia).  

Systems biology approaches focusing on proteomics and metabolomics for the 
characterization of fruit quality traits in tomato 

In the third experiment, eight contrasted lines and four of their corresponding hybrids were 

used. The eight genotypes represent the largest possible range of tomato genetic diversity in a 
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Figure 2-1 Fruits from the two contrasted accessions Heinz1706 and LA2675 used in this 

experiment. 

 

 

 

 

Figure 2-2 Fruits collected from the 188 accessions showing their phenotypic diversity 
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collection of 360 accessions (Ranc et al. 2008). They include four Solanum lycopersicum lines 

(Levovil, Stupicke Polni Rane, LA0147 and Ferum) and four S. l. cerasiforme lines (Cervil, 

Criollo, Plovdiv24A, and LA1420). Cervil produces very small fruits (less than 10 g). 

Levovil, Ferum and LA0147 genotypes have large fruits. The others are intermediate tomato 

(Figure 2-3).  

2.2 Methods 

2.2.1 Methods of the polymorphism identification and validation 

The strategy for polymorphism identification and validation is presented in Figure 2-4. It is 

detailed in the following paragraphs.  

gDNA isolation  

Genomic DNA of the two contrasted accessions Heinz1706 and LA2675 was extracted from 

leaf tissue of 3-week old plants according to the protocol of Fulton et al. (1995). 

For DNA quantification, Long Range PCR amplification, PCR products pooling, sequencing 

methods of GAII and Roche 454, sequence analysis, validation of SNPs, CAPS marker 

development and genetic map construction, see materials and methods in Chapter III.  

2.2.2 Methods of the association analysis 

Association mapping was performed on the whole collection of 188 accessions and on the set 

of 127 S.l. cerasiforme accessions, respectively. Figure 2-5 shows the strategy used in this 

study. Details are described in the following sections. 

Phenotyping 

All 188 tomato accessions (4 plants per accession) were grown in a plastic greenhouse in 

Avignon (south of France) during summers 2007 and 2008. Three harvests of ten ripe fruits 

per accession were used as repeats in the phenotypic analysis. Ten fruits were first evaluated 

for fruit weight (FW), firmness (FIR), locule number (LCN), color components: lightness (L), 

color on red to green (a*) and on yellow to blue (b*). For FIR, it was recorded at two points 

on opposite equatorial for each fruit with a durometer Durofel (http://www.setop.fr/). This 

portable device measures the pressure exerted by a piston on a surface with an arbitrary scale 

(0 indicates that the piston is fully extended and 100 indicates maximum strength).  
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  Figure 2-3 Eight divergent lines and four F1 used in this study. 

                 A: Four F1 derived from the crosses of the eight lines; B: fruits from the eight lines. 

 

Figure 2-4 Strategy for polymorphism identification and validation. SNPs were detected 

using both 454 and GA2 technologies. CAPS markers were developed to validate identified 

SNP and used for diversity analysis of a collection of 23 accessions (Ranc et al. 2008) and for 

mapping the F2 population derived from the cross of the two contrasted accessions Heinz1706 

and LA2675. 
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Color components were measured by taken at two different points on each fruit with a Konica 

Minolta CR300 colorimeter. The fruits were then cut transversely in order to count the locule 

number and were then grounded to obtain a powder. Powders were stored at -20 ° C and were 

then used to measure soluble solid content (SSC), sugar content (SUG), pH, titratable acidity 

(TA). SSC was measured using a digital refractometer (Palette PR 101). TA was measured by 

the amount of NaOH (in mmol / L) necessary to bring the pH of a solution to 8.1 (turning area 

of the phenolphthalein). The measurements were made using a titrator equipped with an 

autosampler (Crinson compact titrator). A mass mp pulp is weighed, diluted in 50 mL of water 

and NaOH is added to pH threshold. The titratable acidity is then calculated as follows: 

( )[ ] pm/100VCC ××= NaOHNaOH
. The sugar content was quantified by enzymatic assay in 96-

well microplates, as detailed in Gomez et al. (2007).   

The 274 additional accessions (4 plants per accession) were grown in the same greenhouse 

conditions during 2009. Ten fruits were evaluated for fruit weight (FW), locule number 

(LCN), and Soluble Solid Content (SSC).  

Statistical analysis 

The heritabilities were estimated on the collection of 188 homozygous lines. Heritabilities (h2) 

were calculated as h
2
=σ2

g/ (σ2
g+ σ2

gy+ σ2
e) 

with σ2
g, σ2

gy and σ2
e the genetic, genetic by 

environment interaction and residual variance, respectively. σ2
g, σ2

gy and σ2
e were estimated 

by (MSc-MScy)/ry, (MScy-MSe)/r and MSe, respectively. MSc represents the accessions 

mean square, MScy represents the mean square of genotype by year interaction, MSe the 

residual mean square. r and y represents the number of replicates and the number of years. 

Associations were tested using the adjusted means of accessions calculated by general linear 

model. The Pearson correlation coefficients were calculated for all pairs of variables. 

Analyses were carried out with the R program (R Development Core Team 2005).  

SNPlexTM assay design 
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Figure 2-5 Strategy for association mapping studies 

 

 

 

Figure 2-6 Sampling strategy for phenotypic and omic analysis 
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3. MLM Q+K Model, Q and K based on informative SNPs)
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Fruit weight, Fruit diameter, 
Fresh fruit sugar content, 
Dry matter content

Cell expansion stage,
3 biological replicates with 
each mixing 7-20 fruits
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Allele-specific probes and optimized multiplexed assays using SNPs of interest were designed 

by an automated multi-step pipeline [Applied Biosystems]. These steps include: (1) entering 

the sequence containing target SNPs; (2) checking for formatting errors such as non-target 

polymorphisms near the target SNP or sequence motifs incompatible with the assay; (3) 

submitting the SNPs that passed the format check for the assay design. The ABI probe design 

prevents self-complementarity and dimerization, and annealing efficiencies are optimized for 

ligation. Furthermore, the optimal combination of SNPs to produce the highest yield per 

multiplex reaction is determined (De La Vega et al. 2005; Tobler et al. 2005).   

Association Mapping 

Association mapping was performed using the Mixed linear model (Yu et al. 2006) (based on 

20 SSR and 121 informative SNPs) and simple linear model on the two sets of  samples (188 

accessions and 127 S.l. cerasiforme accessions). Polymorphisms of the whole collection and 

the three species were analyzed using 121 informative SNPs.  LD was then deduced on the 

whole genome level and on chromosome 2 for the two samples. Structure of the 188 

accessions was compared using the two types of markers. Methods are detailed in Chapter IV.   

2.2.3 Methods of the integration of system biology approaches  

Sampling strategy for phenotypic and omic analysis is illustrated in Figure 2-6. It is detailed 

as follows. 

Phenotypic traits analysis  

For phenotypic trait analysis, five fruits were harvested from ten plants of each genotype at 

the following six stages: cell expansion stage (25, 20 and 14 days after anthesis for large, 

medium and small fruited tomato, respectively), +7d, +14d, +21d, orange red, then until red 

ripen stage. They were evaluated for fruit fresh weight, fruit diameter, dry matter content in 

fresh weight, sugar content.  Fruits were first weighted. Fruit diameter was then measured 

using a caliper. Dry matter content (expressed in g / 100 g FW) was assessed after 5 d in a 

ventilated oven at 80 ˚C.  Sugars were extracted from the pericarp according to the method 

described in Gomez et al. (2002). The main sugar contents (glucose, fructose and sucrose) 

were quantified by enzymatic assay in 96-well micro-plates, as detailed in Gomez et al. 

(2007).  
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Figure 2-7 General schemes for proteomic analysis 
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Sugar contents were expressed relative to the pericarp fresh weight (g / 100 g FW) or to the 

pericarp dry weight (g/ 100 g DW). For proteomic and metabolomic analyses, fruits were 

collected at two stages of development, cell expansion stage and orange-red stage, according 

to the fruit colour. For each genotype and stage, three pools of 7 to 20 fruits were made by 

mixing fruits from truss 2 to 6 of 10 plants, but avoiding the first and last fruit of the truss. 

Pericarps were collected from each pool, immediately frozen, ground in liquid nitrogen and 

stored at -80 °C before analysis. Fruit weight curves were fitted to three-parameter sigmoid 

logistic function.  

Proteome analysis 

General strategy for proteomic analysis as presented in Figure 2-7.  

Protein extraction 

Proteins were extracted using the phenol extraction method developed by Faurobert et al. 

(2007). Plant powder was suspended in 3 volumes of extraction buffer (containing 700 mM 

saccharose, 500 mM Tris, pH 8, 100 mM KCl, 2% [v/v] b-mercaptoethanol, 2 mM 

phenylmethylsulfonyl fluoride, pH 8.5) and incubated for 10 min on ice. Afterward, an equal 

volume of Tris-saturated phenol was added. Samples were shaken for 10 min at room 

temperature and then centrifuged (10 min, 5,525g, 4˚C) to separate the phenolic and the  

aqueous phase. The phenolic phase was recovered and re-extracted with the same volume of 

extraction buffer. Subsequently, centrifugation was repeated and 5 volumes of precipitation 

solution (0.1 M ammonium acetate in methanol) were added to the recovered phenol phase. 

Proteins were precipitate at -20˚C overnight. After centrifugation for 10 min (5,525g, 4˚C), 

the protein pellet was washed three times with the precipitation solution and once with 

acetone. Each washing step was followed by 5 min of centrifugation as described above. After 

drying under vacuum, the pellet was resuspended in lysis buffer (9 M urea, 4% [w/v] CHAPS, 

0.5% [v/v] Triton X-100, 20 mM dithiothreitol [DTT], 1.2% [v/v] pharmalyte, pH 3–10).   

Two-dimensional gel electrophoresis 

 Protein concentration was measured according to a modified Bradford assay (Ramagli and 

Rodriguez 1985) in order to load 500 μg of proteins on 24 cm long Immobiline dry strips, pH 

4 to 7 (Amersham Bioscience, Uppsala, Sweden). Proteins were first separated according to  
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their charge after passive rehydration of 24-cm-long Immobiline dry strips, pH 4 to 7 

(Amersham Biosciences), with 100 mg of resuspended proteins, 9 mL immobilized pH 

gradient buffer, pH 4 to 7, and rehydration buffer (8 M urea, 2% [w/v] CHAPS, 0.3% [w/v] 

DTT, 2% [v/v] pharmalyte, pH 3–10), to a final volume of 450 mL. ). Isoelectric focusing was 

performed with the Multiphor II (Amersham Bioscience, Uppsala, Sweden) according to the 

following program: 2 h at 150 V, 2 h at 400 V, 2 h to increase the voltage from 400 to 3,500 

V, 18 h at 3,500 V. After migration, isoelectric focusing strips were stored at -80 ˚C or 

immediately incubated in equilibration buffer (6 M urea, 50 mM Tris-HCl, pH 8.8, 30% 

glycerol, 2% [w/v] SDS with addition of 2% [w/v] DTT in the first equilibration step and 

2.5% [w/v] iodoacetamide in the second equilibration step, respectively), for 20 min. SDS-

PAGE was carried out with 12.5% acrylamide gels in the Bio-Rad Protean Plus Dodeca cell 

electrophoresis chamber (45 min at 80 V, 15 h at 120 V). 

Gels were stained with Coomassie colloidal blue and gel images were analysed using 

Progenesis SameSpots v3.0 software (Nonlinear Dynamics Ltd). Spot volumes were 

normalized according to the total spot volumes per gel to avoid experimental variations 

among 2-D gels. Detected spots were manually corrected after automatic detection by 

SameSpots v3.0 software. For statistical analysis, Samespots software was used to detect 

varying spots using one way ANOVA on normalized spot volume from the three biological 

pools. A two-way ANOVA then was performed to detect genotype, stage, and interaction 

effects on the deduced set of spots, a P-value less than 0.05 was considered to be statistically 

significant. Protein spots which showed significant values in ANOVA were selected and 

sequenced by nano LC-MS/MS.  

Protein identification  

This step was performed at the proteome platform of Le Moulon (Gif-sur-Yvette). In-gel 

digestion was performed with the Progest system (Genomic Solution) according to a standard 

trypsin protocol. Gel pieces were washed twice by successive separate baths of 10% acetic 

acid, 40% ethanol, and acetonitrile (ACN). They were then washed twice with successive 

baths of 25 mM NH4CO3 and ACN. Digestion was subsequently performed for 6 h at 37°C 

with 125 ng of modified trypsin (Promega) dissolved in 20% methanol and 20 mM NH4CO3. 

The peptides were extracted successively with 2% trifluoroacetic acid (TFA) and 50% ACN  
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and then with ACN. Peptide extracts were dried in a vacuum centrifuge and suspended in 20 

µL of 0.05% TFA, 0.05% HCOOH, and 2% ACN. 

HPLC was performed on an NanoLC-Ultra system (Eksigent). A 4 µL sample was loaded at 

7.5 µL/min-1 on a precolumn cartridge (stationary phase: C18 Biosphere, 5 µm; column: 100 

µm i.d., 2 cm; Nanoseparations) and desalted with 0.1% HCOOH. After 3 min, the precolumn 

cartridge was connected to the separating PepMap C18 column (stationary phase: C18 

Biosphere, 3 µm; column: 75 µm i.d., 150 mm; Nanoseparations). Buffers were 0.1% 

HCOOH in water (A) and 0.1% HCOOH in ACN (B). The peptide separation was achieved 

with a linear gradient from 5 to 30% B for 11 min at 300 nL/min-1. Including the regeneration 

step at 95% B and the equilibration step at 95% A, one run took 25 min. 

Eluted peptides were analysed on-line with a LTQ XL ion trap (Thermo Electron) using a 

nanoelectrospray interface. Ionization (1.5 kV ionization potential) was performed with liquid 

junction and a noncoated capillary probe (10 µm i.d.; New Objective). Peptide ions were 

analysed using Xcalibur 2.07 with the following data-dependent acquisition steps: (1) full MS 

scan (mass-to-charge ratio (m/z) 300 to 1400, centroid mode) and (2) MS/MS (qz = 0.25, 

activation time = 30 ms, and collision energy = 35%; centroid mode). Steps 2 was repeated 

for the three major ions detected in step 1. Dynamic exclusion was set to 30 s. 

A database search was performed with XTandem (version 2010.12.01.1) 

(http://www.thegpm.org/TANDEM/). Enzymatic cleavage was declared as a trypsin digestion 

with one possible misscleavage. Cys carboxyamidomethylation and Met oxidation were set to 

static and possible modifications, respectively. Precursor mass and fragment mass tolerance 

were 2.0 and 0.5, respectively. A refinement search was added with similar parameters except 

that semi-trypsic peptide and possible N-ter proteins acetylation were searched. The 

International Tomato Annotation Group (ITAG) database (http://solgenomics.net/, version 

2.3) and a contaminant database (trypsin, keratins, ...) were used. Only peptides with a E-

value lower than 0.1 were reported. 

Identified proteins were filtered and grouped using XTandem Pipeline 

(http://pappso.inra.fr/bioinfo/xtandempipeline/) according to : (1) A minimum of two different 

peptides was required with a E value smaller than 0.03, (2) a protein E value (calculated as the 

product of unique peptide E values) smaller than 10-3 . In case of identification with only two  

http://www.thegpm.org/TANDEM/
http://pappso.inra.fr/bioinfo/xtandempipeline/
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or three MS/MS spectra, similarity between the experimental and the theoretical MS/MS 

spectra was visually checked. To take redundancy into account, proteins with at least one 

peptide in common were grouped. This allowed to group proteins of similar function. Within 

each group, proteins with at least one specific peptide relatively to other members of the 

group were reported as sub-groups. Methods of protein classification were detailed in Chapter 

V.  

Measurement of metabolites and enzyme activities  

Metabolome analyses were performed on the metabolome platform of Bordeaux. Primary 

metabolites were quantified using quantitative 1H-NMR profiling of polar extracts, as 

described in Deborde (2009) with minor modifications, on an Avance III 500 MHz 

spectrometer equipped with an ATMA inverse 5 mm probe. Enzymatic activity profiling was 

performed as described in Steinhauser et al. (2010).  

Proteome, metabolome statistical analysis  

Coefficient of variation (CV= standard deviation/mean) were calculated for each phenotypic 

trait, metabolite, enzyme, protein spot per genotype at each stage. Then variation (ANOVA), 

inheritance, principal component, correlation and network analysis were performed for all the 

traits.  For detail, see materials and methods in Chapter VI.  
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CHAPTER III: COMBINED LONG RANGE PCR AND 

NEXT-GENERATION SEQUENCING FOR THE 

IDENTIFICATION OF POLYMORPHISMS BETWEEN 

TWO TOMATO LINES 
 

 

This chapter, in the form of a manuscript to be submitted to journal of BMC plant biology, 

presents the comparison of two sequencing technologies Illumina GA2X and Roche 454 

pyrosequencing towards the identification of SNPs in two contrasted tomato lines Heinz1706 

and LA2675. Both 454 and GA2X gave similar results, when compared with similar depth of 

coverage. As a result, the yield of sequences obtained from GA2X sequencers is now much 

higher than Roche 454 and a high quality genome sequence is available in tomato, this 

technology seems more appropriate to SNP calling within tomato genome. More than 3000 

SNP were identified between the two lines. A subset 64 of these SNPs was validated by 

developing CAPS markers 
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Abstract: 

 
Next-Generation Sequencing (NGS) technologies have revolutionized genomics and genetics 

by increasing the throughput by an order higher than 100× compared to the classical 

sequencing techniques (i.e. Sanger) and simultaneously reducing the cost. In order to further 

characterize tomato germplasm and test whether NGS could be appropriate to generate Single 

Nucleotide Polymorphisms markers in tomato, we have used GA2X Illumina and 454 Roche 

sequencing platforms to re-sequence targeted sequences covering about 0.2% of the tomato 

genome from two contrasted accessions, Heinz1706 and LA2675. We used long-range PCR 

to reduce genome complexity and amplify a total of 188 10kb-targeted regions spread on the 

whole tomato genome. We compared two software abilities to map the reads onto the 

reference genome and search for polymorphisms. We obtained similar results using both 

GA2X and 454. Discrepancies in the percentage of unmapped reads and in the number of 

polymorphisms detected were observed between both softwares. Moreover, almost 3000 

single nucleotide polymorphisms (SNP) were identified between Heinz1706 and LA2675. 

The polymorphism rate was highly variable among fragments and chromosomes. Finally, 

more than 300 SNPs were associated to coding regions from which a subset 64 of these SNPs 

was validated by developing CAPS markers. Markers were then used to genotype a set of 23 

highly diverse tomato accessions and mapped on the F2 segregating population derived from 

the two sequenced lines. All markers were polymorphic among the 23 accessions. A total of 

54 markers were successfully mapped onto the F2 populations. 

 

Keywords: Next-Generation Sequencing; Polymorphism; CAPS marker; tomato 
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Introduction: 
 

The Sanger sequencing method (Sanger et al. 1977) has been extensively used for DNA 

sequencing. Firstly used with manually loaded vertical acrylamid gels, it has been combined 

with improved instruments such as capillary sequencers, which increased sequencing 

throughput. The successive technical improvements and the increase in the volume of data 

produced have made it possible to sequence complex genomes like human genome (Venter 

2001). In plants, Arabidopsis genome sequence was first published in 2000, after several 

years of labour from an international consortium (The Arabidopsis Genome Initiative 2000)  

[3]. It was followed by the rice genome (International Rice Genome Sequencing 2005). 

Sanger sequencing is still considered as a standard because it produces the longest read length 

and the most accurate results (Bonetta 2006). However, Next-Generation Sequencing (NGS) 

techniques now produce much more data at a much lower price. Their throughput is 

continuously increasing since a few years. Combined together, these arguments have rapidly 

raised an enthusiasm for these methods in the scientific communities (Edwards et al. 2012). 

The sequencing machines Roche/454 (Margulies et al. 2005) and Illumina (Genome Analyzer, 

GA (Bentley et al. 2008) are among the most frequently used and are complementary in term 

of read length and read number per run (Pareek et al. 2011). They are used for genome 

sequencing (de novo or targeted re-sequencing), for qualitative or quantitative transcriptome 

analysis, the so-called ‘RNA-seq’ (Martin and Wang 2011) and for ChIP-sequencing 

(Chromatin Immuno Precipitation), which allows the identification of sequences recognized 

by DNA binding proteins (Schmidt et al. 2009). 

One of the challenges in genetics is to deepen our knowledge in molecular evolution and to 

improve association genetics to identify the loci controlling the variation of traits of 

agronomical interest. By combining genome re-sequencing using NGS, the large number of 

polymorphisms identified between natural genetic resources is promising for such aims. The 

molecular characterisation of segregating progenies has allowed the identification of several 

genes or QTL in many species (Flint and Mott 2001; Alonso-Blanco et al. 2009). However, 

domestication and modern breeding have reduced molecular diversity, particularly in self-

pollinated crops, like tomato (Solanum lycopersicum). It is thus necessary to use wild species 

and distant germplasm, through hybridization, as a source of new alleles to improve 

adaptation traits and yield. 
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In tomato, either passionate people or research institutes conserve large collections of 

accessions around the world. In Avignon (South of France), the INRA Research Institute 

characterizes and maintains more than 2000 accessions, which have been partly characterized 

at the molecular level (Ranc et al. 2008) using SSR markers. For other collections, few 

examples report their characterization at the molecular level (Alvarez et al. 2001; Nuez et al. 

2004; van Deynze et al. 2007). Molecular characterization studies have shown that the rate of 

polymorphism in tomato is low, ranging from 1.66 polymorphism per kb in coding regions to 

4.27 in non coding regions in cultivated accessions (Ranc et al. 2012). These rates are two to 

three times higher in the cherry tomato accessions and the S. pimpinellifolium wild relative. In 

order to further characterize tomato germplasm and test whether NGS could be appropriate to 

generate Single Nucleotide Polymorphisms (SNPs) markers in tomato, we used GA2X and 

454 sequencing platforms to sequence targeted genomic regions being amplified by Long-

Range PCR (LR-PCR) in two contrasted cultivated varieties (Heinz1706 and LA2675) which 

have long genetic distance. The obtained data have been used to compare the sequences from 

the two platforms and two analysis software packages. We further validated a subset of the 

identified SNPs by developing CAPS markers, which were mapped in a segregating 

population.  
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Material and Methods 

 
Plant material 

Heinz1706 (S. lycopersicum var. esculentum) and LA2675 (S. lycopersicum var. cerasiforme) 

are two contrasted lines used for re-sequencing. Heinz1706 is a processing tomato inbred 

which has been used to generate the high quality sequence of the tomato genome (Sato et al. 

2012). LA2675 is a tomato accession producing cherry type fruits, prospected in Peru by 

Charles Rick and colleagues in 1985 (http://tgrc.ucdavis.edu). The F2 mapping populations 

derived from the two lines composed of 96 individuals were used to map developed markers.   

A core collection of 23 accessions including the two lines above consisted of 10 large fruited 

accessions (S. lycopersicum var. esculentum), 7 cherry type tomato accessions (S. 

lycopersicum var. cerasiforme), 3 S. pimpinellifolium accessions, one S. galapagense, one S. 

habrochaites and one S. pennellii accessions were used for diversity analysis. They were 

obtained from the Tomato Genetics Resource Center (Davis, USA), the North Central 

Regional Plant Introduction Station (Ames, Iowa, USA), from the N.I. Vavilov Research 

Institute of Plant Industry (St Petersburg, Russia) and from Institut National de Recherche 

Agronomique (INRA, Avignon, France). Supplemental table S1 presents the list of the 23 

accessions. The three sets of plants were grown for 3 weeks before sampling of the young 

leaves for genomic DNA isolation.   

 

DNA isolation and quantification 

Genomic DNA has been isolated from 2 grams of fresh leaves, which have been crushed in a 

mortar containing a pinch of sand and 5 ml of extraction buffer (0.35M D-Sorbitol, 0.1M Tris, 

5mM EDTA, 2M NaCl and 70mM Na2S2O5). After transfer to a 50ml tube, 5ml of lysis buffer 

(200mM Tris, 50mM EDTA, 2M NaCl and 2% CTAB) and 2 ml of a 5% N lauryl sarcosine 

solution were added and the solution was homogenised. The solutions were incubated 20 min. 

at 65°C before adding 15 ml of a 24:1 (v:v) choloroform/isoamil alcohol solution. After 

homogenization, the tubes were centrifuged during 25 min. at 3,600rpm. The upper aqueous 

phase was transferred in a new tube where 10 ml of 99% ethanol was added. By slowly 

inverting the tubes, centrifuged, dried and re-suspended, a pellet appeared and was sampled 

using a hook. The pellet was then washed in a 75% ethanol-0.2M NaAc solution. The pellet 

was partially dried and dissolved in 500µl of water. gDNA and PCR product concentration  

http://tgrc.ucdavis.edu/
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was assessed using Quant-iT Picogreen dsDNA kit (Invitrogen) according to the manufacturer 

protocol and using a EnVision microplate reader (PerkinElmer). 

 

Long Range PCR amplification 

We first tested seven different Taq polymerases - Phusion (Finnzymes), PrimeSTAR and LA 

Taq (Takakra) Herculase II Fusion and PfuUltra II (Stratagene), Platinum High Fidelity and 

AccuPrime Pfx (Invitrogen) - for their ability to amplify long fragments. We tested them on 

genomic DNA from the two tomato lines with four primer pairs. 

To define the primers, we selected 872 BAC sequences available in NCBI database, either 

fully or partially sequenced. Primers were designed, using primer3 software (Rozen and 

Skaletsky 2000), on all the BAC sequences and a set of 384 primer pairs were finally selected 

to cover the entire genome. 

Long Range PCR were finally performed using 100 ng of gDNA in a 50µl reaction volume 

composed of 10µl of 5X Buffer, 1.25µl of the forward primer solution at 10µM, 1.25µl of the 

reverse primer solution at 10µM, 1.25µl of a 10mM dTNPs mix solution, 1µl of the Herculase 

II Taq Polymeras (Stratagene) and water up to 50µl. Mastercycler thermal cycler (Eppendorf) 

was used with a thermal program as suggested by Stratagene (2 min. at 92°C; 30 cycles 

composed of three steps at 92°C for 10 s, 58°C for 20 s and 68°C for 5 min; and followed by 

a final step of 8 min at 68°C). The PCR products were kept at 4°C for less than 12 hours and 

then conserved at -20°C until sequencing. PCR products were checked on agarose gel (1.2 

%). The specific amplifications that have been successfully obtained for the two lines were 

quantified and were equimolarly pooled. 

 

Sequencing 

The same DNA samples have been sequenced both on the Roche 454 and the Illumina 

Genome Analyzer GA2x sequencers. For the 454 sequencing run, 2 gaskets per sample were 

used. The GA2x run were done using a paired-end kit with a sizing of 500 nucleotides. One 

lane was used per accession for sequencing. The sequencing was performed in Unité Etude du 

Polymorphisme des Génomes Végétaux, CEA-Institut de Génomique-CNG, Evry (France). 

 

Read mapping and SNP calling 

The sequence reads were cleaned and mapped on the reference sequences extracted from the 

BAC sequences using two different software packages: CLC Genomics Workbench (CLC 

bio) and Seqman NGen (DNASTAR). We used the parameters recommended by the software 
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companies. All reference sequences derived from the Heinz1706’s genome sequence  (Sato et 

al. 2012) were used to evaluate the assembly and the sequence quality. SNP were then 

selected with a minimum of 90% of the reads showing a different allele from the reference 

sequence, and different depth depending on the platform. 

As the fragments were not sequenced with the same depth of coverage with the two NGS 

plaforms, we randomly reduced the GA2X to 1,807,560 reads (10%) for Heinz1706 and to 

1,706,340 for LA2675. With the randomly reduced run of the GA2x, the depth could be 

compared to the depth obtained with the 454 run. 

 

Validation of SNPs and CAPS marker development 

SNP located in restriction enzyme recognition sites were identified using Webcutter 2.0 

program (http://rna.lundberg.gu.se/cutter2/). The cheapest restriction enzyme was selected if 

several restriction sites were affected in the same fragment. Primer pairs with an optimum of 

22bp were designed by Primer 3.0 to amplify fragments measuring 700-900 bp and a 200bp 

window centred on the SNP position was defined as the target region. The CAPS markers 

were then (1) used to genotype a set of 23 highly diverse tomato accessions and (2) mapped 

on the F2 segregating population derived from the two sequenced lines. Genomic DNA (2.5 

ng) from young leaves were mixed individually with 2.5 µl of 10X Buffer, 1.25 µl of 10 µM 

dTNPs, 0.5 µl of 10 µM forward primer, 0.5 µl of 10 µM reverse primer, and 0.15 µl Taq 

polymerase, water up to 25 µl. The PCR reactions were programmed as follows: denaturation 

at 94°C 5 min, followed by 35 cycles at 94°C for 30 s, 52°C for 30 s, 72°C for 1 min, then a 

final extension at 72°C for 10 min. PCR product (12.5 µl) was mixed with 2.5 µl of 10X 

buffer, 2 U restriction enzyme, and water up to 25 µl, incubated at 37°C overnight. Digested 

products were separated on a 1.2 % agarose gel 

 

Genetic linkage map construction 

The program CarthaGéne (de Givry et al. 2005) was used to assign CAPS markers to linkage 

groups with a LOD score threshold of 3.0. Markers belonging to the same group were ordered 

by the “kh” command of MAPMAKER. The recombination values were converted into map 

distances (Kosambi cM). Genetic map was then plotted using Mapchart software (Voorrips 

2002). 



 

 
Figure 1: Location of 188 long Range PCR fragments onto the tomato genome. All LR sequences have been aligned on the tomato genome 

(v2.31) using BLAST. The distance are indicated in Mb. The highlighted LR fragments are the ones for which the expected location of the BAC 

clones was different from the one found by BLAST.The C12HBa0183M6_LR379 didn’t locate to any chromosomes. 
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Results and Discussion 

 

Reduction of the genome complexity by Long Range PCR 

Several methods to reduce genome complexity have been proposed and are compared by 

(Davey et al. 2011). Long Range PCR can be a valuable strategy to focus on target regions, 

but it may be tricky to systematically amplify long fragments of DNA. Several Taq 

polymerases are commercialized and described to be efficient to amplify long DNA fragments 

with a good fidelity. We tested seven different enzymes. Following the procedure described 

by the manufacturers, amplification was possible with three of them, Platinum High Fidelity 

(Invitrogen), LA Taq (Takara) and Herculase II Fusion (Stratagene). However, the yield was 

higher for the Herculase II Fusion (Stratagene). We thus used this enzyme to amplify the 

fragments to be resequenced.  

A set of 384 primer pairs was first designed to cover the entire genome from the 872 BAC 

sequences available when the project started. These primers were used to amplify the 

corresponding genomic regions of two tomato lines, Heinz1706 and LA2675. Finally, 188 

PCR fragments were obtained in both lines and selected on their specificity and the yield of 

the PCR amplifications on the two lines. The success rate (48.9% of the 384 fragments 

leading to a PCR product in the two lines) was intermediate but quite reproducible in the two 

genotypes.  

The 188 sequences were aligned onto the complete tomato genome sequence (v2.31) once it 

was available in order to precisely locate each Long Range PCR fragment (Figure 1). Ten 

sequences were not located on their expected chromosomes (highlight in Figure 1). All 

chromosomes were represented but were not covered with the same number of fragments that 

ranged from 2 fragments on chromosome 10 to 37 for chromosome 2 (Table 1). 

 

NGS data analysis 

The fragments size obtained after nebulisation in the Roche 454 process was 588 bp in 

average. With this technique, we obtained 181,987 reads of 358 bases in average for 

Heinz1706 and 175,990 reads of 347 bases in average for LA2675 (Table 2). The amount of 

sequence data and the read size were consistent with manufacturer’s expection. Compared to 

the 1.88 Mb of the total Long Range PCR fragment size, the expected sequencing depth 

should be 34.6X for Heinz1706 and 32.5X for LA2675 with the hypothesis of a perfect 

stoechiometry of the different fragments and a perfect coverage along each sequence. With 



 

                                                         Table 1: Description of LR PCR fragments distribution on the tomato genome. 
                                                         From The 872 BAC sequences, 384 primer pairs have been designed and tested on 
                                                         the two lines LA2675 and Heinz1706. 188 have been selected for sequencing. 
                                                        These 188 BAC sequences have been mapped by BLAST on the tomato genome. 

Chromosome Available BAC 
sequences 

Number of primer 
pairs tested for LR 

PCR 

Number of LR PCR 
after mapping on the 

genome 

Total length 
(bp) 

1 13 8 7 68,310 
2 168 75 33 337,544 
3 16 16 9 89,820 
4 145 55 22 218,787 
5 45 22 10 96,703 
6 110 37 17 172,346 
7 97 35 17 169,150 
8 135 30 13 134,137 
9 57 49 26 261,225 
10 6 4 2 20,044 
11 23 23 17 165,638 
12 57 30 14 136,653 
0 

  
1 9,473 

Total 872 384 188 1,879,830 
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the GA2X sequencer, a much higher depth was reached, as we obtained 15,364,464 36-bases 

reads and 17,063,588, for Heinz1706 and LA2675, respectively. The expected average depth 

was thus 272X for Heinz1706 and 302X for LA2675. 

 

Alignment of sequence reads 

The reads were mapped on the 188 reference sequences extracted from the BAC clones 

sequences (Supplemental File 1). From the 454 data, we compared the assembly obtained 

with two software packages, Seqman NGen (DNASTAR) and CLC Genomics Workbench 

(CLC bio). A number of reads did not map to any reference sequence. The differences in 

frequency of unmapped sequences were marked between the two software packages, but not 

between the NGS platforms (Table 2). For CLC Genomics, there was an average of 8.6% of 

reads that did not map to any reference sequence. For Seqman NGen, 14.9% of the reads did 

not map to any reference sequence. To compare results with the same depth, we randomly 

selected the GA2X data and obtained similar proportions of unmapped sequences between the 

GA2X run and the randomly reduced GA2X data set. Previous studies  already identified such 

differences in the performance of assemblers (Feldmeyer et al. 2011). Mapping depth varied 

between fragments from 3 to 30 (Supplemental Table S2) and fragments were not covered at 

all and could be considered as absent from the DNA pools. Even though an equimolar 

quantity of DNA had been pooled, these differences could be explained by differences of PCR 

product quantity. The depth was similar between software and the differences of depth 

between GA2X and 454 were similar between fragments. 

 

Polymorphism identification 

Once reads were mapped, we identified the polymorphic sites by focusing our analysis on 

SNPs. The number of SNPs depends on the depth at each site and the frequency of varying 

alleles. Because depth was highly different between GA2X and 454 data, we did not select the 

SNPs according to the same criteria. For 454, we selected SNPs with a minimum depth of 3 

reads and 90% of the reads showing the polymorphism. For GA2X, we selected SNPs with a 

minimum of 30 reads and 90% of the reads showing the polymorphism. This difference of 

criteria can induce a difference of the selected polymorphism sites. We thus used in silico 

reduced GA2X runs to obtain a depth similar to 454 data. For the reduced GA2X runs, we 

selected the SNPs under similar conditions to 454. The results were then compared and SNPs 

were considered identical if the position on the reference sequence and the polymorphic 

nucleotide were identical. Surprisingly, SNPs from Heinz1706 tomato accession were  



            
             
            Table 2: Summary of read mapping on the 188 reference sequences 

              The sequence reads have been mapped on the 188 reference sequences using CLC or Seqman NGen softwares.  
              Three sets of data have been used for each sequenced line Heinz1706 and LA2675: 454, GA2x and an in silico reduced GA2x software. 

 
454 Roche GA2x GA2x (in silico reduced runs) 

 
Heinz1706 LA2675 Heinz1706 LA2675 Heinz1706 LA2675 

             Total number of 
reads 181,977 175,980 15,364,266 17,063,390 1,807,560 1,706,340 
Average lenght 
of the reads 358 344 36 36 36 36 

             Software Seqman CLC Seqman CLC Seqman CLC Seqman CLC Seqman CLC Seqman CLC 

             Number of 
assembled reads 152,214 171,649 152,214 162,422 13,339,230 13,905,759 14,209,403 15,061,091 1 ,577,171 1,635,563 1,421,692 1,505,571 
Number of 
unassembled 
reads 29,763 10,328 23,766 13,558 2 025,036 1 458,507 2,853,987 2,002,299 230,389 171,997 284,648 200,769 
% unassembled 
sequences 16.36 5.68 13.50 7.70 13.18 9.49 16.73 11.73 12.75 9.52 16.68 11.77 
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identified although the reference sequences used for mapping were obtained from this 

accession (Sato et al. 2012). According to the combination of software used for analysis and 

sequencing technology, the number of SNPs detected for Heinz1706 varied from 645 to 1871 

SNPs (Figure 2). The four sets of SNPs (deduced from two platforms and two software 

packages) were compared all together and 259 SNPs were common to all of them. The same 

strategy, used on the reduced GA2X runs, identified 245 SNPs, among which 202 were also 

found previously with the full GA2X runs. 

For LA2675 accession, we identified from 4119 SNPs to 6174 SNPs. By comparing the four 

sets of SNPs, we identified 2933 SNPs common to the four analyses with the full GA2X runs 

and 2955 SNPs with the reduced GA2X runs. A total of 2718 SNPs were found in both lists. 

Among them, 92 SNPs were common with the 202 SNPs detected from the re-sequencing of 

Heinz1706. Summarizing all these comparisons, we selected a set of 2626 reliable SNPs 

specific to LA2675 for further analysis. 

The analyses were conducted using two different software packages (CLC Genomic 

Workbench and Seqman NGen). The results showed that combining a sequencing technology 

to a specific software could lead to identify specific SNPs. The proportion of specific SNPs 

was higher for Heinz1706 than for LA2675. The number of specific SNPs was lower when 

similar criteria for the SNPs selection were applied for both sequencing technologies by 

decreasing the depth of GA2X to the depth of 454. 

When using the 454 sequencing data,  Seqman NGen identified less specific SNPs (16.8% for 

Heinz1706 and 7.9% for LA2675) than CLC Genomics (68.5% for Heinz1706 and 35.2% for 

LA2675), being more efficient for this analysis. In the same manner, when using the complete 

set of GA2X data, CLC Genomics identified less specific SNPs (27.7% for Heinz1706 and 

12.1% for LA2675) than Seqman NGen (62.2% for Heinz1706 and 28.9% for LA2675) and 

seems more efficient for this type of data (Figure 2). Although sequencing depth has been 

mentioned as a factor of error in SNP calling (Nielsen et al. 2011), it seems to be much less 

influencing the final dataset than the choice of the software package. 

The 202 SNPs identified for Heinz1706 were located on 17 different BAC sequences but 171 

of them (84.6%) were located on four different fragments only and could correspond either to 

sequencing mistakes in the reference sequence or to sequences with a high number of 

repeated sequences, which could have been more difficult to assemble. As a consequence, we 

cannot either reject the hypothesis of small differences in the seeds of the two Heinz1706 

sequenced due to residual heterozygosity. 



 
 

 

 

Figure 2: Comparison of SNPs identified by GA2x or 454 and analyzed by SeqMan 
NGen or CLC 
The same 2 gDNA samples have been sequenced by Roche 454 and Illumina GA2x. The 
sequence data have been analyzed with SeqMan Ngen and CLC softwares with a mapping 
strategy on reference sequences. A: The complete set of GA2x have been used. SNPs have 
been selected with a depth of 3 reads for 454 and 30 reads for GA2x and 90% of polymorphic 
sequences for both. B: GA2x data have been in silico reduced to correspond to the 454 depth. 
For both, SNPs have been selected whith a depth of 3 reads and 90% of polymorphic 
sequences.  
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The 2626 SNPs specific to LA2675 were localized on 142 different fragments. A total of 31 

fragments were not polymorphic although they were sequenced with a depth higher than 30x 

using GA2X and 3x using 454. These 31 fragments corresponded to a total sequence length of 

312,565 nucleotides. Among the 142 polymorphic fragments, six were not enough sequenced 

and showed only one SNP for five of them and two SNPs for one of them. We thus calculated 

the polymorphism rate using the 2619 SNPs located on the 167 fragments with a depth higher 

than 30 for GA2X and 3 for 454 in all analyses. This rate was highly variable between 

chromosomes (Table 3) while ranging from 0.2 SNPs.kb-1 nucleotides for chromosome 1 (1 

SNP every 5363 nucleotides) to 2.7 SNPs.kb-1 over chromosome 11 (1 SNP every 371 

nucleotides). Over the whole fragments, the average polymorphism rate was 1.6 SNPs.kb-1 (1 

SNP every 1018 nucleotides). 

We annotated the genomic regions amplified thanks to the International Tomato Annotation 

Group effort (ITAG_CDS; http://solgenomics.net/). The 167 fragments sequenced with a 

sufficient depth were composed of 275 coding sequence (CDS) representing a total size of 

299,827 bp of coding sequences. We found 18.26% of coding sequences within these 167 

fragments spread over the genome on average but the proportion ranged from 10.07% for 

chromosome 11 to 31.92% for chromosome 1, which corresponded to the higher and lower 

SNP rate respectively (Table 3). From the 2,619 SNPs, 307 were located in coding sequences 

corresponding to 107 different CDS (Supplemental Table S3). In average, 11.77 % of the 

SNPs were located in coding sequences, confirming the lower rate of polymorphism in CDS 

than in intergenic sequence supporting previous observation in tomato by Ranc et al (2012). 

 

SNP validation by molecular marker development 

Almost 3000 SNPs were obtained after alignment of the 188 sequenced fragments amplified 

in the two contrasted accessions. A subgroup of 105 fragments was selected for the validation 

of polymorphic sites by the development and the genotyping of CAPS markers. We chose to 

develop CAPS markers because they do not need any specific instruments and can be easily 

used in any laboratory. We first drew the restriction maps of all reference sequences. We then 

searched for SNPs that were located in restriction sites and selected the most appropriate 

enzymes to finally design primers surrounding the SNPs. In silico digestion detected 713 

putative CAPS according to the SNP sites. Then, only one restriction enzyme was selected 

and the number of CAPS was restricted to a final set of 215 putative markers. After in silico 

simulation of digestions, 64 CAPS markers were selected as candidate (Supplemental table 



            
             
            Table 2: Summary of read mapping on the 188 reference sequences 

              The sequence reads have been mapped on the 188 reference sequences using CLC or Seqman NGen softwares.  
              Three sets of data have been used for each sequenced line Heinz1706 and LA2675: 454, GA2x and an in silico reduced GA2x software. 

 
454 Roche GA2x GA2x (in silico reduced runs) 

 
Heinz1706 LA2675 Heinz1706 LA2675 Heinz1706 LA2675 

             Total number of 
reads 181,977 175,980 15,364,266 17,063,390 1,807,560 1,706,340 
Average lenght 
of the reads 358 344 36 36 36 36 

             Software Seqman CLC Seqman CLC Seqman CLC Seqman CLC Seqman CLC Seqman CLC 

             Number of 
assembled reads 152,214 171,649 152,214 162,422 13,339,230 13,905,759 14,209,403 15,061,091 1 ,577,171 1,635,563 1,421,692 1,505,571 
Number of 
unassembled 
reads 29,763 10,328 23,766 13,558 2 025,036 1 458,507 2,853,987 2,002,299 230,389 171,997 284,648 200,769 
% unassembled 
sequences 16.36 5.68 13.50 7.70 13.18 9.49 16.73 11.73 12.75 9.52 16.68 11.77 
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S4), whereas the other CAPS digested fragments were too small (less than 50bp) to be 

distinguished by agarose gel.  

Candidate CAPS markers were then used to validate these SNPs within a set of 23 accessions 

containing Heinz1706 and LA2675 and an F2 progenies resulting from the cross between 

Heinz1706 and LA2675 (Figure 3). All markers were found to be polymorphic between the 

two sequenced lines, validating the SNP previously detected. For 4 markers (LRC005, 

LRC066, LRC098 and LRC0103) the polymorphism was specific to LA2675 only and for 4 

other markers (LRC001, LRC020, LRC055 and LRC063), only LA2675 was homozygous but 

heterozygous accessions could be identified (Table 4). For the remaining 56 markers, the 

polymorphism was shared with other lines than LA2675 (Table 4). Within the set of 23 

highly diverse tomato accessions, the allele from Heinz1706 was more frequent in S. 

lycopersicum accessions than in cherry tomato accession. For 13 markers, we observed other 

alleles for the CAPS markers than the two expected from the sequencing data (Figure 3). In 

the set of the 23 highly diverse accessions, the rate of these extra alleles was particularly high 

in the two wild species S. habrochaites and S. pennellii (12.5% of the markers). The rate of 

missing data was also higher in these two species (21.8% in S. habrochaites and 26.5% in S. 

pennellii) due to sequence divergence. 

The combination of all the results reported in the present paper (i.e. high-throughput 

sequencing combined to marker validation) show that the polymorphisms identified between 

the two lines could be used to design a high-throughput genotyping assay to characterize more 

accessions that could be interesting for association studies for example. We also developed an 

F2 segregating population from the cross between Heinz1706 and LA2675. The 96 F2 

individuals were genotyped using the 64 CAPS markers and a low density genetic map was 

obtained (Figure 4). For the 54 grouped markers, the genetic map was consistent with the 

physical map, but the relationships between genetic and physical distances varied greatly 

according to the intervals (Figure 4), as already shown by Sim et al. (2012). Seven markers 

were not linked to any linkage groups. Three markers contained too much missing data and 

could not be mapped. 



 

Figure 3: Development of CAPS markers 
The strategy for CAPS markers development is described. Examples of genotyping on a core 
collection for diversity analysis and on a F2 segregating population for mapping are shown.  

188 reference sequences

Restriction maps

Restriction site location

polymorphism analysis

SNP location putative CAPS markers

in silico agarose gel migration

set of 64 CAPS markers for validation

mapping diversity analysis
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Table 4: Genotyping of a Core Collection composed of 23 tomato accessions. A set of 64 CAPS markers have been used for genotyping 1 
corresponds to homozygous plants with the allele from LA2675, 3 corresponds to homozygous plants with the allele from Heinz1706, 2 to 
heterozygous plants, m for missing data and o for other alleles. 

lyco: S. lycopersicum; cera: S. lycopersicum var cerasiforme; pimp: S. pimpinellifolium; ches: S. chesmaniae ; habr: S. habrochaites ; penn: S. pennelii 
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LA0147 lyco 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3

LA0409 lyco 3 3 3 3 3 3 3 3 1 3 3 o 3 m 3 3 3 1 3 3 3 3 1 1 1 3 3 3 1 1 1 3 1 3 1 3 m 1 3 3 3 3 1 3 3 3 1 1 3 3 1 3 1 3 m 3 3 3 3 3 1 m 3 3

OrangeCocktail lyco 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 m 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3

VIR1011 lyco 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 m 3 3 3 3 1 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 1 3 3 3

Moneymaker lyco 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 m 3 3 3 3 m 3 3 1 3 3 3 3 3 3 3

Levovil lyco 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 o 3 3 3 3 3 3 3 m 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 m 3 3 3 3 3 3 m 3 1 3 3 3 3 3 3 3

Ferum lyco 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 3 3 3 3 3 3 3 3 3 3 o 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3

M-82 lyco 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 o 2 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3

Mic rotom lyco 3 1 3 3 3 m 3 3 3 3 3 m 3 3 3 3 3 1 2 1 1 3 1 3 m 1 m 3 3 3 3 2 3 3 3 3 3 3 3 3 m 3 3 3 3 3 3 m 2 3 1 3 1 3 3 3 1 1 3 3 3 3 3 3

Heinz1706 lyco 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

LA2675 cera 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Cervil cera 3 1 3 1 3 3 1 3 1 3 3 1 3 1 1 1 1 1 o 3 1 3 1 3 3 3 3 1 3 o 3 3 1 3 m 3 3 3 3 3 3 3 3 1 1 3 3 3 1 3 1 3 1 3 1 3 1 3 3 3 1 3 3 3

LA1464 cera 3 m 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 1 3 3 3 3 3 3 o 3 3 3 3 1 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3

Tinyt im cera 3 o 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 m m 1 1 1 3 m 3 3 1 1 3 3 3 3 3 3 1 3 3 m 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 1 m 3 3 3 3 3 3

Cri ollo cera 3 1 3 3 3 3 3 1 3 3 1 m 3 1 1 3 3 1 m m 1 1 1 3 1 3 3 1 1 1 3 3 1 3 3 1 3 1 3 3 3 3 3 1 3 1 1 1 3 3 1 3 m 3 m 1 1 1 3 3 1 3 3 3

Phyra cera 3 o 3 1 3 1 3 3 1 1 3 1 3 1 3 1 1 1 m m 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 1 3 3 1 m 3 1 3 1 1 3 3 1 1 3 3

LA2137 cera 2 3 3 2 1 3 2 1 2 2 1 2 2 1 3 2 2 1 o 2 2 2 1 1 1 2 3 1 1 1 1 2 1 2 3 3 3 1 3 2 2 3 3 1 1 2 3 1 2 1 3 3 1 1 1 2 m 2 3 2 1 3 3 1

LA1589 pimp 2 o 3 2 3 1 3 1 1 1 3 2 2 1 1 3 1 1 o 3 1 1 1 3 3 2 3 1 1 1 3 3 1 3 1 1 1 2 1 3 3 3 m 1 1 3 3 1 1 1 1 1 1 3 1 m 1 1 3 1 3 1 3 m

LA1602 pimp 3 o 3 1 3 1 3 1 1 1 3 1 3 1 1 1 1 1 m 3 1 1 1 3 3 3 3 1 3 o 3 3 1 m 1 1 m 3 3 3 3 3 3 1 1 3 1 3 1 3 1 1 1 3 m 3 1 1 3 3 m 1 3 3

Wva700 pimp 3 1 3 3 3 3 1 3 3 3 3 m 3 3 3 3 3 1 3 3 3 3 1 3 3 3 3 3 3 3 m 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 m 3 3 3 1 3 3 3 3 1 3 3

LA1401 ches 3 1 3 3 3 3 3 1 3 1 3 m m 1 3 3 1 1 m m 1 1 1 3 m 1 3 3 3 o 3 3 1 3 1 1 1 1 m 3 1 3 1 1 1 3 3 3 1 1 3 1 1 3 1 3 1 m 3 3 m 1 3 3

PI247087 habr m 1 m 3 m 3 3 1 1 1 m m m 1 m 3 1 o 2 m 1 2 3 3 m 1 1 m m o 3 1 1 3 o 1 1 o m 3 m o 1 o m 3 3 3 1 3 3 1 1 3 3 3 o 1 o 3 3 1 3 1

LA716 penn m 3 m 3 1 3 3 o 1 1 m 1 m 1 o 3 1 o o m 1 2 3 3 m 1 3 3 m o 3 1 m 3 1 1 m o m m m o 1 m m 3 3 m 1 3 3 1 1 3 1 3 o m 3 3 m 1 3 3
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 Figure 4: Genetic mapping of SNP derived CAPS markers and relationship with physical distance 
A set of 64 CAPS markers have been developped from SNPs. 54 markers have been successfully linked togethers (7 were not linked to any 
linkage groups and 3 contained too much missing data to be mapped). The genetic mapping has been done with CarthaGene. Genetic map is 
represented by open bars and the physical map by grey bars. 
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Conclusion 

 
NGS tools are highly efficient to rapidly detect SNPs to be implemented in various genetic 

studies. Our results provide complementary SNPs to the recent SNP array developed in 

tomato from RNA-seq (Sim et al, 2012) which carries more than 7,000 SNP. Both 454 and 

GA2X gave similar results, when similar depth is compared. As the yield of sequences 

obtained from Illumina sequencers is now much higher than 454 and a high quality genome 

sequence is obtained for tomato, this technology seems more appropriate to SNP calling in 

tomato genome. We showed that the software package might greatly affect the results. Today 

a large number of methods for NGS assembling and SNP calling are available (Nielsen et al. 

2011). Our comparative study led to the identification of more than 2,600 SNPs, which 

appeared to be highly reliable as part of these were validated through the development of 

CAPS markers. Nevertheless the resequencing of an higher number of tomato accessions is 

necessary to obtain a catalogue of tomato SNPs, as already shown in Arabidopsis (Gan et al. 

2011) or rice (Subbaiyan et al. 2012). When projected at the genome scale, we can deduce 

from the SNP number obtained that Heinz1706 and LA2675 may differ by about one and a 

half million SNPs, but the strong differences across chromosomes justify to resequence 

several accessions in order to be less specific. 
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     Supplemental table S1: List of a core collection of 23 accessions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     INRA: Institut National de Recherche Agronomique 
      VIR: Vavilov Research Institute of Plant Industry 
       USDA: United State Department of Agriculture (North Central Regional Plant Introduction Station ) 
       TGRC: Tomato Genetics Resource Center at University of California, Davis, USA 

Accessions Genebank Origin Species 
LA0147 TGRC S. lycopersicum 
LA0409 TGRC S. lycopersicum 
Orange Cocktail INRA S. lycopersicum 
VIR1011 VIR S. lycopersicum 
Moneymaker INRA S. lycopersicum 
Levovil INRA S. lycopersicum 
Ferum INRA S. lycopersicum 
M-82 INRA S. lycopersicum 
Microtom INRA S. lycopersicum  
Heinz 1706 INRA S. lycopersicum 
LA2675 TGRC S. lycopersicum var cerasiforme 
Cervil INRA S. lycopersicum var cerasiforme 
LA1464 TGRC S. lycopersicum var cerasiforme 
Tiny tim INRA S. lycopersicum var cerasiforme 
Criollo INRA S. lycopersicum var cerasiforme 
Phyra INRA S. lycopersicum var cerasiforme 
LA2137 TGRC S. lycopersicum var cerasiforme 
LA1589 TGRC S. pimpinellifolium 
LA1602 TGRC S. pimpinellifolium 
Wva700 INRA S. pimpinellifolium 
LA1401 TGRC S. galapagense 
PI247087 USDA S. habrochaites 
LA0716 TGRC S. pennellii 
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Supplemental Table S3: List of the SNPs located in coding sequences

Reference Sequence ID Chromosome Position onReference base SNP base CDS ID Exon ID
C02HBa0185P07_LR40 2 8795 T C Solyc02g070530.1.1 Solyc02g070530.1.1.10
C02HBa0072A04_LR26 2 269 A C Solyc02g071300.1.1 Solyc02g071300.1.1.1
C02HBa0072A04_LR26 2 455 T C Solyc02g071300.1.1 Solyc02g071300.1.1.1
C02HBa0072A04_LR26 2 851 T C Solyc02g071300.1.1 Solyc02g071300.1.1.1
C02HBa0072A04_LR26 2 8915 T C Solyc02g071320.1.1 Solyc02g071320.1.1.3
C02HBa0072A04_LR26 2 8918 C T Solyc02g071320.1.1 Solyc02g071320.1.1.3
C02HBa0072A04_LR26 2 8950 A T Solyc02g071320.1.1 Solyc02g071320.1.1.3
C02HBa0072A04_LR26 2 9124 T A Solyc02g071320.1.1 Solyc02g071320.1.1.3
C02HBa0072A04_LR26 2 9306 C T Solyc02g071320.1.1 Solyc02g071320.1.1.3
C02HBa0072A04_LR26 2 9566 G A Solyc02g071320.1.1 Solyc02g071320.1.1.2
C02HBa0329G05_LR52 2 6972 A G Solyc02g079020.1.1 Solyc02g079020.1.1.15
C02HBa0329G05_LR52 2 7020 C A Solyc02g079020.1.1 Solyc02g079020.1.1.15
C02HBa0329G05_LR52 2 7061 G A Solyc02g079020.1.1 Solyc02g079020.1.1.15
C02HBa0329G05_LR52 2 6544 G A Solyc02g079020.1.1 Solyc02g079020.1.1.13
C02HBa0329G05_LR52 2 5478 A G Solyc02g079020.1.1 Solyc02g079020.1.1.12
C02HBa0329G05_LR52 2 3491 G A Solyc02g079020.1.1 Solyc02g079020.1.1.9
C02HBa0329G05_LR52 2 182 T A Solyc02g079020.1.1 Solyc02g079020.1.1.5
C02HBa0329G05_LR52 2 317 A C Solyc02g079020.1.1 Solyc02g079020.1.1.5
C02HBa0329G05_LR52 2 402 A G Solyc02g079020.1.1 Solyc02g079020.1.1.5
C02HBa0204D01_LR334 2 8073 C T Solyc02g080340.1.1 Solyc02g080340.1.1.18
C02HBa0228I09_LR329 2 4006 C A Solyc02g081500.1.1 Solyc02g081500.1.1.1
C02HBa0228I09_LR329 2 4483 G A Solyc02g081500.1.1 Solyc02g081500.1.1.2
C02HBa0228I09_LR329 2 5598 G C Solyc02g081500.1.1 Solyc02g081500.1.1.4
C02HBa0228I09_LR329 2 7926 T G Solyc02g081510.1.1 Solyc02g081510.1.1.2
C02HBa0228I09_LR329 2 7975 G T Solyc02g081510.1.1 Solyc02g081510.1.1.2
C02HBa0228I09_LR329 2 8371 A G Solyc02g081510.1.1 Solyc02g081510.1.1.2
C02HBa0228I09_LR329 2 8545 G A Solyc02g081510.1.1 Solyc02g081510.1.1.2
C02HBa0075D08_LR28 2 6401 A G Solyc02g081670.1.1 Solyc02g081670.1.1.1
C02HBa0075D08_LR28 2 6435 T C Solyc02g081670.1.1 Solyc02g081670.1.1.1
C02HBa0075D08_LR28 2 7089 T C Solyc02g081670.1.1 Solyc02g081670.1.1.1
C02HBa0075D08_LR28 2 7346 A G Solyc02g081670.1.1 Solyc02g081670.1.1.1
C02HBa0075D08_LR28 2 9417 A G Solyc02g081680.1.1 Solyc02g081680.1.1.11
C02HBa0075D08_LR28 2 9429 T A Solyc02g081680.1.1 Solyc02g081680.1.1.11
C02HBa0075D08_LR28 2 9528 T C Solyc02g081680.1.1 Solyc02g081680.1.1.11
C02HBa0075D08_LR28 2 10071 C T Solyc02g081680.1.1 Solyc02g081680.1.1.9
C02HBa0075D08_LR28 2 10369 A G Solyc02g081680.1.1 Solyc02g081680.1.1.8
C02HBa0075D08_LR28 2 10522 A T Solyc02g081680.1.1 Solyc02g081680.1.1.8
C02HBa0008G02_LR67 2 431 C T Solyc02g082340.1.1 Solyc02g082340.1.1.11
C02HBa0008G02_LR67 2 3168 G C Solyc02g082340.1.1 Solyc02g082340.1.1.6
C02HBa0008G02_LR67 2 4800 A G Solyc02g082340.1.1 Solyc02g082340.1.1.1
C02HBa0291P19_LR48 2 8270 A G Solyc02g082540.1.1 Solyc02g082540.1.1.9
C02HBa0291P19_LR48 2 1755 C A Solyc02g082540.1.1 Solyc02g082540.1.1.2
C02SLe0127J16_LR59 2 4984 C A Solyc02g083340.1.1 Solyc02g083340.1.1.2
C02SLe0127J16_LR59 2 316 G A Solyc02g083350.1.1 Solyc02g083350.1.1.11
C02SLm0057H03_LR64_ 2 16050 C G Solyc02g083930.1.1 Solyc02g083930.1.1.1
C02SLm0057H03_LR64_ 2 16482 C A Solyc02g083930.1.1 Solyc02g083930.1.1.1
C02SLm0057H03_LR64_ 2 12738 T C Solyc02g083940.1.1 Solyc02g083940.1.1.1
C02SLm0057H03_LR64_ 2 12978 G C Solyc02g083940.1.1 Solyc02g083940.1.1.1
C02SLm0057H03_LR64_ 2 13005 G A Solyc02g083940.1.1 Solyc02g083940.1.1.1
C02SLm0057H03_LR64_ 2 13486 A G Solyc02g083940.1.1 Solyc02g083940.1.1.1
C02SLm0057H03_LR64_ 2 13557 T C Solyc02g083940.1.1 Solyc02g083940.1.1.1
C02SLm0057H03_LR64_ 2 13560 C T Solyc02g083940.1.1 Solyc02g083940.1.1.1
C02SLm0057H03_LR64_ 2 12738 T C Solyc02g083940.1.1 Solyc02g083940.1.1.2
C02SLm0057H03_LR64_ 2 12978 G C Solyc02g083940.1.1 Solyc02g083940.1.1.2
C02SLm0057H03_LR64_ 2 13005 G A Solyc02g083940.1.1 Solyc02g083940.1.1.2
C02SLm0057H03_LR64_ 2 13486 A G Solyc02g083940.1.1 Solyc02g083940.1.1.2
C02SLm0057H03_LR64_ 2 13557 T C Solyc02g083940.1.1 Solyc02g083940.1.1.2
C02SLm0057H03_LR64_ 2 13560 C T Solyc02g083940.1.1 Solyc02g083940.1.1.2
C02SLm0057H03_LR64_ 2 12103 T C Solyc02g083940.1.1 Solyc02g083940.1.1.3
C02SLm0057H03_LR64_ 2 12113 A T Solyc02g083940.1.1 Solyc02g083940.1.1.3
C02SLm0057H03_LR64_ 2 12186 T C Solyc02g083940.1.1 Solyc02g083940.1.1.3
C02SLm0057H03_LR64_ 2 10944 C T Solyc02g083940.1.1 Solyc02g083940.1.1.4
C02SLm0057H03_LR64_ 2 11315 C A Solyc02g083940.1.1 Solyc02g083940.1.1.4
C02SLm0057H03_LR64_ 2 11446 G A Solyc02g083940.1.1 Solyc02g083940.1.1.4
C02SLm0057H03_LR64_ 2 10944 C T Solyc02g083940.1.1 Solyc02g083940.1.1.5
C02SLm0057H03_LR64_ 2 11315 C A Solyc02g083940.1.1 Solyc02g083940.1.1.5
C02SLm0057H03_LR64_ 2 10944 C T Solyc02g083940.1.1 Solyc02g083940.1.1.6
C02SLm0057H03_LR64_ 2 10944 C T Solyc02g083940.1.1 Solyc02g083940.1.1.7
C02SLm0057H03_LR64_ 2 8538 C T Solyc02g083940.1.1 Solyc02g083940.1.1.10
C02SLm0057H03_LR64_ 2 7226 A G Solyc02g083940.1.1 Solyc02g083940.1.1.11
C02SLm0057H03_LR64_ 2 7728 G A Solyc02g083940.1.1 Solyc02g083940.1.1.11
C02SLm0057H03_LR64_ 2 1513 A T Solyc02g083950.1.1 Solyc02g083950.1.1.3
C02SLm0057H03_LR64_ 2 302 A G Solyc02g083950.1.1 Solyc02g083950.1.1.2
C02SLm0057H03_LR64_ 2 185 C T Solyc02g083950.1.1 Solyc02g083950.1.1.1
C02SLm0057H03_LR64_ 2 302 A G Solyc02g083950.1.1 Solyc02g083950.1.1.1
C02SLm0057H03_LR336 2 9341 A G Solyc02g083980.1.1 Solyc02g083980.1.1.3
C02SLm0057H03_LR336 2 8786 A G Solyc02g083980.1.1 Solyc02g083980.1.1.4
C02SLm0057H03_LR336 2 8474 G A Solyc02g083980.1.1 Solyc02g083980.1.1.5
C02SLm0057H03_LR336 2 8023 T C Solyc02g083980.1.1 Solyc02g083980.1.1.6
C02SLm0057H03_LR336 2 8053 T C Solyc02g083980.1.1 Solyc02g083980.1.1.6
C02SLm0057H03_LR336 2 8085 A G Solyc02g083980.1.1 Solyc02g083980.1.1.6
C02SLm0057H03_LR336 2 3835 C A Solyc02g083990.1.1 Solyc02g083990.1.1.1
C02SLm0057H03_LR336 2 4254 T C Solyc02g083990.1.1 Solyc02g083990.1.1.1
C02SLm0057H03_LR336 2 4367 T C Solyc02g083990.1.1 Solyc02g083990.1.1.1
C02SLm0057H03_LR336 2 1461 A G Solyc02g083990.1.1 Solyc02g083990.1.1.2
C02SLm0057H03_LR336 2 1586 C T Solyc02g083990.1.1 Solyc02g083990.1.1.2
C02HBa0030A21_LR22 2 8346 C G Solyc02g085150.1.1 Solyc02g085150.1.1.3
C02HBa0030A21_LR22 2 8479 G A Solyc02g085150.1.1 Solyc02g085150.1.1.3
C02HBa0030A21_LR22 2 8662 T A Solyc02g085150.1.1 Solyc02g085150.1.1.3
C02HBa0030A21_LR22 2 8772 G A Solyc02g085150.1.1 Solyc02g085150.1.1.3
C02HBa0030A21_LR22 2 8913 A G Solyc02g085150.1.1 Solyc02g085150.1.1.3
C02HBa0030A21_LR22 2 6307 T G Solyc02g085160.1.1 Solyc02g085160.1.1.1
BAC19_LR16 2 4212 C T Solyc02g085590.1.1 Solyc02g085590.1.1.3
C02HBa0164H08_LR38 2 3368 C T Solyc02g085750.1.1 Solyc02g085750.1.1.5
C02HBa0164H08_LR38 2 556 C T Solyc02g085760.1.1 Solyc02g085760.1.1.1
C02HBa0164H08_LR38 2 259 A G Solyc02g085760.1.1 Solyc02g085760.1.1.2
C02HBa0011O23_LR68 2 2311 C T Solyc02g086370.1.1 Solyc02g086370.1.1.4
C02HBa0011O23_LR68 2 590 G A Solyc02g086370.1.1 Solyc02g086370.1.1.9
C02HBa0011O23_LR68 2 685 T C Solyc02g086370.1.1 Solyc02g086370.1.1.9
C02HBa0190P16_LR331 2 8337 C T Solyc02g086820.1.1 Solyc02g086820.1.1.4
C02HBa0016A12_LR19_L 2 5921 C T Solyc02g086880.1.1 Solyc02g086880.1.1.1
C02HBa0046M08_LR23 2 8706 A G Solyc02g089310.1.1 Solyc02g089310.1.1.1 117
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C02HBa0155D20_LR36 2 8748 T G Solyc02g092780.1.1 Solyc02g092780.1.1.5
C02SLe0034H10_LR327 2 7297 G A Solyc02g093540.1.1 Solyc02g093540.1.1.2
C02SLe0034H10_LR327 2 7346 A C Solyc02g093540.1.1 Solyc02g093540.1.1.2
C02HBa0194L19_LR42 2 3840 G A Solyc02g093870.1.1 Solyc02g093870.1.1.3
C03HBa0233O20_LR82 3 6915 C T Solyc03g115000.1.1 Solyc03g115000.1.1.3
C03HBa0233O20_LR82 3 8084 A G Solyc03g115000.1.1 Solyc03g115000.1.1.3
C03HBa0233O20_LR82 3 6148 T G Solyc03g115000.1.1 Solyc03g115000.1.1.4
C03HBa0076J13_LR79 3 2923 T C Solyc03g116790.1.1 Solyc03g116790.1.1.9
C03HBa0076J13_LR79 3 4173 A T Solyc03g116790.1.1 Solyc03g116790.1.1.10
C03HBa0076J13_LR79 3 4182 T A Solyc03g116790.1.1 Solyc03g116790.1.1.10
C03HBa0076J13_LR79 3 4675 G A Solyc03g116790.1.1 Solyc03g116790.1.1.11
C03HBa0076J13_LR79 3 5567 A G Solyc03g116800.1.1 Solyc03g116800.1.1.2
C03HBa0076J13_LR79 3 5888 C T Solyc03g116800.1.1 Solyc03g116800.1.1.1
C03HBa0076J13_LR79 3 5914 C T Solyc03g116800.1.1 Solyc03g116800.1.1.1
C03HBa0076J13_LR79 3 9767 T C Solyc03g116810.1.1 Solyc03g116810.1.1.6
C03HBa0012D06_LR72 3 8346 T C Solyc03g117690.1.1 Solyc03g117690.1.1.2
C03HBa0012D06_LR72 3 6365 G C Solyc03g117700.1.1 Solyc03g117700.1.1.6
C03HBa0012D06_LR72 3 6494 G A Solyc03g117700.1.1 Solyc03g117700.1.1.6
C03HBa0012D06_LR72 3 6554 A T Solyc03g117700.1.1 Solyc03g117700.1.1.6
C03HBa0012D06_LR72 3 6289 T C Solyc03g117700.1.1 Solyc03g117700.1.1.5
C03HBa0012D06_LR72 3 5926 G A Solyc03g117700.1.1 Solyc03g117700.1.1.4
C03HBa0012D06_LR72 3 5999 A G Solyc03g117700.1.1 Solyc03g117700.1.1.4
C03HBa0012D06_LR72 3 5732 G A Solyc03g117700.1.1 Solyc03g117700.1.1.3
C03HBa0012D06_LR72 3 3349 G T Solyc03g117710.1.1 Solyc03g117710.1.1.1
C04HBa78J4_LR99 4 8687 G A Solyc04g008000.1.1 Solyc04g008000.1.1.1
C04HBa78J4_LR99 4 8706 G A Solyc04g008000.1.1 Solyc04g008000.1.1.1
C04HBa78J4_LR99 4 8735 A G Solyc04g008000.1.1 Solyc04g008000.1.1.1
C04HBa78J4_LR99 4 8746 T C Solyc04g008000.1.1 Solyc04g008000.1.1.1
C04HBa78E4_LR98 4 5644 A G Solyc04g056560.1.1 Solyc04g056560.1.1.4
C04HBa78E4_LR98 4 5645 T C Solyc04g056560.1.1 Solyc04g056560.1.1.4
C04HBa78E4_LR98 4 8623 C A Solyc04g056570.1.1 Solyc04g056570.1.1.3
C04HBa78E4_LR98 4 9772 C A Solyc04g056570.1.1 Solyc04g056570.1.1.2
C04HBa132O11_LR104_L 4 3655 G T Solyc04g064790.1.1 Solyc04g064790.1.1.3
C04HBa66O12_LR94 4 247 T C Solyc04g072040.1.1 Solyc04g072040.1.1.1
C04SLm39E17_LR117 4 238 T C Solyc04g072260.1.1 Solyc04g072260.1.1.49
C04SLm39E17_LR117 4 1834 T G Solyc04g072260.1.1 Solyc04g072260.1.1.46
C04SLm39E17_LR117 4 2085 T C Solyc04g072260.1.1 Solyc04g072260.1.1.45
C04HBa331L22_LR115 4 8661 G A Solyc04g081440.1.1 Solyc04g081440.1.1.4
C04HBa96I8_LR101 4 8976 G A Solyc04g081510.1.1 Solyc04g081510.1.1.1
C04HBa96I8_LR101 4 1310 G A Solyc04g081520.1.1 Solyc04g081520.1.1.3
C04HBa96I8_LR101 4 644 G A Solyc04g081520.1.1 Solyc04g081520.1.1.5
C04HBa96I8_LR101 4 129 C T Solyc04g081520.1.1 Solyc04g081520.1.1.6
C04HBa219H8_LR109 4 4862 T C Solyc04g081930.1.1 Solyc04g081930.1.1.1
C04HBa219H8_LR109 4 262 A G Solyc04g081950.1.1 Solyc04g081950.1.1.1
C05HBa0145P19_LR136 5 8001 C T Solyc05g007610.1.1 Solyc05g007610.1.1.3
C05HBa0145P19_LR136 5 8028 A T Solyc05g007610.1.1 Solyc05g007610.1.1.3
C05HBa0145P19_LR136 5 8155 T C Solyc05g007610.1.1 Solyc05g007610.1.1.3
C05HBa0145P19_LR136 5 6220 T G Solyc05g007610.1.1 Solyc05g007610.1.1.5
C05HBa0145P19_LR136 5 6380 C T Solyc05g007610.1.1 Solyc05g007610.1.1.5
C05HBa0145P19_LR136 5 6444 C T Solyc05g007610.1.1 Solyc05g007610.1.1.5
C05HBa0145P19_LR136 5 4339 A T Solyc05g007620.1.1 Solyc05g007620.1.1.1
C05HBa0145P19_LR136 5 4836 T G Solyc05g007620.1.1 Solyc05g007620.1.1.1
C05HBa0057G22_LR130 5 3805 A G Solyc05g012700.1.1 Solyc05g012700.1.1.3
C05HBa0057G22_LR130 5 3832 A G Solyc05g012700.1.1 Solyc05g012700.1.1.3
C05HBa0057G22_LR130 5 4327 C G Solyc05g012700.1.1 Solyc05g012700.1.1.2
C05HBa0057G22_LR130 5 4484 G A Solyc05g012700.1.1 Solyc05g012700.1.1.2
C05HBa0057G22_LR130 5 4513 T C Solyc05g012700.1.1 Solyc05g012700.1.1.2
C05HBa0057G22_LR130 5 5052 T A Solyc05g012700.1.1 Solyc05g012700.1.1.1
C05HBa0135A02_LR134 5 8927 G A Solyc05g051680.1.1 Solyc05g051680.1.1.8
C05HBa0138J03_LR135 5 2459 G A Solyc05g052190.1.1 Solyc05g052190.1.1.4
C05HBa0138J03_LR135 5 2926 G A Solyc05g052190.1.1 Solyc05g052190.1.1.4
C05HBa0138J03_LR135 5 1213 A G Solyc05g052190.1.1 Solyc05g052190.1.1.3
C05HBa0131D04_LR133 5 8847 C T Solyc05g054620.1.1 Solyc05g054620.1.1.4
C05HBa0131D04_LR133 5 8267 A G Solyc05g054620.1.1 Solyc05g054620.1.1.5
C05HBa0131D04_LR133 5 2368 T C Solyc05g054630.1.1 Solyc05g054630.1.1.3
C06HBa0147H20_LR146 6 9789 G C Solyc06g005660.1.1 Solyc06g005660.1.1.6
C06HBa0147H20_LR146 6 7765 A T Solyc06g005660.1.1 Solyc06g005660.1.1.1
C06HBa0304P16_LR358 6 3253 G C Solyc06g009530.1.1 Solyc06g009530.1.1.9
C06HBa0106K23_LR159 6 5314 T C Solyc06g064550.1.1 Solyc06g064550.1.1.18
C06HBa0106K23_LR159 6 4430 A G Solyc06g064560.1.1 Solyc06g064560.1.1.8
C06HBa0106K23_LR159 6 4241 C A Solyc06g064560.1.1 Solyc06g064560.1.1.7
C06HBa0106K23_LR159 6 4068 A G Solyc06g064560.1.1 Solyc06g064560.1.1.6
C06HBa0106K23_LR159 6 3537 T C Solyc06g064560.1.1 Solyc06g064560.1.1.3
C06HBa0106K23_LR159 6 3585 C T Solyc06g064560.1.1 Solyc06g064560.1.1.3
C06HBa0106K23_LR159 6 2023 T C Solyc06g064560.1.1 Solyc06g064560.1.1.1
C06HBa0106K23_LR159 6 2048 T C Solyc06g064560.1.1 Solyc06g064560.1.1.1
C06HBa0066D13_LR353 6 1649 A G Solyc06g072050.1.1 Solyc06g072050.1.1.6
C06HBa0066D13_LR353 6 2407 C T Solyc06g072050.1.1 Solyc06g072050.1.1.3
C06HBa0066D13_LR353 6 3742 A G Solyc06g072050.1.1 Solyc06g072050.1.1.1
C07HBa0229H10_LR187 7 3398 T C Solyc07g049500.1.1 Solyc07g049500.1.1.16
C07HBa0229H10_LR187 7 3646 T C Solyc07g049500.1.1 Solyc07g049500.1.1.15
C07HBa0229H10_LR187 7 5088 A T Solyc07g049500.1.1 Solyc07g049500.1.1.9
C07HBa0229H10_LR187 7 5561 G A Solyc07g049500.1.1 Solyc07g049500.1.1.7
C07HBa0018L21_LR201 7 3105 A G Solyc07g055970.1.1 Solyc07g055970.1.1.1
C07HBa0116M01_LR182 7 5733 G A Solyc07g056230.1.1 Solyc07g056230.1.1.3
C07HBa0116M01_LR182 7 3668 T C Solyc07g056240.1.1 Solyc07g056240.1.1.2
C07HBa0116M01_LR182 7 195 T C Solyc07g056250.1.1 Solyc07g056250.1.1.2
C07HBa0308M01_LR189 7 8961 T C Solyc07g062610.1.1 Solyc07g062610.1.1.3
C07HBa0308M01_LR189 7 7331 A T Solyc07g062610.1.1 Solyc07g062610.1.1.5
C07SLm0119A22_LR209 7 7830 G A Solyc07g065880.1.1 Solyc07g065880.1.1.1
C07HBa0309F18_LR191 7 2631 T C Solyc07g066110.1.1 Solyc07g066110.1.1.1
C07HBa0309F18_LR191 7 3576 G A Solyc07g066110.1.1 Solyc07g066110.1.1.1
C11HBa0190J03_LR294 8 10394 C T Solyc08g007610.1.1 Solyc08g007610.1.1.1
C11HBa0190J03_LR294 8 10805 G A Solyc08g007610.1.1 Solyc08g007610.1.1.1
C11HBa0190J03_LR294 8 6706 T A Solyc08g007620.1.1 Solyc08g007620.1.1.1
C11HBa0190J03_LR294 8 7231 A G Solyc08g007620.1.1 Solyc08g007620.1.1.1
C11HBa0190J03_LR294 8 4823 A G Solyc08g007620.1.1 Solyc08g007620.1.1.3
C11HBa0190J03_LR294 8 4828 C T Solyc08g007620.1.1 Solyc08g007620.1.1.3
C08HBa0239G21_LR221 8 1944 C T Solyc08g065870.1.1 Solyc08g065870.1.1.2
C08HBa0239G21_LR221 8 4980 G A Solyc08g065870.1.1 Solyc08g065870.1.1.5
C08HBa0239G21_LR221 8 8324 A G Solyc08g065880.1.1 Solyc08g065880.1.1.2
C08HBa0165B06_LR218 8 9230 G A Solyc08g079800.1.1 Solyc08g079800.1.1.2
C08HBa0165B06_LR218 8 9262 T G Solyc08g079800.1.1 Solyc08g079800.1.1.2
C08HBa0165B06_LR218 8 8501 C T Solyc08g079810.1.1 Solyc08g079810.1.1.1
C08HBa0165B06_LR218 8 4950 C T Solyc08g079810.1.1 Solyc08g079810.1.1.3
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C08HBa0165B06_LR218 8 4975 A G Solyc08g079810.1.1 Solyc08g079810.1.1.3
C08HBa0165B06_LR218 8 6135 T C Solyc08g079810.1.1 Solyc08g079810.1.1.3
C08HBa0165B06_LR218 8 4539 A T Solyc08g079810.1.1 Solyc08g079810.1.1.4
C08HBa0165B06_LR218 8 1261 G A Solyc08g079820.1.1 Solyc08g079820.1.1.1
C08HBa0149J12_LR217 8 10292 G A Solyc08g081320.1.1 Solyc08g081320.1.1.14
C08HBa0149J12_LR217 8 7342 G A Solyc08g081320.1.1 Solyc08g081320.1.1.6
C08HBa0149J12_LR217 8 4566 T C Solyc08g081320.1.1 Solyc08g081320.1.1.2
C08HBa0201M14_LR220 8 6831 C A Solyc08g083240.1.1 Solyc08g083240.1.1.5
C09SLe0068C01_LR272 9 5815 C T Solyc09g007710.1.1 Solyc09g007710.1.1.1
C09SLe0068C01_LR272 9 5986 T C Solyc09g007710.1.1 Solyc09g007710.1.1.1
C09SLe0068C01_LR272 9 4315 A G Solyc09g007710.1.1 Solyc09g007710.1.1.2
C09SLe0068C01_LR272 9 3047 T C Solyc09g007710.1.1 Solyc09g007710.1.1.3
C09SLe0068C01_LR272 9 3169 C T Solyc09g007710.1.1 Solyc09g007710.1.1.3
C09SLe0068C01_LR272 9 3186 T C Solyc09g007710.1.1 Solyc09g007710.1.1.3
C09SLe0068C01_LR272 9 1979 T G Solyc09g007710.1.1 Solyc09g007710.1.1.4
C09SLe0068C01_LR272 9 1565 T C Solyc09g007710.1.1 Solyc09g007710.1.1.5
C09SLe0068C01_LR272 9 1751 G T Solyc09g007710.1.1 Solyc09g007710.1.1.5
C09HBa0100J12_LR259_ 9 3757 T A Solyc09g009120.1.1 Solyc09g009120.1.1.5
C09HBa0100J12_LR259_ 9 5639 T C Solyc09g009120.1.1 Solyc09g009120.1.1.6
C09HBa0100J12_LR259_ 9 6370 G T Solyc09g009120.1.1 Solyc09g009120.1.1.6
C09HBa0142I14_LR265 9 4787 G A Solyc09g010910.1.1 Solyc09g010910.1.1.2
C09HBa0142I14_LR265 9 3731 C T Solyc09g010910.1.1 Solyc09g010910.1.1.3
C09HBa0142I14_LR265 9 3902 C A Solyc09g010910.1.1 Solyc09g010910.1.1.3
C09SLe0076N09_LR363_ 9 4751 A G Solyc09g065950.1.1 Solyc09g065950.1.1.10
C09SLe0076N09_LR363_ 9 6618 T G Solyc09g065950.1.1 Solyc09g065950.1.1.6
C09HBa0099F14_LR257 9 10168 C G Solyc09g074110.1.1 Solyc09g074110.1.1.15
C09SLm0018L06_LR366 9 3379 T C Solyc09g074630.1.1 Solyc09g074630.1.1.1
C09SLm0018L06_LR366 9 8005 A G Solyc09g074640.1.1 Solyc09g074640.1.1.4
C09HBa0022M02_LR247 9 3597 T C Solyc09g091180.1.1 Solyc09g091180.1.1.5
C09SLm0037I08_LR367 9 794 A C Solyc09g097910.1.1 Solyc09g097910.1.1.7
C09SLm0037I08_LR367 9 795 A G Solyc09g097910.1.1 Solyc09g097910.1.1.7
C09SLm0037I08_LR367 9 3030 C A Solyc09g097920.1.1 Solyc09g097920.1.1.1
C09SLm0037I08_LR367 9 3032 C T Solyc09g097920.1.1 Solyc09g097920.1.1.1
C09SLm0037I08_LR367 9 3701 A G Solyc09g097920.1.1 Solyc09g097920.1.1.1
C09SLm0037I08_LR367 9 4016 T A Solyc09g097920.1.1 Solyc09g097920.1.1.1
C09SLm0037I08_LR367 9 4126 G T Solyc09g097920.1.1 Solyc09g097920.1.1.1
C09HBa0226D21_LR244_ 9 5936 C T Solyc09g098100.1.1 Solyc09g098100.1.1.1
C09HBa0226D21_LR244_ 9 5960 A T Solyc09g098100.1.1 Solyc09g098100.1.1.1
C09HBa0226D21_LR244_ 9 6124 G C Solyc09g098100.1.1 Solyc09g098100.1.1.1
C09HBa0226D21_LR244_ 9 6989 C T Solyc09g098100.1.1 Solyc09g098100.1.1.1
C09HBa0226D21_LR244_ 9 7075 A G Solyc09g098100.1.1 Solyc09g098100.1.1.1
C09HBa0226D21_LR244_ 9 7204 C A Solyc09g098100.1.1 Solyc09g098100.1.1.1
C09HBa0226D21_LR244_ 9 7430 A G Solyc09g098100.1.1 Solyc09g098100.1.1.1
C11HBa0168B23_LR293 11 7581 G T Solyc11g005240.1.1 Solyc11g005240.1.1.2
C11HBa0096D22_LR288 11 8945 T C Solyc11g008380.1.1 Solyc11g008380.1.1.2
C11HBa0096D22_LR288 11 8948 A G Solyc11g008380.1.1 Solyc11g008380.1.1.2
C11HBa0096D22_LR288 11 5177 A G Solyc11g008380.1.1 Solyc11g008380.1.1.1
C11HBa0096D22_LR288 11 332 C A Solyc11g008390.1.1 Solyc11g008390.1.1.3
C11HBa0096D22_LR288 11 508 T C Solyc11g008390.1.1 Solyc11g008390.1.1.3
C11HBa0107K14_LR289 11 1660 A G Solyc11g010640.1.1 Solyc11g010640.1.1.2
C11HBa0072I13_LR286 11 8482 A G Solyc11g066650.1.1 Solyc11g066650.1.1.4
C11HBa0303G16_LR296 11 4328 A G Solyc11g068610.1.1 Solyc11g068610.1.1.4
C11HBa0303G16_LR296 11 4352 G A Solyc11g068610.1.1 Solyc11g068610.1.1.4
C11HBa0161D01_LR292 11 367 A C Solyc11g069270.1.1 Solyc11g069270.1.1.9
C11HBa0161D01_LR292 11 390 T C Solyc11g069270.1.1 Solyc11g069270.1.1.9
C11HBa0161D01_LR292 11 1151 C T Solyc11g069270.1.1 Solyc11g069270.1.1.11
C11HBa0161D01_LR292 11 1253 T A Solyc11g069270.1.1 Solyc11g069270.1.1.11
C11HBa0161D01_LR292 11 1412 G A Solyc11g069270.1.1 Solyc11g069270.1.1.12
C11HBa0161D01_LR292 11 1486 G A Solyc11g069270.1.1 Solyc11g069270.1.1.12
C11HBa0161D01_LR292 11 1804 T C Solyc11g069270.1.1 Solyc11g069270.1.1.13
C11HBa0161D01_LR292 11 2104 G C Solyc11g069270.1.1 Solyc11g069270.1.1.14
C11HBa0161D01_LR292 11 2121 A G Solyc11g069270.1.1 Solyc11g069270.1.1.14
C11HBa0161D01_LR292 11 2467 A T Solyc11g069270.1.1 Solyc11g069270.1.1.15
C11HBa0161D01_LR292 11 2702 A G Solyc11g069270.1.1 Solyc11g069270.1.1.16
C11HBa0161D01_LR292 11 3381 C G Solyc11g069270.1.1 Solyc11g069270.1.1.17
C11HBa0161D01_LR292 11 3432 T C Solyc11g069270.1.1 Solyc11g069270.1.1.17
C11HBa0161D01_LR292 11 3444 C T Solyc11g069270.1.1 Solyc11g069270.1.1.17
C11HBa0161D01_LR292 11 3473 C G Solyc11g069270.1.1 Solyc11g069270.1.1.17
C11HBa0161D01_LR292 11 3816 C T Solyc11g069270.1.1 Solyc11g069270.1.1.18
C11HBa0161D01_LR292 11 3919 A T Solyc11g069270.1.1 Solyc11g069270.1.1.18
C11HBa0161D01_LR292 11 4401 C T Solyc11g069270.1.1 Solyc11g069270.1.1.19
C11HBa0161D01_LR292 11 5163 T A Solyc11g069280.1.1 Solyc11g069280.1.1.2
C11HBa0161D01_LR292 11 5377 G A Solyc11g069280.1.1 Solyc11g069280.1.1.2
C11HBa0161D01_LR292 11 5427 C A Solyc11g069280.1.1 Solyc11g069280.1.1.2
C11HBa0161D01_LR292 11 6273 A G Solyc11g069280.1.1 Solyc11g069280.1.1.1
C11HBa0089M02_LR287 11 6652 G A Solyc11g071820.1.1 Solyc11g071820.1.1.6
C11HBa0089M02_LR287 11 8132 C T Solyc11g071830.1.1 Solyc11g071830.1.1.5
C11HBa0089M02_LR287 11 8223 A G Solyc11g071830.1.1 Solyc11g071830.1.1.5
C11HBa0089M02_LR287 11 8976 T G Solyc11g071830.1.1 Solyc11g071830.1.1.3
C12HBa221M9_LR377 12 6579 A T Solyc12g005400.1.1 Solyc12g005400.1.1.8
C12HBa221M9_LR377 12 6618 C T Solyc12g005400.1.1 Solyc12g005400.1.1.8
C12HBa221M9_LR377 12 772 C T Solyc12g005400.1.1 Solyc12g005400.1.1.1
C12HBa221M9_LR377 12 883 G T Solyc12g005400.1.1 Solyc12g005400.1.1.1
C12HBa90D9_LR311 12 9387 T C Solyc12g005890.1.1 Solyc12g005890.1.1.2
C12HBa90D9_LR311 12 9443 A G Solyc12g005890.1.1 Solyc12g005890.1.1.2
C12HBa90D9_LR311 12 9510 T G Solyc12g005890.1.1 Solyc12g005890.1.1.2
C12HBa90D9_LR311 12 8440 C T Solyc12g005890.1.1 Solyc12g005890.1.1.1
C12HBa165B12_LR303 12 910 C T Solyc12g055890.1.1 Solyc12g055890.1.1.6
C12HBa165B12_LR303 12 1642 A G Solyc12g055890.1.1 Solyc12g055890.1.1.3
C12HBa165B12_LR303 12 1746 C T Solyc12g055890.1.1 Solyc12g055890.1.1.3
C12HBa165B12_LR303 12 1997 C T Solyc12g055890.1.1 Solyc12g055890.1.1.2
C12HBa165B12_LR303 12 2000 A G Solyc12g055890.1.1 Solyc12g055890.1.1.2
C12HBa165B12_LR303 12 2557 G A Solyc12g055890.1.1 Solyc12g055890.1.1.1
C12HBa165B12_LR303 12 6767 G A Solyc12g055900.1.1 Solyc12g055900.1.1.1
C12SLm103K8_LR380 12 1443 G C Solyc12g056010.1.1 Solyc12g056010.1.1.2
C12SLm103K8_LR380 12 1610 A G Solyc12g056010.1.1 Solyc12g056010.1.1.2
C12HBa115G22_LR301 12 7690 C A Solyc12g094630.1.1 Solyc12g094630.1.1.3
C12HBa115G22_LR301 12 2064 A T Solyc12g094640.1.1 Solyc12g094640.1.1.8
C12HBa326K10_LR306 12 5180 C T Solyc12g095810.1.1 Solyc12g095810.1.1.1
C12HBa93P12_LR312 12 1606 G T Solyc12g096610.1.1 Solyc12g096610.1.1.3
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Marker Forward primer sequence (5'-3') Reverse primer sequence (5' -3') Expected PCR sizSNP position oRestrction enzyme  site 
LRC001 CCAATTTATGACCAAAACAGCA CACAGTAGCTGATGGAACAACC 742 332 1 HindⅢsite at 329
LRC003 CCTGATTGGGCGAAATAAATAG GTGGACAATATGGAGGGAGAAA 821 535 2 DraI sites at 394 and 534
LRC005 GACGCAAGAAGTTGATGATTTG TTTCTGTTTGGGAATTTTTACTTTG 750 423 1 AluI  site at  426
LRC007 ACTCGCACTTCTCAATTTTGCT ATACCGCTAGTCATGCCAAAGA 803 415 1 HinfI site at 415
LRC009 GCTACTCCATTCAACCAGCTTC CATGAGGAACCTAGAACCATCC 765 133 2 EcoRI sites at 135 and 340
LRC010 GACTCACCCCTGCATTCTTATC GCTCTCTTCTGTCCCTGTTGTT 724 470 5 HinfI sites at 3, 473 ,509, 609 and  663
LRC011 CATGATTCTTGGGCATATTTCA TGAACAAAGGGAAGTCACAGAG 804 547 2 HaeIII sites at 178 and 550 
LRC012 GCAGGTGGAGTACCTTAGCTTG AAGGGTTGGCGTCTTTAGTTTT 798 458 2 HinfI sites at 231 and 457  
LRC014 GTTAAAAGCCTCCACCATTCAC CAGATTGTTTCCACTCGTACCC 745 555 1 HaeIII  site at 557
LRC016 GAAATCAAGATCCCTGGAAACA CGGGATGACAGAACTACATCAA 860 192 1HinfI site at 190
LRC017 GAAACGGGCACTTAGTCTTCC CTGTTTCGCCTTTTCTGATTTT 841 265 1 XbaI site at  264
LRC019 AGAGACATGAAGGTGCAAATGA CCATCTAGGCTCTCCACAAACT 891 369 2 TaqI sites at 186 and 369
LRC020 CAAGTGCCCTATATGATCTCCA ATGAGTGGGTAGTGGATTGGTT 716 462 1HaeIII site at 462
LRC021 GTTGAGATAGAAGTCGGGTTGG GGGATGATTGATTGATTGATCTG 796 454 1 BamHI site at 451
LRC023 TTCAATTTTTGCTTTCGATGCT TCGTTCCATCTTCAACACACTC 843 418 1 SspI site at 416
LRC024  AATCAGCCCATACAACAACTCA CTTCATGTGGGTCAGCAGTAAA 752 374 2 TaqI sites at 374 and 505
LRC025 CCAATGCCATCAACTACACAAC AAGGCAAGCTCGTGAAAGATAA 797 477 1 HaeIII  site at 477
LRC026 ATTGTCCACCTCCATTCAAAAA GAGATGGGGCAAACAAATAAAG 760 540 2 DraI sites at 334 and 538
LRC028 GTAGAGCCCCGACAACTTAACC TTTTATGCACCGTACCAAACTG 701 498 2 NdeI sites at 160 and 499
LRC032 TTCCTCCAGTTTATTTCCAGCA TGTGTCCTTCCTCGATTTCTTC 755 498 1 NsiI sites at 498
LRC035 TACCAAGTAACCAGCAATGGAC AGATGGCAAGAGCTAGTTGGAG 712 430 1NsiI site at 434
LRC037 CAGTAGGACTGAATCGGAAACC ACTGTTCTTTTCTCCACTGTCC 749 514 1 NdeI site at 515
LRC038 TGCTGTGTGTTTTAATGGTTTTG CCTCCACTATGTCTCCTACTTCC 756 609 1 TaqI site at 610
LRC040 ATTCATGGTAGGGCAATCAACT ATCAACACTCCACCCCATAAAA 711 340 5 HinfI sites at 104, 163, 188, 341 and 617  
LRC042 ATTTTTGGACGGTATGGACACT AACCAACCACCTCTTGTCAACT 732 378 3 TaqI sites at 71, 378and 488 
LRC043 GGTGGGGTCTGAGAAGAGTAGA GTAAGGTCAAGCTCGGAAAATG 749 359 4 HinfI sites at 360 ,686 ,715 and 724
LRC044 GTAGGCAGACCTTACCCCTACC ATCCATCTCCCTGAACAGAAAA 739 445 1 MspI  site at 443
LRC046 GAGGAATTGAGGGATGAGGTAA AGAGGAGACACAAGCTGGGTAA 827 569 6 RsaI sites at 112, 195, 302, 312, 485 and  572  
LRC047 TCTCCATAAAGCCAGCTACACA CATTCAAAATGCCAAAGTCAAA 879 603 1 EcoRI at 613
LRC050 AGGGGAAAAAGAGTGGAGAAAG AAAGTCGTTGATTGATGGAGGT 668 117 2 TaqI sites at 118 and 302
LRC052 GGAGGAGACTTGCAGTAGGTTG TGAACTTGGTTTTTGAAGCAGA 775 358 1 MspI  site at 358
LRC053 TAGCGGAGTCAAGATTCTCACA GTGAAGAAAGCGTTATCCCAAG 721 362 1 HaeIII site at 361
LRC054 GACATTCCTAGTTCCGCTAAAAA TCAAACAGACTTCTCCGATGAC 706 436 1 EcoRV site at 438
LRC055 ATTTGGGAATTTTGCTATGAGG GAGGGAAATTGTGCTGAGAAAG 737 514 1 DraI site at 514
LRC057 GAAACTGAAAGGGTTTCCAAGA TGTCTTTTCAACAATAAACGGAAA 848 356 3 TaqI sites at 218, 354 and 685
LRC058 TTTTGGATTTGTTGATCCTGTG ATCTCATTTATTCCGCCATGTT 782 498 1 TaqI site at 499
LRC059 ATCTAAGGTCATGTTCGCCAGT TTCATTTTCATACCGCTCGATT 897 470 1 ecorI at 466
LRC060 AATTGCATCACTACCGTTGAAG ATGGTACTCCCTCTGTCCCTAA 729 358 2 TaqI sites st 359 and 658
LRC061 TCGATCAAAATCAGTCAACATTC GCTTTCACTTATGACTCACTCAACC 772 415 4 HinfI  site at 55 ,412 ,531  and 756
LRC063 GTGGGGCTATTTGACTGAAAAC GAGCAAGAGGGTAAGGTGCTAA 822 536 1 MspI site at 536
LRC064 TTTGCAGTTTTGCTGTCATTTT GGTCTCTTTTCAATTTTGTATTTCATT924 363 6 TaqI sites at 48, 365, 534, 583, 632 and 762
LRC066 TCGAACATACTTGCCCTCTCTT TAGCCGGATCAATATACGAGGT 802 286 3 MspI sites at 286, 375and 796 
LRC067 TGCTTTTTCTTTTTAGTCCGTCA GCTCCATTTTTGGTGGATACTT 702 393 1 MspI site at 391
LRC068 TTGACGGGGAGAATAGAATGAC TTCCGCAACTAGCTTTTCTAAC 793 679 5 SspI sites at 36, 204, 290, 393  and 677
LRC069 CTTTCCATTCCAACTCTTCCAC TGGATGGGCTTAATAAAAGCAG 827 556 2 TaqI sites st 44 and 555
LRC071 TGTGAGGGTGTTGATCTTTGTC GTGATCTCCCTTTCTCCTTCCT 850 642 2 TaqI sites at 96 and 641
LRC074 GAAAGAAGGTTGCTTGAGATGG AGGAAGATGTACCCGAAAGACA 807 143 1 BamHI site at 142
LRC075 TATCGTAGAACATGCCCTTTTG TGATGTGGAATTTATCTAAGGTGGT 822 385  3 AseI sites at 383, 455 and  592   
LRC080 TTCAGTTCCCTGGATTATTGCT GCAGGATGGAGATAGATTTTGG 905 577 1 TaqI  site  at 588 
LRC081 GGAGAGTGTGAGGGATAACGAG TAGGATTTCGAGACTGCCATTT 911 344 3 TaqI  sites at 283, 344, 902  
LRC082 ATAGTCCTGGATCTCCCAAACA ATACATCCACTTCCTGCTCCAC 736 469 1NsiI site at 469
LRC087 TGACTTGATTTGATCTGCCAAC ATAGAGCAACAACCACACCTCA 705 337 1 SspI site at 340
LRC088 TAACCGACCCACTTGTCACTC TAGCCTCCAACAACAGATTTCA 709 497 2 RsaI sites at 26 and 496
LRC89 AAACCTCATGGAGTAGCATTGG ATTTCAGGATGCCTTTGAAGAA 817 343 1 PvuII site at 345
LRC091 CCACTTGCTATGTCTTGTGGAA TCACATTTTGTGTTAGAGTTCGAGT 766 330 1 BamHI site at 326
LRC095 CATTTGTGTTAGCAGGGTCAAA GACAAAGAGCCCAAAGTTGTAG 853 472 1 EcoRI site at 468
LRC096  CCTCAAGTTTCTTGCTTCCTTC TTCATGCGCTCTTTATCCTTTT 751 426 1 HindII site at 427
LRC097 TCCATCCACGATTCTAATACACC GCTTCAAGAAATGAATGGGAAG 814 643 1 EcoRI site at 642
LRC098 TGACCTTACGATATTGGCAACC GAATGTGAGCATTACCTGCAAA 834 506 4 HinfI sites at 219, 304 ,503 and 695
LRC099 TCTAAGGTTATGGCCTCGGTAA AAGTAGCCAAGTGAAGCAGGAC 790 409 2 HaeIII sites at 11 and 406 
LRC101 AAGGATACAAGCAAAGGGTCAG TCAACTTCGCCTAAGAATCACA 930 445 2 TaqI  sites at 447 and 823
LRC102 AATTTGAAAGGAAGGCGAAAAG TTCATCAAGTTTGTTCCGTCAA 831 494 2 RsaI sites at 495 and 775
LRC103 CTGCTGACTGTCTAAAGGTGGA ACTCATTTTGGGGATATGTTGG 722 284 1 AluI site at 285
LRC105 GTTTGAATGCTAGAGGGAGCAA CGACCTAAAAGCCAAGGTAATG 735 493 1 MspI site at 493

Supplemental table S4 : Information of 64 CAPs markers
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CHAPTER IV: PHENOTYPIC DIVERSITY AND 

ASSOCIATION MAPPING FOR FRUIT QUALITY 

TRAITS IN CULTIVATED TOMATO AND RELATED 

SPECIES  

 

This chapter, in the form of a manuscript accepted for publication in Theoretical and Applied 

Genetics, presents the phenotypic and molecular characterization of a sample composed of 

188 tomato accessions and subsequent association study between phenotypes and genotypes. 

The collection included a large (127) set of cherry tomato accessions. We genotyped the 

collection with 192 SNPs unevenly spread on the genome. A larger number of SNPs was 

designed in chromosome regions where QTL were previously detected. The 121 informative 

SNPs were used to analyze LD decay and population structure using either SSR markers or 

SNP. We then compared the associations observed using different structure covariate and 

samples. Several associations were detected in regions where QTL had previously been 

mapped, showing the power of the approach, but some other associations were also identified 

in new regions. This work also provides the community with a new set of SNPs useful for any 
study. It follows the study presented in Ranc et al. 2012 (ANNEXE 1).
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Abstract 

Association mapping has been proposed as an efficient approach to assist in the identification 

of the molecular basis of agronomical traits in plants. For this purpose, we analyzed the 

phenotypic and genetic diversity of a large collection of tomato accessions including 44 

heirloom and vintage cultivars (Solanum lycopersicum), 127 Solanum lycopersicum var. 

cerasiforme (cherry tomato) and 17 S. pimpinellifolium accessions. The accessions were 

genotyped using a SNPlexTM assay of 192 SNPs, among which 121 were informative for 

subsequent analysis. Linkage disequilibrium of pairwise loci and population structure were 

analyzed, and the association analysis between SNP genotypes and ten fruit quality traits was 

performed using a mixed linear model. High level of linkage disequilibrium was found in the 

collection at the whole genome level. It was lower when considering only the 127 S. 

lycopersicum var. cerasiforme accessions. Genetic structure analysis showed that the 

population was structured into two main groups, corresponding to cultivated and wild types 

and many intermediates. The number of associations detected per trait varied according to the 

way the structure was taken into account, with zero to 41 associations detected per trait in the 

whole collection and a maximum of four associations in the S. lycopersicum var. cerasiforme 

accessions. A total of 40 associations (30%) were co-localized with previously identified 

quantitative trait loci. This study thus showed the potential and limits of using association 

mapping in tomato populations.  

 

Keywords: Association mapping; linkage disequilibrium; mixed linear model; tomato; fruit 

quality. 
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Introduction 

Genetic dissection of quantitative traits in plants is a major goal for plant breeding. 

Quantitative trait loci (QTLs) were first mapped in bi-parental populations using linkage 

mapping approach (Paterson et al. 1991; Saliba-Colombani et al. 2001; Wang et al. 2006; 

Szalma et al. 2007; Orsini et al. 2012). This approach has several advantages: (i) no 

population structure in the mapping population; (ii) segregating alleles are at balanced 

frequency; (iii) it allows the detection of rare alleles and epistasis. However, the linkage 

mapping approach has several limitations: (i) restricted allelic variation in bi-parental 

mapping population; (ii) low precision due to limited recombination within the population 

(Hall et al. 2010).  

Nowadays, association mapping or linkage disequilibrium (LD) mapping is proposed as an 

alternative approach. On one hand, association mapping has several advantages over QTL 

mapping: (i) it is based on occurring variation in collections of natural genetic resources; (ii) it 

is more precise because of the recombination events resulting from many lineages; (iii) if LD 

is sufficiently low, it allows the discovery of the gene controlling the trait of interest. On the 

other hand, it has several limitations: (i) unbalanced allele frequency in the population; (ii) it 

is not efficient for the detection of rare alleles; (iii) it requires large population sizes and an 

efficient control of the population structure. Many plant association studies have been 

published to date for several traits, such as flowering time and pathogen resistance in 

Arabidopsis (Aranzana et al. 2005), yield and its components in rice (Agrama et al. 2007), 

leaf architecture in maize (Tian et al. 2011), iron deficiency chlorosis in soybean (Mamidi et 

al. 2011). Association mapping approach requires the knowledge of the genetic structure and 

the extent of LD of the samples studied. Population structure can lead to false positives and 

must be taken into account (Yu et al. 2006). Several statistical methods have been developed 
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to deal with structured samples in order to control false associations (Pritchard et al. 2000; 

Price et al. 2006; Yu et al. 2006). The mixed linear model has been shown to be efficient in 

maize (Yu et al. 2006) and Arabidopsis (Atwell et al. 2010). LD is the non-random 

association between alleles at several loci. The extent of LD over the genome will influence 

association mapping strategy. If LD is high, the resolution will be low but fewer markers will 

be required and a whole-genome scan approach may be performed. If LD is low, the 

resolution will be higher as the number of marker required and a candidate gene analysis may 

be conducted (Rafalski 2002). LD is expected to be higher in average in autogamous species 

than in allogamous species because the higher homozygozity at a given locus leads to lower 

rate of efficient recombination than in allogamous species (Flint-Garcia et al. 2003). 

Nevertheless, a large range of variation in the rate of recombination per Mb exists along the 

chromosomes (Sim et al, 2012). Thus, the resolution of association mapping in autogamous 

species is expected to be lower than in allogamous species. Therefore, association mapping 

was first used in allogamous species or species with wide range of genetic diversity. 

Tomato (Solanum lycopersicum, formerly Lycopersicon esculentum) is a highly autogamous 

species. It was domesticated from its wild relative S. pimpinellifolium with the first 

domesticated form presumably represented by S. lycopersicum var. cerasiforme (i.e. the 

cherry tomato, hereafter S. l. cerasiforme). Cultivated tomato shows a low genetic diversity 

but higher phenotypic diversity compared to S. pimpinellifolium (Miller and Tanksley 1990) 

due to intensive human selection. The higher molecular diversity and the genetic admixture of 

S. l. cerasiforme genome (being a mosaic of cultivated and wild tomato genomes, (Ranc et al. 

2008) may be useful to overcome the high LD in this autogamous species. Several association 

studies have been carried out to dissect morpho-physical and fruit traits in tomato. Mazzucato 

et al. (2008) studied associations between 29 simple sequence repeat (SSR) markers and 15 

morpho – physiological traits in 50 tomato landraces. Nesbitt and Tanksley (2002)  
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investigated associations between fruit size and genomic sequence of the fw2.2 region which 

controls fruit weight (Frary et al. 2000) in a collection of 39 cherry tomato accessions. 

Unfortunately, they failed to find any association, but they demonstrated that the genome of 

cherry tomato accessions is a mosaic composed of polymorphisms of S. pimpinellifolium and 

S. lycopersicum. Munos et al. (2011) used association analysis to identify two single-

nucleotide polymorphisms (SNP) located in a small region of chromosome 2 involved in the 

control of locule number of tomato fruit.  

In a previous pilot study focused on one chromosome and 90 tomato accessions (Ranc et al. 

2012), we showed that association mapping was possible in tomato. In the present work we 

developed a SNPlexTM assay (De La Vega et al. 2005; Tobler et al. 2005) of 192 SNPs 

selected from re-sequencing experiments or from databases (Van Deynze et al. 2007). A large 

germplasm collection including cultivated, cherry type and wild accessions were 

characterized for both genetic diversity using the SNPlexTM assay, 20 SSR markers (Ranc et 

al. 2008) and ten phenotypic traits. We first describe the phenotypic diversity of the 

accessions, then the genetic structure of the collection based on SSR and SNP markers and 

finally the association mapping results. Associations are compared to previously mapped 

QTL. Our work is the first example of an association study carried out using a broad sample 

of cultivated, cherry type and wild tomato accessions.  
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Materials and methods 

Plant materials 

Tomato accessions were selected from a germplasm collection maintained and characterized 

at INRA Avignon (France) to maximize both genetic and phenotypic diversity. The sample 

consisted of 127 cherry type tomato accessions, 44 large fruited accessions (S. lycopersicum 

var. esculentum, hereafter named S. lycopersicum) and 17 S. pimpinellifolium accessions 

(Supplemental Table S1). Accessions  were obtained from the Tomato Genetics Resource 

Center (Davis, USA), the Centre for Genetic Resources (Wageningen, Netherlands), the North 

Central Regional Plant Introduction Station (Ames, Iowa, USA) and from the N.I. Vavilov 

Research Institute of Plant Industry (St Petersburg, Russia). Genomic DNA of the 188 

accessions was isolated from 50 – 100 mg young leaves. After freeze-drying, the leaf material 

was ground and DNA extraction was performed using the DNeasy 96 plants Mini Kit 

(Qiagen, Valencia, USA) according to the manufacturer’s protocol.  

SNPlexTM assay design 

Allele-specific probes and optimized multiplexed assays using SNPs of interest were designed 

by an automated multi-step pipeline [Applied Biosystems, Foster city, USA]. The ABI probe 

design prevents self-complementarity and dimerization, and annealing efficiencies are 

optimized for ligation. Furthermore, the optimal combination of SNPs to produce the highest 

yield per multiplex reaction is determined (De La Vega et al. 2005; Tobler et al. 2005). Four 

SNPlex each carrying 48 SNPs were developed. Among the 192 SNPs used in the SNPlexTM 

assay, 131 SNPs were chosen from Sanger resequencing experiments of candidate genes 

mostly located on chromosome 2 (69 SNPs), 4 (22 SNPs) and 9 (30 SNPs) (Ranc et al. 2012).  
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The remaining 61 SNPs were chosen from published information for covering the whole 

genome (Van Deynze et al. 2007). Supplemental Table S2 presents the characteristics of all 

the SNPs analyzed.  

Genotyping was carried out on fragmented gDNA at a final concentration ranging from 45 to 

225 ng and a final volume of 12.5 μl arrayed into 384 – well plates according to the 

manufacturer’s instructions. In each plate, six negative controls (water) and eighteen positive 

controls (mixed DNA of known genotypes) were included. The allelic discrimination was 

detected using GeneMapper® Analysis Software v3.7 (Applied Biosystems Foster City, CA, 

USA) based on the SNPlex_Rules_3730 method. SNP markers with minimum allele 

frequencies lower than 10% and more than 10% missing data were discarded from statistical 

analysis, which were thus performed on 121 markers. 

Linkage disequilibrium analysis 

The LD extent was calculated on two sets of genotypes, the whole collection and the subset of 

accessions of S. l. cerasiforme. GGT 2.0 (van Berloo et al. 2008) software was used to 

calculate the squared correlation coefficients r2 (Zhao et al. 2005) between 121 markers 

throughout the genome. The decay of LD over genetic distance was investigated by plotting 

pair-wise r2 values against the distances at the whole genome level and on chromosome 2 

(covered by the largest number of SNPs) for all accessions, then for S. l. cerasiforme 

accessions separately.  

Inference of population structure 

Structure v2.1 program (Pritchard et al. 2000) was used to estimate the number of sub-

populations in the complete set of accessions using admixture model for the ancestry of 

individuals and correlated allele frequencies. Population structure was modeled with a 

burning of 2.5 ×105 cycles followed by 106 Markov Chain Monte Carlo (MCMC) repeats.  
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Evanno transformation method was then used to infer the most likely number of populations 

(K) (Evanno et al. 2005). Structure analysis was obtained on two sets of markers: 121 

informative SNPs selected from SNPlexTM assay and compared to the structure obtained with 

20 SSR markers (Ranc et al. 2008). Distruc1.1 program (Rosenberg 2004) was used to display 

the graphics of population structure. The kinship matrix was generated by SPAGeDi (Hardy 

and Vekemans 2002) software based on the two set of markers: 121 informative SNPs and 20 

SSR markers. Diagonal of the matrix was set to two and negative values were set to zero, 

according to Yu et al. (2006). 

Phenotyping 

All tomato accessions (4 plants per accession) were grown in a plastic greenhouse in Avignon 

(south of France) during summers 2007 and 2008. Three harvests of ten ripe fruits per 

accession were used as repeats in the phenotypic analysis. Ten fruits were evaluated for fruit 

weight (FW), firmness (FIR), soluble solids content (SSC), sugar content (SUG), locule 

number (LCN), pH, titratable acidity (TA), color components: lightness (L), color on red to 

green (a*) and on yellow to blue (b*) scales with a Konica Minolta CR-300 chromameter. All 

measurements were performed as described in Saliba-Colombani et al. (2001). 

Statistical analysis 

The heritabilities were estimated on the collection of homozygous lines. Heritabilities (h2) 

were calculated as h
2=σ2

g/ (σ2
g+ σ2

gy+ σ2
e) with σ2

g, σ2
gy and σ2

e the genetic, genetic by 

environment interaction and residual variance, respectively. σ2
g, σ2

gy and σ2
e were estimated 

by (MSc-MScy)/ry, (MScy-MSe)/r and MSe, respectively. MSc represents the accessions 

mean square, MScy represents the mean square of genotype by year interaction, MSe the 

residual mean square. r and y represents the number of replicates and the number of years. 

Associations were tested using the adjusted means of accessions calculated by general linear  
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model. The Pearson coefficients correlations were calculated for all pairs of variables. 

Analyses were carried out with the R program (R Development Core Team 2005).  

Association Mapping 

The association analyses were performed on the whole collection of 188 accessions and on 

127 S. l. cerasiforme accessions by performing mixed linear model (MLM, K+Q model) as 

described by Yu et al. (2006) and implemented in Tassel 2.1 software (Bradbury et al. 2007). 

Two MLM models were used, with structure and kinship based on 20 SSR marker (model A), 

and on 121 SNP markers (model B). P-values were corrected following the standard 

Bonferroni procedure. Significant associations were detected with corrected p-value lower 

than 0.005 (an arbitrary choice of threshold due to the poor correction of the structure) for 

model A, and 0.05 for model B. After obtaining the significant markers, a general linear 

model with all fixed-effect terms was used to estimate R², the amount of phenotypic variation 

explained by each marker. The Pearson correlation coefficients were calculated between Q1 

value (the probability that an individual belongs to the first subpopulation defined by 20 SSR 

markers and 121 SNPs) and each phenotypic trait. 

Surrounding sequences of the 121 SNPs used in association analysis were blasted against 

Tomato whole genome sequence Chromosomes (SL2.40) database and ITAG (International 

Tomato Annotation Group) release 2.3 database (www.solgenomics.net) in order to map them 

on the physical map and get the annotation of surrounding genes. Physical map locations of 

the 121 SNPs were converted to genetic map on the tomato EXPEN 2000 map 

(www.solgenomics.net) based on the closest mapped markers and on the assumption of a 

local linear relationship between physical and genetic distance. Markers which have been 

previously mapped in QTL studies (Goldman et al. 1995; Grandillo and Tanksley 1996; 

Saliba-Colombani et al. 2001) were also aligned using BLAST on the genome sequence or 

http://www.solgenomics.net/
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directly mapped on the EXPEN 2000 map to get their corresponding genetic position. SNPs 

significantly associated with a trait were considered as co-localizing with previous QTLs if 

they were located in a window of 20 cM surrounding the QTLs. Genetic map with 

associations and previously identified QTLs were plotted using MapChart v2.1 software 

(Voorrips 2002). 
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Table 1 Phenotypic variation of fruit quality traits in the whole collection (all), S. lycopersicum (lyco), S. l. cerasiforme (cera) 

and S. pimpinellifolium (pimp) group, respectively. Traits are described by mean, standard deviation (SD), significant level in 

group and heritability.  
Trait Phenotypic variation  Heritability 

 all 
(N a = 188) 
Mean ± SD 

lyco 
(N a = 44) 

Mean ± SD 

cera 
(N a = 127) 
Mean ± SD 

pimp 
(N a =17) 

Mean ± SD 

 all 
(N a =188) 

lyco 
(N a = 44) 

 

cera 
(N a = 127) 

 

pimp 
(N a =17) 

 
a* 15.47 ± 4.98 

*** 
18.51 ± 4.64 

*** 
14.32 ± 4.90 

*** 
16.16 ± 2.63 

*** 
 0.81 0.77 0.82 0.54 

b* 13.72 ± 5.47 
*** 

14.81 ± 4.47 
*** 

13.75 ± 5.88 
*** 

10.69 ± 3.33 
*** 

 0.76 0.69 0.79 0.66 

L 42.67 ± 3.4 
*** 

43.35 ± 2.28 
*** 

42.94 ± 3.58 
*** 

38.94 ± 2.06 
*** 

 0.61 0.47 0.61 0.36 

FIR 53.22 ± 7.43 
*** 

52.90 ± 8.58 
*** 

52.12 ± 6.30 
*** 

62.21 ± 6.10 
*** 

 0.72 0.73 0.66 0.75 

FW 33.03 ± 46.56 
*** 

96.29 ± 61.80 
*** 

15.19 ± 8.40 
*** 

2.65 ± 1.03 
*** 

 0.83 0.75 0.86 0.87 

LCN 3.22 ± 2.24 
 *** 

5.19  ± 3.87 
*** 

2.69 ± 0.71 
*** 

2.09 ± 0.11 
*** 

 0.85 0.81 0.78 0.34 

pH 4.08 ± 0.13 *** 4.11 ± 0.12 
*** 

4.08 ± 0.12 
*** 

4.06 ± 0.15 
*** 

 0.57 0.58 0.68 0.26 

SSC 7.38 ± 1.34 *** 6.37 ± 0.84 
*** 

7.42 ± 1.09 
*** 

9.69 ± 1.18 
*** 

 0.73 0.62 0.62 0.58 

SUG 4.02 ± 1.54 *** 2.99 ± 0.92 
** 

4.04 ± 1.22 
*** 

6.49 ± 2.12 
* 

 0.63 0.55 0.55 0.56 

TA 11.10 ± 2.50 *** 9.44 ± 2.05 
*** 

11.30 ± 2.23 
*** 

13.84 ± 2.59 
*** 

 0.75 0.73 0.70 0.73 

                a Number of accessions. 

               * p < 0.05, ** p < 0.01, *** p <0.001. 

                a*, b*, L= color, FIR= firmness, FW= fruit weight, LCN =locule number, pH=  pH , SSC = soluble solids content,  

                SUG = sugar content, TA = titratable acidity 

 

 



Chapter IV: Phenotypic diversity and association mapping for fruit quality traits in cultivated 

tomato and related species 

145 

 

Results  

Phenotypic variation and correlations of fruit quality traits  

All the traits showed a large range of phenotypic variation in the whole collection, and within 

the three groups composed of 44 S. lycopersicum, 127 S. l. cerasiforme, and 17 S. 

pimpinellifolium (Table 1). Heritabilities were high (ranging from 0.57 to 0.85) in the whole 

collection with lower values for L, a*, LCN and pH in the S. pimpinellifolium group which 

exhibited a lower genetic variability. Phenotypic correlations among the fruit quality traits in 

the whole collection and within groups are detailed in Supplemental Table S3. Color 

components L, a* and b* were highly correlated with each other, and moderately correlated 

with the other traits in the whole collection, and in the S. l. cerasiforme and S. 

pimpinellifolium groups. However, a* was not significantly correlated with b* in the S. 

lycopersicum group. Few significant correlations were observed between FIR and the nine 

other traits in the whole collection and in the S. l. cerasiforme group. Correlations were higher 

between FIR and the nine other traits in S. lycopersicum and S. pimpinellifolium groups than 

in the S. l. cerasiforme group. FW was strongly positively correlated with LCN, and 

negatively correlated with SSC and TA in the whole collection and in each group. It was also 

negatively correlated with SUG in the whole collection and in the S. l. cerasiforme and S. 

lycopersicum groups. SSC and SUG were highly significantly correlated with each other in all 

the groups. pH was negatively correlated with TA in the whole collection and in the three 

groups. It was significantly correlated with SUG in S. l. cerasiforme and S. pimpinellifolium 

group. 
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Fig. 1 Distribution of minimum allele frequencies (MAF) of the 121 SNPs in the three tomato groups 

(S. l. cerasiforme (N=127) represented in black, S. lycopersicum (N=44) in light gray and S. 

pimpinellifolium (N=17) in dark gray). Polymorphisms with MAF lower than 0.10 in the whole 

collection were previously discarded  
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Molecular polymorphism  

The 188 accessions were genotyped with 192 SNPs, combined in four 48-plex panels, among 

which 139 SNPs (73%) were successfully scored. Three SNPs with more than 10% missing 

data and 15 SNPs with minimum allele frequencies (MAF) lower than 10% were removed 

from further analysis. Finally, 121 informative SNPs were used for polymorphism and 

association analysis. The results were very similar among the 4 SNPlexTM panels 

(Supplemental Table S4). The distributions of the MAF were different among the three 

groups of accessions (Fig. 1). The average MAF was 0.26, 0.18 and 0.12 for S. 

pimpinellifolium, S. l. cerasiforme and S. lycopersicum, respectively.  

LD decay was analyzed separately for all markers and for the 50 markers on chromosome 2 

(carrying the largest number of markers) for the 188 accessions and for 127 S. l. cerasiforme 

accessions. Pairwise r2 were plotted according to genetic distance between loci and non-linear 

regression fitted the decay of LD over genetic distance. LD on the whole genome for all 

accessions extended on average over 18 cM for r2= 0.3 (Fig. 2a), with the same pattern if only 

50 markers of chromosome 2 were analyzed (Fig. 2b). The S. l. cerasiforme accessions had 

lower LD (reaching r2= 0.3 for 10 cM) as illustrated for chromosome 2 (Fig. 2c). The same 

pattern of LD was observed when all the SNPs were taken into account, with a few loci in 

strong LD with several markers responsible for high LD values. 

Population structure 

The structure of a collection of 360 accessions, including the 188 accessions studied here, was 

assessed with 20 SSR markers spread over the genome by Ranc et al. (2008). Four groups 

were detected, but the subset of 188 accessions studied here revealed two main groups, a 

cultivated and a wild group and many intermediate types (Fig. 3a). The genetic structure of 

the 188 accessions assessed with the 121 SNP markers revealed the same pattern with two  
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a

b

c

 
Fig. 2 Decay of linkage disequilibrium (r2) over genetic distance: (a) on all chromosomes for all 

accessions, (b) on chromosome 2 for all accessions, (c) on chromosome 2 for S. l. cerasiforme 

accessions. Each plot of r2 over genetic distance is fitted by non linear regression (black curve). 

Genetic distance corresponding to r²=0.3 is indicated. 
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S. lycopersicum S. l. cerasiforme S. pimpinellifolium

S. lycopersicum S. l. cerasiforme S. pimpinellifolium

a

b

 
Fig. 3 Comparison of population structure generated from the genotypes with two different types of 

markers: (a) 20 SSR markers, (b) 121 SNP markers. Accessions are in the same order for the two types 

of markers. 
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Table 2 Significant associations for color (a), color (L), firmness (FIR), fruit weight (FW), locule number (LCN), soluble 

solid content (SSC), sugar content (SUG) and titratable acidity (TA) estimated with K + Q models on 188 accessions. Model 

A: MLM model, with structure and kinship based on 20 SSR (p-values lower than 0.005 are shown with indication on allele 

effect); model B: MLM model with structure and kinship based on 121 SNP (p-value lower than 0.05 are shown). Only the 

most significant association from each group is shown. See Supplemental Table S5 for detail 

 

     Model A  Model B 
         Trait  

(Correlation  
with Q1 a) 

SNP  
group b 

 

Chromo-
some 

Locus Location c Corrected  
 p –value d 

R2 e MAF f Corrected  
 p –value d 

a* 2.5 2 TD083-685 133.1 0.042 ns 0.09 0.47 0.011 
(0.02 - 0.11)         

         
L  2.2 2 TD049-528 72.4 0.003 0.09 0.36 ns 

(0.29 - 0.43) 2.4 2 Z2117-98 120.5 0.002 0.09 0.22 ns 
 4.1 4 TD200-317 6.6 0.004 0.09 0.19 ns 
 4.2 4 TD160-458 27.7 4.53 × 10-04 0.11 0.31 ns 
 9.2 9 Z1475-87 51.0 6.47 × 10-04 0.10 0.17 ns 
 9.4 9 TD168-241 99.5 7.78 × 10-04 0.09 0.13 ns 
         

FIR 1.1 1 CON203-643 44.7 1.86 × 10-04 0.11 0.22 ns 
(0.3 – 0.49) 2.1 2 TD091-657 49.5 0.002 0.07 0.22 ns 

 2.4 2 TD113-132 121.6 9.74 × 10-06 0.14 0.14 ns 
 3.2 3 CON174-206 102.3 8.59 × 10-06 0.13 0.21 ns 
 4.3 4 Z1703-106 65.5 1.51 × 10-07 0.17 0.12 0.194 ns 
 4.4 4 TD212-247 82.2 3.27 × 10-11 0.24 0.17 0.011 
 4.5 4 CON219-313 122.0 2.20 × 10-06 0.15 0.22 ns 
 4.5 4 CON105-290 131.7 0.001 0.10 0.12 ns 
 5.1 5 CON173-501 68.3 1.16 × 10-07 0.16 0.23 ns 
 5.2 5 CON222-388 75.8 2.72 × 10-04 0.11 0.19 ns 
 6.1 6 TD025-87 20.8 0.002 0.09 0.12 ns 
 9.2 9 TD167-449 59.8 6.84 × 10-04 0.10 0.16 ns 
 10.1 10 CON176-455 59.0 1.01 × 10-07 0.17 0.12 .0.117 ns 
 11.1 11 TD247-57 6.4 3.10 × 10-05 0.13 0.15 ns 
 11.2 11 TD251-230 35.4 6.66 × 10-05 0.12 0.12 ns 
 11.3 11 CON141-576 54.8 7.38 × 10-07 0.16 0.18 ns 
 11.4 11 CON50-294 62.3 9.55 × 10-07 0.16 0.13 ns 
 12.2 12 TD156-314 93.7 0.004 0.08 0.12 ns 
         

Log (FW) 1.2 1 TD011-260 97.3 2.68 × 10-04 0.08 0.13 ns 
(0.47 – 0.53) 2.3 2 TD133-395 83.8 7.30 × 10-06 0.12 0.34 ns 

 2.4 2 TD116-707 122.2 7.38 × 10-08 0.16 0.34 0.007 
 2.5 2 TD083-685 133.1 2.42 × 10-04 0.12 0.47 0.157 ns 
 3.1 3 CON57-121 63.5 0.003 0.07 0.13 ns 
 3.3 3 TD152-159 167.1 0.002 0.09 0.17 ns 
 4.1 4 TD200-317 6.6 0.001 0.08 0.19 ns 
 4.3 4 CON300-472 68.6 1.000 ns 0.01 0.47 0.045 
 4.4 4 CON130-112 91.8 9.21 × 10-04 0.10 0.23 0.077 ns 

 6.1 6 TD025-87 20.8 0.001 0.08 0.12 ns 
 9.1 9 Z1707-100 38.0 0.003 0.08 0.17 ns 
 9.2 9 Z1475-87 51.0 1.08 × 10-04 0.11 0.17 ns 
 9.3 9 Z2305-99 69.4 1.55 × 10-05 0.11 0.22 ns 
 9.4 9 TD243-38 114.4 2.32 × 10-06 0.13 0.31 0.206 ns 
 10.1 10 CON369-191 52.6 9.34 × 10-04 0.09 0.34 ns 
 12.3 12 TD008-95 112.5 5.77 × 10-05 0.09 0.19 ns 
         

Log (LCN)  2.2 2 TD049-528 72.4 1.54 × 10-04 0.09 0.36 ns 
(0.24 – 0.30) 2.3 2 TD133-395 83.8 9.27 × 10-05 0.14 0.34 0.045 

         
SSC  1.2 1 TD011-260 97.3 0.003 0.06 0.13 ns 

(0.41 – 0.47) 1.3 1 Z2300-99 140.6 9.56 × 10-04 0.10 0.12 ns 
 2.3 2 TD280-108 88.6 8.94 × 10-05 0.13 0.43 0.023 
 2.4 2 TD116-707 122.2 0.001 0.09 0.34 ns 
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Table 2 Continued -1 

a Q1 is the probability that an individual belongs to the “cultivated” subpopulation generated from STRUCTURE2.1 software (Pritchard, 

Stephens et al. 2000). Correlations with the Q value defined by 20 SSR markers and 121 SNPs. 
b Associated SNPs in less than 10 cM on each chromosome were grouped together. SNP which is 10 cM apart from the other SNPs was 

assigned as an independent group. Groups are detailed in Supplemental Table S5. 
c Genetic distance of the marker on EXPEN2000 reference map (http://sgn.cornell.edu/). 
d p-values were corrected following the standard Bonferroni procedure. ns: non significant 

                  e  R2 were calculated using a Q model. 
                  f  Minimum allele frequencies (MAF).  

 

     Model A  Model B 
Trait  

(Correlation  
with Q1 a) 

SNP  
group b 

 

Chromo- 
some 

Locus Location c Corrected  
 p –value d 

R2 e MAF f Corrected  
 p –value 

d 
SSC  2.5 2 TD178-104 138.4 0.020 ns 0.12 0.11 0.037 

(0.41 – 0.47) 3.1 3 CON57-121 63.5 0.001 0.08 0.13 ns 
 4.1 4 TD200-317 6.6 1.80 × 10-05 0.12 0.19 ns 
 6.1 6 TD025-87 20.8 1.71 × 10-04 0.11 0.12 ns 
 9.1 9 Z1707-100 38.0 3.54 × 10-07 0.16 0.17 ns 
 9.2 9 Z1475-87 51.0 0.003 0.07 0.17 ns 
 9.3 9 TD237-253 70.0 0.003 0.07 0.14 ns 
 9.4 9 TD168-241 99.5 1.02 × 10-04 0.12 0.13 ns 
 10.1 10 CON369-191 52.6 0.003 0.08 0.34 ns 
 11.3 11 TD255-218 56.9 2.09 × 10-06 0.05 0.13 ns 
 11.4 11 CON50-294 62.3 0.001 0.07 0.13 ns 
 12.1 12 Z2302-103 21.0 0.004 0.08 0.15 ns 
         

SUG  1.3 1 Z2300-99 140.6 1.06 × 10-05 0.14 0.12 ns 
(0.39 – 0.52) 2.1 2 TD091-657 49.5 0.004 0.07 0.22 ns 

 2.2 2 TD139-547 72.2 1.37 × 10-04 0.08 0.20 ns 
 2.3 2 TD133-395 83.8 7.66 × 10-07 0.15 0.34 0.194 ns 
 2.4 2 TD114-259 121.7 6.72 × 10-04 0.09 0.14 ns 
 2.5 2 TD178-104 138.4 1.34 × 10-06 0.14 0.11 0.206 ns 
 3.1 3 CON57-121 63.5 0.001 0.08 0.13 ns 
 4.1 4 TD200-317 6.6 2.15 × 10-06 0.14 0.19 ns 
 4.5 4 CON105-290 131.7 5.55 × 10-04 0.08 0.12 ns 
 6.1 6 TD025-87 20.8 1.94 × 10-04 0.11 0.12 ns 
 9.1 9 Z1707-100 38.0 3.68 × 10-05 0.12 0.17 ns 
 9.2 9 Z1475-87 51.0 5.37 × 10-04 0.09 0.17 ns 
 9.4 9 TD168-241 99.5 3.57 × 10-04 0.11 0.13 ns 
 10.1 10 CON369-191 52.6 6.59 × 10-04 0.10 0.34 0.011 
 11.3 11 TD255-218 56.9 4.42 × 10-04 0.07 0.13 ns 
 11.4 11 CON50-294 62.3 1.23 × 10-04 0.09 0.13 ns 
 12.1 12 Z2302-103 21.0 3.81 × 10-04 0.11 0.15 ns 
         

TA 2.3 2 TD275-101 88.5 0.110 ns 0.04 0.13 0.048 
(0.26 – 0.22) 4.3 4 Z1370-98 66.8 ns 0.08 0.14 0.003 

http://sgn.cornell.edu/
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groups (Fig. 3b). A similar genetic structure was obtained when combining SNPs and SSR 

markers (data not shown). The Q1 values of each accession (corresponding to the probability 

to belong to the “cultivated” group) estimated by the two types of markers were correlated 

(r²=0.63), but several accessions were clustered in different groups. We thus compared both 

structure patterns in the mixed linear models to detect associations. L, FIR, FW, SSC and 

SUG strongly participated to the structure as shown by the highly significant correlations 

between these traits and the probability to belong to the cultivated group, with r values 

ranging from 0.30 to 0.59 (Table 2). 

Association mapping 

Associations between polymorphisms and fruit quality traits were determined by taking into 

account structure and kinship in a K+Q mixed linear model (MLM) model first on the whole 

collection (Table 2 and Supplemental Table S5, Fig. 4 and Supplemental Fig. S1). The 

comparison of the probabilities obtained with either a simple linear model or K+Q model with 

Q based on SSR markers (Model A) or SNP markers (Model B) showed that Model A was 

intermediate between the simple linear model and Model B for a*, b*, FIR and TA, and was 

similar to the simple linear model for L, FW, LCN, and SSC. The three models provided very 

close results for pH (Fig. 5 and Supplemental Fig. S2). Model B thus corrected better for the 

structure than the other models and revealed much less significant associations. To reduce the 

false positive associations, we thus described the associations with Model A using a threshold 

of the corrected p-value of 0.005 while we used a threshold of 0.05 for Model B. For Model 

A, 132 significant associations were detected for six traits (L, FIR, FW, LCN, SSC and SUG), 

with a maximum of 41 (for SUG) and a minimum of 7 (for L) associations per trait. No 

association was detected for a*, b*, pH and TA. A total of 74 SNPs spread on almost all 

chromosomes except chromosome 7 and 8 were involved in at least one association. The  
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Fig. 4 Comparison of associations and QTLs identified by linkage mapping on chromosomes 2, 4 and 9. SNPs were mapped on tomato EXPEN 2000 reference map (http://sgn.cornell.edu/). Associations detected in the 188 
accessions (W) and in 127 S. l. cerasiforme accessions (C) are indicated to the right of the chromosomes. Associations were estimated with K + Q model, model A: with structure and kinship based on 20 SSR marker, model B: 
with structure and kinship based on 121 SNP (common font: associations detected with model A; in italic: associations detected with model B; in bold: associations detected with both models). Horizontal line “-“ correspond to 
the genetic location of associated marker, associations are linked together by a vertical line when linked markers in less than 10 cM are associated to the same trait. Associated SNPs in less than 10 cM on each chromosome were 
grouped together. SNP which is 10 cM apart from the others were assigned as independent groups. Groups are named as consecutive number according to their genetic location on each chromosome.  Traits are: FIR= firmness, 
FW= fruit weight, SSC= soluble solids content, SUG = to tal sugar content, LCN = locule number, a and L=color, TA = titratable acidity.  Only SNPs significantly associated with one trait are represented on chromosome 2 
where markers are too dense. QTLs identified by linkage mapping in the populations from crosses of S. Lycopersicum × S. l. cerasiforme (Saliba-Colombani et al. 2001), S. Lycopersicum × S. pimpinellifolium (Grandillo et al. 
1996) and S. Lycopersicum × S.l. cheesmanii (Goldman et al. 1995) are shown to the left of the chromosomes (CR= QTL from S. l. cerasiforme, CE= QTL from S.l.cheesmanii, PM= QTL from S. pimpinellifolium). Only QTL 
co-localizing with an association are show 

http://sgn.cornell.edu/


Chapter IV: Phenotypic diversity and association mapping for fruit quality traits in cultivated 

tomato and related species 

154 

 

FW SUG TA

FW SUG TA
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Fig. 5 Cumulative density functions (CDF) using three alternative models of association for fruit 

weight (FW), sugar content (SUG) and Titratable acidity (TA). Associations are tested for 121 

polymorphic sites on 188 accessions (a) and 127 S. l. cerasiforme (b). Simple linear model (empty 

circle) and K+Q models, with structure and kinship based on SSR markers (black triangle), and on 121 

SNP markers (black line) were tested. The diagonal indicates uniform distribution of p-values under 

the expectation that random SNPs are unlinked to the polymorphisms controlling these traits (H0: no 

SNP effect). 
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percentage of phenotypic variation explained by the SNPs ranged from 4% to 24%. For 

Model B, 10 associations were significant for 7 traits. Six associations were significant with 

both models. They concerned FIR on chromosome 4, FW, LCN and SSC on chromosome 2 

and SUG on chromosome 10. In order to compare the associations with QTL previously 

mapped, markers showing significant association and linked in less than 10 cM were grouped 

together. Thus, 31 groups of association (with one to twenty-seven associations) were defined 

(Table 2 and Supplemental Table S5, Fig. 4 and Supplemental Fig. S1). 

For L, six groups of association (involving seven SNPs) were identified with Model A on 

chromosomes 2 (two SNPs), 4 (two SNPs) and 9 (three SNPs). The two most significant 

associated markers TD160-458 in group 4.2 on chromosome 4 and Z1475-87 in group 9.2 on 

chromosome 9 explained 11% and 10% of the phenotypic variation, respectively. No 

significant association was detected using Model B. For a*, a single association was detected 

with Model B on chromosome 2 with TD083-685. 

For FIR, 16 groups of association (involving 30 SNPs) were detected using Model A on 

chromosomes 1, 2 (four SNPs), 3 (three SNPs), 4 (six SNPs), 5 (six SNPs), 6, 9, 10, 11 (six 

SNPs) and 12. The two most significant associations involved markers TD212-247 in group 

4.4 on chromosome 4 and CON176-455 in group 10.1, responsible for 24% and 17% of the 

phenotypic variation, respectively. The association with TD212-247 was also significant with 

Model B. 

For FW, 15 groups of association (involving 23 SNPs) were detected with Model A on 

chromosomes 1, 2 (eight SNPs), 3 (two SNPs), 4 (two SNPs), 9 (six SNPs), 10 (two SNPs) 

and 12. Markers TD116-707 in group 2.4 and marker TD243-38 in group 9.4 showed the 

most significant associations and explained 16% and 13% of the FW variation. Using Model 

B, TD116-707 and CON300-472 showed significant associations, on chromosomes 2 and 4, 

respectively. 
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Table 3 Significant associations for color (a), color (L), firmness (FIR), fruit weight (FW), locule number 

(LCN), sugar content (SUG), soluble solid content (SSC) estimated with K + Q models on 127 S. l. cerasiforme 

accessions. Model A: MLM model, with structure and kinship based on 20 SSR (only p-values lower than 

0.005 are shown with indication on allele effect); model B: MLM model with structure and kinship based on 

121 SNP (p-value lower than 0.05 are shown) 

    Model A  Model B 
Trait  

(Correlation  
with Q1 a) 

Chromo- 
some 

Locus Location b p –value c R2 d MAF e p –value c 

a* 5 CON310-990 71.9 ns 0.01 0.21 0.002 
(0.12 – 0.20) 9 Z1723-91 46.9 ns 0.03 0.18 0.008 

        
L 9 TD167-449 59.8 ns 0.03 0.11 0.011 

(0.17 – 0.25)        
FIR 2 TD018-103 75.3 ns 0.01 0.23 0.026 

(0.25 – 0.35) 2 TG454z273-
252 

75.5 ns 0.05 0.13 0.040 

 2 TD348-101 118.0 0.001 0.12 0.16 ns 
 2 TD113-132 121.6 8.13 × 10-4 0.16 0.10 0.001 
 2 TD114-259 121.7 0.002 0.15 0.15 0.018 
        

Log (FW) 2 Z2117-98 120.5 0.001 0.18 0.19 ns 
(0.11 – 0.20) 2 TD116-707 122.2 6.75 × 10-7 0.26 0.36 0.002 

 9 TD058-57 59.8 ns 0.05 0.15 3.88 ×10-4 
 9 TD167-449 59.8 ns 0.04 0.11 0.025 
 9 TD168-241 99.5 0.004 0.13 0.08 ns 
 9 TD243-38 114.4 8.22 × 10-4 0.15 0.30 ns 
        

Log (LCN) 2 TD049-528 72.4 4.00× 10-4 0.16 0.36 ns 
(0.13 – 0.18  2 TD120-221 83.7 0.009 ns 0.12 0.19 0.007 

 2 TD133-395 83.8 6.67 × 10-5 0.20 0.33 0.009 
        

SSC 2 TD178-104 138.4 0.028 ns 0.10 0.08 0.045 
(0.02 - 0.03) 4 TD200-317 6.6 ns 0.08 0.15 0.015 

 5 TD032-112 72.3 0.002 0.17 0.19 0.009 
 9 Z1707-100 38.0 0.051 ns 0.10 0.12 0.016 
        

SUG 5 TD032-112 72.3 ns 0.10 0.19 0.033 
(0.02 – 0.14) 11 TD247-57 6.4 ns 0.08 0.12 0.015 

a Q1 is the probability that an individual belongs to the “cultivated” subpopulation generated from STRUCTURE2.1 software (Pritchard, 

Stephens et al. 2000). Correlations with the Q value defined by 20 SSR markers and 121 SNPs. 
            b Genetic distance of the marker on EXPEN2000 reference map (http://sgn.cornell.edu/) 

 c p-values were corrected following the standard Bonferroni procedure. ns: non significant 

        d R2 were calculated using a Q model. 

        e Minimum allele frequencies (MAF).  

 

http://sgn.cornell.edu/
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For LCN, two groups of association (involving two SNPs) were identified on chromosome 2. 

The two association involved marker TD133-395 in group 2.3 (also significant with Model B) 

and TD049-528 in group 2.2, explained 14% and 9% of the phenotypic variation.  

For SSC, 16 groups of association (involving 28 SNPs) were detected with Model A on 

chromosomes 1 (two SNPs), 2 (ten SNPs), 3, 4, 9 (eight SNPs), 10 (two SNPs), 11 (two 

SNPs) and 12. The most significant associations involved markers Z1707-100 in group 9.1 

and TD255-218 in group 11.3, explained 16% and 5% of the soluble solid variation. Two 

associations on chromosome 2 were significant with Model B. 

For SUG, 17 groups of association were identified on chromosomes 1, 2 (22 SNPs), 3, 4 

(three SNPs), 6, 9 (eight SNPs), 10 (two SNPs), 11 (two SNPs) and 12 with Model A. The 

strongest association involved marker TD133-395 in group 2.3 and TD178-104 in group 2.5 

on chromosome 2, which explained 15% and 14% of the sugar content variation. The only 

significant association with Model B involved CON369-191 on chromosome 10. 

We then performed association analysis using Model A and B on the subset of 127 S. l. 

cerasiforme accessions (Table 3, Fig. 4 and Supplemental Fig. S1). Population structure 

accounted for much less variation of all the traits, with the highest correlation between Q-

values and FIR (Table 3). The comparison of the probabilities associated to the tests using 

simple linear model, Model A and Model B showed that Model A was still intermediate 

between simple linear model and Model B for L, FW, FIR and was similar to the simple linear 

model for LCN. The three models were very close for a*, b*, SUG, SSC, pH and TA (Fig. 5 

and Supplemental Fig. S3). For Model A, ten significant associations were found for FIR, 

FW, LCN and SSC. Population structure accounted for 25%, 11%, 13% and 2% of the 

phenotypic variation for these traits, respectively. Eight significant associations were common 

with associations found with 188 accessions. Two new associations were observed between 

marker Z1117-98 and FW, TD032-112 and SSC, responsible for 18% and 17% variation, 
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respectively. No significant associations were found for a*, b* and L, pH and TA. With 

Model B, 18 significant associations were detected for seven traits. Three associations were 

common with associations found in 188 accessions. Five associations were detected with both 

models, for FIR and for LCN on chromosome 2, for FW on chromosome 2 and 9 and for SSC 

on chromosome 5. Only two associations were common to the two Models and the two 

samples, one for FW with TD116-707 and one for LCN with TD133-395. 
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Discussion 

We herein present the phenotypic and genetic diversity of a large collection of tomato 

accessions representing wild relatives, intermediate and cultivated types characterized using a 

SNPlexTM genotyping assay. The percentage of SNPs successfully scored (73%) is consistent 

with the success rate reported by Pindo et al. (2008) and Berard et al. (2009). The results 

suggest that this assay is reliable, flexible and cost-effective for medium-throughput SNP 

detection. This pioneering technology opened the way to new technologies more flexible or 

with higher throughput like the one proposed by Fluidigm (Moonsamy et al. 2011) or Illumina 

GoldenGateTM. Although SNPlexTM assay is no more used, the SNPs used in this assay may 

be adapted to other genotyping platforms to be used by tomato breeders.  

A source of phenotypic variability 

The sample consisted of 127 cherry type tomato accessions S. l. cerasiforme, 44 S. 

lycopersicum large fruited accessions and 17 S. pimpinellifolium accessions. The genome 

structure of S. l. cerasiforme accessions was previously described as a mosaic of S. 

lycopersicum and S. pimpinellifolium genomes (Ranc et al. 2008). Compared to S. 

lycopersicum, S. l. cerasiforme and S. pimpinellifolium fruits are much smaller (less than 20 g 

for cherry types, less than 5 g for wild types) with only 2 or 3 locules and higher sugar 

content, soluble solid content and titratable acidity. The same trend of variation was already 

observed in smaller samples (Davies and Hobson 1981; Causse et al. 2003). Correlations 

among traits were quite homogenous in the whole collection and among the three groups. S. 

pimpinellifolium and cherry type accessions may be useful sources of alleles for tomato fruit 

quality improvement, particularly to improve firmness, or the content in sugars and acids, but 

the strong negative correlation between fruit size and soluble solids or sugar content may  
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hamper the simultaneous improvement of both traits. A better knowledge of the loci 

controlling these traits may thus help breeders to use these resources. 

LD decay and population structure 

Association mapping requires a thorough understanding of LD and population structure in the 

collection. In tomato, LD remains high over genetic distance. Robbins et al. (2011) observed 

that LD decayed at 6-8 cM in a collection of 102 tomato varieties, 6-14 cM within 39 

processing varieties, and 3-16 cM within 24 fresh market varieties. In our study, slightly 

higher level of LD was observed in the whole collection, although it was lower in S. l. 

cerasiforme. This result is consistent with van Berloo et al. (2008) who found LD extent to 15 

to 20 cM using AFLP markers in a sample of 18 cherry tomato accessions. Such extent of LD 

will allow the identification of regions carrying QTL rather than direct associations with 

candidate genes. Nevertheless, at the physical scale, some SNPs may appear in complete 

equilibrium with their neighbors (Munos et al, 2011). At the physical scale, recombination 

hotspots may be detected with very low LD in short distances (Ranc et al, 2012). When 

considering LD among chromosomes, only a few pairs of markers (less than 10 loci) 

exhibited high LD (data not shown). SSR and SNP markers revealed similar structure patterns 

with two main groups and many intermediates. This result is consistent with Hamblin et al. 

(2007) who compared the structure based on 89 SSR to the structure based on 847 SNPs in a 

set of 259 maize lines. The SSRs performed better to cluster the germplasm into populations 

but the population structure assessed by both marker types was similar. Laval et al. (2002) 

stated that k-1 times more bi-allelic markers are needed to obtain the same genetic distance 

accuracy as a set of microsatellites with k alleles. In the present study, the average number of 

alleles per SSR locus was about 7, thus 20 SSR markers should correspond to 120 biallelic 

SNP markers and should thus provide the same accuracy. Nevertheless several individuals 

were not classified in the same groups and both structures did not correct for structure the  
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same way (fig. 5). The SSR were less efficient than SNP markers. This result may be due to 

the fact that the SNPs revealed more loci than SSR and were for a large extent chosen to be 

located in regions where QTL were previously detected in crosses between one wild or cherry 

accession and a cultivated one, and thus may be linked to the polymorphisms responsible of 

the structure.  

Associations confirmed previously identified QTLs and detected new candidate 

polymorphisms 

Compared with previous association analysis (Nesbitt and Tanksley 2002; Mazzucato et al. 

2008; Munos et al. 2011), it is the first time that associations are analysed between more than 

hundred SNP markers and ten tomato fruit quality traits in a large collection. Ranc et al 

(2012), in a pilot study on chromosome 2 and 90 accessions, showed that association mapping 

permitted to map QTLs that were already cloned. They showed that to get just a location of 

major QTLs, a few thousands SNPs will be sufficient, while their precise characterisation and 

the identification of mutations which have evolved under balancing selection and introgressed 

into many accessions (like Lcn2.1) may require a much larger number of SNPs (more than 

50,000). The way we take into account the population structure influences the results, as 

population structure may cause false association results (Mezmouk et al. (2011). Statistical 

methods have been developed to deal with the effect of population structure (Pritchard et al. 

2000; Price et al. 2006; Yu et al. 2006). The MLM model has been shown to efficiently 

correct for the effects of population structure by including the structure and a matrix of 

genetic similarity among the accessions (Yu et al. 2006; Atwell et al. 2010). Population 

structure accounted for a large part of the phenotypic variation for several traits in the 188 

tomato accessions and accounted for much less phenotypic variation in the 127 S. l. 

cerasiforme accessions. Although a structure with two subgroups was detected with both SSR 

and SNP markers, the classification of some individuals changed. It thus appeared that model  
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A did not correct well for the structure, leading to a large number of associations, particularly 

for FW, which is strongly correlated with structure. To reduce the false positive associations, 

a more stringent p-value threshold was used in Model A. In the collection of 127 S. l. 

cerasiforme accessions the structure is less significantly correlated with the trait values and 

the number of associations detected with both models were less different. Associations were 

found for most of the traits. With Model A, 132 and 10 SNPs were associated with the traits, 

for all accessions and S. l. cerasiforme accessions, respectively, while with Model B, these 

numbers were 11 and 18. Only eight and three associations were detected in both sets of 

accessions when using Model A and B, respectively. Associations between markers and fruit 

quality traits were mostly localized on chromosome 2, 4 and 9, but this is partly due to the 

higher number of markers representing these chromosomes (50, 12 and 18 markers, 

respectively) than the other chromosomes. Almost all marker groups, except group 4.2, were 

associated with two or more traits. For example, group 2.3 was associated with sugar, soluble 

solid content, fruit weight, locule number and titratable acidity. Such co-localization of 

associations for several traits was found in several studies (Zhao et al. 2011; Bergelson and 

Roux 2010). Co-localized associations for soluble solid content and sugar content, fruit 

weight and locule number were also frequent. Such co-localization might be related to the 

pleiotropic effects of the same genes or due to genetic linkage, as already shown for QTL 

(Lecomte et al, 2004). 

In tomato, QTLs for fruit size, shape and quality traits have been mapped in several bi-

parental populations involving one wild species (Paterson et al. 1991; Goldman et al. 1995; 

Eshed and Zamir 1995; Grandillo and Tanksley 1996; Frary et al. 2000; van der Knaap and 

Tanksley 2001; Causse et al. 2002; van der Knaap and Tanksley 2003; Barrero and Tanksley 

2004; Causse et al. 2004; Lecomte et al. 2004). A few genes controlling fruit trait QTL have 

been cloned, like FW2.2 which controls fruit weight (Frary et al. 2000), Lin5 which is  
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responsible for fruit sugar content (Fridman et al. 2000) or Lcn2.1 which controls locule 

number (Munos et al. 2011).  

The localization of associations for eight quality traits (a*, L, FIR, FW, LCN, SUG, SSC and 

TA) were compared with those of QTLs previously detected from populations derived from 

crosses of S. lycopersicum × S. l. cerasiforme (hereafter named EC × CR) (Saliba-Colombani 

et al. 2001), S. lycopersicum × S. pimpinellifolium (hereafter named EC × PM) (Grandillo and 

Tanksley 1996) and S. lycopersicum × S. l. cheesmanii (hereafter named EC × CE), another 

species closely related to the cultivated tomato (Goldman et al. 1995). An association was 

considered to be in the same region as a QTL when it mapped within a 20 cM region of the 

tomato EXPEN 2000 map (www.solgenomics.net) around the QTL. On average, 30% of the 

associations were localised in a region where a QTL for the same trait has been mapped. With 

model A, 40 associations (two for FIR, ten for FW, two for LCN, 12 for SUG and 14 for SSC) 

were co-localized with previously identified QTL or known genes, and many other 

associations for these traits and associations for a*, L and TA were detected in regions where 

no known QTL have been located to date (Fig. 4 and Supplemental Fig. S1). More 

Associations were found to be co-localized with previously identified QTL with model A than 

with model B because  on one hand model B revealed less associations and on another hand, 

the structure being better taken into account, the QTL responsible of this structure may be 

more difficult to detect.  

For FW, the markers of group 2.4 associated with FW shared the same position as the major 

QTL, fw2.2. Actually, TD056-134 corresponds to a polymorphism in fw2.2 promoter. Nesbitt 

and Tanksley (2002) failed to detect any association in the region around fw2.2 in a small set 

of S. l. cerasiforme accessions, but using a larger sample, Ranc et al (2012) could detect one 

and identify the accessions that carry the large fruit allele in this region. In the present study, 

the association was detected with both Models with TD116, a marker less than 2 cM far from 

fw2.2. Association of group 2.3, group 3.1 and group 9.1 were also co-localized with QTL for  
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FW detected in EC × CE population (Goldman et al. 1995). For LCN, association of group 

2.3 co-localized with lcn2.1, a QTL controlling LCN identified in the EC × CR population 

(Saliba-Colombani et al. 2001) and recently cloned by Munos et al. (2011). Sequencing 1800 

bp around the lcn2.1 locus in 90 accessions allowed the identification of two SNPs strongly 

associated with the variation of locule number of tomato fruit. These SNPs were also 

associated in the 188 accessions. TD133-395 was in less than two cM from these two SNP. 

These results show that our resolution do not allow the precise localisation of the responsible 

genes, but we may detect regions carrying relevant QTLs. The combination of QTL fine 

mapping and association study is much more efficient for this purpose. 

For SUG, associations of group 2.2 and group 2.3 co-localized with two QTLs detected in the 

EC × CR population (Saliba-Colombani et al. 2001). Marker TD274 (group 2.3) was also 

strongly associated with FW and SSC. It was defined in the 5’ region of the gene 

Solyc02g085170.2 coding for a Glucose transporter protein. Marker TD055-469 (group 2.3) 

was also found to be associated with FW and SSC. It was designed in the 5’ region of a gene 

Solyc02g085500.2 coding for the ovate protein. The Ovate locus is responsible for pear fruit 

shape and no effect of this locus on FW, SSC or SUG has been reported before. This 

polymorphism could thus only be linked to a causative polymorphism. Association of group 

10.1 with sugar content was co-localized with a QTL detected for sugar content in EC × CR 

population (Saliba-Colombani et al. 2001). For SSC, association of group 2.3 was located in 

the same region as QTL for SSC detected in the EC × CR population (Saliba-Colombani et al. 

2001). Association of group 3.1 was found to be co-localized with a QTL for SSC in the EC × 

PM population (Grandillo and Tanksley 1996). Association of group 9.1 was co-localized 

with a QTL detected in the three studies. Marker Z1707-100 in this group was closely linked 

to the previously cloned QTL lin5 (Fridman et al. 2000) and found in association with soluble  
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solid content. For FIR, the main association of group 4.3 was located in the same region as a 

QTL detected in the EC × CR population (Saliba-Colombani et al. 2001).  

 

In conclusion, we identified several associations between SNP markers and fruit traits in a 

large sample of tomato accessions. The large LD and frequently low MAF in the cultivated 

group may hamper association discovery in this group. The S. l. cerasiforme accessions 

represent intermediate type between cultivated and wild species with various degrees of 

introgression as shown by the admixture structure of these accessions. This group exhibited 

higher MAF on average than cultivated group, lower LD and a less structured pattern. 

Association mapping should thus be easier with this group. About half of the associations 

detected with Model B were also detected with Model A in both sets of accessions. Around 

30% of the associations detected with Model A were localized in regions where QTLs were 

previously mapped. We thus presented these results although we are aware that several of 

these associations may be false positives. This approach will thus have to be combined with 

QTL fine mapping to identify the relevant polymorphisms as suggested by Nemri et al (2010). 

Model B allowed the detection of 25 associations. Nevertheless, the density of SNP is too low 

to identify SNPs in candidate genes. The availability of large panels of SNPs (Sim et al, 2012) 

will soon allow whole genome scan for association. 
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on chromosomes 1, 3, 5, 6, 10, 11 and 12 

 

Supplemental Fig. S2  Cumulative density functions (CDF) using three alternative models of 

association in the 188 collection  

 

Supplemental Fig. S3  Cumulative density functions (CDF) using three alternative models of 

association in the 127 S. l. cerasiforme accessions  
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Supplemental Table S3 Phenotypic correlations among quality traits in the whole collection (188 accessions), S. lycopersicum (44 accessions), S. l. 

cerasiforme (127 accessions), and S. pimpinellifolium (17 accessions) groups, respectively.  
Trait a b 

 
L 
 

FIR FW a 
 

LCN a 
 

pH 
 

SSC 
 

SUG 
 

TA 
 

a* All Lyco                   

Cera Pimp                   

b* 
 

-0.50** ns All Lyco                 

-0.72** -0.71** Cera Pimp                 

L 
 

-0.55** -0.17* 0.86** 0.76** All Lyco               

-0.73** -0.46** 0.89** 0.70** Cera Pimp               

FIR 
 

0.22** 0.37** ns 0.60** ns 0.53** All Lyco             

0.20* -0.46** ns ns ns -0.20** Cera Pimp             

FW a 

 
0.25** 0.20* 0.23** 0.18* 0.33** ns -0.21* ns All Lyco           

ns 0.34** 0.17* -0.29* 0.29** ns ns -0.29** Cera Pimp           

LCN a 
 

0.17* ns ns -0.19* ns ns -0.22** -0.39** 0.66** 0.61** All Lyco         

ns 0.39** ns -0.56** 0.19* ns ns -0.32** 0.51** 0.58** Cera Pimp         

pH 
 

ns 0.36** ns ns ns ns ns ns ns 0.29** ns ns All Lyco       

ns ns ns ns ns -0.20* ns 0.35** ns ns -0.26** ns Cera Pimp       

SSC 
 

-0.17* ns -0.23** ns -0.30** ns ns ns -0.67** -0.37** -0.38** ns ns ns All Lyco     

-0.19* 0.34* ns -0.36** -0.18* -0.39** -0.20* 0.19* -0.49** -0.31** -0.29** ns 0.24* 0.41** Cera Pimp     

SUG 
 

-0.20* ns ns ns -0.18* ns 0.20* 0.18* -0.58** -0.47** -0.36** -0.23** ns Ns 0.86** 0.85** All Lyco   

-0.28** 0.20* ns -0.34** ns -0.33** ns 0.20* -0.32** ns -0.23* ns 0.29** 0.54** 0.80** 0.88** Cera Pimp   

TA 
 

ns -0.27** -0.24** ns -0.24** ns ns ns -0.52** -0.35** ns 0.24** -0.68** -0.73** 0.53** 0.57** 0.36** 0.39** All Lyco 

ns 0.26* -0.23** ns -0.19* 0.32** ns ns -0.24** -0.24** ns 0.18* -0.71** -0.56** 0.29** ns ns ns Cera Pimp 
a  log10 transformed. 
* P< 0.05, ** P< 0.01. 
ns: non-significant. 

All= the whole collection, Lyco= S. lycopersicum, Cera= S. l. cerasiforme, Pimp= S. pimpinellifolium. a*, b*, L= color, FIR= firmness, FW= fruit weight, LCN =locule number, pH=  pH , SSC = soluble solids content, SUG = sugar content,  

TA = titratable acidity. Only significant correlations are shown 
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Supplemental Table S4 Summary of SNPs analyzed on the 4 SNPlex panels    

SNPlex panel SNP number SNPs that 
passed quality 
control (No.) 

   SNPs with  
missing data  
> 10% (No.) 

SNPs with 
MAF < 10% 

(No.) 

Informative 
SNPs (No.) 

Panel 1 48 37 (77%) 1 3 33 (89%) 
Panel 2 48 32(67%) 0 2 30 (94%) 
Panel 3 48 34 (71%) 0 5 29 (85%) 
Panel 4 48 36(75%) 2 5 30 (81%) 
Total 192 139(73%) 3 15 121 (87%) 
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Supplemental Table S5 Significant associations for eight fruit quality traits estimated with K + 
Q models on 188 accessions. Color (a*), color (L), firmness (FIR), fruit weight (FW), locule 
number (LCN) and soluble solid content (SSC), sugar content (SUG) and titratable acidity 
(TA). Model A: MLM model, with structure and kinship based on 20 SSR (only p-values lower 
than 0.005 are shown with indication on allele effect); Model B: MLM model with structure 
and kinship based on 121 SNP (p-values lower  than 0.05 are shown)  

     Model A  Model B 
Trait  

(Correlation  
with Q1 a) 

SNP  
group b 

 

Chromo-
some 

Locus Location c Corrected  
 p –value d 

R2 e MAF f Corrected  
 p –value d 

a* 2.5 2 TD083-685 133.1 0.042 ns 0.09 0.47 0.011 
(0.02 - 0.11)         

         
L  2.2 2 TD049-528 72.4 0.003 0.09 0.36 ns 

(0.29 - 0.43 ) 2.4 2 Z2117-98 120.5 0.002 0.09 0.22 ns 
 4.1 4 TD200-317 6.6 0.004 0.09 0.19 ns 
 4.2 4 TD160-458 27.7 4.53 × 10-04 0.11 0.31 ns 
 9.2 9 Z1475-87 51.0 6.47 × 10-04 0.10 0.17 ns 
 9.2 9 TD167-449 59.8 0.004 0.09 0.16 ns 
 9.4 9 TD168-241 99.5 7.78 × 10-04 0.09 0.13 ns 
         

FIR 1.1 1 CON203-643 44.7 1.86 × 10-04 0.11 0.22 ns 
(0.3 – 0.49 ) 2.1 2 TD091-657 49.5 0.002 0.07 0.22 ns 

 2.4 2 TD348-101 118.0 3.94 × 10-04 0.10 0.18 ns 
 2.4 2 TD113-132 121.6 9.74 × 10-06 0.14 0.14 ns 
 2.4 2 TD114-259 121.7 1.18 × 10-04 0.12 0.14 ns 
 3.2 3 CON29-566 99.7 2.35 × 10-04 0.10 0.25 ns 
 3.2 3 CON174-206 102.3 8.59 × 10-06 0.13 0.21 ns 
 3.2 3 CON171-373 103.8 0.002 0.09 0.11 ns 
 4.3 4 Z1703-106 65.5 1.51 × 10-07 0.17 0.12 0.194 ns 
 4.3 4 Z1370-98 66.8 1.41 × 10-04 0.10 0.14 0.629 ns 
 4.4 4 TD212-247 82.2 3.27 × 10-11 0.24 0.17 0.011 
 4.5 4 CON219-313 122.0 2.20 × 10-06 0.15 0.22 ns 
 4.5 4 CON105-290 131.7 0.001 0.10 0.12 ns 
 4.5 4 TD222-326 132.7 0.001 0.09 0.17 ns 
 5.1 5 CON187-220 64.6 0.001 0.10 0.26 ns 
 5.1 5 CON173-501 68.3 1.16 × 10-07 0.16 0.23 0.448 ns 
 5.1 5 CON110-323 69.2 1.79 × 10-07 0.14 0.23 0.811 ns 
 5.1 5 CON310-990 71.9 5.30 × 10-05 0.13 0.23 ns 
 5.1 5 CON134-526 72.0 1.46 × 10-06 0.16 0.23 ns 
 5.2 5 CON222-388 75.8 2.72 × 10-04 0.11 0.19 ns 
 6.1 6 TD025-87 20.8 0.002 0.09 0.12 ns 
 9.2 9 TD167-449 59.8 6.84 × 10-04 0.10 0.16 ns 
 10.1 10 CON176-455 59.0 1.01 × 10-07 0.17 0.12 0.117 ns 
 11.1 11 TD247-57 6.4 3.10 × 10-05 0.13 0.15 ns 
 11.2 11 TD251-230 35.4 6.66 × 10-05 0.12 0.12 ns 
 11.3 11 CON336-388 49.3 5.71 × 10-06 0.14 0.21 ns 
 11.3 11 CON141-576 54.8 7.38 × 10-07 0.16 0.18 0.908 ns 
 11.3 11 TD255-218 56.9 5.51 × 10-05 0.12 0.13 ns 
 11.4 11 CON50-294 62.3 9.55 × 10-07 0.16 0.13 0.545 ns 
 12.2 12 TD156-314 93.7 0.004 0.08 0.12 ns 
         

Log(FW) 1.2 1 TD011-260 97.3 2.68 × 10-04 0.08 0.13 ns 
(0.47 – 0.53 ) 2.3 2 TD133-395 83.8 7.30 × 10-06 0.12 0.34 0.774 ns 

 2.3 2 TD274-100 87.9 0.004 0.06 0.20 ns 
 2.3 2 TD280-108 88.6 1.12 × 10-04 0.12 0.43 0.145 ns 
 2.3 2 TD055-469 88.9 4.37 × 10-04 0.09 0.18 ns 
 2.3 2 TD276-67 89.0 7.44 × 10-04 0.09 0.19 ns 
 2.4 2 TD056-134 117.7 6.86 × 10-04 0.04 0.27 0.859 ns 
 2.4 2 TD116-707 122.2 7.38 × 10-08 0.16 0.34 0.007 
 2.5 2 TD083-685 133.1 2.42 × 10-04 0.12 0.47 0.157 ns 
 3.1 3 CON57-121 63.5 0.003 0.07 0.13 ns 
 3.3 3 TD152-159 167.1 0.002 0.09 0.17 ns 
 4.1 4 TD200-317 6.6 0.001 0.08 0.19 ns 
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Supplemental Table S5 Continued -1 
     Model A  Model B 

Trait  
(Correlation  
with Q1 a) 

SNP  
group b 

 

Chromo- 
some 

Locus Location c Corrected  
 p –value d 

R2 e MAF f Corrected  
 p –value 

d 
Log(FW)  4.3 4 CON300-472 68.6 ns 0.01 0.47 0.045 

(0.47 – 0.53) 4.4 4 CON130-112 91.8 9.21 × 10-04 0.10 0.23 0.077 ns 
 6.1 6 TD025-87 20.8 0.001 0.08 0.12 ns 
 9.1 9 Z1707-100 38.0 0.003 0.08 0.17 ns 
 9.2 9 Z1475-87 51.0 1.08 × 10-04 0.11 0.17 ns 
 9.2 9 TD167-449 59.8 0.002 0.09 0.16 ns 
 9.3 9 Z2305-99 69.4 1.55 × 10-05 0.11 0.22 ns 
 9.4 9 TD168-241 99.5 0.001 0.05 0.13 ns 
 9.4 9 TD243-38 114.4 2.32 × 10-06 0.13 0.31 0.206 ns 
 10.1 10 CON369-191 52.6 9.34 × 10-04 0.09 0.34 0.545 ns 
 10.1 10 TD003-417 52.6 0.001 0.08 0.33 0.629 ns 
 12.3 12 TD008-95 112.5 5.77 × 10-05 0.09 0.19 ns 
 9.4 9 TD243-38 114.4 2.32 × 10-06 0.13 0.31 0.206 ns 
         

Log(LCN)  2.2 2 TD049-528 72.4 1.54 × 10-04 0.09 0.36 0.750 ns 
(0.24 – 0.30 ) 2.3 2 TD133-395 83.8 9.27 × 10-05 0.14 0.34 0.045 

         
SSC  1.2 1 TD011-260 97.3 0.003 0.06 0.13 ns 

(0.41 – 0.47) 1.3 1 Z2300-99 140.6 9.56 × 10-04 0.10 0.12 ns 
 2.3 2 TD120-221 83.7 0.004 0.07 0.23 ns 
 2.3 2 TD133-395 83.8 1.07 × 10-05 0.13 0.34 0.883 ns 
 2.3 2 GC240z280-93 86.6 4.09 × 10-04 0.09 0.21 ns 
 2.3 2 TD107-168 87.6 1.95 × 10-04 0.09 0.17 ns 
 2.3 2 TD274-100 87.9 3.41 × 10-04 0.10 0.20 ns 
 2.3 2 TD280-108 88.6 8.94 × 10-05 0.13 0.43 0.023 
 2.3 2 TD055-469 88.9 3.35 × 10-05 0.12 0.18 ns 
 2.3 2 TD276-67 89.0 2.52 × 10-04 0.11 0.19 ns 
 2.4 2 TD116-707 122.2 0.001 0.09 0.34 ns 
 2.5 2 TD178-104 138.4 0.020 ns 0.12 0.11 0.037 
 2.5 2 TD179-318 140.6 0.002 0.09 0.11 0.581 ns 
 3.1 3 CON57-121 63.5 0.001 0.08 0.13 0.399 ns 
 4.1 4 TD200-317 6.6 1.80 × 10-05 0.12 0.19 ns 
 6.1 6 TD025-87 20.8 1.71 × 10-04 0.11 0.12 ns 
 9.1 9 Z1707-100 38.0 3.54 × 10-07 0.16 0.17 0.787 ns 
 9.1 9 TD231-549 39.1 1.34 × 10-04 0.11 0.19 ns 
 9.1 9 TD165-291 44.3 5.47 × 10-04 0.09 0.14 ns 
 9.1 9 Z1964-106 46.6 0.002 0.07 0.13 ns 
 9.2 9 Z1475-87 51.0 0.003 0.07 0.17 ns 
 9.3 9 TD237-253 70.0 0.003 0.07 0.14 ns 
 9.4 9 TD168-241 99.5 1.02 × 10-04 0.12 0.13 ns 
 9.4 9 TD243-38 114.4 0.002 0.08 0.31 ns 
 10.1 10 CON369-191 52.6 0.003 0.08 0.34 0.194 ns 
 10.1 10 TD003-417 52.6 0.004 0.08 0.33 0.230 ns 
 11.3 11 TD255-218 56.9 2.09 × 10-06 0.05 0.13 ns 
 11.4 11 CON50-294 62.3 0.001 0.07 0.13 ns 
 12.1 12 Z2302-103 21.0 0.004 0.08 0.15 ns 
         

SUG  1.3 1 Z2300-99 140.6 1.06 × 10-05 0.14 0.12 ns 
(0.39 – 0.52) 2.1 2 TD091-657 49.5 0.004 0.07 0.22 ns 

 2.2 2 TD090-357 68.8 8.42 × 10-04 0.08 0.21 ns 
 2.2 2 Z1979-37 70.3 1.40 × 10-04 0.07 0.21 ns 
 2.2 2 TD139-547 72.2 1.37 × 10-04 0.08 0.20 ns 
 2.3 2 TD048-45 83.6 0.002 0.06 0.21 ns 
 2.3 2 TD122-312 83.6 8.69× 10-04 0.07 0.25 ns 
 2.3 2 TD120-221 83.7 3.30 × 10-05 0.11 0.23 ns 
 2.3 2 TD088-204 83.7 7.71 × 10-04 0.10 0.22 ns 
 2.3 2 TD133-395 83.8 7.66 × 10-07 0.15 0.34 0.194 ns 
 2.3 2 TD373-140 84.4 1.46 × 10-04 0.10 0.23 ns 
 2.3 2 GC240z280-93 86.6 1.19 × 10-05 0.12 0.21 ns 
 2.3 2 TD107-168 87.6 7.04 × 10-06 0.11 0.17 ns 
 2.3 2 TD274-100 87.9 5.60 × 10-05 0.11 0.20 ns 
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Supplemental Table S5 Continued- 2  

a Q1 is the probability that an individual belongs to a subpopulation which generated from STRUCTURE2.1 software (Pritchard, Stephens et al. 

2000). Correlations with the Q value defined by 20 SSR markers and 121 SNPs. 
b Associated SNPs in less than 10 cM on each chromosome were grouped together. SNP which is 10 cM apart from the other SNPs was assigned as 

an independent group.  
            c Genetic distance of the marker on EXPEN2000 reference map (http://sgn.cornell.edu/). 

           d  p-values were corrected following the standard Bonferroni procedure. ns: non significant 
           e R2 were calculated using a Q model. 
          f Minimum allele frequencies (MAF).  

  

 

     Model A   Model B 
Trait  

(Correlation  
with Q1 a) 

SNP  
group b 

 

Chromo- 
some 

Locus Location c Corrected  
 p –value d 

R2 e MAF f Corrected  
 p –value 

d 
SUG  2.3 2 TD275-101 88.5 4.51 × 10-04 0.09 0.13 ns 

(0.39 – 0.52 ) 2.3 2 TD280-108 88.6 0.001 0.10 0.43 0.303 ns 
 2.3 2 TD055-469 88.9 9.40 × 10-06 0.13 0.18 ns 
 2.3 2 TD276-67 89.0 1.45 × 10-04 0.11 0.19 ns 
 2.4 2 TD348-101 118.0 9.22 × 10-04 0.09 0.18 ns 
 2.4 2 TD113-132 121.6 7.13 × 10-04 0.09 0.14 ns 
 2.4 2 TD114-259 121.7 6.72 × 10-04 0.09 0.14 ns 
 2.5 2 TD178-104 138.4 1.34 × 10-06 0.14 0.11 0.206 ns 
 2.5 2 TD179-318 140.6 8.11 × 10-05 0.11 0.11 0.932 ns 
 3.1 3 CON57-121 63.5 0.001 0.08 0.13 ns 
 4.1 4 TD200-317 6.6 2.15 × 10-06 0.14 0.19 ns 
 4.5 4 CON105-290 131.7 5.55 × 10-04 0.08 0.12 ns 
 4.5 4 TD222-326 132.7 7.10 × 10-04 0.09 0.17 ns 
 6.1 6 TD025-87 20.8 1.94 × 10-04 0.11 0.12 ns 
 9.1 9 Z1707-100 38.0 3.68 × 10-05 0.12 0.17 ns 
 9.1 9 TD231-549 39.1 2.36 × 10-04 0.10 0.19 ns 
 9.1 9 TD165-291 44.3 2.15 × 10-04 0.10 0.14 ns 
 9.1 9 Z1964-106 46.6 5.97 × 10-05 0.10 0.13 ns 
 9.2 9 Z1475-87 51.0 5.37 × 10-04 0.09 0.17 ns 
 9.2 9 Z1717-98 54.0 0.002 0.08 0.16 ns 
 9.2 9 TD167-449 59.8 0.003 0.08 0.16 ns 
 9.4 9 TD168-241 99.5 3.57 × 10-04 0.11 0.13 ns 
 10.1 10 CON369-191 52.6 6.59 × 10-04 0.10 0.34 0.011 
 10.1 10 TD003-417 52.6 6.09 × 10-04 0.10 0.33 0.010 
 11.3 11 TD255-218 56.9 4.42 × 10-04 0.07 0.13 ns 
 11.4 11 CON50-294 62.3 1.23 × 10-04 0.09 0.13 ns 
 12.1 12 Z2302-103 21.0 3.81 × 10-04 0.11 0.15 ns 
         

TA 2.3 2 TD275-101 88.5 0.110 ns 0.04 0.13 0.048 
(0.26 – 0.22) 4.3 4 Z1370-98 66.8 ns 0.08 0.14 0.003 

http://sgn.cornell.edu/
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Supplemental Fig. S1 Comparison of QTLs identified by linkage mapping and association studies on chromosomes 1, 3, 5, 6, 10, 11 and 12. SNPs were mapped on 
tomato EXPEN 2000 reference map (http://sgn.cornell.edu/). Associations detected in the 188 accessions (W) and in 127 S. l. cerasiforme accessions (C) are indicated to 
the right of the chromosomes. Associations were estimated with K + Q model, model A: MLM model, with structure based on 20 SSR marker, model B: MLM model 
with structure based on 121 SNP (common font: associations detected in model A; in italic: associations detected in model B; in bold, associations detected in both 
models). Horizontal lines “-“ correspond to the genetic location of associated marker, associations are linked together by a vertical line when linked markers in less than 
10 cM are associated to the same trait. Associated SNPs in less than 10 cM on each chromosome were grouped together. SNP which is 10 cM apart from the others were 
assigned as independent groups. Groups are named as consecutive number according to their genetic location on each chromosome.  Traits are : FIR= firmness, FW= fruit 
weight, SSC= soluble solids content, SUG = total sugar content, LCN= locule number, a and L=color, TA = titratable acidity.  
QTLs identified by linkage mapping in the populations from crosses of S. Lycopersicum  ×  S. l. cerasiforme (Saliba-Colombani et al. 2001), S. Lycopersicum  × S. 

pimpinellifolium (Grandillo et al. 1996) and S. Lycopersicum  × S. l. cheesmanii (Goldman et al. 1995) are shown to the left of the chromosomes (CR= QTL from S. l. 

cerasiforme, CE= QTL from S. l. cheesmanii , PM= QTL from S. pimpinellifolium). Only QTL co-localizing with an association are shown 
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a* b* L 

LCN FIR SSC pH 

Supplemental Fig. S2 Cumulative density functions (CDF) using several alternative models of association for color (a*, b*and 
L), locule number (LCN), firmnes (FIR), pH, soluble solids content (SSC). Associations are tested for 121 polymorphic sites on 
188 accessions. Simple linear model (empty circle) and K+Q models, with structure and kinship based on SSR markers (black 
triangle) ), and on 121SNP markers (black line) were tested. The diagonal indicates uniform distribution of p-values under the 
expectation that random SNPs are unlinked to the polymorphisms controlling these traits (H0: no SNP effect). 
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Supplemental Fig. S3 Cumulative density functions (CDF) using several alternative models of association for color (a*, b*and 
L), locule number (LCN), firmnes (FIR), pH, soluble solids content (SSC). Associations are tested for 121 polymorphic sites on 
127 S. l. cerasiforme accessions. Simple linear model (empty circle) and K+Q models, with structure and kinship based on SSR 
markers (black triangle), and on 121SNP markers (black line) were tested. The diagonal indicates uniform distribution of p-

values under the expectation that random SNPs are unlinked to the polymorphisms controlling these traits (H0: no SNP effect) 
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CHAPTER V: AN EXTENSIVE PROTEOME MAP OF 

THE TOMATO (SOLANUM LYCOPERSICUM) FRUIT 

PERICARP 

 

This chapter is a manuscript to be submitted to the section Dataset Brief of the Journal of Proteomics. 

As a dataset brief, the text is less than 3000 words. It presents the first comprehensive proteome 

reference map of the tomato fruit pericarp at two developmental stages from 12 genotypes 

representing a large phenotypic and genotypic diversity. We identified 506 spots representing 

333 proteins expressed in fruit. We described the physiological function of identified proteins. 

These data provide experimental evidence for tomato fruit proteins that had only been predicted 

by genome annotation and are valuable tools for comparative studies of protein expression.   
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Abstract 

Tomato (Solanum lycopersicum) is the model species for studying fleshy fruit development. 

In this manuscript, an extensive proteome map of the fruit pericarp is described in light of the 

newly available genome sequence. The proteomes of fruit pericarp from 12 tomato genotypes 

at two developmental stages (cell expansion and orange-red) were analyzed. The two-

dimensional gel electrophoresis reference map included 506 spots identified by nano-LC/MS 

and ITAG Database searching. A total of 425 spots corresponded to a unique protein. Thirty 

four spots resulted from the transcription of genes belonging to multi-gene families involving 

two to six genes. A total of 47 spots corresponded to a mixture of different proteins. The 

whole protein set was classified according to Gene Ontology annotation. The quantitative 

protein variation was analyzed in relation to genotype and developmental stage. This tomato 

fruit proteome dataset is currently the largest available and constitutes a valuable tool for 

comparative genetic studies of tomato genome expression at the protein level. 

Keywords: Tomato / Fruit pericarp proteome / genome sequence / Two-dimensional gel 

electrophoresis / Liquid chromatography–mass spectrometry  
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Introduction 

Proteomics is a valuable approach for studying the biology of living organisms and their 

interaction with the environment in the post genomic era (Maghuly et al. 2011). Protein 

expression integrates post-transcriptional and post-translational modifications that modulate 

the quantity, the localization and the efficiency of the final product within the cell. The 

plasticity of a phenotype is driven by these altered levels of proteins and metabolites 

(Weckwerth 2008). Recently protein metabolism and especially protein stability were 

suggested to play a major role in plant growth, yield and heterosis (Goff 2011). Knowledge 

about the fruit proteome is a challenging area of research, as reviewed by Palma et al (2011).  

Apart from being one of the most important vegetables consumed worldwide, tomato 

(Solanum lycopersicum) is also the model species for studying fleshy fruit development 

(Giovannoni 2004). This self-pollinated species exhibits a large range of phenotypes but a 

limited molecular diversity. Studies on the tomato proteome have been recently reviewed by 

Faurobert et al. (Faurobert et al. 2012). Most of these studies were carried out on one or two 

genotypes and identified a relatively small number of proteins, failing to provide an insight 

into the extent of natural genetic variation (Iwahashi and Hosoda 2000; Page et al. 2010; 

Manaa et al. 2011; Marjanovic et al. 2012; Sheoran et al. 2005; Rocco et al. 2006; Faurobert 

et al. 2007a). Improvement of protein identification technologies and the availability of the 

complete high quality tomato genome sequence (Sato et al. 2012) has increased the efficiency 

of protein identification. This study constitutes an extensive characterization of the tomato 

fruit proteome and completes the study of Faurobert et al. (2007a) in light of the genome 

sequence. The proteome map presented here is based on two experiments. It consists of 506 

protein spots identified from 11,692 peptide sequences. Such resources may help to improve 

genome sequence and annotation.   
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Materials and methods 

In the first experiment, we compared eight genotypes, which represent the largest range of 

tomato genetic and phenotypic diversity identified in a collection of 360 accessions (Ranc et 

al. 2008). It describes the proteomes of four S. lycopersicum lines (Levovil, Stupicke Polni 

Rane, LA0147, and Ferum) and four S. lycopersicum var cerasiforme lines (Cervil, Criollo, 

Plovdiv 24A, and LA1420). Cervil produces small fruits (less than 10 g). Levovil, Ferum and 

LA0147 genotypes have large fruits. Stupicke Polni Rane, Criollo, Plovdiv 24A, and LA1420 

have intermediate fruit size. In the second experiment, three parental lines (Cervil, Levovil 

and VilB, a large fruited tomato) and three lines with intermediate fruit size carrying 

introgressed chromosome fragments from Cervil in Levovil (L4 and L9) and VilB 

backgrounds (B9) (Chaib et al. 2007) were compared. Plants were grown in 2010 under 

greenhouse conditions (16/20°C) in Avignon for the first experiment and in Bellegarde for the 

second one (South of France). Given the large effect of developmental stage on fruit proteome 

which has been previously demonstrated (Faurobert et al. 2007a), fruits were collected at two 

stages of development in both experiments, cell expansion (25, 20 and 14 days after anthesis 

for large, intermediate and small fruited lines, respectively) and orange-red stage, according to 

the fruit color. Three to four biological pools of 5 to 20 fruits per genotype and per 

developmental stage were harvested. Fruit pericarp was isolated and immediately frozen, then 

ground in liquid nitrogen and stored at -80 ˚C. Proteins were extracted using a phenol 

extraction method developed by Faurobert et al. (2007b) and separated by two-dimensional 

electrophoresis (2-DE) according to Page et al. (2010). After Coomassie colloidal staining, 

image analysis was performed with Samespot software and the normalized spot volumes were 

assessed and compared through two-way ANOVA (testing the differences between 

genotypes, stages and their interaction) using "stats" package. A principal component analysis 

(PCA) was carried out on spot abundance for the first experiment using “pcaMethods” 

package. Statistical analyses were performed using the R program (R Development Core 

Team 2005). 

Within each experiment the varying spots (P < 0.05) were picked for identification by nano-

LC-MS/MS method as detailed in Supplemental text S1. FASTA sequences of the identified 

proteins were used to re-annotate the proteins using the Blast2GO package (Conesa et al. 

2005). Sequences were compared against the NCBI-NR database of non-redundant protein 

sequences using BLASTX with the default setting.  
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   Table 1 Summary of the protein spots studied and identified 

                           Number 

Total number of protein spots detected  2307 

Number of spots identified by MS 833 

Non redundantly identified spots across 
experiments 

506 

Number of identified spectra for the 506 spots 16,598 

Number of unique peptides for the 506 spots 11,692 

Number of spots resulting from protein mix 47 

Number of spots encoded by a unique gene 
locus 

333 

Number of spots corresponding to multi-gene 
family  

34 

Number of loci contributing to one spot 1 to 6 

Number of protein functions displaying 
multiple spots 

63 
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Results and discussion 

A total of 1230 spots were detected in the first experiment comparing eight genotypes at cell 

expansion and orange-red stages, while 1077 spots were detected in the second experiment 

comparing six genotypes at the two stages (Table 1). After ANOVA analysis, a total of 424 

and 419 spots showing volume variation were detected for the first and the second 

experiment, respectively. In the first experiment, 333 spots showed significant changes in 

protein abundance according to the developmental stage, 321 according to the genotype and 

215 according to a developmental stage and genotype interaction. In the second experiment, 

these numbers were 351, 251 and 176, respectively (see Supplemental table S1).  

The large variation in the tomato pericarp proteome during fruit development agrees with the 

results of Faurobert et al. (Faurobert et al. 2007a) and other studies on fruits reviewed by 

Palma et al. (Palma et al. 2011). In both experiments, developmental stage was the major 

discriminating factor, but the effect of the genotype was also very high at both stages, as 

illustrated in Figure 1 for the first experiment. The first PCA plane accounted for 30% of the 

variation at the cell expansion stage and 27% at the orange-red stage (Figure 1). The three 

biological replicates of each genotype appeared well clustered. The genotypes showed the 

same pattern of clustering for the two developmental stages. Cervil was distinct from all other 

genotypes. The S. lycopersicum genotypes were more tightly clustered than the S. 

lycopersicum var cerasiforme genotypes. The possibility of discriminating genotypes 

according to their proteome profile has already been demonstrated in roots under salt stress 

condition by Manaa et al. (2011). They showed that the effect of genotype on the root 

proteome variations was much higher than the effect of salt. 

Finally, the 424 and 419 variable spots from the two experiments were submitted to mass 

spectrometry. For both experiments, a total of 16,598 spectra were identified by nano LC-

MS/MS (corresponding to 11,692 unique peptides) leading to the identification of 506 spots. 

337 spots were common to both experiments and corresponded to the same identification of  

proteins (Table 1). Their position on 2D gels is illustrated in Supplemental Figure S1. Ten 

spots could not be identified. This very low level of failure was due to the high sensitivity of 

mass spectrometry and the high quality of the genome assembly. On average, the detected 

peptides covered 54% of protein sequences. Supplemental table S1 presents the list of the 

spots and their main features.  
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Figure 1. Principal Component analysis based on the volume of 424 variable spots 

detected at cell expansion (A) and orange-red (B) fruit stages, in the first experiment. 

The 8 genotypes included 4 large fruited lines (LA0147, Levovil, Ferum and Stupicke Polni 

Rane) and 4 cherry tomato lines (Cervil, Criollo, Plovdiv 24A and LA1420). Each dot 

corresponds to a biological replicate.). The percentages of total variation accounted for each 

component are indicated along the axes.  
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Among the 506 spots, 425 spots corresponded to a unique protein. A total of 47 spots were 

identified as containing a mix of proteins with diverse functions (Supplemental table S1). 

The remaining 34 spots corresponded to the translation of several members of a multi-gene 

family (Supplemental Table S2). The number of loci that contributed to one protein spot 

varied from two, in 20 cases, to a maximum of six loci in the case of spot 74. This particular 

spot was identified as a heat shock protein of high molecular weight (around 70 kDa). The 

multigenic nature of heat shock proteins is well known. In eight cases, two or more identified 

genes were located on the same chromosome in a very narrow region (available on the 

Solanaceae Genomic Network site) and corresponded to duplicated genes in tandem. For 

example, spot 36 corresponded to 1-aminocyclopropane-1-carboxylate-oxidase resulting from 

the transcription of two neighbor loci, Solyc07g049530.2.1 and Solyc07g049550.2.1. 

Alternatively, these two loci could correspond to an incorrect annotation as, based on a 

relative abundance index, it was possible to show that the first locus contributed more to the 

final protein abundance. On the other hand, for four spots, several loci contributed equally to 

protein abundance (e.g. spot 30 corresponds to an Actin protein encoded by two different 

genes, one located on chromosome 3, the other on chromosome 11). Besides the spots 

resulting from the transcription of several genes, 63 proteins were present in several spots 

(from two to five). In most cases (56 spots), they were close together on the 2-D gel. For 

instance, the metacaspase 7 protein (Solyc09g098150.2.1) was represented by two closely 

located spots (spot 125 and spot 142) (Supplemental Fig. 1). In seven cases, a protein was 

represented by both closely and distantly located spots. For example, the acid beta-

fructofuranosidase (Solyc03g083910.2.1) was represented by the closely located spots 51 and 

87 and by spots located further away: 237, 239 and 284. The presence of multiple spots may 

be due to post-translational modifications, splice variants, protein degradation or allelic 

variation and has already been reported for acid beta-fructofuranosidase by Faurobert et al. 

(2007a). For instance, an enolase protein (Solyc09g009020.2.1) was represented by five 

closely located spots (115, 205, 214, 256 and 323). Each spot was picked from one specific 

genotype and they showed significant quantitative differences according to the genotypes. 

Many proteins have pleiotropic functions within the cell and it is therefore complicated to 

draw major conclusions from basic protein functional classification. However, we propose 

here a functional classification of the proteins according to the GO terms description obtained 

after re-annotating gene sequences with Blast2Go based on biological process term level 3. 

Proteins were assigned to 16 categories (Figure 2). Primary metabolic process represented the  
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Figure 2. Distribution of the 506 tomato protein spots identified by MS into biological classes 

according to gene ontology classification.  
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largest class (27%). Several enzymes were involved in sugar synthesis, such as fructokinase 

(spots 15, 218 and 363), glucose-6-phosphate 1-dehydrogenase (spot 329), fructose-

bisphosphate aldolase (spot 241), UTP-glucose-1-phosphate uridylyltransferase (spots 344 

and 403), or in cysteine synthesis, such as cysteine synthase (spots 26, 179 and 402). Malate 

dehydrogenase (spots 4 and 177) is involved in the tricarboxylic acid cycle which provides 

the necessary energy for the ripening process and was also identified in the primary 

metabolism subgroup. Proteins involved in macromolecular metabolic process accounted for 

18% of all identified proteins. Chaperonin (spots 152, 181, 201, 249, 330, 382, 390 and 414) 

and proteasome subunits (spots 114, 182, 336, 375, 387, RA311 and RA 394) were identified 

in this subgroup. Proteins related to stress responses represented the third largest subgroup 

(14%). This group was clearly dominated by heat shock proteins (23 spots), but also included 

some enzymes such as glutathione S-transferase (spots 2, 80, 112, 204, 293 and 374) which 

has a role in detoxification processes. Heat shock proteins are known to be modulated by a 

wide range of environmental stresses but also during fruit development (Wang et al. 2004; 

Neta-Sharir et al. 2005; Faurobert et al. 2007a). Other smaller functional groups which 

represented a relatively low number of proteins were also identified. Finally a total of 17 spots 

were classified into unknown category. 
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Conclusion 

In conclusion, we provide the first comprehensive proteome reference map of the tomato fruit 

pericarp at two developmental stages from 12 genotypes representing a large phenotypic and 

genotypic diversity. We identified 506 spots representing 333 proteins expressed in fruit. We 

have described the physiological function of the identified proteins. These data provide 

experimental evidence for tomato fruit proteins that had only been predicted by genome 

annotation and are valuable tools for comparative studies of protein expression. Furthermore, 

they will be available for further investigation of genetic variation. We are now characterizing 

the fruit proteome of hybrids from the genotypes used in this study to assess the inheritance 

pattern of all identified proteins.   

The spectrometry dataset is available at PRIDE (http://ebi.ac.uk/pride/), with the accession 

number XXX. 

This work was supported by ANR Genomic project MAGICTomSNP project. 
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Supplemental text S1: Method for protein identification by nano-LC-MS/MS  
 
In-gel digestion was performed with the Progest system (Genomic Solution) according to a 
standard trypsin protocol. Gel pieces were washed twice by successive separate baths of 10% 
acetic acid, 40% ethanol, and acetonitrile (ACN). They were then washed twice with 
successive baths of 25 mM NH4CO3 and ACN. Digestion was subsequently performed for 6 
h at 37°C with 125 ng of modi?ed trypsin (Promega) dissolved in 20% methanol and 20 mM 
NH4CO3. The peptides were extracted successively with 2% tri?uoroacetic acid (TFA) and 
50% ACN and then with ACN. Peptide extracts were dried in a vacuum centrifuge and 
suspended in 20 µL of 0.05% TFA, 0.05% HCOOH, and 2% ACN. 
 HPLC was performed on an NanoLC-Ultra system (Eksigent). A 4 µL sample was 
loaded at 7.5 µL/min-1 on a precolumn cartridge (stationary phase: C18 Biosphere, 5 µm; 
column: 100 µm i.d., 2 cm; Nanoseparations) and desalted with 0.1% HCOOH. After 3 min, 
the precolumn cartridge was connected to the separating PepMap C18 column (stationary 
phase: C18 Biosphere, 3 µm; column: 75 µm i.d., 150 mm; Nanoseparations). Buffers were 
0.1% HCOOH in water (A) and 0.1% HCOOH in ACN (B). The peptide separation was 
achieved with a linear gradient from 5 to 30% B for 11 min at 300 nL/min-1. Including the 
regeneration step at 95% B and the equilibration step at 95% A, one run took 25 min. 
 Eluted peptides were analysed on-line with a LTQ XL ion trap (Thermo Electron) 
using a nanoelectrospray interface. Ionization (1.5 kV ionization potential) was performed 
with liquid junction and a noncoated capillary probe (10 µm i.d.; New Objective). Peptide 
ions were analysed using Xcalibur 2.07 with the following data-dependent acquisition steps: 
(1) full MS scan (mass-to-charge ratio (m/z) 300 to 1400, centroid mode) and (2) MS/MS (qz 
= 0.25, activation time = 30 ms, and collision energy = 35%; centroid mode ). Steps 2 was 
repeated for the three major ions detected in step 1. Dynamic exclusion was set to 30 s. 
 A database search was performed with XTandem (version 2010.12.01.1) 
(http://www.thegpm.org/TANDEM/). Enzymatic cleavage was declared as a trypsin digestion 
with one possible misscleavage. Cys carboxyamidomethylation and Met oxidation were set to 
static and possible modifications, respectively. Precursor mass and fragment mass tolerance 
were 2.0 and 0.5, respectively. A refinement search was added with similar parameters except 
that semi-trypsic peptide and possible N-ter proteins acetylation were searched. The 
International Tomato Annotation Group (ITAG) Release 2.3 predicted proteins (SL2.40) 
database (http://solgenomics.net/) and a contaminant database (trypsin, keratins, ...) were 
used. Only peptides with a E value smaller than 0.1 were reported. 
 Identified proteins were filtered and grouped using XTandem Pipeline 
(http://pappso.inra.fr/bioinfo/xtandempipeline/) according to : (1) A minimum of two 
different peptides was required with a E value smaller than 0.03, (2) a protein E value 
(calculated as the product of unique peptide E values) smaller than 10-3 . In case of 
identification with only two or three MS/MS spectra, similarity between the experimental and 
the theoretical MS/MS spectra was visually checked. To take redundancy into account, 
proteins with at least one peptide in common were grouped. This allowed to group proteins of 
similar function. Within each group, proteins with at least one specific peptide relatively to 
other members of the group were reported as sub-groups.  
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Supplemental Figure S1 Representative two-dimensional electrophoresis gel of tomato pericap proteins of Criollo 
at cell expansion stage (a) and orange red stage (b). The positions and numbers of 424 identified protein spots are 
indicated by arrows. 
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Supplemental Figure S1 Representative two-dimensional electrophoresis gel of tomato pericap proteins of Criollo 
at cell expansion stage (a) and orange red stage (b). The positions and numbers of 424 identified protein spots are 
indicated by arrows. 
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Supplemental table S1 List of identified protein spots
Note Spot ID ITAG accession number Position on genome (bp) Protein function description Protein classification

1 Solyc02g080630.2.1 39392539-39397791 Lactoylglutathione lyase primary metabolic process

2 Solyc09g007150.2.1 775043-778675 Glutathione S-transferase response to stress

3 Solyc12g010020.1.1 3152019-3154797 Leucyl aminopeptidase response to stress

4 Solyc07g062650.2.1 62561877-62565142 Malate dehydrogenase primary metabolic process

5 Solyc01g057830.2.1 56934925-56939761 30S ribosomal protein S1 translation

6 Solyc09g010930.2.1 4264025-4269432 NAD-dependent epimerase/dehydratase cell wall organisation or biogenesis

7 Solyc05g054760.2.1 63753656-63758079 Dehydroascorbate reductase vitamin synthesis

8 Solyc04g011510.2.1 3944572-3949105 Triosephosphate isomerase primary metabolic process

9 Solyc02g065400.2.1 31151784-31154764 Oxygen-evolving enhancer protein 1 of photosystem II regulation of biological process

10 Solyc03g120280.1.1 62781048-62782397 RAN binding protein 3 establishment of localization

11 Solyc06g060290.2.1 34649921-34655100 Protein disulfide isomerase macromolecule metabolic process

12 Solyc06g005940.2.1 921114-925482 Protein disulfide isomerase macromolecule metabolic process

13 Solyc08g065900.2.1 51450546-51456933 Charged multivesicular body protein 4b establishment of localization

# 14 Solyc07g064880.2.1 64080741-64083209 Small ubiquitin-related modifier macromolecule metabolic process

15 Solyc06g073190.2.1 41483219-41485991 Fructokinase-like primary metabolic process

16 Solyc01g010750.2.1 5783031-5788195 Stress responsive protein response to stress

17 Solyc07g064160.2.1 63644226-63646402 Thiazole biosynthetic enzyme vitamin synthesis

18 Solyc05g018700.2.1 22827490-22832816 Protein disulfide isomerase macromolecule metabolic process

19 Solyc02g079500.2.1 38618009-38620468 Peroxidase cell wall organisation or biogenesis

20 Solyc04g073990.2.1 57610227-57612650 Annexin establishment of localization

21 Solyc12g099000.1.1 64658262-64659443 S-adenosylmethionine synthase hormone metabolic process

22 Solyc01g111300.2.1 89348859-89349828 Cold shock protein-1 regulation of biological process

23 Solyc01g101060.2.1 82678819-82681422 S-adenosylmethionine synthase hormone metabolic process

24 Solyc09g007940.2.1 1440058-1444221 Adenosine kinase primary metabolic process

25 Solyc08g067160.2.1 53325912-53329825 Acyl-protein thioesterase 2 macromolecule metabolic process

26 Solyc09g082060.2.1 63298831-63303187 Cysteine synthase primary metabolic process

27 Solyc08g076990.2.1 58097110-58102792 Acetylornithine deacetylase primary metabolic process

28 Solyc02g080420.2.1 39222034-39228232 RNA Binding Protein 45 regulation of biological process

* 29 Solyc08g075160.2.1 56470989-56477178 Bifunctional purine biosynthesis protein purH primary metabolic process

# 30 Solyc03g078400.2.1 44381441-44383329 Actin cytoskeleton organization and biogenesis

31 Solyc08g076970.2.1 58078222-58080829
Acetylornithine deacetylase or succinyl-diaminopimelate 
desuccinylase macromolecule metabolic process

32 Solyc01g094200.2.1 77521221-77531982 NAD-dependent malic enzyme 2 primary metabolic process

33 Solyc04g011510.2.1 3944572-3949105 Triosephosphate isomerase primary metabolic process

34 Solyc05g054760.2.1 63753656-63758079 Dehydroascorbate reductase vitamin synthesis

35 Solyc02g078540.2.1 37780626-37784558 Unknown Protein Unknown

# 36 Solyc07g049530.2.1 57154220-57156391 1-aminocyclopropane-1-carboxylate oxidase developmental maturation

* 37 Solyc07g053310.2.1 59102795-59108445 Adaptin ear-binding coat-associated protein 1 establishment of localization

38 Solyc02g036350.2.1 21279767-21281954 1-aminocyclopropane-1-carboxylate oxidase developmental maturation

39 Solyc07g049530.2.1 57154220-57156391 1-aminocyclopropane-1-carboxylate oxidase developmental maturation

40 Solyc09g089580.2.1 64646856-64649117 1-aminocyclopropane-1-carboxylate oxidase-like protein developmental maturation

41 Solyc09g013080.2.1 5484876-5491347
Acetyl-coenzyme A carboxylase carboxyl transferase subunit 
alpha primary metabolic process

42 Solyc04g073990.2.1 57610227-57612650 Annexin establishment of localization

43 Solyc11g013110.1.1 5961440-5965680 Anthocyanidin synthase secondary metabolic process

44 Solyc02g079500.2.1 38618009-38620468 Peroxidase cell wall organisation or biogenesis

* 45 Solyc03g083910.2.1 47397595-47401871 Acid beta-fructofuranosidase primary metabolic process

46 Solyc10g080210.1.1 60883700-60890335 Polygalacturonase A macromolecule metabolic process

47 Solyc03g097270.2.1 53034151-53040369 Cysteine proteinase inhibitor regulation of biological process

48 Solyc04g082200.2.1 63550865-63552237 Dehydrin response to stress

49 Solyc06g076570.1.1 43954001-43954465 class I heat shock protein response to stress

50 Solyc02g081160.2.1 39802521-39809198 Diphosphate-fructose-6-phosphate 1-phosphotransferase primary metabolic process

51 Solyc03g083910.2.1 47397595-47401871 Acid beta-fructofuranosidase primary metabolic process

52 Solyc04g011440.2.1 3894918-3898067 heat shock protein response to stress

* 53 Solyc01g090700.2.1 76099361-76107876 Enoyl-CoA-hydratase primary metabolic process

* 54 Solyc05g056310.2.1 64792047-64799309 T-complex protein 1 subunit gamma macromolecule metabolic process

55 Solyc02g079930.2.1 38895029-38898734 Phosphosulfolactate synthase response to stress

* 56 Solyc01g099190.2.1 81251679-81256014 Lipoxygenase primary metabolic process

* 57 Solyc12g010040.1.1 3180908-3187436 Leucyl aminopeptidase macromolecule metabolic process

58 Solyc01g005560.2.1 394402-399248 Isocitrate dehydrogenase primary metabolic process

59 Solyc06g083790.2.1 45398741-45407021 Succinyl-CoA ligase primary metabolic process

* 60 Solyc02g078360.2.1 37652619-37657447 Thioredoxin family protein oxidation-reduction process

61 Solyc05g013990.2.1 7492470-7499923 T-complex protein 1 subunit epsilon macromolecule metabolic process

62 Solyc10g005650.2.1 519710-532795 Peroxisomal targeting signal 1 receptor establishment of localization

63 Solyc02g091840.2.1 47648877-47652967 Receptor like kinase. RLK regulation of biological process
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64 Solyc03g025950.2.1 7764256-7767163 Membrane-associated progesterone receptor component 1 regulation of biological process

65 Solyc01g111760.2.1 89701090-89706839 V-type ATP synthase beta chain establishment of localization

§ 66 Solyc12g042060.1.1 42533149-42537576 ATP-dependent clp protease ATP-binding subunit establishment of localization

67 Solyc07g049450.2.1 57040844-57048137 Thioredoxin/protein disulfide isomerase macromolecule metabolic process

68 Solyc02g081160.2.1 39802521-39809198 Diphosphate-fructose-6-phosphate 1-phosphotransferase primary metabolic process

69 Solyc01g111760.2.1 89701090-89706839 V-type ATP synthase beta chain establishment of localization

70 Solyc02g083590.2.1 41515715-41520837 Dehydroquinate synthase primary metabolic process

§ 71 Solyc05g008450.2.1 2800495-2805716 Oxidoreductase FAD/NAD oxidation-reduction process

# 72 Solyc11g066100.1.1 48856641-48858939 heat shock protein response to stress

73 Solyc09g090140.2.1 65031288-65034684 Malate dehydrogenase primary metabolic process

# 74 Solyc08g082820.2.1 62655311-62659585 Heat shock protein response to stress

75 Solyc04g076820.1.1 59289748-59291172 Octicosapeptide/Phox/Bem1p domain-containing protein Unknown

§ 76 Solyc12g044600.2.1 45079934-45087825 NADP-dependent malic enzyme. chloroplastic primary metabolic process

77 Solyc08g079170.2.1 59970339-59976456 Stress-induced protein sti1-like protein response to stress

78 Solyc12g008630.1.1 2007849-2015328 Mitochondrial processing peptidase alpha subunit macromolecule metabolic process

79 Solyc08g079170.2.1 59970339-59976456 Stress-induced protein sti1-like protein response to stress

80 Solyc06g009020.2.1 2965668-2967884 Glutathione S-transferase response to stress

81 Solyc10g081240.1.1 61667783-61677144 Protein grpE primary metabolic process

82 Solyc09g082720.2.1 63816287-63819690 Aldo/keto reductase family protein oxidation-reduction process

# 83 Solyc06g076560.1.1 43949614-43950078 class I heat shock protein response to stress

84 Solyc10g078930.1.1 59896781-59900058 Activator of heat shock protein ATPase homolog 1 response to stress

85 Solyc09g015000.2.1 7427223-7428264 class I heat shock protein response to stress

86 Solyc03g113930.1.1 58031590-58032156 class IV heat shock protein response to stress

87 Solyc03g083910.2.1 47397595-47401871 Acid beta-fructofuranosidase primary metabolic process

88 Solyc03g111720.2.1 56431489-56432545 Peptide methionine sulfoxide reductase msrA oxidation-reduction process

89 Solyc01g111040.2.1 89209383-89212670 EF-Hand containing protein-like Unknown

90 Solyc04g082200.2.1 63550865-63552237 Dehydrin response to stress

91 Solyc05g050120.2.1 59250938-59255250 Malic enzyme primary metabolic process

92 Solyc08g062340.2.1 48122173-48122945 Class II small heat shock protein Le-HSP17.6 response to stress

93 Solyc08g078700.2.1 59635844-59637072 Heat shock protein 22 response to stress

94 Solyc02g090030.2.1 46276521-46278207 Oxygen-evolving enhancer protein 1 of photosystem II regulation of biological process

95 Solyc12g088720.1.1 62418023-62421876 Polyadenylate-binding protein 2 macromolecule metabolic process

96 Solyc11g072190.1.1 52501034-52504379 Elongation factor beta-1 regulation of biological process

97 Solyc11g020040.1.1 10015582-10019521 Chaperone DnaK response to stress

98 Solyc10g083650.1.1 62763114-62763800 Peroxiredoxin ahpC/TSA family oxidation-reduction process

99 Solyc02g077710.1.1 37172109-37173137 E6-2 protein kinase regulation of biological process

100 Solyc10g083650.1.1 62763114-62763800 Peroxiredoxin ahpC/TSA family oxidation-reduction process

101 Solyc09g010930.2.1 4264025-4269432 NAD-dependent epimerase/dehydratase cell wall organisation or biogenesis

102 Solyc06g005940.2.1 921114-925482 Protein disulfide isomerase macromolecule metabolic process

* 103 Solyc08g075210.1.1 56497821-56499095 Acyltransferase-like protein regulation of biological process

104 Solyc01g104950.2.1 85031292-85035396 Alpha-L-arabinofuranosidase/beta-D-xylosidase cell wall organisation or biogenesis

105 Solyc02g065400.2.1 31151784-31154764 Oxygen-evolving enhancer protein 1 of photosystem II regulation of biological process

106 Solyc01g110450.2.1 88910585-88913966 NADP dependent sorbitol 6-phosphate dehydrogenase primary metabolic process

107 Solyc06g060290.2.1 34649921-34655100 Protein disulfide isomerase macromolecule metabolic process

# 108 Solyc05g055160.2.1 64069121-64073511 DNAJ chaperone regulation of biological process

109 Solyc09g011030.2.1 4368272-4373182 Hsp70 nucleotide exchange factor fes1 regulation of biological process

110 Solyc04g045340.2.1 31642460-31657602 Phosphoglucomutase primary metabolic process

111 Solyc12g055830.1.1 47184732-47187107 Inorganic pyrophosphatase primary metabolic process

* 112 Solyc06g009020.2.1 2965668-2967884 Glutathione S-transferase response to stress

* 113 Solyc07g066600.2.1 65205704-65208684 Phosphoglycerate kinase primary metabolic process

114 Solyc02g081700.1.1 40134968-40135714 Proteasome subunit alpha type macromolecule metabolic process

115 Solyc09g009020.2.1 2370061-2375045 Enolase primary metabolic process

116 Solyc02g086880.2.1 44063088-44067604 Formate dehydrogenase oxidation-reduction process

117 Solyc07g064800.2.1 64009800-64015982
Dihydrolipoyllysine-residue succinyltransferase component of 2-
oxoglutarate dehydrogenase complex macromolecule metabolic process

118 Solyc06g005150.2.1 170218-173338 Ascorbate peroxidase oxidation-reduction process

119 Solyc06g083190.2.1 45004847-45008910 Peptidyl-prolyl cis-trans isomerase macromolecule metabolic process

120 Solyc06g005940.2.1 921114-925482 Protein disulfide isomerase macromolecule metabolic process

121 Solyc10g005100.2.1 92148-94188 Salt stress root protein RS1 response to stress

122 Solyc12g005080.1.1 38442-41171
Dihydrolipoyllysine-residue succinyltransferase component of 2-
oxoglutarate dehydrogenase complex macromolecule metabolic process

123 Solyc04g011510.2.1 3944572-3949105 Triosephosphate isomerase primary metabolic process

124 Solyc05g014470.2.1 8322381-8324881 Glyceraldehyde 3-phosphate dehydrogenase primary metabolic process

125 Solyc09g098150.2.1 67309562-67312625 Metacaspase 7 macromolecule metabolic process

126 Solyc01g104170.2.1 84393496-84398307 Ankyrin repeat domain-containing protein 2 regulation of biological process

# 127 Solyc10g084050.1.1 63048965-63053841 26S protease regulatory subunit 6B homolog macromolecule metabolic process

128 Solyc01g111120.2.1 89253979-89260194 Triosephosphate isomerase primary metabolic process
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129 Solyc01g099760.2.1 81668247-81673265 26S protease regulatory subunit 6A homolog macromolecule metabolic process

130 Solyc05g005700.2.1 514498-518886 Aldehyde dehydrogenase 1 primary metabolic process

§ 131 Solyc04g045340.2.1 31642460-31657602 Phosphoglucomutase primary metabolic process

132 Solyc02g091100.2.1 47093169-47096847 Oxalyl-CoA decarboxylase primary metabolic process

133 Solyc03g115650.2.1 59340664-59343595 Eukaryotic translation initiation factor 5A translation

134 Solyc01g102960.2.1 83371681-83372560 class IV heat shock protein response to stress

135 Solyc01g057000.2.1 50798585-50800986 Universal stress protein family protein response to stress

136 Solyc02g081170.2.1 39810752-39812645 Plastid-lipid-associated protein. chloroplastic response to stress

137 Solyc06g005940.2.1 921114-925482 Protein disulfide isomerase macromolecule metabolic process

* 138 Solyc02g092670.1.1 48256556-48258820 Subtilisin-like protease macromolecule metabolic process

* 139 Solyc05g056230.2.1 64732387-64738654 Calreticulin 2 calcium-binding protein macromolecule metabolic process

# 140 Solyc03g082920.2.1 46341372-46345339 Heat shock protein response to stress

# 141 Solyc03g082920.2.1 46341372-46345339 Heat shock protein response to stress

142 Solyc09g098150.2.1 67309562-67312625 Metacaspase 7 macromolecule metabolic process

143 Solyc04g040180.2.1 31093421-31095617 S-adenosylmethionine-dependent methyltransferase hormone metabolic process

* 144 Solyc01g108540.2.1 87591739-87592913 Acetyl esterase primary metabolic process

145 Solyc02g031950.2.1 17912940-17915049 Pathogenesis-related protein-like protein response to stress

146 no identification

147 Solyc10g081030.1.1 61534917-61538284
Nascent polypeptide-associated complex alpha subunit-like 
protein establishment of localization

148 Solyc00g187050.2.1 18478269-18481034 Leucyl aminopeptidase macromolecule metabolic process

# 149 Solyc08g082820.2.1 62655311-62659585 Heat shock protein response to stress

150 Solyc06g005160.2.1 182627-185280 Ascorbate peroxidase oxidation-reduction process

151 Solyc10g085550.1.1 63996015-64000623 Enolase primary metabolic process

152 Solyc06g075010.2.1 42927697-42932331 chaperonin macromolecule metabolic process

153 Solyc03g121640.2.1 63788759-63796170 chaperonin macromolecule metabolic process

154 Solyc03g115990.1.1 59594180-59595418 Malate dehydrogenase primary metabolic process

155 Solyc03g114500.2.1 58538109-58542525 Enolase primary metabolic process

156 Solyc01g097340.2.1 79999429-80002633
NAD-dependent epimerase/dehydratase family protein-like 
protein cell wall organisation or biogenesis

157 Solyc08g082430.2.1 62404261-62407246 Nucleoside diphosphate kinase primary metabolic process

158 Solyc12g098420.1.1 64267844-64273580 Ubiquitin carboxyl-terminal hydrolase macromolecule metabolic process

159 Solyc12g096190.1.1 63553620-63556459 Tryptophan synthase beta chain primary metabolic process

160 Solyc12g010040.1.1 3180908-3187436 Leucyl aminopeptidase macromolecule metabolic process

161 Solyc03g114500.2.1 58538109-58542525 Enolase primary metabolic process

162 Solyc07g043420.2.1 54503345-54505070 2-oxoglutarate-dependent dioxygenase oxidation-reduction process

163 Solyc04g082630.2.1 63844019-63847151 Glyceraldehyde-3-phosphate dehydrogenase B primary metabolic process

164 Solyc01g106430.2.1 86088310-86092110 Inorganic pyrophosphatase family protein primary metabolic process

165 Solyc10g078930.1.1 59896781-59900058 Activator of heat shock protein ATPase homolog 1 response to stress

166 Solyc10g086580.1.1 64688483-64690961 Ribulose-1 5-bisphosphate carboxylase/oxygenase activase 1 cellular metabolic process

167 Solyc11g072450.1.1 52705683-52710449 Mitochondrial F0 ATP synthase D chain establishment of localization

168 Solyc01g104950.2.1 85031292-85035396 Alpha-L-arabinofuranosidase/beta-D-xylosidase cell wall organisation or biogenesis

169 Solyc05g014470.2.1 8322381-8324881 Glyceraldehyde 3-phosphate dehydrogenase primary metabolic process

# 170 Solyc04g005340.2.1 248903-251735 Alpha-1 4-glucan protein synthase cell wall organisation or biogenesis

171 Solyc05g050120.2.1 59250938-59255250 Malic enzyme primary metabolic process

* 172 Solyc06g060290.2.1 34649921-34655100 Protein disulfide isomerase macromolecule metabolic process

173 Solyc09g082990.2.1 64083974-64088590  GDP-D-mannose-3,5-epimerase vitamin synthesis

174 Solyc12g006870.1.1 1315304-1322819 Acyl-protein thioesterase 2 macromolecule metabolic process

175 Solyc09g064370.2.1 57150099-57154745 Alcohol dehydrogenase cellular metabolic process

176 Solyc07g041490.1.1 50632738-50633541 Stress responsive alpha-beta barrel domain protein response to stress

177 Solyc09g090140.2.1 65031288-65034684 Malate dehydrogenase primary metabolic process

178 Solyc12g009400.1.1 2682210-2685916 Pyruvate dehydrogenase E1 component alpha subunit primary metabolic process

179 Solyc08g014340.2.1 4063851-4071314 Cysteine synthase primary metabolic process

180 Solyc03g120090.1.1 62641034-62641951 Pyridoxal biosynthesis lyase pdxS vitamin synthesis

181 Solyc11g069790.1.1 51502451-51507359 chaperonin macromolecule metabolic process

182 Solyc04g079200.2.1 61339502-61344701 26S proteasome regulatory subunit macromolecule metabolic process

183 Solyc03g113800.2.1 57894787-57902443 Betaine aldehyde dehydrogenase primary metabolic process

184 Solyc09g005740.1.1 508767-509831 Chloroplast lumen common family protein Unknown

185 Solyc07g061790.2.1 61964267-61965352 Heme-binding protein 2 Unknown

186 Solyc02g078120.1.1 37474003-37475736 Eukaryotic translation initiation factor 3 subunit 7 translation

187 Solyc11g011470.1.1 4520459-4526103 NADH-ubiquinone oxidoreductase subunit oxidation-reduction process

188 Solyc05g008460.2.1 2805741-2809779 ATP synthase subunit beta regulation of biological process

* 189 Solyc03g120280.1.1 62781048-62782397 RAN binding protein 3 establishment of localization

190 Solyc04g055170.2.1 52933311-52937146 Annexin 2 establishment of localization

191 Solyc12g043020.1.1 44067590-44080483 Dihydroxy-acid dehydratase primary metabolic process

192 Solyc11g039980.1.1 28095562-28096080 ATP synthase subunit alpha establishment of localization

193 Solyc01g066480.2.1 66874829-66881864 Fumarylacetoacetate hydrolase domain-containing protein 1 primary metabolic process

194 Solyc11g066060.1.1 48824058-48826931 heat shock protein response to stress
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195 Solyc01g010750.2.1 5783031-5788195 Stress responsive protein response to stress

196 Solyc11g069000.1.1 50652125-50657452 T-complex protein 1 subunit beta macromolecule metabolic process

# 197 Solyc06g071790.2.1 40601620-40603444 Elongation factor Tu translation 

198 Solyc05g012480.2.1 5715224-5720976 Mitochondrial processing peptidase beta subunit macromolecule metabolic process

199 Solyc03g031720.2.1 8453484-8459499 RNA Binding Protein 45 regulation of biological process

§ 200 Solyc09g010630.2.1 3965253-3968837 heat shock protein response to stress

201 Solyc01g028810.2.1 33327242-33332361 chaperonin macromolecule metabolic process

202 Solyc12g010040.1.1 3180908-3187436 Leucyl aminopeptidase macromolecule metabolic process

203 Solyc03g083390.2.1 46783589-46788273 Nuclear movement protein nudc regulation of biological process

204 Solyc06g009020.2.1 2965668-2967884 Glutathione S-transferase response to stress

205 Solyc09g009020.2.1 2370061-2375045 Enolase primary metabolic process

206 Solyc05g017760.2.1 18312063-18317108 Acetyl-CoA C-acetyltransferase primary metabolic process

207 Solyc07g008720.2.1 3694316-3696017 Nascent polypeptide-associated complex subunit beta establishment of localization

§ 208 Solyc01g106210.2.1 85918285-85922197 Chaperone DnaK response to stress

209 Solyc02g081140.2.1 39782470-39786000 UBX domain-containing protein regulation of biological process

210 Solyc03g082420.2.1 45898742-45899828 Heat shock protein response to stress

* 211 Solyc09g072560.2.1 60593208-60595291 Legumin 11S-globulin macromolecule metabolic process

212 Solyc09g082860.2.1 63941988-63946072 Sulfate adenylyltransferase primary metabolic process

213 Solyc02g062460.2.1 28653823-28656374 2-oxoglutarate-dependent dioxygenase oxidation-reduction process

214 Solyc09g009020.2.1 2370061-2375045 Enolase primary metabolic process

215 Solyc01g010750.2.1 5783031-5788195 Stress responsive protein response to stress

216 Solyc06g073280.2.1 41539950-41545003 LL-diaminopimelate aminotransferase primary metabolic process

217 Solyc02g082920.2.1 41128832-41129990 Endochitinase macromolecule metabolic process

218 Solyc06g073190.2.1 41483219-41485991 Fructokinase-like primary metabolic process

219 Solyc02g082800.2.1 41021911-41031456 Ubiquilin-1 macromolecule metabolic process

220 Solyc03g121720.2.1 63848472-63854092 2-hydroxy-3-oxopropionate reductase primary metabolic process

221 Solyc06g050550.2.1 29742430-29749862 Sorting nexin 1 establishment of localization

222 Solyc07g043420.2.1 54503345-54505070 2-oxoglutarate-dependent dioxygenase oxidation-reduction process

223 Solyc01g106320.2.1 86005942-86007808 Octicosapeptide/Phox/Bem1p domain-containing protein Unknown

224 Solyc09g008280.1.1 1749950-1751122 S-adenosylmethionine synthase hormone metabolic process

225 Solyc09g011080.2.1 4413327-4416467 Ribulose-1 5-bisphosphate carboxylase/oxygenase activase 1 cellular metabolic process

226 Solyc08g068310.2.1 54615972-54621953 RNA-binding La domain protein regulation of biological process

227 Solyc01g110450.2.1 88910585-88913966 NADP dependent sorbitol 6-phosphate dehydrogenase primary metabolic process

228 Solyc05g050120.2.1 59250938-59255250 Malic enzyme primary metabolic process

229 Solyc06g073090.2.1 41417554-41421363 Ribosomal subunit interface protein macromolecule metabolic process

230 Solyc08g080370.2.1 60840952-60844640 Acetylornithine aminotransferase primary metabolic process

* 231 Solyc08g074410.2.1 55693755-55701940 Tryptophanyl-tRNA synthetase macromolecule metabolic process

232 Solyc05g056310.2.1 64792047-64799309 T-complex protein 1 subunit gamma macromolecule metabolic process

233 Solyc01g006980.2.1 1552093-1555934
Malonyl CoA-acyl carrier protein transacylase containing 
protein expressed primary metabolic process

234 Solyc05g053300.2.1 62572547-62577624 Dihydrolipoyl dehydrogenase primary metabolic process

235 Solyc08g022210.2.1 14105526-14113435 Methylthioribose-1-phosphate isomerase primary metabolic process

236 Solyc06g081980.1.1 44239265-44240194 Pyridoxal biosynthesis lyase pdxS vitamin synthesis

237 Solyc03g083910.2.1 47397595-47401871 Acid beta-fructofuranosidase primary metabolic process

238 Solyc02g062500.2.1 28750335-28754482 2-oxoglutarate-dependent dioxygenase oxidation-reduction process

239 Solyc03g083910.2.1 47397595-47401871 Acid beta-fructofuranosidase primary metabolic process

240 Solyc07g062970.2.1 62819985-62823101 Serine/threonine phosphatase family protein macromolecule metabolic process

241 Solyc09g009260.2.1 2643600-2645801 Fructose-bisphosphate aldolase primary metabolic process

242 Solyc09g064940.2.1 58086206-58088531 Phenazine biosynthesis protein PhzF family secondary metabolic process

243 Solyc04g011400.2.1 3868800-3872796 UDP-glucose 4-epimerase cell wall organisation or biogenesis

244 Solyc09g089580.2.1 64646856-64649117 1-aminocyclopropane-1-carboxylate oxidase-like protein developmental maturation

245 Solyc09g089580.2.1 64646856-64649117 1-aminocyclopropane-1-carboxylate oxidase-like protein developmental maturation

246 Solyc12g005860.1.1 490745-498964 3-isopropylmalate dehydratase large subunit primary metabolic process

247 Solyc04g073990.2.1 57610227-57612650 Annexin establishment of localization

* 248 Solyc04g005340.2.1 248903-251735 Alpha-1 4-glucan protein synthase cell wall organisation or biogenesis

249 Solyc11g069790.1.1 51502451-51507359 chaperonin macromolecule metabolic process

250 Solyc05g056490.2.1 64907109-64913076 3+apos primary metabolic process

251 Solyc04g076200.2.1 58724666-58728561 Universal stress protein family protein response to stress

# 252 Solyc06g071790.2.1 40601620-40603444 Elongation factor Tu translation 

253 Solyc10g005890.2.1 683370-690823 DNA-damage inducible protein DDI1-like macromolecule metabolic process

* 254 Solyc01g079680.2.1 71306007-71308978 Ran GTPase activating protein establishment of localization

255 Solyc01g099240.2.1 81297091-81298341 3-hydroxyisobutyrate dehydrogenase primary metabolic process

256 Solyc09g009020.2.1 2370061-2375045 Enolase primary metabolic process

257 Solyc07g063680.2.1 63306131-63309625 CHP-rich zinc finger protein-like response to stress

§ 258 Solyc07g055320.2.1 60717008-60721284 ATP-dependent Zn protease cell division protein FtsH homolog macromolecule metabolic process

# 259 Solyc08g082820.2.1 62655311-62659585 Heat shock protein response to stress
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260 Solyc02g088610.2.1 45222192-45229259 ATP-dependent chaperone ClpB macromolecule metabolic process

261 Solyc04g016470.2.1 7303341-7305043 Beta-1 3-glucanase cell wall organisation or biogenesis

* 262 Solyc06g068860.2.1 39073381-39083550 Alpha-mannosidase primary metabolic process

263 Solyc04g011400.2.1 3868800-3872796 UDP-glucose 4-epimerase cell wall organisation or biogenesis

264 Solyc10g047950.1.1 38620947-38627409 Inorganic pyrophosphatase family protein primary metabolic process

265 Solyc06g082120.2.1 44333171-44336113 Ran GTPase binding protein establishment of localization

266 Solyc02g086880.2.1 44063088-44067604 Formate dehydrogenase oxidation-reduction process

* 267 Solyc10g085550.1.1 63996015-64000623 Enolase primary metabolic process

268 Solyc06g005160.2.1 182627-185280 Ascorbate peroxidase oxidation-reduction process

269 Solyc05g050800.2.1 60131934-60136497 Phosphoglycerate mutase family protein primary metabolic process

270 Solyc09g008280.1.1 1749950-1751122 S-adenosylmethionine synthase hormone metabolic process

271 Solyc08g080140.2.1 60644754-60646888 dTDP-4-dehydrorhamnose reductase primary metabolic process

272 Solyc05g012480.2.1 5715224-5720976 Mitochondrial processing peptidase beta subunit macromolecule metabolic process

273 Solyc11g072190.1.1 52501034-52504379 Elongation factor beta-1 translation 

274 Solyc04g009200.2.1 2695320-2699163 Glutamate-1-semialdehyde-2 1-aminomutase nitrogen compound metabolic process

275 Solyc04g016360.2.1 7158486-7165657 S-formylglutathione hydrolase primary metabolic process

276 Solyc03g095900.2.1 51028612-51030467 1-aminocyclopropane-1-carboxylate oxidase-like protein developmental maturation

# 277 Solyc10g080940.1.1 61453818-61456401 Tubulin beta chain cytoskeleton organization and biogenesis

278 Solyc09g015020.1.1 7440133-7440597 class I heat shock protein 3 response to stress

279 Solyc08g079870.1.1 60466441-60468678 Subtilisin-like protease macromolecule metabolic process

# 280 Solyc01g059980.2.1 62201815-62226187 Beta-glucanase cell wall organisation or biogenesis

281 Solyc08g079870.1.1 60466441-60468678 Subtilisin-like protease macromolecule metabolic process

282 Solyc08g062450.1.1 48318166-48318642 class II heat shock protein response to stress

283 Solyc10g055810.1.1 52891942-52893092 Endochitinase macromolecule metabolic process

284 Solyc03g083910.2.1 47397595-47401871 Acid beta-fructofuranosidase primary metabolic process

285 Solyc05g005490.2.1 355897-361496 Carbonic anhydrase nitrogen compound metabolic process

286 Solyc04g054980.2.1 52664826-52665968 Lipoxygenase homology domain-containing protein 1 primary metabolic process

287 Solyc07g041900.2.1 51828739-51831068 Cathepsin L-like cysteine proteinase macromolecule metabolic process

288 Solyc12g010320.1.1 3377663-3380422 Outer membrane lipoprotein blc response to stress

289 Solyc01g079220.2.1 70815571-70820929 NifU like protein cellular metabolic process

290 Solyc06g073280.2.1 41539950-41545003 LL-diaminopimelate aminotransferase primary metabolic process

291 Solyc02g080630.2.1 39392539-39397791 Lactoylglutathione lyase primary metabolic process

292 Solyc08g014130.2.1 3734998-3744536 2-isopropylmalate synthase 1 primary metabolic process

293 Solyc10g084400.1.1 63281886-63284225 Glutathione S-transferase response to stress

294 Solyc03g116110.2.1 59675160-59679638 Alpha/beta hydrolase fold protein primary metabolic process

295 Solyc11g020040.1.1 10015582-10019521 Chaperone DnaK response to stress

296 Solyc09g007270.2.1 865197-869322 Ascorbate peroxidase oxidation-reduction process

297 Solyc10g006650.2.1 1157432-1161954 Flavoprotein wrbA oxidation-reduction process

298 Solyc12g096190.1.1 63553620-63556459 Tryptophan synthase beta chain primary metabolic process

299 Solyc11g020040.1.1 10015582-10019521 Chaperone DnaK response to stress

* 300 Solyc01g100520.2.1 82287668-82292399 ATP-dependent Clp protease proteolytic subunit establishment of localization

* 301 Solyc07g051850.2.1 57713505-57718748 Aspartic proteinase macromolecule metabolic process

302 Solyc01g005560.2.1 394402-399248 Isocitrate dehydrogenase primary metabolic process

303 Solyc07g051850.2.1 57713505-57718748 Aspartic proteinase macromolecule metabolic process

304 Solyc03g025850.2.1 7627656-7630095 Remorin 1 Unknown

§ 305 Solyc04g011510.2.1 3944572-3949105 Triosephosphate isomerase primary metabolic process

306 Solyc07g064590.2.1 63891191-63895627 Ubiquitin thioesterase OTU1 primary metabolic process

307 Solyc04g072400.2.1 57015439-57020648 Endoribonuclease E-like protein macromolecule metabolic process

308 Solyc02g062460.2.1 28653823-28656374 2-oxoglutarate-dependent dioxygenase oxidation-reduction process

309 Solyc03g097270.2.1 53034151-53040369 Cysteine proteinase inhibitor regulation of biological process

310 Solyc09g082720.2.1 63816287-63819690 Aldo/keto reductase family protein oxidation-reduction process

311 Solyc12g044740.1.1 45436676-45448004 Ubiquitin carboxyl-terminal hydrolase primary metabolic process

312 Solyc01g107700.2.1 86915524-86922302 Kynurenine formamidase secondary metabolic process

313 Solyc06g071000.2.1 40003245-40009711 N-succinylglutamate 5-semialdehyde dehydrogenase primary metabolic process

314 Solyc09g090330.2.1 65188896-65193572 Harpin binding protein 1 response to stress

315 Solyc03g025850.2.1 7627656-7630095 Remorin 1 Unknown

316 Solyc01g097460.2.1 80067637-80074843 Ribose-5-phosphate isomerase primary metabolic process

* 317 Solyc01g104170.2.1 84393496-84398307 Ankyrin repeat domain-containing protein 2 regulation of biological process

318 Solyc01g067740.2.1 69074003-69078931 Superoxide dismutase oxidation-reduction process

319 Solyc06g063090.2.1 36234795-36239218 Alanine aminotransferase primary metabolic process

320 Solyc12g009060.1.1 2350521-2354721 Charged multivesicular body protein 2a establishment of localization

# 321 Solyc03g112150.1.1 56698575-56700008 Elongation factor Tu translation 

322 Solyc01g112280.2.1 90105382-90109100 Succinyl-diaminopimelate desuccinylase primary metabolic process

323 Solyc09g009020.2.1 2370061-2375045 Enolase primary metabolic process

324 Solyc07g008170.2.1 2882629-2893614 Methyl binding domain protein regulation of biological process

# 325 Solyc01g011000.2.1 6848050-6851207 Eukaryotic translation initiation factor 5A translation 

# 326 Solyc06g005160.2.1 182627-185280 Ascorbate peroxidase oxidation-reduction process

327 Solyc05g005480.2.1 352211-355615 Oxidoreductase zinc-binding dehydrogenase oxidation-reduction process
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328 Solyc03g007670.2.1 2200919-2205536 SGT1 response to stress

* 329 Solyc02g093830.2.1 49113784-49119691 Glucose-6-phosphate 1-dehydrogenase primary metabolic process

330 Solyc12g009250.1.1 2529842-2532163 chaperonin macromolecule metabolic process

331 Solyc12g055800.1.1 47132031-47139706 V-type ATP synthase alpha chain establishment of localization

# 332 Solyc06g076020.2.1 43582389-43585486 heat shock protein response to stress

333 Solyc03g115820.2.1 59463075-59469502 Ribulose-5-phosphate-3-epimerase primary metabolic process

§ 334 Solyc04g045340.2.1 31642460-31657602 Phosphoglucomutase primary metabolic process

335 Solyc09g009390.2.1 2835367-2840425 Monodehydroascorbate reductase vitamin synthesis

336 Solyc12g009140.1.1 2453127-2457231 Proteasome subunit alpha type macromolecule metabolic process

# 337 Solyc05g012070.2.1 5295089-5298245 Alpha-1 4-glucan-protein synthase cell wall organisation or biogenesis

338 Solyc02g088700.2.1 45268178-45273518 Mitochondrial processing peptidase beta subunit macromolecule metabolic process

339 Solyc08g079170.2.1 59970339-59976456 Stress-induced protein sti1-like protein response to stress

340 Solyc01g007320.2.1 1849252-1851757 ATP synthase subunit beta chloroplastic establishment of localization

341 Solyc06g082090.2.1 44317047-44320702 Methionine aminopeptidase macromolecule metabolic process

342 Solyc07g064810.2.1 64017771-64025505 Imidazole glycerol phosphate synthase subunit hisF primary metabolic process

343 Solyc02g087300.1.1 44325520-44326428 Protein transport SEC13-like protein establishment of localization

344 Solyc11g011960.1.1 4912805-4919067 UTP-glucose 1 phosphate uridylyltransferase primary metabolic process

* 345 Solyc02g081400.2.1 39962544-39967049 Intracellular protease PfpI family protein expressed macromolecule metabolic process

346 Solyc09g011670.2.1 4913443-4917118 Universal stress protein family protein response to stress

§ 347 Solyc10g086580.1.1 64688483-64690961 Ribulose-1 5-bisphosphate carboxylase/oxygenase activase 1 cellular metabolic process

* 348 Solyc09g011140.2.1 4499977-4502723 Tropinone reductase I secondary metabolic process

349 Solyc07g064160.2.1 63644226-63646402 Thiazole biosynthetic enzyme vitamin synthesis

350 Solyc03g098700.1.1 54427774-54428433 Cysteine protease inhibitor 8 regulation of biological process

351 Solyc02g082800.2.1 41021911-41031456 Ubiquilin-1 primary metabolic process

352 Solyc03g120230.2.1 62741263-62746412 MAR-binding filament-like protein 1 cytoskeleton organization and biogenesis

353 Solyc10g008740.2.1 2822974-2826287 Magnesium chelatase ATPase subunit I primary metabolic process

* 354 Solyc01g109660.2.1 88321513-88322795 Glycine-rich RNA-binding protein response to stress

355 Solyc06g007200.2.1 1270929-1276535 Methionine aminopeptidase macromolecule metabolic process

356 Solyc01g005520.2.1 349916-352687 Tetratricopeptide TPR_2 repeat protein response to stress

* 357 Solyc02g082830.1.1 41056853-41058151 Phosphoserine aminotransferase primary metabolic process

358 Solyc01g103450.2.1 83821528-83826037 Chaperone DnaK response to stress

359 Solyc04g011400.2.1 3868800-3872796 UDP-glucose 4-epimerase cell wall organisation or biogenesis

* 360 Solyc05g056230.2.1 64732387-64738654 Calreticulin 2 calcium-binding protein macromolecule metabolic process

361 Solyc09g011240.2.1 4573233-4578442 Reductase 2 oxidation-reduction process

362 Solyc09g010930.2.1 4264025-4269432 NAD-dependent epimerase/dehydratase cell wall organisation or biogenesis

363 Solyc02g091490.2.1 47344370-47349179 Fructokinase 3 primary metabolic process

# 364 Solyc05g008460.2.1 2805741-2809779 ATP synthase subunit beta establishment of localization

365 Solyc01g009420.2.1 3621816-3626739 Bifunctional polymyxin resistance arnA protein macromolecule metabolic process

366 Solyc12g056830.1.1 48264644-48265396 ATP synthase delta subunit establishment of localization

* 367 Solyc08g076220.2.1 57405726-57410850 Phosphoribulokinase/uridine kinase primary metabolic process

368 Solyc11g072190.1.1 52501034-52504379 Elongation factor beta-1 translation 

369 Solyc12g042650.1.1 43448722-43449792 40S ribosomal protein S12 translation

370 Solyc07g044860.2.1 55244985-55247025 Oxygen-evolving enhancer protein 2. chloroplastic regulation of biological process

371 Solyc09g008280.1.1 1749950-1751122 S-adenosylmethionine synthase hormone metabolic process

372 Solyc09g005700.2.1 488084-495891 Diaminopimelate epimerase family protein primary metabolic process

373 Solyc10g083970.1.1 62989745-62990917 S-adenosylmethionine synthase hormone metabolic process

374 Solyc06g009020.2.1 2965668-2967884 Glutathione S-transferase response to stress

§ 375 Solyc10g008010.2.1 2177130-2182889 Proteasome subunit alpha type macromolecule metabolic process

# 376 Solyc07g062570.2.1 62472541-62478080 Ubiquitin-conjugating enzyme E2 N primary metabolic process

377 Solyc09g090980.2.1 65698002-65700023 Major allergen Mal d 1 response to stress

378 Solyc05g052150.2.1 61597939-61598511 ATP synthase subunit delta+apos;. mitochondrial establishment of localization

379 Solyc05g053810.2.1 62993932-62998448 Serine hydroxymethyltransferase primary metabolic process

380 Solyc02g014150.2.1 6519093-6531932 Photosystem II stability/assembly factor Ycf48-like protein regulation of biological process

# 381 Solyc01g099760.2.1 81668247-81673265 26S protease regulatory subunit 6A homolog macromolecule metabolic process

* 382 Solyc06g062950.1.1 36119748-36122078 Subtilisin-like protease macromolecule metabolic process

383 Solyc01g028810.2.1 33327242-33332361 chaperonin macromolecule metabolic process

384 Solyc02g086910.2.1 44078232-44082017 Peptidyl-prolyl cis-trans isomerase cyclophilin-type macromolecule metabolic process

385 Solyc04g007120.2.1 832713-843272 UV excision repair protein RAD23 macromolecule metabolic process

386 Solyc11g020300.1.1 10728385-10741180 Translocon Tic40 establishment of localization

# 387 Solyc02g070510.2.1 34815271-34822336 Proteasome subunit alpha type macromolecule metabolic process

* 388 Solyc01g106260.2.1 85976768-85981140 Chaperone DnaK response to stress

389 Solyc08g062660.2.1 48903019-48905978 Ran GTPase binding protein establishment of localization

390 Solyc05g053470.2.1 62706122-62712174 chaperonin macromolecule metabolic process

391 Solyc07g043420.2.1 54503345-54505070 2-oxoglutarate-dependent dioxygenase oxidation-reduction process

* 392 Solyc01g105060.2.1 85094784-85097712 macromolecule metabolic process

393 Solyc08g074620.1.1 55911248-55913011 Polyphenol oxidase secondary metabolic process

394 Solyc06g065270.2.1 37095259-37099538 Adenylate kinase primary metabolic process
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# 395 Solyc02g086730.1.1 43937531-43938103 50S ribosomal protein L12-C translation

396 Solyc01g100030.2.1 81869800-81871185 Deoxyuridine 5+apos-triphosphate nucleotidohydrolase macromolecule metabolic process

397 Solyc08g079020.2.1 59830669-59836240 Adenine phosphoribosyltransferase-like protein primary metabolic process

398 no identification

399 Solyc02g088700.2.1 45268178-45273518 Mitochondrial processing peptidase beta subunit macromolecule metabolic process

* 400 Solyc03g007520.2.1 2089415-2095197 Proline-rich cell wall protein-like cell wall organisation or biogenesis

401 Solyc02g063130.2.1 29750711-29757113 UV excision repair protein RAD23 macromolecule metabolic process

402 Solyc08g014340.2.1 4063851-4071314 Cysteine synthase primary metabolic process

403 Solyc11g011960.1.1 4912805-4919067 UTP-glucose 1 phosphate uridylyltransferase primary metabolic process

404 Solyc12g056230.1.1 47552627-47555380 Glutathione peroxidase response to stress

405 Solyc01g097450.2.1 80067623-80073617 Thioredoxin-like protein 1 oxidation-reduction process

§ 406 Solyc04g045340.2.1 31642460-31657602 Phosphoglucomutase primary metabolic process

407 Solyc01g099770.2.1 81675491-81677536 Translationally-controlled tumor protein homolog regulation of biological process

# 408 Solyc06g082630.2.1 44672378-44677754 26S protease regulatory subunit 6B macromolecule metabolic process

409 Solyc06g060260.2.1 34615474-34625952 Stromal ascorbate peroxidase 7 oxidation-reduction process

410 Solyc08g079170.2.1 59970339-59976456 Stress-induced protein sti1-like protein response to stress

411 Solyc04g045340.2.1 31642460-31657602 Phosphoglucomutase primary metabolic process

* 412 Solyc05g051850.2.1 61409236-61413326 Inositol-3-phosphate synthase primary metabolic process

# 413 Solyc01g007860.2.1 2018307-2022494 Ubiquitin-conjugating enzyme family protein-like primary metabolic process

414 Solyc07g042250.2.1 52684617-52687267 chaperonin macromolecule metabolic process

415 Solyc03g120280.1.1 62781048-62782397 RAN binding protein 3 establishment of localization

§ 416 Solyc12g010060.1.1 3203778-3206878 Eukaryotic translation initiation factor 5A translation 

417 Solyc02g086830.2.1 44017964-44022130 Protease Do-like macromolecule metabolic process

418 Solyc04g071620.2.1 56178656-56180338 ASR4 response to stress

* 419 Solyc03g083910.2.1 47397595-47401871 Acid beta-fructofuranosidase primary metabolic process

420 Solyc01g080460.2.1 72206073-72214485 Pyruvate phosphate dikinase primary metabolic process

# 421 Solyc02g062500.2.1 28750335-28754482 2-oxoglutarate-dependent dioxygenase oxidation-reduction process

422 Solyc09g083410.2.1 64466144-64472295 Amidase hydantoinase/carbamoylase family protein expressed primary metabolic process

423 Solyc12g055800.1.1 47132031-47139706 V-type ATP synthase alpha chain establishment of localization

424 Solyc02g031950.2.1 17912940-17915049 Pathogenesis-related protein-like protein response to stress

RA011 Solyc08g077180.2.1 58254085-58261125 Pyruvate kinase primary metabolic process

RA036 Solyc12g009180.1.1 2477766-2480583 Cupin superfamily Unknown

RA037 Solyc06g083810.2.1 45406955-45411773 Glycolipid transfer protein domain-containing protein 1 establishment of localization

RA051 Solyc01g007330.2.1 1851938-1853783 Ribulose bisphosphate carboxylase large chain cellular metabolic process

RA064 Solyc04g073970.2.1 57593055-57595973 cDNA clone J033025P19 full insert sequence Unknown

RA072 Solyc07g053690.2.1 59452115-59454460 OB-fold nucleic acid binding domain containing protein Unknown

§ RA080 Solyc04g058070.2.1 54328964-54342003 UDP-N-acetylglucosamine-pyrophosphorylase primary metabolic process

* RA085 Solyc07g006650.2.1 1517595-1522933 Xylose isomerase cell wall organisation or biogenesis

RA089 Solyc09g075450.2.1 62645088-62653706 Fumarate hydratase class II primary metabolic process

RA090 Solyc08g076480.2.1 57653458-57656810 Plastid lipid-associated protein 3, chloroplastic regulation of biological process

RA091 Solyc02g065240.2.1 30994199-30996053 Hydrolase alpha/beta fold family protein response to stress

# RA112 Solyc01g060470.2.1 63867613-63872933 Importin alpha-1b subunit establishment of localization

RA116 Solyc06g063140.2.1 36272039-36278473 26S protease regulatory subunit 7 macromolecule metabolic process

RA125 Solyc05g026050.2.1 39648364-39651972 Charged multivesicular body protein 4b establishment of localization

RA127 Solyc06g036110.1.1 22246752-22247498 C2 domain-containing protein regulation of biological process

# RA130 Solyc03g082580.2.1 46048220-46052563 Glucosamine-6-phosphate deaminase primary metabolic process

RA134 Solyc02g079750.2.1 38774685-38777292 Flavoprotein wrbA oxidation-reduction process

* RA139 Solyc04g008280.2.1 1954623-1957620 Regulator of ribonuclease activity A regulation of biological process

RA164 Solyc09g082730.2.1 63820711-63824566 Aldo/keto reductase family protein oxidation-reduction process

RA169 Solyc06g053200.2.1 32435446-32437176 6-phosphogluconolactonase primary metabolic process

* RA171 Solyc07g021540.2.1 19310213-19316385 FIP1 macromolecule metabolic process

RA176 Solyc00g009020.2.1 8742084-8746574 Mitochondrial ATP synthase establishment of localization

RA183 Solyc08g074390.2.1 55669339-55671622 Glucan endo-1 3-beta-glucosidase 6 cell wall organisation or biogenesis

* RA185 Solyc12g005200.1.1 131226-135857 Electron transfer flavoprotein alpha subunit oxidation-reduction process

RA190 Solyc11g020330.1.1 10856316-10856888 class IV heat shock protein response to stress

RA191 Solyc03g117430.2.1 60652978-60660774 Cobalamin synthesis protein P vitamin synthesis

RA205 Solyc11g067160.1.1 49978029-49981767 Aldo/keto reductase family protein oxidation-reduction process

RA209 Solyc06g005360.2.1 372206-374775 Actin depolymerizing factor 3 cytoskeleton organization and biogenesis

RA210 Solyc09g091000.2.1 65708207-65709306 Major allergen Mal d 1 response to stress

RA213 Solyc10g049890.1.1 42590722-42594292 Phosphoglycerate dehydrogenase primary metabolic process

RA214 Solyc03g005260.2.1 148411-153101 Sulfate adenylyltransferase primary metabolic process

RA218 Solyc07g017900.2.1 8283617-8294010 Aldose 1-epimerase family protein primary metabolic process

RA220 Solyc02g088790.2.1 45342858-45345771 RNA-binding protein macromolecule metabolic process

# RA223 Solyc02g083810.2.1 41646719-41650004 Ferredoxin--NADP reductase oxidation-reduction process

RA226 Solyc09g010380.2.1 3768116-3770648 Inorganic pyrophosphatase-like protein primary metabolic process

RA231 Solyc12g005630.1.1 334079-336443 Cytochrome b6-f complex iron-sulfur subunit cellular metabolic process
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RA232 Solyc03g025340.1.1 7153156-7154205 C2 domain-containing protein regulation of biological process

RA237 Solyc07g044840.2.1 55217173-55222925 2 3-bisphosphoglycerate-independent phosphoglycerate mutase primary metabolic process

RA241 Solyc04g077020.2.1 59583881-59586708 Tubulin alpha-3 chain cytoskeleton organization and biogenesis

RA242 Solyc11g067240.1.1 50060665-50065903 Vacuolar sorting protein 4b establishment of localization

RA243 Solyc05g013380.2.1 6451782-6457884 Alanine aminotransferase 2 nitrogen compound metabolic process

RA248 Solyc02g080540.1.1 39325443-39326576 ATP synthase gamma chain establishment of localization

RA253 Solyc12g056110.1.1 47434718-47440701 V-type proton ATPase subunit E establishment of localization

RA258 Solyc08g065220.2.1 50293331-50300381 Glycine dehydrogenase P protein primary metabolic process

RA259 Solyc02g082840.2.1 41059268-41070574 Protein GRIP establishment of localization

RA260 Solyc07g047790.2.1 56327803-56334029 Chaperone protein htpG macromolecule metabolic process

RA270 Solyc02g062340.2.1 28530062-28532470 Fructose-bisphosphate aldolase primary metabolic process

RA273 Solyc04g081970.2.1 63392195-63394296 Thioredoxin oxidation-reduction process

RA274 Solyc07g066270.2.1 64973786-64976784 Glucosamine-6-phosphate deaminase primary metabolic process

RA275 Solyc09g018790.2.1 17001628-17004264 Gamma hydroxybutyrate dehydrogenase-like protein secondary metabolic process

RA277 Solyc01g081610.2.1 73313897-73316705 Beta-hexosaminidase 1 establishment of localization

* RA293 Solyc07g043310.2.1 54313638-54320300 Aminotransferase nitrogen compound metabolic process

RA294 Solyc06g073060.2.1 41401609-41405851 Iaa-amino acid hydrolase 6 macromolecule metabolic process

* RA302 Solyc09g065540.2.1 59258116-59272301 Methylcrotonoyl-CoA carboxylase alpha chain primary metabolic process

RA303 Solyc11g018550.2.1 8668547-8674999 Thylakoid-bound ascorbate peroxidase 6 oxidation-reduction process

RA304 Solyc10g005110.2.1 96242-103626 Coproporphyrinogen III oxidase aerobic secondary metabolic process

RA305 Solyc11g011250.1.1 4291341-4296684 Chloride intracellular channel 6 establishment of localization

RA308 Solyc01g104920.2.1 85004629-85013296 26S protease regulatory subunit 8 homolog macromolecule metabolic process

RA309 Solyc01g108880.2.1 87786634-87788179 1-aminocyclopropane-1-carboxylate oxidase developmental maturation

RA311 Solyc09g082320.2.1 63473246-63478374 Proteasome subunit beta type macromolecule metabolic process

RA314 Solyc02g067750.2.1 32439990-32442359 Carbonic anhydrase nitrogen compound metabolic process

# RA316 Solyc07g061940.2.1 62037698-62039615 Acetolactate synthase primary metabolic process

RA319 Solyc11g011380.1.1 4456053-4460206 Glutamine synthetase nitrogen compound metabolic process

RA321 Solyc02g071700.2.1 35644262-35647481 GDSL esterase/lipase At1g29670 primary metabolic process

* RA322 Solyc02g079060.2.1 38263644-38270218 Eukaryotic translation initiation factor 3 subunit J translation 

RA327 Solyc07g064170.2.1 63653756-63656317 Pectinesterase cell wall organisation or biogenesis

RA345 Solyc02g066930.2.1 31762776-31764561 RNA-binding protein macromolecule metabolic process

RA347 Solyc12g042830.1.1 43709595-43709834 class I heat shock protein response to stress

* RA355 Solyc03g007950.2.1 2439038-2441907
Glycoside hydrolase family 28 protein/polygalacturonase family 
protein cell wall organisation or biogenesis

RA360 Solyc10g078740.1.1 59792276-59795246 Enoyl reductase regulation of biological process

RA364 Solyc07g005210.2.1 202269-203546 Outer membrane lipoprotein blc response to stress

RA365 Solyc07g005560.2.1 446870-450798 Eukaryotic translation initiation factor 5A translation 

* RA369 Solyc01g098380.2.1 80665607-80671287 Dihydrodipicolinate reductase family protein primary metabolic process

RA373 Solyc02g077990.2.1 37374128-37377628 30S ribosomal protein S5 translation

RA377 Solyc12g099100.1.1 64711180-64716181 Dihydrolipoyl dehydrogenase primary metabolic process

RA380 Solyc05g056540.2.1 64952197-64957183 Alcohol dehydrogenase-like protein cellular metabolic process

RA385 Solyc01g109300.2.1 88049244-88054027 4-hydroxy-3-methylbut-2-enyl diphosphate reductase secondary metabolic process

RA386 Solyc08g078510.2.1 59454948-59456978 GRAM-containing/ABA-responsive protein response to stress

RA391 Solyc02g082250.2.1 40521256-40525895 Thioredoxin reductase oxidation-reduction process

RA394 Solyc10g077030.1.1 59270503-59275704 Proteasome subunit alpha type macromolecule metabolic process

RA395 Solyc10g085040.1.1 63684986-63685585 Soul heme-binding family protein Unknown

RA396 Solyc05g014280.2.1 8089580-8092146 Heat shock protein response to stress

RA397 Solyc01g096270.2.1 79110769-79111451 Unknown Protein Unknown

RA405 Solyc01g100370.2.1 82186051-82188666 Universal stress protein response to stress

"#" Spot cumulating the expression of several loci

"*" Spot corresponding to mix of protein of diverse functions. The most abundant function is given here.

"§" Not variable spots
a Genotype effect (two way ANOVA)
b Stage effect (two way-Anova)
c Genotype and stage interaction effect of two way ANOVA
d Genotype effect at green stage (one way ANOVA)
e Genotype effect at Orange/red stage (one way ANOVA)

Unique spectra : number of spectra corresponding to peptides in the sequence

Specific spectra: in case of multiple loci, corresponds to the number of peptides that are specific for this gene product only
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Supplemental table S2 List of spots resulting from multi-gene families

ID 

Number 
of 

translated 
loci

Chrom
osome

Genome 
region in bp Description log.E.value. Coverage MW

Total 
number 
of 
spectra

Specific 
peptides 
for the 
locus

Number 
of 
different 
peptides PAI

JX014 3 7 64080741-6408 Solyc07g064880.2.1_ -22,92 68 11,10 6 3 5 1,20
12 619162-621481 Solyc12g006010.1.1_ -20,43 68 11,00 4 1 4 0,80
9 52556197-5255 Solyc09g059970.2.1_ -5,21 16 11,80 2 1 2 0,40

JX030 2 3 44381441-4438 Solyc03g078400.2.1_ -223,96 70 41,60 71 4 40 4,93
11 263971-265417 Solyc11g005330.1.1_ -223,96 70 41,70 71 4 40 4,93

JX036 2 7 57154220-5715 Solyc07g049530.2.1_ -185,85 65 35,70 54 15 31 3,80
7 57170936-5717 Solyc07g049550.2.1_ -127,11 49 35,90 40 1 22 3,42

JX072 4 11 48856641-4885 Solyc11g066100.1.1_ -174,35 52 71,30 47 18 35 2,00
4 3894918-38980 Solyc04g011440.2.1_ -149,46 43 71,20 34 6 27 1,59
11 48824058-4882 Solyc11g066060.1.1_ -154,09 41 77,00 33 3 28 1,43
6 43582389-4358 Solyc06g076020.2.1_ -127,43 32 70,90 29 2 24 1,32

JX074 6 8 62655311-6265 Solyc08g082820.2.1_ -179,28 53 73,10 47 10 33 2,04
3 46341372-4634 Solyc03g082920.2.1_ -144,01 41 73,30 35 5 26 1,58
6 32202991-3220 Solyc06g052050.2.1_ -100,34 27 67,40 25 1 16 1,08
4 3894918-38980 Solyc04g011440.2.1_ -110,56 40 71,20 22 6 19 1,00
11 48824058-4882 Solyc11g066060.1.1_ -70,75 25 77,00 16 2 14 0,70
11 48856641-4885 Solyc11g066100.1.1_ -61,06 21 71,30 14 1 11 0,58

JX083 2 6 43949614-4395 Solyc06g076560.1.1_ -99,44 70 17,60 43 10 21 7,67
6 43936690-4393 Solyc06g076520.1.1_ -88,06 65 17,60 40 7 19 7,17

JX108 3 5 64069121-6407 Solyc05g055160.2.1_ -76,26 43 46,60 16 4 16 1,07
4 3081668-30862 Solyc04g009770.2.1_ -65,04 36 46,50 14 8 14 1,27
11 1149792-11528 Solyc11g006460.1.1_ -52,88 26 46,50 11 1 11 0,73

JX127 4 10 63048965-6305 Solyc10g084050.1.1_ -198,96 42 89,60 38 11 34 1,18
6 42868689-4287 Solyc06g074980.2.1_ -169,18 40 89,30 31 3 30 0,86
11 51412028-5141 Solyc11g069720.1.1_ -149,20 37 89,40 29 2 28 0,81
3 57029718-5704 Solyc03g112590.2.1_ -80,65 23 92,70 16 5 15 0,41

JX140 4 3 46341372-4634 Solyc03g082920.2.1_ -153,41 44 73,30 28 6 26 1,25
8 62655311-6265 Solyc08g082820.2.1_ -131,94 39 73,10 25 1 23 1,04
6 32202991-3220 Solyc06g052050.2.1_ -112,57 30 67,40 19 1 17 0,79
11 48856641-4885 Solyc11g066100.1.1_ -18,61 9 71,30 5 3 5 0,21

JX141 3 3 46341372-4634 Solyc03g082920.2.1_ -171,27 45 73,30 38 9 30 1,79
8 62655311-6265 Solyc08g082820.2.1_ -143,24 38 73,10 33 4 26 1,48
11 48856641-4885 Solyc11g066100.1.1_ -57,54 24 71,30 15 11 14 0,71

JX149 3 8 62655311-6265 Solyc08g082820.2.1_ -223,71 58 73,10 58 13 37 2,44
3 46341372-4634 Solyc03g082920.2.1_ -168,07 47 73,30 40 4 27 1,83
6 32202991-3220 Solyc06g052050.2.1_ -140,03 33 67,40 33 1 19 1,46

JX170 3 4 248903-251735 Solyc04g005340.2.1_ -160,42 72 40,50 46 12 32 2,18
5 5295089-52982 Solyc05g012070.2.1_ -92,14 48 41,10 30 1 21 1,65
3 58802749-5880 Solyc03g114860.2.1_ -91,63 45 40,00 30 1 19 1,74

JX197 2 6 40601620-4060 Solyc06g071790.2.1_ -128,17 48 48,70 34 12 25 1,52
3 56698575-5670 Solyc03g112150.1.1_ -132,84 49 51,70 30 8 25 1,30

JX252 2 6 40601620-4060 Solyc06g071790.2.1_ -104,90 51 48,70 29 15 22 1,26
3 56698575-5670 Solyc03g112150.1.1_ -97,04 44 51,70 19 5 17 0,83

JX259 2 8 62655311-6265 Solyc08g082820.2.1_ -223,03 57 73,10 53 15 38 2,20
3 46341372-4634 Solyc03g082920.2.1_ -174,23 40 73,30 40 2 29 1,75

JX277 5 10 61453818-6145 Solyc10g080940.1.1_ -142,00 62 50,80 33 6 24 1,65
6 22016405-2201 Solyc06g035970.2.1_ -132,89 61 50,10 33 4 23 1,65
4 63035466-6303 Solyc04g081490.2.1_ -127,62 63 50,50 31 7 23 1,55
10 64808095-6480 Solyc10g086760.1.1_ -122,54 60 50,30 31 1 22 1,55
10 63679058-6368 Solyc10g085020.1.1_ -122,77 59 51,00 31 1 22 1,55

JX280 2 1 62201815-6222 Solyc01g059980.2.1_ -77,69 39 39,60 26 0 15 2,08
1 62224181-6222 Solyc01g060020.2.1_ -77,69 39 39,60 26 0 15 2,08

JX321 2 3 56698575-5670 Solyc03g112150.1.1_ -164,78 54 51,70 40 13 30 1,83
6 40601620-4060 Solyc06g071790.2.1_ -114,25 40 48,70 29 2 22 1,30

JX325 3 1 6848050-68512 Solyc01g011000.2.1_ -56,98 69 17,30 25 7 13 3,71
4 342519-345154 Solyc04g005510.2.1_ -56,98 69 17,30 25 7 13 3,71
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5 1496349-14968 Solyc05g006890.1.1_ -55,10 58 17,40 19 1 12 2,86
JX326 2 6 182627-185280 Solyc06g005160.2.1_ -91,95 60 27,30 21 9 16 2,27

6 170218-173338 Solyc06g005150.2.1_ -90,78 64 27,20 20 8 17 2,18
JX332 4 6 43582389-4358 Solyc06g076020.2.1_ -160,99 48 70,90 37 16 30 1,86

11 48856641-4885 Solyc11g066100.1.1_ -139,21 47 71,30 27 7 24 1,17
11 48824058-4882 Solyc11g066060.1.1_ -128,20 37 77,00 27 4 22 1,26
4 3894918-38980 Solyc04g011440.2.1_ -110,68 35 71,20 25 5 20 1,18

JX337 3 5 5295089-52982 Solyc05g012070.2.1_ -123,12 67 41,10 37 8 28 1,85
4 248903-251735 Solyc04g005340.2.1_ -81,42 43 40,50 25 1 18 1,14
2 45629291-4563 Solyc02g089170.2.1_ -68,94 39 40,20 21 1 16 1,05

JX364 3 5 2805741-28097 Solyc05g008460.2.1_ -184,46 57 59,50 47 15 29 1,60
2 47122405-4712 Solyc02g091130.2.1_ -128,47 37 59,30 33 1 21 1,18
1 1849252-18517 Solyc01g007320.2.1_ -33,00 10 65,40 7 3 7 0,25

JX375 2 10 2177130-21828 Solyc10g008010.2.1_ -190,89 80 25,60 58 23 32 4,29
7 60553200-6055 Solyc07g055080.2.1_ -154,04 80 25,60 48 13 27 3,71

JX376 2 7 62472541-6247 Solyc07g062570.2.1_ -73,24 65 17,10 23 7 16 3,43
10 1673007-16782 Solyc10g007260.2.1_ -71,06 65 17,10 19 3 14 2,86

JX381 2 1 81668247-8167 Solyc01g099760.2.1_ -103,65 58 47,40 25 14 18 1,19
8 10475967-1047 Solyc08g021990.1.1_ -32,74 37 21,50 10 1 6 0,91

JX387 2 2 34815271-3482 Solyc02g070510.2.1_ -148,82 73 26,00 40 8 26 3,00
8 7616130-76222 Solyc08g016510.2.1_ -137,10 73 26,00 36 4 24 2,71

JX395 2 2 43937531-4393 Solyc02g086730.1.1_ -107,79 40 19,80 20 12 13 2,22
2 43941640-4394 Solyc02g086740.1.1_ -65,19 36 19,40 13 5 9 1,86

JX408 2 6 44672378-4467 Solyc06g082630.2.1_ -140,97 62 46,50 32 0 25 1,80
6 44701223-4470 Solyc06g082660.2.1_ -140,97 62 46,50 32 0 25 1,80

JX413 2 1 2018307-20224 Solyc01g007860.2.1_ -66,87 77 16,50 26 3 12 2,89
10 62310434-6231 Solyc10g083120.1.1_ -66,37 77 16,50 26 3 13 2,89

JX421 2 2 28750335-2875 Solyc02g062500.2.1_ -49,01 36 36,40 12 5 11 1,00
2 28653823-2865 Solyc02g062460.2.1_ -34,73 26 36,40 9 2 7 0,59

RA130 2 7 64973786-6497 Solyc07g066270.2.1_ -46,74 27 28,00 7 2 6 0,70
3 46048220-4605 Solyc03g082580.2.1_ -91,96 36 34,80 15 10 15 1,25

RA223 2 2 41646719-4165 Solyc02g083810.2.1_ -77,63 30 41,50 13 9 11 0,81
2 28283170-2828 Solyc02g062130.2.1_ -33,63 16 40,50 6 2 4 0,40

RA316 2 7 62037698-6203 Solyc07g061940.2.1_ -41,30 23 56,30 9 2 9 0,45
3 12823169-1282 Solyc03g044330.1.1_ -35,34 14 71,80 8 1 8 0,32
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OF PROTEOMIC, ENZYMATIC AND METABOLOMIC 

PROFILES IN TOMATO FRUIT PERICARP 
 

 

This chapter, in the form of a manuscript to be submitted to Plant Physiology, presents the use 

of System biology approaches for the dissection of the genetic variation of phenotypic traits. 

We conducted parallel characterisation of the proteome, the metabolome, enzymatic profiles 

and phenotypes of eight contrasted accessions and their four corresponding F1s, at two fruit 

developmental stages.  Genetic variability was analysed for all the traits and inheritance 

modes were assessed for all variable traits in each cross. Correlations were then studied within 

and between levels of expression.  
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Abstract:  

Systems biology proposes new approaches of the genetic variation of phenotypic traits. In an 

effort to characterize the genomic and genetic variation and the physiological bases of 

quantitative traits in tomato fruit, we conducted parallel characterisation of the proteome, the 

metabolome, enzymatic profiles and phenotypes of eight contrasted accessions and their four 

corresponding F1s, at two fruit developmental stages.  Genetic variability was analysed for all 

the traits and inheritance modes were assessed for all variable traits in each cross. Correlations 

were then studied within and between levels of expression. A large range of variability was 

observed for every trait.  The number of variable traits varied among crosses in relation to the 

genetic distance between the parental lines. In average, more than 60% of the traits showed an 

additive mode of inheritance, but differences were shown among crosses. A significant 

number of traits exhibited an over-dominant or over-recessive mode of inheritance, without 

any specific trend towards an excess of dominance or recessivity. Pair-wise Pearson 

correlations were calculated within each group of traits at each stage. Then networks were 

constructed based on sparse partial least squares regressions between each pair of groups of 

traits. Within each group, the number of significant correlations was always much higher than 

expected by chance and a large tendency to an excess of positive correlations is shown, 

notably for metabolites and enzyme activities. Correlations between metabolite contents and 

enzyme activities were higher and more frequent at orange-red stage than at cell expansion 

stage with almost no negative correlations. A large number of both positive and negative 

correlations were observed between metabolite contents and protein amounts, with the same 

ratios in each class. On the contrary, between enzyme activities and protein amounts, there 

were not much significant correlations compared to random at cell expansion stage, on the 

contrary to the orange-red stage, where the number of correlations was higher, with a clear 

tendency to an excess of positive correlations with the proteins corresponding to primary 

metabolism and stress response. The central role of a few proteins was identified. This 

systems biology approach provides better understanding of networks of elements (proteins, 

enzymes, metabolites and phenotypic traits) in tomato fruits.  

 

 

 



Chapter VI: Genetic diversity and inheritance of proteomic, enzymatic and metabolomic 

profiles in tomato fruit pericarp 

 

222 

 

  



Chapter VI: Genetic diversity and inheritance of proteomic, enzymatic and metabolomic 

profiles in tomato fruit pericarp 

 

223 

 

 
Introduction 

Genetic and molecular dissection of quantitative trait variation is a major objective in biology. 

Attempts to identify genetic variants underlying quantitative traits have been achieved by 

traditional linkage mapping and genome wide association studies using molecular markers. 

However, QTLs only contribute to a little proportion of the variability of a quantitative trait. 

Much of the variation and heritability remains unexplained for most quantitative traits due to 

their polygenetic nature (King et al. 2012). Furthermore, DNA sequence variation (SNP or 

Indel) may not affect the traits directly. There are several intermediate levels between the 

genotypes and the phenotypes. Intermediate molecular phenotypes such as protein abundance 

and metabolite concentration also genetically vary in populations and are themselves 

quantitatively inherited (Rockman and Kruglyak 2006). Therefore, integration of the genome 

expression products at different levels is needed in order to understand the genetic variation of 

a given quantitative trait. Rapid technological advances in high-throughput experiment such 

as next-generation sequencing (NGS), RNA expression analysis through microarray or 

RNAseq, mass spectrometry (MS) coupled to gas chromatography (GCMS) or to liquid 

chromatography (LCMS) and nuclear magnetic resource (NMR) enable scientists to obtain 

large exhaustive datasets and analyze biological systems as a whole. Systems biology 

proposes novel approaches studying the behaviour of all the elements in a biological system 

(Gutierez et al. 2008; Saito and Matsuda 2010). These approaches integrate ‘omic’ resources 

(genomic, transcriptomic, proteomic, and metabolomic) and large physiological datasets, 

together with statistical network analysis. They allow the identification of candidate genes 

underlying phenotypes and of complex networks of regulation (Kliebenstein 2010).  Systems 

biology was first applied to yeast by combining DNA microarrays and quantitative 

proteomics to describe the galactose utilization pathway (Ideker et al. 2001). It was then 

applied to gene expression analysis in E.coli (Rosenfeld et al. 2002). Hirai et al. (2005) 

elucidated gene to gene and metabolite to gene networks in Arabidopsis by integrating 

metabolomic and transcriptomic data. Recently, system biology approaches have been used to 

study the natural genetic variation at different levels, such as metabolomics (Keurentjes 2009; 

Kliebenstein 2009a), proteomics (Stylianou et al. 2008) and transcriptomics (Keurentjes et al. 

2008a; Kliebenstein 2009b) in Arabidopsis.    
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Tomato (Solanum lycopersicum) is the model species for genetic and genomic studies of 

Solanaceous plants (Matsukura et al. 2008). It is a self-pollinating species and derived from 

its closest wild ancestor S. pimpinellifolium (Nesbitt and Tanksley 2002). Cherry tomato 

accessions (S. lycopersicum var cerasiforme) have an intermediate position between these two 

species, as their genome is a mosaic of those from S. lycopersicum and S. pimpinellifolium 

(Ranc et al. 2008). During tomato domestication, fruit size has considerably increased. The 

diversification of fruit aspect (shape, color) as well as the adaptation to a wide range of 

environmental conditions was simultaneous to a strong reduction of molecular diversity as 

revealed by different molecular markers (Miller and Tanksley 1990; Williams et al. 1993; 

Saliba-Colombani et al. 2000). Nevertheless many QTL studies were performed in tomato 

(Alpert et al. 1995; Grandillo and Tanksley 1996; Bernacchi et al. 1998; Saliba-Colombani et 

al. 2001; Causse et al. 2001; Causse et al. 2002; Causse et al. 2004; Lecomte et al. 2004). 

Lack of genetic variation in cultivated species leaded to study trait variation mostly in crosses 

involving one wild species and thus limited the exploitation of intra-specific genetic variation. 

Today the availability of the tomato genome sequence (Sato et al. 2012) and of a large 

number of SNP (Sim et al. 2012) allow a re-examination of the variation and inheritance of 

agronomical and fruit traits at the intra-specific level. Furthermore, systems biology provides 

a new context to relate the genetic variation analysed at different levels of expression from 

phenotype to metabolome and proteome levels.  

Systems biology approaches have been applied to tomato at several levels. Carrari et al. 

(2006) and Mounet et al. (2009) analysed transcriptome and metabolome variation along fruit 

development. Garcia et al. (2009) combined phenotype, metabolome, transcriptome and 

proteome profiles to study genes related to ascorbic acid pathway in three transgenic lines. 

Wang et al. (2009) compared transcriptome and metabolome to uncover the molecular events 

underlying fruit set. Enfissi et al. (2010) characterized metabolites and transcripts 

modifications due to the modulation of one gene (DE-ETIOLATED1), while Osorio et al. 

(2011) compared enzyme activity, metabolite and transcript profiles to analyse the 

connectivity between these groups of traits in fruit ripening mutants. These studies were 

focused on the study of a few mutants or on the effect of introgression in S. lycopersicum of 

wild species alleles. Little is known on the variation in metabolic, enzymatic, proteomic 

profiles contributing to phenotypic trait variation in cherry type (Solanum lycopersicum var.  
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cerasiforme) accessions. Faurobert et al. (Faurobert et al. 2007) provided the first 

characterization of the cherry tomato proteome along fruit development by combining 2D-gel 

electrophoresis and mass spectrometry. This study was carried out on one genotype and 

identified a relatively small number of proteins, failing to provide an insight of the extent of 

natural genetic variation. Recently we extended this analysis to 12 tomato lines and identified 

506 protein spots (Xu et al., submitted). On another hand, there has been an increasing interest 

in the mode of inheritance of omic traits. Metabolite variability and inheritance patterns have 

been investigated in corn (Lisec et al. 2011). The mode of inheritance of metabolite QTL and 

enzyme activity QTL has been studied in tomato (Schauer et al. 2008; Steinhauser et al. 

2011). However, no study of inheritance at the proteome level has yet been carried out in 

tomato.  

In the present study, we aimed at deciphering the complex relationships between multiple 

levels of omics data to characterize the genetic variation and physiological bases of 

quantitative traits in tomato fruit. For this purpose, we first compared the genetic variation of 

12 genotypes, including four S. lycopersicum accessions and four S. l. var cerasiforme 

accessions representing a large range of phenotypic and genotypic diversity and four of their 

corresponding hybrids at phenotype, metabolome, enzyme activity and proteome levels. 

Physiological modifications during fruit development have a major impact on the overall 

quality of fruit. Therefore we analyzed genetic variability at two stages of fruit development. 

We then assessed the inheritance patterns of traits which were significantly different among 

genotypes. Correlations were then studied within and between levels of expression.   
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Materials and methods 

Plant materials 

Eight tomato lines and four of their corresponding F1 hybrids were used in this study. They 

included four Solanum lycopersicum accessions (Levovil, Stupicke Polni Rane, LA0147, and 

Ferum) and four S. l. cerasiforme accessions (Cervil, Criollo, Plovdiv24A, and LA1420). 

Cervil produces very small fruits (less than 10 g). Levovil, Ferum and LA0147 accessions 

produce large fruits. The others have intermediate fruit size. Fruit size diversity of the eight 

parental lines and the position of F1 is illustrated in Supplemental figure S1. 

Growth condition and sampling 

Ten plants of each accession and F1s were grown in 2010 under greenhouse conditions 

(16/20°C) in Avignon (south of France). For plant trait measurement, height of the plant was 

recorded twice a week in order to follow the dynamic model of the plant growth. Stem 

diameter was measured with a caliper square every week, at a level corresponding to a one-

week growth (indicated each week on the string). For fruit phenotypic trait measurements, 

five fruits were harvested from ten plants of each genotype at the following six stages: cell 

expansion stage (25, 20 and 14 days after anthesis for large, medium and small fruited 

accessions, respectively), +7d, +14d, +21d, orange-red, then until red ripen stage. Fruits were 

evaluated for fresh weight, fruit diameter (measured using a caliper) and dry matter content. 

Dry matter content (expressed in g / 100 g FW) was assessed after 5 d in a ventilated oven at 

80 ˚C.  For proteome, metabolome and enzymatic measurement, fruits were collected at two 

stages of development, cell expansion stage (25, 20 and 14 days after anthesis for large, 

intermediate, small fruited accession) and orange-red stage, according to the fruit color. Three 

biological pools of 7 to 20 fruits per accession were obtained at each stage. Pericarps were 

collected from each pool, immediately frozen, ground in liquid nitrogen and stored at -80 °C 

before analysis.  
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Proteome analysis 

Methods for protein extraction, two-dimensional gel electrophoresis (2-DE), protein 

identification and classification were as detailed in Xu et al. (2012, submitted). Briefly, 

proteins were extracted using the phenol extraction method developed by Faurobert et al. 

(2007). Later, proteins were separated by 2-DE.  After coomassie colloidal staining, image 

analysis was performed with Samespot software and the normalized spot volumes were 

obtained. Protein identification of the variable spots was performed at the proteome platform 

of Le Moulon (Gif-sur-Yvette) using nano-LC-MS/MS method following the procedure that 

described in Xu et al. (2012, submitted). The database search was run against the International 

Tomato Annotation Group (ITAG) Release 2.3 of predicted proteins (SL2.40) database 

(http://solgenomics.net/) with X!Tandem software. Fasta sequence of the identified proteins 

was employed to re-annotate the proteins using the Blast2GO package (Conesa et al. 2005). 

Sequences were compared against the NCBI-NR database of non-redundant protein sequence 

using BLASTX with the default setting.  

Metabolome analysis 

Metabolome analyses were performed at the metabolome platform of Bordeaux. Primary 

metabolites were quantified using quantitative 1H-NMR profiling of polar extracts, as 

described in Deborde et al. (2009) with minor modifications. Briefly, polar metabolites were 

extracted on lyophilized powder (50 mg DW per biological replicate) with an ethanol–water 

series at 80°C. The lyophilized extracts were titrated to pH 6 and lyophilized again. Each 

dried titrated extract was solubilized in 0.5 mL D2O with (trimethylsilyl)propionic-2,2,3,3-d4 

acid (TSP) sodium salt (0.01% final concentration) for chemical shift calibration and ethylene 

diamine tetraacetic acid (EDTA) disodium salt (5 mM final concentration for cell expansion 

stage and 2 mM for orange-red stage). 1H-NMR spectra were recorded at 500.162 MHz on a 

Bruker Avance III spectrometer (Bruker, Karlsruhe, Germany) using a ATMA inverse 5 mm  

probe and an electronic reference for quantification. Sixty-four scans of 32 K data points each 

were acquired with a 90° pulse angle, a 6000 Hz spectral width, a 2.73 s acquisition time and 

a 25 s recycle delay. Two technological replicates were used per biological replicate. 

Preliminary data processing was conducted with TOPSPIN 3.0 software (Bruker Biospin, 

Wissembourg, France). The assignments of metabolites in the NMR spectra were made by  
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comparing the proton chemical shifts with values of the MeRy-B metabolomic database 

(Ferry-Dumazet et al. 2011), by comparison with spectra of authentic compounds recorded 

under the same solvent conditions and/or by spiking the samples. The metabolite 

concentrations were calculated using AMIX (version 3.9.7, Bruker) software. Ascorbic acid 

was measured using a spectrofluorometric method and values expressed as total ascorbate 

(ascorbic acid + dehydroascorbate) in mg/100 g fresh weight as previously described by 

Stevens et al. (2007). Starch was extracted using a methanol-choroform mix (Gomez et al. 

2002) and quantified by enzymatic assay 96-well microplates (Gomez et al. 2007).  

Secondary metabolites were quantified by LC-QTOF-MS profiling of semi polar extracts. 

LC-QTOF-MS profiling of aqueous-methanol-0.1% formic acid extracts was performed from 

lyophilized powder (20 mg in 1 ml). For each biological replicate, two extractions were 

performed and two injections per extract were used. An Ultimate 3000 HPLC (Dionex, 

Sunnyvale, CA, USA) was used to separate metabolites on a reversed phase C18 column (150 

x 2.0 mm, 3 µm; Phenomenex, Torrance, CA, USA) using a 30 min linear gradient from 3 to 

95% acetonitrile in water acidified with 0.1% formic acid. Metabolites were detected using a 

quadrupole time-of-flight (QTOF) mass spectrometer (Bruker, Bremen, Germany). 

Electrospray ionization in positive mode was used to ionize the compounds. Scan rate for ions 

at m/z range 100-1500 was fixed at 2 spectra per second. Methyl vanillate was spiked in the 

extraction solvent and used as an internal standard. One sample was used as a QC sample and 

injected each ten injections. Raw data were processed in a targeted manner using 

QuantAnalysis 2.0 software (Bruker, Bremen, Germany). This resulted in a total of 11 

compounds putatively identified based on accurate mass measurement and comparison with 

data from Gomez-Romero et al. (2010), and two unknown compounds. The maximum activity 

(Vmax) of 26 enzymes of the primary metabolism was assessed as described in Steinhauser et 

al. (2010). Supplemental Table 1 and Table 2 present the list of primary, secondary 

metabolites and enzyme activities analyzed.  

Statistical analysis and inheritance analysis  

All the metabolites and enzyme activities were expressed on a fresh weight basis to be 

comparable. Means and coefficients of variation (CV= standard deviation/mean) were then 

calculated for each trait (phenotype, metabolite amount, enzyme activity, protein spot  
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amount) in each genotype and stage. Metabolite concentrations, enzymatic activities and 

protein volumes were submitted to a two way ANOVA with genotype, stage and interaction 

effect and one way ANOVA with genotype effect for each cross and stage. Significantly 

different (P< 0.05) traits in at least one cross were selected at each stage to estimate additive 

(A) and dominance (D) components of genetic variation. A is equivalent to half of the 

parental line difference (the line with large fruits was systematically the first parent in a cross) 

and D is equivalent to the difference between hybrid value and parental mean. Inheritance 

pattern of all the traits was then assessed by dominance/additivity (D/A) ratio and classified as 

over-recessive (OR; D/A <-1.2), recessive (R; -1.2 <D/A < -0.8), additive (A; -0.8 < D/A < 

0.8), dominant (D; 0.8 ≤ D/A ≤ 1.2), over-dominant (OD; 1.2 <D/A).   

Mean of metabolite concentrations, enzyme activities and protein spot volumes were centered 

and scaled to variance unit and used for subsequent principal component analysis (PCA), 

correlation and network analysis. Pairwise metabolites and enzyme activities correlations and 

p-values were calculated by Pearson’s correlation coefficient and plotted using “corplot” 

package. PCA were performed for protein spot volumes with the “pcaMethods” package. 

Correlation networks were reconstructed using sparse partial least squares regression (sPLS) 

analysis with the “MixOmics” package. All the analyses were performed using R program (R 

Development Core Team 2005).  

 

 

 

 



Chapter VI: Genetic diversity and inheritance of proteomic, enzymatic and metabolomic 

profiles in tomato fruit pericarp 

 

2

 

  



Chapter VI: Genetic diversity and inheritance of proteomic, enzymatic and metabolomic 

profiles in tomato fruit pericarp 

 

2  

 

 

Results 

Molecular and phenotypic diversity of the eight tomato accessions  

The eight tomato accessions were selected to maximise the genetic diversity among 360 

accessions including large fruited accessions and S. l. cerasiforme accessions, characterised 

with 20 SSR data (Ranc et al. 2008). These lines and Heinz1706, which has been sequenced 

by the international tomato genome sequencing consortium (Sato et al. 2012), were further 

genotyped using a set of 139 single nucleotide polymorphism (SNP) markers (Xu et al. 2012). 

Polymorphism analysis indicated that the 8 parental lines captured 96% of the molecular 

diversity (133 polymorphic SNPs/139 SNPs). Polymorphism rate was high between parental 

lines and Heinz1706, ranging from 27% to 82% (Supplemental table S3). An unrooted 

neighbour joining tree was developed using MEGA5 program based on 139 SNP markers to 

assess the genetic relatedness between the nine accessions. The nine accessions were grouped 

into two clusters, one large cluster with eight accessions and one small cluster with only 

Cervil accession. The four crosses studied result from the cross between one cherry and one 

large fruited accession (Cervil × Levovil), two medium fruited accessions (Stupicke Polni 

Rane × Criollo), one large fruited and one medium fruited accession (LA0147 × Plovdiv24A 

and Ferum × LA1420).  The four F1 hybrids thus corresponded to different distances among 

parents (Supplemental figure S2), with Cervil and Levovil as the two most distant accessions 

(82% SNP polymorphic), followed by the cross LA0147 x Plovdiv (40%), Stupicke Polni 

Rane x Criollo (34%) and Ferum x LA1420 (27%). 

The final fruit weight of the eight parental lines and the four hybrids was quite diverse. Fruit 

weights from the four hybrids were intermediate between the values of their parental lines 

along fruit development (Supplemental figure figure S3). Based on these curves, we 

harvested fruits at two developmental stages for proteomic, enzymatic and metabolomic 

analysis: cell expansion stage (25, 20 and 14 days after anthesis for large, intermediate and 

small fruited accessions, respectively) and orange-red stage, according to the fruit color.  Fruit 

diameter were very close to fruit weight as most of the accessions were round. Plant height at 

the sixth truss varied from 98 cm to 171 cm. Plant stem diameter was followed as a marker of 

plant vigor. It was quite stable along plant growth. 



Table 1 Analysis of variation for 34 metabolite content and 5 phenotypic traits 

 
CE 

 
OR 

 
Global analysis 

 
CE/OR 

Trait FG min max max/min 
 

F G min max max/min 
 

F G F S F GxS 
 

min max 

Gluc *** 6968.6 13168.2 1.9 
 

*** 9164.9 15772.1 1.7 
 

*** *** *** 
 

0.45 1.27 

Suc *** 469.9 961.6 2.0 
 

*** 371.5 2636.7 7.1 
 

*** *** *** 
 

0.33 1.53 

Fru *** 6651.2 13041.8 2.0 
 

*** 9755.4 16420.9 1.7 
 

*** *** *** 
 

0.41 1.21 

Inos *** 233.3 516.4 2.2 
 

*** 110.6 308.1 2.8 
 

*** *** *** 
 

1.61 2.98 

Ala *** 21.1 137.0 6.5 
 

*** 10.5 24.1 2.3 
 

*** *** *** 
 

1.12 5.92 

Asn *** 55.2 248.7 4.5 
 

*** 73.5 288.0 3.9 
 

*** *** *** 
 

0.40 1.11 

Asp *** 38.2 129.1 3.4 
 

*** 81.0 316.9 3.9 
 

*** *** *** 
 

0.24 0.54 

Gaba *** 317.6 714.5 2.2 
 

*** 116.8 374.0 3.2 
 

*** *** *** 
 

1.05 2.92 

Gln *** 438.1 2652.7 6.1 
 

*** 404.3 1774.5 4.4 
 

*** *** *** 
 

0.56 1.69 

Ileu *** 12.7 87.4 6.9 
 

*** 13.8 46.7 3.4 
 

*** *** *** 
 

0.67 3.54 

Leu *** 23.0 93.7 4.1 
 

*** 24.6 69.2 2.8 
 

*** *** *** 
 

0.47 1.35 

Phe *** 90.7 438.8 4.8 
 

*** 105.4 504.5 4.8 
 

*** *** *** 
 

0.41 1.13 

Tyr *** 11.5 76.8 6.7 
 

*** 9.6 44.6 4.6 
 

*** *** *** 
 

0.59 2.36 

Val *** 9.2 67.5 7.4 
 

*** 11.8 46.7 3.9 
 

*** * *** 
 

0.44 2.28 

Trigo *** 18.2 149.9 8.2 
 

*** 22.1 89.2 4.0 
 

*** *** *** 
 

0.77 1.98 

Cit *** 8.4 22.6 2.7 
 

*** 8.2 24.8 3.0 
 

*** *** *** 
 

0.68 1.46 

Mal *** 1622.4 4840.3 3.0 
 

*** 2421.8 9101.5 3.8 
 

*** *** *** 
 

0.43 0.75 

Fum *** 965.7 1988.5 2.1 
 

*** 201.7 1932.9 9.6 
 

*** *** *** 
 

0.78 5.35 

Stch *** 0.4 1.4 3.5 
 

*** 0.0 0.8 0 
 

*** *** *** 
 

1.14 NA 

Trigo *** 1.2 7.6 6.2 
 

*** 0.0 1.1 362.9 
 

*** *** *** 
 

6.17 397.56 

Ade *** 16.5 67.6 4.1 
 

*** 13.0 61.6 4.7 
 

*** *** *** 
 

0.98 1.75 

Chol *** 6.2 10.3 1.7 
 

*** 3.9 8.2 2.1 
 

*** *** *** 
 

0.82 2.21 

sChlorAc 
*** 41.1 85.8 2.1 

 
*** 34.9 76.0 2.2 

 
*** *** *** 

 
0.94 1.44 

sTCQ 
*** 4036.5 11257.3 2.8 

 
*** 2721.1 6449.1 2.4 

 
*** *** *** 

 
1.17 2.39 

sAto 
ns 50.0 127.7 2.6 

 
*** 708.2 5144.8 7.3 

 
*** *** *** 

 
0.01 0.11 

sCry 
*** 60664.9 460156.9 7.6 

 
*** 880.2 5885.2 6.7 

 
*** *** *** 

 
27.96 218.19 

sDHT 
* 484.2 1569.5 3.2 

 
ns 316.8 900.0 2.8 

 
ns *** * 

 
0.76 4.95 

sRutp 
*** 12129.5 267130.1 22.0 

 
*** 417.7 7599.0 18.2 

 
*** *** *** 

 
11.55 148.02 

sPpa 
*** 1459.0 5146.7 3.5 

 
*** 1234.7 7445.1 6.0 

 
*** ns *** 

 
0.52 1.41 

sCou 
*** 434.9 803.9 1.8 

 
*** 73.6 607.5 8.3 

 
*** *** *** 

 
1.02 9.15 

sNna 
*** 746.9 3088.2 4.1 

 
*** 683.2 3223.3 4.7 

 
*** ns *** 

 
0.42 2.80 

sOHl 
* 35.5 189.0 5.3 

 
*** 144.4 64355.1 445.6 

 
*** *** *** 

 
0.00 0.43 

sRut 
*** 434.8 708.7 1.6 

 
*** 298.7 2794.9 9.4 

 
*** *** *** 

 
0.25 1.46 
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Table 1 Continued 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FG: significance level of the ANOVA with genotype factor 
FS: significance level of the ANOVA with the stage factor 
FGxS: significance level of the ANOVA with the interaction between genotype and stage 
Min: minimum values for each variable among the 12 genotypes and three repetitions 
Max: maximum values for each variable among the 12 genotypes and three repetitions 
CE/ OR ratio value to cell expansion stages and orange-red (min and max) for each genotype 
*: 0.01 <P <0.05.  **: 0.001 <P <0.01. ***: P<0.001. ns: P> 0.0

 
CE 

 
OR 

 
Global analysis 

 
CE/OR 

Trait FG min max max/min 
 

F G min max max/min 
 

F G F S F GxS 
 

min max 

xfw 
*** 1.2 29.5 29.93 

 
*** 5.4 124.9 23.0 

 
*** *** *** 

 
0.10 0.37 

xfd 
*** 13.8 41.8 3.02 

 
*** 23.0 71.1 3.1 

 
*** *** *** 

 
0.46 0.70 

xdmc 
*** 6.2 10.5 1.7 

 
*** 4.9 8.6 1.8 

 
*** *** *** 

 
1.15 1.42 

pheight 
*** 63.0 112.0 1.8 

 
*** 98.5 173.5 1.8 

 
*** * *** 

 
0.60 0.70 

pstem 
** 11.8 16.8 1.4 

 
*** 8.6 15.6 1.8 

 
*** *** *** 

 
0.96 1.48 
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Table 2 Analysis of variation for activity of 26 enzymes 
 

FG: significance level of the ANOVA with genotype factor 
FS: significance level of the ANOVA with the stage factor  
FGxS: significance level of the ANOVA with the interaction between genotype and stage  
Min: minimum values for each variable among the 12 genotypes and three repetitions  
Max: maximum values for each variable among the 12 genotypes and three repetitions  
CE/ OR ratio value to cell expansion stages and orange-red (min and max) for each genotype 
*: 0.01 <P <0.05.  **: 0.001 <P <0.01. ***: P<0.001. ns: P> 0.05 
 

 

 CE 
 

OR 
 

Global analysis 
 

CE/OR 

Trait FG min max max/min 
 

F G min max max/min 
 

F G F S F GxS 
 

min max 

eAlAT ns 843.9 2040.8 2.4  
ns 239.2 3218.7 13.5  

ns ns ns 
 0.43 3.66 

eAsAT ns 2317.7 6548.2 2.8  ns 1490.2 3970.1 2.7  ns *** ns  0.90 3.56 

eSKDH ** 121.6 262.9 2.2  *** 37.6 208.0 5.5  *** *** ns  1.26 3.63 

ePGK ns 3737.8 7930.8 2.1  ns 679.9 4436.0 6.5  ns *** ns  0.84 9.56 

eTPI ns 41801.3 96038.3 2.3  ns 10801.2 42117.5 3.9  ns *** ns  2.14 8.07 

eEno ** 254.8 494.3 1.9  *** 47.3 202.7 4.3  *** *** **  2.33 9.13 

eG6PDH ns 142.8 222.6 1.6  *** 49.9 140.5 2.8  ns *** ns  1.52 4.24 

eGAPDHd ns 1617.4 3100.6 1.9  ns 406.6 1799.9 4.4  ns *** ns  1.55 6.45 

eGAPDHdp ns 328.0 1126.6 3.4  ns 65.6 1293.8 19.7  ns *** ns  0.52 9.48 

eIDH ns 97.5 232.0 2.4  *** 92.3 378.8 4.1  *** ns ***  0.42 1.98 

ePepC ns 387.0 789.4 2.0  * 94.6 274.2 2.9  ns *** *  1.75 6.60 

ePFKa ns 84.0 123.0 1.5  *** 42.3 121.8 2.9  ns *** **  0.76 2.91 

ePFKp ns 455.4 985.0 2.2  *** 113.1 599.0 5.3  *** *** ns  1.53 7.86 

ePyrK ns 314.6 548.0 1.7  *** 109.2 454.8 4.2  ** *** ns  1.05 4.01 

eFRK ** 73.1 373.5 5.1  ns 16.4 89.8 5.5  ** *** ***  1.52 12.73 

eGlK * 63.5 144.2 2.3  ** 9.2 38.6 4.2  *** *** ns  3.00 9.99 

eInvA ns 143.5 519.3 3.6  *** 183.5 1351.7 7.4  ** *** ns  0.15 1.46 

eInvN ns 71.5 380.3 5.3  *** 93.2 783.2 8.4  *** *** **  0.15 2.26 

eSus ns 187.6 951.0 5.1  ns 87.7 431.4 4.9  ns *** ns  0.78 6.17 

eFbpA * 1440.3 3596.9 2.5  *** 286.0 2257.3 7.9  *** *** ns  1.40 8.97 

ePgm ns 1283.0 2335.3 1.8  *** 415.5 1322.6 3.2  *** *** ns  1.68 4.71 

eAco ns 68.8 285.6 4.1  *** 7.9 122.0 15.4  * *** ns  1.00 15.45 

eFumase ns 180.6 522.6 2.9  ns 18.1 398.5 22.0  ns ** ns  0.77 13.91 

eMDH ns 15130.0 29662.6 2.0  *** 4436.9 17568.2 4.0  *** *** ns  1.69 6.07 

eMed ns 349.6 853.2 2.4  ns 197.2 462.8 2.3  ns *** ns  1.15 3.59 

eMedp *** 116.3 476.0 4.1  *** 47.0 272.0 5.8  *** *** *  0.83 5.04 
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Genetic variability and evolution during fruit development of metabolic and protein 
traits  
1H-NMR profiles allowed the quantification of 24 major metabolites from the central carbon 

metabolism (Figure 1), LC-QTOF-MS profiles identified 11 secondary metabolites (phenolic 

compounds, glycoalkaloids and penthotenic acid) as listed in Supplemental Table 1. The 

maximum activities of 26 enzymes were obtained by enzyme assays (Supplemental Table 2). 

2-DE revealed 424 variable protein spots which were identified by nano LC-MS/MS (Xu et 

al. submitted). Mean values of each trait from each group are presented in Supplemental 

table S4. A large range of variability was observed among the 12 genotypes at each stage and 

between the two stages for the 34 primary and secondary metabolites and 5 phenotypic traits 

(Table 1). The content of sugars (glucose and fructose), citrate, malate, aspartate and 

phenylalanine increased from cell expansion to orange-red stage while the starch content 

decreased. The ratios of the means at two stages reflect that average genetic variability tended 

to decrease for most of the compounds, except for acids (citrate and malate) (Table 1). 

Almost all metabolites and phenotypic traits were significantly different between genotypes at 

the two stages except one secondary metabolite, dehydrotomatine (sDHT), which was non-

significant. The interactions between stage and genotype were generally significant for the 

metabolites. Therefore, they were subsequently analysed stage by stage. At each stage, all the 

metabolites were significantly different among genotypes except one secondary metabolite (a-

tomatine, sAto), which was not significant at cell expansion stage and another one (sDHT), 

which was not significant at orange-red stage (Table 1).  

 

The activity of 26 enzymes from the central carbon metabolism also exhibited a large range of 

variation (Table 2). The activity of sucrose breakdown related enzymes, phosphofructokinase 

and sucrose synthase, decreased during the transition from cell expansion stage to orange-red 

stage while the activity of invertases (both acid and neutral) increased. The activity of 

aconitase decreased from cell expansion to orange-red stage, whereas citrate synthase activity 

significantly decreased. The activity of NAD-dependent malic enzyme (eMed) and NADP-

dependent malic enzyme (eMedp), which are related to the metabolism of malate in the Krebs 

cycle significantly decreased along the two stages. The aspartate aminotransferase (eAsAT) is 

involved in the metabolism of the amino acid aspartate. Its activity decreased at orange-red 

stage (Table 2). Fourteen enzyme activities were significantly different among the 12  

  



Figure 1. Assignment of metabolites and enzymes to Pathways. A total of  28 metabolites are indicated 
in red squares, 26 enzymes are highlighted in dot squares. Metabolites Trigo, Ade, Chol, sCry and sPpa 
are not indicated on the pathway. 
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Figure 2. Principal Component analysis based on 424 spots at green (A) and Orange/red (B) fruit stage.  
Values along axes indicate the percentage of total variation accounted for each component.  Genotypes were indicated as 
different symbols : Cervil, red circle; CervilxLevovil, red triangle point up; Levovil, red plus; Stupicke Polni Rane, dark green 
cross; Stupicke Polni Rane x Criollo, dark green diamond; Criollo, dark green triangle point down; LAO147, black square 
cross; LAO147x Plovdiv 24A, black star; Plovdiv 24A, black diamond plus; Ferum, blue circle plus ; Ferum x LA1420, blue 
triangles up and down ; LA1420, blue square plus.  
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Figure 3. Distribution of the average coefficient of variation  per 

genotype of  34 metabolites (A), 26 enzyme activities (B) and 424 

protein spot amounts at cell expansion stage (green) and Orange 

red stage (orange).  
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genotypes at the two stages. Six enzyme activities showed significant difference among 

genotypes at cell expansion stage and 16 at orange-red stage. 

A total of 1230 protein spots were detected on the 2DE-gels using Samespots software, 

among which the abundance of 566 spots was significantly different between genotypes or 

stages. 424 spots were sequenced by LC-MS/MS and 422 proteins were identified. The 

amount of the 424 protein spots was compared in the 12 genotypes. A large range of 

variability was observed among genotypes and between stage for all the protein spot amounts 

(Supplemental table S4). The main differences were observed between stages but the 

genotype also revealed a large range of variation as illustrated in Figure 2. The first plan of 

the PCA accounted for 25% of the variation at cell expansion stage and 24% at orange-red 

stage (Figure 2). The three biological replicates of the same genotype were well clustered. 

The groups of genotypes showed the same pattern for the two stages. Cervil was separated 

from all other genotypes. The hybrids were located in between their parental genotypes for the 

four crosses. A total of 341 spots showed significant changes in protein abundance according 

to the genotype, 357 according to the stage and 242 according to the stage by genotype 

interaction.  One way ANOVA showed that 256 spot amounts were significantly different 

among genotypes at cell expansion stage and 188 at the orange-red stage (117 were common 

to both stages). These spot amounts were used for inheritance and correlation analysis. We 

have identified the function of most of these spot (Xu et al, in preparation; Supplemental 

table S5). For 74 genes (corresponding to 187 spots), two to seven different spots were 

detected. For example, the acid invertase (Solyc03g083910.2.1) corresponded to seven spots, 

and phosphoglucomutase (Solyc04g045340.2.1) and enolase (Solyc09g009020.2.1) 

corresponded to five spots. These spots may correspond to post-transcriptional and post-

traductional modifications or to allelic variations (Xu et al, submitted). A total of 71 and 60 

significant spots classified to primary metabolic process (65 and 58 spots) and vitamin 

synthesis (6 and 2 spots) classes, at cell expansion and orange-red stage (Supplemental table 

S5), were selected to illustrate the correlation networks between protein spots and metabolites 

and enzyme activities. Among the 424 protein spots, 190 were in average in lower amount at 

the orange-red stage and 234 were in higher amount. 

Variation of metabolite contents, enzyme activities and protein spot amounts within and 

among genotypes 



A 

B 

Figure 4. Classification of the mode of inheritance for 34 metabolites content and 5 phenotypic 
traits (A), 16 enzyme activities (B) and 256 protein spots for cell expansion stage and 188 protein 
spots for orange red stage (C) in the four crosses at the two stages. C1: Cervil × Levovil; C2: 
Stupicke Polni Rane × Criollo, C3: LA0147 × Plovdiv 24A, C4: Ferum × LA1420. CE: cell expansion 
stage, OR: orange-red stage. Colors of the histogram are showing different inheritances: over-dominant, 
dark blue; dominant, red; additive, light green; recessive, purple; over-recessive, light blue; non-
significant, orange.  
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Coefficients of variation (CV) were calculated for each genotype per stage, and then an 

average CV was obtained for each trait at each stage (Figure 3 and Supplemental table S6). 

CV was low (less than 0.2) for most of the metabolites (88%) at cell expansion stage, except 

for one secondary metabolite (coumaric acid, sCou) with an intermediate CV (0.2-0.3) and 

three phenolic compounds with high CV (0.36, 0.31, 0.42 for sTCQ, sCry and sNna). Similar 

results were obtained for metabolites at orange-red stage, most of them (94%) showing low 

CV values. However, Crypto-chlorogenic acid showed high CV (Figure 3A and 

Supplemental table S6). In contrast to metabolites, at cell expansion stage, seven enzymes 

(26%) showed low CV value (eSKDH , eEno , ePFKa , ePgm , eFbpA , ePepC and eGlK). A 

total of 13 enzymes (48%) showed intermediate CV and seven enzymes (26%) showed high 

CV. At orange-red stage, six enzymes (22%) showed low CV, six enzymes (22%) showed 

intermediate CV and 15 enzymes showed high CV (Figure 3B and Supplemental table S6). 

Most of the protein spot (93%) volumes showed low CV,  and only 4 spots showed a high 

CV. Similar results were obtained for all the protein spot volumes at orange-red stage (Figure 

3C and Supplemental table S6).  The CV were low for the 5 phenotypic traits at both stages 

(Supplemental table S6). 

Comparison of CV for phenotypic traits, metabolites, enzyme activities and protein spots in 4 

S. lycopersicum accessions, 4 S. l. cerasiforme and 4 hybrids at cell expansion and orange-red 

stage was illustrated in Supplementl figure S4 and Supplemental table S6. Compared to 

low CV values (less than 0.2) for phenotypic traits, metabolites and protein spots, CV were in 

average higher for the enzyme activities in the three groups (0.21, 0.23 and 0.35 for 4 S. 

lycopersicum, 4 S. l. cerasiforme and 4 hybrids, respectively) at cell expansion stage. It was 

even higher at orange-red stage (0.33, 0.31 and 0.27) for the three groups.  There were not 

many differences among the groups of genotypes.  

 

Mode of inheritance of phenotypes, metabolites, enzyme activities and proteins  

The mode of inheritance was assessed for all traits in each cross (Figure 4 A). The number of 

significantly variable traits varied among crosses in relation to the genetic distance between 

the parental lines. Plant height and stem diameter were systematically inherited in a dominant 

or overdominant mode. On the contrary, fruit weight and diameter were additive or partially 

recessive. At cell expansion stage, 28% of the metabolites were not significantly different in 

the four crosses. In average over the four crosses, the mode of inheritance of the metabolites  



A B 

Figure 5. Inheritance pattern of citrate (A) and malate (B) content at cell expansion stage (dash line, solid 
circle) and orange red stage (black line, empty square). Cer: Cervil, CerLev: Cervil × Levovil, Lev: Levovil, 
Stu: Stupicke Polni Rane, StuCri: Stupicke Polni Rane × Criollo, Criollo: Cri, LA0: LA0147, LA0 ×Plo: 
LA0147 × Plovdiv24A , Plo: Plovdiv24A, Fer: Ferum, FerLA1: Ferum × LA1420 and  LA1: LA1420. 
Genotypes from the same cross are shown in the same color.  
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is not fairly distributed between over-dominance (11%), dominant (4%), additive (45%), 

recessive (3%) and over-recessive (10%). The same pattern was observed for the orange-red 

stage. A large number of additive traits (29/40 and 21/40) for cell expansion stage and orange-

red stage, respectively) was found in cross between the most distant lines (Cervil x Levovil). 

However, most of the traits exhibited different inheritance mode at the two stages in the same 

cross or in different crosses. For example, citrate content showed an additive inheritance at 

cell expansion stage in Stupicke Polni Rane × Criollo and Ferum ×LA1420 cross, but a 

recessive inheritance at orange-red stage (Figure 5A). Malate content showed over-recessive 

inheritance at cell expansion stage in Stupicke Polni Rane × Criollo and LA0147 × 

Plovdiv24A cross but additive inheritance at orange-red stage (Figure 5B).  

Inheritance mode of enzyme activities was assessed on 16 enzyme activities which were 

significantly variable at both stages (Figure 4B). At cell expansion stage, in average, a small 

proportion of enzymes (3%) were over-dominantly and over-recessively inherited, 16% of 

traits were additively inherited; no traits were dominantly and recessively inherited. At 

orange-red stage, the proportions were 3%, 3%, 27%, 3%, 6% for over-dominant, dominant, 

additive, recessive and over-recessive traits, respectively (Figure 4B).  

Distribution of inheritance of protein amounts was also different depending on the stage and 

the cross (Figure 4C). At cell expansion stage, 4 % of protein spots were over-dominant, 2% 

were dominant, 21% were additive, 1% were recessive, 4% were over-recessive (with 68% 

non-significantly variable spots). At orange stage, the proportions were 5%, 3%, 28%, 3%, 

4% and 57% for the five inheritance modes and for non-significant spots within cross. The 

largest number of variable protein spots were observed in the first cross (Cervil × Levovil) at 

cell expansion stage (126/256 spots) and orange-red stage (101/188 spots). Like for the 

metabolites, a protein may show different inheritance patterns at two stages for the same cross 

or in different crosses. 

   

Correlations among traits at each level of expression 

To analyse the relationships among the 34 metabolites, 5 phenotypic traits, 26 enzyme 

activities and a subset of significant protein spots (256 for cell expansion and 188 for orange-

red stage), pairwise Pearson correlations were first calculated within each group of traits at 

each stage. Then networks were constructed by sPLS regressions between each pair of groups  
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Table 3. Overview of the number of significant correlations (|r|>0.71; p<0.01) among phenotypic traits, metabolite contents, enzyme activities and  
amounts of protein spot (classified into three functional classes) and between each two groups. 

       Protein functional Misc.: miscellaneous; Metab.: primary metabolic process and vitamin synthesis; Stress: stress response 

  Nb. of  traits Phenotypes  Metabolites   Enzymes  Proteins 

   r>0.71 r<-0.71 Expected by chance  r>0.71 r<-0.71 Expected by chance   r>0.71 r<-0.71 Expected by chance  r>0.71 r<-0.71 Expected by chance 

Cell expansion stage                 

 Phenotypes 5 1 0 0.1  - - -   - - -  - - - 

 Metabolites 34 16 8 2  117 22 6   - - -  - - - 

 Enzymes 26 0 1 1.3  22 0 9   50 0 3  - - - 

 Proteins                  

 Misc. Pr. 146 26 22 7  232 166 50   39 22 38  - - - 

 Metab. Pr. 71 10 5 4  87 77 24   24 11 19  - - - 

 Stress Pr. 39 7 11 2  93 15 13   3 2 10  - - - 

 Total 256 43 38 13  412 258 87   66 35 67  916 753 326 
                   

Orange red stage                  

 Phenotypes 5 1 1 0.1  - - -   - - -  - - - 

 Metabolites 34 18 11 2  73 1 6   - - -  - - - 

 Enzymes 26 7 7 1.3  99 1 9   90 0 3  - - - 

 Proteins                  

 Misc. Pr. 98 14 14 5  133 58 33   61 54 25  - - - 

 Metab. Pr. 60 19 8 3  89 39 20   70 4 16  - - - 

 Stress Pr. 30 5 7 2  59 6 10   55 1 8  - - - 

 Total 188 38 29 10  281 103 63   186 59 49  544 361 176 
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of traits. The numbers of correlations observed and expected by chance in each group of 

analysis are presented in Table 3. Within each class, the number of significant correlations is 

always much higher than expected by chance and a large tendency to an excess of positive 

correlations is shown for all the class of traits, particularly for metabolites and enzymes. 

Between metabolite contents and enzyme activities, a larger number of correlations were 

observed at orange-red stage than at cell expansion stage with almost no negative correlations. 

Between metabolite and protein amounts a large number of both positive and negative 

correlations were observed, with the same ratios in each class. On the contrary, between 

enzyme activities and protein amounts, there was not much significant correlations compared 

to random at cell expansion stage, on the contrary to the orange-red stage, where the numbers 

of correlations were higher, with a clear tendency to an excess of positive correlations with 

the proteins corresponding to primary metabolism and stress response. 

 

Correlations among metabolites and phenotypic traits 

For the 34 metabolites and 5 phenotypic traits, at cell expansion stage, among the 741 

possible pairwise correlations, 164 and 105 were significant (p<0.01) at cell expansion stage 

(Figure 6 A) and orange-red stage (Figure 6B). At cell expansion stage, the content of 

fructose in the 12 genotypes was strongly correlated with the content of glucose, but not with 

that of sucrose. The content of sucrose was positively correlated with sugar alcohol (Inos). 

Sugar (glucose, fructose) content was negatively correlated with the contents of amino acids, 

Trigo and glycoalkaloids (sAto, sDHT ). Fructose content also negatively correlated with 

vitamin C, organic acids (Cit) and one phenolic compound (sCHI) but positively correlated 

with fruit diameter. Amino acid contents were positively correlated with each other, with 

starch, with vitamin C, with glycoalkaloids (sAto and SDHT), with phenolic compounds 

(sChl and sRut) and fruit dry matter content. Organic acid content (Cit) was negatively 

correlated with fruit weight and fruit diameter. The other one (Fum) was negatively correlated 

with plant height. Secondary metabolites were positively correlated with each other but 

negatively correlated with fruit weight and fruit diameter. Fruit weight was positively 

correlated with fruit diameter. No significant correlation was detected between plant traits 

(stem diameter) and all the metabolites and the other phenotypic traits (fruit weight, fruit 

diameter and plant height) (Figure 6A).  

  



Figure 6. Correlations among 34 metabolites content and 5 phenotypic traits at cell expansion stage (A) and orange red 
stage (B). Only significant correlations (P<0.01) are shown. Positive and negative correlations are presented in red and 
green, respectively. 
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Compared to cell expansion stage, relatively less significant correlations were detected 

between metabolites and phenotypic traits at orange-red stage (Figure 6B). Sugars and sugar 

alcohol were highly and positively correlated with each other, with two amino acids (Asp and 

Gln), vitamin C, glycoalkaloids (sDHT), phenolic compounds (sNna, sRut and sRutp) and dry 

matter content. Amino acids were less significantly correlated together. They were positively 

correlated with vitamin C and organic acids (Cit and Mal) but negatively correlated with fruit 

weight and fruit diameter. Glycoalkaloids (sDHT) was positively correlated with phenolic 

compounds. Phenolic compounds were positively correlated with each other and with dry 

matter content. Fruit weight and fruit diameter were still positively correlated and they were 

negatively correlated with dry matter content, Trigo, Ade and Chol.  

Correlations between enzyme activities 

Among 325 possible pairwise correlations, 50 and 90 significant (p<0.01) correlations were 

obtained at cell expansion stage (Figure 7A) and orange-red stage (Figure 7B), respectively.  

Only positive correlations were found at the two stages. No significant correlations were 

detected among enzymes related to amino acid metabolism and Calvin cycle at the two stages. 

At cell expansion stage, enzymes involved in the glycolysis pathway were positively 

correlated with each other and with enzymes related to sucrose breakdown and sucrose 

synthesis that were also positively correlated together (Figure 7A). Few correlations were 

found among enzymes related to TCA cycle. More correlations were found at orange-red 

stage between enzymes involved in glycolysis pathway (highly correlated with each other) 

and enzymes related to sucrose breakdown synthesis and TCA cycle (Figure 7B).  

Correlations between proteins 

A total of 256 and 188 spots significantly varying among genotypes (p<0.01) at cell 

expansion stage and orange-red were used for correlation analysis (Supplemental table S5). 

Among the 32,640 and 17,578 possible pairwise correlations 1,699 (5 %) and 905 (5 %) 

significant correlations (p<0.01) were detected at cell expansion and orange-red stage, 

respectively. Correlations were detected within and between functional classes with similar 

frequences (Figure 8, Supplemental figure S5). A few correlations were stable at the two 

developmental stages. However, many changes were observed from cell expansion stage to 

orange-red stage.   

Correlations between enzyme activities and their corresponding protein spot amounts 



A B 

Figure 7. Correlations among 26 enzyme activities at cell expansion stage (A) and orange red stage (B). Only significant 
correlations are shown (p<0.01). Positive and negative correlations are presented in red and green, respectively. 
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At cell expansion, 19 spots corresponding to 8 enzymes whose activity was quantified were 

detected as variable. Significant correlations were detected between the amount of JX087  

(acid invertases), JX015 (fructokinase), JX154 (malate dehydrogenase) and the activity of the 

corresponding enzymes (r=0.56, 0.78, 0.76, respectively). The last two spots were also 

correlated with several other enzymes (GAPDH, GlK, PGM, FBPA, TPI, Eno, MDH, SKDH 

for the fructokinase and with SKDH, GAPDH and FBPA for MDH) A significant negative 

correlation was observed between JX228 and eMed (r=-0.67).  

At the orange red stages, 20 spots corresponding to 8 enzymes whose activity was quantified 

were detected as variable. Significant correlations were detected between the amounts of 

JX419 (acid invertase), four spots corresponding to enolase (JX161, JX214, JX167 and 

JX323), JX218 (fructokinase), two spots corresponding to isocitrate dehydrogenase (JX058 

and JX302), two spots corresponding to MDH (JX004 and JX177) and JX091 (malic enzyme) 

and the activity of the corresponding enzymes (r=-0.63 with invA, 0.56 to 0.66 with Eno, 0.58 

with FRK, 0.72 and 0.63 with IDH, 0.74 and 0.67 with MDH, 0.54 with ME). This last spot 

and JX004 were highly correlated together and with several other enzymes.  

Network analysis between levels of expression 

One important problem for data integration is that data sets are collected from different levels. 

Correlation analyses contain noise, while the number of replications is also a limiting factor. 

Failure to acknowledge any of these factors may cause unwanted systematic effects, which 

are introduced during data collection, and create false connections between variables, 

ultimately affecting biological conclusions. Many alternative strategies, including sparse 

partial least square regression (sPLS) are proposed in the literature for integrating data from 

parallel sources, as reviewed by Joyce and Palsson (2006). The sPLS is a bidirectional 

multivariate regression method that allows separate modeling of covariance between two data 

sets. The main advantage of sparse methods over non-spare methods is that it sets the 

contribution of noise variables to zero to improve the prediction or classification performance. 

Filzmoser et al. (2012) reviewed recent sparse methods for regression and classification and 

underlined the value of sPLS to integrate datasets from different levels. 
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Figure 8. Correlations among the amounts of 101 protein spots at cell expansion stage. 

Based on variation analysis, 117 protein spots were significantly different among genotypes at both 

cell expansion stage and orange red stage. These protein spots were then grouped according to their 

functional classes. Seven groups (with more than 5 protein spots) with a total of 101 protein spots 

were kept for representing the correlations among protein spots. Only significant correlations 

(P<0.01) are shown. Positive and negative correlations are presented in red and green, respectively.  
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A global sPLS network was thus obtained between each two groups of data and each stage. 

As the final state of metabolites and traits may depend on enzymes and proteins acting earlier, 

network analyses were also constructed between 71 protein spot amounts at cell expansion 

stage and 34 metabolites and 5 phenotypic traits measured at orange-red stage, and between 

26 enzyme activities at cell expansion stage and 34 metabolites and 5 phenotypic traits at 

orange-red stage. Only significant (p<0.01) correlations were extracted from trait-trait 

correlations. Metabolites, phenotypic traits, enzymes, protein spots were represented as 

different nodes and significant correlations as links connecting nodes. 

Network analysis of phenotypic, metabolic and enzymatic traits  

Between 34 metabolites and 5 phenotypic traits on one hand and 26 enzyme activities on the 

other hand at cell expansion, only a few connections were detected. One cluster with 7 nodes 

including 3 enzymes, three secondary metabolites and fruit diameter was detected 

(Supplemental figure S6). eSKDH, an enzyme related to cyclic amino acid metabolism was 

correlated with rutin content. Another cluster connected eFbpA, an enzyme related to sucrose 

synthesis, and VitC.  

A higher number of connections was detected for the same traits at orange-red stage than at 

cell expansion stage. One large cluster with a total of 27 nodes (12 metabolites, one 

phenotypic and 14 enzymes) was detected at this stage (Figure 9). In this cluster, many 

expected correlations were found. Sucrose and starch were connected to several enzymes 

related to sucrose synthesis, sucrose breakdown and to glycolysis pathway. The dry matter 

content was connected to 8 enzyme activities. Aspartate was also connected to most of the 

enzymes. Chlorogenic acid had a central role as it was connected to 13 enzyme activities, 

together with Dehydrotomatine and Rutin pentoside (Figure 9). 

Network analysis involving metabolites, phenotypic traits and protein spots 

At cell expansion stage, two clusters were detected between 34 metabolites, 5 phenotypic 

traits on one hand and 71 protein spots related to carbon metabolism on the other hand. One 

large cluster contained 40 nodes (involving 18 protein spots, 20 metabolites and fruit diameter 

and weight) and one small cluster with two nodes (one protein spot JX239, an acid invertase 

and plant height) (Figure 10). In the large cluster, both positive and negative connections 

were observed. Interesting positive correlations were found between a fructokinase spots 

(JX363 Protein Fructokinase 3) and fructose. Two other fructokinase spots corresponding to  



Figure 9. Network analysis based on sPLS analysis of 34 metabolites, 5 

phenotypic traits and 26 enzyme activities at orange red stage. Metabolites, 

phenotypic traits, and enzymes were represented as different nodes (circle for 

metabolites and phenotypic traits, square for enzymes). Correlations were 

represented as links that connect the nodes. Positive and negative correlations are 

presented in red and blue, respectively. Only significant correlations are shown 

((|r|>0.71, p<0.01).  
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Figure 10. Network analysis based on sPLS analysis of 34 metabolites, 5 phenotypic traits and the 

amounts of 71 protein spots at cell expansion stage. The 71 protein spots were significant among 

genotypes at cell expansion stage and were classified to primary metabolic (65 spots) and vitamin (6 

spots) synthesis classes. Metabolites, phenotypic traits, and protein spots were represented as 

different nodes (circle for metabolites and phenotypic traits, square for protein spots). Correlations 

were represented as links that connect the nodes. Positive and negative correlations are presented in 

red and blue, respectively. Only significant correlations are shown (|r|>0.71; p<0.01). JX008: 

Triosephosphate isomerase ; JX015: Fructokinase-like; JX026: Cysteine synthase ;  JX056: Lipoxygenase;  JX087: Acid beta-

fructofuranosidase ; JX111: Inorganic pyrophosphatase ; JX154: Malate dehydrogenase ; JX157: Nucleoside diphosphate kinase ; 

JX173: GDP-D-mannose-epimerase 2;  JX218: Fructokinase-like; JX230: Acetylornithine aminotransferase;  JX239: Acid beta-

fructofuranosidase ; JX291: Lactoylglutathione lyase; JX302: Isocitrate dehydrogenase;  JX305: Triosephosphate isomerase;  JX311: 

Ubiquitin carboxyl-terminal hydrolase ; JX313 N-succinylglutamate 5-semialdehyde dehydrogenase; JX351:Ubiquilin-1; 

JX363:Fructokinase 3  
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Figure 11. Network analysis based on sPLS analysis of  26 enzyme activities and the 

amounts of 71 protein spots at cell expansion stage. The 71 protein spots were significant 

among genotypes at cell expansion stage and were classified to primary metabolic (65 

spots) and vitamin (6 spots) synthesis classes. Enzymes and protein spots were 

represented as different nodes (circle for enzyme, square for protein spots). Correlations 

were represented as links that connect the nodes. Positive and negative correlations are 

presented in red and blue, respectively. Only significant correlations are shown ((|r|>0.71; 

p<0.01). JX015: Fructokinase-like; JX113: Phosphoglycerate kinase; JX154: Malate 

dehydrogenase ; JX161:Enolase; JX218: Fructokinase-like; JX275: S-formylglutathione 

hydrolase ; JX305: Triosephosphate isomerase; JX406: Phosphoglucomutase  
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different genes (JX218 and JX311) were positively connected with several amino acids and to 

dry matter content. Spot JX087 (another spot corresponding to the acid invertase gene 

Solyc03g83910 like JX239) was negatively connected with glucose and fructose, while an 

isocitrate dehydrogenase spot (JX302) was positively connected to hexose sugars. A cysteine 

synthase (JX026) was connected to glucose and fructose. An inorganic pyrophosphatase 

(JX111) was connected with fruit weight. A lactoyl gluthathione lyase (JX291) was positively 

connected to fruit diameter and negatively to dry matter content, chlorogenic acid and 

glycoalkaloid content (Figure 10). 

A less dense cluster with 50 nodes including 24 protein spots, 23 metabolites and three 

phenotypes was observed at orange-red stage (Supplemental figure S7). In this cluster, both 

positive and negative connections were observed. Two protein spots, JX091 (Malic enzyme) 

and JX239 (acid invertase) were positively correlated with sugars and sugar alcohol (Gluc, 

Fru, sucrose, starch, dry matter and Inositol and secondary metabolites (sNna, sRut and 

sRutp). Another spot corresponding to the same acid invertase gene (JX051) was also 

connected to many traits among which plant height and fruit weight. Protein spots JX351 

(Ubiquilin-1), JX292 (2-isopropylmalate synthase) and JX372 (Diaminopimelate epimerase 

family protein) were negatively correlated with sugars (Gluc, Fru) and with inositol. Six spots 

were conneted to fruit weight and diameter among which the lactoyl gluthathione lyase 

(JX291). Two spots (JX323 and JX256) corresponding to the same gene coding an enolase 

enzyme (Solyc09g009020) were connected with aspartate; the first one was connected with 

three other amino acids. A spot corresponding to an adenylate kinase (JX394) was connected 

to six traits among which the content in adenosine.  

Network analysis of enzyme activities and protein spot amounts 

Two clusters were constructed by grouping the correlations between 26 enzyme activities and 

71 protein spots at cell expansion stage. One large cluster with 17 nodes (10 enzyme activities 

and 7 protein spots) was obtained (Figure 11). In this cluster, protein spot JX015 

(Fructokinase-like) was connected with 9 enzyme activities related to several levels of the 

pathway. The protein spot JX154 (Malate dehydrogenase protein) was correlated with eMDH. 

Protein spots JX161 (Enolase) and JX113 (Phosphoglycerate kinase) were highly correlated 

with eFbpA, an enzyme related to sucrose synthesis pathway. A small other cluster involved 

one protein spot JX406 (Phosphoglucomutase) and one enzyme eAsAT related to amino acids 

metabolism (Figure 11). 



Figure 12. Network analysis based on sPLS analysis of  the amounts of 71 protein spots at cell expansion stage 
and 34 metabolites, and 5 phenotypic traits  at orange red stage. The 71 protein spots were significant among 
genotypes at cell expansion stage and were classified to primary metabolic (65 spots) and vitamin (6 spots) 
synthesis classes. Metabolites, phenotypic traits and protein spots were represented as different nodes (circle for 
protein spots, square for metabolites and phenotypic traits). Correlations were represented as links that connect the 
nodes. Positive and negative correlations are presented in red and blue, respectively. Only significant correlations 
are shown (r|>0.71; p<0.01). JX008: Triosephosphate isomerase; JX015: Fructokinase-like; JX026: Cysteine synthase; 
JX056: Lipoxygenase; JX111: Inorganic pyrophosphatase ; JX113:Phosphoglycerate kinase; JX154: Malate dehydrogenase; 
JX157: Nucleoside diphosphate kinase; JX161: Enolase; JX173: GDP-D-mannose-epimerase 2; JX218: Fructokinase-like; 
JX230: Acetylornithine aminotransferase; JX233: Malonyl CoA-acyl carrier protein transacylase containing protein expressed; 
JX255: 3-hydroxyisobutyrate dehydrogenase; JX275: S-formylglutathione hydrolase; JX290: LL-diaminopimelate
aminotransferase; JX291: Lactoylglutathione lyase; JX302: Isocitrate dehydrogenase; JX306: Ubiquitin thioesterase OTU1;  
JX311: Ubiquitin carboxyl-terminal hydrolase; JX313: N-succinylglutamate 5-semialdehyde dehydrogenase; JX333: Ribulose-
5-phosphate-3-epimerase; JX342: Imidazole glycerol phosphate synthase subunit hisF; JX363: Fructokinase 3; JX397: Adenine 
phosphoribosyltransferase-like protein; JX413: Ubiquitin-conjugating enzyme family protein-like 

JX008

JX015

JX026

JX056

JX111

JX113

JX154

JX157

JX161

JX218

JX230

JX233

JX255

JX275

JX290

JX291

JX302

JX306

JX311

JX313

JX333

JX342

JX363

JX397

JX413

JX173

Gluc

Suc

Fru

Asn

Gln

Cit

Mal

Stch

Trigo Chol

sChlorAc

sDHT

sRutp

sCou

sNna

sRut

xfw

xfd

xdmc

262



Chapter VI: Genetic diversity and inheritance of proteomic, enzymatic and metabolomic 

profiles in tomato fruit pericarp 

 

2

 

At orange-red stage, one large cluster with 22 nodes (7 protein spots and 15 enzyme 

activities) was identified (Supplemental figure S8). Only positive connections were observed 

in this cluster. Protein spot Protein spots JX004 (Malate dehydrogenase) was correlated with 

eMDH and JX214 corresponding to an enolase was connected with the activity of the 

corresponding enzyme. Three other protein spots (JX051, acid invertase, JX091 malic enzyme 

and JX132 an oxalyl CoA decarboxylase were connected with the activities of many different 

enzymes. In the small cluster, protein spot JX180 (Pyridoxal biosynthesis lyase) was 

negatively connected to eMed (enzyme related to TCA cycle) and positively correlated with 

eGAPHdp (enzyme related to Glycolysis pathway). (Supplementary figure S8).   

Network analysis across stages 

We then tested if there were connectivities between protein content or enzyme activities at 

early stage (cell expansion) and fruit composition at orange-red stage. (Figure 12 and 

supplemental figure S9). In the first network analysis involving 71 protein spots, one large 

cluster with 45 nodes (26 protein spots, 17 metabolites and two phenotypes) was obtained. 

Both positive and negative connections were detected. Protein spot JX363 (FRK3) was 

negatively connected with sucrose and starch, while the protein spot JX218 (Fructokinase-

like) protein was positively correlated with fructose, starch, sucrose, dry matter and many 

other secondary compounds. Protein spot JX173 (GDP-D-mannose-epimerase 2), which is 

related to vitamin synthesis, was negatively connected to sucrose. Protein spot JX397 

(Adenine phosphoribosyltransferase-like protein) was negatively connected to sugars (Fru and 

Glu). Protein spot JX233 (Malonyl CoA-acyl carrier protein) was negatively connected to 

sugars (Gluc) and organic acid (Mal). Fruit weight and diameter were again connected with 

the cysteine synthase (JX026) spot 

Three small clusters were detected between enzyme activities at cell expansion stage and 

metabolites and phenotypic traits at orange-red stage. One 2-node cluster connected Aspartate 

aminotransferase activity to the content in threonine (which derives from aspartate). One 

cluster with 6 nodes (2 enzymes and 4 metabolites) was observed. eFbpA was positively 

connected to Suc, starch and Chloro. In the other small cluster, eSus was connected to sPpa 

(Supplemental figure S9).  
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Discussion 

The variation of tomato fruit composition has been widely studied during the last ten years, 

due to its role in sensory and nutritional value. For sensory value, the rates of sugars, acids, 

aromas and in some cases amino acids are the most important traits (Causse et al. 2002; Klee 

and Giovannoni 2011; Tieman et al. 2012). For the nutritional value, apart from carotenoids, 

the contents of vitamin C and phenolic compounds have a major role (Frusciante et al. 2007). 

Glycoalkaloids are also important as they can have a positive action as chemical barrier 

against a broad range of pathogens and a variety of pharmacological and nutritional properties 

in animals and humans (Friedman 2002).  

The variation of metabolic compounds is usually studied in tomato either along fruit 

development or according to environmental perturbations in one accession. Results are 

subsequently supposed to represent the variation of the species. Genetic variation is also 

frequently studied in isogenic lines resulting from the modification of a gene in a unique 

genetic background. Genetic variation was mainly studied in a progeny of introgression lines 

carrying unique genome fragments of a wild species (Schauer et al, 2006; Steinhauser et al, 

2011; Do et al, 2010). Knowledge on the fruit proteome is a challenging area of research, as 

reviewed by Palma et al (2011) and Faurobert et al (2012). Proteome in tomato fruit is poorly 

documented, partly because of technical issues. While custom-made or commercial arrays are 

available for transcript profiling and widely used techniques, like NMR, GCMS or LCMS, are 

available for metabolite profiling, it is still a technical challenge to obtain quantitative 

information about large numbers of proteins (Rose et al. 2004; Baerenfaller et al. 2008) . 

Proteomic in tomato was used to study the response of the plant to several environmental 

stresses (Iwahashi and Hosoda 2000; Page et al. 2010; Manaa et al. 2011; Marjanovic et al. 

2012) and proteome variation along seed development and germination (Sheoran et al. 2005) 

and along fruit development and ripening (Faurobert et al. 2007). Osorio et al. (2011) 

analysed fruit proteome of ripening mutants and observed 158 differentially expressed 

proteins. To our knowledge, this is the first comprehensive description of genetic variation of 

proteome in tomato fruit pericarp. Here we compared 8 accessions selected to represent a 

large part of the phenotypic and molecular diversity of S. lycopersicum (Ranc et al. 2008) and 

we explored the inheritance of the fruit traits expressed at different levels.  
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A large range of variation is detected at the intraspecific level for phenotypic, 
metabolomic, enzymatic and proteomic profiles 

A wide range of variation was observed for all the traits at least at one stage, except for nine 

enzyme activities for which we detected significant variations among stages but genetic 

variation was not significant. This is rather due to a low repeatability of measurements, as 

shown by some high coefficients of variation than to a real lack of variation, as the range of 

variation among the 12 genotypes was quite high. Steinhauser et al. (2010) also identified 

several enzyme activities with a low heritability. The ratio of maximum to minimum values 

was in the range of 2 to 3 for many traits, with a larger range of variation at cell expansion 

than at orange-red stage for the primary metabolite contents and the contrary for the enzyme 

activities. The secondary metabolites showed extreme range of variation, particularly the 

glycoalkaloids and flavonoids that may be present in one line and almost absent in another 

one.  

 The Cervil accession is distant from all other lines at the molecular level. It revealed a very 

specific profile for every trait, leading to most of the extreme values (lowest fruit weight, 

highest dry matter, sugars and acids contents). It is also specific in terms of secondary 

metabolites, with high content in chlorogenic acid, dehydrotomatin, rutin and coumaric acid, 

and lowest content in Penthotenic acid (aPpa). The other accessions have less contrasted 

profiles, each accession showing high and low trait values. 

The range of variation is consistent with those observed in S. pennellii introgression lines for 

primary metabolic compounds by Schauer et al, (2006) and for enzyme activities by 

Steinhauser et al. (2010). For secondary compounds, a number of compounds are identified in 

tomato, as reviewed by Slimestad and Verheul (2009). A large range of variation has been 

reported for most of these compounds, which were not subjected to any conscious selection 

(Martinez-Valverde et al. 2002).  

We identified 424 protein spots that were variable among stages or genotypes across more 

than 1,000 spots (Xu et al, 2012).  Faurobert et al (2007) described the proteome of tomato 

pericarp in Cervil line along fruit development. They identified 148 variable spots among 

more than 1700 and could identify the function of 90 spots. The analysis of additional 

accessions thus largely extended the number of variable spots and the tomato genome 

sequence allowed the identification of the function of almost 100% of the spots. The ratio of 

the highest to the lowest amount ranged from 1 to 7 at cell expansion stage and from 1 to 17  
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at orange-red stage, showing a wide range of variation. As 187 spots revealing protein 

modifications corresponded to 70 genes, the 424 spots corresponded to a total of 307 unique 

genes. 190 spots were in average in lower amount at the orange-red stage and 234 were in 

higher amount. Most (68%) of the 117 spots, which were variable at both stages, showed the 

same tendency (increase or decrease along fruit development) in all the genotypes. 

Nevertheless 242 spots revealed significant Genotype by Stage interactions, showing that the 

trends observed in one genotype at the physiological level may change in another genotype.  

The same diversity in the modes of inheritance is observed for every trait levels and 

crosses 

Hybrids are widely used in modern agriculture, either for heterosis (the advantage of hybrid 

compared to both parents) or for the combination of dominant traits. Agronomical traits often 

show hybrid vigor or heterosis in the F1 when distant cultivated accessions or cultivated and 

wild species are crossed (Springer and Stupar 2007; Li et al. 2008; Meyer et al. 2010). The 

molecular origin of heterosis has been studied for years and is usually related to a 

combination of dominance or over-dominance effects and to epistatic interactions (Stuber 

2010). In tomato, on the contrary to the highly heterotic crops like maize, few traits show a 

systematic heterosis trend. In our study, plant height was the only trait showing systematic 

heterosis in every cross. Fruit weight was either recessive or additive and dry matter content 

was additive in the four crosses. 

The analysis of QTL inheritance in introgression lines derived from the wild species S. 

pennellii allowed the study of the molecular basis of heterosis in metabolic traits. Lipman and 

Zamir (2007) showed that traits related to fitness exhibited a higher rate of dominant or 

overdominant QTL. Many QTL controlling metabolic traits had a dominant (50%) or 

overdominant (9%) inheritance, and only 19% of them were additive (Schauer et al. 2008). 

Steinhauser et al (2011) studied the same population for enzyme activities and a similar 

proportion of QTL (approximately 30%) showed additive, recessive and dominant modes of 

inheritance, with only 5% showing overdominance.  In our case, it is difficult to predict the 

inheritance of one trait from only one cross. The number of traits significantly variable within 

each family (one hybrid and his two parents) differed from one cross to the other in relation to 

the genetic distance between the parents. A maximum of traits were variable in Cervil x 

Levovil and its two parental lines. In average, more than 60% (64 % at cell expansion and 

62% at orange red stage) of the traits showed an additive inheritance. This rate was a little  
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higher for enzymes at cell expansion (71%) and lower for metabolites at orange red stage 

(53%). A number of traits exhibited an over-dominant or over-recessive mode of inheritance, 

but no specific trend towards an excess of dominance or recessive inheritance could be 

observed. The higher rate of additivity in our study compared to the study of S. pennellii 

introgression lines may result from the lower distance between the parental lines which are all 

from the same species. Nevertheless the inheritance mode in one cross was not systematically 

the same in another cross, suggesting complex and diverse inheritance modes of the traits 

studied. Among the 424 protein spots, 163 were variable at both stages and 70 spots varied at 

only one stage but in at least 2 crosses. Inheritance mode appeared relatively independent 

from one stage to the other as 70% of the spots revealed at least two different modes of 

inheritance in the first group and 55% in the second.  

Recent heterosis models focus on regulatory networks derived from systems biology 

approaches. De Vienne et al. (2001) proposed a metabolic heterosis model, suggesting that 

heterosis may results from an optimal combination of enzyme quantities leading to maximal 

metabolic fluxes in hybrids. Goff (2011) underlined the role of protein synthesis and 

degradation in heterosis. In roots from maize inbred and hybrid lines, the metabolite contents 

of the hybrids display lower variability than the metabolite contents of inbred lines, 

suggesting the presence of optimal metabolite levels in the hybrid population (Lisec et al. 

2011). In our case, we could not evidence differences in the variability of metabolic traits in 

hybrids compared to the parents.  

Systems approach of the pericarp variability reveals complex connectivity among 
different levels of analysis 

We dissected the variation of pericarp composition at several levels from phenotypes to 

proteome profiles. As we studied eight unrelated accessions, correlations may reveal the 

effect of polymorphic gene acting on two related traits, but also fortuitous associations. For 

instance correlation between the composition in a specific compound and plant height may 

not be due to a causal relationship but to linkage disequilibrium. Nevertheless the closer the 

functions the most meaningful may be the relationships observed. Osorio et al, (2011) in a 

similar approach describes covarying genes or proteins as “guilty by association”.  

The enzyme activities we assessed correspond to Vmax, and may thus mainly reflect the 

corresponding protein amount (Steinhauser et al, 2010). One might hypothesizes that proteins 

and enzyme activities may have simpler genetic control than metabolites or phenotypic traits.  

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2012.05021.x/full#b85
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A polymorphism in a gene coding  for an enzyme or in its regulation sequences may directly 

causes a variation in its amount. The protein amount can also be modulated by trans acting 

factors acting on its synthesis, its stability or its degradation. Metabolites or phenotypic traits 

result from many more processes and pathways and their variation could be more complex. 

Actually, it was shown in tomato (Steinhauser et al. 2011), maize (Huang et al. 2010) and 

Arabidopsis (Keurentjes et al. 2008b) that the heritability of enzyme activities was often 

lower than metabolite heritability and even for high heritability traits, most of the QTL were 

acting in trans, corresponding to regulating factors. Steinhauser et al. (2011) could 

nevertheless identify a few QTLs which colocalised with their structural gene. 

Each group of traits is strongly connected 

Cell expansion and orange-red stages represent very distinct physiological processes (Gillaspy 

et al. 1993; Giovannoni 2004; Faurobert et al. 2007) and this difference is also observed in the 

very different patterns of protein expression, of metabolite content as well as in the 

differences in networks of correlations. This suggests that the genes controlling these 

expressions are at least partly different. Much more significant correlations were detected than 

expected by chance.  Some were expected based on earlier results. For instance, several amino 

acids or sugars (fructose and glucose) varied in a coordinated manner, particularly at the cell 

expansion stage, as already shown in several studies (Schauer et al. 2008; Do et al. 2010). 

Very few correlations were observed between primary and secondary metabolisms at the early 

stage, while they were more frequent at orange-red stage. On the contrary to metabolism, 

enzyme activities showed a higher number of correlations at the orange-red stage. The 

majority of positive correlations among enzyme activities and among metabolites suggest a 

coordinated regulation. 

Correlations between proteins were less skewed in favour of positive correlations. A clear 

stage effect was shown corresponding to the coordinated fruit development. Faurobert et al. 

(2007) also observed such a clear evolution in the pattern of proteins differentially along fruit 

development. Nevertheless, we could not establish clear links between the functional 

classification of protein spots and the groups of correlated proteins. Many correlations were 

detected across functional classes. 

Relationships between enzyme activities and the corresponding spot amounts 
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We measured the Vmax for enzyme activities, which are thus expected to be correlated to the 

enzyme content. We found a few correlations between enzymes and protein spot amount 

corresponding to the same function at each stage. They involved invertase, enolase, 

fructokinase, MDH and malic enzyme. The absence of correlation may be related to (1) 

enzyme activities that may result from a combination of several proteins (subunits) and not all 

the proteins corresponding to the enzymes were detected; (2) most of the primary metabolism 

enzymes result from multigene families, which may be highly specific to one cell 

compartment. Protein spots may also be the product of complex posttranslational 

modifications (Faurobert et al. 2007). This could explain some negative correlations, when a 

spot is for instance modified in an inactive form. 

Network analyses among different levels of expression reveal complex patterns of connectivity 

Networks among groups of traits were constructed using sPLS regression (Le Cao et al. 

2008). One problem when dealing with omic data is that the number of traits is much larger 

than the number of samples. Sparse methods were developed for dealing with high-

dimensional data. The main advantage of sparse methods over non-spare methods is that they 

set the contribution of noise variables to zero and thus improve the prediction or classification 

performance (Filzmoser et al. 2012). Most of the networks between two levels of expression 

showed complex patterns of connectivity, relating several nodes together and different 

pathways or metabolisms. In each network, a few hubs could be identified relating many 

different compounds or proteins.  

The key role of a few proteins could be underlined 

The main role of a few key proteins and enzymes could be underlined. The role of invertase in 

sucrose breakdown has already been documented (Faurobert et al. 2007). We detected seven 

spots corresponding to this enzyme, most of them corresponding to posttranslational 

modifications. One spot was strongly related to the content in sugars at orange-red stage, 

while at cell expansion the amount of another spot was correlated to GABA and Asn content.  

The role of a polymorphism in the promoter of this gene in fruit sugar content has been 

recently shown (Moy et al. 2012). Several correlations with enzyme activity and metabolite 

contents involved one of the protein spots coding for fructokinase, an enzyme participating to 

the sugars phosphorylation. Fructokinase may play a role in sugar import and in starch  
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biosynthesis (Dai et al. 2002).  Several isoforms were detected, both being correlated with the 

variation of sugars. A QTL controlling sugar content was also detected in the region of FRK3 

in the Cervil x Levovil progeny and could be related to the correlations observed here. Fine 

mapping experiments are underway to confirm this relationship. Finally another interesting 

correlation involved a lactoyl gluthatione lyase whose amount was correlated to fruit weight. 

In an association study, Ranc et al. (2012) detected an association between FW and the gene 

coding for this protein. This gene also colocalized with a QTL for FW variation in the 

mapping population derived from Cervil x Levovil cross (Saliba-Colombani et al. 2001). The 

putative impact of this protein on plant cell proliferation (Paulus et al. 1993), together with 

these associations, confirms its role as an important candidate. 

Protein amounts or enzyme activities and related metabolisms 

Some metabolites showed significant correlations with compounds in the same pathway and 

with other outside of their pathways. This is consistent with the observations of Carrari et al.  

(2006) and Osorio et al. (2011).  We limited the sPLS analysis to the relationships with spots 

related to primary metabolism and vitamins. This approach should thus be extended to the 

other spots as a number of proteins related to stress (heat shock proteins), to protein 

degradation (ubiquitin) or to protein conformation (chaperon) appeared correlated with 

several metabolic traits.  
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Conclusion 

Finally, the systems biology approach combining proteome, metabolome and phenotypic 

analysis gave insights into the dioversity and relationships at easch level. Each level revealed 

the same complexity in terms of variation, of inheritance mode and connectivity. In parallel, 

we have studied the transcriptome profiles of the 12 genotypes. The eight parental lines were 

also resequenced and more than 4 million SNPs identified. In the near future, these data will 

be combined to test the polymorphisms in the enzymes and key proteins detected here. This 

will allow us to integrate every step from genome to phenotypes. 

This study is the starting point of a broader experiment including the development of a 

MAGIC population derived from the eight parental lines. The MAGIC population will be 

used to map QTL. The knowledge of the parental lines will thus be useful to relate QTLs to 

the parental variations. 
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SUPPLEMENTAL DATA:  
 
Supplemental Figure S1. Eight divergent lines and four F1 used in this study.  
A: Four F1 derived from the crosses of the eight lines; B: fruits from the eight lines.  
 
Supplemental Figure S2.  Un-rooted neighbor joining tree of the eight parental lines and 
Heinz1706 based on 139 SNP markers  
 
Supplemental figure S3 Fruit fresh weight increase of the four crosses during fruit ageing. 
Curves were fitted to three-parameter Sigmoid logistic function.  
 
Supplemental Figure S4. Distribution of average coefficient of variation  of 34 metabolites 
(A), 26 enzyme activities (B) and 424 protein spot amounts (C) in 4 S. lycopersicum (blue), 4 
S. l. cerasiforme (dark red) and 4 hybrids (green) at cell expansion (CE) and orange red (OR) 
stage.  
 
Supplemental Figure S5 Correlation among the amounts of 101 protein spots at orange red 
stage. 
Based on variation analysis, a total of 117 protein spots were significantly different among 
genotypes at both cell expansion and orange-red stage. These protein spots were then grouped 
according to their functional classes. Seven groups (which have more than 5 protein spots) 
with a total of 101 protein spots were kept for representing the correlations among protein 
spots. Only significant correlations (P<0.01) are shown. Positive and negative correlations are 
presented in red and green, respectively.  
 
Supplemental figure S6. Network analysis based on sPLS analysis of 34 metabolites, 5 
phenotypic traits and 26 enzyme activities at cell expansion stage. Metabolites, phenotypic 
traits, and enzymes were represented as different nodes (circle for metabolites and phenotypic 
traits, square for enzymes). Correlations were represented as links that connect the nodes. 
Positive and negative correlations are presented in red and blue, respectively. Only significant 
correlations are shown ((|r|>0.71, p<0.01).  
 
Supplemental figure S7. Network analysis based on sPLS analysis of 34 metabolites, 5 
phenotypic traits and the amounts of 60 protein spots at orange red stage. The 60 protein spots 
were significant among genotypes at cell expansion stage and were classified to primary 
metabolic (58 spots) and vitamin (2 spots) synthesis classes. Metabolites, phenotypic traits, 
and protein spots were represented as different nodes (circle for metabolites and phenotypic 
traits, square for protein spots). Correlations were represented as links that connect the nodes. 
Positive and negative correlations are presented in red and blue, respectively. Only significant 
correlations are shown (|r|>0.71; p<0.01). JX004: Malate dehydrogenase; JX024:Adenosine 
kinase;  JX051: acid invertase; JX059: Succinyl-CoA ligase; JX091: Malic enzyme; JX110: 
Phosphoglucomutase; JX111: Inorganic pyrophosphatase; JX154: Malate dehydrogenase; 
JX161: Enolase; JX164: Inorganic pyrophosphatase family protein : JX178: Pyruvate 
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dehydrogenase E1 component alpha subunit: JX239: Acid beta-fructofuranosidase ; JX256: 
Enolase; JX262: Alpha-mannosidase; JX286: Lipoxygenase homology domain-containing 
protein 1 JX290: LL-diaminopimelate aminotransferase; JX291: Lactoylglutathione lyase; 
JX292: 2-isopropylmalate synthase 1; JX323: Enolase; JX333: Ribulose-5-phosphate-3-
epimerase; JX351: Ubiquilin-1; JX367: Phosphoribulokinase/uridine kinase; JX372: 
Diaminopimelate epimerase family protein; JX394: Adenylate kinase  
 
Supplemental Figure S8. Network analysis based on sPLS analysis of  26 enzyme activities 
and the amounts of 60 protein spots at orange red stage. The 60 protein spots were significant 
among genotypes at orange red stage and were classified to primary metabolic (58 spots) and 
vitamin (2 spots) synthesis classes. Enzymes and protein spots were represented as different 
nodes (circle for enzyme, square for protein spots). Correlations were represented as links that 
connect the nodes. Positive and negative correlations are presented in red and blue, 
respectively. Only significant correlations are shown ((|r|>0.71; p<0.01). JX004: Malate 
dehydrogenase;  JX051: Acid beta-fructofuranosidase; JX091: Malic enzyme ; JX132: 
Oxalyl-CoA decarboxylase; JX178: Pyruvate dehydrogenase E1 component alpha subunit; 
JX180: Pyridoxal biosynthesis lyase; JX214: Enolase; JX394: Adenylate kinase  
 
Supplemental Figure S9. Network analysis based on sPLS analysis of 26 enzyme activities 
at cell expansion stage and 34 metabolites, 5 phenotypic traits and at orange red stage. 
Metabolites, phenotypic traits, and enzymes were represented as different nodes (circle for 
enzymes, square for metabolites and phenotypic traits). Correlations were represented as links 
that connect the nodes. Positive and negative correlations are presented in red and blue, 
respectively. Only significant correlations are shown ((|r|>0.71, p<0.01).  
 
 
Supplemental Table S1. List of 24 primary metabolites and 11 secondary metabolites 
analyzed, with abbreviations and assignment to their metabolic process 
 
 Supplemental Table S2. List of the enzymes analysed, with abbreviations and assignment to  
their respective    pathways 
 
Supplemental table S3. Polymorphism rate between eight parental lines and Heinz1706 with 
139 SNP. Parental lines from the same cross are indicated in the same color  
 
Supplemental table S4A  Mean values of 34 metabolite content, phenotypic traits and 
enzymatic activities at cell expansion stage and orange red stage 
 
Supplemental table S4B  Mean values of the smounts of 256 and 188 significant protein 
spots among genotypes at cell expansion stage and orange red stage, respectively 
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Supplemental table S5  Function description and  variation analysis of 424 protein spots 
among 12 genotypes at cell expansion stage (CE) and orange red (OR) stage. Significant spots 
are highlight in yellow. 
 
Supplemental table S6 CV within each genotype and in average at cell expansion stage (CE) 
and orange red stage (OR). CVs in red (0.2<CV<0.3), in green (CV>0.3) 
 
Supplemental table S7A Pairwise pearson coefficient R values and pvalues of 34 
metabolites, 5 phenotypic traits, 26 enzyme activities and 256 significant protein spots at cell 
expansion stage ( too large to be included in the thesis) 

 
Supplemental table S7B Pairwise pearson coefficient R values and pvalues of 34 
metabolites, 5 phenotypic traits, 26 enzyme activities and 188 significant protein spots at 
orange red stage  ( too large to be included in the thesis) 
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Cervil x  Levovil LA0147 x Plovdiv 24A 

Ferum x LA1420 Stupick Polni Rane x  Criollo 
A 

B 

Criollo 

Stupicke Polni Rane Ferum 

LA1420 

Plovdiv 24A 

LA0147 
Cervil Levovil 

Supplemental Figure S1. Eight divergent lines and four F1 used in this 
study.  A: Four F1 derived from the crosses of the eight lines; B: fruits 
from the eight lines. 
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 Plovdiv24A 
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Supplemental Figure S2.  Un-rooted neighbor joining tree of the eight parental 
lines and Heinz1706 based on 139 SNP markers  
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Supplemental figure S3 Fruit fresh weight increase of the four crosses during fruit ageing. Curves were fitted to 
three-parameter Sigmoid logistic function.  
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Supplemental Figure S4. Distribution of average coefficient of variation  of 34 metabolites (A), 26 enzyme 
activities (B) and 424 protein spot amounts (C) in 4 S. lycopersicum (blue), 4 S. l. cerasiforme (dark red) and 4 
hybrids (green) at cell expansion (CE) and orange red (OR) stage.  291
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Supplemental Figure S5 Correlation among the amounts of 101 protein spots at orange 

red stage. 

Based on variation analysis, a total of 117 protein spots were significantly different among 

genotypes at both cell expansion and orange-red stage. These protein spots were then 

grouped according to their functional classes. Seven groups (which have more than 5 

protein spots) with a total of 101 protein spots were kept for representing the correlations 

among protein spots. Only significant correlations (P<0.01) are shown. Positive and 

negative correlations are presented in red and green, respectively.  
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Supplemental figure S6. Network analysis based on sPLS analysis of 34 

metabolites, 5 phenotypic traits and 26 enzyme activities at cell expansion 

stage. Metabolites, phenotypic traits, and enzymes were represented as 

different nodes (circle for metabolites and phenotypic traits, square for 

enzymes). Correlations were represented as links that connect the nodes. 

Positive and negative correlations are presented in red and blue, 

respectively. Only significant correlations are shown ((|r|>0.71, p<0.01).  
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Supplmental figure S7. Network analysis based on sPLS analysis of 34 metabolites, 5 phenotypic traits and the 

amounts of 60 protein spots at orange red stage. The 60 protein spots were significant among genotypes at cell 

expansion stage and were classified to primary metabolic (58 spots) and vitamin (2 spots) synthesis classes. 

Metabolites, phenotypic traits, and protein spots were represented as different nodes (circle for metabolites and 

phenotypic traits, square for protein spots). Correlations were represented as links that connect the nodes. Positive and 

negative correlations are presented in red and blue, respectively. Only significant correlations are shown (|r|>0.71; 

p<0.01). JX004: Malate dehydrogenase; JX024:Adenosine kinase;  JX051: acid invertase; JX059: Succinyl-CoA 

ligase; JX091: Malic enzyme; JX110: Phosphoglucomutase; JX111: Inorganic pyrophosphatase; JX154: Malate 

dehydrogenase; JX161: Enolase; JX164: Inorganic pyrophosphatase family protein : JX178: Pyruvate dehydrogenase 

E1 component alpha subunit: JX239: Acid beta-fructofuranosidase ; JX256: Enolase; JX262: Alpha-mannosidase; 

JX286: Lipoxygenase homology domain-containing protein 1 JX290: LL-diaminopimelate aminotransferase; JX291: 

Lactoylglutathione lyase; JX292: 2-isopropylmalate synthase 1; JX323: Enolase; JX333: Ribulose-5-phosphate-3-

epimerase; JX351: Ubiquilin-1; JX367: Phosphoribulokinase/uridine kinase; JX372: Diaminopimelate epimerase 

family protein; JX394: Adenylate kinase  
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Supplmental Figure S8. Network analysis based on sPLS analysis of  26 enzyme activities and the 

amounts of 60 protein spots at orange red stage. The 60 protein spots were significant among genotypes at 

orange red stage and were classified to primary metabolic (58 spots) and vitamin (2 spots) synthesis 

classes. Enzymes and protein spots were represented as different nodes (circle for enzyme, square for 

protein spots). Correlations were represented as links that connect the nodes. Positive and negative 

correlations are presented in red and blue, respectively. Only significant correlations are shown ((|r|>0.71; 

p<0.01). JX004: Malate dehydrogenase;  JX051: Acid beta-fructofuranosidase; JX091: Malic enzyme ; JX132: 

Oxalyl-CoA decarboxylase; JX178: Pyruvate dehydrogenase E1 component alpha subunit; JX180: Pyridoxal 

biosynthesis lyase; JX214: Enolase; JX394: Adenylate kinase  
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Supplemental Figure S9. Network analysis based on sPLS analysis of 26 enzyme activities at 

cell expansion stage and 34 metabolites, 5 phenotypic traits and at orange red stage. 

Metabolites, phenotypic traits, and enzymes were represented as different nodes (circle for 

enzymes, square for metabolites and phenotypic traits). Correlations were represented as links 

that connect the nodes. Positive and negative correlations are presented in red and blue, 

respectively. Only significant correlations are shown ((|r|>0.71, p<0.01).  
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Supplemental Table S1. List of 24 primary metabolites and 11 secondary metabolites 
analyzed, with abbreviations and assignment to their metabolic process 

Metabolites Abbreviation Functional class 
glucose  Gluc  Sugars 
sucrose Suc  Sugars 
fructose  Fru  Sugars 
inositol  Inos  Sugar alcohol 
alanine  Ala  Amino acids 
asparagine  Asn  Amino acids 
aspartate  Asp  Amino acids 
GABA  Gaba  Amino acids 
glutamine and pyroglutamine  Gln  Amino acids 
isoleucine  Ileu  Amino acids 
leucine  Leu  Amino acids 
phenylalanine  Phe  Amino acids 
tyrosine  Tyr  Amino acids 
valine  Val  Amino acids 
threonine  Thr  Amino acids 
ascorbic acid VitC Vitamins 
citrate  Cit  Organic acids 
malate  Mal  Organic acids 
fumarate  Fum  Organic acids 
starch Stch Starch 
trigonelline  Trigo  others 
adenosine_like  Ade  others 
choline  Chol  others  
Alpha-tomatine  sAto secondary metabolites - glycoalkaloids 
Dehydrotomatine  sDHT secondary metabolites - glycoalkaloids 
OH-lycoperoside A B C  sOHl secondary metabolites - glycoalkaloids 
Chlorogenic acid (5CQA)  sChl secondary metabolites - phenolic compounds 
Coumaric acid 
hexose/coumaroyl hexose  

sCou 
secondary metabolites - phenolic compounds 

Crypto-chlorogenic acid 
(3CQA)  

sCry 
secondary metabolites - phenolic compounds 

Naringenin chalcone  sNna secondary metabolites - phenolic compounds 
Rutin  sRut secondary metabolites - phenolic compounds 
Rutin-pentoside  sRutp secondary metabolites - phenolic compounds 
Tricaffeoylquinic acid (TCQ)  sTCQ  secondary metabolites - phenolic compounds 
Pentothenic acid  sPpa secondary metabolites -Vitamin B5 
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Supplemental Table S2. List of the enzymes analysed, with abbreviations and assignment to their 
respective    pathways 

 

Enzyme full names Abbreviation EC number Pathway  

Alanine aminotransferase eAlAT  2.6.1.2 Amino acids metabolism 

Aspartate aminotransferase eAsAT  2.6.1.1 Amino acids metabolism 

Shikimate dehydrogenase eSKDH  1.1.1.25 Amino acids metabolism 

phosphoglycerate kinase ePGK  2.7.2.3 Calvin cycle 

Triose Phosphate Isomerase eTPI  5.3.1.1 Calvin cycle 

Enolase eEno  4.2.1.11 Glycolysis  

Glucose-6-phosphate dehydrogenase eG6PDH  1.1.1.49 Glycolysis  

Glyceraldehyde-3-phosphate dehydrogenase eGAPDHd  1.2.1.12 Glycolysis  

 Glyceraldehyde-3-phosphate dehydrogenase 
(NAD(P))  

eGAPDHdp  1.2.1.12 Glycolysis  

Isocitrate dehydrogenase (NADP+) eIDH  1.1.1.41 Glycolysis  

Phosphoenolpyruvate carboxylase ePepC  4.1.1.31  Glycolysis 

Phosphofructokinase (ATP) ePFKa  2.7.1.11 Glycolysis  

Phosphofructokinase (PPi) ePFKp  2.7.1.11 Glycolysis 

Pyruvate kinase ePyrK  2.7.1.40 Glycolysis  

Fructokinase eFRK  2.7.1.4 Sucrose breakdown 

Glucokinase eGlK  2.7.1.2 Sucrose breakdown 

Acid Invertase eInvA  3.2.1.26 Sucrose breakdown 

Neutral Invertase eInvN  3.2.1.26 Sucrose breakdown 

Sucrose Synthase eSus  2.4.1.13 Sucrose breakdown 

Fructose-bisphosphate aldolase eFbpA  3.1.3.11 Sucrose  synthesis 

Phosphoglucomutase ePgm  5.4.2.2 Sucrose  synthesis 

Aconitase eAco  4.2.1.3 TCA cycle 

Fumarase eFumase  4.2.1.2 TCA cycle 

Malate dehydrogenase (NAD) eMDH  1.1.1.37 TCA cycle 

Malic enzyme (NAD) eMed  1.1.1.37 TCA cycle 

Malic enzyme (NADP+) eMedp  1.1.1.37 TCA cycle 
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Supplemental table S3. Polymorphism rate between eight parental lines and Heinz1706 with 
139 SNP. Parental lines from the same cross are indicated in the same color  

Parental line Cervil  Levovil  Stupick  Criollo LA0147 Plovdiv24A Ferum  LA1420 Heniz1706 

Cervil  
         

Levovil  82% 
        

Stupick 64% 21% 
       

Criollo  65% 27% 34% 
      

LA0147 78% 11% 16% 25% 
     

Plovdiv24A 45% 44% 39% 43% 40% 
    

Ferum  71% 28% 20% 37% 20% 42% 
   

LA1420 71% 20% 26% 24% 15% 40% 27% 
  

Heniz1706 83% 12% 22% 28% 6% 45% 22% 19% 
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Traits LevCE CerLevCECerCE StuCE StuCriCE CriCE LA0147C LA0147PlPloCE FerCE FerLA142LA1420CE geno LevOR CerLevORCerOR StuOR StuCriORCriOR LA0147OLA0147P PloOR FerOR FerLA142LA1420OR

Phenotypic traits Phenotypic traits
xfw 29,2277 9,2899 1,23136 17,9386 9,68974 4,72563 29,2079 11,4504 7,66992 29,4716 13,2734 3,78883 xfw 119,877 24,813 5,42418 65,4114 31,0459 15,7285 124,926 64,4233 40,8354 119,83 73,3327 38,036
xfd 41,302 26,872 13,838 32,2667 28,764 22,66 41,806 27,84 24,028 39,85 30,522 21,25 xfd 71,13 38,134 22,978 54,7533 41,546 35,1 66,284 50,664 40,788 64,082 55,68 45,803
xdmc 6,152 8,34465 10,469 6,71188 7,124 7,74868 7,49878 7,66589 8,69254 8,19792 6,8204 7,32517 xdmc 4,89 7,2694 8,56998 5,62717 6,098 5,9494 5,33697 6,12018 7,03107 6,28692 5,77109 5,1759
pheight 82,5 107,5 88,5 90,63 112 108,5 74,5 89 80 72,5 81,5 63 pheight 118 167,5 146,3 134,12 173,5 172,5 112,5 132,5 118 111 123,88 98,5
pstem 13,48 15,32 13,31 12,75 14,75 12,5 14,64 14,94 11,8 16,02 16,8 14,45 pstem 13,28 15,55 13,27 8,64 14,98 13,04 14,27 14,34 11,44 15,11 15,07 13,01
Primary metabolites Primary metabolites
Gluc 11941,2 10445,7 6968,6 10719,6 11294,0 9607,8 13168,2 13158,4 13125,0 12655,8 11074,3 11616,8 Gluc 10900,9 13819,3 15515,0 10686,7 10654,0 9435,2 10613,4 14272,4 15772,1 13761,9 11447,6 9164,9
Suc 469,9 836,4 873,6 636,7 621,2 497,3 619,0 704,9 724,6 961,6 751,9 603,6 Suc 371,5 1244,8 2636,7 730,6 698,2 566,7 531,0 720,4 1016,7 988,2 564,0 395,3
Fru 12264,4 10227,4 6651,2 10897,3 10890,8 9415,1 13041,8 12472,8 11815,6 12150,7 10891,3 11491,5 Fru 11664,2 14141,4 16420,9 11482,6 11508,5 10310,2 10793,0 13513,1 13847,5 12940,2 12047,1 9755,4
Inos 233,3 320,9 496,7 335,7 294,5 293,8 338,7 365,8 516,4 501,8 373,8 329,2 Inos 132,6 198,7 308,1 187,1 175,8 128,0 160,6 198,1 289,5 301,7 182,5 110,6
Ala 35,5 71,6 137,0 39,1 36,2 49,3 27,5 23,3 39,9 41,9 35,6 21,1 Ala 24,1 17,0 23,1 14,4 14,2 13,7 12,8 10,5 18,0 18,5 19,0 18,8
Asn 83,9 191,3 248,7 104,3 95,8 133,6 77,7 62,6 107,5 107,0 86,9 55,2 Asn 146,4 171,6 288,0 165,7 237,2 273,3 104,2 73,5 161,0 102,0 120,6 126,0
Asp 38,2 76,5 129,1 66,7 45,9 56,7 46,3 48,2 68,3 76,7 53,2 42,5 Asp 105,0 181,8 316,9 186,0 195,2 157,9 110,6 101,1 126,5 226,3 165,8 81,0
Gaba 381,1 714,5 577,5 381,7 458,9 370,7 317,6 324,7 392,6 412,5 327,3 332,3 Gaba 235,2 295,7 238,9 337,2 262,9 126,8 201,4 201,1 374,0 318,2 202,8 116,8
Gln 635,6 1939,1 2652,7 870,8 823,3 1024,5 725,1 532,0 1048,5 998,4 872,8 438,1 Gln 692,2 1149,0 1774,5 888,8 1466,3 1370,8 604,4 404,3 1066,9 635,2 742,5 601,1
Ileu 24,9 62,1 87,4 31,7 25,3 43,6 12,7 18,8 64,3 35,1 24,9 13,4 Ileu 24,4 32,2 24,7 21,2 38,0 35,7 15,2 14,2 46,7 20,7 16,4 13,8
Leu 27,8 61,3 93,7 33,0 29,9 47,4 23,0 26,9 55,9 45,1 35,5 23,4 Leu 44,6 58,3 69,2 43,9 63,3 51,5 33,1 24,6 69,1 52,2 45,2 38,3
Phe 125,4 194,5 246,3 167,9 90,8 136,6 90,7 192,8 438,8 184,3 140,3 111,8 Phe 143,3 177,2 299,7 166,6 220,2 192,7 105,4 170,1 504,5 174,5 158,1 160,6
Tyr 25,7 34,9 76,8 35,6 12,5 22,3 11,5 18,9 52,0 25,5 17,2 16,7 Tyr 19,2 21,4 32,6 21,2 21,3 16,6 12,8 13,0 44,6 16,0 12,5 9,6
Val 35,3 82,4 101,4 42,4 37,6 43,9 21,9 26,3 65,0 46,9 29,5 15,2 Val 19,4 19,6 8,6 13,0 15,1 10,7 11,2 11,5 26,6 13,5 10,3 9,3
Thr 25,3 62,8 67,5 35,1 20,7 31,9 13,0 14,0 30,7 35,7 22,2 9,2 Thr 30,5 38,6 29,6 37,8 46,7 32,5 20,7 13,5 30,4 27,7 17,1 11,8
VitC 8,4 13,5 22,6 11,0 11,5 11,6 10,0 13,5 11,7 14,2 13,1 9,7 VitC 11,4 14,5 24,8 9,4 12,6 11,2 8,2 9,2 13,7 19,0 15,6 14,4
Cit 1622,4 3118,3 4377,7 3382,5 3943,7 4840,3 2193,1 2571,9 3189,9 2964,0 3595,6 3713,7 Cit 2421,8 5728,5 7660,6 5880,3 9101,5 7479,6 4054,6 4100,8 4243,0 4204,5 6982,6 5731,0
Mal 1302,1 1351,5 1634,2 1794,0 965,7 1089,6 1695,8 1190,8 1451,2 1988,5 1230,8 1078,4 Mal 1228,9 1636,4 1932,9 1780,4 686,4 413,9 1149,7 1223,9 1866,8 1366,1 383,8 201,7
Fum 0,61 0,49 0,92 0,59 0,39 0,71 0,89 0,81 0,81 0,91 0,78 1,37 Fum 0,50 0,29 0,30 0,45 0,20 0,15 0,59 0,38 0,44 0,80 0,33 0,00
Stch 1,55 5,26 6,88 1,22 2,89 3,31 2,36 3,44 7,56 4,52 4,27 2,90 Stch 0,01 0,17 1,11 0,00 0,05 0,05 0,01 0,07 0,06 0,19 0,03 0,01
Trigo 20,8 40,4 60,3 22,7 32,1 67,6 16,5 21,0 23,8 21,6 32,2 48,3 Trigo 13,4 34,0 61,6 16,1 28,6 45,6 13,0 13,3 14,9 13,7 23,7 27,6
Ade 6,71 8,71 10,27 6,21 6,65 6,75 6,79 7,53 7,88 9,09 8,81 7,05 Ade 5,24 6,57 7,26 4,99 7,39 8,19 3,89 5,25 7,06 4,12 6,78 4,65
Chol 57,2 85,8 74,5 55,2 61,4 64,0 44,5 56,5 75,4 50,1 41,1 47,5 Chol 42,9 70,7 76,0 54,4 62,9 52,1 35,8 49,3 63,2 34,9 43,9 45,6
Secondary metabolits Secondary metabolits
sChlorAc 4106,3 8752,9 11257,3 4751,3 5075,7 5472,8 5345,0 5277,7 6065,5 4172,1 4036,5 5553,6 sChlorAc 2721,1 3667,6 6449,1 2998,4 3175,6 3478,2 2941,1 3293,8 2985,3 3569,4 3249,9 3315,0
sTCQ 50,0 103,6 127,7 81,8 62,7 106,4 105,6 98,5 78,8 52,4 70,8 124,3 sTCQ 5144,8 2814,3 3102,2 5122,8 2479,0 2320,7 3324,1 1790,8 708,2 1754,6 2673,5 3410,6
sAto 60665 320814 460157 174380 224930 318493 172926 222135 239711 115516 163918 192061 sAto 2170 1618 3326 5469 3561 5885 2951 3244 5402 2122 996 880
sCry 892,1 680,7 867,3 1372,5 1056,4 766,8 1569,5 1283,7 489,7 1009,0 1096,9 484,2 sCry 480,3 900,0 675,4 666,3 533,8 773,8 316,8 588,1 561,3 641,1 570,0 505,5
sDHT 12130 164198 267130 39932 46059 89555 39575 48047 49172 22434 33946 47547 sDHT 1050 1109 7599 2546 1765 2532 1516 1305 2424 887 418 1594
sRutp 1459,0 3706,2 5146,7 3067,5 2486,4 2415,2 2927,9 4494,7 4660,9 1743,5 2983,1 4330,3 sRutp 1234,7 3949,0 7445,1 3638,1 2942,7 2057,7 2967,7 3399,4 5133,1 3342,6 2115,5 3529,4
sPpa 784,6 546,6 673,4 649,4 434,9 786,2 803,9 679,5 663,6 778,8 641,4 621,9 sPpa 316,2 102,2 73,6 109,9 165,3 383,3 188,6 180,0 239,0 203,5 304,0 607,5
sCou 1276,5 2199,4 3088,2 1770,5 1280,3 2057,4 2104,9 1593,7 2016,7 746,9 890,0 1913,2 sCou 1202,3 1357,2 3223,3 1460,8 1614,9 1194,3 1905,3 1595,1 2333,2 1782,0 1586,6 683,2
sNna 35,5 131,9 189,0 69,1 53,5 165,6 127,2 104,8 83,8 49,7 153,5 62,2 sNna 7847,0 13100,2 64355,1 22311,1 14790,9 8370,7 21322,9 25911,4 40233,4 7744,2 5485,0 144,4
sOHl 482,1 517,6 442,9 631,4 708,7 687,7 622,4 635,1 699,3 604,2 591,6 434,8 sOHl 1199,4 819,5 1650,9 1341,7 1104,7 2794,9 1243,7 688,1 794,4 828,5 621,4 298,7
sRut 4227 10804 15056 10375 7462 8484 8898 15790 21767 5150 6840 9601 sRut 2673 5276 22223 5804 4154 3599 3829 7644 18039 2995 1669 1594
Enzymes Enzymes
eAlAT 1128,2 1826,2 843,9 1761,6 1859,1 861,8 1240,1 875,7 1376,2 2040,8 1255,7 1616,2 eAlAT 711,5 815,9 1025,2 826,4 1507,5 911,0 964,6 239,2 3218,7 1717,8 1385,0 1383,8
eAsAT 3355,1 3972,2 4149,5 2834,3 3378,5 4508,9 4282,1 5628,4 4696,7 2317,7 6548,2 6351,1 eAsAT 2108,1 3259,8 3970,1 1968,4 2095,4 1490,2 1626,4 1581,4 1821,7 2582,0 3199,6 2055,6
eSKDH 134,6 159,8 262,9 121,6 153,8 161,6 190,9 214,8 179,2 136,5 207,4 181,3 eSKDH 62,6 112,5 208,0 87,1 75,4 85,4 80,2 89,8 69,0 37,6 71,0 82,2
ePGK 6499,1 7319,1 7567,5 4607,4 3737,8 6355,7 7930,8 5966,1 6796,8 4079,3 7106,6 6591,4 ePGK 679,9 3709,5 3355,8 1667,4 4436,0 2262,1 1553,7 1817,8 1472,8 1210,7 1374,2 2684,4
eTPI 41801 79861 90550 64274 44648 71202 82357 96038 80870 70323 87216 78121 eTPI 15737 18968 42118 30089 18159 15443 13542 16350 15502 14554 10801 16302
eEno 254,8 381,9 486,5 265,1 315,5 338,7 430,1 479,2 389,7 275,9 494,3 376,4 eEno 47,3 111,2 202,7 113,8 85,2 103,6 52,5 74,6 83,2 49,5 54,1 90,1
eG6PDH 148,5 185,6 213,2 182,9 147,0 183,6 212,1 213,8 188,4 142,8 222,6 185,2 eG6PDH 57,8 85,5 140,5 85,5 64,8 69,7 50,0 53,7 55,9 49,9 53,6 66,0
eGAPDHd 1756,4 2796,0 2879,1 1968,5 1617,4 2622,9 3100,6 2856,8 2810,7 1780,6 2474,9 2775,5 eGAPDHd 1002,8 1799,9 1329,1 972,1 796,3 406,6 504,2 864,5 698,6 708,3 1168,7 943,7
eGAPDHdp 483,9 615,6 1126,6 328,0 534,6 673,2 621,9 806,8 630,5 349,1 593,4 697,7 eGAPDHd 283,3 337,4 296,8 211,2 567,9 1293,8 65,6 345,4 185,9 347,2 255,6 274,5
eIDH 146,0 101,9 157,3 153,9 97,5 148,0 119,0 195,1 164,7 133,6 232,0 121,3 eIDH 115,1 222,5 378,8 168,4 135,7 140,9 100,6 150,5 118,2 92,3 117,2 140,3
ePepC 387,0 548,8 479,1 652,6 430,3 539,6 624,9 789,4 519,8 461,0 756,4 540,6 ePepC 150,6 260,5 274,2 237,3 153,5 144,9 94,6 131,0 207,1 133,8 154,7 223,8
ePFKa 84,0 98,1 93,1 87,7 93,0 103,9 102,8 111,9 123,0 96,9 114,8 101,6 ePFKa 47,0 51,2 121,8 62,6 56,4 62,0 53,8 61,3 42,3 45,5 63,1 47,1
ePFKp 455,4 947,3 915,9 949,1 611,1 919,8 949,0 978,4 921,1 786,9 985,0 704,0 ePFKp 113,1 309,7 599,0 309,1 183,5 266,3 120,8 183,7 147,7 121,6 206,8 201,7
ePyrK 314,6 354,9 478,1 418,3 370,6 427,2 488,4 383,9 316,6 392,2 548,0 353,9 ePyrK 129,9 161,5 454,8 221,4 151,6 187,6 121,8 139,0 131,7 125,4 227,3 109,2
eFRK 134,0 275,5 278,7 194,7 73,1 172,4 218,9 171,2 208,8 150,8 373,5 176,6 eFRK 21,7 39,3 89,8 32,4 48,3 57,0 44,5 84,1 16,4 21,9 41,8 38,3
eGlK 63,5 96,0 144,2 88,8 69,7 92,9 112,8 121,0 101,6 80,5 142,5 97,2 eGlK 9,2 32,0 38,6 21,0 15,9 16,5 11,3 18,6 14,4 19,1 25,5 19,5
eInvA 253,9 270,4 422,4 448,1 212,8 213,0 519,3 227,1 197,4 267,2 403,3 143,5 eInvA 554,2 1244,8 1299,9 1351,7 962,8 522,3 943,7 703,9 488,1 183,5 783,2 926,8
eInvN 84,6 380,3 269,2 224,3 140,4 157,7 228,5 155,9 130,6 210,4 244,4 71,5 eInvN 235,8 400,5 445,7 783,2 485,0 292,9 271,4 331,6 147,0 93,2 530,9 465,5
eSus 410,0 437,8 187,6 345,6 335,3 463,7 362,7 432,1 622,8 584,0 541,0 951,0 eSus 133,7 177,4 232,0 168,4 431,4 88,0 386,4 286,6 308,4 290,3 87,7 248,5
eFbpA 1440,3 2653,5 3596,9 2347,7 2698,9 2527,1 2607,5 3094,8 2165,2 2079,4 2564,5 2282,9 eFbpA 1030,7 1633,9 2257,3 1623,5 1268,8 1067,5 1053,3 1077,8 517,4 665,7 286,0 1466,3
ePgm 1283,0 2015,7 2220,7 1537,7 1336,3 1868,7 2007,8 2211,7 1630,1 1489,0 2335,3 1980,1 ePgm 477,9 626,1 1322,6 570,0 601,2 493,3 425,9 545,9 415,5 541,9 536,2 694,3
eAco 68,8 121,7 170,3 179,6 86,8 132,7 172,1 223,7 120,1 171,8 285,6 122,1 eAco 56,5 122,0 112,9 97,5 49,0 29,1 42,9 60,2 44,5 100,5 67,2 7,9
eFumase 254,5 314,7 385,4 278,9 522,6 278,4 251,7 474,1 239,2 366,5 413,1 180,6 eFumase 220,7 391,3 398,5 171,7 195,6 208,4 18,1 260,0 175,8 186,2 216,2 236,1
eMDH 15664,2 20909,7 29662,6 20404,0 15130,0 20448,4 22217,1 29477,1 24711,6 17941,1 21370,5 23718,9 eMDH 5451,2 10086,1 17568,2 6259,8 7067,5 5416,8 4436,9 4859,9 4890,2 4554,1 6579,8 6080,4
eMed 614,0 472,5 773,3 615,7 708,0 639,7 670,7 853,2 549,2 455,0 349,6 674,7 eMed 462,8 336,5 380,2 453,5 197,2 222,1 337,1 284,1 342,6 273,0 304,5 222,2
eMedp 236,9 276,6 354,2 275,5 357,6 278,0 205,0 253,9 247,2 116,3 392,3 476,0 eMedp 47,0 151,2 272,0 234,9 127,6 124,8 86,2 119,8 51,7 139,9 174,0 152,2

Supplemental table S4A  Mean values of 34 metabolite content, phenotypic traits and enzymatic activities at cell expansion stage and orange red stage
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Supplemental table S4B  Mean values of the smounts of 256 significant protein spots among genotypes at cell expansion stage,

geno CerCECerLe LevCEStuCEStuCriCriCE LA014LA014PloCEFerCEFerLALA1420CE
JX006 1,75 0,78 0,85 0,57 0,76 0,77 0,67 0,70 0,75 0,71 0,77 0,84

JX019 3,52 5,53 5,18 5,71 5,12 4,38 5,48 4,76 4,78 4,94 4,09 6,29

JX101 0,62 1,92 1,48 1,81 1,61 1,51 1,67 1,84 1,77 1,65 1,61 1,45

JX104 0,76 0,58 0,81 0,88 0,89 0,97 0,93 0,96 1,16 1,13 1,08 1,00

JX168 1,02 1,34 1,29 1,42 1,19 1,62 1,11 1,09 1,15 1,04 1,42 1,34

JX243 1,71 1,42 1,96 1,94 1,65 1,80 1,70 1,93 2,13 1,58 1,87 2,00

JX248 0,22 0,73 0,56 0,58 0,58 0,54 0,59 0,56 0,44 0,67 0,53 0,48

JX359 2,44 1,86 1,72 1,78 1,73 1,76 1,80 2,15 2,29 1,87 1,79 1,81

JX362 0,89 1,71 1,78 2,29 2,16 2,32 1,96 1,87 1,99 1,94 1,90 1,96

JX400 0,67 0,70 0,83 0,60 0,74 0,56 0,81 0,61 1,19 0,81 0,59 0,68

JX166 3,80 3,05 3,55 3,72 3,25 2,69 3,44 3,19 3,07 2,99 3,09 2,90

JX175 2,56 2,51 2,53 2,81 2,72 3,03 2,86 3,33 4,01 2,81 3,39 3,04

JX225 0,52 0,64 0,48 0,75 0,96 0,52 0,60 0,58 0,41 0,35 0,52 0,40

JX289 6,95 10,26 11,82 12,43 8,47 4,82 14,57 10,43 5,46 12,22 8,72 6,21

JX030 2,36 2,56 3,04 2,79 2,71 2,64 2,96 3,07 2,48 2,64 3,14 3,25

JX038 0,90 1,18 0,33 0,45 0,51 0,35 0,40 0,36 0,31 0,41 0,39 0,42

JX040 1,32 0,60 0,35 0,44 0,37 0,46 0,35 0,39 0,38 0,37 0,36 0,38

JX244 0,21 0,69 0,55 0,68 0,60 0,34 0,71 0,76 0,46 0,98 0,63 0,38

JX010 0,24 0,17 0,11 0,12 0,11 0,10 0,14 0,12 0,09 0,13 0,12 0,11

JX020 1,28 1,04 0,94 0,93 0,97 0,84 1,01 1,01 0,99 0,55 0,62 0,87

JX037 0,68 0,28 0,33 0,22 0,25 0,15 0,22 0,29 0,33 0,26 0,30 0,40

JX042 1,97 1,83 1,26 1,07 1,39 1,38 1,26 1,59 1,64 0,53 0,81 0,97

JX062 0,07 0,11 0,11 0,10 0,10 0,10 0,10 0,08 0,07 0,13 0,12 0,11

JX069 0,87 0,63 0,60 0,58 0,51 0,57 0,46 0,56 0,45 0,45 0,51 0,59

JX189 0,17 0,15 0,14 0,24 0,17 0,22 0,16 0,18 0,15 0,21 0,18 0,21

JX190 1,36 2,14 2,10 1,94 2,19 2,35 2,04 1,81 1,79 1,95 2,16 2,09

JX221 0,10 0,15 0,22 0,24 0,21 0,23 0,23 0,21 0,23 0,28 0,24 0,23

JX247 4,94 4,58 4,63 3,86 4,36 3,74 4,12 4,13 4,49 1,63 3,07 3,87

JX254 0,36 0,53 0,42 0,43 0,41 0,28 0,34 0,44 0,31 0,41 0,38 0,64

JX265 1,42 2,03 2,40 1,87 1,80 1,50 2,16 2,24 2,00 2,69 2,46 2,31

JX320 0,48 0,33 0,33 0,33 0,34 0,31 0,43 0,35 0,37 0,34 0,27 0,30

JX331 1,87 2,07 2,85 2,57 2,50 2,67 2,09 2,38 2,05 2,22 2,67 3,10

JX364 1,27 0,96 0,88 1,06 0,98 1,08 0,87 1,11 1,11 0,80 0,89 1,05

JX386 0,84 0,58 0,59 0,61 0,61 0,63 0,63 0,55 0,57 0,75 0,55 0,63

JX389 3,16 3,46 4,04 3,46 3,45 3,15 4,00 3,71 3,63 3,88 3,87 3,81

JX423 0,96 1,08 1,31 1,24 1,29 1,08 1,02 1,03 0,98 0,82 1,21 1,17

JX021 1,58 1,61 1,68 2,02 1,69 1,92 2,15 2,02 1,81 1,68 2,18 2,28

JX023 1,71 2,30 1,85 2,31 1,83 1,30 1,98 1,42 0,89 1,44 2,26 2,46

JX224 1,35 1,77 1,51 1,97 1,75 1,46 2,13 2,26 1,92 2,12 2,42 2,13

JX270 5,41 5,83 5,70 6,85 6,21 6,64 7,10 6,85 6,95 6,68 8,24 7,38

JX373 2,84 2,82 3,89 3,71 2,94 3,00 3,89 3,69 3,72 3,90 4,33 3,79

JX012 0,53 0,38 0,25 0,31 0,34 0,33 0,27 0,34 0,32 0,33 0,30 0,29

JX014 14,37 7,73 4,93 4,09 11,15 15,08 5,00 7,59 8,57 4,90 4,10 4,28

JX018 0,14 0,13 0,08 0,11 0,10 0,11 0,07 0,09 0,10 0,07 0,11 0,10

JX025 0,16 0,31 0,36 0,30 0,35 0,26 0,26 0,25 0,26 0,30 0,24 0,23

JX031 0,55 0,49 0,38 0,41 0,52 0,51 0,31 0,41 0,53 0,34 0,35 0,41

JX046 0,83 0,92 0,59 1,03 0,92 0,81 0,76 0,74 0,65 0,80 0,75 0,64

JX054 0,16 0,25 0,22 0,26 0,23 0,24 0,26 0,23 0,22 0,27 0,30 0,26

JX061 0,13 0,19 0,19 0,25 0,22 0,20 0,27 0,20 0,21 0,26 0,29 0,26

JX095 0,59 0,84 0,83 0,98 0,75 0,90 0,88 0,69 0,82 0,80 0,67 0,34

JX102 1,11 0,89 0,74 0,73 0,82 0,91 0,86 1,07 1,06 1,11 1,03 1,01

JX107 1,51 1,10 1,09 1,17 1,15 1,56 1,24 1,40 1,38 1,22 1,39 1,37

JX114 1,49 1,63 1,94 1,62 1,75 1,31 1,50 2,21 2,51 2,01 1,75 1,46

JX120 1,66 1,26 0,95 1,16 1,28 1,31 1,10 1,35 1,34 1,29 1,24 1,30

JX125 1,37 1,33 1,30 1,35 1,35 1,64 1,55 1,71 1,62 1,68 1,74 1,59

JX137 0,40 0,29 0,21 0,18 0,21 0,27 0,22 0,23 0,28 0,26 0,23 0,19

JX138 1,21 1,09 1,11 1,24 0,80 0,97 0,93 0,95 0,95 1,08 0,95 1,11

JX139 0,76 0,66 0,46 0,42 0,45 0,48 0,43 0,65 0,87 0,51 0,42 0,48

JX142 1,12 0,96 0,94 1,04 0,94 1,01 1,17 1,19 1,13 1,25 1,26 1,13

JX148 0,30 0,38 0,38 0,34 0,38 0,93 0,40 0,43 0,26 0,30 0,38 0,64

JX152 0,87 0,72 0,57 0,65 0,79 0,84 0,64 0,84 0,76 0,61 0,79 0,72

JX153 0,16 0,26 0,38 0,39 0,42 0,50 0,36 0,37 0,40 0,36 0,41 0,37

JX158 0,50 0,63 0,75 0,88 0,86 0,89 0,91 0,66 0,34 0,92 1,03 0,83

JX160 0,70 0,66 0,49 0,77 0,69 0,58 0,58 0,80 0,94 0,70 0,58 0,77

JX172 0,83 0,57 0,50 0,55 0,59 0,54 0,55 0,69 0,55 0,55 0,59 0,59

JX174 0,64 0,64 0,59 0,58 0,59 0,65 0,65 0,80 0,85 0,63 0,61 0,68

JX181 0,59 0,43 0,38 0,56 0,43 0,46 0,52 0,53 0,48 0,48 0,44 0,51

JX182 0,55 0,76 0,80 0,83 0,91 0,88 0,88 0,91 0,93 0,90 0,93 0,81

JX196 0,69 0,83 0,81 0,89 0,86 0,94 0,80 0,88 1,00 0,90 1,07 0,84

JX201 3,18 2,70 2,75 3,05 3,21 3,11 3,00 3,35 3,38 3,47 3,56 3,45

JX202 2,42 2,52 2,70 2,80 2,64 2,15 2,46 2,62 3,05 3,28 3,10 3,20

JX211 0,20 0,34 0,39 0,44 0,32 0,46 0,43 0,26 0,31 0,28 0,27 0,49

JX217 0,70 0,83 0,90 0,87 0,76 0,47 0,69 1,04 0,92 0,65 0,67 0,54

JX219 1,12 0,88 0,76 0,78 0,77 0,78 0,82 0,87 1,04 1,06 0,92 0,78

JX231 0,66 0,97 0,70 0,96 1,02 0,96 0,96 0,92 0,70 0,79 1,05 0,81

JX232 0,51 0,62 0,46 0,59 0,55 0,64 0,41 0,41 0,56 0,54 0,80 0,52

JX249 0,95 1,07 1,06 1,37 0,88 0,70 0,70 0,84 0,73 0,69 0,74 0,77

JX258 0,73 0,66 0,65 0,83 0,86 0,70 0,72 0,65 0,64 0,74 0,79 0,78

JX260 0,37 0,47 0,32 0,45 0,36 0,43 0,31 0,27 0,31 0,36 0,36 0,41

JX279 0,46 0,40 0,96 0,46 0,37 0,59 0,48 0,46 0,45 0,71 0,42 0,61

JX287 1,60 2,07 2,57 2,11 1,82 1,50 2,21 2,14 1,62 1,68 2,27 2,12

JX301 2,34 2,79 3,37 2,27 2,46 2,23 2,71 2,27 1,90 2,78 2,05 2,52

JX303 0,86 1,05 1,25 0,82 0,98 0,97 1,22 0,87 1,06 1,10 0,81 1,16

JX336 1,58 1,49 1,72 1,52 1,59 1,57 1,63 1,82 1,80 1,84 1,62 1,50

JX345 0,60 0,57 0,43 0,57 0,58 0,57 0,58 0,95 1,58 0,48 0,61 0,62

JX360 0,63 0,76 0,80 0,90 1,04 1,17 0,91 0,67 0,64 0,81 1,19 1,18

JX365 0,78 0,57 0,57 0,70 0,72 0,95 0,91 0,59 0,43 0,60 0,70 0,66

JX382 0,42 0,53 0,64 0,53 0,52 0,49 0,50 0,50 0,44 0,54 0,58 0,41

JX383 0,87 0,80 0,63 0,72 0,75 0,75 0,65 0,69 0,62 0,63 0,74 0,68

JX384 0,41 0,30 0,29 0,36 0,28 0,24 0,25 0,26 0,28 0,26 0,29 0,26

JX385 0,94 0,87 0,76 0,76 0,77 0,61 0,78 0,96 0,83 0,88 0,88 0,85

JX390 2,16 1,77 1,56 1,79 1,97 2,00 1,69 1,98 1,88 1,83 1,99 2,09

JX396 1,38 1,29 1,02 0,93 1,23 1,15 1,57 1,30 1,20 1,48 1,20 1,03

JX408 0,80 1,02 1,08 1,12 1,17 1,30 1,24 1,08 1,22 1,30 1,24 1,04

JX417 1,76 1,39 1,32 1,22 1,83 2,97 1,35 1,44 1,42 1,18 1,87 2,04

JX274 1,02 0,96 1,06 1,12 1,02 1,12 1,17 1,20 1,21 1,32 1,53 1,21

JX146 19,50 11,11 4,97 4,19 6,79 10,33 4,75 12,85 21,11 4,35 7,39 10,63

JX398 0,80 0,91 1,09 0,78 0,94 0,71 0,91 1,02 0,77 0,90 0,98 0,94

JX082 0,22 0,30 0,29 0,28 0,24 0,16 0,26 0,29 0,31 0,23 0,26 0,23

JX098 1,19 0,82 0,56 0,66 0,67 0,58 0,87 0,77 0,65 0,94 0,73 0,75

JX100 2,32 1,66 1,62 1,58 1,99 2,17 1,61 1,61 1,59 1,43 1,49 1,72

JX116 1,30 1,14 0,86 1,11 1,31 1,62 1,04 1,27 1,64 1,16 1,21 1,36

JX150 0,44 0,53 0,49 0,31 0,67 1,17 0,45 0,31 0,31 0,53 0,34 0,35

JX162 1,19 0,84 0,91 0,59 1,23 1,69 0,75 0,78 0,83 0,76 1,09 1,22

JX187 0,92 1,10 1,01 1,14 1,18 1,12 1,00 1,18 1,05 1,04 1,31 1,19

JX222 1,07 0,50 0,34 0,47 1,26 1,54 0,54 0,84 0,67 0,53 1,49 1,37

JX266 3,40 3,99 4,70 4,26 4,15 5,67 3,82 4,81 5,87 4,15 4,71 4,33

JX268 0,42 0,51 0,63 0,48 0,36 0,19 0,49 0,74 0,41 0,60 0,46 0,38

JX296 2,41 3,23 2,96 2,73 3,09 2,11 2,83 2,38 2,55 4,02 2,85 2,45

JX310 1,03 1,62 1,59 1,60 1,44 0,86 1,56 1,69 1,71 1,46 1,48 1,55

JX326 2,49 2,57 2,74 2,54 2,78 2,94 2,76 2,84 2,77 2,73 2,85 2,40

JX327 3,59 3,24 2,77 3,03 3,23 3,06 3,22 3,03 2,41 3,39 3,10 3,13

JX361 0,52 0,76 0,86 0,87 0,80 0,62 0,94 0,76 0,59 0,94 0,92 0,83

JX391 2,51 1,44 1,07 1,24 1,46 0,89 1,75 1,97 1,86 1,48 1,35 0,87

JX409 1,75 1,69 1,66 1,65 1,63 1,65 1,62 1,71 1,94 1,76 1,56 1,53

JX001 3,71 2,25 0,88 0,73 2,30 3,85 0,61 2,36 3,55 4,51 2,68 0,75

JX008 1,45 1,35 1,16 0,98 1,18 1,08 1,20 1,21 1,21 1,15 1,07 0,98

JX015 5,53 4,45 3,38 3,39 3,83 4,18 3,91 5,26 4,68 3,99 4,53 4,08

JX024 1,36 1,42 1,58 1,19 1,14 0,79 1,41 1,28 0,90 1,13 1,42 1,24

JX026 2,00 2,17 2,78 2,40 2,11 2,22 2,74 2,61 2,73 2,68 2,56 2,41

JX027 0,26 0,33 0,35 0,27 0,34 0,32 0,33 0,28 0,46 0,35 0,36 0,30

JX029 0,49 0,53 0,45 0,49 0,45 0,43 0,51 0,50 0,54 0,55 0,65 0,57

JX032 0,80 1,02 0,78 0,94 1,03 1,03 0,91 0,96 0,99 1,00 1,12 1,09

JX033 1,19 1,37 1,21 1,16 1,32 1,38 1,41 1,35 1,37 1,17 1,21 1,08

JX053 2,25 2,23 1,99 2,86 2,56 1,97 2,44 1,90 2,69 2,26 2,24 2,46

JX056 0,73 0,43 0,33 0,35 0,31 0,37 0,31 0,37 0,60 0,38 0,40 0,41

JX073 3,76 4,69 4,43 3,93 3,82 3,78 4,28 4,15 4,26 4,14 4,37 3,97

JX087 0,63 0,81 0,33 0,51 0,58 0,49 0,35 0,33 0,42 0,23 0,35 0,41

JX106 0,96 1,00 1,23 1,74 1,57 1,82 0,85 1,24 1,74 1,21 1,54 1,38

JX111 1,00 1,18 1,52 1,01 1,18 0,86 1,21 1,27 1,35 1,51 1,21 1,21

JX113 2,78 1,63 1,72 1,78 1,80 1,92 1,83 2,16 2,02 1,60 1,71 1,80

JX132 0,12 0,14 0,10 0,09 0,08 0,06 0,10 0,07 0,09 0,08 0,10 0,13

JX144 0,96 1,06 1,42 0,97 1,30 1,07 1,07 0,97 1,07 1,02 1,07 1,28
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JX151 1,30 1,37 1,49 1,61 1,49 1,64 1,77 1,59 1,53 1,80 1,98 1,74

JX154 2,36 1,61 1,41 1,42 1,67 1,82 1,72 1,91 1,90 1,70 1,68 1,69

JX157 1,80 1,53 1,23 1,28 1,46 1,76 1,46 1,38 1,66 1,19 1,36 1,30

JX161 2,06 1,62 1,58 1,61 1,70 1,72 1,69 1,72 1,44 1,39 1,62 1,40

JX171 0,50 0,58 0,41 0,48 0,47 0,64 0,38 0,25 0,33 0,55 0,63 0,48

JX177 4,34 4,23 3,68 3,28 3,35 3,21 3,63 4,21 3,73 4,16 3,77 3,29

JX178 0,82 0,59 0,59 0,60 0,73 0,68 0,67 0,69 0,67 0,73 0,73 0,59

JX179 1,14 1,07 1,04 1,19 1,45 1,73 1,12 1,24 1,10 1,18 1,43 1,66

JX205 1,98 2,33 1,99 1,66 2,12 1,82 1,79 2,00 2,04 1,84 1,78 1,77

JX206 1,83 1,45 1,89 1,44 1,85 1,90 1,74 1,97 1,75 1,63 1,98 2,32

JX212 0,28 0,27 0,37 0,32 0,24 0,31 0,38 0,33 0,45 0,29 0,32 0,53

JX218 5,84 4,74 4,00 3,46 4,46 3,92 4,26 4,26 4,83 3,81 3,91 4,24

JX220 0,28 0,46 0,40 0,38 0,45 0,42 0,46 0,42 0,44 0,50 0,46 0,42

JX227 0,77 0,83 0,46 0,30 0,44 0,49 0,87 0,64 0,35 0,75 0,83 0,50

JX228 0,57 0,83 0,74 0,90 0,75 1,05 0,75 0,45 0,48 1,06 1,18 0,89

JX230 0,15 0,22 0,22 0,21 0,21 0,18 0,26 0,22 0,20 0,25 0,26 0,23

JX233 0,71 0,68 0,74 0,86 0,87 0,86 0,75 0,66 0,55 0,64 0,81 0,93

JX239 2,42 2,77 2,66 1,92 2,58 2,47 2,05 1,63 1,53 1,92 2,06 1,76

JX255 0,22 0,23 0,33 0,27 0,31 0,27 0,28 0,26 0,35 0,34 0,30 0,28

JX264 2,11 1,76 1,82 1,80 2,06 1,78 1,90 1,94 2,00 1,85 1,77 1,55

JX269 0,41 0,96 1,48 0,29 0,31 0,33 0,34 0,37 0,34 0,44 0,33 0,41

JX275 1,09 1,68 1,77 1,61 1,65 1,68 1,58 1,40 1,49 1,80 2,09 1,60

JX286 1,24 2,02 2,07 0,85 1,71 2,09 1,93 1,75 0,92 1,51 1,89 1,97

JX290 1,40 1,31 1,36 1,32 0,94 0,43 1,29 1,40 1,46 1,19 0,95 0,80

JX291 0,97 3,62 4,34 4,52 3,66 1,93 4,12 3,75 1,53 4,52 5,00 4,69

JX294 0,25 0,28 0,35 0,38 0,40 0,30 0,16 0,17 0,23 0,35 0,37 0,23

JX302 0,46 0,52 0,73 0,72 0,56 0,61 0,78 0,68 0,73 0,74 0,83 0,64

JX305 0,22 0,29 0,38 0,34 0,45 0,36 0,27 0,24 0,26 0,28 0,29 0,36

JX306 0,47 0,54 0,64 0,57 0,38 0,28 0,53 0,52 0,63 0,50 0,56 0,59

JX311 1,02 0,57 0,43 0,41 0,46 0,48 0,41 0,57 0,80 0,40 0,52 0,42

JX313 0,12 0,17 0,25 0,22 0,30 0,26 0,21 0,22 0,24 0,22 0,28 0,22

JX322 0,58 0,82 0,83 0,68 0,65 0,64 0,65 0,67 0,75 0,64 0,61 0,52

JX323 4,17 4,00 3,59 3,46 3,61 3,33 3,91 4,70 4,22 4,60 3,89 3,79

JX329 0,41 0,37 0,45 0,45 0,49 0,58 0,44 0,43 0,50 0,50 0,55 0,44

JX333 0,45 0,50 0,48 0,61 0,53 0,61 0,49 0,42 0,44 0,48 0,52 0,56

JX342 0,49 0,58 0,66 0,60 0,59 0,54 0,54 0,64 0,57 0,69 0,68 0,68

JX351 0,38 0,67 0,88 0,87 0,93 0,83 0,90 0,64 0,29 0,34 0,55 0,83

JX357 1,44 1,41 1,66 1,52 1,49 1,53 1,57 1,63 1,81 1,38 1,32 1,08

JX363 0,44 0,86 1,10 1,00 1,06 0,93 1,03 1,13 1,07 0,98 1,10 0,91

JX397 0,45 0,58 0,79 0,65 0,86 1,05 0,75 0,65 0,66 0,80 0,83 0,82

JX402 0,39 0,45 0,42 0,45 0,52 0,65 0,43 0,47 0,46 0,44 0,50 0,59

JX406 0,25 0,30 0,23 0,24 0,31 0,24 0,19 0,19 0,18 0,29 0,21 0,22

JX411 0,47 0,56 0,49 0,49 0,61 0,51 0,38 0,43 0,38 0,47 0,48 0,42

JX412 0,68 0,75 0,77 0,92 0,89 0,73 0,73 0,91 0,86 0,84 0,88 0,75

JX413 3,53 3,80 3,84 3,47 3,03 3,30 4,07 3,81 3,90 3,88 4,16 3,49

JX420 0,63 0,86 0,77 0,84 0,79 0,76 0,61 0,68 0,51 0,64 0,70 0,85

JX422 0,80 0,91 1,09 0,91 0,98 0,91 0,91 1,11 1,15 1,14 1,28 1,18

JX009 2,78 1,96 2,01 2,23 2,18 2,03 2,05 2,11 1,58 2,01 1,85 1,79

JX028 0,49 0,67 0,86 0,76 0,68 0,75 0,81 0,70 0,54 0,70 0,96 0,78

JX047 0,53 0,93 0,31 0,66 0,80 0,43 0,46 0,37 0,39 0,38 0,33 0,37

JX063 0,48 0,65 0,85 0,97 0,74 0,67 0,87 0,62 0,70 0,82 0,70 0,80

JX064 3,19 1,73 1,81 1,71 1,79 2,91 2,16 1,56 2,29 1,68 1,77 2,23

JX094 4,62 3,71 3,48 4,28 3,93 3,57 4,02 3,78 3,40 3,59 3,33 3,81

JX096 1,26 0,70 0,81 0,64 0,90 1,45 0,71 0,49 0,40 0,68 0,73 0,70

JX103 0,45 0,44 0,27 0,35 0,35 0,29 0,41 0,36 0,44 0,29 0,34 0,28

JX108 1,90 2,48 3,04 2,94 3,14 2,81 2,86 2,68 2,22 3,57 3,78 2,55

JX188 3,96 4,23 3,84 3,92 4,35 4,24 3,96 4,56 4,51 3,60 4,62 4,03

JX203 1,74 1,35 1,54 1,30 1,30 1,18 1,40 1,51 1,41 1,41 1,37 1,20

JX209 0,27 0,23 0,30 0,18 0,24 0,42 0,18 0,26 0,31 0,20 0,26 0,30

JX226 0,19 0,18 0,22 0,24 0,23 0,24 0,23 0,17 0,08 0,29 0,30 0,23

JX309 0,86 1,24 1,65 1,15 0,97 1,19 1,63 1,36 1,49 1,56 1,36 1,26

JX350 1,46 1,38 1,35 2,99 1,42 0,98 1,49 3,00 2,61 1,18 1,31 1,29

JX407 8,54 8,45 6,74 6,40 5,21 5,22 6,98 7,89 8,46 6,50 6,05 5,49

JX002 0,76 0,33 0,26 0,40 0,54 0,73 0,41 0,38 0,36 0,53 0,54 0,57

JX003 0,55 0,26 0,18 0,35 0,24 0,37 0,19 0,30 0,43 0,20 0,33 0,28

JX016 1,34 1,57 1,22 1,42 1,65 1,56 1,59 1,80 1,65 1,68 1,76 1,64

JX048 7,56 7,32 7,70 7,06 5,31 5,63 6,84 8,19 11,01 3,87 5,57 7,11

JX049 9,83 8,28 5,75 6,82 6,52 6,36 6,38 6,01 6,47 5,20 6,00 6,23

JX052 1,00 1,06 0,90 1,17 1,16 0,94 0,79 0,91 0,89 0,91 0,98 1,18

JX055 0,83 0,90 1,03 0,94 0,96 0,92 0,99 0,79 1,06 1,10 0,87 0,92

JX074 1,19 0,94 0,76 1,08 1,10 1,21 0,78 0,90 1,17 0,75 1,03 1,06

JX084 0,87 1,05 1,12 0,85 0,83 0,70 0,85 1,27 1,78 0,82 1,04 0,95

JX085 0,59 0,46 0,21 0,27 0,33 0,21 0,23 0,23 0,29 0,20 0,18 0,24

JX090 1,21 0,63 0,92 0,83 0,60 0,71 0,76 0,84 1,39 0,48 0,59 0,70

JX092 2,40 2,61 1,91 1,82 1,78 1,32 1,47 1,56 2,28 1,45 1,34 1,68

JX093 1,74 1,69 1,80 1,14 1,53 0,87 1,21 1,13 1,61 1,52 1,20 0,89

JX097 0,58 0,66 0,43 0,70 0,79 0,90 0,46 0,54 0,56 0,43 0,53 0,61

JX112 1,70 1,75 1,36 1,29 1,48 1,43 1,27 1,40 1,38 1,44 1,19 1,14

JX140 0,48 0,18 0,18 0,23 0,27 0,43 0,18 0,20 0,34 0,16 0,22 0,30

JX141 0,92 0,55 0,55 0,66 0,74 1,00 0,59 0,65 0,83 0,46 0,67 0,96

JX145 2,83 0,95 0,96 0,96 0,93 0,67 1,12 1,08 0,75 1,72 0,92 0,74

JX149 0,75 0,28 0,30 0,41 0,57 0,79 0,20 0,32 0,55 0,29 0,36 0,31

JX165 0,77 0,89 1,21 1,33 1,30 1,26 1,18 0,79 0,54 1,09 1,34 1,45

JX194 2,17 2,02 2,00 2,43 2,39 2,46 2,06 2,32 2,30 2,26 2,59 2,85

JX195 5,13 5,53 5,90 5,23 6,20 5,96 5,42 5,70 6,49 5,64 4,97 4,84

JX200 2,32 2,20 2,26 2,57 2,43 2,17 2,32 2,50 2,01 2,39 2,69 2,60

JX215 0,96 1,03 1,10 1,06 1,13 1,20 1,09 1,28 1,46 1,18 1,18 1,13

JX259 0,61 0,69 0,50 0,58 0,56 0,41 1,24 0,86 0,59 0,61 1,00 1,65

JX278 0,51 0,59 0,55 0,21 0,34 0,35 0,32 0,24 0,34 0,30 0,20 0,70

JX282 3,37 4,58 3,25 2,79 2,91 1,47 1,95 2,08 3,11 1,34 1,60 2,23

JX295 0,18 0,19 0,12 0,15 0,24 0,16 0,11 0,15 0,16 0,12 0,11 0,12

JX314 0,64 0,61 0,77 0,80 0,85 0,53 0,83 0,75 0,60 0,77 0,72 0,96

JX328 0,29 0,43 0,41 0,33 0,34 0,40 0,43 0,38 0,35 0,40 0,49 0,48

JX332 0,45 0,40 0,36 0,45 0,50 0,37 0,31 0,40 0,38 0,31 0,44 0,48

JX346 0,84 1,05 1,19 0,94 0,77 0,89 1,12 1,05 1,49 1,12 1,21 1,07

JX354 9,34 12,01 12,63 13,64 12,54 7,23 12,48 11,67 7,91 13,40 14,12 13,06

JX356 0,58 0,56 0,45 0,62 0,52 0,45 0,58 0,57 0,53 0,51 0,45 0,45

JX358 0,57 0,57 0,46 0,61 0,61 0,56 0,48 0,53 0,52 0,62 0,93 0,47

JX374 3,47 3,47 2,36 2,12 3,12 3,17 2,46 2,90 2,69 2,45 2,40 2,85

JX377 6,87 4,89 3,81 4,75 4,35 4,10 4,28 3,90 3,97 4,83 3,37 4,07

JX404 3,09 2,72 2,95 3,23 3,64 3,62 3,44 3,83 4,13 3,00 2,93 3,46

JX418 0,56 0,48 0,32 0,37 0,44 0,61 0,28 0,49 0,43 0,26 0,29 0,30

JX043 0,25 0,17 0,16 0,17 0,27 0,23 0,27 0,20 0,19 0,19 0,26 0,18

JX242 0,41 0,79 0,89 0,66 0,75 0,72 0,76 0,59 0,77 0,79 0,83 0,67

JX312 1,90 1,50 1,06 0,99 1,37 1,41 1,23 1,93 1,25 1,39 1,38 1,18

JX348 0,46 0,43 0,61 0,69 0,79 0,73 0,65 0,52 0,41 0,52 0,70 0,68

JX393 0,40 0,43 0,48 0,60 0,70 1,30 0,54 0,46 0,36 0,50 0,63 0,53

JX133 1,63 1,06 0,43 0,42 1,07 1,31 1,55 1,35 1,47 0,55 0,39 0,90

JX369 2,30 2,32 2,35 2,08 1,83 1,17 2,58 2,49 2,39 2,63 2,51 2,18

JX395 4,32 3,46 2,72 3,07 3,26 2,70 3,19 3,57 4,07 3,38 3,10 3,18

JX197 0,73 0,88 0,87 1,17 0,82 0,89 1,04 0,95 0,87 1,01 1,18 1,14

JX273 1,39 2,01 2,41 2,08 1,58 0,86 2,37 2,22 2,65 2,16 2,24 2,00

JX325 10,83 8,79 6,91 7,61 7,88 7,77 7,83 7,94 8,00 7,26 6,29 7,56

JX368 1,28 1,94 2,36 2,21 2,02 1,43 1,68 2,04 2,00 2,08 2,56 2,48

JX075 0,27 0,34 0,32 0,36 0,31 0,26 0,36 0,39 0,41 0,36 0,34 0,34

JX185 3,88 3,84 3,01 3,76 3,87 3,53 3,49 3,11 3,37 3,76 3,20 3,41

JX223 0,27 0,55 0,73 0,82 0,76 0,72 0,84 1,09 0,79 0,99 0,78 0,82

JX007 5,07 3,71 3,22 3,40 2,52 1,99 3,10 2,91 2,01 2,92 3,37 3,10

JX017 1,94 2,20 2,07 2,23 2,84 2,14 2,02 1,73 1,27 1,72 1,68 1,86

JX034 10,02 8,04 8,48 8,03 6,74 4,42 8,68 7,35 4,47 8,53 8,41 8,14

JX173 0,41 0,50 0,55 0,57 0,51 0,47 0,59 0,50 0,52 0,51 0,65 0,64

JX335 0,91 1,01 0,97 1,00 1,00 0,86 0,91 0,99 0,82 0,90 1,21 1,05

JX349 1,48 2,54 1,47 2,26 3,28 2,75 1,59 1,66 1,80 1,72 2,03 1,36
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Supplemental table S4C  Mean values of the smounts of 188 significant protein spots among genotypes at orange red stage
geno CerORCerLevLevORStuORStuCri CriORLA014LA014PloORFerORFerLALA1420OR

JX019 6,45 8,11 9,43 8,47 10,25 9,21 11,54 10,19 11,80 9,01 9,37 10,13

JX101 2,20 1,37 1,31 1,54 1,36 2,24 1,40 1,20 1,49 1,42 0,96 1,34

JX168 1,02 1,08 1,02 1,18 0,93 1,30 0,88 0,97 0,85 0,71 0,96 1,15

JX170 9,38 10,37 8,96 8,56 8,12 7,79 10,21 9,51 9,18 10,65 7,46 4,17

JX280 0,12 0,16 1,18 0,23 0,21 0,34 0,36 0,24 0,24 0,20 0,36 0,36

JX362 1,16 1,15 1,89 1,74 1,66 2,09 1,59 1,64 1,68 1,19 1,71 1,87

JX400 0,62 0,50 0,59 0,72 0,49 0,62 0,84 0,73 0,62 1,07 1,24 1,16

JX289 3,40 7,08 5,67 7,83 5,80 2,73 6,84 5,79 3,73 9,95 5,47 3,71

JX030 3,42 3,68 3,67 3,67 3,92 3,29 4,08 3,59 3,93 4,37 4,30 2,89

JX039 0,88 1,30 1,10 1,43 0,96 0,66 0,75 1,23 1,84 1,44 0,76 0,56

JX040 1,73 2,20 1,79 1,75 1,44 1,33 1,86 1,84 1,42 1,78 1,20 0,55

JX244 1,16 1,17 1,50 1,03 0,94 0,83 1,34 1,35 0,86 1,58 1,02 0,35

JX245 2,32 3,27 3,35 2,73 2,88 2,24 3,69 3,58 3,24 3,76 2,83 1,18

JX276 0,61 1,18 0,97 1,88 1,31 0,79 1,70 1,81 2,44 1,69 1,68 1,51

JX010 0,21 0,16 0,09 0,12 0,10 0,11 0,12 0,10 0,10 0,13 0,15 0,12

JX020 1,08 1,05 0,90 0,86 1,18 1,00 1,00 0,99 1,34 0,43 0,66 0,86

JX037 0,63 0,90 0,77 0,86 0,84 0,41 1,01 1,17 1,64 0,88 1,03 1,26

JX042 1,89 1,77 1,03 1,35 1,50 1,16 0,79 1,16 1,32 0,36 0,60 0,68

JX147 1,77 3,82 1,20 1,48 2,74 3,81 1,98 3,06 3,01 0,84 3,23 4,18

JX190 1,33 1,64 1,66 1,39 1,64 2,21 1,82 1,79 1,60 2,08 1,68 1,50

JX221 0,06 0,15 0,19 0,20 0,28 0,20 0,19 0,21 0,20 0,19 0,18 0,22

JX247 5,20 4,93 4,14 4,71 5,13 4,93 4,34 4,89 5,73 1,56 3,33 4,31

JX265 1,82 1,65 1,92 1,79 1,62 1,17 1,86 1,81 1,97 2,25 1,86 1,79

JX320 0,65 0,56 0,36 0,37 0,40 0,43 0,42 0,53 0,63 0,33 0,37 0,34

JX023 1,93 1,49 1,49 1,77 1,50 1,30 1,55 1,38 1,15 1,91 1,38 1,57

JX143 1,70 1,58 1,25 1,11 1,45 2,46 1,33 1,17 0,77 1,36 1,82 1,64

JX012 0,30 0,31 0,28 0,26 0,23 0,23 0,24 0,23 0,32 0,31 0,27 0,20

JX018 0,17 0,11 0,06 0,12 0,10 0,06 0,08 0,12 0,20 0,07 0,08 0,07

JX025 0,14 0,21 0,18 0,32 0,31 0,21 0,17 0,22 0,23 0,32 0,23 0,14

JX046 2,01 2,05 1,40 1,86 1,97 2,20 1,42 2,54 2,54 1,69 1,80 0,94

JX102 1,19 1,08 0,66 0,73 0,63 0,47 0,79 0,96 1,35 0,92 0,94 0,63

JX122 1,64 1,79 1,78 1,39 1,67 1,93 1,81 1,72 1,67 1,44 1,67 2,26

JX125 1,42 1,52 1,16 1,32 1,19 1,04 1,13 1,16 1,68 1,55 1,23 1,07

JX127 1,29 1,13 0,90 0,90 0,85 0,91 0,99 0,98 1,19 0,89 0,90 0,99

JX138 1,76 1,49 1,80 1,82 1,38 1,05 1,96 1,68 1,40 1,47 1,93 2,70

JX142 0,97 1,09 0,86 1,03 0,83 0,70 0,79 0,73 1,10 1,08 0,89 0,92

JX152 0,42 0,41 0,29 0,30 0,42 0,46 0,33 0,29 0,46 0,38 0,32 0,25

JX153 0,22 0,35 0,46 0,36 0,46 0,55 0,45 0,38 0,43 0,37 0,41 0,47

JX158 0,42 0,55 0,61 0,68 0,56 0,73 0,59 0,49 0,37 0,78 0,66 0,60

JX160 0,68 0,46 0,45 0,47 0,39 0,48 0,38 0,51 0,53 0,36 0,38 0,32

JX217 0,65 0,61 1,12 0,66 0,45 1,23 1,30 0,71 0,89 0,48 1,08 2,22

JX240 0,82 0,53 0,93 0,72 0,99 0,94 1,01 1,22 1,10 1,48 1,31 1,45

JX249 0,86 1,59 1,56 3,04 1,62 0,85 1,43 1,38 1,20 1,54 1,47 1,32

JX260 1,16 0,99 0,87 1,20 1,12 0,72 0,86 1,08 0,89 0,71 0,81 0,85

JX272 0,69 0,58 0,62 0,65 0,71 0,74 0,61 0,71 0,70 0,47 0,46 0,55

JX279 0,64 0,57 3,72 1,77 0,73 2,62 2,02 1,01 0,45 0,64 3,42 5,81

JX281 0,19 0,17 0,91 0,43 0,17 0,52 0,44 0,22 0,14 0,16 0,62 1,29

JX301 2,04 3,05 4,83 2,98 2,60 2,97 4,02 3,88 2,85 4,58 5,11 6,33

JX303 1,29 1,28 2,65 1,43 1,45 2,14 1,89 1,53 1,47 2,27 2,53 2,27

JX330 2,55 2,89 2,69 2,81 3,30 3,88 2,82 2,99 2,97 2,76 2,98 3,38

JX338 0,63 0,57 0,58 0,43 0,53 0,68 0,56 0,54 0,66 0,62 0,57 0,70

JX345 0,40 0,32 0,52 0,47 0,54 0,64 0,41 0,72 1,18 0,45 0,44 0,48

JX384 0,27 0,27 0,27 0,26 0,28 0,25 0,40 0,35 0,39 0,29 0,33 0,42

JX392 6,92 3,74 4,70 3,44 4,86 7,06 2,91 3,45 4,84 3,62 3,22 5,13

JX414 5,41 5,55 6,49 6,37 7,08 8,67 7,05 7,33 7,14 7,90 8,29 7,47

JX285 1,14 1,01 1,42 1,39 0,94 1,05 1,17 0,90 0,90 1,03 1,16 1,55

JX398 0,75 0,77 0,72 0,86 0,77 0,51 0,81 0,75 0,86 0,94 0,89 0,83

JX082 0,46 0,55 0,32 0,51 0,33 0,24 0,25 0,31 0,34 0,26 0,26 0,27

JX088 8,81 10,60 5,68 8,07 9,22 10,32 6,15 8,59 10,92 6,71 10,60 7,35

JX100 4,16 3,23 2,00 2,76 3,09 3,42 2,51 3,18 3,78 2,48 2,32 2,12

JX116 1,34 1,36 1,20 1,23 1,30 1,71 0,95 1,14 1,32 1,12 1,10 1,20

JX118 3,02 2,85 2,64 2,73 2,83 3,37 2,72 2,28 2,83 3,49 3,14 3,03

JX150 0,38 0,39 0,30 0,39 0,57 1,15 0,93 0,99 0,47 0,95 0,75 0,88

JX213 0,35 0,27 0,31 0,29 0,43 0,61 0,26 0,29 0,21 0,28 0,23 0,25

JX238 1,88 1,75 1,67 1,88 1,12 0,39 1,74 2,60 3,79 1,97 2,49 2,04

JX268 0,18 0,21 0,34 0,19 0,13 0,15 0,34 0,22 0,20 0,16 0,32 0,45

JX308 1,55 1,50 1,88 1,71 0,97 0,61 1,93 1,50 1,76 1,51 1,37 1,82

JX310 2,13 2,65 1,80 2,16 1,77 1,51 1,61 2,15 2,15 1,48 1,77 1,66

JX327 2,80 2,73 2,78 2,90 2,85 3,02 2,53 2,32 1,92 2,69 2,59 2,82

JX409 2,07 1,62 1,41 1,78 1,84 2,52 1,55 1,98 2,07 1,65 1,78 1,98

JX001 4,72 3,41 1,23 0,70 2,87 4,24 1,29 3,09 5,77 4,22 2,81 1,85

JX004 0,92 0,80 0,59 0,87 0,54 0,63 0,53 0,52 0,59 0,66 0,44 0,46

JX024 1,08 1,20 1,22 1,39 1,10 0,64 1,27 1,11 1,00 1,62 1,24 0,96

JX041 0,30 0,63 1,64 0,38 0,35 0,50 0,49 0,39 0,38 0,41 0,48 0,45

JX050 0,28 0,28 0,19 0,24 0,21 0,08 0,19 0,24 0,16 0,19 0,19 0,15

JX051 0,71 0,55 0,27 0,42 0,49 0,58 0,24 0,31 0,50 0,26 0,33 0,28

JX056 0,45 0,67 0,65 0,87 0,88 0,70 0,72 0,73 0,35 0,74 0,79 0,56

JX058 0,57 0,49 0,45 0,51 0,42 0,31 0,33 0,43 0,34 0,32 0,38 0,26

JX059 2,31 2,72 3,40 3,34 2,26 2,27 3,77 2,69 2,66 4,11 2,50 1,66

JX068 0,27 0,26 0,19 0,15 0,19 0,13 0,19 0,23 0,15 0,15 0,20 0,16

JX070 0,67 0,78 0,59 0,85 0,93 0,89 0,75 0,72 0,72 0,70 0,75 0,54

JX073 3,60 4,12 3,39 3,17 3,99 3,66 3,32 3,30 3,42 4,17 3,18 2,51

JX091 0,70 0,43 0,15 0,22 0,21 0,10 0,17 0,34 0,31 0,19 0,21 0,14

JX110 0,62 0,56 0,54 0,60 0,46 0,41 0,40 0,47 0,46 0,43 0,40 0,33

JX111 1,50 1,17 1,27 0,85 0,99 0,93 1,16 1,19 1,70 1,47 1,32 1,13

JX113 1,90 1,74 1,55 2,10 1,70 1,59 1,43 1,76 1,99 1,52 1,41 1,42

JX115 8,51 8,29 7,17 8,75 9,24 9,94 9,66 9,29 9,07 9,29 8,68 7,85

JX132 0,40 0,29 0,17 0,15 0,13 0,08 0,15 0,17 0,11 0,15 0,15 0,17

JX154 2,83 1,79 0,82 1,00 0,99 1,25 1,46 2,73 2,52 0,94 1,05 0,86

JX161 1,34 1,07 0,95 0,94 0,82 0,84 0,91 1,00 1,46 0,77 0,71 0,94

JX163 0,44 0,38 0,53 0,49 0,44 0,31 0,50 0,39 0,27 0,36 0,36 0,39

JX164 1,54 1,59 1,12 1,37 1,44 1,69 1,34 1,18 1,48 1,13 1,39 1,63

JX169 3,57 3,24 3,64 3,81 3,01 2,61 2,54 2,80 2,50 2,38 2,52 2,09

JX171 0,54 0,53 0,50 0,56 0,62 0,40 0,47 0,46 0,36 0,49 0,44 0,48

JX177 2,93 3,08 1,98 2,69 2,42 2,56 1,88 2,22 2,08 2,54 1,90 1,84
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JX178 0,92 0,69 0,56 0,70 0,74 0,67 0,54 0,51 0,65 0,51 0,46 0,40

JX191 0,58 0,55 0,50 0,53 0,60 0,58 0,57 0,51 0,42 0,50 0,44 0,41

JX212 0,67 0,50 0,63 0,55 0,43 0,79 0,82 0,58 0,55 0,47 0,41 0,98

JX214 3,83 3,38 2,24 2,85 3,13 3,10 2,79 2,82 2,64 3,36 2,89 2,53

JX218 8,51 5,41 2,25 2,17 2,56 3,07 6,46 9,14 7,56 2,29 2,51 2,15

JX227 0,89 0,78 0,81 0,33 0,30 0,55 0,37 0,68 0,34 0,75 0,74 0,30

JX234 0,81 0,63 0,60 0,61 0,50 0,75 0,46 0,68 0,72 0,55 0,48 0,41

JX237 1,02 1,04 0,81 0,75 1,01 1,53 0,65 1,28 1,39 1,03 1,24 0,44

JX239 10,71 8,48 3,29 2,92 5,99 7,54 4,65 6,21 9,15 6,08 5,35 1,32

JX246 0,54 0,84 1,40 0,54 0,73 0,71 1,16 1,43 0,86 0,34 0,95 1,30

JX256 1,20 1,19 0,81 1,11 1,07 0,92 0,97 0,94 1,01 0,92 0,80 0,84

JX262 0,37 0,33 0,91 0,63 0,52 0,64 0,75 0,63 0,58 0,54 0,68 0,95

JX267 0,22 0,29 0,14 0,24 0,19 0,20 0,12 0,15 0,16 0,19 0,12 0,13

JX269 0,50 0,77 1,44 0,43 0,45 0,43 0,38 0,50 0,63 0,46 0,54 0,48

JX284 1,25 1,78 1,08 1,46 2,29 2,15 0,86 2,11 1,60 1,30 2,16 0,40

JX286 0,90 2,58 5,33 0,92 2,47 3,98 4,74 2,82 0,95 3,93 4,33 4,70

JX290 1,04 0,92 1,08 1,04 0,77 0,46 0,97 0,90 0,98 0,80 0,75 0,28

JX291 1,51 3,49 4,57 4,81 4,14 1,70 4,58 3,24 1,34 5,03 4,51 4,05

JX292 0,45 0,66 0,72 0,59 0,79 0,80 0,67 0,65 0,63 0,51 0,78 0,93

JX294 0,49 0,46 0,47 0,56 0,56 0,72 0,18 0,17 0,22 0,41 0,59 0,62

JX302 1,53 1,51 1,10 1,15 1,46 0,95 1,14 1,37 1,18 1,01 1,18 0,90

JX306 0,67 0,68 0,67 0,60 0,41 0,21 0,59 0,62 0,52 0,67 0,67 0,62

JX322 0,88 0,91 0,96 0,94 0,94 0,87 0,87 0,98 0,89 0,86 0,80 0,33

JX323 3,06 3,01 2,47 2,94 2,89 3,00 2,50 2,74 2,72 2,70 2,37 2,19

JX333 0,38 0,39 0,49 0,49 0,52 0,58 0,41 0,37 0,36 0,36 0,45 0,44

JX344 4,15 3,65 3,14 3,61 3,70 3,77 3,41 3,66 3,26 4,37 3,92 3,19

JX351 0,23 0,49 0,61 0,67 0,51 0,54 0,58 0,42 0,25 0,24 0,43 0,61

JX357 1,10 1,31 1,23 1,86 2,02 2,33 1,01 1,45 2,09 1,08 0,90 0,77

JX367 0,76 0,87 1,10 0,92 0,92 0,59 1,02 0,83 0,87 1,15 0,97 0,78

JX372 0,26 0,28 0,35 0,31 0,34 0,45 0,35 0,30 0,31 0,29 0,36 0,38

JX394 3,66 2,33 1,73 1,58 2,03 3,51 1,02 1,35 1,13 1,22 1,37 1,25

JX419 2,76 3,88 3,54 2,39 3,92 4,77 1,71 4,67 6,43 5,21 4,60 1,03

JX420 1,78 1,88 1,44 2,02 2,14 1,41 1,57 2,01 1,57 1,43 1,39 1,35

JX009 1,58 1,31 1,24 1,50 1,25 1,15 1,32 1,06 1,16 0,94 1,13 1,58

JX022 3,03 3,19 2,64 2,69 3,52 4,74 2,34 2,56 2,49 3,47 2,60 3,97

JX047 0,78 0,66 0,24 0,63 0,75 0,51 0,31 0,35 0,26 0,31 0,28 0,36

JX063 0,48 0,85 0,70 0,89 0,82 0,77 1,03 0,63 0,46 0,65 0,83 0,90

JX064 2,31 3,07 2,14 2,09 2,44 3,13 2,17 2,35 2,21 1,73 2,60 3,36

JX099 0,96 0,63 0,54 1,25 0,80 0,65 0,66 0,61 0,58 0,83 0,99 0,93

JX103 0,55 0,33 0,25 0,27 0,26 0,25 0,22 0,39 0,50 0,29 0,22 0,21

JX188 3,41 3,36 2,65 2,64 3,21 3,26 2,78 3,00 3,08 2,43 2,64 3,10

JX226 0,19 0,18 0,19 0,13 0,17 0,16 0,13 0,11 0,13 0,18 0,19 0,19

JX309 0,63 0,87 1,32 0,17 0,87 1,60 1,25 1,22 1,15 1,51 1,46 1,79

JX317 0,41 0,43 0,60 0,59 0,46 0,43 0,76 0,53 0,44 0,64 0,58 0,46

JX350 1,04 0,83 0,71 0,87 0,72 0,63 0,67 0,77 1,69 0,79 0,80 0,74

JX370 8,26 9,00 6,94 9,37 8,73 8,30 9,05 6,90 11,24 6,89 8,89 8,37

JX407 6,86 7,40 6,71 7,32 5,36 4,58 6,32 7,28 7,77 5,99 5,92 5,29

JX002 0,13 0,12 0,17 0,11 0,17 0,16 0,13 0,13 0,12 0,26 0,16 0,18

JX049 16,97 15,34 11,85 12,69 15,66 18,69 12,62 12,88 15,50 16,75 19,09 18,02

JX055 1,33 1,05 2,18 1,58 1,40 1,91 1,56 1,26 1,35 1,39 1,56 1,70

JX083 31,04 23,81 23,53 24,13 30,27 38,61 23,97 23,21 25,96 31,76 33,54 35,35

JX084 1,25 0,77 0,59 0,48 0,42 0,47 0,52 0,89 1,26 0,41 0,41 0,56

JX085 4,38 2,08 0,25 0,31 0,36 0,42 0,41 0,39 0,40 0,39 0,55 0,53

JX086 3,73 1,84 1,99 0,98 2,10 5,48 1,29 1,35 1,42 2,45 2,35 2,60

JX092 6,78 5,56 4,38 5,58 5,06 6,80 4,15 5,91 6,29 8,29 6,22 3,75

JX093 2,29 2,22 2,64 3,07 2,22 3,34 2,17 2,56 2,70 4,70 3,12 3,49

JX112 1,89 1,37 1,03 1,33 1,18 1,36 0,95 0,99 0,96 1,05 0,98 0,95

JX134 6,88 3,65 6,55 2,61 4,36 6,96 2,34 3,65 4,61 6,75 4,51 4,30

JX135 3,46 3,09 2,00 3,24 3,30 3,33 2,24 2,95 3,85 2,17 2,91 3,15

JX145 2,74 2,16 1,83 1,59 1,89 1,86 1,31 1,28 1,29 1,44 1,40 1,34

JX149 0,56 0,49 0,26 0,31 0,34 0,53 0,28 0,33 0,41 0,31 0,39 0,40

JX165 0,53 0,76 1,31 1,37 1,05 1,14 1,23 0,67 0,55 1,50 1,05 1,04

JX176 0,19 0,18 0,15 0,15 0,22 0,27 0,16 0,15 0,16 0,21 0,22 0,16

JX195 6,27 7,12 6,13 8,13 7,47 7,83 6,38 6,38 8,13 7,29 6,55 6,29

JX204 5,79 4,96 4,20 4,50 5,28 6,11 4,75 4,42 5,02 4,88 5,31 5,47

JX210 12,13 7,02 5,11 5,55 9,72 15,57 4,98 4,80 2,50 6,89 7,93 10,33

JX278 0,85 2,41 5,62 0,36 0,58 0,63 0,42 0,61 0,50 0,54 0,44 0,51

JX282 8,72 7,49 8,96 8,07 7,18 10,85 8,31 9,27 9,41 12,71 9,20 7,70

JX293 0,32 0,51 0,94 1,12 0,83 1,15 0,92 0,63 0,26 1,31 0,91 0,80

JX328 0,40 0,45 0,46 0,27 0,40 0,29 0,33 0,32 0,28 0,35 0,38 0,44

JX356 0,41 0,35 0,45 0,36 0,34 0,35 0,27 0,34 0,45 0,26 0,27 0,26

JX358 0,42 0,41 0,43 0,49 0,49 0,36 0,51 0,39 0,43 0,55 1,05 0,49

JX374 3,53 3,18 2,17 2,45 2,55 2,67 1,70 2,13 1,70 1,99 2,14 2,22

JX377 6,44 5,23 4,11 4,14 4,58 5,99 4,50 3,41 4,47 4,85 4,79 5,20

JX388 0,91 1,09 1,23 0,95 0,92 0,84 1,12 1,03 0,99 1,09 1,11 1,37

JX418 0,54 0,66 0,34 0,53 1,04 0,64 0,25 0,67 1,40 0,33 0,28 0,27

JX424 0,60 1,43 1,54 0,77 2,15 1,66 0,69 1,39 0,55 0,48 0,94 0,77

JX043 0,56 0,70 0,51 0,69 0,89 0,83 0,72 0,48 0,39 0,60 0,32 0,36

JX312 1,17 1,05 0,98 1,01 1,19 1,44 1,01 1,09 0,85 0,99 1,08 1,11

JX005 0,67 1,18 0,62 1,45 1,09 0,80 1,57 1,59 2,18 1,49 1,74 1,66

JX133 2,11 1,14 0,42 0,50 1,20 1,97 1,87 1,92 2,33 0,48 0,53 0,71

JX369 1,74 2,15 1,61 1,39 1,41 1,14 1,68 1,61 1,42 1,85 1,71 2,23

JX273 1,23 1,62 1,55 1,82 1,54 0,77 1,98 1,87 2,17 1,85 2,27 2,01

JX321 0,38 0,32 0,54 0,50 0,46 0,53 0,54 0,09 0,45 0,28 0,45 0,46

JX368 1,17 1,59 1,70 2,12 2,01 1,28 2,11 2,10 2,44 2,25 2,31 1,84

JX035 1,43 0,67 0,48 0,45 0,52 0,75 0,48 0,59 0,89 0,57 0,50 0,41

JX075 0,29 0,36 0,33 0,47 0,35 0,36 0,39 0,33 0,48 0,49 0,39 0,39

JX089 3,80 1,12 1,36 1,70 1,68 1,03 2,47 2,36 1,88 3,09 2,36 1,28

JX184 0,29 0,36 0,46 0,28 0,34 0,36 0,46 0,35 0,27 0,29 0,26 0,53

JX185 3,54 3,36 2,75 3,10 3,14 3,44 2,68 1,94 2,60 3,87 3,91 3,51

JX223 0,19 0,37 0,49 0,49 0,44 0,48 0,46 0,36 0,41 0,48 0,45 0,47

JX034 5,46 5,85 5,62 6,12 4,68 2,53 5,54 4,78 2,76 7,16 5,86 4,38

JX180 0,53 0,45 0,45 0,33 0,57 0,72 0,45 0,48 0,51 0,46 0,44 0,50
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Supplemental table S5  Function description and  variation analysis of 424 protein spots among 12 genotypes at cell expansion stage (CE) and orange red (OR) stage. Significant spots are highlight in yellow, 
Spot ID ITAG accession numbe Position on genome (bp) Protein function description Protein classification y ANOVA_genotyway ANOVA_stagenotype and sype effect_Cype effect_OR stage

JX001 Solyc02g080630.2.1 39392539-39397791 Lactoylglutathione lyase primary metabolic process 7,06E-26 1,24E-08 5,34E-04 2,12E-12 1,93E-12
JX002 Solyc09g007150.2.1 775043-778675 Glutathione S-transferase response to stress 1,42E-10 4,44E-28 7,09E-09 3,84E-07 1,53E-04
JX003 Solyc12g010020.1.1 3152019-3154797 Leucyl aminopeptidase response to stress 3,11E-02 6,06E-06 7,64E-03 1,30E-04 7,33E-01
JX004 Solyc07g062650.2.1 62561877-62565142 Malate dehydrogenase primary metabolic process 1,96E-04 1,41E-23 4,07E-01 1,56E-01 3,34E-04
JX005 Solyc01g057830.2.1 56934925-56939761 30S ribosomal protein S1 translation 2,51E-08 5,43E-02 2,32E-04 7,54E-01 3,44E-08
JX006 Solyc09g010930.2.1 4264025-4269432 NAD-dependent epimerase/dehydratase cell wall organisation or biogenesis 6,83E-10 2,46E-15 5,88E-09 5,07E-09 4,73E-01
JX007 Solyc05g054760.2.1 63753656-63758079 Dehydroascorbate reductase vitamin synthesis 2,10E-06 9,87E-06 9,49E-03 9,69E-06 1,44E-02
JX008 Solyc04g011510.2.1 3944572-3949105 Triosephosphate isomerase primary metabolic process 1,81E-05 2,86E-22 6,52E-02 1,98E-03 8,52E-03
JX009 Solyc02g065400.2.1 31151784-31154764 Oxygen-evolving enhancer protein 1 of photosystem II regulation of biological process 3,78E-06 6,73E-21 8,00E-03 3,14E-03 4,24E-05
JX010 Solyc03g120280.1.1 62781048-62782397 RAN binding protein 3 establishment of localization 2,28E-12 4,12E-01 6,93E-01 1,66E-08 6,12E-04
JX011 Solyc06g060290.2.1 34649921-34655100 Protein disulfide isomerase macromolecule metabolic process 6,00E-02 4,31E-09 1,18E-01 1,53E-01 9,08E-02
JX012 Solyc06g005940.2.1 921114-925482 Protein disulfide isomerase macromolecule metabolic process 1,01E-08 5,94E-10 1,74E-05 1,12E-06 3,14E-03
JX013 Solyc08g065900.2.1 51450546-51456933 Charged multivesicular body protein 4b establishment of localization 2,98E-01 2,96E-09 5,83E-01 1,98E-01 6,70E-01
JX014 Solyc07g064880.2.1 64080741-64083209 Small ubiquitin-related modifier macromolecule metabolic process 5,25E-13 3,04E-14 1,04E-10 3,08E-09 4,14E-01
JX015 Solyc06g073190.2.1 41483219-41485991 Fructokinase-like primary metabolic process 4,20E-03 6,69E-30 4,30E-03 7,08E-03 8,67E-01
JX016 Solyc01g010750.2.1 5783031-5788195 Stress responsive protein response to stress 6,53E-02 4,65E-04 1,36E-01 4,37E-02 2,52E-01
JX017 Solyc07g064160.2.1 63644226-63646402 Thiazole biosynthetic enzyme vitamin synthesis 5,25E-02 3,93E-09 4,83E-02 1,09E-06 2,89E-01
JX018 Solyc05g018700.2.1 22827490-22832816 Protein disulfide isomerase macromolecule metabolic process 5,70E-09 3,66E-01 6,74E-05 2,35E-02 3,96E-07
JX019 Solyc02g079500.2.1 38618009-38620468 Peroxidase cell wall organisation or biogenesis 2,35E-06 8,74E-26 1,69E-03 1,25E-02 1,52E-04
JX020 Solyc04g073990.2.1 57610227-57612650 Annexin establishment of localization 4,72E-11 4,17E-01 6,75E-02 9,24E-06 3,20E-05
JX021 Solyc12g099000.1.1 64658262-64659443 S-adenosylmethionine synthase hormone metabolic process 3,85E-02 1,32E-16 9,07E-02 4,17E-04 3,50E-01
JX022 Solyc01g111300.2.1 89348859-89349828 Cold shock protein-1 regulation of biological process 2,87E-02 5,71E-16 6,87E-04 5,70E-02 1,98E-04
JX023 Solyc01g101060.2.1 82678819-82681422 S-adenosylmethionine synthase hormone metabolic process 9,21E-08 3,83E-05 7,34E-05 1,68E-05 3,11E-03
JX024 Solyc09g007940.2.1 1440058-1444221 Adenosine kinase primary metabolic process 8,98E-08 3,97E-02 4,72E-03 3,65E-05 8,00E-04
JX025 Solyc08g067160.2.1 53325912-53329825 Acyl-protein thioesterase 2 macromolecule metabolic process 2,01E-06 4,86E-05 6,40E-02 1,81E-02 5,18E-05
JX026 Solyc09g082060.2.1 63298831-63303187 Cysteine synthase primary metabolic process 2,60E-03 3,46E-13 2,26E-01 2,85E-02 7,55E-02
JX027 Solyc08g076990.2.1 58097110-58102792 Acetylornithine deacetylase primary metabolic process 3,05E-01 1,70E-09 5,88E-01 3,76E-03 9,36E-01
JX028 Solyc02g080420.2.1 39222034-39228232 RNA Binding Protein 45 regulation of biological process 2,05E-02 2,19E-01 3,31E-01 4,16E-02 2,33E-01
JX029 Solyc08g075160.2.1 56470989-56477178 Bifunctional purine biosynthesis protein purH primary metabolic process 1,71E-02 6,62E-14 1,13E-02 7,69E-03 2,81E-01
JX030 Solyc03g078400.2.1 44381441-44383329 Actin cytoskeleton organization and biogenesis 5,95E-03 3,88E-15 1,17E-03 2,78E-02 4,19E-03
JX031 Solyc08g076970.2.1 58078222-58080829 Acetylornithine deacetylase or succinyl-diaminopimelate desuccinmacromolecule metabolic process 1,50E-03 2,47E-01 6,72E-01 3,71E-02 1,13E-01
JX032 Solyc01g094200.2.1 77521221-77531982 NAD-dependent malic enzyme 2 primary metabolic process 1,82E-02 7,54E-14 7,63E-05 3,24E-03 6,36E-03
JX033 Solyc04g011510.2.1 3944572-3949105 Triosephosphate isomerase primary metabolic process 3,87E-02 2,18E-05 2,31E-02 8,70E-03 1,10E-01
JX034 Solyc05g054760.2.1 63753656-63758079 Dehydroascorbate reductase vitamin synthesis 4,95E-12 8,06E-16 1,58E-01 4,37E-05 2,82E-07
JX035 Solyc02g078540.2.1 37780626-37784558 Unknown Protein Unknown 4,72E-08 4,61E-03 4,06E-08 6,31E-01 3,53E-11
JX036 Solyc07g049530.2.1 57154220-57156391 1-aminocyclopropane-1-carboxylate oxidase developmental maturation 1,21E-03 7,60E-16 1,59E-03 2,12E-01 5,35E-03
JX037 Solyc07g053310.2.1 59102795-59108445 Adaptin ear-binding coat-associated protein 1 establishment of localization 4,81E-08 6,65E-24 7,30E-08 1,33E-02 1,90E-07
JX038 Solyc02g036350.2.1 21279767-21281954 1-aminocyclopropane-1-carboxylate oxidase developmental maturation 3,12E-02 5,32E-06 5,96E-02 5,30E-09 1,13E-01
JX039 Solyc07g049530.2.1 57154220-57156391 1-aminocyclopropane-1-carboxylate oxidase developmental maturation 3,08E-08 5,71E-23 9,77E-08 8,65E-02 2,61E-06
JX040 Solyc09g089580.2.1 64646856-64649117 1-aminocyclopropane-1-carboxylate oxidase-like protein developmental maturation 2,85E-10 4,70E-28 1,22E-07 2,11E-04 4,66E-08
JX041 Solyc09g013080.2.1 5484876-5491347 Acetyl-coenzyme A carboxylase carboxyl transferase subunit alphprimary metabolic process 5,15E-05 1,63E-01 4,76E-01 1,22E-01 2,15E-03
JX042 Solyc04g073990.2.1 57610227-57612650 Annexin establishment of localization 8,22E-16 1,22E-03 1,69E-01 2,66E-08 6,09E-07
JX043 Solyc11g013110.1.1 5961440-5965680 Anthocyanidin synthase secondary metabolic process 4,41E-05 4,70E-19 5,68E-04 3,99E-02 9,07E-04
JX044 Solyc02g079500.2.1 38618009-38620468 Peroxidase cell wall organisation or biogenesis 3,64E-03 1,08E-26 2,11E-03 6,72E-02 5,61E-03
JX045 Solyc03g083910.2.1 47397595-47401871 Acid beta-fructofuranosidase primary metabolic process 3,90E-02 4,22E-11 5,40E-02 5,57E-01 6,72E-02
JX046 Solyc10g080210.1.1 60883700-60890335 Polygalacturonase A macromolecule metabolic process 1,89E-07 3,50E-25 5,16E-06 4,46E-03 2,53E-05
JX047 Solyc03g097270.2.1 53034151-53040369 Cysteine proteinase inhibitor regulation of biological process 6,40E-08 2,60E-01 5,22E-01 6,70E-05 4,08E-03
JX048 Solyc04g082200.2.1 63550865-63552237 Dehydrin response to stress 4,68E-04 9,33E-14 1,02E-02 3,16E-03 1,18E-02
JX049 Solyc06g076570.1.1 43954001-43954465 class I heat shock protein response to stress 1,82E-04 1,49E-26 8,42E-04 1,35E-05 4,56E-03
JX050 Solyc02g081160.2.1 39802521-39809198 Diphosphate-fructose-6-phosphate 1-phosphotransferase primary metabolic process 2,69E-03 1,67E-02 1,97E-02 2,75E-01 1,03E-04
JX051 Solyc03g083910.2.1 47397595-47401871 Acid beta-fructofuranosidase primary metabolic process 1,23E-04 5,98E-05 1,30E-04 1,17E-01 3,16E-04
JX052 Solyc04g011440.2.1 3894918-3898067 heat shock protein response to stress 1,85E-02 9,57E-30 4,46E-02 3,88E-03 8,39E-02
JX053 Solyc01g090700.2.1 76099361-76107876 Enoyl-CoA-hydratase primary metabolic process 4,69E-02 9,45E-08 1,43E-01 7,60E-03 1,23E-01
JX054 Solyc05g056310.2.1 64792047-64799309 T-complex protein 1 subunit gamma macromolecule metabolic process 2,52E-01 3,70E-08 3,81E-02 3,56E-02 1,88E-01
JX055 Solyc02g079930.2.1 38895029-38898734 Phosphosulfolactate synthase response to stress 7,75E-06 8,72E-19 2,09E-04 1,12E-02 3,00E-04
JX056 Solyc01g099190.2.1 81251679-81256014 Lipoxygenase primary metabolic process 3,30E-01 8,40E-14 1,22E-08 1,92E-04 4,79E-04
JX057 Solyc12g010040.1.1 3180908-3187436 Leucyl aminopeptidase macromolecule metabolic process 1,41E-01 6,95E-16 7,25E-03 8,85E-02 1,47E-02
JX058 Solyc01g005560.2.1 394402-399248 Isocitrate dehydrogenase primary metabolic process 4,31E-02 1,19E-06 1,39E-04 1,47E-01 4,59E-04
JX059 Solyc06g083790.2.1 45398741-45407021 Succinyl-CoA ligase primary metabolic process 4,45E-05 9,99E-01 7,79E-01 7,44E-02 3,15E-03
JX060 Solyc02g078360.2.1 37652619-37657447 Thioredoxin family protein oxidation-reduction process 8,90E-03 6,45E-04 1,86E-01 7,28E-02 6,14E-02
JX061 Solyc05g013990.2.1 7492470-7499923 T-complex protein 1 subunit epsilon macromolecule metabolic process 1,83E-04 3,38E-01 8,63E-02 3,40E-05 3,13E-01
JX062 Solyc10g005650.2.1 519710-532795 Peroxisomal targeting signal 1 receptor establishment of localization 4,48E-02 2,13E-08 7,39E-03 6,60E-03 9,26E-02
JX063 Solyc02g091840.2.1 47648877-47652967 Receptor like kinase. RLK regulation of biological process 6,75E-08 6,47E-01 2,82E-02 1,53E-02 1,17E-06
JX064 Solyc03g025950.2.1 7764256-7767163 Membrane-associated progesterone receptor component 1 regulation of biological process 4,79E-05 4,22E-04 7,27E-03 1,17E-02 2,14E-04
JX065 Solyc01g111760.2.1 89701090-89706839 V-type ATP synthase beta chain establishment of localization 1,61E-01 8,16E-02 6,94E-03 6,21E-02 4,27E-02
JX066 Solyc12g042060.1.1 42533149-42537576 ATP-dependent clp protease ATP-binding subunit establishment of localization 7,05E-03 6,87E-01 3,68E-02 6,65E-02 1,30E-02
JX067 Solyc07g049450.2.1 57040844-57048137 Thioredoxin/protein disulfide isomerase macromolecule metabolic process 2,49E-02 5,50E-02 1,63E-01 2,60E-01 2,11E-02
JX068 Solyc02g081160.2.1 39802521-39809198 Diphosphate-fructose-6-phosphate 1-phosphotransferase primary metabolic process 9,12E-03 7,31E-03 7,41E-02 5,27E-01 3,94E-03
JX069 Solyc01g111760.2.1 89701090-89706839 V-type ATP synthase beta chain establishment of localization 5,70E-03 6,86E-03 6,02E-04 1,46E-04 3,89E-02
JX070 Solyc02g083590.2.1 41515715-41520837 Dehydroquinate synthase primary metabolic process 6,90E-04 1,03E-13 3,94E-04 3,62E-01 5,38E-06
JX071 Solyc05g008450.2.1 2800495-2805716 Oxidoreductase FAD/NAD oxidation-reduction process 3,30E-02 1,55E-02 7,21E-01 2,41E-01 2,13E-01
JX072 Solyc11g066100.1.1 48856641-48858939 heat shock protein response to stress 2,20E-02 1,24E-06 5,46E-01 6,51E-02 3,63E-01
JX073 Solyc09g090140.2.1 65031288-65034684 Malate dehydrogenase primary metabolic process 7,71E-05 5,47E-11 6,27E-04 3,26E-03 1,08E-03
JX074 Solyc08g082820.2.1 62655311-62659585 Heat shock protein response to stress 2,81E-05 5,95E-01 9,44E-02 1,70E-04 4,65E-02
JX075 Solyc04g076820.1.1 59289748-59291172 Octicosapeptide/Phox/Bem1p domain-containing protein Unknown 5,59E-06 2,93E-04 1,36E-01 4,62E-02 2,17E-04
JX076 Solyc12g044600.2.1 45079934-45087825 NADP-dependent malic enzyme. chloroplastic primary metabolic process 4,27E-02 4,53E-01 8,15E-02 1,12E-01 6,01E-02
JX077 Solyc08g079170.2.1 59970339-59976456 Stress-induced protein sti1-like protein response to stress 1,24E-03 4,01E-03 2,61E-01 7,88E-02 8,27E-03
JX078 Solyc12g008630.1.1 2007849-2015328 Mitochondrial processing peptidase alpha subunit macromolecule metabolic process 4,06E-01 1,29E-05 4,75E-01 4,43E-01 4,81E-01
JX079 Solyc08g079170.2.1 59970339-59976456 Stress-induced protein sti1-like protein response to stress 2,37E-01 3,44E-04 4,93E-01 1,23E-01 6,59E-01
JX080 Solyc06g009020.2.1 2965668-2967884 Glutathione S-transferase response to stress 2,30E-02 3,27E-02 5,38E-01 2,54E-01 1,03E-01
JX081 Solyc10g081240.1.1 61667783-61677144 Protein grpE primary metabolic process 7,50E-01 4,83E-10 2,94E-01 8,12E-01 4,51E-01
JX082 Solyc09g082720.2.1 63816287-63819690 Aldo/keto reductase family protein oxidation-reduction process 1,31E-10 1,76E-10 1,48E-06 5,37E-03 9,23E-08
JX083 Solyc06g076560.1.1 43949614-43950078 class I heat shock protein response to stress 7,75E-05 4,80E-32 5,01E-05 4,05E-01 2,39E-04
JX084 Solyc10g078930.1.1 59896781-59900058 Activator of heat shock protein ATPase homolog 1 response to stress 1,75E-13 2,29E-12 4,33E-04 1,09E-04 3,45E-12
JX085 Solyc09g015000.2.1 7427223-7428264 class I heat shock protein response to stress 8,68E-25 2,12E-16 3,14E-21 8,07E-04 9,46E-15
JX086 Solyc03g113930.1.1 58031590-58032156 class IV heat shock protein response to stress 8,42E-13 6,58E-26 7,88E-12 3,23E-01 1,25E-08
JX087 Solyc03g083910.2.1 47397595-47401871 Acid beta-fructofuranosidase primary metabolic process 1,41E-03 4,45E-05 6,84E-03 2,12E-02 9,43E-03
JX088 Solyc03g111720.2.1 56431489-56432545 Peptide methionine sulfoxide reductase msrA oxidation-reduction process 4,69E-06 3,39E-35 1,03E-05 6,44E-01 9,81E-05
JX089 Solyc01g111040.2.1 89209383-89212670 EF-Hand containing protein-like Unknown 5,57E-08 8,50E-21 2,61E-06 2,56E-01 8,44E-06
JX090 Solyc04g082200.2.1 63550865-63552237 Dehydrin response to stress 9,10E-03 2,61E-11 1,50E-03 4,99E-03 1,21E-02
JX091 Solyc05g050120.2.1 59250938-59255250 Malic enzyme primary metabolic process 5,97E-10 1,18E-04 4,21E-06 9,19E-02 1,79E-07
JX092 Solyc08g062340.2.1 48122173-48122945 Class II small heat shock protein Le-HSP17.6 response to stress 4,68E-07 5,63E-31 1,95E-07 1,99E-05 2,24E-05
JX093 Solyc08g078700.2.1 59635844-59637072 Heat shock protein 22 response to stress 4,42E-03 3,88E-17 6,94E-05 2,07E-03 2,93E-03
JX094 Solyc02g090030.2.1 46276521-46278207 Oxygen-evolving enhancer protein 1 of photosystem II regulation of biological process 2,89E-04 1,54E-30 2,11E-01 4,00E-03 6,64E-02
JX095 Solyc12g088720.1.1 62418023-62421876 Polyadenylate-binding protein 2 macromolecule metabolic process 6,52E-04 8,44E-02 6,45E-01 1,65E-02 6,42E-02
JX096 Solyc11g072190.1.1 52501034-52504379 Elongation factor beta-1 regulation of biological process 2,78E-09 1,69E-01 9,57E-02 3,63E-09 2,06E-02
JX097 Solyc11g020040.1.1 10015582-10019521 Chaperone DnaK response to stress 1,85E-02 2,01E-29 2,70E-01 3,99E-03 3,64E-01
JX098 Solyc10g083650.1.1 62763114-62763800 Peroxiredoxin ahpC/TSA family oxidation-reduction process 2,76E-04 1,51E-09 2,54E-02 7,61E-06 1,57E-02
JX099 Solyc02g077710.1.1 37172109-37173137 E6-2 protein kinase regulation of biological process 1,44E-06 1,09E-15 2,44E-04 3,20E-01 2,08E-05
JX100 Solyc10g083650.1.1 62763114-62763800 Peroxiredoxin ahpC/TSA family oxidation-reduction process 6,47E-08 4,24E-18 2,45E-03 8,81E-04 1,22E-04
JX101 Solyc09g010930.2.1 4264025-4269432 NAD-dependent epimerase/dehydratase cell wall organisation or biogenesis 3,83E-03 8,56E-02 1,70E-10 1,64E-07 1,78E-04
JX102 Solyc06g005940.2.1 921114-925482 Protein disulfide isomerase macromolecule metabolic process 1,62E-14 7,07E-04 5,75E-07 7,62E-06 1,10E-08
JX103 Solyc08g075210.1.1 56497821-56499095 Acyltransferase-like protein regulation of biological process 6,06E-08 8,60E-03 2,19E-02 1,77E-02 1,55E-05
JX104 Solyc01g104950.2.1 85031292-85035396 Alpha-L-arabinofuranosidase/beta-D-xylosidase cell wall organisation or biogenesis 1,42E-03 1,55E-10 3,41E-03 1,10E-03 2,73E-02
JX105 Solyc02g065400.2.1 31151784-31154764 Oxygen-evolving enhancer protein 1 of photosystem II regulation of biological process 1,68E-02 3,48E-17 3,10E-01 1,50E-01 2,64E-02
JX106 Solyc01g110450.2.1 88910585-88913966 NADP dependent sorbitol 6-phosphate dehydrogenase primary metabolic process 9,04E-05 3,82E-04 2,71E-01 1,61E-05 2,65E-01
JX107 Solyc06g060290.2.1 34649921-34655100 Protein disulfide isomerase macromolecule metabolic process 1,94E-02 1,35E-17 6,79E-05 6,12E-04 2,55E-01
JX108 Solyc05g055160.2.1 64069121-64073511 DNAJ chaperone regulation of biological process 2,21E-03 8,84E-13 7,06E-04 3,65E-05 7,99E-01
JX109 Solyc09g011030.2.1 4368272-4373182 Hsp70 nucleotide exchange factor fes1 regulation of biological process 3,15E-01 4,06E-09 1,05E-01 2,89E-01 2,10E-01
JX110 Solyc04g045340.2.1 31642460-31657602 Phosphoglucomutase primary metabolic process 5,20E-04 8,95E-06 1,11E-01 1,85E-01 3,88E-03
JX111 Solyc12g055830.1.1 47184732-47187107 Inorganic pyrophosphatase primary metabolic process 2,60E-09 6,88E-01 2,11E-03 1,98E-03 3,90E-07
JX112 Solyc06g009020.2.1 2965668-2967884 Glutathione S-transferase response to stress 8,29E-11 1,64E-08 1,09E-02 2,54E-03 1,57E-07
JX113 Solyc07g066600.2.1 65205704-65208684 Phosphoglycerate kinase primary metabolic process 7,93E-07 8,92E-05 4,83E-03 2,34E-04 1,96E-03
JX114 Solyc02g081700.1.1 40134968-40135714 Proteasome subunit alpha type macromolecule metabolic process 1,27E-02 1,96E-02 2,46E-02 1,50E-02 5,06E-01
JX115 Solyc09g009020.2.1 2370061-2375045 Enolase primary metabolic process 1,53E-03 2,70E-17 4,92E-02 5,73E-02 1,93E-03
JX116 Solyc02g086880.2.1 44063088-44067604 Formate dehydrogenase oxidation-reduction process 1,59E-06 9,55E-01 1,55E-01 1,21E-03 3,98E-03
JX117 Solyc07g064800.2.1 64009800-64015982 Dihydrolipoyllysine-residue succinyltransferase component of 2-omacromolecule metabolic process 7,94E-01 1,15E-11 3,55E-01 5,56E-01 5,76E-01
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JX118 Solyc06g005150.2.1 170218-173338 Ascorbate peroxidase oxidation-reduction process 8,03E-03 2,21E-13 2,34E-02 1,41E-01 4,76E-03
JX119 Solyc06g083190.2.1 45004847-45008910 Peptidyl-prolyl cis-trans isomerase macromolecule metabolic process 6,88E-02 5,15E-13 6,23E-02 6,79E-01 1,96E-02
JX120 Solyc06g005940.2.1 921114-925482 Protein disulfide isomerase macromolecule metabolic process 8,82E-05 3,38E-06 7,02E-04 3,50E-05 1,47E-01
JX121 Solyc10g005100.2.1 92148-94188 Salt stress root protein RS1 response to stress 2,93E-01 1,84E-04 7,55E-01 4,14E-01 5,55E-01
JX122 Solyc12g005080.1.1 38442-41171 Dihydrolipoyllysine-residue succinyltransferase component of 2-omacromolecule metabolic process 4,39E-02 1,25E-11 1,22E-03 2,23E-01 2,36E-03
JX123 Solyc04g011510.2.1 3944572-3949105 Triosephosphate isomerase primary metabolic process 4,18E-01 1,11E-23 4,39E-01 5,70E-01 2,75E-01
JX124 Solyc05g014470.2.1 8322381-8324881 Glyceraldehyde 3-phosphate dehydrogenase primary metabolic process 7,49E-02 4,71E-14 9,99E-01 4,17E-01 5,49E-01
JX125 Solyc09g098150.2.1 67309562-67312625 Metacaspase 7 macromolecule metabolic process 4,22E-03 2,28E-06 1,15E-03 3,55E-02 1,51E-03
JX126 Solyc01g104170.2.1 84393496-84398307 Ankyrin repeat domain-containing protein 2 regulation of biological process 6,35E-02 2,36E-02 1,96E-01 6,39E-02 8,31E-01
JX127 Solyc10g084050.1.1 63048965-63053841 26S protease regulatory subunit 6B homolog macromolecule metabolic process 3,34E-02 4,44E-04 3,54E-02 6,78E-01 5,20E-04
JX128 Solyc01g111120.2.1 89253979-89260194 Triosephosphate isomerase primary metabolic process 3,28E-02 6,75E-08 4,79E-01 9,05E-01 1,69E-02
JX129 Solyc01g099760.2.1 81668247-81673265 26S protease regulatory subunit 6A homolog macromolecule metabolic process 4,73E-01 2,02E-06 7,43E-01 8,66E-01 2,67E-01
JX130 Solyc05g005700.2.1 514498-518886 Aldehyde dehydrogenase 1 primary metabolic process 6,08E-01 2,74E-03 8,58E-01 7,65E-01 7,14E-01
JX131 Solyc04g045340.2.1 31642460-31657602 Phosphoglucomutase primary metabolic process 7,23E-01 5,68E-01 4,12E-01 2,22E-01 8,52E-01
JX132 Solyc02g091100.2.1 47093169-47096847 Oxalyl-CoA decarboxylase primary metabolic process 1,33E-09 4,64E-11 2,90E-05 2,94E-02 2,63E-06
JX133 Solyc03g115650.2.1 59340664-59343595 Eukaryotic translation initiation factor 5A translation 1,49E-24 4,70E-07 9,25E-05 2,50E-08 6,10E-15
JX134 Solyc01g102960.2.1 83371681-83372560 class IV heat shock protein response to stress 1,40E-04 1,23E-18 1,51E-03 2,22E-01 2,28E-03
JX135 Solyc01g057000.2.1 50798585-50800986 Universal stress protein family protein response to stress 2,22E-04 2,82E-26 3,18E-02 3,88E-01 3,28E-03
JX136 Solyc02g081170.2.1 39810752-39812645 Plastid-lipid-associated protein. chloroplastic response to stress 5,72E-03 1,31E-22 2,08E-01 4,20E-01 3,46E-02
JX137 Solyc06g005940.2.1 921114-925482 Protein disulfide isomerase macromolecule metabolic process 1,06E-02 4,17E-01 2,55E-01 3,10E-05 2,07E-01
JX138 Solyc02g092670.1.1 48256556-48258820 Subtilisin-like protease macromolecule metabolic process 4,86E-10 1,29E-21 2,01E-07 4,96E-02 6,08E-08
JX139 Solyc05g056230.2.1 64732387-64738654 Calreticulin 2 calcium-binding protein macromolecule metabolic process 6,28E-07 1,13E-03 9,96E-01 6,18E-05 3,73E-02
JX140 Solyc03g082920.2.1 46341372-46345339 Heat shock protein response to stress 2,86E-05 6,08E-04 1,42E-01 4,24E-04 5,86E-02
JX141 Solyc03g082920.2.1 46341372-46345339 Heat shock protein response to stress 3,64E-04 7,80E-06 1,88E-01 1,86E-02 2,06E-02
JX142 Solyc09g098150.2.1 67309562-67312625 Metacaspase 7 macromolecule metabolic process 3,70E-04 1,65E-08 8,77E-04 3,90E-03 2,40E-03
JX143 Solyc04g040180.2.1 31093421-31095617 S-adenosylmethionine-dependent methyltransferase hormone metabolic process 6,60E-02 8,50E-14 1,85E-04 4,80E-01 6,72E-04
JX144 Solyc01g108540.2.1 87591739-87592913 Acetyl esterase primary metabolic process 4,93E-01 5,09E-14 5,50E-01 5,64E-03 5,48E-01
JX145 Solyc02g031950.2.1 17912940-17915049 Pathogenesis-related protein-like protein response to stress 1,11E-10 5,57E-09 2,53E-03 6,67E-05 1,76E-07
JX146 no identification 1,10E-13 8,82E-09 2,15E-04 2,28E-11 6,61E-03
JX147 Solyc10g081030.1.1 61534917-61538284 Nascent polypeptide-associated complex alpha subunit-like proteiestablishment of localization 6,67E-04 1,22E-05 6,91E-02 1,36E-01 1,96E-04
JX148 Solyc00g187050.2.1 18478269-18481034 Leucyl aminopeptidase macromolecule metabolic process 7,96E-09 9,65E-14 2,77E-06 2,15E-07 3,02E-01
JX149 Solyc08g082820.2.1 62655311-62659585 Heat shock protein response to stress 5,03E-10 6,28E-02 1,94E-03 2,29E-06 3,00E-03
JX150 Solyc06g005160.2.1 182627-185280 Ascorbate peroxidase oxidation-reduction process 2,38E-06 6,57E-04 5,79E-03 3,36E-03 2,55E-04
JX151 Solyc10g085550.1.1 63996015-64000623 Enolase primary metabolic process 1,42E-02 5,61E-16 2,60E-03 1,57E-02 1,56E-02
JX152 Solyc06g075010.2.1 42927697-42932331 chaperonin macromolecule metabolic process 7,96E-08 1,12E-29 1,11E-03 2,21E-04 6,77E-05
JX153 Solyc03g121640.2.1 63788759-63796170 chaperonin macromolecule metabolic process 1,14E-09 3,93E-03 6,99E-01 4,18E-05 5,29E-04
JX154 Solyc03g115990.1.1 59594180-59595418 Malate dehydrogenase primary metabolic process 1,11E-09 1,26E-02 3,94E-04 7,05E-03 6,55E-06
JX155 Solyc03g114500.2.1 58538109-58542525 Enolase primary metabolic process 5,84E-03 4,65E-20 4,50E-01 9,45E-02 7,87E-02
JX156 Solyc01g097340.2.1 79999429-80002633 NAD-dependent epimerase/dehydratase family protein-like proteicell wall organisation or biogenesis 4,95E-03 7,82E-20 4,42E-01 2,24E-01 5,14E-03
JX157 Solyc08g082430.2.1 62404261-62407246 Nucleoside diphosphate kinase primary metabolic process 3,44E-07 2,37E-20 2,74E-01 2,31E-05 1,60E-02
JX158 Solyc12g098420.1.1 64267844-64273580 Ubiquitin carboxyl-terminal hydrolase macromolecule metabolic process 4,45E-12 6,15E-10 4,83E-02 1,11E-06 1,89E-04
JX159 Solyc12g096190.1.1 63553620-63556459 Tryptophan synthase beta chain primary metabolic process 2,01E-01 9,61E-08 6,03E-01 2,10E-01 7,25E-01
JX160 Solyc12g010040.1.1 3180908-3187436 Leucyl aminopeptidase macromolecule metabolic process 4,86E-04 2,92E-12 2,14E-02 1,43E-02 4,78E-03
JX161 Solyc03g114500.2.1 58538109-58542525 Enolase primary metabolic process 1,00E-06 1,73E-23 1,82E-04 1,12E-02 2,43E-07
JX162 Solyc07g043420.2.1 54503345-54505070 2-oxoglutarate-dependent dioxygenase oxidation-reduction process 5,06E-05 1,78E-03 8,34E-03 1,55E-05 2,49E-01
JX163 Solyc04g082630.2.1 63844019-63847151 Glyceraldehyde-3-phosphate dehydrogenase B primary metabolic process 6,58E-02 1,41E-13 6,26E-01 8,11E-01 1,22E-04
JX164 Solyc01g106430.2.1 86088310-86092110 Inorganic pyrophosphatase family protein primary metabolic process 1,61E-02 3,20E-27 2,13E-02 1,35E-01 8,24E-04
JX165 Solyc10g078930.1.1 59896781-59900058 Activator of heat shock protein ATPase homolog 1 response to stress 1,67E-15 2,43E-02 1,70E-03 7,57E-07 2,05E-08
JX166 Solyc10g086580.1.1 64688483-64690961 Ribulose-1 5-bisphosphate carboxylase/oxygenase activase 1 cellular metabolic process 4,07E-02 5,17E-25 5,79E-03 2,80E-02 3,94E-02
JX167 Solyc11g072450.1.1 52705683-52710449 Mitochondrial F0 ATP synthase D chain establishment of localization 3,11E-01 2,30E-20 6,58E-02 4,10E-01 2,20E-02
JX168 Solyc01g104950.2.1 85031292-85035396 Alpha-L-arabinofuranosidase/beta-D-xylosidase cell wall organisation or biogenesis 1,56E-06 1,93E-08 6,26E-01 5,02E-03 2,30E-03
JX169 Solyc05g014470.2.1 8322381-8324881 Glyceraldehyde 3-phosphate dehydrogenase primary metabolic process 5,58E-03 3,50E-23 3,09E-02 3,72E-01 9,70E-04
JX170 Solyc04g005340.2.1 248903-251735 Alpha-1 4-glucan protein synthase cell wall organisation or biogenesis 5,31E-06 5,07E-25 5,75E-06 3,33E-01 4,54E-05
JX171 Solyc05g050120.2.1 59250938-59255250 Malic enzyme primary metabolic process 1,31E-04 5,13E-01 7,42E-04 1,38E-03 4,41E-03
JX172 Solyc06g060290.2.1 34649921-34655100 Protein disulfide isomerase macromolecule metabolic process 7,83E-04 5,83E-10 4,06E-02 1,35E-03 1,07E-01
JX173 Solyc09g082990.2.1 64083974-64088590 GDP-D-mannose-3â??.5â??-epimerase 2 vitamin synthesis 5,84E-02 5,91E-12 1,07E-02 1,89E-03 3,77E-01
JX174 Solyc12g006870.1.1 1315304-1322819 Acyl-protein thioesterase 2 macromolecule metabolic process 2,68E-02 1,95E-10 1,10E-05 1,24E-06 2,19E-01
JX175 Solyc09g064370.2.1 57150099-57154745 Alcohol dehydrogenase cellular metabolic process 4,20E-04 1,61E-01 1,60E-02 6,47E-03 1,04E-02
JX176 Solyc07g041490.1.1 50632738-50633541 Stress responsive alpha-beta barrel domain protein response to stress 1,78E-04 6,16E-14 8,87E-01 1,46E-01 2,56E-04
JX177 Solyc09g090140.2.1 65031288-65034684 Malate dehydrogenase primary metabolic process 1,05E-06 4,08E-23 3,78E-03 8,19E-03 2,13E-06
JX178 Solyc12g009400.1.1 2682210-2685916 Pyruvate dehydrogenase E1 component alpha subunit primary metabolic process 4,61E-05 1,17E-02 1,41E-02 1,43E-02 2,19E-03
JX179 Solyc08g014340.2.1 4063851-4071314 Cysteine synthase primary metabolic process 7,39E-04 4,83E-12 1,64E-03 2,48E-05 5,10E-01
JX180 Solyc03g120090.1.1 62641034-62641951 Pyridoxal biosynthesis lyase pdxS vitamin synthesis 4,34E-03 2,21E-01 2,65E-02 7,50E-01 7,57E-05
JX181 Solyc11g069790.1.1 51502451-51507359 chaperonin macromolecule metabolic process 2,03E-02 9,83E-10 1,94E-01 2,19E-02 1,86E-01
JX182 Solyc04g079200.2.1 61339502-61344701 26S proteasome regulatory subunit macromolecule metabolic process 1,24E-01 7,65E-04 2,36E-01 4,26E-02 3,52E-01
JX183 Solyc03g113800.2.1 57894787-57902443 Betaine aldehyde dehydrogenase primary metabolic process 8,79E-02 6,12E-01 1,72E-03 5,32E-02 1,01E-02
JX184 Solyc09g005740.1.1 508767-509831 Chloroplast lumen common family protein Unknown 1,81E-04 6,54E-01 1,60E-02 7,55E-02 1,80E-03
JX185 Solyc07g061790.2.1 61964267-61965352 Heme-binding protein 2 Unknown 1,16E-06 8,93E-05 3,84E-03 7,65E-03 1,87E-04
JX186 Solyc02g078120.1.1 37474003-37475736 Eukaryotic translation initiation factor 3 subunit 7 translation 1,31E-02 1,48E-05 1,35E-01 1,49E-01 3,50E-02
JX187 Solyc11g011470.1.1 4520459-4526103 NADH-ubiquinone oxidoreductase subunit oxidation-reduction process 9,19E-03 1,17E-14 1,91E-02 1,27E-03 2,00E-01
JX188 Solyc05g008460.2.1 2805741-2809779 ATP synthase subunit beta regulation of biological process 6,28E-04 7,95E-20 8,50E-02 4,92E-02 4,05E-03
JX189 Solyc03g120280.1.1 62781048-62782397 RAN binding protein 3 establishment of localization 4,30E-03 3,24E-03 2,88E-02 2,13E-02 2,88E-02
JX190 Solyc04g055170.2.1 52933311-52937146 Annexin 2 establishment of localization 3,52E-08 1,48E-08 9,19E-03 7,21E-04 3,27E-05
JX191 Solyc12g043020.1.1 44067590-44080483 Dihydroxy-acid dehydratase primary metabolic process 4,46E-04 3,68E-08 8,52E-02 6,61E-02 2,83E-03
JX192 Solyc11g039980.1.1 28095562-28096080 ATP synthase subunit alpha establishment of localization 1,33E-01 2,85E-08 2,31E-01 4,33E-01 1,00E-01
JX193 Solyc01g066480.2.1 66874829-66881864 Fumarylacetoacetate hydrolase domain-containing protein 1 primary metabolic process 3,36E-02 4,80E-03 7,97E-02 2,27E-01 3,05E-02
JX194 Solyc11g066060.1.1 48824058-48826931 heat shock protein response to stress 3,91E-03 2,28E-13 4,37E-01 4,88E-02 1,03E-01
JX195 Solyc01g010750.2.1 5783031-5788195 Stress responsive protein response to stress 1,79E-06 3,41E-15 2,10E-02 1,79E-03 9,24E-04
JX196 Solyc11g069000.1.1 50652125-50657452 T-complex protein 1 subunit beta macromolecule metabolic process 5,95E-02 1,39E-06 3,33E-02 4,90E-02 1,25E-01
JX197 Solyc06g071790.2.1 40601620-40603444 Elongation factor Tu translation 1,00E-03 7,04E-01 7,34E-02 4,27E-03 5,27E-02
JX198 Solyc05g012480.2.1 5715224-5720976 Mitochondrial processing peptidase beta subunit macromolecule metabolic process 3,46E-02 4,65E-06 3,26E-01 7,94E-02 3,14E-01
JX199 Solyc03g031720.2.1 8453484-8459499 RNA Binding Protein 45 regulation of biological process 3,48E-01 4,25E-08 1,51E-01 2,45E-01 2,79E-01
JX200 Solyc09g010630.2.1 3965253-3968837 heat shock protein response to stress 1,79E-01 1,64E-01 3,17E-02 2,97E-02 1,69E-01
JX201 Solyc01g028810.2.1 33327242-33332361 chaperonin macromolecule metabolic process 6,16E-02 3,23E-08 2,35E-03 3,66E-02 1,73E-02
JX202 Solyc12g010040.1.1 3180908-3187436 Leucyl aminopeptidase macromolecule metabolic process 1,69E-02 1,91E-01 2,01E-01 3,43E-03 8,48E-01
JX203 Solyc03g083390.2.1 46783589-46788273 Nuclear movement protein nudc regulation of biological process 5,65E-02 2,30E-02 6,87E-03 1,72E-03 2,18E-01
JX204 Solyc06g009020.2.1 2965668-2967884 Glutathione S-transferase response to stress 1,00E-03 2,83E-03 3,04E-02 1,40E-01 4,32E-03
JX205 Solyc09g009020.2.1 2370061-2375045 Enolase primary metabolic process 1,60E-02 7,09E-01 2,13E-02 4,54E-02 2,66E-02
JX206 Solyc05g017760.2.1 18312063-18317108 Acetyl-CoA C-acetyltransferase primary metabolic process 1,06E-01 9,92E-01 4,64E-01 3,26E-02 4,77E-01
JX207 Solyc07g008720.2.1 3694316-3696017 Nascent polypeptide-associated complex subunit beta establishment of localization 3,35E-01 3,64E-02 2,99E-01 9,96E-01 1,08E-02
JX208 Solyc01g106210.2.1 85918285-85922197 Chaperone DnaK response to stress 3,37E-02 9,48E-02 5,47E-01 5,65E-01 5,71E-02
JX209 Solyc02g081140.2.1 39782470-39786000 UBX domain-containing protein regulation of biological process 2,50E-01 1,51E-17 6,08E-01 8,11E-03 6,31E-01
JX210 Solyc03g082420.2.1 45898742-45899828 Heat shock protein response to stress 1,60E-14 5,33E-32 1,05E-15 7,08E-01 2,78E-12
JX211 Solyc09g072560.2.1 60593208-60595291 Legumin 11S-globulin macromolecule metabolic process 1,18E-03 1,15E-04 4,78E-03 2,47E-02 7,63E-03
JX212 Solyc09g082860.2.1 63941988-63946072 Sulfate adenylyltransferase primary metabolic process 2,50E-08 5,49E-16 5,43E-03 3,16E-04 1,20E-04
JX213 Solyc02g062460.2.1 28653823-28656374 2-oxoglutarate-dependent dioxygenase oxidation-reduction process 1,35E-05 3,61E-03 7,29E-03 1,16E-01 5,38E-04
JX214 Solyc09g009020.2.1 2370061-2375045 Enolase primary metabolic process 2,04E-05 3,72E-18 5,04E-02 6,51E-02 8,25E-06
JX215 Solyc01g010750.2.1 5783031-5788195 Stress responsive protein response to stress 3,45E-05 6,15E-02 2,32E-01 4,05E-03 1,24E-02
JX216 Solyc06g073280.2.1 41539950-41545003 LL-diaminopimelate aminotransferase primary metabolic process 6,61E-03 2,00E-04 7,88E-01 1,21E-01 1,41E-01
JX217 Solyc02g082920.2.1 41128832-41129990 Endochitinase macromolecule metabolic process 3,92E-08 3,57E-05 2,39E-12 5,46E-08 3,25E-07
JX218 Solyc06g073190.2.1 41483219-41485991 Fructokinase-like primary metabolic process 2,54E-18 2,29E-01 3,82E-13 1,80E-02 6,99E-13
JX219 Solyc02g082800.2.1 41021911-41031456 Ubiquilin-1 macromolecule metabolic process 3,66E-01 5,37E-02 3,35E-01 1,20E-02 4,49E-01
JX220 Solyc03g121720.2.1 63848472-63854092 2-hydroxy-3-oxopropionate reductase primary metabolic process 2,30E-02 8,80E-19 1,17E-01 4,01E-02 1,77E-01
JX221 Solyc06g050550.2.1 29742430-29749862 Sorting nexin 1 establishment of localization 4,48E-13 1,45E-04 3,14E-03 5,99E-06 4,02E-07
JX222 Solyc07g043420.2.1 54503345-54505070 2-oxoglutarate-dependent dioxygenase oxidation-reduction process 5,47E-06 1,42E-17 2,45E-09 1,53E-06 3,97E-01
JX223 Solyc01g106320.2.1 86005942-86007808 Octicosapeptide/Phox/Bem1p domain-containing protein Unknown 2,78E-06 8,91E-15 2,04E-02 2,07E-03 3,34E-05
JX224 Solyc09g008280.1.1 1749950-1751122 S-adenosylmethionine synthase hormone metabolic process 1,36E-02 4,41E-19 2,44E-02 1,20E-04 3,10E-01
JX225 Solyc09g011080.2.1 4413327-4416467 Ribulose-1 5-bisphosphate carboxylase/oxygenase activase 1 cellular metabolic process 3,31E-03 2,80E-12 2,45E-04 2,42E-03 6,91E-02
JX226 Solyc08g068310.2.1 54615972-54621953 RNA-binding La domain protein regulation of biological process 1,39E-11 4,73E-12 9,58E-07 2,69E-09 3,54E-03
JX227 Solyc01g110450.2.1 88910585-88913966 NADP dependent sorbitol 6-phosphate dehydrogenase primary metabolic process 1,46E-08 3,67E-01 1,12E-02 5,95E-05 2,60E-04
JX228 Solyc05g050120.2.1 59250938-59255250 Malic enzyme primary metabolic process 1,01E-03 7,17E-03 3,14E-02 9,47E-03 2,85E-02
JX229 Solyc06g073090.2.1 41417554-41421363 Ribosomal subunit interface protein macromolecule metabolic process 1,17E-02 1,54E-06 1,84E-02 6,42E-01 5,18E-03
JX230 Solyc08g080370.2.1 60840952-60844640 Acetylornithine aminotransferase primary metabolic process 7,03E-01 2,97E-11 2,63E-03 1,68E-02 3,32E-01
JX231 Solyc08g074410.2.1 55693755-55701940 Tryptophanyl-tRNA synthetase macromolecule metabolic process 3,57E-02 2,41E-11 2,02E-01 2,39E-02 5,05E-01
JX232 Solyc05g056310.2.1 64792047-64799309 T-complex protein 1 subunit gamma macromolecule metabolic process 2,65E-01 5,23E-04 2,02E-04 1,50E-02 1,99E-02
JX233 Solyc01g006980.2.1 1552093-1555934 Malonyl CoA-acyl carrier protein transacylase containing protein primary metabolic process 2,03E-03 4,30E-03 1,03E-01 6,77E-03 5,82E-02
JX234 Solyc05g053300.2.1 62572547-62577624 Dihydrolipoyl dehydrogenase primary metabolic process 1,08E-03 1,77E-09 5,50E-03 2,03E-01 3,46E-03
JX235 Solyc08g022210.2.1 14105526-14113435 Methylthioribose-1-phosphate isomerase primary metabolic process 7,36E-02 2,04E-02 5,83E-01 2,86E-01 2,00E-01
JX236 Solyc06g081980.1.1 44239265-44240194 Pyridoxal biosynthesis lyase pdxS vitamin synthesis 3,13E-03 8,54E-10 2,68E-01 5,42E-02 4,94E-02
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JX237 Solyc03g083910.2.1 47397595-47401871 Acid beta-fructofuranosidase primary metabolic process 2,95E-08 3,89E-15 3,12E-04 1,41E-01 1,22E-06
JX238 Solyc02g062500.2.1 28750335-28754482 2-oxoglutarate-dependent dioxygenase oxidation-reduction process 3,08E-07 4,04E-21 7,00E-07 3,52E-01 2,03E-05
JX239 Solyc03g083910.2.1 47397595-47401871 Acid beta-fructofuranosidase primary metabolic process 1,95E-12 1,56E-23 1,74E-11 3,48E-02 9,89E-09
JX240 Solyc07g062970.2.1 62819985-62823101 Serine/threonine phosphatase family protein macromolecule metabolic process 2,32E-04 2,22E-23 2,71E-04 2,34E-01 1,11E-03
JX241 Solyc09g009260.2.1 2643600-2645801 Fructose-bisphosphate aldolase primary metabolic process 2,65E-02 8,90E-08 2,31E-03 1,15E-01 5,84E-03
JX242 Solyc09g064940.2.1 58086206-58088531 Phenazine biosynthesis protein PhzF family secondary metabolic process 1,07E-05 8,85E-06 4,67E-01 3,83E-04 1,45E-02
JX243 Solyc04g011400.2.1 3868800-3872796 UDP-glucose 4-epimerase cell wall organisation or biogenesis 1,53E-02 1,78E-08 4,80E-01 2,45E-02 4,09E-01
JX244 Solyc09g089580.2.1 64646856-64649117 1-aminocyclopropane-1-carboxylate oxidase-like protein developmental maturation 1,31E-07 2,15E-13 2,14E-02 6,79E-03 6,67E-05
JX245 Solyc09g089580.2.1 64646856-64649117 1-aminocyclopropane-1-carboxylate oxidase-like protein developmental maturation 2,86E-08 8,38E-32 8,62E-09 3,17E-01 4,53E-09
JX246 Solyc12g005860.1.1 490745-498964 3-isopropylmalate dehydratase large subunit primary metabolic process 7,33E-07 8,02E-05 7,62E-02 6,06E-02 1,05E-04
JX247 Solyc04g073990.2.1 57610227-57612650 Annexin establishment of localization 1,14E-17 1,95E-05 4,56E-02 1,49E-09 7,85E-08
JX248 Solyc04g005340.2.1 248903-251735 Alpha-1 4-glucan protein synthase cell wall organisation or biogenesis 3,03E-02 3,96E-08 2,56E-01 3,17E-02 2,40E-01
JX249 Solyc11g069790.1.1 51502451-51507359 chaperonin macromolecule metabolic process 2,56E-15 1,52E-18 1,79E-07 3,99E-06 1,16E-08
JX250 Solyc05g056490.2.1 64907109-64913076 3+apos primary metabolic process 2,48E-01 1,03E-10 5,02E-01 2,37E-01 3,89E-01
JX251 Solyc04g076200.2.1 58724666-58728561 Universal stress protein family protein response to stress 1,33E-02 7,92E-09 8,21E-01 3,39E-01 1,42E-01
JX252 Solyc06g071790.2.1 40601620-40603444 Elongation factor Tu translation 1,14E-01 3,85E-07 6,86E-01 1,91E-01 4,58E-01
JX253 Solyc10g005890.2.1 683370-690823 DNA-damage inducible protein DDI1-like macromolecule metabolic process 1,25E-01 7,96E-09 2,23E-01 2,53E-01 1,99E-01
JX254 Solyc01g079680.2.1 71306007-71308978 Ran GTPase activating protein establishment of localization 1,33E-02 1,68E-08 3,13E-02 4,24E-02 2,79E-02
JX255 Solyc01g099240.2.1 81297091-81298341 3-hydroxyisobutyrate dehydrogenase primary metabolic process 4,05E-02 2,30E-01 7,51E-02 1,64E-02 1,04E-01
JX256 Solyc09g009020.2.1 2370061-2375045 Enolase primary metabolic process 2,67E-02 2,53E-26 6,48E-02 3,44E-01 2,00E-03
JX257 Solyc07g063680.2.1 63306131-63309625 CHP-rich zinc finger protein-like response to stress 8,87E-02 9,80E-08 7,44E-02 9,08E-02 1,34E-01
JX258 Solyc07g055320.2.1 60717008-60721284 ATP-dependent Zn protease cell division protein FtsH homolog macromolecule metabolic process 2,00E-01 1,13E-01 1,24E-01 2,27E-02 4,22E-01
JX259 Solyc08g082820.2.1 62655311-62659585 Heat shock protein response to stress 1,56E-03 5,88E-01 1,38E-01 8,66E-13 3,09E-01
JX260 Solyc02g088610.2.1 45222192-45229259 ATP-dependent chaperone ClpB macromolecule metabolic process 2,65E-05 1,60E-28 8,48E-05 4,01E-02 1,69E-04
JX261 Solyc04g016470.2.1 7303341-7305043 Beta-1 3-glucanase cell wall organisation or biogenesis 7,61E-02 3,18E-06 6,78E-02 1,01E-01 1,01E-01
JX262 Solyc06g068860.2.1 39073381-39083550 Alpha-mannosidase primary metabolic process 1,02E-09 3,06E-24 8,50E-10 5,01E-02 6,82E-08
JX263 Solyc04g011400.2.1 3868800-3872796 UDP-glucose 4-epimerase cell wall organisation or biogenesis 1,25E-01 1,67E-29 6,33E-01 2,99E-01 3,85E-01
JX264 Solyc10g047950.1.1 38620947-38627409 Inorganic pyrophosphatase family protein primary metabolic process 3,94E-03 8,94E-15 2,84E-03 3,73E-02 7,49E-03
JX265 Solyc06g082120.2.1 44333171-44336113 Ran GTPase binding protein establishment of localization 2,99E-12 3,87E-08 1,41E-03 1,06E-08 7,38E-04
JX266 Solyc02g086880.2.1 44063088-44067604 Formate dehydrogenase oxidation-reduction process 3,57E-04 5,74E-05 8,11E-01 2,63E-03 1,49E-01
JX267 Solyc10g085550.1.1 63996015-64000623 Enolase primary metabolic process 3,72E-01 4,07E-18 4,52E-01 7,78E-01 1,47E-03
JX268 Solyc06g005160.2.1 182627-185280 Ascorbate peroxidase oxidation-reduction process 5,98E-04 3,78E-11 5,79E-03 2,54E-02 5,07E-06
JX269 Solyc05g050800.2.1 60131934-60136497 Phosphoglycerate mutase family protein primary metabolic process 9,32E-24 1,21E-03 3,96E-02 3,68E-12 3,15E-10
JX270 Solyc09g008280.1.1 1749950-1751122 S-adenosylmethionine synthase hormone metabolic process 1,24E-01 6,79E-32 4,45E-03 2,97E-02 2,65E-01
JX271 Solyc08g080140.2.1 60644754-60646888 dTDP-4-dehydrorhamnose reductase primary metabolic process 1,90E-01 4,24E-12 3,09E-01 2,96E-01 1,85E-01
JX272 Solyc05g012480.2.1 5715224-5720976 Mitochondrial processing peptidase beta subunit macromolecule metabolic process 5,13E-01 6,32E-11 4,55E-01 6,29E-01 4,30E-03
JX273 Solyc11g072190.1.1 52501034-52504379 Elongation factor beta-1 translation 8,87E-13 6,79E-05 2,42E-01 1,04E-05 1,21E-06
JX274 Solyc04g009200.2.1 2695320-2699163 Glutamate-1-semialdehyde-2 1-aminomutase nitrogen compound metabolic process 1,11E-03 1,47E-21 9,43E-03 1,79E-03 1,03E-01
JX275 Solyc04g016360.2.1 7158486-7165657 S-formylglutathione hydrolase primary metabolic process 9,36E-05 3,05E-15 6,00E-01 5,77E-03 3,23E-02
JX276 Solyc03g095900.2.1 51028612-51030467 1-aminocyclopropane-1-carboxylate oxidase-like protein developmental maturation 1,39E-12 5,54E-27 1,09E-08 8,16E-02 5,46E-09
JX277 Solyc10g080940.1.1 61453818-61456401 Tubulin beta chain cytoskeleton organization and biogenesis 1,19E-01 2,01E-22 7,54E-02 1,25E-01 1,37E-01
JX278 Solyc09g015020.1.1 7440133-7440597 class I heat shock protein 3 response to stress 1,96E-09 4,81E-06 3,83E-08 9,55E-03 2,05E-06
JX279 Solyc08g079870.1.1 60466441-60468678 Subtilisin-like protease macromolecule metabolic process 3,84E-11 1,11E-13 7,62E-10 1,22E-04 2,28E-07
JX280 Solyc01g059980.2.1 62201815-62226187 Beta-glucanase cell wall organisation or biogenesis 5,41E-12 3,00E-11 1,59E-11 2,51E-01 1,06E-08
JX281 Solyc08g079870.1.1 60466441-60468678 Subtilisin-like protease macromolecule metabolic process 4,09E-09 4,37E-11 9,03E-09 1,30E-01 1,42E-06
JX282 Solyc08g062450.1.1 48318166-48318642 class II heat shock protein response to stress 6,20E-03 2,76E-33 6,09E-09 3,79E-03 5,97E-06
JX283 Solyc10g055810.1.1 52891942-52893092 Endochitinase macromolecule metabolic process 4,81E-02 2,42E-06 4,00E-02 4,61E-01 6,59E-02
JX284 Solyc03g083910.2.1 47397595-47401871 Acid beta-fructofuranosidase primary metabolic process 5,20E-04 1,29E-16 3,12E-03 6,48E-01 4,15E-03
JX285 Solyc05g005490.2.1 355897-361496 Carbonic anhydrase nitrogen compound metabolic process 1,24E-03 3,41E-28 3,19E-04 4,86E-01 3,86E-05
JX286 Solyc04g054980.2.1 52664826-52665968 Lipoxygenase homology domain-containing protein 1 primary metabolic process 1,27E-18 1,69E-19 4,15E-11 8,46E-06 8,60E-11
JX287 Solyc07g041900.2.1 51828739-51831068 Cathepsin L-like cysteine proteinase macromolecule metabolic process 3,49E-03 1,33E-21 7,62E-03 2,79E-03 1,50E-02
JX288 Solyc12g010320.1.1 3377663-3380422 Outer membrane lipoprotein blc response to stress 2,09E-01 2,46E-31 4,65E-02 3,07E-01 1,21E-01
JX289 Solyc01g079220.2.1 70815571-70820929 NifU like protein cellular metabolic process 2,37E-17 2,60E-18 6,93E-04 1,51E-08 1,97E-08
JX290 Solyc06g073280.2.1 41539950-41545003 LL-diaminopimelate aminotransferase primary metabolic process 2,06E-16 4,00E-14 3,27E-02 3,93E-08 1,81E-07
JX291 Solyc02g080630.2.1 39392539-39397791 Lactoylglutathione lyase primary metabolic process 3,89E-26 7,63E-01 4,64E-02 7,03E-12 4,79E-13
JX292 Solyc08g014130.2.1 3734998-3744536 2-isopropylmalate synthase 1 primary metabolic process 1,13E-04 1,95E-26 4,24E-03 1,12E-01 1,55E-03
JX293 Solyc10g084400.1.1 63281886-63284225 Glutathione S-transferase response to stress 1,05E-07 5,65E-08 3,86E-03 6,87E-02 3,27E-05
JX294 Solyc03g116110.2.1 59675160-59679638 Alpha/beta hydrolase fold protein primary metabolic process 1,23E-10 5,70E-11 1,61E-04 1,80E-04 3,26E-06
JX295 Solyc11g020040.1.1 10015582-10019521 Chaperone DnaK response to stress 1,71E-03 1,36E-20 1,67E-01 2,43E-03 6,28E-02
JX296 Solyc09g007270.2.1 865197-869322 Ascorbate peroxidase oxidation-reduction process 1,67E-04 1,64E-34 4,95E-02 4,53E-03 1,26E-02
JX297 Solyc10g006650.2.1 1157432-1161954 Flavoprotein wrbA oxidation-reduction process 7,09E-02 1,54E-20 8,82E-01 5,71E-01 2,97E-02
JX298 Solyc12g096190.1.1 63553620-63556459 Tryptophan synthase beta chain primary metabolic process 8,33E-04 1,02E-02 5,16E-01 1,45E-01 1,51E-02
JX299 Solyc11g020040.1.1 10015582-10019521 Chaperone DnaK response to stress 9,02E-01 1,97E-12 3,31E-01 4,12E-01 8,75E-01
JX300 Solyc01g100520.2.1 82287668-82292399 ATP-dependent Clp protease proteolytic subunit establishment of localization 2,23E-02 2,87E-06 1,03E-02 6,25E-01 1,57E-02
JX301 Solyc07g051850.2.1 57713505-57718748 Aspartic proteinase macromolecule metabolic process 3,13E-08 2,34E-12 3,79E-06 2,05E-02 4,27E-06
JX302 Solyc01g005560.2.1 394402-399248 Isocitrate dehydrogenase primary metabolic process 6,13E-02 2,33E-19 1,85E-05 6,56E-03 3,47E-03
JX303 Solyc07g051850.2.1 57713505-57718748 Aspartic proteinase macromolecule metabolic process 4,44E-07 6,00E-18 1,01E-04 5,87E-03 8,20E-05
JX304 Solyc03g025850.2.1 7627656-7630095 Remorin 1 Unknown 5,73E-02 4,40E-09 2,15E-03 1,41E-01 9,57E-03
JX305 Solyc04g011510.2.1 3944572-3949105 Triosephosphate isomerase primary metabolic process 2,01E-02 4,61E-01 4,58E-01 7,84E-03 2,17E-01
JX306 Solyc07g064590.2.1 63891191-63895627 Ubiquitin thioesterase OTU1 primary metabolic process 3,77E-11 1,68E-03 2,96E-02 5,94E-04 4,65E-07
JX307 Solyc04g072400.2.1 57015439-57020648 Endoribonuclease E-like protein macromolecule metabolic process 1,00E-02 5,62E-19 6,24E-03 4,84E-01 1,04E-02
JX308 Solyc02g062460.2.1 28653823-28656374 2-oxoglutarate-dependent dioxygenase oxidation-reduction process 4,03E-03 2,33E-09 2,74E-03 4,28E-01 3,95E-03
JX309 Solyc03g097270.2.1 53034151-53040369 Cysteine proteinase inhibitor regulation of biological process 1,02E-09 5,72E-03 1,16E-04 1,76E-05 1,59E-05
JX310 Solyc09g082720.2.1 63816287-63819690 Aldo/keto reductase family protein oxidation-reduction process 3,65E-12 8,91E-16 2,30E-07 4,15E-05 5,83E-09
JX311 Solyc12g044740.1.1 45436676-45448004 Ubiquitin carboxyl-terminal hydrolase primary metabolic process 5,75E-09 8,47E-01 1,83E-01 2,67E-06 1,50E-02
JX312 Solyc01g107700.2.1 86915524-86922302 Kynurenine formamidase secondary metabolic process 6,01E-04 1,03E-06 2,48E-02 1,77E-02 6,02E-04
JX313 Solyc06g071000.2.1 40003245-40009711 N-succinylglutamate 5-semialdehyde dehydrogenase primary metabolic process 1,54E-05 3,68E-01 9,34E-01 1,97E-02 8,12E-03
JX314 Solyc09g090330.2.1 65188896-65193572 Harpin binding protein 1 response to stress 3,05E-04 1,30E-13 2,98E-02 8,02E-04 3,26E-02
JX315 Solyc03g025850.2.1 7627656-7630095 Remorin 1 Unknown 1,58E-02 1,74E-16 1,71E-01 1,18E-01 6,59E-02
JX316 Solyc01g097460.2.1 80067637-80074843 Ribose-5-phosphate isomerase primary metabolic process 1,43E-02 2,90E-20 2,98E-01 1,68E-01 5,87E-02
JX317 Solyc01g104170.2.1 84393496-84398307 Ankyrin repeat domain-containing protein 2 regulation of biological process 1,34E-05 1,22E-11 3,12E-03 3,07E-01 2,22E-05
JX318 Solyc01g067740.2.1 69074003-69078931 Superoxide dismutase oxidation-reduction process 5,91E-01 1,86E-14 1,96E-01 5,76E-02 4,89E-01
JX319 Solyc06g063090.2.1 36234795-36239218 Alanine aminotransferase primary metabolic process 1,28E-01 3,50E-19 3,13E-02 1,11E-01 8,25E-02
JX320 Solyc12g009060.1.1 2350521-2354721 Charged multivesicular body protein 2a establishment of localization 5,62E-07 2,66E-07 1,46E-02 9,54E-03 2,36E-04
JX321 Solyc03g112150.1.1 56698575-56700008 Elongation factor Tu translation 3,00E-06 9,58E-01 7,68E-04 2,85E-01 6,56E-07
JX322 Solyc01g112280.2.1 90105382-90109100 Succinyl-diaminopimelate desuccinylase primary metabolic process 4,45E-06 3,93E-08 5,88E-02 1,98E-02 8,87E-04
JX323 Solyc09g009020.2.1 2370061-2375045 Enolase primary metabolic process 3,90E-03 2,33E-19 2,49E-03 1,80E-02 1,18E-03
JX324 Solyc07g008170.2.1 2882629-2893614 Methyl binding domain protein regulation of biological process 7,85E-02 3,75E-10 5,51E-01 5,09E-02 3,69E-01
JX325 Solyc01g011000.2.1 6848050-6851207 Eukaryotic translation initiation factor 5A translation 9,86E-06 1,00E-04 1,49E-01 1,27E-03 8,71E-03
JX326 Solyc06g005160.2.1 182627-185280 Ascorbate peroxidase oxidation-reduction process 2,98E-03 3,84E-24 8,63E-02 4,83E-02 2,31E-02
JX327 Solyc05g005480.2.1 352211-355615 Oxidoreductase zinc-binding dehydrogenase oxidation-reduction process 5,72E-09 7,34E-12 9,46E-03 1,23E-05 4,14E-04
JX328 Solyc03g007670.2.1 2200919-2205536 SGT1 response to stress 8,31E-05 3,67E-02 2,68E-02 1,41E-02 2,16E-03
JX329 Solyc02g093830.2.1 49113784-49119691 Glucose-6-phosphate 1-dehydrogenase primary metabolic process 1,85E-01 3,59E-02 4,17E-03 2,52E-02 6,40E-02
JX330 Solyc12g009250.1.1 2529842-2532163 chaperonin macromolecule metabolic process 9,74E-03 7,63E-12 2,50E-02 7,68E-01 4,88E-04
JX331 Solyc12g055800.1.1 47132031-47139706 V-type ATP synthase alpha chain establishment of localization 4,06E-04 2,43E-04 6,41E-03 1,59E-03 1,89E-02
JX332 Solyc06g076020.2.1 43582389-43585486 heat shock protein response to stress 2,56E-01 8,35E-02 4,02E-02 1,92E-02 2,72E-01
JX333 Solyc03g115820.2.1 59463075-59469502 Ribulose-5-phosphate-3-epimerase primary metabolic process 1,99E-06 8,42E-06 5,93E-01 1,53E-02 8,33E-04
JX334 Solyc04g045340.2.1 31642460-31657602 Phosphoglucomutase primary metabolic process 3,01E-02 8,03E-02 2,40E-01 2,47E-01 3,49E-02
JX335 Solyc09g009390.2.1 2835367-2840425 Monodehydroascorbate reductase vitamin synthesis 6,24E-01 1,26E-05 5,40E-01 3,61E-02 8,90E-01
JX336 Solyc12g009140.1.1 2453127-2457231 Proteasome subunit alpha type macromolecule metabolic process 2,65E-02 3,74E-01 5,10E-04 5,42E-03 1,38E-02
JX337 Solyc05g012070.2.1 5295089-5298245 Alpha-1 4-glucan-protein synthase cell wall organisation or biogenesis 7,56E-01 1,29E-07 3,50E-01 1,19E-01 6,55E-01
JX338 Solyc02g088700.2.1 45268178-45273518 Mitochondrial processing peptidase beta subunit macromolecule metabolic process 1,85E-03 2,24E-03 1,98E-03 1,35E-01 9,13E-04
JX339 Solyc08g079170.2.1 59970339-59976456 Stress-induced protein sti1-like protein response to stress 9,98E-03 1,87E-01 1,13E-02 1,49E-01 6,04E-03
JX340 Solyc01g007320.2.1 1849252-1851757 ATP synthase subunit beta chloroplastic establishment of localization 2,45E-01 3,04E-09 2,91E-01 6,39E-01 1,40E-02
JX341 Solyc06g082090.2.1 44317047-44320702 Methionine aminopeptidase macromolecule metabolic process 3,21E-02 1,09E-04 6,06E-01 2,60E-01 1,32E-01
JX342 Solyc07g064810.2.1 64017771-64025505 Imidazole glycerol phosphate synthase subunit hisF primary metabolic process 1,87E-02 1,26E-01 2,76E-02 1,42E-02 8,56E-02
JX343 Solyc02g087300.1.1 44325520-44326428 Protein transport SEC13-like protein establishment of localization 1,62E-03 4,52E-01 4,77E-01 8,35E-02 4,22E-02
JX344 Solyc11g011960.1.1 4912805-4919067 UTP-glucose 1 phosphate uridylyltransferase primary metabolic process 1,06E-01 9,53E-04 4,65E-03 2,71E-01 6,06E-04
JX345 Solyc02g081400.2.1 39962544-39967049 Intracellular protease PfpI family protein expressed macromolecule metabolic process 6,61E-16 9,47E-05 1,13E-01 7,20E-08 4,93E-07
JX346 Solyc09g011670.2.1 4913443-4917118 Universal stress protein family protein response to stress 7,71E-02 1,07E-14 7,11E-02 4,11E-03 4,09E-01
JX347 Solyc10g086580.1.1 64688483-64690961 Ribulose-1 5-bisphosphate carboxylase/oxygenase activase 1 cellular metabolic process 1,95E-01 3,23E-03 4,28E-01 9,28E-02 3,33E-01
JX348 Solyc09g011140.2.1 4499977-4502723 Tropinone reductase I secondary metabolic process 9,52E-08 5,56E-20 3,70E-01 8,34E-06 2,19E-02
JX349 Solyc07g064160.2.1 63644226-63646402 Thiazole biosynthetic enzyme vitamin synthesis 4,25E-09 9,05E-21 3,24E-07 2,55E-11 1,13E-01
JX350 Solyc03g098700.1.1 54427774-54428433 Cysteine protease inhibitor 8 regulation of biological process 2,86E-10 2,90E-15 3,02E-06 3,66E-07 4,20E-03
JX351 Solyc02g082800.2.1 41021911-41031456 Ubiquilin-1 primary metabolic process 1,94E-20 4,19E-16 5,62E-03 4,24E-12 4,68E-07
JX352 Solyc03g120230.2.1 62741263-62746412 MAR-binding filament-like protein 1 cytoskeleton organization and biogenesis 4,22E-01 9,62E-08 7,84E-01 6,67E-01 5,60E-01
JX353 Solyc10g008740.2.1 2822974-2826287 Magnesium chelatase ATPase subunit I primary metabolic process 2,03E-03 1,45E-17 4,15E-01 8,13E-02 2,46E-02
JX354 Solyc01g109660.2.1 88321513-88322795 Glycine-rich RNA-binding protein response to stress 1,64E-04 3,77E-06 2,49E-02 4,29E-04 3,58E-02
JX355 Solyc06g007200.2.1 1270929-1276535 Methionine aminopeptidase macromolecule metabolic process 1,45E-03 1,70E-07 2,45E-02 1,48E-01 9,37E-03
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JX356 Solyc01g005520.2.1 349916-352687 Tetratricopeptide TPR_2 repeat protein response to stress 3,40E-05 7,08E-19 3,65E-04 4,69E-05 4,52E-03
JX357 Solyc02g082830.1.1 41056853-41058151 Phosphoserine aminotransferase primary metabolic process 7,99E-10 3,34E-01 3,66E-05 1,01E-02 1,42E-06
JX358 Solyc01g103450.2.1 83821528-83826037 Chaperone DnaK response to stress 2,20E-15 1,30E-04 2,88E-02 2,27E-07 2,00E-07
JX359 Solyc04g011400.2.1 3868800-3872796 UDP-glucose 4-epimerase cell wall organisation or biogenesis 7,82E-02 2,60E-24 8,45E-03 3,35E-02 2,00E-01
JX360 Solyc05g056230.2.1 64732387-64738654 Calreticulin 2 calcium-binding protein macromolecule metabolic process 1,49E-04 6,78E-05 7,06E-01 6,74E-04 6,89E-02
JX361 Solyc09g011240.2.1 4573233-4578442 Reductase 2 oxidation-reduction process 1,19E-04 2,52E-22 2,03E-04 1,28E-04 1,96E-01
JX362 Solyc09g010930.2.1 4264025-4269432 NAD-dependent epimerase/dehydratase cell wall organisation or biogenesis 1,58E-08 1,12E-05 3,85E-02 9,24E-05 5,47E-04
JX363 Solyc02g091490.2.1 47344370-47349179 Fructokinase 3 primary metabolic process 6,62E-07 1,36E-04 1,65E-01 5,41E-04 1,14E-02
JX364 Solyc05g008460.2.1 2805741-2809779 ATP synthase subunit beta establishment of localization 1,01E-03 1,23E-15 2,27E-01 2,44E-03 1,22E-01
JX365 Solyc01g009420.2.1 3621816-3626739 Bifunctional polymyxin resistance arnA protein macromolecule metabolic process 2,81E-04 8,73E-03 2,02E-02 5,72E-04 2,48E-02
JX366 Solyc12g056830.1.1 48264644-48265396 ATP synthase delta subunit establishment of localization 8,42E-02 6,98E-12 7,02E-02 3,37E-01 1,10E-02
JX367 Solyc08g076220.2.1 57405726-57410850 Phosphoribulokinase/uridine kinase primary metabolic process 5,56E-05 3,70E-02 1,70E-01 1,18E-01 1,82E-04
JX368 Solyc11g072190.1.1 52501034-52504379 Elongation factor beta-1 translation 1,62E-09 1,36E-01 9,99E-03 1,00E-04 3,16E-05
JX369 Solyc12g042650.1.1 43448722-43449792 40S ribosomal protein S12 translation 4,44E-11 2,23E-15 2,66E-04 9,85E-07 5,19E-05
JX370 Solyc07g044860.2.1 55244985-55247025 Oxygen-evolving enhancer protein 2. chloroplastic regulation of biological process 1,63E-01 1,42E-05 1,52E-01 7,16E-01 9,63E-04
JX371 Solyc09g008280.1.1 1749950-1751122 S-adenosylmethionine synthase hormone metabolic process 1,66E-01 1,74E-11 4,24E-01 5,54E-01 1,22E-02
JX372 Solyc09g005700.2.1 488084-495891 Diaminopimelate epimerase family protein primary metabolic process 1,18E-01 5,62E-13 2,71E-01 7,44E-01 1,53E-03
JX373 Solyc10g083970.1.1 62989745-62990917 S-adenosylmethionine synthase hormone metabolic process 3,51E-02 7,25E-17 9,73E-04 2,51E-04 6,34E-01
JX374 Solyc06g009020.2.1 2965668-2967884 Glutathione S-transferase response to stress 1,13E-10 1,55E-06 5,07E-02 3,66E-04 2,00E-06
JX375 Solyc10g008010.2.1 2177130-2182889 Proteasome subunit alpha type macromolecule metabolic process 2,54E-01 9,76E-02 6,89E-02 1,08E-01 1,79E-01
JX376 Solyc07g062570.2.1 62472541-62478080 Ubiquitin-conjugating enzyme E2 N primary metabolic process 2,59E-02 4,91E-01 3,37E-01 1,74E-01 1,23E-01
JX377 Solyc09g090980.2.1 65698002-65700023 Major allergen Mal d 1 response to stress 3,70E-07 2,50E-02 7,32E-02 3,52E-03 8,70E-05
JX378 Solyc05g052150.2.1 61597939-61598511 ATP synthase subunit delta+apos;. mitochondrial establishment of localization 2,36E-02 2,88E-16 6,30E-01 8,13E-01 1,52E-02
JX379 Solyc05g053810.2.1 62993932-62998448 Serine hydroxymethyltransferase primary metabolic process 3,00E-02 1,66E-08 2,24E-01 6,02E-02 1,62E-01
JX380 Solyc02g014150.2.1 6519093-6531932 Photosystem II stability/assembly factor Ycf48-like protein regulation of biological process 1,65E-03 4,77E-05 1,42E-01 1,55E-01 1,10E-02
JX381 Solyc01g099760.2.1 81668247-81673265 26S protease regulatory subunit 6A homolog macromolecule metabolic process 2,97E-01 6,60E-07 8,35E-01 5,36E-01 5,70E-01
JX382 Solyc06g062950.1.1 36119748-36122078 Subtilisin-like protease macromolecule metabolic process 2,37E-02 1,42E-02 9,86E-03 5,84E-03 6,11E-02
JX383 Solyc01g028810.2.1 33327242-33332361 chaperonin macromolecule metabolic process 1,50E-03 2,84E-05 3,44E-01 1,43E-03 1,17E-01
JX384 Solyc02g086910.2.1 44078232-44082017 Peptidyl-prolyl cis-trans isomerase cyclophilin-type macromolecule metabolic process 1,35E-03 1,39E-02 7,73E-08 2,33E-04 1,18E-04
JX385 Solyc04g007120.2.1 832713-843272 UV excision repair protein RAD23 macromolecule metabolic process 1,23E-05 2,95E-01 7,81E-01 1,40E-02 8,44E-03
JX386 Solyc11g020300.1.1 10728385-10741180 Translocon Tic40 establishment of localization 3,17E-02 2,52E-01 6,26E-02 2,39E-02 1,50E-01
JX387 Solyc02g070510.2.1 34815271-34822336 Proteasome subunit alpha type macromolecule metabolic process 6,89E-03 6,23E-07 9,01E-01 1,93E-01 8,31E-02
JX388 Solyc01g106260.2.1 85976768-85981140 Chaperone DnaK response to stress 1,24E-03 4,65E-01 3,56E-03 5,23E-01 3,70E-05
JX389 Solyc08g062660.2.1 48903019-48905978 Ran GTPase binding protein establishment of localization 8,06E-05 4,26E-12 4,18E-01 6,08E-03 4,15E-02
JX390 Solyc05g053470.2.1 62706122-62712174 chaperonin macromolecule metabolic process 7,65E-05 4,09E-07 5,13E-02 3,14E-03 1,49E-02
JX391 Solyc07g043420.2.1 54503345-54505070 2-oxoglutarate-dependent dioxygenase oxidation-reduction process 3,21E-04 2,82E-13 2,96E-04 8,94E-06 9,86E-01
JX392 Solyc01g105060.2.1 85094784-85097712 macromolecule metabolic process 2,41E-08 2,97E-19 1,51E-05 6,86E-01 3,70E-06
JX393 Solyc08g074620.1.1 55911248-55913011 Polyphenol oxidase secondary metabolic process 9,15E-08 1,94E-06 1,00E-06 6,96E-07 7,30E-01
JX394 Solyc06g065270.2.1 37095259-37099538 Adenylate kinase primary metabolic process 1,15E-12 1,70E-03 6,17E-10 2,03E-01 8,47E-09
JX395 Solyc02g086730.1.1 43937531-43938103 50S ribosomal protein L12-C translation 3,31E-02 1,26E-20 3,75E-02 4,30E-02 1,64E-01
JX396 Solyc01g100030.2.1 81869800-81871185 Deoxyuridine 5+apos-triphosphate nucleotidohydrolase macromolecule metabolic process 6,98E-02 8,57E-22 9,25E-02 4,02E-02 9,50E-01
JX397 Solyc08g079020.2.1 59830669-59836240 Adenine phosphoribosyltransferase-like protein primary metabolic process 3,84E-06 8,57E-10 9,72E-02 2,02E-04 2,77E-02
JX398 no identification 4,26E-04 9,69E-05 1,16E-02 1,69E-02 2,55E-03
JX399 Solyc02g088700.2.1 45268178-45273518 Mitochondrial processing peptidase beta subunit macromolecule metabolic process 3,05E-01 2,03E-07 8,75E-02 2,58E-01 5,46E-03
JX400 Solyc03g007520.2.1 2089415-2095197 Proline-rich cell wall protein-like cell wall organisation or biogenesis 7,80E-04 4,03E-01 2,34E-05 5,35E-03 4,01E-04
JX401 Solyc02g063130.2.1 29750711-29757113 UV excision repair protein RAD23 macromolecule metabolic process 8,78E-02 2,02E-13 9,39E-01 2,90E-01 5,88E-01
JX402 Solyc08g014340.2.1 4063851-4071314 Cysteine synthase primary metabolic process 1,57E-04 3,41E-09 2,18E-01 4,09E-03 6,72E-02
JX403 Solyc11g011960.1.1 4912805-4919067 UTP-glucose 1 phosphate uridylyltransferase primary metabolic process 2,78E-03 2,69E-10 5,20E-02 1,79E-01 5,08E-03
JX404 Solyc12g056230.1.1 47552627-47555380 Glutathione peroxidase response to stress 3,84E-01 2,40E-03 6,65E-01 3,34E-02 6,89E-01
JX405 Solyc01g097450.2.1 80067623-80073617 Thioredoxin-like protein 1 oxidation-reduction process 6,90E-03 9,68E-01 9,65E-01 4,23E-01 7,23E-02
JX406 Solyc04g045340.2.1 31642460-31657602 Phosphoglucomutase primary metabolic process 4,04E-03 1,91E-01 3,08E-01 1,76E-02 1,89E-01
JX407 Solyc01g099770.2.1 81675491-81677536 Translationally-controlled tumor protein homolog regulation of biological process 4,89E-09 3,65E-02 5,62E-01 5,41E-05 1,80E-03
JX408 Solyc06g082630.2.1 44672378-44677754 26S protease regulatory subunit 6B macromolecule metabolic process 5,25E-03 7,42E-02 2,06E-02 1,21E-03 1,49E-01
JX409 Solyc06g060260.2.1 34615474-34625952 Stromal ascorbate peroxidase 7 oxidation-reduction process 6,35E-06 5,24E-05 5,89E-05 3,96E-02 7,74E-05
JX410 Solyc08g079170.2.1 59970339-59976456 Stress-induced protein sti1-like protein response to stress 9,81E-03 2,86E-06 4,01E-02 9,94E-02 5,67E-03
JX411 Solyc04g045340.2.1 31642460-31657602 Phosphoglucomutase primary metabolic process 2,55E-04 1,49E-03 6,89E-01 1,19E-02 7,06E-02
JX412 Solyc05g051850.2.1 61409236-61413326 Inositol-3-phosphate synthase primary metabolic process 2,12E-02 9,88E-11 3,78E-03 2,39E-03 1,43E-01
JX413 Solyc01g007860.2.1 2018307-2022494 Ubiquitin-conjugating enzyme family protein-like primary metabolic process 7,59E-03 7,67E-15 5,95E-02 9,02E-03 2,38E-01
JX414 Solyc07g042250.2.1 52684617-52687267 chaperonin macromolecule metabolic process 3,03E-02 1,18E-01 7,52E-02 8,92E-01 4,65E-03
JX415 Solyc03g120280.1.1 62781048-62782397 RAN binding protein 3 establishment of localization 7,84E-03 9,91E-01 8,03E-01 2,84E-01 1,18E-01
JX416 Solyc12g010060.1.1 3203778-3206878 Eukaryotic translation initiation factor 5A translation 2,75E-02 1,62E-01 1,98E-01 8,19E-01 1,97E-02
JX417 Solyc02g086830.2.1 44017964-44022130 Protease Do-like macromolecule metabolic process 5,02E-04 2,65E-14 4,88E-05 8,65E-05 6,51E-01
JX418 Solyc04g071620.2.1 56178656-56180338 ASR4 response to stress 7,67E-09 3,57E-05 3,35E-05 2,73E-05 2,46E-05
JX419 Solyc03g083910.2.1 47397595-47401871 Acid beta-fructofuranosidase primary metabolic process 9,07E-04 1,42E-15 1,82E-03 7,87E-01 3,91E-03
JX420 Solyc01g080460.2.1 72206073-72214485 Pyruvate phosphate dikinase primary metabolic process 7,34E-08 6,29E-32 3,21E-06 3,10E-02 1,59E-06
JX421 Solyc02g062500.2.1 28750335-28754482 2-oxoglutarate-dependent dioxygenase oxidation-reduction process 7,65E-03 2,55E-11 1,99E-02 2,60E-01 1,19E-02
JX422 Solyc09g083410.2.1 64466144-64472295 Amidase hydantoinase/carbamoylase family protein expressed primary metabolic process 9,25E-07 3,88E-07 1,07E-03 4,92E-06 3,80E-01
JX423 Solyc12g055800.1.1 47132031-47139706 V-type ATP synthase alpha chain establishment of localization 4,03E-03 2,76E-04 2,98E-01 2,74E-03 2,52E-01
JX424 Solyc02g031950.2.1 17912940-17915049 Pathogenesis-related protein-like protein response to stress 3,84E-05 1,01E-05 3,60E-05 5,08E-01 2,17E-08
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Supplemental table S6 CV within each genotype and in average at cell expansion stage (CE) and orange red stage (OR). CVs in red (0.2<CV<0.3), in green (CV>0.3)

Class Trait CerCE CerLevCLevCE StuCE StuCriCCriCE LA0147CLA0147PPloCE FerCE FerLA14LA1420CAverage 4 cera 4 lyco 4hybrids CerOR CerLevOLevOR StuOR StuCriOCriOR LA0147OLA0147PPloOR FerOR FerLA14LA1420OAverage 4 cera 4 lyco 4 hybrids
MetaboliGluc 0,01 0,01 0,03 0,02 0,01 0,03 0,04 0,02 0,02 0,01 0,02 0,10 3% 4% 3% 1% 0,01 0,03 0,01 0,02 0,04 0,04 0,02 0,03 0,01 0,01 0,04 0,03 2% 2% 2% 4%
MetaboliSuc 0,00 0,05 0,13 0,03 0,05 0,05 0,05 0,06 0,02 0,02 0,07 0,05 5% 3% 6% 6% 0,04 0,01 0,08 0,04 0,02 0,02 0,05 0,00 0,06 0,08 0,02 0,01 4% 4% 6% 1%
MetaboliFru 0,01 0,01 0,02 0,02 0,01 0,03 0,04 0,02 0,01 0,02 0,02 0,09 2% 3% 2% 2% 0,02 0,03 0,02 0,01 0,04 0,03 0,02 0,03 0,01 0,02 0,06 0,04 3% 3% 2% 4%
MetaboliAla 0,08 0,10 0,27 0,05 0,08 0,19 0,16 0,17 0,08 0,02 0,08 0,25 13% 15% 13% 11% 0,11 0,13 0,09 0,07 0,02 0,10 0,08 0,10 0,03 0,06 0,06 0,07 8% 7% 7% 8%
MetaboliAsn 0,08 0,10 0,16 0,07 0,09 0,14 0,18 0,21 0,05 0,05 0,10 0,25 12% 13% 11% 12% 0,06 0,10 0,05 0,09 0,03 0,02 0,07 0,17 0,03 0,06 0,06 0,02 6% 3% 7% 9%
MetaboliAsp 0,05 0,08 0,01 0,01 0,06 0,06 0,08 0,06 0,06 0,05 0,07 0,10 6% 7% 4% 7% 0,07 0,09 0,05 0,03 0,08 0,06 0,08 0,10 0,05 0,01 0,11 0,02 6% 5% 4% 9%
MetaboliGaba 0,05 0,04 0,05 0,04 0,01 0,04 0,09 0,11 0,04 0,03 0,02 0,01 4% 3% 5% 5% 0,08 0,04 0,12 0,03 0,05 0,05 0,05 0,07 0,03 0,06 0,06 0,02 6% 4% 7% 6%
MetaboliGln 0,07 0,04 0,21 0,04 0,07 0,17 0,16 0,24 0,04 0,07 0,06 0,36 13% 16% 12% 10% 0,04 0,13 0,10 0,05 0,03 0,03 0,07 0,13 0,03 0,05 0,04 0,04 6% 3% 7% 8%
MetaboliIleu 0,08 0,09 0,29 0,08 0,08 0,19 0,26 0,33 0,11 0,08 0,05 0,49 18% 22% 18% 14% 0,11 0,09 0,10 0,16 0,07 0,05 0,07 0,09 0,01 0,07 0,06 0,09 8% 6% 10% 8%
MetaboliLeu 0,05 0,08 0,23 0,05 0,04 0,19 0,07 0,18 0,13 0,05 0,05 0,34 12% 18% 10% 9% 0,07 0,09 0,09 0,08 0,04 0,03 0,04 0,12 0,02 0,09 0,12 0,08 7% 5% 8% 9%
MetaboliPhe 0,01 0,03 0,17 0,07 0,08 0,14 0,13 0,17 0,05 0,06 0,04 0,26 10% 12% 11% 8% 0,04 0,11 0,14 0,10 0,03 0,03 0,04 0,10 0,01 0,03 0,06 0,07 6% 4% 8% 7%
MetaboliTyr 0,03 0,07 0,25 0,10 0,04 0,18 0,11 0,23 0,06 0,12 0,05 0,30 13% 14% 14% 10% 0,00 0,09 0,16 0,14 0,09 0,05 0,06 0,13 0,01 0,02 0,08 0,07 8% 3% 9% 10%
MetaboliVal 0,08 0,09 0,18 0,05 0,05 0,18 0,14 0,21 0,05 0,06 0,03 0,21 11% 13% 11% 10% 0,17 0,10 0,15 0,11 0,08 0,05 0,04 0,08 0,04 0,05 0,09 0,03 8% 7% 9% 9%
MetaboliThr 0,09 0,10 0,27 0,09 0,04 0,20 0,20 0,30 0,06 0,11 0,08 0,31 15% 16% 17% 13% 0,13 0,10 0,14 0,18 0,09 0,02 0,12 0,28 0,06 0,09 0,12 0,08 12% 7% 13% 15%
MetaboliChloro 0,04 0,03 0,04 0,03 0,08 0,05 0,06 0,13 0,05 0,06 0,04 0,03 5% 4% 5% 7% 0,05 0,01 0,03 0,04 0,04 0,02 0,03 0,04 0,03 0,06 0,08 0,05 4% 4% 4% 4%
MetaboliVitC 0,02 0,09 0,07 0,13 0,15 0,07 0,05 0,06 0,07 0,07 0,22 0,04 9% 5% 8% 13% 0,08 0,17 0,08 0,02 0,11 0,13 0,08 0,06 0,07 0,06 0,05 0,12 9% 10% 6% 10%
MetaboliCit 0,03 0,03 0,04 0,03 0,01 0,02 0,07 0,01 0,02 0,05 0,06 0,11 4% 4% 5% 3% 0,03 0,03 0,02 0,02 0,01 0,02 0,04 0,01 0,02 0,05 0,03 0,06 3% 3% 3% 2%
MetaboliMal 0,02 0,03 0,10 0,05 0,01 0,02 0,09 0,02 0,07 0,05 0,03 0,10 5% 5% 7% 2% 0,05 0,04 0,05 0,07 0,04 0,05 0,07 0,07 0,02 0,07 0,05 0,08 5% 5% 6% 5%
MetaboliFum 0,05 0,08 0,07 0,10 0,03 0,03 0,05 0,10 0,03 0,12 0,07 0,05 6% 4% 8% 7% 0,09 0,10 0,08 0,04 0,19 0,09 0,18 0,07 0,13 0,02 0,07 0,00 0% 8% 8% 11%
MetaboliStch 0,08 0,10 0,27 0,73 0,06 0,23 0,06 0,22 0,26 0,20 0,10 0,06 20% 16% 32% 12% 0,03 0,30 1,41 0,71 1,41 1,07 1,41 0,82 0,53 0,28 1,41 0,76 85% 60% 95% 99%
MetaboliTrigo 0,02 0,08 0,19 0,06 0,01 0,02 0,07 0,06 0,03 0,03 0,07 0,16 7% 6% 9% 6% 0,04 0,16 0,09 0,01 0,04 0,02 0,13 0,10 0,03 0,02 0,04 0,14 7% 6% 7% 8%
MetaboliAde 0,09 0,03 0,05 0,03 0,05 0,02 0,10 0,02 0,01 0,04 0,08 0,09 5% 5% 5% 4% 0,05 0,07 0,06 0,04 0,10 0,04 0,05 0,09 0,02 0,03 0,08 0,07 6% 4% 4% 9%
MetaboliChol 0,05 0,02 0,07 0,02 0,02 0,02 0,02 0,07 0,02 0,02 0,02 0,06 3% 4% 3% 3% 0,02 0,00 0,05 0,03 0,00 0,03 0,03 0,04 0,03 0,01 0,04 0,04 3% 3% 3% 2%
MetaboliInos 0,05 0,01 0,05 0,03 0,07 0,03 0,03 0,04 0,03 0,03 0,04 0,04 4% 4% 3% 4% 0,10 0,03 0,12 0,10 0,04 0,03 0,08 0,07 0,05 0,06 0,04 0,05 6% 6% 9% 4%
MetabolisChl 0,09 0,19 0,11 0,11 0,04 0,04 0,12 0,12 0,06 0,03 0,07 0,07 9% 6% 9% 11% 0,08 0,09 0,03 0,11 0,08 0,09 0,13 0,07 0,11 0,11 0,07 0,02 8% 7% 10% 8%
MetabolisTCQ 0,53 0,54 0,18 0,38 0,43 0,06 0,29 0,38 0,49 0,31 0,46 0,24 36% 33% 29% 45% 0,07 0,11 0,11 0,07 0,12 0,01 0,03 0,28 0,05 0,07 0,14 0,07 9% 5% 7% 16%
MetabolisAto 0,02 0,27 0,12 0,05 0,13 0,01 0,08 0,05 0,03 0,05 0,12 0,05 8% 3% 8% 14% 0,05 0,09 0,15 0,13 0,16 0,03 0,10 0,24 0,04 0,15 0,18 0,20 13% 8% 13% 17%
MetabolisCry 0,08 0,17 0,50 0,24 0,22 0,35 0,34 0,21 0,59 0,53 0,10 0,37 31% 35% 40% 18% 0,43 0,23 0,44 0,29 0,30 0,38 0,22 0,25 0,57 0,30 0,43 0,39 35% 44% 31% 30%
MetabolisDHT 0,04 0,45 0,16 0,10 0,19 0,07 0,16 0,06 0,05 0,05 0,15 0,12 13% 7% 12% 21% 0,15 0,32 0,05 0,15 0,13 0,04 0,08 0,25 0,04 0,36 0,29 0,10 16% 8% 16% 25%
MetabolisRutp 0,11 0,18 0,07 0,06 0,16 0,02 0,14 0,11 0,08 0,08 0,10 0,15 10% 9% 9% 14% 0,05 0,20 0,09 0,02 0,08 0,11 0,06 0,19 0,08 0,24 0,19 0,04 11% 7% 10% 16%
MetabolisPpa 0,05 0,06 0,03 0,15 0,12 0,05 0,11 0,04 0,03 0,08 0,15 0,01 7% 4% 9% 9% 0,04 0,07 0,02 0,05 0,10 0,05 0,10 0,15 0,06 0,13 0,17 0,05 8% 5% 8% 12%
MetabolisCou 0,15 0,16 0,13 0,19 0,21 0,17 0,35 0,19 0,19 0,25 0,48 0,22 22% 18% 23% 26% 0,12 0,07 0,15 0,04 0,11 0,07 0,11 0,06 0,13 0,10 0,21 0,30 12% 15% 10% 11%
MetabolisNna 0,25 0,47 0,48 0,77 1,14 0,03 0,45 0,19 0,29 0,12 0,43 0,44 42% 25% 45% 56% 0,13 0,32 0,06 0,11 0,10 0,02 0,05 0,26 0,09 0,27 0,35 0,50 19% 19% 12% 26%
MetabolisOHl 0,26 0,30 0,14 0,05 0,11 0,03 0,02 0,09 0,04 0,03 0,07 0,10 10% 11% 6% 14% 0,05 0,21 0,07 0,10 0,12 0,02 0,07 0,23 0,05 0,04 0,07 0,12 10% 6% 7% 16%
MetabolisRut 0,09 0,18 0,01 0,03 0,16 0,02 0,13 0,09 0,05 0,05 0,10 0,11 9% 7% 6% 14% 0,05 0,09 0,08 0,04 0,06 0,02 0,04 0,18 0,08 0,26 0,16 0,10 10% 6% 11% 12%
Enzyme eAlAT 0,79 0,45 0,11 0,63 0,18 0,40 0,13 0,40 0,28 0,00 0,86 0,45 39% 48% 22% 47% 0,56 0,32 0,70 0,88 0,59 0,53 0,30 0,94 0,15 0,93 0,00 0,40 52% 41% 70% 46%
Enzyme eAsAT 0,30 0,13 0,16 0,19 0,48 0,46 0,14 0,36 0,20 0,61 0,12 0,26 28% 31% 27% 27% 0,17 0,17 0,59 0,63 0,35 0,70 0,45 0,15 0,72 0,19 0,19 0,10 37% 42% 47% 21%
Enzyme eSKDH 0,15 0,10 0,03 0,27 0,04 0,07 0,07 0,10 0,11 0,06 0,40 0,11 13% 11% 11% 16% 0,13 0,03 0,11 0,08 0,05 0,09 0,06 0,13 0,14 0,19 0,04 0,03 9% 10% 11% 6%
Enzyme ePGK 0,11 0,28 0,27 0,34 0,52 0,33 0,17 0,25 0,32 0,24 0,35 0,27 29% 25% 25% 35% 0,67 0,38 0,10 0,42 0,79 0,69 0,14 0,23 0,73 0,01 0,24 0,80 43% 72% 17% 41%
Enzyme eTPI 0,14 0,18 0,34 0,22 0,77 0,16 0,21 0,18 0,19 0,23 0,31 0,45 28% 24% 25% 36% 0,23 0,20 0,36 0,74 0,21 0,28 0,50 0,57 0,61 0,46 0,47 0,33 41% 36% 51% 36%
Enzyme eCiS 0,31 0,04 0,45 0,00 0,14 0,03 0,00 0,72 0,00 0,18 0,68 0,39 25% 18% 16% 40% 0,36 0,55 0,61 0,80 0,00 0,00 #DIV/0! 0,00 0,26 0,00 0,33 0,15 #DIV/0! 19% #DIV/0! 22%
Enzyme eEno 0,10 0,23 0,26 0,04 0,25 0,24 0,04 0,15 0,03 0,05 0,27 0,14 15% 13% 10% 22% 0,10 0,24 0,13 0,26 0,39 0,25 0,46 0,04 0,24 0,11 0,11 0,20 21% 20% 24% 19%
Enzyme eG6PDH 0,09 0,26 0,10 0,13 0,80 0,28 0,07 0,11 0,16 0,05 0,32 0,07 20% 15% 9% 37% 0,16 0,13 0,17 0,14 0,08 0,04 0,11 0,12 0,25 0,01 0,25 0,14 13% 15% 11% 15%
Enzyme eGAPDHd 0,15 0,31 0,13 0,34 0,76 0,18 0,33 0,42 0,18 0,21 0,30 0,13 29% 16% 25% 45% 0,38 0,41 0,14 0,32 0,19 0,27 0,01 0,66 0,52 0,32 0,14 0,32 31% 37% 20% 35%
Enzyme eGAPDHdp 0,38 0,38 0,48 0,25 0,59 0,57 0,65 0,05 0,23 0,42 0,45 0,23 39% 35% 45% 37% 0,62 0,41 0,24 0,94 0,96 0,29 0,70 0,42 0,59 0,34 0,07 0,68 52% 54% 55% 47%
Enzyme eIDH 0,20 0,55 0,13 0,32 0,63 0,08 0,44 0,12 0,12 0,09 0,32 0,31 28% 17% 25% 41% 0,13 0,13 0,04 0,14 0,09 0,09 0,06 0,10 0,10 0,09 0,09 0,08 10% 10% 8% 10%
Enzyme ePepC 0,19 0,15 0,08 0,05 0,66 0,32 0,07 0,08 0,08 0,12 0,33 0,05 18% 16% 8% 30% 0,28 0,06 0,41 0,27 0,34 0,07 0,59 0,18 0,06 0,31 0,44 0,22 27% 16% 39% 26%
Enzyme ePFKa 0,15 0,26 0,10 0,19 0,04 0,19 0,09 0,14 0,30 0,07 0,25 0,06 15% 17% 11% 17% 0,16 0,38 0,23 0,16 0,03 0,05 0,18 0,23 0,29 0,15 0,16 0,16 18% 17% 18% 20%
Enzyme ePFKp 0,23 0,33 0,48 0,13 0,21 0,32 0,04 0,12 0,29 0,11 0,22 0,25 23% 27% 19% 22% 0,11 0,04 0,36 0,15 0,04 0,10 0,23 0,25 0,33 0,09 0,21 0,19 17% 18% 21% 13%
Enzyme ePyrK 0,05 0,21 0,06 0,05 0,02 0,40 0,16 0,58 0,32 0,17 0,35 0,24 22% 25% 11% 29% 0,33 0,50 0,27 0,24 0,19 0,13 0,35 0,12 0,14 0,08 0,27 0,09 23% 17% 23% 27%
Enzyme eFRK 0,22 0,38 0,17 0,21 0,71 0,34 0,19 0,28 0,34 0,18 0,23 0,12 28% 25% 19% 40% 0,17 0,41 0,22 0,17 0,64 0,36 0,43 0,65 0,14 0,46 0,54 0,25 37% 23% 32% 56%
Enzyme eGlK 0,20 0,09 0,17 0,10 0,70 0,33 0,05 0,18 0,12 0,08 0,14 0,15 19% 20% 10% 28% 0,19 0,17 0,80 0,31 0,14 0,16 0,64 0,51 0,25 0,15 0,41 0,22 33% 21% 47% 31%
Enzyme eInvA 0,08 0,58 0,00 0,44 0,73 0,57 1,18 0,39 0,00 0,50 0,76 0,30 46% 24% 53% 62% 0,30 0,16 0,62 0,15 0,15 0,09 0,31 0,06 0,90 0,43 0,16 0,24 30% 38% 38% 13%
Enzyme eInvN 0,23 0,72 0,88 0,09 0,72 0,36 0,21 0,24 0,74 0,40 0,60 0,18 45% 38% 39% 57% 0,16 0,25 0,47 0,22 0,18 0,24 0,62 0,01 0,46 0,81 0,24 0,23 33% 27% 53% 17%
Enzyme eSus 0,54 0,35 0,06 0,66 0,51 0,37 0,47 0,23 0,35 0,06 0,61 0,47 39% 43% 31% 42% 0,56 0,45 0,66 0,59 0,00 0,00 0,66 0,06 0,00 0,54 0,23 0,64 37% 30% 61% 19%
Enzyme eFbpA 0,25 0,16 0,11 0,13 0,12 0,25 0,15 0,04 0,23 0,12 0,15 0,26 16% 25% 13% 12% 0,02 0,34 0,00 0,22 0,22 0,30 0,45 0,24 0,83 0,57 0,36 0,09 30% 31% 31% 29%
Enzyme ePgm 0,20 0,08 0,11 0,11 0,67 0,19 0,03 0,06 0,16 0,04 0,27 0,02 16% 14% 7% 27% 0,07 0,61 0,09 0,27 0,12 0,22 0,21 0,08 0,52 0,14 0,22 0,03 22% 21% 18% 26%
Enzyme eAco 0,14 0,23 0,41 0,27 0,96 0,38 0,38 0,39 0,14 0,21 0,65 0,16 36% 21% 32% 56% 0,29 0,16 0,43 0,11 0,36 0,45 0,54 0,42 0,81 0,13 0,07 0,57 36% 53% 30% 25%
Enzyme eFumase 0,20 0,78 0,25 0,03 0,12 0,16 0,74 0,29 0,42 0,19 0,56 0,12 32% 23% 30% 44% 0,21 0,22 0,70 0,38 0,64 0,59 0,00 0,38 0,15 0,18 0,56 0,31 36% 31% 32% 45%
Enzyme eMDH 0,11 0,06 0,21 0,10 0,70 0,19 0,06 0,16 0,12 0,15 0,54 0,06 21% 12% 13% 36% 0,13 0,10 0,02 0,23 0,01 0,37 0,20 0,35 0,30 0,35 0,07 0,18 19% 24% 20% 13%
Enzyme eMed 0,23 0,71 0,17 0,41 0,10 0,36 0,06 0,16 0,52 0,23 0,39 0,18 29% 32% 22% 34% 0,69 0,00 0,34 0,65 0,34 0,12 0,07 0,66 0,90 0,42 0,52 0,94 47% 66% 37% 38%
Enzyme eMedp 0,12 0,28 0,31 0,09 0,18 0,07 0,28 0,24 0,11 0,61 0,40 0,08 23% 9% 32% 27% 0,24 0,50 0,46 0,12 0,09 0,10 0,59 0,26 0,71 0,31 0,26 0,29 33% 34% 37% 28%
Protein s JX006 0,05 0,15 0,17 0,05 0,13 0,17 0,05 0,10 0,16 0,05 0,11 0,17 11% 14% 8% 12% 0,03 0,28 0,16 0,05 0,29 0,14 0,04 0,25 0,03 0,11 0,20 0,11 14% 8% 9% 26%
Protein s JX019 0,04 0,03 0,16 0,06 0,06 0,11 0,12 0,08 0,12 0,16 0,08 0,21 10% 12% 12% 6% 0,10 0,18 0,05 0,07 0,08 0,02 0,08 0,13 0,12 0,04 0,06 0,04 8% 7% 6% 11%
Protein s JX044 0,23 0,09 0,22 0,20 0,07 0,10 0,12 0,21 0,04 0,14 0,14 0,24 15% 15% 17% 13% 0,04 0,10 0,17 0,15 0,21 0,01 0,01 0,18 0,08 0,15 0,06 0,11 11% 6% 12% 14%
Protein s JX101 0,21 0,06 0,04 0,08 0,04 0,08 0,06 0,17 0,03 0,04 0,07 0,09 8% 10% 5% 8% 0,03 0,02 0,12 0,13 0,03 0,25 0,12 0,09 0,05 0,16 0,23 0,16 12% 12% 13% 9%
Protein s JX104 0,07 0,16 0,09 0,03 0,08 0,17 0,10 0,17 0,12 0,13 0,05 0,12 11% 12% 9% 11% 0,05 0,14 0,11 0,04 0,07 0,11 0,04 0,16 0,02 0,05 0,13 0,24 10% 11% 6% 12%
Protein s JX156 0,11 0,18 0,03 0,14 0,02 0,10 0,16 0,21 0,22 0,07 0,06 0,11 12% 14% 10% 12% 0,16 0,08 0,20 0,25 0,06 0,12 0,16 0,22 0,11 0,09 0,05 0,12 13% 12% 18% 10%
Protein s JX168 0,05 0,08 0,17 0,08 0,10 0,16 0,08 0,11 0,16 0,05 0,03 0,08 10% 11% 10% 8% 0,12 0,16 0,15 0,02 0,12 0,11 0,08 0,18 0,06 0,04 0,15 0,02 10% 8% 7% 15%
Protein s JX170 0,12 0,10 0,06 0,07 0,06 0,16 0,09 0,06 0,02 0,04 0,05 0,13 8% 11% 6% 7% 0,04 0,14 0,05 0,04 0,19 0,00 0,04 0,03 0,06 0,20 0,06 0,11 8% 5% 8% 11%
Protein s JX243 0,11 0,17 0,13 0,07 0,07 0,15 0,09 0,05 0,04 0,02 0,09 0,10 9% 10% 8% 10% 0,13 0,13 0,09 0,20 0,09 0,17 0,06 0,11 0,08 0,22 0,15 0,14 13% 13% 15% 12%
Protein s JX248 0,28 0,34 0,12 0,13 0,26 0,06 0,08 0,15 0,22 0,25 0,16 0,12 18% 17% 14% 23% 0,17 0,05 0,23 0,24 0,02 0,17 0,47 0,10 0,03 0,15 0,12 0,48 19% 21% 27% 7%
Protein s JX261 0,13 0,10 0,09 0,08 0,15 0,05 0,13 0,31 0,12 0,12 0,08 0,03 12% 8% 11% 16% 0,13 0,17 0,15 0,02 0,11 0,14 0,01 0,23 0,83 0,15 0,06 0,21 18% 33% 8% 14%
Protein s JX263 0,02 0,08 0,05 0,09 0,08 0,09 0,05 0,05 0,04 0,04 0,02 0,15 6% 7% 6% 6% 0,06 0,07 0,14 0,10 0,11 0,15 0,07 0,08 0,11 0,05 0,15 0,18 11% 13% 9% 10%
Protein s JX280 0,15 0,30 0,05 0,28 0,47 0,35 0,02 0,22 0,26 0,25 0,30 0,37 25% 28% 15% 32% 0,16 0,33 0,16 0,46 0,18 0,29 0,30 0,16 0,16 0,24 0,21 0,46 26% 27% 29% 22%
Protein s JX337 0,03 0,02 0,05 0,06 0,04 0,04 0,02 0,10 0,09 0,07 0,02 0,04 5% 5% 5% 5% 0,05 0,11 0,05 0,17 0,11 0,11 0,43 0,08 0,08 0,10 0,06 0,11 12% 9% 19% 9%
Protein s JX359 0,11 0,20 0,14 0,09 0,12 0,10 0,06 0,06 0,13 0,06 0,11 0,10 11% 11% 9% 12% 0,10 0,06 0,13 0,06 0,08 0,17 0,15 0,07 0,06 0,09 0,13 0,06 10% 10% 11% 9%
Protein s JX362 0,11 0,18 0,02 0,03 0,09 0,13 0,12 0,15 0,08 0,06 0,04 0,16 10% 12% 6% 11% 0,15 0,19 0,10 0,10 0,16 0,06 0,05 0,09 0,12 0,04 0,02 0,21 11% 13% 7% 11%
Protein s JX400 0,15 0,01 0,13 0,17 0,06 0,03 0,17 0,09 0,32 0,02 0,08 0,10 11% 15% 12% 6% 0,07 0,03 0,15 0,17 0,11 0,04 0,35 0,24 0,05 0,16 0,18 0,24 15% 10% 21% 14%
Protein s JX166 0,05 0,02 0,09 0,20 0,02 0,05 0,02 0,14 0,04 0,06 0,10 0,06 7% 5% 9% 7% 0,15 0,08 0,03 0,18 0,14 0,08 0,12 0,06 0,04 0,11 0,13 0,14 11% 10% 11% 11%
Protein s JX175 0,02 0,09 0,02 0,15 0,14 0,06 0,03 0,08 0,04 0,10 0,04 0,28 9% 10% 8% 9% 0,05 0,18 0,09 0,10 0,20 0,10 0,16 0,11 0,16 0,06 0,12 0,10 12% 10% 10% 15%
Protein s JX225 0,18 0,06 0,22 0,07 0,14 0,28 0,16 0,15 0,19 0,48 0,15 0,57 22% 31% 23% 12% 0,15 0,18 0,20 0,06 0,13 0,20 0,19 0,11 0,15 0,14 0,19 0,19 16% 17% 15% 15%
Protein s JX289 0,10 0,03 0,10 0,04 0,09 0,07 0,09 0,08 0,18 0,20 0,10 0,21 11% 14% 11% 7% 0,07 0,11 0,09 0,02 0,18 0,15 0,11 0,08 0,06 0,17 0,10 0,16 11% 11% 10% 12%
Protein s JX347 0,07 0,11 0,23 0,16 0,05 0,04 0,02 0,12 0,07 0,09 0,07 0,10 10% 7% 13% 9% 0,11 0,21 0,11 0,26 0,22 0,19 0,16 0,07 1,00 0,13 0,24 0,24 24% 38% 17% 18%
Protein s JX030 0,11 0,10 0,07 0,09 0,06 0,05 0,03 0,08 0,09 0,17 0,12 0,04 8% 7% 9% 9% 0,06 0,12 0,08 0,04 0,09 0,02 0,14 0,07 0,09 0,05 0,07 0,08 8% 6% 8% 9%
Protein s JX277 0,06 0,09 0,19 0,16 0,09 0,39 0,15 0,22 0,03 0,21 0,03 0,14 15% 15% 18% 11% 0,14 0,10 0,10 0,19 0,19 0,06 0,27 0,13 0,11 0,27 0,23 0,32 18% 16% 21% 16%
Protein s JX352 0,09 0,18 0,10 0,03 0,24 0,53 0,05 0,14 0,11 0,09 0,03 0,30 16% 26% 7% 15% 0,19 0,23 0,23 0,37 0,90 0,31 0,31 0,07 0,05 0,38 0,12 0,21 28% 19% 32% 33%
Protein s JX036 0,19 0,13 0,24 0,28 0,13 0,01 0,04 0,31 0,14 0,13 0,16 0,33 17% 16% 17% 18% 0,08 0,03 0,07 0,07 0,09 0,03 0,18 0,03 0,52 0,06 0,08 0,04 11% 17% 9% 5%
Protein s JX038 0,09 0,08 0,14 0,05 0,21 0,16 0,18 0,07 0,30 0,23 0,37 0,31 18% 22% 15% 18% 0,02 0,05 0,12 0,15 0,04 0,04 0,05 0,08 1,02 0,07 0,32 0,07 17% 29% 10% 12%
Protein s JX039 0,03 0,12 0,09 0,24 0,15 0,18 0,11 0,40 0,10 0,13 0,37 0,26 18% 14% 14% 26% 0,12 0,07 0,12 0,28 0,08 0,08 0,12 0,06 0,19 0,08 0,17 0,15 13% 13% 15% 10%
Protein s JX040 0,31 0,20 0,43 0,20 0,37 0,29 0,09 0,26 0,49 0,23 0,30 0,22 28% 33% 24% 28% 0,10 0,05 0,17 0,17 0,10 0,05 0,05 0,04 0,10 0,07 0,04 0,06 8% 8% 11% 5%
Protein s JX244 0,29 0,55 0,26 0,23 0,16 0,28 0,25 0,13 0,20 0,12 0,13 0,50 26% 32% 22% 24% 0,13 0,15 0,10 0,13 0,12 0,04 0,30 0,15 0,13 0,15 0,13 0,48 17% 20% 17% 13%
Protein s JX245 0,40 0,55 0,32 0,27 0,33 0,37 0,20 0,37 0,38 0,30 0,07 0,27 32% 36% 27% 33% 0,09 0,06 0,05 0,10 0,07 0,12 0,01 0,06 0,07 0,11 0,11 0,21 9% 12% 7% 8%
Protein s JX276 0,25 0,17 0,14 0,36 0,04 0,12 0,47 0,10 0,09 0,31 0,13 0,13 19% 15% 32% 11% 0,07 0,09 0,20 0,08 0,16 0,16 0,02 0,09 0,08 0,16 0,12 0,13 11% 11% 11% 12%
Protein s JX010 0,04 0,02 0,13 0,08 0,10 0,12 0,12 0,23 0,15 0,08 0,13 0,11 11% 10% 10% 12% 0,14 0,06 0,10 0,25 0,03 0,21 0,16 0,24 0,05 0,26 0,20 0,13 15% 13% 19% 13%
Protein s JX013 0,13 0,05 0,05 0,07 0,08 0,14 0,14 0,12 0,02 0,11 0,03 0,03 8% 8% 9% 7% 0,17 0,13 0,16 0,16 0,13 0,19 0,10 0,16 0,12 0,17 0,08 0,20 15% 17% 15% 12%
Protein s JX020 0,07 0,07 0,01 0,09 0,05 0,08 0,06 0,23 0,08 0,19 0,04 0,09 9% 8% 8% 10% 0,13 0,20 0,07 0,04 0,08 0,10 0,18 0,01 0,13 0,26 0,22 0,05 12% 10% 14% 13%
Protein s JX037 0,47 0,15 0,24 0,19 0,34 0,11 0,08 0,16 0,04 0,42 0,14 0,23 22% 21% 24% 20% 0,04 0,07 0,05 0,08 0,20 0,12 0,02 0,19 0,09 0,24 0,13 0,07 11% 8% 10% 15%
Protein s JX042 0,18 0,10 0,05 0,05 0,14 0,15 0,05 0,07 0,03 0,19 0,01 0,06 9% 11% 8% 8% 0,12 0,26 0,14 0,14 0,14 0,00 0,22 0,18 0,08 0,16 0,17 0,16 15% 9% 17% 19%
Protein s JX062 0,06 0,13 0,10 0,15 0,07 0,11 0,07 0,19 0,19 0,10 0,09 0,27 13% 16% 10% 12% 0,06 0,15 0,09 0,08 0,22 0,20 0,16 0,03 0,20 0,14 0,09 0,08 13% 14% 12% 12%
Protein s JX065 0,15 0,12 0,07 0,08 0,13 0,35 0,29 0,07 0,11 0,01 0,28 0,15 15% 19% 11% 15% 0,05 0,09 0,12 0,13 0,12 0,30 0,15 0,18 0,05 0,08 0,05 0,10 12% 12% 12% 11%
Protein s JX066 0,34 0,28 0,17 0,12 0,12 0,08 0,25 0,12 0,27 0,14 0,09 0,21 18% 22% 17% 15% 0,06 0,10 0,19 0,20 0,10 0,22 0,21 0,07 0,14 0,22 0,23 0,11 16% 14% 21% 12%
Protein s JX069 0,12 0,01 0,19 0,03 0,07 0,16 0,07 0,10 0,10 0,06 0,07 0,19 10% 14% 9% 6% 0,11 0,08 0,09 0,11 0,28 0,26 0,23 0,10 0,11 0,13 0,08 0,06 14% 13% 14% 14%
Protein s JX147 0,54 0,10 0,47 0,85 0,64 0,26 0,68 0,52 0,45 0,34 0,36 1,18 53% 61% 59% 40% 0,49 0,13 0,75 0,64 0,14 0,10 0,36 0,20 0,04 0,35 0,26 0,18 30% 20% 53% 18%
Protein s JX167 0,21 0,09 0,06 0,12 0,09 0,04 0,06 0,14 0,11 0,16 0,15 0,04 11% 10% 10% 12% 0,23 0,10 0,22 0,06 0,00 0,07 0,21 0,11 0,01 0,11 0,07 0,12 11% 11% 15% 7%
Protein s JX189 0,10 0,08 0,22 0,15 0,09 0,10 0,21 0,12 0,29 0,13 0,04 0,09 13% 14% 18% 8% 0,16 0,18 0,13 0,07 0,05 0,12 0,10 0,11 0,10 0,21 0,06 0,23 13% 15% 13% 10%
Protein s JX190 0,07 0,18 0,09 0,07 0,05 0,04 0,06 0,12 0,06 0,03 0,04 0,06 7% 6% 6% 10% 0,09 0,05 0,02 0,03 0,04 0,02 0,10 0,08 0,13 0,10 0,11 0,10 7% 8% 6% 7%
Protein s JX192 0,10 0,19 0,22 0,07 0,13 0,04 0,10 0,06 0,04 0,07 0,02 0,11 10% 7% 11% 10% 0,09 0,11 0,18 0,13 0,05 0,15 0,11 0,20 0,15 0,16 0,04 0,25 13% 16% 15% 10%
Protein s JX207 0,04 0,11 0,08 0,21 0,08 0,19 0,13 0,24 0,09 0,14 0,14 0,04 13% 9% 14% 14% 0,04 0,16 0,02 0,10 0,18 0,11 0,13 0,06 0,02 0,17 0,03 0,09 9% 7% 11% 11%
Protein s JX221 0,21 0,08 0,04 0,17 0,09 0,15 0,03 0,10 0,01 0,09 0,10 0,04 9% 10% 8% 9% 0,15 0,04 0,10 0,09 0,20 0,01 0,05 0,03 0,13 0,06 0,02 0,10 8% 10% 8% 7%
Protein s JX247 0,07 0,06 0,09 0,08 0,04 0,06 0,05 0,09 0,07 0,14 0,01 0,04 7% 6% 9% 5% 0,07 0,07 0,07 0,05 0,05 0,01 0,22 0,06 0,10 0,13 0,10 0,08 8% 7% 12% 7%
Protein s JX254 0,17 0,19 0,09 0,14 0,31 0,22 0,15 0,19 0,30 0,31 0,31 0,16 21% 21% 17% 25% 0,08 0,16 0,20 0,23 0,03 0,10 0,07 0,21 0,26 0,22 0,11 0,25 16% 17% 18% 13%
Protein s JX265 0,02 0,04 0,03 0,11 0,06 0,04 0,07 0,06 0,01 0,07 0,09 0,06 5% 3% 7% 6% 0,11 0,05 0,05 0,09 0,01 0,28 0,08 0,07 0,08 0,07 0,09 0,09 9% 14% 7% 5%
Protein s JX300 0,14 0,12 0,17 0,13 0,09 0,51 0,14 0,08 0,29 0,09 0,12 0,10 17% 26% 13% 10% 0,13 0,06 0,10 0,19 0,05 0,18 0,25 0,24 0,32 0,33 0,18 0,57 22% 30% 22% 13%
Protein s JX320 0,21 0,14 0,07 0,06 0,04 0,08 0,12 0,16 0,02 0,11 0,12 0,14 11% 11% 9% 11% 0,13 0,07 0,19 0,27 0,10 0,08 0,16 0,13 0,15 0,25 0,10 0,21 15% 14% 22% 10%
Protein s JX331 0,18 0,11 0,12 0,03 0,07 0,06 0,07 0,13 0,05 0,17 0,01 0,13 9% 11% 10% 8% 0,03 0,11 0,18 0,06 0,07 0,20 0,13 0,04 0,07 0,13 0,04 0,06 9% 9% 12% 7%
Protein s JX340 0,20 0,11 0,19 0,08 0,07 0,09 0,07 0,08 0,08 0,04 0,09 0,07 10% 11% 10% 8% 0,04 0,07 0,03 0,06 0,09 0,15 0,11 0,01 0,05 0,08 0,04 0,05 7% 7% 7% 5%
Protein s JX343 0,13 0,06 0,10 0,05 0,04 0,14 0,04 0,16 0,04 0,04 0,11 0,01 8% 8% 6% 9% 0,03 0,14 0,09 0,08 0,16 0,04 0,09 0,17 0,07 0,08 0,10 0,23 11% 9% 9% 14%
Protein s JX364 0,10 0,08 0,13 0,08 0,04 0,08 0,11 0,04 0,05 0,10 0,01 0,17 8% 10% 10% 4% 0,07 0,28 0,20 0,21 0,23 0,22 0,19 0,32 0,06 0,33 0,01 0,12 19% 12% 23% 21%
Protein s JX366 0,13 0,05 0,08 0,12 0,09 0,03 0,31 0,10 0,19 0,14 0,12 0,08 12% 11% 16% 9% 0,10 0,24 0,05 0,07 0,16 0,19 0,04 0,11 0,10 0,03 0,15 0,17 12% 14% 5% 16%
Protein s JX378 0,06 0,06 0,08 0,13 0,07 0,06 0,03 0,24 0,10 0,04 0,08 0,10 9% 8% 7% 11% 0,12 0,09 0,10 0,12 0,10 0,19 0,10 0,18 0,07 0,04 0,22 0,09 12% 12% 9% 15%
Protein s JX386 0,09 0,23 0,06 0,07 0,11 0,09 0,07 0,14 0,23 0,03 0,07 0,13 11% 13% 6% 14% 0,14 0,05 0,04 0,12 0,10 0,35 0,09 0,01 0,09 0,10 0,11 0,11 11% 17% 9% 7%
Protein s JX389 0,03 0,06 0,00 0,05 0,04 0,11 0,06 0,11 0,05 0,09 0,05 0,05 6% 6% 5% 6% 0,08 0,08 0,05 0,07 0,04 0,15 0,08 0,01 0,03 0,08 0,09 0,08 7% 8% 7% 5%
Protein s JX415 0,15 0,05 0,16 0,13 0,09 0,43 0,12 0,14 0,06 0,10 0,07 0,07 13% 17% 13% 9% 0,53 0,06 0,19 0,13 0,08 0,50 0,24 0,61 0,13 0,40 0,04 0,06 25% 31% 24% 20%
Protein s JX423 0,06 0,03 0,10 0,07 0,12 0,16 0,06 0,01 0,10 0,15 0,01 0,14 8% 11% 9% 4% 0,07 0,10 0,15 0,20 0,13 0,17 0,19 0,08 0,04 0,06 0,06 0,13 11% 10% 15% 9%
Protein s JX021 0,02 0,14 0,01 0,09 0,03 0,15 0,03 0,07 0,11 0,08 0,06 0,02 7% 8% 5% 8% 0,04 0,15 0,04 0,03 0,16 0,14 0,70 0,14 0,07 0,13 0,08 0,16 15% 10% 23% 14%
Protein s JX023 0,08 0,08 0,33 0,15 0,13 0,17 0,11 0,06 0,07 0,03 0,04 0,03 11% 9% 15% 8% 0,03 0,11 0,11 0,02 0,15 0,16 0,14 0,02 0,13 0,07 0,19 0,13 11% 11% 8% 12%
Protein s JX143 0,16 0,17 0,13 0,06 0,20 0,04 0,11 0,10 0,76 0,16 0,14 0,11 18% 27% 11% 15% 0,14 0,09 0,19 0,14 0,14 0,20 0,19 0,32 0,28 0,21 0,20 0,06 18% 17% 18% 19%
Protein s JX224 0,03 0,18 0,09 0,05 0,08 0,03 0,10 0,17 0,07 0,05 0,04 0,12 8% 6% 7% 12% 0,23 0,11 0,08 0,73 0,07 0,09 0,17 0,08 0,20 0,08 0,04 0,20 17% 18% 27% 8%
Protein s JX270 0,03 0,11 0,09 0,07 0,02 0,11 0,12 0,12 0,02 0,03 0,07 0,22 8% 9% 8% 8% 0,02 0,20 0,03 0,16 0,23 0,14 0,16 0,13 0,05 0,09 0,14 0,24 13% 11% 11% 18%
Protein s JX371 0,08 0,05 0,38 0,13 0,07 0,12 0,10 0,22 0,03 0,07 0,02 0,15 12% 10% 17% 9% 0,13 0,17 0,09 0,07 0,09 0,05 0,14 0,20 0,09 0,02 0,09 0,13 11% 10% 8% 14%
Protein s JX373 0,06 0,12 0,02 0,11 0,14 0,09 0,03 0,10 0,07 0,05 0,05 0,14 8% 9% 5% 10% 0,07 0,14 0,19 0,07 0,10 0,12 0,08 0,10 0,17 0,15 0,04 0,36 13% 18% 13% 10%
Protein s JX011 0,09 0,07 0,06 0,10 0,05 0,20 0,13 0,10 0,08 0,14 0,18 0,14 11% 13% 11% 10% 0,17 0,23 0,08 0,08 0,09 0,20 0,25 0,16 0,19 0,13 0,26 0,05 16% 15% 13% 18%
Protein s JX012 0,10 0,06 0,09 0,02 0,11 0,06 0,04 0,10 0,16 0,07 0,04 0,12 8% 11% 6% 8% 0,18 0,05 0,06 0,10 0,12 0,17 0,12 0,12 0,07 0,10 0,03 0,05 10% 12% 9% 8%
Protein s JX014 0,12 0,16 0,10 0,19 0,03 0,18 0,15 0,25 0,07 0,25 0,13 0,13 15% 13% 17% 14% 0,12 0,09 0,21 0,13 0,26 0,05 0,29 0,19 0,06 0,14 0,10 0,07 14% 7% 19% 16%
Protein s JX018 0,18 0,17 0,17 0,24 0,09 0,22 0,34 0,01 0,03 0,29 0,06 0,21 17% 16% 26% 8% 0,04 0,16 0,44 0,20 0,12 0,34 0,11 0,18 0,14 0,13 0,30 0,08 19% 15% 22% 19%
Protein s JX025 0,13 0,25 0,19 0,02 0,13 0,10 0,04 0,06 0,33 0,16 0,06 0,07 13% 15% 10% 13% 0,14 0,03 0,05 0,08 0,13 0,07 0,23 0,20 0,24 0,09 0,24 0,15 14% 15% 11% 15%
Protein s JX031 0,21 0,11 0,13 0,19 0,23 0,10 0,16 0,18 0,13 0,30 0,19 0,09 17% 13% 19% 18% 0,18 0,27 0,12 0,17 0,18 0,22 0,08 0,12 0,21 0,15 0,12 0,17 17% 20% 13% 17%
Protein s JX046 0,12 0,08 0,09 0,18 0,11 0,10 0,03 0,12 0,20 0,07 0,10 0,08 11% 13% 9% 10% 0,02 0,13 0,02 0,09 0,11 0,27 0,05 0,07 0,06 0,13 0,14 0,23 11% 14% 7% 11%
Protein s JX054 0,26 0,13 0,08 0,11 0,06 0,16 0,10 0,09 0,13 0,11 0,20 0,09 13% 16% 10% 12% 0,13 0,17 0,16 0,18 0,11 0,10 0,10 0,28 0,29 0,08 0,10 0,19 16% 18% 13% 17%
Protein s JX057 0,03 0,14 0,13 0,06 0,05 0,34 0,13 0,15 0,09 0,07 0,07 0,22 12% 17% 10% 10% 0,15 0,04 0,15 0,13 0,08 0,08 0,10 0,14 0,15 0,16 0,15 0,18 13% 14% 13% 10%
Protein s JX061 0,22 0,10 0,19 0,05 0,19 0,08 0,01 0,16 0,07 0,03 0,09 0,06 10% 11% 7% 14% 0,07 0,31 0,18 0,25 0,09 0,22 0,14 0,14 0,24 0,05 0,08 0,10 16% 16% 16% 15%
Protein s JX067 0,12 0,32 0,39 0,14 0,15 0,34 0,08 0,05 0,18 0,27 0,13 0,21 20% 21% 22% 16% 0,18 0,20 0,26 0,25 0,16 0,12 0,14 0,12 0,20 0,11 0,15 0,15 17% 16% 19% 16%
Protein s JX078 0,06 0,05 0,30 0,06 0,03 0,10 0,06 0,02 0,10 0,03 0,08 0,05 8% 8% 11% 4% 0,08 0,10 0,03 0,08 0,15 0,08 0,09 0,16 0,07 0,17 0,04 0,02 9% 6% 9% 11%
Protein s JX095 0,15 0,10 0,15 0,05 0,16 0,25 0,04 0,35 0,29 0,19 0,13 0,11 16% 20% 11% 18% 0,05 0,20 0,11 0,54 0,29 0,26 0,41 0,18 0,30 0,07 0,23 0,17 23% 20% 28% 23%
Protein s JX102 0,02 0,05 0,06 0,06 0,05 0,05 0,10 0,05 0,10 0,09 0,06 0,09 7% 6% 8% 5% 0,08 0,10 0,08 0,12 0,07 0,22 0,10 0,04 0,05 0,18 0,10 0,11 10% 11% 12% 8%
Protein s JX107 0,08 0,03 0,06 0,05 0,06 0,16 0,03 0,05 0,05 0,04 0,03 0,09 6% 10% 4% 4% 0,02 0,01 0,08 0,17 0,07 0,06 0,07 0,05 0,06 0,13 0,05 0,02 7% 4% 11% 5%
Protein s JX114 0,08 0,10 0,10 0,06 0,10 0,04 0,02 0,15 0,33 0,07 0,09 0,16 11% 15% 6% 11% 0,05 0,06 0,10 0,12 0,09 0,16 0,07 0,06 0,01 0,18 0,07 0,09 9% 8% 12% 7%
Protein s JX117 0,10 0,05 0,02 0,11 0,04 0,09 0,08 0,17 0,05 0,05 0,09 0,18 9% 10% 6% 9% 0,06 0,15 0,17 0,22 0,28 0,07 0,10 0,21 0,18 0,16 0,12 0,11 15% 11% 16% 19%
Protein s JX119 0,19 0,15 0,11 0,06 0,06 0,08 0,02 0,20 0,07 0,12 0,03 0,14 10% 12% 8% 11% 0,03 0,11 0,14 0,08 0,17 0,03 0,16 0,07 0,03 0,11 0,05 0,06 9% 4% 13% 10%
Protein s JX120 0,02 0,03 0,02 0,02 0,07 0,02 0,02 0,08 0,10 0,09 0,05 0,15 6% 7% 4% 6% 0,08 0,07 0,06 0,00 0,15 0,15 0,06 0,03 0,06 0,12 0,03 0,05 7% 8% 6% 7%
Protein s JX122 0,04 0,07 0,02 0,08 0,03 0,03 0,10 0,14 0,06 0,02 0,04 0,07 6% 5% 6% 7% 0,03 0,07 0,03 0,10 0,13 0,11 0,07 0,12 0,14 0,14 0,03 0,07 9% 9% 8% 9%
Protein s JX125 0,01 0,06 0,10 0,02 0,08 0,19 0,10 0,09 0,07 0,06 0,04 0,15 8% 11% 7% 7% 0,06 0,16 0,06 0,22 0,13 0,14 0,05 0,06 0,04 0,06 0,11 0,05 10% 7% 10% 12%
Protein s JX127 0,17 0,15 0,08 0,12 0,03 0,04 0,21 0,08 0,09 0,08 0,05 0,09 10% 10% 12% 8% 0,03 0,08 0,06 0,07 0,10 0,08 0,12 0,14 0,06 0,08 0,12 0,08 9% 6% 8% 11%
Protein s JX129 0,10 0,07 0,10 0,10 0,08 0,07 0,11 0,09 0,04 0,12 0,07 0,04 8% 7% 11% 8% 0,03 0,12 0,07 0,02 0,09 0,02 0,11 0,03 0,09 0,11 0,06 0,07 7% 5% 8% 8%
Protein s JX137 0,12 0,04 0,13 0,06 0,08 0,17 0,17 0,08 0,12 0,09 0,04 0,26 11% 17% 11% 6% 0,17 0,05 0,07 0,23 0,17 0,23 0,12 0,14 0,12 0,10 0,04 0,90 19% 36% 13% 10%
Protein s JX138 0,12 0,01 0,17 0,14 0,05 0,14 0,08 0,19 0,08 0,04 0,09 0,14 10% 12% 11% 9% 0,08 0,16 0,06 0,05 0,05 0,06 0,12 0,02 0,06 0,19 0,04 0,06 8% 6% 11% 7%
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Protein s JX139 0,14 0,12 0,15 0,05 0,11 0,27 0,05 0,06 0,01 0,33 0,20 0,04 13% 12% 15% 12% 0,38 0,30 0,12 0,08 0,29 0,32 0,07 0,28 0,21 0,21 0,28 0,20 23% 28% 12% 28%
Protein s JX142 0,07 0,05 0,11 0,02 0,02 0,03 0,04 0,12 0,09 0,06 0,06 0,13 7% 8% 6% 6% 0,06 0,13 0,06 0,21 0,05 0,19 0,09 0,07 0,06 0,06 0,06 0,08 9% 10% 11% 8%
Protein s JX148 0,23 0,08 0,11 0,03 0,10 0,20 0,08 0,03 0,05 0,16 0,14 0,20 12% 17% 10% 9% 0,20 0,38 0,17 0,22 0,22 0,10 0,13 0,04 0,24 0,44 0,29 0,31 23% 21% 24% 23%
Protein s JX152 0,11 0,05 0,13 0,07 0,00 0,04 0,17 0,02 0,06 0,04 0,06 0,10 7% 8% 10% 3% 0,06 0,14 0,17 0,14 0,11 0,03 0,10 0,03 0,07 0,17 0,08 0,16 11% 8% 15% 9%
Protein s JX153 0,42 0,17 0,07 0,09 0,05 0,19 0,07 0,08 0,07 0,07 0,14 0,13 13% 20% 7% 11% 0,08 0,10 0,08 0,25 0,14 0,07 0,11 0,19 0,13 0,06 0,08 0,13 12% 10% 13% 13%
Protein s JX158 0,13 0,08 0,07 0,11 0,05 0,01 0,17 0,22 0,10 0,05 0,12 0,11 10% 9% 10% 12% 0,14 0,08 0,05 0,03 0,05 0,14 0,08 0,06 0,07 0,21 0,08 0,16 10% 13% 9% 7%
Protein s JX160 0,11 0,04 0,11 0,08 0,16 0,17 0,16 0,19 0,04 0,05 0,12 0,29 13% 15% 10% 13% 0,05 0,09 0,12 0,23 0,14 0,15 0,15 0,28 0,02 0,15 0,21 0,24 15% 11% 16% 18%
Protein s JX172 0,11 0,06 0,10 0,05 0,06 0,22 0,10 0,07 0,07 0,05 0,04 0,13 9% 13% 8% 6% 0,13 0,18 0,02 0,12 0,12 0,33 0,10 0,09 0,05 0,26 0,18 0,12 14% 16% 13% 14%
Protein s JX174 0,03 0,02 0,08 0,10 0,06 0,03 0,04 0,10 0,02 0,03 0,04 0,04 5% 3% 6% 6% 0,09 0,07 0,06 0,07 0,09 0,09 0,19 0,05 0,11 0,06 0,18 0,09 10% 9% 9% 10%
Protein s JX181 0,16 0,02 0,21 0,06 0,11 0,10 0,08 0,11 0,13 0,08 0,03 0,01 9% 10% 11% 7% 0,09 0,22 0,08 0,07 0,03 0,24 0,38 0,25 0,11 0,18 0,06 0,06 15% 13% 18% 14%
Protein s JX182 0,28 0,05 0,20 0,10 0,11 0,08 0,06 0,15 0,05 0,10 0,10 0,09 11% 12% 11% 10% 0,42 0,16 0,14 0,04 0,15 0,05 0,19 0,19 0,15 0,11 0,06 0,08 15% 18% 12% 14%
Protein s JX196 0,08 0,11 0,03 0,06 0,07 0,13 0,13 0,06 0,16 0,05 0,14 0,13 9% 12% 7% 9% 0,10 0,16 0,10 0,08 0,05 0,07 0,04 0,18 0,14 0,09 0,06 0,04 9% 9% 8% 11%
Protein s JX198 0,23 0,06 0,05 0,10 0,01 0,09 0,08 0,13 0,08 0,05 0,09 0,07 9% 11% 7% 7% 0,10 0,18 0,06 0,07 0,07 0,08 0,07 0,10 0,08 0,06 0,10 0,09 9% 9% 6% 11%
Protein s JX201 0,09 0,07 0,06 0,02 0,10 0,03 0,06 0,05 0,07 0,17 0,06 0,02 7% 5% 8% 7% 0,07 0,09 0,01 0,04 0,14 0,08 0,14 0,02 0,09 0,09 0,06 0,05 7% 7% 7% 8%
Protein s JX202 0,15 0,12 0,05 0,05 0,05 0,06 0,03 0,11 0,15 0,12 0,02 0,07 8% 11% 6% 7% 0,06 0,03 0,13 0,07 0,07 0,04 0,16 0,11 0,15 0,06 0,06 0,18 9% 11% 10% 7%
Protein s JX211 0,10 0,22 0,24 0,21 0,05 0,32 0,29 0,15 0,01 0,21 0,30 0,03 18% 12% 24% 18% 0,46 0,42 0,44 0,18 0,40 0,38 0,13 0,41 0,13 0,06 0,50 0,57 34% 39% 20% 43%
Protein s JX217 0,09 0,06 0,02 0,09 0,09 0,06 0,06 0,02 0,09 0,13 0,11 0,13 8% 9% 8% 7% 0,04 0,10 0,02 0,38 0,20 0,18 0,16 0,21 0,25 0,15 0,20 0,20 17% 17% 18% 18%
Protein s JX219 0,03 0,10 0,09 0,10 0,13 0,06 0,23 0,19 0,12 0,08 0,12 0,09 11% 8% 12% 13% 0,14 0,06 0,08 0,15 0,18 0,26 0,07 0,06 0,07 0,09 0,06 0,90 18% 34% 10% 9%
Protein s JX229 0,02 0,04 0,11 0,14 0,08 0,06 0,03 0,31 0,08 0,01 0,01 0,12 8% 7% 7% 11% 0,18 0,06 0,06 0,09 0,10 0,05 0,47 0,16 0,02 0,09 0,08 0,11 12% 9% 18% 10%
Protein s JX231 0,15 0,11 0,08 0,05 0,04 0,15 0,21 0,16 0,20 0,17 0,05 0,17 13% 17% 13% 9% 0,24 0,12 0,07 0,42 0,10 0,30 0,08 0,06 0,31 0,03 0,15 0,16 17% 25% 15% 11%
Protein s JX232 0,23 0,13 0,23 0,14 0,19 0,18 0,16 0,12 0,10 0,17 0,13 0,16 16% 17% 17% 14% 0,17 0,05 0,12 0,17 0,30 0,12 0,03 0,11 0,25 0,13 0,08 0,26 15% 20% 11% 13%
Protein s JX240 0,16 0,24 0,19 0,12 0,42 0,19 0,27 0,09 0,20 0,11 0,16 0,05 18% 15% 17% 23% 0,13 0,51 0,26 0,43 0,15 0,14 0,13 0,11 0,18 0,14 0,15 0,08 20% 13% 24% 23%
Protein s JX249 0,11 0,07 0,08 0,09 0,12 0,12 0,05 0,04 0,23 0,02 0,11 0,17 10% 16% 6% 9% 0,10 0,10 0,10 0,06 0,11 0,19 0,21 0,24 0,13 0,17 0,04 0,07 13% 12% 13% 12%
Protein s JX253 0,06 0,11 0,08 0,03 0,11 0,08 0,21 0,15 0,10 0,13 0,08 0,07 10% 8% 11% 11% 0,25 0,13 0,07 0,15 0,25 0,13 0,17 0,38 0,38 0,29 0,31 0,48 25% 31% 17% 27%
Protein s JX258 0,15 0,06 0,07 0,05 0,03 0,09 0,10 0,11 0,02 0,03 0,05 0,16 8% 10% 6% 6% 0,09 0,25 0,06 0,12 0,08 0,20 0,30 0,17 0,03 0,07 0,04 0,04 12% 9% 14% 14%
Protein s JX260 0,19 0,17 0,14 0,05 0,12 0,08 0,07 0,22 0,15 0,13 0,08 0,28 14% 18% 10% 15% 0,05 0,13 0,12 0,02 0,12 0,21 0,08 0,11 0,15 0,01 0,04 0,13 10% 14% 6% 10%
Protein s JX272 0,18 0,08 0,19 0,03 0,05 0,06 0,08 0,53 0,04 0,28 0,05 0,07 14% 9% 15% 18% 0,11 0,13 0,09 0,13 0,11 0,07 0,03 0,07 0,14 0,25 0,09 0,07 11% 10% 12% 10%
Protein s JX279 0,13 0,45 0,03 0,33 0,13 0,14 0,11 0,31 0,07 0,14 0,03 0,16 17% 12% 15% 23% 0,07 0,26 0,31 0,75 0,20 0,21 0,19 0,26 0,02 0,11 0,38 0,05 23% 9% 34% 28%
Protein s JX281 0,13 0,22 0,00 0,45 0,20 0,30 0,18 0,24 0,22 0,11 0,01 0,29 20% 23% 19% 17% 0,12 0,09 0,20 0,97 0,17 0,11 0,23 0,32 0,31 0,09 0,32 0,15 26% 17% 37% 22%
Protein s JX283 0,18 0,15 0,07 0,38 0,11 0,08 0,33 0,06 0,35 0,17 0,12 0,12 18% 18% 24% 11% 0,39 0,10 0,19 1,21 0,02 0,30 0,44 0,33 0,20 0,24 0,24 0,15 32% 26% 52% 17%
Protein s JX287 0,06 0,18 0,07 0,19 0,10 0,05 0,07 0,08 0,14 0,16 0,13 0,04 11% 7% 12% 12% 0,02 0,06 0,05 0,01 0,05 0,01 0,40 0,08 0,17 0,08 0,04 0,04 8% 6% 14% 6%
Protein s JX301 0,32 0,13 0,07 0,11 0,03 0,06 0,19 0,07 0,19 0,04 0,08 0,13 12% 18% 10% 8% 0,19 0,18 0,07 0,12 0,11 0,10 0,25 0,24 0,16 0,06 0,15 0,11 15% 14% 12% 17%
Protein s JX303 0,16 0,04 0,04 0,30 0,10 0,15 0,09 0,05 0,07 0,04 0,12 0,12 11% 13% 12% 8% 0,12 0,14 0,05 0,09 0,12 0,04 0,22 0,16 0,16 0,02 0,09 0,31 13% 16% 10% 12%
Protein s JX307 0,21 0,12 0,06 0,05 0,04 0,06 0,19 0,11 0,12 0,22 0,05 0,13 11% 13% 13% 8% 0,08 0,05 0,03 0,15 0,32 0,10 0,09 0,05 0,13 0,04 0,05 0,06 9% 9% 7% 12%
Protein s JX330 0,07 0,06 0,03 0,10 0,07 0,13 0,05 0,03 0,08 0,03 0,10 0,08 7% 9% 5% 6% 0,04 0,07 0,08 0,09 0,13 0,08 0,03 0,10 0,04 0,04 0,08 0,02 7% 5% 6% 10%
Protein s JX336 0,05 0,08 0,06 0,08 0,03 0,04 0,03 0,05 0,08 0,05 0,04 0,07 6% 6% 6% 5% 0,05 0,05 0,06 0,08 0,12 0,11 0,03 0,32 0,01 0,10 0,02 0,06 8% 6% 7% 13%
Protein s JX338 0,12 0,08 0,05 0,07 0,08 0,07 0,07 0,04 0,06 0,03 0,05 0,07 7% 8% 6% 6% 0,08 0,16 0,06 0,09 0,09 0,04 0,04 0,07 0,09 0,04 0,07 0,10 8% 8% 6% 10%
Protein s JX341 0,08 0,05 0,04 0,05 0,06 0,13 0,10 0,14 0,02 0,04 0,15 0,30 10% 13% 6% 10% 0,05 0,13 0,13 0,02 0,15 0,07 0,09 0,08 0,17 0,14 0,11 0,20 11% 12% 10% 12%
Protein s JX345 0,09 0,16 0,10 0,05 0,02 0,10 0,06 0,19 0,19 0,03 0,14 0,18 11% 14% 6% 13% 0,13 0,07 0,04 0,38 0,05 0,18 0,16 0,20 0,12 0,14 0,18 0,04 14% 12% 18% 13%
Protein s JX355 0,19 0,04 0,16 0,05 0,12 0,05 0,16 0,11 0,17 0,15 0,20 0,13 13% 13% 13% 12% 0,03 0,30 0,03 0,13 0,20 0,21 0,26 0,09 0,28 0,07 0,18 0,40 18% 23% 12% 19%
Protein s JX360 0,17 0,27 0,17 0,10 0,15 0,13 0,14 0,05 0,29 0,07 0,09 0,16 15% 19% 12% 14% 0,11 0,42 0,11 0,51 0,17 0,07 0,07 0,21 0,23 0,03 0,07 0,19 18% 15% 18% 22%
Protein s JX365 0,10 0,18 0,01 0,08 0,29 0,11 0,16 0,05 0,02 0,03 0,03 0,14 10% 9% 7% 14% 0,15 0,24 0,07 0,24 0,18 0,20 0,22 0,14 0,15 0,16 0,18 0,15 17% 16% 17% 18%
Protein s JX375 0,08 0,20 0,05 0,15 0,04 0,11 0,01 0,12 0,04 0,12 0,12 0,04 9% 7% 8% 12% 0,05 0,05 0,19 0,10 0,10 0,05 0,48 0,07 0,04 0,06 0,11 0,27 13% 10% 21% 8%
Protein s JX381 0,07 0,21 0,04 0,05 0,09 0,13 0,16 0,21 0,09 0,10 0,07 0,13 11% 10% 9% 15% 0,11 0,20 0,11 0,06 0,13 0,35 0,12 0,11 0,24 0,04 0,09 0,09 14% 20% 8% 13%
Protein s JX382 0,09 0,08 0,08 0,08 0,05 0,19 0,05 0,07 0,15 0,05 0,03 0,18 9% 16% 7% 6% 0,03 0,11 0,09 0,07 0,11 0,09 0,05 0,13 0,02 0,06 0,06 0,30 9% 11% 7% 10%
Protein s JX383 0,11 0,13 0,03 0,02 0,06 0,06 0,06 0,02 0,04 0,10 0,05 0,02 6% 6% 5% 6% 0,10 0,13 0,05 0,06 0,17 0,33 0,10 0,16 0,08 0,09 0,03 0,12 12% 16% 8% 12%
Protein s JX384 0,06 0,07 0,10 0,17 0,09 0,04 0,13 0,11 0,05 0,11 0,06 0,12 9% 7% 13% 8% 0,05 0,11 0,20 0,21 0,11 0,17 0,05 0,03 0,07 0,09 0,15 0,06 11% 9% 14% 10%
Protein s JX385 0,04 0,10 0,11 0,09 0,12 0,12 0,03 0,09 0,16 0,05 0,05 0,13 9% 11% 7% 9% 0,11 0,06 0,00 0,07 0,10 0,34 0,09 0,09 0,14 0,06 0,10 0,21 12% 20% 6% 9%
Protein s JX387 0,07 0,06 0,11 0,14 0,07 0,03 0,12 0,12 0,11 0,16 0,04 0,12 10% 9% 13% 7% 0,03 0,03 0,07 0,02 0,14 0,17 0,10 0,03 0,02 0,09 0,04 0,10 7% 8% 7% 6%
Protein s JX390 0,11 0,05 0,04 0,02 0,03 0,01 0,09 0,09 0,03 0,03 0,10 0,05 5% 5% 4% 7% 0,01 0,10 0,05 0,10 0,10 0,06 0,05 0,10 0,07 0,09 0,03 0,04 7% 4% 7% 8%
Protein s JX392 0,21 0,08 0,22 0,18 0,11 0,09 0,12 0,21 0,13 0,06 0,13 0,16 14% 15% 14% 13% 0,18 0,07 0,20 0,12 0,25 0,07 0,06 0,14 0,04 0,09 0,12 0,04 11% 8% 12% 15%
Protein s JX396 0,09 0,14 0,16 0,26 0,04 0,07 0,07 0,21 0,12 0,04 0,10 0,31 13% 15% 13% 12% 0,05 0,46 0,15 0,10 0,10 0,13 0,16 0,15 0,14 0,07 0,22 0,10 15% 10% 12% 23%
Protein s JX399 0,06 0,11 0,04 0,08 0,10 0,14 0,09 0,52 0,01 0,14 0,13 0,06 12% 7% 9% 22% 0,07 0,12 0,06 0,07 0,16 0,09 0,10 0,09 0,08 0,16 0,09 0,07 10% 8% 10% 11%
Protein s JX401 0,03 0,10 0,08 0,06 0,05 0,12 0,11 0,17 0,11 0,05 0,11 0,07 9% 8% 8% 11% 0,07 0,16 0,05 0,04 0,12 0,26 0,09 0,16 0,16 0,04 0,10 0,08 11% 14% 6% 14%
Protein s JX408 0,08 0,06 0,05 0,13 0,07 0,08 0,09 0,09 0,12 0,03 0,10 0,06 8% 8% 7% 8% 0,13 0,11 0,09 0,07 0,06 0,05 0,22 0,13 0,08 0,10 0,02 0,11 10% 9% 12% 8%
Protein s JX414 0,05 0,07 0,14 0,12 0,03 0,20 0,05 0,19 0,00 0,08 0,06 0,07 9% 8% 10% 9% 0,07 0,09 0,03 0,08 0,12 0,03 0,05 0,12 0,11 0,12 0,03 0,22 9% 11% 7% 9%
Protein s JX417 0,09 0,05 0,32 0,30 0,08 0,15 0,11 0,14 0,12 0,28 0,08 0,20 16% 14% 25% 9% 0,15 0,05 0,11 0,29 0,24 0,32 0,32 0,24 0,05 0,08 0,23 0,30 20% 21% 20% 19%
Protein s JX274 0,23 0,14 0,03 0,06 0,06 0,13 0,06 0,10 0,08 0,02 0,06 0,03 8% 12% 4% 9% 0,12 0,07 0,06 0,26 0,12 0,16 0,06 0,08 0,13 0,13 0,03 0,17 12% 15% 13% 8%
Protein s JX285 0,07 0,15 0,23 0,08 0,12 0,21 0,65 0,30 0,30 0,34 0,22 0,27 24% 21% 33% 20% 0,07 0,14 0,12 0,06 0,15 0,05 0,12 0,12 0,08 0,03 0,02 0,12 9% 8% 8% 10%
Protein s JX146 0,15 0,21 0,08 0,11 0,02 0,12 0,11 0,05 0,12 0,20 0,20 0,04 12% 11% 13% 12% 0,18 0,17 0,13 0,07 0,17 0,03 0,09 0,02 0,05 0,42 0,07 0,64 17% 22% 18% 11%
Protein s JX398 0,11 0,11 0,12 0,10 0,11 0,00 0,01 0,08 0,08 0,07 0,11 0,18 9% 9% 7% 10% 0,14 0,12 0,04 0,18 0,05 0,15 0,08 0,07 0,05 0,11 0,01 0,10 9% 11% 10% 6%
Protein s JX060 0,25 0,15 0,16 0,03 0,05 0,17 0,26 0,18 0,15 0,11 0,08 0,11 14% 17% 14% 11% 0,16 0,12 0,12 0,05 0,13 0,39 0,11 0,12 0,17 0,10 0,16 0,20 15% 23% 10% 13%
Protein s JX071 0,16 0,01 0,25 0,22 0,11 0,12 0,04 0,13 0,11 0,10 0,02 0,17 12% 14% 15% 7% 0,09 0,14 0,43 0,20 0,12 0,04 0,18 0,20 0,06 0,13 0,08 0,02 14% 5% 24% 14%
Protein s JX082 0,28 0,10 0,18 0,11 0,15 0,14 0,08 0,05 0,05 0,12 0,16 0,05 12% 13% 12% 11% 0,14 0,06 0,09 0,19 0,09 0,11 0,04 0,08 0,09 0,05 0,08 0,07 9% 10% 9% 8%
Protein s JX088 0,25 0,15 0,11 0,11 0,10 0,12 0,09 0,48 0,30 0,17 0,09 0,31 19% 25% 12% 21% 0,13 0,11 0,02 0,07 0,05 0,21 0,16 0,12 0,13 0,11 0,02 0,08 10% 14% 9% 7%
Protein s JX098 0,12 0,14 0,14 0,04 0,02 0,05 0,04 0,17 0,13 0,12 0,07 0,10 10% 10% 9% 10% 0,15 0,15 0,03 0,16 0,67 0,31 0,44 0,33 0,04 0,12 0,16 0,23 23% 18% 19% 33%
Protein s JX100 0,11 0,07 0,13 0,07 0,04 0,03 0,13 0,13 0,08 0,16 0,17 0,10 10% 8% 12% 10% 0,10 0,15 0,09 0,06 0,09 0,11 0,18 0,25 0,06 0,13 0,15 0,03 12% 8% 11% 16%
Protein s JX116 0,12 0,09 0,06 0,08 0,19 0,16 0,13 0,05 0,08 0,07 0,13 0,11 11% 12% 8% 12% 0,07 0,07 0,11 0,02 0,15 0,13 0,14 0,06 0,17 0,06 0,11 0,11 10% 12% 8% 10%
Protein s JX118 0,07 0,06 0,06 0,04 0,12 0,09 0,04 0,05 0,11 0,08 0,03 0,06 7% 8% 5% 7% 0,02 0,07 0,06 0,02 0,03 0,12 0,08 0,16 0,07 0,06 0,14 0,06 7% 7% 6% 10%
Protein s JX150 0,32 0,25 0,30 0,24 0,16 0,45 0,28 0,10 0,13 0,10 0,18 0,18 22% 27% 23% 17% 0,39 0,15 0,22 0,55 0,26 0,14 0,26 0,04 0,16 0,28 0,38 0,24 26% 23% 33% 21%
Protein s JX162 0,08 0,15 0,25 0,17 0,04 0,23 0,15 0,05 0,09 0,12 0,11 0,06 13% 12% 17% 9% 0,18 0,16 0,16 0,24 0,31 0,48 0,21 0,14 0,03 0,12 0,10 0,15 19% 21% 18% 18%
Protein s JX187 0,04 0,07 0,08 0,01 0,03 0,09 0,04 0,03 0,06 0,09 0,06 0,11 6% 7% 5% 5% 0,17 0,07 0,19 0,12 0,09 0,07 0,11 0,12 0,05 0,13 0,02 0,12 10% 10% 14% 7%
Protein s JX213 0,15 0,15 0,17 0,19 0,11 0,03 0,06 0,05 0,07 0,10 0,06 0,11 10% 9% 13% 9% 0,05 0,12 0,10 0,14 0,17 0,27 0,33 0,21 0,42 0,13 0,15 0,12 18% 21% 17% 16%
Protein s JX222 0,08 0,11 0,13 0,23 0,11 0,37 0,04 0,12 0,16 0,16 0,15 0,07 14% 17% 14% 12% 0,12 0,03 0,15 0,63 0,13 0,13 0,42 0,19 0,07 0,36 0,29 0,24 23% 14% 39% 16%
Protein s JX238 0,11 0,28 0,06 0,03 0,21 0,13 0,07 0,16 0,38 0,15 0,12 0,21 16% 21% 8% 19% 0,10 0,25 0,23 0,19 0,04 0,18 0,39 0,16 0,18 0,09 0,18 0,27 19% 18% 22% 16%
Protein s JX266 0,08 0,05 0,16 0,11 0,24 0,09 0,17 0,04 0,09 0,11 0,03 0,05 10% 8% 14% 9% 0,10 0,10 0,15 0,07 0,15 0,25 0,17 0,08 0,12 0,04 0,14 0,15 13% 15% 11% 12%
Protein s JX268 0,06 0,10 0,04 0,08 0,04 0,08 0,38 0,50 0,10 0,03 0,15 0,13 14% 9% 13% 20% 0,27 0,04 0,11 0,18 0,19 0,28 0,15 0,30 0,26 0,24 0,18 0,15 20% 24% 17% 18%
Protein s JX296 0,10 0,10 0,05 0,12 0,07 0,08 0,13 0,08 0,14 0,21 0,07 0,20 11% 13% 13% 8% 0,08 0,05 0,08 0,08 0,11 0,07 0,06 0,01 0,11 0,07 0,04 0,04 7% 8% 7% 5%
Protein s JX297 0,07 0,17 0,08 0,03 0,04 0,49 0,14 0,59 0,26 0,23 0,12 0,17 20% 25% 12% 23% 0,01 0,03 0,03 0,08 0,06 0,09 0,07 0,05 0,09 0,07 0,01 0,13 6% 8% 6% 4%
Protein s JX308 0,16 0,21 0,32 0,09 0,07 0,08 0,08 0,02 0,08 0,04 0,15 0,11 12% 11% 13% 11% 0,07 0,07 0,07 0,06 0,10 0,22 0,04 0,20 0,36 0,03 0,44 0,12 15% 19% 5% 20%
Protein s JX310 0,09 0,16 0,11 0,12 0,02 0,03 0,05 0,06 0,03 0,00 0,04 0,16 7% 8% 7% 7% 0,02 0,05 0,11 0,07 0,05 0,09 0,05 0,05 0,05 0,10 0,02 0,03 6% 5% 8% 4%
Protein s JX318 0,15 0,02 0,12 0,22 0,00 0,17 0,15 0,18 0,04 0,02 0,10 0,13 11% 12% 13% 8% 0,07 0,25 0,22 0,16 0,14 0,07 0,28 0,25 0,19 0,06 0,18 0,18 17% 13% 18% 20%
Protein s JX326 0,02 0,10 0,04 0,05 0,05 0,04 0,05 0,06 0,05 0,03 0,06 0,10 5% 6% 4% 6% 0,06 0,10 0,06 0,09 0,08 0,07 0,14 0,05 0,13 0,11 0,12 0,09 9% 9% 10% 9%
Protein s JX327 0,04 0,04 0,03 0,07 0,05 0,03 0,03 0,04 0,08 0,06 0,04 0,05 5% 5% 5% 4% 0,04 0,06 0,09 0,09 0,10 0,09 0,05 0,03 0,06 0,05 0,04 0,07 6% 6% 7% 6%
Protein s JX361 0,11 0,06 0,17 0,15 0,08 0,08 0,07 0,05 0,11 0,13 0,02 0,07 9% 9% 13% 5% 0,17 0,18 0,17 0,11 0,11 0,18 0,15 0,13 0,18 0,02 0,09 0,07 13% 15% 11% 13%
Protein s JX391 0,03 0,09 0,08 0,22 0,17 0,27 0,02 0,22 0,20 0,16 0,18 0,08 14% 14% 12% 17% 0,10 0,05 0,25 0,49 0,29 0,19 0,32 0,34 0,23 0,44 0,18 0,14 25% 17% 38% 21%
Protein s JX405 0,71 0,06 0,11 0,18 0,05 0,13 0,14 0,18 0,13 0,11 0,17 0,09 17% 26% 13% 11% 0,85 0,14 0,07 0,08 0,06 0,13 0,14 0,12 0,06 0,04 0,37 0,09 18% 28% 8% 17%
Protein s JX409 0,13 0,04 0,09 0,06 0,04 0,06 0,04 0,04 0,01 0,04 0,01 0,02 5% 5% 6% 3% 0,05 0,09 0,12 0,02 0,05 0,05 0,10 0,09 0,07 0,06 0,06 0,19 8% 9% 8% 7%
Protein s JX421 0,25 0,19 0,08 0,16 0,02 0,07 0,07 0,25 0,14 0,11 0,15 0,14 14% 15% 11% 15% 0,18 0,16 0,27 0,17 0,06 0,24 0,23 0,03 0,10 0,04 0,04 0,17 14% 17% 18% 7%
Protein s JX001 0,13 0,20 0,46 0,32 0,05 0,12 0,19 0,12 0,06 0,05 0,10 0,28 17% 15% 26% 12% 0,04 0,01 0,06 0,08 0,12 0,11 0,22 0,06 0,06 0,06 0,05 0,49 11% 18% 11% 6%
Protein s JX004 0,02 0,12 0,14 0,10 0,07 0,09 0,02 0,13 0,28 0,14 0,03 0,08 10% 12% 10% 9% 0,11 0,14 0,07 0,09 0,23 0,18 0,12 0,22 0,08 0,15 0,12 0,32 15% 17% 11% 18%
Protein s JX008 0,06 0,06 0,13 0,06 0,10 0,06 0,04 0,15 0,04 0,10 0,07 0,01 7% 4% 8% 10% 0,13 0,08 0,06 0,13 0,21 0,12 0,17 0,22 0,04 0,17 0,20 0,15 14% 11% 13% 18%
Protein s JX015 0,07 0,06 0,11 0,07 0,05 0,05 0,06 0,28 0,05 0,02 0,14 0,01 8% 5% 7% 13% 0,13 0,07 0,13 0,06 0,08 0,06 0,12 0,13 0,23 0,13 0,16 0,19 12% 15% 11% 11%
Protein s JX024 0,11 0,14 0,01 0,11 0,11 0,06 0,06 0,06 0,22 0,06 0,07 0,10 9% 12% 6% 10% 0,08 0,09 0,14 0,14 0,09 0,18 0,02 0,12 0,11 0,23 0,04 0,15 11% 13% 13% 8%
Protein s JX026 0,15 0,10 0,06 0,09 0,02 0,08 0,08 0,03 0,13 0,12 0,05 0,17 9% 13% 9% 5% 0,13 0,04 0,06 0,08 0,14 0,17 0,17 0,10 0,07 0,09 0,08 0,23 11% 15% 10% 9%
Protein s JX027 0,16 0,07 0,04 0,23 0,05 0,17 0,10 0,10 0,14 0,06 0,06 0,07 10% 14% 11% 7% 0,13 0,20 0,04 0,17 0,07 0,08 0,18 0,14 0,14 0,08 0,02 0,42 14% 19% 12% 11%
Protein s JX029 0,17 0,08 0,03 0,10 0,04 0,15 0,06 0,14 0,07 0,08 0,06 0,03 9% 11% 7% 8% 0,11 0,21 0,08 0,11 0,03 0,08 0,07 0,09 0,10 0,02 0,08 0,04 9% 8% 7% 10%
Protein s JX032 0,02 0,10 0,11 0,09 0,10 0,09 0,08 0,06 0,08 0,08 0,05 0,02 7% 5% 9% 8% 0,04 0,14 0,05 0,08 0,11 0,13 0,09 0,06 0,16 0,14 0,08 0,10 10% 11% 9% 10%
Protein s JX033 0,05 0,05 0,01 0,07 0,08 0,09 0,06 0,08 0,04 0,04 0,07 0,12 6% 8% 5% 7% 0,05 0,02 0,04 0,05 0,07 0,19 0,25 0,21 0,02 0,05 0,06 0,17 10% 11% 10% 9%
Protein s JX041 0,24 0,11 0,05 0,23 0,13 0,30 0,54 0,14 0,74 0,53 0,55 0,41 33% 42% 34% 23% 0,16 0,16 0,50 0,11 0,10 0,39 0,22 0,28 0,25 0,25 0,21 0,14 23% 24% 27% 19%
Protein s JX045 0,03 0,09 0,11 0,09 0,04 0,13 0,01 0,27 0,22 0,04 0,23 0,10 11% 12% 6% 16% 0,11 0,05 0,32 0,68 0,48 0,17 0,23 0,23 0,04 0,13 0,11 0,12 22% 11% 34% 22%
Protein s JX050 0,27 0,36 0,25 0,22 0,25 0,20 0,02 0,14 0,16 0,11 0,05 0,35 20% 25% 15% 20% 0,14 0,10 0,16 0,10 0,13 0,24 0,01 0,23 0,20 0,20 0,10 0,24 15% 21% 12% 14%
Protein s JX051 0,06 0,22 0,11 0,10 0,17 0,19 0,02 0,29 0,19 0,10 0,12 0,07 14% 13% 8% 20% 0,09 0,28 0,20 0,37 0,13 0,25 0,16 0,04 0,25 0,15 0,17 0,15 19% 19% 22% 16%
Protein s JX053 0,07 0,10 0,08 0,04 0,07 0,01 0,17 0,02 0,08 0,21 0,05 0,07 8% 6% 12% 6% 0,21 0,09 0,08 0,20 0,30 0,14 0,24 0,39 0,43 0,27 0,29 0,48 26% 31% 20% 27%
Protein s JX056 0,26 0,14 0,09 0,21 0,13 0,18 0,14 0,04 0,04 0,16 0,03 0,20 13% 17% 15% 8% 0,04 0,20 0,17 0,13 0,06 0,13 0,10 0,21 0,06 0,12 0,06 0,29 13% 13% 13% 13%
Protein s JX058 0,15 0,11 0,18 0,13 0,21 0,09 0,19 0,20 0,03 0,12 0,14 0,38 16% 16% 16% 17% 0,13 0,12 0,10 0,27 0,10 0,03 0,11 0,11 0,07 0,05 0,11 0,16 11% 10% 13% 11%
Protein s JX059 0,05 0,18 0,23 0,17 0,13 0,10 0,14 0,06 0,02 0,36 0,17 0,29 16% 11% 22% 14% 0,12 0,09 0,04 0,23 0,13 0,28 0,25 0,07 0,06 0,20 0,11 0,30 16% 19% 18% 10%
Protein s JX068 0,12 0,18 0,09 0,13 0,27 0,10 0,02 0,12 0,18 0,16 0,08 0,32 15% 18% 10% 16% 0,16 0,01 0,28 0,47 0,12 0,25 0,05 0,13 0,11 0,23 0,09 0,14 17% 16% 26% 9%
Protein s JX070 0,06 0,06 0,05 0,22 0,03 0,17 0,06 0,12 0,03 0,09 0,26 0,08 10% 9% 11% 12% 0,02 0,04 0,08 0,03 0,02 0,05 0,04 0,06 0,13 0,05 0,10 0,19 7% 10% 5% 5%
Protein s JX073 0,08 0,04 0,06 0,08 0,03 0,00 0,03 0,06 0,02 0,02 0,03 0,08 5% 5% 5% 4% 0,07 0,07 0,06 0,12 0,03 0,16 0,10 0,11 0,02 0,07 0,12 0,04 8% 7% 9% 8%
Protein s JX076 0,17 0,07 0,24 0,16 0,08 0,19 0,25 0,21 0,15 0,21 0,27 0,20 18% 18% 21% 16% 0,05 0,11 0,21 0,02 0,12 0,09 0,07 0,05 0,32 0,34 0,15 0,09 13% 14% 16% 11%
Protein s JX081 0,10 0,44 0,19 0,31 0,38 0,51 0,06 0,23 0,24 0,64 0,38 0,20 31% 26% 30% 36% 0,30 0,56 0,83 0,44 0,16 0,32 0,31 0,07 0,28 0,26 0,08 0,34 33% 31% 46% 22%
Protein s JX087 0,38 0,24 0,13 0,52 0,10 0,07 0,34 0,18 0,39 0,08 0,17 0,26 24% 27% 27% 17% 0,05 0,12 0,13 0,11 0,25 0,16 0,18 0,10 0,76 0,15 0,17 0,03 19% 25% 14% 16%
Protein s JX091 0,37 0,14 0,17 0,11 0,27 0,36 0,13 0,21 0,26 0,24 0,20 0,38 24% 34% 16% 21% 0,09 0,27 0,10 0,09 0,21 0,34 0,11 0,29 0,42 0,11 0,32 0,09 20% 24% 10% 27%
Protein s JX106 0,23 0,07 0,20 0,08 0,10 0,09 0,14 0,02 0,09 0,14 0,07 0,20 12% 15% 14% 7% 0,36 0,09 0,13 0,10 0,10 0,14 0,29 0,08 0,11 0,33 0,11 0,17 17% 19% 21% 9%
Protein s JX110 0,09 0,05 0,10 0,07 0,03 0,09 0,13 0,18 0,11 0,04 0,11 0,08 9% 9% 8% 9% 0,08 0,18 0,18 0,09 0,16 0,27 0,01 0,08 0,04 0,06 0,11 0,24 12% 16% 8% 13%
Protein s JX111 0,06 0,04 0,10 0,13 0,02 0,01 0,06 0,17 0,08 0,17 0,10 0,17 9% 8% 11% 8% 0,01 0,06 0,16 0,07 0,12 0,06 0,11 0,05 0,05 0,10 0,02 0,08 8% 5% 11% 7%
Protein s JX113 0,12 0,09 0,00 0,08 0,15 0,04 0,11 0,05 0,12 0,13 0,12 0,04 9% 8% 8% 10% 0,08 0,03 0,03 0,12 0,15 0,01 0,08 0,04 0,11 0,12 0,12 0,12 8% 8% 9% 8%
Protein s JX115 0,03 0,09 0,01 0,13 0,07 0,05 0,07 0,07 0,07 0,06 0,08 0,10 7% 6% 7% 8% 0,06 0,09 0,10 0,12 0,02 0,02 0,04 0,04 0,01 0,08 0,03 0,06 5% 4% 9% 4%
Protein s JX123 0,06 0,04 0,05 0,09 0,10 0,06 0,09 0,02 0,03 0,03 0,04 0,07 6% 5% 6% 5% 0,03 0,03 0,05 0,07 0,08 0,03 0,12 0,05 0,04 0,09 0,08 0,03 6% 3% 8% 6%
Protein s JX124 0,10 0,09 0,03 0,14 0,05 0,08 0,07 0,01 0,04 0,06 0,03 0,08 7% 7% 8% 5% 0,03 0,11 0,11 0,11 0,11 0,05 0,12 0,01 0,06 0,07 0,12 0,21 9% 9% 10% 9%
Protein s JX128 0,06 0,09 0,06 0,12 0,07 0,10 0,03 0,15 0,05 0,02 0,04 0,06 7% 7% 6% 9% 0,09 0,06 0,06 0,07 0,12 0,06 0,05 0,17 0,02 0,10 0,04 0,11 8% 7% 7% 10%
Protein s JX130 0,07 0,06 0,10 0,13 0,19 0,02 0,08 0,22 0,18 0,15 0,10 0,14 12% 10% 11% 14% 0,11 0,10 0,11 0,13 0,11 0,25 0,15 0,09 0,14 0,13 0,14 0,28 14% 19% 13% 11%
Protein s JX131 0,08 0,04 0,06 0,12 0,05 0,07 0,23 0,15 0,16 0,10 0,11 0,08 10% 10% 13% 9% 0,12 0,21 0,16 0,10 0,20 0,24 0,09 0,09 0,03 0,03 0,11 0,30 14% 17% 10% 15%
Protein s JX132 0,06 0,32 0,26 0,17 0,13 0,37 0,17 0,35 0,02 0,05 0,06 0,23 18% 17% 16% 21% 0,11 0,35 0,16 0,19 0,05 0,28 0,08 0,20 0,02 0,18 0,20 0,27 17% 17% 15% 20%
Protein s JX144 0,20 0,07 0,07 0,12 0,08 0,05 0,15 0,05 0,13 0,10 0,12 0,01 10% 10% 11% 8% 0,17 0,15 0,15 0,16 0,41 0,28 0,37 0,35 0,15 0,51 0,27 0,34 27% 23% 30% 29%
Protein s JX151 0,05 0,13 0,07 0,15 0,03 0,08 0,15 0,12 0,11 0,04 0,08 0,08 9% 8% 10% 9% 0,17 0,16 0,17 0,46 0,06 0,16 0,05 0,19 0,13 0,21 0,05 0,12 16% 14% 22% 12%
Protein s JX154 0,15 0,12 0,17 0,12 0,07 0,02 0,07 0,12 0,08 0,16 0,06 0,01 10% 7% 13% 9% 0,06 0,08 0,06 0,08 0,05 0,09 0,13 0,26 0,39 0,06 0,13 0,07 12% 15% 8% 13%
Protein s JX155 0,10 0,07 0,16 0,09 0,10 0,05 0,05 0,10 0,06 0,06 0,14 0,08 9% 7% 9% 10% 0,10 0,11 0,07 0,24 0,20 0,25 0,17 0,15 0,16 0,26 0,14 0,11 16% 16% 18% 15%
Protein s JX157 0,05 0,09 0,08 0,01 0,13 0,03 0,05 0,08 0,09 0,06 0,07 0,02 6% 5% 5% 9% 0,13 0,20 0,09 0,23 0,12 0,26 0,07 0,15 0,15 0,02 0,14 0,07 14% 15% 10% 15%
Protein s JX159 0,09 0,33 0,32 0,16 0,21 0,18 0,07 0,10 0,09 0,26 0,19 0,26 19% 16% 20% 21% 0,23 0,27 0,29 0,29 0,15 0,27 0,30 0,19 0,38 0,29 0,34 0,52 29% 35% 29% 24%
Protein s JX161 0,08 0,15 0,14 0,08 0,08 0,08 0,08 0,09 0,03 0,02 0,05 0,09 8% 7% 8% 9% 0,13 0,02 0,12 0,12 0,08 0,07 0,06 0,09 0,02 0,08 0,06 0,13 8% 9% 9% 6%
Protein s JX163 0,16 0,22 0,28 0,13 0,16 0,04 0,10 0,03 0,25 0,28 0,05 0,17 16% 16% 20% 12% 0,14 0,06 0,09 0,04 0,12 0,08 0,02 0,13 0,10 0,12 0,04 0,23 10% 14% 7% 9%
Protein s JX164 0,04 0,03 0,11 0,13 0,06 0,12 0,08 0,14 0,02 0,08 0,09 0,01 8% 5% 10% 8% 0,07 0,05 0,04 0,02 0,01 0,19 0,07 0,01 0,06 0,13 0,08 0,06 7% 9% 7% 4%
Protein s JX169 0,10 0,17 0,05 0,08 0,13 0,08 0,05 0,06 0,07 0,07 0,08 0,04 8% 7% 6% 11% 0,12 0,22 0,09 0,13 0,09 0,11 0,09 0,06 0,10 0,05 0,14 0,21 12% 13% 9% 12%
Protein s JX171 0,03 0,02 0,17 0,19 0,15 0,20 0,08 0,19 0,05 0,29 0,18 0,13 14% 10% 19% 13% 0,07 0,03 0,01 0,11 0,08 0,13 0,07 0,09 0,20 0,13 0,05 0,21 10% 15% 8% 6%
Protein s JX177 0,10 0,09 0,09 0,09 0,07 0,05 0,01 0,16 0,04 0,10 0,03 0,06 7% 6% 7% 9% 0,07 0,05 0,03 0,12 0,06 0,08 0,14 0,04 0,06 0,08 0,08 0,13 8% 8% 9% 6%
Protein s JX178 0,06 0,04 0,08 0,08 0,04 0,06 0,06 0,16 0,09 0,12 0,07 0,12 8% 8% 8% 8% 0,26 0,13 0,16 0,07 0,09 0,16 0,10 0,13 0,17 0,01 0,11 0,18 13% 19% 9% 12%
Protein s JX179 0,05 0,11 0,10 0,14 0,06 0,14 0,11 0,09 0,01 0,06 0,09 0,06 8% 6% 10% 9% 0,15 0,12 0,21 0,17 0,11 0,06 0,10 0,15 0,13 0,29 0,05 0,18 14% 13% 19% 11%
Protein s JX183 0,34 0,31 0,22 0,09 0,25 0,15 0,10 0,02 0,14 0,16 0,13 0,18 17% 20% 14% 18% 0,08 0,22 0,11 0,02 0,04 0,34 0,35 0,16 0,12 0,16 0,14 0,07 15% 15% 16% 14%
Protein s JX191 0,06 0,07 0,08 0,03 0,08 0,08 0,08 0,11 0,09 0,06 0,16 0,10 8% 8% 6% 10% 0,06 0,10 0,05 0,08 0,05 0,09 0,11 0,09 0,13 0,13 0,03 0,14 9% 10% 9% 7%
Protein s JX193 0,16 0,09 0,21 0,18 0,09 0,08 0,08 0,06 0,23 0,07 0,21 0,17 14% 16% 13% 11% 0,15 0,10 0,17 0,05 0,10 0,08 0,29 0,15 0,05 0,15 0,11 0,10 13% 10% 17% 12%
Protein s JX205 0,02 0,03 0,15 0,14 0,06 0,07 0,08 0,07 0,09 0,06 0,13 0,13 8% 8% 10% 7% 0,04 0,12 0,01 0,03 0,12 0,06 0,08 0,06 0,15 0,07 0,07 0,05 7% 8% 5% 10%
Protein s JX206 0,15 0,15 0,03 0,16 0,14 0,15 0,11 0,14 0,09 0,10 0,09 0,09 12% 12% 10% 13% 0,03 0,31 0,11 0,32 0,19 0,16 0,20 0,14 0,15 0,10 0,20 0,37 19% 18% 18% 21%
Protein s JX212 0,08 0,28 0,19 0,26 0,06 0,11 0,04 0,13 0,07 0,14 0,17 0,13 14% 10% 16% 16% 0,13 0,19 0,05 0,08 0,16 0,10 0,06 0,46 0,16 0,08 0,22 0,02 14% 10% 7% 26%
Protein s JX214 0,05 0,11 0,13 0,09 0,06 0,03 0,12 0,10 0,05 0,05 0,03 0,14 8% 7% 10% 7% 0,02 0,02 0,08 0,07 0,10 0,00 0,10 0,05 0,10 0,08 0,02 0,14 6% 7% 8% 4%
Protein s JX216 0,40 0,31 0,12 0,48 0,10 0,11 0,35 0,39 0,19 0,39 0,20 0,05 26% 19% 33% 25% 0,05 0,56 0,15 0,06 0,17 0,13 0,48 0,60 0,29 0,09 0,19 0,11 24% 15% 19% 38%
Protein s JX218 0,16 0,14 0,26 0,11 0,02 0,12 0,07 0,14 0,04 0,06 0,04 0,06 10% 9% 13% 8% 0,11 0,06 0,05 0,05 0,03 0,07 0,09 0,05 0,20 0,18 0,16 0,14 10% 13% 9% 7%
Protein s JX220 0,09 0,10 0,11 0,05 0,04 0,14 0,12 0,06 0,11 0,10 0,10 0,26 11% 15% 10% 8% 0,05 0,16 0,15 0,16 0,23 0,12 0,15 0,17 0,18 0,38 0,13 0,23 17% 14% 21% 17%
Protein s JX227 0,17 0,17 0,15 0,09 0,09 0,04 0,14 0,14 0,05 0,28 0,14 0,31 15% 15% 16% 13% 0,34 0,25 0,21 0,14 0,20 0,14 0,09 0,23 0,14 0,19 0,12 0,17 19% 20% 16% 20%
Protein s JX228 0,23 0,07 0,32 0,12 0,16 0,20 0,24 0,05 0,26 0,38 0,17 0,10 19% 20% 27% 11% 0,11 0,18 0,10 0,18 0,09 0,22 0,01 0,08 0,16 0,17 0,00 0,31 14% 20% 12% 9%
Protein s JX230 0,27 0,15 0,10 0,09 0,04 0,07 0,15 0,12 0,08 0,09 0,13 0,13 12% 14% 11% 11% 0,05 0,31 0,16 0,12 0,15 0,05 0,27 0,26 0,17 0,04 0,10 0,29 16% 14% 15% 20%
Protein s JX233 0,03 0,13 0,04 0,16 0,14 0,06 0,07 0,22 0,17 0,06 0,13 0,05 10% 8% 8% 15% 0,17 0,10 0,08 0,13 0,12 0,14 0,11 0,13 0,13 0,24 0,47 0,06 16% 13% 14% 20%
Protein s JX234 0,21 0,05 0,15 0,06 0,03 0,20 0,09 0,06 0,07 0,00 0,12 0,09 9% 14% 8% 7% 0,07 0,19 0,17 0,02 0,17 0,17 0,15 0,22 0,11 0,07 0,11 0,25 14% 15% 10% 17%
Protein s JX235 0,02 0,03 0,16 0,06 0,03 0,14 0,05 0,48 0,09 0,01 0,11 0,12 11% 9% 7% 16% 0,07 0,05 0,05 0,20 0,26 0,12 0,14 0,06 0,12 0,14 0,14 0,12 12% 11% 13% 13%
Protein s JX237 0,14 0,12 0,07 0,13 0,10 0,05 0,22 0,44 0,15 0,11 0,15 0,00 14% 8% 13% 20% 0,11 0,05 0,04 0,04 0,10 0,07 0,04 0,25 0,03 0,11 0,22 0,04 9% 6% 6% 16%
Protein s JX239 0,11 0,07 0,37 0,31 0,10 0,05 0,07 0,04 0,09 0,05 0,17 0,15 13% 10% 20% 9% 0,07 0,06 0,05 0,04 0,14 0,07 0,58 0,05 0,10 0,11 0,06 0,11 12% 9% 19% 8%
Protein s JX241 0,11 0,04 0,18 0,07 0,12 0,16 0,14 0,45 0,11 0,09 0,10 0,16 14% 14% 12% 18% 0,04 0,23 0,07 0,22 0,15 0,23 0,11 0,17 0,24 0,17 0,06 0,09 15% 15% 14% 15%
Protein s JX246 0,10 0,17 0,39 0,03 0,05 0,11 0,25 0,10 0,12 0,63 0,23 0,01 18% 9% 32% 14% 0,11 0,27 0,21 0,15 0,22 0,09 0,14 0,10 0,23 0,16 0,20 0,34 19% 20% 16% 20%
Protein s JX250 0,30 0,08 0,02 0,07 0,05 0,03 0,14 0,04 0,16 0,22 0,16 0,05 11% 14% 11% 8% 0,28 0,08 0,13 0,13 0,38 0,14 0,21 0,36 0,32 0,26 0,30 0,47 25% 30% 18% 28%
Protein s JX255 0,22 0,12 0,15 0,16 0,07 0,09 0,03 0,01 0,15 0,14 0,06 0,04 10% 12% 12% 7% 0,15 0,36 0,20 0,03 0,01 0,11 0,23 0,12 0,09 0,01 0,08 0,49 16% 21% 12% 14%
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Protein s JX256 0,06 0,11 0,08 0,11 0,09 0,07 0,07 0,07 0,05 0,02 0,04 0,16 8% 8% 7% 8% 0,07 0,08 0,08 0,10 0,21 0,06 0,03 0,11 0,07 0,04 0,11 0,04 8% 6% 6% 13%
Protein s JX262 0,07 0,09 0,14 0,07 0,07 0,05 0,24 0,19 0,20 0,09 0,01 0,07 11% 10% 13% 9% 0,04 0,14 0,16 0,11 0,06 0,14 0,16 0,06 0,10 0,04 0,03 0,02 9% 7% 12% 7%
Protein s JX264 0,05 0,10 0,10 0,05 0,05 0,09 0,05 0,09 0,05 0,05 0,04 0,14 7% 8% 6% 7% 0,05 0,11 0,24 0,39 0,08 0,04 0,10 0,15 0,03 0,10 0,14 0,11 13% 6% 21% 12%
Protein s JX267 0,29 0,31 0,13 0,29 0,04 0,19 0,19 0,25 0,03 0,05 0,21 0,18 18% 17% 17% 20% 0,23 0,08 0,40 0,24 0,06 0,22 0,22 0,09 0,07 0,26 0,18 0,06 18% 15% 28% 10%
Protein s JX269 0,03 0,19 0,09 0,08 0,22 0,11 0,22 0,04 0,25 0,21 0,09 0,19 14% 14% 15% 14% 0,24 0,15 0,13 0,07 0,12 0,17 0,03 0,03 0,03 0,06 0,08 0,17 11% 15% 7% 9%
Protein s JX271 0,08 0,11 0,07 0,08 0,02 0,04 0,04 0,50 0,05 0,12 0,06 0,09 11% 7% 8% 17% 0,11 0,11 0,14 0,05 0,20 0,07 0,29 0,14 0,06 0,03 0,37 0,11 14% 9% 13% 20%
Protein s JX275 0,14 0,14 0,00 0,15 0,17 0,10 0,04 0,22 0,14 0,05 0,03 0,03 10% 10% 6% 14% 0,13 0,18 0,09 0,15 0,02 0,17 0,16 0,09 0,07 0,13 0,09 0,07 11% 11% 13% 9%
Protein s JX284 0,18 0,13 0,09 0,39 0,21 0,25 0,09 0,29 0,11 0,26 0,28 0,28 21% 20% 21% 23% 0,05 0,10 0,47 0,60 0,39 0,07 0,01 0,13 0,12 0,38 0,08 0,23 22% 12% 37% 18%
Protein s JX286 0,37 0,14 0,03 0,14 0,07 0,08 0,09 0,04 0,17 0,15 0,15 0,08 13% 17% 10% 10% 0,06 0,06 0,21 0,22 0,06 0,09 0,11 0,14 0,28 0,11 0,07 0,04 12% 12% 16% 8%
Protein s JX290 0,10 0,07 0,03 0,03 0,08 0,12 0,05 0,14 0,12 0,05 0,16 0,13 9% 12% 4% 12% 0,06 0,17 0,09 0,09 0,04 0,24 0,09 0,22 0,01 0,02 0,03 0,32 11% 16% 7% 11%
Protein s JX291 0,26 0,18 0,03 0,10 0,09 0,08 0,05 0,01 0,21 0,05 0,04 0,09 10% 16% 6% 8% 0,11 0,04 0,10 0,05 0,10 0,11 0,05 0,13 0,05 0,06 0,05 0,08 8% 9% 7% 8%
Protein s JX292 0,27 0,03 0,17 0,17 0,27 0,12 0,24 0,08 0,30 0,19 0,10 0,08 17% 19% 19% 12% 0,06 0,12 0,18 0,06 0,07 0,02 0,15 0,17 0,06 0,32 0,10 0,13 12% 7% 18% 11%
Protein s JX294 0,14 0,10 0,07 0,07 0,08 0,07 0,18 0,19 0,39 0,11 0,08 0,44 16% 26% 11% 11% 0,10 0,17 0,11 0,13 0,01 0,25 0,14 0,19 0,27 0,41 0,06 0,09 16% 18% 20% 10%
Protein s JX298 0,08 0,43 0,45 0,59 0,38 0,26 0,19 0,11 0,21 0,26 0,10 0,23 27% 20% 37% 26% 0,18 0,47 0,12 0,31 0,52 0,20 0,48 0,14 0,31 0,31 0,10 0,21 28% 22% 31% 31%
Protein s JX302 0,11 0,24 0,06 0,07 0,27 0,04 0,11 0,15 0,09 0,08 0,06 0,18 12% 11% 8% 18% 0,04 0,16 0,19 0,21 0,15 0,21 0,01 0,09 0,05 0,10 0,02 0,12 11% 11% 13% 11%
Protein s JX305 0,14 0,13 0,17 0,08 0,11 0,05 0,38 0,10 0,09 0,32 0,12 0,06 15% 8% 24% 12% 0,11 0,10 0,14 0,76 0,05 0,13 0,12 0,09 0,14 0,12 0,15 0,13 17% 13% 28% 10%
Protein s JX306 0,10 0,10 0,12 0,15 0,08 0,32 0,07 0,20 0,11 0,05 0,10 0,10 13% 16% 10% 12% 0,05 0,11 0,00 0,11 0,14 0,11 0,16 0,11 0,06 0,02 0,13 0,10 9% 8% 7% 12%
Protein s JX311 0,21 0,14 0,07 0,10 0,06 0,09 0,01 0,10 0,20 0,03 0,12 0,04 10% 13% 5% 10% 0,04 0,06 0,22 0,29 0,17 0,37 0,11 0,28 0,15 0,04 0,18 0,28 18% 21% 16% 17%
Protein s JX313 0,19 0,20 0,18 0,13 0,03 0,17 0,14 0,19 0,13 0,15 0,11 0,42 17% 23% 15% 13% 0,20 0,13 0,15 0,03 0,17 0,26 0,18 0,17 0,11 0,11 0,18 0,15 15% 18% 12% 16%
Protein s JX316 0,08 0,06 0,10 0,10 0,12 0,05 0,06 0,14 0,08 0,06 0,10 0,08 9% 7% 8% 10% 0,06 0,46 0,16 0,06 0,04 0,11 0,06 0,08 0,12 0,17 0,31 0,11 14% 10% 11% 22%
Protein s JX319 0,29 0,07 0,18 0,10 0,15 0,07 0,11 0,14 0,14 0,05 0,05 0,15 13% 16% 11% 10% 0,07 0,13 0,16 0,06 0,06 0,12 0,11 0,05 0,22 0,09 0,06 0,08 10% 12% 11% 7%
Protein s JX322 0,06 0,12 0,16 0,10 0,12 0,16 0,11 0,02 0,02 0,12 0,05 0,21 10% 11% 12% 8% 0,09 0,10 0,13 0,01 0,18 0,12 0,17 0,21 0,04 0,06 0,16 0,07 11% 8% 9% 16%
Protein s JX323 0,05 0,06 0,05 0,15 0,05 0,06 0,03 0,16 0,13 0,07 0,09 0,02 8% 7% 7% 9% 0,07 0,08 0,09 0,08 0,04 0,05 0,05 0,06 0,06 0,04 0,09 0,11 7% 7% 7% 7%
Protein s JX329 0,17 0,12 0,05 0,03 0,12 0,15 0,02 0,20 0,07 0,04 0,11 0,05 9% 11% 4% 14% 0,08 0,23 0,20 0,13 0,19 0,06 0,13 0,23 0,07 0,07 0,14 0,27 15% 12% 14% 20%
Protein s JX333 0,03 0,11 0,09 0,10 0,12 0,18 0,05 0,12 0,08 0,05 0,05 0,09 9% 10% 7% 10% 0,16 0,07 0,16 0,04 0,07 0,02 0,08 0,04 0,08 0,12 0,17 0,15 10% 10% 10% 9%
Protein s JX334 0,07 0,13 0,09 0,18 0,15 0,26 0,09 0,13 0,11 0,08 0,12 0,10 13% 14% 11% 13% 0,11 0,04 0,03 0,20 0,13 0,19 0,15 0,03 0,12 0,10 0,06 0,12 11% 13% 12% 7%
Protein s JX342 0,05 0,14 0,12 0,04 0,02 0,08 0,02 0,04 0,13 0,10 0,07 0,10 8% 9% 7% 7% 0,16 0,02 0,07 0,17 0,08 0,13 0,12 0,12 0,04 0,16 0,16 0,06 11% 10% 13% 9%
Protein s JX344 0,08 0,12 0,02 0,11 0,06 0,15 0,04 0,03 0,08 0,05 0,03 0,18 8% 12% 5% 6% 0,05 0,08 0,07 0,09 0,06 0,04 0,07 0,04 0,04 0,04 0,06 0,12 6% 6% 7% 6%
Protein s JX351 0,19 0,02 0,05 0,05 0,04 0,02 0,02 0,15 0,09 0,17 0,12 0,11 9% 10% 7% 8% 0,17 0,08 0,05 0,15 0,08 0,30 0,04 0,10 0,08 0,18 0,12 0,05 12% 15% 11% 9%
Protein s JX353 0,17 0,18 0,20 0,17 0,08 0,03 0,06 0,05 0,07 0,22 0,22 0,07 13% 9% 16% 13% 0,15 0,30 0,05 0,44 0,25 0,02 0,19 0,08 0,17 0,13 0,10 0,27 18% 15% 20% 18%
Protein s JX357 0,14 0,13 0,05 0,08 0,12 0,05 0,20 0,08 0,05 0,09 0,03 0,02 9% 6% 10% 9% 0,09 0,18 0,25 0,18 0,13 0,21 0,05 0,06 0,02 0,01 0,10 0,22 13% 14% 12% 12%
Protein s JX363 0,20 0,19 0,04 0,10 0,05 0,08 0,12 0,13 0,15 0,11 0,04 0,22 12% 16% 9% 10% 0,30 0,09 0,03 0,07 0,10 0,15 0,17 0,06 0,06 0,05 0,03 0,03 10% 14% 8% 7%
Protein s JX367 0,12 0,24 0,13 0,02 0,11 0,12 0,07 0,08 0,10 0,17 0,16 0,26 13% 15% 10% 15% 0,03 0,03 0,10 0,09 0,07 0,14 0,02 0,21 0,12 0,08 0,11 0,10 9% 10% 7% 10%
Protein s JX372 0,09 0,16 0,06 0,04 0,03 0,13 0,04 0,02 0,12 0,06 0,03 0,34 9% 17% 5% 6% 0,12 0,10 0,15 0,04 0,10 0,10 0,12 0,07 0,03 0,06 0,18 0,05 9% 8% 9% 11%
Protein s JX376 0,09 0,08 0,17 0,07 0,09 0,06 0,03 0,22 0,07 0,11 0,12 0,26 12% 12% 10% 13% 0,19 0,33 0,16 0,06 0,13 0,17 0,15 0,24 0,13 0,45 0,22 0,09 19% 15% 21% 23%
Protein s JX379 0,17 0,15 0,12 0,05 0,20 0,13 0,05 0,11 0,13 0,16 0,05 0,03 11% 12% 9% 13% 0,11 0,22 0,12 0,32 0,09 0,28 0,20 0,13 0,27 0,20 0,23 0,08 19% 18% 21% 17%
Protein s JX394 0,06 0,06 0,12 0,10 0,03 0,19 0,08 0,05 0,02 0,10 0,05 0,14 8% 10% 10% 5% 0,14 0,14 0,07 0,07 0,12 0,19 0,28 0,15 0,01 0,15 0,12 0,15 13% 12% 14% 13%
Protein s JX397 0,26 0,12 0,16 0,07 0,03 0,20 0,01 0,09 0,12 0,07 0,06 0,09 11% 17% 8% 8% 0,20 0,06 0,13 0,19 0,13 0,30 0,18 0,29 0,08 0,12 0,17 0,16 17% 18% 15% 16%
Protein s JX402 0,13 0,21 0,10 0,06 0,09 0,16 0,02 0,14 0,09 0,12 0,01 0,04 10% 11% 7% 11% 0,20 0,17 0,18 0,10 0,12 0,04 0,06 0,20 0,15 0,22 0,01 0,13 13% 13% 14% 13%
Protein s JX403 0,15 0,07 0,07 0,09 0,13 0,03 0,06 0,13 0,10 0,04 0,05 0,11 9% 10% 7% 10% 0,07 0,07 0,03 0,16 0,08 0,14 0,03 0,08 0,16 0,06 0,17 0,35 12% 18% 7% 10%
Protein s JX406 0,12 0,14 0,14 0,09 0,15 0,17 0,07 0,19 0,02 0,11 0,13 0,33 14% 16% 10% 15% 0,11 0,14 0,15 0,23 0,25 0,08 0,09 0,07 0,09 0,03 0,12 0,30 14% 14% 12% 14%
Protein s JX411 0,15 0,22 0,05 0,09 0,03 0,07 0,08 0,14 0,12 0,03 0,10 0,06 10% 10% 6% 13% 0,09 0,14 0,10 0,05 0,17 0,06 0,03 0,16 0,08 0,04 0,09 0,18 10% 10% 6% 14%
Protein s JX412 0,07 0,00 0,11 0,07 0,07 0,14 0,02 0,02 0,04 0,07 0,04 0,11 6% 9% 6% 3% 0,08 0,09 0,08 0,11 0,10 0,09 0,08 0,06 0,04 0,16 0,16 0,05 9% 7% 11% 10%
Protein s JX413 0,04 0,10 0,03 0,11 0,06 0,07 0,03 0,06 0,12 0,05 0,05 0,06 7% 7% 6% 7% 0,11 0,06 0,04 0,06 0,07 0,16 0,08 0,07 0,03 0,04 0,08 0,12 8% 10% 6% 7%
Protein s JX419 0,10 0,17 0,17 0,17 0,27 0,56 0,37 0,37 0,18 0,20 0,06 0,29 24% 28% 23% 22% 0,15 0,06 0,11 0,23 0,08 0,12 0,22 0,07 0,59 0,05 0,08 0,09 15% 24% 15% 7%
Protein s JX420 0,20 0,15 0,15 0,01 0,13 0,21 0,03 0,02 0,05 0,09 0,14 0,16 11% 16% 7% 11% 0,01 0,12 0,10 0,04 0,06 0,08 0,09 0,04 0,02 0,02 0,07 0,16 7% 7% 6% 7%
Protein s JX422 0,09 0,04 0,08 0,11 0,09 0,09 0,06 0,04 0,02 0,06 0,07 0,04 7% 6% 8% 6% 0,04 0,05 0,02 0,06 0,10 0,03 0,14 0,02 0,06 0,12 0,10 0,02 6% 4% 8% 7%
Protein s JX009 0,07 0,09 0,05 0,15 0,06 0,21 0,09 0,05 0,03 0,11 0,06 0,09 9% 10% 10% 7% 0,05 0,13 0,10 0,07 0,12 0,05 0,07 0,11 0,03 0,06 0,02 0,10 8% 6% 7% 10%
Protein s JX022 0,11 0,02 0,09 0,35 0,03 0,12 0,07 0,08 0,04 0,05 0,12 0,03 9% 7% 14% 6% 0,15 0,07 0,04 0,17 0,06 0,13 0,29 0,06 0,23 0,08 0,20 0,08 13% 15% 14% 10%
Protein s JX028 0,11 0,12 0,26 0,15 0,15 0,15 0,10 0,18 0,16 0,08 0,20 0,10 15% 13% 15% 16% 0,03 0,12 0,19 0,11 0,20 0,22 0,18 0,25 0,18 0,31 0,15 0,11 17% 14% 20% 18%
Protein s JX047 0,04 0,20 0,13 0,09 0,18 0,50 0,14 0,15 0,30 0,17 0,12 0,30 19% 29% 13% 16% 0,38 0,10 0,07 0,43 0,15 0,53 0,24 0,20 0,14 0,13 0,05 0,17 22% 31% 22% 12%
Protein s JX063 0,04 0,19 0,10 0,05 0,15 0,20 0,04 0,17 0,17 0,18 0,15 0,22 14% 16% 9% 17% 0,12 0,04 0,06 0,03 0,17 0,13 0,09 0,16 0,03 0,08 0,04 0,10 9% 10% 6% 10%
Protein s JX064 0,27 0,11 0,07 0,23 0,25 0,03 0,18 0,02 0,23 0,17 0,15 0,28 17% 20% 16% 13% 0,05 0,11 0,11 0,08 0,14 0,12 0,04 0,09 0,09 0,02 0,23 0,09 10% 9% 6% 14%
Protein s JX094 0,07 0,01 0,10 0,08 0,01 0,06 0,06 0,06 0,11 0,05 0,06 0,12 7% 9% 7% 4% 0,06 0,08 0,17 0,06 0,01 0,06 0,04 0,09 0,52 0,12 0,07 0,11 12% 19% 9% 7%
Protein s JX096 0,04 0,29 0,07 0,08 0,11 0,04 0,15 0,20 0,18 0,09 0,08 0,18 13% 11% 10% 17% 0,33 0,09 0,07 0,08 0,03 0,26 0,04 0,03 0,18 0,11 0,16 0,46 15% 31% 7% 8%
Protein s JX099 0,12 0,05 0,07 0,30 0,04 0,12 0,11 0,28 0,13 0,15 0,12 0,10 13% 12% 16% 12% 0,10 0,04 0,16 0,13 0,20 0,32 0,11 0,20 0,02 0,04 0,11 0,05 12% 12% 11% 14%
Protein s JX103 0,18 0,24 0,13 0,17 0,16 0,10 0,17 0,04 0,11 0,17 0,06 0,01 13% 10% 16% 12% 0,05 0,24 0,32 0,17 0,28 0,14 0,18 0,11 0,08 0,36 0,16 0,16 19% 11% 26% 20%
Protein s JX105 0,21 0,12 0,10 0,16 0,06 0,11 0,02 0,08 0,08 0,03 0,02 0,14 9% 14% 8% 7% 0,10 0,14 0,12 0,01 0,08 0,09 0,02 0,06 0,04 0,14 0,10 0,09 8% 8% 7% 10%
Protein s JX108 0,09 0,07 0,16 0,02 0,14 0,10 0,12 0,15 0,11 0,04 0,04 0,05 9% 9% 8% 10% 0,10 0,17 0,23 0,02 0,13 0,17 0,08 0,14 0,13 0,04 0,19 0,24 14% 16% 9% 16%
Protein s JX109 0,03 0,02 0,08 0,05 0,06 0,01 0,04 0,09 0,17 0,09 0,11 0,08 7% 7% 6% 7% 0,05 0,05 0,12 0,37 0,07 0,15 0,10 0,20 0,11 0,09 0,05 0,07 12% 9% 17% 9%
Protein s JX126 0,05 0,06 0,06 0,09 0,03 0,12 0,07 0,29 0,08 0,12 0,05 0,12 10% 9% 8% 11% 0,07 0,08 0,06 0,13 0,20 0,02 0,12 0,08 0,04 0,06 0,05 0,05 8% 4% 9% 10%
Protein s JX188 0,06 0,05 0,03 0,03 0,05 0,03 0,06 0,05 0,08 0,13 0,04 0,16 6% 8% 6% 5% 0,05 0,07 0,03 0,09 0,04 0,15 0,06 0,04 0,03 0,17 0,10 0,03 7% 7% 9% 6%
Protein s JX199 0,04 0,08 0,04 0,01 0,11 0,16 0,07 0,11 0,04 0,09 0,06 0,07 7% 8% 5% 9% 0,10 0,09 0,06 0,12 0,08 0,16 0,06 0,07 0,14 0,09 0,16 0,09 10% 12% 8% 10%
Protein s JX203 0,05 0,04 0,14 0,10 0,07 0,04 0,05 0,07 0,07 0,07 0,07 0,03 7% 5% 9% 6% 0,06 0,11 0,04 0,17 0,14 0,11 0,15 0,15 0,05 0,07 0,01 0,02 9% 6% 11% 10%
Protein s JX209 0,20 0,31 0,18 0,09 0,23 0,08 0,15 0,21 0,16 0,33 0,23 0,18 20% 15% 19% 25% 0,09 0,36 0,14 0,25 0,23 0,14 0,04 0,10 0,11 0,27 0,24 0,29 19% 16% 18% 23%
Protein s JX226 0,04 0,11 0,08 0,05 0,05 0,10 0,03 0,04 0,28 0,08 0,05 0,15 9% 14% 6% 6% 0,09 0,18 0,18 0,16 0,04 0,17 0,08 0,11 0,18 0,09 0,07 0,08 12% 13% 13% 10%
Protein s JX309 0,13 0,08 0,07 0,02 0,11 0,07 0,14 0,10 0,12 0,06 0,07 0,09 9% 10% 7% 9% 0,28 0,09 0,11 0,02 0,18 0,16 0,08 0,10 0,02 0,18 0,12 0,33 14% 20% 10% 12%
Protein s JX317 0,11 0,08 0,12 0,04 0,04 0,05 0,22 0,08 0,19 0,10 0,19 0,29 13% 16% 12% 10% 0,05 0,13 0,06 0,14 0,03 0,02 0,10 0,03 0,09 0,07 0,20 0,09 8% 6% 9% 10%
Protein s JX324 0,08 0,13 0,07 0,09 0,13 0,04 0,10 0,13 0,13 0,04 0,09 0,15 10% 10% 8% 12% 0,08 0,12 0,14 0,10 0,21 0,18 0,14 0,08 0,12 0,09 0,26 0,17 14% 14% 12% 17%
Protein s JX350 0,09 0,19 0,10 0,07 0,16 0,11 0,14 0,12 0,29 0,24 0,08 0,05 14% 14% 14% 14% 0,10 0,06 0,13 0,20 0,23 0,30 0,11 0,14 0,35 0,24 0,06 0,16 17% 23% 17% 12%
Protein s JX370 0,08 0,07 0,17 0,31 0,07 0,17 0,10 0,23 0,03 0,05 0,11 0,04 12% 8% 16% 12% 0,07 0,11 0,18 0,08 0,09 0,11 0,01 0,16 0,01 0,06 0,04 0,15 9% 8% 8% 10%
Protein s JX380 0,06 0,04 0,11 0,08 0,11 0,16 0,05 0,20 0,20 0,07 0,12 0,08 11% 12% 8% 12% 0,14 0,05 0,10 0,12 0,10 0,17 0,07 0,22 0,06 0,16 0,10 0,06 11% 11% 11% 12%
Protein s JX407 0,19 0,08 0,04 0,11 0,04 0,06 0,07 0,02 0,13 0,09 0,01 0,02 7% 10% 8% 4% 0,09 0,11 0,11 0,09 0,09 0,09 0,16 0,11 0,13 0,00 0,10 0,09 10% 10% 9% 10%
Protein s JX002 0,15 0,13 0,10 0,20 0,08 0,04 0,06 0,18 0,27 0,16 0,07 0,08 13% 13% 13% 12% 0,08 0,02 0,15 0,11 0,13 0,06 0,23 0,01 0,27 0,16 0,25 0,08 13% 12% 16% 10%
Protein s JX003 0,02 0,11 0,17 0,06 0,12 0,25 0,19 0,12 0,05 0,10 0,45 0,35 16% 17% 13% 20% 0,05 0,38 0,20 0,73 0,63 0,07 0,12 0,10 0,02 0,31 0,11 0,28 25% 10% 34% 31%
Protein s JX016 0,12 0,08 0,10 0,13 0,07 0,04 0,01 0,21 0,12 0,05 0,01 0,07 8% 9% 7% 9% 0,18 0,13 0,02 0,21 0,08 0,10 0,31 0,02 0,02 0,06 0,08 0,14 11% 11% 15% 8%
Protein s JX048 0,03 0,08 0,20 0,21 0,30 0,09 0,30 0,16 0,07 0,20 0,27 0,24 18% 11% 23% 21% 0,22 0,19 0,06 0,17 0,12 0,13 0,06 0,16 0,09 0,28 0,05 0,20 14% 16% 14% 13%
Protein s JX049 0,05 0,07 0,08 0,14 0,05 0,09 0,09 0,11 0,05 0,20 0,13 0,02 9% 5% 13% 9% 0,14 0,12 0,23 0,08 0,09 0,02 0,19 0,04 0,03 0,05 0,10 0,20 11% 10% 14% 9%
Protein s JX052 0,10 0,08 0,21 0,05 0,07 0,06 0,10 0,07 0,03 0,01 0,07 0,13 8% 8% 9% 7% 0,05 0,05 0,04 0,06 0,11 0,14 0,22 0,15 0,04 0,03 0,02 0,08 8% 8% 9% 8%
Protein s JX055 0,09 0,03 0,12 0,08 0,08 0,09 0,09 0,01 0,09 0,02 0,09 0,07 7% 9% 8% 5% 0,13 0,07 0,10 0,07 0,10 0,17 0,13 0,22 0,12 0,10 0,06 0,08 11% 12% 10% 11%
Protein s JX072 0,21 0,06 0,13 0,04 0,07 0,15 0,07 0,27 0,08 0,16 0,05 0,15 12% 15% 10% 11% 0,12 0,21 0,03 0,09 0,13 0,14 0,14 0,04 0,09 0,14 0,11 0,13 11% 12% 10% 12%
Protein s JX074 0,08 0,05 0,19 0,15 0,13 0,04 0,08 0,09 0,05 0,14 0,06 0,09 10% 6% 14% 8% 0,10 0,01 0,17 0,20 0,08 0,09 0,07 0,23 0,01 0,21 0,05 0,22 12% 11% 16% 9%
Protein s JX077 0,06 0,20 0,05 0,09 0,04 0,28 0,17 0,04 0,05 0,03 0,04 0,20 10% 15% 8% 8% 0,08 0,03 0,07 0,05 0,15 0,03 0,03 0,13 0,10 0,07 0,13 0,06 8% 7% 6% 11%
Protein s JX079 0,01 0,06 0,01 0,17 0,11 0,11 0,05 0,09 0,05 0,05 0,10 0,11 8% 7% 7% 9% 0,11 0,03 0,07 0,04 0,08 0,15 0,12 0,18 0,07 0,07 0,05 0,16 9% 12% 7% 9%
Protein s JX080 0,01 0,11 0,05 0,10 0,14 0,11 0,03 0,03 0,06 0,02 0,01 0,07 6% 6% 5% 7% 0,03 0,02 0,03 0,10 0,02 0,17 0,14 0,08 0,03 0,06 0,07 0,09 7% 8% 8% 5%
Protein s JX083 0,03 0,18 0,07 0,26 0,06 0,35 0,08 0,16 0,08 0,11 0,16 0,08 13% 14% 13% 14% 0,10 0,05 0,18 0,08 0,07 0,07 0,30 0,03 0,13 0,11 0,04 0,04 10% 9% 17% 5%
Protein s JX084 0,18 0,07 0,37 0,04 0,04 0,07 0,11 0,22 0,07 0,14 0,01 0,06 11% 9% 16% 8% 0,06 0,17 0,09 0,04 0,03 0,12 0,08 0,16 0,01 0,10 0,15 0,14 10% 9% 8% 13%
Protein s JX085 0,16 0,23 0,30 0,57 0,33 0,27 0,13 0,26 0,20 0,23 0,39 0,10 27% 18% 31% 30% 0,14 0,14 0,33 0,33 0,14 0,13 0,28 0,27 0,24 0,02 0,22 0,34 22% 21% 24% 19%
Protein s JX086 0,39 0,13 0,23 0,32 0,38 0,24 0,26 0,15 0,36 0,14 0,39 0,16 26% 28% 24% 26% 0,11 0,04 0,14 0,10 0,08 0,23 0,18 0,11 0,02 0,21 0,07 0,07 11% 11% 16% 7%
Protein s JX090 0,12 0,39 0,38 0,22 0,42 0,10 0,21 0,15 0,13 0,14 0,25 0,39 24% 18% 24% 30% 0,24 0,08 0,46 0,29 0,08 0,08 0,06 0,06 0,03 0,35 0,11 0,46 19% 20% 29% 8%
Protein s JX092 0,07 0,05 0,17 0,13 0,12 0,07 0,02 0,01 0,18 0,04 0,23 0,12 10% 11% 9% 10% 0,09 0,07 0,13 0,09 0,13 0,14 0,17 0,08 0,07 0,15 0,07 0,14 11% 11% 14% 9%
Protein s JX093 0,13 0,11 0,17 0,18 0,10 0,22 0,19 0,27 0,13 0,21 0,18 0,13 17% 15% 19% 17% 0,09 0,02 0,21 0,42 0,15 0,03 0,24 0,19 0,10 0,11 0,14 0,12 15% 9% 25% 12%
Protein s JX097 0,15 0,09 0,07 0,09 0,08 0,29 0,22 0,08 0,11 0,09 0,14 0,26 14% 21% 12% 10% 0,09 0,08 0,07 0,09 0,07 0,24 0,11 0,08 0,10 0,01 0,05 0,08 9% 13% 7% 7%
Protein s JX112 0,13 0,08 0,08 0,05 0,10 0,07 0,11 0,07 0,03 0,14 0,01 0,07 8% 8% 10% 7% 0,07 0,10 0,06 0,06 0,07 0,04 0,18 0,12 0,01 0,09 0,13 0,16 9% 7% 10% 10%
Protein s JX121 0,02 0,05 0,08 0,12 0,03 0,30 0,07 0,12 0,08 0,03 0,10 0,08 9% 12% 8% 8% 0,03 0,17 0,11 0,15 0,35 0,03 0,04 0,08 0,12 0,06 0,05 0,11 11% 7% 9% 16%
Protein s JX134 0,06 0,08 0,05 0,21 0,12 0,22 0,12 0,15 0,05 0,09 0,09 0,21 12% 14% 12% 11% 0,06 0,01 0,50 0,12 0,05 0,16 0,06 0,12 0,01 0,27 0,13 0,14 14% 9% 24% 8%
Protein s JX135 0,18 0,16 0,10 0,14 0,23 0,31 0,05 0,21 0,37 0,17 0,11 0,09 18% 24% 12% 18% 0,04 0,12 0,07 0,10 0,26 0,20 0,10 0,14 0,05 0,11 0,10 0,13 12% 11% 9% 15%
Protein s JX136 0,34 0,21 0,12 0,06 0,19 0,05 0,18 0,13 0,08 0,11 0,22 0,28 16% 19% 12% 19% 0,13 0,40 0,12 0,14 0,03 0,43 0,08 0,10 0,03 0,05 0,07 0,02 13% 15% 10% 15%
Protein s JX140 0,20 0,51 0,40 0,22 0,24 0,08 0,04 0,15 0,13 0,40 0,20 0,38 25% 20% 27% 27% 0,14 0,09 0,53 0,33 0,38 0,09 0,17 0,23 0,14 0,30 0,25 0,16 23% 13% 33% 24%
Protein s JX141 0,14 0,29 0,19 0,16 0,11 0,09 0,40 0,14 0,06 0,16 0,12 0,35 19% 16% 23% 17% 0,10 0,07 0,21 0,16 0,05 0,12 0,13 0,23 0,10 0,25 0,14 0,19 15% 13% 19% 12%
Protein s JX145 0,08 0,07 0,17 0,03 0,06 0,12 0,16 0,29 0,08 0,60 0,15 0,12 16% 10% 24% 14% 0,15 0,04 0,06 0,07 0,12 0,08 0,17 0,04 0,11 0,08 0,05 0,07 9% 10% 9% 7%
Protein s JX149 0,09 0,56 0,38 0,23 0,13 0,10 0,15 0,11 0,07 0,45 0,23 0,12 22% 10% 30% 26% 0,08 0,02 0,33 0,36 0,09 0,08 0,21 0,19 0,07 0,38 0,26 0,13 18% 9% 32% 14%
Protein s JX165 0,04 0,04 0,10 0,09 0,01 0,13 0,10 0,06 0,31 0,11 0,09 0,15 10% 16% 10% 5% 0,20 0,09 0,05 0,22 0,07 0,08 0,09 0,03 0,18 0,04 0,07 0,05 10% 13% 10% 7%
Protein s JX176 0,23 0,16 0,09 0,13 0,13 0,13 0,11 0,23 0,03 0,10 0,14 0,25 14% 16% 11% 16% 0,07 0,20 0,30 0,01 0,10 0,06 0,07 0,17 0,16 0,08 0,05 0,07 11% 9% 11% 13%
Protein s JX194 0,16 0,11 0,20 0,05 0,06 0,06 0,05 0,06 0,06 0,10 0,08 0,12 9% 10% 10% 8% 0,04 0,11 0,06 0,03 0,06 0,04 0,13 0,09 0,08 0,09 0,10 0,08 8% 6% 8% 9%
Protein s JX195 0,08 0,04 0,06 0,08 0,01 0,06 0,01 0,03 0,09 0,03 0,08 0,10 6% 8% 5% 4% 0,10 0,05 0,10 0,10 0,06 0,07 0,11 0,02 0,07 0,01 0,04 0,07 6% 8% 8% 4%
Protein s JX200 0,09 0,09 0,11 0,05 0,05 0,05 0,09 0,07 0,04 0,10 0,07 0,05 7% 6% 9% 7% 0,03 0,21 0,02 0,13 0,12 0,11 0,20 0,03 0,08 0,07 0,05 0,05 9% 7% 11% 10%
Protein s JX204 0,04 0,04 0,07 0,04 0,08 0,06 0,04 0,07 0,07 0,10 0,05 0,12 6% 7% 6% 6% 0,05 0,04 0,10 0,08 0,06 0,07 0,19 0,12 0,05 0,06 0,02 0,07 8% 6% 11% 6%
Protein s JX208 0,18 0,09 0,07 0,13 0,10 0,06 0,05 0,04 0,03 0,13 0,05 0,10 9% 9% 9% 7% 0,11 0,04 0,04 0,04 0,13 0,16 0,14 0,04 0,03 0,10 0,05 0,08 8% 9% 8% 6%
Protein s JX210 0,20 0,25 0,20 0,98 0,29 0,30 0,26 0,41 0,10 0,04 0,11 0,28 29% 22% 37% 27% 0,04 0,05 0,20 0,08 0,13 0,10 0,09 0,05 0,21 0,18 0,06 0,09 11% 11% 14% 7%
Protein s JX215 0,13 0,19 0,04 0,11 0,08 0,05 0,04 0,03 0,07 0,04 0,07 0,06 8% 8% 6% 9% 0,14 0,17 0,11 0,09 0,13 0,11 0,19 0,13 0,06 0,06 0,09 0,17 12% 12% 11% 13%
Protein s JX251 0,28 0,05 0,44 0,19 0,06 0,13 0,11 0,21 0,21 0,10 0,08 0,14 17% 19% 21% 10% 0,05 0,07 0,43 0,10 0,10 0,21 0,15 0,33 0,10 0,11 0,18 0,24 17% 15% 20% 17%
Protein s JX257 0,14 0,14 0,09 0,15 0,12 0,06 0,09 0,16 0,11 0,08 0,14 0,07 11% 9% 10% 14% 0,15 0,07 0,10 0,23 0,09 0,17 0,13 0,14 0,12 0,26 0,25 0,09 15% 13% 18% 14%
Protein s JX259 0,06 0,11 0,18 0,07 0,27 0,12 0,09 0,07 0,05 0,18 0,08 0,01 11% 6% 13% 13% 0,03 0,22 0,05 0,13 0,05 0,07 0,29 0,13 0,94 0,03 0,09 0,20 19% 31% 12% 12%
Protein s JX278 0,46 0,13 0,29 0,14 0,05 0,43 0,30 0,14 0,19 0,26 0,28 0,35 25% 36% 25% 15% 0,13 0,00 0,42 0,23 0,14 0,19 0,06 0,48 0,21 0,18 0,18 0,09 19% 16% 22% 20%
Protein s JX282 0,15 0,19 0,60 0,20 0,04 0,09 0,27 0,09 0,06 0,12 0,29 0,22 19% 13% 30% 15% 0,06 0,04 0,10 0,10 0,07 0,04 0,14 0,07 0,08 0,10 0,05 0,07 8% 6% 11% 6%
Protein s JX288 0,21 0,12 0,26 0,11 0,15 0,08 0,07 0,04 0,06 0,05 0,14 0,12 12% 12% 12% 11% 0,12 0,09 0,08 0,03 0,03 0,24 0,10 0,04 0,12 0,05 0,07 0,14 9% 15% 7% 6%
Protein s JX293 0,34 0,32 0,06 0,20 0,03 0,13 0,10 0,21 0,13 0,15 0,33 0,21 18% 20% 13% 22% 0,55 0,15 0,11 0,45 0,18 0,03 0,09 0,11 0,13 0,06 0,11 0,01 17% 18% 18% 14%
Protein s JX295 0,18 0,17 0,07 0,10 0,20 0,21 0,28 0,17 0,22 0,03 0,09 0,10 15% 18% 12% 16% 0,02 0,33 0,11 0,08 0,11 0,20 0,11 0,09 0,15 0,17 0,14 0,05 13% 11% 12% 17%
Protein s JX299 0,22 0,08 0,13 0,21 0,16 0,63 0,40 0,21 0,21 0,15 0,12 0,15 22% 30% 22% 14% 0,07 0,41 0,06 0,11 0,12 0,28 0,12 0,15 0,09 0,09 0,03 0,01 13% 11% 10% 18%
Protein s JX314 0,13 0,07 0,07 0,09 0,11 0,03 0,10 0,08 0,11 0,16 0,15 0,11 10% 10% 10% 10% 0,13 0,18 0,07 0,18 0,07 0,08 0,16 0,10 0,00 0,12 0,06 0,10 11% 8% 13% 10%
Protein s JX328 0,05 0,12 0,01 0,02 0,10 0,15 0,25 0,13 0,18 0,08 0,04 0,07 10% 11% 9% 10% 0,10 0,10 0,09 0,07 0,22 0,13 0,18 0,11 0,05 0,16 0,09 0,14 12% 10% 13% 13%
Protein s JX332 0,14 0,04 0,07 0,09 0,05 0,13 0,14 0,04 0,05 0,21 0,03 0,27 11% 15% 13% 4% 0,16 0,08 0,06 0,17 0,52 0,18 0,17 0,08 0,05 0,10 0,07 0,14 15% 13% 12% 19%
Protein s JX339 0,11 0,06 0,10 0,17 0,09 0,07 0,09 0,17 0,04 0,04 0,06 0,09 9% 8% 10% 9% 0,01 0,10 0,11 0,11 0,06 0,11 0,25 0,13 0,10 0,05 0,02 0,16 10% 9% 13% 8%
Protein s JX346 0,05 0,05 0,09 0,08 0,10 0,05 0,03 0,29 0,10 0,21 0,12 0,16 11% 9% 10% 14% 0,12 0,28 0,14 0,77 0,39 0,06 0,12 0,02 0,17 0,10 0,08 0,29 21% 16% 28% 19%
Protein s JX354 0,09 0,10 0,11 0,10 0,02 0,10 0,06 0,25 0,01 0,09 0,17 0,09 10% 7% 9% 14% 0,15 0,04 0,11 0,37 0,15 0,04 0,23 0,30 0,12 0,13 0,03 0,17 15% 12% 21% 13%
Protein s JX356 0,05 0,06 0,04 0,10 0,05 0,09 0,04 0,05 0,03 0,02 0,04 0,13 6% 7% 5% 5% 0,07 0,08 0,20 0,18 0,15 0,07 0,12 0,15 0,04 0,20 0,17 0,27 14% 11% 18% 14%
Protein s JX358 0,06 0,03 0,10 0,06 0,10 0,04 0,08 0,13 0,10 0,08 0,10 0,08 8% 7% 8% 9% 0,19 0,09 0,08 0,05 0,07 0,30 0,22 0,03 0,14 0,04 0,13 0,12 12% 19% 10% 8%
Protein s JX374 0,10 0,12 0,09 0,12 0,12 0,08 0,02 0,12 0,12 0,12 0,01 0,04 9% 8% 9% 9% 0,10 0,09 0,08 0,01 0,01 0,12 0,23 0,08 0,11 0,09 0,08 0,16 10% 12% 10% 7%
Protein s JX377 0,09 0,06 0,10 0,07 0,04 0,05 0,01 0,15 0,04 0,40 0,13 0,04 10% 5% 14% 10% 0,08 0,08 0,09 0,06 0,10 0,03 0,10 0,12 0,17 0,08 0,04 0,16 9% 11% 8% 8%
Protein s JX388 0,10 0,04 0,02 0,06 0,05 0,11 0,10 0,03 0,05 0,08 0,13 0,21 8% 12% 6% 6% 0,04 0,06 0,06 0,06 0,08 0,06 0,10 0,09 0,14 0,06 0,02 0,06 7% 8% 7% 6%
Protein s JX404 0,18 0,11 0,06 0,10 0,06 0,02 0,08 0,18 0,13 0,07 0,09 0,13 10% 11% 8% 11% 0,13 0,19 0,23 0,68 0,60 0,09 0,19 0,11 0,25 0,12 0,18 0,14 24% 15% 30% 27%
Protein s JX410 0,06 0,09 0,11 0,05 0,02 0,11 0,08 0,17 0,14 0,22 0,08 0,06 10% 9% 11% 9% 0,09 0,01 0,02 0,01 0,03 0,15 0,10 0,04 0,05 0,08 0,02 0,03 5% 8% 5% 3%
Protein s JX418 0,07 0,07 0,13 0,07 0,19 0,25 0,20 0,10 0,12 0,09 0,11 0,10 12% 13% 12% 12% 0,31 0,35 0,10 0,12 0,13 0,67 0,06 0,45 0,03 0,14 0,10 0,06 21% 27% 10% 26%
Protein s JX424 0,08 0,03 0,46 0,11 0,15 0,18 0,30 0,72 0,23 0,58 0,29 0,23 28% 18% 36% 30% 0,36 0,17 0,09 0,42 0,06 0,06 0,22 0,20 0,08 0,03 0,29 0,10 17% 15% 19% 18%
Protein s JX043 0,06 0,16 0,09 0,14 0,14 0,11 0,05 0,31 0,27 0,20 0,07 0,37 16% 20% 12% 17% 0,05 0,16 0,08 0,06 0,05 0,13 0,14 0,34 0,08 0,07 0,49 0,82 21% 27% 9% 26%
Protein s JX242 0,11 0,05 0,10 0,02 0,06 0,06 0,17 0,18 0,10 0,05 0,11 0,16 10% 11% 8% 10% 0,11 0,38 0,10 0,10 0,06 0,32 0,04 0,10 0,14 0,07 0,21 0,16 15% 18% 8% 19%
Protein s JX312 0,05 0,07 0,15 0,11 0,04 0,10 0,03 0,41 0,04 0,02 0,02 0,06 9% 6% 8% 14% 0,04 0,14 0,12 0,07 0,02 0,06 0,16 0,05 0,08 0,11 0,08 0,04 8% 5% 11% 7%
Protein s JX348 0,18 0,15 0,08 0,06 0,08 0,11 0,13 0,02 0,05 0,06 0,03 0,16 9% 12% 8% 7% 0,18 0,17 0,16 0,23 0,23 0,44 0,29 0,32 0,26 0,13 0,21 0,41 25% 32% 20% 23%
Protein s JX393 0,14 0,06 0,19 0,07 0,16 0,22 0,14 0,09 0,10 0,05 0,09 0,20 13% 17% 11% 10% 0,12 0,19 0,06 0,29 0,14 0,07 0,13 0,06 0,30 0,22 0,06 0,19 15% 17% 17% 11%
Protein s JX005 0,08 0,06 0,09 0,36 0,07 0,34 0,18 0,15 0,03 0,11 0,04 0,09 13% 13% 19% 8% 0,10 0,16 0,34 0,03 0,13 0,09 0,16 0,13 0,07 0,14 0,09 0,14 13% 10% 17% 13%
Protein s JX133 0,25 0,16 0,07 0,16 0,04 0,12 0,06 0,02 0,18 0,21 0,09 0,13 12% 17% 12% 8% 0,08 0,06 0,11 0,40 0,02 0,11 0,07 0,11 0,03 0,15 0,04 0,17 11% 10% 18% 6%
Protein s JX186 0,13 0,16 0,05 0,05 0,08 0,14 0,14 0,09 0,21 0,14 0,10 0,17 12% 16% 10% 10% 0,11 0,17 0,14 0,16 0,21 0,20 0,11 0,19 0,17 0,25 0,22 0,10 17% 14% 17% 20%
Protein s JX369 0,03 0,05 0,06 0,09 0,01 0,09 0,03 0,16 0,04 0,06 0,11 0,03 6% 5% 6% 8% 0,09 0,08 0,08 0,13 0,10 0,11 0,14 0,05 0,11 0,12 0,14 0,07 10% 9% 12% 9%
Protein s JX395 0,15 0,14 0,11 0,18 0,11 0,16 0,05 0,12 0,05 0,19 0,20 0,06 13% 11% 13% 14% 0,04 0,15 0,07 0,08 0,21 0,11 0,21 0,15 0,13 0,18 0,13 0,06 13% 8% 13% 16%
Protein s JX197 0,03 0,04 0,16 0,13 0,15 0,07 0,09 0,16 0,10 0,14 0,09 0,07 10% 7% 13% 11% 0,16 0,06 0,12 0,02 0,08 0,38 0,13 0,09 0,13 0,26 0,10 0,04 13% 18% 13% 8%
Protein s JX252 0,10 0,06 0,27 0,29 0,03 0,40 0,13 0,05 0,08 0,07 0,07 0,22 15% 20% 19% 5% 0,11 0,71 0,37 0,23 0,15 0,27 0,07 0,60 0,18 0,10 0,17 0,17 26% 18% 19% 41%
Protein s JX273 0,08 0,22 0,13 0,15 0,08 0,15 0,09 0,13 0,03 0,11 0,13 0,05 11% 8% 12% 14% 0,13 0,11 0,07 0,05 0,07 0,26 0,05 0,07 0,07 0,17 0,12 0,11 11% 14% 9% 9%
Protein s JX321 0,19 0,16 0,32 0,15 0,14 0,27 0,03 0,08 0,11 0,13 0,07 0,22 16% 20% 16% 11% 0,16 0,11 0,13 0,08 0,06 0,13 0,18 0,07 0,15 0,26 0,09 0,05 12% 12% 16% 8%
Protein s JX325 0,06 0,08 0,04 0,03 0,08 0,01 0,20 0,02 0,16 0,13 0,09 0,03 8% 7% 10% 7% 0,06 0,06 0,20 0,07 0,08 0,10 0,27 0,11 0,06 0,09 0,16 0,22 12% 11% 16% 10%
Protein s JX368 0,08 0,11 0,04 0,13 0,04 0,04 0,13 0,01 0,06 0,12 0,21 0,07 9% 6% 10% 9% 0,09 0,18 0,16 0,05 0,13 0,05 0,08 0,12 0,07 0,14 0,09 0,09 10% 7% 11% 13%
Protein s JX416 0,03 0,15 0,05 0,21 0,05 0,25 0,03 0,04 0,02 0,09 0,07 0,14 9% 11% 9% 8% 0,12 0,08 0,08 0,33 0,07 0,09 0,07 0,10 0,11 0,14 0,06 0,24 12% 14% 16% 8%
Protein s JX035 0,07 0,16 0,06 0,05 0,18 0,10 0,16 0,34 0,16 0,15 0,05 0,19 14% 13% 11% 18% 0,10 0,17 0,07 0,06 0,12 0,08 0,11 0,21 0,05 0,04 0,05 0,11 10% 9% 7% 14%
Protein s JX075 0,12 0,09 0,14 0,10 0,12 0,10 0,06 0,16 0,14 0,02 0,14 0,19 12% 14% 8% 13% 0,15 0,14 0,06 0,07 0,11 0,05 0,09 0,08 0,09 0,13 0,02 0,11 9% 10% 9% 9%
Protein s JX089 0,40 0,19 0,09 0,23 0,12 0,15 0,42 0,23 0,37 0,20 0,24 0,44 26% 34% 24% 20% 0,02 0,77 0,02 0,07 0,24 0,23 0,15 0,09 0,16 0,18 0,28 0,11 19% 13% 11% 34%
Protein s JX184 0,25 0,01 0,02 0,06 0,07 0,10 0,25 0,04 0,10 0,18 0,07 0,04 10% 12% 13% 5% 0,17 0,14 0,07 0,17 0,16 0,15 0,13 0,09 0,11 0,10 0,26 0,26 15% 17% 12% 16%
Protein s JX185 0,04 0,10 0,10 0,05 0,10 0,04 0,03 0,04 0,04 0,03 0,07 0,11 6% 6% 5% 8% 0,05 0,05 0,04 0,09 0,05 0,13 0,30 0,08 0,06 0,03 0,13 0,05 9% 7% 11% 8%
Protein s JX223 0,30 0,08 0,06 0,09 0,10 0,08 0,10 0,38 0,10 0,16 0,05 0,13 14% 15% 10% 15% 0,18 0,07 0,05 0,15 0,06 0,07 0,15 0,09 0,16 0,04 0,12 0,09 10% 12% 10% 9%
Protein s JX304 0,23 0,26 0,29 0,05 0,15 0,06 0,27 0,29 0,16 0,19 0,08 0,30 20% 19% 20% 20% 0,10 0,22 0,25 0,06 0,10 0,15 0,07 0,13 0,17 0,14 0,15 0,39 16% 20% 13% 15%
Protein s JX315 0,17 0,04 0,14 0,16 0,04 0,06 0,05 0,12 0,32 0,17 0,13 0,15 13% 18% 13% 8% 0,10 0,05 0,17 0,22 0,05 0,14 0,05 0,10 0,05 0,05 0,10 0,15 10% 11% 12% 7%
Protein s JX007 0,14 0,12 0,16 0,13 0,10 0,04 0,14 0,04 0,02 0,20 0,05 0,09 10% 7% 16% 8% 0,11 0,11 0,16 0,42 0,07 0,19 0,11 0,14 0,07 0,08 0,17 0,24 16% 15% 19% 12%
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Protein s JX017 0,09 0,13 0,01 0,08 0,08 0,04 0,07 0,03 0,13 0,14 0,08 0,05 8% 8% 8% 8% 0,12 0,15 0,11 0,12 0,09 0,03 0,80 0,03 0,11 0,19 0,04 0,03 15% 7% 30% 8%
Protein s JX034 0,12 0,09 0,10 0,09 0,20 0,37 0,12 0,08 0,08 0,09 0,01 0,01 11% 14% 10% 9% 0,03 0,06 0,12 0,15 0,14 0,14 0,06 0,10 0,07 0,05 0,13 0,16 10% 10% 10% 11%
Protein s JX173 0,06 0,02 0,11 0,01 0,13 0,14 0,05 0,17 0,07 0,05 0,08 0,09 8% 9% 5% 10% 0,11 0,18 0,13 0,26 0,05 0,10 0,11 0,21 0,11 0,14 0,15 0,22 15% 13% 16% 15%
Protein s JX180 0,06 0,04 0,11 0,23 0,04 0,11 0,08 0,04 0,13 0,11 0,12 0,30 11% 15% 13% 6% 0,16 0,11 0,08 0,16 0,14 0,05 0,01 0,15 0,07 0,02 0,14 0,05 9% 8% 7% 13%
Protein s JX236 0,15 0,18 0,17 0,04 0,12 0,08 0,02 0,14 0,04 0,13 0,12 0,16 11% 11% 9% 14% 0,14 0,18 0,10 0,06 0,08 0,09 0,07 0,08 0,15 0,14 0,20 0,09 12% 12% 9% 14%
Protein s JX335 0,18 0,04 0,17 0,06 0,14 0,04 0,04 0,08 0,05 0,02 0,02 0,10 8% 9% 7% 7% 0,14 0,21 0,09 0,09 0,11 0,31 0,05 0,09 0,18 0,19 0,07 0,24 15% 22% 11% 12%
PhenotypJX349 0,04 0,12 0,10 0,08 0,01 0,01 0,09 0,12 0,03 0,08 0,11 0,02 7% 3% 9% 9% 0,16 0,15 0,09 0,54 0,05 0,10 0,21 0,05 0,12 0,21 0,16 0,18 17% 14% 26% 10%
Phenotypxfw 0,00 0,14 0,10 0,28 0,11 0,04 0,18 0,12 0,06 0,10 0,33 0,10 13% 5% 16% 18% 0,08 0,04 0,05 0,10 0,07 0,02 0,05 0,04 0,06 0,04 0,05 0,12 6% 7% 6% 5%
Phenotypxfd 0,02 0,05 0,00 0,10 0,06 0,02 0,05 0,04 0,02 0,04 0,12 0,05 5% 2% 5% 7% 0,03 0,02 0,03 0,06 0,03 0,01 0,03 0,02 0,04 0,01 0,03 0,04 3% 3% 4% 3%
Phenotypxdmc 0,13 0,04 0,06 0,08 0,08 0,03 0,02 0,06 0,13 0,05 0,08 0,02 7% 8% 5% 7% 0,04 0,03 0,01 0,03 0,01 0,01 0,03 0,03 0,03 0,14 0,01 0,07 4% 4% 5% 2%
Phenotyppheight 0,05 0,00 0,03 0,00 0,02 0,00 0,00 0,05 0,06 0,04 0,00 0,04 2% 4% 2% 2% 0,02 0,01 0,00 0,04 0,01 0,00 0,02 0,01 0,05 0,01 0,03 0,03 2% 3% 2% 2%
Phenotyppstem 0,08 0,01 0,07 0,05 0,01 0,09 0,06 0,07 0,10 0,04 0,06 0,06 6% 8% 6% 4% 0,02 0,06 0,14 0,20 0,11 0,10 0,01 0,07 0,02 0,08 0,06 0,08 8% 5% 11% 7%
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CHAPTER VII: DISCUSSION AND PERSPECTIVES 
 

The objectives of this thesis were to characterize tomato genetic diversity at the molecular and 

proteome levels and to identify proteins and QTLs responsible for fruit quality traits in 

tomato. For this purpose, three independent studies were performed leading to (1) the 

discovery of new SNP markers, (2) their use for association studies and finally (3) the 

analysis of proteome variation in relation to phenotypes. In this chapter, the major results 

obtained in this study are discussed and a few perspectives are proposed.  

From the re-sequencing of targeted regions in two lines to whole genome re-

sequencing of hundreds lines  

When this PhD started in 2009, the classic Sanger sequencing method which has been 

extensively used for DNA sequencing was still considered as the standard method in terms of 

both read length and sequencing accuracy (Bonetta 2006). However, Next Generation 

Sequencing (NGS) techniques emerged in the mid 2000’s with several sequencing 

technologies including Roche 454, Illumina GA and ABI SOLID. They produce much more 

data at a much lower price. Roche 454 (GS FLX with Titanium-series kits) at that time 

delivered 1 million sequence reads with an average length of 350-400 nucleotides (i.e. 400 

Mb by run). Five Gb of 35 bases sequences per run (using paired-end) were obtained from the 

Genome Analyzer GAII (Illumina). Therefore, there was much interest in applying NGS 

platforms for target sequencing of specific candidate genes (Barbazuk et al. 2007; Van Tassell 

et al. 2008).  

Previous studies showed that the polymorphism rate in tomato is relatively low (Miller and 

Tanksley 1990). In the present study, efforts have been put towards the identification of 

polymorphisms in tomato by the integration of these later technologies (Illumina and 454 

Roche sequencing platforms) to achieve the re-sequencing of targeted sequences. Our efforts 

aimed to cover about 0.2% of the tomato genome by the amplification at regions targeted by 

long-range PCR in two contrasted accessions, in order to identify polymorphisms. We 

identified more than 3000 SNPs from which we finally validated a set of 64 of these SNPs by 

developing CAPS markers. These markers were successfully used to assess the genetic
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Table 7-1. Comparison of sequencing platforms, sorted by reads per run. Only main 
commercially available platforms are shown. Modified from (Glenn 2012). 

 

a Instrument time for maximum read length 
b Average length for high quality reads >200 bases (mode is higher); typical maximum for reads ≤150 bases 
(most reads reach this length) 
c Mappable reads [number of raw high quality reads (as reported for all other platforms) is higher] 
*Information based on company sources alone (independent data not yet available) 

 

 

Instrument 
Generation 

of 
sequencing 

Run timea 
Millions of 
Reads/run 

Bases / readb Yield MB/run 

3730xl (capillary)  First 2 h 0.000096 650 0.06 

PacBio RS  Third 2 h 0.01 860 -1,500 5-10 

454 GS Jr. Titanium  Second 10 h 0.1 400 50 

454 FLX Titanium  Second 10 h 1 400 400 

454 FLX+  Second 20 h 1 650 650 

Illumina MiSeq *  Second 26 h 4 150+150 1200 

Illumina GAIIx  Second 14 d 300 150+150 96 

Illumina HiSeq 2500 
– rapid * 

Second 40 h 600 150+150 180 

Illumina iScanSQ Second 8.5 d 700 100+100 140 

SOLiD – 5500xl * Second 8 d >1,410 c 75+35 155,1 

Illumina HiSeq 1000 Second 8.5 d ≤1500 100+100 ≤300,000 

Illumina HiSeq 2000 Second 11.5 d ≤3000 100+100 ≤600,000 
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diversity in a core collection of 23 accessions and to map an F2 population derived from the 

two sequenced lines. The detected SNPs could be assayed into genotyping array and may be 

useful for association studies of fruit traits. The data and matching analysis tools produced in 

this study provide valuable genomic resources for tomato genetic diversity analysis and 

dissection of the genetic basis of quantitative traits. However, the technologies are evolving 

very fast. In the past three years, many sequencing platforms have been developed, with 

yields in numbers of reads and length still increasing (Table 7-1). Many bioinformatics tools 

have been also developed to match the increasing instrument throughput and their specificity. 

The third generation sequencing technologies are now being developed (Table 7-1). The 

major advantages of third-generation sequencing systems (TGS) over NGS are: (i) the use of 

single DNA molecules, rather than clustered amplicons, as templates for sequencing. 

Therefore, it is supposed to remove the phase errors encountered by NGS; (ii) It can sequence 

longer reads than current NGS (Schadt et al. 2010). The long reads will allow scientists to 

assemble genomes and study large scale structural variations for which read length is 

particularly important. However, researchers have not been rapid to adopt TGS because of its 

still high error rate. In addition, TGS produce new type of sequence data, thus new 

bioinformatic tools need to be developed to handle the reads with high error rate, as currently 

available tools have focused mainly on high-throughput, high accuracy, short-read data 

(Weaver 2012). Thus, third generation sequencing will maybe coexist with NGS in the next 

few years.   

Moreover, during this period and thanks to the use of NGS, the tomato genome has been fully 

sequenced (Sato et al. 2012). A high quality reference genome has been annotated. More than 

six millions of SNPs were discovered by sequencing a S. pimpinellifollium accession. 

Technology advances and availability of a high quality reference genome paved the way for 

whole genome re-sequencing of hundreds of individuals in tomato. In INRA, the 8 contrasted 

lines studied at the proteome level were re-sequenced and more than 4 millions of SNPs 

identified. Associated technologies such as SNP genotyping array were also developed. 

Hamilton et al. (2012) sequenced the transcriptome of six tomato accessions including fresh 

market, processing, cherry, and closely relatives S. pimpinellifolium. Using the transcriptome 

data coupled with the draft tomato genome sequence, they identified a large collection of 

putative SNPs to be used in a high-throughput genotyping array used today to genotype a 

large range of accessions. Finkers et al. (2012) plan to re-sequence the whole genome of 84 

accessions, including 10 old varieties, 43 landraces and 30 wild accessions.  
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This set of accessions contains rich unexploited genetic variation and will provide new insight 

into the organization of the tomato genome. They will include DNA of an ancient herbarium 

accession collection from the XVIIth century. Huang et al. (2012) re-sequenced 120 red 

fruited tomato lines including large fruit tomatoes (Solanum lycopersicum), cherry tomatoes 

(S. l. var. cerasiforme), and wild red fruited tomatoes (S. pimpinellifolium) leading to the 

identification of more than 6 million SNPs. Further question is how to combine all the SNPs 

detected in these different experiments to obtain a catalogue of tomato SNPs as SNPs may be 

not be detected using the same software or using the same depth. Many software packages 

such as CLC bio, DNASTAR, MAQ have been developed for SNP detection as reviewed by 

Zhang et al. (2011). In our study, we compared two software packages (CLC bio and 

DNASTAR) to clean and map the reads onto the reference genome and search for 

polymorphisms. We obtained similar results using both GA2X and 454. Discrepancies in the 

percentage of unmapped reads and in the number of polymorphisms detected were observed 

between both software packages. Previous studies already identified such differences in the 

performance of assemblers (Feldmeyer et al. 2011). Thus common software and criteria 

should be needed for the selection of polymorphism site. A common database is also needed 

to store and manage the data. Presently only the SolCap SNPs are managed in the 

solgenomics database (http://solgenomics.net/), but it is planed that it will welcome the future 

sequences.    

In this way, the large number of SNPs and still increasing information on tomato genome will 

allow us to revise the core collection constructed at INRA (Ranc et al. 2008) at the whole 

genome level. It will also help us to assess the genome wide pattern of allele frequency 

variation, identify recombination hot spots, and assess linkage disequilibrium in hundreds of 

individuals sampling wide range of genetic diversity. Moreover, understanding the 

domestication process is also a key to tomato breeding. It is a unique opportunity to studying 

rapid evolutionary processes on a short time scale thanks to massive sequencing technologies. 

Furthermore, these SNPs could be used for rapid marker development for whole genome 

association studies or quantitative trait QTL mapping and be exploited for marker assisted 

selection or genomic selection.   

  

http://solgenomics.net/
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From mid-throughput SNPlexTM assay to high-throughput SNP-chip for 
association mapping 
 
As a result from the increasing number of SNP available, there has been a high demand for 

genotyping technologies. In 2009, a multiplex technology SNPlex was commonly used 

genotyping assay (Berard et al. 2009). We developed four SNPlex each carrying 48 SNPs to  

genotype a collection of 188 accessions including 44 S. l. lycopersicum, 127 S. l. cerasiforme 

and 17 S. pimpinellifolium accessions. We showed the value of this genotyping assay in 

tomato. The percentage of SNPs successfully scored (73%) is consistent with the success rate 

reported by Pindo et al. (2008) and Berard et al. (2009). The results suggest that this assay is 

reliable, flexible and cost-effective for medium-throughput SNP detection. However, there 

were also some limits such as strong selection of SNPs to put in a SNPlex, high cost per data 

point and high failure rate (30%). This pioneering genotyping technology opened the way to 

new technologies more flexible or with higher throughput, like the one proposed by Fluidigm 

(Moonsamy et al. 2011) or Illumina VeraCodeTM and GoldenGateTM. Although SNPlexTM 

assay is no more used, the SNPs used in this assay may be adapted to other genotyping 

platforms to be used by tomato breeders.  

A total of 121 informative SNPs were obtained and used to analyze LD decay and population 

structure comparing SSR and SNP markers. SSR and SNP markers revealed similar structure 

patterns with two main groups and many intermediates, but several accessions were clustered 

in different groups. We then compared the associations detected using different structure 

covariate and samples. SNPs better performed than SSR markers for the estimation of 

population structure leading to a lower discovery rate of false-positive associations. Although 

the same number of alleles was used, the SNPs better cover the whole genome. Several 

associations were overlapping with already known QTL regions, demonstrating the power of 

our approach. However, some new associations were also identified in new regions. It is 

noteworthy that population structure influences a lot the association results. As shown in our 

study, 121 SNP corrected better for the population structure than 20 SSR markers, and much 

less associations were found using the structure based on these SNPs, suggesting that many 

associations could be due to the population structure. Furthermore, 121 markers were not 

sufficient to fully assess the LD structure at the genome level. As more SNP markers are 

today available, they will allow association studies with a higher degree of accuracy and 

taking into account the population structure.   
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As previously reported in Ranc et al. (2012), at least 50,000 SNPs would be necessary for 

high-resolution association mapping in tomato. Benefiting from next-generation sequencing 

technologies, SNP-chip carrying thousands of SNPs have been developed and used for whole 

genome association studies in several species (Huang et al. 2010). These studies showed the 

power of large amount of SNP for the assessment of population structure. However, the 

current two SNP genotyping arrays available, one composed of 7,000 features and the other 

one containing 5,000 SNP markers,   

were used to genotype about 300 accessions which were selected from genetic resource 

collection and breeding materials to cover the entire range of genetic diversity in tomato. 

These data are currently under investigation to study LD patterns at a medium density scale,  

to refine the genetic structure of the core collection and reveal new associations for traits of 

agronomical interest in this species.  

New genotyping approaches such as genotyping-by-sequencing (GBS) have also been 

developed for germplasm characterization and trait mapping in diverse organisms (Elshire et 

al. 2011). This approach is simple, quick, extremely specific, highly reproducible and has 

been used to identify and map SNPs in rice (Huang et al. 2009; Huang et al. 2010). It may be 

potentially used in tomato and replace genotyping array.  

In our study and the pilot association report of Ranc et al. (2012), we highlighted the greater 

efficiency of the mixed model (K+Q) in dealing with type I error rates for association 

mapping in tomato. This model was also successfully used for genome wide association 

studies in other species (Huang et al. 2010). Mixed model is based on single locus tests 

combined with the control of genomic background. It can handle the confounding effects of 

large numbers of loci of small effect. However, for quantitative traits controlled by several 

large-effect loci, this approach may not be appropriate (Yang et al. 2011). Taking into account 

multiple cofactors in the statistical model is thus needed for association mapping. A multi-

locus mixed model for mapping complex traits in structured populations has been proposed 

by Segura et al. (2012). This method has been applied to human and Arabidopsis thaliana 

data, identifying new associations and evidence for allelic heterogeneity. It should be used 

also in tomato. 

The muti-locus mixed model is based on a linear model and can easily be extended for 

Bayesian analysis (Stephens and Balding 2009) and allows for the integration of linkage  
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mapping study (Segura et al. 2012). This kind of combined approach has been applied to 

designed mapping families such as nested association mapping (NAM) in maize is based on 

crossing diverse lines to a reference parent, was reported by Yu et al. (2008), and showed the 

power to identify functional markers and provide information about the genetic architecture 

underlying complex traits (Guo et al. 2010). 

 Then following question is how to validate the detected associations and to identify the 

polymorphisms and genes responsible of trait variation. Commonly approaches to probe this  

question are: to increase the population size and/or develop independent populations to 

validate the associations. Once a candidate region is identified, combining linkage mapping 

between closely related individuals differing mainly at the candidate location may be useful. 

Finally, once a candidate gene is identified, its modification by transformation can be planed.  

Combined approach can also be potentially used for multi-parent advanced generation 

intercross (MAGIC) population which is another design involving intercross of multiple 

parents, forming a single large population (Cavanagh et al. 2008). This population has been 

developed in tomato in INRA. The eight parents used to develop the MAGIC population and 

their 4 hybrids have been studied using system biology approaches.  

High-throughput technologies opened the way for Systems biology 

approaches  

The large scale high-throughput technologies are also revolutionizing biological approaches. 

They allow scientists to obtain large datasets from different levels of expression or different 

organs and to analyze a biological system as a whole. Systems biology is an integrative way 

to decipher the relationships and the interactions between genes, proteins and cell elements of 

a biological system and to study how they impact the function and behavior of that system.  

Recently, system biology approaches have been used to study the natural genetic variation in 

plant at different levels, such as metabolomics (Keurentjes 2009), proteomics (Stylianou et al. 

2008) and transcriptomics (Keurentjes et al. 2008). In our work, this new analytical approach 

focused on proteome, metabolome and phenotypic levels was applied to study natural genetic 

variation of fruit quality traits in eight diverse accessions and their four corresponding F1 at 

cell expansion and orange red stages of fruit development.  
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We identified 424 variable protein spots by combining 2-DE and nano LC MS/MS and built 

the first comprehensive proteome reference map of the tomato fruit pericarp at two 

developmental stages from 12 genotypes. We have described the physiological function of the 

identified proteins. These data provide experimental evidence for tomato fruit proteins that 

had only been predicted by genome annotation and are valuable tools for comparative studies 

of protein expression.  The proteomic data obtained in this study can also be used to improve 

genome annotation (Faurobert et al. 2007; Neilson et al. 2011). 

Castellana et al. (2008)  demonstrated that incorporating peptide MS/MS data into automatic 

annotation method can improve the genome of annotation of Arabidopsis. By using 

proteomics approach, they discovered 778 new genes, corrected the annotations of 695 genes, 

and determined that approximately 13% of the Arabidopsis proteome consisted of proteins, 

which had been incorrectly annotated. We will test this hypothesis in the future. 

In this thesis, we used a classical two-dimensional gel electrophosis (2-DE) method combined 

with mass spectrometry for the protein identification. 2-DE is powerful to separate protein 

spots but it is not a perfect method due to the distortion of protein patterns caused by 

polymerisation and running procedure of gels (Rabilloud et al. 2002). However, many 

software packages such as SameSpot have been developed to align and compare the gel 

images. These software packages are now capable of multiple gel analysis, including filtering 

of 2-DE images, automatic spot detection, normalization of the volume of each protein spot, 

and statistical analysis.  

In recent years, gel-free shotgun techniques such as multidimensional protein identification 

technology (MudPIT) were also developed. One main advantage of non-gel based methods 

over gel-based methods is that it can estimate protein abundance more accurately and can 

observe differential abundance of proteins over a larger dynamic range. This includes 

resolving protein isoforms, thus allowing the quantification of proteins that share the same 

sequence but have different post-translational modifications (Bindschedler and Cramer 2011). 

However, the presence of a wide diversity of secondary metabolites, carbonhydrates and 

lipids may prevent quantitative analysis of plant proteomes, as they interfere with the gel-free 

techniques currently used.  Until recently, two-dimensional gel electrophosis combined with 

MS has been the method of choice for plant protein identification; however, non-gel-based 

shortgun LC-MS techniques are slowly taking over (Nogueira et al. 2012).   
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In parallel, we quantified 34 metabolites, 26 enzyme activities and measured five phenotypic 

traits. A large range of variability was detected for all the traits. Several inheritance modes 

were observed with a majority of additivity. Data integration was achieved through sPLS 

correlation networks. Complex networks were described and many significant associations 

were observed within and between levels of expression. This analysis provides better 

understanding of relationships among the elements (proteins, enzymes, metabolites and 

phenotypic traits) leading to tomato fruit quality. Clusters of interest can then be tested for  

enrichment of pathways, biological process, or any other kind of annotation. The data can also 

be mapped onto pathways already known to be involved in the process.  

The transcriptome of the eight lines and four hybrids has also been assessed by digital gene 

expression analysis. It will therefore be interesting to compare transcriptome changes with 

proteome changes using highly accurate quantitative platforms to investigate the differential 

regulation of gene expression. Combination of genetics and genomics with quantitative 

proteomics has immense potential to unravel the influence of the genotype on the cellular 

phenotype (Cox and Mann 2011). In addition, the eight parental lines were also re-sequenced, 

leading to the discovery of more than 4 millions SNPs. In the near future, all these data will 

be integrated together to try to construct a global network and to decipher the genetic 

variation of quality traits in tomato.  Polymorphisms in the genes for which proteins showed 

quantitative variations will be analysed. In a longer term, the data obtained in this study will 

be used for the characterization of QTL detected in a MAGIC population. Such a population 

derived from the eight lines used in this study has been constructed at INRA. It will be 

genotyped by a SNP-chip array carrying 1536 SNPs and phenotyped in two locations and 

QTL will be mapped. Once a QTL is mapped it will be interesting to come back to the 

characterization of the parental lines and to analyze the variations of proteins and genes in 

QTL locations. This population will be also latter useful for fine mapping of fruit quality traits 

in tomato.   
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Conclusion 

In summary, this thesis focused on using genetic and genomic approaches for the 

improvement of tomato fruit quality. To achieve this goal, we performed a large-scale 

analysis involving genome, proteome, metabolome, enzyme activity and phenotypic levels. 

We effectively developed molecular markers (SNPs, CAPS) and characterized proteome 

variations (proteome map). We successfully applied new genetic approach (association 

mapping) and analytical approaches (system biology approaches) for the dissection of the 

genetic bases of fruit quality traits. The data produced in this study provide a platform for 

further genetic and genomics studies in tomato. All together, we can hope it will be useful to 

answer consumer’s quest for fruit quality. 
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ABSTRACT Genome-wide association mapping is an efficient way to identify quantitative trait loci controlling

the variation of phenotypes, but the approach suffers severe limitations when one is studying inbred crops like

cultivated tomato (Solanum lycopersicum). Such crops exhibit low rates of molecular polymorphism and high

linkage disequilibrium, which reduces mapping resolution. The cherry type tomato (S. lycopersicum var. cerasi-

forme) genome has been described as an admixture between the cultivated tomato and its wild ancestor,

S. pimpinellifolium. We have thus taken advantage of the properties of this admixture to improve the resolution

of association mapping in tomato. As a proof of concept, we sequenced 81 DNA fragments distributed on

chromosome 2 at different distances in a core collection of 90 tomato accessions, including mostly cherry type

tomato accessions. The 81 Sequence Tag Sites revealed 352 SNPs and indels. Molecular diversity was greatest for

S. pimpinellifolium accessions, intermediate for S. l. cerasiforme accessions, and lowest for the cultivated group.We

assessed the structure of molecular polymorphism and the extent of linkage disequilibrium over genetic and

physical distances. Linkage disequilibrium decreased under r2 = 0.3 within 1 cM, and minimal estimated value

(r2 = 0.13) was reached within 20 kb over the physical regions studied. Associations between polymorphisms and

fruit weight, locule number, and soluble solid content were detected. Several candidate genes and quantitative

trait loci previously identified were validated and new associations detected. This study shows the advantages of

using a collection of S. l. cerasiforme accessions to overcome the low resolution of association mapping in tomato.

KEYWORDS

tomato (Solanum

lycopersicum)

admixture

association

mapping

linkage

disequilibrium

Linkage mapping has proved its usefulness in detecting important

qualitative and quantitative loci in crops (Doebley et al. 1997; Frary

et al. 2000). Linkage mapping strategies are limited in detecting loci

underlying quantitative traits (QTL) because, commonly, only two

extreme parents are used for generating the segregating population,

and only a few recombination events are studied (Flint-Garcia et al.

2005). Furthermore, the discovery of new genes underlying the vari-

ation of phenotypic traits is limited to those having a large effect on

phenotypic variation (Buckler et al. 2002). Genetic resources consist of

a large number of accessions with different histories, mutations, and

recombination events and may represent a large reservoir of pheno-

typic and molecular diversity. The association mapping strategy has

been proposed to identify polymorphisms involved in phenotypic

variations and may prove useful in identifying interesting alleles for

breeding purpose.
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Recently, the value of association mapping in genetic studies has

been described (Gupta et al. 2005; Zhu et al. 2008). New statistical

methods have been developed to analyze structured samples (Pritchard

et al. 2000b; Price et al. 2006; Yu et al. 2006), and these methods have

been efficiently applied to plants (Thornsberry et al. 2001; Flint-Garcia

et al. 2005; Zhao et al. 2007). One of the most important parameters in

association mapping is the intensity of linkage disequilibrium (LD)

over the genome. LD is defined as nonrandom association of alleles,

and its intensity determines the resolution of association mapping

(Rafalski 2002). When LD extends within several hundreds of base-

pairs (bp), a large number of markers is necessary to cover the whole

genome, and alleles at selected candidate genes should be tested for

association. If it extends over greater distances, the whole genome may

be scanned with a lower density of markers to identify polymorphisms

associated with phenotypic variation. The extent of LD over the ge-

nome is expected to vary according to the species, genome region, and

population under study (Nordborg and Tavare 2002). LD is expected

to be stronger in inbred than outbred species because recombination is

less effective in selfing species, where individuals are more likely to be

homozygous at a given locus, than in outcrossing species (Flint-Garcia

et al. 2003). Moreover, reduction in population size (bottleneck)

increases the drift effect and, consequently, LD within and between

chromosomes. Thus, inbred crops are theoretically less suitable for

high-resolution association mapping because of their low level of mo-

lecular diversity and high overall genomic LD.

The cultivated tomato (Solanum lycopersicum var. esculentum, for-

merly Lycopersicon esculentum) is a diploid plant that is predominantly

selfing and highly inbred. The tomato was domesticated from its wild

relative, S. pimpinellifolium, with the first domesticated form presum-

ably represented by S. lycopersicum var. cerasiforme (i.e., the cherry

tomato). The modern cultivated tomato accessions exhibit a low level

of genetic diversity compared with their wild relatives as the result of

several bottlenecks that occurred during domestication, migration, and

selection; this low level of genetic diversity is exacerbated by the autog-

amous nature of this species (Yang et al. 2004; Van Deynze et al. 2007).

As expected, LD extends through long genetic distances in the culti-

vated accessions (van Berloo et al. 2008). Part of the S. lycopersicum

var. cerasiforme (S. l. cerasiforme) accessions display a genetic admixture

pattern between cultivated and wild tomato accessions (Ranc et al.

2008). Such an admixture population could be compared with advanced

intercrossed lines (i.e., populations derived from two inbred strains that

were randomly intercrossed for several generations). As a consequence,

cherry-type tomatoes have a greater level of genetic diversity than S. l.

esculentum and a greater phenotypic diversity than S. pimpinellifolium,

which offers interesting properties for association mapping.

Association mapping has rarely been used to identify the molecular

bases of QTL in the tomato, with the exception of analysis of two

regions encompassing map-based cloned genes. Recently, association

mapping was shown to be relevant in identifying quantitative trait

nucleotides (QTN) responsible for locule number (LCN) differences

between S. l. cerasiforme and S. l. esculentum (Muños et al. 2011). A

sequence of 1800 bp containing the QTL lcn2.1 was identified by map-

based cloning. LD mapping detected two SNPs within this sequence

that show highly significant associations with phenotypic variation.

Previously, Nesbitt and Tanksley (2002) failed to find any association

between fruit size and genomic sequence of the fw2.2 region, which

carries a QTL for fruit size; however, they studied only 39 cherry

tomato accessions.

The objectives of the present study was to define the optimal

conditions for whole-genome association in the tomato by using

cherry tomato accessions and to assess the marker density needed to

perform association mapping in this crop. This pilot study focused on

chromosome 2 because several clusters of QTL for fruit morphology

and quality traits have been mapped on this chromosome (Causse

et al. 2002). Four genes underlying these QTL have been cloned:

fw2.2, which is responsible for fruit weight (FW) variation (Frary

et al. 2000); Ovate, which causes pear-shaped tomato fruit (Liu

et al. 2002); Cnr, which causes nonripening fruit (Manning et al.

2006); and lcn2.1, responsible for LCN (Muños et al. 2011).

We genotyped a core collection of 90 accessions mainly composed of

S. l. cerasiforme accessions by Sanger sequencing of DNA fragments. We

sequenced 81 fragments mapped on chromosome 2 and spread over three

different mapping densities: (1) a whole chromosome density (1 fragment/

5 cM); (2) a fine mapping density (1 fragment/cM) and (iii) a physical

mapping density (1 fragment/100 kb). For physical mapping density, we

focused on regions in which QTL were previously fine mapped (Lecomte

et al. 2004). In this study, we describe the level of molecular polymor-

phism detected. The extent of LD was assessed over the entire chromo-

some and over physical distances. Finally, association tests regarding FW,

LCN, and soluble solid content (SSC) phenotypes were performed.

MATERIALS AND METHODS

Plant material

The accessions were sampled in a germplasm collection that is

maintained and characterized at the Institut National de la Recherche

Agronomique (INRA) in Avignon, France. These accessions are part of

a core collection drawn from 380 accessions that maximizes both genetic

and phenotypic diversity (Ranc et al. 2008). A set of 90 tomato acces-

sions (supporting information, Table S1) was used for sequence analysis.

This sample was composed of 63 cherry type tomato accessions (i.e.,

S. lycopersicum var. cerasiforme, hereafter named S. l. cerasiforme), 17

large fruited accessions (S. lycopersicum var. esculentum, hereafter named

S. l. esculentum), and 10 S. pimpinellifolium accessions. Accessions were

derived from French researchers’ prospecting, breeders’ collections, the

Tomato Genetics Resource Center (Davis, CA), the Centre for Genetic

Resources (Wageningen, The Netherlands), the North Central Regional

Plant Introduction Station (Ames, IA), and the N.I. Vavilov Research

Institute of Plant Industry (St. Petersburg, Russia).

Tomato phenotyping

The accessions were grown during 2007 and 2008 summers in Avignon.

Four plants per accession were bred in plastic greenhouse. Three

harvests of 10 ripe fruits were done for each accession and were used as

repetition in the phenotypic analysis. The 10 fruits were phenotyped for

FW, LCN, and SSC. Year and accession effects were assessed by two-

factor analysis of variance with [R] software (R Development Core

Team 2005). Heritability estimations were calculated as following:

h2F ¼ s
2
g=ðs

2
g þ s

2
e Þ with s2

g and s2
e the genetic and residual vari-

ance, respectively. s2
g and s2

ewere estimated by (MSc-MSe)/89 and

MSe, respectively. MSc and MSe represent the mean squares of

cultivar and residual effects, respectively. Because genetic effect

over the two years was much significantly greater than year effect,

we calculated associations by using accession adjusted means over

years. FW and LCN were log transformed (Table S1). Pearson

correlations were assessed among traits.

DNA fragments sequenced

The positions of the sequence tag sites (STS) along the chromosome 2

are shown in Figure 1. We used Primer3 (Rozen and Skaletsky 2000)

to design pairs of primers for each STS based on sequence data of

genes and markers mapped on chromosome 2 (http://solgenomics.net/).
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These fragments were chosen to cover the entire chromosome with

three different densities: (1) fragments every 5 cM chosen to cover the

whole chromosome (2); fragments every cM chosen to cover the middle

of the chromosome; and (3) fragments every 100 Kb chosen to cover five

physical contigs representing candidate regions for fruit quality QTL:

Contig1 (SL2.40ch02: 41129698.. 41563558), mapped around a sugar

content QTL (sugs2.1); Contig2 (SL2.40ch02: 41752714.. 42140082),

mapped in an LCN QTL (lcn2.1); Contig3 (SL2.40ch02: 42664935..

43230501), mapped around a SSC QTL (ssc2.2); Contig4 (SL2.40ch02:

46744832.. 46893523), mapped in around FWQTL (fw2.2); and Contig5

(SL2.40ch02: 47342796.. 47472243), mapped around a sugar content

QTL (sugs 2.2). Because of a low level of polymorphism previously

described in S. lycopersicum, we targeted fragments for sequencing on

intronic or intergenic regions. For a specific unigene, intron localization

was predicted with tblastx on Arabidopsis thaliana genomic sequence

and primers were designed on exonic sequence surrounding introns. The

characteristics of the STS are presented in Table S2.

Fragment sequencing and analysis

Genomic DNA was isolated from 100 mg of frozen leaves using

the DNeasy Plant Mini Kit (QIAGEN, Valencia, CA) according the

manufacturer’s recommendations. Amplification reactions were per-

formed in a final volume of 5 mL in a reaction mix composed of 2.5

ng of template DNA, 0.4 pmol of each primer, 0.05 mM concentration of

each deoxynucleotide, 2 mM MgSO4, 1X Taq polymerase buffer P, and

0.03 units of Platinum Taq HiFi (Invitrogen, Carlsbad, CA). After 5 min

of denaturation at 94�, 30 cycles were performed of 20 s at 94�, initial

denaturation during 20 s at 55�, annealing during 2 min at 68�, followed

by a final extension step of 5 min at 68�. Pairs of primers revealing single-

band polymerase chain reaction (PCR) product were chosen for sequenc-

ing. PCR products were purified using the ExoSAP method with Exo-

nuclease I (NEB, Beverly, MA) and Shrimp Alkaline Phosphatase (USB,

Cleveland, OH). Fragments were sequenced with SP6 universal primer in

an adapted 5-mL reaction volume method using BigDye terminator V3.1

and analyzed on an ABI 3730 xl sequencer (Applied Biosystems, Foster

City, CA). Sequence alignment and SNP detection were performed using

Genalys software available at http://software.cng.fr/ (Takahashi et al.

2003). Sequences of lcn2.1, previously obtained for this core collection

(Muños et al. 2011), were added in this study (embl accession number

JF284938 and JF284939). Genotype data are provided in Table S3.

Linkage disequilibrium

The molecular diversity was estimated by Watterson’s u. The LD param-

eter r2was estimated among loci with TASSEL (Bradbury et al. 2007), and the

comparison-wise significance was computed by 1000 permutations. We

compared different strategies for analyzing LD decay over genetic distances.

We examined pairwise LD values, analyzing all polymorphisms

with minor allele frequency (MAF) greater than 5% or only one poly-

morphism by fragment with the greatest heterozygosity index. We also

compared pairwise LD decay between polymorphisms assessed in the

whole population (N = 90) or only in the cerasiforme subset (n = 63).

Pairwise r2were plotted according to genetic distance between two loci, and

nonlinear regression fitted the decay of LD over genetic or physical dis-

tance. The decrease of LD over genetic distance was fitted by the equation:

y ¼ aþ be2c=x using nonlinear regression, where y represents r2 and x

represents the genetic or physical distance in cM or kb (Tenesa et al. 2004).

Association analysis

An association study was performed with the set of 90 accessions.

Several statistical models were tested: (1) the Simple general linear

model (GLM); (2) the structured association model (Q model), taking

into account only the structure of the collection; and (3) the mixed

linear model (K+Q or MLM model), taking into account both kinship

and structure, as described by Yu et al. (2006). The significance of

associations between traits and markers was estimated with TASSEL.

Population assignment of individuals was inferred by Structure 2.1

software (Pritchard et al. 2000a) based either on 20 simple sequence

repeat (SSR) markers spread throughout the genome (Ranc et al.

2008) or on the genotypes of all the STS markers or just a subset of

these markers. For inferring the most likely number of population, the

Evanno et al. (2005) transformation method was used. The Ritland’s

matrix of relative kinship coefficients (Ritland 1996), implemented in

the mixed linear model, was estimated using SPAGeDi (Hardy and

Vekemans 2002) based on the set of SSR markers. According to Yu

et al. (2006), the diagonal of the matrix was set to 2.0, and the negative

values were set to 0. To deal with multiple testing, we computed

adjusted P values using Benjamini and Hochberg (2000) procedures

to control for the false discovery rate. Associations with an adjusted

P value less than 0.005 were declared significant. For markers that

were significantly associated with a trait, a general linear model with

all fixed-effect terms was used to estimate R2, the amount of phenotypic

variation explained by each marker. The standardized effect of each

marker was also calculated by dividing the difference of average values

of the two homozygous classes by the phenotypic standard deviation

for the trait (Weber et al. 2008). The accession used for tomato genome

sequencing, Heinz 1706, was used as a reference for allele effect

calculation.

RESULTS

Identification of polymorphisms on chromosome 2

Eighty-six pairs of primers, corresponding to 86 loci on chromosome

2, revealed a unique PCR band and were chosen for forward sense

sequencing of the 90 tomato accessions. Five fragments were not

readable because of heterozygous signals, probably due to the

amplification of paralogous sequences. The 81 remaining fragments

(Table S4) had an average size of 542 bp. Noncoding regions repre-

sented almost 69% (30,396 bp) of the total length sequenced (44,223

bp). Eleven fragments (13%) were monomorphic among the 90 acces-

sions. Figure 1 shows the location and polymorphism content of the

70 polymorphic STS. A total of 300 single-nucleotide polymorphisms

(SNPs) and 52 insertion-deletions (indels) were detected among 90

accessions. Only polymorphisms with MAF values greater than 5%

were taken into account in the following description. Polymorphisms

were analyzed according to species membership of accessions (Table

1). SNPs and indels were more frequent in noncoding regions, with an

average of 8.7 polymorphisms per 1000 bp, than in the exonic parts of

genes (average of 5.4 polymorphisms per 1000 bp). The molecular

diversity decreased from wild to cultivated groups, whereas the num-

ber of polymorphisms dropped only for S. l. esculentum (Figure 2).

S. l. cerasiforme shared polymorphisms with both cultivated and wild

accessions. S. l. cerasiforme had only five specific polymorphisms, and

344 polymorphisms shared with one of the two other species (187

with S. pimpinellifolium, 11 with S. lycopersicum, and 146 with both

species). Fifty-four percent of overall polymorphisms identified in S. l.

esculentum corresponded to singletons within this group. Most of

these polymorphisms were carried by two accessions (LA0409 and

Stupicke Polni Rane).

The ratio of polymorphisms in noncoding regions to coding

regions is similar in S. pimpinellifolium and S. l. cerasiforme but is

strikingly higher in S. l. esculentum (Table 1). S. l. esculentum also
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showed an excess of low frequency polymorphisms, as did S. l. cera-

siforme, although to a lesser extent (Figure 3).

Linkage disequilibrium

We compared LD decay over genetic distances in different samples.

LD decreased over shorter genetic distances when all polymorphisms

per sequence were taken into account than when using a single

polymorphism per fragment. Minimal difference was observed when

only the cerasiforme subset was analyzed (Figure S1). LD was likely

overestimated in the whole sample because of the genetic structure

with both cultivated and wild accessions added to the cerasiforme

subset. For further LD analysis, we focused on the 63 cerasiforme

accessions. Based on the regression of LD over distances, LD decay

reached r2 = 0.3 for a genetic distance of 1 cM, and the minimal value

Figure 1 Genetic and physical
location of the polymorphic
fragments sequenced on chro-
mosome 2. Genetic distances
on the EXPEN2000 reference
map are indicated on the left
of the chromosome. Physical
contigs are drawn on the right
of the scheme. Cloned QTL are
indicated on the left of the chro-
mosome. Gray shaded area indi-
cates homology of contigs on
chromosome 2 pseudo-molecule.
Numbers of polymorphisms
(SNPs and indels) found in non-
coding and coding regions are
indicated within bracket in the
first and second position, respec-
tively. Markers in italics show high
LD when compared together.

n Table 1 Distribution and frequencies of polymorphisms (SNP and indel) across species and ratio of polymorphism in coding and
noncoding region

Number of
Access.

Number of Total
Polymorphic Sites

Number of Shared Polymorph.a Polymorph. Frequency for 1000 bp Noncoding/Coding
Polymorphisms Ratioesc cera pimpi coding noncoding

esc 17 157 0 1.66 4.27 2.57
cera 63 349 11 5 5.42 8.61 1.59
pimpi 10 336 0 187 3 5.27 8.25 1.57

All fragments (81) are taken into account.
a
Numbers in diagonal indicate species specific polymorphisms.
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of r2 = 0.09 was obtained for distances of 13 cM (Figure 4A). Never-

theless, high r2 (reaching the maximum value r2 = 1) remained even

within a distance of 60 cM, but only 28 sites of 340 (corresponding to

12 STS spread over chromosome 2) were responsible for these high

pairwise LD values.

We assessed the extent of LD over physical distances within the

five physical contigs covering a total of 1.86 Mb (Figure 4B). The mi-

nimal estimated r2 fitted value of 0.13 was obtained within 20 kb, but

high pairwise LD persisted within 400 kb. Figure 4C shows the matrix

of LD between polymorphic sites of the physical contigs. The pattern

of LD intensity over physical distances was heterogeneous. In Contig1,

polymorphisms within STS formed blocks with high LD. In Contig2

and the first part of Contig3, STS did not form LD blocks. High LD

between and within STS was interrupted by polymorphisms showing

low LD with other polymorphisms. A striking break in the LD pattern

over physical distance appeared in the middle of Contig3, where

strong intrafragment blocks of LD but low LD between fragments

were observed. To check whether this region corresponds to a hotspot

of recombination, we used the tomato genome sequence to assess the

physical positions of STS and the reference genetic map (EXPEN2000,

http://solgenomics.net), and we calculated the ratio of physical to genetic

distances among STS. The genetic vs. physical distance ratios in Contig3

were unevenly distributed with 136 kb/cM between TD140 and TD055

and 20 kb/cM between TD109 and TD106, suggesting the presence of

a hotspot of recombination. The difference in LD behavior between and

within contig clearly appears on graphical haplotypes (Figure S2).

Association mapping

The genetic structure of 90 tomato accessions was first estimated using

20 SSR markers spread over the genome. The most probable number

of subpopulations in the sample was two (Figure S3). A subdivision in

four populations was also detected, as previously shown with 318

accessions (Ranc et al. 2008). Twenty-six cherry tomato accessions

were not clustered with high probability (Q . 0.8) within one struc-

ture group and were thus classified as an admixture between the two

major groups (Table S1). The same trend of structure with only two

populations was observed when estimating the structure with all the

STS markers on chromosome 2.

FW and LCN were log-transformed to fit a normal distribution

graphically, but LCN fitted a Poisson distribution. The three traits

were correlated together (Figure S4). Broad-sense heritabilities were

high: 0.94, 0.96, and 0.95 for SSC, FW and LCN, respectively. Genetic

structure assessed by SSR markers had a significant effect on FW and

SSC with R2 values of 0.24 and 0.12, respectively, whereas population

structure accounted only for 5% of the LCN variation. For association

mapping, the mixed model taking into account both genetic structure

assessed with all STS (QSTS) and coancestry matrices (K+Q model)

resulted in the best approximation of the expected cumulative distri-

bution of P values, followed by the K+Q model with Q assessed with

SSR markers (QSSR), then the structured association model (Q model)

and the simple model (GLM; Figure 5).

We also tested alternative models to take the structure into

account. Taking in the MLM model the four main coordinates of

significant axes of principal components analysis provided almost

similar results to the naïve model (Figure 5) as well as using k = 4

structure model (data not shown). When we used QSTS in the MLM

model, the probability plot was much closer to the diagonal (Figure 5),

suggesting that the correction for the structure was much better, and

thus we present the associations obtained with this model with cor-

rected P values less than 0.05 (Table 2). With this model, we detected

14, 3, and 3 associations with FW, LCN, and SSC, respectively (Table

2). Using just a subset of 265, we found that STS avoiding the loci

involved in the main regions where significant associations were

detected provided the same results (data not shown).

Because the correction for structure when using QSSR was not fully

satisfying with this model and many associations appeared significant,

we only retained the most significant associations with adjusted

P value lower than 0.005, although some association may still be false

positive. With this model, we detected 37, 3, and 14 associations with

FW, LCN, and SSC, respectively. Finally, taking into account both STS

and SSR markers for the structure analysis gave the same results as the

STS alone. For FW, LCN, and SSC, polymorphisms with the greatest

P values explained a large part of the trait variation (22%, 44%, and

21%, respectively). As reference alleles are based on Heinz 1706, a geno-

type with large fruit and low SSC, allele effects were almost all positive

for FW, whereas allele effects for SSC were all negative.

Figure 6 shows the significant associations between the polymor-

phisms and the traits along the chromosome with both MLM models.

Most of the polymorphisms found in association with one of the traits

were part of a dense chromosome region. For FW, the two strongest

associations involved TD380-526 (fragment TD380 polymorphic site

at position 526) on Contig3 and TD387-452 on Contig2. The r2 value

for LD estimation between these two SNPs is 0.41 in the whole ac-

cession sample (Figure S5). Because other sites revealed similar level of

Figure 2 Molecular diversity of the three groups of tomato based on
352 polymorphisms. Molecular diversity was estimated by Watterson’s
u and compared with the total number of polymorphisms (S) for
S. pimpinellifolium, S. l. cerasiforme, and S. l. esculentum.

Figure 3 Distribution of polymorphism MAFs among tomato species.
S. l. cerasiforme (n ¼ 63) is represented in black, S. l. esculentum (n ¼

17) in dark gray, and S. pimpinellifolium (n ¼ 10) in light gray. Poly-
morphisms with overall species MAF lower than 0.05 were previously
discarded (see Materials and Methods).
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LD and did not result in significant association, these two associations

could correspond to two linked QTL on adjacent contigs. When only

the 63 S. l. cerasiforme accessions were used for association analysis,

TD387-452 was not associated with FW, but association with TD380-

526 remained significant. A significant association for FW was detected

with TD056-134, which corresponds to the 59 region of the fw2.2 QTL

previously cloned by positional cloning (Nesbitt and Tanksley 2002).

In addition, TD049-528 was associated with FW and colocated with

FW2.1, a QTL for FW variation fine mapped in a biparental S. l.

esculentum · S. l. cerasiforme progeny (Lecomte et al. 2004). Finally, we

detected significant associations for FW with coding polymorphisms in

the TD055 fragment corresponding to the Ovate gene.

For LCN, only three associations were significant (Table 2, Figure

6B). The greatest associations involved two SNPs that have been

identified through map-based cloning as responsible for the LCN

variation (Muños et al. 2011). LD between these two SNPs was ex-

treme (r2 = 0.95). The other significant association implicated TD373-

391 on the same contig. TD373-391 showed the greatest r2 with the

Figure 4 Estimates of LD (r2) vs. genetic and physical
distance on chromosome 2 for the 63 S. l. cerasiforme
accessions. Only polymorphic sites having MAF greater
than 5% are indicated (see Materials and Methods). (A)
Decay of r2 over genetic distance on chromosome 2.
Plot of r2 over distance was fitted by nonlinear regres-
sion (red curve). (B) Decay of r2 over physical distance on
the five major contigs. Plot of r2 over distance is fitted by
nonlinear regression (red curve). The inset shows a more
detailed view of the LD decay curve for markers located
less than 20 Kb apart. (C) Matrix of pairwise LD P value
between and within physical contigs. P values were cal-
culated with 1000 permutations.
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lcn2.1 SNPs (r2 = 0.47). This association may thus result from the LD

with the functional lcn2.1 SNPs (Figure S5).

For SSC, the strongest associations were found with TD380-526 and

TD387-452 loci, which were also significantly associated with FW. These

results could be a consequence of the high negative correlation between

FW and SSC (r = 20.66). Several of the other polymorphisms showing

associations when using QSSR were in significant LD (Figure S5).

When we screened for associations using only the 63 cherry tomato

accessions, a group of accession chosen to limit the population structure

(Ranc et al. 2008), the MLM model was very close to the naïve GLM

model (Figure S5). Many associations were no more significant whatever

the model. For FW, significant associations were detected with loci that

were also detected in the whole collection, TD380-526, TD056-134

(fw2.2), TD116-707, and TD117-219. A new association was detected

with TD138-61. For LCN, the two SNPs in the lcn2.1 locus remained

significant. For SSC, the main association with TD380-526 was signifi-

cant, as well as two with TD120 markers (Table S5).

DISCUSSION
To assess the genetic diversity among tomato accessions and analyze

the extent of LD, we sequenced 81 DNA fragments, covering 44 kb, in

90 accessions of wild and cultivated tomatoes. We detected 352

polymorphic loci (SNP or indel). The extent of LD varied according to

the regions, scales, and associations between phenotypes and poly-

morphisms that were successfully detected.

Power of S. l. cerasiforme for polymorphism discovery

The 63 S. l. cerasiforme accessions were previously sampled to max-

imize both genetic and phenotypic diversity. This sample captures

98% of SSR alleles identified in a larger sample of 144 cherry type

accessions (Ranc et al. 2008). These accessions represent a large level

of molecular variability that is almost identical to that of their wild

progenitor, S. pimpinellifolium. In tomato, several studies were aimed

at discovering SNPs and indels. Nesbitt and Tanksley (2002) searched

for molecular polymorphisms in the fw2.2 region within a collection

of S. l. esculentum (N = 4) and S. l. cerasiforme (N = 39) accessions.

They found only one SNP per 7 kbp within S. l. esculentum accessions

and one SNP per 340 bp within the S. l. cerasiforme sample. Mining or

resequencing ESTs is another strategy to discover SNPs. Using this

method, Yang et al. (Yang et al. 2004) detected one SNP every 8500 bp

in coding regions. Jimenez-Gomez and Maloof (2009) found more

than 15,000 intraspecific polymorphisms in a set of 223,000 ESTs in

S. lycopersicum. However, most of these polymorphisms have low

allelic frequency in cultivated tomato. (Labate and Baldo 2005)

reported a greater amount of polymorphic ESTs, but the studied

accessions were described as highly variable compared with other

S. lycopersicum accessions because of introgressions from wild relatives.

Among the 1487 SNPs detected by Labate et al. (2009), only 162 were

polymorphic in S. lycopersicum breeding germplasm, and most of

them had minor allele frequency below 10%.

Van Deynze et al. (2007) increased the frequency of SNPs and

indels compared with previous studies by focusing on gene introns. In

the present study, the use of S. l. cerasiforme allowed us to detect 352

polymorphisms (SNP and indels) in 81 sequenced fragments. Four of

the eleven monomorphic fragments (TD085, TD098, TD111, and

TD384) contained only coding regions, which are less polymorphic.

The difference in the polymorphism rate between species for non-

coding regions may be a consequence of either (1) hitch-hiking of the

region surrounding a selected polymorphism or (2) a demographic

bottleneck during domestication associated with a reduction of the

population effective size. S. l. cerasiforme suffered a decrease of its

population effective size during domestication from S. pimpinellifo-

lium (Bai and Lindhout 2007). The lack of diversity differences be-

tween S. pimpinellifolium and S. l. cerasiforme could be due to the

greater number of accessions sequenced for the latter. The theta di-

versity statistic corrected for the unbalance in sample size and high-

lighted a higher molecular diversity in the wild sample. Molecular

polymorphism is linked to the population effective size by the Wat-

terson’s estimate of the scaled mutation rate (per site) u ¼ 4Nem,

where Ne is the population size and m is the mutation rate. The

transfer of the tomato from Mexico to Europe during the 16th century

greatly reduced the effective population size of the tomato and sub-

sequently decreased the amount of molecular diversity in S. lycopersi-

cum. A selection pressure that targeted coding regions could explain

the higher ratio between noncoding and coding polymorphisms for

S. lycopersicum. The reduction of diversity could arise on the fragment

targeted by selection but also on the region suffering genetic hitchhik-

ing or background selection (Innan and Stephan 2003). Thus, a less

Figure 5 Cumulative density functions (CDF) using several alternative
models of association. Model comparisons are performed for FW (A),
LCN (B), and SSC (C). Associations are tested for all polymorphic sites
with MAF .5% on 90 individuals. Naive GLM (black diamond) and
K+Q models, with structure based on SSR markers (white squares),
on 4 PCA axis (white circles) and on all STS markers (black squares)
were tested. The diagonal indicates uniform distribution of P values
under the expectation that random SNPs are unlinked to the polymor-
phisms controlling these traits (H0: no SNP effect).
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n Table 2 Significant associations for fruit weight (FW), locule number (LCN), and soluble solid content (SSC) estimated with K+Q models
on 90 accessions

Trait Locus Locationa
Model A

MAFe
Model B

P Value Corrected P Valueb R2c ad Corrected P Valueb

log(FW) TD091-415 54cM 0.0012 0.004 0.10 10.0 0.18 ns
log(FW) TD091-607 54cM 8.12·10204 0.003 0.10 9.2 0.24 ns
log(FW) TD049-528 72cM 6.04·10204 0.002 0.11 9.5 0.48 ns
log(FW) TD363-213 76cM 0.0019 0.005 0.07 9.6 0.39 ns
log(FW) TD383-419 84cM-c2.13 7.56·10204 0.003 0.12 12.1 0.11 ns
log(FW) TD383-558 84cM-c2.13 6.36·10204 0.002 0.13 11.3 0.13 ns
log(FW) TD383-60 84cM-c2.13 6.36·10204 0.002 0.13 11.3 0.13 ns
log(FW) TD375-573 84cM-c2.14 0.0011 0.003 0.10 9.0 0.25 ns
log(FW) TD133-115 84cM-c2.8 3.34·10204 0.002 0.09 7.2 0.33 ns
log(FW) TD133-395 84cM-c2.8 5.57·10204 0.002 0.09 7.3 0.33 ns
log(FW) TD387-452 84cM-c2.9 9.40·10207 4.14·10205 0.19 11.6 0.27 0.025
log(FW) lcn2.1-686 86cM-c2.3 2.86·10205 0.001 0.12 211.7 0.38 ns
log(FW) lcn2.1-692 86cM-c2.3 8.95·10206 2.63·10204 0.15 212.7 0.37 ns
log(FW) TD274-17 87.5cM-c3.13 9.32·10204 0.003 0.08 8.9 0.26 ns
log(FW) TD274-325 87.5cM-c3.13 4.76·10204 0.002 0.10 9.8 0.23 ns
log(FW) TD377-96 87.5cM-c3.14 0.0014 0.004 0.09 8.3 0.17 ns
log(FW) TD377-97 87.5cM-c3.14 0.0023 0.005 0.08 8.5 0.16 ns
log(FW) TD377-98 87.5cM-c3.14 0.0014 0.004 0.09 8.3 0.17 ns
log(FW) TD377-91 87.5cM-c3.14 0.0013 0.004 0.09 8.2 0.17 ns
log(FW) TD379-326 88cM-c3.11 4.42·10204 0.002 0.12 14.4 0.15 0.001
log(FW) TD380-256 89cM-c3.8 3.04·10204 0.002 0.11 9.5 0.21 ns
log(FW) TD380-526 89cM-c3.8 6.13·10208 5.39·10206 0.22 13.2 0.36 0.002
log(FW) TD280-328 89cM-c3.9 4.54·10204 0.002 0.10 10.5 0.48 ns
log(FW) TD055-469 89.5cM-c3.7 9.46·10205 0.001 0.13 8.3 0.26 ns
log(FW) TD278-267 90cM-c3.3 1.73·10204 0.002 0.11 12.0 0.21 0.023
log(FW) TD278-21 90cM-c3.3 0.003 ns 0.02 ns — — — 0.048
log(FW) TD278-39 90cM-c3.3 5.23·10204 0.002 0.10 15.0 0.15 0.030
log(FW) TD278-444 90cM-c3.3 2.30·10204 0.002 0.12 12.4 0.22 0.025
log(FW) TD278-524 90cM-c3.3 3.81·10204 0.002 0.12 11.9 0.20 0.030
log(FW) TD300-257 90cM-c3.5 1.95·10204 0.002 0.12 11.6 0.20 ns
log(FW) TD300-41 90cM-c3.5 0.0011 0.003 0.11 9.2 0.33 ns
log(FW) TD108-347 90.1cM 8.29·10204 0.003 0.10 7.4 0.27 ns
log(FW) TD056-134 116cM-c4.7 3.49·10204 0.002 0.12 10.8 0.35 ns
log(FW) TD369-493 116cM-c4.8 0.0025 0.005 0.09 11.1 0.26 ns
log(FW) TD116-707 120cM-c4.3 4.90·10205 0.001 0.16 8.1 0.45 0.023
log(FW) TD117-164 120cM-c4.4 1.16·10204 0.001 0.15 10.1 0.33 ns
log(FW) TD117-176 120cM-c4.4 1.16·10204 0.001 0.15 10.1 0.33 0.029
log(FW) TD083-246 133cM 0.0013 0.004 0.09 10.3 0.48 0.033
log(LCN) TD373-391 86cM-c2.12 2.14·10205 0.002 0.21 20.68 0.49 0.037
log(LCN) lcn2.1-692 86cM-c2.3 5.93·10213 1.85·10210 0.44 21.16 0.37 4.57·10209

log(LCN) lcn2.1-686 86cM-c2.3 5.32·10212 8.30·10210 0.44 21.21 0.38 1.34·10208

SSC TD133-115 84cM-c2.8 1.87·10205 7.12·10204 0.16 20.63 0.33 ns
SSC TD133-395 84cM-c2.8 4.90·10205 0.002 0.15 20.58 0.33 ns
SSC TD387-452 84cM-c2.9 3.88·10207 5.89·10205 0.24 20.86 0.27 0.018
SSC TD047-274 86cM-c2.5 3.96·10206 2.01·10204 0.19 21.00 0.12 ns
SSC TD120-212 86cM-c2.6 3.10·10204 0.004 0.13 20.58 0.33 ns
SSC TD120-88 86cM-c2.6 2.22·10204 0.003 0.13 20.59 0.32 ns
SSC TD140-180 87.5cM-c3.15 1.90·10204 0.003 0.14 20.73 0.21 ns
SSC TD379-326 88cM-c3.11 0.008 ns 0.04 ns — — — 0.045
SSC TD380-256 89cM-c3.8 2.57·10204 0.003 0.13 20.65 0.21 ns
SSC TD380-526 89cM-c3.8 1.27·10206 9.68·10205 0.21 20.70 0.36 0.022
SSC TD280-328 89cM-c3.9 1.64·10204 0.003 0.14 20.55 0.48 ns
SSC TD055-469 89.5cM-c3.7 8.93·10205 0.002 0.15 20.67 0.26 ns
SSC TD117-164 120cM-c4.4 1.52·10204 0.003 0.14 20.70 0.33 ns
SSC TD117-176 120cM-c4.4 1.52·10204 0.003 0.14 20.70 0.33 ns

Model A: MLM model, with structure based on 20 SSR (only P values less than 0.005 are shown with indication on allele effect); model B: MLM model with structure
based on all STS loci on chromosome 2 (P values less than 0.05 are shown). MAF, minimal allele frequencies; ns, nonsignificant.
a
Nomenclature for the location is as follows: “genetic distance on expen2000 reference map”-“the number of contig”.”the fragment number on this contig”.

b
P values are corrected following the Benjamini & Hochberg (2000) procedure (see Materials and Methods).

c
R2 were calculated using Q model.

d
Allele effects are indicated in grams for FW, mean number of locule for LCN, and �brix for SSC.

e
MAFs are shown for each polymorphism.
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drastic reduction in population size and continuous inter-mating with

S. pimpinellifolium shaped a higher level of molecular diversity for S. l.

cerasiforme.

LD decay over genetic and physical distances

An ancient admixture increased the polymorphism level of cherry

tomatoes and limited their overall LD. We reached minimal LD values

(r2 , 0.09) with distances greater than 13 cM, but extreme LD values

were still found over 60 cM for a few marker pairs. Our results

support those from van Berloo et al. (2008), who described an LD

extent ranging from 15 to 20 cM using AFLP markers in a cherry

tomato sample (N = 18). Nesbitt and Tanksley (2002) showed that LD

in S. l. cerasiforme could be broken within 150 kb around fw2.2. With

an average ratio of 750 kb/cM on the whole tomato genome (Tanksley

et al. 1992), the results of LD decay over physical and genetic distances

are not consistent. In our S. l. cerasiforme sample, some r2 values were

still extreme over hundreds of kb, but the drop estimated by nonlinear

regression indicated that minimal LD is reached over 20 kb. Arabi-

dopsis thaliana also showed a large extent of LD over the FRI locus. LD

extends to 200 kb, corresponding to one cM in this species (Nordborg

et al. 2002). This estimate is locus-specific and when studies are

performed on the whole genome, LD decays within 10 kb on average

Figure 6 Plot of association P values over the chromosome 2. Associations are estimated for 90 accessions. K+Q model was used to screen for
association between polymorphisms and (A) FW, (B) LCN, and (C) SSC. Stars indicate the associations detected with the structure assessed with all
STS, and black dots the associations detected with 20 SSR markers. The upper part of each graph represents associations along genetic distance
over the entire chromosome 2. The lower part shows associations for each physical contig. Arrows indicate the marker name of the most
significant associations. Adjusted P values for multiple testing (see Materials and Methods) are shown.
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(Kim et al. 2007). Nordborg (2000) estimated from simulations that

LD should vanish over a scale of 10 kb for inbred species. Our results

in the cherry tomato support these simulations. The results of LD

decay over genetic distances in the tomato are similar to the LD

pattern assessed in barley, another highly inbred crop (Zhang et al.

2009). In barley, large differences are observed in the LD decay pattern

among cultivated accessions, landraces, and wild accessions (Caldwell

et al. 2006). The greater LD extent for the crop compared with the wild

ancestor or to A. thaliana could be due to a major bottleneck that fixed

large haplotypes during domestication.

The LD pattern observed in the physical contigs is similar to

haplotype blocks described in soybean landraces, which is also an

inbred crop (Hyten et al. 2007). It is also similar to haplotype blocks in

A. thaliana (Kim et al. 2007) and in humans (Daly et al. 2001). For the

tomato, this LD pattern could be due to recent mutations with low

frequencies (more than 50% of polymorphisms had MAF , 0.2).

These polymorphism patterns may have evolved by lineage effects

rather than by recombination and thus may decay in LD in a small

region that is not correlated to distance. The high LD pattern de-

scribed in the first part of Contig3 and Contig2 could have been

shaped by selection. Clusters of QTL have been mapped in this region

regarding LCN, fruit shape, FW, soluble solids, and sugar content

(Lecomte et al. 2004). The selection of new advantageous mutations

during domestication should have increased LD in domesticated

accessions (Nordborg and Tavare 2002). In A. thaliana, LD blocks

surrounding selected polymorphisms are significantly longer than

blocks surrounding nonselected alleles (Kim et al. 2007). Finally, a re-

combination hotspot is likely responsible for the break in the LD

pattern observed in Contig3. Mapping data offered direct confirma-

tion of uneven distribution of recombination over Contig3, but the

high density of polymorphisms detected in this study should be map-

ped on a large F2 population to confirm the presence of such a re-

combination hotspot (Drouaud 2006).

Candidate genes are validated by association mapping

Our approach using a core collection was efficient in detecting

association in several candidate gene regions. Recently, lcn2.1 was iden-

tified by the map-based cloning approach as a QTN responsible for

variation in the tomato LCN (Muños et al. 2011). We used information

on lcn2.1 to highlight any possible effect of these two SNPs on FW and

SSC. A significant association was found between these two SNPs and

FW. Muños et al. (2011) highlighted the role of this locus in tomato

domestication and further FW increase. This association was the only

one with negative allelic effect. The reference genotype, Heinz 1706, has

large fruits with only two locules, whereas almost all other two-locule

genotypes carry small fruit. The large number of these small-fruit acces-

sions in the reference group induced a negative effect for FW. Nesbitt

and Tanksley (2002) could not detect any association in a S. l. cerasi-

forme sample between FW and polymorphisms in the fw2.2 region

cloned previously. These authors concluded that genes other than

fw2.2 are responsible for the variation of FW in cherry tomatoes. The

number of accessions (39 S. l. cerasiforme, 4 S. l. esculentum and 3

S. pimpinellifolium) was the principal limitation of the study. Using 90

accessions selected to represent the diversity of a larger collection, we

found a significant association with a polymorphic site located in the

promoter of the gene. This polymorphism could be responsible for the

phenotype variation or could be in LD with the responsible one. The

entire cloned region should be sequenced and tested for association

before concluding.

Association mapping for the discovery of new QTL and
candidate genes

Many QTL related to fruit traits map to chromosome 2 (Causse et al.

2002, Labate et al., 2007). These QTL and the QTL that were fine-

mapped in the mapping population S. l. cerasiforme · S. l. esculentum

for FW, LCN and SSC (Lecomte et al. 2004) were also identified by

association mapping. The screening of polymorphisms on chromosome

2 with high-density markers allowed the detection of many new asso-

ciations and identification of several putative new candidate genes. The

number of significant associations found with FW can result from LD

caused by strong selection on this phenotype (Bai and Lindhout 2007).

TD380-526 showed the most significant association with FW. This

fragment STS matched a predicted gene, Solyc02g085390.1.1, which is

homologous to A. thaliana’s SNF2-like protein (AT5G66750). This gene

has been characterized as an ATP-dependent helicase with chromatin

remodeling activity. Chromatin remodeling proteins reconfigure pro-

tein–DNA interactions that accompany or induce changes in genome

activity, such as gene expression (Kaya et al. 2001; Verbsky and Richards

2001). The other highly significantly associated fragment, TD387, has

homology with a S. lycopersicum unigene (SGN-U596069) and matches

the S. lycopersicum annotation Solyc02g084070.1.1. This gene has no

homology with any gene of known function.

Another association was detected for FW with TD049-528. TD049

was tagged in the 39 region of a gene coding for glyoxalase I (Sol-

yc02g080630.1.1). This gene colocalizes with a QTL for FW variation

in a mapping population derived from a S. l. esculentum x S. l. cera-

siforme cross (Saliba-Colombani et al. 2001). Because of the putative

impact of glyoxalase I protein on plant cell proliferation (Paulus et al.

1993), this gene represents a good candidate gene for FW variation.

The two polymorphisms most significantly associated with FW were

also associated with SSC. This could be due to the dilution effects of

soluble sugars and acids according to fruit size (Prudent et al., 2010).

The two polymorphisms were no longer statistically associated with

SSC when we added the FW effect as a covariate in the K+Q-model.

We observed the same result for TD117 (Solyc02g091640.1.1, which

codes for an Endoribonuclease E-like protein), which is genetically

close to the fw2.2 gene. The two other strongest associations, TD047

(promoter of Solyc02g083950.1.1, which codes for the WUSCHEL

transcription factor) and TD133 (Solyc02g084030, which codes for

a methionine sulfoxide reductase), are both located in the same region

as TD120. Because TD047 and TD133 are separated by a distance of 2

cM, this region must be enriched in SNPs to locate precisely one or

more responsible polymorphisms. TD055 mapped in a SSC QTL

(brix2.2) described in the mapping population involving cherry tomato

(Saliba-Colombani et al. 2001; Lecomte et al. 2004). TD055 was

designed in the Ovate gene and showed association with SSC. Ovate

is implicated in the modification of fruit shape, but no effect on SSC

has yet been reported. This polymorphism could thus be in LD with

the responsible polymorphism. SSC also showed significant association

with TD140 (Solyc02g085100 0.1.1), which was identified as an

aldose-1-epimerase. This enzyme catalyzes the transformation of

alpha-D-glucose into beta-D-glucose and participates in glycoly-

sis and gluconeogenesis. The aldose-1-epimerase thus represents

a new candidate for SSC variation.

Optimal conditions for genome-wide association studies
in tomato

We highlighted the greater efficiency of the K+Q-model in dealing with

type I error rates for association mapping in the tomato. Information

on the estimated familial relatedness in our sample did not influence
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the results for association with FW because most of the false positives

are also corrected with genetic structure information. The K+Q-model

may prove its power in a sample of increased size as well as broader

allelic diversity (Yu et al. 2006). A greater number of markers to detect

structure may also reveal a more subtle structure. Taking in the MLM

model the structure in 4 subgroups did not change the associations,

neither using the coordinates of the first four axes of principal com-

ponents analysis. The departure from the distribution of P values under

the expectation that random SNPs are not linked to the polymor-

phisms controlling FW, SSC, and LCN indicates that our analysis

did not succeed in correcting for the whole genetic structure. However,

the number of polymorphisms tested was too small and nonrandomly

spread over the genome. We then decided to focus only on highly

significant associations to reduce the acceptance of false-positive asso-

ciations. When we used in the MLM model the structure based on the

STS detected on chromosome 2 (all or a subset excluding the positions

with the main effects), the correction was much better (Figure 5), and

many associations were no more significant (Table 2), confirming that

many associations could be due to the structure. Nevertheless structure

based on STS on chromosome 2 may capture a large part of the LD on

that chromosome, and thus exclude interesting associations. Further-

more, the traits studied here have strongly evolved from wild to do-

mesticated forms (as shown by the large part of variation explained by

the structure). Correcting for the structure may thus hamper the dis-

covery of relevant loci involved in domestication. For these reasons, we

presented results of both models.

The core collection may be efficient in detecting polymorphisms

with large effects on trait variation, but it will suffer a decrease of

statistical power when dealing with low effect variants. A larger

collection is necessary to map such genes with low effect. A higher

power may be achieved by increasing the sample size rather than by

increasing the number of polymorphisms (Long and Langley 1999).

The density of markers needed for association analysis is estimated by

LD decay over genetic or physical distance (Rafalski 2002). An r2 value

of 0.3 indicates a sufficiently strong LD to be useful for association

mapping in human studies (Ardlie et al. 2002). In S. l. cerasiforme

accessions, LD estimated values decayed below this value within 1 cM.

One SNP per cM could thus be valuable for medium resolution ge-

nome-wide association. Nevertheless, many associations may not be

detected with such low number of markers as for physical distances,

even if extreme LD is still found over hundreds of kb, an estimate of

LD decay indicates that LD is minimal after 20 kb. With a genome size

of 950 Mb, a minimum set of 48,000 markers would thus be necessary

to have a physical resolution for genome-wide association in tomato.

This is a minimal number, which should be probably doubled to tag

common polymorphisms in all regions. To validate these estimations

based on LD, we looked at the number of significant associations for

different marker densities. As expected, the number of SNPs in asso-

ciation with traits increased with densification of polymorphisms.

Significant associations (p, 0.005) were found using a large mapping

strategy (1 marker per 5 cM) for FW, but no association was found for

LCN or SSC. The density of markers necessary for analysis will thus

depend on the trait, the locus targeted, and the population studied. For

example, it would not have been possible to physically map the lcn2.1

QTN using only LD because these two SNPs are in complete equilib-

rium with surrounding polymorphisms, except with TD373, which is

located on the physical region of lcn2.1 (Muños et al. 2011).

Our results suggest that genome admixture of S. l. cerasiforme

provides an interesting source of molecular diversity for the domesti-

cated tomato. The design of our core collection was efficient enough to

detect associations in all the candidate regions where QTL have been

previously mapped. We highlighted the greater efficiency of the K+Q

model in dealing with type I error rate even in a relatively small

sample. Association mapping validated the polymorphisms discovered

by positional cloning (lcn2.1 and fw2.2) or fine mapping (fw2.1). The

screening of polymorphisms along chromosome 2 with a high marker

density allowed the detection of many new associations that were

confirmed in a larger sample. We identified several putative new

candidate genes. If we extrapolate our results to the whole genome,

at least 50,000 SNPs will be necessary for high-resolution mapping in

such a collection and the double would be more realistic to avoid SNP

with low MAF. Due to the recent advances in next-generation se-

quencing technologies, the development of genomic tools (i.e. SNP-

chip) of high to very high density will allow screening of the whole

tomato genome for association with traits of interest.
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Abstract 

Improvement of fruit quality traits is a major goal for tomato breeding. Deciphering the 
genetic diversity and inheritance of fruit quality components is thus necessary. For this 
purpose, we carried out a large multi-level omic experiment. Eight contrasted lines and 4 of 
their F1 hybrids were phenotyped for fruit development traits. Fruit pericarp samples were 
analysed at 2 stages (cell expansion and orange ripe) and different scales: (1) untargeted 
profiling of major polar metabolites, (2) activities of 28 enzymes involved in primary 
metabolism, (3) proteome profiles revealed by 2D-PAGE and identification of 470 protein 
spots showing quantitative variations and (4) gene expression analysis by Digital Gene 
Expression. In parallel, the 8 lines were resequenced and more than 3 million SNPs identified 
when aligned on the reference tomato genome. This experiment allowed us to assess and 
compare the range of variability and inheritance mode of the metabolic traits and expression 
data. Correlation networks were constructed within and between levels of analysis to identify 
regulatory networks. Diversity of candidate genes could thus be analysed, relating the 
polymorphisms at the sequence levels with their expression.  

 

INTRODUCTION 

Dissection of the genetic variation and inheritance of phenotypic trait is the first step for plant 
improvement. Most phenotypic traits in plants are quantitatively inherited and controlled by 
the joint effects of several quantitative trait loci (QTL). QTL and association mapping are 
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widely used for the localization of polymorphisms responsible for phenotypic variation in 
plants (Morrell et al., 2012). Positional map-based cloning of QTL is the most straight-
forward approach to identify genes involved in complex phenotypes, but cloning the causative 
genes is much more difficult than determining their positions. Few experiments of QTL map-
based cloning have been reported in tomato (Frary et al., 2000; Fridman et al., 2000; Munos et 
al., 2011). Furthermore, DNA sequence variation (SNP or Indel) may not affect the traits 
directly. There are several intermediate levels between DNA genotypes and the traits 
phenotypes. The cascade of effects from DNA variation to trait phenotype is organized in 
complicated biological networks (Kliebenstein, 2010; Sulpice et al., 2010). Intermediate 
molecular phenotypes such as transcript and protein abundance also genetically vary in 
populations and are themselves quantitative traits (Rockman, 2006). High-throughput 
approaches have opened new prospects for analyzing biological systems and their complex 
functions at different levels including genomic, transcriptomic, proteomic, and metabolomic 
levels. System biology approaches integrating ‘omic’ resources and technologies offer new 
strategies for discovering links between co-regulated genes and pathways and ultimately, for 
predicting gene function and identifying regulatory genes in plants (Saito et al., 2008). It 
should enable us to understand the biology inside the black box of quantitative genetics 
relating genotype and phenotype in terms of causal networks of interacting genes.  System 
approaches have been applied in yeast (Ideker et al., 2001), in the model plant Arabidopsis 
(Hirai et al., 2007) and in tomato (Mounet et al., 2009), at several levels. 

Tomato (Solanum lycopersicum) is a model organism for the fleshy–fruited plants. Its genome 
has been almost fully sequenced (http://solgenomics.net/). The International Tomato 
Annotation Group (ITAG) identified more than 30,000 genes (Tomato Genome Consortium, 
in press). These data constitute a powerful tool for accelerating tomato functional genomics.  
We carried out an extensive multi-level omic experiment in order to dissect fruit quality at 
several scales. Eight contrasted lines and four of their F1 hybrids were phenotyped for fruit 
development traits. Fruits were harvested and pericarp samples analysed at metabolomic, 
proteomic, transcriptomic and genomic levels. This experiment allowed us to assess and 
compare the range of variability and the inheritance mode of the metabolic traits and 
expression data. Correlation networks were constructed within and between levels of analysis 
to identify regulatory networks. Diversity of chosen candidate genes was then analysed, 
relating the polymorphisms at the sequence levels with their expression.  

 

MATERIALS AND METHODS 

Plant material 

The study was carried out using four Solanum lycopersicum lines (Levovil, Stupicke Polni 
Rane, LA0147, Ferum) with large fruits and four cherry type tomato, S. l. var cerasiforme 
lines (Cervil, Criollo, Plovdiv 24A, LA1420), as well as four hybrids between lines of the two 
groups. Ten plants per genotype were grown from February to August on 2010 in greenhouse 
in Avignon (France). For omic analyses, 20, 30 and 60 fruits were harvested for large, 
medium and cherry fruited tomato, respectively. Fruits were collected at two stages of 



development, cell expansion stage (25, 20 and 14 days after anthesis for large, medium and 
small fruited tomato, respectively) and orange-red stage, according to the fruit colour. For 
each genotype and stage, three pools of 7 to 20 fruits were made by mixing fruits from truss 2 
to 6 of 10 plants, but avoiding the first and last fruit of the truss. Pericarps were collected 
from each pool, immediately frozen, ground in liquid nitrogen and stored at -80 ˚C before 
analysis. 

Methods 

The transcriptome analyses were conducted on two biological replicates from cell expansion 
stage. RNA was isolated and purified using Qiagen RNeasy plant mini kit. RNA samples 
preparation was done with Illumina's Digital Gene Expression Tag Profiling Kit. Then tags 
were sequenced with illumina HiSeq 2000.  Proteome and metabolome analyses were carried 
out on three biological replicates from the two stages. Protein isolation, separation by two-
dimensional electrophoresis (2-DE), image analysis and mass spectrometry were carried out 
as previously described by Faurobert et al. (2007). Metabolome analyses were carried out 
using quantitative 1H-NMR profiling of polar extracts, as described in Deborde et al.( 2009) 
with minor modifications, on an Avance III 500 MHz spectrometer equipped with an ATMA 
inverse 5 mm  probe. Enzymatic activity profiling was performed as described in Steinhauser 
et al. (2010). Correlation networks were reconstructed using sparse partial least squares 
regression (sPLS) analysis with R software (MixOmic package). 

 

RESULTS AND DISCUSSION 

Metabolite variation  

The pericarp tissues of fruits at two stages of four lines with small fruits, four with large fruits 
and four of their hybrids were analysed. 1H-NMR profiles allowed the quantification of 32 
major polar metabolites, including sugars and sugar alcohols (sucrose, glucose, fructose, 
inositol), organic acids (citrate, malate, fumarate), amino acids (alanine, asparagine, aspartate, 
GABA, glutamine, isoleucine, leucine, phenylalanine, tyrosine, valine, threonine), phenolic 
acids (chlorogenate) and other compounds (trigonelline, choline). A large range of variability 
was observed among genotypes and between parents and hybrids. The main differences were 
observed between stages but the genotype also revealed a large range of variability (Table 1). 
Activities of 28 enzymes from central carbon metabolism were measured in pericarp tissue at 
two stages and also exhibited a large range of variation as illustrated on Figure 1 and Figure 2. 

Proteome profile  

A total of 1230 spots were detected using Samespots software, among which the abundance of 
566 spots was significantly different between genotypes or stages. 424 spots were sequenced 
by LC-MS/MS and 422 proteins were identified. Among them, 355 spots corresponded to one 
gene, 25 spots corresponded to more than one gene with the same function, six spots 
corresponded to duplicated genes. A total of 36 spots were a mix of proteins corresponding to 
more than one gene with different functions. Thus, they were removed from analysis. Finally, 



386 spots corresponding to 293 unique genes were used. Spots were classified according to 
the GO term related with Biological process. Spots in unknown category were classified 
based on their description when possible. The distribution of spot functions is show in Table 
2. This classification is consistent with the spot functions identified by Faurobert et al. (2007). 
Among the 424 spots, 310 showed significant differences in volume according to stage, while 
251 showed significant differences in volume according to genotype and 154 showed 
significant interactions between stage and genotype (P<0.01).  

Transcriptome 

The analysis of gene expression at cell expansion stage in the eight parental lines and four F1 
hybrids allowed us to characterize the level of expression of more than 23,000 genes. Gene 
expression was analyzed at two different levels. In a first approach, we identified all the genes 
differentially expressed among the parental lines, and obtained a collection of 3,919 genes. 
The function of most of these genes was related with metabolic pathways that may be linked 
to the differences detected in the metabolomic profiles. Besides, we were also able to identify 
more than 100 transcription factors that may play a key role in tomato fruit development. A 
second approach was employed to analyze the genes differentially expressed between each 
couple of parents and their hybrid. This number of differentially expressed genes in each cross 
varied between 889 and 442, being greater in the cross between the two most distant lines. 
When we integrated the data from both approaches, we detected more than 500 genes that 
were differentially expressed just in the F1 hybrids. 

Inheritance analysis  

For each quantitative trait (metabolite content, enzyme activity, spot volume or gene 
expression), we assessed additivity and dominance and then the dominance over additivity 
ratio. Figure 3 compares the mode of inheritance of the traits in each cross. The number of 
variable traits varied among crosses in relation to the genetic distance between the parents. In 
average, more than 60% of the traits showed an additive inheritance, but differences were 
shown among crosses. A significant number of traits exhibited an over-dominant or over- 
recessive mode of inheritance, but no specific trend towards an excess of dominance or 
recessivity could be observed. These results are close to those of Schauer et al. (2008), except 
that we find a slightly higher rate of over-dominant and over-recessive traits. Several modes 
of inheritance are often observed for a category of traits (metabolite content, enzyme activity 
or gene/protein expression) as illustrated on Figure 2, suggesting different genetic controls in 
the different crosses. 

Integrative analysis 

Correlation networks were then analysed within and between levels of analysis. Many 
significant correlations were observed. For instance, several amino acids or sugars (fructose 
and glucose) varied in a coordinated manner. A few significant correlations between 
metabolites and enzyme activities were detected. Finally some significant correlations were 
observed between protein or gene expression and the metabolites or fruit size as illustrated 
Figure 4.  



Genome sequences 

We have resequenced the 8 genomes via GAII, with a depth varying from 9 to 26X. After 
alignment to the reference genome, the coverage rate was higher than 90% in every line. More 
than 3 millions SNPs were detected (defined with a depth higher than 8X), with large 
variation among lines (from 82,000 SNPs for the line the closest to the reference genome to 
more than 1,500,000 for the most distant one). Strong differences were also observed in the 
distribution of SNPs among the chromosomes. In average 1 SNP was detected every 382 bp 
(varying from 130 to 1309 according to the lines). Although only 2 to 3% of the SNPs are in 
coding regions, 4,000 to 25,000 SNP correspond to a non synonymous mutation. We now 
have to relate these data with the protein and gene expression variations. 

 

CONCLUSION 

This experiment using large ‘omic’ datasets provides a better understanding of hidden 
networks of molecular elements (genes, transcripts, proteins and metabolites) in tomato fruit. 
A multiallelic genetic intercross population (Cavanagh et al. 2008) has been constructed with 
the 8 parental lines and will soon be phenotyped. The detailed description of the 8 lines and 
their F1 hybrids will help us to identify the genes under the QTL. 
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TABLES 

Table 1. Range of variation observed for primary metabolites in fruits at 2 stages, cell 
expansion (CE) and orange ripe (OR), in 12 genotypes,. Only the minimum and maximum 
values are shown 

 CE  OR  CE/OR 
 min Max max/min  min max max/min  min max 

glucose 68996.3 193536.8 2.81  158574.1 233208.3 1.47  0.42 0.90 
sucrose 6417.2 11856.6 1.85  7596.8 28049.8 3.69  0.31 1.08 
fructose 65853.1 198775.3 3.02  173280.2 238532.6 1.38  0.38 0.85 
inositol 3780.8 6188.0 1.64  2135.3 4796.5 2.25  1.29 2.08 
           
citrate 26295.3 62463.3 2.38  49525.9 149942.5 3.03  0.37 0.57 
malate 13562.9 25447.1 1.88  3894.1 30910.2 7.94  0.59 3.78 
fumarate 5.5 18.7 3.38  0 12.7 NA  0.88 3.70 
alanine 283.6 1356.3 4.78  171.0 492.6 2.88  0.78 5.51 
asparagine 758.6 2461.9 3.25  1200.6 4593.9 3.83  0.31 0.95 
aspartate 576.5 1278.4 2.22  1564.4 3598.3 2.30  0.20 0.42 
GABA 4099.5 8485.6 2.07  681.1 2464.1 3.62  1.83 7.31 
glutamine 2756.4 22886.1 8.30  6605.5 24155.8 3.66  0.24 1.21 
isoleucine 166.2 865.5 5.21  232.6 687.6 2.96  0.57 3.30 
leucine  309.5 927.6 3.00  401.5 1042.5 2.60  0.40 1.26 
phenylalanine 1209.4 4905.7 4.06  1988.7 7429.7 3.74  0.35 0.94 
tyrosine 156.2 760.6 4.87  185.9 656.8 3.53  0.50 2.20 
valine 214.6 1004.1 4.68  91.7 396.7 4.33  1.19 10.95 
threonine 125.2 745.3 5.95  221.4 768.6 3.47  0.38 2.12 
chlorogenate 295.5 1484.4 5.02  378.4 949.3 2.51  0.61 1.56 
choline 551.2 1018.9 1.85  555.1 1036.1 1.87  0.72 1.11 
           
trigonelline 220.9 872.8 3.95  217.0 766.8 3.53  0.90 1.24 
 

Table 2. Function classification of the 424 protein spots sequenced 

Function classification  Spot number 
biosynthetic process 1 
cellular metabolic process 25 
cellular response to stimulus 2 
developmental maturation 7 
establishment of localization 23 
macromolecular complex subunit organization 1 
macromolecule metabolic process 97 
nitrogen compound metabolic process 4 
organelle organization 3 
organic substance metabolic process 2 
oxidation-reduction process 3 
primary metabolic process 109 
regulation of biological process 28 
response to chemical stimulus 10 



response to stress 90 
Unknown 17 



Figures 

____________________________________________________________________ 

 

Figure 1: Genetic variation in sugar contents and related enzyme activities, sucrose synthase 
(SuSy), Neutral and acid inverstase (InvN, InvA), phosphogluco-mutase (PGM), fructokinase 
(FK) and phosphor-fructo phosphorylase (PFP), at cell expansion (CE) and orange ripe (OR) 
stages in 3 genotypes: a cherry tomato (Cervil), a large fruited line (Levovil) and their F1.  

 

Figure 2: Variation in enzyme activity (Top: Phosphoenolpyruvate carboxylase; bottom: Acid 
invertase) among the 12 genotypes at two stages, cell expansion (CE) and orange ripe (OR). 
The genotypes 2, 5, 8 and 11 correspond to hybrids between their two neighbours. 



 

 

 

Figure 3: Mode of inheritance of the transcript and protein abundance. For each cross (C1 to 
C4), when the means of the 3 genotypes were significantly different, the F1 value was 
compared to its parental lines and the ratio of dominance to additivity (D/A) assessed. 
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Figure 4: Example of a correlation network identified between enzyme activities and protein 
abundance at the cell expansion stage. The central role of neutral invertase is underlined. 
Circles correspond to enzyme activities and squares to protein spot volumes. The network was 
obtained by sPLS analysis. Only correlations with absolute values higher than 0.9 are 
represented. 



Summary of thesis:  

 
Fruit quality in tomato is highly dependent on genetic variation. Following domestication and modern 

breeding, molecular diversity of tomato has been strongly reduced, limiting the possibility to improve 

traits of interest. New molecular markers such as single nucleotide polymorphisms (SNP) constitute 

precious tools to saturate tomato genetic maps and identify quantitative trait loci (QTL) and 

associations in a poorly polymorphic species like tomato. The objectives of this study were to 

characterize tomato genetic diversity at the molecular levels and to try to identify QTLs, genes and 

proteins responsible for fruit quality traits in tomato. For this purpose, three independent studies were 

conducted leading to the discovery of new SNP markers, their use for association study and finally the 

analysis of proteome diversity in relation to physiological phenotypes. We first used two next-

genration sequencing platforms (GA2 Illumina and 454 Roche) to re-sequence targeted sequences 

covering about 0.2% of the tomato genome from two contrasted accessions. More than 3000 SNPs 

were identified between the two accessions. We then validated 64 SNPs by developing CAPS markers. 

We thus showed the value of NGS for the discovery of SNPs in tomato and we produced low cost 

CAPS markers which could be used to characterize other tomato collections.  A SNPlexTM array 

carrying 192 SNPs was then developed and used to genotype a broad collection of 188 accessions 

including cultivated, cherry type and wild tomato species and to associate these polymorphisms to ten 

fruit quality traits using association mapping approach. A total of 40 associations were detected and 

co-localized with previously mapped QTLs. Some other associations were identified in new regions. 

We showed the potential of using association genetics in tomato. Finally, a new analytical approach 

combining proteome, metabolome and phenotypic profiling were applied to study natural genetic 

variation of fruit quality traits in eight diverse accessions and their four corresponding F1s at cell 

expansion and orange-red stages. We identified 424 variable spots by combining 2-DE and nano LC 

MS/MS and built the first comprehensive proteome reference map of the tomato fruit pericarp at two 

developmental stages from the 12 genotypes. In parallel, we measured the variation of 34 metabolites, 

26 enzyme activities and five phenotypic traits. A large range of variability and several inheritance 

modes were described in the four groups of traits. Data integration was achieved through sPLS and 

correlation networks. Many significant associations were detected within level and between levels of 

expression. This systems biology approach provides better understanding of networks of elements 

(proteins, enzymes, metabolites and phenotypic traits) in tomato fruits.  
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Résumé de la thèse:  

 
L’amélioration de la qualité du fruit de tomate dépend largement de la variation génétique. A la suite 

de la domestication et de la sélection moderne, la diversité moléculaire chez la tomate a été 

profondément réduite, limitant les possibilités d’amélioration. De nouveaux marqueurs moléculaires 

révélant les polymorphismes nucléotidiques (SNP) constituent des outils précieux pour saturer les 

cartes génétiques et identifier des QTL (quantitative trait loci) et des associations chez une espèce peu 

polymorphe comme la tomate. Les objectifs de cette étude étaient de caractériser la diversité génétique 

de la tomate au niveau moléculaire et de tenter d’identifier des QTL, des gènes et des protéines 

responsables de la variation de caractères de qualité du fruit. Pour cela, trois études indépendantes ont 

conduit à (1) la découverte de nouveaux marqueurs SNP, (2) leur utilisation en génétique d’association 

et (3) l’analyse de la diversité du protéome en relation avec des caractères physiologiques du fruit. 

Dans la première étude, nous avons comparé deux plateformes de reséquençage pour reséquencer des 

zones ciblées couvrant environ 0.2% du génome de deux accessions contrastées. Plus de 3000 SNPs 

ont été identifiés. Nous avons ensuite validé 64 SNPs en développant des marqueurs CAPS. Nous 

avons ainsi montré l’intérêt des techniques de reséquençage pour la découverte de SNP chez la tomate 

et produit des marqueurs simples qui peuvent être utiles pour caractériser de nouvelles ressources. 

Nous avons ensuite développé un ensemble de 192 SNPs et génotypé une collection de 188 accessions 

comportant des accessions cultivées, des type “cerise” et des formes sauvages apparentées et recherché 

des associations avec 10 caractères de qualité du fruit.  Une quarantaine d’associations a été détectée 

dans des régions où des QTL avaient été préalablement identifiés. D’autres associations ont été 

identifiées dans de nouvelles régions. Nous avons ainsi confirmé le potentiel de la génétique 

d’association pour la découverte de QTL chez la tomate. Finalement une approche combinant 

l’analyse du protéome, du métabolome et de traits phénotypiques a été mise en œuvre pour étudier la 

variabilité naturelle de la qualité du fruit de huit lignées contrastées et de quatre de leurs hybrides, à 

deux stades de développement (expansion cellulaire et orange-rouge). Nous avons identifié 424 spots 

protéiques variables en combinant électrophorèse bidimensionnelle et nano LC MS/MS et construit 

une carte de référence du protéome de fruit de tomate. En parallèle, nous avons mesuré la variation de 

teneurs en 34 métabolites, les activités de 26 enzymes et cinq caractères phénotypiques. La variabilité 

génétique et les modes d’hérédité ont été décrits. L’intégration des données a été réalisée par 

construction de réseaux de corrélations et régression sPLS. Plusieurs associations ont été détectées 

intra et inter niveau d’expression, permettant une meilleure compréhension de la variation de la qualité 

des fruits de tomate.  

Keywords : Tomate ; Qualité des fruits ; Marqueurs molécualaires ; QTL ; Génétique 

d’association ; Protéome ; Biologie des systèmes. 
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