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Maëlle Nodet Inverse problems for the environment



3

2.1.3 Goal-oriented error bound . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.2 Global sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.2.1 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.2.2 Using metamodels to estimate Sobol indices: quantifying information loss 97
2.2.3 Asymptotic study of Sobol indices estimation . . . . . . . . . . . . . . 100

2.3 Back and Forth Nudging algorithm . . . . . . . . . . . . . . . . . . . . . . . . 107
2.3.1 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
2.3.2 Negative theoretical results . . . . . . . . . . . . . . . . . . . . . . . . 108
2.3.3 Algorithm improvement . . . . . . . . . . . . . . . . . . . . . . . . . . 110

2.4 Experimental study of the HUM method for waves . . . . . . . . . . . . . . . 113
2.4.1 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
2.4.2 Experimental study of HUM operator properties . . . . . . . . . . . . . 115

2.5 Bibliography 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Future directions 123
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Introduction

This manuscript summarizes the work I have done since I came to Grenoble in the MOISE
team (INRIA – LJK), in September 2006.

The general theme of my work is data assimilation, and more generally inverse prob-
lems and related issues (such as control and sensitivity analysis). I also attach great
importance to applications, with a particularly strong taste for the environment. In fact,
I think that, in the field of inverse problems, theory and applications do not make sense
one without the other.

My work is therefore a constant back and forth between methodological / theoretical
aspects and practical / numerical applications. I broadened my research spectrum after
my thesis to both farther methods and further applications, according to Grenoble or
Nice collaboration opportunities and personal research interests. One might ask why my
international collaborations are underdeveloped compared to current academic standards.
But we should not forget that my deepest motivation is the environment, and as such I
am reluctant to travel around the world every year by plane, and I prefer collaborations
that can be led by train or bicycle...

I chose to organize this manuscript into two sections: the applications on the one hand,
the methodological aspects on the other. Of course there are overlaps between the two.
Essentially, in the first part we start from specific problems (glaciology, oceanography,
images) and classical data assimilation methods for complex models are extended, while
in the second part we investigate more upstream questions, that we study on very simple
models.

Each section includes a summary of the results and its own bibliography. Future di-
rections are presented at the end of document. I give an overview of the contents of these
two parts below.

Throughout the document, references numbered between brackets are my own works,
gray for documents in connection with my PhD thesis, color for recent works.
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Contents outlook

In the first part, I present the application aspects of my work. This section includes mostly
numerical and algorithmic developments for concrete problems.

Glaciology. A few years after my arrival in Grenoble, I had the chance to meet the
team of glaciologists EDGe1 at LGGE (Laboratory of Glaciology and Geophysics of the
Environment), especially Catherine Ritz, Olivier Gagliardini, Fabien Gillet-Chaulet and
Gaël Durand. A fruitful collaboration was set up around several current glaciological
questions. For example, one question (very fashionable at the moment because of the
growing concern about climate change) is the contribution of the Antarctica and Greenland
to sea level change. This is a typical problem of data assimilation: how to initialize models
(to make forecasts) using available observations? There are other problems with various
time (20 or 20,000 years) and space (a glacier or Antarctica) scales. These issues led to
the co-supervision of Bertrand Bonan thesis (with Catherine Ritz) and the supervision of
several undergraduate and graduate trainees. These various studies are summarized in
paragraph §1.2.

Lagrangian data assimilation. This theme is the continuation of my thesis, where
I studied the assimilation of positions of floats drifting in the ocean. During my PhD I
studied the feasibility of the assimilation problem with a realistic ocean model, but in an
idealized configuration. To include the method into operational systems, we wanted to
generalize it to a more realistic model, the NEMO code. When I arrived in Grenoble,
Arthur Vidard (INRIA MOISE) and I have therefore co-supervised Claire Chauvin during
her postdoc. Her job was to set up the Lagrangian assimilation in a more general frame-
work: within the ocean code NEMO in a configuration closer to operational oceanography.
This work is summarized in section §1.3.

Image sequences assimilation. This theme was already studied in the MOISE team
when I arrived, around the group of François-Xavier Le Dimet and Arthur Vidard (with
PhD student Innocent Souopgui and post-doc fellow Olivier Titaud). Given the close link
between Lagrangian data and image sequences, I was naturally interested. Indeed, an
image sequence closely resembles a collection of Lagrangian tracers moving in the flow.
Some operational images assimilation methods are actually based on Lagrangian tracking
of some structures. Unlike these methods, we aim to perform direct assimilation of images
without resorting to the use of pseudo-observations. In particular, we explored different ob-
servation operators, some based on multi-scale decomposition (wavelets, curvelets), other
on gradients. With Arthur Vidard we supervised the PhD thesis of Vincent Chabot on this
subject, and a new thesis should begin shortly. This work is summarized in paragraph §1.4.

1EDGe: Dynamics of flow and physics of the deformation of the Ice
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In the second part, I present the theoretical and methodological aspects of my work.
The idea this time is to focus on more theoretical issues, and study them on simpler models
(Burgers, transport, Venturi, waves, ...).

Sensitivity analysis and model reduction. When Clémentine Prieur arrived in the
MOISE team in 2008, we wanted to set up a collaboration on topics mixing both deter-
ministic and stochastic aspects. E.g. I was interested in the following question: given
a model with many unknown input parameters (ice or ocean for example), and a num-
ber of available observations, how to choose the parameters to be identified? Indeed, the
conservative approach would be to assimilate every unknown parameter, but at the cost
of a large computational effort. It is sometimes advantageous to restrict the control to a
few well-chosen parameters, to which the model is the most sensitive. This is typically
a sensitivity analysis problem: to find the input parameter that has the most influence
on the model outputs uncertainty. Global sensitivity analysis, especially Sobol indices, is
a way to answer this question. The only problem is that numerical methods of indices
computation generally involve Monte-Carlo methods and therefore require a very large
number of model runs. This is of course unthinkable in practice, therefore our second line
of research: model reduction. The idea is to replace the model by a meta-model, approx-
imate but faster. The questions that guided us in this work were the following: how to
effectively reduce a model? How to quantify the error on Sobol indices when the model
is replaced by the metamodel? These issues have motivated the PhD thesis of Alexander
Janon, co-supervised with Clémentine Prieur, and the results are presented in paragraphs
§2.1 (model reduction) and §2.2 (sensitivity analysis with reduced models).

Back and Forth Nudging (BFN). When I was a PhD student in Nice, Jacques Blum
and Didier Auroux jointly developed a new algorithm for data assimilation: the Back and
Forth Nudging. Forward nudging is to add a feedback to the observations in the model
equations. This method is quite old but very simple to implement, and gives good results
when the number of observations is sufficient. The backward nudging does the same
thing, but on the backward model equation. The BFN consists in iterating the forward
and backward nudging steps. Like many people at the time, I was both impressed with the
positive results and appalled by the idea of changing the direction of time in the models
(which most of the time contain diffusion terms). So with Didier Auroux and Jacques
Blum, we studied the BFN in more details and proposed improvements. These results are
presented in Section §2.3.

Numerical HUM method. Shortly after my departure from Nice, Gilles Lebeau
(Nice) asked me to collaborate on a control problem for the wave equation. For this
well-known problem, the HUM method gives a necessary and sufficient condition for the
controllability of the equation and gives the expression of the control operator. Gilles
Lebeau had shown theoretical results on the properties of this operator, and he wanted
to observe them numerically. We have done experimental work, implementing a robust
Galerkin method to solve the control problem, and using it to highlight the theoretical
results, and issue new conjectures about the problem. This work is presented in Section
§2.4. It is of course farther from data assimilation, but it is still related in the sense that
it allowed me to better understand some difficulties encountered in assimilation (non-
controllability, numerical instabilities due to waves, etc.).
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[26] MN. De la glace à la mer. Matapli, SMAI (2013) 100
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1.1 Data assimilation methods

In this paragraph, we present the main data assimilation methods we will use later on.
The references can be found in the bibliography, page 72.

1.1.1 Introduction

What is data assimilation?

Data assimilation is the science of “fruitful compromises”: it offers methods to combine
optimally (“optimally” should be defined precisely) every source of available information
about a system: mathematical equations (describing the physical or biological system),
observations (measures, data), error statistics (observation errors, model errors...). These
information sources are often heterogeneous: in nature, spatial and temporal distributions.

Data assimilation (DA) was initially introduced for initial state estimation in weather
forecasting. Today it has many application domains (weather forecasting still, but also
oceanography, sismography and oil search, nuclear fusion, medicine, glaciology, building,
agronomy, ...). Similarly, initial state estimation is not the only aim of DA, we also look
for other parameters (boundary conditions, forcings, numerical parameters, physical law
parameters, domain and shape, ...).

In any cases, the idea is to solve an inverse problem about a (physical or other) sys-
tem whose input parameters are partially unknown, and whose outputs are (partially,
indirectly) observed. The inverse problems we faced in DA generally share the following
characteristics: complex systems, indirect, sparse (in space and/or time) and error-prone
observations, ill-posed problem (underdetermined or overdetermined).

BLUE

There are two major classes of data assimilation. One is based on the optimal statistical
estimation theory and is the foundation of the Kalman filtering methods. The other is
based on optimal control theory, and leads to variational methods. Under certain restric-
tive assumptions these two methods are equivalent, as we will see briefly.

We consider the following inverse problem: estimate xt ∈ R
n knowing observations

yo ∈ R
m such that

yo = Hxt + ǫo

where H is the observation operator (linear) and ǫo is the observation error vector, sup-
posedly unbiased (ie expectancy E(ǫo) = 0), with known covariance matrix R = E(ǫoǫoT ).
It is also assumed that we have a background xb:

xb = xt + ǫb

where the background error is supposed to be without bias, with known covariance matrix

P b = E(ǫbǫb
T
) and uncorrelated to the observation error. We then seek the BLUE (Best

Linear Unbiased Estimator), ie xa such that the estimator is:

Maëlle Nodet Inverse problems for the environment
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• linear: xa = Lyo ;

• unbiased: E(xa − x) = 0, ie LH = I ;

• of minimal variance Tr(P a).

where P a is the matrix of analysis errors ǫa = xa − xt. The solution to this problem is
given by the formula

xa = xb +K(yo −Hxb)

where K is the Kalman gain matrix:

K = (P b−1
+HTR−1H)−1HTR−1 = P bHT (R+HP bHT )−1

In this case, the analysis error covariance matrix is

P a = (I −KH)P b

The same estimate is obtained if one seeks the minimizer x̂ of the following cost function:

J(x) = 1
2(x− xb)TP b−1

(x− xb) + 1
2(Hx− yo)TR−1(Hx− yo)

= 1
2‖x− xb‖2

P b−1 +
1
2‖Hx− yo‖2

R−1

= Jb(x) + Jo(x)

The aim of filtering methods is to directly calculate the Kalman gain matrix, while varia-
tional methods aim to solve this last minimization problem thanks to optimization tools.
We give more details on this in the following paragraphs.

1.1.2 Variational methods

The variational methods solve the inverse problem by directly minimizing the cost function,
usually by a gradient descent method. The gradient calculation is done by the adjoint
method, which comes from the theory of PDE optimal control (Lions, 1968). We briefly
recall below what it is.

Adjoint method

The adjoint method (Lions, 1968) was introduced for the problem of controlling the ini-
tial condition in meteorology by Le Dimet (1982); Le Dimet and Talagrand (1986). We
formally recall what it is below. The unknown function is the state of the system (tem-
perature, pressure, wind, humidity) at the initial time, denoted U . The state vector X(t)
then satisfies a system of partial differential equations (called the model):





dX

dt
=M(X), dans Ω× [0, T ]

X(t = 0) = U

where we detailed only the time derivative. Spatial differential operators in Ω and bound-
ary conditions are contained in M . It is also assumed that observations of the state X(t)
are available

Y o = HX + ǫo
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where Y o is in a space Ωo that we endow (to simplify the writing) with the norm and
the scalar product L2. We therefore seek to minimize the following cost function, which
measures the misfit to the observations:

J(U) =
1

2

∫ T

0
‖HX − Y o‖2 dt

The minimization of J by a descent method requires its gradient. We begin by expressing
the derivative of J in U in the direction u:

Ĵ [U ](u) = lim
α→0

J(U + αu)− J(U)

α
=

∫ T

0
(X̂,HT (HX − Y )) dt

where X̂ is the directional derivative of X in U in the direction u

X̂ = X̂[U ](u) = lim
α→0

X(U + αu)−X(U)

α

We know that X̂ satisfies the so-called tangent linear model equation:





dX̂

dt
=

[
∂M

∂X

]
X̂

X̂(t = 0) = u

Then the (backward) equation of the adjoint model is introduced:





dP

dt
+

[
∂M

∂X

]T
P = HT (HX − Y )

P (t = T ) = 0

that allows easily to express the gradient of J :

Ĵ [U ](u) =

∫ T

0

(
X̂,

dP

dt
+

[
∂M

∂X

]T
P

)
= −(u, P (0)) = (∇JU , u) ⇒ ∇JU = −P (0)

This method is quite generic can also be applied in other cases: discrete time/space model,
with other controls than initial condition, taking into account the error covariance, etc.

Major variational algorithms

In variational assimilation, the background error covariance matrix is typically denoted B

rather than P b, so we will use this notation in this paragraph.

4D-Var. The reference algorithm is called 4D-Var. It is classically formulated for the
control of the initial condition x, knowing distributed in time observations yo

i , as in the
optimal control problem described above. The 4D-Var cost function is as follows:

J(x) =
1

2
‖x− xb‖2

B−1 +
1

2

N∑

i=1

‖Hixi − yo
i ‖2R−1

i
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The first term is the background term, it plays a double role. First it contains the a priori
information that is available on the system, namely a background xb of the desired estima-
tor and statistical error covariance information via the B matrix. Then it mathematically
plays a regularising role, because in general the problem of minimizing the deviation from
the observations alone is ill-posed (non-uniqueness, no continuity with the data).
The second term, which contains the misfit to the data, is called the observation term. The
sum is over the indices i, which represent various observation times, which are associated
with an observation vector yo

i , as well as some knowledge of the observation error statistics
through matrices Ri. The linear operator Hi is the map between the state variable xi of
the model at time i and the observation vector yo

i . Here we look for the initial condition
of a model, knowing observations distributed over a given time window. The state of
the system at times of observation, xi is related to the initial condition x by the (linear)
evolution model:

xi = M0→ix = Mi−1→iMi−2→1...M1→2M0→1x = MiMi−1...M2M1x

where to simplify we use the notation Mk = Mk−1→k for one model time step, maping
xk−1 onto xk. We can thus rewrite the cost function in expanding the dependence in x

(recall that x is the initial state, ie x = x0):

J(x) =
1

2
‖x− xb‖2

B−1 +
1

2

N∑

i=1

‖HiMiMi−1...M2M1x− yo
i ‖2R−1

i

We can then express the gradient of J :

∇J(x) = B−1(x− xb)−
N∑

i=1

MT
1 . . .M

T
i−1M

T
i HT

i R
−1
i (yo

i −HiMiMi−1 . . .M1x)

which is traditionally rewritten using the innovation vectors di:

di = yo
i −HiMiMi−1 . . .M1x

as follows:

∇J(x) = B−1(x− xb)−MT
1

[
HT

1 R
−1
1 d1 +MT

2

[
HT

2 R
−1
2 d2 + . . .+MT

n HT
n R

−1
n dn

]]

This factorization shows that we can compute the gradient of J with one direct integration
model (to compute the vectors di) and the adjoint model integration.
This is the basis of the 4D-Var algorithm that does so, from a starting point for x: calculate
J and ∇J , do one descent method step to minimize J , update x and so on.

3D-Var and 3D-FGAT. Similarly, when the model does not depend on time, the
3D-Var algorithm proceeds in the same way to minimize the cost function:

J(x) =
1

2
‖x− xb‖2

B−1 +
1

2
‖Hx− yo‖2

R−1 , with ∇J(x) = B−1(x− xb)−HTR−1d

with d = yo −Hx. This algorithm is also used with evolution models, assuming that all
observations are made at the initial time. The cost function can be written as

J(x) =
1

2
‖x− xb‖2

B−1 +
1

2

N∑

i=1

‖Hx− yo
i ‖2R−1
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As it is unsatisfactory to compare an observation at time i with the model state at the
initial time, there is a variant called the 3D-FGAT (first guess at appropriate time), which
is written as:

1. Compute the innovation vector thanks to the direct model:

di = yo
i −HiMiMi−1 . . .M1x

2. Compute J :

J =
1

2
‖x− xb‖2

B−1 +
1

2

N∑

i=1

‖di‖2
R

−1

i

(note that this is the 4D-Var cost function)

3. Compute an approximation of ∇J thanks to the adjoint observation operator HT :

∇J(x) = B−1(x− xb)−
N∑

i=1

HT
i R

−1
i di

3D-FGAT is a variant of the 4D-Var, in which the adjoint operators MT
i is replaced by

the identity. This greatly simplifies the implementation since then only the adjoint of the
observation operator is required.

1.1.3 Practical variational assimilation

The practical implementation of variational methods require many ingredients, which are
all currently subjects of active research. We will review the major ones quickly.

Effective adjoint implementation

Obtaining the adjoint model, to get the gradient, can be done in two ways. The first
method, which I call continuous adjoint, is to write the continuous adjoint equations (as
was done above) and then discretise them. The second approach, which I call discrete
adjoint, is to first write the discrete direct model and then calculate the adjoint of the
discrete code.

These two methods are not equivalent, especially when the numerical schemes used
are not symmetrical. Thus, continuous adjoint will not be exactly the adjoint operator of
the direct model, while the discrete adjoint will be fine. The “good” approach is therefore
that of the discrete adjoint which computes the gradient of the discrete cost function.

However, the calculation and implementation of the discrete adjoint can be complex
and tedious, and it may happen that for convenience we choose the continuous adjoint, at
the price of an approximate gradient.

However, there are tools that automate the writing of the adjoint code, called automatic
differentiation tools, such as the software Tapenade (2002); Hascoet and Pascual (2013).
These tools are powerful, always improving, and can now derive large computer codes in
FORTRAN. It should be mentioned, however, that these tools can not be used completely
in black box mode and require a lot of prep work on the direct code. We refer to Giering and
Kaminski (1998); Griewank and Walther (2008) for details on automatic differentiation.
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Nonlinearities

Classical algorithms are written for linear models and observation operators, but in prac-
tice they are rarely linear. To distinguish from the quadratic case we use the notations J
for cost and Hi and Mi for the nonlinear observation and model operators. In that case
the BLUE assumptions are not satisfied, so we lose the optimality of the algorithms and
the variational / filtering equivalence. We can still continue to use the previous algorithms,
the cost function writes:

J (x) =
1

2
‖x− xb‖2

B−1 +
1

2

N∑

i=1

‖HiMiMi−1...M2M1x− yo
i ‖2R−1

i

In practice we use two types of algorithms to minimize J :

1. we either directly minimizes the non-quadratic functional with Quasi-Newton meth-
ods, using the gradient

∇J (x) = B−1(x− xb)−
N∑

i=1

MT
1 . . .M

T
i−1M

T
i HT

i R
−1
i (yo

i −HiMiMi−1 . . .M1x)

where the adjoint operators are the transposed linearized operators (commonly called
tangent operators in the DA literature);

2. or we use so-called incremental algorithms which consists in assuming x near a
reference xr, x = xr + δx, and in linearizing to get an quadratic cost function
approaching J :

Jquad(x) =
1

2
‖δx‖2

B−1 +
1

2

N∑

i=1

‖di −HiMiMi−1...M1δx‖2
R

−1

i

where di = yo
i −HiMiMi−1 . . .M1x

r and H and M are the linearized operators
of H and M around the reference trajectory xr. It then proceeds iteratively: min-
imization of Jquad, the minimizer becomes the new reference xr, linearization of H
and M around xr, new quadratic function, etc.

Numerical optimisation

Once the discrete model and its gradient (with the adjoint) are available, we proceed to
the iterative minimization of the cost function through numerical minimization algorithms.
The book by Nocedal and Wright (1999) present current methods, it is our reference for
this section, but there are many research papers on the subject. The methods that are
used in data assimilation (weather forecasting, oceanography and glaciology) are variants
of Newton’s method, essentially the methods of Quasi-Newton and Gauss-Newton. The
Quasi-Newton method consists in replacing the Hessian operator by an approximation
(BFGS method, Broyden-Fletcher-Goldfarb-Shanno). For large scale problems it can be
a reduced rank approximation (L-BFGS method, ie limited memory BFGS). The Gauss-
Newton method is the incremental algorithm presented just above. The idea is to linearize
the nonlinear operators Hi and Mi, then minimize the quadratic function obtained and
update the reference trajectory and again linearize, and iterate the process until conver-
gence. Under certain conditions (that are rarely applicable in practice) the algorithm
converges to a minimum of the function J .
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Covariance matrices

Background errors covariance matrices B and observation R are needed to implement the
algorithms. Since the dimensions of these matrices are very large, they are never stored
or defined in matrix form, we generally implement the matrix-vector product associated
operator. Their role is very important of course, as can be seen from the formula BLUE:

xa = xb +BHT (R+HBHT )−1(yo −Hxb)

The analysis increment xa − xb is in the image of B matrix! The modeling of these
matrices is difficult and is the subject of active research. Those are more advanced for
the matrix B than for the matrix R (often chosen diagonal). We briefly mention below
various ways to do so.

Recall that if ǫb represents the background error (with ǫb = 0), then B = E(ǫbǫb
T
). If

we denote by Bi,j = E(ǫbiǫ
b
j) its coefficients, we can write classically

B = ΣCΣ

where Σ is the diagonal matrix of standard deviations
√
Bi,i, and C is the correlation

matrix

Ci,j =
Bi,j√

Bi,i

√
Bj,j

The matrix of standard deviations Σ can be estimated by statistics on the model states, it
has only n coefficients (B has n2), where n is the dimension of the state vector. One first
naive approach is to say that the correlation functions are Gaussian functions depending
on the distance between two points:

Ci,j = c1 exp

(
−di,j
c2

)

where c1 and c2 are normalization coefficients and di,j is the disctance between the point
identified by the index i in the grid and the point identified by the index j, so that
the influence of point i on point j decreases with the distance between these points.
The method of the diffusion operator (Weaver and Courtier, 2001) improve this idea, by
deforming the Gaussian to follow the boundaries of the field, or the flow. This is achieved
through a diffusion operator (whose solutions are exactly deformed Gaussian functions).

The problem with the above method is that it produces spatial correlations between
two different grid for the same physical variable (temperature, speed, etc.), but no corre-
lation between two different physical variables.
Other methods of producing multivariate B matrices (that is to say, with non-zero cor-
relations between different physical variables) are: reduced basis method, Monte-Carlo
(called ensemble methods in DA).
The reduced basis method is to provide a sufficiently rich time series of model states ξk,
and form the matrix X which contains the columns ξk minus their average. A singu-
lar value decomposition (or principal component analysis) of the matrix XXT is then
performed:

XXT = NΛNT

where N is the eigenvector matrix and Λ the diagonal matrix of the decreasing eigenval-
ues. The idea is to approximate B using only the first r components (called Empirical
Orthogonal Functions in geosciences) of these matrices:

B = NrΛrN
T
r
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where Nr is a matrix whose r columns are the r first EOFs and Λr is a diagonal r by r
matrix containing the r largest eigenvalues. In general, r < 100, so this formulation of B
can be stored in memory and manipulated easily.

Another way to produce a multivariateB matrix is to use an ensemble method (Monte-
Carlo). If one has an ensemble of system states x1, . . . ,xp, we can estimate B by Monte-
Carlo

B =
1

p− 1

p∑

j=1

(
xj − x

) (
xj − x

)T

where x is the average of xj . As before, we then have less expensive computations. The
problem is then to calculate wisely the vectors xj of the ensemble. We refer to the methods
of ensemble filtering to see how to choose the ensemble members. Generally, p is of the
order of 80 to 100, so that B is elementary to calculate. As with the reduced method, the
obtained B matrix is naturally multivariate.

1.1.4 Sequential methods: Kalman filtering

The Kalman filter, as 4D-Var, extends the BLUE analysis to time-dependent problems.
The notations are the same as above, except that the Kalman filter naturally takes into
account the model error:

xk+1 = Mk+1xk + ηk

where ηk is an unbiased noise, uncorrelated in time, with covariance matrix Qk. Note that
the 4D-Var also allows the inclusion of the error model, as in Vidard et al. (2000, 2004);
Freitag et al. (2012), but the implementation is less natural than the Kalman filter. As
for the 4D-Var and BLUE, we also have observations at each time tk:

yo
k = Hkxk + ǫok

We also assume that the observation and model errors are uncorrelated, or E(ǫokη
T
l ) = 0

for all times tk, tl. As 4D-Var, the Kalman filter assumes that the operators M and H

are linear.

Algorithm

The Kalman filter is composed of a succession of two phases: analysis and prediction.
The analysis step at time tk is a simple application of the BLUE: at this time, there is a
background (which is the previous forecast), which we denote xf

k (exponent f for forecast),

with covariance matrix P
f
k assumed known. The BLUE analysis is thus rewritten

xa
k = x

f
k +Kk(y

o
k −Hkx

f
k), Kk = P

f
k H

T
k (Rk +HkP

f
k H

T
k )

−1

and the analysis error covariance matrix P a
k is also given by the BLUE:

P a
k = (I −KkHk)P

f
k

The second step of the Kalman filter is to propagate the analysis to the next observation
time, thanks to the model. It is called the prediction/forecast step:

x
f
k+1 = Mk+1x

a
k, P

f
k+1 = Mk+1P

a
k+1M

T
k+1 +Qk
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Variational equivalence

Under the assumptions of the Kalman filter about errors and linearity of the operators, the
4D-Var and the Kalman filter are equivalent. More precisely, in the absence of model error,
on the same time window [t0, tN ], with the same observations and the same background

(ie xb = x
f
0), the analysis of the KF (Kalman Filter) at final time xa

N coincides with the
minimum of the 4D-Var cost function (propagated to time tN by the model).

Nonlinearites

As for the 4D-Var, in the presence of non-linearities, the algorithm can be extended, at
the cost of loss of optimality. We also loose the variational equivalence. The extended
Kalman filter is an adaptation of the filter with the non-linear operators Mk and Hk and
their linearized versions Mk and Hk around xa

k et xf
k . The analysis is written

xa
k = x

f
k +Kk(y

o
k −Hkx

f
k), Kk = P

f
k H

T
k (Rk +HkP

f
k H

T
k )

−1, P a
k = (I −KkHk)P

f
k

and the forecast step becomes

x
f
k+1 = Mk+1x

a
k, P

f
k+1 = Mk+1P

a
k+1M

T
k+1 +Qk

1.1.5 Ensemble filtering methods

The Kalman filter, even in its extended version, is rarely used as is in geosciences, because
the dimensions of the involved matrices are too large. Let us recall that if the dimension
of the state space is n (and the observation space dimension is m) then the matrices
P and K are of size n × n. In realistic applications (Numerical Weather Prediction
– NWP, oceanography), n can be of the order of a million, so these matrices are not
storable in practice. An empirical method has been proposed to overcome this problem
by Evensen (1994); Burgers et al. (1998): the Ensemble Kalman Filter (EnKF). The
theoretical justification is still at its beginning, we can refer to the work of Bocquet (2011)
for a solid mathematical interpretation. However, this filter provides quite good results
in practice and it is fairly easy to implement, so it is widely used, and there are many
variations.

Ensemble Kalman filter algorithm

The idea is to replace the state vector and its covariance matrix by an ensemble of vectors

x
(i)
k , i = 1, . . . , Ne, whose first moments provide an estimate of the state vector and the

covariance matrix:

xk =
1

Ne

Ne∑

i=1

x
(i)
k , Pk =

1

Ne − 1

Ne∑

i=1

(x
(i)
k − xk)(x

(i)
k − xk)

T

The forecast step is to propagate each member of the ensemble:

x
f
k

(i)
= Mk

(
xa
k−1

(i)
)
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Then

x
f
k =

1

Ne

Ne∑

i=1

x
f
k

(i)
, P

f
k =

1

Ne − 1

Ne∑

i=1

(xf
k

(i) − x
f
k)(x

f
k

(i) − x
f
k)

T

For the analysis, we first create an ensemble of observations for each element of the en-
semble:

yo
k
(i) = yo

k + ǫok
(i), i = 1, .., Ne

where the noise ǫok
(i) satisfies

Ne∑

i=1

ǫok
(i) = 0, Rk =

1

Ne − 1

Ne∑

i=1

(ǫok
(i))(ǫok

(i))T

Then the analysis step is similar to the standard filter for each element of the ensemble:

xa
k
(i) = x

f
k

(i)
+Kk(y

o
k
(i) −Hkx

f
k

(i)
), Kk = P

f
k H

T
k (Rk +HkP

f
k H

T
k )

−1

The analysed vector and its error covariance matrix are given by the first two moments of
the analyses:

xa
k =

1

Ne

Ne∑

i=1

xa
k
(i), P a

k =
1

Ne − 1

Ne∑

i=1

(xa
k
(i) − xa

k)(x
a
k
(i) − xa

k)
T

Inflation and localisation

The ensemble Kalman filter is known to be sensitive to sampling errors due to the small
size of the ensemble. Indeed, in practice Ne < 100 while n = 104 to 106. This leads to
two identified drawbacks, for which two types of remedies have been proposed.

1. The underestimation of variances. To remedy this, we proceed in general to an
artificial inflation of the ensemble (Pham et al., 1996; Anderson and Anderson, 1999).
That artificially increases the variance of the ensemble:

x
f
k

(i)
= x

f
k + ρ

(
x
f
k

(i) − x
f
k

)
, avec ρ > 1

Other ways to implement inflation exist, in particular using observations.

This problem is due to the formulation of the filter itself. Indeed Bocquet (2011)
showed that another formulation (EnKF-N, taking into account the finite size) elimi-
nates the need for inflation (in fact, this formulation of finite size naturally introduces
the optimal inflation required).

2. The appearance of long-range spurious correlations. This problem is solved by a
tool called localisation (Hamill et al., 2001; Houtekamer and Mitchell, 2001; Ott
et al., 2004). Again there are many formulations, the general idea is to remove the
correlations between far away grid points (e.g. covariance matrices can be convolved
with localising functions).
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Ensemble Transform Kalman filter (ETKF)

The ETKF was introduced by Bishop et al. (2001), it is a particular rewriting of the
analysis step of the general Kalman filter using a change of variable (hence the term
transform), similar to that developed by Pham (1996); Pham et al. (1998); Pham (2001)
for SEIK filter. We describe here the version of the filter given by Hunt et al. (2007). We

introduce the anomaly matrix Xfwhose columns are [xf (1) − xf , . . . ,xf (Ne) − xf ]. Then
we look for the P a matrix as a transformation by the formula:

P a = Xf P̃ aXf T

where P̃ a is a square matrix of size Ne. We also define the observations of forecasts:

yf (1) = H
(
xf (1)

)
, . . . ,yf (Ne)

= H
(
xf (Ne)

)

and we define yf as the average of this ensemble and Y f the matrix of associated anoma-
lies.

The analysis step is then to minimize the following cost function:

J (w) =
Ne − 1

2
‖w‖2 + 1

2
‖yo − yf − Y fw‖2

R−1 , w ∈ R
Ne

We have an explicit formula for the minimizer:

wa = P̃ aY f TR−1(yo − yf ), P̃ a =
(
Y f TR−1Y f + (Ne − 1)I

)−1

And then we get the analysis vectors thanks to their average and the anomaly matrix:

xa = xf +Xfwa, Xa = Xf
(
(Ne − 1)P̃ a

) 1

2

This formulation also admits a version with inflation and localization, we refer to Hunt
et al. (2007) and to Bonan (2013) for details.
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1.2 Some inverse problems in glaciology

In this paragraph, we present the inverse problems we investigated in collaboration with
glaciologists from LGGE. First we explain the main points of ice-sheet dynamics modelling,
the major models and some inverse questions. Then we summarise the publications [6]
[8] [17] [22] and the ongoing works.

1.2.1 Ice-sheet dynamics modelling

Some parts of this paragraph are translated from the (french) outreach paper [26] I wrote
for Matapli 100, on the occasion of “2013 Mathematics for Planet Earth” (MPE 2013).
For more details on ice-sheet modelling we refere to the PhD thesis manuscript Bonan
(2013).

Processes involved in ice dynamics

Figure 1.1 presents the various processes occurring in ice dynamics, which we describe
below.

Figure 1.1: Different processes of ice dynamics, represented on a profile of polar ice-sheet.
Source : C. Ritz.

Flow. Ice is a incompressible non-newtonian fluid, flowing under its own weight.
Movies made from daily-captured pictures of a moutain glacier look like frozen river ice
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Figure 1.2: Surface ice velocities, from Rignot et al. (2011).

flow1. But contrary to water flow, the flow time scales are such that acceleration effects
are negligible. “Non-newtonian” means that the ice viscosity non-linearly depends on dy-
namics. It is given by a viscoplastic constitutive law called the Glen law by glaciologists.
It models the material complexity and its deformation tendency. Ice is a really com-
plex material, all the more so as its physical properties vary inside an ice-sheet. Indeed,
ice temperature and pressure are unhomogeneous, therefore ice properties change. More-
over, pressure and melting/refrost result in crystalline structure changes, and consequently
physical and mechanical properties changes.

Mass balance. The mass balance is the difference between ice accumulation (snow
precipiations, surface/crevice/basal refrost) and ice ablation (surface or ground melt, ice-
bergs calving, wind transport). Mass balance estimation is a highly complex problem, de-
pending on many external factors: weather conditions and surface temperature (impacting
precipitations, surface melt and wind transport), geothermal flux (impacting basal melt).

Basal boundary conditions. At the bottom of the ice-sheet, either the ice is cold and
it sticks to the ground, or it slides. Basal sliding can occur for different reasons. First,
when ice is at melt point, a water film forms between the ice and the bedrock, allowing
sliding. Second, the ice can be set on a waterlogged sediment, or on rock debris. Third,
we can also find subglacial hydrological networks (cavities, rivers, lakes under the ice), on

1https://www.youtube.com/watch?v=HZaknW8m6tI
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which the ice slides. And so on... In the Antarctica and Greenland, the fastest sliding
zones can be found on the costlines, in fjord- or canyon-like valleys. Figure 1.2 presents
a surface velocity map. We can see numerous and gigantic ice-streams, flowing faster
than 10 km/year (14 km/y for the Jakobshavn ice-stream, which has recently produced
spectacular icebergs calving episodes2). Ice-sheets sometimes extend on the sea, forming
gigantic floating platforms, called ice-shelves.

Retroaction bestiary. Retroaction, or feedback, occurs when a cause produces an
effect which in return acts on the cause. The small ice-sheet instability is an example
of such feedback: if ice-sheet surface elevation is too small, then its surface temperature
increases, leading to a higher melting rate and an increasing surface elevation decrease.
The phenomenom can then develop leading to the ice-sheet disappearance.

We can also mention isostasy (or post-glacial rebound). The earth crust deforms
and warps downward under the ice weight. This deformation is not negligible: a 3000m
high ice-sheet causes a 1000m downward deformation of the bedrock (with a 10,000 years
relaxation time). This of course induces a retroaction on the ice-sheet, because it impacts
the surface elevation, thus the surface temperature and surface mass balance.

Other retroactions involve the ocean: sealevel impacts ice-sheet, because of lateral
boundary conditions (Archimedes principle), and ice-sheets also impact sea-level. Ocean
temperature around and below ice-shelves also plays a complex role, and similarly the
ice-sheet impacts the neighbouring ocean circulation.

Figure 1.3: Ice sheet geometry of an ice-sheet with ice-shelf. Source http://www.

solcomhouse.com/icecap.htm

Notations

Spatial coordinates are x, y on the horizontal, z for vertical; axis Oz is upward oriented.
The following table presents the geometrical variables:

2http://www.youtube.com/watch?v=hC3VTgIPoGU
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Notation Description Unit

S(x, y, t) surface elevation (m)
H(x, y, t) ice-sheet thickness (m)
B(x, y, t) ice-sheet base elevation (m)
Bsoc(x, y, t) bedrock elevation (m)

elevations are measured with respect to sea level. Conventionally, where there is no ice
we set B = S = max(Bsoc, 0). The ice thickness H is defined by H = S − B. Figure 1.3
presents a profile of an ice-sheet.

The following table presents the velocity variables:

Notation Description Unit

u(x, y, z, t) ice flow velocity : u = (ux, uy, uz) (m.y−1)
U(x, y, t) vertically-averaged horizontal velocity: U = (Ux, Uy) (m.y−1)
ub(x, y, t) basal sliding velocity: ub = (ub,x, ub,y) (m.y−1)
us(x, y, t) surface velocity: us = (us,x, us,y) (m.y−1)

Vertically averaged velocity is defined by

U(x, y, t) =
1

H(x, y, t)

∫ S(x,y,t)

B(s,y,t)
u(x, y, z, t) dz

and the basal and surface velocities by

ub(x, y, t) = u(x, y,B(x, y, t), t), us(x, y, t) = u(x, y, S(x, y, t), t)

The following table presents dynamics and viscous law variables:

Notation Description Unit

η(x, y, z, t) ice viscosity (Pa.y−1)
η(x, y, t) effective (vertically averaged) ice viscosity (Pa.y−1)

σ(x, y, z, t) strain tensor (Pa)
τ (x, y, z, t) deviatoric stresse (rate-of-shear) tensor (Pa)
ε̇(x, y, z, t) deformation tensor (an−1)

σ0 = p(x, y, z, t) 1/3 of the strain tensor trace (Pa)
τ(x, y, z, t) strain rate second invariant (Pa)

Tensors are matrices, e.g., σ = (σij) avec i, j = x, y, z. The rate of shear tensor is given
by τ = σ + pI, where the pressure is

p =
σxx + σyy + σzz

3
= σ0

The deformation rate tensor is

ε̇i,j =
1

2

(
∂ui
∂j

+
∂uj
∂i

)
, with i, j = x, y, z

The strain rate second invariant is:

τ =

√
1

2

(
τ2xx + τ2yy + τ2zz

)
+ τ2xy + τ2yz + τ2xz

Finally, the following table presents the various forcings, boundary conditions, and
physical parameters:
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Notation Description Unit

τb(x, y, t) basal drag: τb = (τb,x, τb,y) (Pa)
β(x, y, t) basal sliding coefficient –

ḟ(x, y, t) basal melt (m.y−1)

ḃ(x, y, t) surface mass balance: accumulation - ablation (m.y−1)
Ts(x, y, t) surface temperature ◦C
Fclim(t) climate counterpart of the surface temperature ◦C

n deformation law exponent -
BAT,n flow law parameter (Pa−n.y−1)
g gravity vector (vecteur : g = −gez) 9.81 m.s−2

ρi ice density 910 kg.m−3

ρw water density 1028 kg.m−3

Small scale ice modelling: Full-Stokes

The Full-Stokes model aims to represent small scales, both in time (up to 100–200 years)
and in space (small mesh size, around or below one kilometer). Because of the small time
span, isostasy is ignored: bedrock topography is assumed stationary, as is the ice base.
This model is generally used to study watersheds (one glacier or ice-stream, as in [6]), but
we also used it for the whole Greenland ice-sheet in [8].

Full Stokes model equations describe a viscous non-newtonian incompressible flow, and
are written as follows. First we have the incompressibility equation for mass balance:

div u = 0 (1.1)

Then we have the quasi-static equilibrium equation, that is to say Newton law without
acceleration terms:

div σ + ρig = 0 (1.2)

And finally we have the viscous constitutive law from Duval (1979); Lliboutry (1993);
Cuffey and Paterson (2010):

τ = 2ηε̇,
1

η
= BAT,nτ

n−1, with n = 1 and/or 3 (1.3)

in other words:
2ε̇ =

(
BAT,1 + BAT,3τ

2
)
τ (1.4)

We then have boundary conditions. The free surface evolution writes as:

∂tS + us,x∂xS + us,y∂yS + us,z = ḃ (1.5)

ainsi que
σ.n = 0 (1.6)

where n is the unitary vector orthogonal to the surface. At the base of the ice-sheet, we
have a sliding condition:

t.(σ.n) + βu.t = 0, u.n = 0 (1.7)

where n and t are the tangent and normal unitary vectors. Finally, we have lateral
boundary conditions, depending on whether the ice front is or is not below sea level (at
z = 0):

nT .σ.n = min(ρwgz, 0), tT .σ.n = 0 (1.8)
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Large scale ice-sheet modelling: Shallow-Ice, Shallow-Shelf

In glaciology we sometimes wish to consider large scales, either in time (up to hundreds
of thousands years for paleoclimatology questions) or in space (e.g., for the Antarctica,
spanning thousands of kilometers). In this case the Full Stokes model is unpractical
because of numerical cost. Therefore we perform classical shallow approximations (as
in Navier-Stokes → Shallow water), which implies a vertical integration of the equations.
Mathematically, justifying the asymptotics is difficult, and studies are few and far between
(Schoof and Hindmarsh, 2010; Bassis, 2010).

Combining the incompressibility equation (1.1) with (1.5) and its basal counterpart
we get:

∂tB + ub,x∂xB + ub,y∂yB + ub,z = ḟ (1.9)

we obtain the following mass balance equation, called the Shallow-Ice Approximation
(SIA) (Hutter, 1983) :

∂H

∂t
= ḃ− ḟ − div (HU) (1.10)

where div = ∂x + ∂y is the 2D divergence operator.
Regarding the bedrock evolution there are various kinds of models. The most simple

compute the bedrock downward movement as one third of the ice thickness (with a 10,000
relaxation term). More complex models involve coupling with the earth crust dynamics
(see (Ritz, 1992)).

The vertically averaged velocity can be split up in two parts:

U = Udef +Uslid (1.11)

where Udef is the deformation contribution (from Glen’s law) and Uslid the sliding coun-
terpart.

We get the deformation velocity after a vertical integration of the constitutive equation
(1.4). If the coefficients BAT,n do not depend on z we get:

Udef,i = −ρg∂iS
[
BAT,1

H2

3
+ (ρg)2

(
∂xS

2 + ∂yS
2
)
BAT,3

H4

5

]
, i = x, y (1.12)

Regarding the sliding velocity Uslid, there exist many approximations. The basic idea
is to start from the quasi static equilibrium (1.2) and to use perturbation theory. At order
0 we get the SIA approximation for the sliding velocity:

ρgH∇S = τb = −βUslid (1.13)

where the basal drag τb is proportional to the sliding velocity:

τb = −βUslid (1.14)

There exist also more complex sliding laws, e.g., non-linear (Cuffey and Paterson, 2010)
but we will not go in further details here.

At order 1, Uslid is given as the solution of a non-linear elleiptic equation, called the
Shallow-Shelf Approximation (SSA):




∂

∂x
(2ηH (2∂xUslid,x + ∂yUslid,y)) +

∂

∂y
(ηH (∂yUslid,x + ∂xUslid,y)) = ρgH∂xS − τb,x

∂

∂y
(2ηH (2∂yUslid,y + ∂xUslid,x)) +

∂

∂x
(ηH (∂yUslid,x + ∂xUslid,y)) = ρgH∂yS − τb,y

(1.15)
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Boundary conditions are complex, in particular in 2D. We sometimes consider kine-
matic (null velocity) or dynamic (if a forces sum is possible, e.g. at the ice/water front).
We refer the reader to Rommelaere (1997); Peyaud (2006) for the details about modelling
and implementation of such conditions.

Other complex points are the surface/basal mass balances ḃ and ḟ . At the base ḟ
measures the melt. Simple models set f as a constant number, more complex modelling
involves coupling with temperature (geothermal flux) and/or subglacial hydrology. At the
ice surface ḃ is the net sum of accumulation (precipitation) and ablation (melt):

ḃ = Acc + Abl (1.16)

In realistic frameworks, it is necessary to have good data for ḃ. To do so we can either use
a climate model, or observations. This highly complex question of observing/modelling ḃ
is the main point of interest of a large group of glaciologists (Gallée et al., 2011; Lenaerts
et al., 2012; Favier et al., 2013; Frezzotti et al., 2013). In our simplified models we use
explicit formulation of accumulation and ablation, as functions of the surface temperature:

Acc = Acc0e
−c1Ts (1.17)

Abl =





Abl0

(
Ts − Tnomelt

Tnomelt

)2

if Ts > Tnomelt

0 otherwise

(1.18)

where the parameters are given by the gaciologists expertise. The surface temperature
Ts depends on the surface elevation S, the latitude x and the climate scenario Fclim

(temperature in x = 0, S = 0), according to the formula:

Ts(x, y, t) = Fclim + λx+ γ S(x, y, t) (1.19)

where λ and γ are given parameters.

1.2.2 Introduction to inverse modelling in glaciology

Model initialization for the sea level problem

The contribution of glaciers and ice caps to sea level change is significant and crucial to
make good predictions for the future (Hanna et al., 2013). It is essentially a combination
of two factors: the change in surface mass balance (due to climate change and / or ice
cap elevation) on the one hand, and ice discharge by icebergs calving in ice streams and
ice-shelves on the other hand. Here we do not consider the contribution due to changes in
the surface mass balance. Indeed, these changes are intrinsically linked to climate change,
are also very complex and subject to active research3.

The mass loss of polar caps by iceberg calving is controlled by a small number of ice
streams. For example 10% of the periphery of Antarctica is estimated to control 90% of the
ice discharge. The presence or absence of ice streams is closely linked to the nature of the
basal conditions that allow or not a strong sliding and thus high flow velocities. Another
key parameter is the geometry of the bedrock (elevation and slope), especially in coastal

3See the fifth report of the IPCC (2013-14): http://www.ipcc.ch
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Figure 1.4: Bedrock topography observation map Bedmap2 of the Antarctica, from
Fretwell et al. (2013). Measures are performed by aircrafts flying above the continent.
The highest point reaches more than 4500 meters. Because of the ice weight and isostasy,
whole areas are situated around 1000m under sea-level.

areas. Indeed the deformation velocity depends on both the surface elevation S(t, x) and
the ice thickness H(t, x), and therefore on the elevation of the base B(t, x) = S − H.
Moreover, the depth of the base also influences the ice thickness (for a given surface
elevation), and therefore the pressure conditions at the base of ice, which in turn affect
the presence or absence of liquid water.

The problem of model initialization consists essentially in obtaining a good geometry
of the ice-sheet and good basal conditions, in order to correctly initialize the evolution
models. This is an inverse problem, where we wish to estimate these sensitive parameters
thanks to available observations (see below).

Identification of basal conditions. On a more local scale (glacier or watershed),
glaciologists generally have a more precise knowledge of the geometry, through regional
measurement campaigns. In this case, the local study is essentially to identify the slid-
ing/friction conditions at the base. It can be done either by identifying the coeffi-
cient β of our equations, or by seeking to identify more complex friction laws, as τb =
−β‖Uslid‖αUslid, or also by studying subglacial hydrology more precisely, see e.g. de Fleurian
(2010) and references therein, and in paragraph 1.2.3 the summary of paper [6].
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Figure 1.5: Estimated errors for the Antarctica’s bedrock topographies, from Fretwell
et al. (2013). The maximal uncertainty reaches 1000 meters in unobserved areas, and is
around 20 meters on measure points (flight tracks).

Observations of ice caps and glaciers

As noted above, the conditions at the base of the ice are related to the depth and nature
of the bedrock and the hydrological and thermal conditions.

Observations for the friction conditions at the base are very limited. In fact it is al-
most impossible to do measurements under the ice, except in rare points of deep drilling
where the base has been reached. In these cases, the analysis of ice cores provides infor-
mation on these basal conditions. Laboratory experiments are poorly representative, as
it is impossible to restore the pressure equivalent to thousands of meters of ice thickness.
Another critical uncertainty is the nature of the base: is it of sediment, rock, rock debris?
The presence of liquid water, crucial for sliding, is also linked to poorly known parameters
such as heat flux. So we do not have reliable measures for the friction law and associated
coefficients.

Regarding the elevation of the base, we have a limited number of measurements made
by aircrafts4. The observations are thus restricted to aircraft tracks. In measurement
points, the accuracy is about twenty meters. Outside measuring points, interpolation
strategies are used, but the uncertainty in unobserved areas can be up to several hundred
meters. Moreover, the maps are obtained by kriging, regardless of the ice flow. Figures
1.4 and 1.5 show the state of the art of such maps for Antarctica (Fretwell et al., 2013):

4Satellite measurements are possible, but unfortunately the radar frequencies required to observe the
bedrock beneath the ice are military restricted. For the same reason, the aircraft campaigns are expensive
and complex to implement.
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Figure 1.6: Ice volume observations. In black: measures from Raymo (1997). In grey:
results obtained from varioux models. Figure from Paillard and Parrenin (2004).

the first is a bedrock elevation map, the second represent the associated estimated errors.
We can clearly see on this second map the aircraft tracks, where accuracy is good, and
the unobserved areas, with large potential errors. It should be noted here that the relief
of the Antarctica is very bumpy, and quite similar to the Alps, with abrupt changes in
elevation and mountain ranges.

The other observations that we have, and from which we extract information to find
the unobserved parameters are remote-sensing surface data: surface elevation, ice surface
velocity. The surface elevation has been observed since the last twenty years by satellite
(ERS-1, Envisat radar, ICESat laser). The accuracy is relatively good, usually about 2
meters, except in mountainous areas where the RMS error can rise to 130 meters (Griggs
and Bamber, 2009). For the surface velocity we also have good coverage, spatial resolution
is of the order of kilometers, as is the surface elevation. Errors for velocity are of the order
of 1 to 17 meters per year (Rignot et al., 2011; Joughin et al., 2010).

Paleoclimatology

Several inverse questions arise for paleoclimatology (study of past climates). Best known
is the dating of ice cores, for which recent advances using inverse methods were obtained
by Lemieux-Dudon et al. (2008, 2010); Buiron et al. (2011). Another issue that has
interested us is related to a very specific kind of observations: total volume of the polar
ice caps. Indeed, this volume is directly related to sea level, which could be measured
on huge time scales (hundreds of thousands of years), thanks to biostratigraphic markers
such as foraminifera (Paillard and Parrenin, 2004). Figure 1.6 presents such data. The
question states as follows: considering that the surface temperature directly influences the
evolution of the ice-sheet and thus its volume, can a climate scenario be estimated from
of ice volume measurements? With the simplified model presented above, this amounts to
find the Fclim parameter. We studied such a problem in [17], and we will summarise the
results later on.

State of the art of inverse methods in glaciology

Data assimilation, primarily by control method, is more recent in glaciology than it is
in meteorology or oceanography. MacAyeal (1992, 1993) introduced control methods to
identify the friction coefficient β at the base of an ice stream (equation SSA only), using the
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self-adjoint property of the equation. Several applications in various ice-streams followed,
for example, Rommelaere and MacAyeal (1997); Vieli and Payne (2003). More recently,
the adjoint method (always called control method by glaciologists) was also implemented
in an approximate way for a full-Stokes model by Morlighem et al. (2010), using as an
adjoint the model itself. This is an approximation, because the full-Stokes equations of the
model are not self-adjoint unless the viscosity is linear (law Glen with n = 1). Heimbach
and Bugnion (2009) used an automatic differentiation tool to generate the full adjoint
code SICOPOLIS (Greve, 1997) to do sensitivity analyses.

Other inverse methods have recently been introduced. BLUE method and optimal
interpolation (OI) have been used by Arthern and Hindmarsh (2003) and Berliner et al.
(2008). A method due to Chaabane and Jaoua (1999) was also used by Arthern and
Gudmundsson (2010). It is called Robin method and it consists in minimizing a cost
function measuring the misfit to observations by a gradient descent on the coefficient β.
This is done by successive iterations of Full-Stokes model resolutions with either a Dirichlet
condition at the surface (by imposing the observed velocities), or a homogeneous Neumann
condition (the natural condition of the model). At convergence, the solution satisfies both
the Dirichlet and the Neumann condition and produce the desired β field.

Most of these articles focus on the basal friction β identification, but only for local
problems at the scale of a glacier, an ice stream or a watershed. The reconstruction of β for
all Greenland is very recent: see Arthern and Hindmarsh (2006) with a BLUE / OI type
method, and [8] with a control method and Robin. More recently, glaciologists studied
joint reconstruction of both the friction β and the base Bsoc, see Raymond-Pralong and
Gudmundsson (2011) (with a Bayes method which is actually the direct minimization of
the BLUE with an approximate gradient) and van Pelt et al. (2013) (single Picard iteration
to reduce the observation misfit). This question is more difficult because it seems that
uniqueness is not guaranteed: the same surface velocity can be explained either by a low
Bsoc (large deformation velocity) and no sliding or a higher base with more sliding.

As for inverse methods for paleoclimatology, the question of climate reconstruction
thanks to ice volume observations is addressed by Bintanja et al. (2004, 2005) using a
simple correction method, similar to nudging (Newtonian relaxation). For the problem of
ice core dating, state-of-the-art inverse methods have been developed, see e.g. Lemieux-
Dudon et al. (2008, 2010).

In the following paragraphs we summarise the works we did in glaciology.

1.2.3 Study of the basal conditions of Variegated glacier

This paragraph summarises the results contained in [6], about the surge5 of Variegated
glacier in 1982–83.

Introduction

The Variegated Glacier in Alaska is known to surge regularly. The first recorded surge
took place in 1905-1906, and there were seven others until the last in 2003-04. The
study presented in this paper focuses on the surge of 1982-1983 because it has been well

5Glacial surges are short-lived events where a glacier can advance substantially, moving at velocities up
to 100 times faster than normal.
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Figure 1.7: Evolution of the shape factor f(x) along the central flowline of Variegated
glacier for the surface topography zs(x) of 1973.

observed. According to Raymond (1987) we know that surges for temperate6 glaciers are
due to changes in the subglacial hydrological system, going from an effective system to an
ineffective one. An effective system corresponds to a good drainage of the water under the
ice, with large channels, causing low water pressure under the glacier. On the contrary, an
inefficient system does not have these wide channels but small connected cavities, resulting
in an increase in subglacial pressure and changes in sliding conditions. The passage of an
effective system to an inefficient system (by opening and closing of the wide channels)
is governed by changes in geometry (surface elevation and slope) and temperature (the
seasonal alternation, which influences melting). Kamb et al. (1985) made measurements
of strain rate in a drillhole during the surge and showed that 95% of the glacier velocities
are explained by sliding the base. This paper therefore focuses on the identification of
basal conditions throughout the glacier before and during the surge to try and confirm
this hypothesis.

Observations and model

The surface elevation and surface velocities were measured during the decade 1973–1983
(Bindschadler et al., 1977; Kamb et al., 1985; Raymond and Harrison, 1988), which covers
part of the quiescent phase and the surge. There are data twice a year before the surge
and eight times during the two years of the surge. In space, the data were collected every
250 meters along the 20 kilometers of the center line of the glacier, with some gaps (in
particular due to the presence of cracks).

As measurements are available only on a flow line, we used a 2D model (x, z). The
glacier base b(x) is fixed, and the surface elevation is denoted by zs(x), where x is the
horizontal direction, with x = 0 at the top of the glacier (at an elevation of about 2000
meters) and x = 20 kilometers at the front, where the glacier ends in the sea. The

6The ice of a temperate glacier is near to melting point.
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Figure 1.8: Distribution of the basal friction coefficient β given by the Robin inverse
method along the central flowline, for the 25 observing dates. Dotted curves indicate
where measured surface velocities are missing. In the legend, W Y1-Y2 represents winters
between year Y1 and year Y2 ; S Y summer of year Y ; Surge Y-M1-M2 for year Y from
month M1 to month M2.

chosen model solves the full-Stokes equations presented above, but in 2D and not 3D. In
particular, the equation of conservation of momentum (1.2) then reads:

div σ + ρig + f1 = 0, for x ∈ [0, 20], z ∈ [b(x), zs(x)]

where f1 is a parameterisation of lateral effects:

f1 = ρig.t (1− f) t

where t is the unitary tangent vector and f is the shape factor. If f = 1 then f1 = 0,
leading to an infinitely wide glacier. On the contrary, a small f modellised narrow sections.
The formula for f is:

f(x) =
2

π
arctan

(
0.8146√

a(x)(zs(x)− b(x))

)

where a(x) represente the local shape of the bedrock, see [6] for more details, and figure
1.7 for the corresponding f(x) function.

Surface and basal boundary conditions are the same as before (1.5,1.6,1.7), in particular
the basal drag law (1.7) features the β coefficient we want to identify with DA.

Numerical resolution is conducted using the finite elements model Elmer/Ice (Gagliar-
dini et al., 2007; Gagliardini and Zwinger, 2008; Gagliardini et al., 2013).
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Figure 1.9: Distribution of the ratio of the modelled horizontal basal velocity u(zb) over
the surface velocity u(zs) along the central flow line for the 25 dates of measurements.
Results are shown only where velocity have been measured. Legend is similar to figure
1.8.

Inverse method

The issue of recovering basal conditions from surface observations has been well studied in
glaciology, see section 1.2.2 for a brief review. In this article, we used the Robin method
of Chaabane and Jaoua (1999); Arthern and Gudmundsson (2010), which was slightly
modified to introduce Tikhonov regularization. As mentioned above, the principle of the
Robin method is to solve alternately the Full-Stokes equations first with the Dirichlet
conditions:

u(zs) = uobs

then with the Neumann condition (1.6). The cost function, which measures the difference
between the solution of the Dirichlet problem uD and of the Neumann problem uN , is
defined as follows:

Jo =

∫

Γs

(uN − uD).(σN − σD).n dΓ

where Γs represents the surface boundary of the glacier.
One can easily calculate the directional derivative of Jo from β (in the direction β′) to
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Figure 1.10: Comparison of modelled and measured surface geometry for each dates
during the quiescent phase.(a) Relative modelled surface topography to 1973.(b) Relative
observed and reconstructed surface topography to 1973 used to diagnostic basal conditions.

implement a descent method:

dβJo(β
′) =

∫

Γb

β′
(
|uD|2 − |uN |2

)
dΓ

where Γb is the basal boundary. It is important to note here that this derivative is accurate
only in the case of a linear rheology (ie law Glen with n = 1). In the realistic case n = 3,
the derivative is only an approximation.

As β is positive and varies by several orders of magnitude, it makes more sense to
change the variable β into α by setting:

β = 10α

Finally, the problem is regularized by adding a regularization term :

Jtot(α) = Jo(α) +
1

2
λuobs Jreg(α), Jreg(α) =

∫

Γb

(∂xα)
2 dΓ

The term uobs is the average surface velocities observed for the considered dataset. It
is a normalization factor between the different years of observation. Indeed, we observe
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Figure 1.11: Comparison of modelled and measured surface geometry for each dates
during the surge.(a) Relative modelled surface topography to 1973.(b) Relative observed
and reconstructed surface topography to 1973 used to diagnostic basal conditions.

large variations in uobs over the years. Its addition allows to choose a weight between
observation and regularization which is independent of the data set.

Technical aspects, such as the choice of the parameter λ, are described in the article.
It should be noted that this Robin method applies to the velocity equation only, and

not to the coupling with the free surface evolution: at each time step we implement the
inverse method. Thus, when there is no observation at a certain time, there is no estimate
of β.

Results

The model and the method are implemented in the finite element code Elmer/Ice (parallel,
Fortran 95) (Gagliardini et al., 2013).

The results are described in detail in the article, here we quickly show the main figures.
Figure 1.8 shows the beta coefficient β obtained by assimilation. We see, in addition to
seasonal alternation winter / summer, that β decreases gradually over the years during
the quiescent phase and is very low during the surge. In addition, we see that during the
quiescent phase, β decreases more strongly in the upper part of the glacier (x close to
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0). We also see very clearly the regime change associated to the surge, and the gradual
decrease of β from the top to the bottom of the glacier.

Figure 1.9 shows the ratio between the basal velocity u(zb) and the surface velocity
u(zs). We also see a gradual change in this ratio, from 10% in 1973 to 60% in the summer
of 81, even 90% in 1981 at the top of the glacier. This suggests that the acceleration
occurs from a gradual increase in sliding (and not a sudden outbreak), and that the
sliding explains a large part of the acceleration of the glacier during the surge, but also
during the quiescent phase. In this figure we also clearly identify two regimes: surge /
quiescent, with ratios close to 100 % for the surge, and the increase of this ratio from the
top of the glacier to the bottom.

The paragraph §6 of the paper presents results to which I have not contributed, offering
a more complex sliding law, to take into account the pressure of subglacial water, I will
not go into details here.

Figures 1.10 and 1.11 present direct simulations with the identified parameters β during
the quiescent phase and during the surge, compared to observations. To do this, we run
the direct model with β and we solve the following evolution equation for the free surface:

∂tzs + ux∂xzs − uz = as

where as is the surface mass balance, modeled by an explicit function depending linearly
on zs. The differences between the observations and the model can be explained by errors
in the mass balance and/or by the three-dimensional effects that have been neglected.
Despite this, we get to highlight correctly the following points:

• the surge is consistent with observations, in other words the field β allows to generate
the glacier surge;

• the model can represent the typical characteristic of glacier thinning at the top and
thickening at the bottom.

In conclusion, the ability of the model to account for many of the key features of
the surge offers a posteriori validation of the reconstruction of the coefficient β with the
method of Chaabane and Jaoua (1999); Arthern and Gudmundsson (2010). This paper
proposed the first application of this method to a real case, and demonstrates its feasibility
and relevance to study basal friction.

1.2.4 Contribution of Groenland to sea level rise

This paragraph summarise the paper [8], in which we study the impact of Greenland on
sea level change.

Introduction

Greenland is losing mass at an increasing rate (Rignot et al., 2011). It seems that this
is due to the combination of two factors: the change in surface mass balance (more melt
and / or less precipitation) and the increase of ice discharge (iceberg calving). Previous
studies (Howat et al., 2007; Pritchard et al., 2009; Joughin et al., 2010) showed that the
acceleration of calving was highly variable in time and space, so that realistic predictions
must necessarily use both a high precision model, an accurate initial state and reliable
climate projections. The problem of initializing a small-scale model for Greenland is
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Figure 1.12: Unstructured finite element mesh and model surface velocities after opti-
misation of the basal friction coefficient β with the Robin inverse method. Colored boxes
show close-up views for various outlet glaciers of interest.

the motivation of this article. The basic ingredients are: a Full-Stokes model on an
unstructured grid and inverse methods to make the most of the available observations. This
article is the first attempt to use all these elements across Greenland. More specifically,
the objective is to identify the field of basal friction β(x, y) in a full-Stokes model from
available observations in order to produce forecasts of Greenland’s dynamics.

Model and data

The model solves the nonlinear 3D full-Stokes equations (Glen’s law with n = 3) (1.1) to
(1.8) described on page 26. The coefficient BAT,n in equation (1.3) actually depends on
the temperature in the ice (according to an Arrhenius law, see details in the article). The
temperature field in the ice is given by the SIA model SICOPOLIS (Greve, 1997; Seddik
et al., 2012), constant in time.
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Figure 1.13: Greenland surface velocities, on the left (a) observed velocities; on the right
(b) velocities after reconstruction of β with the Robin method.

The numerical code Elmer/Ice7 Gagliardini et al. (2013) solves these equations over
the entire Greenland with an unstructured mesh. The construction of the initial mesh uses
classical ingredients: error estimates with the Hessian matrix of the observed velocities
and adaptive mesh with YAMS software (Frey and Alauzet, 2005). During the simulation,
to some extent, this mesh is adaptive, but nodes can only move vertically. An example of
the mesh is shown in Figure 1.12. We refer to Gagliardini and Zwinger (2008) for details
of the numerical model.

The bedrock and the surface topography come from SeaRise8 data (Bamber et al.,
2001). The observed velocities are from Joughin et al. (2010), they are shown in Figure
1.13 (a). We also have the rate of change for surface elevation (Pritchard et al., 2009).
Note here that the observed velocities are produced from distributed data over the decade
2000–2009, while the surface topography was produced in 2001 (although it was updated

7http://elmerice.elmerfem.org
8http://tinyurl.com/srise-umt
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Figure 1.14: Absolute error on surface velocities |umod −uobs| in my−1 at the end of the
optimisation using the Robin inverse method.

for the three major outlet glaciers).

Methods

Recall that the objective is to identify the basal friction β(x, y). In this paper we use
and compare two methods: the Robin and the control method (with the self-adjoint
assumption), introduced for the Full-Stokes model by Morlighem et al. (2010).

Robin method has already been presented in section 1.2.3. The control method consist
in minimizing the following cost function:

Jo =

∫

Γs

1

2

(
|uH | − |uobs

H |
)2

dΓ

where uobs are the observed velocities and H represents the horizontal component of the
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Figure 1.15: Relative error on surface velocities |umod − uobs|/|uobs| in % at the end of
the optimisation using the Robin inverse method. Areas where |uobs| < 2.5ma−1 have
been removed from display.

velocity. The derivative of the velocity is given by

dβJo(β
′) =

∫

Γb

−β′u.λ dΓ

where λ is the solution of the adjoint equations.
As previously we can note that these methods have two drawbacks:

1. the derivatives of the cost functions are accurate for linear rheology only (n = 1),
and therefore are approximate in the realistic case here, where the viscosity follows
the Glen’s law with n = 3;

2. moreover, they fail to assimilate time series data, since both work on the diagnostic
part of the model only (equation for velocities) and not on the evolution equation of
the free surface.

Maëlle Nodet Inverse problems for the environment



1.2 Some inverse problems in glaciology 44

7.20

7.25

7.30

7.35

7.40
V

o
lu

m
e 

(m
 s

ea
 l

ev
el

 e
q
.)

C1_BF1

C2_BF1

C2_BF2

C2_BF3

-140

-120

-100

-80

-60

-40

-20

0

20

40

V
o
lu

m
e 

ch
an

g
e 

(m
m

 s
ea

 l
ev

el
 e

q
.)(a)

Figure 1.16: Future level changes for the climatic scenarios C1 (today’s conditions),
C2 (IPCC A1B) and the basal friction scenarios BF1 (constant), BF2 (half BF1), BF3
(decreasing of 1 order of magnitude after 100 years).

However, these methods have the advantage of being easily implementable and fairly
inexpensive. Conversely, to implement the adjoint model is complex in practice. Indeed,
the non-linearity is processed numerically by Picard iterations and the adjoint of such an
algorithm is as expensive as it is delicate (Griewank and Walther, 2008).

These two methods are implemented by changing variable with α such that β = 10α,
and are regularized as before:

Jtot(α) = Jo(α) + λJreg(α), Jreg(α) =
1

2

∫

Γb

(∂xα)
2 + (∂yα)

2 dΓ

The choice of λ is done with the L-curve method, and the minimization is carried out by
quasi-Newton method M1QN3 by Gilbert and Lemaréchal (1989), we refer to the article
for details.

Results

The model and the method are implemented into Elmer/Ice finite elements models (par-
allel, in fortran 95) (Gagliardini et al., 2013).

Surface velocities reconstruction. Figures 1.12 and 1.13 (b) show the velocities ob-
tained after identification of β by the Robin method. The results obtained with the control
method are very similar. The main features of the flow are well reproduced: low velocities
in the central areas, ice streams individualized and well localized, good rendering of the
largest outlet glaciers and their watersheds.

Figures 1.14 and 1.15 present the absolute and relative errors between reconstructed
and observed velocities. As for velocities, the errors vary by several orders of magnitude
between the interior and the coast. The largest errors lie on the coasts. Several possible
explanations to these can be drawn:
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1. observations of surface velocities and surface topography do not match, since they
are not measured on the same dates;

2. some ice streams, especially in the north, end with long ice-shelves, unresolved by
the model;

3. the minimization is carried out with an approximate gradient;

4. β(x, y) only is controled, and not the other sources of model uncertainties (bedrock
in particular);

5. model resolution is worse than velocities data resolution;

6. ice thickness data resolution is lower than that of the model, especially in the outlet
glaciers where a good resolution is crucial.

Sensitivity experiments and projections. The objective of the identification of β(x, y)
is to initialize the model in order to predict the ice volume evolution on Greenland. This
poses several problems and questions:

1. the issue (well known by glaciologists for any inverse method that does not incorpo-
rate time series data) of the initialization shock: the free surface has non-physical
growth rate, especially around the edges, and the adjustment to realistic rates may
take a few decades;

2. which surface mass balance scenario must be chosen (precipitation − melt), in con-
nection with which climate scenario?

3. how is the beta parameter β expected to vary over time?

To address the first point, we begin by relaxing the model, that is to say, let it run
freely for 50 years, keeping the surface mass balance constant. This helps to stabilize the
ice-cap a little and partially correct velocity and calving in outlet glaciers errors (see paper
for details).

Regarding the other points, we choose two scenarios for the surface mass balance
(C1: current conditions, C2: A1B9 of IPCC10), and three scenarios for the evolution of β
(BF1: constant; BF2: half; BF3: decreasing by 1 order of magnitude over 100 years), and
experiments have been run for each of these scenarios. Figure 1.16 shows the evolution of
the volume of Greenland (and the equivalent in terms of sea level change), and shows a
high sensitivity to basal friction conditions. BF3 scenario corresponds to the simultaneous
acceleration of all outlet glaciers, so it is an upper bound for our projections. Combined
with climate scenario C2, the projection states 14 cm rise in sea level in 100 years for
Greenland. This value is within the limits provided by other work on the subject. The
intermediate scenario C2-BF2 also gives results comparable with those available in the
literature. We refer to the article for more detailed discussions of these results.

In conclusion, we showed that we could achieve satisfactory results with the approxi-
mate data assimilation methods currently available in Glaciology and the realistic model
Elmer/Ice (Gagliardini et al., 2013). We saw that there were still many uncertainties,

9A1B scenario: stong economic growth, balance between various energy sources, see http://en.

wikipedia.org/wiki/Special_Report_on_Emissions_Scenarios
10IPCC : International Panel on Climate Change.

Maëlle Nodet Inverse problems for the environment

http://en.wikipedia.org/wiki/Special_Report_on_Emissions_Scenarios
http://en.wikipedia.org/wiki/Special_Report_on_Emissions_Scenarios


1.2 Some inverse problems in glaciology 46

Figure 1.17: Reference state (true) for the twin experiments. On the left, the chosen
climatic scenario Tclim; on the right the associated ice volume observations Volobs.

so there is still room for improvement. However, this system can already provide first
estimates of the contribution of the dynamics of Greenland to its mass change and sea
level rise.

1.2.5 Paleoclimatology: climatic scenario reconstruction

In this paragraph we summarise the problem, model and method contained in the confer-
ence proceeding [17]. The results we present here are more advanced, and were presented
in various conferences as well.

Problem presentation

The problem studied in this work is the one that was mentioned on page 31: with observa-
tions of ice volume over time, how to reconstruct the temperature scenario causing these
variations? We study this problem in the simplified framework of twin experiments, that
is to say that we generate our own observations from a model. The model chosen is a SIA
model (see section 1.2.1 page 27) on a flow line. The choice of the SIA approximation is
justified by the time scales: the experiments duration is 20 000 years! The choice of a
2D flowline model is questionable, it would be better in practice to consider multiple flow
lines (one for each of the major ice sheets), but we start with a single flowline to study
the feasibility of problem.

As mentioned earlier, there are currently few inverse methods used to solve such a
problem, a first experiment with the adjoint method is proposed here.

Model and adjoint method

The chosen model is the SIA approximation in 2D (x, z). The above equations are used
without the variable y: conservation of mass (1.9), the dynamic equation for U = Udef

with Udef given by (1.12) and Uslid null, surface mass balance given by equations (1.16)
to (1.19). Numerically, we use the code Winnie developed by LGGE (C. Ritz), which is a
prototype of the 3D code GRISLI (Ritz et al., 2001). For this first experiment we chose
a flat base B(t, x) = 0 and a zero basal mass balance ḟ = 0. The surface temperature is
given by

TS(t, x) = Tclim(t) + b x+ c S(t, x)
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Figure 1.18: Identification of the temperature from volume observations in twin experi-
ments. Increasing window method, background is equal to the previous analysis. Top left:
1st step. Top right: choice of the background for the 2nd step. Bottem left: 2nd step.
Bottom right: final result.

and the purpose of the paper is to find Tclim(t) knowing the observations of the ice volume
over time:

Vol(t) =

∫

x
H(t, x) dx

To do so we choose a reference state, the true state, which ise used to generate obser-
vations of ice volume for 20 000 years. Then we form a cost function that measures the
distance to the observations, to which is added a regularisation background term.

The cost function is minimized by a Quasi-Newton descent method. The gradient is
computed using the adjoint model, which was derived by hand following the recipes by
Giering and Kaminski (1998). The adjoint is validated by the gradient tests, which verify
that the gradients computed by the adjoint and by finite difference coincide at order 1 and
order 2. Specifically, we choose a temperature T 0

clim, and a perturbation T , we compute
J (T 0

clim+αT )−J (T 0
clim) for various α with the direct model, then the gradient is calculated

with the adjoint model and we check the Taylor formula at order 1 and 2.

Numerical results

We work here with the Matlab version of Winnie.
Numerical experiments have shown a very high sensitivity to the choice of the back-

ground and difficulties to obtain algorithm convergence to the desired scenario, we will
illustrate this with some tests.

First, we started with the climate scenario shown in Figure 1.17. To start, we chose
an oscillating signal with a 20 000 year period ranging from −11◦C and 5◦C. The choice
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Figure 1.19: Identification of the temperature from volume observations in twin exper-
iments. Increasing window method, background computed by interpolation of the two
previous analysis. Top left: 1st step. Top right: choice of the background for the 2nd
step. Bottem left: 2nd step. Bottom right: final result.

of the background and the starting point for the minimization was decisive: starting from
zero temperature, the algorithm was never able to converge to something approaching
the truth. We decided to use an icreasing window, that is to say to make several succes-
sive assimilation experiments: one on the interval [0; 500], the second on [0; 1 000], then
[0; 1 500] and so on to assimilate observations on [0; 20, 000]. For each new experiment the
background is taken as the pevious analysis, and we choose a new estimate for the new
point where the background is required.

Figure 1.18 presents the first option we have chosen: after making assimilation on
[0; 500] we take T b(1 00) = T b(500). This gives poor results, the algorithm is instantly lost
in a local minimum and can not get out.

Figure 1.19 shows another strategy: T b(1 000) is calculated by extending the straight
line between T b(0) to T b(500). This time, the convergence is very good, but it is a little
“too easy” because the choice of the background is very close to the true solution, since
it is a very regular sine function, well approximated by its tangent.

We therefore conducted another type of experiments, namely assimilating globally (ie
directly on [0; 20, 000]) an actual temperature that is not a sine wave but a perturbation
of a sinus, and choosing the background as a perfect sinusoidal function. This gave good
results (not shown here). Next, we sought to increase the reference temperature to make
it more realistic. We have therefore increased to [−6◦C; 2◦C], and we present the results
in Figure 1.20. For higher temperatures, the reconstruction performs very badly. This
can be easily explained by the fact that when the temperature is high, in the second part
of the period, the ice-cap is loosing mass through melt. The problem here is that any
temperature above a certain threshold can explain this deglaciation: therefore there is no
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Figure 1.20: Identification of the temperature from volume observations in twin exper-
iments. Global window method. Result for a reference temperature ranging between
-6◦Cand 2◦C.

more uniqueness of the global minimum, thus loss of controllability, which explains our
difficulties.

1.2.6 ETKF initialisation of a large scale ice-sheet model

This paragraph summarises the results contained in the submitted paper [22], in the
framework of B. Bonan PhD thesis, in collaboration with C. Ritz and V. Peyaud from
LGGE.

Presentation
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Figure 1.21: Ice sheet geometry (left) and basal sliding parameter β(x) (right) for the
reference and background states. The x-axis represents the horizontal extent of the ice-
sheet (in km). On the left, reference and background surface elevation are identical.
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Figure 1.22: Example of initial ice sheets ensemble (50 members): bedrock topographies
Bsoc(x) and surface elevation S(x), as functions of the horizontal distance x.

This article addresses the problem of the polar ice-caps contribution to sea level change,
as described in Section 1.2.2: how to take into account the available observations to build
a good initial state, in order to produce predictions of ice volume gained or lost by the ice-
cap. In section 1.2.2 we presented the problem, the available observations, and past work
on the subject. Here we will look at the initialization problem in the following context:

� modern assimilation method (ensemble Kalman filter ETKF);

� large scale SIA model (currently 2D flow line);

� simultaneous inversion of the friction coefficient β(x) and the bedrock Bsoc(x).

The chosen model is the 2D x, z SIA, specifically equations (1.10) for the conservation of
mass, with ḟ = 0, equations (1.11,1.12,1.13) for dynamic (with SIA sliding velocity), and
finally equations (1.16) to (1.19) for the surface mass balance.

For now, the use of the SSA (1.15) to calculate the sliding velocity Uslid does not work.
I think we are faced with controllability problems already mentioned above: the total
velocity U is divided into a deformation cunterpart which depends strongly on Bsoc and
a sliding counterpart which depends strongly on β, so that two distinct pairs Bsoc, β can
lead to two distinct pairs Udef,Uslid leading to the same total velocity U . We may have
some ideas to solve this issue later, but in the meantime, the results presented here are
obtained with the SIA model only.
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Figure 1.23: Bedrock topography after 20 years, without inflation/localisation for the 100-
member ETKF (left), and with inflation/localisation for 30-, 50- and 100-member ETKF
(right).

The use of a flow line model rather than a 3D model is not restrictive from a method-
ological point of view. Indeed, the 2D code used, Winnie, is a prototype of the 3D code
GRISLI (Ritz et al., 2001), and is used for validation of the methodology. The transition
to GRISLI should not pose a problem other than computing time, since it is significantly
more expensive. However, the possibilities for parallelization of EnKF algorithms allow to
think that the transition to GRISLI will be possible in the near future.

Methods

The assimilation method is the ETKF filter, described in Section 1.1.5. Twin experiments
were performed to validate the filter, figure 1.21 presents the true state and the background
chosen for Bsoc(x), S(x) and β(x), which are our control variables and parameters. The
reference is a flow line of Greenland, from the east to the west, chosen so that the ends
of the line lie in fast outlet glaciers (Jakobshavn on the west). In practice, fairly realistic
errors between the reference and the background were imposed. The article details the
construction and the choice of these values.

The elements of the ensemble are generated as realizations of a Gaussian distribution
with mean equal to the background and a prescribed covariance matrix. For the bedrock,
the covariance matrix is given by a pair Σ,C of variances / correlations. The variances are
realistic, larger where the background is very bad and smaller on the edges. Correlations
are isotropic, they are given by a correlation function which is a sum of two Gaussian
distributions, for capturing large and small-scale correlations. The procedure is similar for
β(x) and S(x) (see the paper for more details). Figure 1.22 shows an example of ensemble
members.

The observations are generated once a year for 20 years (meaning 20 analysis steps in
the ETKF filter). We then observe the surface S(x) and the surface velocity Us(x) at each
grid point (that is to say, every 5 km). The bedrock Bsoc is observed every 60 kilometers
(every 30 grid points). To these observations is added a realistic noise: Gaussian white
noise with standard deviation 2 meters for S, 3 meters / year for Us and 20 meters for
Bsoc.
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Numerical results

Here we work with the fortran 95 version of Winnie.

Large ensemble size. We first perform an validation experiment with a large en-
semble (size Ne = 1000), in order to avoid problems related to undersampling. For this
experiment, the results are very good: the RMS error for the bedrock goes from 207m
(background0) to 46m after 20 years of ETKF. For β it is also a good reconstruction,
however the RMS errors do not make much sense: indeed, beyond a certain value, the
effect of β is the absence of sliding. In other words, the model can not distinguish be-
tween β = 106 or 107. Therefore, the assimilation performance assessment focuses on the
“useful” counterpart of β, namely sliding veolcities. In this case, the RMS errors are not
much reduced, going from 238 m/y to 230 m/y after 20 years. However, this masks good
results almost everywhere on the ice-cap, with the exception of a few poorly restituted
points around x = 1000. At these points, the dynamic is very singular, so that the SIA
approximation is no longer valid, and the filter is also struggling to recover β. We refer to
the paper for the figures.

Small ensemble sizes. We then turn to ensembles of smaller sizes, in a realistic
framework for future experiments with a 3D model. Therefore, experiments were carried
out with Ne = 100, 50 and 30. For these filter sizes it is necessary to develop inflation and
localisation strategies. It can be seen in figure 1.23 (left) that without it, the results with
Ne = 100 are poor. There is even a 50% increase of the RMS error for the bedrock after
20 analyses.

So we set up inflation and location (see the paper for details). The results, at least
for the bedrock topography, are much better. Figure 1.23 (right) presents the bedrocks
obtained after 20 years, we see a clear improvement over the background, even for small
ensemble size.

For sliding velocities, the filter performance is less clear. They are reasonably good in
most of the extent of the cap, but poor in some areas, which are those where the model
itself seems to be in trouble.

This probably comes from the fact that the selected flow line crosses through fast outlet
glaciers and mountain areas, and the SIA fails under these conditions. Despite this, the
distribution of sliding velocity / strain rate is still better after assimilation.

1.2.7 Large scale initialisation using a variational method

This paragraph presents ongoing work, presented orally at EGU 2012, but not yet in
article form.

Model and configuration

In collaboration with C. Ritz (LGGE), we also studied the problem of the joint identi-
fication of the bedrock and the sliding coefficient by a variational method, in a slightly
more complex configuration than the previous one. We also work with the Winnie code
(FORTRAN), still 2D (x, z), always with the SIA (1.10 to 1.12), but this time we combine
it with the SSA for the contribution Uslid (1.15) of the velocity. The mass balance is the
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Figure 1.24: Greenland flowline. Top left, the state-of-the-art bedrock topography, and
a zoom around Jakobshavn outlet glacier (bottom). Top right the observed elevation of
the ice-sheet.
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Figure 1.25: Reconstruction of the bedrock: true state, background, analysis and obser-
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Figure 1.26: Reconstruction of β: cost function and gradient norm decrease as a function
of the minimisation iteration number.
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same, given by equations (1.16 1.19). The bedrock topography used for the twin exper-
iments is also different, it is based on a real flow line of Greenland, as shown in Figure
1.24.

For the adjoint model, we use the automatic differentiation tool TAPENADE (Hascoët
and Pascual, 2013). Validation tests show a high sensitivity of the quality of the results
to the background choice for the bedrock and the sliding coefficient, suggesting strong
nonlinearities.

We also suspect a problem of non-controllability here because, as we have said above,
there is usually not uniqueness for pairs (Bsoc, β) producing a given set of surface obser-
vations.

Twin experiments

At present, the joint identification of Bsoc and β does not work, we present below the
positive results, obtained with a 2-step assimilation (first bedrock and then sliding).

As previously twin experiments are performed. We are given a true state that is used
to generate observations of surface velocities, bedrock and surface elevation. Observation
noise is then added:

� for the bedrock: 20 meters in coastal areas and 100 meters inland, which is under-
estimated;

� for sliding: we write β = 10α and take an error of 1 for α.

Regarding the background, the surface velocities and the equation of the SIA are used
to estimate β, and we take for the bedrock the minimum value within a 20km-disk (on
the map) of the considered point.

We then proceed in two steps:

1. β fixed to the background, DA to estimate Bsoc;

2. with the obtained bedrock, DA to estimate β.

First step: bedrock identification. Figure 1.25 shows the result. This step consists
essentially in smoothing the observations. We can indeed write the cost function associated
with this problem:

J(B) =
1

2
‖GB −Bobs‖2R−1 + ε

1

2
‖B −B1st guess‖2C−1

It is quadratic, its gradient is explicit:

∇J(B) = GTR(GB −Bobs) + εC(B −B1st guess)

At the minimum, ∇J(B) = 0, and we have :

Bassim =
(
GTRG+ εC

)−1
(GTRBobs + CB1st guess)

In practice, we did not calculate directly the bedrock with the formula above, but we used
a 4D-Var algorithm with the adjoint given by TAPENADE.
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Second step: basal sliding identification. In a second step, we identified α =
log10(β). Figure 1.26 shows the decrease of the cost function and its gradient. The
following table shows the RMS errors after assimilation and confirms the convergence :

β α surface velocities error

before assimilation 74% 16% 18
after assimilation 9% 1% 0.007

where the RMS error is given by

RMS(X) =
‖Xtru −X‖

‖Xtru‖ .

Next we will have to study and correct the non-controlability, in order to jointly as-
similate both variables.
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1.3 Lagrangian data assimilation in oceanography

The assimilation of Lagrangian data in oceanography has been my thesis [0] subject. In
this section, we recall briefly the results [1] [3] [12] [13], and we explain the extension
that was done in collaboration with A. Vidard and C. Chauvin, during her post-doctoral
work [24].

1.3.1 Problem presentation

Lagrangian data

As discussed in Section 1.1.2, variational assimilation was first born in meteorology. It
was then introduced in oceanography (Thacker and Long, 1988; Sheinbaum and Anderson,
1990) and is now widely used, in particular in operational oceanography (Brasseur et al.,
2005). Lagrangian data are a particular type of data whose assimilation began more
recently. Traditionally, the available observations in oceanography are of two kinds: in-
situ (ships, buoys, moorings), or satellite. The satellite data provide a lot of information,
with good spatial and temporal coverage. Their availabilty has greatly improved our
knowledge of the ocean and allowed the establishment of operational forecasting systems
of the ocean. However, these data cover mainly the surface of the ocean, or at least
its first few meters. In-situ data, although fewer and unevenly distributed in time and
space, provide information on the deeper areas of the ocean, and thus complement the
satellite data. Lagrangian observations (positions of floats drifting in the ocean) are of this
type. There are several types of drifting floats. Some are tracked in depth by an acoustic
system, but this involves an important technical deployment and only a few campaigns
have been carried out in small areas. Others derive at the surface, but in this case they
are extremely sensitive to meteorological conditions and their use in a purely ocean model
(without wind modelling) is complex. The last type of float is the Argo floats (or Med-Argo
in the Mediterranean sea): these floats drift at a parking depth (around 1,000 meters),
and every ten days (5 days in the Mediterranean) they dive down to 2 000 meters and
then rise to the surface measuring the vertical profile of temperature and salinity on the
way up. Once they reach the surface, they are located by GPS and transmit their data.
When I started my thesis, these floats were mostly used for their temperature and salinity
data, and the question of using the information in their positions was just starting to grow
interest (Özgökmen et al., 2000; Ide et al., 2002; Kuznetsov et al., 2003).

Previous works

Trajectories / positions of Lagrangian floats are used in two different ways: either to
get information about the Eulerian current velocities (method of pseudo-observations) or
by direct assimilation (Kalman filtering or variational method). This distinction occurs
because float positions are not state variables of an ocean model, which are generally the
temperature T , salinity S the horizontal velocities (u, v) and the free surface of the ocean
η. The relationship between the state variables and the positions is non-linear (it involves
solving an advection equation), unlike most of the observations used in oceanography
(which are direct observations of u v, T , S and / or η).
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The method of pseudo-observations consists in converting the positions of floats into
velocity information, thanks to a simple formula using growth rate, and then use these rates
as new observations in a forecasting system. This simple method has been successfully
used in particular for real-data studies in the Mediterranean, see Chang et al. (2011);
Molcard et al. (2006); Nilsson et al. (2011); Taillandier et al. (2006, 2008).

Furthermore, direct assimilation was also studied. Unlike the method of pseudo-
observations, it allows to use the observations directly. For this, it is sufficient either
to use a complex observation operator or to add to the model an equation for float advec-
tion. This was done with full and Ensemble Kalman filters (see Ide et al. (2002); Kuznetsov
et al. (2003); Salman et al. (2006)), and also by variational method (see my work [0] [1]
[12] [13]) in the OPA model (Madec et al., 1998).

1.3.2 Lagrangian data assimilation in an operational framework

NEMOVAR

The direct assimilation works mentioned above were carried out in an idealized setting,
either with simplified models or realistic models with simplified configurations. The work
presented here [24] presents an implementation in the NEMO / NEMOVAR operational
model. NEMO (Madec (2008)) is an ocean modeling platform, for research and operational
purposes, following the ocean model OPA (Madec et al. (1998)). The NEMOVAR initiative
provides tools around variational assimilation in NEMO (Mogensen et al., 2009; Vidard
et al., 2010, 2012), and is currently used operationally at ECMWF and the Met-Office in
the United Kingdom, and also for research by various groups.

In NEMOVAR are available: the tangent model and adjoint (NEMOTAM, Vidard
et al. (2010)), implementations of variational algorithms (incremental 3D-and 4D-Var,
3D-FGAT) and several test cases (applications at different scales: local, regional, global).
We refer the reader to the VODA project11 and to Vidard (2012) for more details.

The configuration used here, called SQB (Cosme et al. (2010))), is that of an idealized
ocean at midlatitudes with mesoscale resolution (1/4◦) forced by a stationary surface
wind, so as to obtain a double-gyre circulation. There are thus an unstable central jet and
mesoscale turbulence similar to that found around the Gulf Stream.

Lagrangian floats observation operator

As mentioned above, the state vector in the ocean is composed of variables (u, v, T, S, η).
The observation operator for floats is the link between the state variables (here u and
v) and the observed variables, which are the positions of a float drifting at fixed depth
z0 denoted X0X1, . . . ,Xm at m observation times in the assimilation time window [0, T ].
The observation operator consists in computing the trajectory on [0, T ], using the model
velocity U(t, x) = (u, v) and the initial position X0 at depth z0. The equation that we
consider is the following: 




dX
dt

= U(t, (X (t), z0)),

X (t0) = X0.

11http://voda.gforge.inria.fr
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Figure 1.27: 100 float trajectories during 2 months, in the SQB configuration, between
longitudes −60◦W,−30◦W and latitudes 24◦N, 44◦N .

Direct code. This equation is discretised with a leap-frog scheme:

1. initialisation
{

X0 given,
U0 = I(U0,X0).

{
X1 = X0 +∆tU0,
U1 = I(U1,X1).

2. for tk, k = 2, . . . , n: {
Xk = Xk−2 + 2∆tUk−1,

Uk = I(Uk,Xk).

The time step ∆t is equal (or multiple) to the direct ocean model time step. The operator
I(U,X ) is an interpolation operator for U(t,X ). Indeed, in the discrete model U is a
vector available only on the grid, while the float generally drifts off grid points. Assume
for simplicity that z0 is a vertical level of the grid (see [24] for the general case). In this
case, the interpolation consists in identifying the four horizontal grid-points around X ,
then look for the weight ai such that

X =

4∑

i=1

aiQi,

and then setting

I(f,X ) =
4∑

i=1

aif(Qi)

Figure 1.27 presents a hundred trajectories of floats drifting for two months in the
SQB configuration. These trajectories clearly show the chaotic nature of the flow, since
you can see floats close initially take different paths, especially in the area around latitude
34 ◦N and longitudes between -60 and -40 ◦W, which is that of the jet.
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Figure 1.28: Comparison of RMS errors for the five variables T , U , V , eke and η. Three
experiments are compared to the background (blue): 3D FGAT with observations of
profiles and sea level height (red), incremental 4D-Var with observations of profiles and
sea level height (yellow) and then with also the Lagrangian observations (black).

Tangent code. We derive the leap-frog scheme to obtain the tangent code:





δXk = δXk−2 + 2∆t δUk−1,

δUk = I(δUk,Xk) + δXk.
∂I

∂Xk
(Uk,Xk).

Here we see that it is necessary to derive the interpolation operator I. Its derivative with
respect to U is simple, because I is linear in U . On the contrary, the derivative with
respect to the position is more complex, and it relies on a good choice of the method for
calculating the weights ai. We use the method proposed by Daget (2006) It is an iterative
method which has the advantage of being both accurate for interpolation, and quite easily
derivable with respect to the ai. We refer to [24] for details.

Numerical results

We refer to the document [24] for the description and validation of algorithms 3D-FGAT
and incremental 4D-Var (and sections 1.1.2 and 1.1.3 for a reminder on these algorithms).
Experiments of 15 or 30 days are carried out in our idealized but realistic configuration,
in the framework of twin experiments: a true state is chosen, and used to generate obser-
vations. We selected observations according to what was available in the actual area SQB

Maëlle Nodet Inverse problems for the environment



1.3 Lagrangian data assimilation in oceanography 61

Figure 1.29: Statistics charts for temperature profiles for different assimilation experiments
(top: profiles only, middle: plus sea level height in the middle, bottom: plus Lagrangian
observations). On the left, the cloud of observed / predicted temperature for each mea-
surement point. On the right, diagram quantile-quantile for the observed / predicted
temperatures.
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in January 2010:

� 49 floats drift at about a thousand feet deep, and measure vertical profiles of tem-
perature and salinity between 2 000 m and 200 m. 84 profiles in total are available
for this month. The associated observations are denoted PRF in the sequel.

� ENVISAT satellite periodically measures the sea level anomalies, denoted in the SLA
later on. We have about 12,800 measurements for a month throughout the area.

� Finally, each float gives its position every 10 or 15 days, we denote these observations
LAG.

The document [24] shows that the assimilation of profiles PRF and sea level anomaly
SLA performs well and that these two types of information are complementary. So here
we focus only on the results associated with Lagrangian data LAG. Figure 1.28 presents
the RMS errors for the five variables T , U , V , eke (turbulent kinetic energy) and η, either
for the background (no assimilation), or for the PRF + SLA observations (3D-FGAT
and incremental 4D-Var) or PRF + SLA + LAG (incremental 4D-Var). It is then found
that the addition of Lagrangian observations does not improve the RMS errors, and even
slightly degrades the temperature and turbulent kinetic energy. We can suggest several
explanations for this: first, “large scale” data assimilation (with PRF and SLA) introduce
small-scale phenomena into the analysis increment. They disrupt the float trajectories
and thus perturb the minimisation. Moreover, an incremental algorithm (which supposes
to linearize the model) is used here with a 15-day assimilation window. We see in the
document [24] that the validity period of the tangent linear hypothesis depends on which
observations are considered: it is long enough for the state variables (more than 30 days),
but for the floats positions it is around 8 days, which is less than the position time sampling
and probably poses a problem here. However, the choice of 15 days is a compromise
between the tangent linear hypothesis (the shorter the better) and the number of data
(longer window means more observations).

However, we see a gain of assimilating Lagrangian positions when comparing the dis-
tributions of observed and predicted temperatures. For this, we present in Figure 1.29 two
types of statistical charts. In the left column, we simply draw the cloud of points formed
by the temperature observed of one profiler (y axis) and the temperature forecast of the
same profiler (x axis). The proximity to the line y = x shows the reliability of the pre-
diction with respect to the observations. In the left column, we draw a quantile-quantile
plot (QQ plot). To do so, we class in ascending order all temperature observations, then
all the predicted temperature. Then the smallest observed temperature is associated to
the smallest predicted temperature, and we draw the point on the graph. We apply the
same procedure for the second smallest value, and so on. Therefore we have a plot of the
quantiles of the observed distribution as a function of those of the predicted distribution.
The proximity to the line y = x shows the match between the two distributions. For
this type of diagnosis we could see the advantage of assimilating Lagrangian data: the
adequacy between observation / prediction is improved with the addition of Lagrangian
positions, especially for the extreme values of temperature.

However, the document presents the same diagrams for η and these are instead de-
graded by the assimilation of Lagrangian observations.

These mixed results were disappointing, so we gave up trying to apply this method to
real data and I set aside this research direction at the moment.
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Figure 1.30: Meteosat image sequence, April 2008, 6h gap between each image (source :
Météo France).

1.4 Image sequences data assimilation

Assimilation of image sequences is conceptually very close to Lagrangian data assimila-
tion, as we will see below. When I joined the MOISE team it became a natural interest,
because A. Vidard, F.-X. The Dimet and (post)-graduate students already worked on this
issue. This section first presents the specificities of images and reports on the state of
the art of image assimilation, especially on the earlier MOISE work (F.-X. Le Dimet, A.
Vidard, O. Titaud, I. Souopgui). Finally, I present the work in progress [23] as part of
the PhD of V. Chabot, of whom A. Vidard and myself are co-advisors. I also present the
conference papers [19] [20], in collaboration with N. Papadakis and A. Makris.

1.4.1 Image sequences: interests and challenges

Image sequences are a particular type of observation that is used (or that we would like
to use) in data assimilation in different domains: meteorology, oceanography, glaciology,
agronomy, seismology, etc. The work presented in [23] is intended to meteorology and
oceanography, so the examples are restricted to these areas.

Image sequences have both advantages and disadvantages in terms of data assimila-
tion.
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Figure 1.31: New Zealand Eddies. (source : image MODIS)

Maëlle Nodet Inverse problems for the environment



1.4 Image sequences data assimilation 65

Figure 1.32: Lenticular clouds. They appear not to move, despite the strong horizontal
wind at their location.

A large informative potential, but exploitable with difficulty. On the plus side, this
data type clearly has a great informative potential. Just to be convinced we can look
at figure 1.30, which presents a sequence of four successive Meteosat images (six hour
interval): it clearly shows the movement of fronts, and an experienced forecaster can draw
from this sequence valuable information.

However, it is difficult to use these images as is in environmental prediction systems.
Indeed, images are not (in general) state variables of the model, as the Lagrangian data.
This is a 2D interpretation of 3D processes involving other variables (passive or active
tracer: humidity, temperature, chlorophyll, etc.). It therefore requires complex obser-
vation operators, including partial differential equations resolution (as for Lagrangian
observations).

In addition, as for Lagrangian data, the images are a reflection of multi-scale processes,
and in particular small scale processes that are not resolved by the model.

A large amount of data, but of questionable quality. Satellites, either geostationary
or with polar orbit, provide daily a large amount of images. However, the images produced
are composite, that is to say, they are the combination of several shots. MeteoSat takes
fifteen minutes to produce a shot-by-shot image, which is therefore quite homogeneous.
Conversely, sea level height images are produced by a polar orbiting satellite that can
take several days to cover a given area. It is easily seen that this can cause problems in
assimilation, because of inconsistencies in data or between model and data whose dates
do not match.

In addition, in particular in oceanography, there are often “gaps” in the images because
of concealment by clouds, as can be seen in figure 1.31, which presents chlorophyll around
New Zealand.

In meteorology, knowing the height of clouds from 2D images is also an open problem.
Another problem, common to weather forecasting and oceanography, is the aliasing

issue, where the apparent motion can be very different from reality. E.g., lenticular clouds
seem to be motionless whereas there is a strong horizontal wind, see Figure 1.32.

Maëlle Nodet Inverse problems for the environment



1.4 Image sequences data assimilation 66

1.4.2 Previous works

Pseudo-observations

Currently, the data are not directly used in weather forecasting systems, but they are
transformed into usable information (called pseudo-observation) that is fed to the DA
system. We briefly explain below what it is, and we refer the reader to Vidard (2012);
Souopgui (2010) for more details and references on the subject.

Bogus. The easiest way is to track some structures in the image sequence, and to
assimilate them as position data in the model. Historically done by hand, this following
of structures has now been automated by Michel and Bouttier (2006), and applied to the
potential vorticity in Michel (2011). Similarly, Thomas et al. (2010) track convective cells
to do atmospheric variational DA.

Atmospheric Motion Vectors (AMV). Other methods of pseudo-observations con-
sist in using the image sequence to derive an apparent velocity field, which can then be
assimilated, see eg Schmetz et al. (1993). The idea is similar to the PIV (Particle Image
Velocimetry, see Wikipedia for introduction and Adrian (1991) for the reference article).
The idea is to put particles in the fluid, which will be visible on the images. Then we iden-
tify each particle and follow it in the sequence of images to obtain a velocity vector. This
is done by a cross-correlation statistical method, to match particles in different images.

The AMV are produced in the same way, atmospheric clouds playing the role of par-
ticles in the flow.

Optical flow. The optical flow is another class of method aiming to produce effective
velocity fileds. The idea is to look for a vector field w which transports images while
preserving luminosity I (Horn and Schunck, 1981):

∂tI +∇I.w = 0, I(0) = I0 (1.20)

As this constant brightness hypothesis provides only one scalar equation and we seek
a motion vector, the problem of optical flow has an infinite number of solutions (aperture
problem). Therefore it must be regularised, see eg Auroux and Fehrenbach (2010) for a
comparison of regularisations. One can also cite Corpetti et al. (2002), who interpret the
brightness conservation as a continuity equation in a fluid, and gives better results for
images from fluids.

Image model. As the optical flow provides a vector field between two successive im-
ages, the obtained velocity field is not necessarily consistent over time. The idea of image
model by Herlin et al. (2006) is to add to the optical flow equation an evolution model for
w:

∂tw = M(w), w(t = 0) = w0 (1.21)

where M is a simplified 2D dynamical model. Then we minimise the cost function:

J (w0) = ‖I − Iobs‖2 + regularisation

under the constraints (1.20,1.21).
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Direct assimilation

Pseudo-observations use is convenient, because it is (relatively) easy to implement into
an existing DA system. However, the transformations required to create the pseudo-
observations generate errors, which we poorly know and are usually correlated in space.

Thus we would like to avoid pseudo-observations, and to directly assimilate the images
using an appropriate observation operator. In the formalism of 4D-Var, this amounts to
minimize a cost function J = J o+J b consisting of an observation term and a background
term, under constraint of the model equation.

Pixels. The first idea to build the observation operator is simply to use

J o(x0) =

tf∑

t0

‖H(x0)(t)− yo(t)‖2Rpix

where yo is the vector containing the value of the image brightness and Rpix the observa-
tion error covariance matrix. The size of yo is equal to the number of pixels in the image.
The observation operator then contains the image production from the model state vari-
ables. In our work, it consists in considering the density q of a tracer transported by the
fluid:

∂tq +∇q.U − ν∆q, q(t0) = q0 (1.22)

where U is the 2D velocity field at the image vertical level, ν is the diffusion coefficient,
and q0 is the initial concentration (obtained for example thanks to the first image). E.g.,
figure 1.33 presents a comparison between an observed image and its model equivalent.

The first works on the subject include Huot et al. (2010) and Papadakis and Mémin
(2008) (with a different observation operator, based on the optical flow equation). The
latter study showed that the direct assimilation gave better results (in a simple case of 2D
flow) that the one using pseudo-observations of optical flow. However, this type of “pixel
by pixel” comparison between the model and the image seems poorly appropriate, because
it does not take any account of the image structures. Thus, other direct approaches have
been developed that attempt to extract the relevant information from the images.

Multiscale decomposition. The first approach is that of Titaud et al. (2010); Souopgui
(2010), which is to decompose the image in a multi-scale basis of curvelets (Candes and
Donoho, 2000; Candes et al., 2006) or wavelets (Mallat, 1998) and compare the multi-scale
decompositions of the image and its model equivalent. The cost function then writes

J o(x0) =

tf∑

t0

‖W (q(t))−W (yo(t))‖2Rwav

where W is the chosen wavelet decomposition.
As these multi-scale decompositions verify a Parseval equality type, multi-scale dis-

tance is equivalent to the pixel distance. The idea of these works is to keep only a portion
of the coefficients. This is called “thresholding” and it consists in keeping only the leading
coefficients (eg the 5% most important coefficients of the image, or 5% for each major scale,
etc.). Souopgui (2010) showed that the choice of threshold was crucial in the assimilation
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Figure 1.33: Model (right) data (left) comparison (source: ECMWF).

of multi-scale images. The cost function then is

J o(x0) =

tf∑

t0

‖✶ΩI
◦W (q(t))− τ ◦W (yo(t))‖2

R̃wav

where τ is the thresholding operator, applied to the observed image. This allows to define
a working subspace ΩI in which we project the model equivalent, in order to compare
it to the observation. In the following study, thresholding consists in keeping the largest
coefficients and discarding the smallest.

Other approach. Another way to extract information relative to image structures has
been explored in Titaud et al. (2011), who make a map of Lagrangian Coherent Structures
(LCS), related to the Lyapunov exponents of the fluid (see Vidard (2012) for a review).

1.4.3 Current works

The model is a Shallow-Water code in FORTRAN 90, with the image assimilation library
BALAISE (Souopgui, 2010), which we enhance with the methods and operators presented
below.

Gradient based observation operators

The starting point of this study is as follows: the relevant information of the image is
contained in the fronts, ie areas of high gradient in the image. Thus, it is proposed in [23]
to consider two observation operators based on gradients.
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Gradient operator. The first operator simply computes the image gradients, leading
to the following cost function:

J grad(x0) =
1

2

N∑

i=1

‖∇Ii −∇qi‖2R−1

i

where (Ii)i=1..N is the observed image sequence and (qi)i=1..N the tracer defined by equa-
tion 1.22 (discretised), where U is given by the fluid model, initialised with x0.

Angular operator. For the second operator, we would like to measure the angular
difference between the gradients of the image and those produced by the model. For this
we want to compare the unit vectors ∇I/‖∇I‖ and ∇q/‖∇q‖. Here ‖.‖ represents the
Euclidean norm in two dimensions, so that at each pixel (xk, yk) of the image the unit
vector can be defined as follows:

∇I
‖∇I‖(xk, yk) =

1√
∂xI(xk, yk)2 + ∂yI(xk, yk)2

(∂xI(xk, yk), ∂yI(xk, yk))

where the derivative ∂x, ∂y is computed using finite differences.
Naturally, this formula cannot be applied where ∇I is null, so we replace the norm ‖.‖

by ‖.‖ε, with
‖a‖2ε = a2x + a2y + ε

where ε is well-chosen (see [23] for more details), such that ∇I/‖∇I‖ε is either zero either
close to ∇I/‖∇I‖. The cost function then writes:

J ang(x0) =
1

2

N∑

i=1

‖ ∇I
‖∇I‖ε

− ∇I
‖∇I‖ε

‖2
R−1

i
dt

Validation with perfect data

The relevance of these two operators is studied through twin experiments with perfect
data (not noisy). The experimental conditions are those of the experimental Coriolis
platform12, ie a Shallow-Water model with β-plane Coriolis forcing, ie f = f0+βy (where
y is the latitude and f the Coriolis force). The state variables are the horizontal velocities
U = (u, v) and the water height h. They also are the control variables, ie the variables
we try to identify through data assimilation. The simulation is done on a square sub-
domain of the platform, and figure 1.34 shows the initial velocities, tracer and vorticity
ζ0 = ∂xv0 − ∂yu0. These initial values allow to generate observations, which we later use
in our DA system with the various observation operators. To validate quantitatively the
results we compute the following ratio:

RMSE(xa0)

RMSE(xb0)
, with RMSE(x) = ‖x− xt‖

using for x successively each variable u0, v0, h0 (exponent a for analysis, b for background
and t for true). Figure 1.35 presents the evolution of this RMSE quotient for u0 as a
function of the number of minimisation iterations. We can see that every observation
operator allows a decrease of the RMSE under 10% of the background error (without
assimilation), the angular operator being the most efficient.

12http://coriolis.legi.grenoble-inp.fr
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Figure 1.34: Initial values for the twin experiments: on the left and in the middle the
“true” horizontal velocities u0 and v0. On the right the first image of the passive tracer
q1.

Image assimilation with noisy observations

As work on this subject is still in progress, I will not go into details but I will present
the preliminary results [20]. The idea of this work is to consider the assimilation of
noisy images with spatially-correlated Gaussian noise. As a result, the observation error
covariance matrix cannot be chosen proportional to the identity as we do in general.

Noisy observations. Three noise levels are considered, presented in figure 1.36. For
these images the correlation matrix of the noise is identical, the only difference lies in the
noise intensity, which is measured using the Signal to Noise Ratio (SNR):

SNR = 10 log10

( ∑
x∈Ω(I

t(x)2)∑
x∈Ω(I

t(x)− Io(x))2

)

Observation error covariance matrix modelling. In the sequel Rt
pix represents the

true observation error covariance matrix in the pixels space. As the noise is space-
correlated, this matrix is not diagonal. As the noise level is homogeneous, its diagonal is
constant, equal to σ2true.

In the preliminary experiments of [20], we chose to consider only diagonal R matrices,
and we compare the following distances:

• Pixels. We choose the diagonal of the true matrix:

Rpix = diag(Rt
pix) = σ2trueIn, n = #pixels

• Wavelets with thresholding. We then choose to quantify the impact of thresholding
τ on the previous distance. To do so, we transport Rpix (which is diagonal) into the
thresholded wavelet space (Daubechies here). We get:

RWτ = τWD8 diag(R
t
pix)W

T
D8τ

T = σ2trueIk, k = #ΩI

where the identity matrix is taken over the space ΩI . We can see that if thresholding
vanishes we find the pixels distance. This matrix choice allows to evaluate the impact
of thresholding only, for a diagonal matrix in pixel space.
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Figure 1.35: Evolution of the ratio of RMS errors of the velocity u with respect to 4D-Var
iterations. Perfect data are observed and the four observators are compared.

Figure 1.36: Example of noisy observations for each noise level. The SNR (signal to noise
ratio) on the left is 26.8dB, in the middle 20.8dB and on the right 14.8dB.

• Gradients. The true matrix in this space is ∇Rt
pix∇T , we take its diagonal:

Rgrad = diag(∇Rt
pix∇T )

As the correlations are isotropic, this matrix is also proportional to the identity
matrix.

• Haar wavelets without thresholding. The true covariance matrix isWHaarR
t
pixW

T
Haar,

we choose its diagonal:

RHaar = diag(WHaarR
t
pixW

T
Haar)

• Daubechies wavelets without thresholding. Finally, without thresholding, we choose:

RD8 = diag(WD8R
t
pixW

T
D8)

which is the diagonal of the true covariance matrix.
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Figure 1.37: Analysis u for an image sequence with large noise (SNR 14.8 dB). On the
left, analysis with the pixel distance, in the middle with the gradients, on the right with
Daubechies wavelets.

Table 1.1: Residual error in the analysis, averaged over 10 experiments, with respect to
the background, as a function of the noise level (SNR).

Pixels Wτ Gradients D8 Haar

14.8 dB 60.8% 60.1% 34.0% 9.3% 22.8%

20.8 dB 26.2% 28.5% 17.8% 7.6% 12.5%

26.8 dB 15.6% 17.1% 12.4% 7.2% 8.4%

Perfect data 7.6% 8.5% 7.4% 7.1% 6.4%

Note that if we change variable to bring back the matrices into the pixel space, we find
that the last three R produce non diagonal covariance matrices. Conversely, the first two
assume that the error in pixel space is uncorrelated.

Note also that it would have been nice to compare the impact of thresholding with a
non diagonal matrix, e.g. with

R = diag(τWD8R
t
pixW

T
D8τ

T )

but this is still under development.

Results. Table 1.1 presents the ratio between RMS for the analysis and RMS for the
background, for the three various noise levels, and the various distances/matrices choices,
as presented before. We can first notice that the pixel distance is not robust to noise, as is
not Wτ with a matrix proportional to the identity. However, in particular for a high noise
level, we can see that gradients and wavelets without thresholding give the best results.
So, a well chosen diagonal matrix is preferable to the identity matrix.

Finally, figure 1.37 shows the analysed velocity field u with a strong noise for pixels,
gradients and D8, confirming the good performance of the last two compared to the pixels.

These results are of course preliminary, as diagonal matrices were used. However, the
high sensitivity of the results with respect to the matrix choice is encouraging. It shows
that modelling efforts toward R, even modest, can improve the results.
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sonobuoy trajectories by velocity reconstruction with near-surface drifters. Ocean Mod-
elling, (36):179–197, 2011.

T. Corpetti, E. Mmin, and P. Prez. Dense motion analysis in uid imagery. page 676691,
2002.

E. Cosme, J.-M. Brankart, J. Verron, P. Brasseur, and M. Krysta. Implementation of a
reduced-rank, square-root smoother for ocean data assimilation. Ocean Modelling, (33):
87–100, 2010.

K. M. Cuffey and W. S. B. Paterson. The physics of glaciers. Butterworth-Heinemann,
2010.

N. Daget. Interpolation d’une grille orca2 vers une grille régulière. Technical Report
TR/CMGC/06/18, CERFACS, 2006.
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Maëlle Nodet Inverse problems for the environment



1.5 Bibliography 1 79

Dinh-Tuan Pham. A singular evolutive interpolated Kalman filter for data assimilation in
oceanography. Technical report 163, IMAG-LMC, September 1996.

Dinh-Tuan Pham. Stochastic methods for sequential data assimilation in strongly nonlin-
ear systems. Mon. Weather Rev., 129(5):1194–1207, May 2001.

Dinh-Tuan Pham, Jacques Verron, and Marie-Christine Roubaud. A singular evolutive
extended Kalman filter for data assimilation in oceanography. Technical report 162,
IMAG-LMC, September 1996.

Dinh-Tuan Pham, Jacques Verron, and Lionel Gourdeau. Filtres de Kalman singuliers
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2.1 Model reduction

In this section, we present the problems of model reduction that have been studied with
C. Prieur, in the framework of the PhD thesis of A. Janon whom we co-advised. To
begin with, we present the principles of reduced basis and certified error bounds. Then the
published and submitted papers [10] [21] are summarised.

2.1.1 Presentation

The idea of model reduction is as follows. Suppose we want to solve a system of partial
differential equations with a computer. After discretization, it is reduced to a very large
finite dimensional system (possibly nonlinear), whose size is the number of grid points,
the number of finite element functions, the number of cells of finite volume, etc. Then
there are various reasons for wanting to avoid computing in large dimension: we may want
to calculate very quickly the solution (real-time applications), or want to perform a large
number of calculations (Monte Carlo iterative optimization, etc.). Model reduction then
is to seek the solution as a linear combination of a small number of independent vectors.
The unknowns of the system are then the small number of coefficients and the size of the
workspace is reduced.

Framework

The framework is that of parameterised partial differential equations (PDE). For example
we will see later an application to the viscous Burgers equation, in which the parameters
are the viscosity and the boundary conditions. We will also consider the benchmark
problem of Venturi, in which the geometry of the domain plays the role of parameters.
Thus, the system can be written as an input / output model:

µ 7→ u(µ) 7→ s(µ) = s(u(µ))

where µ ∈ R
p is the parameters vector, u the solution of the PDE system, and s the

output, which is a function of u (ie the mean, the trace on a boundary, etc.). The
classical framework of model reduction (see Prud’homme et al. (2002); Veroy et al. (2003);
Prud’homme and Patera (2004); Cuong et al. (2005); Grepl et al. (2007)) involves a linear
PDE with the following variational formulation:

a(u(µ), v;µ) = l(v;µ), ∀v ∈ H, for every parameter µ (2.1)

with u(µ) ∈ H a Hilbert space of dimension N of finite element, a(., .;µ) a bilinear form
on H and l(.;µ) a linear form. The linearity of the PDE is assumed here to simplify
the presentation, but we can see in Grepl and Patera (2005); Urban and Patera (2012);
Knezevic et al. (2010); Veroy and Patera (2005) and [10] applications to nonlinear PDEs.
Then we will supose (for readability), that a and l depend on µ in the so-called affine form
as follows:

a(., .;µ) =

Q∑

q=1

θq(µ)aq(., .), l(.;µ) =

Q′∑

q′=1

γq′(µ)lq′(.), ∀µ

where Q and Q′ are integers, θq and γq′ are real function and aq and lq′ are bilinear and
linear forms which do not depend on µ. In the nonlinear case, the method of the magic
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points (empirical interpolation, Grepl et al. (2007)) allows to reduce any formulation to
an approximate affine form.

Finally, we assume that a is coercive, when µ is fixed:

∀µ, ∃α(µ) > 0, a(u, v;µ) ≥ α(µ)‖u‖‖v‖, ∀u, v ∈ H

Reduced system

In the previous framework (finite element), the solution u can be decomposed in a basis
φ1, ..., φN of H, where N is large:

u(µ) =
N∑

i=1

ui(µ)φi

We now seek an approximation of u in small dimension n :

ũ(µ) =

n∑

i=1

ũi(µ)ζi

where (ζ1, ..., ζn) is a linearly independant family ofH (independent of µ) called the reduced
basis. The reduced space spanned by ζi, Vect (ζ1, ..., ζn), is denoted H̃.. We then seek ũ
as the solution of the variational problem in H̃:

a(ũ(µ), v;µ) = l(v;µ), ∀v ∈ H̃

which is equivalent to

n∑

i=1

ũi

Q∑

q=1

θq(µ) aq(ζi, ζj) =

Q′∑

q′=1

γq′(µ) lq′(ζj), ∀1 ≤ j ≤ n

This formulation can highlight the online / offline structure of the method:

� Offline: after choosing the basis, the numbers independent of µ are calculated and
stored: aq(ζi, ζj) and lq′(ζj) for all i, j. This can be expensive, since its complexity
depends on N , but is done only once.

� Online: for each desired value of the parameter µ, we calculate θq(µ) and γq′(µ), and
(thanks to the items stored in the online step) a system is formed (of size n) for ũi
and solved. The complexity of this phase is independent of N .

Assuming the problem and the choice of the basis allow n << N while having ũ close to
u, we thus gain in computation time, provided that we can ignore the cost of the offline
phase, which is the case if one makes many calculations or works in real time.

A posteriori error bound

The great advantage of the reduction method proposed by Prud’homme et al. (2002);
Veroy et al. (2003); Prud’homme and Patera (2004); Cuong et al. (2005); Grepl et al.
(2007) is to provide an error bound that is certified and computable online (that is to say
with a complexity independent of N ) :

‖u(µ)− ũ(µ)‖ ≤ ε(µ), ∀µ
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In the case where the bilinear form a(., .;µ) is symmetric, the bound can be written as:

ε(µ) =
ρ(µ)

α(µ)
(2.2)

where ρ(µ) is the dual norm of the residual r(.;µ) :

ρ(µ) = sup
v∈H,‖v‖=1

|r(v;µ)|, r(v;µ) = a(ũ(µ), v;µ)− l(v;µ)

The whole point of the method is obviously that we can implement a offline / online pro-
cedure to compute an upper bound of the error, so as to produce a certified approximation
ũ(µ) (certification without impacting too much the computation time). We refer to Nguyen
et al. (2005); Huynh et al. (2007a); Chen et al. (2009) for details of this implementation.

Choice of the reduced basis

Everything we have seen so far can be implemented with any reduced basis (ie any linearly
independant family ζ1, ..., ζn of H). The next question is of course to find a good basis,
that is to say, a basis that ensures small a posteriori error. We review below quickly the
various options available in the literature.

Proper orthogonal decomposition (POD). POD has different names depending on
the area where it is used (principal component analysis PCA, empirical orthogonal func-
tions EOF, singular value decomposition SVD, Karhunen-Loeve, etc.).

The idea is to find the POD basis B as the orthonormal basis of size n that minimizes
the mean square error projection on this basis ΠB, averaged over the parameters µ:

B = argmin
b orthonormal basis of size n

∫
‖u(µ)−Πb(u(µ))‖2 dµ

where it was assumed that the parameters µ are distributed according to the probability
density function of dµ. In practice, we compute an approximation of the basis B by the
snapshots method, ie we evaluate the above integral by Monte Carlo using a (large) sample
M of the law of µ:

B ≃ argmin
b orthonormal basis of size n

∑

µ∈M

‖u(µ)−Πb(u(µ))‖2

This is done by computing the singular value decomposition of the snapshots matrix. First
we form the matrix A by placing in its columns the centered snapshots:

A = [u(µ1)− ū; ...;u(µ2)− ū], ū =
1

m

m∑

i=1

u(µi), M = {µi, i = 1..m}

then the singular value decomposition of A is carried out:

A = UΣV T

where Σ is the diagonal matrix of singular values (listed in decreasing order). The desired
B basis is then formed with the first n columns of V , which are then normalised.
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Greedy algorithm. The greedy method (see Nguyen et al. (2005); Buffa et al. (2009))
is to iteratively build the basis so that the reduction error bound is smallest as possible.
We begin, as before, by choosing a (large) sampleM following the probability distribution
of µ. Then the basis B is initialized by taking

B = {u(µ0)}, µ0 randomly chosen according to the pdf of µ

and then we iterate the following two steps:

1. calculate µj = argmaxµ∈M ε(µ), where the error bound ε is calculated with the
current basis B;

2. update the basis B: add the vector u(µj) and orthonormalise.

Goal-oriented basis. The idea this time is to choose a basis which would no longer
minimize the error on the state ε(µ), but the on the output ‖s(u(µ)) − s(ũ(µ))‖. This
problem is solved as an optimal control problem in Bui-Thanh et al. (2007) for linear
dynamic systems, but the method is very costly to implement in practice.

2.1.2 Certified error bound for the viscous Burger’s equation

This paragraph summarizes the results contained in section [10], written in collaboration
with C. Prieur and A. Janon, as part of his thesis.

Model and problem presentation

The starting point of this work is to study the implementation of the reduced basis method
presented above for a “toy” model of geophysical flow equation, namely the viscous Burgers
equation. The question that will arise later will be the sensitivity of the equation to some
of its input parameters. As to answer this we will implement a Monte Carlo, we will need
to calculate many solutions (associated with various sets of parameters), hence the need
for a reliable and inexpensive reduced model.

The problem we consider is the following. Let u be a function of the space x ∈ [0; 1]
and time t ∈ [0;T ] (with T > 0), smooth enough: u ∈ C1

(
[0, T ], H1(]0, 1[)

)
, satisfying the

viscous Burgers equation:
∂u

∂t
+

1

2

∂

∂x
(u2)− ν

∂2u

∂x2
= f (2.3)

where ν ∈ R
+
∗ is the viscosity and f ∈ C0

(
[0, T ], L2(]0, 1[)

)
is the source term. Of course

the initial and boundary conditions are added:

u(t = 0, x) = u0(x) ∀x ∈ [0; 1] (2.4)

with u0 ∈ H1(]0, 1[) {
u(t, x = 0) = b0(t)

u(t, x = 1) = b1(t)
∀t ∈ [0;T ] (2.5)

where b0, b1 ∈ C0([0, T ]) and u0 satisfy the following compatibility condition:

u0(0) = b0(0) and u0(1) = b1(0)
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The existence and uniqueness of the solution u is a classical result (Hopf, 1950).
The input parameters of this model are ν, u0, b0, b1 and f . Indeed, in an extension

to oceanography, these are the important parameters of the model (external forcings,
boundary conditions, viscosity, initial conditions), they are generally poorly known.

With the exception of the viscosity, all are functional parameters. As our reduction
strategies work with not too many scalar parameters, we choose to parameterize functions
in suitable bases (that are not specified here, but which are supposed to be fairly regular,
as the Fourier series for example):

b0(t) = b0m +

n(b0)∑

l=1

Ab0
l Φb0

l (t) b1(t) = b1m +

n(b1)∑

l=1

Ab1
l Φb1

l (t)

s(t, x) = fm +

nT (f)∑

l=1

nS(f)∑

p=1

Af
lpΦ

fT
l (t)ΦfS

p (x) u0(x) = u0m +

n(u0)∑

l=1

Au0

l Φu0

l (x)

where the basic functions Φb0 , Φb1
l , ΦfT

l , ΦfS
p and Φu0

l are fixed and the integers n(b0),
n(b1), nT (f), nS(f) and n(u0) are given. Thus, our data set includes the following scalar
variables:

ν, b0m, b1m, fm, u0m(
Ab0

l

)
l=1,...,n(b0)

,
(
Ab1

l

)
l=1,...,n(b1)

,
(
Af

lp

)
l=1,...,nT (f);p=1,...,nS(f)

,
(
Au0

l

)
l=1,...,n(u0)

with the compatibility condition:

b0m = u0m and b1m = u0m +

n(u0)∑

l=1

Au0

l Φu0

l (x)

Methods

Discretisation and offline / online decomposition. In Nguyen et al. (2005) the au-
thors study the problem by considering only one parameter, the viscosity. We adapted
this method to take into account other parameters, but the principle is the same. The idea
is to start from the continuous equation and discretise it into a linear system in dimension
N , for which we can implement the reduction method described above. The procedure
follows Nguyen et al. (2005) (with the exception of step 2 we added):

1. Establishment of the weak formulation (2.3,2.4).

2. Penalisation of the boundary conditions in the weak formulation (2.5).

3. Discretization by finite elements P 1. The result is a system of ordinary differential
equations in dimension system N .

4. Discretization in time by backward Euler method. Thus, we get a non-linear system
dimension N .

5. Resolution by Newton’s method. At each iteration, we must solve a linear system
in dimension N .

For a given reduced basis ζ1, ..., ζn, we can implement on the last linear system an offline /
online strategy, which allows to solve it with a complexity independent of N . The overall
complexity then depends on n, the number of iterations of Newton and the number of
time steps. We refer to [10] for details.
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Error bound. Detailed technical calculations in [10] allow to establish an error bound
for the proposed reduction method. For this we proceed in two steps: first, a theorem
giving an estimate of the error ek = u(tk)− ũ(tk) at each time tk is established. Then, we
propose a strategy to effectively estimate an upper bound of the error that is computable
online. The main difficulty lies in the estimation of upper and lower bounds for the
numbers Ck called stability constants:

Ck = inf
v∈H,‖v‖=1

2c(ũk, v, v) + νa(v, v)

where c and a are the tri-and bi-linear forms associated with 1
2∂x(u

2) and −ν∂xxu in the
variational formulation of equation (2.3). For this, the method of successive constraints
(SCM) is used (Huynh et al., 2007b; Nguyen et al., 2009), and is detailed in [10].

Choice of the reduced basis. The article compares three basic choices: POD, Greedy,
and hybrid. POD and Greedy were presented above.

The hybrid basis is a mix of POD and Greedy strategies proposed in Haasdonk and
Ohlberger (2008). The algorithm for constructing the basis is as follows:

1. Choose an integer P .

2. Choose a (large) sample of parameters.

3. Choose a µ at random, and initialize the B basis with the orthonormalisation of the
subspace spanned by u(tk, µ), for all times tk.

4. Iterate the following procedure:

(a) Find the µ∗ that maximizes (for all µ in the sample) the online error indicator,
calculated with the current basis B.

(b) Calculate P first POD modes of the snapshots set u(tk, µ
∗), for every time step

tk.

(c) Add these modes to the basis B (+ orthonormalisation).

To all these bases we added the initial condition, in order to have zero initial error.

Numerical results

First results. Results are presented for a first simplified test case, with only 7 active
parameters with the POD basis. Figure 2.1 shows the error bound produced with 7 POD
modes, as well as the actual error. This gives an error bound smaller than 1 for 1 000,
with a reduction in computation time of 85% (including the calculation of the bound).

Bases comparison. Figure 2.2 compares the error bound obtained with the three
proposed bases, as a function of the number of elements in each basis, for a simplified
test case, with only one parameter (for the initial condition). The computation time fairly
depends on the method (POD-Greedy < POD < Greedy), Greedy costing twice as much as
POD-Greedy. The online computation time is the same. The three bases produce similar
results, the POD-Greedy is slightly worse, while the POD is better in average error (in
time) and the Greedy basis is better for the maximum error (in time).
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Figure 2.1: Relative errors for 7 parameters and a 7 member POD basis, as a func-
tion of time. Solid line represents the online relative bound ǫk/

∥∥ũk
∥∥, and dashed line∥∥uk − ũk

∥∥/
∥∥ũk

∥∥ represent the true error.

Comparison with the literature. Finally, Figure 2.3 shows the comparison with the
existing bound (Nguyen et al., 2009). It shows the performance of our bound (calculated
with the POD), which gains an order of magnitude. This can also be seen in the bound
computation, as in the context of Nguyen et al. (2009), only the parameter ν is considered,
which greatly simplifies the calculations. Indeed, the existing bound is:

‖ek‖ ≤
√

‖ek−1‖2 + ∆t
ν ‖rk‖20

1 + C̃k∆t
, with C̃k = inf

v∈X0

4c(ũk, v, v) + νa(v, v)

‖v‖2

while our bound is:

‖ek‖ ≤ ‖ek−1‖+∆t ‖rk‖0
1 + Ck∆t

, with Ck = inf
v∈X0,‖v‖=1

[
2c(ũk, v, v) + νa(v, v)

]
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Figure 2.2: Comparison of POD, Greedy and POD-Greedy bases. We represent he mean
(in time) error (top), the maximal error (bottom) as a function of the basis size. The size
of the random sample of the parameter u0m ∈ [0, 1] is 100.
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Figure 2.3: Comparison between the new bound, the bound proposed by Nguyen et al.
(2009) (called reference) and the true error, as a function of time, for ν = 0.1.

2.1.3 Goal-oriented error bound

This section summarizes the results contained in the submitted work [21], with C. Prieur
and A. Janon, as part of his thesis.

Problem presentation

Presentation. The starting point of this work is the following: the previously pro-
posed error bound is a bound on the solution u of the PDE. When the amount of interest
(the output) is not u, but a function of u, we would like to offer a bound that is bet-
ter, and adapted to the output. For example, suppose u is written in the reduced basis
as u =

∑
i uiφi, but the output s(u) only “see” some components of u, for example

s(u) =
∑

i even siuiφi. In this case the error bound terms associated with odd modes of u
are useless. Therefore goal-oriented bound allows to either provide a more accurate result,
or reduce the number of elements in the reduced basis (and thus the computation time).

Framework and notations. As before, we work in the framework of parameterised
PDE, written in variational formulation and discretised by finite elements. The workspace
is denoted X, its size is N . Assume that in 2.1 a is positive definite bilinear and the second
member l is linear, so that the equation leads to solve a linear system with parameters in
X:

A(µ)u(µ) = l(µ)

As before, we can choose a reduced basis and obtain an approximate solution by an
adequate offline / online decomposition. We denote X̃ the reduced space (of dimension
n), and Z the matrix (of size N × n) whose columns contain the reduced basis vectors. If
we denote ũ the components of the projection of u on X̃, we have

ZTAZũ = ZT l
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It is also assumed that the output s(µ) = s(u(µ)) is a linear function of u, ie a linear
form on X. For the chosen scalar product, this linear form admits a representative in X,
denoted S (ie s(u) = 〈S, u〉). The reduced output is then defined

s̃(µ) = 〈S,Zũ(µ)〉 = 〈ZTS, ũ(µ)〉

and we denote also S̃ = ZTS.
The objective of this work is to produce an error bound on the output s̃(µ) calculated

by model reduction compared to the actual output s(µ).

Past works. There are two goal-oriented bounds in the literature. The first is simply
to use an existing bound for u and the linearity of the output:

|s(µ)− s̃(µ)| ≤ ‖S‖ ‖u(µ)− Zũ(µ)‖

This is called the Lipschitz bound. It extends naturally to the case where the output is
not linear but Lipschitz.

The second approach (Nguyen et al., 2005) is to use the solution of the adjoint problem
to correct the output, and provide a (better) bound on the corrected output. The solution
of the adjoint problem is written as follows (in the simplified case where A is symmetric):

A(µ)ua(µ) = −S

As before we can implement a reduction method. We denote Za the matrix whose columns
contain the reduced basis vectors, and ũa the coordinates of the approximate solution
reduced in this basis.
The corrected output is

sa(µ) = s(Zũ(µ)) + 〈r(µ), Zaũa(µ)〉

where r(µ) = A(µ)Zũ(µ)− l(µ) is the residual. And the associated error bound is

|s(µ)− s̃(µ)| ≤ ρ(µ)ρa(µ)

α(µ)

where ρ(µ) is the dual norm of the residual r(µ), ρa(µ) the dual norm of the adjoint
residual ra(µ) = AZaũa − S and α(µ) is the coercivity constant of a.

Probabilistic error bound

The purpose of the work [21] is to propose a probabilistic error bound, depending on the
level of risk β ∈]0, 1[ as follows:

P

(
|s(µ)− s̃(µ)| ≥ ε(µ, β)

)
≤ β

In other words, there is a risk β that the error is not smaller than the proposed bound.
We summarise the beginning of the proof below. We start with

A−1r = Zũ−A−1l = Zũ− u

Therefore
s̃(µ)− s(µ) = 〈S,Zũ− u〉 = 〈S,A−1r〉 = 〈A−TS, r〉
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Figure 2.4: Domain Ω(µ) for the Venturi problem.

The residual is decomposed in an orthonormal basis φ1, ..., φN of X:

r(µ) =
N∑

i=1

ri(µ)φi

so that we can write

s̃(µ)− s(µ) =

N∑

i=1

ri(µ)〈A−TS, φi〉

The idea of the probabilistic error bound is then to split the sum in two parts, and to
bound them using a suitable choice of the basis (φi)1≤i≤N .

This work extends naturally to the dual error bound method of the literature, so as to
get a probabilistic error bound on the corrected output.

Numerical results

We validate our method on a standard benchmark for reduced bases, the Venturi model
(Rozza and A.T., 2008). The considered PDE is as follows:





∆ue = 0 in Ω(µ)
ue = 0 on ΓD

∂ue
∂n = −1 on ΓN

∂ue
∂n = 0 on ∂Ω \ (ΓN ∪ ΓD)

The three parameters:

µ = (µ1, µ2, µ3) ∈ P = [0.25, 0.5]× [2, 4]× [0.1, 0.2],

define the geometry of the domain Ω(µ), see Figure 2.4. For this model we implement an
offline / online strategy and calculate the four bounds seen previously:

1. Lipschitz bound,

2. dual bound (with the adjoint, on the corrected output),

3. probabilistic bound,
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Figure 2.5: Comparison of the error bounds as a function of the reduced basis size. The
probability error bound (with risk β = 0.0001) on the uncorrected output is blue, the true
error is the black dashed line. For the corrected output, the true error is light blue, the
dual bound red and the probability bound (with risk β = 0.0001) green. The Lipschitz
bound is too large and not represented.

4. probabilistic bound on the corrected output.

Figure 2.5 compares these bounds with the actual error, as a function of the size of the
reduced basis. In order to do a fair comparison, a change of scale on the basis size has been
done for the bounds involving adjoint (because it requires offline and online calculations
time twice as long) (see [21] for details). The Lipschitz bound is significantly worse than
all others and does not even appear in the figure. We can see that our error bound for a
risk β = 0.0001 is pretty close to the true error (less than one order of magnitude), and
better than the existing dual bound.

The paper also presents the implementation of this method for a transport equation
with the same kind of conclusions, see [21].
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2.2 Global sensitivity analysis

In this section, we present the global sensitivity analysis problems that were considered
(in parallel with our studies on model reduction) with C. Prieur, A. Janon, and Toulouse
statisticians F. Gamboa, T. Klein and A. Lagnoux. To begin with, we present the Sobol
sensitivity indices. Then we summarize the papers [9] and [11].

2.2.1 Presentation

As we saw in the first part, most geophysical models have a number of poorly known
parameters we often try to estimate by inverse methods. The first step, of course, before
even considering an inverse method, is to identify the most sensitive model parameters,
those whose uncertainty will impact most strongly the forecast errors.

Framework and notations

We assume in this section that the input parameters are p real variables X1, ..., Xp, and
the model output Y is a real variable given by

Y = f(X1, ..., Xp)

where f is a function R
p → R. For example, in the Venturi model discussed above, Xi

are the geometric parameters of the model and Y is the fluid flow through a boundary.
Or, in a model of glaciological paleoclimatology, the Xi are the parameters related to the
temperature and Y is the volume of ice at a given time.

It is natural to assume that the unknown parameters Xi are random variables. Their
laws are generally unknown, but modeled according to the expertise of modellers and
specialists. For the moment, many geophysical models are deterministic, but if Xi are
random variables, then Y is a random variable.

There are different ways to quantify the sensitivity of a model to its input parameters.
We can already distinguish global vs local sensitivity analysis. The latter is simply the
mathematical translation of the question: if the input varies around a reference value, how
will the ouput vary? The derivation of the model with respect to the parameters at the
desired point ∂Xif(x1, ..., xp) provides an answer to this question.

For an overall measure of sensitivity to a given parameter, we can still use the deriva-
tive, for example as follows:

∫

Rp

(∂Xif(X1, ..., Xp))
2 dX1...dXp

where the integral should be understood as the mathematical expectation of the random
variable (∂Xif(X1, ..., Xp))

2.
But often we prefer to take advantage of the stochastic framework and propose a

measure of sensitivity based on the variance, as we will see below.
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Sobol global sensitivity indices

A popular way to measure the global sensitivity are Sobol variance-based indices (Sobol,
1993). The sensitivity index of the model with respect to the parameter Xi is defined as:

Si =
Var (E(Y |Xi))

Var (Y )

where E(Y |Xi) is the conditional expectation of Y given Xi. This is a random variable
that depends only on Xi. Moreover, if the random variables are square-integrable, then
we can see E(Y |Xi) as the orthogonal projection of Y on the set of the random variables
in L2 depending only on Xi. So, among the functions of Xi, E(Y |Xi) is the closest to Y in
the least squares sense. The variance of E(Y |Xi) quantifies the dispersion of Y when only
Xi varies. Therefore, the quotient Si is the variation of Y that can be explained solely
by changes in Xi. An index close to 0 indicates that Y is weakly influenced by Xi. In
contrast, an index close to 1 shows that Xi has a large impact on Y .

Monte Carlo estimation of Sobol indices

Except in very simple cases (usually academic examples), we can not explicitely calcu-
late Sobol indices, not even as functions of the input parameters, and we must resort to
numerical approximations. The Monte Carlo method is a popular approach. The idea is
to simulate the randomness of the input variables by choosing a large suitable sample of
these parameters, and then calculate Y for each of these parameters. Thus, a sample of
inputs and outputs are available to estimate the indices.

The original estimator (Sobol, 2001) is recalled. For this we define two samples (random
and identically distributed) of size N of p parameters:

(Xk
1 , ..., X

k
p )k=1..N (X

′k
1 , ..., X

′k
p )k=1..N

Then we define

yk = f(Xk
1 , ..., X

k
p ), y′k = f(X

′k
1 , ...X

′k
i−1, X

k
i , X

′k
i+1, ..., X

′k
p ), ∀k = 1, ..., N

The estimator is then given by

Ŝi =
yy′ − y.y′

y2 − y2
(2.6)

where we define the empirical mean φ of a vector φ = (φ1, ...φN ) by

φ =
1

N

N∑

k=1

φk

There are also other estimators, we will see some later. There are also other index
estimation methods. Without going into details, the FAST method (see Tissot (2012) for
a recent approach and historical references) and polynomial chaos (Ghanem and Spanos,
2003) can be mentioned. We refer to the thesis Janon (2012) for more details on these
topics.
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2.2.2 Using metamodels to estimate Sobol indices: quantifying

information loss

This section summarizes the results contained in the article [9], with C. Prieur and A.
Janon, as part of his thesis.

Problem presentation

In this work we estimate the Sobol index Si with the estimator (2.6) proposed by Sobol
(2001). From a practical point of view, it is often difficult to do a large number of model
runs to compute yk, because the model is generally quite expensive. In these cases, the
model f is replaced by an approximation f̃ , called metamodel, faster to compute. For
example, we saw in the previous section a method based on reduced basis to build such a
metamodel, but there are other approximation methods, in particular stochastic (kriging,
regression, etc.). The estimator of interest is written as:

Ŝi =
ỹỹ′ − ỹ.ỹ′

ỹ2 − ỹ
2

where the vectors ỹ and ỹ′ are defined with the metamodel instead of the full model:

ỹk = f̃(Xk
1 , ..., X

k
p ), ỹ′k = f̃(X

′k
1 , ...X

′k
i−1, X

k
i , X

′k
i+1, ..., X

′k
p ), ∀k = 1, ..., N

The paper [9] aims to answer the following question: can we quantify the error between
the estimator Ŝi and the true value of the index? There are two sources of error: the first
arises because we use the metamodel instead of the full model (error metamodel), the
second comes from the approximation by Monte Carlo with a sample of size N (sampling
error).

Past works. There are few studies that quantify the estimation error, especially the
error due to metamodel, although most calculations of sensitivity index estimates are
conducted with metamodels. We can cite Marrel et al. (2009) who provide an error
estimate in the case of a kriging metamodel.

Storlie et al. (2009) also offer an error estimate, using an approach based on the
bootstrap approach (Efron, 1979). The method given in Janon (2012) is described below.
We are given a training sample

D = {(X1, f(X1)), ..., (Xn, f(Xn))}

used to build a metamodel f̃D. We then repeat for r = 1, ..., R the following steps:

1. draw with equal probability in (X1, ...,Xn) (with replacement) a sample of size n
(X∗1, ...,X∗n);

2. draw with equal probability and with replacement in the residuals set

{f̃(Xk)− f(Xk), k = 1, ..., n}

a residual sample of size n (e∗1, ..., e∗n);
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3. calculate a noisy version of the learning sample:

D∗ = {(X∗1, f̃(X∗1) + e∗1), ..., (X∗n, f̃(X∗n) + e∗n)};

4. with this sample make a new metamodel f̃D∗ , and calculate with this metamodel a
replication Ŝr

i of the estimator.

Then we use the set
R = {Ŝ1

i , ..., Ŝ
R
i }

to build a confidence interval for Si. This method is more general than the previous one,
because it can be applied to different types of metamodels. However it is very expensive,
especially because of step 4, which requires building a new metamodel from the new
sample.

Quantification of the estimation errors

Metamodel error. The starting point of this work is to have an error bound on the
metamodel. Based on our work on reduced basis, we assumed that we could have an error
bound:

|f(X)− f̃(X)| ≤ ε(X), ∀X
where we denoted X = (X1, ..., Xp) the vector of model input parameters. For an element
Xk of the sample it is written:

|yk − ỹk| ≤ ε(Xk) = εk

We start with the following remark: Ŝi is the slope of the linear regression of y′k on yk:

Ŝi = argmin
a∈R

N∑

k=1

(
(y′k − y′)− a(yk − y)

)2
= argmin

a∈R
R(a,y,y′, y, y′)

where we denoted y = (y1, ..., yN ) the sample (same for y′). The idea is then to write that
each yk lies in the interval [ỹk−εk; ỹk−εk] and to generate an interval for R(a,y,y′, y, y′).
We then deduce the inequality

Ŝm
i ≤ Ŝi ≤ ŜM

i

In the case where ε is large, this method is quite pessimistic. Assuming more regularity
on the function f (which is usually the case because the models are often quite regular),
we also propose a smooth version of this inequality with a sharper width.

Sampling error. To estimate this error, the bootstrap method (see above) is applied
directly to the estimators Ŝm

i and ŜM
i . Replications are used to build two confidence

intervals: [Im1 , I
m
2 ] for Ŝm

i and [IM1 , IM2 ] for ŜM
i , which gives us an interval [Im1 , I

M
2 ] for Si.

Application

The method for constructing confidence intervals is applied to the parameterised viscous
Burgers equation we saw in subsection 2.1.2. First we consider that only two parameters
are unknown, the viscosity ν and u0m in the initial condition u0(x) = u0m+5 sin(x/2). We
assume that ν varies between 1 and 20 and u0m between 0 and 0.3, both parameters are
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Figure 2.6: Convergence of the confidence intervals for the sensitivity indices estimation,
on the left for ν, on the right for u0m. The y axis represents Ŝm

i and ŜM
i , and the bounds

of the confidence intervals at level 95%. The x axis represent the size of the reduced
basisThe Monte Carlo sample size is fixed to N = 2000.

independent and follow uniform laws on these intervals. As this model is less expensive
than a 3D geophysical model, we could calculate very accurate confidence intervals for
sensitivity indices for these two parameters:

Sν ∈ [0.0815; 0.0832], Su0m ∈ [0.9175; 0.9182]

which serve as a reference for the future.

Confidence intervals and coverage. With a reduced basis of n = 9 elements and a
Monte-Carlo sample size N = 300 a confidence interval at level 95 % can be computed. If
the confidence interval is perfect, it means that the coverage probability (ie the probability
that the true value is actually in the interval) is 0.95. To validate this point, the method is
repeated 100 times and we count how many times the confidence interval actually contains
the true index, which gives us an empirical coverage. The table below presents the results
and validates the method:

Parameter Mean confidence interval empirical coverage

ν [0.0139;0.2083] 0.91
u0m [0.8421;0.9491] 0.87
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Convergence. Figure 2.6 shows the evolution of the bounds Ŝm
i and ŜM

i as a func-
tion of the reduced basis size for a fixed size Monte Carlo sample. This shows that the
metamodel error decreases rapidly with the size of the reduced basis. The width of the con-
fidence interval is large because sampling error is fixed. Note that the intervals [Ŝm

i ; ŜM
i ]

do not take into account the Monte Carlo error and do not (usually) contain the true value
of the index.

The end of paper [9] has other applications: the same Burgers model with more
parameters, and another type of model (interpolation kernels). Both highlight the good
performance of the proposed confidence interval, especially compared to existing methods
in the literature.

2.2.3 Asymptotic study of Sobol indices estimation

This section summarizes the results contained in the article [11], in collaboration with F.
Gamboa, A. Lagnoux and T. Klein Toulouse, with C. Prieur and A. Janon, as part of his
thesis and in the framework of ANR COSTA BRAVA.

Presentation

The context of this work is the study of asymptotic properties of two Monte Carlo Sobol
indices estimators. More specifically, we focus on the asymptotic behavior of two errors
(metamodel and sampling) when both the learning sample for the metamodel and the
Monte Carlo sample sizes tend to infinity.

The underlying concepts of interest are the asymptotic normality and efficiency. The
first measures the convergence of the estimator to the true index, which helps to justify
the asymptotic confidence intervals. The second allows to define the optimality of an
estimator, in a certain sense, and thus to obtain the most accurate confidence intervals.

Notations. We are interested in the following type of model

Y = f(X,Z)

where X ∈ R
p1 and Z ∈ R

p2 are independent random variables called input parameters.
We denote p = p1 + p2 the total number of parameters. If Y has non-zero variance and is
square integrable, we are interested in the sensitivity index with respect to X:

SX =
Var (E(Y |X))

Var (Y )
∈ [0, 1]

If we denote by Y X = f(X,Z ′) where Z ′ is an independent copy of Z, we can see that

SX =
Cov

(
Y, Y X

)

Var (Y )

The first estimator that we consider is the following:

SX
N =

1
N

∑
YiY

X
i −

(
1
N

∑
Yi
) (

1
N

∑
Y X
i

)

1
N

∑
Y 2
i −

(
1
N

∑
Yi
)2
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with, for i = 1, . . . , N :
Yi = f(Xi, Zi), Y X

i = f(Xi, Z
′
i),

where {(Xi, Zi)}i=1,...,N and {(Xi, Z
′
i)}i=1,...,N are two independent and identically dis-

tributed samples (according to the law of (X,Z)), with {Zi}i independent of {Z ′
i}i.

The second estimator is:

TX
N =

1
N

∑
YiY

X
i −

(
1
N

∑[
Yi+Y X

i
2

])2

1
N

∑[
Y 2

i +(Y X
i )2

2

]
−
(

1
N

∑[
Yi+Y X

i
2

])2

Asymptotic normality

We give two results of asymptotic normality: the first when the estimator is calculated
using the exact model, the second with a metamodel.

Exact model. We first establish a consistency result, that is to say, the almost sure
convergence (a.s.) of the estimators to the indices:

SX
N

a.s.−→
N→∞

SX and TX
N

a.s.−→
N→∞

SX

Then we have the following proposition regarding asymptotic normality.

Suppose that E(Y 4) <∞. Then we have the convergence in law (L)
√
N

(
SX
N − SX

) L→
N→∞

N1

(
0, σ2S

)
and

√
N

(
TX
N − SX

) L→
N→∞

N1

(
0, σ2T

)

with

σ2S =
Var

(
(Y − E(Y ))

[
(Y X − E(Y ))− SX(Y − E(Y ))

])

(Var (Y ))2

σ2T =
Var

(
(Y − E(Y ))(Y X − E(Y ))− SX/2

(
(Y − E(Y ))2 + (Y X − E(Y ))2

))

(Var (Y ))2
.

with σT ≤ σS (and equality if and only if SX ∈ {0, 1}).

Metamodel. This time we have an inexpensive and approximate metamodel to com-
pute Y :

Ỹ = f̃(X,Z) = f(X,Z) + δ,

where the perturbation δ = δ(X,Z, ξ) is a function of a random variable xi independent
of X and Z. As before, we define the aproximate index:

S̃X =
Var (E(Ỹ |X))

Var (Ỹ )

and the two associated estimators

S̃X
N =

1
N

∑
ỸiỸ

X
i −

(
1
N

∑
Ỹi

)(
1
N

∑
Ỹ X
i

)

1
N

∑
Ỹ 2
i −

(
1
N

∑
Ỹi

)2
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T̃X
N =

1
N

∑
ỸiỸ

X
i −

(
1
N

∑[
Ỹi+Ỹ X

i
2

])2

1
N

∑[
Ỹ 2

i +(Ỹ X
i )2

2

]
−
(

1
N

∑[
Ỹi+Ỹ X

i
2

])2

We start with a remark: if δ is independent of N (for example if we keep the same
metamodel while we increase the Monte-Carlo sample size), then in general the estima-
tors S̃X

N and T̃X
N are not consistent for estimating SX . Therefore we suppose now that δ

depends on N , denoted δN , and it is also assumed that Var δN tends to 0 as N → ∞. The
normal convergence of

√
N(S̃X

N − SX) as a function of the convergence rate of Var δN to
0 is now studied. We have the following theorem.

Let us define

Cδ,N = 2Var (Y )1/2
[
Corr (Y, δXN )− Corr (Y, Y X)Corr (Y, δN )

]

+Var (δN )1/2
[
Corr (δN , δ

X
N )− Corr (Y, Y X)

]

where δXN = δN (X,Z ′) and Corr (A,B) is the correlation between A and B (covariance
normalized by the standard deviations). Assume that Cδ,N does not converge to 0. Then

1. If Var (δN ) = o
(
1
N

)
, then S̃X

N and T̃X
N are asymptotically normal to estimate SX :

√
N(S̃X

N − SX) −→
N→+∞

N (0, σ2S) and
√
N(T̃X

N − SX) −→
N→+∞

N (0, σ2T ).

2. If NVar (δN ) → ∞, then they are not asymptotically normal.

3. If Cδ,N converges to a constant C and there exists γ ∈ R such that Var (δN ) =
γ

CN + o
(
1
N

)
, then:

√
N(S̃X

N − SX) −→
N→+∞

N (γ, σ2S) and
√
N(T̃X

N − SX) −→
N→+∞

N (γ, σ2T )

Of course, if Cδ,N converges to 0, then we have the asymptotic normality for S̃X
N and T̃X

N .
The proofs of these results are available in [11].

Asymptotic efficiency

I have not contributed to the results of asymptotic efficiency. In short, the concept of
efficiency is as follows. Suppose we have an estimator SN , which therefore forms for
N ∈ N a sequence of estimators (SN )N∈N, for a variable S. If SN is asymptotically normal
for S, then we have √

N(SN − S)
L→

N→∞
N (O, σ2)

This allows to construct asymptotic confidence intervals for S whose width is σ. The notion
of asymptotic efficiency applies to the sequence whose asymptotic variance is the smallest
possible (and therefore the narrowest confidence interval). The concept of efficiency is
more complex, because the optimality is set on a subset of so-called regular sequences of
estimators, we refer to Janon (2012) and to van der Vaart (1998) for more details. In the
article [11], we show that under certain conditions the estimator sequences (TX

N )N and

(T̃X
N )N are asymptotically efficient for estimating SX .
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Figure 2.7: Empirical coverage for the asymptotic confidence intervals of S1 (top), S2

(middle) et S3 (bottom), as a function of the Monte Carlo sample sizeN , for the estimators
SN (left) and TN (right) with the exact model.
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Figure 2.8: Confidence interval width (multiplied by
√
N) for S1, S2 et S3, as a function

of N , for TN (solid line) and SN (dashed) with the exact model.
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Figure 2.9: Empirical coverage for the asymptotic confidence intervals of S1, S2 and S3,
as a function of the noise level β, for the gaussian-perturbated model f̃N .
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Numerical illustrations

The previous results are illustrated with the Ishigami function (see Ishigami and Homma
(1990))

f(X1, X2, X3) = sinX1 + 7 sin2X2 + 0.1X4
3 sinX1

where (Xj)j=1,2,3 are independent random variables following the same uniform distribu-
tion on [−π;π].

We denote by S1 the Sobol index SX1 with Z = (X2, X3), and similarly for S2 and
S3. The exact values of these indices are known:

S1 = 0.3139, S2 = 0.4424, S3 = 0.

To illustrate the previous results we will proceed as follows: we construct an asymp-
totic confidence interval at level 95%. To validate this interval the empirical coverage
is computed (as above in paragraph 2.2.2) by replicating R = 1000 confidence intervals.
The proportion of intervals containing the true value gives the empirical coverage, which
should be close to 95%.

Exact model. First we consider the estimators SX
N and TX

N with the exact model.
Figure 2.7 shows the empirical coverages obtained as a function of N . We note that these
probabilities tend to 0.95 when N tends to infinity, which shows the reliability of the
asymptotic confidence intervals.

Figure 2.8 compares the efficiency of SN and TN , showing the width of the confidence
interval (multiplied by

√
N) as a function of N . We see that TN is better than SN , except

for S3 for which we have S3 = 0.

Perturbed model. Then a model disturbed by Gaussian noise is considered

f̃N = f +
5ξ

Nβ/2

where β > 0 and ξ follows a standard normal distribution. We have δN = 5 ξ
Nβ/2 and

Var δN ∝ N−β , then

Cδ = O
(
Var (δN )1/2

)
= O

(
N−β/2

)
,

The proof of the theorem tells us that S̃N is asymptotically normal for S if β > 1/2. For
X1 and X2 we have the converse property, as Cδ ∼ N−β/2. For X3, we have Cδ = 0 and
S̃N is asymptotically normal for S whatever β > 0. Figure 2.8 illustrates this. We set N
large enough and the empirical coverage based is plotted as a function of β. We see that
this probability is close to 0.95 when β > 1/2 for S1 and S2, and for all β for S3.

Kriging metamodel. Then we consider a kriging metamodel, built from a training
sample of size n. The larger n is, the more accurate the metamodel, but also the more
expensive to build. Without going into details (we refer to [11]), we can prove that, under
some assumptions, the noise of such a metamodel satisfies

Var δ ≤ Ce−kn1/p

Maëlle Nodet Inverse problems for the environment



2.2 Global sensitivity analysis 107

where C and k are constants. Applying this to the Ishigami function and using exponential
regression to estimate the coefficients, we get

Var (δ) ≈ Ĉe−k̂n1/3
, k̂ = 1.91

This leads us to propose the following relation between n and N :

n = (a lnN)3

and the theorem tells us that we have asymptotic normality if a > 1/k̂, ie a > 0.52.
Although there is no evidence that this condition is necessary and sufficient, one can
nevertheless study the empirical coverage as a function of a (knowing that the theoretical
coverage is still 0.95 here):

a N n Empirical coverage for S1 for S2 for S3

.4 3000 33 0.1 0 0.7

.4 4000 37 0.08 0 0.78

.4 6000 43 0.26 0.3 0.88

.4 10000 51 0.28 0.18 0.78

.4 20000 77 0.28 0.1 0.59

.6 3000 111 0.79 0.37 0.9

.6 4000 124 0.8 0.7 0.94

.6 10000 169 0.92 0.82 0.94

.6 20000 210 0.93 0.85 0.95

.7 3000 177 0.93 0.88 0.93

.7 4000 196 0.9 0.91 0.94

.7 6000 226 0.94 0.93 0.97

.8 4000 293 0.95 0.95 0.95

and we see indeed a change of regime between a = 0.4 and a = 0.6.

Non-parametric regression. The article also provides another type of metamodel
(nonparametric regression) which gives the same kind of result. The advantage of this
metamodel is that it does not require the full model, but noisy observations suffice. The
downside is that this time n = Na, a > 1.16, which requires a larger learning sample for
the metamodel in order to get the asymptotic normality of the estimators.
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2.3 Back and Forth Nudging algorithm

In this section we summarise the works [5] and [7], in collaboration with D. Auroux and
J. Blum (Nice) on a new data assimilation algorithm, the back and forth nudging (BFN).

2.3.1 Presentation

Nudging

The algorithm of the back and forth nudging (BFN) was recently introduced by Auroux
and Blum (2005) as a data assimilation method which is extremely simple to implement.
This method is based on the nudging, also called Newtonian relaxation, or Luenberger
observer (linear case). The idea of nudging is to relax the model to the observations by
adding a feedback term in the second member of the PDE. If the evolution equation of
the model is written as:

dX

dt
= F (X), 0 < t < T, X(0) = s0

and observations are available Xobs(t) via an observation operator C, then the nudging is
written

dX

dt
= F (X)−K(C(X)−Xobs), 0 < t < T, X(0) = x0

where K is a positive coefficient (or matrix).
The theory of observers says that, under certain conditions and for an optimal choice

of K, the state X tends to the observations, when t tends to infinity. For geophysical
models, these assumptions are not valid, and we want results in finite time (the size of
the assimilation window is a few hours for NWP and a few weeks weather in the ocean).
However, the nudging has been used with some success in meteorology (Hoke and Anthes,
1976) and oceanography (Verron and Holland, 1989; Blayo et al., 1994).

BFN algorithm

The main idea of the BFN is: since it is limited to a finite time window, we would like to
correct this by making several successive nudging cycles on the same time window. To do
this, we need to have a corrected initial condition, thanks to backward nudging (Auroux,
2003):

dX̃

dt
= F (X̃) +K ′(C(X̃)−Xobs), T > t > 0, X̃(T ) = X(T )

where this time the model is backward in time, starting from the final condition X(T ),
and by changing the sign of the relaxation. Thus, a new initial condition X̃(0) is available,
which can be used to initiate a new phase of nudging.

The BFN algorithm is then written as (Auroux and Blum, 2005):

Initialise X̃0(0) = x0, then iterate until convergence, for k ≥ 1 :
{
∂tXk = F (Xk) +K(Xobs −H(Xk)),

Xk(0) = X̃k−1(0), 0 < t < T,

{
∂tX̃k = F (X̃k)−K ′(Xobs −H(X̃k)),

X̃k(T ) = Xk(T ), T > t > 0.

A detailed presentation of the algorithm, including its variational interpretation and
its relationship with the observers is available in Auroux (2008).
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2.3.2 Negative theoretical results

This section summarizes the section [5], in collaboration with D. Auroux (Nice).

Discussion

As might expect the reader who reads for the first time the BFN algorithm applied to
the heat equation, the backward equation can have stability problems in the presence of
viscosity. The first applications of BFN (Auroux and Blum, 2008; Auroux, 2009) however
show good numerical performance for models of varying complexity (Lorenz, Burgers,
quasi-geostrophic, Shallow-Water), even in the presence of viscosity. It turns out, however,
that the viscosity coefficients are very low, and the backward nudging coefficientK ′ is large
enough to compensate for the instability related to the backward Laplacian operator.

With D. Auroux we therefore studied the (non-)convergence of the algorithm in [5],
at least for transport equations (linear and Burgers). We managed to prove that in the
absence of viscosity convergence is assured. By cons, in the presence of viscosity we do
not have convergence anymore or even solutions to the backward equation, except in the
very special case where the state is observed everywhere and at all times (ie C = 1). We
state below the theorems obtained in the linear case, we have the same kind of results in
the non-linear case.

Non-viscous transport equation

Transport equation is considered




∂tutrue + a(x)∂xutrue = 0, (t, x) ∈ [0, T ]× Ω
utrue|x=0 = utrue|x=1,
utrue|t=0 = u0true,

where Ω is the torus R/Z, a(x) ∈ C1(Ω) and u0true ∈ C1(Ω) are both periodic in space. Un-
der these assumptions, we have existence and uniqueness of the solution utrue ∈ C1([0;T ]×
Ω).

Observations are available:

uobs(t, x) = utrue(t, x), if (t, x) ∈ ω; uobs(t, x) = 0, if (t, x) /∈ ω

ω = Support (K) ⊂ [0, T ]× Ω

The nudging constants K and K ′ ∈ C1([0;T ]×Ω) are positive and may depend on t and
x, and there exists a constant κ ∈ R

∗
+ such that K ′(t, x) = κK(t, x).

The equations of one step of BFN are written

(F )





∂tu+ a(x)∂xu = −K(u− uobs),
u|x=0 = u|x=1,
u|t=0 = u0,

(B)





∂tũ+ a(x)∂xũ = K ′(ũ− uobs),
ũ|x=0 = ũ|x=1,
ũ|t=T = u(T ),

Then we denote
(s, ψ(s, x))
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the characteristic curves of the forward equation with K = 0, with foot x at time s = 0,
ie such that

(s, ψ(s, x))|s=0 = (0, x)

The characteristics are well defined and do not intersect on [0, T ].
We have existence and uniqueness of classical solutions u and ũ ∈ C1([0;T ]× Ω). We

denote
w(t) = u(t)− utrue(t),
w̃(t) = ũ(t)− utrue(t).

With these assumptions and notations, we can now state the following theorem:

1. If K(t, x) = K constant in time and space, then for all t ∈ [0, T ] we have:

w̃(t) = w(t)e(−K−K′)(T−t).

2. If K(t, x) = K✶[t1,t2](t) with 0 ≤ t1 < t2 ≤ T , then we have:

w̃(0) = w(0)e(−K−K′)(t2−t1).

3. If K(t, x) = K(x), then for all t ∈ [0, T ] we have:

w̃(t, ψ(t, x)) = w(t, ψ(t, x)) exp

(
−
∫ T

t
K(ψ(s, x)) +K ′(ψ(s, x)) ds

)
.

In the latter case, the error decreases only when the characteristic intersect the support
ofK(x). Anyway, the equations of BFN are well posed, and if we have enough observations
in time and space, the error decreases (at least in observed areas).

Viscous transport equations

We consider this time the equation





∂tu− ν∂xxu+ a(x)∂xu = 0,
u|x=0 = u|x=1 = 0,

ut=0 = u0true

with:

• a(x) ∈W 1,∞(Ω);

• ν > 0 constant;

• u0true ∈ L2(Ω) and u0 ∈ L2(Ω).

Then we have existence and uniqueness of the solution utrue ∈ C0(0, T ;L2(Ω)) ∩
L2(0, T ;H1(Ω)). This solution is used to generate observations uobs as before.

Nudging coefficients with the same support ω as the observations are then defined:
K ∈ L∞([0;T ] × Ω) and K ′ ∈ L∞([0;T ] × Ω) are positive and there exists κ ∈ R

∗
+ such

that K ′(t, x) = κK(t, x), and we have Support (K) = Support (K ′) = ω ⊂ [0, T ]× [0, 1].
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One step of the BFN is written similarly:

(F )





∂tu− ν∂xxu+ a(x)∂xu = −K(u− uobs),
u|x=0 = u|x=1 = 0,

u|t=0 = u0,

(B)





∂tũ− ν∂xxũ+ a(x)∂xũ = K ′(ũ− uobs),
ũ|x=0 = ũ|x=1 = 0,

ũ|t=T = u(T ),

Assume that u0 ∈ L2(Ω) is given. We then have the following theorem:
The forward equation (F ) has a unique solution u ∈ C0(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)). In
addition:

1. If K(t, x) = K ∈ R, then equation (B) has a unique solution ũ ∈ C0(0, T ;L2(Ω)) ∩
L2(0, T ;H1(Ω)). Moreover, if we note

w(t) = u(t)− utrue(t),
w̃(t) = ũ(t)− utrue(t),

then for all t ∈ [0, T ] we have:

w̃(t) = e(−K−K′)(T−t)w(t)

2. If K(t, x) = K✶[t1,t2](t) with K ∈ R and 0 ≤ t1 < t2 ≤ T , then equation (B) also
has a unique solution ũ ∈ C0(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) and we have

w̃(0) = e(−K−K′)(t2−t1)w(0)

3. If K(t, x) = K(x), with Support (K) ⊂ [a, b] where a < b and a 6= 0 or b 6= 1, then
equation (B) is ill-posed: there does not exist, in general, a solution ũ, even in the
distributions sense.

Note that the existence of the backward solution strongly depends on the assumption
that complete observations are available in space, at least for a while. In practice, this is
of course not realistic, but nevertheless some observations (including satellites) have very
good spatial coverage.

2.3.3 Algorithm improvement

This section summarizes the section [7], in collaboration with D. Auroux and J. Blum
(Nice).

Starting point

Most geophysical models that are used in NWP and oceanography include viscous terms.
The intrinsic viscosity of the fluid is generally very small, so that we can consider that
the exact solution satisfies the inviscid equations. However, in practice viscous terms are
added to allow the parameterization of sub-grid phenomena, ie unresolved by the model.
Following the negative results [5] in the presence of viscosity, we proposed an improvement
of the algorithm in the short note [7]. The idea is simply to assume that the viscosity is
a numerical parameterization term, and thus change its sign in the backward equation.
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Diffusive BFN

We work in the context of geophysical Newtonian fluids (atmosphere, ocean). It is assumed
that the state of the system satisfies the following equation:

∂tX = F (X) + ν∆X, 0 < t < T, X(0) = x0

where the viscous terms are of the form ν∆X, assuming that F contains only terms of
transport (possibly non-linear) and also includes the boundary conditions. The observation
operator is denoted H, and observations Xobs(t) are available, to be compared to their
model equivalent H(X(t)).

For k ≥ 1 the diffusive BFN algorithm (D-BFN) is written

(F )

{
∂tXk = F (Xk) + ν∆Xk +K(Xobs −H(Xk))

Xk(0) = X̃k−1(0), 0 < t < T

(B)

{
∂tX̃k = F (X̃k)− ν∆X̃k −K ′(Xobs −H(X̃k))

X̃k(T ) = Xk(T ), T > t > 0

The change of sign makes the backward problem generally well posed, and then we have
convergence of the algorithm (see [7] for a proof in an idealized framework).

Applications

nx¼ 4 nx¼ 10 nx¼ 10
nt¼ 4 nt¼ 10 nt¼ 10

Unnoisy Unnoisy Noisy (15%)

BFN with !¼ 0 No. iterations 2 2 2
Relative RMS (%) 0.11 0.15 7.70

K 15 43 52
K

0 30 86 104
BFN with !¼ 0.001 No. iterations 3 3 3

Relative RMS (%) 0.15 0.34 8.62
K 17 45 55
K

0 34 90 110
BFN2 with !¼ 0.001 No. iterations 6 4 3

Relative RMS (%) 0.48 0.34 7.28
K 2 10 18
K

0 4 20 36

Figure 2.10: Comparison table between BFN and D-BFN for the Burgers equation without
shock with discrete and noisy observations, from Auroux et al. (2013) table 3.

The note [7] illustrates the algorithm in the elementary case of a transport equation
with complete observations. More comprehensive tests were carried out in the article
Auroux et al. (2013), where the authors propose to compare the BFN and D-BFN (called
BFN2 in the article) algorithms for the assimilation of noisy observations with the Burgers
equation without shock. Figure 2.10 shows the RMS errors obtained for three assimilation
methods:

1. BFN with ν = 0, ie the non-viscous Burgers quation,
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nx¼ 4 nx¼ 10 nx¼ 10
nt¼ 4 nt¼ 10 nt¼ 10

Unnoisy Unnoisy Noisy (15%)

BFN2 with !¼ 0.02 No. iterations 3 3 3
Relative RMS (%) 1.13 1.22 6.97

K 8 20 20
K

0 16 40 40

Figure 2.11: Comparison table between BFN and D-BFN for the Burgers equation with
shock with discrete and noisy observations, from Auroux et al. (2013) table 6.

2. BFN with ν = 0.001,

3. D-BFN with the same viscosity ν = 0.001,

and for three different data sets:

1. perfect observations, available every 4 grid points and every 4 time steps,

2. perfect observations, available every 10 grid points and every 10 time steps,

3. noisy observations, available every 10 grid points and every 10 time steps.

It was found that the D-BFN algorithm gives slightly better results in the case of noisy
observations, and it especially allows to use lower nudging constants.

More interestingly, the authors then consider the Burgers equation with shock. In this
case, the BFN does not converge, while the D-BFN gives good results (see Figure 2.11).
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2.4 Experimental study of the HUM method for waves

This paragraph presents works done in collaboration with G. Lebeau (Nice) about the
control of the wave equation. The idea of this work was both to propose a numerical method
and to use it to illustrate recent theoretical results. We first present the waves controlability
problem and the HUM method, then we describe the numerical method and finally we show
some numerical results. This section is directly pasted from the works [4] and [14].

Controllability of linear waves

For a given f = (u0, u1) ∈ H1
0 (Ω) × L2(Ω), the problem is to find a source v(t, x)∈

L2(0, T ;L2(Ω)) such that the solution u = S(v) of the linear wave equation




�u = χv in ]0,+∞[×Ω
u|∂Ω = 0, t > 0

(u|t=0, ∂u|t=0) = (0, 0)
(2.7)

reaches the state f = (u0, u1) = (u(T, .), ∂tu(T, .)) at time T , where:

• Ω is a bounded open subset of Rd,

• the “control domain” U is a non empty open subset of Ω,

• χ(t, x) = ψ(t)χ0(x) where χ0 is a real L∞ function on Ω, such that support(χ0) = U
and χ0(x) is continuous and positive for x ∈ U , ψ ∈ C∞([0, T ]) and ψ(t) > 0 on ]0, T [.

The reachable set at time T is the subspace of H = H1
0 (Ω)× L2(Ω):

RT = {f = (u0, u1) ∈ H, ∃v, (S(v)(T, .), ∂tS(v)(T, .)) = (u0, u1)}.

Then we have approximate controllability if RT is dense in H and exact controllability if
RT = H.

The HUM method

The Hilbert Uniqueness Method (HUM) of Lions (1988) consists in choosing the function
v with L2-minimal norm. Then v is necessarily of the form χ∂tw where w is a solution of
the dual control problem:





�w = 0 in ]0,+∞[×Ω
w|∂Ω = 0, t > 0

(w|t=T , ∂tw|t=T ) = (w0, w1) = h ∈ H = H1
0 (Ω)× L2(Ω)

The HUM control operator is then defined by

Λ :
H → H

f = (u0, u1) 7→ h = (w0, w1)

Let A = A∗ be the operator on H = H1
0 (Ω)× L2(Ω) defined by

iA =

(
0 Id
∆ 0

)
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Let λ =
√−∆D. Then (2.7) becomes (∂t − iA)u = B(t)v with

B(t) =

(
0 0

χ(t, .)λ 0

)
, B∗(t) =

(
0 λ−1χ(t, .)
0 0

)

Then we have exact controlability iff

∃C > 0,MT =

∫ T

0
eitAB(T − t)B∗(T − t)e−itA∗

dt ≥ C Id

And in that case we have
Λ =M−1

T

Geometric control condition

We recall that the source v in (2.7) is multiplied by χ(t, x) = ψ(t)χ0(x), where χ0 ∈ L∞(Ω),
such that support(χ0) = U and χ0(x) is continuous and positive for x ∈ U , ψ ∈ C∞([0, T ])
and ψ(t) > 0 on ]0, T [. We also assume that there is no contact of infinite order between
∂Ω and the optical rays of the wave operator in the free space. Let us recall the Geometric
Control Condition (GCC) of C. Bardos, G. Lebeau and J. Rauch (Bardos et al., 1992):
every geodesic ray of Ω traveling with speed 1 and starting at t = 0 enters the open set
U = {x ∈ Ω, χ0(x) 6= 0} in time t < T .
We then have the theorem (Bardos et al., 1992): if χ and T are such that the GCC
condition holds true, then MT is an isomorphism, i.e. one has exact controlability (RT =
H).

2.4.1 Numerical method

In previous works, Glowinski et al. (1990) first discretize the continuous wave equation,
then compute the control of the discrete system. As precisely studied by Zuazua (2002,
2005), the discrete model is not uniformly exactly controllable when the mesh size goes
to zero, and the interaction of waves with the numerical mesh produces spurious high
frequency oscillations. In other words, the processes of numerical discretization and control
do not commute for the wave equation. Thus, some multi-grid methods were developed to
overcome this problem, see e.g. Glowinski et al. (2008); Asch and Lebeau (1998). Here we
propose to implement the “control, then discretise” approach. A summary is presented
below, and we refer to [4] for more details.

Let (ω2
j ) be the sequence of −∆D eigenvalues, and (ej) the associated orthonormal

basis of L2(Ω):
−∆ej = ω2

j ej , ej |∂Ω = 0

For a given cutoff frequency ω, we define

L2
ω = Span{ej , ωj ≤ ω}

and we denote by Πω the orthogonal projector on L2
ω, which obviously acts also on H =

H1
0 × L2:

Hω = Πω(H
1
0 × L2)

and we define the matrix MT,ω:

MT,ω = ΠωMTΠω, MT,ω,n,m = (MTφn|φm)H
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Figure 2.12: View of the logarithm of the coefficients of the matrix
J
[
((MT )

−1)ω − ((MT )ω)
−1

]
J−1 = J

[
Λω − ((MT )ω)

−1
]
J−1 with smooth control. The

MT matrix is computed with 2000 eigenvalues, the cutoff frequency ω is equal to the
500th eigenvalue.

where (φn) is an orthonormal basis of Hω.
Let us recall that Λ =M−1

T and MT,ω = ΠωMTΠω.
Then we can show that MT,ω is invertible on Hω and ‖M−1

T,ω‖ is bounded uniformly in ω
(because of exact controlability). Under GCC we have the following result:
There exists c > 0 such that for all f ∈ H:

‖Λ(f)−M−1
T,ω(fω)‖H ≤ c‖f − fω‖H + ‖Λ(fω)−M−1

T,ω(fω)‖H

with fω = Πωf and limω→∞ ‖Λ(fω)−M−1
T,ω(fω)‖H = 0.

In other words, the processes of Galerkin approximation and inversion “almost” com-
mute forMT . This can be seen in Figure 2.12, which represents the operator ((MT )

−1)ω−
((MT )ω)

−1. See ? for details.

2.4.2 Experimental study of HUM operator properties

We implemented in fortran 90 (and Matlab) the method presented above.
We implemented the algorithm for various 2D domains. We present here only the

square geometry (see [4] for other examples). For each geometry, we choose a standard
control domain U satisfying the geometric control condition. Figure 2.13 presents the
geometry and control domain. As it has been proven by Dehman and Lebeau (2009)
that the operator Λ has good properties when the control function χ(t, x) is smooth, we
considered two cases: non-smooth control χ(t, x) = 1[0,T ]1U ; smooth control χ(t, x) =

ψ(t)χ0(x) with ψ(t) = 4t(T−t)
T 2 1[0,T ] and similar smoothin for χ0(x). Figure 2.13 presents

the smoothed control domains as well.
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control domain smooth control domain

Figure 2.13: Geometries (green) and control domains (brown), without (left) or with
(right) smoothing.

Figure 2.14: Impact of smoothing on MT,ω: view of the logarithm of the coefficients of
MT,ω, for the square when GCC is valid, with smooth control on the left, non-smooth
control on the right (same color scaling).
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Figure 2.15: Frequency localization experiment in the square: localization of the Fourier
frequences of (w0, w1) (left, right) for a given time T and a given domain U without
smoothing (left) and with time- and space-smoothing (right). The x-coordinate represents
the eigenvalues. The target data u0 is equal to the 50-th eigenvector (eigenvalue of about
26.8), and u1 = 0.

Regarding smoothing, figure 2.14 presents the coefficients of the MT matrix with and
without smoothing, with the same color scale. We clearly see that the coefficients decrease
outside of the diagonal is much faster with smoothing than without.

Frequency localization

As an example of the experimental studies we have done, we show here one property of the
HUM operator: the frequency localization, and the impact of smoothing on this property.
We refer to ? for an extended study of the HUM control operator.
The theoretical result states as follows (we refer to Dehman and Lebeau (2009); Lebeau
(1992) for the details). Let ψk(D), k ∈ N, be the spectral localization operators associated
to the Littlewood-Paley decomposition:

ψk(D)(
∑

j

ajej) =
∑

j

ψk(ωj)ajej , Sk(D) =
k∑

j=0

ψj(D), k ≥ 0

Assume that the geometric control condition holds true, and that the control function
χ(t, x) is smooth. There exists C > 0 such that for every k ∈ N, the following inequality
holds true

‖ψk(D)Λ− Λψk(D)‖H ≤ C2−k

‖Sk(D)Λ− ΛSk(D)‖H ≤ C2−k

Figure 2.15 shows the consequence of this result on the one-mode experiment, ie when the
target data f = (u0, u1) (to be reached) is equal to an eigenvector. We can see that the
control (w0, w1) is almost equal to the same eigenvector, illustrating the above property.
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Figure 2.16: Space localization of the control function w0 (bottom panels) with respect
to the data u0 (top panels), in the square, with smoothing. Left panels represent 3D view,
and right panels show contour plots.

Space localisation

Regarding space localisation, we do not have theoretical results. However, the figure 2.16
is an example in which the support of the control w0 is identical to the target u0. We have
plenty of other examples, with/without smoothing, in other geometries and with other
targets (see [4]) that could let us think that MT could be a microlocal operator. That
would mean it would actually preserve space as well as frequency localisation.
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Maëlle Nodet Inverse problems for the environment



Future directions

Short-term directions

Each of my current research directions offers naturally short-term future questions, con-
sisting in pursuing, deepening or improving current work. I list them quickly below:

� Small scale glaciology (Elmer/Ice):

� improve the approximate gradient,

� improve the algorithms,

� include bedrock topography control,

� implement the BFN.

� Large scale glaciology (Winnie, GRISLI):

� add more physics in Winnie for both Kalman and 4D-Var,

� get the full adjoint,

� move to GRISLI,

� implement the BFN.

� Lagrangian data: propose an applicatio to real data (e.g., Black Sea).

� Image sequences: carry on the study of observation error covariance matrices.

� Sensitivity analysis and model reduction: study a more realistic geophysical problem,
e.g. Shallow-Water equations.

� BFN:

� algorithm improvements,

� implementation in glaciology.

� HUM: application to a real problem of non destructive control or medical imaging
(defect or source localisation).
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Mid-term directions

Regarding middle-term future work, a few directions seem particularly interesting to me.

Image sequences assimilation. First about image assimilation, we would like to study
another type of distance to measure the observation-model misfit, more adapted to struc-
ture tracking. In particular the optimal transportation theory seems promising. The
Wasserstein distance between two images measures the transportation cost from one im-
age to the other. This notion was introduced by G. Monge, who had to optimise displace-
ments between excavated materials and backfill zones, ie find the optimal way minimising
transportation cost. The cost thus depends on the mass to be moved and the distance to
cover. The Wasserstein distance between two images ρ0 and ρ1 (seen as densities) is given
by:

W 2
2 (ρ0, ρ1) = inf

M satisfies (E)

∫
|M(x)− x|2ρ0(x) dx

where (E) is the following non linear constraint

(E) : det(∇M(x))ρ1(M(x)) = ρ0(x)

This distance notion seems more appropriate for image data assimilation. Indeed,
contrary to the L2 distance, where images are compared pixel by pixel, this distance takes
into account the distance between structures supports. As it does not derive from a scalar
product, the classical optimal control theory cannot apply. However, we still would like
to do data assimilation, by computing the derivative of the distance with respect to the
images, in order to implement a gradient descent method. This work, both theoretical
and numerical, will be the subject of a PhD starting in November.

Glaciology. Second, in glaciology it is well known that (at least in some cases) the
joint assimilation of bedrock and basal friction is imossible. Indeed, in an idealised con-
figuration, a deep bedrock with few sliding leads to the same surface velocities as a higher
bedrock with more sliding. In this framework, the problem is not controlable. I would like
to study this problem in the general case, at least numerically if theory is too complex.

Then we would like to try and overcome this non-controlability issue. A way to do so
would be to add a coupling with bedrock temperature and geothermal flux. This would give
a temperature information at the base, which should help discriminating sliding/grounded
zones.

Another solution, more complex theoretically, would be to study the full thermome-
chanically coupled model, in which the temperature field into the ice is coupled to the
dynamics. Similarly, this would lead to additional information regarding the nature of the
basal conditions, maybe leading to the loss of non-controlability.
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Applications to biology and ecology

Finally, I am also interested in other environmental topics, in particular related to biology
and ecology.

Fluid-biology coupling. On this subject A. Rousseau (MOISE) and I started to study
a lake depolluting problem. The problem states as follows: water is taken out of the lake
to a bioreactor, where bacteria eat the polluting material. They are then decanted, and
“clean” water is taken back to the lake, according to the following scheme1:

Fig. 1. Interconnection of the bioreactor with the resource.

The question is then to identify the optimal pump flow taking water from the lake. This
problem has been studied before1 in a somewhat simplified framework where the transport
of the pollutant in the lake is assumed to follow an ordinary differential equation. With A.
Rousseau we would like to study the problem in a more realistic framework, where fluid
flow is taken into account with Navier-Stokes PDE. The model we consider represents the
coupling between:

� fluid flow in the lake (with pump input/output flow),

� diffusion-transport of the pollutant by the fluid in the lake,

� pollutant consumption by bacteria in the bioreactor,

� bacteria population evolution in the bioreactor.

In this model we have one unknown parameter: the pump flow between the lake and the
bioreactor. We would like to study and implement a variational assimilation method to
identify the optimal value, maximising the depollution at final time.

We could also apply A. Janon thesis results to study a littoral ocean - marine biology
coupled problem. Such models have many unknowns and could benefit from recent cal-
ibration tools. Sensitivity analysis could help to identify the most sensitive parameters,
before calibration thanks to data assimilation could be implemented.

1P. Gajardo, J. Harmand, H. Ramı́rez C., A. Rapaport, Minimal time bioremediation of natural water

resources, Automatica, 2011
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Ecology. I am also interested in other subjects, in particular related to ecological
agriculture:

� agroecology: soil microbiology modelling, in relation to hydrologie and plants;

� agroforestry: coupling between trees–agriculture–hydrology–soil

in order to better protect crops, to improve pest control, better understand interactions be-
tween various components (plants, minerals, soil biomass, hydrology, and so on). In these
domains we can find modelling questions, as well as model calibration and optimisation /
data assimilation, and I will soon develop collaborations on some of these subjects.
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