
HAL Id: tel-00931001
https://theses.hal.science/tel-00931001v2

Submitted on 7 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling functional and non-functional properties of
systems based on a multi-view approach

Carlos Ernesto Gómez Cárdenas

To cite this version:
Carlos Ernesto Gómez Cárdenas. Modeling functional and non-functional properties of systems based
on a multi-view approach. Other [cs.OH]. Université Nice Sophia Antipolis, 2013. English. �NNT :
2013NICE4153�. �tel-00931001v2�

https://theses.hal.science/tel-00931001v2
https://hal.archives-ouvertes.fr

UNIVERSITÉ NICE - SOPHIA ANTIPOLIS

ÉCOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION

ET DE LA COMMUNICATION

T H È S E
pour l’obtention du grade de

Docteur en Sciences

de l’Université Nice - Sophia Antipolis

Mention : Informatique

presentée et soutenue par

Carlos Ernesto Gómez Cárdenas

Une approche multi-vue pour la
modélisation système de

propriétés fonctionnelles et
non-fonctionnelles

Modeling Functional and Non-Functional Properties of

Systems Based on A Multi-View Approach

Thèse dirigée par: Frédéric Mallet

et encadrée par: Julien DeAntoni

soutenue le 20 décembre 2013

Jury :

M. Frédéric Boulanger Prof. SUPÉLEC Rapporteur

M. Abdoulaye Gamatié C.R. LIRMM-CNRS Rapporteur

M. Michel Auguin D.R. LEAT-CNRS Examinateur

M. Jean-Philippe Diguet D.R. LabSTICC-CNRS Examinateur

M. Frédéric Mallet M.C. INRIA/I3S-CNRS Directeur de Thèse

M. Julien DeAntoni M.C. INRIA/I3S-CNRS Encadrant

A mis padres, mi hermana y mi Tita...

“Il y a des hommes qui luttent un jour et qui sont bons.

Il y en a d’autres qui luttent un an et qui sont meilleurs.

Il y en a qui luttent pendant des années et qui sont excellents.

Mais il y en a qui luttent toute leur vie et ceux-là sont indispensables.”

“There are men who struggle for a day and they are good.

There are men who struggle for a year and they are better.

There are men who struggle many years, and they are better still.

But there are those who struggle all their lives:

These are the indispensable ones.”

“Hay hombres que luchan un día y son buenos.

Hay otros que luchan un año y son mejores.

Hay quienes luchan muchos años y son muy buenos.

Pero hay los que luchan toda la vida, esos son los imprescindibles.”

Bertolt Brecht

Résumé

Au niveau système un ensemble d’experts spécifient des propriétés fonctionnelles et

non fonctionnelles en utilisant chacun leurs propres modèles théoriques, outils et envi-

ronnements. Chacun essaye d’utiliser les formalismes les plus adéquats en fonction des

propriétés à vérifier. Cependant, chacune des vues d’expertise pour un domaine s’appuie

sur un socle commun et impacte directement ou indirectement les modèles décrits par les

autres experts. Il est donc indispensable de maintenir une cohérence sémantique entre

les différents points de vue et de pouvoir réconcilier et agréger chacun des points de vue

avant les différentes phases d’analyse.

Cette thèse propose un modèle, dénommé PRISMSYS, qui s’appuie sur une approche

multi-vue dirigée par les modèles et dans laquelle pour chacun des domaines chaque

expert décrit les concepts de son domaine et la relation que ces concepts entretiennent

avec le modèle socle. L’approche permet de maintenir la cohérence sémantique entre les

différentes vues à travers la manipulation d’événements et d’horloges logiques. PRISM-

SYS est basé sur un profil uml qui s’appuie autant que possible sur les profils SysML,

dédié à l’ingénierie système, et marte, dédié à la conception de systèmes temps-réel

embarqués. Le modèle sémantique qui maintient la cohérence est spécifié avec le langage

ccsl qui est un langage formel déclaratif pour la spécification de relations causales et

temporelles entre les événements de différentes vues.

L’approche est illustrée en s’appuyant sur une architecture matérielle dans laquelle le

domaine d’analyse privilégié est un domaine de consommation de puissance. Le modèle

contient différentes vues de cette architecture : modèle fonctionnel, modèle architectu-

ral, modèle équationnel de propriétés liées à la température et à la puissance, modèle

temporel. L’environnement proposé par PRISMSYS permet la co-simulation du modèle

et l’analyse. La simulation s’appuie conjointement sur TimeSquare pour les aspects

événementiels et liés au contrôle, et sur SciLab pour la prise en compte des propriétés

non-fonctionnelles (température et puissance). L’analyse est conduite en transformant

le modèle multi-vue dans un format adéquat pour Aceplorer, un logiciel expert dédié à

l’analyse de consommation.

Abstract

At the system-level, experts specify functional and non-functional properties by em-

ploying their own theoretical models, tools and environments. Such experts attempt to

use the most adequate formalisms to verify the defined system properties in a specific

domain. Nevertheless, each one of these experts’ views is supported on a common base

and impacts directly or indirectly the models described by the other experts. As a con-

sequence, it is essential to keep a semantic coherence among the different points of view

and also to be able to reconcile and to include all the points of view before undertaking

the different phases of the analysis.

This thesis proposes a specific domain model named PRISMSYS. This model is based

on a model-driven multi-view approach where the concepts, and the relationships be-

tween them, are described for each expert’s domain. Moreover, these concepts maintain

a relation with a backbone model. PRISMSYS allows keeping a semantic coherence

among the different views by means of the manipulation of events and logical clocks.

PRISMSYS is represented in a uml profile, supported as much as possible by SysML,

devoted to the systems engineering, and marte, dedicated to the design of real-time

embedded systems. The semantic model, which preserves the view coherence, is spec-

ified by using ccsl, a declarative formal language for the specification of causal and

temporal relationships between events of different views.

The approach is illustrated taking as case study an electronic system, where the main

domain analysis is power consumption. The system model incorporates various views:

a functional model, a power model, a time performance model and a thermal model. In

turn, these views are divided in three parts: control, structural, and equational. These

parts interact with each other to characterize the temperature and power consumption

of the system. The environment proposed by PRISMSYS allows the co-simulation of

the model and its analysis. The simulation is supported by TimeSquare, for the event

aspects and correlated to the control, and by SciLab, for taking into account the non-

functional properties (temperature and power consumption). The analysis is conduced

by transforming the multi-view model in the internal format accepted by Aceplorer, an

expert tool dedicated to power consumption analysis.

Acknowledgements

This Ph.D. has been a very rewarding experience, both in a personal and professional

level for me. It is not only an end, but also the incredible journey it has represented.

I hope I will find the right words to properly express my gratitude and recognition

to everyone who, directly or indirectly, participated in this work. I will try my best.

To begin with, I owe my gratitude to Frédéric Boulanger, Abdoulaye Gamatié, Michel

Auguin and Jean-Philippe Diguet, for accepting and evaluating my thesis. I appreciate

their comments and the improvement suggestions for this research. To my advisors,

Frédéric Mallet and Julien DeAntoni I am deeply in debt. Throughout these years,

Frédéric has shared his researching experience with me, he has given me an external

optic of my work, and showed me how I could improve it; but above all he has taught

me the importance of presenting my ideas written in a clear and proper way. Julien

has been beside me during all the development process of my thesis, he has been a

continuous guide, who helped me to address and improve my research. I appreciate

all the time he has granted me, his permanent availability and also his willingness to

redress my initial writing and presentation skills. I am very grateful for their patience

and their personal and professional support when I have needed it throughout these last

three years.

I want to thank the STIC Doctoral School and the University of Nice-Sophia Antipolis

for having rewarded me with the scholarship to develop this thesis. I cherished the

opportunity I had of teaching at the Computer Science Department of the University

during the last two years. I am deeply grateful to INRIA and I3S/CNRS laboratories

who provided the resources and all the administrative support for this research project.

I would also express my gratitude and recognition to the French Ministry of Higher

Education and Research who provided these scholarships to promote the development

of our research. In particular, I would like to express my great appreciation to Patricia

Lachaume, our assistant, who has been very attentive, kind and extremely helpful. For

our good fortune, she is strongly influenced with the Colombian warmth.

It has been a pleasure for me, to work in the AOSTE team during these years. I would

like to address my special thanks to Charles André, who read and commented my first

manuscript version, I miss his questions on Spanish grammar, always difficult to answer.

My gratitude to Robert de Simone for welcoming me in the team, and also integrating

me to the ANR-HELP project, which was in part an inspiration for this thesis; to Marie-

Agnès Peraldi and Arda Goknil for their interest and feedback, to Matias Vara I will

miss our discussions about our research, to Kelly Garcés and Ameni Khecharem for their

help during the implementation of my work. I also want to thank Jean-Vivien, Sid, Jeff,

v

Calin, Regis, Luc, Nicolas, Benoit, Amin, Emilien, Yuliia, Ling and Zhichao for sharing

these years in the group. Thanks to each and every one of you, I was able to find what

I was looking for in a research team, and I am extremely glad of sharing it with you.

To the people who motivated me to follow this graduate formation, Philippe Esteban,

Jean-Claude Pascal, Mario Paludetto, Fernando Jimenez and Nicanor Quijano. Thank

you very much for showing me that it was really possible to begin this journey full of

promises and dreams. Now I know it has been worth it.

I am in gratitude with the Docea Power technical support for its help in the use of

Aceplorer. I also want to thank to the Arcsis-CIM PACA program to provide the access

to the Aceplorer tool.

Finally, some words in Spanish...

Quiero dar infinitas gracias a mi papá y a mi mamá que me han acompañado y apoyado

durante todos estos años, por darme la fuerza y el valor de seguir adelante todos los días

y así haber hecho de mi la persona que soy hoy, de la que espero se sientan orgullosos. A

mi hermana Carola con quien siempre he contado y con quien nos apoyamos y ayudamos

a salir adelante, sobre todo cuando las cosas no han estado tan bien y nos reírnos cuando

si lo están, aunque no parezcan. A mis tíos, quienes han sido un gran soporte para mí

en Colombia, a mis abuelos por quererme tanto y a mis primos. Me siento muy feliz de

tener la familia que tengo y los quiero mucho.

Hoy al cierre de mi tesis tengo mucho que agradecerles, a Kelly, Michael, Camilo, Clara,

Oscar, Ruby y Rafael, por acompañarme y apoyarme duranten estos tres años. A Carlos

Quintero por ser un gran amigo y hermano desde que llegamos a Francia. A a mis her-

manas la Beba y Eugenia y mi segunda mamá Rosario por su soporte y ánimo. A Rebeca

por hacernos más agradable nuestra estancia en Europa. A Isabel y Françcois por su

apoyo incondicional. Finalmente, a mi esposa Margarita, que siempre será mi novia, por

haberse aventurado conmigo en este sueño, por su paciencia, su apoyo, sus correcciones,

por leer toda mi tesis, muchas veces, y por ser tú. Tita, gracias por mostrarme que los

sueños se pueden alcanzar. Te amo.

Contents

Résumé III

Abstract IV

Acknowledgements V

List of Figures X

List of Tables XII

Abbreviations XIII

1. Introduction (Version en Français) 1

1. Introduction 5

2. Background 9
2.1. Introduction . 10
2.2. Structural Concerns . 10

2.2.1. Multi-View Modeling . 11
2.2.2. Multi-View Approaches and Model Composition 15
2.2.3. Discussion . 23

2.3. Behavioral Concerns . 24
2.3.1. Models of Computation . 25
2.3.2. Heterogeneous Models . 27
2.3.3. Discussion . 29

2.4. Conclusion . 30

3. PRISMSYS: A Multi-View Modeling Language for Specifying Sys-
tems 31
3.1. Introduction . 32
3.2. PRISMSYS Framework . 33

3.2.1. Structural SubView . 40
3.2.2. SubView Element . 41
3.2.3. Equational SubView . 43
3.2.4. Control SubView . 46

3.3. UML Profile for PRISMSYS . 49

vii

Contents viii

3.3.1. UML Concepts for PRISMSYS 50
3.3.2. MARTE Concepts for PRISMSYS 54
3.3.3. SysML Concepts for PRISMSYS 55

3.4. Semantics of Execution . 56
3.4.1. Finite State Machine Semantic Specification 58

3.4.1.1. Finite State Machine Clocks 58
3.4.1.2. Finite State Machine Clocks Relationship 59

3.4.2. Equational View Semantic Specification 64
3.5. Conclusion . 69

4. Power Consumption Modeling 71
4.1. Introduction . 72
4.2. Dynamic Power Consumption . 73
4.3. Static Power Consumption . 74
4.4. Characterization for Power Consumption 75
4.5. Power Management Techniques . 77

4.5.1. Clock-Gating . 78
4.5.2. Power-Gating . 78
4.5.3. Dynamic Voltage-Frequency Scale 80

4.6. Power Design Specification . 81
4.6.1. UPF, CPF and IEEE 1801 . 81
4.6.2. SystemC . 84
4.6.3. UML . 84

4.7. Discussion . 85
4.8. Conclusion . 86

5. PRISMSYS Framework for Power-Aware Modeling 87
5.1. Introduction . 88
5.2. Views . 89

5.2.1. Hardware View . 89
5.2.2. Application View . 92
5.2.3. Power View . 93
5.2.4. Clock View . 99
5.2.5. Thermal View . 102

5.3. Correspondences . 105
5.3.1. Allocation . 106

5.4. Sub-Correspondences . 107
5.5. Conclusion . 108

6. PRISMSYS Power-Aware Model Analysis 111
6.1. Introduction . 112
6.2. PRISMSYS Power-Aware Model Simulation 112

6.2.1. Scilab Solver . 113
6.2.2. The PRISMSYS Power-Aware Model Scenario 115

6.2.2.1. Application View . 115
6.2.2.2. Hardware View . 121
6.2.2.3. Clock View . 125

Contents ix

6.2.2.4. Power View . 129
6.2.2.5. Thermal View . 133

6.3. PRISMSYS Power-Aware Model Analysis in Aceplorer 135
6.3.1. Transformation Overview . 136
6.3.2. Aceplorer Domain Model . 137
6.3.3. PRISMSYS to Aceplorer Transformation 139
6.3.4. Aceplorer Code Generation . 140
6.3.5. Test Scenario Generation . 140

6.4. Conclusion . 144

7. Conclusion (Version en Français) 145
7.1. Perspectives . 147

7. Conclusion 149
7.1. Future works . 151

List of Figures

2.1. Conceptual model for the system architecture context from [2]. 11
2.2. Multi-view modeling according to IEEE-42010. 12
2.3. Architecture Framework concept model [2] 13
2.4. Abstraction levels in MDE. 14
2.5. Abstraction levels of IEEE-42010 concepts [17]. 15
2.6. Relationship between modeling approaches and specific domains. 18
2.7. Petri Net meta-model and a Petri Net model example. 26
2.8. Composition between Synchronous Data Flow and Finite State Machine

in Ptolemy II. 28

3.1. PRISMSYS Framework meta-model. 34
3.2. Relationship between Abstraction correspondence and viewElement. . . 36
3.3. Component meta-model and its relationship with View, SubView, Sub-

ViewElement and ConnectorCorrespondence. 37
3.4. Correspondences and Sub-Correspondences in PRISMSYS Framework. . 39
3.5. Example of structuralSubViews including the abstraction correspondence. 41
3.6. SubViewElement meta-model. 42
3.7. EquationalSubView meta-model. 44
3.8. EquationalSubView Example . 45
3.9. Example of the characterization and equivalence correspondences use. . 46
3.10. Controller meta-model . 47
3.11. Example of the use of ControlSubView to control the water level of a tank. 48
3.12. Simplified meta-model of EncapsulatedClassifier. 52
3.13. State stereotype. 53
3.14. Abstraction of CPU in a layout component view. 54
3.15. Simplified Constraint Block meta-model from the SysML specification. . 56
3.16. Representation of an active state by clocks 60
3.17. Representation of the clock ticks leading to a change between two states

caused by a guardEvent. 61
3.18. Representation of the clock ticks leading to a change between two states

caused by a triggerEvent. 63
3.19. PRISMSYS model where the temperature of a CPU is characterized in

the equationalSubView. 66
3.20. Temperature evolution through time according a predefined execution

scenario. 69

4.1. CMOS inverter circuit. 72
4.2. Leakage currents of a NMOS transistor. 74

x

List of Figures xi

4.3. Example of a clock gating implementation. 78
4.4. Example of a power gating implementation. 79
4.5. Example of a retention register. 79
4.6. Example of Power Domain association. 83

5.1. Hardware View meta-model. 90
5.2. Hardware View of the PRISMSYS power-aware model. 91
5.3. Application View Meta-model. 92
5.4. Application View of the PRISMSYS power-aware model. 93
5.5. Power View Meta-model. 94
5.6. Power View of the PRISMSYS power-aware model without including its

equationalSubView. 96
5.7. EquationalSubView of PowerView. 98
5.8. Clock View Meta-model. 100
5.9. Clock View of the PRISMSYS power-aware model without including its

equationalSubView. 101
5.10. Equational Sub-view of Clock View. 102
5.11. Thermal view Meta-Model. 103
5.12. Thermal view of the PRISMSYS power-aware model. 104
5.13. Equational Sub-View of Thermal View. 105
5.14. Example of the Abstraction and ControlConnector correspondences be-

tween PowerView and HardwareView. 106
5.15. Example of Allocation correspondence between ApplicationView and Hard-

wareView. 107
5.16. Example of Characterization sub-correspondence in PowerView. 108
5.17. PRISMSYS Power-Aware Model Overview. 110

6.1. Overview of the PRISMSYS framework co-simulation implementation. . 113
6.2. Sequence diagram of the PRISMSYS model Simulation. 114
6.3. Execution of ApplicationView and its interaction with HardwareView. . 116
6.4. ApplicationView simulation in TimeSquare. 120
6.5. Execution of the HardwareView controlSubView and its interaction with

ApplicationView, PowerView and ClockView. 122
6.6. HardwareView simulation in TimeSquare. 124
6.7. Execution of the ClockView controlSubView and its interaction with its

internal subViewElements and with HardwareView. 126
6.8. ClockView simulation in TimeSquare. 128
6.9. Execution of the HardwareView controlSubView and its interaction with

ApplicationView, PowerView and ClockView. 130
6.10. Power View simulation in TimeSquare. 132
6.11. Thermal View simulation in TimeSquare. 134
6.12. Transformation Overview. 137
6.13. Simplified Aceplorer meta-model. 138
6.14. Control View Scenario generated by TimeSquare (above) and the power

consumption response in Aceplorer (below). 143

List of Tables

3.1. PRISMSYS - UML Mapping. 51
3.2. PRISMSYS - MARTE Mapping. 54
3.3. PRISMSYS - SysML Mapping. 56
3.4. Clocks representing the relevant actions in a Finite State Machine for

both SubViewElement and Controller. 59

6.1. Action execution in cpu clock cycles and time. 126
6.2. Multi-View - Aceplorer Mapping. 139

xii

Abbreviations

ATL ATLAS Transformation Language

CPF Common Power Format

CTM Compact Thermal Model

DVFS Dynamic Voltage-Frequency Scale

DSML Domain Specific-Modeling Languages

ESL Electronic System-Level

FSM Finite State Machine

HDL Hardware Description-Language

MARTE Modeling and Analisis of Real Time and Embedded Systems

MDA Model-Driven Architecture

MDE Model-Driven Engineering

MOF Meta Object Facility

MoC Model of Computation

NFP Non-Functional Property

EMF Eclipse Modeling Framework

QVT Query View Transformation

RTL Register-Transfer Level

SysML Systems Modeling Language

TLM Transaction-Level Modeling

UML Unified Modeling Language

UPF Unified Power Format

VCD Value Change Dump

VHDL VHSIC Hardware Description Language

VSL Value Specification Language

xiii

Chapitre 1

Introduction (Version en

Français)

La notion de système englobe des environnements plus ou moins complexes. Les té-

léphones filaires autrefois limités à l’aspect communication ont été remplacés par les

téléphones GSM qui combinent l’envoi de texto, le guidage GPS des utilisateurs, la lec-

ture d’un journal et/ou d’un livre ou encore la navigation sur Internet. Les systèmes ont

aussi été mis-à-jour avec une technologie plus sophistiquée, où l’optimisation de certaines

propriétés est une priorité aujourd’hui. Les systèmes électroniques sont maintenant in-

tégrés dans les voitures, les avions, les bateaux et les trains. Ces systèmes numériques se

veulent plus efficaces et plus flexibles que les systèmes purement mécaniques en aidant

à réduire la consommation de carburant, les coûts de maintenance et en améliorant la

qualité fonctionnelle.

Dans le but de gérer la complexité des systèmes modernes, les architectes des systèmes

divisent les aspects en plusieurs domaines. Chaque domaine est conçu, étudié et ana-

lysé par des experts spécifiques qui s’y intéressent spécifiquement. Ces préoccupations

sont quantifiées par les propriétés établies dans le cahier des charges du système. Ces

propriétés peuvent être soit fonctionnelles (arrêter une voiture quand la pédale du frein

est appuyée), ou non fonctionnelles (déterminer un budget sur la consommation de

puissance et de carburant, les temps de réponse, la taille et les coûts). Habituellement,

les experts ont leurs propres langages et outils pour modéliser et analyser un domaine

1

Chapitre 1. Introduction (Version en Français) 2

spécifique. Cependant, ces domaines sont liés et interagissent afin de respecter les exi-

gences du système. Par exemple, dans les voitures électriques ou hybrides, l’action de

freinage pourrait générer de l’énergie qui peut être stockée dans les batteries pour être

réutilisée lorsque la voiture a besoin d’accélérer. Ce cycle peut réduire la consomma-

tion de puissance ou de carburant de la voiture en améliorant certaines propriétés non

fonctionnelles.

Nous proposons d’exprimer comme des vues, chacun des domaines du système. IEEE-

1471 [1] et IEEE-42010 [2] sont des standards qui proposent une structure générique afin

de spécifier un système avec de multiples vues. Cette manière de décrire un système est

appelée modélisation multi-vue. Cependant, ces standards sont extrêmement généraux,

ils peuvent donc être appliqués de différentes façons. En plus, en utilisant ces standards,

c’est difficile de décrire les concepts réutilisables définis dans une architecture pour les

appliquer ailleurs.

Dans cette thèse, nous proposons PRISMSYS, un langage de modélisation muti-vue

qui permet de spécifier les domaines des experts dans une variété de vues. PRISMSYS

est inspiré par les concepts définis dans IEEE-42010 [2]. Néanmoins, nous proposons

des éléments spécifiques inclus dans les vues, ses comportements, ses associations et ses

interactions. En utilisant l’Ingénierie Dirigée par les Modèles, nous donnons une syntaxe

à PRISMSYS, i.e., la structure de l’architecture du système. La structure de PRISMSYS

est spécifiée par un méta-modèle.

PRISMSYS inclut deux types de comportements : un comportement à événements dis-

crets, représenté par des machines à états et l’interaction parmi des vues définie par

des événements. Il prévoit aussi un comportement EN temps continu, exprimé par des

2quations. Nous définissons la sémantique d’exécution de ces comportements en utili-

sant ccsl [3], un langage déclaratif qui décrit les relations causales et temporelles entre

événements. En employant ccsl, nous spécifions la coordination du comportement des

différents domaines d’exécution. Nous orchestrons aussi les différent modèles (a priori

hétérogènes) du comportement dans les vues définies, comme la synchronisation entre

l’activation des états d’une machine à états finis (un comportement à événements dis-

crets) et l’évaluation des équations (un comportement en temps continu).

Nous représentons PRISMSYS comme un profil uml. Le profil de PRISMSYS utilise

autant que possible les concepts définis dans les profils uml SysML [4] et marte [5].

Chapitre 1. Introduction (Version en Français) 3

Une fois que la sémantique d’exécution de PRISMSYS est définie, nous utilisons TimeS-

quare [6] afin de simuler la partie discrète du modèle. Pour évaluer la partie continue,

nous choisissons Scilab [7], une outil de calcul numérique qui offre les fonctions pour ré-

soudre les équations. Nous avons développé un connecteur entre TimeSquare et Scilab

pour orchestrer la simulation discrète avec la partie continue.

Pour illustrer le potentiel de PRISMSYS, nous avons développé un modèle d’un système

dont la principale préoccupation est la consommation de puissance. Dans ce modèle,

nous définissons les vues et les éléments qui décrivent et impactent la consommation de

puissance d’un système. Ce modèle est simulé et les comportements discrets et continus

sont présentés (e.g., le comportement de la machine d’états finis, et aussi l’évolution

de la consommation de puissance et la température). Finalement, nous proposons une

autre manière d’utiliser le modèle PRISMSYS. Nous spécifions une transformation du

modèle PRISMSYS vers un autre modèle d’un outil de domaine spécifique. En prenant

comme cas d’étude le modèle PRISMSYS dédié à la consommation de puissance, nous le

transformons dans le format interne d’Aceplorer afin de simuler et analyser la consom-

mation de puissance. Aceplorer [8] est un outil commercial qui modélise et simule le

comportement de la consommation de puissance d’un système. Aceplorer a été utilisée

dans le cadre du projet ANR-HeLP (référence ANR-09-SEGI-006).

Le contenu de cette thèse est organisé en deux parties principales : La définition de la

structure de PRISMSYS, et le développement du cas d’étude de PRISMSYS, un modèle

du système dédié à la consommation de puissance.

La première partie introduit les concepts principaux de la modélisation multi-vue et de

l’hétérogénéité du comportement spécifié dans le modèle d’un système. En conséquence,

cette partie est consacrée à la spécification de la structure de PRISMSYS. Cette partie

est composée des chapitres 2 et 3. Le premier chapitre introduit l’état de l’art des

préoccupations structurelles et comportementales afin de modéliser les systèmes. Nous

introduisons les concepts de modélisation multi-vue identifiés par la spécification IEEE-

42010. Finalement, Nous identifions une relation entre la modélisation multi-vue et la

composition des modèles. Sur les préoccupations comportementales, nous introduisons

la notion de Modèle de Calcul (MoC), les outils qui les implémentent, comme Ptolemy

II [9] et ModHel’X [10], et nous discutons également le problème d’hétérogénéité parmi

différents MoCs. Le chapitre 3 définit la structure de PRISMSYS, sa syntaxe et sa

Chapitre 1. Introduction (Version en Français) 4

sémantique pour spécifier un modèle multi-vue d’un système. La syntaxe de PRISMSYS

est spécifié par un meta-modèle. PRISMSYS suit une approche par composants, où les

concepts multi-vue sont specifiés en accord avec cette approche. Une vue est exprimée par

trois sous-vues principales : controlSubView, StructuralSubView et EquationalSubView.

Chaque sous-vue joue un rôle spécifique dans la construction d’une vue.

La deuxième partie de cette thèse est dédiée à la modélisation d’un système dont la

préoccupation principale est la consommation de puissance. Ce modèle est défini en

utilisant la structure de PRISMSYS. Cette partie de la thèse est composée des chapitres

4, 5 and 6. Le chapitre 4 introduit les concepts, les techniques, et les outils employés pour

modéliser la consommation de puissance d’un système. Nous spécifions les vues et ses

éléments afin d’évaluer et d’analyser le modèle PRISMSYS dédié à la consommation de

puissance dans le chapitre 5. Nous simulons, évaluons et analysons le modèle PRISMSYS

dédié à la consommation dans le chapitre 6 en utilisant TimeSquare, Scilab et le

connecteur Scilab Solver construit pour l’occasion. Dans ce chapitre, nous spécifions

également la transformation de PRISMSYS vers Aceplorer.

Finalement, nous concluons ce travail, en soulignant les contributions principales et nous

donnons quelques perspectives futures dans le chapitre 7.

Chapter 1

Introduction

Nowadays, the complexity of systems is increasing. It began with simple devices that

performed a specific functionality, such as a telephone that makes calls through a cable,

and now, these devices are much more complex including new functionalities and new

technologies. For instance, the telephone is being replaced by mobile phones, which are

wireless and have multiple functionalities such as sending messages, orienting people

to arrive to a destination or allowing to read news and books or to surf on the Inter-

net. Systems have also been upgraded with a more sophisticated technology, where

the optimization of certain properties is a priority today. Electronic systems are now

integrated in cars, airplanes, boats and trains. These systems are more precise than the

mechanical ones helping to reduce gas consumption, maintenance costs and improving

the functional quality.

To deal with the complexity of modern systems, system architects split them in vari-

ous domains. Each domain is designed, studied and analyzed by experts that specify

determined stakeholder’s concerns. These concerns are quantified by properties stated

in system requirements. Such properties can be either functional, such as stopping a

car when the brake pedal is pressed, or non-functional, like power and gas consumption,

time performance, size and costs. Usually, the experts have their own languages and

tools to model and analyze a specific domain. However, these domains are connected

and they interact to fulfill the system requirements. For instance, in electric or hybrid

cars, the braking action could generate some energy that can be stored in batteries to

5

Chapter 1. Introduction 6

be re-used once the car needs to accelerate. This cycle can reduce the power or gas

consumption of the car, improving certain non-functional properties.

The multiple domains that could be defined in a system are tackled by expressing them in

views. IEEE-1471 [1] and IEEE-42010 [2] are standards that propose a generic framework

to specify a system in multiple views. This way to describe a system is named multi-view

modeling. Nevertheless, these standards are extremely general, therefore they can be

applied in different ways. Moreover, by using these standards, it is difficult to describe

re-usable concepts defined in an architecture in order to apply them in a different one.

In this thesis, we propose PRISMSYS, a multi-view modeling language that allows spec-

ifying expert’s domains in various views. PRISMSYS is inspired by the concepts defined

in IEEE-42010 [2]. However, we propose specific elements included in the views, their

behavior, associations and interactions. By using Model Driven Engineering, we give a

syntax to PRISMSYS, i.e., the system architecture structure. The PRISMSYS struc-

ture is specified by meta-models. Model Driven Engineering defines a clear separation of

abstraction levels where meta-model is one of them. Thanks to these abstraction levels,

we can split those specified in IEEE-42010.

PRISMSYS includes two kinds of behaviors: a discrete event behavior, represented

by state machines and the event interaction between views, as well as a continuous

time behavior, expressed by equations whose values are evaluated through time. We

define the execution semantics of this behavior in ccsl [3], a declarative language that

describes causal and temporal relationships between events. By employing ccsl, we

specify the coordination of the behavior from different execution domains. We also

orchestrate the heterogeneity in the behavior modeling in the defined views, such as

the synchronization between a finite state machine (a discrete event behavior) and the

evaluation of an equation (a continuous time behavior).

We represent PRISMSYS in uml by specifying a profile. The PRISMSYS profile uses

as much as possible the concepts defined in other uml profiles, such as SysML [4] and

marte [5]. The concepts that are not included in uml or in the other two profiles,

are defined as stereotypes in the PRISMSYS profile, extending the uml concepts whose

meaning is compatible with the PRISMSYS concept semantics.

Chapter 1. Introduction 7

Once the semantics of the PRISMSYS execution is defined, we use TimeSquare [6]

to simulate the discrete part of the model. To evaluate the continuous part, we chose

Scilab [7], a numerical computing tool that provides the functions to solve equations.

We have developed a connector between TimeSquare and Scilab to orchestrate the

discrete simulation with the continuous one.

To prove the potential of PRISMSYS, we have developed a model of a power-aware

system. First, we introduce a background in power consumption characterization and

power management. We continue defining the views and the elements that describe

and impact the power consumption of a system. This model is simulated and the

discrete and continuous behaviors are depicted (e.g., finite state machine behavior, and

also power and temperature evolution). Finally, we propose another way to use the

PRISMSYS model. We specify a transformation of the PRISMSYS model to a model

of a specific domain tool. Taking as use case the PRISMSYS power-aware system

model, we transform it to an Aceplorer model in order to simulate and analyze the

power consumption. Aceplorer [8] is a commercial tool that models and simulates the

power behavior of a system. Aceplorer was used in the context of the ANR Project

HeLP (reference ANR-09-SEGI-006).

The content of this thesis is organized in two main parts: The definition of the PRISM-

SYS framework, and the development of the PRISMSYS use case, a power-aware system

model.

The first part introduces the main concepts of multi-view modeling and highlights the

behavior heterogeneity specified in a system model. Therefore, this first part is the

stronghold in the specification of the PRISMSYS framework. This part is composed of

chapters 2 and 3. The former introduces the background about structural and behavioral

concerns to model systems. We present that the complexity of a system architecture

could be managed following the multi-view approach. We introduce the multi-view

concepts specified in IEEE-42010. We also split the abstraction level defined in IEEE-

42010 by using the Model-Driven Engineering abstraction levels. Finally, we identify a

relationship between the multi-view modeling and the model composition. In the be-

havioral concerns, we introduce the notion of Model of Computation (MoC), the tools

that implement them, such as Ptolemy II [9] and ModHel’X [10], and we also discuss the

Chapter 1. Introduction 8

heterogeneity problem between various MoCs. Chapter 3 defines the PRISMSYS frame-

work, its syntax and semantics to define a multi-view system model. The PRISMSYS

syntax is specified by meta-models. PRISMSYS follows a component approach, where

the multi-view concepts are specified accordingly. A view is expressed by three main

sub-views: controlSubView, StructuralSubView and EquationalSubView. Each sub-view

plays a specific role in the construction of a view.

The second part of this thesis is dedicated to the modeling of a power-aware system by

using PRISMSYS. This part consists of chapters 4, 5 and 6. Chapter 4 introduces the

concepts, techniques, and tools employed to model the power consumption of a system.

We specify the views and their elements to describe various domains that are involved

in the system power consumption in Chapter 5. We simulate, evaluate and analyze

the PRISMSYS power-aware model in Chapter 6 by using TimeSquare, Scilab and

their connector Scilab Solver. In this chapter, we also specify the transformation of

PRISMSYS to Aceplorer.

Finally, we provide the conclusion of this work, highlighting its main contributions and

we give some future perspectives in Chapter 7.

Chapter 2

Background

Contents

2.1. Introduction . 10

2.2. Structural Concerns . 10

2.2.1. Multi-View Modeling . 11

2.2.2. Multi-View Approaches and Model Composition 15

2.2.3. Discussion . 23

2.3. Behavioral Concerns . 24

2.3.1. Models of Computation . 25

2.3.2. Heterogeneous Models . 27

2.3.3. Discussion . 29

2.4. Conclusion . 30

9

Chapter 2. Background 10

2.1. Introduction

Systems have a strong foothold in our daily life. In the customer electronics market,

mobile phones, tablets, video and music players, and TVs are some examples of these

systems. They provide a quick and direct access to the information (email, news, arti-

cles, books, etc) and they are marking a milestone in communications, giving a great

mobility to consumers. These systems are also installed in cars, airplanes, boats and

submarines to upgrade certain mechanical controllers or optimize energy consumption,

time performance and costs. Medicine is also an important domain where systems play

an important role, e.g., measuring blood pressure, dosing medicament or pacing the

heart.

Experts from different domains work together in the design of systems. These experts

fulfill the strict system requirements, generally specified by non-functional properties

such as time performance, security, power consumption, temperature and cost. Each

expert has his/her own language to describe the model of the system from his/her point

of view. Therefore, a system model is represented by multiple languages where each

language satisfies certain system requirements.

Whatever its complexity, a language is always defined by a syntax and a semantics. In

this thesis, we use the term “syntax” to refer to the structural definition of the language.

In contrast, the term “semantics” describes the behavior of the language.

In this chapter, we present the concepts and the approach that we use in this thesis to

define the structure and the behavior of the languages that model systems.

2.2. Structural Concerns

According to IEEE-1471 [1], a system is “a collection of components organized to ac-

complish a specific function or set of functions”. This standard also defines architecture

as “the fundamental organization of a system embodied in its components, their rela-

tionships to each other, and to the environment, and the principles guiding its design

and evolution”. Taking into account these two definitions, an architecture specifies the

structure of a system, based on a component approach.

Chapter 2. Background 11

To define a system architecture, it is important to identify the elements involved in the

design of a system. IEEE-15288 standard [11] defines a system as “man-made, created

and utilized to provide products and/or services in defined environments for the benefit

of users and other stakeholders”. Following this definition, we identify that a system is

associated with two main entities: environment and stakeholder. Figure 2.1 presents a

conceptual model of the identified elements that are associated with a system. In this

figure, a system responds to the stakeholder needs and it is placed in an environment.

An environment may contain other systems or subsystems that interact with each other.

A system exposes one and only one architecture.

Figure 2.1: Conceptual model for the system architecture context from [2].

The stakeholder needs are represented by concerns in IEEE-1471 [1]. These concerns are

defined in various specific domains that are studied by different experts. These experts

build system models that include functional and non-functional properties to tackle the

concerns related to their domain. The modeling activity where concerns are divided into

various domains is called multi-view modeling.

In Section 2.2.1, we present the main concepts of multi-view modeling using the IEEE-

42010 standard [2]. This standard is a reference in this kind of modeling.

2.2.1. Multi-View Modeling

Multi-view modeling was proposed as a solution to manage the complexity of the system

design. This technique defines a system architecture in different views where each view

addresses a set of stakeholder’s concerns [1]. Views are defined by domain experts

that have their own concepts and languages to express the domain elements and their

relationships. An example of this modeling technique is applied to construction. To

construct a building, architects design floor plans, electrical engineers draw electrical

blueprints and hydraulic engineers create pipe networks. The electrical blueprints and

Chapter 2. Background 12

the pipe networks are defined based on the floor plans, therefore, in this particular case,

there is a reference model to build the other domain models. Similar to the construction

domain, systems can be specified with diverse views; for instance, power consumption

view, financial view, structural view and time performance view.

In this thesis, we use the vocabulary specified in the IEEE-42010 standard [2] to describe

the multi-view concepts. This standard is an updated version of IEEE-1471 [1] and

it is inspired by various multi-view approaches such as DoDAF [12], MODAF [13],

TOGAF [14], the “4+1” view model [15] and Zachman’s framework [16].

According to the IEEE-42010 standard, a system architecture is represented by an archi-

tecture description. The standard emphasizes that an architecture is “abstract, consisting

of concepts and properties”, whereas architecture description is a work-product used to

define an architecture. Figure 2.2 presents the conceptual model defined in IEEE-42010.

In the figure, an architecture description owns views and correspondences. A view con-

tains models that are the modeling artifacts describing the view. Correspondence builds

associations among architecture elements that define the considered system, i.e., the

relationship between models, views, the architecture description, stakeholders, and con-

cerns. The main purpose of Correspondence is to identify the view elements that have

some kind of association in a system architecture in order to maintain the consistency

of the architecture description.

Figure 2.2: Multi-view modeling according to IEEE-42010.

Chapter 2. Background 13

This standard also specifies a mechanism to build architecture descriptions which could

be reused in various projects that share the same architecture concepts. For this ob-

jective, IEEE-42010 introduces the Architecture Framework concept. Architecture de-

scription is the reification of architecture framework, i.e., the architecture framework

concepts are used to build the architecture description of a system architecture. Fig-

ure 2.3 presents the conceptual model of architecture framework. An architecture frame-

work owns viewpoints, and correspondence rules. Views and correspondences conform

to viewpoints and correspondence rules, respectively. A viewpoint contains model kinds

where models conform to them.

Figure 2.3: Architecture Framework concept model [2]

IEEE-42010 defines a conceptual model where architecture framework concepts and ar-

chitecture description concepts are mixed, i.e., models, model kinds, views, viewpoints,

correspondences and correspondence rules are contained in an architecture description.

Demirli et al. [17] consider that architecture framework concepts and architecture de-

scription concepts are different abstraction levels. Demirli proposes to use the Model-

Driven Engineering approach to model the abstraction levels of the architecture defined

in IEEE-42010.

Model-Driven Engineering (MDE) is a software design technique where the main ar-

tifact is model. The Object Management Group (OMG) defines that “a model is a

representation of a part of the function, structure and/or behavior of a system. The

model specification is based on a language that has a well-defined form (syntax), mean-

ing (semantics) and possible rules of analysis, inferences or proof for its constructs.” [18].

According to this definition, a model is built based on a language that gives the necessary

expressivity to represent the elements of a specific domain. This language is described

through a meta-model. A meta-model expresses the concepts and relationships to build

Chapter 2. Background 14

a model. A meta-model is a model by itself, so that it has another language that con-

tains the required concepts and relationships to define one or more meta-models. Such

a language is called meta-meta-model. Examples of meta-meta-models are MOF [19]

and Ecore [20]. MDE does not propose another language to build meta-meta-models.

A meta-meta-model is rather considered as a self-defined model, i.e., its concepts and

relationships are represented by them-selves. This self-definition avoids the multiplica-

tion of abstraction levels. In Figure 2.4, we present the abstraction levels in MDE. In

the figure, we identify an association of conformity between the concepts of each level,

i.e., each level relies on the concepts defined in the upper abstraction level. The M0

level denotes the real world. In this level, the concrete objects are represented by the

elements of a model.

Meta-Meta-Model

Meta-Model

Model

Object

conforms to

conforms to

conforms To

represented by
M0

M1

M2

M3

Figure 2.4: Abstraction levels in MDE.

Following the MDE abstraction levels, Demirli identifies that the architecture framework

conceptual model is the meta-model of architecture description conceptual model. Fig-

ure 2.5 depicts the abstraction level representation of IEEE-42010 concepts according

to Demirli’s work [17].

Chapter 2. Background 15

Architecture
Framework

ViewPoint ModelKind CorrespondenceRule

1..* 1..* 1..*

Architecture
Description

View Model Correspondence

1..* 1..* 1..*

Conforms toConforms toConforms toConforms to

M1

M2

Figure 2.5: Abstraction levels of IEEE-42010 concepts [17].

MDE offers two alternative solutions for the definition of models: either through a

General-Purpose Modeling Language (GPML) or through a Domain-Specific Modeling

Language (DSML). GPML proposes to use a unique meta-model that has enough ex-

pressivity to define any domain. uml [21] and XML are examples of GPMLs. DSML

proposes to define one dedicated meta-model for each specific domain. SysML [4],

marte [5], AADL [22] and ATL [23] are examples of DSMLs. Hence, we consider ar-

chitecture framework as a set of DSMLs with a set of correspondence rules between the

DSML elements.

An example of the IEEE-42010 implementation is MEGAF [24]. MEGAF is a tool to

build architecture frameworks according to the IEEE-42010 standard. This infrastruc-

ture allows creating viewpoints, stakeholders and concerns to describe a specific system.

MEGAF also defines associations between the specified architecture elements to enable

consistency checks based on the defined correspondences.

In the following subsection, we present approaches based on the multi-view modeling

requirements defined in IEEE-42010. We also explore an alternative solution through

the so-called /model composition/ and we compare the two solutions.

2.2.2. Multi-View Approaches and Model Composition

There are two approaches that use the multi-view concept specified in IEEE-42010:

synthetic and projective [2]. A synthetic approach defines one viewPoint for each specific

domain, independently. It integrates these viewPoints in an architecture framework by

Chapter 2. Background 16

using correspondence rules. In contrast, a projective approach specifies a reference meta-

model, where the viewPoints are built by hiding irrelevant elements from its meta-model.

In this approach, correspondence rules are already defined in the reference meta-model.

Model composition is another modeling approach used in software engineering to com-

bine models with a specific purpose. These models can conform to a common meta-

model, or to different ones. Clavreul [25] defines that Model Composition is an activity

that “enables to build a system from the union of independent or dependent software

artifacts”.

Similarly to the multi-view approaches, model composition specifies correspondences be-

tween the elements of the models (or meta-models) to be combined. Clavreul defines four

main types of correspondences to classify the model element relationships. These corre-

spondences are: operator-based, rule-based, model-based and delta representation-based.

Operator-based is a set of functions whose actions define the correspondences among

model elements. Rule-based finds the similarity between model elements, such as term-

matching on names or satisfies certain constraints to associate model elements, such as

pre- or post-conditions. Model-based is a correspondence type that is formally defined as

part of the modeling language specification, e.g., DSMLs. Finally, delta representation-

based is a correspondence that identifies by analysis the differences between two or more

versions of the same model.

Clavreul also identifies various interpretations to these correspondences. He defines two

interpretation categories in modeling structural associations: overlapping and cross-

cutting. Overlapping is to merge one or more models gathering the model elements

that have equal or similar interpretation. Cross-cutting is to weave new model elements

(aspects) to a base model, modifying the structure and/or behavior. Clavreul also

defines two additional categories: add and delete. These categories insert/delete model

elements in a model. Clavreul considers that the designer must know the internal model

structure in order to use the latter two categories. In contrast, using the previous three

interpretation categories does not require a knowledge of the internal model structure

to define correspondences.

Multi-view approaches and model composition have in common the notion of correspon-

dence. Clavreul defines correspondence as “any kind of implicit or explicit relationships

Chapter 2. Background 17

between sets of models or sets of model elements”. This definition is shared with IEEE-

42010. However, IEEE-42010 specifies correspondence through correspondence rules,

i.e., a correspondence is the use of a correspondence rule definition in a model.

The correspondence and interpretation given by Clavreul could be applied to the def-

inition of correspondence rules. Nevertheless, the application of correspondence rules

in model composition and the multi-view approaches are different. While the synthetic

approach only uses correspondence rules to associate concepts of various DSMLs with-

out generating a new DSML, model (or meta-model) composition has as goal to get a

resulting model (or meta-model) that is built by combining one or more models of the

same language or from different languages using correspondence rules. In the case of the

projective approach, correspondence rules are defined in the reference meta-model from

where the viewPoints are derived.

Figure 2.6 depicts the relationship between languages, defined by meta-models, and the

modeling approaches. In this figure, MM1 and MM2 are independent meta-models

(or languages). The elements of both meta-models are associated by correspondence

rules. The correspondence rules can be in both senses, i.e., they associate elements

from MM1 to MM2 or vice versa. The two languages (MM1 and MM2) and their

correspondence rules define a multi-view synthetic approach. The idea of this approach

is to define the correspondence rules between viewPoint elements, in order to maintain

the coherence between viewPoints. Using the synthetic approach, we can generate a

composed language (MM3) that is the result of the interpretation of correspondence

rules between MM1 and MM2. The projective approach is the decomposition of a

language in other languages, i.e., MM3 can be decomposed in MM1 and MM2. The

correspondence rules in MM3 are internal relationships between its elements, i.e., it is

part of the domain definition. Therefore, the composition of MM1 and MM2 keeps the

correspondence rules defined between MM1 and MM2. Once the projective approach

is applied, the correspondence rules between MM1 and MM2 are identified in MM3

in order to extract such correspondences and to define associations between MM1 and

MM2.

Chapter 2. Background 18

Figure 2.6: Relationship between modeling approaches and specific domains.

It is important to note that the multi-view approaches have as objective to maintain

the independence between specific domains. Correspondence rules are the connections

that these domains have. In contrast, the aim of the composition modeling approach is

to generate a model (or meta-model) that contains the elements of the source models

according to the correspondence rules. We could apply the composition approach in a

multi-view model to generate analysis models from a selected number of views (projective

or synthetic) to a specific purpose. These analysis models could study the impact of

the modeled concerns from different views of a system. For instance, the impact of

increasing the clock frequency in power consumption and time performance.

In the following items, we analyze some examples that are somehow associated with

synthetic, projective and composition approaches:

Aspect-Oriented Programming: In an object-oriented program, the non-functional

and the cross-cutting concerns are interwoven in the code. Kiczales et al. [26] pro-

pose to extract these non-functional and cross-cutting concerns from the main

concern of the program. These extracted concerns are known as aspects. The

composition of aspects in the main code is called weaving. An aspect is composed

by an advice and a pointcut. The former is the code of the concern that is woven

in a specific place of the main code (joint point). The latter identifies the joint

point where the aspect is added in the main code. An example of language that

implements this kind of programming is AspectJ [27].

This programming approach follows the model composition approach. The aim is

to weave aspects into a base model to build a composed model. A set of aspects is

Chapter 2. Background 19

not a view of the model and does not specify specific domains such as the multi-

view approach. All the models (aspects and base model) are specified using the

same language, i.e., the elements of a model (aspects), conform to a meta-model,

are injected (woven) to another model that conforms to the same meta-model.

The joint points are correspondences between the aspects and the target model.

Kompose: Kompose [28] is a generic model composition tool that merges models

conforming to the same meta-model. The merging process is defined by two main

steps: matching and merging. Matching identifies the elements that have the same

concepts in the models that are to be composed. Merging generates a model that

is the result of merging the matched elements. The elements that are not matched,

are defined in the resulting model without any changes.

Kompose follows the model composition approach. Matching process identifies the

correspondences between the elements of the models to be composed. According

to Clavreul, the Kompose correspondences are rule-based and their interpretation

is overlapping, i.e., the elements that fulfill the defined composition rules are

merged adding the non-common attributes and relations of each element. These

composition rules are defined by a pattern between the elements of the models to

compose. This pattern is generally found in the equivalence of the semantics and

the structure of the elements to merge.

VUML: View-based UML (VUML) [29] is a uml profile that uses the multi-view

modeling to provide limited access to the system actors1 through views. The

VUML author points out that the given IEEE-1471 [1] recommendations to build

system architectures are specified in a general way, and it does not propose the use

of a language to be implemented. VUML is a language inspired by the IEEE-1471

concepts to model system architectures. VUML employs a base class diagram of

the system to extract the actors’ views according to the actor’s access rights. The

view defines the system elements (classes, attributes and methods) that the user

can access in the system.

VUML defines a common stereotype called DefaultView. This class owns the ele-

ments that are shared between the system actors. Other views are specified accord-

ing to the actor’s access rights. Theses classes are stereotyped by View and they

1VUML considers an actor as a logical or physical entity that interacts with the system at run-time.

Chapter 2. Background 20

contain the elements only related to the actor’s profile. Views and DefaultView are

associated by uml dependency associations stereotyped by view-extension. This

association allows accessing to the information shared among actors. VUML also

defines relationships among Views to guarantee the correct updating of informa-

tion among the views that share system elements. This relationship is represented

by a dependency association stereotyped by view-dependency. The attributes de-

pendency between views is constrained by OCL2 expressions.

VUML follows the projective approach. From a base meta-model, the viewPoints

are extracted according to the user’s profile. We identify that view-extension and

view-dependency are correspondence rules between viewPoints. According to the

Clavreul’s correspondence types, both VUML correspondence rules are model-

based, they are defined in the language specification. We also identify that the

correspondence interpretation is overlapping: each view contains part of the fea-

tures of the reference model and these features can be shared among views, i.e., a

feature of the reference model can be included in one or more views.

SysML: System Modeling Language (SysML) [4] is an OMG3 specification that

specifies a uml profile for systems engineering domain. Some of the elements of this

standard represents the main IEEE-1471 standard concepts to define a multi-view

approach. SysML uses packages to represent views, classes to describe viewpoints,

and conform associations to specify relationships between views and viewpoints.

This conform relationship is represented by a uml dependency association.

The SysML viewpoint contains two properties: stakeholders and concerns. These

properties are defined by strings. Therefore, the stakeholders and concerns shared

among viewpoints must be rewritten in each viewpoint without guaranteeing the

conformance among viewpoints.

The SysML View limits the package elements to comments, constraint elements,

package import and element import; therefore, the view elements must be defined

in a common model to be imported and constrained according to the view. SysML

also specifies that a view must follow the methods and languages defined in the as-

sociated viewpoints. However, SysML does not define a verification policy for the

2The Object Constraint Language (OCL) is a language defined by the OMG to constrain UML
models.

3Object Management Group

Chapter 2. Background 21

concerned viewpoint properties. Moreover, methods and languages are represented

as strings in Viewpoint, making the verification task more difficult.

SysML implements a projective approach where each view is built by the element

models imported from the main model. However, there are not explicit correspon-

dences between views. Moreover, a viewpoint does not have the same meaning as

in IEEE-42010 or IEEE-1471, but rather it is interpreted as the viewpoint features

that a view must answer. SysML viewpoint does not define the language used

to express views. The conform association is not a correspondence according to

the way we interpret the IEEE-42010. This association represents that the view

elements conform to the concerns defined by stakeholders from their point of view

and it is not a relationship between model elements from different views.

Obeo Designer: Obeo Designer is a system design tool developed by Obeo4.

This tool not only allows system modeling through graphical modeling standard

languages such as uml and SysML, but it also provides a graphical environment

to build DSMLs in Ecore. Obeo Designer includes viewpoints that are a specific

representation of the concepts from one or more meta-models. These representa-

tions can be predefined (tables, trees, diagrams) or they can be customized by the

system designer5.

We consider that Obeo’s Viewpoint concept does not follow any of the multi-

view approaches. An Obeo’s viewpoint is a representation of a model, but it does

not define a portion of the model (projective approach) or an independent model

(synthetic approach).

Hybrid multi-view modeling: Cicchetti et al. [30] present a multi-view model-

ing approach that is both projective and synthetic. They define a base meta-model

to represent every possible concept of a specific system following the projective

approach. However, the architect can build viewPoints in various meta-models

following the synthetic approach. The connection between both approaches is in

the base meta-model used to create the viewPoints. ViewPoints are defined ac-

cording to the base meta-model, therefore the concepts and associations specified

in the viewPoint must also be specified in the base meta-model.

4http://www.obeo.fr/pages/obeo-designer
5http://www.obeo.fr/resources/WhitePaper_ObeoDesigner.pdf

Chapter 2. Background 22

A base model and view models are built and they conform to their corresponding

meta-models (base meta-model and viewPoints). The base model is the synchro-

nization reference to the other view models, i.e., if a view model is changed, the

modifications are propagated initially to the base model and then to the other

view models. This synchronization mechanism is implemented according to the

difference between the base meta-model and the viewPoints.

This hybrid multi-view modeling approach solves the consistency problem present

in the synthetic approach by having a common reference between the defined

views. However, we consider that the duplication of information between the view

models and the base model is a drawback since it requires some effort to maintain

consistency.

In this modeling approach, the correspondences are explicitly defined in the base

meta-model. According to Clavreul’s classification, the correspondences specified

in Cicchetti’s approach are model-based, i.e., every relationship between view-

Points is defined in the base meta-model. Nevertheless, we find that there is also

a delta representation-based correspondence in the synchronization between views

and the base model when there is a change of information in a view model.

Heterogeneous points of view with ModHel’X: Boulanger et al. [31] present

a synthetic approach, defining independent views of a system model in ModHel’X

blocks. Each block represents an observable behavior of a system. In the context

of multi-view modeling, a block specifies the behavior of a system from a specific

point of view. For instance, a system could have a functional behavior, a power

consumption behavior or a temperature behavior. In this work, the correspon-

dences are represented by the behavioral relationships among views, i.e., using

the ModHel’X relations, we define the view connections and the way that the view

behaviors are synchronized.

This approach proposes to use a single language (defined in ModHel’X) to express

the multi-view representation of a system (viewPoints and correspondence rules).

However, there is neither a notion of view nor correspondence in this language.

Views and correspondences are interpretations of a ModHel’X concept using blocks

(views) and relations (correspondences).

Chapter 2. Background 23

The type of correspondences are model-based, they are defined in the ModHel’X

meta-model. We consider that their interpretation is associated with the behavior

of the model. In Section 2.3.1, we present it in details.

2.2.3. Discussion

All multi-view approaches have advantages and disadvantages. The projective approach

allows observing a system model from different perspectives or viewPoints focused on the

elements and properties that are important for the stakeholders. However, maintaining

and extending a unique meta-model to describe every possible view in a system is a

difficult task. For instance, in VUML, when a new viewPoint is added to the system

meta-model, it can affect the previously defined viewPoints and also their associated

information. One possible solution is to define consistency mechanisms to preserve the

system model information once a new viewPoint is added. This kind of mechanism is

developed in the Cichetti’s work.

The synthetic approach has the advantage of defining independent viewPoints of a sys-

tem splitting the system concerns. This viewPoint independence allows the definition of

new viewPoints without altering the previous ones. However, the main challenge is the

definition of correspondence rules between viewPoints. Unlike the projective approach,

where the correspondence rules are explicitly defined in the reference meta-model, in

the synthetic approach such correspondence rules are not explicit and they must be

established once a viewPoint is specified. The domain experts define the relationships

between the concepts of the viewPoint concepts.

Model composition could be seen as a way to unify projective and synthetic approaches.

For instance, when having a multi-view model that follows a synthetic approach, the

correspondences among views could be used to generate composed models that have as

main goal the analysis of certain properties of the modeled system and the quantification

of the impact of the properties from different points of view. In contrast, a composed

model (or meta-model) could represent a reference model (or meta-model) in the multi-

view projective approach. Using decomposition rules, viewpoints could be extracted or

projected from the reference meta-model and correspondence rules could be identified

in the reference meta-model to be explicitly defined in the decomposition process.

Chapter 2. Background 24

The correspondences and interpretations defined by Clavreul cannot be applied only to

model composition. We identify that the Clavreul’s correspondences meaning could also

be applied to the correspondence rule definition in the multi-view approach. We note

that correspondence rules among structural elements of different viewPoints are used

to maintain the consistency between viewPoints, i.e., these structural elements could

represent a single element, but from a different point of view. We call these kinds of cor-

respondence rules syntactic correspondences. In the multi-view modeling examples, we

have identified some syntactic correspondences, such as VUML, SysML, Obeo Designer

and Ciccheti’s work. However, another kind of correspondences could be applied, i.e.,

behavioral correspondence rules among viewPoints. This sort of correspondence rules

was identified in Boulanger’s work and is further discussed in Section 2.3.1.

Most of the works that apply the multi-view approaches are oriented to the design of

software systems. Nevertheless, we consider that such approaches can be also applied

to the system design. In this thesis, we propose a multi-view model for system de-

sign. The definition of this multi-view model gathers the advantages of both multi-view

approaches: the definition of explicit correspondence rules to maintain the model con-

sistency and the definition of independent viewPoints for each expert domain. We also

use the Clavreul’s terms to identify the correspondence rules among viewPoints.

Another important feature to analyze in this chapter is the behavior in a multi-view

modeling approach. Identifying the behavioral relationships between viewPoints and

placing them in a modeling behavior context. Section 2.3 presents the description of the

behavioral concerns in the design of systems.

2.3. Behavioral Concerns

In multi-view modeling, each viewPoint is described by a language with a specific se-

mantics of execution. In a DSML, while the syntactic domain is represented by a meta-

model, the semantic domain is defined though different approaches. In the language

theory, we can find three types of semantic definitions. The first type is Operational

Semantics [32]. It uses functions (endogenous transformations) to manipulate data that

represent the execution state of the model. Each execution of these functions repre-

sents a step in the model evolution. The second type is Axiomatic semantics [33]. It

Chapter 2. Background 25

characterizes the execution state by properties that enable reasoning about the models

and their correct evolution. The last type is Transformational semantics [34]. It is an

exogenous transformation from the syntactic domain to an existing language with well

defined semantics.

The concurrent theory has also proposed other ways to describe the behavior of a model.

This behavior is characterized by the so-called Models of Computation (MoCs).

2.3.1. Models of Computation

A model of computation (MoC) is “a formal abstraction of execution in a computer” [35].

In other words, it defines the behavioral semantics of a model. MoCs are used in different

specific domains to express and to evaluate the behavior of a system. For instance, the

control experts uses ordinary differential equation (ODE) solvers to analyze the behavior

of the system to be controlled in continuous time. However, these solvers discretize the

continuous time in order to be computed. The specification that defines the execution

rules of these continuous systems in the computing world is a type of MoC. Modelica [36]

and Simulink [37] are tools that implement MoCs that allow to model continuous systems

and they are often used by control and mechanic experts to represent and to analyze

their specific domains.

Ptolemy II [9] and ModHel’X [10] are tools that implement a variety of MoCs. Using

these tools, sequential processes, discrete event and continuous time systems can be

modeled. These tools share the way they define their modeling syntax, based on the

component approach. While Ptolemy II uses actors, ModHel’X uses blocks to describe

the structure of the system behavior. However, this generic use of the component-based

modeling restricts the application of the DSML approach. Moreover, if we consider

that a viewPoint is a DSML in a multi-view approach, the behavioral semantics of the

viewPoint could be hardly specified using these tools because of the incompatibility of

the structure definition.

On the other hand, we note that MoCs in these tools are independent from the structure

definition. Ptolemy II represents the MoCs implementation by directors and ModHel’X

calls them with the same name, MoCs. They associate a specific MoC to a determined

structure and this MoC manages the execution of the structure elements. The separation

Chapter 2. Background 26

between semantics and syntax helps to use the MoC definition to specify the DSML

semantics. For instance, Petri net is a modeling language that represents the control

execution of a system. A Petri net syntax could be defined by a meta-model. Figure 2.7

presents the Petri net meta-model (left-side) and a Petri net instance (right-side) that

follows the concepts and relationships defined in the meta-model. To define the execution

of this meta-model, we can use a formal language in order to specify the rules that

the behavior of the Petri net model must follow. Nevertheless, the mentioned tools

implement these rules in programming language such as Java, creating a gap between the

formal definitions and their implementation. In this thesis, we propose to use CCSL [3]

as a formal language to specify the rules that the DSML must fulfill during its execution.

Using CCSL, the mentioned gap could be reduced, thanks to the proximity of the formal

semantics and its implementation.

Figure 2.7: Petri Net meta-model and a Petri Net model example.

We have explained in Section 2.2 that a system can be represented by various view-

Points. These viewPoints are associated with each other in their structural definition

by syntactic correspondences. However, these viewPoints also have a semantic defini-

tion, whose actions can affect the behavior of other viewPoints. For this reason, there

are also correspondence rules in the semantic definition of the views.

Clavreul [25] has already identified a correspondence interpretation to describe the exe-

cution relationship between models. This interpretation is called interaction. It consists

in describing the execution ordering of the model elements according to their associa-

tions and to control elements, e.g., sequence and parallel execution. Clavreul also defines

Chapter 2. Background 27

two design activities that are associated with the interactions between models, in order

to define a composed model behavior. The first activity is Orchestration that synchro-

nizes the service execution of two or more models to create a fully running process.

The second activity is Integration that produces a composed system from the inter-

action of several independent and running systems. We consider that these activities

are strongly associated with the correspondence rules between the behavioral seman-

tics among DSMLs, i.e., we could identify a behavioral impact among DSMLs by using

behavioral correspondences.

In the multi-view approach, the behavioral correspondences among viewPoints are the

combination of homogeneous or heterogeneous behavioral semantics. This combination

is known in the MoC community as heterogeneous models.

2.3.2. Heterogeneous Models

There are different approaches that propose a way to combine heterogeneous MoCs.

Ptolemy II and ModHel’X specify the combination of MoCs by using a hierarchical

execution. Figure 2.8 depicts a model example where the semantics of execution is

a hierarchical MoC combination in Ptolemy II. In this figure, there are two MoCs:

Synchronous Data Flow (SDF) and Finite State Machine (FSM). The structure of the

model contains four actors: a main composite actor that owns two atomic actors6 (A1

and A2) and a composite actor (C1). The composite actor C1 contains a FSM that

has two atomic actors (S1 and S2). The main composite actor specifies its behavioral

semantics by a SDF director. In contrast, C1 has a FSM director. The domain execution

ordering is controlled by the director at the highest level in the model hierarchy, i.e., SDF

director. During the execution sequence in the SDF graph, the SDF director executes

C1 and then the FSM director is activated to execute the FSM. Once the execution of

the FSM finishes, SDF director resumes its execution.

6An atomic actors is an actor that does not contain other actors.

Chapter 2. Background 28

A1 C1 A2

SDF Director

S1 S2

FSM Director

Figure 2.8: Composition between Synchronous Data Flow and Finite State Machine
in Ptolemy II.

In Figure 2.8, there is a behavioral correspondence between SDF and FSM directors.

Once the SDF director executes C1, the FSM director takes the external information

to execute the FSM. According to Clavreul, we could consider that this correspondence

is an Orchestration between two MoC directors. The orchestration between MoCs is

implemented in a different way in Ptolemy II and ModHel’X. On one hand, Ptolemy II

offers a fixed and encoded interaction semantics between MoCs that the modeler must

use. On the other hand, ModHel’X proposes the use of adapters to define the semantics

between the internal and external execution of a hierarchical model. However, adapters

are operators that implement the MoC interaction according to the modeler needs.

Therefore, there is not guarantee that properties defined in each MoC, such as deadlock

or safety properties, are kept after the orchestration of MoCs.

Another approach to combine heterogeneous MoCs is by synchronizing the actions be-

tween MoCs. BIP [38] is a component-based language that defines the behavior of each

component and their interactions by a specific algebra. The BIP semantics is described

by extending the automaton definition. In the BIP approach, the use of the automaton

model to define the component interaction allows to study properties, such as deadlock

and safety issues. However, the dependency to the automaton model does not allow to

describe MoCs that follow other kinds of behavior such as flow-oriented behavior. This

behavior is commonly used to define and analyze image processing algorithms.

Chapter 2. Background 29

2.3.3. Discussion

MoCs are a way to define the behavioral semantics of a DSML. A DSML could con-

tain other DSMLs that have their own behavioral semantics, or a DSML could specify

their semantics by using various behavioral semantics. For instance, Figure 2.8 could

be represented by two DSMLs: DSML1 that defines the first hierarchy level (A1, C1

and A2) and DSML2 that specifies the internal behavior of C1. Both DSMLs have a

syntactic correspondence that associates the DSML1 element C1 with DSML2. This

correspondence represents that the internal behavior of C1 is expressed by DSML2.

DSML1 and DSML2 have also a behavioral correspondence where the synchronization

between SDF and FSM execution is defined. Following the Ptolemy II and ModHel’X

approach, we can represent the example of Figure 2.8 by using a single DSML definition

(actor-based or block-based representation). In these tools, the behavioral correspon-

dence is defined to a specific element of the DSML, i.e., the DSML can have a different

meaning according to the MoC assigned to the model element. We consider that it is

more clear to have a DSML with a single meaning, e.g., a Petri Net structure whose

behavior follows the Petri Net rules.

In the multi-view approach, each viewPoint is a DSML, and each DSML has its own

behavior definition specified by a MoC. As syntactic correspondence, we identify that

there are also other kinds of correspondences between views that we call semantic cor-

respondences. These correspondences define the interactions between the elements of

different views, i.e., the result of the interaction specification between MoCs. The in-

teractions between views highlight the impact of the view execution on a system design

that would be difficult to grasp using only syntactic correspondences.

In this thesis, we use syntactic and semantic correspondences to define the multi-view

modeling of systems. We give specific examples where both correspondences are used

to maintain the structure consistency among views, the synchronization of the view

execution and the impact of the view execution.

Chapter 2. Background 30

2.4. Conclusion

In this chapter, we have presented a background of the pivotal concepts used in the

following chapters. We have introduced the architecture concept visualized in the sys-

tem domain. Afterwards, we have presented the multi-view modeling vocabulary spec-

ified in the IEEE-42010 standard and its relationship with MDE. We have noted that

a viewPoint is a DSML in the MDE context. We have identified the connection be-

tween the multi-view approaches and model composition. We have determined that

the model composition work could be used in the multi-view approach to characterize

the correspondence rules and their interpretations. We have presented some works that

implement these approaches (multi-view and model composition) and we have identified

the correspondences and their interpretations according to Clavreul’s work.

We have continued with the behavioral definition in the multi-view approach. The

importance to separate semantics and syntax in the definition of a viewPoint has been

highlighted. MoCs are adopted as the modeling approach to specify the semantic domain

in a viewPoint. We stressed the importance of behavioral correspondences in addition

to purely structural correspondences in the multi-view modeling. Such behavioral corre-

spondences are bound to the heterogeneous behavior associated with MoC interactions.

We have presented two approaches (hierarchy and automaton based) frequently used to

specify the interactions between MoCs.

In the next chapter, we use the concepts from this chapter to define a multi-view frame-

work to model systems.

Chapter 3

PRISMSYS: A Multi-View

Modeling Language for Specifying

Systems

Contents

3.1. Introduction . 32

3.2. PRISMSYS Framework . 33

3.2.1. Structural SubView . 40

3.2.2. SubView Element . 41

3.2.3. Equational SubView . 43

3.2.4. Control SubView . 46

3.3. UML Profile for PRISMSYS 49

3.3.1. UML Concepts for PRISMSYS 50

3.3.2. MARTE Concepts for PRISMSYS 54

3.3.3. SysML Concepts for PRISMSYS 55

3.4. Semantics of Execution . 56

3.4.1. Finite State Machine Semantic Specification 58

3.4.2. Equational View Semantic Specification 64

3.5. Conclusion . 69

31

Chapter 3. Muti-View Modeling Language for Specifying Systems 32

3.1. Introduction

This chapter presents the definition of our language named PRISMSYS 1. PRISMSYS is

a domain specific modeling language (DSML) dedicated to the specification and analysis

of functional and non-functional properties at the system level through multiple views.

Each view describes a part of the system, by using the language commonly employed

by domain experts focusing on a specific concern. For instance, a safety expert uses

a domain language whose concepts describe a safety infrastructure, at the same time

as it presents the safety properties of the system. The system views are independently

specified, but the existing relationships inside each view are extremely important to

maintain the consistency of the system. In a multi-view model, these relationships are

correspondences among views. They should bring semantic consistency between the

different parts of the system specified in the views.

The multi-view concepts of PRISMSYS are inspired by the notions defined in IEEE-

42010. However, the standard is a general framework, therefore we have had to specialize

in PRISMSYS the concepts defined in IEEE-42010. Our specialization aims at identi-

fying concepts needed to have a semantic consistency between the different views. For

instance, the abstract concept of View from the IEEE specification is refined into three

well-identified subViews in PRISMSYS, each of them representing sub-concerns of a

domain-specific language. This specialization helps us to provide a semantics to the

correspondences depending on the kind of elements they refer to.

MDE is largely used to define the PRISMSYS domain language. The abstract syntax

of PRISMSYS is specified as meta-models in Ecore [20], while the behavioral event-

based semantics is defined in ccsl [3]. ccsl is a formal declarative language used to

define causal and temporal constraints between events. An event represents a specific

evolution of a system, such as the sampling of a robot position or a state change in a

finite state machine. Events are spread along all the views to bring consistency through

the model. Similarly to tagged signals [39] they serve as anchor points to specify the

model of computation (MoC) [40] of the system model. We introduce in PRISMSYS

specific correspondences as a predefined way to coordinate the execution of two MoCs.

1PRISMSYS is a composed name where PRISM refers to prism, which is a transparent optical
element that refracts any composite light producing a variety of colors. We identify the prism behavior
as an analogy to define our multi-view approach. SYS denotes system.

Chapter 3. Muti-View Modeling Language for Specifying Systems 33

We begin this chapter by defining the PRISMSYS framework. This framework specifies

the basic elements needed to represent views that capture the different concerns of a

system. We continue the chapter by describing the correspondences that can be applied

between the views to tight them together; we detail each PRISMSYS subView definition,

we present its uses and we give some examples to illustrate the use of the subViews and

the identified correspondences. Taking as reference the PRISMSYS domain model, i.e.,

the meta-model of the PRISMSYS framework and the detailed description of each one

of its views, we have built a uml profile as a light-weight mechanism to implement the

PRISMSYS concepts. The PRISMSYS profile applies, as much as possible, the elements

defined in SysML and marte, including uml elements as well. Finally, we define the

semantics of the PRISMSYS framework execution by using ccsl to express the actions

presented in the behavior evolution of a PRISMSYS model.

3.2. PRISMSYS Framework

The PRISMSYS framework provides predefined rules and elements that can describe

and coordinate different views in the specification of a multi-view system. More pre-

cisely, based on a system backbone representation, it allows defining specific views that

are focused on the management of its non-functional properties. By applying this frame-

work, experts from various domains (time performance, power, finance, etc.) can build

a system from their own point of view while specifying explicitly the relationships with

the other points of view. For instance, a time performance expert can specify temporal

constraints by using the concepts frequently used in his/her domain (deadline, worst

case execution time, etc.). However, domain experts do not specify again the elements

already defined in other domains on which they state their constraints (like the hardware

or software elements). They just import them and provide an abstraction of existing

elements from their point of view.

We use MDE to define the syntax of the PRISMSYS framework. Figure 3.1 depicts

the PRISMSYS framework meta-model. The root element is ArchitectureDescription.

IEEE-42010 defines architecture description as the base concept to specify the archi-

tecture of a system through views. To re-use an architecture description in various

system designs, IEEE-42010 defines the architecture framework concept that governs

Chapter 3. Muti-View Modeling Language for Specifying Systems 34

the construction of architecture descriptions. IEEE-42010 has needed the definition of

these two separated concepts in order to describe the abstraction levels in its multi-view

system framework. However, these two concepts are not needed if we use MDE. MDE

establishes the needed abstraction levels to specify the vocabulary to express a specific

domain (i.e., a meta-model), and the way to use it (i.e., a model conforming to its meta-

model). As a consequence, if we define ArchitectureDescription as a meta-class in the

PRISMSYS framework meta-model, it represents the architecture framework concept

defined in IEEE-42010. Similar reasoning can be made with view-viewpoints, correspon-

dence-correspondence rules and model-model kind. We decide to employ the IEEE-42010

terms that define an architecture description to specify the concepts of the PRISMSYS

framework meta-model, i.e., view, model and correspondence.

Figure 3.1: PRISMSYS Framework meta-model.

In PRISMSYS meta-model, an ArchitectureDescription is a set of views and correspon-

dences. A view defines the needed elements to describe a specific domain. According to

IEEE-42010, a view is composed of one or more models. The standard defines a model as

“modeling conventions appropriate to the concerns to be addressed” [2]. With this very

abstract vision of what is comprised in a view, it is not straightforward to guarantee

the semantic consistency of a multi-view system model. To ease the automated man-

agement of a multi-view system model, the PRISMSYS framework proposes to specify

systematically three models used for the description of each view.

In this context, a domain specific language for a multi-view system model (i.e., a view)

is specified by models of different nature. Such models have their own features that

describe view parts. Indeed, these parts are sub-domains needed to specify a complete

Chapter 3. Muti-View Modeling Language for Specifying Systems 35

view. We name them subViews. We have identified three main subViews that provide

the required elements to define a view: a structuralSubView, an equationalSubView and a

controlSubView. StructuralSubView states the concepts and relations of a specific domain

with a component-based approach. A StructuralSubView is composed of subViewEle-

ments. Such elements are the internal concepts that express the structure of a specific

domain. A ControlSubView controls/schedules the execution of the subViewElements.

Finally, EquationalSubView characterizes the evolution of non-functional properties of a

StructuralSubView, such as frequency, voltage and temperature, by using mathematical

equations.

For each system, there is always a reference or backbone view. Relying on the backbone

view, the other views can “import” existing elements to define the (non-functional) prop-

erties of the specific domain. For instance, considering a thermal domain example, the

thermal view definition depends on the elements included in the hardware architecture

view, i.e., thermal experts reference elements from another view to build their own view.

The “importing” action is identified as a correspondence between views.

In the PRISMSYS framework meta-model, Correspondence is an abstract concept spe-

cialized into a type of relationship named Abstraction. An abstraction specifies that the

source subViewElement is a representation of the target subViewElement between two

structuralViews of different views, i.e., a structural element defined in a view is used in

another view to specify features that belong to this particular view. This correspondence

plays the role of “importing” a subViewElement from a view to another. For instance,

a memory component defined in a structuralSubView of a hardware architecture could

be abstracted in a structuralSubView of a time performance view. This abstraction al-

lows the definition of temporal features, such as maximum time of writing and reading

data. Figure 3.2 depicts the relationship between the Abstraction correspondence and

ViewElement. To express this relationship, we define two abstract concepts: Associa-

tionElement and AssociationEnd. Such abstract concepts are associated by an oriented

relationship (source and target). As Abstraction inherits from AssociationElement and

ViewElement from AssociationEnd, therefore Abstraction links two viewElements in an

oriented way.

Chapter 3. Muti-View Modeling Language for Specifying Systems 36

Figure 3.2: Relationship between Abstraction correspondence and viewElement.

Just as subViews are sub-elements of View, subCorrespondences are relationships that

maintain the consistency between subViews. Moreover, SubViews must be linked to-

gether in order to fully describe a view. For instance, the relationship between a struc-

tural element and an equational description is different to the relationship between a

hardware component and the hardware component representation in a time performance

view. While the first relationship is a subCorrespondence that associates a structural

sub-view element with an equational sub-view element, the second relationship is a cor-

respondence between two different expert domains, a hardware architectural view and

its representation in a time performance view.

We have determined two main types of subCorrespondences in a view: Equivalence and

Characterization. Equivalence is the equality of the value between a property defined

in a subViewElement and a parameter in an equation specified in a equationalSubView.

For instance, if the level property is defined in a subViewElement to quantify the wa-

ter level of a tank; level could also be specified as parameter of an equation in an

equationalSubView to calculate the output flow of the tank. Level is expressed in two

different subViews and the consistency between these subViews is defined by the Equiv-

alence subCorrespondence. Characterization is the association between the behavior of

a subViewElement and an equation defined in the EquationalView. A change in the

subViewElement behavior causes the change of the active equation designated by the

Characterization relationship. For instance, the subViewElement behavior is described

by a finite state machine (FSM). Each state is associated by a Characterization subCor-

respondence with a specific equation in the EquationalSubView. Thus, when a state is

active, the associated equation is activated. These two subCorrespondence are explained

in details in Subsection 3.2.3.

Chapter 3. Muti-View Modeling Language for Specifying Systems 37

View, SubView and SubViewElement follow the component approach. Such an approach

is used by several domains in the design of systems. marte [5], a domain language for

the design and analysis of real-time systems, defines the hardware structure following the

component approach. Other examples are SysML [4], AADL [22], EAST-ADL [41] and

Rosetta [42]. Moreover, The IEEE-1471 and IEEE-42010 standards, which are the inspi-

ration source of PRISMSYS, have also based the architecture definition of a system on

components. View, SubView and SubViewElement share different kinds of information

that can be exposed through ports and transmitted through connectors. Figure 3.3 de-

picts a generic component meta-model and its relationship with the PRISMSYS frame-

work concepts. View, SubView and SubViewElement inherit from Component, i.e., they

contain ports, connectors and owned components. The owned components of a View are

subViews, and the internal components of subViews are subViewElements. SubViewEle-

ments can contain other subViewElements.

Figure 3.3: Component meta-model and its relationship with View, SubView, Sub-
ViewElement and ConnectorCorrespondence.

Port is an abstract concept that is specialized in OrientedPort and Parameter. An ori-

entedPort has as an attribute direction. Direction could be either in or out, to express

the direction of the information flow. OrientedPort is specialized in PropertyPort and

ControlPort. PropertyPort represents a subViewElement property that is shared with

its environment. Properties are shared with other subViewElements of the same Struc-

turalSubView. Properties can also be used by the controlSubView to take decisions in the

control of the structuralSubView. For instance, if a robot reaches the limit of its running

area, the position value is transmitted to the corresponding controlSubView to stop the

robot movement. PropertyPort is an abstract component that is specialized to express

Chapter 3. Muti-View Modeling Language for Specifying Systems 38

the nature of the property according to the specific domain, e.g., PositionPort could

be a propertyPort that shares the position property of a subViewElement. ControlPort

defines the control flow between a controlSubView and a structuralSubView. This flow is

specified by events that change the behavior of the subViewElements. PropertyPort and

ControlPort can be defined by views, subViewElements, structuralSubViews and control-

SubViews. To expose parameter values in a equationalSubView, we specify Parameter.

This port does not have any direction. The value of the connected equation parameters

is equal, i.e., the available parameter value of an equation is replaced in the associated

equations.

We consider that the flow of information between views and between subViews through

ports is a kind of correspondence and subCorrespondence, respectively. Therefore, Ar-

chitecturalDescription and View share an abstract concept named ConnectorCorrespon-

dence in the PRISMSYS framework. This concept inherits from Connector and rep-

resents the flow of information between subViews, between views and possibly between

views and subViews through ports. ConnectorCorrespondence is specialized into three

different concepts: ControlConnector, DataConnector and ParameterConnector.

In the View context, ControlConnector is the connection between controlPorts of Con-

trolSubView and StructuralSubView. This connector transmits the control messages sent

from the controlSubView to the corresponding subViewElements. However, in the Ar-

chitectureDescription context, ControlSubView coordinates control actions among views.

Therefore, we constrain the use of ControlConnector between views only to connect con-

trolPorts of ControlSubViews.

DataConnector represents the connection between two propertyPorts. Such property-

Ports must be defined either in structuralSubViews, in controlSubViews or in views. The

connector between propertyPorts of subViewElements is specified according to the do-

main. The connected propertyPorts must have the same type, e.g., if a propertyPort

expresses the torque of an electric motor, the propertyPort that receives this informa-

tion must have the same torque nature. ControlConnector and DataConnector must

connect two ports whose directions are in in the same direction, i.e., these connectors

can only bind two output ports or two input ports.

Chapter 3. Muti-View Modeling Language for Specifying Systems 39

ParameterConnector is the connection between two parameter ports. It represents the

shared parameter value between two equationalSubViews. Figure 3.4 summarizes the

correspondences and sub-correspondences identified in the PRISMSYS Framework.

Control
Connector

Characterization

Abstraction

Control
View

Structural
View

Equational
View

Data
Connector

Equivalence

View

Data
Connector

Control
Connector

Parameter
Connector

Data
Connector

Figure 3.4: Correspondences and Sub-Correspondences in PRISMSYS Framework.

Correspondences and sub-correspondences are associated with the correspondences and

the interpretations given by Clavreul [25]. A first identification is that the PRISM-

SYS correspondences and sub-correspondences are model-based correspondences. The

PRISMSYS framework meta-model and the previous semantic description define the way

they are employed. Nevertheless, their interpretations are diverse. Abstraction could

have an equivalence interpretation, i.e., the associated subViewElements are equivalent

and in a merge process both subViewElements can be replaced by one subViewElement

that has the properties of both merged subViewElements. Equivalence is another ex-

ample of equivalence interpretation. In contrast, Characterization has an interaction

interpretation. Once a subViewElement behavior changes the active equation, the new

active equation must be evaluated. The same interpretation can be given to Control,

Data and Parameter Connectors, once a Parameter, a controlPort or a propertyPort

changes its value, the bound port also changes its value.

An ArchitectureDescription must contain at least one view that represents the function-

ality and structure of the system. If system experts add non-functional properties to

the multi-view model, such as time, power or temperature, they add for each expert’s

domain a view and its corresponding subViews to represent their properties and the

necessary elements that affect them. PRISMSYS can be extended with other kinds of

subViews that do not follow the three sorts previously defined. Nevertheless, the de-

signer must define the necessary correspondences and subCorrespondences of this new

subView to keep the consistency of the multi-view model.

Chapter 3. Muti-View Modeling Language for Specifying Systems 40

In the next subsections, we detail the definition of the StructuralSubView, SubViewEle-

ment, EquationalSubView and ControlSubView.

3.2.1. Structural SubView

StructuralSubView is a generic subView that can be specialized to represent expert do-

mains. Adopting this StructuralSubView definition implies that, the structural repre-

sentation of each view can be specified by domain experts and the relationship between

views can also be expressed by using abstraction, dataConnector and ParameterCon-

nector correspondences. Nevertheless, if a domain expert does not want to use Struc-

turalSubView to represent his/her viewpoint of the system, this expert can specialize the

SubView concept from the PRISMSYS meta-model to define his/her own subView, the

subCorrespondences with the other subViews and the correspondences with other views.

An application of StructuralSubView is the representation of the thermal domain of an

embedded system. One of the techniques used by thermal experts to represent the tem-

perature evolution of the components is using electrical components, such as capacitors

and resistances. The resulting Resistor-Capacitor circuit represents the temperature be-

havior among the junction points between the hardware components with the heat sink

devices and the heat transmission among the components that are part of a system. This

thermal representation of a system is known as Compact Thermal Model (CTM) [43].

Hotspot [44] is a tool that uses this modeling technique to represent the thermal layout

of systems to analyze the temperature evolution of the components.

Figure 3.5 depicts an example of two views that define their structuralSubViews. Exe-

cution Platform View represents the hardware architecture of a system. Thermal View

describes the thermal representation of the system. Each view has a structuralSubView

where the structure of the domain is represented. We note that CPU is abstracted in

the thermal view to specify the thermal properties and the thermal behavior that can

be expressed using CTM. To define the association between the thermal representation

and the hardware architectural representation of CPU, we use the abstraction corre-

spondence. In the structuralSubView of the thermal view, there are also other elements

that belong to the thermal domain. They are not included in the structuralSubView

of the execution platform view, such as the heat sink and temperature source (Tenv).

Chapter 3. Muti-View Modeling Language for Specifying Systems 41

Finally, note that a propertyPort P is specified in the thermal view. This port repre-

sents the power consumption value of the CPU, used and evaluated in other views. The

CPU power consumption value is needed to evaluate the CPU temperature. P port

is connected by DataConnector correspondences to another view that characterizes the

system power consumption.

Figure 3.5: Example of structuralSubViews including the abstraction correspondence.

3.2.2. SubView Element

SubViewElement is the main concept of a structuralSubView. Such a concept has a

specific role in the structural description of the concerning domain. SubViewElement

defines the structure and the behavior of the StructuralSubView internal elements. Fig-

ure 3.6 presents the SubViewElement meta-model where the structure (on the right-hand

side) and the behavior (on the left-hand side) of this concept are defined. SubViewEle-

ment follows the component approach, therefore we bring the component meta-model

depicted in Figure 3.3 to define the SubViewElement structure. A subViewElement

is a Component that contains connectors, controlPorts, propertyPorts, properties and

possibly nested subViewElements (ownedComponents). Property represents an internal

feature of ViewElement, e.g., cost or size. ControlPort is sensitive to Event occurrences

from the controlSubView that change the subViewElement behavior accordingly. Every

subViewElement able to change its internal behavior must contain at least one control-

Port. Note that Property and State are respectively associated with Parameter and

Chapter 3. Muti-View Modeling Language for Specifying Systems 42

Equation, which are EquationalSubView concepts. The association is defined through

Equivalence and Characterization subCorrespondences. We explain in details their use

in Subsection 3.2.3.

Figure 3.6: SubViewElement meta-model.

The behavioral definition of SubViewElement consists of a Behavior represented by a

StateMachine. The behavior can be specialized in other kinds of behavioral descriptions

such as Petri nets and synchronous data flow graphs, even though we only study here

the case of StateMachine. According to the domain, the expert chooses which behav-

ior definition fits better the domain description. For instance, a control expert may

prefer to use state machines to describe the behavior of a thermal controller, whereas

an image processing expert may choose a synchronous data flow graph to specify the

face detection algorithm in a video stream. However, we consider that this definition

must be homogeneous in all the domain specifications, i.e., if StateMachine is chosen

as a subViewElement behavior definition, every subViewElement in the specified Struc-

turalSubView must be a stateMachine. This homogeneity helps to work with a single

semantics of execution, easing the control specification defined in the controlSubView.

Dedicated tools for heterogeneous composition might be used (see Chapter 2), however,

this is not specifically supported by our methodology and tools at this level.

In the SubViewElement meta-model, a StateMachine contains states and transitions.

The StateMachine has an initialState, which is the first state that is active when the

StateMachine is executed. Each state represents a specific behavior mode according to

the domain. For instance, to indicate the execution modes of a CPU, we can define two

states: running, to express that the CPU is executing a task, and halt, when the CPU

Chapter 3. Muti-View Modeling Language for Specifying Systems 43

stops. In Figure 3.6, State is associated with Equation through the Characterization

subCorrespondence. This subCorrespondence means that when a state in a viewElement

is active, the associated equation is activated, i.e., the state is characterized by the

associated equation. A state also represents the value change of a property defined

in the subViewElement, which is specified by the associated equation. The Equation

concept is part of the EquationalSubView definition detailed in Section 3.2.3. To change

from one state to another, the corresponding transition is fired when the associated Event

(see association Transition-Event in Figure 3.6) occurs on the ViewElement controlPort

(see association ControlPort-Event in Figure 3.6). The execution semantics of the state

machine is detailed in Section 3.4.1.

3.2.3. Equational SubView

EquationalSubView defines the evolution of non-functional properties of a view. This

evolution is specified by equations that associate properties from a view with properties

from other views in an acausal way. For instance, in classical mechanics, the equation

that describes the force applied to an object in one dimension is represented by F = m•a.

The parameters of this equation are defined as properties, possibly, in different views.

F could be defined in a force view where only force features such as torque, thrust, or

drag can be described. In contrast, m could be specified in an object characteristic view,

where mass, dimension and color features are represented.

We consider that the EquationalSubView meta-model is independent of the Structural-

SubView and the ControlSubView meta-model, because the nature of the Equational-

SubView elements is different from the elements of the StructuralSubView and Control-

SubView. Such elements represent continuous behaviors through equations, while the

StructuralSubView and the ControlSubView elements specify discrete behaviors. How-

ever, they share Component to define their concepts and the sub-correspondences with

the other subViews.

Figure 3.7 presents the EquationalSubView meta-model. This meta-model is inspired

on the SysML Parametric Diagram. An equationalSubView is a subView, i.e., it is de-

fined as a component. An equationalSubView contains parameters and a clockPort (Port

Chapter 3. Muti-View Modeling Language for Specifying Systems 44

specializations), bindings (Connector specialization) and equationalModels (ownedCom-

ponent specialization). An equationalModel owns equations and its Component spe-

cialization is constrained to be associated with parameters. Equation is an acausal

relationship among parameters. This relationship is given by the definition in form of a

mathematical relation between parameters, e.g., v = d/t is an equation definition, where

v, d and t are parameters. A single parameter value can be employed in various equa-

tions using bindings. Binding connects the parameters that share their values between

two equationalModels. The ClockPort is employed to receive the events that execute the

evaluation of equations. Every equationalModel have a parameter t to express the time

dependence in the evolution of the non-functional properties. In fact, we only consider

the case that the equations are time-dependent. It does not mean that equations of the

equationalModels must include t as part of its definition. To transmit the events from

ClockPort to the t parameters, we use bindings.

Figure 3.7: EquationalSubView meta-model.

Figure 3.8 presents an example of two views where their equationalSubViews are defined.

In the figure, Force View describes its equationalSubView with two equationalModels: one

defines a constant mass (m = 1 kg) and the other one the force (F = a • m). Movement

View contains three equationalModels describing the acceleration (a = dv/dt) and the

speed (v = dx/dt). In the same view, x is used to evaluate the speed, even though it is

given by another view. Note that each equationalModel that defines a non-constant value

equation (e.g., a = dv/dt) contains a t parameter. Hence, these equations are evaluated

Chapter 3. Muti-View Modeling Language for Specifying Systems 45

for each tick arrived to step. The equations that need the value of t to calculate the

unknown value (e.g., v = dx/dt), extract t from the specification of the clock signal

that arrives to step. Usually, the clock is defined in another view where the time model

of the system is its main concern. We describe in details the event specification in

Subsection 3.4.2. We point out that the force equation does not have the t parameter.

However, its equationalModel contains this parameter to evaluate the equation at each

occurrence of step. We realize that the evaluation order of the equations depends on

which value is known. In the example, we cannot evaluate F = m • a if we do not

evaluate before a = dv/dt, and this last equation cannot be evaluated if v = dx/dt is

not calculated. The equation dependency and the evaluation order could be established

by the step event specification. In the figure, we also present the ParameterConnector

to bind parameters from one view to another. In the example, ParamterConnector

connects the a parameters defined in Force View and Movement View.

Figure 3.8: EquationalSubView Example

In the EquationalSubView meta-model, we also represent the Equivalence and Charac-

terization subCorrespondences with their corresponding associations. By extracting a

portion of the example depicted in Figure 3.8, we present the use of these subCorre-

spondences. In Figure 3.9, we define a Mechanical View that describes the mechanical

structure of a system (a trailer hooked to a car) and its behavior according to the charge

in the trailer. This view owns two subViews: a structuralSubView that defines the struc-

ture and behavior of the system, and an equationalSubView where the equations and

values of the system physics are specified. In the structuralSubView, the trailer has two

possible mechanical states: charged and empty. On the other hand, the car has only

one state named move that represents the action to move the car by its engine. Trailer

Chapter 3. Muti-View Modeling Language for Specifying Systems 46

has also a mass property whose value changes according to the m parameter value. In

the equationalSubView, we specify the mass values of the trailer states associating such

states with the corresponding equations by using Characterization subCorrespondences.

By selecting a state, a mass value is assigned to the m parameter. At the same time,

the value of the mass property defined in the structuralSubView of the trailer is equiv-

alent to the m parameter value, because of the Equivalence subCorrespondence. In the

EquationalSublView, we also define a force equation. This equation describes the re-

quired force that the car engine has to generate in order to move the trailer according

to its mechanical states (charged or empty). In this example, we note that by using the

EquationalSubView, we can study the impact of the behavior between subViewElements

of the same structuralSubView, and it is possible to associate other behaviors from other

views.

Figure 3.9: Example of the characterization and equivalence correspondences use.

3.2.4. Control SubView

ControlSubView synchronizes the execution of the structuralSubView according to the

actions produced in its own view and from other views. ControlSubView also provides the

events needed to evaluate the active equations in the equationalSubView. The goal of this

subView is to coordinate the execution between views fulfilling the system requirements.

For instance, the execution of a task in a CPU must satisfy a specific deadline defined

in the system requirements. To achieve this deadline, we must set the frequency clock

Chapter 3. Muti-View Modeling Language for Specifying Systems 47

of the CPU. This setting action is specified in the controlSubView of a time performance

view.

The subViewElement execution is commanded by control events sent from a controlSub-

View. The controlSubView designers of each specific domain must specify the relation-

ships among control events to ensure the correct coordination among subViewElements.

Additionally, the designers have to synchronize the execution of the views guarantee-

ing the system requirements. These relationships can be defined in ccsl [3], which is

a declarative language that specifies causal and temporal relationships among events.

Using ccsl, we can generate a possible scenario that follows the event relationship

definition using TimeSquare tool [6]. We can also generate observers that check the

correctness of a hardware implementation [45].

The relationship between the events generated and received by controlSubView could

directly be defined by ccsl expressions. However, we could also split the controlSubView

structure in one or more sub-components named controllers. Figure 3.10 depicts the

meta-model of controller. A controller is a component that owns ports (controlPorts

and propertyPorts) and connectors (controlConnectors). These concepts are employed

to send control events to subViewElements and to other views. Additionally, a controller

can receive control events from other controlSubViews which may belong to different

views, in order to synchronize the view execution. A controller can also receive property

values from a subViewElement of its view. This value can be employed to take decisions

in the controller.

Figure 3.10: Controller meta-model

Chapter 3. Muti-View Modeling Language for Specifying Systems 48

The behavior of a controller is expressed by a state machine. Contrasted with sub-

ViewElement state machine, the controller state machine transition contains a boolean

condition to be able to fire it. uml state machine specifies this condition as guard. Nev-

ertheless, instead of following the uml guard semantics, where the guard only enables

the transition to be fired by a trigger event, we define that once the guard condition is

true, the transition is fired. In our study, guard always evaluates a property value that

is controlled, i.e., guard is true if the controlled property is higher or lower than a given

value. In addition to the firing transition generated by the guard condition, the transi-

tion can directly be triggered by an event. This event arrives to the controller control

ports coming from the other views. Once the transition is fired, an effect event is gener-

ated. This event is sent either to the corresponding subViewElement or to other views.

The control event allows to change the active state of the subViewElement according

to the changes of other views. As soon as a new state is active, one or more property

values could change due to the transition of the associated equation. In consequence,

the new values impact the controlled property value.

Figure 3.11: Example of the use of ControlSubView to control the water level of a
tank.

In Figure 3.11, we present an example of a controlSubView by employing a controller.

We depict a mechanical view of a system that controls the level of a water tank. This

view contains a controlSubView and a structuralSubView. The structuralSubView defines

two elements in the system: a water source and a valve. The water source supplies a

flow of water to a tank and the valve controls the tank level by draining water from

the tank. The ControlSubView is composed by a level controller that commands the

valve actions according to the tank level. The behavior of water source and tank is

specified as a state machine with a single state, i.e., there is an associated equation that

defines the water flow supplied by the water source and another equation that expresses

the tank level dynamic. These equations are defined in an equationalSubView. The

Chapter 3. Muti-View Modeling Language for Specifying Systems 49

controlled property is the tank level, therefore this property is sent to the controlSubView

in order to take control decisions when the tank level arrives to the maximum or to the

half of the tank. The behavior of level Controller reacts in two cases: when the tank

level is higher than the maximum (h_max) or once it is lower than half of the tank

(h_half). If the tank level reaches the maximum, level controller generates a control

event (e_open) to open the valve reducing the tank level. In contrast, if the tank level is

lower than half of the tank, level controller orders to close the valve, allowing the filling

of the tank. We remark that there are controlConnector subCorrespondences between

ControlSubView and StructuralSubView. This subCorrespondence allows to orchestrate

the structuralSubView elements.

If we add more views to this example, e.g., an electrical view or a time performance

view, the actions of their subViewElements must be coordinated with the mechani-

cal view execution to keep the execution consistency among views and to achieve the

system requirements. The coordination is specified through the controlConnector cor-

respondences among views. These correspondences transmit the control events among

views and synchronize the execution of each view.

The behavior of controllers could be specified by using another model of computation,

such as Petri nets. This behavior can also be defined by algorithms that optimize

specific property values fulfilling certain restrictions, e.g., reducing the time to fill the

tank, taking into account the cross-sectional area of the water sink.

3.3. UML Profile for PRISMSYS

In Model-Driven Engineering, there are two branches for the developing of modeling

languages. One branch defines specific languages adjusted to the terms and the way ex-

perts visualize their domains. This branch is the Domain Specific Modeling Languages

(DSML). In contrast, the other branch defines a general language whose concepts give

the necessary eloquence to represent a long range of domains. The main promoter of

the later branch is the Object Management Group (OMG). The OMG defines the uml

specification and has added other specific domains that use uml concepts as basis to

represent their domain languages through uml profiles. Examples of these domains are

Chapter 3. Muti-View Modeling Language for Specifying Systems 50

real-time systems with marte [5], systems engineering with SysML [4], or telecommu-

nication with TelcoML [46].

There is an important uml community that uses this language to model their domains

adopting the profile mechanism. Moreover, uml is implemented in recent modeling tools

like Eclipse-Papyrus [47], UML Designer [48], MagicDraw [49], Modelio [50], Rational

Software Architect [51] and Rhapsody [52].

To benefit from the uml development, we define a uml profile to represent the PRISM-

SYS framework. We use as much as possible the uml meta-classes including the stereo-

types specified in SysML and marte to represent the PRISMSYS concepts. The con-

cepts that are not included in uml or in the mentioned profiles, are defined by extending

carefully selected uml meta-classes whose semantics are as close as possible to the ex-

pected PRISMSYS semantics.

3.3.1. UML Concepts for PRISMSYS

We represent part of the PRISMSYS framework meta-model concepts by using as basis

the uml composite structures. We extend the composite structure meta-classes with the

corresponding PRISMSYS concepts by defining stereotypes in the PRISMSYS profile.

Table 3.1 lists the mappings between the PRISMSYS concepts and uml composite

structures concepts.

Chapter 3. Muti-View Modeling Language for Specifying Systems 51

PRISMSYS UML

ArchitectureDescription EncapsulatedClassifier

View EncapsulatedClassifier

SubView EncapsulatedClassifier

SubViewElement EncapsulatedClassifier, BehavioredClassifier

Property Property

Connector Connector

StateMachine StateMachine

State State

Transition Transition

Abstraction Abstraction

Table 3.1: PRISMSYS - UML Mapping.

The main uml concept that we use to represent the structure of PRISMSYS is En-

capsulatedClassifier. Figure 3.12 presents a simplified meta-model of this uml concept.

We note that EncapsulatedClassifier inherits from StructuredClassifier, which contains

properties, connectors and parts. Parts are instances of StructuredClassifiers. From

the PRISMSYS point of view, these parts are the instances of views, subViews or sub-

ViewElements defined as EncapsulatedClassifiers. In Figure 3.12, we also observe that an

encapsulatedClassifier not only has properties, but also ports, which are property special-

izations. In consequence, an encapsulatedClassifier contains parts, properties, ports and

connectors, and that is the same structural definition specified for ArchitectureDescrip-

tion, View, SubView and SubViewElement in the PRISMSYS framework meta-model.

Chapter 3. Muti-View Modeling Language for Specifying Systems 52

Figure 3.12: Simplified meta-model of EncapsulatedClassifier.

The SubView stereotype is specialized in StructuralSubView, ControlSubView and Equa-

tionalSubView. Therefore, these three kinds of subViews also specialize Encapsulated-

Classifier. A view part is included in an architectureDescription and a subViewElement

part is contained in a structuralView, following the PRISMSYS framework meta-model.

In the PRISMSYS framework meta-model, we also define that a SubViewElement con-

tains a behavior specified by a StateMachine. Therefore, SubViewElement is also a

BehavioredClassifier specialization. We constrain that the SubViewElement stereotype

only owns a StateMachine. In the StateMachine definition, Transition keeps the uml

definition. Nevertheless, State is extended to represent the Characterization subCorre-

spondence between state-equation defined in the PRISMSYS framework. Figure 3.13

presents the state extension. The PRISMSYSState stereotype contains the equations

property whose type is Constraint, i.e., a state stereotyped by PRISMSYSState must

associate a Constraint, which is the way SysML recommends to specify equations in a

ConstraintBlock.

Chapter 3. Muti-View Modeling Language for Specifying Systems 53

Figure 3.13: State stereotype.

The Abstraction correspondence of PRISMSYS is represented by the uml Abstraction

relationship. According to the uml specification, an Abstraction “is a relationship that

relates two elements or sets of elements that represent the same concept at different

levels of abstraction or from different viewpoints” [21], which is the semantics that

we want to give in PRISMSYS. To represent the abstraction of a subViewElement in

a view, we specify that the abstracted subViewElement is a uml reference of the sub-

ViewElement defined in the original view. Figure 3.14 depicts the use of the Abstraction

relationship and reference in PRISMSYS represented in uml. We define two views: a

layoutView that represents the physical layout of the system, and a hardwareView that

expresses the functionality of the system hardware components. In LayoutView, CPU is

abstracted from HardwareView to give physical dimensions to CPU. We use the marte

HW_Layout package, which is part of the marte HW_Physical package, to represent

the physical components by using the hwComponent stereotype. HwComponent con-

tains the necessary properties to describe the physical component specified in a circuit

layout, such as dimension, position, number of pins. At the top of the figure, we depict

the physical layout that is represented by the uml LayoutView. To indicate that the

abstracted CPU is not a part of LayoutView (i.e., CPU is not owned by LayoutView),

but a reference (i.e., only shared), it is graphically represented with a dashed border

in CPU. We also note the abstraction association between the CPU reference and the

CPU part.

Chapter 3. Muti-View Modeling Language for Specifying Systems 54

Figure 3.14: Abstraction of CPU in a layout component view.

3.3.2. MARTE Concepts for PRISMSYS

To represent the oriented direction of OrientedPort defined in the PRISMSYS framework

meta-model, we use some marte concepts that are listed in Table 3.2.

PRISMSYS MARTE

OrientedPort FlowPort

ControlPort Clock, FlowPort

Table 3.2: PRISMSYS - MARTE Mapping.

OrientedPort is an abstract concept in PRISMSYS that is represented by the uml

Port. We add the marte extension direction, the property that represents the incoming

or outgoing data flow in a port stereotyped by FlowPort. We have mentioned that

ControlPort is a specialization of Port in PRISMSYS. This port is represented by the

uml Port adding the marte FlowPort and Clock stereotypes. The Clock stereotype

specifies that ControlPort is a set of instants, in this case, a set of control instants. This

kind of clock is known as LogicalClock in marte. Other kinds of clocks can exist in

specific domains of a system, such as the EquationalView that describes the physical

Chapter 3. Muti-View Modeling Language for Specifying Systems 55

time domain. The physical time is represented by ChronometricClocks in marte. We

explain the importance of Clock in the definition of the PRISMSYS execution semantics

in Section 3.4.

3.3.3. SysML Concepts for PRISMSYS

EquationalSubView follows the component approach such as StructuralSubView and

ControlSubView. Therefore, EquationalSubView is also an encapsulatedClassifier in

uml. However, We use the SysML ConstraintBlock stereotype to represent this sub-

View in order to apply the SysML parametric diagram. ConstraintBlock extends Block

and this last stereotype extends the uml Class concept. A Class inherits from encap-

sulatedClassifier, when it contains an internal structure based on components. In fact,

EquationalSubView stereotype extends EncapsulatedClassifier.

The EquationalSubView meta-model concepts are mapped to the elements that build

the parametric diagram in SysML. Table 3.3 presents the mapping. In SysML, Con-

straintBlock contains constraintProperties, parameters, constraints and bindingConnec-

tors, such as they are shown in Figure 3.15. ConstraintProperties are instances of other

constraintBlocks and play the role of “parts” in the internal definition of a constraint-

Block. By observing the EquationalSubView meta-model (Figure 3.7) and the Con-

straintBlock meta-model (Figure 3.15), we can distinguish that the EquationalModel

concept is a generic SysML ConstraintBlock. In the EquationalView meta-model, we

specify that an equationalSubView contains equationalModels that are not instances

of other equationalSubViews. Due to the general use of ConstraintBlock, the separa-

tion between EquationalSubView and EquationalModel is not present in SysML. As a

consequence, the way to represent these two concepts limits the usage of Constraint-

Block according to the PRISMSYS profile. The ConstraintBlock that is stereotyped

by EquationalSubView only contains bindingConnectors (binding), constraintProperties

(instance of EquationalModels) and parameters. On the other hand, the ConstraintBlock

stereotyped by EquationalModel owns parameters and constraints (equations).

Chapter 3. Muti-View Modeling Language for Specifying Systems 56

PRISMSYS SysML

EquationalSubView ConstraintBlock

EquationalModel ConstraintBlock

Parameter ConstraintParameter

Equation Constraint

Binding BindingConnector

Table 3.3: PRISMSYS - SysML Mapping.

The association between Parameter and Property, which is the Equivalence subCorre-

spondence, is mapped using the SysML path name dot notion to get a nested property

in a block hierarchy. For instance, to use the w property defined in viewElement1, we

can define a parameter using the following path name:

CircuitLayoutView.StructuralView.subViewElement1.w,

i.e., this parameter is a reference to the w property defined in subViewElement1, which

is contained in the structuralSubView of CircuitLayoutView.

Figure 3.15: Simplified Constraint Block meta-model from the SysML specification.

3.4. Semantics of Execution

Once the syntax of PRISMSYS is specified, we define the way a PRISMSYS model is

executed. In other words, we specify the execution semantics of PRISMSYS. It is based

on the partial ordering of event occurrences, where each event represents a relevant

change in the system. To achieve this goal, we use the Constraint Clock Specification

Language (CCSL) [3].

Chapter 3. Muti-View Modeling Language for Specifying Systems 57

ccsl is a formal declarative language to specify causal and temporal relationships be-

tween events. This language was firstly introduced in marte [5] to represent func-

tional and extra-functional constraints over the time modeling of embedded systems.

In marte, it is possible to define Clocks, which are an ordered set of instants. These

clocks are used to represent the relevant changes in a system, on which constraints can

be specified. For instance, a clock can represent the entering in a state, a function call, a

data writing. Based on such clocks, relations can be specified to represent causalities or

temporal aspects of the system. A clock can be of two types: Chronometric or Logical.

Logical clocks represent functional time. For instance, based on clocks we can specify

that the execution of an application is caused by touching the screen of a smart phone.

In this example, the clock associated with the screen touching is in a causal relationship

with the application execution. It is also possible to specify logical periodicity between

clocks. For instance, specifying that a task is started every 100th cycle of a processor.

Depending on the energy management in a computer, the start of the task can be pe-

riodic or not. When we want to specify something related to a physical dimension like

the physical time or a distance, a chronometric clock is used. That is why, it is then

possible to state that the CPU cycle is periodic every 3 ms.

Logical and chronometric clocks are employed in PRISMSYS. For example, a chronomet-

ric clock can express the physical time periodicity of a CPU cycle in a time description

view. Furthermore, this clock can be used to define the instants when the equations

in equationalSubView must be evaluated; e.g., the temperature equation of a CPU is

evaluated every 5 ms. On the other hand, a logical clock can describe the instant when

a CPU starts to be busy (i.e., once a task begins its execution on it). Logical clocks can

also be used to define the execution semantics of Models of Computation (MoCs) [40].

In our case, we employ logical clocks to specify the behavior of the finite state ma-

chine (FSM) and the interactions that occur among controlSubViews, controllers and

subViewElements (i.e., the semantics of the sub-correspondence rules). Consequently,

logical clocks are used to specify the coordination of the execution between MoCs of dif-

ferent nature. More precisely, in PRISMSYS, there are two behavior domains that have

to be combined: a discrete event behavior represented by a set of finite state machines

and a continuous time behavior, represented by a set of equations.

Chapter 3. Muti-View Modeling Language for Specifying Systems 58

In this section, we first define the execution semantics of the finite state machine. Sec-

ond, we specify the evaluation of the equations represented in EquationalSubView. Fi-

nally, the coordination between the finite state machine and the equation evaluation is

described.

3.4.1. Finite State Machine Semantic Specification

In Section 3.2.2, we have chosen to specify the SubViewElement and Controller behavior

by using a Finite State Machine (FSM). Sub-view elements and controllers do not use the

same kind of FSM. The SubViewElement FSM changes from one state to another by the

reception of a control event. In contrast, Controller reacts to either a guard condition

or to the reception of a specific event. Additionally, Controller FSM can generate a

control event (effectEvent) when a transition is fired. In this subsection, we define the

FSM semantics by using clocks and relations defined in ccsl. First, we identify and

specify the relevant clocks used to establish the FSM execution according to the concepts

defined in the SubViewElement and Controller FSM meta-model. Second, we specify

the relationship between clocks to describe the FSM semantics. In the following, we use

the terms event and clock interchangeably.

3.4.1.1. Finite State Machine Clocks

In a FSM, there are various relevant events that occur during an execution. Most of the

FSM concepts are associated with one or more events that describe a particular FSM

change, e.g., the entering in a state or the firing of a transition. We begin the definition

of FSM clocks by representing the state activation. In a state, there are two possible

events: Entering and leaving the state. For each of these events, we specify a clock in

ccsl. To represent the entry into a state s, we define the clock senter and to express

the leaving of this state, we define the clock sleave.

The transition between two states is also represented by a clock. We name tij the clock

that represents the firing of the transition between the two states si and sj . A transition

can be triggered either by an event representing the evaluation to true of the guard

(guardEvent) or by the reception of a trigger event (triggerEvent). We designate guardij

the guardEvent of the transition tij and triggerij its triggerEvent. SubViewElement FSM

Chapter 3. Muti-View Modeling Language for Specifying Systems 59

transition is only sensitive to a triggerEvent, while Controller FSM can be sensitive

to both events (guardEvent and triggerEvent). When one of these events occurs, the

transition is fired instantaneously. Additionally, a Controller FSM can generate an

effectEvent when a transition is fired. An effectEvent is a control event sent to either

a SubViewElement to change its active state or to another view to synchronize the

execution among views. We name effectij the effectEvent of the transition tij .

Finally, we represent the event that initializes the state machine execution. We define

the init clock that contains a unique instant. When init ticks, the FSM is entering

simultaneously into the initial state.

Table 3.4 summarizes the clocks defined to represent the activity in the FSM of sub-

ViewElement and controller.

Clock Action FSM

init initialization of the FSM SubViewElement, Controller

senter Entering into state s SubViewElement, Controller

sleave Leaving from state s SubViewElement, Controller

tij Firing the transition from si to sj SubViewElement, Controller

guardij Evaluation to true of the tij guard Controller

triggerij Reception of the trigger event of tij SubViewElement, Controller

effectij Event generated when tij is fired Controller

Table 3.4: Clocks representing the relevant actions in a Finite State Machine for both
SubViewElement and Controller.

3.4.1.2. Finite State Machine Clocks Relationship

Once the FSM clocks are defined, we identify the relationships of these clocks to describe

the FSM execution semantics. We start defining the activation of a specific state, which

is between the corresponding entering and leaving occurrences. Figure 3.16 presents a

sequence of activations of the s state.

Chapter 3. Muti-View Modeling Language for Specifying Systems 60

Actives

senter

Active Active

sleave

Figure 3.16: Representation of an active state by clocks

We specify that the s state is active when the senter clock ticks. The s state stops being

active when sleave ticks. We define that a state cannot be transitory, i.e., the enter

and leave events cannot be simultaneous. Moreover, a state can not be activated if it

is already active. Consequently, we state an alternate relationship for all the states of

FSM between senter and sleave in ccsl as follows:

∀s ∈ StateMachine.states,

senter ∼ sleave (3.1)

where StateMachine.states represents the set of states that belong to a FSM.

We have defined tij as the clock that represents the firing of a transition between two

states si (source state) and sj (target state). tij is formally specified as follows:

∀i, j such that si, sj ∈ StateMachine.states,

tij = {t ∈ StateMachine.transitions|t.source = si, ∧, s.target = sj} (3.2)

According to the execution semantics of FSM [53], a transition tij is fired if two condi-

tions are achieved:

si is active, and

Either the guardij occurs or triggerij ticks.

Chapter 3. Muti-View Modeling Language for Specifying Systems 61

We therefore study these conditions in the following items:

Transition fired by a guard: Figure 3.17 depicts the transition between two

states (si and sj) caused by a guardEvent (guardij). Once si is active, i.e., sienter

ticks, it is possible to change to sj . eval is a chronometric clock that commands

the evaluation of the guardij condition. Hence, if the evaluated condition is true,

guardij occurs. Considering that si is active and guardij ticks, then the tij tran-

sition is fired.

Active
si

si
enter

Active
sj

tij

si
leave

sj
enter

guardij

effectij

eval

Figure 3.17: Representation of the clock ticks leading to a change between two states
caused by a guardEvent.

We specify the relationship of these clocks by using ccsl expressions. We state

the ccsl constraints to fire the tij transition by the following definition:

∀i, j such that tij ∈ StateMachine.transitions,

guardij <> null and triggerij = null implies:

let tik = {t ∈ StateMachine.transitions|t.source = Si, ∧, t <> tij} and

let fij � [(sienter
� guardij) �

�

t∈tik
t] • fij in

tij = fij (3.3)

Chapter 3. Muti-View Modeling Language for Specifying Systems 62

this expression can be read as if guardij occurs and not triggerij then sienter

is strictly sampled (�) by guardij . Once sienter
is sampled, if some transi-

tion fired from si occurs, different to tij , then fij is killed, i.e., any other tran-

sition going out from si cannot be fired. The definition of the inability of si

is represented by the ccsl relation upto (�). The first part of Equation 3.3

([(sienter
� guardij) �

�

t∈tik
t]) is only one occurrence of tk, therefore each time si

is active, the application of the first expression generates another fij occurrence.

In consequence, we join the fij ticks by the ccsl concatenation operation (•) in

order to gather all the fij occurrences in one clock. Finally, tij coincides with fij .

Following the execution illustrated in Figure 3.17, si stops being active when tij

occurs, i.e., sileave
ticks. The relationship between tij and sileave

is specified by the

ccsl equality relation (=):

∀i such that si ∈ StateMachine.states,

let tout = {tij ∈ StateMachine.transitions|tij = si.outgoing} in

sileave
=

�

t∈tout
t (3.4)

we can interpret this specification as the leaving of si occurs when one of its

outgoing transitions is fired, i.e., the union of the occurrences of the outgoing

transitions (
�

t∈tout
t). The operator

�

is derived from the union operator (+) in

ccsl.

In Figure 3.17, we can also note that the tij clock coincides with the activation of

sj state, i.e., sjenter
ticks. We specify this coincidence relationship by:

∀j such that sj ∈ StateMachine.states,

let tin = {tij ∈ StateMachine.transitions|tij = sj .incoming} in

sjenter
=

�

t∈tin
t (3.5)

this relation is read as the ticks of the fired incoming transitions of sj (tin) coincide

with the sjenter
occurrences.

If the FSM belongs to a controller, then an effect can be generated, simultaneously

with the transition firing, i.e., effectij occurs (see Figure 3.17). This relationship

Chapter 3. Muti-View Modeling Language for Specifying Systems 63

is specified by:

∀i, j such that tij ∈ StateMachine.transitions,

effectij <> null implies :

tij = effectij (3.6)

Transition fired by an event: A transition could be fired by an event according

to the FSM meta-model. If tij is fired by triggerij , there is not synchronization

with a chronometric clock to generate a tij tick. Figure 3.18 presents the tij firing

case caused by triggerij .

triggerij

Active
si

si
enter

Active
sj

tij

si
leave

sj
enter

effectij

Figure 3.18: Representation of the clock ticks leading to a change between two states
caused by a triggerEvent.

In the same way that guardij , the relationship between sienter
, tij and triggerij is

also specified in ccsl as follows:

∀i, j such that tij ∈ StateMachine.transitions,

guardij = null and triggerij <> null implies:

let tik = {t ∈ StateMachine.transitions|t.source = Si, ∧, t <> tij} and

let fij � [(sienter
� triggerij) �

�

t∈tik
t] • fij in

tij = fij (3.7)

Chapter 3. Muti-View Modeling Language for Specifying Systems 64

Initial state definition: The FSM must have at least one initial state to start

its execution. We only consider the case that a FSM has only one initial state. We

define a clock that begins the FSM execution activating the initial state. We have

named this clock init. We only need a tick in init to active the initial state (see

FSM mata-model - Figure 3.6). Therefore, we define fsmClk, which is a logical

clock only used to specify init. Thus we state init in ccsl as follows:

init = fsmClk � 1(0)w (3.8)

this equation means that init is the result of filtering fsmClk with the binary

periodic word 1(0)w. This word denotes that only the first tick of fsmClk is

taken.

The init clock must be associated with the initial state. Considering that sinit is

the initial state of the FSM, we define its activation as follows:

let sinit = {s ∈ StateMachine.states|s = StateMachine.initialState}

sinitenter
= init (3.9)

However, sinit is also activated during the FSM execution by its fired incoming

transitions. Therefore, by using Equation 3.5 and 3.9, we complete the sinit spec-

ification by:

let sinit = {s ∈ StateMachine.states|s = StateMachine.initialState} and

tin = {t ∈ StateMachine.transitions|t = sinit.incoming} in

sinitenter
= init +

�

t∈tin
t (3.10)

we can interpret this equation as the initial state of the FSM (sinit) is active when

either init occurs or an incoming transition to the initial state is fired.

3.4.2. Equational View Semantic Specification

In systems, the notion of time is always present in the evolution of non-functional prop-

erties. These properties are evaluated in a time instant and their values could be used to

calculate other properties by using equations. For instance, the temperature evolution

Chapter 3. Muti-View Modeling Language for Specifying Systems 65

of a cpu depends on the progression of its dissipated power. In PRISMSYS, Equational-

SubView contains such equations and the active ones are evaluated through time. The

characterization subCorrespondences allows to change the active equations according to

the active subViewElement states. In this section, we formally specify the non-functional

property evolution through equations. These equations are evaluated at discrete time

and according to active states. To this end, we use ccsl to specify a chronometric

clock to state the discrete time for the equation evaluation. ccsl is also employed to

define the causal relationship between the active states and the associated equations to

be evaluated.

We specify that the time notion in an equationalSubView follows the physical time

specified in marte. This standard describes that physical time is “a continuous and

unbounded progression of physical instants” [5]. Physical time can be modeled as a

dense time base. Such a time base is an ordered set of instants where “for a given pair

of instants, there always exists at least one instant between the two” [5]. Dense clocks

could be defined from the dense time base. The marte TimeLibrary contains a dense

clock called idealClock. This dense clock represents the physical time that describes

physical laws. For instance, in the equation a = dv/dt, dt could be represented by

idealClock. IdealClock has as time base unit second. By using idealClock, we define

chronometricClocks. A chronometricClock represents the periodic occurrences of the

physical time evolution. Therefore, we define chronometricClocks to mark the periodic

time evolution of certain subViewElements that need the time notion. For instance, we

could represent the measure of humidity by using a chronometricClock that ticks every

10 s. For each clock tick, the humidity is measured.

We specify a chronometricClock to evaluate the equations defined in equationalSubView.

We name this clock step. At each occurrence of step, a new value is calculated according

to the equations activated by the subViewElement states. The step clock can be spec-

ified by discretizing idealClock or it can be derived from the relationships with other

chronometricClocks specified in other views. For instance, step occurrences could coin-

cide with the ticks generated from the CPU clock source, clock that can be defined in a

time performance view.

Figure 3.19 presents an example of a PRISMSYS model where the temperature evolution

of a CPU is specified.

Chapter 3. Muti-View Modeling Language for Specifying Systems 66

Heat
Sink

Normal

Heat

Thermal Element Temperature

Thermal View

T

T

temperature

dT

dt
=−(T−T min)

dT

dt
=−(T −T max)

staCtr

heatCtr

?e_heat ?e_normal

T

staCtr

heatCtr

ControlSubView

t T max Tmin

Execution
Scenario

(step, e_heat, e_normal)

Time Performance View

Clock Source

Clocked
Element

clkOut clkIn
freq1

Hardware View

Memory CPU
data data

frequency

T o

StructuralSubView

Frequency

f =1kHz

f

EquationalSubView

StructuralSubView

EquationalSubViewStructuralSubView

ControlSubView

clkRef
step

clkIn

step

clkSrc

clkTpv

Figure 3.19: PRISMSYS model where the temperature of a CPU is characterized in
the equationalSubView.

In the figure, three views are depicted. Hardware View is the view where the structure

and the functional behavior of the system components are defined. Thermal View de-

scribes the thermal architecture of the system, including its thermal behavior and its

equational representation. The thermal behavior corresponds to the CPU activity that

is specified in ThermalElement, which is the CPU abstraction from the thermal point of

view. We represent the CPU thermal activity by states. The transition between states is

controlled by the controlSubView. In this example, we only recreate a possible execution

scenario in the ControlSuvView of ThermalView to command the thermal states of the

CPU. The thermal states of the CPU are two: Normal and Heat. The former expresses

that the CPU maintains the typical temperature when it is not active. In contrast, Heat

describes that the CPU temperature raises if it is active. Both states are associated by

transitions that are sensitive to the e_heat and e_normal events generated from the

controlSubView.

The thermal representation of the CPU also contains a temperature property whose

value depends on the active thermal state. The temperature value is the result of the

evaluation of the active thermal equation defined in the equationalSubView. The ther-

mal equations belong to an equationalModel named Temperature. Such equations are

Chapter 3. Muti-View Modeling Language for Specifying Systems 67

associated with the thermal states in ThermalView. The equations are first-order differ-

ential equations whose solutions are exponential functions. Normal state is associated

with a temperature equation whose response is asymptotic to Tmin, which is the min-

imum temperature that the CPU can achieve in halting state (i.e., without activity).

The Heat state is characterized by the second temperature equation whose response is

asymptotic to Tmax, the maximum temperature that CPU can support before burning

out. The Temperature equationalModel also contains the parameters T , Tmin, Tmax, To

and t. T is the temperature evaluated according to the active equation, Tmin and Tmax

are constant values as well as To, which is the initial temperature at t = 0, i.e., To is

the environmental temperature.

The t parameter is the physical time of the equations. t is discretized by a chronomet-

ricClock defined in TimePerformanceView. Such a view defines the temporal features of

the example system. We note that its structuralSubView contains a ClockSource that is

a clock generator. The ClockSource owns a frequency property whose value is defined by

the associated equation f = 1 kHz. By using this definition, we specify the generated

clock signal from ClockSource by the following ccsl expression:

clkOut = idealClk discretizedBy 0.001 (3.11)

where 0.001 is the period defined by the equation f = 1kHz. This generated clock

signal is used to evaluate the active thermal equation. To share the clkOut signal, we

send the generated clock signal to controlSubView of Time Performance View through

clkSrc port. The connection between StructuralSubView and ControlSubView is a Data-

Connector subCorrespondence. The controlSubView retransmits the clkSrc clock signal

to the Thermal View through the connection between the clkTpv and clkRef ports. This

connection is a DataConnector Correspondence. Afterwards, clkRef port is connected

to clkIn, which is an input port of Thermal View controlSubView. As a consequence,

controlSubView can generate the temperature scenario synchronizing the e_heat and

e_normal occurrences with the clock signal received on clkIn. Additionally, the re-

ceived clock signal is shared with equationalSubView to mark the instants when the

active equation of the equationalModel is evaluated. The received clock signal is sent

through the step port to equationalSubView. step is associated with t by using the

binding connector. This association specifies that the step clock evolution is equal to

Chapter 3. Muti-View Modeling Language for Specifying Systems 68

the t progression. Consequently, for each tick of the step clock, the active equation is

evaluated.

By using this example, we can specify the semantics of DataConnector correspondence

and subCorrespondence in the specific case of the transmission of a clock signal. Addi-

tionally, we define the coordination between the active states (i.e., the active equation)

and the equation evaluation. We can specify in ccsl the relationship between clkOut,

clkSrc, clkTpv, clkRef, clkIn and step as:

clkOut = clkSrc (3.12)

clkSrc = clkTpv (3.13)

clkTpv = clkRef (3.14)

clkRef = clkIn (3.15)

clkIn = step (3.16)

these ccsl relations could be read as the instants generated by clkOut, clkSrc, clkTpv,

clkRef, clkIn and step are coincidental, in other words, they tick at the same time instant.

Therefore, the execution semantics of DataConnector correspondence and subCorrespon-

dence is specified by an equality ccsl clock relation, in the case that the transmitted

data is a clock signal.

In the controlSubView of ThermalView, we define an execution scenario to specify at

which instant e_heat and e_normal occur. Figure 3.20 presents the temperature evo-

lution through time according to an execution scenario. At the beginning of the simu-

lation, i.e., at t = 0, the state machines in ClockSource and ThermalElement enter into

their respective initial states (freq1 in ClockSource and Normal in ThermalElement).

Therefore, the active equations in the equationalSubViews are f = 1 kHz in Frequency

equationalModel and the first equation in Temperature equationalModel. At the same

instant, the clock generated by ClockSource, i.e., clkOut, starts to tick. Following Equa-

tions 3.12, 3.13, 3.14, 3.15 and 3.16, for each clkOut occurrence, the first equation of

Temperature equationalModel is evaluated. Note the coordination between the state ma-

chine execution (discrete time behavior) and the equation evaluation (continuous time

behavior). Once an e_heat event occurs, the transition from Normal to Heat is fired

and the Heat state is active. In consequence, the associated equation is activated and

Chapter 3. Muti-View Modeling Language for Specifying Systems 69

the temperature value is evaluated at the next step tick. After producing the e_heat

event, step ticks twice before e_normal ticks. This e_normal event fires the transition

from Heat to Normal returning to the Normal state. In the figure, we note the change

of the active equation by the new evaluated temperature value in the next step tick.

This value is calculated by the first equation of the Temperature equationalModel.

t
step

Normal

e_heat

e_normal

Heat

T
min

T
T

max

T
o

Active

Active

Active

Figure 3.20: Temperature evolution through time according a predefined execution
scenario.

We note in this example that the synchronization between heterogeneous behaviors

(finite state machine and continuous time) is given by the time discretization and the

relationship specification between the actions in the state machine and the instants

where the equations are evaluated. This relationship is specified in ccsl.

3.5. Conclusion

In this chapter, we have presented the PRISMSYS framework. This framework is a

language that allows the description of systems from different points of view. PRISMSYS

Chapter 3. Muti-View Modeling Language for Specifying Systems 70

exposes different sub-views that must be specified in each view to describe a specific

domain. PRISMSYS provides the basic sub-views to be extended in order to express

the necessary views of the stakeholders’ concerns. The PRISMSYS framework also

defines the necessary correspondences to maintain the coherence among the views and

to coordinate their execution. We also define the sub-correspondences between the

predefined sub-views to keep the consistency among sub-views. Correspondences avoid

the re-definition of domain elements, re-using elements and properties from other views.

Additionally, correspondences expose the execution impact between views in a single

system model. This impact is also projected in the achievements of system requirements.

We also propose a uml profile to represent a PRISMSYS model in uml by using as much

as possible the concepts already specified in uml, SysML and marte. The designers

that employ uml tools to describe systems, they could easily apply the PRISMSYS

framework in a uml environment.

We define the execution semantics of PRISMSYS by using ccsl. Thanks to ccsl,

we could define the execution of a discrete event model, i.e., Finite State Machine,

and the instants when the equations of a continuous time model are evaluated. The

relationship definition between both models (discrete event and continuous time) allows

the coordination of the execution of these models, through the use of another way to

execute heterogeneous models.

In the next chapter, we present a use case that defines the necessary views to describe

power consumption of an embedded system. We also illustrate the impact of other views

in the system power consumption.

Chapter 4

Power Consumption Modeling

Contents

4.1. Introduction . 72

4.2. Dynamic Power Consumption 73

4.3. Static Power Consumption . 74

4.4. Characterization for Power Consumption 75

4.5. Power Management Techniques 77

4.5.1. Clock-Gating . 78

4.5.2. Power-Gating . 78

4.5.3. Dynamic Voltage-Frequency Scale 80

4.6. Power Design Specification . 81

4.6.1. UPF, CPF and IEEE 1801 . 81

4.6.2. SystemC . 84

4.6.3. UML . 84

4.7. Discussion . 85

4.8. Conclusion . 86

71

Chapter 4. Power Consumption Modeling 72

4.1. Introduction

Nowadays, digital circuits are built using the CMOS technology. In figure 4.1, we depict

the base gate of the CMOS technology whose behavior corresponds to a NOT logical

function. From this gate, various logical functions can be built. In the figure, the CMOS

gate contains a PMOS transistor and a NMOS transistor. These transistors have the

same physical characteristics in order to have the same behavior when they are switched.

Vin is the input signal that can be a logic 0 (a voltage close to ground) and 1 (a voltage

close to Vdd). Vout is the output signal of the gate.

Figure 4.1: CMOS inverter circuit.

According to the Vin signal, Vout is obtained. Considering Vin is initially in 1, i.e., in

Vdd, and we change the Vin value to 0. Once the change is done, the PMOS transistor

is closed and the NMOS transistor is open during a short period of time. If the PMOS

transistor is closed, the current that circulates from Vdd to the charge Load is reduced

to almost 0A. In contrast, the NMOS transistor is opened, therefore there is a current

that circulates from Load to ground though the NMOS transistor. This current is also

generated for a short period of time; while the Load charge is discharged. During the

state change, the produced current in both transistors generate power consumption.

Once the circuit arrives to a stable state, the Vout value becomes a 0 logic. However,

this 0 is not exactly a 0V. There is a small current that circulates from Vdd to ground

during the stable state, producing additional power consumption.

Various authors [54] [55] [56] [57] identify three sources of power consumption in digital

CMOS circuits:

Chapter 4. Power Consumption Modeling 73

Ptotal = Pshort + Pswitch + Pstatic (4.1)

where Pshort is the power consumed when the NMOS and PMOS transistors are si-

multaneously active, i.e., producing a short-circuit current from Vdd to ground. This

power consumption is usually small compared to Pswitch and Pstatic. Pswitch is the power

consumed during the period that the circuit is in constant activity, i.e., the transistor

are switching. The sum of Pswitch and Pshort is known as dynamic power consumption

(Pdyn). In contrast, Pstatic is the power consumed when the digital circuit is in stand-by

state, i.e., when the transistor are not switching.

The power consumption that predominates among the mentioned powers is Pdynamic.

However, in the last years, caused by the transistor size reduction, Pstatic is becoming

an important source of power consumption.

In the next sections, we explain in more detail the dynamic and static power con-

sumptions. We continue describing the power consumption estimation according to the

abstraction description level of the system. Afterward, we present the main strategies

to manage the power consumption. Finally, we expose the different approaches that

specify power design for electronic systems.

4.2. Dynamic Power Consumption

Previously, we mentioned that the dynamic power consumption is defined by the follow-

ing equation:

Pdyn = Pshort + Pswitch (4.2)

where Pshort is the power consumed during the period when both transistors are active,

and Pswitch is the power consumed during the switching period. We can express Pswitch

according to the following equation:

Pswitch = αCLV 2
ddf (4.3)

Chapter 4. Power Consumption Modeling 74

Where α is the input transition activity factor of the CMOS gate, CL is the capacitance

of Load, Vdd is the voltage of the CMOS gate source and f is the transition frequency.

Load represents the wires and other transistors that are connected to the CMOS output.

According to this equation, Pswitch depends mainly on the voltage and the frequency,

therefore there are certain techniques to reduce the power consumption at this point,

for example Dynamic Voltage-Frequency Scale (DVFS) and clock-gating. We present

these techniques in detail in Section 4.5.

4.3. Static Power Consumption

According to [54] and [58], static power consumption of a CMOS gate is due to var-

ious leakage currents that flow through the gate during the stable state. Figure 4.2,

depicts a NMOS transistor with its main leakage currents. This transistor contains a

p-type substrate, i.e., this substrate contains excess of charge carries or “holes” and a

n-type channel, i.e., the channel transmits free-electrons from Drain (D) to Source (S)

terminals. The Gate (G) terminal controls the electrons flow between Drain and Source

according to the voltage applied. Finally, the Body terminal (B) is connected to the

p-type substrate. Generally, Body is connected to ground in a NMOS transistor.

Figure 4.2: Leakage currents of a NMOS transistor.

In the figure, IREV represents the Junction Leakage current. This current is produced by

the reverse-biased junction. IGIDL represents the Gate-Induced Drain Leakage current.

This current is produced by the band-to-band tunneling effect in the gate-drain overlap

Chapter 4. Power Consumption Modeling 75

region. IG depicts the current that flows from the gate terminal to the p-type substrate

through the oxide insulation. ISUB represents the Substhreshold leakage current. This

current that is produced between Source and Drain terminals caused by working the

transistor in the weak inversion region.

All these currents are affected by the transistor characteristics (size, voltage applied,

etc.) and by the temperature. One of the most significant leakage current is ISUB. This

current can be modeled by the following equation:

ISUB = KV 2
T

�

W

L

�

e(VGS−Vth)/nVT

�

1 − e−VDS/VT

�

(4.4)

where K, W , L, n are transistor characteristics, VGS is the Gate-Source voltage, VDS

is the Drain-Source voltage, Vth is the threshold voltage and VT is the thermal voltage.

VT is directly proportional to the transistor temperature, therefore according to the

equation, ISUB exponentially increases in function of the temperature.

4.4. Characterization for Power Consumption

Power models characterize the power consumption of hardware components according

to a functional execution. These power models are implemented in various tools using

different abstraction levels. Ibrahim et al. [59] present a survey of the techniques used to

estimate the power consumption of system components. They classify these techniques

in the following levels:

Transistor-Level: This level is a detailed description of the system components in

circuits based on transistors. This level uses the physical transistor model, which

is described in a continuous time domain, to get the component behavior and

its characteristics such as time performance and power consumption. Generally,

the power consumption is estimated by monitoring current and voltage of the

analyzed circuit. This level is the most precise power consumption estimation

technique because every characteristic of the transistor is defined. However, the

simulation time is too long, moreover when designers want to simulate components

Chapter 4. Power Consumption Modeling 76

that have millions of transistors. Tools that use this technique are SPICE [60] and

PowerMil [61].

Gate-Level: In this level, the system components are described by logical gates.

Therefore, the system simulation changes from a continuous-time domain to a

discrete-time domain where each component is sensitive to events. According to

the equation 4.3 from Section 4.2, α represents the input transition activity in a

CMOS gate. In gate-level, this activity parameter can be estimated using different

probabilistic methods. Chou and Roy [62] present a signal activity estimator based

on Monte-Carlo experiments. Ding et al. [63] use probability waveforms to estimate

the average switching activity.

Register Transfer-Level: The register transfer models are interconnected blocks

where each block has a specific functionality in a system. To characterize the

power consumption of these models, their internal blocks are individually measured

and analyzed from their physic implementation and their power properties are

extracted. As gate-level, Register Transfer-Level estimation mainly works focused

on extracting the activity information from the blocks and measure their power

consumption response.

Architecture-Level: This level uses a combination of the techniques mentioned

before, mainly Gate-Level and Register Transfer-Level to estimate the power con-

sumption of a system. For instance, SimplePower [64] employs transition-sensitive

power models to estimate the power consumption of functional units. In contrast,

SoftWatt [65] and Wattch [66] use a fixed-activity model. PowerSC [67] is a C++

library that extends SystemC [68] to specify power features and to estimate power

consumption using different power modeling techniques.

Another tool that is part of this level is Aceplorer [8]. They define the power

consumption though the specification of voltage and current for each component

of the system. These parameters are defined by equations and they can represent

from the lower level power characterization, such as transistor-level, to the higher

level, like instruction-level. However, this tool is commonly used to estimate power

in the first phases of the system design. We detail this tool in Chapter 6. We use

this tool to analyze the power consumption of the system specified in PRISMSYS.

Chapter 4. Power Consumption Modeling 77

Instruction-Level: This level is exclusive to components that execute instructions.

In this level, current measurements are taken when a sequence of instructions is

executed. For each instruction a cost is assigned according to the measurements.

An extra-cost is also assigned according to the transition from an instruction to

another. Tiwari et al. [69] and Konstantakos et al. [70] present power consumption

estimator models in this level. Tiwari was one of the first authors to propose this

power estimation in processors. Konstantokos defines a power consumption model

for an embedded system based on a microcontroller.

Functional-Level: As the previous level, this level is also applied to processing

components. Here, the studied component is split in different functional blocks.

Thus, the application features that impact the power consumption of the func-

tional blocks activity are defined, such as parallelism rate, clock frequency and

data mapping. Once the parameters are specified, their values are changed ac-

cording to an algorithm that individually stimulates the functional blocks. During

the program execution, the current consumed by the component is measured. Re-

gressions are applied to the current consumed according to the features variation

thus obtaining the power model of the component. SoftExplorer [71] is a power

estimation tool that follows this technique.

4.5. Power Management Techniques

Power management is the use of certain hardware elements to optimize the component

power consumption; these can be switches, voltage sources and clock sources where

properties such as current, voltage and frequency can be changed. There exist different

techniques to reduce the power consumption of systems. Power experts combine these

techniques to reduce power in each system state. The combination of such techniques

is defined in a functional block called power manager. This block synchronizes the

implemented control techniques to guarantee the system functionality and optimizing the

power consumption. In this section, we describe three of the most important techniques:

Clock-Gating, Power-Gating and Dynamic Voltage-Frequency Scale.

Chapter 4. Power Consumption Modeling 78

4.5.1. Clock-Gating

Clock-gating is one of the first techniques used to reduce dynamic power consumption

when a processing component is not active. This technique consists in turning off the

signal clock that is received by the component when it is not in use. The power reduction

directly affects the registers that belong to the component. These registers are flip-flops

with clock inputs. For each clock cycle, the flip-flops consume dynamic power, even

when the data input is not changed.

Figure 4.3: Example of a clock gating implementation.

Clock-gating can be implemented with a simple AND gate. Figure 4.3 presents a D-type

flip-flop where the clock input is controlled by an AND gate. Such a gate allows passing

the clock signal only when EN input has a logic 1. This implementation can easily be

described in RTL models using the and operator. Okuhira and Ishihara [72] report that

around 40% of the total power consumption in microprocessors is caused by register

circuits. In this percentage, more than 80% of the power consumption is caused by the

clock signal transition in the register circuits. In consequence, applying this technique,

a significant energy reduction can be made.

4.5.2. Power-Gating

Power-gating is a technique exclusively conceived to reduce static power consumption.

This technique can be applied to every hardware component during the time periods

when it is not in use. Whereas clock-gating only turns the clock input off, power gating

turns the hardware component off when it is not active. The implementation of this

technique uses a transistor as power switch to cut off the current supplied to the hardware

component. Figure 4.4 presents a power gating implementation. The transistor is fixed

between Vdd and the component to control the current flow. The switch can also be

located from the component to ground or both.

Chapter 4. Power Consumption Modeling 79

Figure 4.4: Example of a power gating implementation.

Figure 4.5: Example of a retention register.
.

Once the hardware component is turned off, the component outputs can generate un-

decided signals. Such signals could affect other components that are active during the

period the component is gated. To solve this problem, power experts add an isolation

cell for each component output. Before turning the component off, the isolation cells

are activated producing a logic value to the interconnected components. These isolation

cells can be implemented by AND gates. Figure 4.4 depicts the implementation of the

isolation cells. Each output of the hardware component is connected to an isolation cell,

as well as it is connected to the interconnected component inputs.

We can also add another functionality to a power gated component. This functionality

is to save the current state of the internal registers before the component is turned off.

Once the component is turned on, the saved state is restored and the component can

Chapter 4. Power Consumption Modeling 80

continue its execution from its previous state. To implement such a functionality, the

internal register information can be charged in retention cells. Figure 4.5 depicts the

retention register structure. This register contain two internal registers: a main register

that is identified by a Flip-flop and a shadow register called Retention Cell. The main

register is supplied by VDD_sw. In contrast, the shadow register is supplied by VDD.

VDD_sw is the gated power supply. D, Clk, Reset and Q are connected to the main

register. Save and Restore are bound to Retention Cell. The main register operation is

made by the main internal register. Before the power gated component is turned off, an

event is sent to Save in order to record the information of the main register in Retention

Cell. Once the register information is saved, the power gated component is turned

off and VDD_sw does not supply current to the internal main register. Nevertheless,

Retention Cell is on, because VDD is not cut off. Once the gated component is turned

on, an event is sent to Restore to return the saved information in the internal main

register.

The retention functionality takes certain time to save and restore the gated component

information. Therefore, this functionality is only used in certain cases.

4.5.3. Dynamic Voltage-Frequency Scale

According to Equation 4.3, the switching power depends on voltage and the transition

frequency in a CMOS circuit. In a processing component, if we vary these values accord-

ing to the component workload, we could significantly reduce its power consumption.

However, we can not choose voltage and frequency values randomly. A specific frequency

value must correspond to a specific voltage value. Technologically speaking, when we

reduce the switching frequency, the voltage level can be reduced until a certain limit.

This limit is given by the transistor characteristics and the voltage control implemented.

Processors that implement this kind of technique called operation points the determined

frequency/voltage values. For instance, OMAP3 [73], which is an application processor,

has up to six operation points.

To optimally apply this technique, it is necessary to know the workload and the time

constraints to be executed. Most of the works apply this technique, taking into account

the task execution deadline given by the scheduling policy. According to this deadline,

Chapter 4. Power Consumption Modeling 81

the operation point is dynamically changed. For instance, Ejlali et al. [74] propose to use

DVFS and power-gating techniques to reduce power consumption in redundant-hardware

employed in real-time systems. They present a DVFS algorithm according to a common

execution deadline for a task sequence, the operation points can be changed according

to the time execution of each task that conforms the sequence. Genser et al. [75] propose

an algorithm where the operation point changes to execute a task depending on the time

execution of the previous one.

This technique can be applied in different zones of a system, so that the system can

have multiple voltage level zones. Power experts called these zones voltage domains. To

guarantee the communication between components of different voltage domains, power

experts add level shifters to each connector that crosses the voltage domain border.

Level shifters level the voltage of a logic signal from a voltage domain to another one.

4.6. Power Design Specification

The elements employed to reduce power consumption were initially designed at transistor-

level. The power techniques impact the system functionality, which is usually specified

at higher levels than transistor-one. Therefore, the validation of the correctness between

power and functional execution is evaluated in the last stages of the system design. In

consequence, such elements have begun to be implemented at a higher description level.

In this section, we present various languages that have been conceived to define power

architectures at three different description levels.

4.6.1. UPF, CPF and IEEE 1801

Hardware description languages (HDLs), like VHDL [76] and Verilog [77], were devel-

oped to model the functionality and the time performance of digital systems. However,

these languages lack expressivity to implement all the elements that are involved in the

power reduction techniques. In 2006, various semiconductor and electronics companies

demand to the electronic design automation industry to define an open standard for

power specification.

Chapter 4. Power Consumption Modeling 82

Responding to this need, Accellera Systems Initiative1, with the support of Synopsys

and Mentor Graphics companies, developed a standard named Unified Power Format

(UPF) [78]. The aim of this standard is to define the elements needed to implement

the predominant power reduction techniques at a register transfer level (RTL). The

first UPF version was released in 2007 and, in same year, it was transferred to the

IEEE in order to create a new IEEE standard. In 2009, IEEE publishes its first power

specification standard named IEEE-1801 [79].

Another power specification standard was also developed this time in 2007 by Ca-

dence. This specification is named Common Power Format (CPF) [80]. Such a standard

was also transferred to an independent organization called Silicon Integration Initiative

(Si2)2 to continue its development. This organization has produced two new versions.

The last CPF version was released in 2011.

The two standards have many concepts in common, however the most notorious is the

power intent description complexity. UPF describes the exact physical structure of the

power intent in RTL, i.e., it specifies the wires, the ports and the connection between

the power elements. In contrast, CPF defines the power concepts that include the basic

information to reduce the physical structure complexity. For instance, a power domain

is associated to a voltage level (nominal condition in CPF) in a power mode 3. IEEE-

1801 is a new UPF version that unifies the concepts from CPF and UPF in a unique

standard. The convergence between the two standards continues and a new IEEE-1801

version, whose release is available since the first semester of 2013, contains more Si2

contributions.
1http://www.accelera.org
2http://www.si2.org
3a power mode defines the voltage levels that each power domain must be.

Chapter 4. Power Consumption Modeling 83

Component1

Power
switch

Isolation
Cell

Power Domain

Vdd

Component2

Retention
Cell

Vss

Figure 4.6: Example of Power Domain association.

The main concepts of these standards used to define a system power architecture are:

Power Domain, Power Switch, Level Shifter, Isolation Cell and Retention Cell. We

have mentioned in Section 4.5 that Power Switch, Isolation Cell and Retention Cell

are elements employed to implement power gating technique. Additionally, we have

commented that Level Shifters guarantee the logic level between voltage domain in

DVFS.

The dynamic of the power elements is specified in a Power State Table (PST), where the

voltage levels are coordinated with the states of Power Switches, Retention Cells and

Isolation Cells. By using PST, the designer can verify the synchronization between the

power and functional model execution. Nevertheless, not one of these standards specify

a way to estimate the power consumption of the hardware components where the power

modes are applied.

In IEEE-1801, Power Domain is the concept that gathers the elements of a system

architecture where the power design is applied. For instance, Figure 4.6 depicts a Power

Domain that contains a Power Switch, a Retention Cell and an Isolation Cell to provide

the hardware elements needed to implement the power-gating technique. Assigning the

Power Domain to one or more hardware components means that these components are

supplied in function to the power domain mode. We remember that the associated

hardware components are specified in RTL and these standards are only applied to RTL

models.

Chapter 4. Power Consumption Modeling 84

4.6.2. SystemC

Transaction-Level Modeling (TLM) [81] is a system description level where the commu-

nication between components is realized by transactions through channels. SystemC [68]

is a C++-based language that implements this modeling level 4. Such as RTL, TLM

has initially been developed to describe functionality and to analyze time performance.

However, when the system designers had to model the power characteristics of their

models, a new research area was open in TLM to implement these new characteristics

to existing TLM models. Mbarek et al. [82] implement the power concepts defined in

IEEE-1801 to describe a power architecture in SystemC. They define a framework called

PwARCH. In this framework, the IEEE-1801 power control elements are defined in a

C++ library and can directly be used in the SystemC system model. PwARCH also

includes a test engine to validate the behavior constraints between power and functional

architectures. For instance, if a component is turned off by the power architecture, this

component cannot be executed in the functional architecture. Additionally, the authors

add a power estimation analyzer that evaluates the power consumption, according to

the system execution.

4.6.3. UML

Unified Modeling Language (uml) [21] is a graphical general purpose modeling language

developed by the Object Management Group (OMG). uml was initially used mainly to

specify object oriented software systems. Nevertheless, this language has been more

and more employed to define various kinds of systems, like real-time systems, hardware

platforms, control systems, etc. Such specific languages have been built by extending

the uml concepts. This extension process is defined in a uml profile. For instance,

Modeling and Analysis of Real-Time Embedded Systems (marte) [5] is a profile used

to model and to analyze real-time systems, and System Modeling Language (SysML) [4]

is another profile used in systems engineering.

uml is considered as a language that can be used to specify systems at a higher abstrac-

tion level than TLM. In uml, there are some works to specify power concerns: Hagner

et al. [83] and Arpien et al. [84] defined uml profiles providing the modeling elements to

4SystemC can also implement RTL. This language eases the task to refine the model from TLM to
RTL

Chapter 4. Power Consumption Modeling 85

represent power management techniques and to analyze power consumption. However,

these two approaches abstract the elements involved in the power management tech-

niques, without taking into account the impact that causes the control made by these

elements on the system behavior.

4.7. Discussion

In the design of low-power systems, we note a clear separation of concerns: on one hand, a

power design represented by power characterization and power management techniques,

and, on the other hand, the functional design of the system. The power characterization

is implemented in certain tools that hide their power models, forcing the user to employ

their models and approaches. We also observe that the aim of the power design is

to optimize the power consumption, which is one of several non-functional properties

defined in a system. By the construction of a power architecture, which controls the

power consumption of the system according to its activity, we can identify the impact

of the power design on the functionality of the system. The power design alters the

functionality of the system, therefore verification process must be applied.

Following the PRISMSYS approach, we provide a modeling framework that allows the

separation of concerns through views. The structure and behavior of the functional

design could be defined in a view, while the power design could be specified in another

view. The tools that implement the power management techniques are generally different

to the tools that estimate the power consumption. The PRISMSYS equationalSubView

can be employed to specify the characterization of the power consumption defined by

equations. A StructuralSubView can be used to define the structure needed to implement

the power management techniques. This framework follows a white box approach, i.e.,

the power design is freely defined and modified by the user. Finally, thanks to the

PRISMSYS correspondence, we can state the relationship between power and functional

design.

Chapter 4. Power Consumption Modeling 86

4.8. Conclusion

In this chapter, we have introduced a background of the existent concepts and ap-

proaches to model and characterize the power consumption in electronic systems. We

have introduced the main sources of power consumption in systems that are based on the

CMOS technology: dynamic and static power. Afterwards, we have presented how the

power consumption is estimated in different abstraction levels. We have continued by

describing the power management techniques, defining hardware elements that controls

the energy supplied to the hardware components of the system. We have also showed

that these power management techniques are represented in different abstraction lev-

els and that the power community is looking for an adequate way to add power-related

management in existing system models. We use this background to develop a case study

where the PRISMSYS framework is employed.

We have pointed out the separation of concerns between power and functional design.

Moreover, we have discussed about the division between power characterization and

power management, being both parts of the power design, a single expert domain. Even

though the power design is separated of the functional, they are associated and one

design impacts on the other one.

In the next chapters, we use the power expert domain concepts and technologies to

show how the architecture defined in the PRISMSYS framework can be used to deal

with such problems. The PRISMSYS model describes the power expert domain and the

other domains that affect the power consumption in a system.

Chapter 5

PRISMSYS Framework for

Power-Aware Modeling

Contents

5.1. Introduction . 88

5.2. Views . 89

5.2.1. Hardware View . 89

5.2.2. Application View . 92

5.2.3. Power View . 93

5.2.4. Clock View . 99

5.2.5. Thermal View . 102

5.3. Correspondences . 105

5.3.1. Allocation . 106

5.4. Sub-Correspondences . 107

5.5. Conclusion . 108

87

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 88

5.1. Introduction

To illustrate the use of PRISMSYS framework, we apply it to define the views that

impact and characterize the power consumption in embedded systems. To this pur-

pose, we specialize View and SubViewElement to represent the elements of specific

domains according to the expert knowledge. We identify five views that are associated

with power consumption: HardwareView, ApplicationView, PowerView, ClockView and

ThermalView.

StructuralSubView, ControlSubView and EquationalSubView are integral parts of the

identified views. As such we have explained in Chapter 3, the controlSubViews are spec-

ified to coordinate the subViewElements of each expert domain. Furthermore, they are

employed to synchronize the execution between views. In the power-aware model, these

subViewElement coordination and view synchronization rather than fulfilling the func-

tional system requirements, such as executing a task in a processing element, they satisfy

the system non-functional constraints, like the maximum system power consumption or

the deadline to execute a certain application. These constraints are performed by the

synchronization of each expert domain guaranteeing the preservation of the functional

requirements. For instance, applying power management techniques, the power experts

can reduce the power consumption, while the time performance of task execution and

the system functionality are impacted in other expert domains. The structuralSubView

concepts are specialized defining the concepts commonly employed by experts of each

specific domain. The equationalSubViews state the equations needed to evaluate the

power consumption and temperature of the system components, as well as the values of

the non-functional properties employed to calculate such equations, such as frequency

and voltage.

To represent the multi-view model for a power-aware system, we build a uml model of

the system applying the PRISMSYS profile. View, StructuralSubView and SubViewEle-

ment stereotypes are specialized according to the specific domain. We also use other

marte stereotypes to define subViewElements that are already specified in this profile.

By applying the PRISMSYS framework on this use case, we identify a specific corre-

spondence commonly employed in the design of embedded systems. This correspondence

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 89

is named Allocation and associates subViewElements from the application domain (Ap-

plicationView) to the execution platform domain (HardwareView). Allocation is not

expressed by the semantics of Abstraction, therefore it must separately be specified,

specializing the correspondence concept from the PRISMSYS meta-model.

In this chapter, we begin defining the views that describe the expert domains of the

power-aware model. The first two views are the domains that specify the execution

platform (HardwareView) and the application that is executed on it (ApplicationView).

HardwareView is the backbone of the PRISMSYS power-aware model. Therefore, the

other views are specified abstracting the elements of this view to define their non-

functional properties and other domain elements. Between these derived views, we

first specify PowerView that characterizes the power consumption properties of the

HardwareView elements and the power control elements. We continue defining ClockView

that states the HardwareView temporal properties and the control clock signal elements.

Afterwards, we specify ThermalView that represents the thermal elements associated

with the backbone model. This view also characterizes the temperature evolution of

the HardwareView elements. Finally, we illustrate the use of correspondences and sub-

correspondences for the views defined in the PRISMSYS power-aware model.

5.2. Views

In this section, we define the views that describe the expert domains of the power-aware

model. For each view, we specify the concepts of its subViews specializing the PRISM-

SYS framework meta-model concepts. Afterwards, we represent the view elements with

the PRISMSYS profile. The elements are specified in the profile either extending them

or employing the marte stereotypes. Finally, each view is depicted in uml to describe

a PRISMSYS power-aware model.

5.2.1. Hardware View

We define HardwareView as the platform execution of the system. This view plays the

role of backbone of the PRISMSYS power-aware model. Figure 5.1 depicts the Hard-

wareView meta-model. In this figure, the white meta-classes describe the HardwareView

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 90

concepts. HardwareView inherits from View and it contains a structuralSubView and

a controlSubView. HardwareView does not include an equationalSubView because the

non-functional properties are described in other views. StructuralSubView defines the

concepts and relationships needed to describe the hardware architecture. SubViewEle-

ment is specialized by HwComponent, which represents any hardware component defined

in the platform execution. For instance, a CPU can be a HwComponent whose functional

modes (Free and Busy) are defined. The CPU modes are expressed by the states of a

state machine. ControlSubView commands the states of the hwComponents synchro-

nized with the execution of the other views. For instance, if a task, which is described

in another view, e.g., in an application view, is mapped to a CPU, the controlSubView

of HardwareView must be notified when the task is executed. Once the controlSubView

receives the notification, it sends a control event to the CPU to change its internal mode,

e.g., to Busy state. The communication between hwComponents is represented by the

connection of hwPorts. A hwPort is a specialization of PropertyPort. HwPort transmits

data between hwComponents through wires, a Connector specialization.

Figure 5.1: Hardware View meta-model.

Each new definition of a view is represented in uml by extending the view stereotype of

PRISMSYS. In consequence, HardwareView extends the View stereotype. In the same

way, we extend the other PRISMSYS stereotypes according to the expert domain. How-

ever, in HardwareView, we express HwComponent in uml by using the marte model

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 91

elements that state the hardware structure of a system. Such model elements are spec-

ified in marte HW_Logical package [5]. Similarly to HwComponent, HwPort is repre-

sented by the marte flowPort stereotype. The use of marte is a simple way to follow

the component paradigm employed in PRISMSYS while reusing as much as possible

concepts from marte instead of defining new ones.

Figure 5.2 presents the HardwareView of a PRISMSYS power-aware model. This view

has a structuralSubView and a controlSubView. StructuralSubView includes three parts

that are CPU, Memory and Bus. We identify each part with the corresponding marte

stereotype. For instance, CPU, which is a HwComponent, is stereotyped by hwProcessor.

The connection hub is a bus, so that memory and cpu can be communicated through

bus. A Data type is assigned to each HwPort to define the nature of the data that is

transmitted between hwComponents. Each hwComponent has one or more controlPorts

to change the internal state of the hwComponent behavior. The modes of cpu are

specified in a state machine. In the same way, the modes of bus and memory are defined.

ControlSubView owns the control ports needed to coordinate the hwComponent modes,

according to the execution of the other views. This subView also synchronizes the

execution of the Power and Clock views according to the ApplicationView execution. In

the figure, we depict that HardwareView receives control events from ApplicationView

to inform that an action is executed. Therefore, controlSubView sends control events to

its structuralSubView according to the events received and it also sends control events

to ClockView and PowerView to synchronize their execution.

Clock View Power View

A
p
p
lic

a
ti
o
n

V
ie

w

Figure 5.2: Hardware View of the PRISMSYS power-aware model.

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 92

5.2.2. Application View

ApplicationView represents and abstraction of the application that is executed on the

execution platform specified in a HardwareView. Figure 5.3 depicts the ApplicationView

meta-model. ApplicationView is a view that contains two subViews: a controlSubView

and a structuralSubView. The subViewElements of StructuralSubView are specialized

by Actions. We define that an action represents an atomic element of the application

that cannot be refined. PropertyPort is specialized in DataPort, which means that the

information transmitted between actions is data. Such ports are bond by dependency-

Connetors.

ControlSubView coordinates the execution of the actions in the structuralSubView. This

coordination could depend on control events received from the other views. For instance,

if an action is executed in cpu, ApplicationView controlSubView must notify to Hard-

wareView controlSubView that an action is in execution. Once the action is executed,

ApplicationView controlSubView informs to HardwareView controlSubView that the ac-

tion was executed. Nevertheless, ApplicationView controlSubView could be notified by

HardwareView that the hwComponent where the action is executed has been stopped

since the hwComponent temperature attained its maximum limit. The control event

coordination defined in controlSubView is expressed by ccsl [3], which is detailed in

Chapter 6.

Figure 5.3: Application View Meta-model.

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 93

In uml, actions are defined as components that are parts of the StructuralSubView.

DataPorts and DependencyConnectors are specified by marte flowPorts and uml con-

nectors, respectively. Figure 5.4 presents the ApplicationView of a PRISMSYS power-

aware model. In this figure, there are two actions: t1 and t2. Each action behavior is

represented by a state machine that contains two states: Execute, when the action is in

execution, and Stop, when it finishes or is interrupted. There is a data flow dependency

between these actions that is expressed by the connection between d1 and d2 flowPorts.

ControlSubView commands the execution of the actions. Once an action is executed,

HardwareView is notified to coordinate its subViewElements and to inform the other

views the performed actions.

Hardware View

Figure 5.4: Application View of the PRISMSYS power-aware model.

5.2.3. Power View

The elements of this view intend to supply and control power properties of system

components defined in HardwareView. These control elements implement the power

management techniques that have been described in Chapter 4. Power experts build

their power model without modifying HardwareView, which is the objective of the multi-

view modeling approach. The elements from these views are inspired by the concepts

defined in the IEEE-1801 [79] and CPF [80] languages.

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 94

Figure 5.5 depicts the specialization of the PRISMSYS framework concepts to define

the power domain concepts. PowerView contains the three subViews previously de-

fined in the PRISMSYS framework: a structuralSubView, an equationalSubView and a

controlSubView.

The StructuralSubView owns the following viewElements: voltageSources, powerDomains

and poweredElements. PoweredElement defines the power features of the viewElements

specified in HardwareView. In other words, PoweredElement is the abstraction of a

HwComponent from a power point of view. A poweredElement owns a supplyPort. This

port receives a voltage value from a powerDomain or from a voltageSource. SupplyPort

specializes PropertyPort to represent the transmission of voltage values, i.e., a power-

specific feature. A poweredElement also possesses controlPorts to change the active state

of its state machine. Such a state machine expresses the power consumption modes of

a HwComponent.

Figure 5.5: Power View Meta-model.

VoltageSource represents the functionality of a power source. This power source supplies

current to the hardware components using different voltage levels. In the PowerView

definition, VoltageSource generates different voltage values to implement a part of power

management techniques such as DVFS [85]. A voltageSource owns a supplyPort to

transmit the voltage values to a powerDomain, or directly to a poweredElement. Changes

in voltage are specified by the subViewElement state machine. The states represent

the different voltage levels provided by the voltage source. VoltageSources also have

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 95

controlPorts that receive events from the controlSubView to fire transitions between

states, changing the generated voltage level.

A powerDomain controls the voltage value transmission from a voltageSource to a set of

poweredElements. A PowerDomain owns two kinds of subViewElements: PowerSwitch

and RetentionCell. A violet composite association is depicted in Figure 5.5 to illustrate

which subViewElements are owned by PowerDomain. However, this association is not

defined in the original meta-model, because it is explicitly defined in the SubViewElement

definition (the self-contained association inherited from Component). PowerSwitch cuts

the current that is supplied to a poweredElement when it is not in use,i.e., the voltage

applied to the target poweredElement is 0V . A PowerSwitch contains two supplyPorts

and two controlPorts. The first supplyPort receives voltage value from a voltageSource

and this value is sent to the connected poweredElements according to its active state

(On or Off) through the second supplyPort. ControlPorts receive the control events to

change the active state. RetentionCell saves information of the ViewElement associated

with the supplied PoweredElement before this element is turned off. Meanwhile the

element is turned on, the RetentionCell restores the saved information. PowerDomain

also owns controlPorts and connectors that transmit the control events sent from the

controlSubView to its internal subViewElements. Connector is specialized in Net to be

compatible with the power expert domain. Additionally, a powerDomain has supplyPorts

to receive and to transmit voltage values. Using powerSwitches and retentionCells, we

can implement the power-gating technique [56]. Low abstraction level elements from

IEEE 1801 [79] and CPF [80], like isolation cells and level shifters, are not specified in

this thesis because using the MDE transformation technique, they can be automatically

generated from the PowerView model definition according to the powerSwitches and the

voltageSources that supply the poweredElements.

Each subViewElement of the structuralSubView contains its controlPorts that are ex-

posed on the structuralSubView (see Figure 5.6). These controlPorts are connected to

the controlSubView controlPorts. Such a controlSubView coordinates the execution of

the mentioned power subViewElements according to control events received from Hard-

wareView. Additionally, controlSubView receives a clock signal (through ctrStepCtr)

from ClockView to evaluate the active power consumption equation at each tick of this

clock in the equationalSubView.

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 96

Whereas HardwareView has a predefined representation of their subViewElements in

uml and marte, PowerView does not have it. In consequence, the SubViewElements

of PowerView must specialize the stereotypes of the PRISMSYS profile. Similarly to

the other specific domains, PowerView is specified as a stereotype that inherits from

the View stereotype. PowerDomain and VoltageSource are also defined as stereotypes

inheriting the SubViewElement stereotype. The SupplyPort nature and certain Pow-

eredElement property types are specified by marte NFP1 types. NFP follows the

International System of Units standard (SI) [86]. For instance, a typical property in the

power view is voltage. This property is expressed in function of the unit Volt, in short,

V and its value.

H
a
rd

w
a

re
V

ie
w

Clock View

Figure 5.6: Power View of the PRISMSYS power-aware model without including its
equationalSubView.

Figure 5.6 represents part of the PowerView of a PRISMSYS power-aware model in uml.

The structuralSubView defines three parts that represent power subViewElements: vs1,

pd1 and cpu. vs1 and pd1 are respectively instances of VoltageSource1 and PowerDo-

main1 components. These components are stereotyped by VoltageSource and Power-

Domain extending the PRISMSYS SubViewElement stereotype. PowerDomain1 owns

a PowerSwitch instance (psw) to control the current flow from vs1 to cpu. In con-

trast to VoltageSource and PowerDomain, PowerSwitch is a component predefined in

a uml PRISMSYS library that is imported to be reused in this model. This library

also includes the NFP types that are not included in the marte library, like voltage,

current and temperature. Cpu is a poweredElement whose stereotype also extends the

SubViewElement stereotype. SupplyPorts are represented by marte flowPorts in the

1Non-Functional Property

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 97

figure. To specify their voltage nature, a NFP_Voltage type is assigned to these ports.

Thanks to the flow port properties, the data flow direction is defined. For instance, the

vout flowPort in vs1 is configured as output, i.e., the voltage value generated by vs1 is

shared with its environment, in this case with pd1.

Each subViewElements defined in the PRISMSYS power-aware model expresses its be-

havior by a state machine in Figure 5.6. Cpu poweredElement, which is a HwComponent

in the HardwareView, owns a power behavior whose modes are: Idle, to express that

CPU is consuming static power, and Active, to describe that CPU is consuming dynamic

power. VoltageSource behavior (vs1) contains two states: V1 and V2. Each state repre-

sents a specific voltage level that is defined in the equationalSubView. The powerSwitch

behavior is expressed by two states that represent the powering on (state ON) and the

cutting off (state OFF) of the current from voltageSource to the cpu poweredElement.

ControlSubView are also represented in Figure 5.6. This subView receives control events

from HardwareView in order to coordinate the power subViewElements behavior defined

in structuralSubView according to the HardwareView execution. hwStrActCtr and hw-

StpActCtr ports receives the events indicating that an action is executed or stopped.

hwV1Ctr, hwV2Ctr and hwOffCtr collect the events to change the cpu operation points.

According to the received events, the subViewElement control events are generated.

The execution of the ControlSubView must fulfill the system requirements. A system

requirement focused on power consumption could be: the CPU must be ON when an

action is executed. In this example, there are involved three views: HardwareView,

where the CPU component is defined, ApplicationView, where the actions are executed

in the CPU and PowerView, where the CPU power control is described. In this case,

we only focus on the power control. To fulfill the mentioned system requirement, we

must synchronize the execution to turn CPU on, if it is OFF, and the actions execution.

Therefore, we can specify these executions through the following steps:

1. PowerView ControlSubView receives a control event from the HardwareView Con-

trolSubView that cpu is executing an actions, i.e., it is in mode Busy.

2. PowerView ControlSubView sends a control event to turn the powerSwitch on in

order to supply current to the cpu poweredElement.

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 98

3. PowerView ControlSubView sends a control event to change the cpu power mode

to Active.

These steps can be defined by the specification of the relationships among control events.

Therefore, we can use ccsl [3] to this specification. Such specification is stated in

Chapter 6.

We characterize the power consumption of the poweredElements by means of equa-

tionalModels defined in the equationalSubView. These equationalModels include the

equations that define the power consumption according to the poweredElement behav-

ior. We also specify other equationalModels that specify constant values. Such values are

associated with the power consumption equations. We do not extend the concepts previ-

ously defined in the EquationalSubView meta-model of PRISMSYS framework, because

the equation representation is used in multiple domains, and the power consumption

domain is not an exception.

voltageModel switchModel

powerModel

pv.ps.cpu.power

v

vin

vout

v

p

fc

Ileak

capModel
c

currentModel

Ileak

clkv.clks.cs1.frequency

t

pv.pwCtr.clkStepCtr

Figure 5.7: EquationalSubView of PowerView.

Figure 5.7 depicts an example of this representation to evaluate power consumption

of cpu. We employ the SysML parametric diagram to represent this subView. In

this figure, there are five equationalModels defined by constraintBlocks: voltageModel,

switchModel, capModel, currentModel and powerModel. Each equationalModel defines

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 99

its parameters and equations. For instance, voltageModel specifies a v parameter whose

type is NFP_Voltage, i.e., this parameter is a voltage type. This equationalModel also

owns two equations that assign a constant value to the v parameter: v = (1.1, V) and

v = (2.2, V). The NFP types follow the Value Specification Language (VSL) datatype

syntax defined in marte. Such a datatype is a 2-tuple where the first element is the value

and the second one is the NFP unit. For instance, in the first equation 1.2 represents

the value and V the voltage unit.

In PowerView, the main equationalModel is powerModel. It characterizes the dynamic

and static power consumption equations of the cpu poweredElement. This equationalModel

depends on the values given by other equationalModels defined in this subView. There-

fore, according to the active values in the other equationalModels and the active pow-

erModel equation, the power consumption is evaluated. The evaluation of the active

power equation is executed by the clock signal received on clkStepCtr. PowerModel is

also relied on the frequency parameter. Frequency value is shared from the ClockView

equationalSubView. ClockView specifies the temporal features of the system. The details

of ClockView are described in the following section.

5.2.4. Clock View

ClockView specifies the elements that provide and control the clock signals. Such clock

signals activate the HardwareView elements and give temporal properties to the actions

executed in these elements. Likewise PowerView, we specialize the PRISMSYS frame-

work concepts to define the ClockView elements. Figure 5.8 presents the meta-model

of ClockView. ClockView has the three identified subViews of the PRISMSYS frame-

work. Nevertheless, we only specify the subView elements needed to evaluate power

consumption. The structuralSubView contains equivalent concepts to PowerView struc-

turalSubView, but the nature of the non-functional properties specified and controlled

is different. For instance, ClockPort and PowerPort are concepts derived from Propery-

Port. Whereas PowerPort represents a power nature property, ClockPort expresses a

timing nature, i.e., the non-functional property transmitted by this port is a clock sig-

nal. Another example is ClockSource that is a clock signal generator. The ClockSource

states identify the frequency of the clock signal transmitted by ClockPort instead of

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 100

a voltage value change such as VoltageSource performs. ClockSwitch and ClockedEle-

ment is the ClockView representation of PowerSwitch and PoweredElement, respectively.

However, ClockSwitch controls the clock signal transmission from a ClockSource to a

ClockedElement. ClockedElement is the abstract time performance representation of a

hwComponent and defines the timing properties of the abstracted hwComponent.

Figure 5.8: Clock View Meta-model.

ClockSources and clockSwitches affect the power consumption by changing the clock

frequency or cutting the clock signal off. Therefore, there is a coordination between the

ClockView controlSubView and the controlSubViews of the other views. For instance, if

an ApplicationView action must be executed before a specific deadline, ClockView con-

trolSubView could change the frequency clock in order to reach the required deadline.

This frequency change depends on the voltage level, therefore the PowerView control-

SubView must also be notified in order to change the voltage to the specified frequency.

As well as other views, the controlSubView is specified by using ccsl. This specification

is detailed in Chapter 6.

Similarly to PowerView, the subViewElements of ClockView are implemented in uml by

specializing SubViewElement stereotypes of the PRISMSYS profile. Figure 5.9 depicts

the ClockView of a PRISMSYS power-aware model represented in uml. This view con-

tains two subViews: a structuralSubView and a controlSubView. The structuralSubview

is composed by four parts: ClockSource1 and ClockSource2 instances (cs1 and cs2), a

ClockSwitch instance (csw), and a ClockedElement instance (cpu). cs1 is a ClockSource

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 101

that supplies a clock signal through clkout port. This port not only is stereotyped by

the marte FlowPort, but also by marte Clock. In consequence, the time properties

of the clock signal, like frequency, can be specified by ccsl and the clock signal be-

havior can be simulated in TimeSquare. cs2 is another ClockSource that generates a

clock signal with a fixed frequency. This signal is shared with the other PowerView and

ThermalView to coordinate the equation evaluation in their equationalSubViews. cs2

sends the clock signal to controlView, and this sends two clock signals to PowerView

and ThermalView, whose ticks are coincident with the cs2 clock. cpu is the timing do-

main representation of the HardwareView cpu. The structuralSubView elements define

their behavior by state machines. The cs1 states represent the change of frequency of

the generated clock signal to csw. cs2 owns only one state where the clock frequency

is fixed. The csw states specify the action to cut off or to transmit the clock signal to

the clockedElement. The clockedElement state machine is specified by two states: Run,

to express that clockedElement is executing a sequence of instructions per clock cycles,

and Stop, to indicate that cpu stops the instruction execution.

H
a
rd

w
a
re

V
ie

w

P
o
w
e
r
V
ie

w

T
h
e
rm

a
l
V
ie

w

Figure 5.9: Clock View of the PRISMSYS power-aware model without including its
equationalSubView.

The equationalSubView is also defined in ClockView. Figure 5.10 depicts a parametric

diagram that represents the equationalModels of the ClockView subViewElements for

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 102

the PRISMSYS power-aware model. These elements are associated with the cpu power

consumption defined in PowerView. Furthermore, we define a clock signal to evaluate

the equations of the other equationalSubViews. In the diagram, there are three equa-

tionalModels: frequencyModel1 and frequencyModel2, to respectively set the frequency

of the cs1 and cs2 clock sources, and switchModel, to kill the clock signal or to trans-

mit it to cpu. frequencyModel1 and switchModel share a frequency parameter repre-

sented by the binding connection between f and f_in. SwitchModel is also connected to

clkv1.clks1.cs1.frequecy, which is the frequency property defined in the clock source cs1.

In the same way, frequencyModel2 is linked with clkv1.clks1.cs2.frequecy. Afterwards,

cv.clks1.cs1.frequency and clkv1.clks1.cs2.frequecy are shared with the PowerView equa-

tionalSubView. The former to provide a frequency value in order to evaluate the power

consumption of the cpu. The latter to generate a clock signal whose instants causes the

evaluation of the power consumption and the temperature progression.

frequencyModel1
f

clkv.clks.cs1.frequencyswitchModel
f_in

f_out

frequencyModel2 clkv.clks.cs2.frequency
f

Figure 5.10: Equational Sub-view of Clock View.

5.2.5. Thermal View

ThermalView describes the domain specified by thermal experts to represent thermal

features of the HardwareView subViewElements and to define subViewElements of this

domain such as heat sinks. Figure 5.11 presents the thermal view meta-model. Simi-

larly to PowerView and ClockView, ThermalView inherits from View. The ThermalView

structuralSubView owns two types of subViewElements: ThermalElement and HeatSink.

The former is the thermal abstraction of a hwComponent. The latter represents the

element that helps to dissipate the heat. This heat dissipation causes a temperature de-

crease. A heatSink is connected to a thermalElement by a junctionPoint. JunctionPoint

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 103

is the specialization of Connector in ThermalView. ThemperaturePort inherits from

PropertyPort to represent the temperature nature transmitted between ThermalEle-

ment and HeatSink.

Figure 5.11: Thermal view Meta-Model.

ThermalView contains the three subViews specified in the PRISMSYS framework. Struc-

turalSubView and controlSubView are depicted in Figure 5.12, which is a uml represen-

tation of ThermalView. In the structuralSubView, we define a thermalElement named

cpu. It is the thermal abstraction of the cpu defined in HardwareView. The thermal be-

havior of cpu is specified by a state machine with a single state. This state represents the

cpu temperature behavior. The cpu thermalElement transmits the temperature value

to the controlSubView named T. Unlike the controlSubViews defined in the other views,

T specifies its behavior by a state machine in a controller. Such state machine contains

two states: HIGH, to represent that the cpu temperature rises to its limit, and LOW,

to express that the temperature is in a typical operation temperature. The transitions

between states contain guards, where the cpu temperature is evaluated in order to fire

the transition and to change the control state. Once a guard is fired, an event is sent to

the controlSubView of the PowerView. This event commands to turn cpu off to fall its

temperature. When the temperature descends to 50◦C, ThermalView controlsubView

allows to PowerView turning cpu on sending an event to turn cpu on. To evaluate the

temperature property, a clock signal is sent from ClockView to ThermalView control-

SubView. This clock is received on the clkIn port.

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 104

Figure 5.12: Thermal view of the PRISMSYS power-aware model.

The Temperature state defined in the cpu thermalElement is characterized by an equa-

tion in the equationalSubView. We use the Compact Thermal Model (CTM) [43] to

express the thermal equation of the HardwareView elements. Figure 5.13 depicts the

equationalSubView of the ThermalView. In this figure, TempModel defines the tem-

perature evolution through time. This equationalModel owns a first-order differential

equation whose parameters are thermal properties of the hardware component (cTh

and rTh), temp_env is a constant temperature, p is evaluated in powerView and im-

ported through ParameterConnectors (pv.ps.cpu.power) and t is generated from Con-

trolView, transmitted through DataConnectors to the controlSubView of ThermalView

(thv.thCtr.clkIn).

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 105

capThModel

TempModel

temp

rTh

ptemp_env

t

EnvTempModel
c

pv.ps.cpu.power

cTh

thv.thCtr.clkIn

resThModel
cTh rTh

thv.ts.cpu.T

Figure 5.13: Equational Sub-View of Thermal View.

5.3. Correspondences

In the specification of the PRISMSYS power-aware model, we use the correspondences

defined in the PRISMSYS framework to state the relationships between views. Abstrac-

tion is one of the first correspondence that we can identify. Figure 5.14 presents an

example of the abstraction use. cpu, which is a hwElement defined in HardwareView is

abstracted by the cpu poweredElement. In this example, the cpu power representation

specify the properties and behavior associated with PowerView. Similar correspondence

use is defined for clockedElement and thermalElement.

In the same figure, we depict the ControlConnector Correspondence. This correspon-

dence is specified between the hwV1Ctr, hwV2Ctr and hwOffCctr controlPorts and the

pwV1Ctr, pwV2Ctr and pwOffCtr controlPorts, respectively. For instance, if the cpu

HwElement enters to Busy mode, controlSubView sends a control event to PowerView in

order to inform that the cpu power abstraction must change is power mode (to Active).

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 106

Figure 5.14: Example of the Abstraction and ControlConnector correspondences be-
tween PowerView and HardwareView.

We also employ the parameterConnector correspondence to import the property value

evaluated in other expert domain. For instance, in Figure 5.13, TempModel needs the

power value that is evaluated in PowerView. Therefore, by using the SysML path name

dot notion (see pv1.ps1.cpu.power parameter), we import the power parameter from the

PowerView equationalSubView. This imported parameter represents a parameterCon-

nector correspondence between PowerView and ThermalView.

5.3.1. Allocation

We identify a correspondence that is commonly employed to associate an action from

ApplicationView to a hwComponent in HardwareView. This association is named Allo-

cation. This correspondence is only used between application and hardware views. The

semantics of Allocation is to map actions to an hwComponents. The mapping type is a

spatial distribution, i.e., an action is executed in the associated hwComponent.

Figure 5.15 depicts an example of allocation representation in uml between Application-

View and HardwareView. In ApplicationView, t1 and t2 are allocated to cpu, i.e., the

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 107

execution of t1 and t2 is performed in cpu. This correspondence also gives the possibil-

ity to assign multiple hwComponents to execute and store an ApplicationView action.

We reuse the Allocate association defined in marte to represent this correspondence.

The nature property employed in Allocate is spatialDistribution to maintain the defined

correspondence semantics.

Figure 5.15: Example of Allocation correspondence between ApplicationView and
HardwareView.

5.4. Sub-Correspondences

The PRISMSYS power-aware model also applies subCorrespondences specified in the

PRISMSYS framework. Figure 5.16 presents the use of characterization and equiva-

lence subCorrespondence in PowerView. Each state of the subViewElements are asso-

ciated with one or more equations. For instance, the idle state is associated with the

static equation p = v ∗Ileak. This state is also associated with Ileak = (8, mA) in order

to activate the static current employed in the static equation. The equivalence subCor-

respondence is expressed by a parameter that import a property from a subViewElement

by using the SysML path name dot notion, such as pv.ps.vs1.vout and pv.ps.pd1.psw.vin

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 108

parameters. The binding among pv.ps.vs1.vout, pv.ps.pd1.psw.vin, v and vin expresses

the equivalent subCorrespondence between the parameters defined in equationalSubView

and properties of subViewElements.

Figure 5.16: Example of Characterization sub-correspondence in PowerView.

Summarizing the PRISMSYS power-aware model, Figure 5.17 presents the big picture

of its five defined views.

5.5. Conclusion

In this chapter, we have presented the syntax definition of the PRISMSYS power-aware

model extending the PRISMSYS framework concepts. We have identified the expert

domains that evaluate and impact the power consumption of a system. For each domain,

we define a meta-model where the concepts commonly employed are represented. We

depict the views by using the uml representation.

In the next chapter, we implement the execution semantics of the PRISMSYS power-

aware model to be simulated. Such a simulation allows observing the evolution of the

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 109

system power consumption and temperature through time. We also propose an power

consumption analysis by transforming the PRISMSYS power-aware model to an specific

analysis tool, such as Aceplorer [8].

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 110

frequencyModel1

f

clkv.clks.cs1.frequency

frequencyModel1

<<Abstraction>>

<<Characacterization>>

v

f

c
powerModel

p

Ileak

clkv.clks.cs1.frequency

powerModel

t

TempModel

temp

rTh

p

t

temp_env

pwv.ps.cpu.power

cTh

thv.ths.cpu.T

TempModel

<<Allocate>>

ControlConnectors

DataConnectors

Figure 5.17: PRISMSYS Power-Aware Model Overview.

Chapter 6

PRISMSYS Power-Aware Model

Analysis

Contents

6.1. Introduction . 112

6.2. PRISMSYS Power-Aware Model Simulation 112

6.2.1. Scilab Solver . 113

6.2.2. The PRISMSYS Power-Aware Model Scenario 115

6.3. PRISMSYS Power-Aware Model Analysis in Aceplorer . . 135

6.3.1. Transformation Overview . 136

6.3.2. Aceplorer Domain Model . 137

6.3.3. PRISMSYS to Aceplorer Transformation 139

6.3.4. Aceplorer Code Generation . 140

6.3.5. Test Scenario Generation . 140

6.4. Conclusion . 144

111

Chapter 6. PRISMSYS Power-Aware Model Analysis 112

6.1. Introduction

The specification of the PRISMSYS power-aware model is completed by the definition

of the execution semantics. Such a semantics allows the analysis of the non-functional

properties defined in the model through time. This analysis is possible, once the model

is simulated and the properties are evaluated through time.

We specify the execution semantics of the PRISMSYS power-aware model by employing

the PRISMSYS execution semantics defined in Chapter 3. We additionally define the

controlSubView execution semantics of each views by only using ccsl expressions. The

controlSubView execution definition is bound with the clocks described in the PRISM-

SYS execution semantics. Moreover, The controlSubView execution expresses the sce-

nario to synchronize the execution of the views. We support the controlSubView exe-

cution specification by employing the uml sequence diagram to define the interactions

among the controlSubViews and among their subViewElements. For each view, we define

a sequence diagram to illustrate the controlSubView interaction. Afterwards, we specify

the ccsl expressions that specify the interactions represented in the sequence diagrams.

Once the semantics of the PRISMSYS power-aware model is defined, it is simulated

in TimeSquare. Nevertheless, the evaluation of the equations (e.g., power and tem-

perature equations) must be performed in another tool. We choose as equation solver

Scilab [7], an open source tool for numerical computation. Thus, we develop a “con-

nector” between TimeSquare and Scilab to evaluate the active equations, regarding

TimeSquare simulation. We named Scilab Solver to this connector.

In this section, we simulate the evolution of power consumption and temperature in

a cpu specified in the PRISMSYS power-aware model. In addition to the simulation,

we propose to analyze the cpu power consumption by transforming the PRISMSYS

power-aware model to Aceplorer.

6.2. PRISMSYS Power-Aware Model Simulation

In this section, we explain how Scilab Solver works. Thereafter, we describe the in-

teraction between the different software components (i.e.,, PRISMSYS Model, Scilab

Chapter 6. PRISMSYS Power-Aware Model Analysis 113

Solver and Scilab) supporting us on a sequence diagram. This interaction is employed

to simulate the continuous time behavior of the PRISMSYS power-aware model.

6.2.1. Scilab Solver

The definition of the PRISMSYS execution semantics is specified in order to be simu-

lated or to verify the results of the implementation in lower abstraction levels. We know

there are two kinds of execution behaviors to simulate a PRISMSYS model: discrete

event and continuous time. The former is represented by the state machine behavior

and the event constraints that could be defined in ControlSubView by using ccsl. The

latter is expressed by equations in equationalSubViews. The tools used to run each exe-

cution domain are different. To simulate the ccsl specifications, we use TimeSquare.

To resolve the equations, we choose Scilab. Both tools, TimeSquare and Scilab, pro-

vide an application programming interface (API) that allows the implementation of a

“connector” that interacts with the services that offer these tools.

TimeSquare

PRISMSYS Model
Syntax

PRISMSYS Model
Semantics

Scilab
Solver

frequencies,

equations, states

Enter State,

Step clocks

active equations

Graph Plot

Figure 6.1: Overview of the PRISMSYS framework co-simulation implementation.

Figure 6.1 presents an overview of this implementation. TimeSquare is a module ap-

plication based on the Eclipse plug-in approach. In consequence, we implement Scilab

Solver as an Eclipse Plug-in to connect the TimeSquare solver module with the eval-

uation of the PRISMSYS model equations. From the ccsl specification, Scilab Solver

extracts the clocks that are associated with entering states in the PRISMSYS Model.

Next, Scilab Solver extracts the equations that characterize the states from the PRISM-

SYS Model. In the TimeSquare solver, once an event occurs in some of the entering

Chapter 6. PRISMSYS Power-Aware Model Analysis 114

state clocks, the associated equation is sent to Scilab in order to evaluate it and gener-

ate the graph plot of the property evolution. In the PRISMSYS model, a chronometric

clock is assigned to manage the equation evaluation. This clock has been named as step

in Chapter 3. As soon as step ticks, a new value is generated in Scilab.

Figure 6.2: Sequence diagram of the PRISMSYS model Simulation.

Figure 6.2 depicts a sequence diagram that summarizes the PRISMSYS model execu-

tion. The Solver lifeline represents the Scilab Solver. Once the simulation starts, Scilab

Solver extracts the clocks that represent the entering uml states associated in the ccsl

specification. The uml states are filtered by their stereotype in the uml model, i.e.,

having the clocks associated with uml states, Scilab Solver only searches the states

stereotyped as PRISMSYSState. In the uml model, Scilab Solver also identifies and

extracts the equations associated with the stereotyped states and the initial values of

the equation parameters. The step clock is also extracted from the ccsl specification.

Chapter 6. PRISMSYS Power-Aware Model Analysis 115

This clock is identified by the clockPort that are bound to the t parameters in equation-

alSubViews.

Once the TimeSquare simulation starts, Scilab Solver observes the extracted clocks.

When an event occurs in some of these entering state clocks, Scilab Solver changes the

equation associated with the active state. If the step clock ticks, the active equations

are evaluated in Scilab with the initial parameter values. The result of the evaluation

is marked in a Scilab plot window. After the equation evaluation, the new parameter

values are gotten by Scilab Solver and it updates the initial parameter values. This

execution continues up to the last step occurrence in the TimeSquare simulation.

Scilab Solver is employed to simulate the PRISMSYS Power-Aware Model. This simu-

lation exhibits the evolution of non-functional properties defined in the model, such as

power consumption and temperature.

6.2.2. The PRISMSYS Power-Aware Model Scenario

The scenario of PRISMSYS power-aware model allows to stimulate the execution of the

views and the definition of the execution coherence among views. In order to specify the

scenario, we state the controlSubView interaction with its subViewElements and with

other controlSubViews. These interactions are represented in uml sequence diagrams. A

sequence diagram identifies which control events are sent from and received to different

elements of the PRISMSYS power-aware model. Once the diagrams are finished, its

execution semantics is described in ccsl. The controlSubView specification is added

to the ccsl constraints that express the behavior of the subViewElements and then

to have a complete ccsl specification of the PRISMSYS power-aware model. Such a

ccsl specification is simulated in TimeSquare in order to activate the subViewElement

states. Additionally, the equations associated to the active states are processed by Scilab

Solver. The equations are evaluated and traced in Scilab.

6.2.2.1. Application View

ApplicationView starts the coordination of the other views. This view defines the way as

the actions are executed. Once an action begins its execution, the controlSubView of this

Chapter 6. PRISMSYS Power-Aware Model Analysis 116

view informs to HardwareView that an action is been executed. In order to determine

the instant that an action starts or stops, the controlSubView defines a chronometric

clock whose ticks coincide with the clock occurrences generated by cs2 in ClockView.

We name this clock appCtrPhysClk_ms.

The applicationView controlSubView sends five control events to the HardwareView:

exeAction, stopAction, cpuOp1, cpuOp2 and cpuOff. ExeAction announces to Hard-

wareView that an action starts its execution. In contrast, StopAction informs that an

action stops. CpuOp1 and cpuOp2 command that the cpu runs in operation point 1 or

2, respectively. An operation point is the selection of a specific frequency and voltage

to execute an action. The use of operation points is a strategy to reduce the power con-

sumption tuning the performance time when an action is executed in the cpu. CpuOff

requests to turn the cpu off.

Figure 6.3: Execution of ApplicationView and its interaction with HardwareView.

Chapter 6. PRISMSYS Power-Aware Model Analysis 117

Figure 6.3 presents a sequence diagram that specifies the way as the T1 and T2 actions

are executed in ApplicationView. This diagram depicts the control events sent to the

other views in order to synchronize their execution regarding the ApplicationView exe-

cution. The ControlSubView of ApplicationView (appCtr) sends an exeT1 event to t1

in order to change the t1 state from Stop to Run. This event is sent 5ms after start-

ing the model simulation. AppCtr also sends an control event (exeAction) to announce

to HardwareView that an action is being executed in ApplicationView. HardwareView

coordinates the execution of ClockView and PowerView according to the control events

received from ApplicationView. ThermalView does not receive any event from the other

views. This view only evaluates the cpu temperature evolution depending on the power

dissipated.

Following the ApplicationView sequence, appCtr configures the cpu operation point to

execute the action. In the T1 execution case, appCtr sends a cpuOp1 event to configure

Operation Point 1. We detail the frequency and voltage selected for the operation points

in Section 6.2.2.2. At 35ms of the appCtr execution, T1 is stopped. stopT1 event is

sent to t1 in order to change its state to Stop. Next, HardwareView is informed that

the action was stopped by sending an stopAction event. This event is received by the

HardwareView ControlSubView (hwCtr). In the same way, T2 is executed. However,

Operation Point 2 is configured to execute T2 (cpuOp2). T2 starts at 45ms and stops

at 60ms. Finally, appCtr commands to turn the cpu off by sending cpuOff event.

The relationships among the control events sent from appCtr is specified in ccsl. We

consider each control event as ticks of a clock in ccsl. Therefore, we define a clock

for each interaction with the controlSubView. To express that T1 starts at 5ms and

finishes at 35ms, we define periodic clocks that tick once in a predefined period. These

clocks are synchronized with the chronometric clock appCtrPhysClk_ms. Hence, we

define as period 60ms, i.e., the periodic clocks tick once each 60ms. We also define the

instant that the periodic clocks tick. We name this instant offset. To specify the instant

when the T1 action starts, we represent this instant by a periodic clock that ticks in

the fifth occurrence of appCtrPhysClk_ms, i.e., at 5ms. This periodic clock repeats

this occurrence each 60ms, i.e., at 65ms, 125ms, etc. In ccsl, we specify exeT1 clock

as follows:

exeT1 isPeriodicOn appCtrPhysClk_ms period 60 offset 5 (6.1)

Chapter 6. PRISMSYS Power-Aware Model Analysis 118

these specification are read as exeT1 occurs in the fifth tick of appCtrPhysClk_ms each

60ms. Once the exeT1 ticks, exeAction and cpuOp1 are generated. The relationships

between these clocks are specified by:

exeT1 = exeAction (6.2)

exeT1 = cpuOp1 (6.3)

These two ccsl relations mean that once exeT1 occurs, an event in exeAction and

cpuOp1 ticks simultaneously.

In the same way exeT1 is specified, we state the instants when T1 stops:

stopT1 isPeriodicOn appCtrPhysClk_ms period 60 offset 35 (6.4)

The relationship between stopAction and stopT1 is specified as well as exeT1 :

stopAction = stopT1 (6.5)

Once T1 stops, the time continues running. After 10ms (at 45ms), appCtr sends an

exeT2 to starts the T2 action. To define when T2 starts its execution, we state the

following ccsl specification:

exeT2 isPeriodicOn appCtrPhysClk_ms period 60 offset 45 (6.6)

which means that exeT2 occurs in the 45th tick of appCtrPhysClk_ms each 60ms.

As soon as exeT2 is sent, appCtr commands to HardwareView to change the operation

point sending a cpuOp2 event. AppCtr also informs that an new action starts. Therefore,

appCtr sends an exeAction to hwCtr. Similarly to the ccsl specification of the t1Start

relationships, the t2Start relations are defined by:

exeT2 = exeAction (6.7)

exeT2 = cpuOp2 (6.8)

Chapter 6. PRISMSYS Power-Aware Model Analysis 119

To specify the end of T2, which occurs at 60ms, we define the following periodic clock:

firstappCtrPhysClk_ms isPeriodicOn appCtrPhysClk_ms period 60 offset 0

(6.9)

and then, we filter this clock deleting the first tick:

stopT2 = firstappCtrPhysClk_ms � 2(1)w (6.10)

where � is the ccsl operator that filters appCtrPhysClk_ms and the word 2(1)w

means that the fist occurrence of firstPhysClk_ms is filtered, i.e., this clock starts to

tick at 60ms.

Finally, once stopT2 occurs, a stopAction is sent to hwCtr. the relationship between

these clocks is specified in ccsl as:

stopAction = stopT2 (6.11)

Figure 6.4 depicts the simulation of the ApplicationView specified in ccsl by using

TimeSquare. In this figure, we presents the state machine behavior reacting to the

control events from controlSubView. Each action state is represented by a start and

finish event, e.g., t1StopStat and t1StopFinish. At the begin of the simulation, the T1

and T2 are in Stop state. Once the controlSubView commands to execute an action,

the states of T1 and/or T2 change. In this simulation, the sequence T1, T2 and T1

is executed. The relationship between events are depicted by blue arrows (precedence)

and red lines (coincidence).

C
hapter

6.
P

R
ISM

SY
S

P
ow

er-A
w

are
M

odel
A

nalysis
120

Figure 6.4: ApplicationView simulation in TimeSquare.

Chapter 6. PRISMSYS Power-Aware Model Analysis 121

6.2.2.2. Hardware View

Once ApplicationView is in execution, HardwareView receives control events to coordi-

nate its subViewElements and to synchronize the PowerView and ClockView execution.

Figure 6.5 presents the sequence diagram of the interaction among HardwareView, Ap-

plicationView, ClockView and PowerView from the HardwareView point of view. At the

beginning of the execution sequence, hwCtr, which is the controlSubView of Hardware-

View, receives two events: cpuOp1 and exeAction. The former commands to hwCtr to

configure Operation Point 1. Usually, the cpu manufacturers give the possible operation

points where their cpus could works. Therefore, in this example, hwCtr sends an actV1

event to PowerView and an actF1 event to ClockView to configure the operation point.

These events active V1 and F1 states in the corresponding views, if they are not al-

ready in these states. ExeAction causes that hwCtr changes the cpu state to Busy, i.e.,

cpu is executing an action, and it sends pwExeAction and clkExeAction to PowerView

and ClockView, respectively, to change the abstracted cpu states. Thanks to the alloca-

tion correspondence, HardwareView can know which action (T1 or T2) is in execution

according to the action active state.

We specify in ccsl that actV1 and actV2 are caused by cpuOp1 as:

cpuOp1 = actV 1 (6.12)

cpuOp1 = actF1 (6.13)

these ccsl relations mean that once cpuOp1 ticks, actV1 and actV2 occur. Similar

specification is defined to the relationship among exeAction, pwExeAction and clkExe-

Action:

exeAction = pwExeAction (6.14)

exeAction = clkExeAction (6.15)

Chapter 6. PRISMSYS Power-Aware Model Analysis 122

Figure 6.5: Execution of the HardwareView controlSubView and its interaction with
ApplicationView, PowerView and ClockView.

In the figure, we note that ApplicationView is which decides when the actions finish

their executions. As we have explained in Chapter 5, the notion of time is specified in

ClockView. This time notion is shared with ApplicationView to specify the scenario. By

employing the abstraction of cpu represented in ClockView, we can know the number of

clock cycles needed to execute each action.

Once the T1 action is stopped in ApplicationView, this view sends the stopAction event

to indicate that the action was executed. When hwCtr receives the control event, it

commands to cpu to change to Free state, and sends pwStopAction and clkStopAction

to change the abstraction of cpu state in PowerView and ClockView, respectively.

Chapter 6. PRISMSYS Power-Aware Model Analysis 123

The relationship specification among stopAction, cpuFree, clkStopAction and pwStopAction

is expressed in ccsl as:

stopAction = cpuFree (6.16)

stopAction = clkStopAction (6.17)

stopAction = pwStopAction (6.18)

therefore, stopAction coincides with cpuFree, clkStopAction, and pwStopAction.

After some milliseconds, whose evolution is continued in ApplicationView, appCtr sends

cpuOp2 and exeAction to hwCtr in order to execute the T2 action. cpuOp2 causes two

control events: actV2 and actF2 to configure Operation Point 2. In the same way that

cpuOp1, the ccsl specification of cpuOp2 is defined as:

cpuOp2 = actV 2 (6.19)

cpuOp2 = actF2 (6.20)

The exeAction relationship is already defined. The difference is the action to execute.

Finally, when T2 is executed, appCtr commands to turn the cpu off (cpuOff). Hence,

pwCpuOff and clkCpuOff events tick. The ccsl specification among these clocks are:

cpuOff = pwCpuOff (6.21)

cpuOff = clkCpuOff (6.22)

Figure 6.6 depicts the simulation of the HardwareView controlSubView and the interac-

tion with the other views. The figure presents the behavior of the cpu state machine

according to the received control events. The cpu states are represented by busy and

free activity periods in the top of the figure to express the state changes. Additionally,

the simulation represents the relationship between control events of ApplicationView,

HardwareView, PowerView and ClockView.

C
hapter

6.
P

R
ISM

SY
S

P
ow

er-A
w

are
M

odel
A

nalysis
124Figure 6.6: HardwareView simulation in TimeSquare.

Chapter 6. PRISMSYS Power-Aware Model Analysis 125

6.2.2.3. Clock View

The evolution of time is expressed in ClockView. To describe this evolution, we must

specify a base chronometric clock in ccsl. There are two clock frequencies defined in cs1

(Chapter 5) that active the cpu when T1 and T2 are executed. Such clock frequencies

specify a clear evolution of time, e.g., for each cpu cycle, a time step is executed according

to the selected frequency. However, the time step for each cpu cycle is too small (5.56ns

for F1 and 2.78ns for F2). In consequence, we can choose that the time evolution in

the simulation is either a multiple of the possible cpu cycle frequencies or a common

clock whose frequency could represent the two cpu clocks in a low frequency. For the

sake of simplicity, we choose a common clock to specify the simulation time step in this

PRISMSYS model example. This clock specifies the clock signal of cs2 of the ClockView

defined in Chapter 5. Such a clock is a chronometric clock that ticks each millisecond.

It is specified in ccsl as:

physClk_ms = idealClk discretizedBy 0.001 (6.23)

where idealClk is a DenseClock that ticks each seconds (see Chapter 3).

The duration of the action execution (T1 and T2) in ApplicationView and the waiting

time between the two action executions is synchronized with physClk_ms. In fact, we

define the correspondence between physClk_ms and appCtrPhysClk_ms as:

appCtrPhysClk_ms = physClk_ms (6.24)

By using these clocks, we can evaluate the clock cycles employed by T1 and T2 to

be executed in cpu. Table 6.1 presents the clock cycles spend by T1 and T2 and the

duration of the action execution by using physClk_ms and appCtrPhysClk_ms. We

remark the clock cycles of both actions are exactly equal. Nevertheless, the time execu-

tion of T1 is twice T2. This variation is caused by the operation point configuration.

While T1 is executed at 180MHz, T2 is performed at 360MHz. Although the difference

of time performance is notable, these operation points affect the power consumption.

We explain this power concern in Subsection 6.2.2.4.

Chapter 6. PRISMSYS Power-Aware Model Analysis 126

Action Clock Cycles Time (ms)

T1 5400000 30

T2 5400000 15

Table 6.1: Action execution in cpu clock cycles and time.

Figure 6.7: Execution of the ClockView controlSubView and its interaction with its
internal subViewElements and with HardwareView.

Figure 6.7 depicts the internal interactions into ClockView and the communication with

HardwareView. In ClockView, clkCtr, which is the controlSubView, receives an actF1

event from HardwareView. Thus, clkCtr sends a cs1ActF1 to cs1 to change the fre-

quency state to F1 (180Mhz, according to the characterization subCorrespondnece with

equationalSubView). Additionally, clkCtr sends a clkOn to csw in order to allow passing

the clock signal generated by cs1 to cpu. clkCtl also receives a clkExeAction to change

Chapter 6. PRISMSYS Power-Aware Model Analysis 127

the abstract cpu state in ClockView. Therefore, clockedElement cpu changes to Run

state. Once this action stops, hwCtr sends a clkStopAction to clkCtr. Thus, clkCtr

sends a cpuStop event to the clockedElement cpu and it changes to Stop state.

The relationship among actF1, cs1ActF1 and clkOn are specified in ccsl as:

actF1 = cs1ActF1 (6.25)

actF1 = clkOn (6.26)

In the same way, the relationship between clkExeAction and cpuRun is defined in ccsl:

clkExeAction = cpuRun (6.27)

Once the action finishes, hwCtr sends a clkStopAction to clkCtr changing to Stop state of

the cpu clockedElement. In consequence, we express this causality between clkStopAction

and cpuStop as:

clkStopAction = cpuStop (6.28)

Certain cycles of clocks later, an actF2 event is received. This event causes a cs1ActF2,

which is specified as:

actF2 = cs1ActF2 (6.29)

The execution of the second action is the same as the first one, therefore clkExeAction,

clkStopAction, cpuRun and cpuStop events are generated. Finally, clkCtr receives an

actOff event from hwCtr. Hence, clkCtr commands to change the frequency to 180MHz

(cs1ActF1) and csw is closed (clkOff). The ccsl specification of these control events

are:

actOff = cs1ActF1 (6.30)

actOff = clkOff (6.31)

Figure 6.8 depicts the ClockView simulation. In this view, there are three subViewEle-

ments (cs1, clkSw and clkEleCPU) whose behavior is represented by state machines.

The execution of these subViewElements is coordinated according to the control events

sent by the controlSubView. In the top of the figure, we represents the change of states

Chapter 6. PRISMSYS Power-Aware Model Analysis 128

of each subViewElements according to the TimeSquare simulation. We also depicts

physClk_ms in the simulation where each tick occurs each millisecond.

Run Run RunclkEleCPU Stop StopStop

OnclkSw OffOff

f2 f1cs1 f1

On

cs1

FSM

clkSw

FSM

clkEleCPU

FSM

S
tr

u
c

tu
r
a

lS
u

b
V

ie
w

CtrEvents

From/To

HwView

CtrEvents

from

ClkView

C
o

n
tr

o
lS

u
b

V
ie

w

Figure 6.8: ClockView simulation in TimeSquare.

Chapter 6. PRISMSYS Power-Aware Model Analysis 129

6.2.2.4. Power View

Once the evolution of time is defined in ClockView, we can use the occurrences of

physClk_ms to evaluate associated equations with the active states. As we have

done with ApplicationView, we define a chronometric clock in the execution seman-

tics of controlSubView that coincides with physClk_ms. We name this new clock

pwCtrPhysClk_ms. This clock is the step occurrence that arrives to clkStepCtr of

pwCtr, which is transmitted to the peqv (see Figure 5.17) in order to evaluate the power

consumption of the system.

Figure 6.10 presents the control events sent from the PowerView controlSubView to its

subViewElements (vs1, psw and cpu). This figure also depicts the interaction between

PowerView and HardwareView. The interaction is analogous to the ClockView interac-

tion (Figure 6.8). Although, in this case, the voltage values, the power switch actions

and the cpu power abstraction states are controlled. Similarly to the other views, the

relationship among control events are specified in ccsl as follows:

actV 1 = vs1ActV 1 (6.32)

actV 1 = pwOn (6.33)

actV 2 = vs2ActV 2 (6.34)

actOff = vs1ActV 1 (6.35)

actOff = pwOff (6.36)

pwExeAction = cpuActive (6.37)

pwStopAction = cpuIdle (6.38)

The simulation of PowerView is depicted in Figure 6.10. This simulation is split in three

parts: The state change representation in PowerView and ClockView (top), the discrete

simulation executed in TimeSquare (middle) and the continuous simulation evaluated

in Scilab (Bottom) by employing the connector Scilab Solver. We remark that each time

that pwEleCPU, which is the cpu power abstraction, is in the Active state, the equation

that characterizes it is the dynamic power equation (P = Cfv2). Therefore, according

to the configured operation point ((180MHz, 1.1V) or (360MHz, 2.2V)), the dynamic

power is evaluated. Once pwEleCPU is in the Idle state, the static power equation is

evaluated (Pleak = Ileak ∗ V). In this simulation, the static power is a constant value

Chapter 6. PRISMSYS Power-Aware Model Analysis 130

because the voltage value and the leakage current always have the same values (v = 1.1V

and Ileak = 8mA).

Figure 6.9: Execution of the HardwareView controlSubView and its interaction with
ApplicationView, PowerView and ClockView.

Scilab solver is executed each time that pwCtrPhysClk_ms ticks. Therefore, the asso-

ciated equations that characterize the active states are evaluated. We note in the first

period (0-5ms) that the power consumed is 0W. This power value is due to pwSw is

Off. In the second period (5ms-35ms), T1 is executed. The configured operation point

is (180MHz, 1.1V) and the dynamic power is evaluated giving as result 87mW. This

power consumption is kept constant during the execution of T1. In the third period

(35ms-45ms), any action is executed, i.e., cpu is Free. However, cpu is on consuming

static power during this period (Idle state in PowerView), whose result is 880µW . In

the fourth period (45ms-60ms), T2 is executed. The operation point is also changed

to (360MHz, 2.2V). As we have mentioned in Subsection 6.2.2.1, the time to execute

Chapter 6. PRISMSYS Power-Aware Model Analysis 131

T2 is shorter than T1, even though the clock cycles between T1 and T2 are equals.

Nevertheless, T2 consumes more power than T1, such as it is illustrated in the Scilab

simulation. Its power consumption is 0.697W. By using this simulation, we demonstrate

that reducing the time performance, the power consumption rises. The next period is

the repetition of the first four periods.

Chapter 6. PRISMSYS Power-Aware Model Analysis 132

Active Active ActivepwEleCPU Idle IdleIdle

OnpwSw OffOff

v2 v1vs1 v1

On

vs1
FSM

pwSw
FSM

pwEleCPU
FSM

S
tr

u
c

tu
ra

lS
u

b
V

ie
w

CtrEvents
From/To
HwView

CtrEvents
from

PwView

C
o

n
tr

o
lS

u
b

V
ie

w

P(W)

t(s)

Scilab
Simulation

Run Run RunclkEleCPU Stop StopStop

OnclkSw OffOff

f2 f1cs1 f1

OnClkView
State

Changes

PwView
State

Changes

Figure 6.10: Power View simulation in TimeSquare.

Chapter 6. PRISMSYS Power-Aware Model Analysis 133

6.2.2.5. Thermal View

ThermalView only contains a subViewElement in the structuralSubView. Such an ele-

ment is the cpu thermal abstraction. The behavior of this element owns a state that is

characterized by the thermal equation (extracted from Figure 5.13):

dT

dt
=

P

Cth
+

1
RthCth

(T − Tenv) (6.39)

Where T is the cpu temperature, Cth and Rth are respectively the thermal capacitance

and resistance of cpu, Tenv is the cpu environmental temperature and P is the cpu power

consumption. In this equation, the parameters that change their value through time are

P and T . Moreover, T depends on P to evaluate its value at a specific instant. Therefore,

the temperature evolution of cpu relies on its power consumption evolution. Figure 6.11

presents the cpu temperature simulation. The temperature value is evaluated according

to the active states of the other views and the power consumption evaluation. We note

that the temperature value rises when the power consumption increases and it falls once

the power consumption decreases.

Chapter 6. PRISMSYS Power-Aware Model Analysis 134

Active Active ActivepwEleCPU Idle IdleIdle

OnpwSw OffOff

v2 v1vs1 v1

On

Run Run RunclkEleCPU Stop StopStop

OnclkSw OffOff

f2 f1cs1 f1

OnClkView
State

Changes

PwView
State

Changes

T1 T2 T1Action Execution

P(W)

t(s)

t(s)

T(°C)

S
c

il
a

b
S
im

u
la

ti
o
n

P
o

w
e

r
T
e

m
p

e
ra

tu
re

Figure 6.11: Thermal View simulation in TimeSquare.

Chapter 6. PRISMSYS Power-Aware Model Analysis 135

6.3. PRISMSYS Power-Aware Model Analysis in Aceplorer

Non-functional properties of embedded systems are modeled and analyzed either by ab-

stracting the execution of the elements that belong to a system, or by using dedicated

tools. On one hand, the definition of the execution semantics of PRISMSYS states a

sort of abstract analysis by representing the actions of the view elements by clocks. A

different abstract analysis approach is proposed by Abdallah et al. [87]. They spec-

ify the execution of the elements of application and execution platform by logical and

physical clocks, respectively. The analysis consists in exploring potential allocations

between the application and various execution platforms, in order to achieve the func-

tional requirements and the time deadline restriction; meanwhile reducing the system

power consumption. This exploration is stated by the relation of logical (application)

and physical (execution platform) clocks. They analyze time as a non-functional prop-

erty, but unfortunately it is not possible for them to quantify in a precise manner the

impact of the time on other non-functional properties, such as power consumption and

temperature. PRISMSYS execution semantics together with Scilab Solver could help to

automate the cited exploration process, adding the quantifiable evaluation of the power

consumption and temperature.

On the other hand, dedicated tools use concepts and languages commonly defined by

domain experts to specify systems from their points of view. Nevertheless, these tools

have to redefine the elements specified in other domains to build their own models. The

redefinition produces elements redundancy among analysis tool models. For instance,

Aceplorer [8], a power consumption analysis tool, represents the system from a power

point of view redefining its elements already represented in other tools or languages. For

instance, by using the Aceplorer modeling process, a memory, specified in a hardware

architecture language such as VHDL [76] or SystemC [68], is redefined in Aceplorer with

power properties to evaluate its power consumption.

To avoid the redundancy between tools, the PRISMSYS power-aware model abstracts

the elements that are defined in a domain to be used in another one. In the case of the

memory example, it is represented as a SubViewElement in HardwareView. This view

can specify the hardware architecture model implemented in SystemC. Such a memory

Chapter 6. PRISMSYS Power-Aware Model Analysis 136

is abstracted by a PoweredElement in PowerView defining its power properties. Taking

these two views, an Aceplorer model can be generated.

Thanks to these element abstractions and the possibility to generate specialized models

from the PRISMSYS power-aware model, we can extract the information needed by a

specific analysis tool to evaluate a non-functional property of the system, but also to feed

the PRISMSYS power-aware model with the result of specific analyses. For instance,

the worst case execution time (WCET) of a task allocated on a CPU can be estimated

by a WCET analysis tool and this estimation can be injected into the model in order

to be used for the power consumption analysis.

The scenario employed to execute an Aceplorer model is the functional simulation output

of the system. For instance, to analyze the power consumption of a system whose

functional model is implemented in SystemC, we must transform the SystemC simulation

output to an Aceplorer scenario. This transformation is manually recreated or the VCD

file generated from the SystemC simulation can be imported by Aceplorer to generate

the test scenario. However, to import this file, the architecture defined in SystemC must

be the same architecture in Aceplorer.

In order to ease the transmission of the system model execution between tools, we

propose to use the controlSubView behavior of the selected views to build the scenarios

that are employed to execute the models in each tool. By Using these scenarios, we have

the needed elements to analyze the non-functional properties using different tools.

In this section, we present a transformation overview to generate analysis tool models

from the PRISMSYS power-aware model. This transformation allows to evaluate non-

functional properties specified in our model by using various analysis tools. We detail

this transformation for the study of the power consumption in Aceplorer. We also

describes how we can generate a scenario from the controlSubView specifications to be

used in Aceplorer.

6.3.1. Transformation Overview

We define the transformation from the PRISMSYS power-aware model to an analysis

tool in two steps as illustrated on Figure 6.12. The first step transforms the uml

PRISMSYS power-aware model to a PRISMSYS power-aware domain model that we

Chapter 6. PRISMSYS Power-Aware Model Analysis 137

name PRISMSYS pivot model. This transformation reduces the uml model navigation

complexity creating a model that is conformed to the PRISMSYS power-aware meta-

model. Such a model eases the transformation from the PRISMSYS power-aware model

to analysis tool models, but it is transparent to designers. The second step transforms

the PRISMSYS power-aware domain model to an analysis tool model. To define this

transformation, we propose two options to be implemented. The first one is to define

an analysis tool meta-model. This meta-model helps to specify the transformation rules

between meta-models and to generate the code that will be executed in the tool. The

second one is to generate directly the code to be executed in the analysis tool.

UML
MARTE/SysML

PRISMSYS Model

PRISMSYS
Domain Model

(Ecore)

Analysis Tool
Model

(Ecore)

Code

M2M M2M

M
2
T

PRISMSYS Model PRISMSYS Pivot
Model

M
2

T
Analysis Tool

Model

Figure 6.12: Transformation Overview.

To give an example of this transformation, we chose the first option to transform the

PRISMSYS power-aware model to Aceplorer. First, we introduce the Aceplorer meta-

model to present the main concepts contained in its model. Second, we point out the

main features of the PRISMSYS - Aceplorer transformation.

6.3.2. Aceplorer Domain Model

Aceplorer uses its own language to create the power model of a system evaluating the

power consumed by each system component. However, this language is implemented

without using the MDE techniques to define DSMLs. Therefore, we extract the concepts

and relationships used in Aceplorer to specify a system power model and we represent

them in a meta-model. Figure 6.13 depicts a simplified Aceplorer meta-model. An Ace-

plorer model has three main elements: modules, links and types. Module is an abstract

Chapter 6. PRISMSYS Power-Aware Model Analysis 138

element whose specification follows the component approach, i.e., Module is a structural

element that contains interfaces (ports), properties (attributes) and a behavior definition

represented by states. Link connects Input to Output interfaces to bind the shared data

between Modules. Type is a type definition to specify a value and a unit of typedElements

defined in Modules. Property can be Static or VariableElement. Static is a typed con-

stant, such as number of gates and component load capacitance and VariableElement is a

typed variable such as voltage (VoltageVariable), current (CurrentConsumption) and fre-

quency (Variable). State contains variableEquationElements, comprising equation defi-

nitions associated with parameters. Parameter is the unknown element in the equation

definition and it can be a property or an interface. VariableEquationElement is special-

ized in three equation types: CurrentConsumptionEquation, VoltageVariableEquation

and VariableEquation. CurrentConsumptionEquation specifies the current consumed by

a module. CurrentConsumptionEquation is associated with a currentConsumption to ex-

press that this equation defines the module property. VoltageVariableEquation contains

voltageStates where a voltage value is specified. VoltageVariableEquation is connected

to VoltageVariable, which represents that each time a voltage state changes; the voltage

value assigned to a voltageVariable is changed. VariableEquation is employed to express

property equations that are not current or voltage, such as frequency. VariableEquation

is connected to Variable.

Figure 6.13: Simplified Aceplorer meta-model.

Chapter 6. PRISMSYS Power-Aware Model Analysis 139

Module is specialized in Constraint and Component elements. The former represents

a value generator, e.g., a voltage generator and a clock generator. The latter defines

power features of a system component. Component uses generated values from linked

constraints to evaluate the component power consumption. Component contains cur-

rentConsumptions that is the current drained by the Component from a Constraint.

CurrentConsumption is associated with Input that is the interface that supplies the

current to the Component.

6.3.3. PRISMSYS to Aceplorer Transformation

In order to define the transformation rules, first, we identified the views that are involved

in the system power consumption and then, we map the elements from these views

to the corresponding Aceplorer elements. PowerView, ClockView, HardwareView and

ApplicationView are selected to build a complete Aceplorer model. PowerView and

ClockView define the elements that control non-functional properties that impact the

power consumption of system components, such as voltage and frequency. ClockView

also specifies the clock cycles of the actions executed in ApplicationView. HardwareView

represents the hardware architecture of the system we want to analyze. ApplicationView

specifies the scenario to evaluate the power consumed by the system components.

View SubViewElement Aceplorer

PowerView VoltageSource
Constraint

ClockView ClockSource

PowerView PoweredElement
Component

ClockView ClockedElement

StructuralSubView PropertyPort Input or Output

StructuralSubView Connector Link

StructuralSubView State State

PowerView PowerSwitch State

EquationalSubView Equation VariableEquationElement

EquationalSubView Parameter VariableElement

Table 6.2: Multi-View - Aceplorer Mapping.

Chapter 6. PRISMSYS Power-Aware Model Analysis 140

Table 6.2 presents the main elements to map from the PRISMSYS power-aware model

to Aceplorer. This table lists Views or SubViews, their SubViewElements and their cor-

responding Aceplorer concepts. We identify VoltageSource and ClockSource are trans-

formed to Constraint in Aceplorer. These two SubViewElements supply a value to

other SubViewElements that corresponds to the Constraint definition of value genera-

tor. We also observe the abstractions of HardwareView elements, PoweredElement and

ClockedElement, are mapped to Component. These abstractions define non-functional

properties used to estimate power consumption, e.g., voltage, current and frequency as

well as Component in Aceplorer. Other elements such as PropertyPort, Connector and

State are transformed to their equivalents in Aceplorer (Input or Output interface, Link

and State, respectively). We want to point out in PowerSwitch that is a current control

element in PowerView. This SubViewElement can be transformed to a simple Aceplorer

State. This state represents the Off state of a hardware component when it is turned

off through the power switch. We note the power architectural designer, who defines

PowerSwitches in the system hardware architecture, has a different vision to the power

consumption analysis expert. Finally, Equation and Parameter are respectively mapped

to VariableEquationElement and VariableElements.

6.3.4. Aceplorer Code Generation

Once the transformation between PRISMSYS power-aware model and Aceplorer model

is done, we generate the analysis tool model in Python code, by using the Aceplorer

library. This code is charged in Aceplorer and it is executed in order to create the analysis

tool model on the Aceplorer environment. This model contains the structure, states,

variables and equations that are needed to evaluate the system power consumption.

6.3.5. Test Scenario Generation

Aceplorer tool needs a scenario to evaluate the power consumption of the modeled

system. An Aceplorer scenario is composed by a sequence of steps. An step defines the

active state in each module of the model, during a period of time. For instance, a step

could active the states: V1 in vs1, F1 in cs1 and Active in poweredElement cpu in the

Chapter 6. PRISMSYS Power-Aware Model Analysis 141

transformed PRISMSYS power-aware model. Additionally, this step is executed during

5ms.

To generate this scenario, we use the change of the subViewElement states during the

simulation generated by TimeSquare [6]. Moreover, we only extract the state changes

of the subViewElements that affect the power consumption. In the PRISMSYS power-

aware model, these elements are: cs1, vs1, clkSw, pwSw and the cpu poweredElement.

The top of Figure 6.14 presents the state changes of the mentioned subViewElements

simulated in TimeSquare.

clkSw and pwSw are respectively merged to cs1 and vs1 in the Aceplorer model. There-

fore, their state changes must also be joint. Firstly, we specify the clocks that represent

the cs1 states in Aceplorer by using the following ccsl expressions:

cs1OffStart = clkOffStart (6.40)

cs1OffFinish = clkOffF inish (6.41)

cs1F1Start = (f1Start � clkOnStart) + (f1Start − clkOffStart)(6.42)

cs1F1Finish = f1Finish (6.43)

cs1F2Start = (f2Start � clkOnStart) + (f2Start − clkOffStart)(6.44)

cs1F2Finish = f2Finish (6.45)

where cs1OffStart and cs1OffFinish represent the Off state, cs1OffFinish, cs1F1Start

and cs1F1Finish express the F1 state, and cs1F2Start and cs1F2Finish define the F2

state in cs1. The 6.42 and 6.44 expressions could be read as cs1F1Start occurs either

once clkOnStart ticks or when f1Start occurs removing the ticks that coincidence with

f1Finish. In this way, we distinguish when cs1 is in Off state and when it is in F1.

Chapter 6. PRISMSYS Power-Aware Model Analysis 142

Similarly, we specify the merge of states in vs1 :

vs1OffStart = pwOffStart (6.46)

vs1OffFinish = pwOffFinish (6.47)

vs1V 1Start = (v1Start � pwOnStart) + (v1Start − pwOffStart)(6.48)

vs1V 1Finish = v1Finish (6.49)

vs1V 2Start = (v1Start � pwOnStart) + (v2Start − pwOffStart)(6.50)

vs1V 2Finish = v2Finish (6.51)

Figure 6.14 presents the scenario simulated in TimeSquare. Such a scenario is used

to evaluate the power consumption in Aceplorer. In the the figure, first, we depict the

ClockView and PowerView states that we use to define the Aceplorer scenario. Next,

these states are merged and their ccsl specification is simulated in TimeSquare. This

tool generates a VCD file that is transformed to a VCD file that follows the Aceplorer

model specification. The VCD file is imported by Aceplorer and the tool generates a

scenario to execute its model. Once completed the scenario and the model in Aceplorer,

the power consumption of each system component can be analyzed. We depict the power

consumption of the cpu evaluated in Aceplorer (Bottom).

Chapter 6. PRISMSYS Power-Aware Model Analysis 143

Active Active ActivepwEleCPU Idle IdleIdle

OnpwSw OffOff

v2 v1vs1 v1

On

OnclkSw OffOff

f2 f1cs1 f1

On

ClkView
State

Changes

Active Active ActivepwEleCPU Idle IdleIdle

OffOff v2 v1vs1 v1

OffOff f2 f1cs1 f1

Merged
States

PwView
State

Changes

T
im

e
s
q
u
a
re

S
c
e
n
a
ri
o

A
c
e
p
lo

re
r
S
im

u
la

ti
o
n

Figure 6.14: Control View Scenario generated by TimeSquare (above) and the
power consumption response in Aceplorer (below).

Chapter 6. PRISMSYS Power-Aware Model Analysis 144

6.4. Conclusion

In this chapter, we have presented the simulation of the PRISMSYS power-aware model.

We have defined the interaction between controlSubViews of different views by using the

uml sequence diagram. The semantics of this diagram has been specified by clocks and

relations in ccsl. By using the semantics defined in Chapter 3, we have specified the

subViewElement behavior. We have simulated the scenario defined and coordinated by

the controlSubView to change the subViewElement states in TimeSquare. We have

developed and employed Scilab Solver to evaluate the power and thermal equations

according to the TimeSquare simulation. Scilab Solver follows the execution semantics

defourfined in Chapter 3. Scilab Solver complements the equation evaluation that is not

supported by TimeSquare, interpreting the TimeSquare execution to coordinate the

Scilab evaluation of the equations. We have presented the results of these simulations

in Scilab.

We have also introduced another way to analyze the power consumption of the PRISM-

SYS power-aware model by using the MDE transformation technique. We transform

the PRISMSYS model to Aceplorer, which is a power consumption analysis tool. The

VCD file generated by TimeSquare is employed to build the scenario to evaluate the

power consumption in Aceplorer.

In the next chapter, we summarize the most important contributions of this thesis and

we propose various perspective paths that could be a guide to continue this work.

Chapitre 7

Conclusion (Version en Français)

Dans cette thèse, nous avons montré que la complexité de la conception d’un système

peut être gérée en utilisant une approche multi-vue. Une telle approche sépare l’architec-

ture d’un système en différents domaines spécifiques où chaque expert définit le système

selon son point de vue. Le standard IEEE-42010, propose une façon générale de spécifier

l’architecture d’un système. Cependant, l’architecte du système est libre de définir les

vues et les relations parmi eux. En plus, il n’y a pas une manière clairement définie pour

spécifier le comportement de l’architecture du système ni son modèle d’exécution.

Nous avons proposé un environnement nommé PRISMSYS qui fournit les éléments né-

cessaires pour décrire l’architecture d’un système en suivant une approche multi-vue. Les

concepts de PRISMSYS sont inspirés par les concepts définis en l’IEEE-42010. Cepen-

dant, PRISMSYS spécifie plus en détails la définition d’une vue, ses éléments internes et

les associations possibles qui existent entre les différents éléments des vues d’un système.

De plus, PRISMSYS spécifie la manière dont un modèle multi-vue peut être exécuté de

façon cohérente. La structure de PRISMSYS suit une approche à composants.

PRISMSYS définit une vue en trois types de domaines spécifiques, dénommés sous-vues :

contrôle, structure et équation. Chacune de ces sous-vues a un rôle spécifique dans la

définition d’une vue. La sous-vue structurelle définit la structure de la vue, la sous-vue

de contrôle commande les actions des éléments internes de la sous-vue structurelle, et

la sous-vue équationnelle caractérise les propriétés non fonctionnelles établies dans une

vue à travers des équations.

145

Chapitre 7. Conclusion (Version en Français) 146

PRISMSYS fournit aussi une sémantique spécifique au concept correspondance, qui est

l’association parmi les éléments de l’architecture du système en accord avec le standard

IEEE-42010. La sémantique de correspondance est utilisée pour représenter l’abstrac-

tion des éléments d’une vue par rapport aux autres éléments d’autres vues (la corres-

pondance d’Abstraction), ou pour allouer une action sur un composant hardware (la

correspondance d’Allocation). PRISMSYS spécifie aussi un autre type de correspon-

dance dénommée sous-correspondance, qui est l’association entre les sous-vues (Celle-ci

sont les sous-correspondances d’Équivalence et de Caractérisation).

PRISMSYS considère la correspondance définie par l’IEEE-42010 comme une simple

association entre éléments de différentes vues. Deux associations spécifiques sont pro-

posées : l’Équivalence et la Caractérisation. Entre une vue et une sous-vue, d’autres

types de correspondances sont proposées : les connecteurs de contrôle, de données et de

paramètres. Ces connecteurs partagent des informations qui impactent l’exécution des

vues ou sous-vues. Ces correspondances assurent la cohérence structurelle et sémantique

entre les vues et leurs sous-vues.

En utilisant l’Ingénierie Dirigée par les Modèles, la syntaxe de PRISMSYS est définie

par des méta-modèles. La sémantique d’exécution des modèles PRISMSYS est décrite

dans le language ccsl. Cette définition sémantique permet la simulation du modèle

PRISMSYS avant l’implantation dans un langage de description de plus bas niveau,

comme SystemC ou VHDL. PRISMSYS est représenté en uml en spécifiant un profil.

Le profil de PRISMSYS utilise autant que possible les concepts définis dans les profils

OMG SysML et marte.

Deux types de comportements d’exécution sont définis en PRISMSYS : l’événement

discret et le temps continu. Les deux comportements doivent coordonner leurs exécutions

afin d’évaluer les propriétés non fonctionnelles définies dans le modèle du système. Grâce

à ccsl, la coordination entre ces comportements hétérogènes pourrait être spécifiée dans

un environnent homogène. ccsl définit les relations logiques et temporelles pour exécuter

le modèle et ne pas s’occuper de la manipulation des données. Cette manipulation est

contrôlée par Scilab. Scilab Solver est un connecteur spécifique qui a été développé afin

de gérer la co-simulation entre TimeSquare et l’évaluation des équations en Scilab.

PRISMSYS offre une structure pour capturer et unifier la spécification d’un système.

Celui ci peut alors être utilisé par les experts des domaines pour transformer une partie

Chapitre 7. Conclusion (Version en Français) 147

du modèle PRISMSYS vers un modèle d’un outil de domaine spécifique. Nous avons

illustré cet aspect en transformant le modèle PRISMSYS dédié à la consommation

de puissance vers le format interne de Aceplorer afin d’analyser la consommation de

puissance.

7.1. Perspectives

PRISMSYS et son cas d’étude (le modèle PRISMSYS dédié à la consommation de

puissance) fournissent quelques perspectives pour élargir et améliorer le travail développé

dans cette thèse. Nous listons les propositions que nous considérons comme essentielles

pour la continuité de ce travail.

Employer PRISMSYS dans un autre type de systèmes : Cette thèse définit

une structure pour la modélisation multi-vue qui permet de spécifier l’architecture

du système et son exécution. PRISMSYS peut être étendu en cohérence avec les

experts des domaines et le système à concevoir. En conséquence, PRISMSYS ini-

tialise la construction d’un chemin qui peut être adapté à des autres domaines.

Nous illustrons l’utilisation de l’approche PRISMSYS dans la modélisation de la

consommation de puissance avec l’inclusion des informations de temps. Cepen-

dant, cet approche peut être appliquée pour plusieurs types de systèmes, tel que

l’automatique, la construction et les systèmes de software.

Étendre le comportement du concept subViewElement : Les experts uti-

lisent les machines à états fini et les équations afin de spécifier le comportement de

chaque domaine. Cependant, ils/elles emploient aussi d’autres types de modèles,

comme les réseaux de Petri et les graphes flots de données. Pour supporter ces

autres comportements, le concept Behavior du méta-modèle subViewElement doit

être spécialisé afin de définir la syntaxe du comportement (structure) et alors la

sémantique d’exécution en ccsl.

Améliorer la spécification de la vue thermique et son impact sur les

autres vues : Nous avons défini une simple vue thermique pour simuler la pro-

priété de température, qui a un comportement non linéaire. Néanmoins, il y a

Chapitre 7. Conclusion (Version en Français) 148

d’autres concepts qui appartiennent à cette vue. En outre, l’évolution de la tempé-

rature impacte la consommation de puissance statique. Celle-ci est une des carac-

téristiques qui a le plus d’effet sur la consommation de puissance pour les nouvelles

technologies.

Généraliser l’interaction parmi différents types de comportements : Dans

PRISMSYS, nous spécifions la sémantique d’exécution d’un comportement à évé-

nements discrets, modélisé par une machine d’états fini et un diagramme de sé-

quences ; ainsi que le comportement en temps continu, représenté par les équations

dans le diagramme de paramètres. La sémantique d’exécution des deux compor-

tements a été formellement spécifiée en ccsl. La coordination entre ces com-

portements est également définie en ccsl (activer un état, activer une équation

afin d’être évaluée). Cependant, plutôt que d’avoir un mécanisme ad-hoc pour

implanter la composition hétérogène, nous pourrions dépendre d’environnements

plus génériques, tel que Ptolemy ou ModHel’X, qui s’intéressent explicitement à la

composition de modèles de calcul hétérogènes. Implanter PRISMSYS à travers ce

type d’environnement permettrait de prendre en compte une sélection plus large de

MoC. Cela pourrait se traduire par la définition d’un directeur ou d’un connecteur

PRISMSYS.

Chapter 7

Conclusion

In this thesis, we have demonstrated that the complexity of the system design can be

managed by using a multi-view approach. Such an approach splits the architecture of

a system in various specific domains where experts define the system from their points

of view. The IEEE-1470 and IEEE-42010 standards, propose a general way to specify a

system architecture. Nevertheless, the system architect is free to define the views and

the relationships between them. Moreover, there is not a clear standard way to specify

how the behavior of the system architecture and its execution model could be specified.

We have proposed a framework named PRISMSYS that provides the elements needed

to describe the system architecture following a multi-view approach. The PRISMSYS

concepts are inspired by the concepts defined in IEEE-42010. Nevertheless, PRISMSYS

specifies in more details the definition of a view, its internal elements and the possible

associations that exist between the various view elements of a system. Furthermore,

PRISMSYS defines the way a multi-view model can be coherently executed. The struc-

ture of PRISMSYS follows a component approach, i.e., the system architecture is a

modular design whose elements transfer information to each other through ports.

PRISMSYS defines a view in three kinds of specific domains named subViews: control-

SubView, structuralSubView and equationalSubView. Each one of these subViews has a

specific role in the definition of a view. StructuralSubView states the structure of the

view, ControlSubView commands the actions of the internal elements of the structural-

SubView and EquationalSubView characterizes the non-functional properties defined in

the view by means of equations.

149

Chapter 7. Conclusion 150

PRISMSYS also provides a specific semantics to correspondence, which is the associa-

tion between the system architecture elements according to IEEE-42010. The frame-

work states a specific semantics to correspondence to represent the abstraction of the

elements from one view to another (Abstraction correspondence), or to map an action on

a Hardware Component by using the Allocation correspondence. PRISMSYS also spec-

ifies another kind of correspondence named sub-correspondence, which is the association

between subViews (Equivalence and Characterization sub-correspondences).

PRISMSYS identifies that correspondence is not the only association between its con-

cepts, there are also Abstraction, Equivalence and Characterization. But correspondence

can also be a connection between views and subviews, like ControlConnector, DataCon-

nector and ParameterConnector. These connections share a certain information that

impacts the execution of the views and subViews. Since correspondences and subCorre-

spondeces are employed, each view or subViews can identify the structural and behav-

ioral impact of their elements on other views or subViews, allowing the right syntactic

(structural) and semantics (behavioral) coherence of the PRISMSYS model.

By using Model-Driven Engineering, the syntax of PRISMSYS is defined by meta-

models, allowing the reuse of their concepts to build multiple models. The PRISMSYS

syntax is accompanied by the specification of the execution semantics described in ccsl.

This semantics definition allows the simulation of the PRISMSYS model before being

implemented in a lower-level description language, such as SystemC or VHDL. PRISM-

SYS is represented in uml specifying a profile. The PRISMSYS profile uses as much as

possible the concepts defined in SysML and marte.

Two kinds of execution behaviors are defined in PRISMSYS : a discrete event behavior,

and a continuous time behavior. Both behaviors have to coordinate their execution in

order to evaluate the non-functional properties defined in the system model. Thanks to

ccsl, the coordination between these heterogeneous behaviors could be specified in a

homogeneous environment. ccsl defines the logical and temporal relations to execute

the model and do not deal with data manipulations. This latter aspect is addressed by

Scilab. A specific connector Scilab Solver has been developed to run a co-simulation

with TimeSquare and evaluate equations in Scilab.

PRISMSYS offers a framework to capture and unify the specification of a system. It

can then be used by domain experts to transform part of the PRISMSYS model into

Chapter 7. Conclusion 151

a specific domain tool model. We have illustrated this aspect by transforming the

PRISMSYS power-aware model to Aceplorer in order to analyze the system power

consumption.

7.1. Future works

PRISMSYS and its case study (the PRISMSYS power-aware model) provide some per-

spectives to extend and to improve the work carried out in this thesis. We list the

propositions we consider essential to the continuity of this work:

Employing PRISMSYS in other kind of systems: This thesis states a basic

multi-view framework that formally allows to specify the system architecture and

its execution. This framework can be extended according to the expert domain and

the system to design. Therefore, PRISMSYS initiates the construction of a path

that can be tailored to other domains. We illustrate the use of the PRISMSYS

approach in a power-aware model with time-related information. However, this

approach can be applied to different sorts of systems, such as control, construction

and software systems.

Extending the subViewElement behavior: Experts use Finite State Machines

and equations to specify the behavior of their domains. However, they also employ

other kinds of behaviors, such as Petri nets and Synchronous Data Flow graphs.

To support these other behaviors, the subViewElement Behavior concept must

be specialized to define both the syntax of the behavior and then the execution

semantics in ccsl.

Enhancing the ThermalView specification and its impact on the other

views: We have defined a simple thermal view to simulate the temperature prop-

erty, which has a non-linear behavior. However, there are more concepts that

belong to this view and the temperature evolution impacts the static power, and

this is one of the features that has more effects in the power consumption for new

technologies.

Bibliography 152

Generalizing the interaction between various kinds of behaviors: In

PRISMSYS, we specify the execution semantics of a discrete event behavior, mod-

eled by Finite State Machine and Sequence Diagram; as well as a continuous time

behavior, represented by equations in a Parametric Diagram. The execution se-

mantics of both behaviors have formally been specified in ccsl. Furthermore, the

coordination among them is also defined in ccsl (activating a state, activate an

equation to be evaluated). However, rather than having an ad-hoc mechanism to

implement the heterogeneous composition, we could rely on more generic environ-

ments, such as Ptolemy and ModHel’X, in which the heterogeneity is addressed

explicitly by directors and MoC connectors. This would allow the use of a larger

choice of MoCs.

Bibliography

[1] IEEE recommended practice for architectural description of software-intensive sys-

tems. IEEE Std 1471-2000, pages i –23, 2000.

[2] Systems and software engineering – architecture description. ISO/IEC/IEEE

42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000), pages

1 –46, 2011.

[3] Charles André, Julien DeAntoni, Frédéric Mallet, and Robert de Simone. The

Time Model of Logical Clocks available in the OMG MARTE profile, chapter 7,

pages 201–227. Springer Science+Business Media, LLC 2010, July 2010.

[4] OMG. Systems Modeling Language (SysML). Object Management Group, v1.2,

June 2010.

[5] OMG. UML profile for MARTE. Object Management Group, v1.1, October 2010.

[6] Julien DeAntoni and Frédéric Mallet. Timesquare: treat your models with logi-

cal time. In Proceedings of the 50th international conference on Objects, Models,

Components, Patterns, TOOLS’12, pages 34–41, Berlin, Heidelberg, 2012. Springer-

Verlag.

[7] Scilab Consortium. Scilab. http://www.scilab.org/. [Sep. 10, 2013].

[8] Docea Power. Aceplorer. http://www.doceapower.com/products-services/

aceplorer.html. [Mar. 7, 2012].

[9] J. Eker, J.W. Janneck, E.A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig, S. Neuendorf-

fer, S. Sachs, and Yuhong Xiong. Taming heterogeneity - the ptolemy approach.

Proceedings of the IEEE, 91(1):127–144, 2003.

153

Bibliography 154

[10] Cécile Hardebolle and Frédéric Boulanger. ModHel’X: A component-oriented ap-

proach to multi-formalism modeling. In Holger Giese, editor, Models in Software

Engineering, volume 5002 of Lecture Notes in Computer Science, pages 247–258.

Springer Berlin Heidelberg, 2008.

[11] Systems and software engineering system life cycle processes. ISO/IEC

15288:2008(E) IEEE Std 15288-2008 (Revision of IEEE Std 15288-2004), pages

1–84, 2008.

[12] U.S. Department of Defence. Department of Defence Architecture Framework

(DoDAF). http://dodcio.defense.gov/dodaf20.aspx, 2010. [Jan. 20, 2013].

[13] UK Ministry of Defence. Ministry of Defence Architecture Framework (MODAF).

https://www.gov.uk/mod-architecture-framework, 2012. [Jan. 20, 2013].

[14] The Open Group. The Open Group Architecture Framework (TOGAF). http:

//www.opengroup.org/togaf/, 2008. [Jan. 20, 2013].

[15] Philippe Kruchten. The 4+1 view model of architecture. IEEE Softw., 12(6):42–50,

November 1995.

[16] J.F. Sowa and J.A. Zachman. Extending and formalizing the framework for infor-

mation systems architecture. IBM Systems Journal, 31(3):590–616, 1987.

[17] Elif Demirli and Bedir Tekinerdogan. Software language engineering of architectural

viewpoints. In Ivica Crnkovic, Volker Gruhn, and Matthias Book, editors, Software

Architecture, volume 6903 of Lecture Notes in Computer Science, pages 336–343.

Springer Berlin Heidelberg, 2011.

[18] OMG. MDA guide. Object Management Group, v1.0.1, June 2003.

[19] OMG. Meta object facility (MOF) 2.0 core specification. Object Management

Group, v2.0, October 2003.

[20] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:

Eclipse Modeling Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009.

[21] OMG. OMG unified modeling language. Object Management Group, v2.4.1, August

2011.

Bibliography 155

[22] Architecture Analysis and Design Language (AADL). SAE, September 2012.

AS5506B.

[23] F. Jouault and I. Kurtev. Transforming models with atl. In Satellite Events at

the MoDELS 2005 Conference, volume 3844 of Lecture Notes in Computer Science,

pages 128–138, Berlin, 2006. Springer Verlag.

[24] Rich Hilliard, Ivano Malavolta, Henry Muccini, and Patrizio Pelliccione. Realizing

architecture frameworks through megamodelling techniques. In Proceedings of the

IEEE/ACM international conference on Automated software engineering, ASE ’10,

pages 305–308, New York, NY, USA, 2010. ACM.

[25] Mickael Clavreul. Model and Metamodel Composition: Separation of Mapping and

Interpretation for Unifying Existing Model Composition Techniques. PhD thesis,

Université de Rennes, 2011.

[26] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira

Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In

ECOOP, pages 220–242, 1997.

[27] Adrian Colyer, Andy Clement, George Harley, and Matthew Webster. Eclipse

AspectJ: Aspect-Oriented Programming with AspectJ and the Eclipse AspectJ De-

velopment Tools. Addison-Wesley Professional, first edition, 2004.

[28] Franck Fleurey, Benoit Baudry, Robert France, and Sudipto Ghosh. A generic

approach for automatic model composition. In Holger Giese, editor, Models in

Software Engineering, volume 5002 of Lecture Notes in Computer Science, pages

7–15. Springer Berlin Heidelberg, 2008.

[29] M. Nassar. VUML: a viewpoint oriented uml extension. In Int. Conf. on Automated

Software Engineering, pages 373–376, oct. 2003.

[30] Antonio Cicchetti, Federico Ciccozzi, and Thomas Leveque. Supporting incremental

synchronization in hybrid multi-view modelling. In W. on Models in Software En-

gineering, MoDELS Workshops, pages 89–103, Berlin, Heidelberg, 2011. Springer-

Verlag.

Bibliography 156

[31] Frédéric Boulanger, Christophe Jacquet, Cécile Hardebolle, and Elyes Rouis. Mod-

eling heterogeneous points of view with ModHel’X. In W. on Models in Soft-

ware Engineering, MoDELS Workshops, pages 310–324, Berlin, Heidelberg, 2009.

Springer-Verlag.

[32] Gordon D. Plotkin. A structural approach to operational semantics. J. Log. Algebr.

Program., 60-61:17–139, 2004.

[33] C. A. R. Hoare. Viewpoint - retrospective: an axiomatic basis for computer pro-

gramming. Commun. ACM, 52(10):30–32, 2009.

[34] Lars-Åke Fredlund, Bengt Jonsson, and Joachim Parrow. An implementation of a

translational semantics for an imperative language. In CONCUR, pages 246–262,

1990.

[35] Antoon Goderis, Christopher Brooks, Ilkay Altintas, Edward A. Lee, and Carole

Goble. Heterogeneous composition of models of computation. Future Generation

Computer Systems, 25(5):552 – 560, 2009.

[36] Modelica Association. Modelica. http://www.modelica.org. [Jan. 14, 2013].

[37] Mathworks. Matlab. http://www.mathworks.com/products/matlab/, 2013. [Jan.

14, 2013].

[38] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-time

components in bip. In SEFM, pages 3–12, 2006.

[39] E.A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of

computation. Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, 17(12):1217–1229, 1998.

[40] Benoit Combemale, Julien Deantoni, Matias Vara Larsen, Frédéric Mallet, Olivier

Barais, Benoit Baudry, and Robert France. Reifying concurrency for executable

metamodeling. In the 6th International Conference on Software Language Engi-

neering (SLE 2013), oct. 2013.

[41] EAST-ADL Domain Model Specification. EAST-ADL Association, May 2013.

v2.1.11.

Bibliography 157

[42] Perry Alexander and Cindy Kong. Rosetta: Semantic support for model-centered

systems-level design. IEEE Computer, 34(11):64–70, 2001.

[43] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, Wei Huang, Sivakumar

Velusamy, and David Tarjan. Temperature-aware microarchitecture: Modeling and

implementation. ACM Trans. Archit. Code Optim., 1(1):94–125, March 2004.

[44] Wei Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and M.R.

Stan. Hotspot: a compact thermal modeling methodology for early-stage vlsi de-

sign. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 14(5):

501 –513, may 2006.

[45] Charles André, Frédéric Mallet, and Julien Deantoni. VHDL Observers for Clock

Constraint Checking. In Symposium on Industrial Embedded Systems, trento, Italie,

April 2010. IEEE Computer Society.

[46] OMG. UML Profile for Advanced and Integrated Telecommunication Services (Tel-

coML). Object Management Group, Beta1, January 2012.

[47] Eclipse. Papyrus. http://www.eclipse.org/papyrus/, 2013. [Jan. 20].

[48] Obeo. Uml designer. http://www.obeodesigner.com/, 2013. [Jun. 20].

[49] No Magic. Magic draw. http://www.nomagic.com/. [Jan. 20, 2013].

[50] Modeliosoft. Modelio. http://www.modelio.org/, 2013. [Jun. 20].

[51] IBM. Rational software architect. http://www-03.ibm.com/software/products/

us/en/ratisoftarch/, 2013. [Jun. 20].

[52] IBM. Rhapsody. http://www-03.ibm.com/software/products/us/en/

ratirhapfami/. [Jun. 20, 2013].

[53] Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete Event

Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[54] D. Helms, E. Schmidt, and W. Nebel. Leakage in CMOS circuits – an introduction.

In Enrico Macii, Vassilis Paliouras, and Odysseas Koufopavlou, editors, Integrated

Circuit and System Design. Power and Timing Modeling, Optimization and Simu-

lation, volume 3254 of Lecture Notes in Computer Science, pages 17–35. Springer

Berlin / Heidelberg, 2004.

Bibliography 158

[55] W. Zhang, J. Williamson, and L. Shang. Power dissipation. In Low-Power

Variation-Tolerant Design in Nanometer Silicon, pages 41–80. Springer Berlin /

Heidelberg, 2010.

[56] Miltos D. Grammatikakis, George Kornaros, and Marcello Coppola. Power-aware

multicore SoC and NoC design. In Multiprocessor System-on-Chip, pages 167–193.

Springer, 2011.

[57] D. Flynn, R. Aitken, A. Gibbons, and K. Shi. Low Power Methodology Manual

for System-On-Chip Design. Integrated Circuits and Systems. Springer, 1 edition,

2007.

[58] Farzan Fallah and Massoud Pedram. Standby and active leakage current control

and minimization in cmos vlsi circuits. IEICE Transactions, 88-C(4):509–519, 2005.

[59] Mostafa E. A. Ibrahim, Markus Rupp, and Hossam A. H. Fahmy. A precise high-

level power consumption model for embedded systems software. EURASIP J. Em-

bedded Syst., 2011:1:1–1:14, January 2011.

[60] Laurence W. Nagel. SPICE2: A Computer Program to Simulate Semiconductor

Circuits. PhD thesis, EECS Department, University of California, Berkeley, 1975.

URL http://www.eecs.berkeley.edu/Pubs/TechRpts/1975/9602.html.

[61] Charlie X. Huang, Bill Zhang, An-Chang Deng, and Burkhard Swirski. The design

and implementation of powermill. In Proceedings of the 1995 international sym-

posium on Low power design, ISLPED ’95, pages 105–110, New York, NY, USA,

1995. ACM.

[62] T.-L. Chou and K. Roy. Accurate power estimation of cmos sequential circuits.

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 4(3):369–

380, 1996.

[63] Chih-Shun Ding, Chi ying Tsui, and M. Pedram. Gate-level power estimation using

tagged probabilistic simulation. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 17(11):1099–1107, Nov 1998.

[64] W. Ye, N. Vijaykrishnan, M. Kandemir, and M.J. Irwin. The design and use

of simplepower: a cycle-accurate energy estimation tool. In Design Automation

Conference, 2000. Proceedings 2000, pages 340 –345, 2000.

Bibliography 159

[65] Sudhanva Gurumurthi, Anand Sivasubramaniam, Mary Jane Irwin, N. Vijaykrish-

nan, Mahmut Kandemir, Tao Li, and Lizy Kurian John. Using complete machine

simulation for software power estimation: The softwatt approach. In Proceedings

of the 8th International Symposium on High-Performance Computer Architecture,

HPCA ’02, page 141, Washington, DC, USA, 2002. IEEE Computer Society.

[66] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework for

architectural-level power analysis and optimizations. SIGARCH Comput. Archit.

News, 28(2):83–94, May 2000.

[67] F. Klein, G. Araujo, R. Azevedo, R. Leao, and L.C.V. dos Santos. An efficient

framework for high-level power exploration. In Circuits and Systems (MWSCAS),

pages 1046–1049, Aug 2007.

[68] IEEE standard for standard SystemC language reference manual. IEEE Std 1666-

2011 (Revision of IEEE Std 1666-2005), pages 1–638, 9 2012.

[69] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded software: a first

step towards software power minimization. Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, 2(4):437–445, 1994.

[70] V. Konstantakos, A. Chatzigeorgiou, S. Nikolaidis, and Th. Laopoulos. Energy

consumption estimation in embedded systems. In Instrumentation and Measure-

ment Technology Conference, 2006. IMTC 2006. Proceedings of the IEEE, pages

235 –238, april 2006.

[71] J. Laurent, N. Julien, E. Senn, and E. Martin. Functional level power analysis: an

efficient approach for modeling the power consumption of complex processors. In

Design, Automation and Test in Europe, volume 1, pages 666–667, Feb 2004.

[72] Takumi Okuhira and Tohru Ishihara. Unified gated flip-flops for reducing the clock-

ing power in register circuits. In JoséL. Ayala, Braulio García-Cámara, Manuel

Prieto, Martino Ruggiero, and Gilles Sicard, editors, Integrated Circuit and System

Design. Power and Timing Modeling, Optimization, and Simulation, volume 6951

of Lecture Notes in Computer Science, pages 237–246. Springer Berlin Heidelberg,

2011.

Bibliography 160

[73] OMAP35x Applications Processor Technical Reference Manual. Texas Instruments,

Apr 2010.

[74] A. Ejlali, B.M. Al-Hashimi, and P. Eles. Low-energy standby-sparing for hard real-

time systems. Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, 31(3):329 –342, march 2012.

[75] A. Genser, C. Bachmann, C. Steger, R. Weiss, and J. Haid. Power emulation based

dvfs efficiency investigations for embedded systems. In System on Chip (SoC), 2010

International Symposium on, pages 173 –178, sept. 2010.

[76] IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-2008 (Revision

of IEEE Std 1076-2002), 2009.

[77] IEEE Standard for Verilog Hardware Description Language. IEEE Std 1364-2005

(Revision of IEEE Std 1364-2001), 2006.

[78] Accellera. Unified power format 1.0. http://www.accellera.org/activities/

p1801_upf, 2007.

[79] IEEE. IEEE standard for design and verification of low power integrated circuits.

IEEE Std 1801-2009, pages C1–218, 2009.

[80] Silicon Integration Initiative. Common Power Format Specification 2.0. Silicon

Integration Initiative, Inc., Feb 2012.

[81] Lukai Cai and Daniel Gajski. Transaction level modeling: an overview. In Proceed-

ings of the 1st IEEE/ACM/IFIP international conference on Hardware/software

codesign and system synthesis, CODES+ISSS ’03, pages 19–24, New York, NY,

USA, 2003. ACM.

[82] Ons Mbarek, Alain Pegatoquet, and Michel Auguin. A methodology for power-

aware transaction-level models of systems-on-chip using upf standard concepts. In

PATMOS, pages 226–236, 2011.

[83] Matthias Hagner, Adina Aniculaesei, and Ursula Goltz. UML-based analysis of

power consumption for real-time embedded systems. In Int. Conf. on Trust, Secu-

rity and Privacy in Computing and Communications (TrustCom), pages 1196–1201,

Nov. 2011.

Bibliography 161

[84] Tero Arpinen, Erno Salminen, Timo D. Hämäläinen, and Marko Hännikäinen.

MARTE profile extension for modeling dynamic power management of embedded

systems. Journal of Systems Architecture, 2011.

[85] Dongsheng Ma and R. Bondade. Enabling power-efficient DVFS operations on

silicon. Circuits and Systems Magazine, IEEE, 10(1):14–30, 2010.

[86] Bureau International des Poids et Mesures. The International System of Units (SI).

pages 1–180, 2006.

[87] A. Abdallah, A. Gamatie, and J. Dekeyser. Correct and energy-efficient design of

socs: The h.264 encoder case study. In System on Chip (SoC), 2010 International

Symposium on, pages 115–120, 2010.

