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sémantique pour spécifier un modèle multi-vue d'un système. La syntaxe de PRISMSYS est spécifié par un meta-modèle. PRISMSYS suit une approche par composants, où les concepts multi-vue sont specifiés en accord avec cette approche. Une vue est exprimée par trois sous-vues principales : controlSubView, StructuralSubView et EquationalSubView. Chaque sous-vue joue un rôle spécifique dans la construction d'une vue. La deuxième partie de cette thèse est dédiée à la modélisation d'un système dont la préoccupation principale est la consommation de puissance. Ce modèle est défini en utilisant la structure de PRISMSYS. Cette partie de la thèse est composée des chapitres 4, 5 and 6. Le chapitre 4 introduit les concepts, les techniques, et les outils employés pour modéliser la consommation de puissance d'un système. Nous spécifions les vues et ses éléments afin d'évaluer et d'analyser le modèle PRISMSYS dédié à la consommation de puissance dans le chapitre 5. Nous simulons, évaluons et analysons le modèle PRISMSYS dédié à la consommation dans le chapitre 6 en utilisant TimeSquare, Scilab et le connecteur Scilab Solver construit pour l'occasion. Dans ce chapitre, nous spécifions également la transformation de PRISMSYS vers Aceplorer. Finalement, nous concluons ce travail, en soulignant les contributions principales et nous donnons quelques perspectives futures dans le chapitre 7.

Résumé

Cette thèse propose un modèle, dénommé PRISMSYS, qui s'appuie sur une approche multi-vue dirigée par les modèles et dans laquelle pour chacun des domaines chaque expert décrit les concepts de son domaine et la relation que ces concepts entretiennent avec le modèle socle. L'approche permet de maintenir la cohérence sémantique entre les différentes vues à travers la manipulation d'événements et d'horloges logiques. PRISM-SYS est basé sur un profil uml qui s'appuie autant que possible sur les profils SysML, dédié à l'ingénierie système, et marte, dédié à la conception de systèmes temps-réel embarqués. Le modèle sémantique qui maintient la cohérence est spécifié avec le langage ccsl qui est un langage formel déclaratif pour la spécification de relations causales et temporelles entre les événements de différentes vues.

L'approche est illustrée en s'appuyant sur une architecture matérielle dans laquelle le domaine d'analyse privilégié est un domaine de consommation de puissance. Le modèle contient différentes vues de cette architecture : modèle fonctionnel, modèle architectural, modèle équationnel de propriétés liées à la température et à la puissance, modèle temporel. L'environnement proposé par PRISMSYS permet la co-simulation du modèle et l'analyse. La simulation s'appuie conjointement sur TimeSquare pour les aspects événementiels et liés au contrôle, et sur SciLab pour la prise en compte des propriétés non-fonctionnelles (température et puissance). L'analyse est conduite en transformant le modèle multi-vue dans un format adéquat pour Aceplorer, un logiciel expert dédié à l'analyse de consommation.

Abstract

At the system-level, experts specify functional and non-functional properties by employing their own theoretical models, tools and environments. Such experts attempt to use the most adequate formalisms to verify the defined system properties in a specific domain. Nevertheless, each one of these experts' views is supported on a common base and impacts directly or indirectly the models described by the other experts. As a consequence, it is essential to keep a semantic coherence among the different points of view and also to be able to reconcile and to include all the points of view before undertaking the different phases of the analysis. This thesis proposes a specific domain model named PRISMSYS. This model is based on a model-driven multi-view approach where the concepts, and the relationships between them, are described for each expert's domain. Moreover, these concepts maintain a relation with a backbone model. PRISMSYS allows keeping a semantic coherence among the different views by means of the manipulation of events and logical clocks.

PRISMSYS is represented in a uml profile, supported as much as possible by SysML, devoted to the systems engineering, and marte, dedicated to the design of real-time embedded systems. The semantic model, which preserves the view coherence, is specified by using ccsl, a declarative formal language for the specification of causal and temporal relationships between events of different views.

The approach is illustrated taking as case study an electronic system, where the main domain analysis is power consumption. The system model incorporates various views: a functional model, a power model, a time performance model and a thermal model. In turn, these views are divided in three parts: control, structural, and equational. These parts interact with each other to characterize the temperature and power consumption of the system. The environment proposed by PRISMSYS allows the co-simulation of the model and its analysis. The simulation is supported by TimeSquare, for the event aspects and correlated to the control, and by SciLab, for taking into account the nonfunctional properties (temperature and power consumption). The analysis is conduced by transforming the multi-view model in the internal format accepted by Aceplorer, an expert tool dedicated to power consumption analysis.
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La notion de système englobe des environnements plus ou moins complexes. Les téléphones filaires autrefois limités à l'aspect communication ont été remplacés par les téléphones GSM qui combinent l'envoi de texto, le guidage GPS des utilisateurs, la lecture d'un journal et/ou d'un livre ou encore la navigation sur Internet. Les systèmes ont aussi été mis-à-jour avec une technologie plus sophistiquée, où l'optimisation de certaines propriétés est une priorité aujourd'hui. Les systèmes électroniques sont maintenant intégrés dans les voitures, les avions, les bateaux et les trains. Ces systèmes numériques se veulent plus efficaces et plus flexibles que les systèmes purement mécaniques en aidant à réduire la consommation de carburant, les coûts de maintenance et en améliorant la qualité fonctionnelle.

Dans le but de gérer la complexité des systèmes modernes, les architectes des systèmes divisent les aspects en plusieurs domaines. Chaque domaine est conçu, étudié et analysé par des experts spécifiques qui s'y intéressent spécifiquement. Ces préoccupations sont quantifiées par les propriétés établies dans le cahier des charges du système. Ces propriétés peuvent être soit fonctionnelles (arrêter une voiture quand la pédale du frein est appuyée), ou non fonctionnelles (déterminer un budget sur la consommation de puissance et de carburant, les temps de réponse, la taille et les coûts). Habituellement, les experts ont leurs propres langages et outils pour modéliser et analyser un domaine spécifique. Cependant, ces domaines sont liés et interagissent afin de respecter les exigences du système. Par exemple, dans les voitures électriques ou hybrides, l'action de freinage pourrait générer de l'énergie qui peut être stockée dans les batteries pour être réutilisée lorsque la voiture a besoin d'accélérer. Ce cycle peut réduire la consommation de puissance ou de carburant de la voiture en améliorant certaines propriétés non fonctionnelles.

Nous proposons d'exprimer comme des vues, chacun des domaines du système. IEEE-1471 [1] et IEEE-42010 [START_REF]Systems and software engineering -architecture description[END_REF] sont des standards qui proposent une structure générique afin de spécifier un système avec de multiples vues. Cette manière de décrire un système est appelée modélisation multi-vue. Cependant, ces standards sont extrêmement généraux, ils peuvent donc être appliqués de différentes façons. En plus, en utilisant ces standards, c'est difficile de décrire les concepts réutilisables définis dans une architecture pour les appliquer ailleurs.

Dans cette thèse, nous proposons PRISMSYS, un langage de modélisation muti-vue qui permet de spécifier les domaines des experts dans une variété de vues. PRISMSYS est inspiré par les concepts définis dans IEEE-42010 [START_REF]Systems and software engineering -architecture description[END_REF]. Néanmoins, nous proposons des éléments spécifiques inclus dans les vues, ses comportements, ses associations et ses interactions. En utilisant l'Ingénierie Dirigée par les Modèles, nous donnons une syntaxe à PRISMSYS, i.e., la structure de l'architecture du système. La structure de PRISMSYS est spécifiée par un méta-modèle.

PRISMSYS inclut deux types de comportements : un comportement à événements discrets, représenté par des machines à états et l'interaction parmi des vues définie par des événements. Il prévoit aussi un comportement EN temps continu, exprimé par des 2quations. Nous définissons la sémantique d'exécution de ces comportements en utilisant ccsl [START_REF] André | The Time Model of Logical Clocks available in the OMG MARTE profile[END_REF], un langage déclaratif qui décrit les relations causales et temporelles entre événements. En employant ccsl, nous spécifions la coordination du comportement des différents domaines d'exécution. Nous orchestrons aussi les différent modèles (a priori hétérogènes) du comportement dans les vues définies, comme la synchronisation entre l'activation des états d'une machine à états finis (un comportement à événements discrets) et l'évaluation des équations (un comportement en temps continu).

Nous représentons PRISMSYS comme un profil uml. Le profil de PRISMSYS utilise autant que possible les concepts définis dans les profils uml SysML [START_REF] Omg | Systems Modeling Language (SysML). Object Management Group[END_REF] et marte [START_REF] Omg | UML profile for MARTE[END_REF].

Une fois que la sémantique d'exécution de PRISMSYS est définie, nous utilisons TimeSquare [START_REF] Deantoni | Timesquare: treat your models with logical time[END_REF] afin de simuler la partie discrète du modèle. Pour évaluer la partie continue, nous choisissons Scilab [START_REF]Scilab[END_REF], une outil de calcul numérique qui offre les fonctions pour résoudre les équations. Nous avons développé un connecteur entre TimeSquare et Scilab 

Introduction

Nowadays, the complexity of systems is increasing. It began with simple devices that performed a specific functionality, such as a telephone that makes calls through a cable, and now, these devices are much more complex including new functionalities and new technologies. For instance, the telephone is being replaced by mobile phones, which are wireless and have multiple functionalities such as sending messages, orienting people to arrive to a destination or allowing to read news and books or to surf on the Internet. Systems have also been upgraded with a more sophisticated technology, where the optimization of certain properties is a priority today. Electronic systems are now integrated in cars, airplanes, boats and trains. These systems are more precise than the mechanical ones helping to reduce gas consumption, maintenance costs and improving the functional quality.

To deal with the complexity of modern systems, system architects split them in various domains. Each domain is designed, studied and analyzed by experts that specify determined stakeholder's concerns. These concerns are quantified by properties stated in system requirements. Such properties can be either functional, such as stopping a car when the brake pedal is pressed, or non-functional, like power and gas consumption, time performance, size and costs. Usually, the experts have their own languages and tools to model and analyze a specific domain. However, these domains are connected and they interact to fulfill the system requirements. For instance, in electric or hybrid cars, the braking action could generate some energy that can be stored in batteries to be re-used once the car needs to accelerate. This cycle can reduce the power or gas consumption of the car, improving certain non-functional properties.

The multiple domains that could be defined in a system are tackled by expressing them in views. IEEE-1471 [1] and IEEE-42010 [START_REF]Systems and software engineering -architecture description[END_REF] are standards that propose a generic framework to specify a system in multiple views. This way to describe a system is named multi-view modeling. Nevertheless, these standards are extremely general, therefore they can be applied in different ways. Moreover, by using these standards, it is difficult to describe re-usable concepts defined in an architecture in order to apply them in a different one.

In this thesis, we propose PRISMSYS, a multi-view modeling language that allows specifying expert's domains in various views. PRISMSYS is inspired by the concepts defined in IEEE-42010 [START_REF]Systems and software engineering -architecture description[END_REF]. However, we propose specific elements included in the views, their behavior, associations and interactions. By using Model Driven Engineering, we give a syntax to PRISMSYS, i.e., the system architecture structure. The PRISMSYS structure is specified by meta-models. Model Driven Engineering defines a clear separation of abstraction levels where meta-model is one of them. Thanks to these abstraction levels, we can split those specified in IEEE-42010.

PRISMSYS includes two kinds of behaviors: a discrete event behavior, represented by state machines and the event interaction between views, as well as a continuous time behavior, expressed by equations whose values are evaluated through time. We define the execution semantics of this behavior in ccsl [START_REF] André | The Time Model of Logical Clocks available in the OMG MARTE profile[END_REF], a declarative language that describes causal and temporal relationships between events. By employing ccsl, we specify the coordination of the behavior from different execution domains. We also orchestrate the heterogeneity in the behavior modeling in the defined views, such as the synchronization between a finite state machine (a discrete event behavior) and the evaluation of an equation (a continuous time behavior).

We represent PRISMSYS in uml by specifying a profile. The PRISMSYS profile uses as much as possible the concepts defined in other uml profiles, such as SysML [START_REF] Omg | Systems Modeling Language (SysML). Object Management Group[END_REF] and marte [START_REF] Omg | UML profile for MARTE[END_REF]. The concepts that are not included in uml or in the other two profiles, are defined as stereotypes in the PRISMSYS profile, extending the uml concepts whose meaning is compatible with the PRISMSYS concept semantics.

Once the semantics of the PRISMSYS execution is defined, we use TimeSquare [START_REF] Deantoni | Timesquare: treat your models with logical time[END_REF] to simulate the discrete part of the model. To evaluate the continuous part, we chose Scilab [START_REF]Scilab[END_REF], a numerical computing tool that provides the functions to solve equations.

We have developed a connector between TimeSquare and Scilab to orchestrate the discrete simulation with the continuous one.

To prove the potential of PRISMSYS, we have developed a model of a power-aware system. First, we introduce a background in power consumption characterization and power management. We continue defining the views and the elements that describe and impact the power consumption of a system. This model is simulated and the discrete and continuous behaviors are depicted (e.g., finite state machine behavior, and also power and temperature evolution). Finally, we propose another way to use the PRISMSYS model. We specify a transformation of the PRISMSYS model to a model of a specific domain tool. Taking as use case the PRISMSYS power-aware system model, we transform it to an Aceplorer model in order to simulate and analyze the power consumption. Aceplorer [START_REF] Power | Aceplorer[END_REF] is a commercial tool that models and simulates the power behavior of a system. Aceplorer was used in the context of the ANR Project HeLP (reference ANR-09-SEGI-006).

The content of this thesis is organized in two main parts: The definition of the PRISM-SYS framework, and the development of the PRISMSYS use case, a power-aware system model.

The first part introduces the main concepts of multi-view modeling and highlights the behavior heterogeneity specified in a system model. Therefore, this first part is the stronghold in the specification of the PRISMSYS framework. This part is composed of chapters 2 and 3. The former introduces the background about structural and behavioral concerns to model systems. We present that the complexity of a system architecture could be managed following the multi-view approach. We introduce the multi-view concepts specified in IEEE-42010. We also split the abstraction level defined in IEEE-42010 by using the Model-Driven Engineering abstraction levels. Finally, we identify a relationship between the multi-view modeling and the model composition. In the behavioral concerns, we introduce the notion of Model of Computation (MoC), the tools that implement them, such as Ptolemy II [START_REF] Eker | Taming heterogeneity -the ptolemy approach[END_REF] and ModHel'X [START_REF] Hardebolle | ModHel'X: A component-oriented approach to multi-formalism modeling[END_REF], and we also discuss the heterogeneity problem between various MoCs. Chapter 3 defines the PRISMSYS framework, its syntax and semantics to define a multi-view system model. The PRISMSYS syntax is specified by meta-models. PRISMSYS follows a component approach, where the multi-view concepts are specified accordingly. A view is expressed by three main sub-views: controlSubView, StructuralSubView and EquationalSubView. Each sub-view plays a specific role in the construction of a view.

The second part of this thesis is dedicated to the modeling of a power-aware system by using PRISMSYS. This part consists of chapters 4, 5 and 6. Chapter 4 introduces the concepts, techniques, and tools employed to model the power consumption of a system.

We specify the views and their elements to describe various domains that are involved in the system power consumption in Chapter 5. We simulate, evaluate and analyze the PRISMSYS power-aware model in Chapter 6 by using TimeSquare, Scilab and their connector Scilab Solver. In this chapter, we also specify the transformation of PRISMSYS to Aceplorer.

Finally, we provide the conclusion of this work, highlighting its main contributions and we give some future perspectives in Chapter 7.

Chapter 2 
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Introduction

Systems have a strong foothold in our daily life. In the customer electronics market, mobile phones, tablets, video and music players, and TVs are some examples of these systems. They provide a quick and direct access to the information (email, news, articles, books, etc) and they are marking a milestone in communications, giving a great mobility to consumers. These systems are also installed in cars, airplanes, boats and submarines to upgrade certain mechanical controllers or optimize energy consumption, time performance and costs. Medicine is also an important domain where systems play an important role, e.g., measuring blood pressure, dosing medicament or pacing the heart.

Experts from different domains work together in the design of systems. These experts fulfill the strict system requirements, generally specified by non-functional properties such as time performance, security, power consumption, temperature and cost. Each expert has his/her own language to describe the model of the system from his/her point of view. Therefore, a system model is represented by multiple languages where each language satisfies certain system requirements.

Whatever its complexity, a language is always defined by a syntax and a semantics. In this thesis, we use the term "syntax" to refer to the structural definition of the language.

In contrast, the term "semantics" describes the behavior of the language.

In this chapter, we present the concepts and the approach that we use in this thesis to define the structure and the behavior of the languages that model systems.

Structural Concerns

According to IEEE-1471 [1], a system is "a collection of components organized to accomplish a specific function or set of functions". This standard also defines architecture as "the fundamental organization of a system embodied in its components, their relationships to each other, and to the environment, and the principles guiding its design and evolution". Taking into account these two definitions, an architecture specifies the structure of a system, based on a component approach.

To define a system architecture, it is important to identify the elements involved in the design of a system. IEEE-15288 standard [START_REF]Systems and software engineering system life cycle processes[END_REF] defines a system as "man-made, created and utilized to provide products and/or services in defined environments for the benefit of users and other stakeholders". Following this definition, we identify that a system is associated with two main entities: environment and stakeholder. Figure 2.1 presents a conceptual model of the identified elements that are associated with a system. In this figure, a system responds to the stakeholder needs and it is placed in an environment.

An environment may contain other systems or subsystems that interact with each other.

A system exposes one and only one architecture. The stakeholder needs are represented by concerns in IEEE-1471 [1]. These concerns are defined in various specific domains that are studied by different experts. These experts build system models that include functional and non-functional properties to tackle the concerns related to their domain. The modeling activity where concerns are divided into various domains is called multi-view modeling.

In Section 2.2.1, we present the main concepts of multi-view modeling using the IEEE-42010 standard [START_REF]Systems and software engineering -architecture description[END_REF]. This standard is a reference in this kind of modeling.

Multi-View Modeling

Multi-view modeling was proposed as a solution to manage the complexity of the system design. This technique defines a system architecture in different views where each view addresses a set of stakeholder's concerns [1]. Views are defined by domain experts that have their own concepts and languages to express the domain elements and their

relationships. An example of this modeling technique is applied to construction. To construct a building, architects design floor plans, electrical engineers draw electrical blueprints and hydraulic engineers create pipe networks. The electrical blueprints and the pipe networks are defined based on the floor plans, therefore, in this particular case, there is a reference model to build the other domain models. Similar to the construction domain, systems can be specified with diverse views; for instance, power consumption view, financial view, structural view and time performance view.

In this thesis, we use the vocabulary specified in the IEEE-42010 standard [START_REF]Systems and software engineering -architecture description[END_REF] to describe the multi-view concepts. This standard is an updated version of IEEE-1471 [1] and it is inspired by various multi-view approaches such as DoDAF [START_REF][END_REF], MODAF [START_REF]Ministry of Defence Architecture Framework (MODAF[END_REF],

TOGAF [START_REF] Giese | The Open Group Architecture Framework (TOGAF)[END_REF], the "4+1" view model [START_REF] Kruchten | The 4+1 view model of architecture[END_REF] and Zachman's framework [START_REF] Sowa | Extending and formalizing the framework for information systems architecture[END_REF].

According to the IEEE-42010 standard, a system architecture is represented by an architecture description. The standard emphasizes that an architecture is "abstract, consisting of concepts and properties", whereas architecture description is a work-product used to define an architecture. Figure 2.2 presents the conceptual model defined in IEEE-42010.

In the figure, an architecture description owns views and correspondences. A view contains models that are the modeling artifacts describing the view. Correspondence builds associations among architecture elements that define the considered system, i.e., the relationship between models, views, the architecture description, stakeholders, and concerns. The main purpose of Correspondence is to identify the view elements that have some kind of association in a system architecture in order to maintain the consistency of the architecture description. This standard also specifies a mechanism to build architecture descriptions which could be reused in various projects that share the same architecture concepts. For this objective, IEEE-42010 introduces the Architecture Framework concept. Architecture description is the reification of architecture framework, i.e., the architecture framework concepts are used to build the architecture description of a system architecture. Model-Driven Engineering (MDE) is a software design technique where the main artifact is model. The Object Management Group (OMG) defines that "a model is a representation of a part of the function, structure and/or behavior of a system. The model specification is based on a language that has a well-defined form (syntax), meaning (semantics) and possible rules of analysis, inferences or proof for its constructs." [18].

According to this definition, a model is built based on a language that gives the necessary expressivity to represent the elements of a specific domain. This language is described through a meta-model. A meta-model expresses the concepts and relationships to build a model. A meta-model is a model by itself, so that it has another language that contains the required concepts and relationships to define one or more meta-models. Such a language is called meta-meta-model. Examples of meta-meta-models are MOF [START_REF] Omg | Meta object facility (MOF) 2.0 core specification[END_REF] and Ecore [START_REF] Steinberg | EMF: Eclipse Modeling Framework 2.0[END_REF]. MDE does not propose another language to build meta-meta-models.

A meta-meta-model is rather considered as a self-defined model, i.e., its concepts and relationships are represented by them-selves. This self-definition avoids the multiplication of abstraction levels. In Figure 2.4, we present the abstraction levels in MDE. In the figure, we identify an association of conformity between the concepts of each level, i.e., each level relies on the concepts defined in the upper abstraction level. The M0 level denotes the real world. In this level, the concrete objects are represented by the elements of a model. MDE offers two alternative solutions for the definition of models: either through a General-Purpose Modeling Language (GPML) or through a Domain-Specific Modeling Language (DSML). GPML proposes to use a unique meta-model that has enough expressivity to define any domain. uml [START_REF] Omg | OMG unified modeling language[END_REF] and XML are examples of GPMLs. DSML proposes to define one dedicated meta-model for each specific domain. SysML [START_REF] Omg | Systems Modeling Language (SysML). Object Management Group[END_REF], marte [START_REF] Omg | UML profile for MARTE[END_REF], AADL [START_REF]Architecture Analysis and Design Language[END_REF] and ATL [START_REF] Jouault | Transforming models with atl[END_REF] are examples of DSMLs. Hence, we consider architecture framework as a set of DSMLs with a set of correspondence rules between the DSML elements.

Meta-Meta-Model

Meta-Model

An example of the IEEE-42010 implementation is MEGAF [START_REF] Hilliard | Realizing architecture frameworks through megamodelling techniques[END_REF]. MEGAF is a tool to build architecture frameworks according to the IEEE-42010 standard. This infrastructure allows creating viewpoints, stakeholders and concerns to describe a specific system. MEGAF also defines associations between the specified architecture elements to enable consistency checks based on the defined correspondences.

In the following subsection, we present approaches based on the multi-view modeling requirements defined in IEEE-42010. We also explore an alternative solution through the so-called /model composition/ and we compare the two solutions.

Multi-View Approaches and Model Composition

There are two approaches that use the multi-view concept specified in IEEE-42010: synthetic and projective [START_REF]Systems and software engineering -architecture description[END_REF]. A synthetic approach defines one viewPoint for each specific domain, independently. It integrates these viewPoints in an architecture framework by using correspondence rules. In contrast, a projective approach specifies a reference metamodel, where the viewPoints are built by hiding irrelevant elements from its meta-model.

In this approach, correspondence rules are already defined in the reference meta-model.

Model composition is another modeling approach used in software engineering to combine models with a specific purpose. These models can conform to a common metamodel, or to different ones. Clavreul [START_REF] Clavreul | Model and Metamodel Composition: Separation of Mapping and Interpretation for Unifying Existing Model Composition Techniques[END_REF] defines that Model Composition is an activity that "enables to build a system from the union of independent or dependent software artifacts".

Similarly to the multi-view approaches, model composition specifies correspondences between the elements of the models (or meta-models) to be combined. Clavreul Operator-based is a set of functions whose actions define the correspondences among model elements. Rule-based finds the similarity between model elements, such as termmatching on names or satisfies certain constraints to associate model elements, such as pre-or post-conditions. Model-based is a correspondence type that is formally defined as part of the modeling language specification, e.g., DSMLs. Finally, delta representationbased is a correspondence that identifies by analysis the differences between two or more versions of the same model.

Clavreul also identifies various interpretations to these correspondences. He defines two interpretation categories in modeling structural associations: overlapping and crosscutting. Overlapping is to merge one or more models gathering the model elements that have equal or similar interpretation. Cross-cutting is to weave new model elements (aspects) to a base model, modifying the structure and/or behavior. Clavreul also defines two additional categories: add and delete. These categories insert/delete model elements in a model. Clavreul considers that the designer must know the internal model structure in order to use the latter two categories. In contrast, using the previous three interpretation categories does not require a knowledge of the internal model structure to define correspondences.

Multi-view approaches and model composition have in common the notion of correspondence. Clavreul defines correspondence as "any kind of implicit or explicit relationships between sets of models or sets of model elements". This definition is shared with IEEE-42010. However, IEEE-42010 specifies correspondence through correspondence rules, i.e., a correspondence is the use of a correspondence rule definition in a model.

The correspondence and interpretation given by Clavreul could be applied to the definition of correspondence rules. Nevertheless, the application of correspondence rules in model composition and the multi-view approaches are different. While the synthetic approach only uses correspondence rules to associate concepts of various DSMLs without generating a new DSML, model (or meta-model) composition has as goal to get a resulting model (or meta-model) that is built by combining one or more models of the same language or from different languages using correspondence rules. In the case of the projective approach, correspondence rules are defined in the reference meta-model from where the viewPoints are derived. Figure 2.6 depicts the relationship between languages, defined by meta-models, and the modeling approaches. In this figure, MM1 and MM2 are independent meta-models (or languages). The elements of both meta-models are associated by correspondence rules. The correspondence rules can be in both senses, i.e., they associate elements from MM1 to MM2 or vice versa. The two languages (MM1 and MM2 ) and their correspondence rules define a multi-view synthetic approach. The idea of this approach is to define the correspondence rules between viewPoint elements, in order to maintain the coherence between viewPoints. Using the synthetic approach, we can generate a composed language (MM3 ) that is the result of the interpretation of correspondence rules between MM1 and MM2. The projective approach is the decomposition of a language in other languages, i.e., MM3 can be decomposed in MM1 and MM2. The correspondence rules in MM3 are internal relationships between its elements, i.e., it is part of the domain definition. Therefore, the composition of MM1 and MM2 keeps the correspondence rules defined between MM1 and MM2. Once the projective approach is applied, the correspondence rules between MM1 and MM2 are identified in MM3 in order to extract such correspondences and to define associations between MM1 and MM2. It is important to note that the multi-view approaches have as objective to maintain the independence between specific domains. Correspondence rules are the connections that these domains have. In contrast, the aim of the composition modeling approach is to generate a model (or meta-model) that contains the elements of the source models according to the correspondence rules. We could apply the composition approach in a multi-view model to generate analysis models from a selected number of views (projective or synthetic) to a specific purpose. These analysis models could study the impact of the modeled concerns from different views of a system. For instance, the impact of increasing the clock frequency in power consumption and time performance.

In the following items, we analyze some examples that are somehow associated with synthetic, projective and composition approaches:

Aspect-Oriented Programming: In an object-oriented program, the non-functional and the cross-cutting concerns are interwoven in the code. Kiczales et al. [START_REF] Kiczales | Aspect-oriented programming[END_REF] propose to extract these non-functional and cross-cutting concerns from the main concern of the program. These extracted concerns are known as aspects. The composition of aspects in the main code is called weaving. An aspect is composed by an advice and a pointcut. The former is the code of the concern that is woven in a specific place of the main code (joint point). The latter identifies the joint point where the aspect is added in the main code. An example of language that implements this kind of programming is AspectJ [START_REF] Colyer | Eclipse AspectJ: Aspect-Oriented Programming with AspectJ and the Eclipse AspectJ Development Tools[END_REF].

This programming approach follows the model composition approach. The aim is to weave aspects into a base model to build a composed model. A set of aspects is not a view of the model and does not specify specific domains such as the multiview approach. All the models (aspects and base model) are specified using the same language, i.e., the elements of a model (aspects), conform to a meta-model, are injected (woven) to another model that conforms to the same meta-model.

The joint points are correspondences between the aspects and the target model. Kompose: Kompose [START_REF] Fleurey | A generic approach for automatic model composition[END_REF] is a generic model composition tool that merges models conforming to the same meta-model. The merging process is defined by two main steps: matching and merging. Matching identifies the elements that have the same concepts in the models that are to be composed. Merging generates a model that is the result of merging the matched elements. The elements that are not matched, are defined in the resulting model without any changes.

Kompose follows the model composition approach. Matching process identifies the correspondences between the elements of the models to be composed. According to Clavreul, the Kompose correspondences are rule-based and their interpretation is overlapping, i.e., the elements that fulfill the defined composition rules are merged adding the non-common attributes and relations of each element. These composition rules are defined by a pattern between the elements of the models to compose. This pattern is generally found in the equivalence of the semantics and the structure of the elements to merge. VUML: View-based UML (VUML) [START_REF] Nassar | VUML: a viewpoint oriented uml extension[END_REF] is a uml profile that uses the multi-view modeling to provide limited access to the system actors 1 through views. The VUML author points out that the given IEEE-1471 [1] recommendations to build system architectures are specified in a general way, and it does not propose the use of a language to be implemented. VUML is a language inspired by the IEEE-1471 concepts to model system architectures. VUML employs a base class diagram of the system to extract the actors' views according to the actor's access rights. The view defines the system elements (classes, attributes and methods) that the user can access in the system. VUML defines a common stereotype called DefaultView. This class owns the elements that are shared between the system actors. Other views are specified according to the actor's access rights. Theses classes are stereotyped by View and they contain the elements only related to the actor's profile. Views and DefaultView are associated by uml dependency associations stereotyped by view-extension. This association allows accessing to the information shared among actors. VUML also defines relationships among Views to guarantee the correct updating of information among the views that share system elements. This relationship is represented by a dependency association stereotyped by view-dependency. The attributes dependency between views is constrained by OCL2 expressions.

VUML follows the projective approach. From a base meta-model, the viewPoints are extracted according to the user's profile. We identify that view-extension and view-dependency are correspondence rules between viewPoints. According to the Clavreul's correspondence types, both VUML correspondence rules are modelbased, they are defined in the language specification. We also identify that the correspondence interpretation is overlapping: each view contains part of the features of the reference model and these features can be shared among views, i.e., a feature of the reference model can be included in one or more views.

SysML: System Modeling Language (SysML) [START_REF] Omg | Systems Modeling Language (SysML). Object Management Group[END_REF] is an OMG 3 specification that specifies a uml profile for systems engineering domain. Some of the elements of this standard represents the main IEEE-1471 standard concepts to define a multi-view approach. SysML uses packages to represent views, classes to describe viewpoints, and conform associations to specify relationships between views and viewpoints.

This conform relationship is represented by a uml dependency association.

The SysML viewpoint contains two properties: stakeholders and concerns. These properties are defined by strings. Therefore, the stakeholders and concerns shared among viewpoints must be rewritten in each viewpoint without guaranteeing the conformance among viewpoints.

The SysML View limits the package elements to comments, constraint elements, package import and element import; therefore, the view elements must be defined in a common model to be imported and constrained according to the view. SysML also specifies that a view must follow the methods and languages defined in the associated viewpoints. However, SysML does not define a verification policy for the concerned viewpoint properties. Moreover, methods and languages are represented as strings in Viewpoint, making the verification task more difficult.

SysML implements a projective approach where each view is built by the element models imported from the main model. However, there are not explicit correspondences between views. Moreover, a viewpoint does not have the same meaning as in IEEE-42010 or IEEE-1471, but rather it is interpreted as the viewpoint features that a view must answer. SysML viewpoint does not define the language used to express views. The conform association is not a correspondence according to the way we interpret the IEEE-42010. This association represents that the view elements conform to the concerns defined by stakeholders from their point of view and it is not a relationship between model elements from different views.

Obeo Designer: Obeo Designer is a system design tool developed by Obeo4 . This tool not only allows system modeling through graphical modeling standard languages such as uml and SysML, but it also provides a graphical environment to build DSMLs in Ecore. Obeo Designer includes viewpoints that are a specific representation of the concepts from one or more meta-models. These representations can be predefined (tables, trees, diagrams) or they can be customized by the system designer 5 .

We consider that Obeo's Viewpoint concept does not follow any of the multiview approaches. An Obeo's viewpoint is a representation of a model, but it does not define a portion of the model (projective approach) or an independent model (synthetic approach).

Hybrid multi-view modeling: Cicchetti et al. [START_REF] Cicchetti | Supporting incremental synchronization in hybrid multi-view modelling[END_REF] present a multi-view modeling approach that is both projective and synthetic. They define a base meta-model to represent every possible concept of a specific system following the projective approach. However, the architect can build viewPoints in various meta-models following the synthetic approach. The connection between both approaches is in the base meta-model used to create the viewPoints. ViewPoints are defined according to the base meta-model, therefore the concepts and associations specified in the viewPoint must also be specified in the base meta-model.

A base model and view models are built and they conform to their corresponding meta-models (base meta-model and viewPoints). The base model is the synchronization reference to the other view models, i.e., if a view model is changed, the modifications are propagated initially to the base model and then to the other view models. This synchronization mechanism is implemented according to the difference between the base meta-model and the viewPoints.

This hybrid multi-view modeling approach solves the consistency problem present in the synthetic approach by having a common reference between the defined views. However, we consider that the duplication of information between the view models and the base model is a drawback since it requires some effort to maintain consistency.

In this modeling approach, the correspondences are explicitly defined in the base meta-model. According to Clavreul's classification, the correspondences specified in Cicchetti's approach are model-based, i.e., every relationship between view-Points is defined in the base meta-model. Nevertheless, we find that there is also a delta representation-based correspondence in the synchronization between views and the base model when there is a change of information in a view model.

Heterogeneous points of view with ModHel'X: Boulanger et al. [START_REF] Boulanger | Modeling heterogeneous points of view with ModHel'X[END_REF] present a synthetic approach, defining independent views of a system model in ModHel'X blocks. Each block represents an observable behavior of a system. In the context of multi-view modeling, a block specifies the behavior of a system from a specific point of view. For instance, a system could have a functional behavior, a power consumption behavior or a temperature behavior. In this work, the correspondences are represented by the behavioral relationships among views, i.e., using the ModHel'X relations, we define the view connections and the way that the view behaviors are synchronized. This approach proposes to use a single language (defined in ModHel'X) to express the multi-view representation of a system (viewPoints and correspondence rules).

However, there is neither a notion of view nor correspondence in this language.

Views and correspondences are interpretations of a ModHel'X concept using blocks (views) and relations (correspondences).

The type of correspondences are model-based, they are defined in the ModHel'X meta-model. We consider that their interpretation is associated with the behavior of the model. In Section 2.3.1, we present it in details.

Discussion

All multi-view approaches have advantages and disadvantages. The projective approach allows observing a system model from different perspectives or viewPoints focused on the elements and properties that are important for the stakeholders. However, maintaining and extending a unique meta-model to describe every possible view in a system is a difficult task. For instance, in VUML, when a new viewPoint is added to the system meta-model, it can affect the previously defined viewPoints and also their associated information. One possible solution is to define consistency mechanisms to preserve the system model information once a new viewPoint is added. This kind of mechanism is developed in the Cichetti's work.

The synthetic approach has the advantage of defining independent viewPoints of a system splitting the system concerns. This viewPoint independence allows the definition of new viewPoints without altering the previous ones. However, the main challenge is the definition of correspondence rules between viewPoints. Unlike the projective approach, where the correspondence rules are explicitly defined in the reference meta-model, in the synthetic approach such correspondence rules are not explicit and they must be established once a viewPoint is specified. The domain experts define the relationships between the concepts of the viewPoint concepts.

Model composition could be seen as a way to unify projective and synthetic approaches.

For instance, when having a multi-view model that follows a synthetic approach, the correspondences among views could be used to generate composed models that have as main goal the analysis of certain properties of the modeled system and the quantification of the impact of the properties from different points of view. In contrast, a composed model (or meta-model) could represent a reference model (or meta-model) in the multiview projective approach. Using decomposition rules, viewpoints could be extracted or projected from the reference meta-model and correspondence rules could be identified in the reference meta-model to be explicitly defined in the decomposition process.

The correspondences and interpretations defined by Clavreul cannot be applied only to model composition. We identify that the Clavreul's correspondences meaning could also be applied to the correspondence rule definition in the multi-view approach. We note that correspondence rules among structural elements of different viewPoints are used to maintain the consistency between viewPoints, i.e., these structural elements could represent a single element, but from a different point of view. We call these kinds of correspondence rules syntactic correspondences. In the multi-view modeling examples, we have identified some syntactic correspondences, such as VUML, SysML, Obeo Designer and Ciccheti's work. However, another kind of correspondences could be applied, i.e., behavioral correspondence rules among viewPoints. This sort of correspondence rules was identified in Boulanger's work and is further discussed in Section 2.3.1.

Most of the works that apply the multi-view approaches are oriented to the design of software systems. Nevertheless, we consider that such approaches can be also applied to the system design. In this thesis, we propose a multi-view model for system design. The definition of this multi-view model gathers the advantages of both multi-view approaches: the definition of explicit correspondence rules to maintain the model consistency and the definition of independent viewPoints for each expert domain. We also use the Clavreul's terms to identify the correspondence rules among viewPoints.

Another important feature to analyze in this chapter is the behavior in a multi-view modeling approach. Identifying the behavioral relationships between viewPoints and placing them in a modeling behavior context. Section 2.3 presents the description of the behavioral concerns in the design of systems.

Behavioral Concerns

In multi-view modeling, each viewPoint is described by a language with a specific semantics of execution. In a DSML, while the syntactic domain is represented by a metamodel, the semantic domain is defined though different approaches. In the language theory, we can find three types of semantic definitions. The first type is Operational Semantics [START_REF] Plotkin | A structural approach to operational semantics[END_REF]. It uses functions (endogenous transformations) to manipulate data that represent the execution state of the model. Each execution of these functions represents a step in the model evolution. The second type is Axiomatic semantics [START_REF] Hoare | Viewpoint -retrospective: an axiomatic basis for computer programming[END_REF]. It characterizes the execution state by properties that enable reasoning about the models and their correct evolution. The last type is Transformational semantics [START_REF] Fredlund | An implementation of a translational semantics for an imperative language[END_REF]. It is an exogenous transformation from the syntactic domain to an existing language with well defined semantics.

The concurrent theory has also proposed other ways to describe the behavior of a model. This behavior is characterized by the so-called Models of Computation (MoCs).

Models of Computation

A model of computation (MoC) is "a formal abstraction of execution in a computer" [START_REF] Goderis | Heterogeneous composition of models of computation[END_REF].

In other words, it defines the behavioral semantics of a model. MoCs are used in different specific domains to express and to evaluate the behavior of a system. For instance, the control experts uses ordinary differential equation (ODE) solvers to analyze the behavior of the system to be controlled in continuous time. However, these solvers discretize the continuous time in order to be computed. The specification that defines the execution rules of these continuous systems in the computing world is a type of MoC. Modelica [START_REF]Modelica[END_REF] and Simulink [START_REF]Matlab[END_REF] are tools that implement MoCs that allow to model continuous systems and they are often used by control and mechanic experts to represent and to analyze their specific domains.

Ptolemy II [START_REF] Eker | Taming heterogeneity -the ptolemy approach[END_REF] and ModHel'X [START_REF] Hardebolle | ModHel'X: A component-oriented approach to multi-formalism modeling[END_REF] are tools that implement a variety of MoCs. Using these tools, sequential processes, discrete event and continuous time systems can be modeled. These tools share the way they define their modeling syntax, based on the component approach. While Ptolemy II uses actors, ModHel'X uses blocks to describe the structure of the system behavior. However, this generic use of the component-based modeling restricts the application of the DSML approach. Moreover, if we consider that a viewPoint is a DSML in a multi-view approach, the behavioral semantics of the viewPoint could be hardly specified using these tools because of the incompatibility of the structure definition.

On the other hand, we note that MoCs in these tools are independent from the structure definition. Ptolemy II represents the MoCs implementation by directors and ModHel'X calls them with the same name, MoCs. They associate a specific MoC to a determined structure and this MoC manages the execution of the structure elements. The separation between semantics and syntax helps to use the MoC definition to specify the DSML semantics. For instance, Petri net is a modeling language that represents the control execution of a system. A Petri net syntax could be defined by a meta-model. Figure 2.7 presents the Petri net meta-model (left-side) and a Petri net instance (right-side) that follows the concepts and relationships defined in the meta-model. To define the execution of this meta-model, we can use a formal language in order to specify the rules that the behavior of the Petri net model must follow. Nevertheless, the mentioned tools implement these rules in programming language such as Java, creating a gap between the formal definitions and their implementation. In this thesis, we propose to use CCSL [START_REF] André | The Time Model of Logical Clocks available in the OMG MARTE profile[END_REF] as a formal language to specify the rules that the DSML must fulfill during its execution.

Using CCSL, the mentioned gap could be reduced, thanks to the proximity of the formal semantics and its implementation. We have explained in Section 2.2 that a system can be represented by various view-Points. These viewPoints are associated with each other in their structural definition by syntactic correspondences. However, these viewPoints also have a semantic definition, whose actions can affect the behavior of other viewPoints. For this reason, there are also correspondence rules in the semantic definition of the views.

Clavreul [START_REF] Clavreul | Model and Metamodel Composition: Separation of Mapping and Interpretation for Unifying Existing Model Composition Techniques[END_REF] has already identified a correspondence interpretation to describe the execution relationship between models. This interpretation is called interaction. It consists in describing the execution ordering of the model elements according to their associations and to control elements, e.g., sequence and parallel execution. Clavreul also defines two design activities that are associated with the interactions between models, in order to define a composed model behavior. The first activity is Orchestration that synchronizes the service execution of two or more models to create a fully running process.

The second activity is Integration that produces a composed system from the interaction of several independent and running systems. We consider that these activities are strongly associated with the correspondence rules between the behavioral semantics among DSMLs, i.e., we could identify a behavioral impact among DSMLs by using behavioral correspondences.

In the multi-view approach, the behavioral correspondences among viewPoints are the combination of homogeneous or heterogeneous behavioral semantics. This combination is known in the MoC community as heterogeneous models.

Heterogeneous Models

There are different approaches that propose a way to combine heterogeneous MoCs.

Ptolemy II and ModHel'X specify the combination of MoCs by using a hierarchical execution. Figure 2.8 depicts a model example where the semantics of execution is a hierarchical MoC combination in Ptolemy II. In this figure, there are two MoCs: Synchronous Data Flow (SDF) and Finite State Machine (FSM). The structure of the model contains four actors: a main composite actor that owns two atomic actors 6 (A1 and A2 ) and a composite actor (C1 ). The composite actor C1 contains a FSM that has two atomic actors (S1 and S2). The main composite actor specifies its behavioral semantics by a SDF director. In contrast, C1 has a FSM director. The domain execution ordering is controlled by the director at the highest level in the model hierarchy, i.e., SDF director. During the execution sequence in the SDF graph, the SDF director executes C1 and then the FSM director is activated to execute the FSM. Once the execution of the FSM finishes, SDF director resumes its execution. 6 An atomic actors is an actor that does not contain other actors.

A1 C1 A2

SDF Director S1 S2 FSM Director In Figure 2.8, there is a behavioral correspondence between SDF and FSM directors.

Once the SDF director executes C1, the FSM director takes the external information to execute the FSM. According to Clavreul, we could consider that this correspondence is an Orchestration between two MoC directors. The orchestration between MoCs is implemented in a different way in Ptolemy II and ModHel'X. On one hand, Ptolemy II offers a fixed and encoded interaction semantics between MoCs that the modeler must use. On the other hand, ModHel'X proposes the use of adapters to define the semantics between the internal and external execution of a hierarchical model. However, adapters are operators that implement the MoC interaction according to the modeler needs.

Therefore, there is not guarantee that properties defined in each MoC, such as deadlock or safety properties, are kept after the orchestration of MoCs.

Another approach to combine heterogeneous MoCs is by synchronizing the actions between MoCs. BIP [START_REF] Basu | Modeling heterogeneous real-time components in bip[END_REF] is a component-based language that defines the behavior of each component and their interactions by a specific algebra. The BIP semantics is described by extending the automaton definition. In the BIP approach, the use of the automaton model to define the component interaction allows to study properties, such as deadlock and safety issues. However, the dependency to the automaton model does not allow to describe MoCs that follow other kinds of behavior such as flow-oriented behavior. This behavior is commonly used to define and analyze image processing algorithms.

Discussion

MoCs are a way to define the behavioral semantics of a DSML. A DSML could contain other DSMLs that have their own behavioral semantics, or a DSML could specify their semantics by using various behavioral semantics. For instance, Figure 2. In the multi-view approach, each viewPoint is a DSML, and each DSML has its own behavior definition specified by a MoC. As syntactic correspondence, we identify that there are also other kinds of correspondences between views that we call semantic correspondences. These correspondences define the interactions between the elements of different views, i.e., the result of the interaction specification between MoCs. The interactions between views highlight the impact of the view execution on a system design that would be difficult to grasp using only syntactic correspondences.

In this thesis, we use syntactic and semantic correspondences to define the multi-view modeling of systems. We give specific examples where both correspondences are used to maintain the structure consistency among views, the synchronization of the view execution and the impact of the view execution.

Conclusion

In this chapter, we have presented a background of the pivotal concepts used in the following chapters. We have introduced the architecture concept visualized in the system domain. Afterwards, we have presented the multi-view modeling vocabulary specified in the IEEE-42010 standard and its relationship with MDE. We have noted that a viewPoint is a DSML in the MDE context. We have identified the connection between the multi-view approaches and model composition. We have determined that the model composition work could be used in the multi-view approach to characterize the correspondence rules and their interpretations. We have presented some works that implement these approaches (multi-view and model composition) and we have identified the correspondences and their interpretations according to Clavreul's work.

We have continued with the behavioral definition in the multi-view approach. The importance to separate semantics and syntax in the definition of a viewPoint has been highlighted. MoCs are adopted as the modeling approach to specify the semantic domain in a viewPoint. We stressed the importance of behavioral correspondences in addition to purely structural correspondences in the multi-view modeling. Such behavioral correspondences are bound to the heterogeneous behavior associated with MoC interactions.

We have presented two approaches (hierarchy and automaton based) frequently used to specify the interactions between MoCs.

In the next chapter, we use the concepts from this chapter to define a multi-view framework to model systems. 

Introduction

This chapter presents the definition of our language named PRISMSYS1 . PRISMSYS is a domain specific modeling language (DSML) dedicated to the specification and analysis of functional and non-functional properties at the system level through multiple views.

Each view describes a part of the system, by using the language commonly employed by domain experts focusing on a specific concern. For instance, a safety expert uses a domain language whose concepts describe a safety infrastructure, at the same time as it presents the safety properties of the system. The system views are independently specified, but the existing relationships inside each view are extremely important to maintain the consistency of the system. In a multi-view model, these relationships are correspondences among views. They should bring semantic consistency between the different parts of the system specified in the views.

The multi-view concepts of PRISMSYS are inspired by the notions defined in IEEE-42010. However, the standard is a general framework, therefore we have had to specialize in PRISMSYS the concepts defined in IEEE-42010. Our specialization aims at identifying concepts needed to have a semantic consistency between the different views. For instance, the abstract concept of View from the IEEE specification is refined into three well-identified subViews in PRISMSYS, each of them representing sub-concerns of a domain-specific language. This specialization helps us to provide a semantics to the correspondences depending on the kind of elements they refer to.

MDE is largely used to define the PRISMSYS domain language. The abstract syntax of PRISMSYS is specified as meta-models in Ecore [START_REF] Steinberg | EMF: Eclipse Modeling Framework 2.0[END_REF], while the behavioral eventbased semantics is defined in ccsl [START_REF] André | The Time Model of Logical Clocks available in the OMG MARTE profile[END_REF]. ccsl is a formal declarative language used to define causal and temporal constraints between events. An event represents a specific evolution of a system, such as the sampling of a robot position or a state change in a finite state machine. Events are spread along all the views to bring consistency through the model. Similarly to tagged signals [START_REF] Lee | A framework for comparing models of computation[END_REF] they serve as anchor points to specify the model of computation (MoC) [START_REF] Benoit Combemale | Reifying concurrency for executable metamodeling[END_REF] of the system model. We introduce in PRISMSYS specific correspondences as a predefined way to coordinate the execution of two MoCs.

We begin this chapter by defining the PRISMSYS framework. This framework specifies the basic elements needed to represent views that capture the different concerns of a system. We continue the chapter by describing the correspondences that can be applied between the views to tight them together; we detail each PRISMSYS subView definition, we present its uses and we give some examples to illustrate the use of the subViews and the identified correspondences. Taking as reference the PRISMSYS domain model, i.e., the meta-model of the PRISMSYS framework and the detailed description of each one of its views, we have built a uml profile as a light-weight mechanism to implement the PRISMSYS concepts. The PRISMSYS profile applies, as much as possible, the elements defined in SysML and marte, including uml elements as well. Finally, we define the semantics of the PRISMSYS framework execution by using ccsl to express the actions presented in the behavior evolution of a PRISMSYS model.

PRISMSYS Framework

The PRISMSYS framework provides predefined rules and elements that can describe and coordinate different views in the specification of a multi-view system. More precisely, based on a system backbone representation, it allows defining specific views that are focused on the management of its non-functional properties. By applying this framework, experts from various domains (time performance, power, finance, etc.) can build a system from their own point of view while specifying explicitly the relationships with the other points of view. For instance, a time performance expert can specify temporal constraints by using the concepts frequently used in his/her domain (deadline, worst case execution time, etc.). However, domain experts do not specify again the elements already defined in other domains on which they state their constraints (like the hardware or software elements). They just import them and provide an abstraction of existing elements from their point of view.

We use MDE to define the syntax of the PRISMSYS framework. In PRISMSYS meta-model, an ArchitectureDescription is a set of views and correspondences. A view defines the needed elements to describe a specific domain. According to IEEE-42010, a view is composed of one or more models. The standard defines a model as "modeling conventions appropriate to the concerns to be addressed" [START_REF]Systems and software engineering -architecture description[END_REF]. With this very abstract vision of what is comprised in a view, it is not straightforward to guarantee the semantic consistency of a multi-view system model. To ease the automated management of a multi-view system model, the PRISMSYS framework proposes to specify systematically three models used for the description of each view.

In this context, a domain specific language for a multi-view system model (i.e., a view) is specified by models of different nature. Such models have their own features that describe view parts. Indeed, these parts are sub-domains needed to specify a complete view. We name them subViews. We have identified three main subViews that provide the required elements to define a view: a structuralSubView, an equationalSubView and a controlSubView. StructuralSubView states the concepts and relations of a specific domain with a component-based approach. A StructuralSubView is composed of subViewElements. Such elements are the internal concepts that express the structure of a specific domain. A ControlSubView controls/schedules the execution of the subViewElements.

Finally, EquationalSubView characterizes the evolution of non-functional properties of a

StructuralSubView, such as frequency, voltage and temperature, by using mathematical equations.

For each system, there is always a reference or backbone view. Relying on the backbone view, the other views can "import" existing elements to define the (non-functional) properties of the specific domain. For instance, considering a thermal domain example, the thermal view definition depends on the elements included in the hardware architecture view, i.e., thermal experts reference elements from another view to build their own view.

The "importing" action is identified as a correspondence between views.

In the PRISMSYS framework meta-model, Correspondence is an abstract concept specialized into a type of relationship named Abstraction. An abstraction specifies that the source subViewElement is a representation of the target subViewElement between two structuralViews of different views, i.e., a structural element defined in a view is used in another view to specify features that belong to this particular view. This correspondence plays the role of "importing" a subViewElement from a view to another. For instance, a memory component defined in a structuralSubView of a hardware architecture could be abstracted in a structuralSubView of a time performance view. This abstraction allows the definition of temporal features, such as maximum time of writing and reading data. Just as subViews are sub-elements of View, subCorrespondences are relationships that maintain the consistency between subViews. Moreover, SubViews must be linked together in order to fully describe a view. For instance, the relationship between a structural element and an equational description is different to the relationship between a hardware component and the hardware component representation in a time performance view. While the first relationship is a subCorrespondence that associates a structural sub-view element with an equational sub-view element, the second relationship is a correspondence between two different expert domains, a hardware architectural view and its representation in a time performance view.

We have determined two main types of subCorrespondences in a view: Equivalence and Characterization. Equivalence is the equality of the value between a property defined in a subViewElement and a parameter in an equation specified in a equationalSubView.

For instance, if the level property is defined in a subViewElement to quantify the water level of a tank; level could also be specified as parameter of an equation in an View, SubView and SubViewElement follow the component approach. Such an approach is used by several domains in the design of systems. marte [START_REF] Omg | UML profile for MARTE[END_REF], a domain language for the design and analysis of real-time systems, defines the hardware structure following the component approach. Other examples are SysML [START_REF] Omg | Systems Modeling Language (SysML). Object Management Group[END_REF], AADL [START_REF]Architecture Analysis and Design Language[END_REF], EAST-ADL [START_REF]EAST-ADL Domain Model Specification[END_REF] and Rosetta [START_REF] Alexander | Rosetta: Semantic support for model-centered systems-level design[END_REF]. Moreover, The IEEE-1471 and IEEE-42010 standards, which are the inspiration source of PRISMSYS, have also based the architecture definition of a system on components. View, SubView and SubViewElement share different kinds of information that can be exposed through ports and transmitted through connectors. Correspondences and sub-correspondences are associated with the correspondences and the interpretations given by Clavreul [START_REF] Clavreul | Model and Metamodel Composition: Separation of Mapping and Interpretation for Unifying Existing Model Composition Techniques[END_REF]. A first identification is that the PRISM-SYS correspondences and sub-correspondences are model-based correspondences. The PRISMSYS framework meta-model and the previous semantic description define the way they are employed. Nevertheless, their interpretations are diverse. Abstraction could have an equivalence interpretation, i.e., the associated subViewElements are equivalent and in a merge process both subViewElements can be replaced by one subViewElement that has the properties of both merged subViewElements. Equivalence is another example of equivalence interpretation. In contrast, Characterization has an interaction interpretation. Once a subViewElement behavior changes the active equation, the new active equation must be evaluated. The same interpretation can be given to Control, Data and Parameter Connectors, once a Parameter, a controlPort or a propertyPort changes its value, the bound port also changes its value.

equationalSubView
An ArchitectureDescription must contain at least one view that represents the functionality and structure of the system. If system experts add non-functional properties to the multi-view model, such as time, power or temperature, they add for each expert's domain a view and its corresponding subViews to represent their properties and the necessary elements that affect them. PRISMSYS can be extended with other kinds of subViews that do not follow the three sorts previously defined. Nevertheless, the designer must define the necessary correspondences and subCorrespondences of this new subView to keep the consistency of the multi-view model.

In the next subsections, we detail the definition of the StructuralSubView, SubViewElement, EquationalSubView and ControlSubView.

Structural SubView

StructuralSubView is a generic subView that can be specialized to represent expert domains. Adopting this StructuralSubView definition implies that, the structural representation of each view can be specified by domain experts and the relationship between views can also be expressed by using abstraction, dataConnector and ParameterConnector correspondences. Nevertheless, if a domain expert does not want to use Struc-turalSubView to represent his/her viewpoint of the system, this expert can specialize the SubView concept from the PRISMSYS meta-model to define his/her own subView, the subCorrespondences with the other subViews and the correspondences with other views.

An application of StructuralSubView is the representation of the thermal domain of an embedded system. One of the techniques used by thermal experts to represent the temperature evolution of the components is using electrical components, such as capacitors and resistances. The resulting Resistor-Capacitor circuit represents the temperature behavior among the junction points between the hardware components with the heat sink devices and the heat transmission among the components that are part of a system. This thermal representation of a system is known as Compact Thermal Model (CTM) [START_REF] Skadron | Temperature-aware microarchitecture: Modeling and implementation[END_REF].

Hotspot [START_REF] Huang | Hotspot: a compact thermal modeling methodology for early-stage vlsi design. Very Large Scale Integration[END_REF] is a tool that uses this modeling technique to represent the thermal layout of systems to analyze the temperature evolution of the components. where the structure of the domain is represented. We note that CPU is abstracted in the thermal view to specify the thermal properties and the thermal behavior that can be expressed using CTM. To define the association between the thermal representation and the hardware architectural representation of CPU, we use the abstraction correspondence. In the structuralSubView of the thermal view, there are also other elements that belong to the thermal domain. They are not included in the structuralSubView of the execution platform view, such as the heat sink and temperature source (T env ).

Finally, note that a propertyPort P is specified in the thermal view. This port represents the power consumption value of the CPU, used and evaluated in other views. The CPU power consumption value is needed to evaluate the CPU temperature. P port is connected by DataConnector correspondences to another view that characterizes the system power consumption. StateMachine. The behavior can be specialized in other kinds of behavioral descriptions such as Petri nets and synchronous data flow graphs, even though we only study here the case of StateMachine. According to the domain, the expert chooses which behavior definition fits better the domain description. For instance, a control expert may prefer to use state machines to describe the behavior of a thermal controller, whereas an image processing expert may choose a synchronous data flow graph to specify the face detection algorithm in a video stream. However, we consider that this definition must be homogeneous in all the domain specifications, i.e., if StateMachine is chosen as a subViewElement behavior definition, every subViewElement in the specified Struc-turalSubView must be a stateMachine. This homogeneity helps to work with a single semantics of execution, easing the control specification defined in the controlSubView.

SubView Element

Dedicated tools for heterogeneous composition might be used (see Chapter 2), however, this is not specifically supported by our methodology and tools at this level.

In the SubViewElement meta-model, a StateMachine contains states and transitions.

The StateMachine has an initialState, which is the first state that is active when the StateMachine is executed. Each state represents a specific behavior mode according to the domain. For instance, to indicate the execution modes of a CPU, we can define two states: running, to express that the CPU is executing a task, and halt, when the CPU stops. In Figure 3 

Equational SubView

EquationalSubView defines the evolution of non-functional properties of a view. This evolution is specified by equations that associate properties from a view with properties from other views in an acausal way. For instance, in classical mechanics, the equation that describes the force applied to an object in one dimension is represented by F = m•a.

The parameters of this equation are defined as properties, possibly, in different views.

F could be defined in a force view where only force features such as torque, thrust, or drag can be described. In contrast, m could be specified in an object characteristic view, where mass, dimension and color features are represented. View contains three equationalModels describing the acceleration (a = dv/dt) and the speed (v = dx/dt). In the same view, x is used to evaluate the speed, even though it is given by another view. Note that each equationalModel that defines a non-constant value equation (e.g., a = dv/dt) contains a t parameter. Hence, these equations are evaluated for each tick arrived to step. The equations that need the value of t to calculate the unknown value (e.g., v = dx/dt), extract t from the specification of the clock signal that arrives to step. Usually, the clock is defined in another view where the time model of the system is its main concern. We describe in details the event specification in Subsection 3.4.2. We point out that the force equation does not have the t parameter.

We consider that the

However, its equationalModel contains this parameter to evaluate the equation at each occurrence of step. We realize that the evaluation order of the equations depends on which value is known. In the example, we cannot evaluate F = m • a if we do not evaluate before a = dv/dt, and this last equation cannot be evaluated if v = dx/dt is not calculated. The equation dependency and the evaluation order could be established by the step event specification. In the figure, we also present the ParameterConnector to bind parameters from one view to another. In the example, ParamterConnector connects the a parameters defined in Force View and Movement View. In the EquationalSubView meta-model, we also represent the Equivalence and Characterization subCorrespondences with their corresponding associations. By extracting a portion of the example depicted in Figure 3.8, we present the use of these subCorrespondences. In Figure 3.9, we define a Mechanical View that describes the mechanical structure of a system (a trailer hooked to a car) and its behavior according to the charge in the trailer. This view owns two subViews: a structuralSubView that defines the structure and behavior of the system, and an equationalSubView where the equations and values of the system physics are specified. In the structuralSubView, the trailer has two possible mechanical states: charged and empty. On the other hand, the car has only one state named move that represents the action to move the car by its engine. Trailer has also a mass property whose value changes according to the m parameter value. In the equationalSubView, we specify the mass values of the trailer states associating such states with the corresponding equations by using Characterization subCorrespondences.

By selecting a state, a mass value is assigned to the m parameter. At the same time, the value of the mass property defined in the structuralSubView of the trailer is equivalent to the m parameter value, because of the Equivalence subCorrespondence. In the EquationalSublView, we also define a force equation. This equation describes the required force that the car engine has to generate in order to move the trailer according to its mechanical states (charged or empty). In this example, we note that by using the EquationalSubView, we can study the impact of the behavior between subViewElements of the same structuralSubView, and it is possible to associate other behaviors from other views. 

Control SubView

ControlSubView synchronizes the execution of the structuralSubView according to the actions produced in its own view and from other views. ControlSubView also provides the events needed to evaluate the active equations in the equationalSubView. The goal of this subView is to coordinate the execution between views fulfilling the system requirements.

For instance, the execution of a task in a CPU must satisfy a specific deadline defined in the system requirements. To achieve this deadline, we must set the frequency clock of the CPU. This setting action is specified in the controlSubView of a time performance view.

The subViewElement execution is commanded by control events sent from a controlSub-View. The controlSubView designers of each specific domain must specify the relationships among control events to ensure the correct coordination among subViewElements.

Additionally, the designers have to synchronize the execution of the views guaranteeing the system requirements. These relationships can be defined in ccsl [START_REF] André | The Time Model of Logical Clocks available in the OMG MARTE profile[END_REF], which is a declarative language that specifies causal and temporal relationships among events.

Using ccsl, we can generate a possible scenario that follows the event relationship definition using TimeSquare tool [START_REF] Deantoni | Timesquare: treat your models with logical time[END_REF]. We can also generate observers that check the correctness of a hardware implementation [START_REF] André | VHDL Observers for Clock Constraint Checking[END_REF].

The relationship between the events generated and received by controlSubView could directly be defined by ccsl expressions. However, we could also split the controlSubView structure in one or more sub-components named controllers. The behavior of a controller is expressed by a state machine. Contrasted with sub-ViewElement state machine, the controller state machine transition contains a boolean condition to be able to fire it. uml state machine specifies this condition as guard. Nevertheless, instead of following the uml guard semantics, where the guard only enables the transition to be fired by a trigger event, we define that once the guard condition is true, the transition is fired. In our study, guard always evaluates a property value that is controlled, i.e., guard is true if the controlled property is higher or lower than a given value. In addition to the firing transition generated by the guard condition, the transition can directly be triggered by an event. This event arrives to the controller control ports coming from the other views. Once the transition is fired, an effect event is generated. This event is sent either to the corresponding subViewElement or to other views. In Figure 3.11, we present an example of a controlSubView by employing a controller.

We depict a mechanical view of a system that controls the level of a water tank. This view contains a controlSubView and a structuralSubView. The structuralSubView defines two elements in the system: a water source and a valve. The water source supplies a flow of water to a tank and the valve controls the tank level by draining water from the tank. The ControlSubView is composed by a level controller that commands the valve actions according to the tank level. The behavior of water source and tank is specified as a state machine with a single state, i.e., there is an associated equation that defines the water flow supplied by the water source and another equation that expresses the tank level dynamic. These equations are defined in an equationalSubView. The controlled property is the tank level, therefore this property is sent to the controlSubView in order to take control decisions when the tank level arrives to the maximum or to the half of the tank. The behavior of level Controller reacts in two cases: when the tank level is higher than the maximum (h_max) or once it is lower than half of the tank (h_half). If the tank level reaches the maximum, level controller generates a control event (e_open) to open the valve reducing the tank level. In contrast, if the tank level is lower than half of the tank, level controller orders to close the valve, allowing the filling of the tank. We remark that there are controlConnector subCorrespondences between ControlSubView and StructuralSubView. This subCorrespondence allows to orchestrate the structuralSubView elements.

If we add more views to this example, e.g., an electrical view or a time performance view, the actions of their subViewElements must be coordinated with the mechanical view execution to keep the execution consistency among views and to achieve the system requirements. The coordination is specified through the controlConnector correspondences among views. These correspondences transmit the control events among views and synchronize the execution of each view.

The behavior of controllers could be specified by using another model of computation, such as Petri nets. This behavior can also be defined by algorithms that optimize specific property values fulfilling certain restrictions, e.g., reducing the time to fill the tank, taking into account the cross-sectional area of the water sink.

UML Profile for PRISMSYS

In Model-Driven Engineering, there are two branches for the developing of modeling languages. One branch defines specific languages adjusted to the terms and the way experts visualize their domains. This branch is the Domain Specific Modeling Languages (DSML). In contrast, the other branch defines a general language whose concepts give There is an important uml community that uses this language to model their domains adopting the profile mechanism. Moreover, uml is implemented in recent modeling tools like Eclipse-Papyrus [START_REF]Eclipse[END_REF], UML Designer [START_REF] Obeo | Uml designer[END_REF], MagicDraw [49], Modelio [START_REF]Modeliosoft[END_REF], Rational

Software Architect [START_REF]Rational software architect[END_REF] and Rhapsody [START_REF]Rhapsody[END_REF].

To benefit from the uml development, we define a uml profile to represent the PRISM-SYS framework. We use as much as possible the uml meta-classes including the stereotypes specified in SysML and marte to represent the PRISMSYS concepts. The concepts that are not included in uml or in the mentioned profiles, are defined by extending carefully selected uml meta-classes whose semantics are as close as possible to the expected PRISMSYS semantics.

UML Concepts for PRISMSYS

We represent part of the PRISMSYS framework meta-model concepts by using as basis the uml composite structures. We extend the composite structure meta-classes with the corresponding PRISMSYS concepts by defining stereotypes in the PRISMSYS profile.

Table 3.1 lists the mappings between the PRISMSYS concepts and uml composite structures concepts. 

MARTE Concepts for PRISMSYS

To represent the oriented direction of OrientedPort defined in the PRISMSYS framework meta-model, we use some marte concepts that are listed in Table 3.2.

PRISMSYS MARTE

OrientedPort FlowPort

ControlPort Clock, FlowPort The association between Parameter and Property, which is the Equivalence subCorrespondence, is mapped using the SysML path name dot notion to get a nested property in a block hierarchy. For instance, to use the w property defined in viewElement1, we can define a parameter using the following path name:

CircuitLayoutView.StructuralView.subViewElement1.w, i.e., this parameter is a reference to the w property defined in subViewElement1, which is contained in the structuralSubView of CircuitLayoutView. 

Semantics of Execution

Once the syntax of PRISMSYS is specified, we define the way a PRISMSYS model is executed. In other words, we specify the execution semantics of PRISMSYS. It is based on the partial ordering of event occurrences, where each event represents a relevant change in the system. To achieve this goal, we use the Constraint Clock Specification Language (CCSL) [START_REF] André | The Time Model of Logical Clocks available in the OMG MARTE profile[END_REF].

ccsl is a formal declarative language to specify causal and temporal relationships between events. This language was firstly introduced in marte [START_REF] Omg | UML profile for MARTE[END_REF] to represent functional and extra-functional constraints over the time modeling of embedded systems.

In marte, it is possible to define Clocks, which are an ordered set of instants. These clocks are used to represent the relevant changes in a system, on which constraints can be specified. For instance, a clock can represent the entering in a state, a function call, a data writing. Based on such clocks, relations can be specified to represent causalities or temporal aspects of the system. A clock can be of two types: Chronometric or Logical.

Logical clocks represent functional time. For instance, based on clocks we can specify that the execution of an application is caused by touching the screen of a smart phone.

In this example, the clock associated with the screen touching is in a causal relationship with the application execution. It is also possible to specify logical periodicity between clocks. For instance, specifying that a task is started every 100th cycle of a processor.

Depending on the energy management in a computer, the start of the task can be periodic or not. When we want to specify something related to a physical dimension like the physical time or a distance, a chronometric clock is used. That is why, it is then possible to state that the CPU cycle is periodic every 3 ms.

Logical and chronometric clocks are employed in PRISMSYS. For example, a chronometric clock can express the physical time periodicity of a CPU cycle in a time description view. Furthermore, this clock can be used to define the instants when the equations in equationalSubView must be evaluated; e.g., the temperature equation of a CPU is evaluated every 5 ms. On the other hand, a logical clock can describe the instant when a CPU starts to be busy (i.e., once a task begins its execution on it). Logical clocks can also be used to define the execution semantics of Models of Computation (MoCs) [START_REF] Benoit Combemale | Reifying concurrency for executable metamodeling[END_REF].

In our case, we employ logical clocks to specify the behavior of the finite state machine (FSM) and the interactions that occur among controlSubViews, controllers and subViewElements (i.e., the semantics of the sub-correspondence rules). Consequently, logical clocks are used to specify the coordination of the execution between MoCs of different nature. More precisely, in PRISMSYS, there are two behavior domains that have to be combined: a discrete event behavior represented by a set of finite state machines and a continuous time behavior, represented by a set of equations.

In this section, we first define the execution semantics of the finite state machine. Second, we specify the evaluation of the equations represented in EquationalSubView. Finally, the coordination between the finite state machine and the equation evaluation is described.

Finite State Machine Semantic Specification

In Section 3.2.2, we have chosen to specify the SubViewElement and Controller behavior by using a Finite State Machine (FSM). Sub-view elements and controllers do not use the same kind of FSM. The SubViewElement FSM changes from one state to another by the reception of a control event. In contrast, Controller reacts to either a guard condition or to the reception of a specific event. Additionally, Controller FSM can generate a control event (effectEvent) when a transition is fired. In this subsection, we define the FSM semantics by using clocks and relations defined in ccsl. First, we identify and specify the relevant clocks used to establish the FSM execution according to the concepts defined in the SubViewElement and Controller FSM meta-model. Second, we specify the relationship between clocks to describe the FSM semantics. In the following, we use the terms event and clock interchangeably.

Finite State Machine Clocks

In a FSM, there are various relevant events that occur during an execution. Most of the FSM concepts are associated with one or more events that describe a particular FSM change, e.g., the entering in a state or the firing of a transition. We begin the definition of FSM clocks by representing the state activation. In a state, there are two possible events: Entering and leaving the state. For each of these events, we specify a clock in ccsl. To represent the entry into a state s, we define the clock s enter and to express the leaving of this state, we define the clock s leave .

The transition between two states is also represented by a clock. We name t ij the clock that represents the firing of the transition between the two states s i and s j . A transition can be triggered either by an event representing the evaluation to true of the guard (guardEvent) or by the reception of a trigger event (triggerEvent). We designate guard ij the guardEvent of the transition t ij and trigger ij its triggerEvent. SubViewElement FSM transition is only sensitive to a triggerEvent, while Controller FSM can be sensitive to both events (guardEvent and triggerEvent). When one of these events occurs, the transition is fired instantaneously. Additionally, a Controller FSM can generate an effectEvent when a transition is fired. An effectEvent is a control event sent to either a SubViewElement to change its active state or to another view to synchronize the execution among views. We name ef f ect ij the effectEvent of the transition t ij .

Finally, we represent the event that initializes the state machine execution. We define the init clock that contains a unique instant. When init ticks, the FSM is entering simultaneously into the initial state. 

Finite State Machine Clocks Relationship

Once the FSM clocks are defined, we identify the relationships of these clocks to describe the FSM execution semantics. We start defining the activation of a specific state, which is between the corresponding entering and leaving occurrences. We specify that the s state is active when the s enter clock ticks. The s state stops being active when s leave ticks. We define that a state cannot be transitory, i.e., the enter and leave events cannot be simultaneous. Moreover, a state can not be activated if it is already active. Consequently, we state an alternate relationship for all the states of FSM between s enter and s leave in ccsl as follows:

∀s ∈ StateM achine.states,

s enter ∼ s leave (3.1) 
where StateM achine.states represents the set of states that belong to a FSM.

We have defined t ij as the clock that represents the firing of a transition between two states s i (source state) and s j (target state). t ij is formally specified as follows:

∀i, j such that s i , s j ∈ StateM achine.states,

t ij = {t ∈ StateM achine.transitions|t.source = s i , ∧, s.target = s j } (3.2)
According to the execution semantics of FSM [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF], a transition t ij is fired if two conditions are achieved:

s i is

active, and

Either the guard ij occurs or trigger ij ticks.

We therefore study these conditions in the following items:

Transition fired by a guard: Figure 3.17 depicts the transition between two states (s i and s j ) caused by a guardEvent (guard ij ). Once s i is active, i.e., s ienter ticks, it is possible to change to s j . eval is a chronometric clock that commands the evaluation of the guard ij condition. Hence, if the evaluated condition is true,

guard ij occurs.
Considering that s i is active and guard ij ticks, then the t ij transition is fired. We specify the relationship of these clocks by using ccsl expressions. We state the ccsl constraints to fire the t ij transition by the following definition:

Active

∀i, j such that t ij ∈ StateM achine.transitions, guard ij <> null and trigger ij = null implies: In consequence, we join the f ij ticks by the ccsl concatenation operation ( • ) in order to gather all the f ij occurrences in one clock. Finally, t ij coincides with f ij .

let t ik = {t ∈ StateM achine.transitions|t.source = S i , ∧, t <> tij} and let f ij � [(s ienter � guard ij ) � � t∈t ik t] • f ij in t ij = f ij (3.
Following the execution illustrated in Figure 3.17, s i stops being active when t ij occurs, i.e., s i leave ticks. The relationship between t ij and s i leave is specified by the ccsl equality relation ( = ):

∀i such that s i ∈ StateM achine.states, let t out = {t ij ∈ StateM achine.transitions|t ij = s i .outgoing} in s i leave = � t∈tout t (3.4) 
we can interpret this specification as the leaving of s i occurs when one of its outgoing transitions is fired, i.e., the union of the occurrences of the outgoing transitions ( � t∈tout t). The operator � is derived from the union operator (+) in ccsl.

In Figure 3.17, we can also note that the t ij clock coincides with the activation of s j state, i.e., s jenter ticks. We specify this coincidence relationship by: ∀j such that s j ∈ StateM achine.states,

let t in = {t ij ∈ StateM achine.transitions|tij = s j .incoming} in s jenter = � t∈t in t (3.5)
this relation is read as the ticks of the fired incoming transitions of s j (t in ) coincide with the s jenter occurrences.

If the FSM belongs to a controller, then an effect can be generated, simultaneously with the transition firing, i.e., ef f ect ij occurs (see Figure 3.17). This relationship is specified by: ∀i, j such that t ij ∈ StateM achine.transitions, ef f ect ij <> null implies :

t ij = ef f ect ij (3.6)
Transition fired by an event: A transition could be fired by an event according

to the FSM meta-model. In the same way that guard ij , the relationship between s ienter , t ij and trigger ij is also specified in ccsl as follows:

∀i, j such that t ij ∈ StateM achine.transitions, guard ij = null and trigger ij <> null implies:

let t ik = {t ∈ StateM achine.transitions|t.source = S i , ∧, t <> tij} and let f ij � [(s ienter � trigger ij ) � � t∈t ik t] • f ij in t ij = f ij (3.7)
Initial state definition: The FSM must have at least one initial state to start its execution. We only consider the case that a FSM has only one initial state. We define a clock that begins the FSM execution activating the initial state. We have named this clock init. We only need a tick in init to active the initial state (see FSM mata-model -Figure 3.6). Therefore, we define fsmClk, which is a logical clock only used to specify init. Thus we state init in ccsl as follows:

init = f smClk � 1(0) w (3.8)
this equation means that init is the result of filtering f smClk with the binary periodic word 1(0) w . This word denotes that only the first tick of f smClk is taken.

The init clock must be associated with the initial state. Considering that s init is the initial state of the FSM, we define its activation as follows:

let s init = {s ∈ StateM achine.states|s = StateM achine.initialState} s initenter = init (3.9) 
However, s init is also activated during the FSM execution by its fired incoming transitions. Therefore, by using Equation 3.5 and 3.9, we complete the s init specification by: let s init = {s ∈ StateM achine.states|s = StateM achine.initialState} and

t in = {t ∈ StateM achine.transitions|t = s init .incoming} in s initenter = init + � t∈t in t (3.10)
we can interpret this equation as the initial state of the FSM (s init ) is active when either init occurs or an incoming transition to the initial state is fired.

Equational View Semantic Specification

In systems, the notion of time is always present in the evolution of non-functional properties. These properties are evaluated in a time instant and their values could be used to calculate other properties by using equations. For instance, the temperature evolution of a cpu depends on the progression of its dissipated power. In PRISMSYS, Equational-SubView contains such equations and the active ones are evaluated through time. The characterization subCorrespondences allows to change the active equations according to the active subViewElement states. In this section, we formally specify the non-functional property evolution through equations. These equations are evaluated at discrete time and according to active states. To this end, we use ccsl to specify a chronometric clock to state the discrete time for the equation evaluation. ccsl is also employed to define the causal relationship between the active states and the associated equations to be evaluated.

We specify that the time notion in an equationalSubView follows the physical time specified in marte. This standard describes that physical time is "a continuous and unbounded progression of physical instants" [START_REF] Omg | UML profile for MARTE[END_REF]. Physical time can be modeled as a dense time base. Such a time base is an ordered set of instants where "for a given pair of instants, there always exists at least one instant between the two" [START_REF] Omg | UML profile for MARTE[END_REF]. Dense clocks could be defined from the dense time base. The marte TimeLibrary contains a dense clock called idealClock. This dense clock represents the physical time that describes physical laws. For instance, in the equation a = dv/dt, dt could be represented by idealClock. IdealClock has as time base unit second. By using idealClock, we define chronometricClocks. A chronometricClock represents the periodic occurrences of the physical time evolution. Therefore, we define chronometricClocks to mark the periodic time evolution of certain subViewElements that need the time notion. For instance, we could represent the measure of humidity by using a chronometricClock that ticks every 10 s. For each clock tick, the humidity is measured.

We specify a chronometricClock to evaluate the equations defined in equationalSubView.

We name this clock step. At each occurrence of step, a new value is calculated according to the equations activated by the subViewElement states. The step clock can be specified by discretizing idealClock or it can be derived from the relationships with other chronometricClocks specified in other views. For instance, step occurrences could coincide with the ticks generated from the CPU clock source, clock that can be defined in a time performance view. In the figure, three views are depicted. Hardware View is the view where the structure and the functional behavior of the system components are defined. Thermal View describes the thermal architecture of the system, including its thermal behavior and its equational representation. The thermal behavior corresponds to the CPU activity that is specified in ThermalElement, which is the CPU abstraction from the thermal point of view. We represent the CPU thermal activity by states. The transition between states is controlled by the controlSubView. In this example, we only recreate a possible execution scenario in the ControlSuvView of ThermalView to command the thermal states of the CPU. The thermal states of the CPU are two: Normal and Heat. The former expresses that the CPU maintains the typical temperature when it is not active. In contrast, Heat describes that the CPU temperature raises if it is active. Both states are associated by transitions that are sensitive to the e_heat and e_normal events generated from the controlSubView.

The thermal representation of the CPU also contains a temperature property whose value depends on the active thermal state. The temperature value is the result of the evaluation of the active thermal equation defined in the equationalSubView. The thermal equations belong to an equationalModel named Temperature. Such equations are associated with the thermal states in ThermalView. The equations are first-order differential equations whose solutions are exponential functions. Normal state is associated with a temperature equation whose response is asymptotic to T min , which is the minimum temperature that the CPU can achieve in halting state (i.e., without activity).

The Heat state is characterized by the second temperature equation whose response is asymptotic to T max , the maximum temperature that CPU can support before burning out. The Temperature equationalModel also contains the parameters T , T min , T max , T o and t. T is the temperature evaluated according to the active equation, T min and T max are constant values as well as T o , which is the initial temperature at t = 0, i.e., T o is the environmental temperature.

The t parameter is the physical time of the equations. t is discretized by a chronomet-ricClock defined in TimePerformanceView. Such a view defines the temporal features of the example system. We note that its structuralSubView contains a ClockSource that is a clock generator. The ClockSource owns a frequency property whose value is defined by the associated equation f = 1 kHz. By using this definition, we specify the generated In the controlSubView of ThermalView, we define an execution scenario to specify at which instant e_heat and e_normal occur. We note in this example that the synchronization between heterogeneous behaviors (finite state machine and continuous time) is given by the time discretization and the relationship specification between the actions in the state machine and the instants where the equations are evaluated. This relationship is specified in ccsl.

Conclusion

In this chapter, we have presented the PRISMSYS framework. This framework is a language that allows the description of systems from different points of view. PRISMSYS exposes different sub-views that must be specified in each view to describe a specific domain. PRISMSYS provides the basic sub-views to be extended in order to express the necessary views of the stakeholders' concerns. The PRISMSYS framework also defines the necessary correspondences to maintain the coherence among the views and to coordinate their execution. We also define the sub-correspondences between the predefined sub-views to keep the consistency among sub-views. Correspondences avoid the re-definition of domain elements, re-using elements and properties from other views.

Additionally, correspondences expose the execution impact between views in a single system model. This impact is also projected in the achievements of system requirements.

We also propose a uml profile to represent a PRISMSYS model in uml by using as much as possible the concepts already specified in uml, SysML and marte. The designers that employ uml tools to describe systems, they could easily apply the PRISMSYS framework in a uml environment.

We define the execution semantics of PRISMSYS by using ccsl. Thanks to ccsl, we could define the execution of a discrete event model, i.e., Finite State Machine, and the instants when the equations of a continuous time model are evaluated. The relationship definition between both models (discrete event and continuous time) allows the coordination of the execution of these models, through the use of another way to execute heterogeneous models.

In the next chapter, we present a use case that defines the necessary views to describe power consumption of an embedded system. We also illustrate the impact of other views in the system power consumption.

Chapter 4 

Introduction

Nowadays, digital circuits are built using the CMOS technology. In figure 4.1, we depict the base gate of the CMOS technology whose behavior corresponds to a NOT logical function. From this gate, various logical functions can be built. In the figure, the CMOS gate contains a PMOS transistor and a NMOS transistor. These transistors have the same physical characteristics in order to have the same behavior when they are switched.

V in is the input signal that can be a logic 0 (a voltage close to ground) and 1 (a voltage close to V dd ). V out is the output signal of the gate. According to the V in signal, V out is obtained. Considering V in is initially in 1, i.e., in V dd , and we change the V in value to 0. Once the change is done, the PMOS transistor is closed and the NMOS transistor is open during a short period of time. If the PMOS transistor is closed, the current that circulates from V dd to the charge Load is reduced to almost 0A. In contrast, the NMOS transistor is opened, therefore there is a current that circulates from Load to ground though the NMOS transistor. This current is also generated for a short period of time; while the Load charge is discharged. During the state change, the produced current in both transistors generate power consumption.

Once the circuit arrives to a stable state, the V out value becomes a 0 logic. However, this 0 is not exactly a 0V. There is a small current that circulates from V dd to ground during the stable state, producing additional power consumption.

Various authors [START_REF] Helms | Leakage in CMOS circuits -an introduction[END_REF] [55] [START_REF] Miltos | Power-aware multicore SoC and NoC design[END_REF] [57] identify three sources of power consumption in digital CMOS circuits:

P total = P short + P switch + P static (4.1)
where P short is the power consumed when the NMOS and PMOS transistors are simultaneously active, i.e., producing a short-circuit current from V dd to ground. This power consumption is usually small compared to P switch and P static . P switch is the power consumed during the period that the circuit is in constant activity, i.e., the transistor are switching. The sum of P switch and P short is known as dynamic power consumption (P dyn ). In contrast, P static is the power consumed when the digital circuit is in stand-by state, i.e., when the transistor are not switching.

The power consumption that predominates among the mentioned powers is P dynamic .

However, in the last years, caused by the transistor size reduction, P static is becoming an important source of power consumption.

In the next sections, we explain in more detail the dynamic and static power consumptions. We continue describing the power consumption estimation according to the abstraction description level of the system. Afterward, we present the main strategies to manage the power consumption. Finally, we expose the different approaches that specify power design for electronic systems.

Dynamic Power Consumption

Previously, we mentioned that the dynamic power consumption is defined by the following equation:

P dyn = P short + P switch (4.2)
where P short is the power consumed during the period when both transistors are active, and P switch is the power consumed during the switching period. We can express P switch according to the following equation:

P switch = αC L V 2 dd f (4.3)
Where α is the input transition activity factor of the CMOS gate, C L is the capacitance of Load, V dd is the voltage of the CMOS gate source and f is the transition frequency.

Load represents the wires and other transistors that are connected to the CMOS output.

According to this equation, P switch depends mainly on the voltage and the frequency, therefore there are certain techniques to reduce the power consumption at this point, for example Dynamic Voltage-Frequency Scale (DVFS) and clock-gating. We present these techniques in detail in Section 4.5.

Static Power Consumption

According to [START_REF] Helms | Leakage in CMOS circuits -an introduction[END_REF] and [START_REF] Fallah | Standby and active leakage current control and minimization in cmos vlsi circuits[END_REF], static power consumption of a CMOS gate is due to various leakage currents that flow through the gate during the stable state. This current is produced by the band-to-band tunneling effect in the gate-drain overlap region. I G depicts the current that flows from the gate terminal to the p-type substrate through the oxide insulation. I SU B represents the Substhreshold leakage current. This current that is produced between Source and Drain terminals caused by working the transistor in the weak inversion region.

All these currents are affected by the transistor characteristics (size, voltage applied, etc.) and by the temperature. One of the most significant leakage current is I SU B . This current can be modeled by the following equation:

I SU B = KV 2 T � W L � e (V GS -V th )/nV T � 1 -e -V DS /V T � (4.4)
where K, W , L, n are transistor characteristics, V GS is the Gate-Source voltage, V DS is the Drain-Source voltage, V th is the threshold voltage and V T is the thermal voltage.

V T is directly proportional to the transistor temperature, therefore according to the equation, I SU B exponentially increases in function of the temperature.

Characterization for Power Consumption

Power models characterize the power consumption of hardware components according to a functional execution. These power models are implemented in various tools using different abstraction levels. Ibrahim et al. [START_REF] Mostafa | A precise highlevel power consumption model for embedded systems software[END_REF] present a survey of the techniques used to estimate the power consumption of system components. They classify these techniques in the following levels:

Transistor-Level: This level is a detailed description of the system components in circuits based on transistors. This level uses the physical transistor model, which is described in a continuous time domain, to get the component behavior and its characteristics such as time performance and power consumption. Generally, the power consumption is estimated by monitoring current and voltage of the analyzed circuit. This level is the most precise power consumption estimation technique because every characteristic of the transistor is defined. However, the simulation time is too long, moreover when designers want to simulate components that have millions of transistors. Tools that use this technique are SPICE [START_REF] Nagel | SPICE2: A Computer Program to Simulate Semiconductor Circuits[END_REF] and

PowerMil [START_REF] Huang | The design and implementation of powermill[END_REF].

Gate-Level: In this level, the system components are described by logical gates. Therefore, the system simulation changes from a continuous-time domain to a discrete-time domain where each component is sensitive to events. According to the equation 4. Register Transfer-Level: The register transfer models are interconnected blocks

where each block has a specific functionality in a system. To characterize the power consumption of these models, their internal blocks are individually measured and analyzed from their physic implementation and their power properties are extracted. As gate-level, Register Transfer-Level estimation mainly works focused on extracting the activity information from the blocks and measure their power consumption response.

Architecture-Level: This level uses a combination of the techniques mentioned before, mainly Gate-Level and Register Transfer-Level to estimate the power consumption of a system. For instance, SimplePower [START_REF] Ye | The design and use of simplepower: a cycle-accurate energy estimation tool[END_REF] employs transition-sensitive power models to estimate the power consumption of functional units. In contrast, SoftWatt [START_REF] Gurumurthi | Using complete machine simulation for software power estimation: The softwatt approach[END_REF] and Wattch [START_REF] Brooks | Wattch: a framework for architectural-level power analysis and optimizations[END_REF] use a fixed-activity model. PowerSC [START_REF] Klein | An efficient framework for high-level power exploration[END_REF] is a C++ library that extends SystemC [START_REF]IEEE Std 1666-2011[END_REF] to specify power features and to estimate power consumption using different power modeling techniques.

Another tool that is part of this level is Aceplorer [START_REF] Power | Aceplorer[END_REF]. They define the power consumption though the specification of voltage and current for each component of the system. These parameters are defined by equations and they can represent from the lower level power characterization, such as transistor-level, to the higher level, like instruction-level. However, this tool is commonly used to estimate power in the first phases of the system design. We detail this tool in Chapter 6. We use this tool to analyze the power consumption of the system specified in PRISMSYS.

Instruction-Level: This level is exclusive to components that execute instructions.

In this level, current measurements are taken when a sequence of instructions is executed. For each instruction a cost is assigned according to the measurements.

An extra-cost is also assigned according to the transition from an instruction to another. Tiwari et al. [START_REF] Tiwari | Power analysis of embedded software: a first step towards software power minimization. Very Large Scale Integration[END_REF] and Konstantakos et al. [START_REF] Konstantakos | Energy consumption estimation in embedded systems[END_REF] present power consumption estimator models in this level. Tiwari was one of the first authors to propose this power estimation in processors. Konstantokos defines a power consumption model for an embedded system based on a microcontroller.

Functional-Level: As the previous level, this level is also applied to processing components. Here, the studied component is split in different functional blocks.

Thus, the application features that impact the power consumption of the functional blocks activity are defined, such as parallelism rate, clock frequency and data mapping. Once the parameters are specified, their values are changed according to an algorithm that individually stimulates the functional blocks. During the program execution, the current consumed by the component is measured. Regressions are applied to the current consumed according to the features variation thus obtaining the power model of the component. SoftExplorer [START_REF] Laurent | Functional level power analysis: an efficient approach for modeling the power consumption of complex processors[END_REF] is a power estimation tool that follows this technique.

Power Management Techniques

Power management is the use of certain hardware elements to optimize the component power consumption; these can be switches, voltage sources and clock sources where properties such as current, voltage and frequency can be changed. There exist different techniques to reduce the power consumption of systems. Power experts combine these techniques to reduce power in each system state. The combination of such techniques is defined in a functional block called power manager. This block synchronizes the implemented control techniques to guarantee the system functionality and optimizing the power consumption. In this section, we describe three of the most important techniques:

Clock-Gating, Power-Gating and Dynamic Voltage-Frequency Scale.

Clock-Gating

Clock-gating is one of the first techniques used to reduce dynamic power consumption when a processing component is not active. This technique consists in turning off the signal clock that is received by the component when it is not in use. The power reduction directly affects the registers that belong to the component. These registers are flip-flops with clock inputs. For each clock cycle, the flip-flops consume dynamic power, even when the data input is not changed. Clock-gating can be implemented with a simple AND gate. This implementation can easily be described in RTL models using the and operator. Okuhira and Ishihara [START_REF] Okuhira | Unified gated flip-flops for reducing the clocking power in register circuits[END_REF] report that around 40% of the total power consumption in microprocessors is caused by register circuits. In this percentage, more than 80% of the power consumption is caused by the clock signal transition in the register circuits. In consequence, applying this technique, a significant energy reduction can be made.

Power-Gating

Power-gating is a technique exclusively conceived to reduce static power consumption.

This technique can be applied to every hardware component during the time periods when it is not in use. Whereas clock-gating only turns the clock input off, power gating turns the hardware component off when it is not active. The implementation of this technique uses a transistor as power switch to cut off the current supplied to the hardware component. We can also add another functionality to a power gated component. This functionality is to save the current state of the internal registers before the component is turned off.

Once the component is turned on, the saved state is restored and the component can continue its execution from its previous state. To implement such a functionality, the internal register information can be charged in retention cells. The retention functionality takes certain time to save and restore the gated component information. Therefore, this functionality is only used in certain cases.

Dynamic Voltage-Frequency Scale

According to Equation 4.3, the switching power depends on voltage and the transition frequency in a CMOS circuit. In a processing component, if we vary these values according to the component workload, we could significantly reduce its power consumption.

However, we can not choose voltage and frequency values randomly. A specific frequency value must correspond to a specific voltage value. Technologically speaking, when we reduce the switching frequency, the voltage level can be reduced until a certain limit.

This limit is given by the transistor characteristics and the voltage control implemented.

Processors that implement this kind of technique called operation points the determined frequency/voltage values. For instance, OMAP3 [START_REF]OMAP35x Applications Processor Technical Reference Manual[END_REF], which is an application processor, has up to six operation points.

To optimally apply this technique, it is necessary to know the workload and the time constraints to be executed. Most of the works apply this technique, taking into account the task execution deadline given by the scheduling policy. According to this deadline, the operation point is dynamically changed. For instance, Ejlali et al. [START_REF] Ejlali | Low-energy standby-sparing for hard realtime systems[END_REF] propose to use DVFS and power-gating techniques to reduce power consumption in redundant-hardware employed in real-time systems. They present a DVFS algorithm according to a common execution deadline for a task sequence, the operation points can be changed according to the time execution of each task that conforms the sequence. Genser et al. [START_REF] Genser | Power emulation based dvfs efficiency investigations for embedded systems[END_REF] propose an algorithm where the operation point changes to execute a task depending on the time execution of the previous one.

This technique can be applied in different zones of a system, so that the system can have multiple voltage level zones. Power experts called these zones voltage domains. To guarantee the communication between components of different voltage domains, power experts add level shifters to each connector that crosses the voltage domain border.

Level shifters level the voltage of a logic signal from a voltage domain to another one.

Power Design Specification

The elements employed to reduce power consumption were initially designed at transistorlevel. The power techniques impact the system functionality, which is usually specified at higher levels than transistor-one. Therefore, the validation of the correctness between power and functional execution is evaluated in the last stages of the system design. In consequence, such elements have begun to be implemented at a higher description level.

In this section, we present various languages that have been conceived to define power architectures at three different description levels.

UPF, CPF and IEEE 1801

Hardware description languages (HDLs), like VHDL [START_REF]IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-2008[END_REF] and Verilog [START_REF]IEEE Standard for Verilog Hardware Description Language. IEEE Std 1364-2005[END_REF], were developed to model the functionality and the time performance of digital systems. However, these languages lack expressivity to implement all the elements that are involved in the power reduction techniques. In 2006, various semiconductor and electronics companies demand to the electronic design automation industry to define an open standard for power specification.

Responding to this need, Accellera Systems Initiative1 , with the support of Synopsys and Mentor Graphics companies, developed a standard named Unified Power Format (UPF) [START_REF]Unified power format 1[END_REF]. The aim of this standard is to define the elements needed to implement the predominant power reduction techniques at a register transfer level (RTL). The first UPF version was released in 2007 and, in same year, it was transferred to the IEEE in order to create a new IEEE standard. In 2009, IEEE publishes its first power specification standard named IEEE-1801 [START_REF]IEEE standard for design and verification of low power integrated circuits. IEEE Std 1801-2009[END_REF].

Another power specification standard was also developed this time in 2007 by Cadence. This specification is named Common Power Format (CPF) [START_REF]Silicon Integration Initiative[END_REF]. Such a standard was also transferred to an independent organization called Silicon Integration Initiative (Si2)2 to continue its development. This organization has produced two new versions.

The last CPF version was released in 2011.

The two standards have many concepts in common, however the most notorious is the power intent description complexity. UPF describes the exact physical structure of the power intent in RTL, i.e., it specifies the wires, the ports and the connection between the power elements. In contrast, CPF defines the power concepts that include the basic information to reduce the physical structure complexity. For instance, a power domain is associated to a voltage level (nominal condition in CPF) in a power mode The main concepts of these standards used to define a system power architecture are: 

SystemC

Transaction-Level Modeling (TLM) [START_REF] Cai | Transaction level modeling: an overview[END_REF] is a system description level where the communication between components is realized by transactions through channels. SystemC [START_REF]IEEE Std 1666-2011[END_REF] is a C++-based language that implements this modeling level 4 . Such as RTL, TLM has initially been developed to describe functionality and to analyze time performance.

However, when the system designers had to model the power characteristics of their models, a new research area was open in TLM to implement these new characteristics to existing TLM models. Mbarek et al. [START_REF] Mbarek | A methodology for poweraware transaction-level models of systems-on-chip using upf standard concepts[END_REF] implement the power concepts defined in IEEE-1801 to describe a power architecture in SystemC. They define a framework called PwARCH. In this framework, the IEEE-1801 power control elements are defined in a C++ library and can directly be used in the SystemC system model. PwARCH also includes a test engine to validate the behavior constraints between power and functional architectures. For instance, if a component is turned off by the power architecture, this component cannot be executed in the functional architecture. Additionally, the authors add a power estimation analyzer that evaluates the power consumption, according to the system execution.

UML

Unified Modeling Language (uml) [START_REF] Omg | OMG unified modeling language[END_REF] is a graphical general purpose modeling language developed by the Object Management Group (OMG). uml was initially used mainly to specify object oriented software systems. Nevertheless, this language has been more and more employed to define various kinds of systems, like real-time systems, hardware platforms, control systems, etc. Such specific languages have been built by extending the uml concepts. This extension process is defined in a uml profile. For instance, Modeling and Analysis of Real-Time Embedded Systems (marte) [START_REF] Omg | UML profile for MARTE[END_REF] is a profile used to model and to analyze real-time systems, and System Modeling Language (SysML) [START_REF] Omg | Systems Modeling Language (SysML). Object Management Group[END_REF] is another profile used in systems engineering.

uml is considered as a language that can be used to specify systems at a higher abstraction level than TLM. In uml, there are some works to specify power concerns: Hagner et al. [START_REF] Hagner | UML-based analysis of power consumption for real-time embedded systems[END_REF] and Arpien et al. [START_REF] Tero Arpinen | MARTE profile extension for modeling dynamic power management of embedded systems[END_REF] defined uml profiles providing the modeling elements to represent power management techniques and to analyze power consumption. However, these two approaches abstract the elements involved in the power management techniques, without taking into account the impact that causes the control made by these elements on the system behavior.

Discussion

In the design of low-power systems, we note a clear separation of concerns: on one hand, a power design represented by power characterization and power management techniques, and, on the other hand, the functional design of the system. The power characterization is implemented in certain tools that hide their power models, forcing the user to employ their models and approaches. We also observe that the aim of the power design is to optimize the power consumption, which is one of several non-functional properties defined in a system. By the construction of a power architecture, which controls the power consumption of the system according to its activity, we can identify the impact of the power design on the functionality of the system. The power design alters the functionality of the system, therefore verification process must be applied.

Following the PRISMSYS approach, we provide a modeling framework that allows the separation of concerns through views. The structure and behavior of the functional design could be defined in a view, while the power design could be specified in another view. The tools that implement the power management techniques are generally different to the tools that estimate the power consumption. The PRISMSYS equationalSubView can be employed to specify the characterization of the power consumption defined by equations. A StructuralSubView can be used to define the structure needed to implement the power management techniques. This framework follows a white box approach, i.e., the power design is freely defined and modified by the user. Finally, thanks to the PRISMSYS correspondence, we can state the relationship between power and functional design.

Conclusion

In this chapter, we have introduced a background of the existent concepts and approaches to model and characterize the power consumption in electronic systems. We have introduced the main sources of power consumption in systems that are based on the CMOS technology: dynamic and static power. Afterwards, we have presented how the power consumption is estimated in different abstraction levels. We have continued by describing the power management techniques, defining hardware elements that controls the energy supplied to the hardware components of the system. We have also showed that these power management techniques are represented in different abstraction levels and that the power community is looking for an adequate way to add power-related management in existing system models. We use this background to develop a case study where the PRISMSYS framework is employed.

We have pointed out the separation of concerns between power and functional design.

Moreover, we have discussed about the division between power characterization and power management, being both parts of the power design, a single expert domain. Even though the power design is separated of the functional, they are associated and one design impacts on the other one.

In the next chapters, we use the power expert domain concepts and technologies to show how the architecture defined in the PRISMSYS framework can be used to deal with such problems. The PRISMSYS model describes the power expert domain and the other domains that affect the power consumption in a system.

Introduction

To illustrate the use of PRISMSYS framework, we apply it to define the views that impact and characterize the power consumption in embedded systems. To this purpose, we specialize View and SubViewElement to represent the elements of specific domains according to the expert knowledge. We identify five views that are associated with power consumption: HardwareView, ApplicationView, PowerView, ClockView and ThermalView.

StructuralSubView, ControlSubView and EquationalSubView are integral parts of the identified views. As such we have explained in Chapter 3, the controlSubViews are specified to coordinate the subViewElements of each expert domain. Furthermore, they are employed to synchronize the execution between views. In the power-aware model, these subViewElement coordination and view synchronization rather than fulfilling the functional system requirements, such as executing a task in a processing element, they satisfy the system non-functional constraints, like the maximum system power consumption or the deadline to execute a certain application. These constraints are performed by the synchronization of each expert domain guaranteeing the preservation of the functional requirements. For instance, applying power management techniques, the power experts can reduce the power consumption, while the time performance of task execution and the system functionality are impacted in other expert domains. The structuralSubView concepts are specialized defining the concepts commonly employed by experts of each specific domain. The equationalSubViews state the equations needed to evaluate the power consumption and temperature of the system components, as well as the values of the non-functional properties employed to calculate such equations, such as frequency and voltage.

To represent the multi-view model for a power-aware system, we build a uml model of the system applying the PRISMSYS profile. View, StructuralSubView and SubViewElement stereotypes are specialized according to the specific domain. We also use other marte stereotypes to define subViewElements that are already specified in this profile.

By applying the PRISMSYS framework on this use case, we identify a specific correspondence commonly employed in the design of embedded systems. This correspondence is named Allocation and associates subViewElements from the application domain (Ap-plicationView) to the execution platform domain (HardwareView). Allocation is not expressed by the semantics of Abstraction, therefore it must separately be specified, specializing the correspondence concept from the PRISMSYS meta-model.

In this chapter, we begin defining the views that describe the expert domains of the power-aware model. The first two views are the domains that specify the execution platform (HardwareView) and the application that is executed on it (ApplicationView).

HardwareView is the backbone of the PRISMSYS power-aware model. Therefore, the other views are specified abstracting the elements of this view to define their nonfunctional properties and other domain elements. Between these derived views, we first specify PowerView that characterizes the power consumption properties of the HardwareView elements and the power control elements. We continue defining ClockView that states the HardwareView temporal properties and the control clock signal elements.

Afterwards, we specify ThermalView that represents the thermal elements associated with the backbone model. This view also characterizes the temperature evolution of the HardwareView elements. Finally, we illustrate the use of correspondences and subcorrespondences for the views defined in the PRISMSYS power-aware model.

Views

In this section, we define the views that describe the expert domains of the power-aware model. For each view, we specify the concepts of its subViews specializing the PRISM-SYS framework meta-model concepts. Afterwards, we represent the view elements with the PRISMSYS profile. The elements are specified in the profile either extending them or employing the marte stereotypes. Finally, each view is depicted in uml to describe a PRISMSYS power-aware model.

Hardware View

We define HardwareView as the platform execution of the system. This view plays the role of backbone of the PRISMSYS power-aware model. The connection hub is a bus, so that memory and cpu can be communicated through bus. A Data type is assigned to each HwPort to define the nature of the data that is transmitted between hwComponents. Each hwComponent has one or more controlPorts to change the internal state of the hwComponent behavior. The modes of cpu are specified in a state machine. In the same way, the modes of bus and memory are defined.

ControlSubView owns the control ports needed to coordinate the hwComponent modes, according to the execution of the other views. This subView also synchronizes the execution of the Power and Clock views according to the ApplicationView execution. In the figure, we depict that HardwareView receives control events from ApplicationView to inform that an action is executed. Therefore, controlSubView sends control events to its structuralSubView according to the events received and it also sends control events to ClockView and PowerView to synchronize their execution. 

Clock View Power View

Application View

ApplicationView represents and abstraction of the application that is executed on the execution platform specified in a HardwareView. ControlSubView coordinates the execution of the actions in the structuralSubView. This coordination could depend on control events received from the other views. For instance, if an action is executed in cpu, ApplicationView controlSubView must notify to Hard-wareView controlSubView that an action is in execution. Once the action is executed, ApplicationView controlSubView informs to HardwareView controlSubView that the action was executed. Nevertheless, ApplicationView controlSubView could be notified by

HardwareView that the hwComponent where the action is executed has been stopped since the hwComponent temperature attained its maximum limit. The control event coordination defined in controlSubView is expressed by ccsl [START_REF] André | The Time Model of Logical Clocks available in the OMG MARTE profile[END_REF], which is detailed in Chapter 6. In uml, actions are defined as components that are parts of the StructuralSubView.

DataPorts and DependencyConnectors are specified by marte flowPorts and uml connectors, respectively. Figure 5.4 presents the ApplicationView of a PRISMSYS poweraware model. In this figure, there are two actions: t1 and t2. Each action behavior is represented by a state machine that contains two states: Execute, when the action is in execution, and Stop, when it finishes or is interrupted. There is a data flow dependency between these actions that is expressed by the connection between d1 and d2 flowPorts.

ControlSubView commands the execution of the actions. Once an action is executed,

HardwareView is notified to coordinate its subViewElements and to inform the other views the performed actions. 

Power View

The elements of this view intend to supply and control power properties of system components defined in HardwareView. These control elements implement the power management techniques that have been described in Chapter 4. Power experts build their power model without modifying HardwareView, which is the objective of the multiview modeling approach. The elements from these views are inspired by the concepts defined in the IEEE-1801 [START_REF]IEEE standard for design and verification of low power integrated circuits. IEEE Std 1801-2009[END_REF] and CPF [START_REF]Silicon Integration Initiative[END_REF] languages. International System of Units standard (SI) [START_REF]The International System of Units (SI)[END_REF]. For instance, a typical property in the power view is voltage. This property is expressed in function of the unit Volt, in short,

V and its value.

Hardware View To specify their voltage nature, a NFP_Voltage type is assigned to these ports.

Thanks to the flow port properties, the data flow direction is defined. For instance, the vout flowPort in vs1 is configured as output, i.e., the voltage value generated by vs1 is shared with its environment, in this case with pd1.

Each subViewElements defined in the PRISMSYS power-aware model expresses its behavior by a state machine in Figure 5.6. Cpu poweredElement, which is a HwComponent in the HardwareView, owns a power behavior whose modes are: Idle, to express that CPU is consuming static power, and Active, to describe that CPU is consuming dynamic power. VoltageSource behavior (vs1 ) contains two states: V1 and V2. Each state represents a specific voltage level that is defined in the equationalSubView. The powerSwitch behavior is expressed by two states that represent the powering on (state ON ) and the cutting off (state OFF ) of the current from voltageSource to the cpu poweredElement.

ControlSubView are also represented in Figure 5.6. This subView receives control events from HardwareView in order to coordinate the power subViewElements behavior defined in structuralSubView according to the HardwareView execution. hwStrActCtr and hw-StpActCtr ports receives the events indicating that an action is executed or stopped.

hwV1Ctr, hwV2Ctr and hwOffCtr collect the events to change the cpu operation points.

According to the received events, the subViewElement control events are generated.

The execution of the ControlSubView must fulfill the system requirements. A system requirement focused on power consumption could be: the CPU must be ON when an action is executed. In this example, there are involved three views: HardwareView, where the CPU component is defined, ApplicationView, where the actions are executed in the CPU and PowerView, where the CPU power control is described. In this case, we only focus on the power control. To fulfill the mentioned system requirement, we must synchronize the execution to turn CPU on, if it is OFF, and the actions execution.

Therefore, we can specify these executions through the following steps:

1. PowerView ControlSubView receives a control event from the HardwareView Con-trolSubView that cpu is executing an actions, i.e., it is in mode Busy.

2.

PowerView ControlSubView sends a control event to turn the powerSwitch on in order to supply current to the cpu poweredElement.

3.

PowerView ControlSubView sends a control event to change the cpu power mode to Active.

These steps can be defined by the specification of the relationships among control events.

Therefore, we can use ccsl [START_REF] André | The Time Model of Logical Clocks available in the OMG MARTE profile[END_REF] to this specification. Such specification is stated in Chapter 6.

We characterize the power consumption of the poweredElements by means of equa-tionalModels defined in the equationalSubView. These equationalModels include the equations that define the power consumption according to the poweredElement behavior. We also specify other equationalModels that specify constant values. Such values are associated with the power consumption equations. We do not extend the concepts previously defined in the EquationalSubView meta-model of PRISMSYS framework, because the equation representation is used in multiple domains, and the power consumption domain is not an exception. In PowerView, the main equationalModel is powerModel. It characterizes the dynamic and static power consumption equations of the cpu poweredElement. This equationalModel depends on the values given by other equationalModels defined in this subView. Therefore, according to the active values in the other equationalModels and the active pow-erModel equation, the power consumption is evaluated. The evaluation of the active power equation is executed by the clock signal received on clkStepCtr. PowerModel is also relied on the frequency parameter. Frequency value is shared from the ClockView equationalSubView. ClockView specifies the temporal features of the system. The details of ClockView are described in the following section. This frequency change depends on the voltage level, therefore the PowerView control-SubView must also be notified in order to change the voltage to the specified frequency.

Clock View

As well as other views, the controlSubView is specified by using ccsl. This specification is detailed in Chapter 6.

Similarly to PowerView, the subViewElements of ClockView are implemented in uml by specializing SubViewElement stereotypes of the PRISMSYS profile. The equationalSubView is also defined in ClockView. 

Thermal View

ThermalView describes the domain specified by thermal experts to represent thermal features of the HardwareView subViewElements and to define subViewElements of this domain such as heat sinks. The former is the thermal abstraction of a hwComponent. The latter represents the element that helps to dissipate the heat. This heat dissipation causes a temperature decrease. A heatSink is connected to a thermalElement by a junctionPoint. JunctionPoint ThermalView contains the three subViews specified in the PRISMSYS framework. Struc-turalSubView and controlSubView are depicted in Figure 5.12, which is a uml representation of ThermalView. In the structuralSubView, we define a thermalElement named cpu. It is the thermal abstraction of the cpu defined in HardwareView. The thermal behavior of cpu is specified by a state machine with a single state. This state represents the cpu temperature behavior. The cpu thermalElement transmits the temperature value to the controlSubView named T. Unlike the controlSubViews defined in the other views, T specifies its behavior by a state machine in a controller. Such state machine contains two states: HIGH, to represent that the cpu temperature rises to its limit, and LOW, to express that the temperature is in a typical operation temperature. The transitions between states contain guards, where the cpu temperature is evaluated in order to fire the transition and to change the control state. Once a guard is fired, an event is sent to the controlSubView of the PowerView. This event commands to turn cpu off to fall its temperature. When the temperature descends to 50 • C, ThermalView controlsubView allows to PowerView turning cpu on sending an event to turn cpu on. To evaluate the temperature property, a clock signal is sent from ClockView to ThermalView control-SubView. This clock is received on the clkIn port. 

Correspondences

In the specification of the PRISMSYS power-aware model, we use the correspondences defined in the PRISMSYS framework to state the relationships between views. Abstraction is one of the first correspondence that we can identify. In the same figure, we depict the ControlConnector Correspondence. This correspondence is specified between the hwV1Ctr, hwV2Ctr and hwOffCctr controlPorts and the pwV1Ctr, pwV2Ctr and pwOffCtr controlPorts, respectively. For instance, if the cpu HwElement enters to Busy mode, controlSubView sends a control event to PowerView in order to inform that the cpu power abstraction must change is power mode (to Active). We also employ the parameterConnector correspondence to import the property value evaluated in other expert domain. For instance, in Figure 5.13, TempModel needs the power value that is evaluated in PowerView. Therefore, by using the SysML path name dot notion (see pv1.ps1.cpu.power parameter), we import the power parameter from the PowerView equationalSubView. This imported parameter represents a parameterConnector correspondence between PowerView and ThermalView.

Allocation

We identify a correspondence that is commonly employed to associate an action from ApplicationView to a hwComponent in HardwareView. This association is named Allocation. This correspondence is only used between application and hardware views. The semantics of Allocation is to map actions to an hwComponents. The mapping type is a spatial distribution, i.e., an action is executed in the associated hwComponent. We reuse the Allocate association defined in marte to represent this correspondence.

The nature property employed in Allocate is spatialDistribution to maintain the defined correspondence semantics. 

Sub-Correspondences

The PRISMSYS power-aware model also applies subCorrespondences specified in the PRISMSYS framework. Summarizing the PRISMSYS power-aware model, Figure 5.17 presents the big picture of its five defined views.

Conclusion

In this chapter, we have presented the syntax definition of the PRISMSYS power-aware model extending the PRISMSYS framework concepts. We have identified the expert domains that evaluate and impact the power consumption of a system. For each domain, we define a meta-model where the concepts commonly employed are represented. We depict the views by using the uml representation.

In the next chapter, we implement the execution semantics of the PRISMSYS poweraware model to be simulated. Such a simulation allows observing the evolution of the system power consumption and temperature through time. We also propose an power consumption analysis by transforming the PRISMSYS power-aware model to an specific analysis tool, such as Aceplorer [START_REF] Power | Aceplorer[END_REF]. 

Introduction

The specification of the PRISMSYS power-aware model is completed by the definition of the execution semantics. Such a semantics allows the analysis of the non-functional properties defined in the model through time. This analysis is possible, once the model is simulated and the properties are evaluated through time.

We specify the execution semantics of the PRISMSYS power-aware model by employing the PRISMSYS execution semantics defined in Chapter 3. We additionally define the controlSubView execution semantics of each views by only using ccsl expressions. The controlSubView execution definition is bound with the clocks described in the PRISM-SYS execution semantics. Moreover, The controlSubView execution expresses the scenario to synchronize the execution of the views. We support the controlSubView execution specification by employing the uml sequence diagram to define the interactions among the controlSubViews and among their subViewElements. For each view, we define a sequence diagram to illustrate the controlSubView interaction. Afterwards, we specify the ccsl expressions that specify the interactions represented in the sequence diagrams.

Once the semantics of the PRISMSYS power-aware model is defined, it is simulated in TimeSquare. Nevertheless, the evaluation of the equations (e.g., power and temperature equations) must be performed in another tool. We choose as equation solver Scilab [START_REF]Scilab[END_REF], an open source tool for numerical computation. Thus, we develop a "connector" between TimeSquare and Scilab to evaluate the active equations, regarding TimeSquare simulation. We named Scilab Solver to this connector.

In this section, we simulate the evolution of power consumption and temperature in a cpu specified in the PRISMSYS power-aware model. In addition to the simulation, we propose to analyze the cpu power consumption by transforming the PRISMSYS power-aware model to Aceplorer.

PRISMSYS Power-Aware Model Simulation

In this section, we explain how Scilab Solver works. Thereafter, we describe the interaction between the different software components (i.e.,, PRISMSYS Model, Scilab Solver and Scilab) supporting us on a sequence diagram. This interaction is employed to simulate the continuous time behavior of the PRISMSYS power-aware model.

Scilab Solver

The definition of the PRISMSYS execution semantics is specified in order to be simulated or to verify the results of the implementation in lower abstraction levels. We know there are two kinds of execution behaviors to simulate a PRISMSYS model: discrete event and continuous time. The former is represented by the state machine behavior and the event constraints that could be defined in ControlSubView by using ccsl. The latter is expressed by equations in equationalSubViews. The tools used to run each execution domain are different. To simulate the ccsl specifications, we use TimeSquare.

To resolve the equations, we choose Scilab. Both tools, TimeSquare and Scilab, provide an application programming interface (API) that allows the implementation of a "connector" that interacts with the services that offer these tools. Scilab Solver is employed to simulate the PRISMSYS Power-Aware Model. This simulation exhibits the evolution of non-functional properties defined in the model, such as power consumption and temperature.

The PRISMSYS Power-Aware Model Scenario

The scenario of PRISMSYS power-aware model allows to stimulate the execution of the views and the definition of the execution coherence among views. In order to specify the scenario, we state the controlSubView interaction with its subViewElements and with other controlSubViews. These interactions are represented in uml sequence diagrams. A sequence diagram identifies which control events are sent from and received to different elements of the PRISMSYS power-aware model. Once the diagrams are finished, its execution semantics is described in ccsl. The controlSubView specification is added to the ccsl constraints that express the behavior of the subViewElements and then to have a complete ccsl specification of the PRISMSYS power-aware model. Such a ccsl specification is simulated in TimeSquare in order to activate the subViewElement states. Additionally, the equations associated to the active states are processed by Scilab Solver. The equations are evaluated and traced in Scilab.

Application View

ApplicationView starts the coordination of the other views. This view defines the way as the actions are executed. Once an action begins its execution, the controlSubView of this view informs to HardwareView that an action is been executed. In order to determine the instant that an action starts or stops, the controlSubView defines a chronometric clock whose ticks coincide with the clock occurrences generated by cs2 in ClockView.

We name this clock appCtrPhysClk_ms.

The applicationView controlSubView sends five control events to the HardwareView: exeAction, stopAction, cpuOp1, cpuOp2 and cpuOff. ExeAction announces to Hard-wareView that an action starts its execution. In contrast, StopAction informs that an action stops. CpuOp1 and cpuOp2 command that the cpu runs in operation point 1 or 2, respectively. An operation point is the selection of a specific frequency and voltage to execute an action. The use of operation points is a strategy to reduce the power consumption tuning the performance time when an action is executed in the cpu. CpuOff requests to turn the cpu off. Following the ApplicationView sequence, appCtr configures the cpu operation point to execute the action. In the T1 execution case, appCtr sends a cpuOp1 event to configure Operation Point 1. We detail the frequency and voltage selected for the operation points in Section 6.2.2.2. At 35ms of the appCtr execution, T1 is stopped. stopT1 event is sent to t1 in order to change its state to Stop. Next, HardwareView is informed that the action was stopped by sending an stopAction event. This event is received by the HardwareView ControlSubView (hwCtr). In the same way, T2 is executed. However, Operation Point 2 is configured to execute T2 (cpuOp2). T2 starts at 45ms and stops at 60ms. Finally, appCtr commands to turn the cpu off by sending cpuOff event.

The relationships among the control events sent from appCtr is specified in ccsl. We consider each control event as ticks of a clock in ccsl. Therefore, we define a clock for each interaction with the controlSubView. To express that T1 starts at 5ms and finishes at 35ms, we define periodic clocks that tick once in a predefined period. These clocks are synchronized with the chronometric clock appCtrP hysClk_ms. Hence, we define as period 60ms, i.e., the periodic clocks tick once each 60ms. We also define the instant that the periodic clocks tick. We name this instant offset. To specify the instant when the T1 action starts, we represent this instant by a periodic clock that ticks in the fifth occurrence of appCtrP hysClk_ms, i.e., at 5ms. This periodic clock repeats this occurrence each 60ms, i.e., at 65ms, 125ms, etc. In ccsl, we specify exeT1 clock as follows:

exeT 1 isPeriodicOn appCtrP hysClk_ms period 60 offset 5 (6.1) these specification are read as exeT1 occurs in the fifth tick of appCtrP hysClk_ms each 60ms. Once the exeT1 ticks, exeAction and cpuOp1 are generated. The relationships between these clocks are specified by:

exeT 1 = exeAction (6.2) exeT 1 = cpuOp1 (6.3) 
These two ccsl relations mean that once exeT1 occurs, an event in exeAction and cpuOp1 ticks simultaneously.

In the same way exeT1 is specified, we state the instants when T1 stops:

stopT 1 isPeriodicOn appCtrP hysClk_ms period 60 offset 35 (6.4) The relationship between stopAction and stopT1 is specified as well as exeT1 : stopAction = stopT 1 (6.5) Once T1 stops, the time continues running. After 10ms (at 45ms), appCtr sends an exeT2 to starts the T2 action. To define when T2 starts its execution, we state the following ccsl specification:

exeT 2 isPeriodicOn appCtrP hysClk_ms period 60 offset 45 (6.6) which means that exeT2 occurs in the 45th tick of appCtrP hysClk_ms each 60ms.

As soon as exeT2 is sent, appCtr commands to HardwareView to change the operation point sending a cpuOp2 event. AppCtr also informs that an new action starts. Therefore, appCtr sends an exeAction to hwCtr. Similarly to the ccsl specification of the t1Start relationships, the t2Start relations are defined by:

exeT 2 = exeAction (6.7) exeT 2 = cpuOp2 (6.8)
To specify the end of T2, which occurs at 60ms, we define the following periodic clock:

f irstappCtrP hysClk_ms isPeriodicOn appCtrP hysClk_ms period 60 offset 0 (6.9)

and then, we filter this clock deleting the first tick:

stopT 2 = f irstappCtrP hysClk_ms � 2(1) w (6.10)
where � is the ccsl operator that filters appCtrP hysClk_ms and the word 2(1) w means that the fist occurrence of f irstP hysClk_ms is filtered, i.e., this clock starts to tick at 60ms.

Finally, once stopT2 occurs, a stopAction is sent to hwCtr. the relationship between these clocks is specified in ccsl as: 

Hardware View

Once ApplicationView is in execution, HardwareView receives control events to coordinate its subViewElements and to synchronize the PowerView and ClockView execution. After some milliseconds, whose evolution is continued in ApplicationView, appCtr sends cpuOp2 and exeAction to hwCtr in order to execute the T2 action. cpuOp2 causes two control events: actV2 and actF2 to configure Operation Point 2. In the same way that cpuOp1, the ccsl specification of cpuOp2 is defined as:

cpuOp2 = actV 2 (6.19) cpuOp2 = actF 2 (6.20)
The exeAction relationship is already defined. The difference is the action to execute.

Finally, when T2 is executed, appCtr commands to turn the cpu off (cpuOff ). Hence, pwCpuOff and clkCpuOff events tick. The ccsl specification among these clocks are: 

cpuOf f = pwCpuOf f (6.21) cpuOf f = clkCpuOf f ( 6 

Clock View

The evolution of time is expressed in ClockView. To describe this evolution, we must specify a base chronometric clock in ccsl. There are two clock frequencies defined in cs1 (Chapter 5) that active the cpu when T1 and T2 are executed. Such clock frequencies specify a clear evolution of time, e.g., for each cpu cycle, a time step is executed according to the selected frequency. However, the time step for each cpu cycle is too small (5.56ns

for F1 and 2.78ns for F2 ). In consequence, we can choose that the time evolution in the simulation is either a multiple of the possible cpu cycle frequencies or a common clock whose frequency could represent the two cpu clocks in a low frequency. For the sake of simplicity, we choose a common clock to specify the simulation time step in this PRISMSYS model example. This clock specifies the clock signal of cs2 of the ClockView defined in Chapter 5. Such a clock is a chronometric clock that ticks each millisecond.

It is specified in ccsl as: physClk_ms = idealClk discretizedBy 0.001 (6.23) where idealClk is a DenseClock that ticks each seconds (see Chapter 3).

The duration of the action execution (T1 and T2 ) in ApplicationView and the waiting time between the two action executions is synchronized with physClk_ms. In fact, we define the correspondence between physClk_ms and appCtrP hysClk_ms as: appCtrP hysClk_ms = physClk_ms (6.24)

By using these clocks, we can evaluate the clock cycles employed by T1 and T2 to be executed in cpu. Table 6.1 presents the clock cycles spend by T1 and T2 and the duration of the action execution by using physClk_ms and appCtrP hysClk_ms. We remark the clock cycles of both actions are exactly equal. Nevertheless, the time execution of T1 is twice T2. This variation is caused by the operation point configuration.

While T1 is executed at 180MHz, T2 is performed at 360MHz. Although the difference of time performance is notable, these operation points affect the power consumption.

We explain this power concern in Subsection 6.2.2.4.

Action Clock Cycles Time (ms)

T1 5400000 30 T2 5400000 15 The relationship among actF1, cs1ActF1 and clkOn are specified in ccsl as:

actF 1 = cs1ActF 1 (6.25) actF 1 = clkOn (6.26)
In the same way, the relationship between clkExeAction and cpuRun is defined in ccsl:

clkExeAction = cpuRun (6.27)
Once the action finishes, hwCtr sends a clkStopAction to clkCtr changing to Stop state of the cpu clockedElement. In consequence, we express this causality between clkStopAction and cpuStop as:

clkStopAction = cpuStop (6.28) 
Certain cycles of clocks later, an actF2 event is received. This event causes a cs1ActF2, which is specified as:

actF 2 = cs1ActF 2 (6.29)
The execution of the second action is the same as the first one, therefore clkExeAction, clkStopAction, cpuRun and cpuStop events are generated. Finally, clkCtr receives an actOff event from hwCtr. Hence, clkCtr commands to change the frequency to 180M Hz (cs1ActF1 ) and csw is closed (clkOff ). The ccsl specification of these control events are: 

actOf f = cs1ActF 1 (6.30) actOf f = clkOf f (6.31)

Power View

Once the evolution of time is defined in ClockView, we can use the occurrences of physClk_ms to evaluate associated equations with the active states. As we have done with ApplicationView, we define a chronometric clock in the execution semantics of controlSubView that coincides with physClk_ms. We name this new clock pwCtrP hysClk_ms. This clock is the step occurrence that arrives to clkStepCtr of pwCtr, which is transmitted to the peqv (see Figure 5.17) in order to evaluate the power consumption of the system. Figure 6.10 presents the control events sent from the PowerView controlSubView to its subViewElements (vs1, psw and cpu). This figure also depicts the interaction between PowerView and HardwareView. The interaction is analogous to the ClockView interaction (Figure 6.8). Although, in this case, the voltage values, the power switch actions and the cpu power abstraction states are controlled. Similarly to the other views, the relationship among control events are specified in ccsl as follows: Scilab solver is executed each time that pwCtrP hysClk_ms ticks. Therefore, the associated equations that characterize the active states are evaluated. We note in the first period (0-5ms) that the power consumed is 0W. This power value is due to pwSw is Off. In the second period (5ms-35ms), T1 is executed. The configured operation point is (180MHz, 1.1V) and the dynamic power is evaluated giving as result 87mW. This power consumption is kept constant during the execution of T1. In the third period (35ms-45ms), any action is executed, i.e., cpu is Free. However, cpu is on consuming static power during this period (Idle state in PowerView), whose result is 880µW . In the fourth period (45ms-60ms), T2 is executed. The operation point is also changed to (360MHz, 2.2V). As we have mentioned in Subsection 6.2.2.1, the time to execute T2 is shorter than T1, even though the clock cycles between T1 and T2 are equals.

actV 1 = vs1ActV 1 (6.
Nevertheless, T2 consumes more power than T1, such as it is illustrated in the Scilab simulation. Its power consumption is 0.697W. By using this simulation, we demonstrate that reducing the time performance, the power consumption rises. The next period is the repetition of the first four periods. 

Active

Thermal View

ThermalView only contains a subViewElement in the structuralSubView. Such an element is the cpu thermal abstraction. The behavior of this element owns a state that is characterized by the thermal equation (extracted from Figure 5.13):

dT dt = P C th + 1 R th C th (T -T env ) (6.39)
Where T is the cpu temperature, C th and R th are respectively the thermal capacitance and resistance of cpu, T env is the cpu environmental temperature and P is the cpu power consumption. In this equation, the parameters that change their value through time are P and T . Moreover, T depends on P to evaluate its value at a specific instant. Therefore, the temperature evolution of cpu relies on its power consumption evolution. Figure 6.11 presents the cpu temperature simulation. The temperature value is evaluated according to the active states of the other views and the power consumption evaluation. We note that the temperature value rises when the power consumption increases and it falls once the power consumption decreases. 

Active

.11: Thermal View simulation in TimeSquare.

PRISMSYS Power-Aware Model Analysis in Aceplorer

Non-functional properties of embedded systems are modeled and analyzed either by abstracting the execution of the elements that belong to a system, or by using dedicated tools. On one hand, the definition of the execution semantics of PRISMSYS states a sort of abstract analysis by representing the actions of the view elements by clocks. A different abstract analysis approach is proposed by Abdallah et al. [START_REF] Abdallah | Correct and energy-efficient design of socs: The h.264 encoder case study[END_REF]. They specify the execution of the elements of application and execution platform by logical and physical clocks, respectively. The analysis consists in exploring potential allocations between the application and various execution platforms, in order to achieve the functional requirements and the time deadline restriction; meanwhile reducing the system power consumption. This exploration is stated by the relation of logical (application)

and physical (execution platform) clocks. They analyze time as a non-functional property, but unfortunately it is not possible for them to quantify in a precise manner the impact of the time on other non-functional properties, such as power consumption and temperature. PRISMSYS execution semantics together with Scilab Solver could help to automate the cited exploration process, adding the quantifiable evaluation of the power consumption and temperature.

On the other hand, dedicated tools use concepts and languages commonly defined by domain experts to specify systems from their points of view. Nevertheless, these tools have to redefine the elements specified in other domains to build their own models. The redefinition produces elements redundancy among analysis tool models. For instance, Aceplorer [START_REF] Power | Aceplorer[END_REF], a power consumption analysis tool, represents the system from a power point of view redefining its elements already represented in other tools or languages. For instance, by using the Aceplorer modeling process, a memory, specified in a hardware architecture language such as VHDL [START_REF]IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-2008[END_REF] or SystemC [START_REF]IEEE Std 1666-2011[END_REF], is redefined in Aceplorer with power properties to evaluate its power consumption.

To avoid the redundancy between tools, the PRISMSYS power-aware model abstracts the elements that are defined in a domain to be used in another one. In the case of the memory example, it is represented as a SubViewElement in HardwareView. This view can specify the hardware architecture model implemented in SystemC. Such a memory is abstracted by a PoweredElement in PowerView defining its power properties. Taking these two views, an Aceplorer model can be generated.

Thanks to these element abstractions and the possibility to generate specialized models from the PRISMSYS power-aware model, we can extract the information needed by a specific analysis tool to evaluate a non-functional property of the system, but also to feed the PRISMSYS power-aware model with the result of specific analyses. For instance, the worst case execution time (WCET) of a task allocated on a CPU can be estimated by a WCET analysis tool and this estimation can be injected into the model in order to be used for the power consumption analysis.

The scenario employed to execute an Aceplorer model is the functional simulation output of the system. For instance, to analyze the power consumption of a system whose functional model is implemented in SystemC, we must transform the SystemC simulation output to an Aceplorer scenario. This transformation is manually recreated or the VCD file generated from the SystemC simulation can be imported by Aceplorer to generate the test scenario. However, to import this file, the architecture defined in SystemC must be the same architecture in Aceplorer.

In order to ease the transmission of the system model execution between tools, we propose to use the controlSubView behavior of the selected views to build the scenarios that are employed to execute the models in each tool. By Using these scenarios, we have the needed elements to analyze the non-functional properties using different tools.

In this section, we present a transformation overview to generate analysis tool models from the PRISMSYS power-aware model. This transformation allows to evaluate nonfunctional properties specified in our model by using various analysis tools. We detail this transformation for the study of the power consumption in Aceplorer. We also describes how we can generate a scenario from the controlSubView specifications to be used in Aceplorer.

Transformation Overview

We define the transformation from the PRISMSYS power-aware model to an analysis tool in two steps as illustrated on Figure 6.12. The first step transforms the uml 

Aceplorer Code Generation

Once the transformation between PRISMSYS power-aware model and Aceplorer model is done, we generate the analysis tool model in Python code, by using the Aceplorer library. This code is charged in Aceplorer and it is executed in order to create the analysis tool model on the Aceplorer environment. This model contains the structure, states, variables and equations that are needed to evaluate the system power consumption.

Test Scenario Generation

Aceplorer tool needs a scenario to evaluate the power consumption of the modeled system. An Aceplorer scenario is composed by a sequence of steps. An step defines the active state in each module of the model, during a period of time. For instance, a step could active the states: V1 in vs1, F1 in cs1 and Active in poweredElement cpu in the transformed PRISMSYS power-aware model. Additionally, this step is executed during 5ms.

To generate this scenario, we use the change of the subViewElement states during the simulation generated by TimeSquare [START_REF] Deantoni | Timesquare: treat your models with logical time[END_REF]. Moreover, we only extract the state changes of the subViewElements that affect the power consumption. In the PRISMSYS poweraware model, these elements are: cs1, vs1, clkSw, pwSw and the cpu poweredElement.

The top of Figure 6.14 presents the state changes of the mentioned subViewElements simulated in TimeSquare.

clkSw and pwSw are respectively merged to cs1 and vs1 in the Aceplorer model. Therefore, their state changes must also be joint. Firstly, we specify the clocks that represent the cs1 states in Aceplorer by using the following ccsl expressions: where cs1OffStart and cs1OffFinish represent the Off state, cs1OffFinish, cs1F1Start and cs1F1Finish express the F1 state, and cs1F2Start and cs1F2Finish define the F2 state in cs1. The 6.42 and 6.44 expressions could be read as cs1F1Start occurs either once clkOnStart ticks or when f1Start occurs removing the ticks that coincidence with f1Finish. In this way, we distinguish when cs1 is in Off state and when it is in F1.

Similarly, we specify the merge of states in vs1 : 

Conclusion

In this chapter, we have presented the simulation of the PRISMSYS power-aware model.

We have defined the interaction between controlSubViews of different views by using the We have also introduced another way to analyze the power consumption of the PRISM-SYS power-aware model by using the MDE transformation technique. We transform the PRISMSYS model to Aceplorer, which is a power consumption analysis tool. The VCD file generated by TimeSquare is employed to build the scenario to evaluate the power consumption in Aceplorer.

In the next chapter, we summarize the most important contributions of this thesis and we propose various perspective paths that could be a guide to continue this work. Chapter 7

Conclusion

In this thesis, we have demonstrated that the complexity of the system design can be managed by using a multi-view approach. Such an approach splits the architecture of a system in various specific domains where experts define the system from their points of view. The IEEE-1470 and IEEE-42010 standards, propose a general way to specify a system architecture. Nevertheless, the system architect is free to define the views and the relationships between them. Moreover, there is not a clear standard way to specify how the behavior of the system architecture and its execution model could be specified.

We have proposed a framework named PRISMSYS that provides the elements needed to describe the system architecture following a multi-view approach. The PRISMSYS concepts are inspired by the concepts defined in IEEE-42010. Nevertheless, PRISMSYS specifies in more details the definition of a view, its internal elements and the possible associations that exist between the various view elements of a system. Furthermore, PRISMSYS defines the way a multi-view model can be coherently executed. The structure of PRISMSYS follows a component approach, i.e., the system architecture is a modular design whose elements transfer information to each other through ports. PRISMSYS also provides a specific semantics to correspondence, which is the association between the system architecture elements according to IEEE-42010. The framework states a specific semantics to correspondence to represent the abstraction of the elements from one view to another (Abstraction correspondence), or to map an action on a Hardware Component by using the Allocation correspondence. PRISMSYS also specifies another kind of correspondence named sub-correspondence, which is the association between subViews (Equivalence and Characterization sub-correspondences).

PRISMSYS identifies that correspondence is not the only association between its concepts, there are also Abstraction, Equivalence and Characterization. But correspondence can also be a connection between views and subviews, like ControlConnector, DataConnector and ParameterConnector. These connections share a certain information that impacts the execution of the views and subViews. Since correspondences and subCorrespondeces are employed, each view or subViews can identify the structural and behavioral impact of their elements on other views or subViews, allowing the right syntactic (structural) and semantics (behavioral) coherence of the PRISMSYS model.

By using Model-Driven Engineering, the syntax of PRISMSYS is defined by metamodels, allowing the reuse of their concepts to build multiple models. The PRISMSYS syntax is accompanied by the specification of the execution semantics described in ccsl.

This semantics definition allows the simulation of the PRISMSYS model before being implemented in a lower-level description language, such as SystemC or VHDL. PRISM-SYS is represented in uml specifying a profile. The PRISMSYS profile uses as much as possible the concepts defined in SysML and marte.

Two kinds of execution behaviors are defined in PRISMSYS: a discrete event behavior, and a continuous time behavior. Both behaviors have to coordinate their execution in order to evaluate the non-functional properties defined in the system model. Thanks to ccsl, the coordination between these heterogeneous behaviors could be specified in a homogeneous environment. ccsl defines the logical and temporal relations to execute the model and do not deal with data manipulations. This latter aspect is addressed by Scilab. A specific connector Scilab Solver has been developed to run a co-simulation with TimeSquare and evaluate equations in Scilab.

PRISMSYS offers a framework to capture and unify the specification of a system. It can then be used by domain experts to transform part of the PRISMSYS model into a specific domain tool model. We have illustrated this aspect by transforming the PRISMSYS power-aware model to Aceplorer in order to analyze the system power consumption.

Future works

PRISMSYS and its case study (the PRISMSYS power-aware model) provide some perspectives to extend and to improve the work carried out in this thesis. We list the propositions we consider essential to the continuity of this work:

Employing PRISMSYS in other kind of systems: This thesis states a basic multi-view framework that formally allows to specify the system architecture and its execution. This framework can be extended according to the expert domain and the system to design. Therefore, PRISMSYS initiates the construction of a path that can be tailored to other domains. We illustrate the use of the PRISMSYS approach in a power-aware model with time-related information. However, this approach can be applied to different sorts of systems, such as control, construction and software systems.

Extending the subViewElement behavior: Experts use Finite State Machines and equations to specify the behavior of their domains. However, they also employ other kinds of behaviors, such as Petri nets and Synchronous Data Flow graphs.

To support these other behaviors, the subViewElement Behavior concept must be specialized to define both the syntax of the behavior and then the execution semantics in ccsl.

Enhancing the ThermalView specification and its impact on the other views: We have defined a simple thermal view to simulate the temperature property, which has a non-linear behavior. However, there are more concepts that belong to this view and the temperature evolution impacts the static power, and this is one of the features that has more effects in the power consumption for new technologies.

  Au niveau système un ensemble d'experts spécifient des propriétés fonctionnelles et non fonctionnelles en utilisant chacun leurs propres modèles théoriques, outils et environnements. Chacun essaye d'utiliser les formalismes les plus adéquats en fonction des propriétés à vérifier. Cependant, chacune des vues d'expertise pour un domaine s'appuie sur un socle commun et impacte directement ou indirectement les modèles décrits par les autres experts. Il est donc indispensable de maintenir une cohérence sémantique entre les différents points de vue et de pouvoir réconcilier et agréger chacun des points de vue avant les différentes phases d'analyse.
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  pour orchestrer la simulation discrète avec la partie continue. Pour illustrer le potentiel de PRISMSYS, nous avons développé un modèle d'un système dont la principale préoccupation est la consommation de puissance. Dans ce modèle, nous définissons les vues et les éléments qui décrivent et impactent la consommation de puissance d'un système. Ce modèle est simulé et les comportements discrets et continus sont présentés (e.g., le comportement de la machine d'états finis, et aussi l'évolution de la consommation de puissance et la température). Finalement, nous proposons une autre manière d'utiliser le modèle PRISMSYS. Nous spécifions une transformation du modèle PRISMSYS vers un autre modèle d'un outil de domaine spécifique. En prenant comme cas d'étude le modèle PRISMSYS dédié à la consommation de puissance, nous le transformons dans le format interne d'Aceplorer afin de simuler et analyser la consommation de puissance. Aceplorer [8] est un outil commercial qui modélise et simule le comportement de la consommation de puissance d'un système. Aceplorer a été utilisée dans le cadre du projet ANR-HeLP (référence ANR-09-SEGI-006). Le contenu de cette thèse est organisé en deux parties principales : La définition de la structure de PRISMSYS, et le développement du cas d'étude de PRISMSYS, un modèle du système dédié à la consommation de puissance. La première partie introduit les concepts principaux de la modélisation multi-vue et de l'hétérogénéité du comportement spécifié dans le modèle d'un système. En conséquence, cette partie est consacrée à la spécification de la structure de PRISMSYS. Cette partie est composée des chapitres 2 et 3. Le premier chapitre introduit l'état de l'art des préoccupations structurelles et comportementales afin de modéliser les systèmes. Nous introduisons les concepts de modélisation multi-vue identifiés par la spécification IEEE-42010. Finalement, Nous identifions une relation entre la modélisation multi-vue et la composition des modèles. Sur les préoccupations comportementales, nous introduisons la notion de Modèle de Calcul (MoC), les outils qui les implémentent, comme Ptolemy II [9] et ModHel'X [10], et nous discutons également le problème d'hétérogénéité parmi différents MoCs. Le chapitre 3 définit la structure de PRISMSYS, sa syntaxe et sa Chapter 1
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 21 Figure 2.1: Conceptual model for the system architecture context from [2].

Figure 2 . 2 :

 22 Figure 2.2: Multi-view modeling according to IEEE-42010.

Fig- ure 2

 2 .3 presents the conceptual model of architecture framework. An architecture framework owns viewpoints, and correspondence rules. Views and correspondences conform to viewpoints and correspondence rules, respectively. A viewpoint contains model kinds where models conform to them.
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 23 Figure 2.3: Architecture Framework concept model[START_REF]Systems and software engineering -architecture description[END_REF] 

Figure 2 . 4 :

 24 Figure 2.4: Abstraction levels in MDE.

  defines four main types of correspondences to classify the model element relationships. These correspondences are: operator-based, rule-based, model-based and delta representation-based.
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 26 Figure 2.6: Relationship between modeling approaches and specific domains.

Figure 2 . 7 :

 27 Figure 2.7: Petri Net meta-model and a Petri Net model example.

Figure 2 . 8 :

 28 Figure 2.8: Composition between Synchronous Data Flow and Finite State Machine in Ptolemy II.

  8 could be represented by two DSMLs: DSM L 1 that defines the first hierarchy level (A1, C1 and A2) and DSM L 2 that specifies the internal behavior of C1. Both DSMLs have a syntactic correspondence that associates the DSM L 1 element C1 with DSM L 2 . This correspondence represents that the internal behavior of C1 is expressed by DSM L 2 .DSM L 1 and DSM L 2 have also a behavioral correspondence where the synchronization between SDF and FSM execution is defined. Following the Ptolemy II and ModHel'X approach, we can represent the example of Figure2.8 by using a single DSML definition (actor-based or block-based representation). In these tools, the behavioral correspondence is defined to a specific element of the DSML, i.e., the DSML can have a different meaning according to the MoC assigned to the model element. We consider that it is more clear to have a DSML with a single meaning, e.g., a Petri Net structure whose behavior follows the Petri Net rules.

Figure 3

 3 .1 depicts the PRISMSYS framework meta-model. The root element is ArchitectureDescription. IEEE-42010 defines architecture description as the base concept to specify the architecture of a system through views. To re-use an architecture description in various system designs, IEEE-42010 defines the architecture framework concept that governs the construction of architecture descriptions. IEEE-42010 has needed the definition of these two separated concepts in order to describe the abstraction levels in its multi-view system framework. However, these two concepts are not needed if we use MDE. MDE establishes the needed abstraction levels to specify the vocabulary to express a specific domain (i.e., a meta-model), and the way to use it (i.e., a model conforming to its metamodel). As a consequence, if we define ArchitectureDescription as a meta-class in the PRISMSYS framework meta-model, it represents the architecture framework concept defined in IEEE-42010. Similar reasoning can be made with view-viewpoints, correspondence-correspondence rules and model-model kind. We decide to employ the IEEE-42010 terms that define an architecture description to specify the concepts of the PRISMSYS framework meta-model, i.e., view, model and correspondence.
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 31 Figure 3.1: PRISMSYS Framework meta-model.

Figure 3 .

 3 2 depicts the relationship between the Abstraction correspondence andViewElement. To express this relationship, we define two abstract concepts: Associa-tionElement and AssociationEnd. Such abstract concepts are associated by an oriented relationship (source and target). As Abstraction inherits from AssociationElement and ViewElement from AssociationEnd, therefore Abstraction links two viewElements in an oriented way.

Figure 3 . 2 :

 32 Figure 3.2: Relationship between Abstraction correspondence and viewElement.

  to calculate the output flow of the tank. Level is expressed in two different subViews and the consistency between these subViews is defined by the Equivalence subCorrespondence. Characterization is the association between the behavior of a subViewElement and an equation defined in the EquationalView. A change in the subViewElement behavior causes the change of the active equation designated by the Characterization relationship. For instance, the subViewElement behavior is described by a finite state machine (FSM). Each state is associated by a Characterization subCorrespondence with a specific equation in the EquationalSubView. Thus, when a state is active, the associated equation is activated. These two subCorrespondence are explained in details in Subsection 3.2.3.

Figure 3 .

 3 3 depicts a generic component meta-model and its relationship with the PRISMSYS framework concepts. View, SubView and SubViewElement inherit from Component, i.e., they contain ports, connectors and owned components. The owned components of a View are subViews, and the internal components of subViews are subViewElements. SubViewElements can contain other subViewElements.
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 3334 Figure 3.3: Component meta-model and its relationship with View, SubView, Sub-ViewElement and ConnectorCorrespondence.

Figure 3 .

 3 Figure 3.5 depicts an example of two views that define their structuralSubViews. Execution Platform View represents the hardware architecture of a system. Thermal View describes the thermal representation of the system. Each view has a structuralSubView

Figure 3 . 5 :

 35 Figure 3.5: Example of structuralSubViews including the abstraction correspondence.

  SubViewElement is the main concept of a structuralSubView. Such a concept has a specific role in the structural description of the concerning domain. SubViewElement defines the structure and the behavior of the StructuralSubView internal elements. Figure 3.6 presents the SubViewElement meta-model where the structure (on the right-hand side) and the behavior (on the left-hand side) of this concept are defined. SubViewElement follows the component approach, therefore we bring the component meta-model depicted in Figure 3.3 to define the SubViewElement structure. A subViewElement is a Component that contains connectors, controlPorts, propertyPorts, properties and possibly nested subViewElements (ownedComponents). Property represents an internal feature of ViewElement, e.g., cost or size. ControlPort is sensitive to Event occurrences from the controlSubView that change the subViewElement behavior accordingly. Every subViewElement able to change its internal behavior must contain at least one control-Port. Note that Property and State are respectively associated with Parameter and Equation, which are EquationalSubView concepts. The association is defined through Equivalence and Characterization subCorrespondences. We explain in details their use in Subsection 3.2.3.
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 36 Figure 3.6: SubViewElement meta-model.

. 6 ,

 6 State is associated with Equation through the Characterization subCorrespondence. This subCorrespondence means that when a state in a viewElement is active, the associated equation is activated, i.e., the state is characterized by the associated equation. A state also represents the value change of a property defined in the subViewElement, which is specified by the associated equation. The Equation concept is part of the EquationalSubView definition detailed in Section 3.2.3. To change from one state to another, the corresponding transition is fired when the associated Event (see association Transition-Event in Figure 3.6) occurs on the ViewElement controlPort (see association ControlPort-Event in Figure 3.6). The execution semantics of the state machine is detailed in Section 3.4.1.

  EquationalSubView meta-model is independent of the Structural-SubView and the ControlSubView meta-model, because the nature of the Equational-SubView elements is different from the elements of the StructuralSubView and Control-SubView. Such elements represent continuous behaviors through equations, while the StructuralSubView and the ControlSubView elements specify discrete behaviors. However, they share Component to define their concepts and the sub-correspondences with the other subViews.

Figure 3 .

 3 Figure 3.7 presents the EquationalSubView meta-model. This meta-model is inspired on the SysML Parametric Diagram. An equationalSubView is a subView, i.e., it is defined as a component. An equationalSubView contains parameters and a clockPort (Port
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 37 Figure 3.7: EquationalSubView meta-model.

Figure 3 .

 3 Figure 3.8 presents an example of two views where their equationalSubViews are defined. In the figure, Force View describes its equationalSubView with two equationalModels: one defines a constant mass (m = 1 kg) and the other one the force (F = a • m). Movement
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 38 Figure 3.8: EquationalSubView Example

Figure 3 . 9 :

 39 Figure 3.9: Example of the characterization and equivalence correspondences use.

Figure 3 .

 3 [START_REF] Hardebolle | ModHel'X: A component-oriented approach to multi-formalism modeling[END_REF] depicts the meta-model of controller. A controller is a component that owns ports (controlPorts and propertyPorts) and connectors (controlConnectors). These concepts are employed to send control events to subViewElements and to other views. Additionally, a controller can receive control events from other controlSubViews which may belong to different views, in order to synchronize the view execution. A controller can also receive property values from a subViewElement of its view. This value can be employed to take decisions in the controller.
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 310 Figure 3.10: Controller meta-model

  The control event allows to change the active state of the subViewElement according to the changes of other views. As soon as a new state is active, one or more property values could change due to the transition of the associated equation. In consequence, the new values impact the controlled property value.

Figure 3 . 11 :

 311 Figure 3.11: Example of the use of ControlSubView to control the water level of a tank.

  the necessary eloquence to represent a long range of domains. The main promoter of the later branch is the Object Management Group (OMG). The OMG defines the uml specification and has added other specific domains that use uml concepts as basis to represent their domain languages through uml profiles. Examples of these domains are real-time systems with marte[START_REF] Omg | UML profile for MARTE[END_REF], systems engineering with SysML[START_REF] Omg | Systems Modeling Language (SysML). Object Management Group[END_REF], or telecommunication with TelcoML[START_REF] Omg | UML Profile for Advanced and Integrated Telecommunication Services (Tel-coML)[END_REF].
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 312 Figure 3.12: Simplified meta-model of EncapsulatedClassifier.
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 313 Figure 3.13: State stereotype.
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 314 Figure 3.14: Abstraction of CPU in a layout component view.
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 315 Figure 3.15: Simplified Constraint Block meta-model from the SysML specification.

Figure 3 .Figure 3 . 16 :

 3316 Figure 3.16: Representation of an active state by clocks
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 317 Figure 3.17: Representation of the clock ticks leading to a change between two states caused by a guardEvent.

Figure 3 . 18 :

 318 Figure 3.18: Representation of the clock ticks leading to a change between two states caused by a triggerEvent.

Figure 3 .Figure 3 . 19 :

 3319 Figure 3.19 presents an example of a PRISMSYS model where the temperature evolution of a CPU is specified.

  clock signal from ClockSource by the following ccsl expression: clkOut = idealClk discretizedBy 0.001 (3.11) where 0.001 is the period defined by the equation f = 1kHz. This generated clock signal is used to evaluate the active thermal equation. To share the clkOut signal, we send the generated clock signal to controlSubView of Time Performance View through clkSrc port. The connection between StructuralSubView and ControlSubView is a Data-Connector subCorrespondence. The controlSubView retransmits the clkSrc clock signal to the Thermal View through the connection between the clkTpv and clkRef ports. This connection is a DataConnector Correspondence. Afterwards, clkRef port is connected to clkIn, which is an input port of Thermal View controlSubView. As a consequence, controlSubView can generate the temperature scenario synchronizing the e_heat and e_normal occurrences with the clock signal received on clkIn. Additionally, the received clock signal is shared with equationalSubView to mark the instants when the active equation of the equationalModel is evaluated. The received clock signal is sent through the step port to equationalSubView. step is associated with t by using the binding connector. This association specifies that the step clock evolution is equal to the t progression. Consequently, for each tick of the step clock, the active equation is evaluated. By using this example, we can specify the semantics of DataConnector correspondence and subCorrespondence in the specific case of the transmission of a clock signal. Additionally, we define the coordination between the active states (i.e., the active equation) and the equation evaluation. We can specify in ccsl the relationship between clkOut, clkSrc, clkTpv, clkRef, clkIn and step as: ccsl relations could be read as the instants generated by clkOut, clkSrc, clkTpv, clkRef, clkIn and step are coincidental, in other words, they tick at the same time instant. Therefore, the execution semantics of DataConnector correspondence and subCorrespondence is specified by an equality ccsl clock relation, in the case that the transmitted data is a clock signal.

Figure 3 .Figure 3 . 20 :

 3320 Figure 3.20: Temperature evolution through time according a predefined execution scenario.
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 41 Figure 4.1: CMOS inverter circuit.

Figure 4 . 2 ,

 42 depicts a NMOS transistor with its main leakage currents. This transistor contains a p-type substrate, i.e., this substrate contains excess of charge carries or "holes" and a n-type channel, i.e., the channel transmits free-electrons from Drain (D) to Source (S) terminals. The Gate (G) terminal controls the electrons flow between Drain and Source according to the voltage applied. Finally, the Body terminal (B) is connected to the p-type substrate. Generally, Body is connected to ground in a NMOS transistor.
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 42 Figure 4.2: Leakage currents of a NMOS transistor.

Figure 4 . 3 :

 43 Figure 4.3: Example of a clock gating implementation.

Figure 4 .

 4 3 presents a D-type flip-flop where the clock input is controlled by an AND gate. Such a gate allows passing the clock signal only when EN input has a logic 1.

Figure 4 .

 4 4 presents a power gating implementation. The transistor is fixed between V dd and the component to control the current flow. The switch can also be located from the component to ground or both.

Figure 4 . 4 :

 44 Figure 4.4: Example of a power gating implementation.

Figure 4 . 5 :

 45 Figure 4.5: Example of a retention register..

Figure 4 .

 4 5 depicts the retention register structure. This register contain two internal registers: a main register that is identified by a Flip-flop and a shadow register called Retention Cell. The main register is supplied by VDD_sw. In contrast, the shadow register is supplied by VDD.VDD_sw is the gated power supply. D, Clk, Reset and Q are connected to the main register. Save and Restore are bound to Retention Cell. The main register operation is made by the main internal register. Before the power gated component is turned off, an event is sent to Save in order to record the information of the main register in Retention Cell. Once the register information is saved, the power gated component is turned off and VDD_sw does not supply current to the internal main register. Nevertheless, Retention Cell is on, because VDD is not cut off. Once the gated component is turned on, an event is sent to Restore to return the saved information in the internal main register.

Figure 5 .

 5 1 depicts the Hard-wareView meta-model. In this figure, the white meta-classes describe the HardwareView concepts. HardwareView inherits from View and it contains a structuralSubView and a controlSubView. HardwareView does not include an equationalSubView because the non-functional properties are described in other views. StructuralSubView defines the concepts and relationships needed to describe the hardware architecture. SubViewElement is specialized by HwComponent, which represents any hardware component defined in the platform execution. For instance, a CPU can be a HwComponent whose functional modes (Free and Busy) are defined. The CPU modes are expressed by the states of a state machine. ControlSubView commands the states of the hwComponents synchronized with the execution of the other views. For instance, if a task, which is described in another view, e.g., in an application view, is mapped to a CPU, the controlSubView of HardwareView must be notified when the task is executed. Once the controlSubView receives the notification, it sends a control event to the CPU to change its internal mode, e.g., to Busy state. The communication between hwComponents is represented by the connection of hwPorts. A hwPort is a specialization of PropertyPort. HwPort transmits data between hwComponents through wires, a Connector specialization.

Figure 5 . 1 :

 51 Figure 5.1: Hardware View meta-model.

Figure 5 .

 5 Figure 5.2 presents the HardwareView of a PRISMSYS power-aware model. This view has a structuralSubView and a controlSubView. StructuralSubView includes three parts that are CPU, Memory and Bus. We identify each part with the corresponding marte stereotype. For instance, CPU, which is a HwComponent, is stereotyped by hwProcessor.

Figure 5 . 2 :

 52 Figure 5.2: Hardware View of the PRISMSYS power-aware model.

Figure 5 .

 5 3 depicts the ApplicationView meta-model. ApplicationView is a view that contains two subViews: a controlSubView and a structuralSubView. The subViewElements of StructuralSubView are specialized by Actions. We define that an action represents an atomic element of the application that cannot be refined. PropertyPort is specialized in DataPort, which means that the information transmitted between actions is data. Such ports are bond by dependency-Connetors.
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 53 Figure 5.3: Application View Meta-model.

Figure 5 . 4 :

 54 Figure 5.4: Application View of the PRISMSYS power-aware model.

Figure 5 .

 5 Figure 5.5 depicts the specialization of the PRISMSYS framework concepts to define the power domain concepts. PowerView contains the three subViews previously defined in the PRISMSYS framework: a structuralSubView, an equationalSubView and a controlSubView.
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 55 Figure 5.5: Power View Meta-model.

Figure 5 . 6 :

 56 Figure 5.6: Power View of the PRISMSYS power-aware model without including its equationalSubView.

Figure 5 .

 5 Figure 5.6 represents part of the PowerView of a PRISMSYS power-aware model in uml. The structuralSubView defines three parts that represent power subViewElements: vs1, pd1 and cpu. vs1 and pd1 are respectively instances of VoltageSource1 and PowerDo-main1 components. These components are stereotyped by VoltageSource and Power-Domain extending the PRISMSYS SubViewElement stereotype. PowerDomain1 owns a PowerSwitch instance (psw) to control the current flow from vs1 to cpu. In contrast to VoltageSource and PowerDomain, PowerSwitch is a component predefined in a uml PRISMSYS library that is imported to be reused in this model. This library also includes the NFP types that are not included in the marte library, like voltage, current and temperature. Cpu is a poweredElement whose stereotype also extends the SubViewElement stereotype. SupplyPorts are represented by marte flowPorts in the

Figure 5 . 7 :

 57 Figure 5.7: EquationalSubView of PowerView.

Figure 5 .

 5 Figure 5.7 depicts an example of this representation to evaluate power consumption of cpu. We employ the SysML parametric diagram to represent this subView. In this figure, there are five equationalModels defined by constraintBlocks: voltageModel, switchModel, capModel, currentModel and powerModel. Each equationalModel defines

ClockView

  specifies the elements that provide and control the clock signals. Such clock signals activate the HardwareView elements and give temporal properties to the actions executed in these elements. Likewise PowerView, we specialize the PRISMSYS framework concepts to define the ClockView elements. Figure 5.8 presents the meta-model of ClockView. ClockView has the three identified subViews of the PRISMSYS framework. Nevertheless, we only specify the subView elements needed to evaluate power consumption. The structuralSubView contains equivalent concepts to PowerView struc-turalSubView, but the nature of the non-functional properties specified and controlled is different. For instance, ClockPort and PowerPort are concepts derived from Propery-Port. Whereas PowerPort represents a power nature property, ClockPort expresses a timing nature, i.e., the non-functional property transmitted by this port is a clock signal. Another example is ClockSource that is a clock signal generator. The ClockSource states identify the frequency of the clock signal transmitted by ClockPort instead of a voltage value change such as VoltageSource performs. ClockSwitch and ClockedElement is the ClockView representation of PowerSwitch and PoweredElement, respectively. However, ClockSwitch controls the clock signal transmission from a ClockSource to a ClockedElement. ClockedElement is the abstract time performance representation of a hwComponent and defines the timing properties of the abstracted hwComponent.
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 58 Figure 5.8: Clock View Meta-model.

Figure 5 . 9 :

 59 Figure 5.9: Clock View of the PRISMSYS power-aware model without including its equationalSubView.

Figure 5 .Figure 5 . 10 :

 5510 Figure 5.10: Equational Sub-view of Clock View.

Figure 5 .

 5 11 presents the thermal view meta-model. Similarly to PowerView and ClockView, ThermalView inherits from View. The ThermalView structuralSubView owns two types of subViewElements: ThermalElement and HeatSink.

  is the specialization of Connector in ThermalView. ThemperaturePort inherits from PropertyPort to represent the temperature nature transmitted between ThermalElement and HeatSink.

Figure 5 . 11 :

 511 Figure 5.11: Thermal view Meta-Model.

Figure 5 . 12 :

 512 Figure 5.12: Thermal view of the PRISMSYS power-aware model.

Figure 5 .

 5 13 depicts the equationalSubView of the ThermalView. In this figure, TempModel defines the temperature evolution through time. This equationalModel owns a first-order differential equation whose parameters are thermal properties of the hardware component (cTh and rTh), temp_env is a constant temperature, p is evaluated in powerView and imported through ParameterConnectors (pv.ps.cpu.power) and t is generated from Con-trolView, transmitted through DataConnectors to the controlSubView of ThermalView (thv.thCtr.clkIn).

Figure 5 . 13 :

 513 Figure 5.13: Equational Sub-View of Thermal View.

Figure 5 .

 5 [START_REF] Giese | The Open Group Architecture Framework (TOGAF)[END_REF] presents an example of the abstraction use. cpu, which is a hwElement defined in HardwareView is abstracted by the cpu poweredElement. In this example, the cpu power representation specify the properties and behavior associated with PowerView. Similar correspondence use is defined for clockedElement and thermalElement.

Figure 5 . 14 :

 514 Figure 5.14: Example of the Abstraction and ControlConnector correspondences between PowerView and HardwareView.

Figure 5 .

 5 Figure 5.15 depicts an example of allocation representation in uml between Application-View and HardwareView. In ApplicationView, t1 and t2 are allocated to cpu, i.e., the

Figure 5 . 15 :

 515 Figure 5.15: Example of Allocation correspondence between ApplicationView and HardwareView.

Figure 5 .

 5 [START_REF] Sowa | Extending and formalizing the framework for information systems architecture[END_REF] presents the use of characterization and equivalence subCorrespondence in PowerView. Each state of the subViewElements are associated with one or more equations. For instance, the idle state is associated with the static equation p = v * Ileak. This state is also associated with Ileak = (8, mA) in order to activate the static current employed in the static equation. The equivalence subCorrespondence is expressed by a parameter that import a property from a subViewElement by using the SysML path name dot notion, such as pv.ps.vs1.vout and pv.ps.pd1.psw.vin parameters. The binding among pv.ps.vs1.vout, pv.ps.pd1.psw.vin, v and vin expresses the equivalent subCorrespondence between the parameters defined in equationalSubView and properties of subViewElements.

Figure 5 . 16 :

 516 Figure 5.16: Example of Characterization sub-correspondence in PowerView.

Figure 5 . 17 :

 517 Figure 5.17: PRISMSYS Power-Aware Model Overview.
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Figure 6 . 1 :

 61 Figure 6.1: Overview of the PRISMSYS framework co-simulation implementation.

Figure 6 .

 6 Figure 6.1 presents an overview of this implementation. TimeSquare is a module application based on the Eclipse plug-in approach. In consequence, we implement Scilab Solver as an Eclipse Plug-in to connect the TimeSquare solver module with the evaluation of the PRISMSYS model equations. From the ccsl specification, Scilab Solver extracts the clocks that are associated with entering states in the PRISMSYS Model.Next, Scilab Solver extracts the equations that characterize the states from the PRISM-SYS Model. In the TimeSquare solver, once an event occurs in some of the entering

Figure 6 . 2 :

 62 Figure 6.2: Sequence diagram of the PRISMSYS model Simulation.

Figure 6 .

 6 Figure 6.2 depicts a sequence diagram that summarizes the PRISMSYS model execution. The Solver lifeline represents the Scilab Solver. Once the simulation starts, Scilab Solver extracts the clocks that represent the entering uml states associated in the ccsl specification. The uml states are filtered by their stereotype in the uml model, i.e., having the clocks associated with uml states, Scilab Solver only searches the states stereotyped as PRISMSYSState. In the uml model, Scilab Solver also identifies and extracts the equations associated with the stereotyped states and the initial values of the equation parameters. The step clock is also extracted from the ccsl specification.

  This clock is identified by the clockPort that are bound to the t parameters in equation-alSubViews.Once the TimeSquare simulation starts, Scilab Solver observes the extracted clocks.When an event occurs in some of these entering state clocks, Scilab Solver changes the equation associated with the active state. If the step clock ticks, the active equations are evaluated in Scilab with the initial parameter values. The result of the evaluation is marked in a Scilab plot window. After the equation evaluation, the new parameter values are gotten by Scilab Solver and it updates the initial parameter values. This execution continues up to the last step occurrence in the TimeSquare simulation.

Figure 6 . 3 :

 63 Figure 6.3: Execution of ApplicationView and its interaction with HardwareView.

Figure 6 .

 6 Figure 6.3 presents a sequence diagram that specifies the way as the T1 and T2 actions are executed in ApplicationView. This diagram depicts the control events sent to the other views in order to synchronize their execution regarding the ApplicationView execution. The ControlSubView of ApplicationView (appCtr) sends an exeT1 event to t1 in order to change the t1 state from Stop to Run. This event is sent 5ms after starting the model simulation. AppCtr also sends an control event (exeAction) to announce to HardwareView that an action is being executed in ApplicationView. HardwareView coordinates the execution of ClockView and PowerView according to the control events received from ApplicationView. ThermalView does not receive any event from the other views. This view only evaluates the cpu temperature evolution depending on the power dissipated.

stopAction = stopT 2 ( 6 . 11 )Figure 6 . 4

 261164 Figure 6.4 depicts the simulation of the ApplicationView specified in ccsl by using TimeSquare. In this figure, we presents the state machine behavior reacting to the control events from controlSubView. Each action state is represented by a start and finish event, e.g., t1StopStat and t1StopFinish. At the begin of the simulation, the T1 and T2 are in Stop state. Once the controlSubView commands to execute an action, the states of T1 and/or T2 change. In this simulation, the sequence T1, T2 and T1 is executed. The relationship between events are depicted by blue arrows (precedence) and red lines (coincidence).

Figure 6 . 4 :

 64 Figure 6.4: ApplicationView simulation in TimeSquare.

Figure 6 .Figure 6 . 5 :

 665 Figure 6.5 presents the sequence diagram of the interaction among HardwareView, Ap-plicationView, ClockView and PowerView from the HardwareView point of view. At the beginning of the execution sequence, hwCtr, which is the controlSubView of Hardware-View, receives two events: cpuOp1 and exeAction. The former commands to hwCtr to configure Operation Point 1. Usually, the cpu manufacturers give the possible operation points where their cpus could works. Therefore, in this example, hwCtr sends an actV1 event to PowerView and an actF1 event to ClockView to configure the operation point. These events active V1 and F1 states in the corresponding views, if they are not already in these states. ExeAction causes that hwCtr changes the cpu state to Busy, i.e., cpu is executing an action, and it sends pwExeAction and clkExeAction to PowerView and ClockView, respectively, to change the abstracted cpu states. Thanks to the allocation correspondence, HardwareView can know which action (T1 or T2 ) is in execution according to the action active state.

. 22 )Figure 6 .

 226 Figure 6.6 depicts the simulation of the HardwareView controlSubView and the interaction with the other views. The figure presents the behavior of the cpu state machine according to the received control events. The cpu states are represented by busy and free activity periods in the top of the figure to express the state changes. Additionally, the simulation represents the relationship between control events of ApplicationView, HardwareView, PowerView and ClockView.

Figure 6 . 6 :

 66 Figure 6.6: HardwareView simulation in TimeSquare.

Figure 6 . 7 :

 67 Figure 6.7: Execution of the ClockView controlSubView and its interaction with its internal subViewElements and with HardwareView.

Figure 6 .

 6 Figure 6.7 depicts the internal interactions into ClockView and the communication with HardwareView. In ClockView, clkCtr, which is the controlSubView, receives an actF1 event from HardwareView. Thus, clkCtr sends a cs1ActF1 to cs1 to change the frequency state to F1 (180Mhz, according to the characterization subCorrespondnece with equationalSubView). Additionally, clkCtr sends a clkOn to csw in order to allow passing the clock signal generated by cs1 to cpu. clkCtl also receives a clkExeAction to change

Figure 6 .Figure 6 . 8 :

 668 Figure 6.8 depicts the ClockView simulation. In this view, there are three subViewElements (cs1, clkSw and clkEleCPU ) whose behavior is represented by state machines. The execution of these subViewElements is coordinated according to the control events sent by the controlSubView. In the top of the figure, we represents the change of states

  PowerView is depicted in Figure6.10. This simulation is split in three parts: The state change representation in PowerView and ClockView (top), the discrete simulation executed in TimeSquare (middle) and the continuous simulation evaluated in Scilab (Bottom) by employing the connector Scilab Solver. We remark that each time that pwEleCPU, which is the cpu power abstraction, is in the Active state, the equation that characterizes it is the dynamic power equation (P = Cf v 2 ). Therefore, according to the configured operation point ((180MHz, 1.1V) or (360MHz, 2.2V)), the dynamic power is evaluated. Once pwEleCPU is in the Idle state, the static power equation is evaluated (P leak = I leak * V ). In this simulation, the static power is a constant value because the voltage value and the leakage current always have the same values (v = 1.1V and I leak = 8mA).

Figure 6 . 9 :

 69 Figure 6.9: Execution of the HardwareView controlSubView and its interaction with ApplicationView, PowerView and ClockView.

Figure 6 . 10 :

 610 Figure 6.10: Power View simulation in TimeSquare.

  PRISMSYS power-aware model to a PRISMSYS power-aware domain model that we element whose specification follows the component approach, i.e., Module is a structural element that contains interfaces (ports), properties (attributes) and a behavior definition represented by states. Link connects Input to Output interfaces to bind the shared data between Modules. Type is a type definition to specify a value and a unit of typedElements defined in Modules. Property can be Static or VariableElement. Static is a typed constant, such as number of gates and component load capacitance and VariableElement is a typed variable such as voltage (VoltageVariable), current (CurrentConsumption) and frequency (Variable). State contains variableEquationElements, comprising equation definitions associated with parameters. Parameter is the unknown element in the equation definition and it can be a property or an interface. VariableEquationElement is specialized in three equation types: CurrentConsumptionEquation, VoltageVariableEquation and VariableEquation. CurrentConsumptionEquation specifies the current consumed by a module. CurrentConsumptionEquation is associated with a currentConsumption to express that this equation defines the module property. VoltageVariableEquation contains voltageStates where a voltage value is specified. VoltageVariableEquation is connected to VoltageVariable, which represents that each time a voltage state changes; the voltage value assigned to a voltageVariable is changed. VariableEquation is employed to express property equations that are not current or voltage, such as frequency. VariableEquation is connected to Variable.

Figure 6 . 13 :

 613 Figure 6.13: Simplified Aceplorer meta-model.
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Figure 6 .

 6 Figure 6.14 presents the scenario simulated in TimeSquare. Such a scenario is used to evaluate the power consumption in Aceplorer. In the the figure, first, we depict the ClockView and PowerView states that we use to define the Aceplorer scenario. Next, these states are merged and their ccsl specification is simulated in TimeSquare. This tool generates a VCD file that is transformed to a VCD file that follows the Aceplorer model specification. The VCD file is imported by Aceplorer and the tool generates a scenario to execute its model. Once completed the scenario and the model in Aceplorer, the power consumption of each system component can be analyzed. We depict the power consumption of the cpu evaluated in Aceplorer (Bottom).

Figure 6 . 14 :

 614 Figure 6.14: Control View Scenario generated by TimeSquare (above) and the power consumption response in Aceplorer (below).

uml

  sequence diagram. The semantics of this diagram has been specified by clocks and relations in ccsl. By using the semantics defined in Chapter 3, we have specified the subViewElement behavior. We have simulated the scenario defined and coordinated by the controlSubView to change the subViewElement states in TimeSquare. We have developed and employed Scilab Solver to evaluate the power and thermal equations according to the TimeSquare simulation. Scilab Solver follows the execution semantics defourfined in Chapter 3. Scilab Solver complements the equation evaluation that is not supported by TimeSquare, interpreting the TimeSquare execution to coordinate the Scilab evaluation of the equations. We have presented the results of these simulations in Scilab.

Chapitre 7 Conclusion(

 7 Version en Français) Dans cette thèse, nous avons montré que la complexité de la conception d'un système peut être gérée en utilisant une approche multi-vue. Une telle approche sépare l'architecture d'un système en différents domaines spécifiques où chaque expert définit le système selon son point de vue. Le standard IEEE-42010, propose une façon générale de spécifier l'architecture d'un système. Cependant, l'architecte du système est libre de définir les vues et les relations parmi eux. En plus, il n'y a pas une manière clairement définie pour spécifier le comportement de l'architecture du système ni son modèle d'exécution. Nous avons proposé un environnement nommé PRISMSYS qui fournit les éléments nécessaires pour décrire l'architecture d'un système en suivant une approche multi-vue. Les concepts de PRISMSYS sont inspirés par les concepts définis en l'IEEE-42010. Cependant, PRISMSYS spécifie plus en détails la définition d'une vue, ses éléments internes et les associations possibles qui existent entre les différents éléments des vues d'un système. De plus, PRISMSYS spécifie la manière dont un modèle multi-vue peut être exécuté de façon cohérente. La structure de PRISMSYS suit une approche à composants. PRISMSYS définit une vue en trois types de domaines spécifiques, dénommés sous-vues : contrôle, structure et équation. Chacune de ces sous-vues a un rôle spécifique dans la définition d'une vue. La sous-vue structurelle définit la structure de la vue, la sous-vue de contrôle commande les actions des éléments internes de la sous-vue structurelle, et la sous-vue équationnelle caractérise les propriétés non fonctionnelles établies dans une vue à travers des équations. PRISMSYS fournit aussi une sémantique spécifique au concept correspondance, qui est l'association parmi les éléments de l'architecture du système en accord avec le standard IEEE-42010. La sémantique de correspondance est utilisée pour représenter l'abstraction des éléments d'une vue par rapport aux autres éléments d'autres vues (la correspondance d'Abstraction), ou pour allouer une action sur un composant hardware (la correspondance d'Allocation). PRISMSYS spécifie aussi un autre type de correspondance dénommée sous-correspondance, qui est l'association entre les sous-vues (Celle-ci sont les sous-correspondances d'Équivalence et de Caractérisation). PRISMSYS considère la correspondance définie par l'IEEE-42010 comme une simple association entre éléments de différentes vues. Deux associations spécifiques sont proposées : l'Équivalence et la Caractérisation. Entre une vue et une sous-vue, d'autres types de correspondances sont proposées : les connecteurs de contrôle, de données et de paramètres. Ces connecteurs partagent des informations qui impactent l'exécution des vues ou sous-vues. Ces correspondances assurent la cohérence structurelle et sémantique entre les vues et leurs sous-vues. En utilisant l'Ingénierie Dirigée par les Modèles, la syntaxe de PRISMSYS est définie par des méta-modèles. La sémantique d'exécution des modèles PRISMSYS est décrite dans le language ccsl. Cette définition sémantique permet la simulation du modèle PRISMSYS avant l'implantation dans un langage de description de plus bas niveau, comme SystemC ou VHDL. PRISMSYS est représenté en uml en spécifiant un profil. Le profil de PRISMSYS utilise autant que possible les concepts définis dans les profils OMG SysML et marte. Deux types de comportements d'exécution sont définis en PRISMSYS : l'événement discret et le temps continu. Les deux comportements doivent coordonner leurs exécutions afin d'évaluer les propriétés non fonctionnelles définies dans le modèle du système. Grâce à ccsl, la coordination entre ces comportements hétérogènes pourrait être spécifiée dans un environnent homogène. ccsl définit les relations logiques et temporelles pour exécuter le modèle et ne pas s'occuper de la manipulation des données. Cette manipulation est contrôlée par Scilab. Scilab Solver est un connecteur spécifique qui a été développé afin de gérer la co-simulation entre TimeSquare et l'évaluation des équations en Scilab. PRISMSYS offre une structure pour capturer et unifier la spécification d'un système. Celui ci peut alors être utilisé par les experts des domaines pour transformer une partie du modèle PRISMSYS vers un modèle d'un outil de domaine spécifique. Nous avons illustré cet aspect en transformant le modèle PRISMSYS dédié à la consommation de puissance vers le format interne de Aceplorer afin d'analyser la consommation de puissance. 7.1. Perspectives PRISMSYS et son cas d'étude (le modèle PRISMSYS dédié à la consommation de puissance) fournissent quelques perspectives pour élargir et améliorer le travail développé dans cette thèse. Nous listons les propositions que nous considérons comme essentielles pour la continuité de ce travail. Employer PRISMSYS dans un autre type de systèmes : Cette thèse définit une structure pour la modélisation multi-vue qui permet de spécifier l'architecture du système et son exécution. PRISMSYS peut être étendu en cohérence avec les experts des domaines et le système à concevoir. En conséquence, PRISMSYS initialise la construction d'un chemin qui peut être adapté à des autres domaines. Nous illustrons l'utilisation de l'approche PRISMSYS dans la modélisation de la consommation de puissance avec l'inclusion des informations de temps. Cependant, cet approche peut être appliquée pour plusieurs types de systèmes, tel que l'automatique, la construction et les systèmes de software. Étendre le comportement du concept subViewElement : Les experts utilisent les machines à états fini et les équations afin de spécifier le comportement de chaque domaine. Cependant, ils/elles emploient aussi d'autres types de modèles, comme les réseaux de Petri et les graphes flots de données. Pour supporter ces autres comportements, le concept Behavior du méta-modèle subViewElement doit être spécialisé afin de définir la syntaxe du comportement (structure) et alors la sémantique d'exécution en ccsl. Améliorer la spécification de la vue thermique et son impact sur les autres vues : Nous avons défini une simple vue thermique pour simuler la propriété de température, qui a un comportement non linéaire. Néanmoins, il y a d'autres concepts qui appartiennent à cette vue. En outre, l'évolution de la température impacte la consommation de puissance statique. Celle-ci est une des caractéristiques qui a le plus d'effet sur la consommation de puissance pour les nouvelles technologies. Généraliser l'interaction parmi différents types de comportements : Dans PRISMSYS, nous spécifions la sémantique d'exécution d'un comportement à événements discrets, modélisé par une machine d'états fini et un diagramme de séquences ; ainsi que le comportement en temps continu, représenté par les équations dans le diagramme de paramètres. La sémantique d'exécution des deux comportements a été formellement spécifiée en ccsl. La coordination entre ces comportements est également définie en ccsl (activer un état, activer une équation afin d'être évaluée). Cependant, plutôt que d'avoir un mécanisme ad-hoc pour implanter la composition hétérogène, nous pourrions dépendre d'environnements plus génériques, tel que Ptolemy ou ModHel'X, qui s'intéressent explicitement à la composition de modèles de calcul hétérogènes. Implanter PRISMSYS à travers ce type d'environnement permettrait de prendre en compte une sélection plus large de MoC. Cela pourrait se traduire par la définition d'un directeur ou d'un connecteur PRISMSYS.

PRISMSYS

  defines a view in three kinds of specific domains named subViews: control-SubView, structuralSubView and equationalSubView. Each one of these subViews has a specific role in the definition of a view. StructuralSubView states the structure of the view, ControlSubView commands the actions of the internal elements of the structural-SubView and EquationalSubView characterizes the non-functional properties defined in the view by means of equations.
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Table 3 . 2 :

 32 PRISMSYS -MARTE Mapping.OrientedPort is an abstract concept in PRISMSYS that is represented by the uml Port. We add the marte extension direction, the property that represents the incoming or outgoing data flow in a port stereotyped by FlowPort. We have mentioned that ControlPort is a specialization of Port in PRISMSYS. This port is represented by the uml Port adding the marte FlowPort and Clock stereotypes. The Clock stereotype specifies that ControlPort is a set of instants, in this case, a set of control instants. This kind of clock is known as LogicalClock in marte. Other kinds of clocks can exist in specific domains of a system, such as the EquationalView that describes the physical time domain. The physical time is represented by ChronometricClocks in marte. We explain the importance of Clock in the definition of the PRISMSYS execution semantics in Section 3.4. EquationalSubView follows the component approach such as StructuralSubView and ControlSubView. Therefore, EquationalSubView is also an encapsulatedClassifier in uml. However, We use the SysML ConstraintBlock stereotype to represent this sub-View in order to apply the SysML parametric diagram. ConstraintBlock extends Block and this last stereotype extends the uml Class concept. A Class inherits from encap-On the other hand, the ConstraintBlock stereotyped by EquationalModel owns parameters and constraints (equations).

	3.3.3. SysML Concepts for PRISMSYS

sulatedClassifier, when it contains an internal structure based on components. In fact, EquationalSubView stereotype extends EncapsulatedClassifier.

The EquationalSubView meta-model concepts are mapped to the elements that build the parametric diagram in SysML. Table

3

.3 presents the mapping. In SysML, Con-straintBlock contains constraintProperties, parameters, constraints and bindingConnectors, such as they are shown in Figure

3

.15. ConstraintProperties are instances of other constraintBlocks and play the role of "parts" in the internal definition of a constraint-Block. By observing the EquationalSubView meta-model (Figure

3

.7) and the Con-straintBlock meta-model (Figure

3

.15), we can distinguish that the EquationalModel concept is a generic SysML ConstraintBlock. In the EquationalView meta-model, we specify that an equationalSubView contains equationalModels that are not instances of other equationalSubViews. Due to the general use of ConstraintBlock, the separation between EquationalSubView and EquationalModel is not present in SysML. As a consequence, the way to represent these two concepts limits the usage of Constraint-Block according to the PRISMSYS profile. The ConstraintBlock that is stereotyped by EquationalSubView only contains bindingConnectors (binding), constraintProperties (instance of EquationalModels) and parameters.

Table 3 . 3 :

 33 PRISMSYS -SysML Mapping.

Table 3 .

 3 [START_REF] Omg | Systems Modeling Language (SysML). Object Management Group[END_REF] summarizes the clocks defined to represent the activity in the FSM of sub-ViewElement and controller.

	Clock	Action	FSM
	init	initialization of the FSM	SubViewElement, Controller
	s enter	Entering into state s	SubViewElement, Controller
	s leave	Leaving from state s	SubViewElement, Controller
	t		

ij Firing the transition from s i to s j SubViewElement, Controller guard ij Evaluation to true of the t ij guard Controller trigger ij Reception of the trigger event of t ij SubViewElement, Controller ef f ect ij Event generated when t ij is fired Controller

Table 3 . 4 :

 34 Clocks representing the relevant actions in a Finite State Machine for both SubViewElement and Controller.

  [START_REF] André | The Time Model of Logical Clocks available in the OMG MARTE profile[END_REF] this expression can be read as if guard ij occurs and not trigger ij then s ienter is strictly sampled ( � ) by guard ij . Once s ienter is sampled, if some transition fired from s i occurs, different to t ij , then f ij is killed, i.e., any other transition going out from s i cannot be fired. The definition of the inability of s i is represented by the ccsl relation upto ( � ). The first part of Equation3.3([(s ienter � guard ij ) � � t∈t ik t]) is only one occurrence of t k , therefore each time s i is active, the application of the first expression generates another f ij occurrence.

  If t ij is fired by trigger ij , there is not synchronization with a chronometric clock to generate a t ij tick. Figure 3.18 presents the t ij firing case caused by trigger ij .

	s i	Active
	s j	Active
	trigger ij	
	effect ij	
	t ij	
	si enter	
	si leave	
	sj enter	

  Power Switch, a Retention Cell and an Isolation Cell to provide the hardware elements needed to implement the power-gating technique. Assigning the

	Power Domain to one or more hardware components means that these components are
	supplied in function to the power domain mode. We remember that the associated
	hardware components are specified in RTL and these standards are only applied to RTL
	models.

Power Domain, Power Switch, Level Shifter, Isolation Cell and Retention Cell. We have mentioned in Section 4.5 that Power Switch, Isolation Cell and Retention Cell are elements employed to implement power gating technique. Additionally, we have commented that Level Shifters guarantee the logic level between voltage domain in DVFS. The dynamic of the power elements is specified in a Power State Table (PST), where the voltage levels are coordinated with the states of Power Switches, Retention Cells and

Isolation Cells. By using PST, the designer can verify the synchronization between the power and functional model execution. Nevertheless, not one of these standards specify a way to estimate the power consumption of the hardware components where the power modes are applied.

In IEEE-1801, Power Domain is the concept that gathers the elements of a system architecture where the power design is applied. For instance, Figure

4

.6 depicts a Power Domain that contains a

Table 6 .

 6 

1: Action execution in cpu clock cycles and time.

Table 6 .

 6 2 presents the main elements to map from the PRISMSYS power-aware model to Aceplorer. This table lists Views or SubViews, their SubViewElements and their corresponding Aceplorer concepts. We identify VoltageSource and ClockSource are transformed to Constraint in Aceplorer. These two SubViewElements supply a value to other SubViewElements that corresponds to the Constraint definition of value generator. We also observe the abstractions of HardwareView elements, PoweredElement and ClockedElement, are mapped to Component. These abstractions define non-functional properties used to estimate power consumption, e.g., voltage, current and frequency as well as Component in Aceplorer. Other elements such as PropertyPort, Connector and State are transformed to their equivalents in Aceplorer (Input or Output interface, Link and State, respectively). We want to point out in PowerSwitch that is a current control element in PowerView. This SubViewElement can be transformed to a simple Aceplorer State. This state represents the Off state of a hardware component when it is turned off through the power switch. We note the power architectural designer, who defines PowerSwitches in the system hardware architecture, has a different vision to the power consumption analysis expert. Finally, Equation and Parameter are respectively mapped to VariableEquationElement and VariableElements.

The Object Constraint Language (OCL) is a language defined by the OMG to constrain UML models.

http://www.obeo.fr/pages/obeo-designer

http://www.obeo.fr/resources/WhitePaper_ObeoDesigner.pdf

PRISMSYS is a composed name where PRISM refers to prism, which is a transparent optical element that refracts any composite light producing a variety of colors. We identify the prism behavior as an analogy to define our multi-view approach. SYS denotes system.

http://www.accelera.org

http://www.si2.org

a power mode defines the voltage levels that each power domain must be.

SystemC can also implement RTL. This language eases the task to refine the model from TLM to RTL
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Abbreviations

The main uml concept that we use to represent the structure of PRISMSYS is En-capsulatedClassifier. Figure 3.12 presents a simplified meta-model of this uml concept.

We note that EncapsulatedClassifier inherits from StructuredClassifier, which contains properties, connectors and parts. Parts are instances of StructuredClassifiers. From the PRISMSYS point of view, these parts are the instances of views, subViews or sub-ViewElements defined as EncapsulatedClassifiers. In Figure 3.12, we also observe that an To give an example of this transformation, we chose the first option to transform the PRISMSYS power-aware model to Aceplorer. First, we introduce the Aceplorer metamodel to present the main concepts contained in its model. Second, we point out the main features of the PRISMSYS -Aceplorer transformation.

Analysis Tool Model

Aceplorer Domain Model

Aceplorer uses its own language to create the power model of a system evaluating the power consumed by each system component. However, this language is implemented without using the MDE techniques to define DSMLs. Therefore, we extract the concepts and relationships used in Aceplorer to specify a system power model and we represent them in a meta-model. CurrentConsumption is associated with Input that is the interface that supplies the current to the Component.

PRISMSYS to Aceplorer Transformation

In order to define the transformation rules, first, we identified the views that are involved in the system power consumption and then, we map the elements from these views to the corresponding Aceplorer elements. PowerView, ClockView, HardwareView and ApplicationView are selected to build a complete Aceplorer model. PowerView and ClockView define the elements that control non-functional properties that impact the power consumption of system components, such as voltage and frequency. ClockView also specifies the clock cycles of the actions executed in ApplicationView. HardwareView represents the hardware architecture of the system we want to analyze. ApplicationView specifies the scenario to evaluate the power consumed by the system components. Generalizing the interaction between various kinds of behaviors: In PRISMSYS, we specify the execution semantics of a discrete event behavior, modeled by Finite State Machine and Sequence Diagram; as well as a continuous time behavior, represented by equations in a Parametric Diagram. The execution semantics of both behaviors have formally been specified in ccsl. Furthermore, the coordination among them is also defined in ccsl (activating a state, activate an equation to be evaluated). However, rather than having an ad-hoc mechanism to implement the heterogeneous composition, we could rely on more generic environments, such as Ptolemy and ModHel'X, in which the heterogeneity is addressed explicitly by directors and MoC connectors. This would allow the use of a larger choice of MoCs.

View