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Abstract

Bioinformatics experiments are usually performed using scienti�c work�ows in

which tasks are chained together forming very intricate and nested graph struc-

tures. Scienti�c work�ow systems have then been developed to guide users in the

design and execution of work�ows. An advantage of these systems over traditional

approaches is their ability to automatically record the provenance (or lineage) of

intermediate and �nal data products generated during work�ow execution. The

provenance of a data product contains information about how the product was

derived, and it is crucial for enabling scientists to easily understand, reproduce,

and verify scienti�c results. For several reasons, the complexity of work�ow and

work�ow execution structures is increasing over time, which have a clear impact

on scienti�c work�ows reuse.

The global aim of this thesis is to enhance work�ow reuse by providing strategies

to reduce the complexity of work�ow structures while preserving provenance. Two

strategies are introduced.

First, we propose an approach to rewrite the graph structure of any scien-

ti�c work�ow (classically represented as a directed acyclic graph (DAG)) into a

simpler structure, namely, a series-parallel (SP) structure while preserving prove-

nance. SP-graphs are simple and layered, making the main phases of work�ow

easier to distinguish. Additionally, from a more formal point of view, polynomial-

time algorithms for performing complex graph-based operations (e.g., comparing

work�ows, which is directly related to the problem of subgraph homomorphism)

can be designed when work�ows have SP-structures while such operations are re-

lated to an NP-hard problem for DAG structures without any restriction on their

structures. The SPFlow rewriting and provenance-preserving algorithm and its

associated tool are thus introduced.

Second, we provide a methodology together with a technique able to reduce the

redundancy present in work�ows (by removing unnecessary occurrences of tasks).

More precisely, we detect "anti-patterns", a term broadly used in program design

to indicate the use of idiomatic forms that lead to over-complicated design, and

which should therefore be avoided. We thus provide the DistillFlow algorithm able

to transform a work�ow into a distilled semantically-equivalent work�ow, which is

free or partly free of anti-patterns and has a more concise and simpler structure.
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The two main approaches of this thesis (namely, SPFlow and DistillFlow) are

based on a provenance model that we have introduced to represent the provenance

structure of the work�ow executions. The notion of provenance-equivalence which

determines whether two work�ows have the same meaning is also at the center of

our work. Our solutions have been systematically tested on large collections of

real work�ows, especially from the Taverna system. Our approaches are available

for use at https://www.lri.fr/∼chenj/.
Keywords: scienti�c work�ows, provenance, provenance-equivalence, series-

parallel graphs, Taverna, anti-patterns
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Motivation

Scienti�c work�ow management systems, (e.g., Taverna [HWS+06], Kepler

[LAB+06], Chimera [FVWZ02], Galaxy [GNT+10], Wings [GRD+07]) are increas-

ingly being used by scientists to construct and execute complex scienti�c analy-

ses. Such analyses are typically data-centric and involve "gluing" together data

retrieval, computation, and visualization components into a single executable anal-

ysis pipeline [BLNC05]. Such a pipeline is represented by a work�ow which is mod-

eled as a graph, where edges denote scheduling dependencies between computation

tasks [HFYS04,CBFJ12]. Intuitively, a work�ow speci�cation is a framework for

the execution of work�ows, which speci�es the set of tasks that are performed and

the order to be observed between the di�erent tasks executions. According to the

input data given to the work�ow speci�cation and assignments of values to the task

parameters, di�erent work�ow runs are obtained. A run is then also represented

as a graph where each vertex represents the execution of a task and edges are

labeled by the data consumed and produced at each step. In this thesis, following

what is in several work�ow systems, we will consider that the speci�cations have

a directed cyclic graph (DAG) structure and the runs have the same structures
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as their speci�cations. The main goal of scienti�c work�ows, is to represent in-

silico experiments, which entails frequent reuse and repurposing throughout their

life-cycle [CM11].

Figure 1.1 provides (a) an example of work�ow speci�cation from Taverna

[HWS+06], (b) its representation as a graph and (c) an example of run. Faced

Figure 1.1: (a) Taverna work�ow; (b) speci�cation graph; (c) run graph

with the increasing complexity of runs and the need for reproducibility of results,

provenance has become an important research topic [CBFJ12]. The provenance

(also referred to as lineage, and pedigree) of a data product contains information

about the process and data used to derive the product [DF08]. It is often or-

ganized as dependency graphs [MFF+08]. The visualization of such dependency

graphs is especially useful for scienti�c work�ow reuse, since the data, processes,

and dependencies associated with a work�ow run can be clearly seen by work-
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�ow users. By analysing and creating insightful visualizations of provenance data,

scientists can debug their tasks and obtain a better understanding of their re-

sults. With the help of provenance, scientists who wish to perform new analyses

should be able to �nd work�ow speci�cations with same or similar meanings of

interest to reuse or modify. They can also search for executions associated with

a speci�cation to understand the meaning of the work�ow, or to correct/debug

an erroneous speci�cation. Furthermore, structural provenance queries can help

scientists to determine what produced data might have been a�ected by its input,

or to understand how and why the process that led to create a given data has

actually failed. Therefore, provenance information is clearly useful for scienti�c

work�ows users and systems. However, due to the complexity of work�ows, the

provenance information which is organized into a graph becomes very large, for

which understanding and exploring provenance information becomes a signi�cant

challenge for users [DF08,MFF+08]. While most systems record and store data

and process dependencies, a few provide easy-to-use and e�cient approaches for

accessing provenance information [Koo12]. Additionally, some work�ow systems

take complex data structure (e.g., lists [HWS+06], trees [BML08], · · · ) into ac-

count, which makes provenance presentation a very challenging point. However, to

support better reuse of scienti�c work�ows, provenance should be more exploited

to present the meaning of scienti�c work�ows for both work�ow systems and users.

In the last decade, considerable e�ort has been put into the improvement of

sharing and reusing scienti�c work�ows. Work�ow reuse in e-Science is intrin-

sically linked to a desire that work�ows be shared and reused by the commu-

nity as (part of) best practice scienti�c protocols [GSLG05]. It has the potential

to [GSLG05, LRL+12]: reduce work�ow authoring time (less "re-inventing the

wheel"); improve quality through shared work�ow development (leveraging the

expertise of previous users); and improve experimental provenance at the process

level through reuse of established and validated work�ows (analogous to using

proven algorithms or practices rather than inventing a new which is potentially

error-prone). However, as stated by recent studies [SCBL12, CBL11, LRL+12],

while the number of available scienti�c work�ows is increasing along with their

popularity, work�ows are not (re)used and shared as much as they could be. Sev-

eral years ago, Goderis et al. [GSLG05] summarized several bottlenecks of work�ow
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reuse and repurposing, in which they argue that the main reasons are the restric-

tions on service availability, lack of a comprehensive discovery model and the

complexity of work�ows. According to Zhao et al. in [ZGPB+12], one of the main

impediments to work�ow reuse is due to the decayed or reduced ability of the re-

sources required for executing work�ow, like services and data, which can be either

local and hosted along with the work�ow or remote, such as public repositories or

web services hosted by third parties. The causes of this impediments include: (1)

it is di�cult to volatile third-party resources; (2) missing example data (it is not

always obvious which data can be used as inputs to the work�ow execution, and

example inputs are often most helpful); (3) missing execution environment (the

execution of a work�ow may rely on a particular local execution environment,

e.g., a local R server or a speci�c version of work�ow execution software); (4) in-

su�cient descriptions about work�ows (sometimes a work�ow workbench cannot

provide su�cient information about what caused the failure of a work�ow run).

Several solutions for these causes can be found in [ZGPB+12].

In this thesis, we have focused speci�cally on the Taverna work�ow manage-

ment system, which for the past ten years, has been popular within the bioin-

formatics community [HWS+06]. Despite the fact that hundreds of Taverna

work�ows have been available for years through the myExperiment public work-

�ow repository [RGS09] (http://www.myexperiment.org), their reuse by scientists

other than the original author is generally limited [CBL11]. Recently, several

studies [SCBL12, CBL11, LRL+12, TZF10] highlight the complexity of work�ow

structures as one of the main reason of the limited reuse of (Taverna) scienti�c

work�ows. The complexity of work�ow structure, involves the number of nodes

and links but is also related to intricate work�ow structure features [CBCG+13].

Again, several factors may explain such a structural complexity including the fact

that the bioinformatics process to be implemented is intrinsically complex, or the

work�ow system may not provide appropriate expressivity, forcing users to design

arbitrary complex work�ows. Therefore, to obtain a simpler work�ow structure

for a complex work�ow while preserving the meaning (provenance/semantics) be-

comes especially important.

Motivated by the facts above, rewriting complex scienti�c work�ow structures

into simpler ones to make them easier to (re)use thus is the main topic of this
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thesis. In the next section, we will state the problems on this topic in details.

1.2 Problem Statement

In this thesis, our aim is to provide strategies to design scienti�c work�ows.

The originality of our approach lies in considering two notions, namely, provenance

and work�ow structures. Our contributions have been introduced in our published

papers [CBFJ12] and [CBCG+13]. In this document, we recall them and provide

detailed explanations and discussion on our work.

As provenance provides support in scienti�c work�ow reuse, a signi�cant num-

ber of tools for managing the vast amounts of data provenance have been designed

to assist the storage of provenance data (e.g., indexing...), query the data (e.g.,

di�erence between executions, search for patterns), visualize the work�ow prove-

nance or (re)schedule executions... These tools all make intrinsically complex oper-

ations on graph structures (search for subgraphs in a graph, comparing graphs, ...),

which, if carried out on Directed Acyclic Graphs (DAGs), with no other restriction

of structure, may lead to NP-hard problems. Instead, these problems can be solved

in polynomial time when speci�c restrictions are imposed on graphs, such as con-

sidering series-parallel (SP) structures [BKS92]. Some provenance management

approaches from [BBD+09, BBDH08, BCC+05] have therefore chosen to restrict

work�ow graphs to SP structures. However, in general, work�ows obtained using

work�ow systems are DAGs with any structure. Providing a procedure to rewrite

any work�ow graph into an SP graph while preserving provenance information

would allow to better exploit the provenance management tools and should make

scienti�c work�ows easier to (re)use. This is the �rst goal of this research. The

�rst research question addressed in this thesis is:

(1) How to rewrite any work�ow graph into SP graph while preserving prove-

nance?

The second main contribution of our work focuses on scienti�c work�ow struc-

tures themselves. We argue that one of the contributing factors for the di�culties

in reuse, is the presence of certain design "anti-patterns", a term broadly used in

business process modelling and program design, to indicate the use of idiomatic
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forms that lead to over-complicated design, and which should therefore be avoided.

Our preliminary analysis of the structure of 1,400 scienti�c work�ows collected

from myExperiments reveals that, in numerous cases, such a complexity is due

mainly to redundancy, which is in turn an indication of over-complicated design,

and thus there is a chance for a reduction in complexity which does not alter the

work�ow semantics. Our main contention in this fact is that such a reduction in

complexity can be performed automatically, and that it will be bene�cial both in

terms of user experience (easier design and maintenance), and in terms of opera-

tional e�ciency (easier to manage, and sometimes to exploit the latent parallelism

amongst the tasks). So, the second research question addressed in this thesis is:

(2) How to rewrite scienti�c work�ows to make them free or partly free of re-

dundancy without altering the work�ow semantics?

The solutions for these two research questions are respectively presented in

Chapter 4 and Chapter 5. The next section describes in more details the actual

contributions.

1.3 Contributions

Our main contributions are summarized as below.

First series of contributions (have been published in the 8th IEEE Inter-

national Conference on eScience 2012 [CBFJ12] and the 28th Journees de Bases

de Donnees Avancees (BDA) 2012 [CBFC12]):

• We propose a model to represent scienti�c work�ows and provenance gener-

ated in their execution.

• We give a de�nition of the notion of provenance-equivalence which can be

used to identify whether two work�ows have the same meaning.

• We review several rewriting strategies for transforming non-SP graphs into

SP graphs and prove that they are not provenance-equivalent.

• We design a provenance-equivalent algorithm, named "SPFlow", to translate

non-SP work�ows into SP work�ows.
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• We illustrate our algorithm by providing an evaluation of our approach on

a thousand of scienti�c work�ows.

• We develop a tool based on SPFlow, which takes in a non-SP Taverna work-

�ow and provide an SP version of the work�ow usable in Taverna.

Second series of contributions (have been published in the "BMC Bioin-

formatics" Journal [CBCG+13] and the 12th International Workshop on Network

Tools and Applications in Biology, Nettab 2012 (poster) [CCBF+12]):

• We identify and automatically detect a set of anti-patterns that contribute

to the structural work�ow complexity.

• We design a series of refactoring transformations to replace each anti-pattern

by a new semantically-equivalent pattern with less redundancy and simpli�ed

structure.

• We introduce a distilling algorithm that takes in a work�ow and produces a

distilled semantically-equivalent work�ow.

• We provide an implementation of our refactoring approach that we evaluate

on both the public Taverna work�ows and on a private collection of work�ows

from the BioVel project.

1.4 Thesis Structure

This thesis is organized as follows:

• Chapter 1 gives the introduction of this thesis by stating the motivation,

research problems and contributions.

• Chapter 2 presents a collection of mathematical notations used throughout

the rest of this dissertation (2.1). Based on such notations, the work�ow

model used in this dissertation is introduced (2.2). We then give an intro-

duction to series-parallel graphs and their properties (2.3). At the end of

chapter 2, we provide an introduction to the work�ows of Taverna system,

which is the system that we have chosen to mainly work on.
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• Chapter 3 starts with related work on provenance models (3.1), and then

proposes a model to represent the provenance of work�ow executions (3.2).

Later we give a de�nition of the notion of provenance-equivalence which

can be used to identify whether two work�ows have the same meaning (3.3).

Finally, a discussion about extending our provenance model to better support

lists of data is given (3.4).

• Chapter 4 �rst gives an in-depth explanation of the motivation of rewriting

non-SP work�ows into SP work�ows (4.1). Then we introduce the concept

of measuring the distance from non-SP to SP, which inspires some transfor-

mation techniques of rewriting non-SP graphs into SP graphs. (4.2). We

then analyze the existing strategies to identify whether they are provenance-

preserving and propose a new provenance-equivalent strategy (4.3). We

introduce the SPFlow algorithm for transforming non-SP graphs into SP

graphs and discuss the complexity and soundness of the algorithm in 4.4.

We demonstrate the feasibility of our approach on real scienti�c work�ows

in 4.5. We �nally present a tool with the same name of our algorithm,

which takes in a non SP Taverna work�ow and provide an SP version of the

work�ow usable in Taverna (4.6).

• Chapter 5 �rst gives a deep explanation of the second research problem we

have considered by presenting several use cases (5.1). Then we introduce

the anti-patterns we have identi�ed and the transformations we propose to

do while ensuring that the semantics of the work�ow remains unchanged

(5.2). We then introduce the DistillFlow refactoring algorithm (5.3). In

5.4, we provide the results obtained by our approach on a large set of real

work�ows. Finally, we discuss several points related to our approach.

• Chapter 6 gives the conclusions and the future works.
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Work�ows in general, and scienti�c work�ows in particular, are directed graphs

where the nodes represent tasks, and the edges represent the relations between the

tasks [TDGS07]. Various operations can be performed on scienti�c work�ows, such

as designing work�ows, visualizing them, querying repositories of work�ows, exe-

cuting work�ows (involving scheduling executions, indexing executions, · · · ). Each
of the operations is then intrinsically related to complex operations on graph struc-

tures: clustering graphs, comparing graphs, leading to the problem of (sub)graph

isomorphism. Such operations are then very time-consuming on general graph

structures while they can be sloved more easily when a particular structure of

graphs is considered. With this respect, a special kind of graphs named "series-

parallel" graphs (SP graphs) is a useful class of graphs which are simple and

layered, and their edges do not intersect, making the main phases of work�ow

easier to distinguish. More e�cient solutions for work�ow operations can thus be

carried out when SP structures are considered.
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This chapter mainly presents a collection of mathematical notations used through-

out the rest of this dissertation (2.1). Based on such notations, the work�ow model

used in this dissertation is introduced (2.2). We then give an introduction to series-

parallel graphs and their properties (2.3). At the end of this chapter, we provide

an introduction to the work�ows of Taverna system, which is the system that we

have chosen to mainly work on.

2.1 Basic graph concepts and notations

We de�ne here the basic concepts related to graphs and introduce the notations

used in this dissertation, mainly adapted from [BKS92,Val78,Esc03].

We use upper case alphabetic characters (A,B,C, · · · ) to denote sets, and use

lower case (a, b, c, · · · ) to denote the elements of a set.

Figure 2.1: Example of dag. (a) a dag, (b) a labeled graph of (a).
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De�nition 2.1.1 [Val78] A Directed Graph(digraph) G =< V,E >, consists

of a �nite set of vertices V and a �nite set of edges E ⊆ V × V which are ordered

pairs. The number of vertices is denoted by n = |V |, and the number of edges by

m = |E|.

We allow multiple edges between the same two vertices in the graph. The graphs

with multiple directed edges are calledmultidigraphs. Cycles will not be consid-

ered in our study. Thus, the graphs used in our study areAcyclic multidigraphs,

abbreviated as multidag (cf. Figure 2.1 (a) with multi edges between vertices b

and e).

De�nition 2.1.2 Let G = (V,E) be a multidag. For each edge e ∈ E ⊆ V × V ,

which is denoted by (u, v) or e(u, v), in E, u is the source of the edge and v is

the target of the edge.

De�nition 2.1.3 Let G = (V,E) be a multidag. For each vertex v ∈ V , the

indegree, d−(v), is the number of edges that end by v (means v is the target of

the edges) and the outdegree, d+(v) is the number of edges that start from v

(means v is the source of the edges). More formally we have:

d−(v) = |{e(u, v) ∈ E}|

d+(v) = |{e(v, u) ∈ E}|

Example 2.1.1 In Figure 2.1 (a), d−(a) = 1 and d+(a) = 2.

De�nition 2.1.4 Let G = (V,E) be a multidag. The successors set of a vertex

v ∈ V is the set of target vertices of edges outgoing from v, denoted by Succ(v).

The predecessors set of a vertex v is the set of source vertices of edges for which

v is the target, denoted by Pred(v). More formally we have:

Succ(v) = {u : e(v, u) ∈ E}

Pred(v) = {u : e(u, v) ∈ E}

Example 2.1.2 In Figure 2.1 (a), Succ(f) = {h} and Pred(f) = {a, c, d, g}.
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De�nition 2.1.5 Let G = (V,E) be a multidag. A source of a graph is a vertex

v with d−(v) = 0. A target of a graph is a vertex v with d+(v) = 0. S(G) is the

set of all sources in G, and T (G) is the set of all targets in G.

S(G) = {v ∈ V : d−(v) = 0}

T (G) = {v ∈ V : d+(v) = 0}

Example 2.1.3 As in Figure 2.1 (a), S(G) = {s} and T (G) = {t}.

De�nition 2.1.6 Let G = (V,E) be a multidag. A path is an ordered sequence

of vertices p(v1, vk) = [v1, v2, · · · , vk] such that (vi, vi+1) ∈ E for 1 ≤ i < k.

To distinguish paths that have the same source and the same target, we use

p(u, v)x to denote the path p(u, v) which contains vertex x. If there is only one

single path from u to v or it consists of a single edge, we denote it as p(u, v).

A full path is a path p(u,v) where u is a source of G and v a target of G.

Example 2.1.4 In Figure 2.1 (a), p(a, f) is the single path consists of edge e(a, f)

and p(a, f)c = [a, c, f ] while p(a, f)d = [a, d, f ], and path p(s, t)c = [s, a, c, f, h, t]

is a full path.

De�nition 2.1.7 [Esc03] A vertex v is said to be reachable in the multidag G

from another vertex v′ i� there exists a path p(v′, v).

Example 2.1.5 Consider Figure 2.1 (a) again. c is reachable from a, but c is not

reachable from b.

De�nition 2.1.8 [Val78,Esc03] A multidag G = (V,E) is transitive i� if there

is a path p(u, v) in G, there also exists an edge e(u, v). The transitive closure of

G = (V,E) is another graph Gtc = (Vtc, Etc) where Vtc = V and Etc is the minimal

subset of V × V that includes E and makes Gtc transitive.

De�nition 2.1.9 [Val78,Esc03] An edge e(u, v) of a multidag is redundant if

there is a path p(u, v) not including the edge. The transitive reduction of a

multidag is the multidag obtained by removing all the redundant edges.
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Example 2.1.6 The edge e(a, f) in Figure 2.1 (a) is redundant, because there

are paths p(a, f)c and p(a, f)d which do not include edge e(a, f).

De�nition 2.1.10 [BKS92] A multidag G is an st-multidag, also called two-

terminal multidag, if there exists exactly one source and exactly one target in

G.

Example 2.1.7 Figure 2.1 (a) is an st-multidag with source s and target t.

A multidag may have several sources and targets. As we will see in the follow-

ing, we will consider graphs with one source and one target (as classically when

there is a need to compare graph structures). We will thus introduce the notion of

generalized st-multidag to de�ne graphs that we "root". In such structures, any

vertex will appear in a path from the source to the target.

De�nition 2.1.11 The generalized st-multidag Gst = (Vst, Est) of a multidag

G = (V,E) is a two-terminal multidag, constructed from G, by adding at most

two vertices vs, vt and O(n) edges as follows:

Vst = V ∪ {vs} and Est = E ∪ {e(vs, v) : v ∈ S(G)} if |S(G)| > 1

Vst = V ∪ {vt} and Est = E ∪ {e(v, vt) : v ∈ T (G)} if |T (G)| > 1

If |S(G)| = 1 and |T (G)| = 1, then Gst = G.

Example 2.1.8 Let us consider Figure 2.2 with only solid lines. In (a), S(G) =

{1, 2}, T (G) = {t}, because |S(G)| = 2 > 1, we should add a single source "s"

and edges e(s, 1), e(s, 2) to G0 (represented with dashed lines). We do the same

process for (b),(c) and (d). In (d), nothing is added. It means that G3 itself has

already a single source and a single target, thus G3 is an st-multidag.

Property 2.1.1 Properties of st-multidags [Val78,Esc03] :

1. Any vertex in an st-multidag is reachable from the source.

2. The target of an st-multidag is reachable from any vertex in the graph.

3. For any vertex v ∈ V there exists at least one full path that contains v.
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Figure 2.2: Example of generalized st-multidags. For each graph, the vertices and

edges drawn in dashed lines are the vertices and edges that should be added to

the initial graph which is drawn in solid lines to get an st-multidag. (a) adding a

source; (b) adding a target; (c) adding both a source and a target; (d) the graph

is an st-multidag.

De�nition 2.1.12 [Wik13b] Let G = (V,E). A labeling of G is a function

ℓ : V ∪ E → L for some set L of labels. For every x in the domain of ℓ, the

ℓ(x) ∈ L is called the label of x. Three of the most common types of labelings of

a graph G are:

1. total labeling: ℓ is a total function (de�ned on all V ∪ E),

2. vertex labeling: the domain of ℓ is V , and

3. edge labeling: the domain of ℓ is E.

A labeled graph is a pair (G, ℓ) where G is a graph and ℓ is a labeling of G.

Example 2.1.9 Figure 2.1 (b) is a labelled graph for (a) in which L = LV ∪ Le,

with Lv = {1, 2, 3, · · · , 13} and Le = {d1, d2, · · · , d17} and ℓ(a) = 2, ℓ(b) = 3, · · ·
and ℓ(e(s, a)) = d0, ℓ(e(s, b)) = d1, · · · .

We now have all the concepts needed to de�ne the work�ow model as the basis

of our provenance model.
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2.2 General work�ow model

A work�ow model has two components [CCPP99, BBD+09]: a speci�cation

that serves as a template for executions, and a set of runs for the given speci�ca-

tion. Informally, a work�ow speci�cation consists of a set of di�erent modules and

de�nes the order in which they can be executed. A work�ow run is a partial order

of steps where each step is an instance of a module de�ned in the underlying spec-

i�cation, and the partial order conforms to the ordering constraints in the given

speci�cation. However, in this thesis we work on a work�ow structure together

with its provenance information, and we consider the work�ow run that has the

same graph structure as the work�ow speci�cation based on the constraints of the

Taverna system detailed in the last section.

Formally, we model a work�ow speci�cation as a directed acyclic labeled multi-

graph whose vertices represent the work�ow tasks and edges represent the data

�ow between tasks.

As most scienti�c work�ow systems allow only stateless, functional behavior,

and do not allow looping [DF08], we consider st-multidags. Because scienti�c

work�ows do not contain a unique source and a unique target, for each speci�cation

and its runs, we consider their generalized st-multidags, that is, we add when

necessary one single source and one single target and corresponding edges to "root"

the work�ow .

De�nition 2.2.1 [CBFJ12] Awork�ow speci�cation is an st-multidagGspec =

(Vspec, Espec) where vertices are labelled by the function Lvs : Vspec → LV S, with

LV S a set of labels for vertices, which is related to task names.

De�nition 2.2.2 [CBFJ12] Awork�ow run is an st-multidagGrun = (Vrun, Erun)

with labeled vertices and labeled edges, using the functions Lvr : Vrun → LV R,

where LV R is a set of labels of the vertices, which is related to task names and Ler

: Erun → LER, where LER is a set of labels of edges, which is related to the data

produced by tasks. We will note �x the label of the vertex x, i.e. Lvr(x) = �x and

di the label of the edge ei, i.e. Ler(ei) = di.
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2.3 Series-Parallel graphs

In this subsection we examine series-parallel graphs (SP graphs) which are a

common type of graph, and have been introduced by Du�n [Duf64] to model

electrical networks. They have a signi�cant use in several applications that make

them interesting to examine. As stated in [DB99], using SP graphs we can suc-

cessfully visualize �ow diagrams [Wik13a], dependency charts [RG00], and PERT

networks [htt13]. The construction of series-parallel DAGs and their relation with

general DAGs are the main focus of this section. We present here formal de�ni-

tions and properties of this kind of graphs. The following de�nitions are adapted

mainly from [BKS92,Val78].

2.3.1 De�nitions

De�nition 2.3.1 The class of series-parallel graphs (SP-graphs) is recur-

sively de�ned as follows:

1. Basic SP graph: G, the st-multidag that contains two vertices s and t

joined by a single edge is an SP-graph (called "BSP");

2. Series Composition: if G1 (source s1 and sink t1) and G2 (source s2 and

sink t2) are two SP-graphs, G obtained by identifying s2=t1 is an SP-graph

with source s1 and sink t2;

3. Parallel Composition: if G1 (source s1 and sink t1) and G2 (source s2 and

sink t2) are two SP-graphs, G obtained by identifying s1 = s2, t1 = t2 is an

SP-graph with source s1 and sink t1.

The above de�nition can be understood by inspecting Figure 2.3. In this

�gure we construct the parallel composition of the basic graphs by joining the

sources at the top and sinks at the bottom (see Figure 2.3 (b)). Similarly we

construct the series composition by joining the sink with the source of the two

basic graphs(see Figure 2.3 (c)). In the same way, we can compose more complex

graphs by combining these compositions.

De�nition 2.3.2 A st-multidag is non-SP i� it is not an SP graph.
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Figure 2.3: Recursive construction of SP graphs: (a) Basic SP graph (BSP), (b)

parallel composition, (c) series composition.

Another way to de�ne the class of SP graphs is to state that they do not contain

a subgraph homeomorphic (intuitively, similar) to a "forbidden subgraph" shown

in Figure 2.4. In other words, such a graph does not contain any series components

or parallel components due to an "across edge" inside the subgraph. This forbidden

subgraph represents the basic characteristic of non-SP graphs. More formally:

De�nition 2.3.3 [Esc03] An induced subgraph G′ = (V ′, E ′) of another graph

G = (V,E), is obtained by eliminating some vertices from V and eliminating from

E the edges incident to those eliminated vertices, formally:

G′ ⊆ G iff V ′ ⊆ V,E ′ = {(u, v) ∈ E : u, v ∈ V ′}

De�nition 2.3.4 [Val78,Esc03] A graph G = (V,E) is homeomorphic to an-

other graph G′ i� its transitive closure Gtc contains G′ as an induced subgraph:

G homeomorphic to G′ iff Gtc ⊇ G′

Theorem 2.3.1 [Duf64] An st-multidag is series-parallel i� it does not contain

a subgraph homeomorphic to the "forbidden subgraph" of Figure 2.4. (See proof

in [Duf64])

Example 2.3.1 The transitive closure of Figure 2.1 (a) contains an induced sub-

graph G = (V,E) with V = {s, f, g, t} and E = {(s, f), (s, g), (g, f), (f, t), (g, t)}
which is a forbidden subgraph. According to the de�nition 2.18, the graph of

Figure 2.1 (a) is homeomorphic to the forbidden subgraph of Figure 2.4, as a

consequence Figure 2.1 (a) depicts a graph which is a non-SP graph.
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Figure 2.4: The forbidden subgraph for SP-graphs

2.3.2 SP reduction

This subsection introduces techniques able to determine whether a graph is an

SP graph. Two operators of reduction have been proposed. The result of using

each of these operators in simple graphs is shown in Figure 2.5.

As said in the de�nition of the work�ow model, the labels for vertices are

related to the tasks and the labels for edges are related to the data produced by

the tasks. Moreover, it is important to save the label information which is related

to the provenance trace during each reduction operation. Taking this into account,

the reduction operators are de�ned as follows:

De�nition 2.3.5 Let G1 = (V1, E1) be an st-multidag whose vertices and edges

are labeled by the functions L1vr: V1 → LV R, and L1er: E1 → LER. The elemen-

tary operation op transforms G1 into an st-multidag op(G1) = G2 = (V2, E2),

whose vertices and edges are labeled by the functions L2vr : V2 → LV R, and

L2er : E2 → (LV R ∪ LER,+, ·).

1. Series Reduction. Let u, v, w ∈ V1, such that e = (u, v) is the unique

incoming edge of v and f = (v, w) is the unique outgoing edge of v. The

operation opsr of Series Reduction in v replaces e and f by g = (u,w).

G2 = (V2, E2) is such that V2 = V1 − {v}, L2vr is the restriction of L1vr on

V2, L2er =L1er on E1 ∩ E2, and L2er(g) = L1er(f) · L1vr(v) · L1er(e).

2. Parallel Reduction. Let v, w ∈ V1 linked by k edges e1 · · · ek. The op-

eration oppr of parallel reduction in v and w replaces the k edges by
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a unique edge g = (v, w) and leaves all the remaining edges unchanged.

G2 = (V2, E2) is such that V2 = V1, L2vr = L1vr, L2er=L1er on E1 ∩E2, and

L2er(g) = (L1er(e1) + ...+ L1er(ek)).

Figure 2.5: (a) Series reduction; (b) Parallel reduction

De�nition 2.3.6 LetG be an st-multidag. G ismaximally reduced ("MaxRed")

if and only if no series or parallel reduction can be applied to it.

De�nition 2.3.7 A maximal SP reduction graph of G, is another graph

Gred obtained by using all possible series and parallel reduction operations (i.e.

MaxRed) on G:

Gred = MaxRed(G)

We now introduce a set of properties of SP graphs.

2.3.3 Properties of SP graphs related to their recognition

Determining whether a graph is SP is associated to several properties that we

provide below.

Property 2.3.1 [Val78]: Let G be an st-multidag. G is SP if and only if there

exists a sequence of series and parallel reductions that reduces G to BSP .

Property 2.3.2 Performing series and parallel reduction operations in any or-

der on Graph G to get the BSP will allow to obtain the same resulting graph.

(Church-Rosser property [VTL82]).

Figure 2.6 describes reductions performed on the st-multidag of G0. As only

series and parallel reductions are used to reduce graph G0 to BSP , the initial

graph G0 is thus SP.
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Figure 2.6: Example of reduction operations applied to G0.

Interestingly, SP graphs are a subclass of planar graphs, and also a subclass of

k-terminal graphs (see e.g. [Bod94]). SP graphs are equivalent to partial 2-trees, a

subclass of bounded tree-width graphs (see e.g. [Bod94]). Based on the properties

of these graph classes, linear time complexity algorithms to recognize SP-graphs

are possible.

Property 2.3.3 [Sch95,VTL82]: The recognition of a series-parallel DAG can

be done in linear time.

E�cient parallel algorithms for recognizing SP graphs have also been proposed

in [BDF96,HHC99,HY87,Epp92].

Now that all the graph-related de�nitions have been introduced to represent

work�ows, the next subsection introduces the concrete form of work�ows we work

on.

2.4 Work�ows in Taverna

This subsection gives an introduction to Taverna work�ows, because our work

currently is mainly based on the Taverna work�ow model [HWS+06]. Taverna

combines a data�ow model of computation with a functional model that accounts



2.4. Work�ows in Taverna 21

for list data processing. Examples of Taverna work�ows are given throughout

this dissertation, and especially in Chapter 5. A work�ow consists of a set of

processors, which represent software components such as Web Services and may

be connected to one another through data dependencies links. This can be viewed

as a directed acyclic graph in which the nodes are processors, and the links specify

the data �ow. Figure 2.7 (a) provides one example of work�ow and Figure 2.7 (b)

gives the corresponding graph (nodes have been renamed for the shake of clarity).

Processors have named input and output ports, and each link connects one output

port of a processor to one input port of another processor. A work�ow has itself

a set of input and output ports, and thus it can be viewed as a processor within

another work�ow, leading to structural recursion.

Figure 2.7: An example of Taverna work�ow ((b) is the speci�cation graph for

(a))

The work�ow depicted in Figure 2.7 (a), for instance, has one input called

Name and two outputs named respectively Average and Standarddev. In turn,

processor GetStatistics_output has one input port named input and �ve out-

put ports named Average, Kurtosis, Skewness, StandardDeviation and Sums.

Note that the input and output ports do not appear in the graph representation.

The triple ⟨ <work�ow name>, <work�ow inputs>, <work�ow outputs> ⟩ is
called the signature of the work�ow.

Note that multiple outgoing links from processors or inputs are allowed, as is

the case for the work�ow input of Figure 2.7 (a) which is used by two processors.

Also, not all output ports must be connected to downstream processors (e.g., the
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value on output port attachment_list in Get_Statistics is not sent anywhere),

and symmetrically, not all inputs are required to receive an input data (but input

ports with no incoming links should have a default value, or else the processor will

not be activated).

Input ports are statically typed [MPB10], according to a simple type system

that includes just atomic types (strings, numbers, etc.) and lists, possibly recur-

sively nested (i.e. the type of a list element may be a list, with the constraint

that all sub-lists must have the same depth). The functional aspects of Taverna

come into play when one or more list-value inputs are bound to processor's ports

which have an atomic type (or, more generally, whose nesting level is less than

the nesting level of the input value). In order to reconcile this mismatch in list

depth, Taverna automatically applies a higher-order function, the cross product,

to the inputs. The work�ow designer may specify an alternative behavior by us-

ing a dot product operator instead. This produces a sequence of input tuples,

each consisting of values that match the expected type of their input port. The

processor is then activated on each tuple in the list. The resulting �implicit iter-

ation� e�ect can be de�ned formally in terms of recursive application of the map

operator [MPB10].

2.5 Summary

This chapter has introduced all the de�nitions which are at the basis of our

work concerning graph structures and has provided a particular focus on Series-

Parallel graphs (SP graphs). Such graphs have very interesting features since

NP-hard graphs problems posed on general DAGs may be solved by polynomial

time algorithms for SP structures. The last section of this chapter gave main

terminology of concepts associated to the work�ows of the Taverna system, which

are the work�ows we will mainly study in this thesis.
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In this thesis, we are interested in the meaning of the work�ow as given by

the provenance of its execution outputs. Intuitively, the provenance of a data

item is the ordered sequence of tasks performed to produce this data, and in-

put data to each task. Two work�ows have the same meaning if, given some

input data, they both produce the same intermediate and �nal data i.e. they are

provenance-equivalent. The aim of this chapter is to introduce a general prove-

nance representation model which is suitable for comparing the structures of the

work�ow executions which contain provenance information and then give the no-

tion of provenance-equivalence between two work�ows.

At the beginning of this chapter, we introduce one simple provenance model

[ABML09] that we will call the "basic provenance model" in the following. We

then discuss shortcomings of the basic provenance model in accurately capturing

data dependencies in several computational scenarios and when complex data is

used. We propose a general provenance model that naturally extends the basic

provenance model by using regular expressions, to represent scienti�c work�ow
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provenance. Based on this general provenance model, the de�nition of provenance-

equivalence is described, which is the basis for evaluating correctness of the two

approaches (Chapter 4 and 5) in this dissertation. Finally, a discussion on several

"problematic" data dependencies cases is given and possible solutions are drawn.

3.1 Related work

This section aims to show the characteristics of existing provenance models.

These characteristics can help us to develop an underlying provenance model for

identifying whether two runs are provenance-equivalent. Anand et al [ABML09]

have compared many work�ow systems (e.g., Vistrail [SFC07], Kepler [ABJF06],

Taverna [ZGST08] and others [BCC+05, ZWF06, OCE+08]) and provenance ap-

proaches(e.g., [BD08,CJR08,HA08,MFF+08,CCBD06]). They found that most

work�ow systems keep coarse-grained representation of the provenance, and many

of them employ a simple provenance model, they called basic provenance model.

This model can generally be characterized as recording the inputs and outputs for

each execution of a processor occurring within a work�ow run [Ana10]. Concep-

tually, the trace of work�ow executions in such a model consists of (1) in-relations

in(dx, p); (2) out-relations out(p, dy), in which dx is an input and dy is an out-

put of the processor p for one execution. These relations describe the observable

events that occur during the work�ow execution, namely the computation of each

instance of each processor. These relations are used to infer data and process

dependencies. For example, a run of a simple work�ow (see Figure 3.1) is cap-

tured by a collection of all observable "in" and "out" events during the execution,

says in(dx, Pa), out(Pa, dy), in(dy, Pb), out(Pb, dz), implying that processor Pa was

Figure 3.1: A run of a simple work�ow

executed directly before processor Pb, and dy directly depended on dx while dz

indirectly depended on dx.

In most systems, each input and output of an execution of a processor can

be organized into complex structures: lists in Taverna [HWS+06], trees in Kepler
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[BML08], etc. Also, the processors may contain unobservable events, such as

�ltering input data as a subtask in a processor. But in the basic model described

above, we should ignore all the unobservable events and consider processors as

black-boxes.

As discussed in [ABML09,CW03,Ana10], this basic provenance model is suit-

able for representing data and process dependencies of scienti�c work�ows which

(1) produce new outputs from their inputs (i.e. they do not contain any function

that does not change the incoming data); (2) use all inputs to derive their outputs

(i.e. all outputs of a processor depend fully on all the inputs to the processor). In

all of the systems that we have studied, data dependencies are explicitly declared

rather than automatically generated from the module functionality speci�cation.

These common features are very useful for us to develop a general provenance

model to �t most of all these systems. To �t our �nal goal of rewriting scienti�c

work�ow structures which are from most work�ow systems, similarly to most sys-

tems, we conform our provenance model to the basic model [ABML09]. By nature,

the basic model is compatible with the Open Provenance Model (OPM) [OPM]

which is a standardized model. The in-relation in(dx, p) and out-relation out(p, dy)

simply have di�erent names in OPM: For in-relation in(dx, p), we say in OPM that

dx was used by processor p; and for out-relation out(p, dy), we say that dy was gen-

erated by processor p.

We aim to capture all the provenance information for a run to identify its

equivalent runs, searching for a simpler structure for a scienti�c work�ow. As the

in-relation corresponds to an input edge and the out-relation corresponds to an

output edge, the basic model can be adopted for representing the graph structure

of a run which contains provenance information. To capture the whole structure

of a run, we need a new representation model to organize all the in-relations and

out-relations. We thus continue investigating current approaches to �nd a method

that can meet this need.

As in the context of relational databases, provenance representations extend

the relational data model with annotations [CTV05], provenance and uncertainty

[ABS+06], and semirings of polynomials [GKT07]. In these approaches, we are

mainly interested in the concept of provenance semirings proposed by Green et al.

in [GKT07], in which every tuple of the database is annotated with an element of
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a provenance semiring, and annotations are propagated through query evaluation.

For example, semiring addition corresponds to alternative derivation of a tuple,

thus, the union of two relations corresponds to adding up the annotations of

tuples appearing in both relations. Similarly, multiplication corresponds to joint

derivation, thus, a tuple appearing in the result of a join will be annotated with the

product of the annotations of the two joined tuples. As it is suitable for searching

provenance structures and achieving the whole provenance information, which

�ts our aims, we thus take this concept into account and propose to represent

provenance information by regular expressions.

As a result, our approach takes bene�ts both from the basic model and the

concept of using regular expressions to represent provenance. In the next section,

we introduce our provenance model, which uses regular expressions to organize all

the in-relations and out-relations for representing provenance trace. The resulting

model will be suitable for de�ning the notion of provenance-equivalence.

3.2 Our Provenance Model

As discussed in the previous section, our aim is to capture the conventional

view of scienti�c work�ows, which considers simple task dependency over atomic

data and atomic (single invocation) processes. Our new provenance model is

naturally compatible with the "basic model" and OPM, and it is based on the

graph structures of the scienti�c work�ows.

In the following, we provide de�nitions of provenance.

Formally, let Grun = (Vrun, Erun) be a run, with its sets of labels for vertices

and edges. We consider regular expressions built on LV R ∪ LER, using operations

"+" and "·". Both operations are associative, "+" is commutative and "·" is right
distributive over "+". Operation "·" allows to track the succession of the tasks,

while "+" denotes the alternative data paths reaching a task. Indeed, the "+"

operation is commutative because several parallel input data can be considered in

any order and the "·" operation is not commutative, because the execution order

must be taken into account in our context [CBFJ12].

We distinguish immediate provenance to describe the last step of production

and deep provenance to describe the entire sequence of steps that produced the
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Figure 3.2: Two graph illustrating provenance related notions

data [BBDH08].

De�nition 3.1: Provenance of a data item.

Let u ∈ Vrun, u ̸= s(Grun), with Lvr(u) = ũ; f ∈ Erun one outgoing edge of u with

Ler(f) = d; ei ∈ Erun, 1 ≤ i ≤ p the incoming edges of u, with Ler(ei) = di.

The Immediate Provenance of f in Grun is de�ned by imProv : Erun →
(LV R ∪ LER,+, ·), with:

imProv(f) = ũ · (d1 + · · ·+ dp)

TheDeep Provenance of f in Grun is recursively de�ned by DProv : Erun →
(LV R ∪ LER,+, ·), with:

DProv(f) = ũ · (d1 ·DProv(e1) + · · ·+ dp ·DProv(ep))

The base case occurs when u = s(Grun) and f is an outgoing edge of s:

DProv(f) = imProv(f) = s̃

Example 3.2.1 Consider the graph Gr of Figure 3.2 (a). The immediate prove-

nance of data d5 �owing in edge e5 is given by task v, directly taking d2 and d3 as

its inputs. This information can be represented as: imProv(e5) = ṽ · (d2 + d3).

We also have:

DProv(e5) = ṽ · (d2 ·DProv(e2) + d3 ·DProv(e3)) = ṽ · (d2 · s̃+ d3 · [ũ · d1 · s̃])
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This formula expresses that the data d5 �owing in edge e5 has been obtained from

task v which took d2 and d3 as inputs, in which d2 is obtained directly from the

source s while d3 requires one more additional recursion step of u which took d1,

obtained by the source s, as input.

It may be interesting to only know the data involved in the production of a

given item regardless of the order in which they were consumed or which tasks

were executed.

De�nition 3.2.1 Given a run Grun = (Vrun, Erun), let d be the label of an edge f

in Grun. Let di be any edge label appearing in DProv(f), we say that d depends

on di.

It is important to note that we cannot directly use the set of di to evaluate the

equivalence of two provenances, for it may have di�erent dependencies among the

set of di, also the number of times of each data used is unknown. However, a

work�ow run graph Grun = (Vrun, Erun) also gives rise to a natural view, a data

dependency graph Gd = (Vd, Ed), in which vertices represent data production

and edges represent process dependencies, thus all the dependencies of each data

are visualized. Formally, we have:

De�nition 3.2.2 A data dependency graph Gd = (Vd, Ed) for a run Grun =

(Vrun, Erun) is a labeled multidag with Vd = {Ler(e)|e ∈ Erun} and Ed = {(u, v)|e1(
x, y), e2(y, z) ∈ Erun and Ler(e1) = u, Ler(e2) = v}, with labelled edges, using

the function Led : Ed → LV R, where LV R is the set of labels of the vertices

of Grun. We will note Lvr(y) the label of the edge e = (u, v) ∈ Ed such that

e1(x, y), e2(y, z) ∈ Erun and Ler(e1) = u, Ler(e2) = v, i.e. Led(e(u, v)) = Lvr(y).

Figure 3.3 shows the data dependency graphs for the runs in Figure 3.2. De-

pendency graphs are natural views of runs, they have the same data and process

dependencies. Of course, all the dependencies of data and processes can be di-

rectly obtained from a run itself, by considering in the run all the data items as

vertices and all the tasks as edges which link two data items together by taking

one data item as input and producing another one as output. Obviously, the two

runs have the same structures of data dependency graphs.
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Figure 3.3: Data dependency graphs for runs in Figure 3.2. (a) data dependency

graph for Gr; (b) data dependency graph for Gr′

We now introduce the fundamental concept of output provenance of a run, that

we de�ne as the history of the target of the work�ow. The history of a task is

closely linked to the provenance of data produced by a task. Formally:

De�nition 3.2.3 Let Grun = (Vrun, Erun) be a run andDProv the function de�n-

ing the Deep provenance onGrun. The history of u inGrun is given by the function

Hist : Vrun → (LV R ∪ LER,+, ·):
(i) if u = s(Grun), Hist(s) = ε (empty word)

(ii) if u ̸= s(Grun), let ei ∈ Erun be the incoming edges of u (1 ≤ i ≤ p), with

Ler(ei) = di: Hist(u) = d1 ·DProv(e1) + . . .+ dp ·DProv(ep).

Example 3.2.2 Consider again the graph Gr of Figure 3.2 (a): Hist(v) = d2 · s̃.

De�nition 3.2.4 Output Provenance of a Run. Given a run Grun, and its

history function Hist, its output provenance is de�ned by: OutProv(Grun) =

Hist(t(Grun)).

Example 3.2.3 Continuing with Figure 3.2 (a), and using associativity of "·"
and "+" we get OutProv(Gr) = (d4 · ũ · d1 · s̃) + (d5 · ṽ · (d3 · ũ · d1 · s̃ + d2 · s̃)).
The output provenance of (Gr) is the sum of the provenances of e4 and e5.

Remarks on Provenance expressions. Several equivalent expressions for

provenance are possible, due to associativity, commutativity and distributivity
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properties. As the deep provenance is recursively de�ned, the duplicated sub-

expressions in the provenance expression cannot be avoided, which will lead to

redundancy in the expression. As in Figure 3.2(a), OutProv(Gr) = (d4 · ũ ·d1 · s̃)+
(d5 · ṽ · (d3 · ũ · d1 · s̃+ d2 · s̃)). We can �nd that the name of d1 and the name of u

occur twice, like the sub-expression ũ ·d1 · s̃ and the name of "s̃" occur three times.
It means that it is possible to obtain an equivalent expression by following several

factoring rules to eliminate some redundancy of duplicated sub-expressions. Right

distributive can be used to provide a concise representation of provenance through

the following right factorization rule:

(α1 · z · β + α2 · z · β)→ (α1 + α2) · z · β

where α1, α2 and β are expressions built on vertex and edge labels using "+" and

"·" and z is a vertex label. E.g., we have OutProv(Gr) = (d4 · ũ · d1 + d5 · ṽ · (d3 ·
ũ · d1 + d2)) · s̃, which is more concise than the one above.

Note that given a run Grun and a vertex u, all the outgoing edges of u have the

same provenance. I.e. all the outputs of the same task have the same provenance,

as they were (recursively) obtained in the same way.

We now have all the concepts needed to de�ne the provenance-equivalence of

two executions that is the subject of the following subsection.

3.3 Provenance-equivalence

In this research, we aim to transform a work�ow structure to an SP structure

while ensuring that the transformed work�ow will work the same as the original

work�ow. So, how to identify whether two work�ow executions have the same

provenance structures becomes especially important. We thus introduce here the

notion of provenance-equivalence of two work�ow executions, which is de�ned

as follows.

De�nition 3.3.1 LetGr1, Gr2 be two runs. Gr1 andGr2 are provenance-equival

ent, noted Gr1
prov⇐⇒ Gr2, i� OutProv(Gr1) = OutProv(Gr2).

Example 3.3.1 Consider Graphs Gr (a) and G′r (b) of Figure 3.2. G′r has been

obtained from Gr by duplicating vertex u into vertex u′ with the same label. In
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the same way, edges e1 and e′1 have the same label, together with edges e4 and e′4.

OutProv(G′r) = [Ler(e
′
4) · Lvr(u

′) · Ler(e
′
1) · Lvr(s)] + [Ler(e5) · Lvr(v) · [Ler(e2) ·

Lvr(s) + Ler(e3) · Lvr(u) · Ler(e1) · Lvr(s)]].

As Lvr(u
′) = Lvr(u) = ũ, Ler(e

′
4) = Ler(e4) = d4 and Ler(e

′
1) = Ler(e1) = d1, we

have:

OutProv(G′r) = [d4 · ũ · d1 · s̃] + [d5 · ṽ · (d2 · s̃ + d3 · ũ · d1 · s̃)], which is exactly

OutProv(Gr).

Thus: OutProv(Gr) = OutProv(Gr′).

So, we say that Gr and G′r in Figure 3.2 are provenance-equivalent.

3.4 Conclusion and Discussion

3.4.1 Conclusion

We have introduced a model of provenance which is compatible with the Open

Provenance Model (OPM) [OPM]. In the OPM, an atomic data structure d is

called an artifact, an invocation of a processor p is called a process, an in-edge

e to a processor p with Ler(e) = d corresponds to an used edge d
usedL99 p, and an

out-edge f from a processor p with Ler(f) = d corresponds to a wasGeneratedBy

edge p
genByL99 d. Similarly, the above expressions built on vertex and edge labels

using "+" and "·" has several patterns:

(1) d · p we say in OPM that the artifact d wasGeneratedBy the process p.

(2) p · d we say in OPM that the process p used the artifact d.

(3) d1 · p · d2 we say in OPM that the artifact d1 was derived from the artifact

d2.

(4) p1 · d · p2 we say in OPM that the process p1 was triggered by the process p2.

Our model is currently useful for representing data and processing dependencies

of scienti�c work�ows consisting primarily of black-box transformations, which

means that the output of a processor should fully depend on all the inputs. Also

note that our model makes use of semirings with several constraints (e.g., "·" is not
commutative) for the execution order must be taken into account in our context.
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The regular expressions of provenance thus can well capture the whole structure

of the executions, which can be used to compare whether two runs are equivalent.

However, not all the scienti�c work�ow systems follow the assumption that

considers processors as black-boxes. For example, as discussed by Anand et al

in [ABML09], many systems (e.g., [MBZL09, MBZ+08, QF07]) and approaches

(e.g., [FCB07,KS07,MAA+05,Wal07]) support processors that make only small

changes or updates to incoming data, passing on some or all of their input to

downstream processors. This means that a processor may take a collection of

data values as inputs and produce a new collection as outputs, such as:

dx = [d1, d2, · · · , dx0], dy = [d1, d2, · · · , dy0]

In this case, dx0 is changed into dy0 and we assume that dy0 depends only on dx0.

In our model, dy should fully depend on dx, which may imply that not only dy0

depends on dx0, but also dy0 depends on the di. As a result, it may lead to a wrong

provenance meaning.

Furthermore, various patterns of data dependencies in collection-oriented ap-

proaches [CW03,MBK+08,MBZ+08,BML+06,QF07] can arise, so that not all parts

of the output depend on all parts of the input. Let us assume that a processor

receives input dx and produces output dy as follows:

dx = [dx1, dx2, · · · , dxp], dy = [dy1, dy2, · · · , dyp]

in which dxi is changed into dyi. Obviously, our model gives coarse-grained prove-

nance information rather than �ne-grained provenance information, which means

that our model currently cannot achieve data items inside a collection when the

collection is considered as a data structure in the scienti�c work�ow systems. Such

coarse-grained data dependency can achieve the correct provenance structure for

comparing two runs. However, when some special kinds of dependencies are com-

bined with this kind of data dependency, it will lead to a not precise enough

meaning of provenance. These special cases also have been mentioned by other

works [BML+06,Ana10], which include:

(a) processors having subtasks (such as �ltering input data) prior to applying a

scienti�c function, resulting in dependencies where each yi depends only on

some of the xj;
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(b) processors that process each input data in turn (take a collection as input),

resulting in dependencies where each yi depends on a single xj (j = i);

(c) processors that perform running aggregates over their input, resulting in

dependencies where each yi depends on the set {x1, x2, · · · , xi}; and

(d) processors that apply functions over their input using sliding windows of a

�xed size w, resulting in dependencies where each yi depends on the window

{xi−w, x2, · · · , xi}.

Our work currently considers the Taverna system. The next subsection pro-

vides details of several special "problematic" data dependencies that may occur

in Taverna. Some hints for extending the model are provided in 3.4.3.

3.4.2 Towards "problematic" data dependencies in Taverna

In Taverna, there exist two special processors named merge and split pro-

cessors. A merge processor only merges several data items into a collection, while

a split processor splits a collection of data items into single data [HWS+06]. These

kinds of processors do not perform any change on the input values and forward

the input values to their destinations. We argue that there may be a misleading

on the understanding of provenance information when these kinds of processors

appear in a work�ow.

Firstly, we consider Figure 3.4, its data dependency graph is shown in Figure

3.5. It is obvious that the sets of intermediate and �nal data produced by these

two runs are the same, which are d1, d2, · · · , d6. The only di�erence is that the run
G0 contains a merge processor which merges d1, d3 into a collection dx = [d1, d3],

then processor v takes this collection as input and produces another collection

dy = [d4, d5] as output. But in G1, processor v separately produces d4 and d5

in turn. Intuitively, for any processor, except the merge processor, in the two

runs, the immediate data and the �nal data produced are the same. And a merge

processor does not do any change to any data value. As a result, without the

merge processor, the two runs have the same meaning, i.e. they are provenance-

equivalent. However, when querying output provenance on the two runs, we will
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Figure 3.4: Example of a run which contains a merge processor (a) initial run

(dx = [d1, d3], dy = [d4, d5]); (b) an equivalent run of (a).

obtain:

OutProv(G0) = (dy · ṽ · dx · M̃ · (d1 + d3 · ũ · d2) + d6 · ũ · d2) · s̃

OutProv(G1) = (d4 · ṽ · d1 + (d5 · ṽ · d3 + d6) · ũ · d2) · s̃

It is obvious that OutProv(G1) ̸= OutProv(G0).

Figure 3.5 shows the data dependency graphs for the runs in Figure 3.4. In

Figure 3.5 (a), we can obtain that dy = [d4, d5] depends on d1 and d3. It will raise

a risk of misleading a meaning that d4 depends on d1 and d3 or d5 depends on d1

and d3 too, which is not correct since v produced d4 and d5 in turn when taking

d1 and d3 as inputs. However, in Figure 3.5 (b), all the data dependencies are

unambiguous.

Indeed, the two runs in Figure 3.4 are equivalent, because they produced the

same intermediate and �nal data. It implies that the output provenance expres-

sions of the two runs should be equivalent. Figure 3.4 also indicates that a run

like (a) can be transformed into (b), so that it will have an unambiguous prove-

nance meaning (�ne-grained provenance) following the representation of regular

expression. How to extend our model to obtain equivalent output provenance

expressions from G0 and G1 in Figure 3.4 currently remains an open question.
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Figure 3.5: Data dependency graphs of runs in Figure 3.4

Another kind of "problematic" task is the split processor which splits a col-

lection into single data items. As shown in Figure 3.6 (a), processor L is a split

processor which splits the collection dx = [d2, d3] into single data items d2 and

d3. The data dependency graphs are shown in Figure 3.7. The same as merge

processors, we can obtain:

Figure 3.6: Example of a run which contains a split processor (a) initial run

(dx = [d2, d3]); (b) an equivalent run of (a).

OutProv(G0) = (d5 · ũ · (d1 + d4 · x̃ · d2 · L̃ · dx) + d6 · ỹ · d3 · L̃ · dx

As shown in the data dependency graph Figure 3.7 (a), d6 depends on d3 which
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Figure 3.7: Data dependency graphs of graphs in Figure 3.6

depends on dx = [d2, d3], thus d6 depends on dx = [d2, d3]. However, d6 is derived

from d3. So, a split processor also leads to a misleading of provenance meaning.

Figure 3.6(b) is the equivalent run of (a), in which the immediate and �nal data

are the same because a split processor does not do any change to the data.

Furthermore, the combination of merge processors and split processors may

occur frequently in Taverna work�ows, as shown in �gure 3.8. In (a), it is clear

that the merge and split processors executed once while processor v executed

twice.

The misleading meaning happens because many work�ow systems support pro-

cessors that make small changes or no change to data values but reorganize the

data structures (e.g., generate a collection or split a collection). These processors

themselves (e.g., a �ltering processor, a merge processor, a split processor, etc.)

lead to "problematic" data dependencies for most current provenance models, and

this situation cannot be avoided in most work�ow systems. So, how to address

this problem remains an open question.

3.4.3 Possible solutions

Recently, Missier et al. [MPB10] have proposed a �ne-grained provenance

model for Taverna system which considers all the in-relations and out-relations of

each data value inside a collection of data values.
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Figure 3.8: Combination of a merge processor and a split processor. (a) initial

graph Gr (dx = [d3, d2], dy = [d5, d6]); (b) an equivalent graph of Gr

Inspired by Missier's model, we now propose one research hint for allowing

our approach to support the "problematic" data dependencies discussed in the

previous subsection.

We could extend our provenance model by considering the �ne-grained prove-

nance model proposed by Missier et al. to directly de�ned new regular expressions

for data values inside a collection.

The key problem of this solution is how to de�ne the regular expression used in

our provenance model to support �ne-grained provenance. Indeed, each data value

in a collection is deterministic according to the processor, so that we can de�ne

immediate provenance and deep provenance for each data value. In such a way, it

will be possible for our provenance model to support all these "problematic" data

dependencies in most work�ow systems.

As some work�ow systems include loop [BML08] or fork executions, the use of

the data dependency graph will also be considered as a possible direction to extend

our model to deal with a restricted form of loops in the speci�cations making runs

having fork-loop structures.
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3.5 Summary

In this chapter, we discussed the capacity of the "basic provenance model"

[ABML09] to accurately capture data dependencies in many computational sce-

narios and we introduced our provenance model which makes use of regular expres-

sions to organize all the in-relations and out-relations to capture the provenance

trace of a run. Our model is suitable for identifying the meaning of a work�ow and

to compare the provenance structures of two work�ows. Based on the underlying

model, we gave the notion of provenance-equivalence, which is the property used

to evaluate whether two work�ows will always execute the same way. In the end

of this chapter, we discussed several "problematic" data dependencies which are

caused by some special processors (such as a merge processor or a split processor).

Finally, two research hints for extending our model are provided.

Based on the works introduced in this chapter, two main works will be intro-

duced. Chapter 4 introduces approaches to transform a non-SP work�ow structure

into an SP work�ow structure while preserving provenance. Chapter 5 discusses

a new approach of rewriting scienti�c work�ows by removing some anti-patterns

without alerting the semantics of the work�ows.
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Chapter 2 has introduced the main de�nitions related to structures of scien-

ti�c work�ows. In particular, we have introduced the notion of SP-graphs which

structure is well-known to have good properties (complex graph operations be-

come less complex when SP-graphs are considered). Chapter 3 has introduced

a provenance model for scienti�c work�ows and have proposed the de�nition of

provenance-equivalent executions. The aim of this present chapter is to provide

an approach for transforming any DAG work�ow to an SP-structured work�ow

while ensuring that the transformation is provenance-equivalent.

Although strategies for rewriting non-SP graphs into SP graphs have been

studied in literature, two important questions arise:

1. Do they preserve provenance?

2. Is it possible to design automatic transformation techniques to rewrite non-

SP structures to SP structures while preserving provenance?

This chapter is organized as follows. We �rst introduce several scenarios to

give an in-depth explanation of our motivation for this work in section 4.1. After

that, section 4.2 gives the concept of measuring the distance from non-SP to SP,

which inspires some transformation techniques of rewriting non-SP graphs into

SP graphs. Then, in section 4.3, we analyze the graph rewriting approaches of

the literature by identifying whether they are provenance-preserving. In section

4.4, a detailed description of our full algorithm is carrying out, together with the
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discussion of complexity and soundness of the algorithm. Then we demonstrate the

feasibility of our approach on real scienti�c work�ows in section 4.5. We present

a tool which takes in a non-SP Taverna work�ow and provides an SP work�ow in

section 4.6. Finally, we summarize our work and a discussion of ongoing work is

given.

4.1 Motivating Scenarios

Interestingly, most of the business work�ow structures are captured by SP

structures [MGLRtH11]. Several approaches [BBDH08,GEvGCP09] have shown

that using SP work�ows allows to design more user-friendly work�ows and pro-

vide more e�cient execution settings. Others [BBD+09,CFS+06], in particular in

the domain of provenance information management, have even chosen to restrict

work�ow graphs to SP structures. And in the domain of work�ow scheduling,

many approaches [ZCHW11,MKK+05,BRGRM11] restrict work�ow graphs to SP

structures to solve some scheduling or mapping problems which can not work

on DAGs in polynomial time, such as mapping work�ows onto chip multiproces-

sors [BRGRM11]. Furthermore, in [QF07], Qin and Fahringer discussed several

scienti�c grid work�ow applications, which are all structured as SP graphs: the

WIEN2k work�ow performs electronic structure calculations of solids using density

functional theory [Bla], and the MeteoAG work�ow is a meteorology simulation

application [SQN+06], and the GRASIL work�ow calculates the spectral energy

distribution of galaxies [SGB+01]; this latter application has actually a fork-join

graph. A last example is the fMRI work�ow [ZWF+04], which is a cognitive

neuroscience application.

Motivated by the facts above, we would like to provide work�ows with series

parallel structures for achieving more e�cient solutions for work�ow operations

on graph structure (e.g., search for (sub)graphs, comparing graphs). This subsec-

tion provides scenarios to illustrate in more details the bene�ts of considering SP

structures for scienti�c work�ows.
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Figure 4.1: (a) Example of simple work�ow from Taverna, (b) graph structure of

the work�ow (non SP); (c) possible SP graph structure; (d) proposal of composite

vertices; (e) high-level graph obtained

4.1.1 Designing work�ows

As already motivated in the introduction of this manuscript, although scienti�c

work�ows have been introduced to help sharing and reusing in-silico experiments,

a recent study [SCBL12] showed that authors easily reuse their own work�ows

but use more rarely work�ows of a third party. One explanation is that the graph

structure of a scienti�c work�ow can be particularly complex, making the main

steps of the analysis di�cult to capture. Guiding developers to build work�ows

that are simple to understand is fundamentally important to improve work�ows

sharing and reuse. We believe that SP structures should be of great help in

this context. Intuitively, and from a purely visual standpoint, SP structures are

simple; SP graphs are layered, their edges do not intersect, making the main
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phases of the work�ow easier to distinguish. Consider the work�ow in Figure 4.1

(a) whose structure shown in Figure 4.1 (b) is not SP. It is relatively complex

to visually distinguish the main stages of the work�ow and build independent

subwork�ows. Figure 4.1 (d) shows the same work�ow in which task 1 has been

duplicated into 1 and 1′ and task 4 has been duplicated into 4 and 4′ (the data

catalogue is thus queried twice) making it being SP. First, restructured this way,

the work�ow is easier to understand. In particular, designing sub-work�ows (A,B)

can be performed more naturally. Second, the high level view of the work�ow

(where subwork�ows are black boxes as in Figure 4.1 (e)) is simple and modular

while the same type of construction on the original (non SP) work�ow would be

more complex due to the cross edge e(4, 5) which will lead to an edge imposed

between the sub-work�ows, making the sharing and reuse of the sub-work�ows

less easy. Note that the original structure of the work�ow was not far from an

SP structure. The bene�ts of exploiting the SP structures increases with the

complexity of the work�ow structures.

There are approaches dedicated to the design of sub-work�ows within work-

�ows. This is the case of ZOOM [BBDH08] that takes in information about the

tasks of interest to the user and builds automatically a user view providing a

concise representation of the work�ow with sub-work�ows focused on the tasks

of interest. The bene�t of considering SP structures has been shown in this con-

text too: [BDKR09] proved that computing the smallest user view (i.e. minimum

number of composite tasks) cannot be systematically reached for arbitrary DAGs

whereas it is the case when SP structures are considered.

4.1.2 Querying work�ows

Another way to design work�ows is to build on existing work�ows. The user can

query a work�ow warehouse to �nd work�ows having a particular structure or con-

taining a given pattern. The need for the user to be able to do this type of research

in warehouses has been expressed for several years [GFG+09, CBL11, GGB11]

but is still not considered in the work�ows warehouses today, as this type of

research is directly associated with problems known to be NP-hard (subgraph iso-

morphism) on conventional DAGs. SP structures have again a clear advantage:

�nding a subgraph isomorphic to a given graph can be treated in polynomial
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time on such structures [LS88]. Another example of the type of queries involv-

ing operations on graphs is the search for di�erences between work�ow struc-

tures [CFS+06,BBD+09]. Again the problem of calculating the di�erence of two

subgraphs of the same graph is NP-hard in the general case and polynomial for SP-

graphs [BBD+09]. The operation of querying structures or comparing structures

in scienti�c work�ows may can bene�t from SP structures.

4.1.3 Scheduling work�ows

Orthogonally, SP structures can also be particularly interesting in the con-

text of scheduling runs. In the broader �eld of scheduling tasks in programs,

SP structures have been exploited for decades [GEvGCP09], particularly be-

cause they have demonstrated their bene�ts for program analysis [LW98], cost

estimation [vG97], and e�ectiveness of planning [FLMB96]. Many current ap-

proaches [ZCHW11,MKK+05,BRGRM11] also show that more e�cient solutions

can be carried out if scienti�c work�ows have SP structures. With the development

of grid and cloud computing, running work�ows on multiple, distributed resources

is of growing importance. As a combination of series and parallel components,

SP-work�ows �t particularly well with MapReduce environments.

4.2 Distance from non-SP to SP graphs

Recall that our aim in this chapter is to propose approaches able to rewrite

any non-SP graph into an SP graph. Knowing the distance from non-SP to SP

graphs gives a better understanding of the basic concept of designing automatic

transformation techniques. In this section, we present formal methods, adapted

from [BKS92], to de�ne and measure the distance from a non-SP graph to an SP

graph. Such de�nitions are at the basis of the transformation techniques detailed

in the next section.

The distance from non-SP to an SP graph can be measured by the number of

induced forbidden subgraphs that the non-SP graph has. This distance has shown

to be a very important parameter of a graph. Many graph analysis problems

are NP-hard, and hence there is probably no polynomial-time algorithm for any of

them. But it has been shown that there exist feasible solutions for many of them if
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the graph is restricted to an SP graph [Nau95,BKS92]. Nevertheless, it is possible

to derive algorithms that are exponential in the distance from the graph to an

SP form, rather than in its size (the number of nodes) [BKS92]. Two complexity

measure methods have already been proposed to measure the number of forbidden

subgraphs in a graph, which are reductions and path expressions [Nau95,BKS92].

Because the path expression complexity and reduction complexity are related, we

introduce in this subsection the operations related to the reductions.

4.2.1 Vertex reduction

Any st-multidag G can be reduced to one single edge by means of three kinds

of reductions, the series reduction, parallel reduction, and the vertex reduction

[BKS92]. It has already been introduced in Chapter 2 that series and parallel

reductions can be used to eliminate all the SP components (series components

and parallel components) of the graph. After applying such transformations, only

vertices and edges associated with forbidden subgraphs remain. Then one can

use the operator of vertex reduction to eliminate the vertices which induced the

forbidden subgraphs. The vertex reductions can be divided into two classes, out-

vertex reduction and in-vertex reduction. In the �rst situation, the vertex

has only one input link and a collection of output links. In the second situation,

it substitutes a vertex with only one output link and a collection of input links.

The e�ect of vertex reduction in both cases, is shown in Figure 4.2.

Figure 4.2: (a) Out-vertex reduction; (b) In-vertex reduction

De�nition 4.2.1 Let G1 = (V1, E1) be an st-multidag whose vertices and edges

are labelled, by the functions L1vr : V1 → LV R, and L1er : E1 → LER. The vertex

reduction operators are de�ned as follow [CBFJ12]:
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(1) Let v ∈ V1 having a unique incoming edge e = (u, v) and k outgoing edges

f1 = (v, w1), · · · , fk = (v, wk). The operation of out-vertex reduction in

v replaces v and its edges {e, f1, ..., fk} by k new edges {g1, ..., gk} where
gi = (u,wi), for i ∈ [1, k]. G2 = (V2, E2) is such that V2 ⊂ V1, L2vr is the

restriction of L1vr on V2, L2er = L1er on E1 ∩ E2, and L2er(gi) = L1er(fi) ·
L1vr(v) · L1er(e). (cf. Figure 4.2 (a)).

(2) The operation op of in-vertex reduction can be de�ned analogously, con-

sidering node v with d+1(v) = 1 and d−1(v) > 1 (cf. Figure 4.2 (b)).

After applying all possible series-parallel reductions on all the vertices, any ver-

tex can be chosen to be reduced under the vertex reduction operation except the

source and the target of the graph. In the minimal forbidden subgraph, at least

one child (in-degree is one) of the source can be reduced by out-vertex reduction

and one child (out-degree is one) of the source can be reduced by in-vertex re-

duction. Thus, there are always vertices that can be reduced by vertex reduction.

After applying a vertex reduction, it is possible again to apply new series-parallel

reductions which should always be applied before any new vertex reduction.

The edges in an execution Gr indicate the data dependencies and the labels

of an edge represent data production. Recall that our aim is to transform graphs

while preserving provenance information. During each transformation we need to

keep track of the vertices and edges removed. Following in the de�nition of out-

vertex reduction, the label of a new edge is replaced by the data �ow information

consists of the eliminated vertex and its edges. In that way, after the graph being

reduced to one single edge, the label of the edge remained saves all the data �ow

information of Gr which related to the expression of the output provenance of the

execution graph.

Example 4.2.1 Consider Figure 4.3. Initially, each edge has a single label, and

after applying a vertex reduction operation on u, edges e1, e4 are replaced by g2 and

e1, e3 are replaced by g1. The label of g1 is replaced by the data �ow information

which consists of the labels of e3, e1 and u, which is d3 · u · d1. The label of g2 is
replaced by the labels of e4, e1 and u, which is d4 · u · d1. The same way for series

and parallel reductions according to their de�nitions. Finally, as in G4, the label
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Figure 4.3: Example of reduction operations applied to G0.

of g5 is d4 · u · d1 + d5 · v · (d2 + d3 · u · d1). This label is an expression which is

equal to OutProv(G0)\s.

Property 4.2.1 The following reduction operations are provenance-preserving.

More precisely, considering again de�nition 2.21 and de�nition 4.1:

(1) Series reduction: Hist(w)G1 = Hist(w)G2 ;

(2) Parallel reduction: Hist(w)G1 = Hist(w)G2 ;

(3) Out-Vertex reduction: Hist(wi)G1 = Hist(wi)G2 for all i ∈ [1, k].

This property comes from the fact that we store in the label of the remaining

edges the data �ow (in reverse order) the labels of the edges and vertices that have

been reduced.

Property 4.2.2 In-vertex reduction is not provenance-preserving.

A concrete counter-example will be provided in 4.3.1.

In the following, we will thus only consider out-vertex reduction.

4.2.2 Vertex duplication

The vertex reduction introduced above is directly related to an non-SP to

SP transformation, which will be detailed discussed in next section. We propose

to introduce new operations on vertices, namely vertex duplication. As shown

in Figure 4.4, the vertex duplication creates multiple occurrences of the vertex.
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If series reductions are applied to the occurrences, the result is thus equal to the

graph obtained by vertex reduction. As the duplication only copies the vertices and

edges, no additional data dependence will be added to the graph, and once a vertex

duplication operation has been applied to a reduction vertex, the "problematic"

subgraph disappears.

Formally, the de�nition of vertex duplications are given as follow [CBFJ12]:

Figure 4.4: (a) Out-vertex duplication; (b) In-vertex duplication

De�nition 4.2.2 Let G1 = (V1, E1) be an st-multidag with label functions L1vr

and L1er. Let v ∈ V1 having a single incoming edge e = (u, v) and k outgoing

edges f1 = (v, w1), · · · , fk = (v, wk).

(1) The out-vertex duplication of v transforms G1 into G2 = (V2, E2), whose

vertices and edges are labeled by L2vr : V2 → LV R and L2er : E2 →
(LV R∪LER,+, ·), such that V2 is the union of V1 and the set of new vertices

v1, ..., vk−1, which are copies of vertex v. L2vr is an extension of L1vr on V2,

which matches with L1vr on V1 ∩ V2, L2vr(vi) = L1vr(v) for all i ∈ [1, k − 1].

E2 = E1 ∪ {e1, ..., ek−1}, with ei = (u, vi) for all i ∈ [1, k − 1], and replacing

edges {f2, ..., fk} by new edges {g2, ..., gk} with gi = (vi−1, wi) for i ∈ [2, k].

L2er = L1er on E1 ∩ E2, L2er(ei−1) = L1er(e), and L2er(gi) = L1er(fi) for

i ∈ [2, k]. (cf. Figure 4.4 (a))

(2) The operation of in-vertex duplication can be de�ned analogously, con-

sidering node v with d+1(v) = 1 and d−1(v) > 1. So that, V2 is the union

of V1 and the set of new vertices v1, ..., vk−1, which are copies of vertex v.

L2vr is an extension of L1vr on V2, which matches with L1vr on V1 ∩ V2,
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L2vr(vi) = L1vr(v) for all i ∈ [1, k − 1]. E2 = E1 ∪ {f1, ..., fk−1}, with
fi = (vi, w) for all i ∈ [1, k − 1], and replacing edges {e2, ..., ek} by new

edges {g2, ..., gk} with gi = (ui−1, vi) for i ∈ [2, k]. L2er = L1er on E1 ∩ E2,

L2er(fi−1) = L1er(f), and L2er(gi) = L1er(ei−1) for i ∈ [2, k].(cf. Figure 4.4

(b)).

Property 4.2.3 The operation of out-vertex duplication preserves prove-

nance.

More precisely, with the notations above, we have:

HistG1(wi) = HistG2(wi) for all i ∈ [1, k] (cf. Figure 4.4 (a)).

Property 4.2.4 The operation of in-vertex duplication does not preserve

provenance.

A concrete counter-example will be provided in 4.3.1.

4.2.3 Complexity measures

As said in section 4.2.1, the number of times the vertex reduction operations

are used can give an idea of the distance from a non-SP to an SP structure.

Intuitively, the highest number of times vertex reductions are used the farthest

from an SP structure it is.

De�nition 4.2.3 The reduction complexity of a graph G, denoted by µ(G),

is the minimal number of vertex reductions su�cient(along with series and parallel

reductions) to reduce G to a BSP graph. (This de�nition comes from [BKS92])

De�nition 4.2.4 The sequence of µ(G) vertices (v1, v2, · · · , vc) that reduce the
graph G to a BSP graph is called reduction sequence.

As was shown by Bein, Kamburowsky and Stallman in [BKS92], it is possible

to compute µ(G) and reduction sequence in polynomial time complexity. As a

result, the maximum distance of a graph to an SP form is limited by the number

of vertices:

µ(G) ≤ n− 3
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4.3 Graph rewriting problems (non-SP to SP)

In this section, we investigate the basis of full transformation methods to

rewrite an non-SP graph into an SP graph.

4.3.1 Review of existing approaches

We are interested in methods of transforming non-SP graphs to SP forms

that keep the provenance information of the original graph. Additionally, we will

have a special interest in reducing the number of duplicated vertices. Several

transformation techniques have been found in literature, which are all based on

adding dependencies, while another strategy based on vertex duplication is possible

too. These two di�erent approaches are detailed as follow.

1. Adding dependencies

The �rst set of strategies found in the literature to rewrite non-SP graphs into

SP graphs are based on the concept of adding dependencies. The approach of Es-

cribano [Esc03] is part of such approaches and based on the notion of (re)synchronization.

Informally, the idea is "to layer" the graph by adding arti�cial vertices (and edges),

which act as synchronization tasks. Three main synchronization strategies (see

Figure 4.5) are possible. From the forbidden graph in (a), the operations of up-

, down- and across-synchronization provide respectively graphs (b), (c) and (d).

In (b), the edges e(u, v) and e(v, t) are added to forward data value d4. In (c),

edges e(s, u) and e(u, v) are added. And in (d), one zero loaded vertex w is added,

which forwards data values d1, d2, d4 to the right destination.

Does it provide an SP graph? Yes. Consider the up-synchronization of

Figure 4.5(b). Two parallel reductions remove the double edges between u and v

and between v and y. Then one series reduction removing vertex u, followed by

one parallel reduction between x and v, and a series reduction on v �nally provide

the BSP graph. The same for (c) and (d), when applying series and parallel

reductions on these graphs, �nally, we will obviously obtain two BSP. As a result,

(b),(c) and (d) all can provide an SP graph.

Does it preserve provenance? No. If the provenance is preserved, then no

data dependency should be added or lost. However, in case (b), d5 depends on d4
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Figure 4.5: Resynchronization. (a) forbidden subgraph; (b) up-synchronization;

(c) down-synchronization; (d) across-synchronization.

which is never the case in (a) (d5 depends on d2 and d3, not d4); In (c), d3 and

d4 all depend on d2 which is never the case in (a). In case (d), the outputs of the

added vertex w fully depend on all the incoming data, so that d5 depends on all

the incoming data of w, which is not the case in (a).

Note that in the strategy of across-synchronization, we can add a new data for-

ward vertex which only forward data values to the right processors. As discussed

in chapter 3, this kind of processor will lead to an unclear data dependency, which

will lead to a di�erent provenance meaning. And this pattern is currently unsup-

ported by our provenance model. So we don't take this approach into account.

2. Duplication of vertex

Another family of approaches to transform non-SP to SP graphs is based on

vertex duplication. The main interest of this kind of transformation is that it does

not add any additional dependency to any task of the original graph, because it

only copies the task and its original dependency. However, our aim of preserving

provenance raises the following questions which is related to transforming an non-

SP graph into an SP graph.

1) Do duplication operations provide an SP graph?

Yes. In Figure 4.6 (b), two series reductions remove the vertices v and v′, then

one parallel removes the double edges between u and t. Thus, one parallel can

be applied to the edges between s and t, followed by two series reductions on u

and v. Finally, it is a BSP. The same for (c), when applying series and parallel on



52
Chapter 4. Rewriting scienti�c work�ows while preserving

provenance

Figure 4.6: From the (a) Forbidden graph, use of (b) in-Vertex Duplication and

(c) out-Vertex Duplication.

Figure 4.7: Data dependency graphs for runs in Figure 4.6.

the graph, �nally we obtain a BSP. As a result, we obtain two BSP. So, the two

rewritten subgraphs are SP.

2) Does in-vertex duplication preserve provenance?

No (c.f. property 4.4). Consider Figure 4.6 (b). The deep provenance of e5

has changed in (b): it does not involve data d2 any more. The major problem

is that one input of task v have been removed so that the task cannot deliver

results. Its data dependency graph in Figure 4.7 (b) shows that the data value of

d5 disappeared, but two new data d′5 and d′′5 are produced. It is obviously graph

(a) and (b) in Figure 4.6 are not provenance-equivalent.

3) Does out-vertex duplication preserve provenance?

Yes (c.f. property 4.3). As shown in Figure 4.6 (c), the task u is duplicated

into u′ and each copy receives the same input (u is not modi�ed). As the tasks



4.3. Graph rewriting problems (non-SP to SP) 53

are deterministic, they thus provide the same output. Also, it is clear in Figure

4.7 (a) and (c) have the same structure (same vertices and same edges). So, they

are provenance-equivalent.

We have now provenance-preserving operations of reductions able to locally

provide SP structures. The rest of this subsection aims at providing a general

provenance-preserving approach to transform a non-SP to SP structure while min-

imizing the number of duplicated vertices. The next subsection will thus introduce

notions useful to choose the order of reduction operations to perform.

4.3.2 Compositions of forbidden graphs

Transforming a non-SP graph G to an SP graph requires eliminating all the for-

bidden subgraphs in graph G. When a graph contains several forbidden subgraphs,

these subgraphs may be composed. In [BKS92] and [Esc03], three composed for-

bidden subgraphs are studied to decide which reduction vertices must be chosen to

get a shorter reduction sequence. The reduction sequences of these compositions

are based on both in-vertex and out-vertex reductions.

However, in the present work, we only consider out-vertex duplication which is

provenance-preserving (contrary to in-vertex duplication which is not). We thus

summarized three compositions of forbidden subgraphs, which are di�erent from

the compositions introduced in [BKS92] and [Esc03], according to the reduction

vertices to which we can apply out-vertex reductions. The impact of the order of

reduction operations chosen to perform for each composition is then discussed.

De�nition 4.3.1 If a forbidden subgraph G contains a reduction vertex v, we

say that G is induced by v.

Several forbidden subgraphs can be induced by one reduction vertex. (cf. Figure

4.8)

There are two situations where a graph contains two forbidden subgraphs G1

and G2 : (1) G1∩G2 = ∅; (2) G1∩G2 ̸= ∅. It is obvious that if G1∩G2 = ∅, G1 will

never a�ect G2, and any order of reduction operations will give the same result.

So, we introduce here the second situation by identifying three compositions.

Single non-SP composition: There exist several similar forbidden sub-

graphs, which are induced by one single reduction vertex.
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Figure 4.8: Two forbidden subgraphs induced by one reduction vertex. (a) graph

with one reduction vertex u; (b) one forbidden subgraph induced by u; (c) another

forbidden subgraph induced by u.

In the single composition (cf. Figure 4.8), there is only one reduction vertex

which is related to several forbidden subgraphs. The solution for eliminating these

kinds of compositions is to duplicate the reduction vertex following one reduction

operation. So, the forbidden subgraphs will never a�ect each other.

Series non-SP composition: There exist several similar forbidden sub-

graphs, in which the reduction vertices (Out-vertex reduction) form a series com-

position.

Three kinds of series non-SP compositions are possible.

Let v1, v2 be two reduction vertices of graph G, G1 be a forbidden subgraph

induced by v1 and G2 be a subgraph induced by v2. For the sake of readability,

labels are omitted.

(1)path p(v1, v2) ⊂ (G1 ∩G2) (c.f. Figure 4.9 (a)).

Example of series non-SP composition (1) is shown in Figure 4.9 (a). In this

composition, G1 and G2 are induced by v1 and v2. Although v1 appears in the

path p(s, v2), the elimination of the two forbidden subgraphs do not a�ect each

other. It means that the duplication operations following any reduction sequence

will give the same result.

(2)G1 ⊂ G2 (c.f. Figure 4.10 (a)).
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Figure 4.9: Solutions for graphs homeomorphic to Series-non-SP composition (1).

(a) a non-SP graph with reduction vertices v1 and v2; (b) SP transformation of the

forbidden subgraph induced by v1 in (a); (c) SP transformation of the forbidden

subgraph induced by v2; (d) SP solution for (a).

In series composition (2), as shown in Figure 4.10 (a), G1 appears in the

subgraph which forms all the paths from s to v2. In such a case, if we duplicate v2

�rst as in Figure 4.10 (c), and then duplicate v1, following the reduction sequence

v2, v1, the whole forbidden subgraph G1 may be duplicated, which will make the

result unreliable, because it copied a non-SP problem. As a result, in this kind

of compositions, the reduction sequence may a�ect the result, which should be

carefully considered.

(3)v1 = s(G2) (c.f. Figure 4.11 (a)).

In series composition (3), only one forbidden subgraph can be found. There are

two solutions for this kind of compositions, as shown in Figure 4.11 (b) and (c). In

(b), vertices v1 and v2 both are duplicated following the reduction sequence v1, v2.

But in (c), only v2 is duplicated and �nally the graph becomes an SP graph. It

implies that the reduction sequence also may a�ect the redundancy of duplicated

vertices in the rewritten graphs. It is obvious that (c) has less vertices than (a).

Parallel non-SP composition:There exist several similar forbidden sub-

graphs, in which the reduction vertices(out-vertex reduction) form a parallel com-

position.

As shown in Figure 4.12 (a), u1 and u2 form a parallel composition and the
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Figure 4.10: Solutions for graphs homeomorphic to Series-non-SP composition (2).

(a) a non-SP graph with reduction vertices v1 and v2; (b) SP transformation of the

forbidden subgraph induced by v1 in (a); (c) SP transformation of the forbidden

subgraph induced by v2; (d) SP solution for (a). For the sake of readability, we

give the same name for the duplicated vertices in (d).

forbidden subgraphs induced by them will never a�ect each other. Figure 4.12

(b) is the SP graph obtained by duplicating vertex u1 in the forbidden subgraph

induced by u1 and (c) is the SP graph obtained from the forbidden subgraph

induced by u2. The forbidden subgraphs can be eliminated by duplicating path

p(s, u1) and p(s, u2). As p(s, u1) ∩ p(s, u2) = ∅, so which vertices are duplicated

�rst is not important.

For simple combinations of forbidden subgraphs (single composition or par-

allel composition), any reduction sequence may be appropriate. But for some

series compositions, the reduction sequence may a�ect the number of duplicated

vertices and even create new reduction vertices. Next section will give an in-

depth description of our full algorithm, together with the discussion of choosing a

shorter reduction sequence, according to which the transformation will duplicate

less vertices.
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Figure 4.11: Solutions for graphs homeomorphic to Series-non-SP composition (3).

(a) a non-SP graph with reduction vertices v1 and v2; (b) one SP solution for (a);

(d) another SP solution for (a).

4.4 SPFlow: a new provenance-equivalent rewrit-

ing algorithm for work�ows

This section gives the description of the SPFlow algorithm, a full algorithm

based on out-vertex duplication discussed in section 4.3.1, which can be used to

rewrite any non-SP work�ow to an SP structure while preserving provenance.

First, we introduce SPFlow. Then, we illustrate the way SPFlow works with an

example. Finally, the complexity and the soundness of SPFlow are discussed.

4.4.1 Principle of SPFlow

We present here our full "SP-ization" algorithm based on vertex duplication,

which rewrites a non-SP graph G into a new SP graph, called SPG obtained from

G by duplicating vertices of G, while ensuring that G and SPG are provenance-

equivalent. As discussed in section 4.2, vertex duplication depends on vertex

reduction. Two graphs will be used, one is for vertex reduction which is called

Gred and the other (SPG) is for vertex duplication, to eliminate the forbidden

subgraphs. In our approach, we are interesting in getting a reduction sequence,

so that each reduction operation never creates new forbidden subgraphs. For this
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Figure 4.12: Solutions for graphs homeomorphic to Parallel-non-SP composition.

aim, we use a top-down method to eliminate forbidden subgraphs. When all the

forbidden subgraphs are eliminated, �nally, Gred will be BSP while the SPG will

be an SP-graph. SPG is the SP graph rewritten from the transformation of the

original graph.

This subsection �rst introduces the notion of duplicated subgraph which is

related to a vertex duplication operation. Then the reduction sequence which

a�ects the redundancy of duplicated vertices will be studied. One approach based

on the factorization rule discussed in Chapter 2 is then proposed to reduce the

redundancy during each parallel reduction. Finally, the algorithm description is

given.

4.4.1.1 Duplicated subgraph

The duplication step on SPG is based on the vertex reduction on Gred. Each

step of vertex reduction operation will trigger a vertex duplication operation. Each

edge in Gred is related to a subgraph in SPG. The subgraph in SPG induced by

the implicit duplicated edge during the vertex reduction is called duplicated sub-

graph. Example of duplicated subgraph is shown in Figure 4.13, in which (a) is

a non-SP graph with many series and parallel components, (b) is the maximal re-

duced graph of (a), and (c) is the duplicated subgraph from (a) which corresponds

to the edge e(s, v) in (b).

Property 4.4.1 A duplicated subgraph is an SP graph.
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Proof: A duplicated subgraph corresponds to an edge in Gred, i.e. the duplicated

subgraph can be reduced to an edge by applying a maximal reduction operation to

it. According to de�nition 2.2, the duplicated subgraph is obviously an SP graph.

Figure 4.13: Example of duplicated subgraphs. (a)SPG; (b)Gred of SPG;

(c)duplicated subgraph from SPG induced by edge e(s, v) in Gred.

A duplicated subgraph corresponds to one duplication operation. As shown in

Figure 4.13, the duplicated subgraph (c.f. (c)) can be obtained by retrieving all

the paths in SPG′, which is a copy of SPG with all the edges reversed, from the

reduction vertex to the source of the edge in Gred which ends with the reduction

vertex.

4.4.1.2 Reduction sequence

As discussed in section 4.3.2, the reduction sequence will a�ect the result of the

non-SP to SP transformation. This subsection gives a discussion on how to choose

a reduction sequence that will lead to a duplicated graph with less redundancy of

duplicated vertices.

In Figure 4.14, graph G0 is a graph in which no series or parallel reduction

can be applied. Vertices a,u,c,x are reduction vertices in G0. Di�erent SP graphs

obtained by vertex duplication following di�erent reduction sequences are shown

in Figure 4.14 (G1, G2). The reduction sequence can be a,u,c,x or u,x etc. G1

obviously has more duplicated vertices than G2. When comparing G1 to G2, it
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is not di�cult to �nd that vertices a and c do not need to be duplicated. To

distinguish the class of vertices which have the same situation as vertices a and c

in G0, our algorithm makes use of the notion of autonomous subgraph [BKS92].

Figure 4.14: Graphs obtained by vertex duplication following di�erent reduction

sequences (reduction sequence on G1: a, u, c, x; reduction sequence on G2: u, x).

Intuitively, the autonomous subgraphs allow to restrict the initial graph to

smaller components of it in order to make duplications of vertices, without inter-

action with the rest of the graph, since no edge comes in or goes out from the

autonomous subgraph.

De�nition 4.4.1 [BKS92] Let G be an st-multidag. We note G[v, w] a subdag

of G with source v and sink w. G(v, w) is an autonomous subgraph of G if it

satis�es the following property: For any path P from s to t in G, the set of edges

in P ∩G(v, w) is empty or forms a path from v to w. Note that v can be s, and w

can be t or both, but G(v, w) cannot be the unique edge or the whole graph G. If

G(v, w) is an autonomous subgraph of G, we call (v,w) a separation pair of G.

A decomposition of G into autonomous subgraphs can be obtained in linear

time as proposed by Bein et al. in [BKS92]. In the following, we note G[v, w] the

subgraph of G which contains all the vertices and edges of all the paths from v to

w in G.

De�nition 4.4.2 An autonomous subgraph Gau is minimal, i� d+(s(Gau)) > 1

and d−(t(Gau)) > 1.
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Example 4.4.1 In Figure 4.14, G0 has several autonomous subgraphs such as

G[a, b], G[c, d] and G[s, b] whose separation pairs are (a, b), (c, d) and (s, b). As

G[s, b] and G[a, b] have the same forbidden subgraphs, we only consider the mini-

mal autonomous subgraphs for our approach. In this case, G[a, b] and G[c, d] are

the minimal autonomous subgraphs, and G[s, b], G[a, t], G[s, d], G[c, t] are not the

minimal ones.

An autonomous subgraph G[v, w], which is a non-SP graph, can be reduced

into a single edge e(v, w), following vertex reduction operations. The reduction

vertices v and w may disappear after all the other reduction vertices have been

reduced. If v and w are reduction vertices, they may no longer be reduction vertices

when all the reduction vertices within the autonomous subgraph are reduced. This

implies that the reduction vertices included into an autonomous subgraph should

be eliminated �rst and then the autonomous subgraph can become SP and be

represented as one single edge in Gred. Following this process, we can obtain one

shorter reduction sequence which will lead to a transformation with less duplicated

vertices.

To assure that reduction operations never create any new forbidden subgraphs,

we constrain the vertex reduction operation to only start from the source of the

maximal reduced graph Gred. In other words, we always start from the source to

choose a successor v of s(Gred) which is a reduction vertex in order to eliminate for-

bidden subgraphs. Because the duplicated subgraph induced by edge e(s(Gred), v)

is an SP graph(property 4.2), we can ensure that no reduction vertex remains in

the duplicated subgraph and no non-SP subgraph will be copied.

Property 4.4.2 Let G be an non-SP graph, and let us apply maximal series-

parallel reductions on G until no series and parallel reduction can be applied.

There exists at least one successor v of s(G) which is a reduction vertex

with d−(v) = 1 and d+(v) > 1.

Proof: Let s = s(G), Succ(s) = {v1, v2, · · · , vk} be the set of successors of s, vi ̸=
t(G). Assume that all the successors of s have an in-degree greater than one, with

d−(vi) = n > 1, vi ∈ Succ(s). If s and its out going edges are removed, new

in-degree of vi is d−(vi) = n − 1 ≥ 1, which means that there does not exist any

vertex with in-degree equals to zero. There does not exist any topological order
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for graph G, which means there exist circles in G. However, G is an st-multidag.

This contradiction shows that there must exist at least one successor v of s with

d−(v) = 1. For v, we have d+(v) > 1, or it should be reduced by series reduction.

So, we can conclude that there exists at least one successor of s with in-degree

one and out-degree greater than one.

Any autonomous subgraph should be considered as a new st-multidag and

should be reduced �rst by reduction operations, and then go back to Gred to �nd

another reduction vertex.

4.4.1.3 Reducing redundancy of duplicated vertices

Although we can achieve a reduction sequence which can lead to a transforma-

tion with less duplicated vertices by introducing the notion of autonomous sub-

graph, the risk of redundancy still exists. As shown in Figure 4.15, G0 is a graph

without any autonomous subgraph, but can be transformed into two di�erent

graphs by vertex duplication following di�erent reduction sequences. As discussed

in section 4.3, vertex duplication approach is provenance-preserving. So two runs

which have the same graph structure as G1 and G2 are provenance-equivalent. But

G2 obviously has less vertices than G1, because G2 follows a minimal reduction

sequence and �nally vertex a no longer be a reduction vertex. As well-studied,

no technique for providing such a minimal reduction sequence has been proposed,

and it is di�cult to automatically obtain such a sequence. To solve this problem,

we remind here the factorization rule which we have proposed in chapter 2. The

idea is to eliminate the unnecessary vertices following the factorization rule. For

example, in G1, the copies of vertex a highlighted in yellow can be merged and

�nally we can obtain another graph G′1 equal to G2.

As discussed in 3.2, only right distributivity can be used to provide a concise

representation of provenance for the execution order is important in the work-

�ow. Corresponding to the factorization rule for the provenance expression, the

factorization rule for graphs is shown in Figure 4.16.

To ensure that the factorization never creates new non-SP subgraphs, our

algorithm only performs the factorization operation during each parallel reduction.

Once a parallel reduction is applied to Gred, the algorithm will check redundancy

of vertices in the duplicated subgraphs induced by the edges which are reduced
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Figure 4.15: G1 and G2 are two solutions of rewritting G0, where G0 does not

contain any autonomous subgraph. (reduction sequence of G1: a, u, v; reduction

sequence of G2: v, u).

Figure 4.16: Factorization rule for graphs.

in Gred. Then, the same vertices will be merged, following the factorization rule

shown in Figure 4.16.

We now have presented all the concepts used in the algorithm that we describe

in the next subsection.

4.4.1.4 Algorithm description

Principle of the algorithm: Out-vertex duplication algorithm SPFlow takes

in the graph G and outputs the two graphs Gred and SPG. Gred is obtained by

successive reductions of G (including out-vertex reductions) until it is the basic
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graph BSP . In SPG some vertices of G are duplicated, and these duplications are

determined from the out-vertex reductions made in Gred. The algorithm will use

the procedureMaxRed which takes in and out a graph G and applies iteratively on

G series and parallel reductions until such reductions cannot be applied anymore.

Vertex duplication algorithm will also use (step 2.ii.3) the procedure Simpl that

takes in and out SPG and merges some of its subgraphs using the factorization

rule(cf. Figure 4.16) discussed above each time a parallel reduction performed on

Gred.

Initialization

(i) SPG← G; s← s(G); t← t(G)

(ii) Gred ←MaxRed(G)

(iii) Split Gred into autonomous subgraphs.

(iv) Call SPFlow(G,Gred, SPG, s, t).

Procedure SPFlow (IN: G; IN/OUT: Gred; IN/OUT: SPG; IN: u, p)

While Gred ̸= BSP do

Step 1 Choose in Gred a vertex v successor of u in Gred to which an out-vertex

reduction can be applied (cf. Figure 4.2 (b)).

Step 2

(i) v is the source of an autonomous subgraph of sink w ∈ Gred. Call SPFlow

(G, Gred, SPG, v,w), meaning that we consider Gred[v, w] instead of Gred (v is

considered here as the new source of the reduced graph).

(ii) v is not the source of one autonomous subgraph.

1) Duplicate in SPG vertex v k−1 times, if v has k successors in Gred. In this du-

plication, instead of duplicating edge e of Gred, duplicate the subgraph SPG[u, v]

into SPG[u, v1], ..., SPG[u, vk−1]. Similarly, instead of considering edges fi of Gred,

consider the subgraphs SPG[v, wi], which become SPG[v1, w2], ..., SPG[vk−1, wk].

2) Apply out-vertex reduction to v in Gred.

3) Gred ←MaxRed(Gred); SPG← Simpl(SPG)

End While

End SPFlow
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4.4.2 Example of use of SPFlow

We demonstrate the way our algorithm works with an example graph shown

in Figure 4.17(a). Its maximal reduced graph Gred is shown in Figure 4.17(b)

and (c) shown the autonomous subgraphs of (b). Our algorithm will �rst take

the autonomous subgraphs into account and execute procedure SPFlow on each

autonomous subgraph in turn. When all the autonomous subgraphs are reduced

into a single edge in Gred, procedure SPFlow then executes on Gred. Finally, Gred

becomes BSP while SPG be SP.

Figure 4.17: Example of non-SP graph (a) and its maximal reduced graph (b)

which is split into three autonomous subgraphs (c).

Figure 4.18 illustrates one step of the algorithm for eliminating the forbidden

subgraph in autonomous subgraph G[a, x].

4.4.3 Complexity

As expected, SPFlow has an exponential complexity in the worst case. The

worst case occurs in the iterated forbidden graph IFG [BKS92] that has 2n +

2 vertices (see Figure 4.19). We cannot get BSP with less than 2n − 1 out-

vertex reductions from IFG. This number is the maximal number vertex reductions

established by [BKS92] for any graph of 2n + 2 vertices, also called the factoring

complexity of the graph. The SPFlow algorithm will build the new SP graph SPG
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Figure 4.18: Example of one execution step of SPFlow where G[s, x] has already

been transformed, giving the edge (s, x) in Gred after vertex reduction on u and

providing SPG1[s, x] within SPG1, after vertex duplication of u. The algorithm

then considers x as a successor of s in Gred. As (x, t) is a separation pair, it calls

again SPFlow considering x as source. Vertex y is the successor of x in Gred to

which a vertex reduction is applied (in Gred). Duplication of y in SPG1 then leads

to SPG2. For the sake of readability, labels are omitted.

so that the edge outgoing from s(IFG) with in-degree of 1 (edge from s to y1 will

be duplicated an exponential number of times).

Proof:

G is irreducible. There is a single reduction vertex, that is y1. We perform out-

vertex reduction on y1. Then we can perform out-vertex reduction on the single

possible reduction vertex x1. We iterate the process. Assume that we have reduced

y1, x1, y2, x2, ..., yi−1, xi−1. Let us call αi the new label of the edge from s to xi and

βi the label of the new edge from s to yi (cf. Figure 4.19 (b)).

Base case: α1 = a1 and β1 = b1

Induction case: for 0 < i < n − 1, after reduction of vertices y1, x1, · · · , yi (cf.
Figure 4.19 (c)) and then reduction of vertex xi (cf Figure 4.19 (d)), we get :

αi+1 = (αi + βi · ci) · ai1 (label of the new edge from s to xi+1)

βi+1 = ((αi + βi · ci) · di+1) + βi · bi+1 (label of the new edge from s to yi+1.)

In the following, we focus on the duplication of the edge from s to y1 in the
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Figure 4.19: Example of iterated forbidden graph (IFG).

initial graph G. For it we count the number of occurrences of its label b1 in the

�nal label of the edge from s to yn. Let us call ui the number of occurrences of

b1 in αi, and vi the number of occurrences of b1 in βi. We get two recurrence

relations:

(1) ui+1 = ui + vi, for 2 ≤ i ≤ n− 1

(2) vi+1 = ui + 2vi, for 1 ≤ i ≤ n− 1,

with v1 = 1 and u1 = 0, u2 = 1. Solving these equations, we get:

vn = (γ1 ∗ ( (3+
√
5)

2
)n + γ2 ∗ ( (3−

√
5)

2
)n) with γ1 = 0.28 and γ2 = 0.72.

For example, if n = 20 (resp. n = 50), this edge will be duplicated more than

107 (resp. 1,020) times. The next section of experimental study will show that on

real work�ows, the complexity is reasonable.
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4.4.4 Soundness of vertex duplication algorithm

As a central result we get that the main output of SPFlow is SP and is

provenance-equivalent to the non-SP graph taken as input. Additionally, the out-

put provenance of the initial graph is directly obtained from the �nal label of the

unique edge of Gred.

More precisely, we establish the following properties by induction on the num-

ber of reduction steps of Gred in the algorithm.

Property 4.4.3 (i) At any step of the algorithm: MaxRed(Gred) = MaxRed(SPG).

(ii) For each vertex w ofGred in SPG andG: HistSPG(w)=HistG(w)=HistGred
(w).

Indeed, to each edge (u, v) of Gred correspond a subgraph SPG[u, v] which is SP

and to the vertex reduction in Gred corresponds a duplication in SPG

Property 4.4.4 For all vertex w of Gred in SPG and in G we have: Hist(w)SPG

= Hist(w)G=Hist(w)Gred
.

This property is a consequence of the properties of reduction operations in section

2.3 and 4.2.

Theorem 4.4.1 At the end of the SPFlow algorithm:

(1) SPG is an SP graph ;

(2) OutProv(G) = OutProv(SPG) ;

(3) let f be the unique edge from s to t in Gred, then OutProv(G)= L2er(f) · s̃.

Sketch of proof:

1. At the end of the algorithm, Gred = BSP and Gred = MaxRed(Gred). Be-

sides, MaxRed(Gred) = MaxRed(SPG) (property 4.4). Thus MaxRed(SPG) =

BSP .

2. OutProv(G) = Hist(t)G ; besides Hist(t)G = Hist(t)Gred
=Hist(t)GSPG

(property 4.5). Then Hist(t)G = Hist(t)SPG = OutProv(SPG).
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Table 4.1: Evolution of SP structures in work�ows of myExperiment

Date Number of SP graphs non-SP graphs

work�ows (proportion) (proportion)

2010 681 429 (63%) 252 (37%)

2011 879 554 (63%) 325 (37%)

2012 1014 624 (61,5%) 390 (38,5%)

2013 1454 833 (57,3%) 621 (42,7%)

Table 4.2: non-SP vs SP structures in families
Family (#vertices) #work�ows % of SP structures

Simple (1-10) 848 82.2 %

Complex (11-20) 282 44 %

Very complex (≻ 20) 324 6.2 %

4.5 Experimental study

Our experiments run on a subset of 1,454 work�ows extracted from the Taverna

work�ows available in myExperiment [GFG+09] in July 2013 (removing duplicates

and considering only well-formed work�ows). In this section, we study their struc-

tures and evaluate SPFlow.

4.5.1 Work�ow Structures

We have represented work�ows by st-multidags (adding a source and a sink)

and have implemented a basic SP structure detection algorithm.

Proportion of SP and non-SP work�ows

Our �rst result (Table 4.1) shows that there is a majority of SP structures and

the proportion of SP-graphs is stable over time. Table 4.2 provides the distribution

of SP vs non-SP work�ows, considering three families of work�ows. The �gures

obtained are particularly clear: while intermediate work�ows are almost all SP,

the proportion of SP structures in work�ows falls over 10 vertices with only 6.2%

of SP work�ows in very complex work�ows.
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Features of non-SP work�ows

In this second experiment, we evaluate the distance between non-SP and SP

structures, given by the number of vertex reductions to be applied to get the basic

graph BSP [BKS92]. Figure 4.20 shows that among non-SP work�ows, 27% of

them have one reduction vertex, 62% have only 1 to 3 reduction vertices. They

are thus not very far from SP structures.

Figure 4.20: Percentage of work�ows with a given number of reduction vertices in

non-SP structures.

4.5.2 Evaluating SPFlow

We now evaluate the behavior of SPFlow on real data, considering the set of

621 non-SP Taverna work�ows available in myExperiment (whose size ranges from

4 to 333 vertices). Figure 4.21 gives the relationship between the size (number of

vertices) of the initial graph and the rewritten graph. Although 10 graphs have

an important number of duplicated vertices, half of the very large majority of

graphs, including huge work�ows (having more than 100 vertices), have a small

ratio, lower than 5. Additionally, the time to rewrite each work�ow is negligible

for the current structures of work�ows: on a dual core@2.2GHz and 2GB of RAM

desktop, the maximum time is 434 ms.
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Figure 4.21: Ratio between the number of vertices in the rewritten graph (G′) and

the initial graph (G) in function of the size of G.

4.6 Implementation of the algorithm

In this section, we introduce a java application tool based on the algorithm

described in section 4.4 and in [CCBF13], named SPFlow, which aims at rewriting

a non SP work�ow into an SP work�ow while preserving provenance. Current

version of SPFlow supports Taverna 2 and ZoomUserView input wor�ows.

4.6.1 SPFlow architecture

Figure 4.22: Architecture of SPFlow

SPFlow transforms any work�ow having a non-SP structure into a provenance-

equivalent SP structured work�ow. The architecture of SPFlow is provided on Fig-

ure 4.22 and described here after. SPFlow makes use of Work�ow Speci�cations

and Provenance Information provided by users or work�ow systems. The current

version of SPFlow is able to rewrite real work�ows from the Taverna system (other

systems are under consideration). The TavernaLoader module is thus responsi-

ble for loading the work�ow into the SPFlow internal graph structure. SPChecker

then determines whether or not the work�ow taken in has an SP structure and pro-
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Figure 4.23: Loading a work�ow in SPFlow

vides a report with graph features, including the identi�cation of reduction nodes

(if any). If the work�ow is not SP, it is sent to SPBuilder which then creates a new

provenance-equivalent work�ow graph having some duplicated vertices compared

to the original work�ow, following the process described in [CBFJ12]. Finally, the

TavernaLoader module produces the rewritten work�ow into the Taverna XML

format and makes it available to the user.

Users communicate with the system by loading and interacting with original

and rewritten work�ows.

4.6.2 Functionalities of SPFlow

Our implementation of SPFlow is able to provide the following features.

Loading Data: Users may load a work�ow speci�cation into the system (see

Figure 4.23). SPFlow will display the original picture of the work�ow from my-

Experiment [RGS09] if available (left panel), determine (using SPChecker) the

reduction nodes (if any) and highlight them (central panel). A report on graph

features is produced (metadata on the work�ow, right panel).

Rewriting of the work�ow: SPFlow (using SPBuilder) transforms any non-SP

work�ow into an SP work�ow (see Figure 4.24). Both work�ows will be displayed

and duplicated vertices highlighted.

Provenance information: By clicking on an edge between two tasks, the user
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Figure 4.24: Provenance information in SPFlow

can visualize the provenance information (see Figure 4.24) of the data �owing

on that edge not only on the initial work�ow but also on the rewritten work�ow

(showing that both work�ows are provenance-equivalent). The formal expression

associated to provenance information is also displayed (bottom panel).

Running rewritten work�ows: Any work�ow rewritten by SPFlow can be

opened in Taverna. We will show how it can be run and we will demonstrate

that both work�ow versions (non-SP and SP) provide the same results for the

same input (equivalence property).

On the bene�t of using SP-work�ows: We will take the example of the Zoom*userview

system (ZOOM for short) [BBDH08] that takes in a work�ow and a set of tasks of

interest for the user (other tasks are usually formatting tasks) and provides a user

view, that is, a view of the work�ow composed of a set of composite tasks. Each

composite task contains at most one signi�cant task and takes its meaning. The

di�culty for ZOOM lies in ensuring that no data dependencies between signi�cant

composite tasks is introduced or lost by the grouping process (i.e. consider two

relevant tasks t1 and t2: t1 consumes the data produced by t2 if and only if the

composite task containing t1 consumes the data produced by the composite task

containing t2).

In Figure 4.25, the user has speci�ed two tasks of interest to him (namely,

blast-report and Fasta-sequence). Based on the original work�ow (�gure 4.25 (A)),
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Figure 4.25: Provenance information in (A) non-SP and (B) SP version of the

work�ow in ZOOM. User views are displayed on the right while full work�ows are

on the left.
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ZOOM designs the user view on the right, which is composed of three composite

tasks, one focused on blast-report (R-blast report which contains M0,M5,M4 and

M1), another on fastaSequence (R-fastaSequence which contains only M2) and

unfortunately one task with no signi�cance for the user (NR-1 which contains M6

and M3). Note that introducing the tasks of NR-1 into one of the two signi�cant

composite tasks would have introduced misleading data dependencies: e.g., if M3

and M6 were put into R-fastaSequence then from the user view perspective the

edge e3 would have been displayed from R-fastaSequence to R-blast report, giving

the feeling to the user that data provided by R-fastaSequence is used by R-blast

report while it was not the case in the original work�ow. It has been proved

in [BDKR09] that such a situation (having to introduce a composite task without

any signi�cance for the user to preserve provenance) can be avoided when SP

structures are used while it is not possible for general DAGs.

In Figure 4.25 (B), the rewriting process of SPFlow has duplicated M6 and M3

from work�ow (A) into M11,M8 and M9,M12 in work�ow (B). As a consequence,

the user view designed by ZOOM is only based on signi�cant composite tasks (R-

blast report which contains M11,M13,M9,M7,M15 and M14, and R-fastaSequence

which contains M8,M12 and M10). Such a work�ow is then more user-friendly. In

particular, each of the two composite tasks takes in now only user input and is

then clearly easier to share and (re)use in another context.

4.7 Discussion

Scienti�c work�ows are complex graphs that need to be designed, visualized,

queried, run, or scheduled. These actions are inherently complex and lead to

NP-hard problems when conducted on DAGs like are usual scienti�c work�ows.

Instead, these problems can be solved in polynomial time when the structure is

series-parallel (SP). Rewriting a non-SP to SP work�ow is particularly useful es-

pecially if the provenance is preserved. The major contribution of this work is

the introduction of an original algorithm for rewriting work�ows preserving prove-

nance. More particularly, we: (1) reviewed existing approaches and discussed

whether they are provenance-preserving, (2) designed the provenance-equivalent

SPFlow algorithm, (3) demonstrated the feasibility of our approach on real sci-
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Figure 4.26: Example of di�erent solutions for unsupported patterns.

enti�c work�ows, (4) developed a tool taking in a non-SP Taverna work�ow and

providing an SP version of the work�ow usable in Taverna.

We now provide one direction of extension for our work.

Extending SPFlow to deal with split and merge processors. As dis-

cussed in Chapter 3, there are some special cases which are currently not supported

by SPFlow, such as when a merge processor or a split processor appears in a

work�ow (they are currently considered as any other processor). As the two pro-

cessors are closely related, we only discuss the case concerning the merge processor.

Let us consider Figure 4.26, G0 is a non-SP graph with parallel composition and let

us consider that v is a merge processor and d6 = [d′6, d
′′
6]. G1, G2, G3 are di�erent

SP solutions for G0. G1 is obtained from G0 based on out-vertex reduction. G2 is

obtained from G0 based on in-vertex reduction and G3 is based on the strategy of

adding dependencies. Let us observe these SP graphs and the original graph, we

could �nd that they all produce the same intermediate and �nal data. So, they

should be provenance-equivalent. It is obvious that G2 and G3 have less vertices

duplicated than G1. This implies that it is possible to reduce the number of dupli-

cated vertices when considering some special processors such as a merge processor.

More importantly, the merge processor, contrary to any other processor does not

need to get all its inputs to provide one output. As a consequence, solutions based

on in-vertex duplications (as in G2) may be more appropriate than solutions based
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on out-vertex duplications (as in G1) when lists of data are considered. So, �nd-

ing a strategy to deal with these speci�c processors can help us to obtain new SP

work�ows with less duplicated vertices and unambiguous provenance meaning (cf.

G0). How to extend our provenance model and SPFlow to support lists of data

and consider these special processors is one direction of our ongoing work.

4.8 Summary

In this chapter, we have presented SPFlow a provenance-based strategy for

rewriting any non-SP graph into SP graph. After having studied several current

approaches, we have identi�ed that all of them are not provenance-preserving. So

that they cannot be directly used to rewrite work�ows into equivalent ones. Our

approach based on out-vertex duplication which is provenance-preserving was then

proposed. We also demonstrated the feasibility of our approach on real scienti�c

work�ows. Finally, we gave an introduction of the tool we developed, which takes

in a non-SP Taverna work�ow and provides an SP version of the work�ow useable

in Taverna.

As studied in this chapter, we are able to rewrite any scienti�c work�ow into SP

structure. A new question is whether it is possible to rewrite a scienti�c work�ow

into a new one which is free or partly free of vertices redundancy and without

alerting its meaning. In the next chapter, we will inspect the features of Taverna

work�ows themselves and then provide a refactoring approach to relax redundancy

of vertices and make work�ows close to SP structures.
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Chapter 4 has introduced a provenance-based technique for rewriting any non-

SP work�ow into an SP work�ow. Still in the aim of transforming work�ow

structures to make them easier to reuse, the present chapter introduces techniques

for reducing redundancies in the structure of scienti�c work�ows. Our approach

provides work�ows which are free or partly free of redundant vertices without

alerting their original meaning. Interestingly, we will see that our approach tends

to make non-SP workfows closer to SP structures.

More precisely, our approach aims at automatically detecting parts of the

work�ow structure which can be simpli�ed by removing explicit redundancy and

proposing a possible work�ow rewriting. As mentioned earlier, our preliminary

analysis of the structure of 1,400 scienti�c work�ows of Taverna collected from

myExperiments reveals that, in numerous cases, such a complexity is due mainly

to redundancy, which is in turn an indication of over-complicated design, and thus

there is a chance for a reduction in complexity which does not alter the work�ow

semantics. Our main contention in this work is that such a reduction in complexity

can be performed automatically, and that it will be bene�cial both in terms of user

experience (easier design and maintenance), and in terms of operational e�ciency

(easier to manage, and sometimes to exploit the latent parallelism amongst the

tasks).

The speci�c contribution of this chapter is a method for the automated detec-

tion and correction of certain Taverna work�ow structures which can bene�t from

refactoring. We call these idiomatic structures "anti-patterns", that is, patterns

that should be avoided. Our approach involves the detection of several anti-

patterns and the rewriting of the o�ending graph fragment using a new pattern

that exhibits less redundancy and simpler structure while preserving the semantics

of the original work�ow. We have then designed the DistillFlow algorithm and

evaluated its e�ectiveness both on a public collection of Taverna work�ows and

on a private collection of work�ows from the BioVel project.

As the Taverna work�ow system features have already summarized in chapter

2, the present chapter begins by illustrating the two main types of anti-patterns

found by our work�ow study, by means of two use cases (5.1). The formalization
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of the anti-patterns and the transformations we propose to do while ensuring that

the semantics of the work�ow remains unchanged will be then introduced (5.2).

After giving a presentation to the anti-patterns, we will introduce the DistillFlow

refactoring algorithm (5.3). In the experimental study Section (5.4), we provide

the results obtained by our approach on a large set of real work�ows. Finally a

discussion of this work will be carried out, together with the conclusion.

5.1 Use cases

The �rst use case (Figure 5.1 (i)) involves the duplication of a linear chain of

connected processorsGetStatistics_input, GetStatistics andGetStatistics_output.

The last processor in the chain reveals the rationale for this design, namely to use

one output port from each copy of the processor. Clearly, this is unnecessary, and

the version in Figure 1 (ii) achieves the same e�ect much more economically, by

drawing both output values from the same copy of the processor.

Figure 5.1: Example of work�ow (myExperiment 2383)

In the second use case (Figure 5.2(i)), the work�ow begins with three distinct

processing steps on the same input sequence. We observe that the three steps

that follow those are really all copies of a master Get_image_From_URL task.

This suggests that their three inputs can be collected into a list, and the three

occurrences can be factored into a single occurrence which consumes the list. By

virtue of the Taverna list processing feature described earlier, the single occurrence
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will be activated three times, one for each element in the input list. Also, the

outputs of the repeated calls of Get_image_From_URL will be in the same

order as items in the list. Therefore this new pattern achieves the same result as

the original work�ow. Note that collecting the three outputs into a list requires

a new built-in merge node (the circle icon in Figure 5.2(ii)). Similarly, a Split

processor has been introduced to decompose the outputs (list of values) into three

single outputs.

Figure 5.2: Example of work�ow (myExperiment 804)

These two examples are instances of the general patterns depicted in Figures

5.3 and 5.4 (left hand side). These are the anti-patterns we alluded to earlier, and

our goal is to rewrite them into the new structures shown in the right hand side of

the �gures. In the rest of this chapter we describe this rewriting process in detail.

5.2 Anti-patterns and Transformations

The transformations aim at reducing the complexity of the work�ow by replac-

ing several occurrences of the same processor with one single occurrence whenever

possible. Although new processors are sometimes introduced in the process (i.e.

merge and split operators), on balance we expect a cleaner design, better use of the

functional features of Taverna (automated list processing) and lower redundancy,

and thus fewer maintenance problems.
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5.2.1 Assumptions

The following four assumptions must hold for processor instances to be candi-

dates for the transformations described below.

1. A processor must be deterministic: it should always produce the same

output given the same input.

2. Only processors implemented using the exact same code can be merged.

Determining that two processors are equivalent is an open problem (see

e.g. [SCBL12] for a discussion on that point) since it is directly associated

to determining the equivalence of programs. In our setting, two processors

are equivalent if they represent identical web service calls, or they contain

the same script, or they are bound to the same executable Java program. In

practice, this condition is often realized, because processors are duplicated

during work�ow design by means of a graphical �copy and paste� operation.

3. Only copies of processors that do not depend on each other can be

merged, that is, if P (1) and P (2) are two occurrences of the same processor

P , then there should not be any directed path between P (1) and P (2), for

P (1) and P (2) to be merged.

4. We will consider only two cases where we can be sure that the same input

value Li can be bound to the input port ai of r copies of P : (a) the input

port ai is bound to a constant value which is identical across executions (that

is, among di�erent copies) of P , or (b) Li has been produced by the output

port of some processor Qi and has been distributed to the r copies of P .

5.2.2 Transformations

The two proposed transformations are shown in Figures 5.3 and 5.4, where

each P (l) (1 ≤ l ≤ r) denotes an occurrence (i.e. a copy) of processor P , with

input and output ports a1, ..., ak and b1, ..., bq, respectively.

Anti-pattern A: In the �rst anti-pattern (Figure 5.3), the input ports ai of each

processor occurrence P (l) are all bound to the same value Li, for 1 ≤ i ≤ k,

1 ≤ l ≤ r. It follows from our assumption of determinism that the output ports
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Figure 5.3: Transformation for anti-pattern (A)

bj all present the same output value Oj across all P (l), for 1 ≤ j ≤ q.

The rewriting replaces all P (l) with a single occurrence, P .

Treatment of the outputs: Outgoing links are then added to ports bj as needed.

Treatment of the inputs: For each input port ai of P , the unique input value

Li bound to ai is now either the constant value as previously in the (original)

anti-pattern (cf. assumption 4.(a)), or it is one of the distributed values bound to

some output port of some processor Qi (assumption 4.(b)) and in this last case

processor Qi does not need to distribute this output value more than once any-

more.

Illustration: One example of anti-pattern A is depicted on Figure 5.1(i) where the

same work�ow input is sent to two exact copies of the processorGetStatistics_input.

The work�ow input plays the role of processor Q. GetStatistics_input and

GetStatistics_2_input are thus merged and the work�ow input (Name) is sent

only once to the downstream of the work�ow, that is, to the (now) single GetStat

istics_input processor. Outputs are linked to the rest of the work�ow and trans-

formations must be applied as many times as necessary. In this example, three

successive transformations are applied thus giving the work�ow of Figure 5.1(ii).

Anti-pattern B: In the second pattern (Figure 5.4), the input ports ai of each

processor occurrence P (l) are bound to the same value Li, for 1 ≤ i ≤ t while

the input ports at+1 to ak of each processor occurrence P (l) are bound to di�er-

ent inputs Ll
t+1 to Ll

k among occurrences, 1 ≤ l ≤ r. As for output values, let

Ol
i = P (l)|bi(L1, ..., Lt, L

l
t+1, ..., L

l
k) denotes the output value produced by output

port bi of the l-th occurrence of P . For the sake of generality, we consider here
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that processor P applies cross product to values on ports a1 to at and dot product

to values on ports at+1 through ak.

The rewriting replaces all P (l) with a single occurrence, P .

Input data that di�er from one occurrence to another (Ll
t+1 to Ll

k) have been

merged using the merge processors provided by Taverna (the circle icon in Figure

5.4) to construct lists of data from the original data items to exploit the im-

plicit iterative process of Taverna. As a consequence, the outputs of P are lists

of data instead of single values in the original pattern. Since P follows a dot

strategy on ports at+1... ak, O′i is the list O′i = [P |bi(L1, ..., Lt, L
1
t+1, ..., L

1
k), ...,

P |bi(L1, ..., Lt, L
l
t+1, ..., L

l
k),...,P |bi(L1, ..., Lt, L

r
t+1, ..., L

r
k)], for output port bi, 1 ≤

i ≤ q.

Treatment of the outputs: For each output port bi of P , the rewritten pattern

contains a list split processor called SPLITr to decompose the list obtained into r

pieces so that the downstream fragment of the work�ow remains unchanged. We

get: O′li = P |bi(L1, ..., Lt, L
l
t+1, ..., L

l
k) (1 ≤ l ≤ r).

Treatment of the inputs: Note that for each input port at+1,...,ak, input values

Ll
i are used in the same way both before and after the transformation (1 ≤ l ≤ r,

t + 1 ≤ i ≤ k). As for input ports a1 to at, instead of having r occurrences, each

Li has now one single occurrence, 1 ≤ i ≤ t (similarly to anti-pattern A).

Illustration: One example of anti-pattern B is depicted on Figure 5.2(i) where

there are three copies of processor Get_image_From_URL, each copy receiving

input data from distinct processors. The three copies are then merged into one

single copy.

The next section will provide more details on how the transformations are

extended to the entire work�ow.

5.2.3 Safe Transformations

In this subsection, we introduce the notion of safe transformation. Intuitively,

a transformation is safe if the semantics of the work�ow is preserved (the outputs

produced remain the same).

More formally, letW1 be a fragment of a work�owW consisting of r occurrences

P (1)...P (r) of a processor P such that there is no directed path between P (i) and

P (j) (1 ≤ i ̸= j ≤ r). Let W2 be a fragment of the work�ow W consisting in one
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Figure 5.4: Transformation for anti-pattern (B)

occurrence of P and possibly merge and split processors. A transformation that

replaces W1 by W2 in the work�ow W resulting in W ′ is safe if and only if: given

the same work�ow input values In, for any execution of W using In, named W̃ ,

and any execution of W ′ using In, named W̃ ′, the work�ow output values Out

obtained by W̃ and W̃ ′ are the same.

It is straightforward to prove that the two transformations we propose to perform

are safe.

5.3 Refactoring approach

The previous section has introduced transformations able to locally remove

anti-patterns. In this section, we will present the complete refactoring procedure

we propose to follow. In particular, we have chosen not to remove all possible

anti-patterns when such rewriting operations can make the transformed struc-

tures becoming more intricate than the original structures. Example of "simple"

structures are series-parallel (SP) graphs as introduced in the previous chapters.

The challenge of our refactoring approach then lies in minimizing the presence of



5.3. Refactoring approach 87

anti-patterns while ensuring that the number of structures which are not SP will

not increase. Note that it may be the case that our procedure transforms some

non-SP structures into SP structures.

As said in the previous chapter, non-SP structures have some speci�c nodes

called reduction nodes which cause the structure to be non-SP. Reduction nodes

are typically involved in structures illustrated in the subgraph of Figure 5.15 (iii)

where u is one reduction node. We will see how we apply our transformations to

such nodes and we go back to this point in the Discussion section.

Additionally, in the following, we will also make use of the notion of au-

tonomous subgraph introduced in the context of SP structures in Chapter 2.

In the same spirit as in the SPFlow approach, the autonomous subgraphs allow

to restrict the initial graph to smaller components such that no edge comes in or

goes out of the autonomous subgraph (except edges coming in the source of the

autonomous subgraph or going out of its target). Recall that several autonomous

subgraphs can be nested. Consider the graph G in Figure 5.8(b), examples of au-

tonomous subgraphs are G[7, 24], G[8, 25] and G[3, 24], where G[7, 24] is nested in

G[3, 24]. We will use this notion in order to apply transformations locally, without

interaction with the rest of the graph.

5.3.1 Principle of the algorithm

The Refactoring algorithm takes in an st-DAG G and produces an st-DAG

DSG from G by transforming the anti-patterns that can be removed from G

while preserving its SP property. For it, the algorithm starts by identifying the

set SetAU of autonomous subgraphs, and distills each of them, starting with the

minimal ones, in a recursive way. Once each autonomous subgraph has been dis-

tilled, the whole graph G must be distilled in turn. Calls of the procedure Distill

are done from a starting node x that can be either the source of an autonomous

subgraph or a reduction node, or the source of G. We consider all the successors

p of x, and search among all the other successors (and then descendants of x)

whether there is a processor q that would be a copy of p. If it the case, we merge

p and q according to the transformation for anti-patterns (A) and (B). Every time

a transformation is performed, merging copies of a processor may give rise to new

autonomous subgraphs, that lead to new distillations in turn. This last job is done
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by the procedure Down-Distillation.

Figure 5.5 presents the main DistillFlow algorithm while the two procedures it

uses, namely DownDistillation and Distill, for transforming work�ows are available

in Figures 5.6 and 5.7. One major and additional function used by the procedure

is introduced here after: OKTransformation(p, q, GG) which speci�es the con-

ditions for nodes p and q to be merged. It is true i� the following conditions are

satis�ed: (i) p and q are copies of each other; (ii) p and q are involved in some

anti-pattern (A) or (B) in GG; (iii) for any autonomous subgraph G′ of GG, every

time p appears in G′, q appears in G′ too. This last condition ensures that we

do not remove an anti-pattern by a transformation that would make an SP-graph

becoming non-SP.

1 START DistillFlow
2 DSG ← G; s ← Source(G);
3 AU ← set of autonomous subgraphs of G ordered by inclusion;
4 foreach subgraph G[u, v] of AU , starting with minimal subgraphs do
5 Distill(G[u, v], DSG, u)
6 end
7 Distill(G,DSG, s);

8 END DistillFlow

Figure 5.5: Pseudo-code of the DistillFlow algorithm for removing anti-
patterns in work�ows

1 DownDistillation(IN GG[q, v], IN/OUT DSGG: graphs, IN q: node,
2 IN/OUT SetAU : set of graphs, IN/OUT ListRed: set of nodes)
3 Distill(GG[q, v], DSGG, q);
4 ListRed← ListRed ∪ {new reduction nodes of GG[q, v]};
5 SetAU ← SetAU ∪ {new autonomous subgraphs of GG[q, v]};
6 foreach autonomous subgraph GG[a, b] in SetAU do
7 Distill(GG[a, b], DSGG, a)
8 end

9 End DownDistillation

Figure 5.6: Pseudo-code of the DownDistillation procedure

The function SameOrientedPath(p, q, GG) is true i� there is at least a directed

path dp in GG such that p and q belong to dp.

V isited is a function allowing to mark nodes as visited or unvisited.

5.3.2 Illustration of the algorithm

We propose to illustrate the execution of the DistillFlow algorithm on the

work�ow depicted in Figure 5.8(a). We can see that it potentially contains several

anti-patterns. Indeed, it duplicates processors many times: #3, #4, #9, #10,
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1 Distill(IN GG: graph; IN/OUT DSGG: graph; IN x: node)
2 v ← sink(GG);
3 ListRed ← set of reduction nodes of GG;
4 SetAU ← set of autonomous subgraphs of GG;
5 Visited(GG) ← false /* set all the nodes of GG unvisited */
6 foreach successor p of x in GG do

/* search for copies of p */

7 if Visited(p) ← false then
8 p1 ← p; flagp ← true;
9 while flagp do

/* flagp allows to consider all the unvisited descendant of p1 if necessary */
10 Distilled ← false /* Distilled says if some transformation on p1 has been done */
11 foreach successor q of x in GG, such that q ̸= p1 do

/* successors of x different from p1 are potentially copies of p1 */
12 q1 ← q; flagq ← true;
13 while flagq do

/* flagq allows to consider all the unvisited descendant of q1 if
necessary */

14 if Visited(q1)=false and SameOrientedPath(p1,q1, GG)=false then
15 if OKTransformation(p1,q1,GG)=true then

/* q1 is a copy of p1 in some anti-pattern and transformation
can be performed */

16 transformation on DSGG, replacing q1 by mergeq;
17 flagq ← false; distilled ← true; /* loop on q is stopped */

18 else
/* no transformation has been done on p1 and q1 */

19 if outDegree(q1) ̸= 1 then
20 if there exists a single autonomous subgraph GG[q1, y] in SetAU

then
21 q1 ← y; /* the loop on q1 is continued with the sink

of the unique autonomous subgraph */

22 else
/* there is no autonomous subgraph GG[q1, y] in

SetAU or more than one */
23 if q1 is a reduction node in Listred then

/* search for anti-patterns from reduction node
q1 */

24 DownDistillation(GG[q1, v], DSGG, q1, SetAU ,
ListRed);

25 Visited(GG[q1, v]) ← false;
26 if outdegree(q1) > 1 then flagq ← false;;
27 else
28 flagq ← false;

/* q1 is not a reduction node or there is no

autonomous subgraph GG[q1, y] in SetAU the
loop on q is stopped */

29 end
30 end
31 q1 ← the successor of q1 /* outDegree(q1) = 1 */

32 end
33 end
34 flagq ← false;
35 end
36 end
37 end
38 /* while loop on flagp continues*/
39 if distilled then

/* if p1 has been merged with some other node then search for
anti-patterns from p1 */

40 DownDistillation(GG[p1, v], DSGG, p1, SetAU , ListRed);
41 Visited(x,mergeq) ← true; /* set all the nodes on all paths from x to

mergeq as visited */

42 else
/* p1 has not been merged */

43 if outDegree(p1) ̸= 1 then
44 if there exists a single autonomous GG[p1, y] in SetAU then
45 p1 ← y;
46 else
47 flagp ← false;
48 end
49 else
50 let p1 ← the successor of p1 /* outDegree(p1) = 1 */
51 end
52 end
53 end
54 end
55 end
56 EndDistill

Figure 5.7: Pseudo-code of the Distill procedure
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(a)

Figure 5.8: Example of transformation of one work�ow from myExperiment. (a)
Initial Taverna work�ow with information on processors; (b) Graph G represent-
ing the work�ow; (c) Graph DSG obtained after distilling the two autonomous
subgraphs; (d) Final distilled work�ow obtained by Refactoring.
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#11, #12, #13 all perform the same operation, and so do #7, #8, #19, #20,

#21, #22, #23. The graph G representing the Taverna work�ow is shown in

Figure 5.8 (b).

At line 3 of the algorithm, autonomous subgraphs G[7, 24] and G[8, 25] are

identi�ed in G. At the �rst iteration of line 5, the procedure Distill is called

with G[7, 24] and node #7. During this recursive call, �rst nodes #9 and #10 are

merged according to the transformation of anti-pattern (A), and then nodes #19

and #20, according to transformation of anti-pattern (B). At the second iteration

of line 5, Distill is called with G[8, 25] and node #8. During this recursive call,

nodes #11, #12 and #13 are �rst merged (anti-pattern (A)), and then nodes #21,

#22 and #23 (anti-pattern (B)). At line 7, Distill is called with G[s, t] and s.

A �rst recursive call with G[2, t] and node #2 (successor of s that is a reduction

node) does not change anything. Recursive calls starting with G[1, t] and node

#1 (successor of s that is a reduction node) successively merge nodes #3 and

#4 (anti-pattern (A)), and then nodes #7 and #8 (anti-pattern (B), Figure 5.8

(c)). Subsequent calls of Distill with G[24, t] and node #24, or with G[25, t] and

node #25 do not imply any transformation. Note that nodes #9 and #11 are

not merged since OKTransformation(9, 11, GG) is false (such a merge would

have introduced a new reduction node, this point is discussed in the next section).

Figure 5.8 (d) shows the �nal work�ow where almost all the anti-patterns have

been removed.

5.4 Experimental Study

We have implemented DistillFlow into a tool that is presented in more detail

in Appendix A.

5.4.1 Anti-patterns in work�ow sets

In our study, we have applied the refactoring approach on two work�ow sets:

the public work�ows from myExperiments and the private work�ows of the BioVel

project (www.biovel.eu). BioVel is a consortium of �fteen partners from nine

countries which aims at developing a virtual e-laboratory to facilitate research on

biodiversity. BioVel promotes work�ow sharing and aims at providing a library

of work�ows in the domain of biodiversity data analysis. Access to the repository

www.biovel.eu
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to contributors, however, is restricted and controlled. Because of the restricted

access and the focus on a speci�c domain of these work�ows, they are broadly

expected to be curated and thus of higher quality than the general myExperiment

population.

For each work�ow set, the total number of work�ows, the number of work�ows

having at least one anti-pattern (of kind (A) or (B)) are provided in Table 5.1.

Note that it is possible that the same work�ow contains the two kinds of anti-

pattern.

Table 5.1: Initial number of anti-patterns in work�ow sets

wf set # wf # wf ≥ 1

anti-pattern

# wf ≥ 1 anti-

pattern (A)

# wf ≥ 1 anti-

pattern (B)

myExperiment 1,454 374 (25.7 %) 80 (5.5 %) 359 (94.5%)

BioVel 71 29 (40.8 %) 0 29 (100%)

Interestingly, 25.7% of the work�ows of the myExperiment set contains at least

one anti-pattern. Although anti-pattern A appears in only 5.5% of the total, it is

particularly costly because it involves multiple executions of the same processor

with the exact same input, therefore being able to remove it would be particularly

bene�cial. The prevalence of pattern B suggests that work�ow designers may not

know the list processing properties of Taverna (or functional languages).

As for the BioVel private work�ows, 40.8% include at least one anti-pattern,

all of kind B and thus none contains any kind A. Additionally, other experiments

allowed us to observe that a work�ow from BioVel contains, on average, fewer

anti-patterns than, on average, a work�ow from myExperiment.

5.4.2 Results obtained by DistillFlow

Table 5.2 provides the results obtained by DistillFlow in the two work�ow

sets: the number of work�ows in which there is no remaining anti-patterns after

applying the DistillFlow procedure, the number of work�ows in which at least one

anti-pattern has been removed.
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Figure 5.9: Distribution of number of anti-patterns among work�ows in myExper-
iment, before and after applying DistillFlow.

Table 5.2: Results obtained by DistillFlow in the two work�ow sets

wf set # wf without any anti-

pattern

# wf with at least one

anti-pattern removed

myExperiment 302 (80.7%) 367 (98.1 %)

BioVel 24 (82.7%) 29 (100%)

myExperiment data set. In the set from myExperiment, DistillFlow is able

to remove all the anti-patterns in 80.7% of the cases and at least one anti-pattern

in 98% of the cases. 72 work�ows are not completely free of anti-patterns after

the DistillFlow process. However, the majority of these work�ows has only one

or two remaining patterns as indicated in Figure 5.9. More generally, Figure

5.9 shows that the number of remaining anti-patterns is low compared to the

number of anti-patterns in original versions of work�ows. Interestingly, additional

experiments showed that on average three copies of processors are removed per

work�ow and this number is even particularly high for some work�ows (up to 31).

Biovel data set. In the BioVel data set, DistillFlow is able to remove all the

anti-patterns in 82.7% of the cases and at least one anti-pattern in all the work-

�ows (100 %). Only �ve (particularly big) work�ows have remaining anti-patterns.

All of them have actually one remaining anti-pattern, as indicated in Figure 5.10.

Additional experiments allowed us to state that on this corpus, DistillFlow re-

moves one node per work�ow on average, compared to three in myExperiment.
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Figure 5.10: Distribution of number of anti-patterns among work�ows in BioVel,
before and after applying DistillFlow (NB: no work�ow of this set has 6 anti-
patterns).

In very large work�ows of BioVel (these are as large as the largest work�ows in

myExperiment), up to 15 nodes are removed, compared to 31 in myExperiment.

In conclusion, the additional curation steps that occur in the BioVel community

clearly make the produced work�ows being of better quality; however some of

these work�ows could still bene�t from our distilling approach.

5.5 Discussion

In this section, we discuss several points related to our approach: we provide

additional examples to underline the fact that the distilled structures are less

intricate (5.5.1); we discuss the impact of our refactoring approach on the SP

feature of the work�ow structures (5.5.2); we then propose several other kinds of

(anti-)patterns which may be directly the cause of non-SP structure (5.5.3); we

�nally discuss the place of the refactoring approach in the context of provenance-

equivalent transformations.

5.5.1 Simpler structures

When all the anti-patterns can be removed by DistillFlow, the resulting work-

�ow structures are particularly simpler, as illustrated in examples provided all

along the paper, including the two use cases (Figures 5.1, 5.2). Figures 5.11 and

5.12 provide two additional examples. In Figure 5.11, we have highlighted the
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Figure 5.11: Example where the rewritten work�ow becomes SP (original work�ow
on the top and rewritten work�ow on the bottom).

rewritten subgraph that is particularly simpler compared to the same fragment

of the work�ow in the original setting. In Figure 5.12, the global structure is

also simpler. Processors have been numbered so that the relationship between

the two work�ows (before and after the refactoring process) can be seen: in the

original work�ow pi denotes the ith occurrence of processor p and in the rewritten

work�ow, pi − ... − pj denotes the node resulting of the merging of occurrences

pi − ... − pj. For example, f1, f2, f3, f4, f5, f6 are all occurrences of the same

processor which are replaced by one occurrence in the rewritten work�ow (noted

f1 − f2 − f3 − f4 − f5 − f6 in the rewritten work�ow). As a result of the refac-

toring process on the work�ow of Figure 5.12, three split processors have been

introduced while 18 unnecessary duplications of processors have been removed.

5.5.2 SP structures

As explained in the previous sections, DistillFlow acts carefully on the work-

�ow structures, by removing anti-patterns (A) and (B) while never introducing

new intricate structures as non-SP structures may be. We will discuss now two

situations. In the �rst one, we describe situations in which the refactoring al-



96
Chapter 5. Distilling Structure in Taverna Scienti�c Work�ows: A

refactoring approach

Figure 5.12: Example of transformation obtained using DistillFlow (original work-
�ow on the top and rewritten work�ow on the bottom).
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gorithm "naturally" removed reduction vertices. In the second case, we propose

explanations on the cases where the refactoring cannot be done since it would add

reduction vertices.

When refactoring removes reduction vertices. Removing anti-patterns may

actually automatically transform a non-SP structure into an SP structure as illus-

trated in Figure 5.11 in which the original work�ow has two reduction nodes under-

lined in the �gure (namely, Get_sample_sequence_by_GetEntry_getFASTA_

DDBJEntry and BLAST_option_parameter). While these nodes have several

input/output links in the original setting they have (at most) one input link and

one output link in the transformed version and they are not reduction nodes any-

more.

More generally, in the myExperiment corpus, a total of 15 work�ows had a non-

SP structure before applying the refactoring algorithm and have an SP structure

after.

Let us now try to provide an intuition on some situations where refactoring

naturally removes reduction vertices. Let us consider another example of non-SP

work�ow in which two forbidden subgraphs are induced by one reduction vertex,

which has been discussed in section 4.3. We claim that merging the successors

of a reduction vertex may naturally remove this reduction vertex. Figure 5.13

(i) is an example of such a situation. In the example, we know that processors

"XPath_From_Text0" and "XPath_From_Text" have the exact same code

(so that they can be merged). Figure 5.14 shows the speci�cation graphs of work-

�ows in Figure 5.13. The two forbidden subgraphs induced by node #4 in Figure

5.14 (i).(a) are shown respectively in Figure 5.13 (i).(b) and Figure 5.13 (i).(c).

After merging nodes #6 and #7 (which are successors of #4), we obtain a new

graph shown in Figure 5.14 (ii) (the corresponding original work�ow is shown in

Figure 5.13 (ii)). Note that the two forbidden subgraphs are no longer present.

More precisely, let us notice that in the induced forbidden subgraph of Figure 5.14

(i).(b), when the nodes #6 and #7 are merged, then the node #4 has only one

input and one output (one series reduction operation can thus be applied). At the

same time, the forbidden subgraph in Figure 5.14 (i).(c) is naturally eliminated.
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Figure 5.13: Example of work�ow (myExperiment 941)

Figure 5.14: Speci�cation graphs of work�ows in Figure 5.13 ((i).(b) and (i).(c)
are the two forbidden subgraphs induced by node #4 in (i).(a), (ii) is the SP graph
obtained when nodes #6 and #7 are merged into one node, called #7)

When removing anti-pattern is not possible. It may also be the case that

anti-patterns cannot be removed because removing them would imply merging

nodes which would create a new reduction node, making the structure of the

transformed work�ows more intricate. The number of reduction nodes is actually

a commonly used metric to measure how far from an SP structure a structure

may be [BKS92]. In that sense, merging such nodes would make the rewritten

work�ow being further from an SP structure compared to the original work�ow

structure.

65 work�ows from the myExperiment corpus and �ve from the BioVel data

set are involved in such a situation. The illustrative example for DistillFlow of
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Figure 5.15: (i) Schematic view of a fragment of the work�ow of Figure 5.8; (ii)
Schematic view of the same fragment but nodes #9 and #11 are now merged; (iii)
generic subgraph that is the cause of non-SP structure, u is one reduction node.

Figure 5.8 is one such example: merging nodes #9 and #11 would introduce a

new reduction node. In the original graph, node #9 appears in an autonomous

subgraph while node #11 does not belong to this autonomous subgraph. If these

two nodes were merged, the subgraph formed by all the paths from the split

node to the node # 27 would have the structure of the subgraph responsible for

non-SP structures (Figure 5.15 (iii)), and the merged node #9-11 would be the

new reduction node. Figure 5.15 (i) shows a schematic view of a fragment of the

original graph of Figure 5.8 while Figure 5.15 (ii) shows the structure obtained if

nodes #9 and #11 were merged. The graph of Figure 5.15 (ii) is homeomorphic to

the generic subgraph represented in Figure 5.15 (iii) which is the cause of non-SP

structures (cf. Chapter 2).

A similar situation occurs in the work�ow of Figure 5.12 in which nodes #e1-

e2-e3 and #e4-e5-e6 cannot be merged by DistillFlow in order to avoid introducing

one additional reduction node.

5.5.3 Towards other kinds of (anti-)patterns

Another kind of situation that may occur is when the SP feature is not corre-

lated at all with anti-patterns: the transformed work�ows are free of anti-pattern

but they still have non-SP structures.

A deep inspection of such work�ows reveals that other kinds of patterns may

be directly the cause of non-SP structures [CCBF+12]. These patterns have a

di�erent nature from the anti-patterns considered so far in this chapter in the sense
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that they cannot be removed while keeping the same work�ow semantics. One of

the most interesting pattern is probably the presence of intermediate processors

which are directly linked to the work�ow outputs. This situation occurs merely

when users want to keep track of intermediate results and �forward� such results

to the work�ow outputs. We call such intermediate processors trace nodes and

their outgoing edges linked to the work�ow outputs are called trace links.

On the total number of work�ows in myExperiment, we found 2464 reduction

vertices including 853 trace nodes: 34.6% of the reduction vertices have trace

links. In the Biovel data set, we found 334 reduction vertices including 60 trace

nodes, meaning that 18% reduction vertices have trace links. Trace links are thus

important to be considered.

More precisely, several work�ows depicted in this chapter have trace links.

For example, in Figure 5.12 on the top, the link that goes from the processor

g6 directly to the work�ow output Oα is a trace link: when the work�ow will

be executed, the same data (produced by g6) will be sent both directly to the

work�ow output Oα and to the downstream part of the work�ow. By doing this,

the work�ow designer may want to keep track of the data produced by g6. However,

as the processor get_gi will consume Oα to produce to its turn some data, these

produced data will have Oα in their provenance information. Oα will thus be

automatically tracked by the provenance module of Taverna. The trace link from

g6 to Oα is then useless and could be removed. This removal should actually

be done very carefully since removing trace links implies removing part of the

work�ow outputs. As a consequence, the signature of the work�ow (the number

of outputs) is changed which may have several consequences if the transformed

work�ow is used as a subwork�ow within another bigger work�ow that expects the

subwork�ow to provide given outputs. This kind of transformation should then

be done in collaboration with the user so that s/he can estimate the impact of the

changes.

5.5.4 Provenance-equivalence

In Chapter 2, we have presented a provenance model and de�ned the notion

of provenance-equivalent runs. As discussed in 3.4 our current provenance model

is coarse grain and in particular it does not consider the speci�city of Merge and
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Split tasks which deal with lists of data items. As a consequence, the refactor-

ing approach cannot be proved to be provenance-preserving in the sense of the

de�nition given in section 3.3 (which does not consider merge and split tasks).

However, we have proved in section 5.2 that DistillFlow transforms any work�ow

into a semantically-equivalent work�ow. The extension of our provenance model

drawn in section 3.4, together with an extention of the notion of provenance-

equivalence in such a new context, should make it possible to state that DistillFlow

is provenance-equivalent.

5.6 Related Work

To the best of our knowledge, this is the �rst attempt at introducing a refactor-

ing approach aiming at reducing work�ow redundancy in the scienti�c work�ows

setting based on the study of work�ow structure.

More research is available from the business work�ows community, where sev-

eral analysis techniques have proposed to discover control-�ow errors in work�ow

designs (see [vdAvHtH+11] for references). More recent work in this community

has even focused on data-�ow veri�cation [TVdAS09]. However, this work is aimed

primarily at detecting access concurrency problems in work�ows using temporal

logics, making both aims and approach di�erent from ours. Also, it would be hard

to transfer those results to the realm of scienti�c work�ows, which are missing the

complex control constructs of business work�ows, and instead follow a data�ow

model (a recent study [MGLRtH11] has shown that scienti�c work�ows involve

data�ow patterns that cannot be met in business work�ows).

With the increase in popularity of work�ow-based science, and bioinformat-

ics in particular, the study of scienti�c work�ow structures is becoming a timely

research topic. Classi�cation models have been developed to detect additional pat-

terns in structure, usage and data [RP10]. More high-level patterns, associated

to speci�c cases of use (data curation, analysis) have been identi�ed in Taverna

and Wings work�ows [GAB+12]. Complementary to this work, graph-based ap-

proaches have been considered for automatically combining several analysis steps

to help the work�ow design process [RMMTS12] while work�ow summarization

strategies have been developed to tackle work�ow complexity [PAK13,BBDH08].
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5.7 Summary

In this chapter, we have introduced a new strategy for reducing redundancies in

the structure of scienti�c work�ows and have presented an algorithm, DistillFlow,

which refactors Taverna work�ows in a way that removes explicit redundancy

making them possibly easier to use and share. Currently, DistillFlow is able to

detect two kinds of anti-patterns, and rewrites them as new patterns which better

exhibit desirable properties such as maintenance, reuse, and possibly e�ciency of

resource usage. Then we applied DistillFlow to two work�ow collections, the one

consisting of myExperiment public work�ows, the other including private work-

�ows from the BioVel project. Finally, we have discussed several points related to

our approach, in which, additional examples are provided.
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This chapter concludes our work presented in this dissertation, and �nally our

future directions are discussed.

6.1 Conclusion

This work proposes two strategies, respectively based on provenance and work-

�ow structure, for rewriting scienti�c work�ows into simpler structures, in order

to make scienti�c work�ow easier to (re)use. This conclusion presents a summary

of completed contributions.

Note that the �rst strategy related to rewriting non-SP scienti�c work�ows into

SP work�ows is introduced in chapter 4 and has been published in eScience 2012

[CBFJ12] and BDA 2012 [CBFC12]; and the second strategy related to rewriting

scienti�c work�ows by removing some anti-patterns to reduce redundancy of them

is introduced in chapter 5 and has been published in the "BMC Bioinformatics"

Journal [CBCG+13] and a poster at NETTAB 2012 [CCBF+12].

Here, we recall the contributions that have been introduced in chapter 1.

Broadly stating, the main contributions of this work include the design of (1)

a model to present scienti�c work�ows and provenance; (2) SPFlow algorithm; (3)

the implementation of the SPFlow system which takes in non-SP Taverna work-

�ows and produces provenance-equivalent SP work�ows; (4) the identi�cation and

automatic detection of a set of anti-patterns that contribute to the structural

work�ow complexity; (5) a series of refactoring transformations to replace each

anti-pattern by a new semantically-equivalent pattern with less redundancy and

simpli�ed structure; (6) a distilling algorithm named DistillFlow that takes in a
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work�ow and produces a distilled semantically-equivalent work�ow; (7) a series of

experiments to illustrate our approaches.

In particular, the contributions of this work are as follows:

(1) Work�ow model and provenance model. Our provenance model is nat-

urally compatible with OPM and uses regular expressions to represent the

graph structure of provenance information. This provenance model is cur-

rently useful for representing coarse-grained provenance structures. Based

on this provenance model, we gave a de�nition of the notion of provenance-

equivalence which can be used to identify whether two work�ows have the

same meaning.

(2) Provenance-equivalent SPFlow algorithm. We reviewed several rewrit-

ing strategies for transforming non-SP graphs into SP graphs and proved that

they were not provenance-equivalent. Then, we designed a new algorithm,

SPFlow, which is a provenance-equivalent approach. It enables us to obtain

new provenance-equivalent SP work�ows from non-SP work�ows.

(3) Implementation of the SPFlow system. We have implemented the

SPFlow algorithm and developed a tool for transforming any non-SP Tav-

erna work�ow into an SP work�ow. Current version of SPFlow takes in

non-SP Taverna work�ow and provides a new SP work�ow which can be

executed by Taverna work�ow system. The tool is currently available from

"https://www.lri.fr/ chenj/SPFlow/".

(4) A set of anti-patterns that contribute to the structural work�ow

complexity. We identi�ed and automatically detected a set of anti-patterns

by carrying out a series of experiments. Currently, two anti-patterns (cf.

Figure 5.3 and Figure 5.4) have been identi�ed.

(5) A series of refactoring transformations for anti-patterns. We pro-

posed a series of refactoring transformations to replace each anti-pattern by

a new semantically-equivalent pattern with less redundancy and simpli�ed

structure.

(6) A DistillFlow algorithm. DistillFlow takes in a work�ow and produces a

distilled semantically-equivalent work�ow. The resulting work�ow is free or
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partly free of anti-patterns and have a more concise and simpler structure,

which is closer to SP structure.

(7) A series of experiments have been provided to illustrate our ap-

proaches. We have illustrated SPFlow by providing an evaluation of our

approach on a thousand of the public Taverna work�ows. We also have pro-

vided an implementation of DistillFlow that we evaluated on both the pub-

lic Taverna work�ows and on a private collection of work�ows from BioVel

project.

With all these contributions, we are currently able to obtain (1) SP structures

for scienti�c work�ows, on which complex work�ow operations can easier perform;

(2) distilled structures for scienti�c work�ows which are free or partly free of

redundancy.

6.2 Future Work

We intend to continue this work in several directions. These directions have

already proposed in [CBFJ12] and [CBCG+13]. Here, we recall them and give a

discussion on our ongoing work.

The �rst direction of research focuses on extending our provenance model to

support �ne-grained provenance, in order to deal with "problematic" dependency

discussed in chapter 2. We also intend to extend our provenance model to in-

troduce a restricted form of loops in the speci�cations making runs having SPFL

structures (for Series-Parallel-Fork-Loop) which are structures sharing advantages

of SP structures for some operations on graphs [BBD+09].

Based on the extended provenance model, another direction of research deals

with generalizing SPFlow to other work�ow systems.

The following directions are mainly related to DistillFlow.

The third direction of research deals with generalizing DistillFlow to other

work�ow systems. In particular, in systems able to exploit multi-core infrastruc-

tures or run on Grids or Clouds environments [JCD+13], our distilling approach

could be highly bene�cial since it pushes the management of multiple activations

to system runtime, which can more e�ciently parallelize their execution when

deployed on a parallel architecture.
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The fourth direction includes enriching the distilling approach with new pat-

terns (such as trace links) and making it possible to choose whether or not such

patterns should be transformed, in an interactive process. In such a framework,

users might even have the choice to remove some anti-patterns even if the resulting

work�ow is non-SP, thus relaxing the SP-constraint. One of the challenges of such

an approach will be to provide users with means to estimate the impact of their

choices on the work�ow structure and its future use.

Instead of considering an automatic procedure, the distilling procedure would

be used during the design phase in a semi-automatic way. The refactoring ap-

proach would thus be built into the scienti�c work�ow system design environment.

It may then be complementary to approaches like [WOvdV09] which help users

�nd and connect tasks following an on-the-�y approach during the design phase

or [GGW+09] which supports work�ow design by o�ering an intuitive environment

able to convert the users' interactions with data and Web Services into a more

conventional work�ow speci�cation.

We are also seeking to better understand the reasons why some work�ows

are not SP. Appendix B provides a preliminary study on the kind of processors

which may be more inclined to the reduction nodes and thus to make the work�ow

structure being not SP.

The longer term goal would then be to propose guidelines for work�ow authors

to more directly design distilled work�ows. This work will be achieved in close

collaboration with work�ow authors and will involve conducting a complete user

study to collect their feedback on the distilling approach and possibly resulting in

�nding again new anti-patterns.
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Appendix A

DistillFlow: refactoring scienti�c
work�ows for better (re)use (Tool)

In this appendix, we introduce the java application tool based on the algorithm

described in section 5.3 and in [CBCG+13], named DistillFlow, which aims at

rewriting complex scienti�c work�ows into new work�ows with simpler structure

by removing as many anti-patterns as possible. The current version of DistillFlow

supports Taverna 2 input work�ows.

Figure A.1: Architecture of DistillFlow (arrows mean dependencies between the
modules)

A.1 DistillFlow architecture

DistillFlow transforms any work�ow having "processor redundancy" (where

the number of occurrences of a given processor can be reduced without altering

the work�ow semantics) into a simpler work�ow which is free or partly free of

anti-patterns. We have implemented the prototype system DistillFlow in Java,

whose architecture is shown in Figure A.1.

The process of transforming a work�ow is described as follows. The user pro-

vides to DistillFlow the speci�cation of the work�ow to be considered (such a
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speci�cation may have been directly designed by the user or uploaded from my-

Experiment). The current version of DistillFlow is able to rewrite work�ows from

Taverna system (other systems are under consideration). The TavernaLoader

module is thus responsible for loading the work�ow into the DistillFlow inter-

nal graph structure. Then, the Anti-pattern Checker module determines whether

or not the work�ow taken in contains anti-patterns and provides a report with

graph features, including the identi�cation of anti-patterns (if any) and a list of

anti-patterns that the system recommends to remove. The user can interact (us-

ing the UserCollaboration module) with each item of such a list to visualize the

corresponding information on the speci�cation graph. If the work�ow contains

anti-patterns, then the list of anti-patterns selected by the user to be removed

(possibly all of them) is sent to the Anti-pattern Remover module which removes

them. The user can visualize the work�ow obtained and decide to stop considering

additional anti-patterns. When the user is �ne with the work�ow obtained (either

all possible anti-patterns have been removed or s/he has chosen not to consider

some of them), the TavernaLoader module produces the rewritten work�ow into

the Taverna XML format and makes it available for the user.

Users communicate with the system by loading and interacting with original

and rewritten work�ows. The functionalities of the system are described in more

detail below.

A.2 Functionalities of DistillFlow

Our implementation of DistillFlow is able to provide the following features.

Loading Data: Users start using DistillFlow by loading a work�ow speci�-

cation into the system (see Figure A.2). The original picture of the work�ow from

myExperiment will be displayed by DistillFlow if available (panel (4) in Figure

A.2), together with a report on graph features (metadata on the work�ow, panel

(2) in Figure A.2). The anti-patterns will be determined by Anti-pattern Checker

and a list of anti-patterns will be displayed in panel (3) (Figure A.2) of DistillFlow.

This list is divided into three groups, including anti-patterns A, anti-patterns B

and the anti-patterns which should not be removed (the remove operation of this

kind of anti-patterns would create new reduction nodes that we want to avoid as
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Figure A.2: Loading a work�ow in DistillFlow and visualizing the set of anti-
patterns detected. The work�ow loaded is represented in panel (1) (an outline
view is provided by panel (5)), the panel (2) displays metadata of the work�ow
(number of processors, links, authorship information etc.) while the panel (3)
provides the set of anti-patterns detected by DistillFlow. Here, the user has clicked
on anti-pattern "13-11-12" in the anti-pattern information panel (3) which has
automatically highlighted the corresponding anti-pattern in the work�ow (panel
(1)). The user has then right-clicked on this pattern on (3), as a consequence
DistillFlow proposes to the user to remove it.

explained in Chapter 5).

DistillFlow provides colors to help users easily distinguish di�erent anti-patterns

on the work�ow graph: "brown" means anti-pattern A, "purple" means anti-

pattern B, and "grey" means anti-pattern not to be removed. The same color

is systematically used on the work�ow (to display the nodes involved in an anti-

pattern) and on the text listing the anti-patterns (panel (3) in Figure A.2).

Refactoring the work�ow:

a. Selecting anti-patterns in collaboration with the user: DistillFlow allows the

user to determine which anti-patterns to be removed. By clicking on the

anti-patterns information (panel (3) in Figure A.2), DistillFlow will high-

light the corresponding processors on the graph (panel (1) in Figure A.2).

Then an operation menu (panel (3) in Figure A.2) will be provided by User-

Collaboration module to the user to perform the remove operations on the
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anti-patterns using Anti-pattern Remover.

Note that this collaboration feature will provide the possibility of extending

DistillFlow to support other anti-patterns which can be removed in collab-

oration with work�ow users.

b. Refactoring once-for-all: DistillFlow allows to automatically remove all the

anti-patterns suggested to be removed by the system. To do so, the user

has just to click on the "Remove All anti-patterns" main button (top of

Figure A.2). Again using Anti-pattern Remover, DistillFlow transforms any

complex work�ow with anti-patterns into a simpler work�ow which is free

or partly free of anti-patterns (see Figure A.3 panel (b1)). Both work�ows

will be displayed.

Once the set of anti-patterns to be removed has been selected the user clicks

on the "Result overview" button (top of Figure A.2) which automatically

opens a new window entitled "Result Overview" and displays the original

(Figure A.3 panel (a1)) and distilled work�ows (Figure A.3 panel (b1)).

Visualizing the changes and interacting with the work�ows: To un-

derstand which changes have been done between the initial and distilled work�ows,

the user can interact with the two work�ows. By clicking on a vertex on one

graph (initial or transformed graph), DistillFlow will highlight the "correspond-

ing" processors in the other graph (it shows the correspondence between a set of

occurrences of a given processor p in the original graph and a set of occurrences of

the processor p in the (possibly partly) distilled work�ow). With this functional-

ity, the user can make a comparison between the two graphs to see the di�erence

between the initial work�ow and the rewritten work�ow. A detailed report of all

the anti-patterns is also displayed (panel (d) in Figure A.3). By clicking on the

items on the anti-pattern information panel, the corresponding processors will be

highlighted not only on the initial work�ow but also on the rewritten work�ow. As

an example in Figure A.3, the user has clicked on anti-pattern "11-12-13" which

has been removed in the distilled work�ow and can be displayed in both work�ows

(more information is provided on the caption of Figure A.3).

By using such a functionality the user may choose to run again DistillFlow by

considering a new list of anti-patterns which may provide a work�ow which seems
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Figure A.3: Visualizing both initial work�ow and distilled work�ow. The initial
work�ow and distilled work�ow are respectively represented in panels (a1) and
(b1). The panels (a2) and (b2) respectively display metadata of the two versions
of work�ows (number of processors, links, authorship information etc.) while panel
(c) provides the metadata of the two graphs displayed in (a1) and (b1) (number
of total nodes, links etc.). The panel (d) is particularly important and provides a
table of all the anti-patterns detected in the original work�ow. Here, the user has
clicked on anti-pattern "13-11-12" in the anti-pattern information panel (d) which
has automatically highlighted the corresponding anti-pattern both in the initial
work�ow (panel (a1)) in which three vertices are involved and in the distilled
work�ow (panel (b1)) in which the anti-pattern has been removed by the system,
merging vertices "13", "11" and "12", resulting in only one vertex, numbered 13.
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to be more suitable to him.

Running the distilled work�ow : Any work�ow distilled by DistillFlow

can be opened and run by Taverna. We can see that the distilled work�ow and

the original work�ow provide the same output, if given the same input.

A.3 Extensibility of DistillFlow

This section introduces the extensibility of DistillFlow. Some points for ex-

tending DistillFlow have been considered in the architecture of DistillFlow.

We consider here three points:

(1) Extensible libraries: DistillFlow is equipped with two libraries: a library

of anti-patterns and a library of distilling algorithms. Any anti-pattern

should be registered into the anti-pattern library with several features includ-

ing the work�ow systems they can be applied to and the distilling algorithm

which can be chosen to deal with them. For example, anti-pattern A is use-

ful for any work�ow system, while anti-pattern B is only useful for work�ow

systems which support list processing.

Furthermore, for di�erent anti-patterns, the distilling algorithms for detect-

ing or removing all the anti-patterns may also be di�erent. So, DistillFlow

currently considers several features of each distilling algorithm, such as for

which anti-patterns or work�ow system it is suitable. The algorithms should

be registered into the algorithm library.

The Anti-pattern Checker and Anti-pattern Remover modules communicate

with the two libraries to choose the appropriate anti-patterns to detect and

those to distill according to the input work�ows. With the help of these

libraries, DistillFlow can thus be extended to support other anti-patterns.

For example, trace links can be registered as a new kind of anti-pattern

compatible with any work�ow system and any distilling algorithm.

(2) TavernaLoader: This model currently supports Taverna input �les, and

can be replaced by Galaxy Loader, Kepler Loader, etc. Anti-patterns and

distilling algorithms are always in relation with this module. Once a work-

�ow is loaded into DistillFlow, Anti-pattern Checker will �rst search for
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all the anti-patterns related to this work�ow in the anti-pattern library and

search for the appropriate distilling algorithm in the algorithm library. Then

Anti-pattern Checker will identify all the anti-patterns in the work�ow ac-

cording to the anti-patterns found in the library by using the related algo-

rithm.

(3) UserCollaboration: This module allows users to take part in the distilling

process. Because di�erent anti-patterns may require di�erent user oper-

ations, DistillFlow provides an interface for extending user operations for

di�erent anti-patterns. For example, when removing a trace link, the user

may want to replace it by a collaboration link (as it is not a real data link

in the work�ow, it is not considered in the speci�cation), which is used for

querying intermediate data from the internal provenance database of the

work�ow system.

All these features have been considered when DistillFlow has been designed and

implemented, which makes DistillFlow able to be extended in our future work.





Appendix B

Why scienti�c work�ows have
non-SP structures (Preliminary

study)

Determining the reasons why some work�ows have non-SP structures may help

users to directly design work�ows having a structure closer to SP structures. The

SPFlow system presented in Chapter 4 may then also be used on less complex,

distilled, work�ows. The aim of this appendix is to present the results obtained

on the study that we have conducted on the set of Taverna work�ows available on

myExperiment to analyze the reasons why work�ows have non-SP structures. A

preliminary version of this study has been published in [CCBF+12].

Our study has been conducted on a set of 1,454 distinct work�ows extracted

from the Taverna work�ows available in myExperiment in July 2013. We used

SPChecker which was a module included in SPFlow to detect whether work�ow

graphs were SP. Among the 621 work�ows with non-SP structures (42,7%), we

have focused on identifying reduction nodes and analyzed the forbidden patterns

in which they were involved.

Figure B.1: Distribution of reduction nodes with di�erent processor types
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B.1 On the in�uence of the kind of processors

a. The �rst set of experiments aimed at identifying the kinds of processors

which may be more likely reduction nodes than others. Figure B.1 pro-

vides such results by considering the 21 types of processors in Taverna

("local worker" to "cds"). Six types of processors (namely, "localworker",

"beanshell", "data�ow" (subwork�ow), "wsdl", "stringconstant", and "in-

putport") are the types of processors mainly used in Taverna, and represent

92.5% of all the nodes. Such kinds of processors represent 90.1% of the total

number of reduction nodes. The distribution of nodes based on the type of

processor is thus almost the same when considering reduction nodes only or

any node.

For the �rst 4 types, to our knowledge, SPFlow is currently the unique so-

lution. For the last two types, namely "inputport" and "stringconstant"

(representing 22% of the reduction nodes) we may provide a simpler solu-

tion. Indeed, very interestingly, these two types are used as work�ow input

in Taverna. As an input value can be sent to di�erent processors, some of

them usually have more than one output link. As introduced in Chapter 2,

we add a single source (an additional node) to make the work�ow speci�ca-

tion be an st-dag. So, the nodes of input values are thus possible to occur

as reduction nodes.

The non-SP problem caused by such a kind of nodes (work�ow inputs) can

be solved in a simple way, namely, by duplicating input values to make sure

that each input value is sent to one processor. In such a way, the nodes

of input values will never be reduction nodes. Furthermore, the nodes of

input values are the children of the source, which makes them easier to be

detected.

b. Non-SP-only processors: Our second series of experiments consisted in

searching processors that only appear as reduction nodes (such a processor

appears in a work�ow only as a reduction node). Here again, we studied the

types of these processors.

As a result, most reduction nodes correspond to local processors (processors

provided by Taverna to work�ow designers) and web services processors. In
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particular, among a set of 98 web services, 42 services only appear in non-SP

work�ows and occur at least once as reduction nodes. More interestingly,

nine services appear only as reduction nodes in non-SP work�ows. We call

them Non-SP-only processors. As for local services, we found one Non-SP-

only local processor.

For this point, we need to investigate ways to modify the use of Non-SP-only

processors (e.g., changing the processors ports, grouping several consecutive

calls of the same processor, designing SP patterns of joint use) so that they

are not anymore systematically associated to (and possibly responsible for)

non-SP structures.

B.2 Trace links and trace nodes

The third series of experiments has focused on the notion of trace nodes and

trace links as introduced in section 5.5.3. Figure B.2 (a) provides an example

of non-SP work�ow involving two trace links and two corresponding trace nodes.

Recall that intuitively a trace link is a link from the output of a processor (vertex)

to the �nal outputs of the work�ow that the user may use to keep the trace of

some intermediate results produced (although the provenance module is already

able to do it). A trace node is the vertex that has a trace link going out of it.

According to our de�nition (de�nition 2.3.1 in Chapter 2), trace links actually

make the work�ow be non-SP (if one trace link is removed then the vertex it goes

out of may be not a reduction node anymore (cf. Figure B.2)).

Trace nodes are thus very interesting kinds of reduction nodes to look at.

Among a total of 16,984 nodes in the set of non-SP work�ows, we found 2,464

reduction nodes including 853 "trace nodes" (representing 34.6% of the reduction

nodes) and involved in 423 work�ows (representing 68.1% of non-SP work�ows).

The distribution of trace nodes in di�erent kinds of processors is also shown in

Figure B.1. Again, their distribution according to the kind of processor is similar

to other kind of node.
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Appendix B. Why scienti�c work�ows have non-SP structures

(Preliminary study)

Figure B.2: (a) Example of non-SP work�ow from myExperiment
("blastsimplifier" (p1) and "blast_ddbj" (p2) are trace nodes and links
"blastsimplifier(p1) → simplified_report(p3)" and "blast_ddbj(p2) →
blast_report(p4)" are trace links); (b) the speci�cation of (a). If the two trace
links in (a) are removed, (b) will not be non-SP graph anymore and the work�ow
will be an SP work�ow (the SP version of the speci�cation is shown in (c)).
Recall that this removal should actually be done very carefully since removing
trace links implies removing part of the work�ow outputs (see section 5.5.3).

In conclusion, we have identi�ed several reasons why work�ows may not have

an SP structure. The notion of trace node seems to be promising and from the

type of processors point of view, we will study the behavior of some web services

further. Following the solutions underlined, we will get distilled work�ows in which

the number of reduction nodes should importantly be reduced and we hope that

a large part of work�ows may become SP. In our approach, users do not have

to consider structural constraints when they design work�ows; our aim is instead

to provide them with designing guidelines ensuring that distilled work�ows are

naturally produced.
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