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Introduction

The expansion of autonomous systems in technology, industry and in our daily life, re-
flects our propensity to face new challenging issues. These issues can refer to complex or
dangerous tasks humans cannot do but also to simple or labored tasks humans are reluctant
to do.

Autonomy can be defined by the ability of a system to act on its own in its environ-
ment and to interact with this environment. It is a central concept in the fields of artificial
intelligence or robotics. Fostered or imagined by visionaries such as Alan Turing or Isaac
Asimov, these branches have constantly improved from the second half of the 20" cen-
tury. In popular culture, the chess-playing computer Deep blue or the Honda P-series
humanoid robots, have been famous and pioneering examples of such intelligent and au-
tonomous systems.

In robotics, these systems, having gained sufficient maturation, are currently flour-
ishing in a wide range of applications, for scientific, exploration, industrial or domestic
concerns. In the automotive industry, the Google driverless system is a famous example.
For medical applications, the boom of robotics has been demonstrated by the Intuitive Sur-
gical’s da Vinci semi-autonomous surgical system. In the military industry, autonomous
Unmanned Aircraft Vehicles (UAV), such as the Northrop Grumman’s X-47B, are actively
developed and tested. The successes of the Mars exploration rovers Spirit, Opportunity
and more recently Curiosity, operated by the NASA’s Jet Propulsion Laboratory, have
been milestones for autonomous robotic systems in the aerospace field. Finally, the do-
mestic area is now being flood by robots, like robotic vacuum cleaners or grass mowers.

Sensing the world: the key to autonomy

An autonomous robotic system can be generally modeled as a set of sensors to perceive
the environment, and a control system to drive a set of actuators and end-effectors, to ac-
complish tasks such as grasping objects, walking, rolling or flying, the whole working in
closed loop. In this way, such a system differentiate itself from tele-operated systems. In
order, for a robotic system, to autonomously and properly achieve its goal and to adapt to
the environment, sensing and providing reliable information to the control system is a cru-
cial issue, especially in changing environments. Numerous sensors are available, working
globally, like Global Positioning System (GPS), or relatively to the local environment
such as camera or range sensors, or relatively to the system itself like Inertial Measure-
ments Units (IMU, gyroscopes and accelerometers). They can work actively or passively,
whether the sensor interacts with the environment (force or touch sensors, range sensors,
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for instance LIDAR, RADAR or SONAR) or not (visible or thermal cameras). Among
them, vision sensors and monocular cameras are particularly popular and widespread.

Monocular cameras have indeed several advantages that make them applicable for
many robotic applications. By capturing images though the detection of electromagnetic
radiations, cameras provide a reliable and stable 2D visual information of the environ-
ment, wether it is indoor, outdoor, underwater, aerial, space, etc. The Field of View (FoV)
can be tuned and potentially be omnidirectional. They are relatively cheap facilities, with
respect to Inertial Measurement Units (IMU), GPS or range sensors for instance. They
can have a small form factor, and can thus be conveniently mounted on many kinds of
systems. Besides, they require few power consumption and their calibration process (for
conventional cameras) is fast and easy. For these reasons, which regard hardware aspects,
cameras can be found on mobile robots, UAVs, underwater robots, industrial robot arms,
surgical robots, space robots, etc.

The images captured by the camera need to be understood to provide an exploitable
information for the control system, through localization in the environment for instance.
These concerns, related to software aspects, refer to the field of computer vision.

""Vision is the art of seeing what is invisible to others'' - Jonathan Swift

Computer vision aims at processing, analyzing and understanding the content of im-
ages.The development of cameras, webcams, and the growing production of image data
and videos, have considerably increased the need for softwares and algorithms to process
these images, making computer vision a particularly active research field.

Generally speaking, with computer vision, different issues can be targeted. Based on
an image or on a set of images, resulting from video sequences, acquired by one or mul-
tiple cameras, a computer vision system has to deal with detecting, recognizing, tracking
or reconstructing patterns, scenes, objects, people from images. The overall goal of these
tasks is to understand the scene or localize it, with potentially complex environments
or imaging conditions. It relies on machine learning, pattern recognition, motion anal-
ysis techniques and on the basic idea of fitting the image content with some predefined
or learned model. In addition to robotics, other applications, such as classification and
indexation of images and augmented reality, are related to computer vision.

Objective of this thesis

This thesis has come within this scope of computer vision for robotics. More specifically,
the main objective of this work has been to design computer vision solutions able to
localize a camera, and the potentially underlying robotic system, with respect to a known
object, and with a particular focus on space robotics and space rendezvous applications. In
this case, the camera would be mounted on a space robotic vehicle, aiming at approaching
a target space object or a spacecraft.

Providing a high-level of autonomy to robotic systems, and relying on computer vi-
sion technologies for this purpose, is particularly suitable for space robotics applications,
especially to the case of space autonomous rendezvous or proximity operations.

Computer vision solutions have already been successfully implemented on some space
robotic systems, as shown by the Mars rovers Spirit or Curiosity. In the context of space
rendezvous, the idea of conceiving fully autonomous Guidance Navigation and Control
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(GNC) systems for a space vehicle with respect to its target, is preferable, but also very
challenging. Few operational or experimental systems have indeed been designed and
tested in this sense. For servicing goals, we can mention the Progress spacecraft or the
Automated Transfer Vehicle (ATV), for servicing purposes with the International Space
Station (ISS), as some of the rare examples. In the case of space debris removal ap-
plications, the problem is novel. Besides, such rendezvous maneuvers have very strict
requirements in terms of navigation measurements, and imaging conditions are specific
and can be difficult, with potential important light/dark or specular effects, noise...

With the support of Fondation EADS, this thesis was born out of a collaboration be-
tween Astrium Toulouse, an aerospace subsidiary of the European Aeronautic Defence
and Space Company (EADS) which provides space systems such as space launchers and
satellites, and the Lagadic research team at Inria Rennes, whose research topics involve
computer vision, visual servoing and robotics.

Contributions of this thesis

The aim of this work has been to provide a unified computer vision-based localization sys-
tem, particularly in the context of a space autonomous rendezvous. This system should
be able to estimate the full 6 Degrees of Freedom (DoF) localization parameters (position
and orientation), which refer to the so-called full pose, between the camera and the con-
sidered target. Let us remind that the target is assumed to be known. More precisely, our
solution is based on the prior knowledge of a fixed 3D CAD model of the target. We have
paid attention to three major aspects of the problem:

e Visual detection and initial localization of the target

A first contribution has been to work out a novel solution to initially determine the
complete pose between the camera and the target object. As previously mentioned,
our method relies on the prior knowledge of the 3D CAD model of the target. This
solution is based on segmenting the target from its background on a set of initial
input images, through the development of a foreground/background segmenta-
tion technique particularly suited for our context. The silhouettes of the segmented
images are then used for matching a set of pre-generated synthetic views of the tar-
get (using the 3D model) with the initial input images. In order to accomplish this
task, a probabilistic matching and alignment framework between the views and
the image has been designed to retrieve the full 6 DoF pose. For a better computa-
tional efficiency, we have developed a solution to classify the synthetic views into a
hierarchical view graph.

e Visual tracking of the target

The second issue focuses on estimating the complete pose of the camera with re-
spect to the target through frame-by-frame model-based tracking, initialized by the
detection technique. We first propose a method able to deal with complex 3D mod-
els, by taking advantage of rendering capacity and hardware acceleration. Another



Contents

contribution has then been to robustly combine complementary sorts of visual in-
formation. We have chosen visual features to represent the target object through its
edges, its shape and its texture, using classical edge-based, color-based and interest
point based features. The pose estimation process is then based on the minimization
of an error function with respect to the pose. We show the efficiency and robustness
of the implemented solution, quantitatively on synthetic data, and qualitatively on
real image sequences.

e Measuring the uncertainty of the localization process

We suggest to evaluate the reliability of the tracking process by propagating uncer-
tainty from the visual features to the camera displacement. Based on this uncer-
tainty, a Kalman filtering process and pose prediction scheme has been designed
for the tracking method, to smooth pose estimates, to provide to handle potential
large inter-frame motions.

Outline of the thesis

This thesis is organized as follows. Chapter 1 presents the application field of this thesis,
which is space autonomous rendezvous and proximity operations, for on-orbit servicing
and debris removal goals. The issues regarding navigation (or localization) are particu-
larly stressed out. The reasons for relying on computer vision in this context are explained
and the related works are described. The experimental procedures, inherent to this appli-
cation, and which aims at validating the implemented solutions, are also presented.

Chapter 2 introduces some theoretical background on computer vision, focusing on
two issues related to our problem. The first one concerns visual initial localization of
the target in the image, through pose estimation by detection. The second one tackles
the issue of visual localization of the target, based on pose estimation by frame-by-frame
tracking.

Chapter 3 deals with the solution we propose to handle the issue of detection and ini-
tial pose estimation, providing the technical aspects as well as experimental results on
various data.

In chapter 4, we present our method to address the problem of pose estimation by
frame-by-frame tracking, of determining the reliability of the tracking process, with vari-
ous experimental validations.

Finally, a conclusion recaps the proposed approaches and the obtained results, and
some future perspective are suggested.
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Chapter 1

Space autonomous rendezvous and
proximity operations

For decades, the advances in space exploration and the development of space commercial
operations have enhanced the issue of on-orbit servicing. Providing maintenance, sup-
plying, refueling, repairing of space facilities and removing space debris have become
key requirements to efficiently and reliably pursue space exploration and to maintain a
sustainable space environment. The famous successes of the repair missions of the Space
telescope Hubble and the assembly and re-supply of the International Space Station, as
well as numerous other projects and demonstrators, have been promising examples for
facing some of these crucial challenges. In terms of technology, these critical operations
require reliable performances of rendezvous and proximity operations between the servic-
ing vehicle (the chaser), and the serviced one or the debris, referred as the target. Partic-
ularly, the incorporation of autonomy regarding guidance, navigation and control (GNC)
of the chaser with respect to the target during rendezvous, berthing, docking maneuvers,
has increasingly crystallized efforts, in order to cope with impossible or limited ground
control, due to large communication delays and for operational efficiency reasons. With
this growing and key need for autonomous on-orbit operations, works and researches have
focused on designing navigation solutions consisting in estimating the relative state be-
tween the chaser and the target or debris. For these purposes, the maturation of computer
vision technologies for robotics has made them studied and experimented solutions.

The objective of this chapter is to set the scope and the application field of this the-
sis. An exhaustive review of the issues and concepts related to on-orbit servicing and
space autonomous rendezvous and proximity operations can be found in [Fehse 08] and
[NASA 10]. Some basic concepts regarding the whole process of a space rendezvous mis-
sion will be presented in section 1.1. Some particular attention will be paid on proximity
operations and on the final phase of a rendezvous (section 1.2), with a focus on the possi-
ble navigation solutions. Finally, section 1.3.4 discusses how computer vision and robotic
techniques can be considered and specifies the consequent requirements, especially with
regards to the solution proposed in this thesis.
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1.1 Space rendezvous

1.1.1 Some principles, a brief history and current stakes

A space rendezvous consists in a series of successive space orbital maneuvers which aim
at bringing an active spacecraft (the chaser) in the vicinity or in contact with another
spacecraft or object (the target). This process is currently frequently used for different
kinds of space missions: re-supply of orbital stations, exchange of crew in orbital stations,
inspection and repair of spacecrafts. Along history and since March 16" 1966 and the
rendezvous and docking between Gemini and an Agena target vehicle (Figure 1.1(a)), the
world has witnessed many famous successful examples of such maneuvers and missions,
carried out for experimental or operational purposes, essentially by Russian, US and more
recently European, Japanese and Chinese space programs:

e In 1967 experimental Soviet vehicles Cosmos 186 and 188 docked, for what is
known as the first autonomous rendezvous.

e Soyuz 4 and Soyuz 5 performed the first rendezvous and docking with an exchange
of crew, in 1969.

e With Salyut and Mir Space Station Programs (1971-1999), Russian operational
manned Soyuz spacecraft, for crew exchange, and unmanned Progress spacecraft,
for re-supply, regularly performed autonomous docking on both stations.

e In 1975, Americans and Russian also experienced the first international docking
mission, between an Apollo capsule and a Soyuz spacecraft.

e The different US Space Shuttles, designed for Space Transportation System (STS)
program conducted by the NASA, started their servicing missions in 1984 with the
repair of the Solar Maximum satellite and provided re-suppply and crew exchange
missions with the Mir space stations in the 90s, until 1999. Space shuttles continued
their missions later on with the International Space Station (ISS) from 1998 until
2011 with the STS-135 mission of the Atlantis Space Shuttle.

e Famous examples of satellite servicing are the successive repairs of Hubble Space
Telescope between 1993 and 2009 with four manned missions involving space shut-
tles initiated by the NASA to repair or replace optical instruments or different defi-
cient sensors or actuators embedded on the telescope.

e Since its assembly, the ISS has been serviced by both Progress spacecrafts for re-
supply and Soyuz TMA spacecrafts (Figure 1.1(b)) for crew exchange. More re-
cently, the Automated Transfer Vehicle (ATV, Figure 1.1(c)), operated by the Eu-
ropean Space Agency (ESA), and the Japanese H-1I Transfer Vehicle (HTV) have
successfully delivered supplies to the ISS, with fully (ATV) or partially (HTV) au-
tonomous docking capabilities, respectively since 2008 and 2009.

e Since 2012 cargo supply to the ISS has been also flown out by a privately owned
commercial craft, with SpaceX’s partially reusable and fully autonomous Dragon
spacecraft (Figure 1.1(d)), through berthing and docking maneuvers. This trend
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originated by the NASA to rely on private commercial industries has been empha-
sized by the launch of Orbital Sciences’Cygnus spacecraft, which has joined the
fleet of autonomous re-supply vehicles since September 2013.

1SS016E035627

(a) View of Agena target vehicle from Gemini 8 (b) Soyuz TMA spacecraft right docking with the
spacecraft. ISS.

(c) ESA ATV vehicle. (d) Space X Dragon spacecraft docked with the ISS.

Figure 1.1 — Examples of rendezvous and docking missions.

Several challenges and stakes justify the need for on-orbit servicing and rendezvous
capabilities and especially the need for autonomous systems. With the expansion of
space activities, for economic and earth observations concerns, with the constant growth
of telecommunication and observation satellites, as well as for exploration concerns, as
demonstrated by the recent success of the Mars Science Laboratory mission and the fu-
ture launch of Gaia and James Webb Telescopes, servicing these assets to preserve their
functionality and extend their life, through repairing or refueling, would both provide eco-
nomic and scientific benefits.

Besides, as evoked by [Liou 10, NASA 12, Bonnal 13b], the growth of the popula-
tion of space objects, in recent years, especially on the Low Earth Orbits (LEO)(between
700km and 1000km), faces saturation (see Figure 1.2). According to these studies, a tip-
ping point, the so-called Kessler syndrome, is being reached. The Kessler syndrome, early
identified in the 70s by Donald J. Kessler and Burt Cour-Palais [Kessler 78], states that de-
bris resulting from collisions between objects already on-orbit would cascade. As recent
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examples which accelerated this phenomenon, we could mention the collision in 2009
between an American telecommunication Iridium satellite with a defunct Russian mili-
tary Cosmos satellite, and the intentional destruction, with a anti-satellite device, of the
Chinese observation satellite Fengyun-1C, both events engendering thousands of debris
(see Figure 1.2(b)). The current situation implies important risks for active spacecrafts or
platforms, as proven by the recent debris avoidance maneuvers performed by the ISS, and
as shown in [Brudieu 12] for the case of the Spot satellite. As a consequence, a need to
stabilize the environment, by removing some debris, such as defunct satellites or rocket
bodies, becomes crucial. For instance, the NASA Orbital Debris Office [Liou 10] pointed
out that at least 5 large debris should be removed per year from now on. As recently
discussed at the last ESA Conference on Space Debris in Darmstadt !, many on-going
studies have addressed this problem, which is often referred as Active Derbis Removal
(ADR) and which faces technological, but also economical, legal and political issues.
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Figure 1.2 — Artistic view of space objects (a), in 1963 (left) and in 2013 (right), and number of
space objects (b) in Low Earth Orbit [NASA 12].

The general scenario [Bonnal 13b] for an ADR would be to perform rendezvous with
the debris, to dock on it or capture it, to control it and finally to de-orbit it. De-orbitation
would mean, for debris in LEO, to bring them towards random reentry into the Earth’s
atmosphere for self-destruction and for debris in the Geostationary Orbit (GEO), which
also faces similar problems, a solution would be to move the debris to disposal, safe orbits.

Technically, given the type and location of the considered debris, different strategies
and technologies have been stressed out to handle ADR [Bonnal 13b, NASA 12]. The
ADR operation could indeed involve a single chaser for a single debris or for several
debris, or a swarm of multiple chasers (or kits) for multiple debris. This last idea has been
for instance suggested for the Orbit Transfer Vehicle (OTV) program [Martin 13], led by
the French Centre National d’Etudes Spatiales (CNES), with Astrium and Thales Alenia
Space as contractors.

Among other projects for ADR missions, we can mention the Clean Space Program
initiated by ESA?, with the aim of launching, by 2021, a debris removal vehicle, by first
demonstrating its de-orbiting capabilities on a large debris satellite such as Envisat. This
program is likely to rely on technologies and platforms studied by the German space

"http://congrexprojects.com/2013-events/13a09/introduction
http://www.esa.int/Our_Activities/Space_Engineering/Clean_Space
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agency DLR for the DEOS program® [Sellmaier 10, Rank 11, Miihlbauer 12]. With As-
trium as a contractor, DEOS plans to launch, from 2018, two demonstration satellites,
a chaser and a target (see Figure 1.3(a)), to experiment and validate rendezvous, capture
and control operations (see also sections 1.1.2.5 and 1.3.4). Such demonstration formation
flights are also investigated by the Swedish Space Corporation (SSC) with the PRISMA
mission [Persson 06] (see Figure 1.3(b)), co-developed with CNES, DLR and the Danish
University of Technology (DTU), for which two satellites were launched in 2010 to test
advanced closed-loop formation flying and rendezvous. The Swiss Federal Institute of
Technology in Lausanne (EPFL) is developing Clean Space One, with the idea of launch-
ing, by 2016, a nanosatellite intended to capture already on-orbit Swiss cube-satellites and
to finally ensure reentry into the atmosphere.

Instead of de-orbiting dead satellites or debris, the American Defense Advanced Re-
search Projects Agency (DARPA) has suggested, by initiating the Phoenix program* this
year, to harvest, reuse or recycle parts of dead satellites into valuable facilities for other
missions (Figure 1.3(c)).

() (b)

Figure 1.3 — Atrtictic view of the DEOS mission (a). Image of the Tango satellite seen from the
Mango satellite, for the PRISMA mission (b). Artistic view of the Phoenix program (c).

In terms of technology, both servicing and ADR missions require the achievement of
orbital maneuvering, rendezvous and docking, and robotic manipulation. A high level
of autonomy would be preferred for these operations. Indeed, due to some telecommu-

http://www.dlr.de/rd/desktopdefault.aspx/tabid-2266/3398_read-36724/
“http://www.darpa.mil/Our_Work/TTO/Programs/Phoenix.aspx
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nication link constraints, such as limited data rate and delays, ground control and tele-
operation are simply impossible in some cases or limited to very simple tasks. Never-
theless, these complex missions, possibly involving uncooperative and tumbling targets,
could not handle such constraints, especially on high orbits. Besides, for repairing mis-
sions which classically require human in-orbit intervention, as it was the case for Hubble
Telescope, Skylab or Solar Maximum missions, autonomy would free human astronauts
to perform this risky job.

But servicing spacecrafts and removing debris are not the only fields of applications
that the technologies developed for autonomous rendezvous and docking/berthing system
would aim at. These technologies are also explored and carried out for autonomous land-
ing of probes on planets or small solar systems bodies, like comets or asteroids, as well
as the capture of asteroids or the capture and return of planet samples. The recent suc-
cessful landing of NASA Mars Science Laboratory on Mars in order to deploy the rover
Curiosity in 2012, or the rendezvous and landing of Japanese probe Hayabusa with aster-
oid Itokawa in 2005 have illustrated the advances of autonomous navigation, control and
guidance technologies for such missions.

One particular challenge for these systems especially lies in the nature of the target.
For rendezvous with debris or with asteroids, the target is uncooperative and tumbling,
with an initially unknown kinematics. This specificity considerably complicates the prob-
lem as compared to cooperative rendezvous process, as involved in ISS resupply missions,
particularly regarding navigation issues. As it will be reviewed in section 1.3.4, computer
vision solutions have been designed and experimented to handle with such complex cases.
This is also the objective of the works presented in this thesis.

1.1.2 Phases of a rendezvous mission

Let us first briefly overview the different phases which make of a rendezvous mission and
the different related issues, which are more exhaustively reported in [Fehse 08, Woffinden 07,
Woffinden 08, Astrium 10, Tingdahl 10]. A rendezvous mission can indeed be divided
into five major phases: launch of the spacecraft, phasing, far range rendezvous, close
range rendezvous and mating.

1.1.2.1 Launch of the chaser

The launch of the chaser is the operation which brings the chaser from ground until its
orbit injection, using a launch system such as rockets. As for the launch of any other
space payload, this phase must respect some conditions to be properly performed. First,
the location, direction and time of the launch should be finely determined. The launch
should indeed occur when the launch site passes through the intended injection orbital
plane (see Figure 1.4(a)), which occurs twice a day. But since a launch directed easterly
produces gains in terms of velocity, there is only one opportunity per day for a launch,
and the tolerated error margin around this time, which implies costly trajectory correction
is specified by the launcher capabilities. Once correctly launched, the chaser vehicle is
brought into a lower orbit than the target, on the target orbital plane (Figure 1.4(b)), at an
arbitrary phase behind the target.
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1.1.2.2 Phasing and transfer of the chaser near the target orbit

This step is intended to carefully reduce the phase angle between the chaser and the target
and to bring the chaser to a so-called initial aim point or entry gate on the target orbit
or close to it. This step is usually controlled from ground in open loop, with navigation
based on absolute measurement (GPS) and consists in some orbital maneuvers following
different possible strategies.

In order to present them, let us first define the target Local Orbital Frame (LOF) with
axis +V-bar in the direction of the target velocity and -V-bar pointing the ground (Fig-
ure 1.4(b)). Most of phasing techniques are based on forward phasing, for which orbital
transfer maneuvers are used to bring the chaser from a lower orbit than the target up to the
target orbit, in the direction + V-bar (Figure 1.4(b), phase B-C and Figure 1.4(c)), since
a lower orbit implies a higher velocity, thus decreasing the phase angle. Backward phas-
ing can also be considered, through drifting from a higher orbit, in the - V-bar direction.
The orbital maneuvers generally consist in several perigee and apogee raise maneuvers
(Figure 1.4(c)), through tangential impulsive changes of velocity at the apogee or perigee
points of the chaser orbit, increasing (apogee) or decreasing (perigee) the eccentricity of
the orbit. A famous orbital maneuver is the Hohmann transfer, for which apogee and
perigee maneuvers are combined to bring the chaser from a circular orbit to another circu-
lar orbit closer to the target one. A typical phasing strategy can be seen on Figure 1.4(c),
for which the chaser orbit is progressively raised and the phasing rate decreased, until the
phase is sufficiently low. A final Hohmann transfer is then performed to reach the initial
aim point, usually at around 30 and 50 km from the target. Another strategy, would be to
perform as soon as possible a Hohmann transfer to reach a circular orbit very close to the
target orbit, and then to achieve successive perigee raise maneuvers to reduce the phasing
rate, until some position and velocity conditions are fulfilled, at the so-called entry gate.
This is safer and desirable when a continuous approach is planned, but requires higher
trust capacities to perform this larger Hohmann transfer.

1.1.2.3 Far range rendezvous

Phasing maneuvers are operated in open loop and absolute measurements, and result in
some uncertainties on the position of the chaser with respect to the target, typically in the
order of hundreds of meters in height and a few kilometers in orbital direction. The goal of
the far range rendezvous phase is first to acquire the target orbit and position and second to
approach the target while reducing relative trajectory uncertainties to respect fine position
and velocity conditions to properly start the final close range fully autonomous approach.
This objective is achieved with relative measurements, using far range navigation sensors,
see section 1.3.  Wether both chaser are placed on circular or elliptic orbits, free drift
trajectories and tangential and radial orbital maneuvers are used to accomplish the task
(Figure 1.4(b), phases D-E and Figure 1.4(c)). With these maneuvers, the phasing rate can
be flexibly tuned to ensure synchronizing with a fixed timeline or respect other particular
conditions. At the end of this phase, the chaser should usually lie on a hold point on V-bar
on the target orbit, at, for instance in the case of the ATV approach, around 2000-1000m
from the target, from where the final close range approach shall start.
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Figure 1.4 — Orbital parameters and phases of a rendezvous mission, in an Earth reference frame
(a,b), and in the target local orbital frame (c).

1.1.2.4 Close range rendezvous

Different trajectories and strategies can be considered to perform this approach, which
should bring in closed loop the chaser until mating conditions, in terms of relative posi-
tion, velocities, attitude and angular rates, so that docking or capture tools of the chaser
can be safely engaged. For docking, a constant axial velocity should be maintained and
for berthing, the chaser should remain in a particular volume so that its manipulator (see
section 1.1.2.5) can properly reach the target. Thus, these two rendezvous modalities
result in different ending conditions for the close range rendezvous phase. The typical
closed loop trajectory for a fully autonomous on-board navigation and control system is
a straight line, inside an approach corridor that would ensure safety conditions regarding
collision avoidance. A possible fly-around phase within this trajectory can be added to
realign the chaser and target docking interfaces (see Figure 1.5).
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1.1.2.5 Mating: docking or berthing

As introduced before, two different capture mechanisms are usually considered once the
chaser is correctly brought in the vicinity of the target. Docking is used so that the chaser
actively maneuvers under its own propulsion to connect to the target. Berthing is carried
out in order to attach the chaser and the target using a robotic arm, for the final few meters
of the rendezvous process. Docking and berthing mechanisms greatly vary given the type
of target considered: passive or active, cooperative or uncooperative.

For instance, the cooperative docking systems on the ISS used for the ATV [Pinard 07],
the Soyuz and Progress rendezvous missions, consist in the insertion of a probe mounted
on the chaser into a passive drogue specially installed on the ISS docking module (see
Figure 1.1(b) for the Soyuz spacecraft). This drogue and probe mechanism, which was
first used for Apollo docking missions to the Apollo lunar module or to Skylab, is also
studied for uncooperative and thus passive targets, using for instance the apogee motor
nozzle of the target as the drogue in the case of satellite on-orbit servicing, as for the
SMART-OLEYV project [Kaiser 08], enabling to dock onto many kinds of satellites.

For berthing, the servicing missions of the Space Shuttles used robotic arm Canadarm1
to capture the Hubble Telescope and berth with it for its repairing missions. Since the in-
stallation of robotic arm Canadarm?2 on the ISS in 2001, the Dragon (Figure 1.1(d)) and
HTYV supplying vehicles have used it to be grappled.

Regarding prospective works on debris removal applications, novel docking or cap-
ture facilities are under study [Bonnal 13a]: harpoon or hook for the ESA ROGER ve-
hicle 1.6(a), capture by a net ((Figure 1.6(b))) or robotic arm for the OTV-2 study led
by Astrium and Thales Alenia Space, foam gluing is investigated by the University of
Roma and a claw would be the capture tool for the EPFL Clean Space One Program (Fig-
ure 1.6(c)). For the DEOS project, led by the German DLR, the system would rely on a
more classical robotic arm for berthing [Rank 11, Miihlbauer 12]((Figure 1.3(a))).
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(b)

Figure 1.6 — Docking and capture facilities for debris removal applications: hook for the ESA
ROGER vehicle (a), net for OTV-2 vehicle (b), claw for the Clean Space One program (c), robotic
arm for the DLR DEQOS project (d) (Artistic views).

1.2 Navigation measurements and requirements for the
far and close range phases

The purpose of this thesis lies in the field of close range navigation solutions for a ren-
dezvous mission, during the final phase of the approach, when relative navigation between
the chaser and the target is required, since absolute navigation is not accurate enough or
inappropriate for uncooperative targets.

The navigation module of the GNC system involved on the chaser spacecraft requires
specific relative measurements to provide its relative localization with respect to the target.
Let us review some of these measurements typically used and processed for the close or
far range phases of rendezvous missions.

¢ Distance or range between the chaser and the target
It is for instance obtained through triangulation between measurements such as vi-
sual measurement and the target known dimensions, or through time of flight or
phase shift from a transmitter to a receiver located on the chaser of electro-magnetic
wave signal.

e Line-of-sight (LOS) direction of the target with respect to the chaser.
It can be acquired using visual measurement with the position of the target in the
image of a calibrated camera or other vision sensors.

o Relative attitude
It corresponds to the relative angular measurements, classically represented by three
angles: yaw, pitch and roll.

Range and LOS together correspond to the 3D relative position between the chaser
and the target.

Some critical requirements for these measurements are faced at docking or capture
steps and are reported on table 1.1. They impose even more stringent requirements during
the whole final approach of the rendezvous. Measurements errors have indeed serious
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impacts on trajectory deviations. When open loop maneuvers are performed, such as im-
pulsive transfer maneuvers, the initial accuracy of position measurements should be 0.1%
of the range. Otherwise, some intermediate mid-course corrections are necessary.

Open loop maneuvers are usually restricted to the far and medium range approaches
since potential trajectory deviations at the end of the maneuver could lead to collisions
with the target for shorter ranges (less than one or two kilometers). The dispersion for
these maneuvers can be reduced by employing closed loop control, and position and ve-
locity accuracy becomes less critical (1% of the range for position measurements are
sufficient).

As seen above, the final approach at close range is performed by straight lines, po-
tentially with a fly-around phase, maneuvers. Closed loop control is also carried out and
since control errors are involved, position and attitude measurements errors should be a
factor of 2 up to 5 lower than the accuracy at capture specified on table 1.1 and velocity
measurements errors (through generally differentiation of position measurements) should
be a factor 2 lower than the ones at capture, thus imposing a bandwidth in the order of
1Hz for measurement acquisition.

] Parameters Docking maneuver Berthing maneuver
Relat. long. velocity <0.1 m/s <0.02m/s
Relat. chaser lat. CoM vel. <0.02m/s <0.005m/s
Angular rate <0.1 deg/s for all axes | <0.02 deg/s for all axes
Ang. misalignement <1.0-5.0 deg for all axes | <10.0 deg for all axes
Lat. misalign. of dock. units <0.10m 0.10 - 0.50m
Long. misalign. - 0.10 - 0.50m

Table 1.1 — Requirements at contact [Fehse 08, Astrium 10] in terms of positions, orientations,
velocities and angular rates. CoM stands for Center of Mass.

1.3 Navigation sensors for the far and close range phases

With the aim of acquiring measurements and fulfilling the subsequent requirements, accu-
rate and reliable navigation sensors are used. Hereafter are presented some typical opera-
tional sensors embedded on the chaser vehicle to provide these measurements or directly
the 3D relative position and attitude, essentially in the case of cooperative rendezvous.

1.3.1 Radio Frequency (RF) sensors

The general concept consists in a RF electro-magnetic wave signal transmitted from an-
tennas on the chaser pointing towards the target, reflected on the target with a reflector,
and received using an antenna receiver on the chaser. The time of flight of the signal
or the phase shift between transmission and reception can provide range measurements,
the signal being either pulse modulated for time of flight measurement or continuous for
phase shift measurements. It can also provide range-rate measurement through measuring
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the Doppler shift of the transmitted frequency when arriving at the receiver.

However, the range of this cooperative system is limited due to the fact that the re-
ceived reflected signal presents a high signal-to-noise ratio for long ranges and saturation
can be observed on amplifiers for short ranges. For this reason, a transponder can be fixed
on the target to increase the power of the received signal and to retransmit it to the chaser
with an antenna. For LOS measurements, it can be obtained by difference of phase de-
lay or of time of flight delay of the signal reflecting on the target between two antennas
located on the chaser. Relative attitude for pitch and yaw can be measured using four
antenna beams with different frequencies.

An example of RF sensor is the Russian Kurs system, which is one of the first au-
tonomous on-orbit navigation operational system. The system, which is still operating on
board Soyuz and Progress spacecrafts for their rendezvous with the ISS, provides range,
range-rate, relative pitch and yaw, from a few hundred kilometers down to contact, with
the use of a transponder located on the target. As another example, a RF sensor has
more recently been implemented on the Tango/Mango satellites for the PRISMA mission,
with the Formation Flying Radio Frequency (FFRF) [Grelier 10]. However, RF sensors
are only suitable for cooperative targets and the power consumption and mass of such a
system makes it less privileged nowadays.

1.3.2 Relative GPS

Another solution relies on navigation satellite systems such as Global Positioning System
(GPS), developed and operated by the US, and Global Orbiting Navigation Satellite Sys-
tem (GLONASS), developed by Russia, or the future Galileo system, developed by the
European Union. For relative GPS, the idea is to synchronize and subtract the raw GPS
measurements of the chaser and the target using at least four of common navigation satel-
lites. This raw data is then processed into a Kalman navigation filter. But the accuracy
of a relative GPS for the considered application is in the order of 1m for position and
0.05m/s for velocity. Despite it shows much better precision than a simple difference of
absolute GPS measurements (accuracy in the order of around 100m for position), it can
only be suited for far range approaches.

Relative GPS has already been first experimented for autonomous rendezvous systems
on the Japanese NASDA ETS-VII [Inaba 00] rendezvous demonstrators for its far range
phase. The success of this mission has made it implemented on the HTV resupply vehicle
[Kawano O1]. The European ATV vehicles also use Relative GPS for its far range ren-
dezvous phase [Pinard 07]. By definition, relative GPS only concerns cooperative targets.

1.3.3 Range sensors

Regarding uncooperative solutions, which are required for debris removal applications for
instance, range sensors are particularly studied. Within range sensors lie various sensors
such as Laser Range Finders and LIght Detection and Ranging (LIDAR) [Christian 13].
LIDAR are active sensors consisting in emitting light from the chaser, principally laser
light. Reflected on the target, the time of flight to sense it back on the chaser serves to
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compute the distance or range with various points on the target, providing a 3D point
cloud. Two main types of LIDARSs can be distinguished: flash LIDAR, which consist in
emitting, within a Field of View, light pulses, and scanning LIDARs, for which a laser
beam scans the target, through pan or tilt rotations. The famous DragonEye flash LIDAR
(Figure 1.7(a)), developed by Advance Scientific Concepts and SpaceX, was successfully
demonstrated on two Space Shuttle Missions (STS-127 on Endeavour, STS-133 on Dis-
covery) [Christian 13, Poberezhskiy 12], and is currently operating on the SpaceX Dragon
spacecraft for its close range approach (200m-10m) with the ISS, until berthing and get-
ting grabbed by the ISS Canadarm robotic arm.

As promising demonstrators let us mention the systems proposed by Neptec, the Laser
Camera System (LCS) [Samson 04] and more recently the TriDAR system [Ruel 05] (Fig-
ure 1.7(b)), a 3D scanner which combines laser triangulation with time of flight ranging
(LIDAR). Both systems aims at estimating the relative pose by processing 3D range data
of the target, using for instance for TriDAR an Iterative Closest Point algorithm to match
the resulting 3D point cloud with the known 3D model of the target (here the ISS). The
ability of the LCS was verified during the STS-105 mission in 2001 and on-board Shuttle
Discovery during STS-128 in 2009 and STS-135 in 2011 for TriDAR [Ruel 08, Ruel 10],
which has been selected as the navigation sensor for the Orbital Cygnus ISS resupply
vehicle, whose first flight was carried out very recently on September 18" 2013.Using
range sensors has also been considered in [Lichter 04], estimating the state, shape, and
model parameters of space objects from range images acquired by a team of cooperative
sensors. We can finally notice the works of [deLafontaine 06], for planetary landing pur-
poses, which proposed to use a LIDAR sensor to accomplish navigation with respect to
the target by matching constellation of 3D landmaks.

Figure 1.7 — The DragonEye LIDAR sensor on Space Shuttle Discovery for STS-133 mission (a).
(b) features the TriDar sensor mounted on Space Shuttle Discovery for STS-128 mission (left) and
a TriDar image of the ISS (right) [Ruel 08].

1.3.4 Camera sensors and computer vision-based navigation for the
final approach and proximity operations
Another famous class of sensors regards computer vision and would be particularly suit-

able for the close range approach in autonomous rendezvous missions, especially for un-
cooperative targets, since they require no data from the target. Besides vision sensors
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require few hardware facilities and low power consumption. The next section reviews
the different vision-based navigation systems which have been studied, experimented or
implemented on operational systems.

The ETS-VII demonstrator [Inaba 00], conducted by the Japanese NASDA in 1998-
1999, performed successful rendezvous, capture and docking operations between two
satellites with the chaser equipped with a robotic arm. The capture was achieved using
computer vision, with a monocular camera fixed on the robotic arm and fiducial markers
located on the target, to measure the relative position and orientation parameters, or pose
(a 3 points marker for full pose measurement, 2 points marker for full pose except yaw,
during final robotic grasping operation, Figure 1.8(a)), making this system the first vision-
based autonomous rendezvous demonstrator, operating at close range.

Another famous vision-based rendezvous and docking demonstrator is the Advanced
Video Guidance Sensor used in the DARPA Orbital Express mission in 2007 [Howard 08,
Friend 08], which completed various tasks such as autonomous capture with a robotic arm
fixed on ASTRO, refueling of NextSat, formation flying. For full relative pose estimation,
laser diodes mounted on the chaser (ASTRO) were used to illuminate corner-cube retro-
reflective markers on the target (Nextsat, Figure 1.8(b)). A similar technology was also
implemented on the ATV [Blarre 04, Pinard 07, Strandmoe 08]. At close range, pulse
laser beams reflect on an a set of 26 retro-reflectors (with five of them lying a corner-cube
retro-reflector) installed on the ISS-Zvezda target module (Figure 1.8(c)). Reflections are
then imaged by a camera set up on the ATV, the resulting image being processed to pro-
vide range and azimuth/elevation of the target from 250 meters, plus relative attitude at
closer range (from 30m). These measurements are fused with measurements provided by
a telegoniometer.

With a monocular camera, some prospective studies [Blais 10, Center 04, Woffinden 07,
Tweddle 10] also propose to rely on easy to detect and track known patterns or fiducial
markers installed on the target.

However, all these systems based on vision sensor are cooperative.

Few studies address this issue of vision-based uncooperative navigation. The German
Space Center has led the (DLR) Deutsche Orbitale Servicing Mission (DEOS) [Rank 11,
Miihlbauer 12] project, which intends to accomplish capture, berthing, stabilization and
docking operations with a tumbling uncooperative target satellite with a robotic arm. An
on-orbit demonstrator is planned to be launched from 2018. Here a vision-based pose es-
timation solution relying on stereo cameras is proposed [Rank 11]. Using stereo has also
been considered in [Jasiobedzki 01, Dionnet 07, Oumer 12a]. With a monocular camera,
a local feature matching approach had been selected in [Tingdahl 10]. It consists in the
extraction of invariant features in the image that are matched to a database built from
preliminary learning sessions, but has shown to be computationally prohibitive and sen-
sitive to distance, illumination, relative orientation, and occlusions of the target. Also,
the Orbital Life Extension Vehicle (OLEV), whose activities are currently on hold, is a
program led by Kayser and Sener to provide servicing operations to geostationary satel-
lites and provide debris removal abilities [Miravet 08]. For the rendezvous approach and
docking phases navigation system, [Miravet O8] presents a monocular edge-based solu-
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Figure 1.8 — Vision-based navigation solutions onboard rendezvous systems. ETS-VII mis-
sion (a): robotic arm end-effector and the 2 points marker installed on the target [Inaba 00].
Corner-cube markers on NextSat for the Orbital Express mission (b).On (c) are depicted the retro-
reflectors installed on the ISS-Zvezda module (left, in blue the corner-cube retro-retroreflector, in
red the ones processed by both the vision system and the telegoniometer) and the CCD camera
located on the ATV (right, in blue) [Strandmoe 08].

tions to detect and track the target based, but limited to a single viewpoint since a simple
2D geometrical model of the target is processed. [Kelsey 06] computes the relative pose
based on the knowledge of the 3D CAD model of the target through an edge-based track-
ing process. In order to tackle the problem without the use of fiducial markers or a priori
knowledge of the target shape, [Augenstein 11, Oumer 12b] proposed monocular SLAM
techniques.

In the field of landing on planets or on small solar systems bodies, a widely known ex-
ample is the landing of Hayabusa probe on Itokawa asteroid in 2005 [Kubota 06, Yano 06],
on tracking both visual natural (extracted on the asteroid surface) and fiducial (target
marker dropped on the asteroid) landmarks, along with LIDAR (for far range) and Laser
rangefinder (for close range) sensors, despite difficulties to achieve the touchdowns. Some
other works have studied pin point landing based on visual landmarks, matched with an
off-line database [VanPham 12, Delaune 12].
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1.4 Scope of the study and testing facilities

In the field of space rendezvous and proximity operations, an objective of this thesis has
been to design a relative navigation solution during the close range phase of a rendezvous
mission between a chaser and an uncooperative target, for on-orbit servicing or space
debris removal applications. The starting secure distance for this autonomous terminal
phase would be set around 1000m.

For several reasons, a vision-based solution using a monocular camera sensor, is pro-
posed. With respect to other sensors (vision or other), a monocular camera is indeed a
cheap and mature system, with a small form factor and a low power consumption, and
it can be easily calibrated and installed on the chaser vehicle. In contrast to range data
sensor such as LIDAR, it can operate on further ranges, depending on the camera Field of
View (FoV).

The presented solution is also based on natural features of the target since it should
suited for uncooperative targets, with the a priori knowledge of the (complete or partial)
3D CAD model of the target. Our applications indeed deals with industrial objects such
as satellites for which their 3D models can be provided.

In order to test and validate the methods which have elaborated for this thesis, several
testing procedures have been proposed.

1.4.1 Qualitative tests on various real image data

Dealing with aerospace and space applications faces issues when it comes to experimen-
tally validating solutions and processing real data in this context. It is particularly the
case for computer vision solutions since obtaining exploitable image sequences involv-
ing a rendezvous approach is not an easy task: rendezvous missions are not achieved on
a daily basis and remain exceptional operations, camera sensors currently mounted on
spacecraft facilities are usually not installed for visual measurement purposes, and oper-
ators (NASA, ESA, JAXA,...) can be reluctant to provide such a critical data, as well as
the corresponding ground truth provided by other sensors.

However, a few available image sequences concerning recent rendezvous operations
can be found on the Internet on Youtube or on the NASA video repository. Although asso-
ciated ground truth is not available, as well as the camera parameters, they can be decently
processed for qualitative evaluation. Some examples of such sequences can be seen on
Figure 1.9, showing rendezvous maneuvers of the Space shuttle® and Soyuz spacecraft®
towards the ISS.

Our methods are based on the knowledge of the 3D CAD model of the target, which
can be a constraining requirement. Nevertheless, the aimed applications deal with indus-
trial objects for which complete 3D CAD model can be provided or easily found on the
Internet on platforms such as Google 3D Warehouse’ or on Space simulators online li-

Shttp://youtu.be/ZYb0p991x1Y
®http://youtu.be/MIRmTgsDY jk
"http://sketchup.google.com/3dwarehouse/
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brary such as Celestia®. Astrium has also provided us with 3D models of satellites. Some
examples of such models can be seen on Figure 4.2.

Figure 1.9 — Examples of image sequences: pitch maneuver of the Atlantis Space Shuttle (STS-
135) (a) and Soyuz spacecraft undocking from the ISS (b).

(a) (b) (c)

Figure 1.10 — Examples of 3D models directly used in our experiments. (a) is the Soyuz TMA
spacecraft, (b) is the Atlantis Space Shuttle and (c) a Spot satellite.

1.4.2 Quantitative tests on synthetic images

The available real data can only give us a visual qualitative evaluation. With the aim
of comparing our vision-based navigation contributions with respects to state-of-the-art
methods and measuring the compliance of these solutions to the requirements presented
in section 1.2, we have also carried out quantitative tests on some synthetic data provided
with ground truth. For this purpose, Astrium has provided us with a realistic image simu-
lator for space environments. This library, referred as Surrender, is based on a ray-tracing
image rendering engine overlying OpenSceneGraph rendering engine and OpenGL graph-
ics library. It enables to easily build 3D scenes described by a set of planets, satellites and
light sources. The engine expects a list of real planets and a star named "sun" which will
be used to set the sun position and size (as a light source):

8http://www.shatters.net/celestia/
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e Light sources
All simulated lights have quadratic attenuation. The sun is simulated as a point
light but is locally considered a directionnal light when rendering shadow maps (if
rendering satellites through OpenGL). All other light sources are spot lights. They
have a position, a direction, a color, a cutoff angle and an exponent which controls
how light power decreases when reaching the cutoff angle.

e Planets
Planets have a name, a radius, a position, an attitude, a shader and a set of textures.
They are represented as discretized spheres to be rendered through OpenGL but as
real spheres for the raytracer (only center and radius).

o Satellites
Satellites are 3D models loaded from a file (3DS, VRML, ...). All textures loaded
with a model are interpreted as diffuse textures, and a specular, an emission and a
normal texture can be added.

This simulator is also enable to simulate realistic orbital trajectories for both the chaser
and the target.

1.4.3 Test bed using a robotic platform and a satellite mock-up

To implement our algorithms on a more realistic vision-based rendezvous context, As-
trium provided a complete 3D-model and a reduced (1/50) mock-up of Amazonas-2. It
is a telecom satellite builtfrom the Eurostar-3000 platform, and similar to the one used
for HARVD [Astrium 10, Tingdahl 10]. Amazonas-2 was launched in 2009 for Spanish
company Hipsasat to cover the American (especially South America) position. It is lo-
cated on a Geostationary Orbit. To simulate an approach with this mock-up, we have used
the Afmab6 robotic arm available in the Inria robotic platform. This 6 Degrees of Freedom
(DoF) robotic arm, with a camera mounted on its end-effector, enables to have regular
and realistic movements . Sun illumination can also be simulated by a spot light located
around the scene. A typical experimental set-up can be seen on Figure 1.11. This set-up
has been used to carry out both open loop and closed-loop tests, using visual servoing.

1.5 Conclusion

The goal of this chapter was to present the issues related to autonomous space rendezvous
and proximity operations, setting the scope of this thesis. The concept of space rendezvous
has been introduced, including some historical aspects, some operational concerns and
some challenges which have nowadays to be faced.

Incorporating autonomy for space rendezvous operations is indeed currently actively
questioned, since two main crucial problems are to be handled. The first problem regards
on-orbit servicing of satellite or space facilities such as the International Space Station.
The second problem concerns the active removal of space debris whose population has
critically expanded for the last years and needs to be mitigated.

For these reasons and since the autonomy of such systems highly depends on naviga-
tion issues, much attention has been paid on designing autonomous navigation solutions,
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Figure 1.11 — Experimental set-up on the Lagadic robotic platform.

especially for the perilous case of the final approach between the chaser and target space-
crafts, which impose stringent measurement requirements. In this sense, computer vision
solutions are currently widely studied. For operational or demonstration concerns, most
of the implemented techniques rely on markers installed on the target, making them ex-
clusively suitable for cooperative operations.

Handling the problem of uncooperative vision-based solution, prospective studies pro-
pose the use of active range sensors and passive monocular or stereo cameras. Monocular
cameras appear to be a flexible, low-cost and convenient sensor, but few works have been
proposed based on this sensor. Let us however mention some monocular SLAM-based
methods, but which do not provide an absolute localization with respect to the target.

The overall goal of this thesis is thus to design a monocular vision-based localization
solution between the chaser and the known target, suited for uncooperative rendezvous
missions, and possibly handling both issues of on-orbit servicing and space debris re-
moval. More precisely, the use of 3D CAD model of the target is considered, so that
absolute localization can be performed.

Different tools and facilities have been made available to us and have been described
in this chapter.

The next chapter tackles general issues related to monocular computer vision and
more precisely related to the two major challenges of this thesis which are initial visual
localization of the target, through pose estimation by detection, and visual localization
through tracking.
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Chapter 2

Background on computer vision

In computer vision, the problem of 3D object localization or tracking is closely related to
the estimation of geometrical transformations. This chapter first introduces some math-
ematical background and tools to formalize these transformations. For this purpose, Eu-
clidean geometry allows to describe the way an object is moving with respect to a scene
or another object in the 3D space, through 3D rigid transformations (section 2.1). By
considering the camera projection model and modeling digital images provided by the
camera, we present how the object is then projected and perceived in the image and how
2D image plane transformations can be handled (section 2.2). These 2D transformations
can be directly be used for the purpose of 2D tracking. With 3D tracking, they can be indi-
rectly used to retrieve the relative state between the object and the camera. Section 2.3 thus
presents how the 3D rigid transformation or pose between the camera and the target object
can be estimated based on information extracted from an image or a sequence of images.
A review of existing concepts, methods and techniques is therefore proposed, regarding
two aspects of the vision-based pose estimation problem. The first aspect concerns pose
estimation by detection, given an initial input image (section 2.4). It is a required step to
initialize the second aspect, that is pose estimation by frame-by-frame tracking, given a
sequence of successive input images (section 2.5).

2.1 Euclidean geometry and 3D rigid transformation

Describing the relative state between a scene or an object and a camera in space can be
done using 3D rigid transformations between their respective attached coordinate frames.
The next section introduces how a 3D rigid transformation between two frames can be
represented.

2.1.1 Coordinate frames and homogeneous matrix

Let us define two coordinate frames F, and F, in the 3D Euclidean space E3, which is
modeled by the real coordinate space R3.
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Both frames are defined by their origins O, and O, and their sets of three orthonormal
axes (Xq, Ya, Zq) and (Xp, yp, Zp). A 3D geometric rigid transformation allows to express

. T . ) . .

the coordinates *X = [’X Y °Z]" of a 3D point X € R? in F,, based on its coordi-
T. . . .

nates “X = [*X °Y “Z]|" in F, (see Figure 2.1). This transformation in R? x SO(3),

from F, to J3, consists in a position transformation, modeled by a translation vector “t,,,

and in an rotation transformation, modeled by a rotation matrix bR, so that:

"X = 'R, X + %, (2.1)

where %t, is a 3 x 1 vector and *R, a 3 x 3 matrix. "R, € SO(3). SO(3) the Special
Orthogonal group, which a rotation matrix belongs. It is defined by:

SO(3) = {ReR*®|R'R =1,det(R) = 1} . (2.2)

Projective space and homogeneous coordinates

Relation (2.1) is affine and using the projective space allows to write it linearly. Indeed,
a point X in E3, defined by its cartesian coordinates X in R3, can be equivalently repre-
sented by a point X in the projective space 3, described by its homogeneous coordinates
X = [AXT )\}T = [XT 1}T, with A a scalar. P* can be seen as an extension of E3
such that all A\X € R3 correspond to a unique point X

As a consequence, using the normalized homogeneous coordinates *X = [“XT 1} g

and "X = [°X7 1] " of X respectively in F, and J, equation ( 2.1) can be rewritten as:

(2.3)

_ b b
"X = 'M, X with: bMa:[ R, t“}.

0 1

®M, is defined as the homogeneous matrix describing the 3D rigid transformation in P>
from F, to Fy, in the Special Euclidean group S FE(3), which is defined by:

SE(S):{M:[ R H|Re$0(3),teR3}.

01><3

2.1.2 Parametrization of the rotation

For numerical concerns, the rigid transformation M, needs to be properly parametrized.
While using translation parameters of M, is natural, it would be awkward to directly use
the 3 x 3 rotation matrix in ®M, and its nine non-independent parameters. Indeed, some
non-linear constraints have to be faced and added. As specified by equation (2.2), a rota-
tion matrix R requires to keep its three columns to be unit vectors and to be orthogonal. In
order to respect these constraints, other convenient parametrization solutions are possible.
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Figure 2.1 — Representation of the 3D space using Euclidean geometry, in the case of an object
o and camera c.

2.1.2.1 Euler angles

One popular and simple way is to use Euler angles. Since a rotation matrix can be defined
as a composition of three rotations around the three orthonormal axes x, y, z of the space
in R3, it can be written as the product of three 1D rotation matrices around each axis,
with corresponding angles 7., r, and r,. An important convention concerns the order
of the 1D rotations, so that a rotation can parametrized by the vector (r,,7,,7,), or for
instance (r,,7,,7,). While getting a rotation matrix from Euler angles is simple, the
inverse operation is also easy, by identifying the coefficients of the rotation matrix with
their analytical expression, the solution being non-unique. For these reasons Euler angles
have been widely used, especially in aeronautics, for their convenience and their intuitive
meaning. But they suffer from one major drawback, known as gimbal lock: if two rotation
axes are aligned then one degree of freedom is lost.

2.1.2.2 Quaternions

Quaternions are another common representation for rotations in 3D space. They are hy-
percomplex numbers, which can be written as a scalar plus a 3D vector. A rotation by an
angle # about a unit vector e can then be represented by the quaternion:

q= [cos(g) el sin(g)]T. (2.4)

With this parametrization gimbal lock can be avoided but it obeys the constraint to have a
norm equal to one, resulting in an increased algorithmic complexity when using numerical
optimization techniques.

2.1.2.3 Axis and angle of rotation

. . T .
Any rotation can be described by a vector fu = [fu, Ou, Ou.| , with § = ||fu| the
angle of the rotation, about an axis of direction u, with ||u|]| = 1. 6u, known as the
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exponential canonical representation, can then be linked to the rotation matrix through its
exponential map (see [Ma 04] for an exhaustive presentation of rigid transformations):

R = cap(lfu],) =Y [QZ}X . 2.5)

T . . .
For a vector v = [vm Uy vz} , [v],, denotes the associated skew symmetric matrix:

0 —v, vy
vl,=1v. 0 —u,f. (2.6)
—Uy Uy 0

R can also be evaluated using Rodrigues’ formula:

sin 0 (1 — cosf)
R = 13 + 9 [U]X + T [U]X . (27)
The inverse operation giving fu from R is done using the following equations:
1
cosf) = 5 (trace(R) — 1) (2.8)
and .
sinf [u], = 5(R ~R"). (2.9)

Setting 6 > 0, sin € # 0, fu can be uniquely determined using (2.8) and (2.9):
Ri1 + Ras+ Rgs — 1

0 = acos 5 (2.10)
1 R3z — Ras

fu = W R13 — R31 (211)
0 Ry — R

sin(0)
0
and % by the first two terms of their Taylor expansions. However singularities are

still encountered when # = nm with n > 1. Nevertheless they can be managed by setting
fu to a new equivalent rotation far from the singularity that is approached.

With the exponential map, a rotation can be represented by three parameters, the gim-
bal lock is avoided and no additional constraint are to be dealt with. For these reasons,
this representation is suitable with numerical optimization issues and will be considered
in the reminder of this thesis.

The singularity occurring when 6 is close to zero can be avoided by replacing

2.2 Image formation

In the previous section has been exposed the way a 3D rigid transformation can be mod-
eled. This representation can be applied to the case of computer vision, considering a
scene and a camera in space. Since the camera provides 2D images of the scene, this
section thus aims at describing how the scene projects itself in the image, how this 3D-2D
transformation can be modeled and how 2D transformations in the image plane can be
represented.
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2.2.1 Pinhole camera model

In order to model the projection in the image provided by the camera, we use the pinhole
camera model. It is based on a perspective projection [Faugeras 93, Hartley 01], which
is commonly used in computer vision, since it approximates well the physical model of a
real camera and enables a convenient and linear expression of the 3D-2D transformation
between the scene and the image, using homogeneous coordinates. This model relies on
the concept that all light rays emitted or reflected by the scene and collected by the camera
converge towards one point, the optical center, or projection center. This point is set to be
the origin of the camera frame F,. = (O, X., ¥, Z.). The image plane P,, or projection
plane, on which light rays are projected, is parallel to the plane (x.,y.) and is located at
a distance f on the z. axis from the optical center. f is called the focal distance and the
projection of O, on P, is known as the principal point. Let X be a point in the 3D space

represented by its coordinates expressed in the camera frame °X = [CX Y <4 } " The
2D coordinates x = [m y} T € R? of the projection of X in the image plane are given by

(see Figure 2.2):
0 _f[x
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Figure 2.2 — Pinhole camera projection model.

Using the corresponding homogeneous coordinates “X = [x Y 1} " and

X = [CX Y <4 1]T, equation (2.12) can be linearly rewritten, using a projective
transformation A from P? to P%:

B £ 000
°x = A°X with A=|0 f 00 (2.13)

0 010

These normalized coordinates are expressed in the metric space and need to be con-
verted into pixel coordinates in the digital image corresponding to the image plane.



32 Background on computer vision

2.2.2 Digital images

A digital image results from a discretization of the image plane into a regular grid whose
rectangular elements are called pixels. A pixel is defined by its position on the grid and its
color, which is encoded by the intensity perceived by the corresponding electronic image
sensor (such as CCD or CMOS sensors) placed on the image plane, on the three color
channels (red, green and blue). For a point x, the transformation from its normalized met-
ric coordinates x = [a: y}T to its pixel coordinates p = [u v}T € R? is parametrized
by four degrees of freedom, which are the coordinates (ug, vg) of the principal point in
pixels and the pixel sizes ([, ;) in meters (see Figure 2.3). This transformation can then
be written as:

u = wﬁ—iw
{U — w+ iy (2.14)

Figure 2.3 — Digital image and pixel coordinates.

Once again, this transformation can be expressed in a linear form using homogeneous
coordinates, using the projective transformation K’ from P? to P2:

i 0 Uo
p=Kx with K=1|0 i vy | . (2.15)
0 0 1

Equations (2.12) and (2.15) enable to express how a point X defined in the camera

frame F, with its homogeneous coordinates X = [CX Y <Z 1}T projects itself in
the digital image:

o 000
p = KIIX with I1 = 100 (2.16)
010

0
and K=1|0 p, v (2.17)
0
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or equivalently:

p =KX (2.18)

with p, = % and p, = % The pinhole camera can thus be modeled by K, which is
called the intrinsic parameters matrix. If X is expressed in the object frame F, with

°X =[°X °Y °Z 1], equation (2.18) becomes:

p = KII°M, °X (2.19)

with “M,, the homogeneous matrix associated to the rigid transformation from F, to F.,
defined in section 2.1.1. Its parameters are called the extrinsic parameters and depend on
the geometry of the scene, whereas the intrinsic parameters, making of K, are inherent to
the considered camera sensor and are usually provided by the constructor. Intrinsic pa-
rameters can nevertheless be estimated using calibration techniques [Brown 71, Tsai 86,
Marchand 02], which generally consist in solving a set of equations relating some known
3D points °X with known points P in the image. The pinhole camera model suppose
a perfect optical system which respects Gauss conditions, so that light rays can be rep-
resented by lines. However some deformations or distortions can be observed for some
systems, such as cameras with wide FoV. These deformations are mainly due to radial
distortions which can be modeled by [Faugeras 93, Hartley 01]:

x = xq(1 + kyr® + kor) (2.20)
Y = ya(l+ kir® + kor?) (2.21)

where (x,y) is a point in the image plane using a pure perspective model and (4, y4)
the corresponding point with the distorted model. 7? = 22 + y2, and k; and k, are the
parameters of these distortions and can be estimated, along with (ug, vo, ps, py), With spe-
cific calibration methods such as [Brown 71, Tsai 87, Marchand 02, Stein 97]. Tangential
distortion can also be observed but can usually be neglected with regards to the radial
distortions.

2.2.3 Image plane transformations

3D rigid transformations between the camera and the object involve 2D transformations
in the image plane. The nature of the relative motion between the camera and the object
(translation, rotation) and the nature of the object (planar, non-planar) determines the type
of image transformation. In some cases it is possible to define a function w, called a
warping function, which maps a point xj, = [z), yx] " in an image I, to a corresponding
point X1 = W(Xy) in I4q.

Translation

This is the most simple case, for which x; is moved to x;,; by a translation motion.
w is simply parametrized by a 2D translation vector (along x and y) t € R?, giving

X1 = t 4 xp with t = [t, t,]"
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Similarity transformation

It consists in a translation t combined with a 2D rotation, represented by a rotation matrix
R, and a scaling factor s € R*: w(xy) = sRxy + t. This transformation models the
projection of a planar object that remains parallel to the image plane during the motion.
However, it can be applied for a non-planar object when this object is sufficiently far from
the camera and can then be approximated by a plane.

Affine transformation

This transformation generalizes the similitude since it can model a stretching of the pro-
jection of the object along the x and y axis of the image plane. It is composed of a linear
transformation represented by a matrix A € R?*? and a translation t: w(x;) = Ax;, + t.

Homography

A homography is a projective transformation from P? in P2. As opposed to the previous
transformations, it can model perspective effects in the image for a plane P in the 3D
space. It consists in mapping P from an image I}, associated to the camera frame F* to
an image I, corresponding to F**!. Let n, denote the normal vector to P expressed
in F* and d, the distance between P and the center of projection of F*. For each point
X belonging to P, its homogeneous coordinates °X, in F* verify:

n} °X;, = dy. (2.22)

With (2.1) and the rigid transformation between F* and F**!, parametrized by a rotation
matrix *'R,, and the translation **'t;, we can express the coordinates X, of X in
FhH:

K1 = PR, X+ Flty. (2.23)

This equation can be factorized using (2.22) into:

k+1y T
Xy = FHH, X, with Y, = MR, + d—’“. (2.24)
k
F1H, is a 3 X 3 matrix, called the homography matrix. Besides, with x;, and X ; being
the respective projection of X, and “X, into I and I, we have °Z; x;, = X and
“Zi11 X1 =° Xpaq and with (2.24) we obtain:

Z
XL, = ﬁ’ﬂ“ﬂkxg (2.25)
Xiq o< FTHxp . (2.26)

Equation (2.25) can also be expressed in pixel coordinates, using (2.18):

°z
K'pl,, o #HlHkK—lpf (2.27)
+1

Pi x "TGypf with MG, = KFG K™ (2.28)

The homography matrix **'Gy, is thus a homogeneous transformation from P? in P?,
which is defined up to a scale factor and parametrized by 8 degrees of freedom.
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2.3 Introduction to pose estimation

The main objective of this thesis is to compute the 3D rigid transformation between the
camera and the target object, given images acquired by the camera. As defined in the
previous section, this transformation can be represented by the pose r or its corresponding
homogeneous matrix M, which can refer to the camera extrinsic parameters.

In order to pertinently address the difficult task of estimating this transformation, us-
ing information provided by the projection of the object in images, a first issue to be
investigated regards the type of images the problem deals with. Is it a sequence of suc-
cessive images for which the prior information provided by a frame can be used for the
next one or is it a single image? The first case refers to the problem of the frame-by-frame
tracking of the object and the second to the problem of the recognition or detection of the
object. These problems, which are treated in different manners, are related. For instance
in robotic or augmented reality tasks, a visual recognition and detection phase is neces-
sary to initialize a frame-by-frame tracking phase, if no information provided by other
sensors can be provided. The next two sections independently present the scopes and the
different approaches proposed in the literature to solve these problems. Nevertheless, the
same general issues have to be questioned:

e From the available prior knowledge on the 3D object and its appearance, how should
the object be represented? Several object representations can be considered in this
sense (Figure 2.4): a single or a set of points, a geometrical shape such as a rectangle
or elliptical plane, the object 3D model, its silhouette or outline contours, or a
higher level single or multi-view appearance model learning visual and geometrical
information on the object.

e Which visual information should be processed in the input images? Visual infor-
mation can be the grayscale values of the object in the image, its colors, its edges
extracted from the image, or some textures patches which represent the spatial vari-
ations of the intensities of pixels lying in localized regions on the object.

e How this information can be related to the representation of the object to retrieve
the searched 3D rigid transformation?

(a) (b) () (d)

Figure 2.4 — Examples of geometrical representations of a 3D object, using its 3D model (textured
or wireframe) (a), a planar appearance patch or template (b), its silhouette (c), a set of interest
points (d).
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The next section proposes some insights on how these questions can be answered in
the case of pose estimation addressed through a recognition and detection scheme.

2.4 Pose estimation by detection

In robotic tasks involving vision-based pose estimation of the camera with respect to a
single known 3D object throughout the task, a key issue lies in detecting the object and
determining its pose at the beginning of the task, in order to initialize it. This problem
refers to the field of object detection and localization, which faces major challenges when
dealing with monocular images. Without any prior hypotheses, how to model and rec-
ognize the 3D information from 2D images? The central idea is to learn or extract some
information acquired offline on the object, and to match it online with 2D information
extracted on the input image. Among the massive literature that addresses this problem,
two main categories could be distinguished: global template matching approaches, and
local features or descriptor based approaches.

2.4.1 Template matching approaches

The basic idea of template matching, in the case of 3D object localization, is to first ac-
quire a training set of images or views of the object in many different poses. Such views
are commonly called templates. Then, at runtime, a similarity measure between the input
image and the templates, or the warped templates with respect to some 2D transformations
(section 2.2.3), is computed. The template with the highest or lowest score, depending on
the type of similarity measure, is selected as the best match, which then enables to retrieve
the pose of the camera with respect to the object.

This very early approach has the advantage of being simple but suffers from two ma-
jor drawbacks: its computational costs and its sensitivity to appearance changes due to
illumination conditions, occlusions or viewpoint changes. For decades, many researches
have thus focused on efficiently acquiring, organizing and learning the templates and on
designing faster and more robust similarity measures.

2.4.1.1 Describing and matching the templates

Let us first review the different ways to describe the templates and match them with the
image, through the design of a similarity measure between the template and the image.

Appearance-based features

A classical approach considers the pixel intensities of the template and the input image.
These methods can also refer to appearance matching. Different similarity measures or
alignment functions, coming from information or signal processing theories, with most of
them being referenced by [Brown 92] as image matching functions, can be proposed:

e Sum of Squared Differences of each pixel intensity:
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SSD(LT,w) = Y (I(x)— T(w(x,p))))’ (2.29)

xeT

where I is the input image, 7 a list defining the locations in T. T is the template
and w is warping function corresponding to an image plane 2D transformation of
the template. This basic function lacks robustness to illumination changes, clutter
or occlusions. However, linear illumination changes can be modeled and included
in the function to improve the robustness [Lai 99].

e Another solution is to use the Zero-mean Normalized Cross Correlation or ZNCC
defined as:

Srer (160 = T) (T(wix, ) - T)

oot

ZNCC(I,T,c) =

where T and T are respectively the average pixel intensities on I and T, and oy
and o are the standard deviations of the two images. However this approach still
suffers from sensitivity to non linear illumination changes, occlusions and clutter.

e More elaborate measures have been quite recently experimented such as the Ker-
nel density alignment function, which measures a distance between weighted color
histograms of both images [Comaniciu 03] and the Mutual information (MI), which
has been introduced in [Viola 97] as an alignment function and recently revisited by
[Dame 12]. They are intended to be much more robust to occlusions and illumina-
tion changes, making them suitable and promising for tracking and visual servoing
applications. Unfortunately, their computational costs are prohibitive for template
matching based recognition and localization tasks.

Edges features

Other classical methods suggest to use image edges as visual primitives or features. Bi-
nary edge images can be obtained with a contour detector algorithm such as the one pro-
posed by [Canny 86], for which pixels with the maximum gradient magnitudes in the
direction of the gradient are selected as edge points. The principal advantage of edges is
that they can be used with many imaging modalities and they offer robustness to changes
in sensing conditions such as illumination, noise or blur. Chamfer Matching was one of
first similarity measure based on edges and was introduced in [Barrow 77] and later de-
veloped by [Borgefors 88]. More formally, it is a geometrical measure corresponding to
the mean distance between the edge points extracted from the template, and the closest
edge points extracted from the image (see Frame 1). Instead of the mean distance, an al-
ternative is to choose the maximum distance, for what is known as the Hausdorff measure
[Huttenlocher 93, Rucklidge 95] (see Frame 1). The orientation of the edges can also be
taken into account for both Hausdorff [Olson 97] and Chamfer [Shotton 05] measures.
As shown by [Olson 97], the number of false positives can be significantly limited and the
sensitivity to background clutter reduced.
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Frame 1 Classical edge-based similarity measures.

Chamfer measure [Barrow 77]

Given the sets of edge points Py = {pf}1'* and P; = {p]} -, respectively extracted
from the template T and the image I, the 1dea is to look from the points in Py for the
closest points in Py, in terms of the Euclidean distance between pixel coordinates and
evaluating the resulting mean distance. The Chamfer measure is thus defined by:

dcnamyer(I, T) NTZdI pf) with di(pf) = min_[pf ~pil. 230

As proposed by [Gavrila 99], it can be efficiently computed by evaluating the distance
transform (D7) of the edge map of I.

As depicted on the images below, each pixel in D7 is the distance to the closest pixel
in the edge map:

DTi(p) =, %ngl” Ip — pill2 (2.31)

Input image. Binary edge map. Distance transform.

Hausdorff measure [Huttenlocher 93, Rucklidge 95]

dHausdorff(L T) kel[l(}a%rr] dI(Ck ) (232)

One drawback of the Chamfer and Hausdorff measures is their sensitivity to occlu-
sions, since missing edges in the image can make dcpem fer greatly increase. A solu-
tion to that shortcoming has been proposed by [Huttenlocher 93, Rucklidge 95] with
the partial Hausdorff measure, which only computes the maximum of the m‘" largest
distances between the template and the images edge points:

Zausdorff (I T) mke[ ..NT]dI(cg‘) (233)
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Shape and silhouette features

Another option is to rely on the shape or silhouette of the object in both the input im-
age and the template. Shape-based methods require a preliminary segmentation step
to precisely extract the shape of the object in the template and in the image. An ad-
vantage is that the resulting descriptor can be computed relatively to a global position,
orientation and scale of the shape in the image, or relatively to finer properties such as
stretching or bending. It thus enables some invariance with respect to the correspond-
ing geometrical transformations. For instance shapes can be represented and matched
using the medial axis [Zhu 96] and this approach has been extended and enriched in
[Kimia 95, Sebastian 01b] with the concept of shock graphs, which model the deforma-
tions of the shape. In [Sebastian Ola], curve matching has been proposed to align two
shapes by minimizing a function based on stretching and bending energies between their
corresponding curves. Earlier curve-based approaches suggest the use of shape descrip-
tors such as the Fourier descriptor [Persoon 77].

Matching two curves then consists in minimizing the distance between these descrip-
tors. These methods however require the points of the shape to be ordered. Besides
they have shown to be sensitive to sampling and to articulations and deformations. Also,
[Zhu 96, Kimia 95, Sebastian Ola] based the shapes on the silhouette boundaries of the
object, which are invariant to different modalities. However, the case of 3D objects can
make these approaches not discriminant enough with respect to viewpoint changes, lead-
ing to risks of false positives. In contrast, the Shape Context descriptor [Belongie 02]
efficiently describes the shape as a set of unordered points, belonging either to the shape
outline or to some internal edges (see Frame 2).

However, shape-based methods are still sensitive to occlusion and segmentation errors.

Gradient features

Other researches have suggested to use the image and template gradients as primitives.
This dense approach is intended to be more accurate and robust than the previous pre-
sented ones. Gradient orientations are indeed invariant to illuminations changes. Be-
sides, densely relying on the template and on the image prevents from problem resulting
from segmentation errors, in the edge detection process for intense. For this purpose
[Steger 02, Ulrich 09] use the normalized dot product between the template and image
gradient vectors. As for intensity-based approaches, these methods can be computation-
ally prohibitive. For a better invariance to some small translations or deformations and a
better computational efficiency, a solution is to split both the template and the image into a
regular grid and to quantize the gradient orientations into histograms for each grid regions,
in the manner of the Histograms of Gradient (HoG) feature [Dalal 05]. For real-time per-
formances, [Hinterstoisser 10] based the measure on local dominant gradient orientations,
referring to the Dominant Orientation Template (DOT) feature. The idea is to split both
the template and the image into a regular grid and to only keep, within the regions of the
grid, the dominant orientations of the gradients in terms of gradient magnitudes. When
the dominant gradient orientation of a region in the image matches one of the dominant
orientations in the corresponding region of the translated template to a particular location,
the similarity measure increments itself, the idea being to maximize this measure to find
the matching location. This measure is made more robust to small translations and de-
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Frame 2 Shape Context descriptor and matching [Belongie 02].

The Shape Context consists in computing for each point p;, belonging the edges of the
shape, the vector which connects p; to the other points p of the shape. A histogram
is employed h; for each p; to store of the relative coordinates of the remaining points
(see Figure).

hi(k) = #{p # pi : p — pi € bin(k)} (2.34)
Log-polar bins are considered to compute the histogram.

Shape Context

@ )

log f bang
lag r Bing
log 1 bine

B bins B bins #hins.

(d) (e) (H

(a) and (b) are the sampled edge points of the two shapes. (c) is the diagram of
the log-polar bins used to compute the shape context. (d) is the histogram of the
Shape Context for the point represented by a square, (e) the one for the diamond,

and (f) is for the triangle. The square and the diamond are close points,
resulting in similar Shape Contexts, in contrast to the triangle.

For matching concerns, two shapes S° and S! can then be compared at each of their
respective reference points p? and pjl- by evaluating the distance C; ; between the cor-
responding histograms, using the x? test statistic:

— hj(k))?
Ciy = C(p},p}) = Z hO + M) (2.35)

with (k) and h}(k) being the K*" bins of the respective normalized histograms of
p; and p;.
Given the set of pair-wise costs C; ; the goal is then to minimize the total similarity
measure H (1) =, (pY, pm)) where 7 is a permutation. The result is a permutation
Topt and an optimal cost H (7, ), Which is set as the similarity measure between shapes
S% and S*.
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formations by allowing small independent translations of the regions of the template for
a given location in the image. In the same manner [Hinterstoisser 10] made the measure
proposed by [Steger 02] more robust to small translations and deformations by allowing
small independent translations for each considered pixel in the image, and searching for
the maximum value for the similarity measure. Moreover, [Hinterstoisser 10] proposed
to take advantage of the parallel architecture of modern computers to accelerate compu-
tations.

2.4.1.2 Learning the templates for efficient recognition and detection

As stated before, the goal of template matching is to scan the image with the set of tem-
plates and to find the matching location by maximizing or minimizing the similarity mea-
sure, with respect to 2D transformation in the image. Since an exhaustive search can
be computationally costly, different efficient searching and learning strategies have been
conceived to face real-time concerns. In a recognition and localization task, especially for
3D objects, the database can be made of many templates in order to cover the whole space
of viewpoints, and the whole space of 2D transformations in the image, through a more
or less fine discretization of this space.

Aspect graphs, clustering and classifiers for templates

One way to address this task is to connect the 2D templates or views, generated on a
viewing sphere in the case of a 3D object, between each other in order to group or cluster
them, with respect to the considered features (appearance, edges, gradients...) and sim-
ilarity measure, in order to reduce the search space. This concept was first proposed by
[Koenderink 76] with the notion of aspect graph. The idea is to build a graphical structure
of the views for which each node, or aspect, represents a cluster, a class of some views.
An aspect is representative of a connected set of views from which the object visually
appears similar.

At the beginning aspect graphs were built based on specific types of primitives and
objects: lines for polyhedral objects [Stewman 88, Gigus 90, Shimshoni 97], curves for
curved objects or solids of revolution [Kriegman 90, Eggert 93]. [Gigus 90] and [Eggert 93]
for instance respectively represent lines and curves in terms of Image Structure Graphs
(ISG) made of junctions between arcs which correspond to lines or curves on the views
of the projected 3D object. For these approaches, the changes of appearance of the object
between viewpoints are modeled by visual events [Shimshoni 97].

However, generating an exact aspect graph based on these models is too complex in
terms of storage and search requirements. [Cyr 01] extends this concept of aspect graphs
by partitioning the views in the set into an aspect graph using a shape similarity measures
between the views, such as the curve or shock graph based measures presented above.
Each aspect is then represented by a prototype view. During the recognition phase, the
same similarity measure is used to recognize within the database of prototype views the
object in the input unknown image. As stated before, this method requires an initial seg-
mentation of the object in both the view or template and the image. Besides, this approach
only addresses the task of recognition of an object among others and not its localization.
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For appearance-based methods which focus on the grayscale intensity values, a com-
mon approach to efficiently learn and group the templates was first introduced in the field
of face recognition and makes the use of Principal Component Analysis (PCA) [Turk 91].
The central idea is to reduce the set of views, acquired on the viewsphere under different
illumination conditions, into a subspace, called the eigenspace, generated by eigenvector
of the image.

[Holzer 09] applies the distance transform to the edge-based templates, with the prior
that contours in the templates must be closed. This method is designed for recognition
concerns between different objects and for localization concerns. Each template corre-
sponds here to a specific object. A Fern classifier is trained and used to recognize the
object and retrieve its 3D pose. The idea of a Fern classifier [Ozuysal 07] is to use simple
sets of binary tests, usually comparisons between pixel intensities, in order to returns the
probability that an image belongs to any one of the classes that have been learned. Each
class is here associated to a template of an object and a pose of this object and the prob-
ability of retrieving this class given the tests are learned based on random warps of the
template. Despite this method can perform very efficiently, it is limited to planar objects,
with closed contours.

Detection and pose estimation

With the aim of efficiently searching within the set of templates, a common strategy
is to use a coarse-to-fine searching strategy. The idea is to build offline, in an unsu-
pervised manner, a hierarchy structure or tree of the templates by recursively clustering
them. This approach has been adopted by [Rucklidge 95, Olson 97, Gavrila 99, Amit 04,
Srivastava 05, Ulrich 09]. [Gavrila 99] uses a k-means like clustering technique based on
similarity measure between templates relying on the Chamfer measure. At each level
of the obtained hierarchy, each cluster is represented by a prototype template, which
has the smallest distance with respect to the other templates in the cluster. Instead,
[Olson 97, Amit 04] build a binary tree of templates, based on oriented Chamfer dis-
tance or Hamming distance, and each node is represented by a template which stores
the overlapping edge pixels between the two clustered templates. In [Ulrich 09], where
templates are generated using the CAD model of the object, clusters are recursively built
by pairwise matching and merging of templates with neighboring object poses. Simi-
larly, in [Reinbacher 10], the hierarchical clustering method is based on Affinity Propaga-
tion [Frey 07] and allows some overlap between the viewsphere neighborhoods.
[Hinterstoisser 10] uses a k-means like clustering method where templates are recursively
clustered by computing the Hamming distance between the cluster template and the re-
maining templates, until a certain number of templates in the cluster is reached. Since
templates are represented as a list of 8-bits integer, the cluster template is computed as a
bitwise OR operation applied to the templates of the cluster.

For efficiently searching online within the image transformation space, [Olson 97,
Gavrila 99] match their hierarchical structure with the image under a particular 2D trans-
formation which can be iteratively refined when traversing through the hierarchical struc-
ture, finally giving a fine transformation and the matching template at the bottom level.
For this purpose the corresponding transformation space is decomposed into hierarchical
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regular grids. This means that each cell of the grid, which corresponds to a particular
transformation, is pruned or selected depending on the similarity measure with respect to
the corresponding level of the hierarchical structure. If selected, the cell is then subdi-
vided into a finer grid whose cells are processed with respect to the next hierarchical level
of the template clusters.

[Ulrich 09] and [Steger 02] use pyramid resolution levels for both the templates and
the input image. In [Steger 02], for each template a resolution pyramid is built and the
highest the level of the pyramid is, the coarsest the discretizations of scale and rotation
transformations are. At recognition, a resolution pyramid is also built for the input image
with the same numbers of levels. Then a breadth-first search through the pyramid levels
of the templates is performed, by comparing at each pyramid level each rotated and scaled
template, according to the discretization steps, with the input image at the same pyramid
level. Potential matches are thus tracked through the pyramid until the lowest level. In
[Ulrich 09], this pyramidal approach is combined with the hierarchical clustering of the
views, so that each level of the hierarchy is assigned a resolution and the same pyramid
is applied to the input image. The range of investigated positions, rotations and scales is
refined from one level to the lower one.

Recently, more elaborate training techniques have been experimented for template
matching methods for 3D object recognition and pose estimation concerns. In [Gu 10]
for instance, which also operates at a object category recognition level, templates are
acquired for different object category under different viewpoints. For each category, a
discrete set of viewpoints are learned given positive templates showing the object and
negative background templates. Each template is described by HOG descriptors. Each
viewpoint is then represented by a learned template, in terms of HOG-based feature vec-
tors, of the set of templates classified at this viewpoint. This can be done in a supervised
way by labeling each template with their corresponding discrete viewpoint and grouping
the templates given their label. A linear Support Vector Machine (SVM) [Schlkopf 02]
optimization is performed to learn the reference template of each group of templates. In
an unsupervised manner, groups of templates are initialized according to their viewpoint
using a Normalized Cut-based clustering technique, using a similarity measure between
positive templates based on the HOG descriptor, prior to a SVM optimization. At run-
time, a multi-resolution window for each reference template of the discrete viewpoints
scans the input image and returns the object category, the viewpoint, the position and the
scale of the matched object, based on the dot product of HOG based feature vector.

2.4.2 Local features or part based methods

These approaches aim at learning and classifying local or region features from training
images or views, and matching them with 2D features in the image. Knowing the 3D re-
lationship between the learned features, using the 3D model or by learning the underlying
spatial relationships, some methods use the resulting 2D-3D correspondences to directly
compute the pose or use the matches in a voting process over the pose parameters space
in order to determine the most likely viewpoint and image transformation and finally the
pose. Though these features are made to handle a wide range of viewing conditions, so to
say scale, some affine transformations, illumination changes, a main difficulty remains in
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the invariance to viewpoint changes.

2.4.2.1 Identifying and describing local features

Some local feature detectors

Local features are patches which can be automatically detected or manually selected in
the image. When automatically detected, the extraction should be invariant to scale or il-
lumination conditions to enable further matching. A popular detector is the Harris corner
detector [Harris 88], relying on the eigenvalues of the second-moment matrix. However,
Harris corners are not scale-invariant. To circumvent this limitation, [Lindeberg 94] pro-
posed to select scale space local extrema of a Laplacian-of-Gaussian (LoG) pyramid or
of the scale-normalized determinant of the Hessian matrix. [Mikolajczyk 02] refined this
method and created a robust and scale-invariant feature detector with high repeatability,
by combining the two approaches proposed by [Lindeberg 94]. [Lowe 99] approximated
LoG by Difference-of-Gaussian (DoG) to speed up computations. These detectors can
thus provide invariance to translation, rotation and scale. In order to cope with invari-
ance to affine transformations, a detector based on the Harris detector along with affine
shape adaptation can be considered [Baumberg 00, Mikolajczyk 02]. Maximally Stable
Extremal Regions [Matas 04] can also be an option. [Bay 06] uses for its SURF feature
local extrema of the determinant of the Hessian matrix computed on the integral image,
speeding up computations. For contours based local features, [Ferrari 08] proposes to de-
tect groups of a specified number of connected contour segments in the image.

Classical feature descriptors

The extracted patches around these detected point are then described using a feature vec-
tor, referring to the descriptor, that can deal with different sort of visual information within
the patch. Among the numerous descriptors proposed in the literature, a breakthrough has
been made by [Lowe 01, Lowe 04] who introduced the Scale Invariant Feature Transform
(SIFT) which is based on multiple orientation histograms. It has been designed to be in-
variant to scale, since the scale is determined by interpolating the pyramid of DOG used
for detection, and local deformations, with the use of histograms. It is also made invari-
ant to rotation since an orientation of the patch can be retrieved. The patch used for the
descriptor is usually divided in 16 regular subregions for which local 8-bins histograms
of their gradient orientations are computed (Figure 2.5). It yields a vector of dimension
128, normalized to unit length to provide some tolerance to illumination changes. This
descriptor has proven to be very efficient for matching purposes and consequently for 2D
and 3D recognition tasks (see section 2.4.2.2). With SURF, [Bay 06] relies on a distri-
bution of Haar-wavelet responses within the patch. For edge-based features [Ferrari 08]
registers in the feature vector normalized locations and orientations of the midpoints of
the segments with respect to patch centroid, as well segments length.

Some other descriptors have also been designed to describe larger regions, or parts of the
object in the image, they are usually not associated to a detector and as a consequence are
determined and learned in a supervised way. Among the most significant ones we could
distinguish the Histograms of Gradients (HOG) [Dalal 05], which has been previously



2.4 Pose estimation by detection

45

presented for global template description purposes. When dealing with edges, Shape
Context [Belongie 02] is also commonly used to describe local parts. Also [Shotton 05]
uses Oriented Chamfer matching to describe local contour based feature.

Image gradients Keypoint descriptor

(a)

Figure 2.5 — The SIFT descriptor (a), based on the image gradients quantized into orientation
histograms, and resulting matching (b), [Lowe 04].

2.4.2.2 Learning the features for efficient recognition and detection

For learning and recognizing in the input image, various methods exist and use local or
part features to cope with viewpoint variability.

Among early approaches, [Lowe 01] (Figure 2.6(a)) proposed, in the manner of tem-
plate matching schemes, to cluster natural training images from similar viewpoints, taken
under different illumination conditions, into single model views. Instead of using a global
similarity measure for matching the views, this method uses the matching of local SIFT
features. Each feature detected in a training image is matched to a feature in the database,
which is initialized with the first training image. Using a Hough voting approach, each
match for the training images votes for a model view, along with a location, rotation and
scale of the matched feature in the model view. The training view is then matched with
the model view with most votes. A geometric verification is performed in order to decide
whether the training is clustered with model view or not. If clustered, the features in the
training image can be added to those referenced for the corresponding model. At runtime,
the input image follows the same process so that each of its extracted features are matched
to the learned database and casts votes for a model view, along with a location, rotation
and scale, giving in the end a most likely viewpoint and a global similarity transform,
which can provide a coarse full pose if viewpoints are provided with pose labels with
respect the 3D object.

In [Lepetit O6a], interest points are extracted using a Harris corner-like detector on
the training images, acquired at different viewpoints and labeled with their 3D positions.
These points are then trained using a randomized tree classifier, which, as for Ferns, clas-
sify the points according to a response to a combination of some binary tests over the
local patch of the considered point, viewed under different conditions (affine transforma-
tion, illumination). Points extracted on the test image are in the same way matched to
trained points and the resulting 2D-3D correspondences are processed in a P3P pose com-
putation algorithm [Fischler 81] (Figure 2.6(b)). Frame 3 presents how pose computation
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can be achieved by using 2D-3D point correspondences, with a focus on the PnP prob-
lem. This idea of 2D-3D sparse matching has also been studied in [Ozuysal 10, Tola 08]
and [Collet 09] which relies on a reconstruction of a 3D metric model using a Structure
From Motion technique and whose points are described by local SIFT features. In this
field of processing local 2D-3D correspondences, [LLowe 87, Jurie 98, Costa 00, David 03,
Strzodka 03] use geometrical features such as straight lines or more complex features
based on edges of the object. By matching them, in terms of geometrical distances, with
edge features of the 3D model projected with respect to some hypothesized coarse poses,
the pose can be refined. As for global template matching techniques which aims at cover-
ing the whole pose search space, these approaches can suffer from heavy computational
costs since a large amount of hypothesized poses are needed.

Other approaches have addressed object detection, viewpoint classification and thus
pose estimation by building a probabilistic model of the object under a discrete set of
representative viewpoints, in an supervised or unsupervised manner, by learning parts of
the object, or groups of detected local features. [Thomas 06] proposes for instance to
use a set of Implicit Shape Models (ISM) [Leibe 04] learned at different viewpoints. An
ISM corresponds for a given viewpoints to a codebook of image patches around inter-
est points detected with Harris corners. These patches, or codewords, directly described
and matched by their pixel intensities, are clustered across the training images and their
appearance and spatial configurations with respect to the object center are learned in a
voting process manner. With several ISM under different viewpoints, several correspond-
ing codebooks can be built, thus learning probabilities for location and scale (rotation is
not addressed) and also viewpoints of the patches. [Thomas 06] also links the different
single view codebooks by tracking features accross training images acquired at different
viewpoints. During recognition, the features extracted from the test image are matched to
each single-view codebook, casting probabilistic votes for location, scale and viewpoint,
and the links between codebooks are used to propagate votes between viewpoints, for
a smoother representation. [Ozuysal 09, Glasner 11, Rodrigues 12] are based on similar
general ideas. They do not rely on matching detected and learned features but instead
propose, as many other 2D or 3D recognition system, a sliding window approach to find
potential location and scale of the learned parts of the object at recognition. In that sense,
[Ozuysal 09] proceeds in two steps by first training an estimator for the dimensions of the
bounding box surrounding the object, and then an estimator of the viewpoint given that
bounding box. The related classifier for the viewpoint is trained using a Ferns classifier
on spatial pyramids of histograms of clusters of SIFT feature descriptors computed for
each pixel within a given bounding box. In [Rodrigues 12], which works at a specific
object level, votes here are accumulated at training over the 6D pose parameters, with
local patches extracted on image gradients to handle textureless objects, and trained with
a Ferns classifier.

[Glasner 11] takes advantage of Structure from Motion techniques (SfM) to recon-
struct a 3D point cloud of the object, enabling image patches manually set to be as-
signed a 3D location, along with a descriptor (HOG computed over a pyramid of spa-
tial bins) for its appearance, a location and a scale. The voting procedure for training
and recognition can then be directly handled over the 6D pose parameters, matching be-
tween patches appearance being ensured through an SVM classifier. Approaches pro-
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posed in [Sun 09, Su 09, Savarese 07] lie in the same category by building 2D multi-part
representations and establishing correspondences among the parts, providing a multiview
representation. For instance, [Savarese 07] extracts local features out of training images
through the Saliency detector, described with SIFT. Assuming the object presents distinc-
tive planar regions, the features are then clustered into planar parts consistently with their
appearance and geometry across views from different view points. The object is then
represented with as set canonical parts whose geometrical relationships (homographies)
are determined. At runtime, local features are extracted, clustered given their SIFT de-
scriptors. Obtained parts in the image are matched with canonical parts using a search
through the test image with a sliding window over position, scale and orientation param-
eters. Finally the optimal configuration among matched candidate parts enable to retrieve
the object class and the pose.

Another line of study [Liebelt 08, Stark 10, Zia 11] proposes to address the problem
of multi-viewpoint object representation for object classification and pose estimation by
relying on the 3D CAD model of the object, or on a set of 3D CAD models of instances
of an object class. [Stark 10] processes edge information by learning labeled parts of the
rendered models for each discrete viewpoint, using the Shape Context descriptor (Fig-
ure 2.6(c)). As in [Thomas 06, Glasner 11, Sun 09, Su 09] a generative probabilistic spa-
tial model is built and inferred at runtime to retrieve the object class using a sliding win-
dow process on the image to match the parts, and to retrieve the viewpoint by matching
the best viewpoint dependent spatial model. [Zia 11] extended and refined this method
to finer viewpoint classification by, in a similar manner to [Glasner 11], directly incorpo-
rating viewpoint parameters in the probabilistic spatial model. Instead of a Hough voting
procedure, the inference of the probabilistic model is managed through a particle filter,
initialized with the results given by [Stark 10], to retrieve location, scale and viewpoint.
[Liebelt 08] instead rely on photorealistic rendered views of the 3D model to build a code-
book of extracted SURF local features. For each discrete viewpoint features are extracted
over different viewing conditions (slight viewpoint variations, illumination) and clustered
using k-means, while storing the corresponding discrete poses of the features as well as
their 3D positions on the object, giving once again a probabilistic spatial model which is
inferred in a Hough voting style. During detection local features are extracted on the test
image and matched to the codebook, each match casting votes for the stored poses. And
the stored 3D positions of the matched codebook entry enables to obtain 2D-3D corre-
spondences which are used to refine the pose using a PnP pose computation solution. All
these approach have often been designed for object categorization and detection concerns,
proposing coarse viewpoint and pose estimation.

This section presented approaches which aims at computing the 3D pose of the object
in a single image, without any coarse a priori, through a global search within a learned
training database. This process could be used to initialize pose estimation by frame-by-
frame tracking along a video sequence.

2.5 Pose estimation and frame-by-frame 3D tracking

Through frame-by-frame tracking, the idea is to achieve a local search around the pose
provided by a frame to compute the pose for the next frame. This problem can actually
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Frame 3 Direct pose computation with 2D-3D point correspondences.

Some classical methods allows to compute “M, given some known 2D-3D point correspon-
dences.Let {Xz}fi , be N 3D points, {ofi}ﬁil their coordinates in F, = (O, X,, Yo, Zo) and
{E}f\i 1 their corresponding points in pixel homogeneous coordinates in the image plane. The
goal is then, based on equation (2.19) to estimate the projection matrix P so that:

ﬁi =P OX,L' VZ with P = KII CMo (236)

The Direct Linear Transform (DLT):

This method [Faugeras 93, Hartley 01] consists in estimating the whole matrix P by solving
a system of linear equations. Indeed 2.36 implies two linearly independent equations and by
using a sufficient number a correspondences, the resulting linear system can be solved thanks
to Single Value Decomposition (SVD) and coefficients of P can be estimated. From P both
intrinsic and extrinsic matrices K and “M, can be extracted, but it depends on the geometry
of the object and the number of correspondences, usually between 15 and 20 are required.
The Persepective-n-Point (PnP) Problem:

If the camera has been calibrated, i.e. if K has been separately estimated through a cali-
bration method, determining the pose “M, requires less point correspondences and can be
more stable and reliable for tracking applications than the DLT. A vast literature addresses
this problem, known as the P-n-P problem, n referring to the number of point correspon-
dences, and solutions can be classified as non-iterative [Fischler 81, Dhome 89, Gao 03] or
iterative [Lowe 91, Dementhon 95, Lu 00]. For instance for the widely studied P3P problem,
iterative methods usually consist in estimating the distances {z; = [|O X;||}>_, and then the
points {CXZ-}?:P using constraints imposed by triangles O “X; “X;. M, is then retrieved by
matching the points {OXi}f’zl with the points {CX,»}?:l. The process generally involves solv-
ing an eight-degree polynomial, leading to four solutions in general. The addition of a fourth
point enables to remove the ambiguity and obtain a unique solution, for sure when points are
coplanar.

[Fischler 81] reduces the P4P problem to P3P one by taking subsets of three points from the
four points and checking consistency, introducing the RANSAC procedure (see Frame 7).
More recently [Lepetit 09] proposed a more accurate and much less complex method forn > 4.
Iterative methods involve minimizing an appropriate criterion, representing reprojection errors
like for the POSIT algorithm [Dementhon 95] or an error expressed in 3D space [Lu 00]. Some
approaches such as [Lowe 91] require an approximate solution to initialize the non-linear min-
imization process. These last iterative methods tend to be more accurate than non iterative
ones but are costlier and may not be applied when the points are coplanar.
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(©)

Figure 2.6 — 3D object recognition and pose estimation based on matching local SIFT feature
points [Lowe 04](a), using randomized trees [Lepetit 06aj(b) and part descriptors on the rendered
wire-frame CAD model, using Shape Context [Stark 10](c).

be handled by either directly computing the pose or by computing the displacement from
an image to the next one. Among the numerous researches which have addressed the
problem of frame-by-frame tracking, the general idea will be to find a way to describe the
appearance of the object consistently over time in the image. A goal will be to find visual
features to track the object from one image to the next. By determining correspondences
between the 2D visual features and the 3D representation of the object, the 3D rigid trans-
formation between the camera and the object can be retrieved. However, some constraints
could alter the visual features and tracking abilities across the image sequence. These
constraints can be illumination changes, background clutter, occlusion of some parts of
the object in the image, image noise, image blur etc.

In order to properly tackle the problem, several issues specific to pose estimation by
frame-by-frame tracking should be considered:

e In contrast to detection methods (see section 2.4) for which a global search is nec-
essary, the pose estimation problem can be made local with respect to the pose
parameters. From one frame to the next one, the camera motion with respect to the
scene is indeed assumed to be small. This way, different suited local estimation
frameworks can be carried out (section 2.5.1).

e Given our prior knowledge on the object and its representation, attention has to be
paid on the type of visual features which can be tracked between two successive
frames, and on the way the correspondences between these features and the repre-
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sentation of the object can be determined (section 2.5.2).

e The robustness of the tracking of the features regarding the constraints altering vi-
sual consistency of the features from an image to the next (section 2.5.3).

2.5.1 Pose estimation process

The problem of estimating the 3D transformation between the camera and the target from
one image to the next one, can be formulated in two different frameworks: a deterministic
one and a probabilistic one.

2.5.1.1 A deterministic approach

It consists in, from a known state for frame I, to determine the considered geometrical
transformation for frame I, {, through a realignment process between visual features de-
scribing the object for I, and corresponding visual features extracted in frame I, ;. This
is addressed by minimizing an error function using an optimization scheme. Since the
problem is non-linear, a non-linear optimization such as like Gauss-Newton or Levenberg-
Marquardt, which are presented on Frame 4, is adopted.

Generally speaking, the idea is to estimate a rigid transformation g by minimizing,
with respect to p, the least-square non-linear error function A(u) consisting of errors
ei(p) = fi(p) — b;. b; is a reference observation of a visual feature extracted from the
image and f;(u) is the value of a corresponding feature resulting, through a mapping
function f; on the observation space, from a projection with respect to the transformation

w:

A(p) =Y (ei(p)? (2.37)

)

e In the case of 2D tracking, p can refer to 2D transformations from P2 in P* which
can be 2D translations, similarity, affine, or homography transformations.

e In the case of 3D tracking, which we focus on, p can correspond to the 3D pose
r between the object and the camera. It can be obtained directly. This pose can
also be obtained indirectly by considering as p the camera displacement “*+1 M.,
between successive frames. This 3D displacement is represented in the image by a
2D transformation, such as a homography, which transfers, as for 2D tracking, the
location of the visual features from one location to another in the image. Assum-
ing the first camera pose is known, the current one is obtained by integrating the
estimated displacement: “+1M, = “*+1 M, “+1M,.

2.5.1.2 A Bayesian approach

It assimilates the pose estimation problem to a statistical one. In this manner, the goal is
to estimate the state x; of the system, given a dynamic model f of x to predict x; from
X1 and given some observations or measures z;. The state model [ approximates the
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Frame 4 Non-linear optimization.

Since function f;(x) is not linear in the case of visual features, the least square error or ob-
jective function A can be iteratively minimized through non-linear minimization techniques.
From an initial estimate p &> Mk 1s iteratively updated so that p,] = uiJréJ until convergence.
The overall goal is to determine at each iteration 6 which minimizes Y, ( f; (7 +1) b;)?:

= argmmz fi(w ]H b;)? (2.38)

_ ) 7Y — p.)2
— argngnz fi(pl, + 87) — by) (2.39)

Steepest gradient method

In this case, the function A is local approximated at a first order by a plane, and to find the
optimum, the increment §7 is set as:

; 0A
¥ = —a—
op il
ds;
= 20 | (fi(ul™) =) (2.40)
o )
J= % _ is the Jacobian matrix of function f; computed at u{z « is a scale factor to avoid

large steps that would cause the optimization to fall into local minima.

Gauss-Newton method

With the Gauss-Newton method, the function sZ is locally approximated by its first order
derivatives, through a Taylor development: s;(p), + 67) = s;(p7,) +J67, and (2.39) becomes:

8 = argmlnz (fi(pl) + 387 — b;)? (2.41)

&7 is then estimated so that &/ = —J*(fi(u) — b;), with J* = (JTJ)~1J7 the Penrose
Moore pseudoinverse of J and gy, is updated until a certain convergence criterion is reached.
Let us note that the Gauss-Newton method is a particular case of the Newton-Raphson method
which consists in approximating function f; by a parabolic function and to move towards to
minimum of this function. With Gauss-Newton, the Hessian matrix used to solve the Newton-
Raphson method is approximated by J ' J.

Levenberg-Marquardt method

The Levenberg-Marquardt consists in a tradeoff between the Gauss-Newton method and simple
steepest gradient descent method, so that:

& = —(@TT+ A0 I (filpsd) — by) (2.42)

A can be seen as a dumping factor that allows to tune the value of the increment 87 given the
value of the error function: if at step j A does not decrease enough so that Gauss-Newton
does not give a descent direction, the idea is to increase A to take more of a steepest gradient
direction. Otherwise A can be decreased to approach the smoother Gauss-Newton method.
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actual dynamic behavior of the system and a noise m, represents its uncertainty. Obser-
vations are also uncertain, what is modeled by a noise wy. Observations are related to the
state x;, through an observation model represented by a function h. This problem can be
formalized by the following state and observation equations:

Xp = f(XkA, nk) (2.43)
zy, = h(xg, wy,) (2.44)

The state x; and observations z; are thus random variables and determining an estimate
X of x given zy., = (21, ..,2;) is equivalent to the statistical problem of determining
the probability density function p(xy | z;.x). In the case of visual tracking, the considered
state can refer to the 2D or 3D rigid transformations between the camera and the object
and also additional parameters such as velocity, jerk... and observations are performed
using visual features in the input images. Bayesian filtering, presented on Frame 5 is a
general theory to optimally determine p(xy | z1.x), and can be approximated by the widely
known Kalman and particle (see Frame 11) filters.

In computer vision, Kalman filters [BarShalom 93] can be considered for tracking
and pose estimation of rigid objects [Gennery 92, Harris 92, Koller 93, Yoon 08]. More
recently particle filters, introduced in [Isard 98] for visual tracking, have been explored
in the case of 3D tracking [Klein 06, Teuliere 10, Choi 12]. For such methods, a set
of hypotheses on the camera pose is propagated with respect to a dynamic model. The
pose is then estimated by evaluating the likelihood of the hypotheses in the image. In
[Teuliere 10] the particle set is efficiently guided from edge low-level hypotheses.

Both deterministic and probabilistic methods have their advantages and drawbacks.
On one hand, iterative non-linear minimization techniques such as Gauss-Newton or
Levenberg-Marquardt have the advantage of being fast (only a few iterations are required)
and accurate but need to be initialized properly to avoid local minima for which they are
sensitive.

On the other hand, Kalman filtering schemes, which are also fast, are useful to stabi-
lize the estimation and to cope with noisy measurements, since they are based on a motion
model to predict the state. However, a simple motion model can be unadapted to some
particular dynamic scenes, resulting in some lag errors. Besides, measurement and state
noise parameters need to be properly determined and tuned. Finally, the considered visual
features and observations can be highly non-linear with respect to the pose parameters,
making the computation of the Extended Kalman filter tricky. Particle filters, by repre-
senting the state by a set of weighted hypotheses can instead deal with highly non-linear
problems and more general distributions of both states and observations. But particle
filters may suffer from heavy computational costs.

Some recent studies [Teulicre 10, Choi 12] have proposed to combine both determin-
istic and statistical approaches (iterative Gauss-Newton method and particle filtering),
gaining the accuracy of the deterministic procedure and the robustness of the probabilistic
one, but with a higher computational burden.
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Frame 5 Bayesian filtering

Bayesian filtering proposes a general framework to estimate the probability density function
p(Xx | z1.x) of a state x; given observations z1.;. Assuming observations are independent,
the a posteriori density p(xj, | z1.x) can be recursively computed using Bayes rule from the a
priori density p(xy | Z1.4—1):

p(zg | Xp)p(Xk | Z1:0-1)
p(Zk | Zl:k—l)

p(xp | 21:) = (2.45)
p(zi | zZ1.6-1) = [ p(zk | xi)p(Xk | Z1:4—1)dx); can be seen as a normalization factor and
p(zr | xx) is the likelihood of the observations. Assuming Xy, is a Markovian process, equation
(2.45) becomes:

p(Xk | Z1:k) x p(zk | xk) /P(Xk | Xk—1)p(Xk—1 | Z1:6-1)dXE—1 (2.46)
This recursive formulation can thus be handled through two steps:

e The prediction step uses the previous a posteriori probability density p(xx_1 | Z1.x—1)
and the dynamic model, which enables to compute the density p(xy | xx—1), to deter-
mine the a priori probability density: p(xx | z1.x—1)-

ol || Pl = / 5 | s || TS 2.47)

e The correction step then provides the new a posteriori probability density p(xy | z1.x),
based on the likelihood function p(zy, | x) through equation (2.46).

Bayesian filtering can be applied for any kind of Markovian process with independent observa-
tions, whatever the dynamic and observation model and whatever the kind of probability distri-
bution involved. However, the analytical formulations given by equations (2.46) and (2.47) are
often inapplicable in some cases. Various solutions have been designed to express this general
framework in some particular cases or to approximate it. With linear models and Gaussian
distributions, the Bayesian filter is expressed by the Kalman filter. With non-linear models, the
Kalman filter can approximated by the Extended Kalman filter (EKF). Finally, Particle filters
(Frame 11 provides a general approximation by representing the state with discrete samples.
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2.5.2 Visual features

Whatever the optimization approach, a large set of visual features describing the object
and tracked across successive frames has been studied and, could be divided into two
categories: local geometrical features and global template-based features.

2.5.2.1 Local geometrical features
Edge features

A famous approach to deal with 3D object tracking and pose estimation is to rely on edge
features, based on the knowledge of the CAD 3D model of the target. Edge features offer
a good invariance to illumination changes or image noise and are particularly suitable with
poorly textured scenes, whether the scene is in industrial, outdoor or indoor environments.
The main goal is to estimate the pose r that realigns the edge points generated from the
projection of the 3D model with their corresponding edge points extracted from the image.

A widespread idea to handle this problem is the following. Given a new image I,
the 3D model of the scene or the target is projected in the image according to the esti-
mated previous camera pose r,. From each projected edge point x;(r) = pr(X;, rg) of
the model, a search around the point is performed to find gradient maxima and a corre-
sponding point x; observed in the image. The pose computation is then generally achieved
by minimizing the distance between the projected edges of the 3D model and the corre-
sponding edge features in the image. Classically, the error function A(r) can be written
as:

Alr) =) (d(xi(r). x)))? (2.48)

Among the numerous approaches, various edge-based geometrical features have been
proposed to compute the distance d(.) to minimize. An early approach [Brown 71] chose
the point to point Euclidean distance whereas [Harris 92, Drummond 02, Marchand 02,
Comport 03, Comport 06b, Wuest 07] instead use the perpendicular distance from x to
x;(r), given the knowledge of the normal to the edge underlying x;(ry), since the posi-
tion of x/, simply based on gradient computation, cannot be completely determined, what
is known as the aperture problem. Other studies explicitly match geometrical primitives
such as straight lines or segments, circles... to corresponding primitives extracted in the
image. It is the case for [Lowe 92, Gennery 92, Koller 93, Yoon 08] which groups edges
extracted in the image into segments which are matched to the projected lines of the CAD
3D model. The matching can be based on the Mahalanobis distance of line segment at-
tributes, such as the coordinates of the middle points, the orientation and the length of the
segment [Koller 93]. Once matches have been found, a global error function, computed
according to the Malahobnis distance between the projected segments and the extracted
ones is also minimized to retrieve the pose.

In order to minimize the error function and to estimate the pose r, these edge-based so-
lutions propose either Kalman filtering [Gennery 92, Harris 92, Koller 93, Yoon 08], par-
ticle filtering [Klein 06], or deterministic non-linear minimization techniques [Lowe 92,
Drummond 02, Marchand 02, Comport 06b, Tamadazte 10]. The method presented by
[Marchand 02, Comport 03, Comport 06b] proposed to turn the minimization problem
into an equivalent visual servoing problem by introducing the Virtual Visual Servoing
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framework, presented on Frame 6. Other authors have studied a combination of filtering
and deterministic approaches [Teuliere 10, Choi 12].

Interest point features

Instead of edges, another class of approaches rely on the detection and tracking or match-
ing of interest points. It relies on matching individual features across images. These fea-
tures can be automatically detected using feature points detection techniques presented in
the previous section [Harris 88]. These features can then be represented by local patches
around the detected point. Matching a point x from a frame to a corresponding point X’ in
the next frame can be performed through searching on an region surrounding x’ through a
similarity measure like the ZNCC [Zhang 95]. An alternative is to use the KLT algorithm
to find the translation parameters from x to x’. Pose estimation can then be addressed
through 3D-2D correspondences between 3D points X lying on a known 3D model of the
target, since the 3D coordinates of x can be retrieved by back projecting to the 3D model.

2.5.2.2 Template-based and dense texture features

Edges or interests points are local features for which edge or point extraction needs to be
achieved in the image to derive geometrical 3D-2D correspondences. Another class of
approaches instead suggests to rely on dense appearance features, using pixels intensities
or more complex dense representations.

e A line of studies has proposed to describe the object pixels with one or a set tex-
ture templates or patches, represented by their grayscale values. This class can
also refer to template matching techniques which are based on globally tracking of
the region of the considered patch or set of patches. It was initially designed for
the estimation of 2D transformations [Hager 98, Benhimane 04, Dame 10], with
the initial well known KLT algorithm proposed by [Lucas 81, Tomasi 91, Shi 94].
The advantage of this class of approaches is that it dos not require any extraction
of visual features. The basic idea is to estimate the displacement of the consid-
ered region from one frame to the next one based on a similarity measure be-
tween pixels of the reference template or patch and and the image, such the SSD
[Lucas 81, Tomasi 91, Shi 94, Hager 98, Benhimane 04], the ZNCC or more elab-
orate criteria such as the Mutual Information [Dame 10] or the Sum of Conditional
Variance [Richa 11, Delabarre 13] to handle robustness to illumination or occlu-
sions. These methods rely on the assumption that the intensity of the projection of
3D points in the image remains constant. This can be done by minimizing the simi-
larity criteria between the image I and the template T with respect to the considered
transformation g, through a 2D transformation w of the template in the image. In
the case of the SSD criteria, it can be formulated, similarly to equation 2.29, as:

Alp) =) (1) — T(w(p, %)) (2.52)

%

Instead of performing a global search on the discretized space of the considered
transformation as for template matching purposes, the minimization is then per-
formed through an local non-linear optimization technique such as Newton-Raphson
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Frame 6 Virtual Visual Servoing Framework.

Given a new image, the 3D model of the scene or the target is projected in the image according
to the estimated previous camera pose r. Each projected line /;(r) = pr(L;, r) of the model is
then sampled leading to a set of 2D points {x;}. Then from each sample point x; a 1D search
along the normal of the projected edge is performed to find a corresponding point x/ in the
image (see Figure).

In order to compute the new pose, the distances between points x, and the projected lines /;
are minimized with respect to the following criteria [Comport 06b] :

A= Z p(dL (li(r),x5)) (2.49)

where d (I;(r),x}) is the distance between a point x; and the corresponding line /;(r) pro-
jected in the image from a pose r. p is a robust estimator, which reduces the sensitivity to
outliers. This is a non-linear minimization process with respect to the pose parameters r. In
this sense, we consider a robust control law which computes the virtual camera velocity skew
v in order to minimize s(r) — s* and which is given by:

v = —A(DLy, )*D(s(r) — s*) (2.50)

where L™ is the pseudo inverse of L, the interaction (or Jacobian) matrix of the feature s,
which links v to the velocity of the features in the image. A is a proportional gain and D
is a weighting matrix associated to the Tukey robust estimator. Finally, the new pose ry1,
represented by its homogeneous matrix “+1M,, can be computed using the exponential map:

VL, = KM, AM, = e VM, 2.51)

Model
px: Projected edge

Moving Edge principle.
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or Gauss-Newton. It relies on the computation of the Jacobian matrix J = %ﬁ’xi)),

which depends on the gradients of the template T, what can be computationally
costly. It can be made faster through some approximations using the conservation
of pixel intensity [Hager 98] or off-line learning [Jurie 02]. In its original form, the
KLT algorithm was developed to estimate translation parameters, but it has been ap-
plied for more complex transformations g such as affine [Hager 98] or homography
transformations [Jurie 02, Benhimane 04]. As stated before, this last transformation
can be integrated to provide the pose. This formulation has also been extended in the
case of directly estimating a 3D transformation [LaCascia 00, Jurie Ola, Jurie Olb,
Cobzas 05, Panin 08a, Delabarre 13], by minimizing equation (2.52) with respect
to 3D camera pose parameters (4 = r).

But such tracking processes impose small inter-frame displacements and suffers
from drift across successive images.

Some other approaches have introduced optical flow [Horn 87, Heitz 93], which
corresponds to the 2D motion of the pixels lying on the object in the image. The
principle is to estimate the velocity of these pixels between two successive frames,
under the assumption that intensity of the projection of the point remains constant,
which can be expressed with the so called optical flow constraint:

0I(x) 0I(x) 0I(x)
5 dt + o dzr + a2y

0I(x) N l(x)dz  Ol(x)dy _

ot Ox dt oy dt

dy = 0 (2.53)

(2.54)

Vector [2 %] - B " is the optical flow, or apparent velocity, at pixel x, so
that the estimated transformation is translation. Though widely used for 2D tracking
application [Horn 87, Heitz 93, Mémin 02], this constraint has also been used in the

case 3D tracking [Li 93, Basu 96, Pressigout 04].

Another way to densely describe the appearance of an object is to use its colors. In
image processing and computer vision, the RGB color space is widespread to rep-
resent color, but other representations such as Luwv, L * a* b, which are perceptually
uniform color spaces, or HSV, which approximates a uniform color space, are also
possible.

Methods presented in [Panin 06, Brox 06, Prisacariu 12] lie in the field of contour-
based tracking, relying on the 3D CAD model of the object and restricting to sil-
houette contours of the projected 3D model in the image. But instead of looking
for corresponding edges in the image in terms of gradient maxima as in classical
geometrical edge-based frameworks exposed above, these approaches propose to
model both side (background and foreground) of the projected contours in terms of
color statistics (luminance could also simply be used as stated by [Prisacariu 12]).
The principle is then to maximize the separation or segmentation between these
statistical foreground and background models, with respect to the full pose param-
eters. They use posterior membership probabilities [Prisacariu 12] or membership
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error function [Panin 06] for foreground and background pixels, and both methods
then process their respective energy or error functions with a non-linear optimiza-
tion technique (gradient descent for [Prisacariu 12], Gauss-Newton for [Panin 06])
to find the optimal pose.

e We can finally mention earlier 3D tracking approaches [Kollnig 97, Marchand 99]
which also propose to densely describe edges. They suggest to directly use the
gradient in the vicinity of edges and the idea is to estimate the pose for which the
gradients on the edges of the projected 3D model best fit the gradients in the image,
in terms of SSD on the gradient norms for [Kollnig 97] or in terms of gradient dot
product for [Marchand 99]. [Marchand 99] is based on a local exhaustive search on
the pose parameter whereas [Kollnig 97] proposes a Gauss-Newton like minimiza-
tion framework.

All these presented visual features have their advantages and drawbacks. Geometrical
edge-based features indeed show robustness against illumination conditions image noise
and are particularly suited when the target object is low textured, such as in our spatial
context. However, they involve an image extraction process which can lead to outliers
and suffer from having similar appearances. It can result in ambiguities between dif-
ferent edges in the image, especially in the case of background clutter. Instead, global
template-based visual features, which are based on a richer and more specific description
through local patches or regions representing by pixel intensities, or more complex repre-
sentations, are made to be more discriminative than edges or local interest points. In the
case of patch or template tracking, one big issue lies in the choice of the reference tem-
plate. When taken a priori from a reference image or automatically determined through
the detection of interest points, a question is often how the considered patch, template
or set of points should be updated or how often feature detection should be performed.
Frequent updates would enable to strengthen a spatio-temporal constraint that enables to
smooth the estimation process and to account for some illumination, viewpoints changes
or transformations not taken into account in the parametrization of the estimated trans-
formation. But it would increase drift in the estimation process due to the accumulation
of tracking errors across successive images. Finally, colors offers a rich model for the
object appearance which can be very robust to occlusion and background clutter but can
suffer from illumination changes in the case spatio-temporal tracking schemes such as
[Comaniciu 00, Teuliere 09], and can be computationally prohibitive for real-time con-
cerns.

2.5.2.3 Hybrid methods

In order to cope with advantage and drawbacks of different types of cues, some researches
have focused on combining them. Different ways of handling the integration can be con-
sidered in the literature.

e Some studies propose a sequential integration of edge and texture cues [Bascle 94,
Marchand 99], where computed dominant motion [Marchand 99] provides a predic-
tion of the projected edges in the image, improving the initialization the edge-based
registration process. [Brox 06] uses optical flow of pixels lying on the projected
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object to initialize a maximization process of the separation between object and
background along the object contours using color or luminance probabilities, in a
similar manner to [Prisacariu 12].

e Other researches simultaneously merge features of different types within probabilis-
tic or filtering techniques such as Kalman filters [Kyrki 05, Haag 99], by integrating
interest point matching in an Extended Kalman Filter for [Kyrki 05], and integrating
optical flow estimation for [Haag 99]. [Rosten 05] devises a similar hybrid solution
within a probabilistic Expectation Maximization (EM) framework which aims at
optimizing the posterior probabilities of both edge and point features, in terms of
distances between the feature projections and determined correspondences in the
image. Here feature points are detected through a feature detector derived from
corner detection and matched using an SSD similarity measure on pixel intensities
on the surrounding patches

e Works of [Masson 03, Vacchetti O4c, Pressigout 06b, Pressigout 08, Panin 08b] rely
on a deterministic iterative minimization of a global error function combining the
different features. [Vacchetti O4c] proposes to integrate in the classical edge-based
error function geometrical distances between feature points detected and matched in
two consecutive frames and the projection of their 3D position, retrieved by match-
ing the points to points detected in keyframes with stored 3D positions. The idea is
then to simultaneously optimize the reprojection errors in these frames with re-
spect to the 3D position of these points and with respect to the poses for both
successive frames, in the manner of key-frame based Simultaneous Localization
and Mapping (SLAM) techniques. In this case detected feature points are Har-
ris corners, and matching relies on computing normalized cross correlation be-
tween patches centered on the detected points. In [Pressigout 06a], in contrast to
[Vacchetti O4c, Rosten 05] which consider point to point distances between point
features, the texture-based error function is directly based on difference between in-
tensities of some pixels selected on reference planar patches of the object, enabling
a simpler parametrization for these point features through homographic transfor-
mations. [Pressigout 08] instead relies on optical flow estimation of some regu-
larly spread pixels lying on planar patches on the object, providing point corre-
spondences between successive images and thus point to point distances to be min-
imized, the transformation for each point from one image to another being also
addressed through a homography. [Panin 08b] combine in the objective function
to be optimized a classical geometrical information provided by the distances be-
tween model and image edges with color information through object/background
color separation statistics along the model edges [Hanek 04, Panin 06].

2.5.3 Robust estimation

A stated before, a visual tracking problem can face several constraints such as illumination
changes and image noise or blur. This can affect the extraction of some visual features
and their matching processes, leading to outliers that can impact the quality of the pose
estimation process.
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Some statistical tools have been used with the objective of reducing the sensitivity of
the process to outliers.

2.5.3.1 RANSAC

One of them is the RANdom SAmple Consensus (RANSAC) method, introduced in
[Fischler 81], and which is a general iterative method to estimate parameters of a model
from a set of observed data which consists in "inliers" and "outliers" (see Frame 7). It
is particularly suitable for a pose estimation framework. For instance, [Fischler 81], uses
it within the P3P algorithm. Triplets of 2D-3D point correspondences are randomly se-
lected are processed to compute the resulting set of pose hypotheses. For each pose, all
the 3D points are re-projected in the image and the ones which are sufficiently close to
their corresponding 2D points in the image are considered as inliers and the pose with
the highest number of inliers is chosen as the actual pose. This technique has recently
been applied by [Bleser 05, Choi 12] in the case of a model-based tracking algorithm. In
[Armstrong 95], RANSAC is proposed for 2D-3D line correspondences.

Frame 7 RANdom SAmple Consensus (RANSAC)

RANSAC consists in estimating the parameters ;. of a mathematical model based on a
set of a set D of IV observed data, some of them being inliers, data which fit with the
model parameters, and others being outliers, which do not fit with the parameters. As-
suming that n observations are sufficient to compute the model parameters, a number
K of subsets of n observations are randomly selected within D). Each subset is used to
estimate the model parameters j; and to retrieve the corresponding subset D; C D of
observations which are consistent which the estimated parameters, based on an error
measurement. The subset D; with the largest cardinal is retained, along with its as-
sociated parameters i;, from which a least-squares optimization is achieved to refine
it, using the points in D; or the whole set of data D. Several tuning parameters are
required during the process, such as the number /K of random subsets. [Fischler 81]
proposes a formula to determine a coherent value, based on the inlier rate. The thresh-
old on the error measurements also has to be set, for instance a few times the standard
deviation of the errors.

2.5.3.2 M-estimators

In the case of an iterative minimization of an objective function involving measurements,
with respect to some parameters, an alternative is the use of M-estimators, whose goal is
to reduce the influence of potential outliers in the observations on the estimation process.
The idea is by assigning adaptive weights to the observations involved in the objective
function (see Frame 8). The concept of M-estimators has been applied to pose estima-
tion [Drummond 02, Vacchetti 04a, Comport 06b, Pressigout 06a, Wuest 07] within non-
linear minimization schemes.
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Frame 8 M-estimators [Huber 81]

Given an objective function A to minimize using an iterative process:

A=Y ple) (2.55)

withe = [eg €1--- en}T an error vector, and p((u)) a robust function. The general
idea is to determine the consistency the errors involved in e, weither they are inliers or
outliers. Instead of binary classification, each error in e is assigned a weight w;, with
0 < w; < 1, representing the reliability of this error. [Huber 81] proposes an efficient
method to compute these weights:

¥(0i/0)

/o (2.56)

w; =

where ¢ (u) = 82—(“") is an influence function and §; = e¢; — Med(e) is the normalized
residue, with Med the median operator. Among the various influence functions in
the literature, a popular one in the case visual features is the Tukey influence function

[Beaton 74], defined by:

(2.57)

w(C? —u?)? iflul < C
v(u) = { (e
0 otherwise.

with C' a constant parameter. Parameter o is a piori unknown but can be estimated
online using the Median Absolute Deviation (MAD) [Huber 81].
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2.6 Conclusion

In this chapter, the mathematical background related to monocular computer vision has
been introduced. The different involved 3D and 2D geometrical transformations have
been set, between the camera and a known scene or a known target object, and within
the image. More specifically, since this thesis deals with full localization of the camera
with respect to a target object, the issue of pose estimation has been stressed out. The
considered pose is the 6 degrees of freedom parameters enabling to fully localize the
camera with respect to the target, in terms of position and orientation (or attitude).

Our goal is to design a unified visual localization solution, addressing both problems
of tracking the target and initializing the tracking process. Two major lines of studies
regarding localization and thus pose estimation have been reviewed. The first one con-
cerns the detection of the target and the estimation of the pose on the initial image. The
second one deals with pose estimation through frame-by-frame procedure. Though they
are based on similar visual representations of the objects (3D model, interest points, ap-
pearance patches...), different concepts and techniques address these issues.

e For detection and initial pose estimation, the general idea is to a priori learn some
visual information on the object and to match this information with the initial in-
put image, the pose being recovered using the resulting 2D-3D correspondences or
relationships.

Some approaches handle this problem using a global description of the object, by
matching a set of views or templates of the object with the input image. These
methods refer to template matching. These templates can be learned to reduce
the search space and for more efficiency. The matching is based on a similarity
measure between the templates and the image, involving different sorts of visual
information (appearance, shape, edges...). The pose can be retrieved directly with
the stored pose corresponding to the best matching template or indirectly through
a voting procedure when templates are learned into a higher-level representation.
These methods have the advantage of handling a large range of viewpoints, can be
applied to both textured or textureless objects, using natural or synthetic images.
They also require few supervision for the learning phase. As a main drawback, they
can be limited by their computational efficiency due to the large search space.

Other approaches address the problem by learning invariant local or regions fea-
tures, using different sorts of descriptors and by training classifiers or "codebooks"
of these descriptors or "visual words", or by building more global multiview ap-
pearance models. Then, local or region descriptors extracted from the image are
classified within the trained classifiers or appearance models. Finally, using result-
ing local 2D-3D correspondences, or using a voting process or through geometrical
constraints, the pose can be determined. These methods have the advantage that
computational aspects are independent of the search space on the pose parameters.
Most of these methods are however restricted to textured objects and needs natural
training images or photorealistic synthetic views of the object. Besides, the learning
phase can require a burdensome amount of supervision.
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e With pose estimation by frame-by-frame tracking, the aim is, for a frame, to lo-
cally search for the pose, or the displacement, that best fits the image content, based
on the pose computed for the previous frame. This task can be handled through
deterministic non-linear minimization techniques, or through a probabilistic frame-
work, or potentially a combination of both.

Different visual information or features can be used: edges, gradients, interest
points, color, texture patches... with different respective advantages and drawbacks
regarding accuracy, robustness and computational efficiency. The attention is par-
ticularly paid on solutions based on the 3D model of the target. Hybrid frameworks
accounting for these different cues can be considered, benefiting from their com-
plementarity.

Having introduced aspects of both initial visual localization and visual tracking, and
reviewed their respective literatures, chapters (3 and 4) describe the solutions we propose
to handle these two issues, justifying their respective motivations. In the next chapter,
our approach of initial visual localization and pose estimation, using the 3D model of the
known target.
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Chapter 3

Detection and initial pose estimation

The scope of this chapter deals with our approach of 3D detection and initial pose esti-
mation of a known 3D object in a monocular image sequence, with a focus on the case
of a space object, such as a satellite or a debris moving in outter space. This is a key
requirement to initialize a robust and accurate frame-by-frame 3D tracking phase, which
will be described in chapter 4.

As seen in section 2.4, in the field of monocular 3D object recognition, different
classes of approaches can be distinguished among the large literature. We have presented
some methods based on global template matching using natural training templates of the
object. Some of them consider appearance [Ozuysal 07, Hinterstoisser 10, Gu 10], or
shape [Olson 97, Gavrila 99, Holzer 09, Payet 11] to represent the object. Many others
are based on learning local or semi-local features described by descriptors such as SIFT
[Lowe 04] or SURF [Bay 06], contour descriptors [Ferrari 08], region descriptors such
as HOG [Dalal 05], extracted from natural training images of the object. The online
recognition phase can then provide pose or viewpoint estimates, through a pose com-
putation step based on 2D-3D point correspondences with the 3D model [Lepetit O6b,
Collet 09, Ozuysal 10], using a voting process method [LLowe 04, Thomas 06, Ferrari 08,
Ozuysal 09, Glasner 11, Rodrigues 12] or planar matching constraints, relying on a learned
multiview appearance and geometry information of the object [Savarese 07, Yan 07, Su 09].
But in our context, these methods, based on real training images, are not suitable since
natural images of space objects can hardly be obtained prior to the mission itself. Besides,
space objects are often poorly textured or prone to specular effects (for instance due to the
insulating film on satellites), making the description of templates or the extraction and
description of texture-based feature points complicated.

Using the 3D model of the object

Instead, we propose to rely on another class of approaches which learns the geometry or
the shape of the 3D model of the object. As stated before, we deal with known industrial
objects (spacecrafts, satellites or parts of them), and accurate geometrical CAD models
can be assumed to be provided.
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As stated in section 2.4, some template matching methods [Ulrich 09, Reinbacher 10],
sparse 2D-3D edge feature matching techniques [LLowe 87, Costa 00, Strzodka 03, David 03,
Liebelt 08] or multiview learning frameworks based on part or region descriptors [Liebelt 10,
Stark 10, Zia 11], suggest to use and learn the 3D model of the target object and its pro-
jection. However, approaches proposed in [Lowe 87, Costa 00, Strzodka 03, David 03],
based on matching geometrical primitives such as lines, can be computationally pro-
hibitive, due to the large search space. Furthermore, they face problems when extract-
ing the considered geometrical primitives from edges in the image with degraded condi-
tions such as noise, blur, or background clutter. Region or part descriptor based methods
[Liebelt 10, Stark 10, Zia 11] have recently proposed to overcome the issue of computa-
tional costs by efficiently learning the 3D model. Though being elegant, these solutions
still require a certain amount of supervision during the learning step and are restricted to
a coarse set of viewpoints.

Towards template matching

With the aim of designing an unsupervised, and multi-viewpoints method, precise enough
to correctly initialize a frame-by-frame tracking process, while keeping computational
costs reasonable, we propose to follow the idea of template matching. As reviewed in
section 2.4.1.1, some efficient edge or shape based global similarity measures [Olson 97,
Steger 02, Belongie 02] have been worked out to cope with occlusion, clutter, noise, spec-
ular effects... Our idea is thus to match an exhaustive set, over the 6D pose parameters, of
non photorealistic synthetic views of the object. In order to circumvent the problem of the
large search space, we propose to rely on efficiently learning, with few supervision, the
set of views, as presented in section 2.4.1.2. In this sense, the concept of aspect or view
graph [Cyr 04, Toshev 09] or of hierarchical view graph [Ulrich 09, Reinbacher 10], lead-
ing to sets of reference views of the object, has aroused our interest. Our pose estimation
process can then be performed by matching the input image with these graph structures.

Benefiting from foreground/background segmentation

Besides, our context deals with a single object, moving with respect to the camera located
on the chaser. Since a dark uniform (deep space) or cluttered (earth surface) background
is assumed, we suggest to take advantage of a foreground/background segmentation tech-
nique, as in [Toshev 09]. We propose to spread our object localization process over a se-
quence of successive input images. Only reasoning on the first frame could indeed result
in a too coarse pose estimate, or would require a more exhaustive and costlier searching
process over the pose parameters. With our system, the retrieval of the pose is then based
on progressively matching and aligning the synthetic views with a short image sequence.
At the end of the process the most likely view is determined and selected, along with
the stored pose used to render it. Combining this pose with estimated in-plane rotation,
translation and scaling parameters to align the view in the image can provide a pose of
the object. Indeed, since the dimensions of the object are assumed to be small relatively
to its distance from the camera, a weak perspective projection model can be assumed:
an isotropic scaling (equivalent to a translation along the optical axis) precedes an ortho-
graphic projection.

In [Toshev 09] the sequence of extracted silhouettes from the segmentation phase is



3.1 Segmentation of the moving target object

directly used to match and align the silhouettes with the shapes of the model views, using
the Shape Context descriptor. This method thus requires a precise segmentation of the
object. Besides, the method is based on silhouette contours. Instead, in this work we
propose an accurate edge-based similarity measure which is made robust to segmentation
errors, by involving both the segmented and the original images. We also suggest to use
the image in-plane translation, rotation and scale of the segmented silhouette to coarsely
estimate the similarity transformation (see section 2.2.3) of the considered tested view to
guide the matching process and compute the pose. This framework would thus result in
a faster process, and would be less sensitive to local minima than [Ulrich 09, Toshev 09],
which rely on an costlier coarse-to-fine search over these parameters [Ulrich 09], or an
exhaustive probabilistic inference over these parameters [Toshev 09].

Overview of the approach

Our method can be outlined by the following steps, and illustrated by Figure 3.1:

e Learning step : based on generated synthetic views of the object, it aims at building
a hierarchical model view graph leading to some reference views of the model.

e Pose estimation step along the image sequence :

— Foreground/background segmentation of the object. By computing binary mo-
ments of the extracted silhouette, the position of its centroid, its orientation,
and its area in the image can be retrieved, providing an initial estimate of the
image in-plane translation, rotation and scale transformation parameters of the
reference views in the image.

— With the aim of refining these parameters, particle filtering is performed with
respect to them, for each reference view, along the input image sequence.

— We then determine the most likely model view and an associated estimate of
the image similarity transform of the view in the image, providing the com-
plete pose, along the input image sequence.

— Finally the pose is refined by traversing through the hierarchical view graph.

This chapter is organized as follows. Section 3.1 presents the principles of fore-
ground/background segmentation and the solution adopted for this work. The way model
views are generated and the way they are learned into a hierarchical view graph is ad-
dressed in section 3.2. Our method is then based on a probabilistic alignment framework
to determine the most likely reference view, along with particle filtering for image plane
similarity transformation parameters, what is detailed in section 3.3. Some experimental
results, on both synthetic and real data, are finally provided in section 3.4.

3.1 Segmentation of the moving target object

We deal with a single object moving in an input image sequence, captured using a monoc-
ular camera. The aim of this segmentation task is to extract a foreground layer, corre-
sponding to the object silhouette in the image, in the presence of a potentially cluttered
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® Reference
views

Figure 3.1 — General idea of our pose estimation by detection system. Generated synthetic views
of the object are classified into a set of reference views. Reference views are then progressively
matched, through V,,, and aligned, through x; (the similarity transformation parameters), to the
initial images.

and dynamic background. The information provided by the extracted silhouette will fur-
ther be used in the pose estimation step (section 3.3). With space applications, especially
on Low Earth Orbit, three different cases of imaging conditions can be distinguished in
our problem, one with the Earth as a dynamic cluttered background, the second with a
deep space back background and the third with both earth and deep space as a back-
ground, split by the Earth’s limb, see Figure 3.2. Two of them ("terrestrial" and "deep
space" backgrounds are tackled in this thesis.

(b) ()

Figure 3.2 — Different types of background in a space context.

3.1.1 A brief review on foreground/background segmentation

Among the vast literature addressing the issue of moving object and foreground/background
segmentation, different categories of approaches can be distinguished: inter-frame differ-
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ence, background modeling and subtraction, and foreground/background modeling.

3.1.1.1 Inter-frame difference

With the idea of detecting moving pixels, an "old" and simple approach consists in per-
forming difference between successive frames [Jain 79]. The basic concept is then to
label pixels with a difference of intensity under a given threshold as background pixels.
Choosing the segmentation threshold depends on the illumination conditions and setting
a global threshold over the whole frame faces the problem that the contrast can vary on
different regions of the moving object. But some researches have tried to overcome these
limitations by adapting this threshold to determine wether a pixel has moved or not, as
reported in [Konrad 00].

This adaptive threshold can be determined by fitting the difference of intensity be-
tween successive images with predefined statistical models corresponding to motion or
absence of motion, using hypotheses tests through likelihood ratios. Instead of the dif-
ference of intensity, the ratio of intensity can also be used [W. 05]. But performing this
thresholding task on each pixel independently can lack of spatial consistency, resulting in
noisy segmented maps. This problem can be solved by using spatial information in the
determination of the global threshold through Markov Random Fields (MRF) [Aach 95],
based on the difference of intensity. However, these approaches are often restricted to
static backgrounds.

3.1.1.2 Background modeling and subtraction

Instead of directly using the inter-frame intensity difference, another solution is to build
an appearance, spatial or motion model of the background, and to consider pixels which
are not consistent with that model as pixels belonging to moving objects of the fore-
ground. Assuming a pure static background, a simple idea of background subtraction
is to perform thresholding on intensity difference between the current frame and a ref-
erence frame, corresponding to the background. To handle uncertainty on the back-
ground appearance, probabilistic models of the background layer have been proposed.
The related methods can be predictive or non-predictive. For the non-predictive meth-
ods [Kanade 98, Cavallaro 00, Stauffer 99, Zivkovic 04, Elgammal 00, Kim 05], which
are the most common, it is based on a probabilistic model of the background using
a simple Gaussian distribution of pixel intensities [Kanade 98, Cavallaro 00] or using
a mixture-of-Gaussian [Stauffer 99, Zivkovic 04] in order to cope with weakly moving
backgrounds, or by estimating a probability density function, such as Gaussian kernels, at
each pixel, to handle more complex motion models and dynamic scenes [Elgammal 00].
These approaches however do not take into account some spatial consistency, what is
suggested by [Sheikh 05] through the introduction of spatial information in the Gaussian
kernels. Another idea has been proposed by [Kim 05], by modeling the background with a
codebook consisting of some color, intensity, spatial, occurrence information represented
by codewords. But these methods require a prior knowledge of the background, in the
sense that some prior images of the background are needed to model or learn it. Besides,
these approaches are still limited to static or weakly dynamic backgrounds.

In order to relax the assumption of a static or weakly dynamic background, requir-
ing the camera to remain almost stationary during the observation, the concept of motion
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compensation has been introduced, with the idea of determining a motion model of the
background. Detecting pixels belonging to moving objects can indeed be seen as detecting
pixels which do not account for the motion induced by the camera. Some works rely on the
knowledge of the 3D camera motion, like in [Nelson 91], and the consequent inter-frame
2D flow field in the image is used to determine whether a pixel belongs to this motion or
not. However, besides the restricting assumption of knowing the 3D camera motion, these
techniques are mostly suited for large inter-frame motions and can result in sparse seg-
mented maps. Instead, another class of methods assumes that the 2D motion in the image
of the background, which is due to the 3D camera motion, can be modeled by a 2D para-
metric motion model [Irani 92, Rowe 96, Odobez 97, Mittal 00, Hayman 03, Ren 03]. A
global homography or 2D affine transformation between successive frames is estimated
to warp the sequence and to compensate for general motion of the background in the
image, extracting the moving objects making of the foreground. These methods are re-
stricted to background which can be approximated as planar or to cameras only subjected
to pan or tilt motions. Techniques such as [Irani 92] relies on a thresholding procedure
on the warped sequence to determine the foreground layer, leading to noisy or sparse
segmentation. [Rowe 96, Odobez 97, Mittal 00, Hayman 03] incorporates motion com-
pensation within appearance statistical background modeling such as Gaussian models
[Odobez 97, Rowe 96, Mittal 00] or GMMs [Hayman 03]. [Odobez 97, Hayman 03] also
integrate spatial consistency through MRFs.

We can also mention predictive background subtraction methods, for which the idea is
to predict the intensity or color of a pixel based on previous observations, through filtering
techniques such as Kalman filters [Karmann 90, Koller 94].

Only modeling the background can however be enriched by also modeling the fore-
ground.

3.1.1.3 Statistical foreground/background modeling

This idea refers to the concept of multiple layers segmentation, for which the scene can
be decomposed into different layers, each of them having a particular motion model.
More precisely, the idea is to extract and classify these motion patterns, and to model
the layers of moving objects and the layer of the background, using probabilistic ap-
pearance or spatial models. Based on these models, each pixel can be labeled to one of
these layers. When dealing with a single foreground moving object over a potentially
dynamic background, as in our context, the goal is to separate two different motion layers
and then to build a statistical model for each of these two layers. The labeling task for
the different layers can be efficiently achieved by an expectation-maximization algorithm
(EM) or using graph cuts [Boykov 01] (see Frame 9). A limitation of these approaches
is their lack of computational efficiency, and an initial coarse guess of both layers can be
required. Methods in [Criminisi 06, Yin 07] propose real-time solutions, in the case fore-
ground/background layers, but still rely on an offline learning step to get motion priors.
[Xiao 05a, Pundlik 06, Bugeau 07, Sheikh 09] suggest an automatic initial extraction
and clustering of the motion layers without learning step. They rely on local feature points
which are tracked across frames. Points with similar consistent motions (or trajectories)
are grouped together. In [Xiao 05b, Pundlik 06], each extracted point, using the Harris
corner detector, is initially assigned a layer. Then, the points are tracked frame-to-frame,
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using the KLT algorithm for [Pundlik 06], the method of [Xiao 03] for the approach pro-
posed in [Xiao 05b]. This tracking process provides the apparent motions of the points,
through affine transformations. The different apparent motions are used to cluster the ini-
tial layers into larger ones: a point is assigned a cluster if its apparent motion matches the
overall motion (affine transformation) of the cluster. Once a point is added to a cluster,
the affine motion of the cluster is updated. However, only a sparse multi-layer segmen-
tation is provided in [Pundlik 06]. In [Xiao 05b] the clustered layers are used to build
statistical models (Gaussian model on the color of the pixels), to achieve a dense com-
plete segmentation. First, as in [Xiao 03], the local points which are clustered into the
different layers are expanded, providing larger regions around them. This preliminary
step is achieved using binary graph-cuts and its goal is to better describe the models of
the layers. Based on the models, graph cuts (Frame 9) are then used to segment the whole
set of pixels of the frames. However, these methods [Xiao 05b, Pundlik 06] suppose that
the scene can be approximated by a set of planar regions. Let us note that the approaches
in [Pundlik 06, Xiao 05b] are suited for the general case of multiple motion layers.

Methods in [Bugeau 07, Sheikh 09] focus on the particular case of foreground / back-
ground segmentation. But they generalize this idea of characterizing the motions of the
layers (two in that case) to any kind of scenes, with non necessarily planar regions and
with potentially dynamic backgrounds. In [Bugeau 07] the foreground can consist of sev-
eral moving objects, which have consistent motions and colors. The approach is based on
the assumption that the motion of background is dominant. Points regularly selected over
the frame are tracked using KLT and clustered in to foreground and background layers
using a Mean Shift algorithm. Based on a color and spatial probabilistic models of these
regions, segmentation is performed using energy minimization via graph cuts. To identify
the background, the method in [Sheikh 09] is also based on the assumption that the back-
ground is the dominant rigid entity in the image and that it is stationary in a world frame.
This last assumption means that the apparent motion in the image sequence depends only
the 3D structure of the scene and the motion of the camera (see section 3.1.2.3).

3.1.2 Segmentation in the case of a terrestrial background

Let us remind that based on an initial image sequence, the first goal of our solution is
to extract the moving target object from the background. In this section we address this
problem in the case of a "terrestrial" background, for which the background consists in
the earth surface, as seen on Figure 3.2(a).

3.1.2.1 Motivations for the segmentation approach

As reviewed in the previous section, different foreground/background methods can be
considered to handle our problem. Since the apparent motions of both the foreground
(the moving object) and the background can potentially be identified, our basic idea is
to use a statistical foreground/background modeling technique. In this particular case of
a terrestrial background, several assumptions can be made. Indeed, the apparent motion
in the image due to the Earth self rotation can be neglected with respect to the apparent
motion due to 3D motion of the chaser spacecraft. Local motions such as the local motion
of the clouds can also be neglected. We can thus assume that locally the Earth is a rigid
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body at rest in space, and that the apparent motion of the background is due to the camera
selfmotion. For this reason we can rely on the idea suggested in [Sheikh 09] to identify
the background and then to statistically model both background and foreground layers.

Let us first set up the mathematical framework we have adopted to handle the fore-
ground/background segmentation problem, which consists in labeling each pixel of the
image to the foreground or to the background layer.

As in many layer segmentation methods, with some of them reviewed in section 3.1.1,
we use an energy minimization framework, based on statistical models of the foreground
and the background, whose constructions in this work are reported in section 3.1.2.3.

3.1.2.2 Energy minimization formulation

For a an image I, we denote by o = {a;}, the set of the unknown binary labels of
the set of pixels {p;}X, of I. a; = 0 when pixel p; belongs to the background layer
and «;; = 1 when it belongs to the foreground layer. Estimating the values @ of the labels
for an entire image can be formulated as the minimization of an energy-based Markov
Random Field objective function £(«), with respect to a:

a = argmin E(«a) (3.1)
with E(a) = FEgua(@) + v Esmootn () (3.2)
with
Biaa(@) = > Di(a) (3.3)
Eamoon(@) =Y Vijlai, o). (34)
(i,5)EN

FEgaq is the "data" energy term, with D;(«;) a unitary term which is related to some
image "data" (intensity, color, location...) observed in the image at pixel p;. As its log-
likelihood, D;(«;) accounts for the observation probability p(p; | «;) of pixel p; to belong
to the foreground or to the background. p(p; | «;) is evaluated using the image data at
pixel p; and the statistical models (in terms of intensity, color, location) previously built
for the background and the foreground. More formally, we have:

Di(i) = —log(p(pi | a:)) (3.5)

Esmootn 1s the smoothness energy term, with V; ;(«a;, «;) a binary term whose goal is to
favor smoothness, or spatial coherence within the pixels. V; ;(«;, a;) is computed so that
it favors coherence on regions with similar pixel intensities or colors. It is determined on
sets \V of pairs of pixels which are neighbors. In practice, we consider pixels as neighbors
if they are adjacent horizontally/vertically, with 4 or 8-way connectivity. We choose a 4-
way connectivity in this work, for computational reasons.

Classically [Rother 04, Criminisi 06], V; ;(«, ;) is computed as:
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e~k P —1(py)I?

dist(i, j)

Vijlou, ;) = [a; # oy (3.6)

The contrast parameters i is set as:

p=2 E [||[I(p;) — I(p)|?] (3.7)

where E [.] denotes the expectation over all pairs of pixels (p;, p) in an image sample.
For ||I(p;) — I(p;)||, we refer to the distance in terms of RGB space color components.
dist(j, k) is the distance in terms of pixel image plane coordinates. Let us finally note the
fixed scalar ~ is a parameter which tunes the balance between the data and smoothness
energy terms.

In order to compute the optimal solution of this energy minimization problem and to
determine &, we employ the graph cuts algorithm [Boykov 01] (see Frame 9).

In our context, we propose to compute the data energy term using two different terms.
One term is obtained through foreground and background statistical modeling (£, . see
section 3.1.2.3). The other term is computed by modeling the motion of the background
and using homography-based motion compensation (£9,,,, see section 3.1.2.4). Formally,
FE ;40 can be rewritten as:

ata’

Edam(Oé) = 6Eg(;ta(a> + (1 - B)Egata(a)' (38)
3 is a weighting parameter (0 < 8 < 1). £, and EY ,, can be derived as:

Biua(0) = DU (ei) = 3 ~log(p" (i | ) (3.9)
Biaral@) = DS Ui (o) = > —log(p(pi | o) (3.10)

7

with U"(«;) and Uf(a;) the corresponding local energy terms. p™(p; | «;) and p°(p; |
«;) are the corresponding observation probabilities.

By using these two terms, the underlying idea is, by relying on some assumptions
particular to our context, to combine a foreground/background modeling technique with
a background subtraction technique, and to benefit from their complementarity.

3.1.2.3 Feature tracking, clustering and foreground/background modeling

In this paragraph, we present our approach of foreground/background modeling, with
the aim of computing £}, .. As in [Bugeau 07, Sheikh 09], we propose to identify and
describe both foreground and background layers by processing some feature points that
are tracked over a certain number of frames and are clustered as background or foreground
points, consistently with their motions or trajectories. The different steps of the method

are described hereafter. /N, Harris corner points {p?}l]ihl are detected on the first frame,

with p) = [u? vﬂ T, in pixel coordinates (Figure 3.3, left). By tracking these points over
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the image sequence with the Kanade-Lucas-Tomasi (KLT) [Shi 94] tracker, we obtain, for
a frame I, a set of trajectories {wf}f\;hl over a sliding window of size k,,, 1 < k,, < k, as
represented on Figure 3.3. Each wy, can be written as:

_ _ T
wy = [p; " py Rt o pf] (3.11)

KLT tracker over B&
several frames &

Figure 3.3 — Detection of Harris corners (left, red dots), which are tracked over successive frames,
resulting in a set of trajectories (right, red arrows).

The goal is then to cluster these trajectories into background or foreground trajecto-
ries. As stated at the beginning of section 3.1.2.1, we can consider, in our application, the
background to be stationary in the world frame, so that the apparent motion of the back-
ground only results from the 3D motion of the camera. We also assume that the apparent
motion of the background is dominant in the image. Based on these assumptions, we fol-
low the approach proposed in [Sheikh 09], which uses the rank-constraint to determine a
motion model of the background. This rank-constraint means that the matrix formed by
the projected trajectories of stationary points in the world frame is a rank three matrix,
so that background trajectories must lie in a subspace spanned by three basis trajectories.
More formally, we can first define W* as the matrix grouping the set of trajectories:

ulg—kw ullc—k:w . uljc\f;k:w
Ué@—kw vllc—k:w . va;kw
Wr=[wt wh - wh = : : : (3.12)
ulg u’f u?vh
I UIS v{f v]l%h |

Assuming the camera projection is orthographic, the matrix W* is a rank 3 matrix. This
coarse assumption can be justified in our case since we can suppose the considered prox-
imity or rendezvous operations to be located on the Low Earth Orbit (LEO, where there is
the most needs for such operations), so that the surface of the Earth shows few perspective
effects. However, as reported in [Sheikh 09], even in sequences with important perspec-
tive effects, this assumption does not penalize the consequent segmentation method.

Let us justify the rank constraint asserting that W* is a rank 3 matrix under ortho-
graphic projection (the reader can refer to [Sheikh 09] for more details). W* can indeed
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be seen as the projection, on the set of the k,, successive images, of a set of 3D points
{Xl}fi ".eachX; = [X V Z]T, in a world reference frame, lying on the surface of
the background. With an orthographic projection model W¥, the projection is performed
using an orthogonal matrix 11, so that:

X, o Xy,
WF=TI, | Y, - Yy, (3.13)
Zy .- ZNh

r k—k k—k k—k
a v g Y g3 "
k—k k—k k—k
q4 w q5 w q6 w

with TI, = (3.14)

@« & &
4 4 &

Since an orthogonal matrix has full column rank, II, is of rank 3 and since the world
frame is assumed orthonormal, straightforwardly W* is of rank 3. Consequently, each
trajectory resulting from the motion of the background lies in a subspace spanned by
three basis trajectories:

3
wi=> a; W (3.15)
p=1

with W’; the p'" basis trajectory. RANSAC is used in order to robustly determine these
three basis trajectories from the set of all trajectories. For this purpose, random triplets of
trajectories wr, w” and w¥ are selected on the set {w" };ihl to form a projection matrix.
This projection matrix is used to compute the projection error of each trajectory w/'. Once,
based on defined threshold, enough inliers are found for a triplet, the process is stopped.
Otherwise another triplet is selected and the process is repeated until convergence and the
resulting triplet is selected as the triplet of basis trajectories. The projection on this basis
is performed for the whole set {wf}fihl, finally identifying trajectories which lie within
the resulting subspace and which do not.

As a result, this method enables to efficiently cluster trajectories {wf}fi’l and the cor-

responding feature points {pf}fihl into background trajectory points and non-background
(i.e. foreground) trajectory points (see Figure 3.4).

These trajectory points {pf}ﬁ"l, given their membership to the background or fore-
ground layers, are then used to model these layers. However, relying on the whole set can
be biased since these points can be concentrated on some particular regions in the image.

Instead, since no a priori are given regarding the shape or the appearance of the moving
object or the background, we propose to restrict to trajectory points that are regularly
spread in the image plane. In this sense we set a grid G, for the background and a grid G ¢
for the foreground:

. b pw q.w
Gb - {pp,q - (E? Vb

pw qw
GfZ{pif,q=(E,E);p,qzlml\/f} (3.17)

)ip,g=1---Np} (3.16)
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Clustering of
trajectories

Figure 3.4 — Clustering trajectories into background and foreground trajectories, leading to a set
of background points (blue dots) and foreground points (green dots).

We choose the trajectory points that are the closest to the nodes pgq and p‘,{;q of the
grids, and finally we obtain a set of background trajectory points {pf}fvz”l and a set of
foreground trajectory points {pf ﬁV:fl.

We then use these sets to determine the statistical models of both background and
foreground layers. For both layers we suggest, as in [Bugeau 07, Sheikh 09], to use Kernel
Density Estimation as probabilistic modeling. But in our approach, we propose to use only
a color model for the background. The foreground model is instead based on both color
and spatial information. A reason for this choice is that the foreground layer is likely to
be concentrated in the image, making spatial information more discriminative than for the
background.

More formally, the background model is based on the set of vectors {z%};'", where
z! = [R;, G; Bi]T, with R;, G; and B; the RGB color coordinates of pixel p¢. Simi-

larly, the foreground model is based on the set of vectors {zf }fifl, where

z/ = (R G; B; wu; vi]T, with R;, G; and B; the RGB components of p/ and u; and
v; the pixel coordinates of p?.

Then the probability for a pixel p; to belong to the background is then computed using
Kernel Density Estimation, by selecting the appropriate data z; (RGB or RGB+location)
on p;:

N

1 1
p(pi|a=0)= ———= Y (B, 2(z; —2°)). (3.18)
Ny|By |2 ZJ: ’
We proceed the same way for the foreground:
1 )
pPrpila=1)=——7 ¢(B; 2(z —2))) (3.19)
NylByllz 55 ’

where ¢ denotes a kernel function. As in [Sheikh 09], we use the Epanechnikov kernel
function. Though it is less representative of the true distribution than a Gaussian kernel,
it sill provides decent results and it is much faster to compute. Computational efficiency
is here to be considered since kernels are computed for each model vector zf and zlf , for

each pixel p; in the image. The Epanechnikov kernel function is given by:
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0 otherwise.

d(u) = {%(1 —u) if Juls1 (3.20)

B, is a 3 x 3 symmetric positive definite bandwidth matrix, which is manually fixed. For
the foreground, B¢ is a 5 x 5 bandwidth matrix.
As a reminder, the subsequent energy terms are then computed as:

U™ (0w) = —log(p™(pi | o)) (3.21)
Epa(a) =Y UMo) (3.22)

But using kernel density estimation over all the background and foreground trajectory
points can still be computationally expensive, thus both layers can be modeled this way
only for the first frame to segment. For the next ones, based on the data provided by this
initial segmented frame, the background and the foreground can be instead represented
by smoothed color histograms h? and hf" in the RGB space, which are updated over
successive frames, giving:

P (pi | a; = 0)) = hP(pi, ;) (3.23)
p"(pi | s = 1)) = Y (py, i) (3.24)

3.1.2.4 Homography-based motion compensation

In the particular case of a terrestrial background and since the potential rendezvous oper-
ation would be located on the Low Earth Orbit, with relatively small Field of View for the
camera, the Earth surface can actually be approximated as a plane.

Based on this assumption and relying on ideas suggested in previous works presented
in 3.1.1.2 such as [Irani 92, Odobez 97, Mittal 00], the idea is to evaluate pixel observation
probabilities through motion compensation. It is based on the estimation of the homogra-
phy transformation induced by the motion of the background in successive frames.

With this motion compensation framework, the idea is to compensate for errors in-
duced by a poor modeling of foreground and the background layers (through the steps
presented in section 3.1.2.3), due to misclassification of the trajectory points.

For this purpose we use background trajectory points {pi’k}fvz”l identified at a frame I,
through the method presented in section 3.1.2.3, and the corresponding points {pf’k_kH } f-vz”l
at frame Iy, , with £z > 1. We use the notation pi”k to stress out the time step k. It was
omitted in section 3.1.2.3 for clarity reasons.

Based on the 2D-2D point correspondences between {p”"} " and {p?* 71 we
can compute the homography matrix k Gy_r, between I, and I;_, and the two corre-
sponding planes which approximate the background. This step can be achieved using a
RANSAC robust procedure.

RANSAC for homography estimation

RANSAC is classically applied, by randomly selecting sets of 4 2D-2D points correspon-

; i bk—k ]
dences. For a set {/ pf’k,f p,” " }i_, of 4 correspondences, a homography kGika can
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be computed [Malis 98]. This homography is then applied to the whole set {p?’k_kH }fV:bl
The resulting re-projection errors with respect to the corresponding points {pfk fﬁ’l (in
terms of Euclidean geometrical distances between the points) are computed and enable
to identify "inliers" and "outliers", based on predefined threshold. If the consensus is
reached, the process is stopped. Otherwise another set is selected and the process is re-
peated until a consensus is found.

Since only background trajectory points are used, few true outliers are actually pro-
cessed in the RANSAC procedure, for which the consensus is rapidly obtained, giving a
consistent estimation of the homography.

Likelihood evaluation

The homography transformation kaka is then applied to the whole frame I;_j,,, to
compensate for the computed motion between Ij_j, and I, resulting in an error e(p)
defined by:

e(p) = Li(p) — Lk, ("Griy (P)) (3.25)

Thus, the more the color components of e(p) are close to zero, the more pixel p is likely
to belong to the background. We can model the compensated background apparent motion
as Gaussian and likelihoods can then be evaluated by a Gaussian kernel, with a bandwidth
o:

c 1 _le®D?
ppla=0) = e 22 (3.26)
oV 2
plpla=1) = 1-p(pla=0) (3.27)
As a reminder, the subsequent energy terms are then computed as:
Ui (ci) = —log(p“(pi | ) (3.28)
Efua@) = > Us(as) (3.29)

3.1.3 Segmentation in the case of a deep Space background

As noticed on Figure 3.2(b), the background can also be the uniform black deep space.
This case can be dealt with quite easily since a simple threshold on the pixel intensities
would provide the foreground layer corresponding to the target moving object. However,
in order to cope with potential noise or halo due to sun reflection on the target, we propose
a more robust solution, ensued from the graph-cut based segmentation method presented
above, without the procedure of modeling foreground and background layers with the
feature tracking and clustering, which becomes useless, reducing computations signifi-
cantly. Instead, we use thresholding initially to determine the smoothed histograms h”
and h'" on the RGB color space, modeling the foreground and the background and giving
likelihoods:

p(pi | o = 0)) = hP(p;, ;) (3.31)
p(pi | i =1)) = h" (p;, o) (3.32)
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Frame 9 Energy minimization via Graph Cuts [Boykov 01].

A segmentation task can be formulated in terms of labeling pixels of the image to
a particular layer, by minimizing an energy function depending on some properties
of the image. The most famous algorithm to minimize these energy functions has
been proposed [Boykov 01], using Graph Cuts, with the Expansion Move algorithm.
The general idea is to relate the problem of minimizing such energy functions to the
problem of maximizing the flow or minimizing the cut of a graph, with respect to
the set of labels. The algorithm is iterative and can applied for binary or multi-layer
segmentation tasks. We restrict ourself to the binary case here. More formally, let
us denote by F the energy function, which is function of a set of binary variables
a. « corresponds to the set of labels of the pixels. £ can be associated to a graph
G = (VU{S,7},€&). Each pixel, with its label «; in «, is associated to a node s; € V,
with V the set of intermediate nodes of G, S and 7 being the terminal nodes and £
the arcs of the graph, linking the nodes. F(«) is equal the capacity of a cut in G, a
cut being a partition of the nodes of the graph into two disjoint subsets, S for nodes
including the terminal node S and 7' for nodes including the terminal node 7. The
capacity of a cut is the sum of the capacities on the arcs lying on the cut. A node s;
belongs to S'if a;; = 0 and reciprocally it belongs to 7" if oy; = 1. Equivalently, S can
be seen as the subset of background pixels and 7" the set of foreground pixels.

In order to minimize the energy function £ and the corresponding capacity with re-
spect to «, the Expansion Move algorithm is run iteratively. Given a current labeling
«, the label «; of a node can be modified only if different from a particular labeling
oy, for instance oy, = 1. The a; is set to o, if the resulting cut has a bigger capacity
than the previous one. For this purpose capacity of arcs should be determined. Arcs
& can actually be divided in two subsets £ and &,. &; contains arcs linking S and
T with the intermediate ones V, and &, the arcs linking intermediate nodes between
them. Equivalently, F is formulated as follows:

E(Oé) - Z Edata(ai) + Y Z Esmooth(aia ij) (330)
¢ (1,9)ENG5)

with ., a unitary energy term equivalent to the capacities of arcs in &1. Egqq(a; =
0) is equal to capacity of an arc between s; and S, and reciprocally with E,,(a; = 0)
and 7. In the image represent a quantity related to the image data depending on
the label. It favors the labeling to respect to observations in the image (intensity,
color...). FEg.0tn 18 @ binary term equivalent to the capacities of arcs in &. In the
image, it thus involves neighborhood pixels, It tends to favor the labeling to respect
some discontinuities in the image. N/ j) denotes each arc linking nodes s; and s; or
equivalently pixels p; and p;, which mutually neighbors. Usually, 4 or 8 neighborhood
nodes are considered. The more the discontinuities (or gradients) between neighboring
pixels are important, the smaller the capacities of their arcs are, favoring cuts on these
regions.

« can be initialized to 0 (only background pixels) is there can be prior data infor-
mation corresponding to some background or foreground modeling, which enables to
compute Fg,, consistently. Otherwise, some seed nodes or pixels, with predetermined
labels, have to be set, automatically or manually, and from which Expansion Move is
performed based on spatial discontinuities between neighboring pixels.
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And we set the energy terms:

Ui(ai) = —log(p(pi | ) (3.33)
Eata(@) =Y Ui(o) (3.34)

h® and h* are then updated given the segmented background layer.

Through this segmentation step, we are able to extract the target moving object (or
foreground) from the background, in the case of a "terrestrial" or "deep space" back-
ground.

In the next sections, we present the way the extracted silhouettes, corresponding to
the target object, from a sequence of initial images, can be used to match and align a set
of synthetic views of the object, with the aim of retrieving the complete 6D pose between
the camera and the target object.

3.2 Generation and classification of synthetic views

As presented in the introduction, our pose estimation by detection strategy can be affiliated
to template matching methods. It is based on the 3D model of the target and relies on
matching, aligning synthetic views of the model with a sequence of initial input images.
This section focused on the generation of these synthetic views and on how they are
classified to efficiently handle the matching process.

3.2.1 Generation of the views on a view sphere

By synthetic views, we mean projections of the 3D CAD model of the object on blank
frames. These synthetic views are generated on a view sphere which is centered on the
3D model, and which is parametrized by 3 DoF (azimuth ¢, elevation ¢) and distance
dy between the camera optical center and the object center). The rendering is managed
using a 3D rendering engine by setting virtual cameras at uniformly sampled viewpoints
(green dots on Figure 3.5), corresponding to discrete values of azimuth ¢ (0 < ¢ < 27)
and elevation ¢ (0 < 9 < m) angles, at a fixed distance dy from the model, looking at
the origin of the frame attached to the 3D model (the origin being the barycenter of the
vertices making of the model). The fixed distance dj is set to a value so that the whole
object can be seen in the resulting rendered view.

As previously stated, both the offline classification of the views and the online match-
ing and alignment phases are achieved using a similarity measure: between two synthetic
views, for the off-line learning phase, and between a synthetic view and the input image,
for the online matching phase.

In the approaches proposed in [Cyr 04, Toshev 09, Reinbacher 10], which deal with a
similar idea of classifying a set of synthetic views of the object, the shapes or silhouettes
of the object in the synthetic views are processed. More precisely, a shape-based similarity
measure is used in [Cyr 04] (through shock-graphs), the Shape Context, computed on the
set of silhouette edges, is adopted for [Toshev 09], and Normalized Cross Correlation
between silhouette edges is performed in [Reinbacher 10].
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Instead, we propose to deal with the whole set of edges of the views (and of the
image in the online phase). Both silhouette and internal edges of the rendered views are
extracted, through a Laplacian filter computed on the depth maps of the rendered views

(see section 4.2.1), in order to describe more accurately the geometry of the object (see
Figure 3.6).

Z [
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Figure 3.5 — Generation of synthetic views on a view sphere centered on the 3D model at regularly
sampled viewpoints, parametrized by their azimuth (¢) and elevation (i) angles, and by the radius
dy of the sphere. Edges are extracted by processing the depth buffer of the rendered 3D model.

For each generated view V, we store the pose ‘MY used to render the 3D model.
Besides, we also store the centroid € = [ "], orientation " and area A" of the
silhouette of the projected 3D model (see Figure 3.6). These parameters can be evaluated,

by using image moments which are computed on the pixels lying within the silhouette of
the object:

v = o v oL v (3.35)

Moo Moo

mii ﬂV@V
o = —arctan( G 5 ) ) (3.36)
m20 _ Mo2 (UV @V )
moo moo
where

my =Y > (W) (@) (3.37)

i+ j being the order of moment m;;, and p¥ = [uV UV} " are the pixels lying within the
silhouette of the object on view V.
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Figure 3.6 — Depth buffer of a rendered view (left) processed into a Laplacian filter to obtain
salient edges (top right). The silhouette (bottom right) is also processed to compute moments on
the silhouette (black) pixels. Moments enable to retrieve the centroid c°, the orientation oV (with
respect to the major axis of the silhouette) and the area A" of the silhouette.

3.2.2 Building a hierarchical view graph and determining reference
views

Since the process of matching the whole set of views with the input images can be compu-
tationally challenging, we suggest to learn the views by iteratively clustering them into a

hierarchical view graph [Olson 97, Gavrila 99, Cyr 04, Ulrich 09, Toshev 09] [Reinbacher 10],

as reviewed in section 2.4.1.2 and as it can be described on Figure 3.8. Therefore, we have
chosen a similar technique to [Reinbacher 10], using an unsupervised clustering technique
based on Affinity Propagation[Frey 07].

To perform clustering, let us first note that we restrict ourselves to a clustering method
which selects actual synthetic views as centers of the clusters. Merging or computing
means is indeed not well adapted to data such as images or views. With Affinity Propaga-
tion, actual data points (in our case views) are selected as centers of the clusters.

As demonstrated in [Frey 07], Affinity Propagation also shows better performances
than classical k-medoids techniques, especially on large sets of data, with potentially nu-
merous classes or clusters, and particularly in case of clustering image data [Dueck 07].
Besides, with this technique, few parametrization is needed, such as setting the number of
clusters (see Frame 10 for an overview of this method).

At the first level of hierarchy, we build clusters within disjoint neighborhoods in the
spherical space, in order to cope with memory requirements. This is done by comparing
the views with each other in each neighborhood with respect to the considered similarity
measure (see section 3.2.3). A slight overlap can actually be considered between the dif-
ferent neighborhoods to consider inter neighborhood variabilities (see Figure 3.7). The
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result is a set of clusters, each cluster being represented by a reference view. This set of
clusters and reference views establishes the first level of our hierarchical structure. We
proceed in the same way with the views of the first level. As this set generally has an
acceptable size in our applications, memory problems become non-critical. As a conse-
quence, we do not consider spatial neighborhoods from this level. We can then iteratively
build successive hierarchical levels with this method until a reasonable number /N, of
reference model views is reached. A set {V7 };Vzrl of reference views is finally obtained.

Figure 3.7 — Clustering on the first level within two neighborhoods. A slight overlap (of size k = 1)
is considered between the neighborhoods.

3.2.3 Similarity measure: oriented Chamfer Matching

With the aim of comparing two synthetic views, we propose a first similarity measure D.
It is derived from the Chamfer Matching distance presented on Frame 1 and on equation
(2.30). The idea is to rely on all the extracted edges of the two views, instead of the sil-
houette contours [Toshev 09, Reinbacher 10]. From the sets of pixel edge points {pZ}iV;l
and {pfc},ivil (both silhouette and internal contours) on views V* and V7, we compute an

oriented Chamfer matching distance by looking for the closest contour from one view to
the other:

1
Dy = 5(dag +dgp) (3.38)

N.

: ]' - 7 1

with dgj) = ﬁZ(dj(pkHAd?(pk)) (3.39)

v k=1

: ]
where d;(pl) = mmleﬁ;ﬁﬂ‘;’juz Pl (3.40)
k

and dj(p;,) = lﬁ(pi)—H(pirg(dj(c@)) (3.41)

which gives the mean distance for each contour point pi, of V* to the closest one in V7.
The normalization by ||pj, — €'||2, with €’ the centroid of the silhouette of the object on V7
(the notation ¢’ is chosen instead of €', for clarity reasons), is important for the online
detection phase, for which a similar metric is used (see Section 4), in order to deal with
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Frame 10 Clustering by Affinity Propagation [Frey 07].

The idea of Affinity Propagation is to cluster data based on an arbitrary similarity
measure between pairs of data points, each cluster being represented by an actual data
point, the cluster center, called the "exemplar". With the popular k-medoid techniques,
an initial set of k exemplars is selected, which is iteratively refined, along with their
corresponding cluster. However, the results can be sensitive to the initial selection,
especially for a large number k of clusters. With Affinity propagation, each data point
is initially considered as a potential "exemplar”, with equal or non-equal likelihoods.
These likelihoods are set by what is called "preferences" of the data points.

The goal is then to identify consistent "exemplars" and clusters by passing "messages"
between data points. These "messages" are values which reflect the affinity that one
data point has for choosing another data point as its "exemplar". They consist in two
terms. The first one, called "responsibility" (i, k), is related to the probability of a
data point k£ to be the "exemplar" of data point ¢, given the probabilities ¢ chooses
other points than k£ as exemplars. Symmetrically, the second term, called "availabil-
ity" a(i, k), is related to the probability that data point ¢ chooses data point & as its
"exemplar", given the probabilities £ is the exemplar of other points than .

They are recursively updated based on some energy function accounting for the sim-
ilarity measures between pairs of data points and for the "messages" (availability,
responsibility) with the other data points. Then, the value of £ which maximizes
a(i, k) + b(i, k) sets points ¢ as an exemplar, if & = i, or sets points k as the ex-
emplar of point ¢ if & # i. The updating procedure is terminated once the values of a
and r, or the assignment of exemplars, remain quite constant.

An example, extracted from [Frey 07] can be seen on the Figure below. It shows the
refinement of the determination of clusters and their exemplars.

INITIALIZATION ITERATION #1 ITERATION #2 ITERATION #3
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Principle of Affinity propagation (from [Frey 07]). The more red or the less green a
data point is, the more it can be set as a cluster center. The darkness of the arrow
from ¢ to k reflects the magnitude "message" that point ¢ belongs to the exemplar k.
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Figure 3.8 — Hierarchical clustering of synthetic views into a hierarchical view graph.

scale changes. d;(p},) can be computed fast by evaluating the distance transform of both
views V7.

This distance d? stands for the difference between the orientation §(p%,) of the contour
point p;. and the orientation of the closest contour point Carg(d;(p))’ in V7. Its weight is
tuned by A. It results in a discriminative similarity metric by taking into account distance
between contours of the views and the difference between their corresponding orienta-

tions.

3.3 Matching and aligning synthetic views with images:
a probabilistic approach

Our problem consists in matching and aligning the reference model views {17 }jvil to

each input image and finding the most likely one. Once a first image is segmented, at
time step ko, the next input images are used to determine a pose estimate. In order to
ensure smooth transitions between the aligned model views, we propose a probabilistic
framework to determine the best view.

Let us first describe how the pose can be determined from the alignment of a given
synthetic view V' with an input image I.



Detection and initial pose estimation

3.3.1 Rough pose computation assuming a weak perspective model

We assume a weak perspective projection model, justified in our applications by the fact
that the dimensions of the target space object are small relatively to the distance from the
camera. Based on this assumption, the pose “M, between the camera and the object can be
retrieved using the stored pose “ M used to generate the considered synthetic view V' and
the similarity transformation which aligns the view V' with the image I. This similarity
transformation can be represented by four parameters: the in-plane rotation, expressed by
a rotation angle (3, the 2D translation vector t = [, ty]T, and the scaling s. Let R_g
denotes the 3D rotation matrix of angle — 3 around the optical axis z.. The rotation matrix
‘R, of M, can then be computed as follows:

‘R, =R_;5 “RY (3.42)

. . . T .
with °R}Y the rotation matrix of “M}. Let us denote °t} = [t t; t}]| the translation
vector of ‘M. Since scaling is assumed isotropic, we have t; = s ¢}, and the translation
vector “t, of M is given by:
Y
tY +tY t,
‘b, = |ty +ityt,]. (3.43)
sty
However, since synthetic views are generated on a view sphere centered on the 3D model,
. . T T
at a distance dy (section 3.2), °t} = [t ¢V ty] =[0 0 do| . “t, thus becomes:

‘ty = ty |t,]. (3.44)

Finally, the pose M, can be built based on “‘R,, and “t, (equation (2.3)).

In the next sections, in order to determine a consistent pose “M,, we present our
solution to align each reference view V/ with the input images (section 3.3.2) and to
determine the best matching (or most likely) reference view (section 3.3.4).

3.3.2 Aligning a reference view by refining similarity transformation
parameters

Using the segmentation technique presented in section 3.1, the silhouette of the object
can be extracted on the first segmented frame I,. The centroid ¢ = [ﬂ E] , orientation «
and area A of this silhouette can be then evaluated, using the image moments, as done in
section 3.2.1. Figure 3.9 illustrates these steps.

. . ; o . i i AT

Given areference view V7 and using its stored silhouette parameters [uJ vl A }
(to simplify notations, instead of [@"” 7" o'’ AY’]"), we can retrieve the similarity
transformation to align V7 with I,,. This similarity transformation can be expressed by
vector x:

t u—w
oy T
S \
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Figure 3.9 — Foreground/background segmentation (middle) of the input image (left), and compu-
tation of the centroid €, orientation « and area A of the extracted silhouette.

Based on the equations derived in section 3.3.1, the pose “M (used to generate V7) and
x/ can provide us with a pose M, for the considered view V7. However, due to some
segmentation errors, [H U« A} g may be too coarsely computed.

We thus propose, for each reference view V7, to refine parameters x/.

With the aim of estimating and refining x’ by minimizing a an error function or simi-
larity measure between a reference view and the observed input image, different solutions
can be investigated. Using a coarse-to-fine search around would provide an accurate es-
timate but is not computationally optimal. A local non-linear deterministic minimization
technique such as Gauss-Newton or Levenberg-Marquardt, as proposed in the next chap-
ter, could also be considered. However, such methods are too sensitive to local minima,
especially with a coarse initialization as the one provided by the segmentation and the rel-
ative consistency of the treated reference view with respect to the image. Beside, the fast
and robust similarity measure we propose is highly non-linear, resulting in cumbersome
Jacobian computations. The robust and convenient solution we propose to rely on particle
filtering, which is particularly suited for non-linear problems.

3.3.3 Refining as particle filtering

Given a reference model view V7 and a first image I,,, we estimate and refine the cor-
responding x’ using particle filtering. The principle of particle filtering is recalled in
Frame 11, and we propose to use the CONDENSATION [Isard 98] formulation of the
filter, whose steps are recalled hereafter, and which illustrated on Figure 3.10.

. . N

In this sense x;, is represente;\cfl by a finite set {x,(;’] )}Z.:JI of NN; samples, or particles,

associated with weights {w,(f’j )}Z.:Jl, with Zf\gl w,(;’j ) = 1. Then the process consists in
the following classical steps:

1. Initialization: we set Xio = Xy, With x, corresponding to the parameters evaluated
from the first segmented frame I, .

2. Evolution: the particles {(x;_; @7 Ni)}fvzj1 are propagated according to a motion

Y
J
model, giving a new set: {(x}, ", L)}f\[jl We have considered a simple Gaussian

J
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noise, so that:
X, =X +V_, (3.46)

with vi ~ N(0,Qy).
3. Update: the weight

wi? o p(Iy | x), = x{ (3.47)

of each predicted particle is computed by the likelihood function defined in Section
4.3. It provides a new set {(x}, "7, w,gz’j))}izlan with S0, (") = 1,
4. Random weighted draw: random weighted draw of the particles { (x/, " w,(f’j ) ) }fvzjl
is performed, giving the set: {(x; "7, Ni)}i\ﬁl The particle filtering output consid-
J
ered is the estimator of probability expectation:

N
X =Elx]] = x7. (3.48)
=1

() (b)

Figure 3.10 — Particle filtering for a reference view V7 (a). On (b), A particle i corresponds to the
reference view which is translated, rotated and scaled with respect to x“7) and the likelihood is
evaluated using a similarity measure with the input image (b).

Likelihood evaluation

The likelihood function needs to be evaluated for each particle to compute their weight.
The function chosen here is derived from a similarity measure similar to the one presented

in section 3.2.3. For a model view V7, a particle x,(f’j ), an image I, and its corresponding
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Frame 11 Particle filtering

With the goal of approximating the general Bayesian filter (see Frame 5), particle filtering is
based on the particle approximation which is derived from the Monte-Carlo theory. The idea
of particle approximation is to represent a probability density function p(x), such as the ones
expressed in equations (2.46) and (2.47) by a set of N independent and identically distributed
samples or particles {x(i)}i]\il. This can be justified by the fact that the expectation over the
samples is an estimator of the general formulation, and this approximation can be written as:

N
Pk | 21:0) = PN (%) = > 76,6 (x) (3.49)
=1

with 7(!) > 0 being the weights of particles (), with SN  7() = 1,

Particle filters are thus based on this approximation, where particles represent a hypotheses of a
state x of a considered system. The particle approximation is used to express the Bayesian filter
prediction and correction equations (2.46) and (2.46), given the approximation of equation
(3.49) at time step k — 1:

N
p(xi-t | Z1ao1) = pV (xpo1 | Zrae1) = 118 ) (Xeo1)- (3.50)
i=1 o

For the prediction step, it is obtained through:

N
p(xi | 2ae1) = " (et | m11) = D m,8,00 (%) (3.51)
i=1

where particles m,(j) are sampled with respect to p(xy | X1.5-1 = 951(21)’ which corresponds
to the assumed dynamic or evolution model of the system, giving a new set of particles repre-
senting the a priori density p(xx—1 | Z1.k—1)-

And the correction step is given by:

N
p(Xk | z1.k) =~ p(zk | Xk) Zﬂ',(;)p(xk | X](;ll) (3.52)
i=1
with weights being computed as:
() _ W](szlp(zk | xp = iU/(;))

Ty

= : = (3.53)
N

Sy m pa | = o)
p(zg | xx = a:,(;)) are the likelihoods of particles :z:,(f) which are computed using an observation.
This weighting process of the new set of particles thus represents the a posteriori density p(x |
1.1, ), and the a posteriori estimate state of the system is given by:

N
%= Tz (3.54)
=1

This formulation is used by the SIS algorithm, for which particle are initialized at a particular
state and weights are initially set to %

However this algorithm can suffer from degeneracy since most of particles tends to be assigned
law weights. In order to avoid this phenomenon, a resampling process can be carried out by
discarding particles with low weights. The SIR (for Sampling Importance Resampling) and
CONDENSATION [Isard 98] algorithms have been designed in that sense. They consist in
performing a random weighted draw providing a restricted set of the most likely particles, and
in duplicating them to keep a constant number /N of particles.
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segmented image I;°, it consists in the distance D(xg’j )) between the contour points

{pj’j }f\i’i extracted from V7 translated, scaled and rotated around its centroid with respect
to x\"), and the corresponding closest contour points of both sets {p,x}Y, and {p;</}£
extracted from I, and I} using a Canny edge detector:

D) = pd(x) 1) + paegd(x Y 1) (3.55)
with d(x\") I,) = d;+ A\, (3.56)
1 <& g g
= 7 2. () + Mdi(pi)) (3.57)
X =0

p and p,., are constant weights, tuning the balance between the original image and the
segmented one. d;(pY¥) and df(py) are respectively computed in similar ways to (3.40)
and (3.41). Assuming a Gaussian distribution of similarity measure D, the likelithood

néi’j ) of x\“) for a frame I, with 7 a tuning parameter, is given by:
. L _ i,5)32
wi oc 7l = 77 'Dex) (3.58)

3.3.4 Matching the reference views within a probabilistic framework

Once the particle filtering is performed for all the reference views V7 for a frame I, the
goal is then to find the most likely view, while ensuring smooth transitions with respect
to previous selected views. For this purpose, probabilistic graphical models can be con-
sidered. We have chosen to employ Hidden Markov Models (HMM) [Rabiner 89] which
define a joint distribution over the successive selected model views.

The sequence of the matched views as a Hidden Markov Model

A HMM models a sequence of observations overlying a sequence of "hidden" (not di-
rectly observables) states. In our case, the sequence of the states is the sequence of the
matched reference views {V;}F_ ko With Vi € {V7 ;V:H. The sequence of observations are
the images {Il}f:ko, or more precisely the output of the particle filtering step performed
for each reference view which are the weights ﬂl(i’j ) of the particles and the estimate ﬁi,
for {V7 };V:H given I. A HMM supposes that {V;}_, follows a hidden Markov pro-
cess, meaning that each state, or each matched reference view Vj, at time step k, depends
only on the previous state, or on the previous matched reference view Vj_q, regardless
Vi—2,Vi_3---. Besides, each observation I; is assumed to only depend on V;. Based
on these assumptions, the joint probability of the sequence {Vl}f:,m and the sequence

{L,}}_,, can be written as:

k
PVio Tio) = [ [ pLIV)P(VE, Via) (3.59)

l=ko
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The probability p(I;|V}) refers to the observation probability of a given matched model
view V}. If V7 is the view corresponding to V; in {V] 21, then:

p(L|V7) = Z o) (3.60)
where ﬂl(i’j ) is the weight of particle xl(” and A is a normalization factor so that we deal
with a probability distribution:

A= "m0 (3.61)
j=1 i=1
Equation (3.60) means that the sum of the weight of the particles of a reference view is
chosen as the global weight of the considered reference view.
p(Vi, Vi—1) is the transition probability between matched views V; and V;_;. It can be
defined offline by:
acos(u;Tu;_1)?

p(Vi, Vi) oce 2007 (3.62)
where u; corresponds to the viewpoint vector of the matched view V; in the set {17 jv_l
This viewpoint vector is related to the azimuth and elevation angles used to generate the
synthetic view corresponding to V;. The computation of acos(w; u;_;) gives the angle
between u; and u;_;, measuring the "distance" between the views corresponding to V,
and V;_; on the viewsphere. The more distant are the views on the viewsphere, the less
likely is the transition between them. o, a fixed parameter related to the variance of the
viewpoints.

Inference of the HMM

In order to infer this HMM, what consists in maximizing equation (3.59) with respect to
the sequence of views, in the set {VJ 7, at time step k and thus to determine V}, (the last
element of the estimated sequence), We use the classical Viterbi algorithm [Rabiner 89].
The resulting reference view V7" corresponding to Vj, is thus chosen as the most likely
one.

Global estimate of the similarity transformation parameters

As an estimate of the similarity transformation parameters, we could have chosen the
parameters ﬁfg of V77, resulting from the particle filtering step. However, we propose to
consider the whole set of reference views to compute a global estimate X, given their
respective probabilities. It gives:

Nr
xe = pIi| V)R] (3.63)

Rough estimate of the pose

Using V}, and X, and based on steps presented in section 3.3.1 (note that ¢,, and t,, are first
converted to metric coordinates to get ¢, and t,), a rough estimate of the pose °M,F for I,
can be determined.
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Let us note that the particles { (x], "/ )}ﬁﬁl of each V7 are finally reweighted with re-
spect to Xj,, prior to being processed in the particle filters of the different reference views,
for the next frame I, .

3.3.5 Pose refinement as graph search

Once a certain number of frames kf is reached, the most likely reference model view Vj, .,
serves as a starting point of a best match search among its child views on the hierarchical
view graph and among the whole set of its associated particles.

More formally, if V7" denotes the reference view corresponding to V4., the process
results in a view V%* determined at the bottom level on the view graph, and in a best
particle XF7:

~ g
Ry = xp 10) (3.64)
with

(ZF,ZAJ) = ar(g m)ax w,(i;lj*). (3.65)
i

w,?l;lj ) are the weights of the particles of the view V7", which are computed for the
view V", With X, and V%" and using the steps in section 3.3.1, we can compute
a refined pose °M,**. This pose is finally directly used to initialize a frame-by-frame
tracking algorithm presented in chapter 4.

Having detailed the different steps of our detection initial pose estimation framework,
we provide in the next section some experimental results to validate them.

3.4 Experimental results

The rendering process of the 3D polygonal model to generate synthetic views relies on
OpenSceneGraph, which is flexible 3D rendering engine. Regarding hardware, a laptop
with an NVIDIA NVS 3100M graphic card has been used, along with a 2.8GHz Intel
Core 17 CPU. The algorithm has been run on synthetic images featuring a Spot satellite
(512 x 512 images are processed). Concerning real sequences, a first one shows the Soyuz
TMA-12 spacecraft approaching the International Space Station (ISS) (400 x 400 images).
A second one features the Atlantis Space Shuttle performing its pitch maneuver towards
the ISS (360 x 360 images). Finally, we have tested the method on a mock-up of the
telecommunication satellite Amazonas (512 x 512 images). The 3D model of the Spot
satellite has been provided by Astrium and the models for the Soyuz spacecraft and the
shuttle can be found on Google 3D Warehouse, whereas the one of Amazonas has been
designed manually since the provided version of model of the actual satellite differed
significantly from the mock-up.

3.4.1 Results for the learning step

Table 3.1 shows the parametrization of the view sphere for the different objects, with sam-
pling steps for both azimuth and elevation angles (in degrees). Let us note that for Soyuz,
due to the symmetry of the object around axis x, (Figure 3.11(a)), we have restricted



3.4 Experimental results 93

Objet Azi. step | Elev.step | LO | L1 | L2
Spot 8° 8° 2303 | 436 | 53
Atlantis 8.6° 8.6° 1765 | 304 | 44
Soyuz 5.1° 5.1° 1225 | 268 | 38
Amazonas 5.6° 5.6° 1025 | 259 | 20

Table 3.1 — Parametrization of the view sphere for each object and results of the learning step,
with the number of reference determined at each level L of the hierarchical view graph.

to a half-sphere for the generation of the synthetic views. It has also been the case for
Amazonas (see Figure 3.11(b)), due to the relative symmetry with respect to the plane
(x,¥).

Table 3.1 also presents the results of the building of the hierarchical model view graph
and the number of reference views obtained at each level L of the graph. For each ob-
ject, we have stopped the learning process at level 2 in order to get reasonable and usable
numbers of reference views. Some examples of these reference views can be seen on
Figure 3.12 and will be compared for the detection and pose estimation process (see sec-
tion 3.4.4).

ZO ZO
Yo Yo
X3 - X3 -
(a) Soyuz (b) Amazonas

Figure 3.11 — Generation of the synthetic views for the Soyuz (a) and Amazonas cases (b), for
which half-spheres have been used.

3.4.2 Results for the foreground/background segmentation step

3.4.2.1 Terrestrial background

As already stated in the introduction of this chapter, the detection and initial pose esti-
mation process starts, for its online phase, by segmenting the a set of initial images of
the sequence. Figure 3.13 shows some sequences for which our segmentation method has
been applied, in the case of a terrestrial background, which is the most challenging case.
The first three rows represent three sequences featuring the Spot satellite and the next ones
deal with the Soyuz and Atlantis spacecrafts.
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Figure 3.12 — Some reference views determined at the second level of the view graph for Spot
(a), Soyuz (b) and Atlantis (c).
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The left column shows the Harris corner points being tracked using the KLT tracker
(red trajectories) for the different sequences. Green and blue dots represent the dots re-
spectively classified as belonging to the foreground object or the background, spread on
regular grids. We observe that the clustering process explained in section 3.1.2.3 is per-
formed correctly, with very few misclassified pixels for Spot and Soyuz whereas we find
more errors for Atlantis.

Figures 3.13 on the middle column depict the mean image between the current im-
age and its homography-based compensated one, enhancing the motion of the object with
respect to the background, with the zone featuring the object being echoed and blurred
(with kg = 5, with kg being defined in section 3.1.2.4). Finally, Figures 3.13 on the
right show both object (colored) and the background (black) layers after the segmentation
phase, which starts at ky = 8 (defined at the beginning of section 3.3), with satisfactory
results, despite the cluttered background. For Atlantis, the errors observed on the back-
ground/object modeling are compensated by a good estimation of the background motion
homography. The combination of background/foreground modeling through KLT points
and motion compensation is also obvious for the Spot sequence featured on the third row.
Some monochrome parts of the solar arrays are indeed not affected by the motion com-
pensation, resulting in low likelihoods of being labeled as foreground pixels. However,
with a good feature points classification, these likelihoods are increased thanks to a cor-
rect foreground modeling. This segmentation step for a frame is executed in 0.6s using
kernel density estimation (section 3.18) and in 0.38s using histograms (section 3.23), on
average for Spot sequence.

3.4.2.2 Deep space background

For this case, we have applied the simple technique presented in section 3.1.3 on a se-
quence featuring the Amazonas mock-up. Figure3.14 shows the input image and the re-
sulting successive segmented ones. The result from a simple thresholding (using the same
threshold value as the one to build the color histograms with our method) is depicted on
Figure 3.14(e). We observe that our method rapidly converges to a correct and desirable
segmentation, whereas thresholding provides a sparse and coarse segmentation for each
frame.

3.4.3 Comparative study for the similarity measure

As a demonstration of the benefit of our similarity measure, we have compared it with the
one used in [Steger 02, Ulrich 09] (introduced in section 2.4.1.1), which we refer a Dg,
and from which the one proposed in [Hinterstoisser 10] is derived. As a reminder, Dg
basically consists in the normalized dot products between the gradients of the template
(or view here) and the underlying of the gradients of the image. In other words, it is
the difference of gradient orientations (actually the cos of the difference) between the
template and the image. It has proven its efficiency and robustness and in contrast to ours,
[Steger 02] does not need any pior edge extraction.

In order to perform this comparative evaluation, we have selected, for the Atlantis
example, the reference view V' presented on Figure 3.15(a) (which is view 31 on Fig-
ure 3.12(a)) and which approximately matches with the test image shown on Figure 3.15(b).
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Figure 3.13 — Segmentation process for some sequences. On the left are shown the tracked KLT
trajectory points, in green those classified as foreground points and in blue as background points.
The middle column represents the mean image after homography based motion compensation
and the right one the resulting segmented image.
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(a) input frame 1 (b) segmented frame 1 (c) segmented frame 3

(d) segmented frame 8 (e) segmented frame 8 (thresh-
olding)

Figure 3.14 — Segmentation process the Amazonas sequence. On (b,c,d) are represented suc-
cessive segmented frames with our method and (e) depicts segmentation provided by a simple
thresholding function.
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The edge map of the test image (Figure 3.15(c)), obtained through a Canny edge detector,
is also featured since it is processed for our similarity measure ). We have studied the
behavior of both measures with respect to the similarity transform parameters

” u—u"]"
" v—7"

x= |51 =]a—a" (3.66)
s Vs

which are introduced in section 3.3.2, so that V' is translated, rotated and scaled according
to x, on a regular discretization grid. A reference value x* of these parameters is arbitrary
set to a visually consistent value (regarding the image), and we have evaluated the sim-
ilarity measures on regular grids over the plane (t,,t,) with the reference value (3%, s*)
and conversely over the plane (3, s) with (¢*,¢).

For our measure, we have actually tested d;, d? and finally D = d; + A d?. Results are
represented on Figure 3.16 for our approach and on Figure 3.17 for Dg [Steger 02], along
with the superimposition of the view 1/ on the image at the resulting global minimum. We
can observe that d; (Figures 3.16(a),(b)) is smooth over the different parameters with a
clear clear global minimum. It is however quite flat around this minimum and some local
minima can be noticed when evaluating both (¢, t,) and (3, ).

With d? (Figures 3.16(c),(d)), the global minimum can be seen at the positions (¢, ~
—10,t, ~ —10) on Figure 3.16(c) and it is sharp right around it over (t,, t,) and also for
(8,s). The measure is otherwise rough, with many local minima. Over s, the curve is
quite flat around the minimum.

dr and df can thus be seen as complementary and we can observe on the plots of
D (Figures 3.16(e),(f)) that combining them results in a sharper global minimum w.r.t.
the different parameters, and the main local minima of both measures d; and d? can be
avoided, especially the ones over (3, s) for dj.

In contrast, Dg, shows a very rough aspect, despite a global minimum is also found
quite near the actual position. Since it is even rougher close to the border of the image
when scanning parameters (t,,t,) for (5*, s*), the plots close to the borders have been
removed for a clearer visualization. Through this rough aspect on this case, Dg appears
to be more sensitive to some local minima.

However, in this particular case, the edge map (Figure 3.15(c)) is quite noiseless, with
few occlusions, making our approach particularly suitable. In the case of poor edge ex-
traction in the original input image (in highly cluttered or occluded scenes), the advantage
of our method with respect to Dg might thus be moderated since Dg, by directly dealing
with the image gradients, does not require any edge extraction step. But as suggested by
equation (3.56), our method has been made robust to highly cluttered by computing D on
both the edge maps of the original image and the segmented image. Edges resulting from
a potentially cluttered background (for instance on Figure 3.13(a)) can indeed be removed
with the segmented image, whereas potential segmentation errors can be compensated by
keeping the original image in the computation of D.
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(a) (b) (©

Figure 3.15 — Chosen reference view of the Atlantis shuttle (a), test image (b) and edge map of
the test image (c).

(a) Similarity measure d; w.r.t to (t, t,), (b) Similarity measure for d; w.r.t to (3, s)
at the reference position (5%, s*) at the reference position (¢}, )

(c) Similarity measure d?- w.r.t to (ty,ty), (d) Similarity measure for df— w.rtto (3, s)
at the reference position (3*, s*) at the reference position (¢}, t7)

(e) Similarity measure d?- W.r.t to (ty,ty), (f) Similarity measure for d? w.r.tto (3, s)
at the reference position (6%, s*) at the reference position (¢, ¢}

Figure 3.16 — Similarity measures for d; (top), d§ (middle) and D (bottom) with respect to (t.,,t.)
(left) and (3, s) (right), along with the superimposition of the reference view at the determined
global minimum.
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(a) Similarity measure for Dg w.r.t to (ty,t,), (b) Similarity measure for Dg w.r.t to (3, s)
at the reference position (5%, s*) at the reference position (¢}, )

Figure 3.17 — Similarity measure for Dg

3.4.4 Results for the initial pose estimation

Several sequences, with some of them presented on Figure 3.13, have been processed
within our detection and pose estimation framework. For the four considered objects, ref-
erence views collected at the second level (L2) of their respective hierarchical view graph
(see Figure 3.12) are selected to perform the matching and alignment phase described in
section 3.3, which is done over 10 initial input frames. The particle filters on the similar-
ity transformation parameters, described in section 3.3.3 are built of 100 particles in these
tests.

Results for the different sequences are depicted on Figures 3.19- 3.27. The initial
segmented frame is shown on (a). The probabilistic alignment phase is represented by the
superimposition of the most likely reference view, on different input frames. The pose
refinement step, using a best match search through the hierarchical view graph, starting
from the most likely reference view at frame 9, is shown. The projection of the 3D model
with respect to the pose estimated by the frame-by-frame model-based tracking algorithm
(chapter 4), used, the pose provided by our detection system is also featured.

In order to show the advantage the Hidden Markov Model used to smoothly match
the reference views with the input image (section 3.3.4), both observation and marginal
joint probabilities of the different reference views along the input sequence, are plotted.
The observation probabilities correspond to equation (3.60) and are related to the likeli-
hood evaluation of the particles of the considered views (section 3.3.3). Marginal joint
probabilities of the views are provided by the inference of the HMM through the Viterbi
algorithm [Rabiner 89]. As an inference method, the Viterbi algorithm indeed aims at
determining the state sequence (the sequence of views) which maximizes the global (over
the whole sequence) joint probability given by equation (3.59). Through this algorithm,
marginal joint probabilities of each element of the determined sequence can be given, and
here is represented the probability of the last element of the sequence, which the most
likely view V}, at a given time step k.

For sequences on Figure 3.19, 3.20, 3.22, and 3.26, we observe that consistent refer-
ence views are matched and realigned to the image through particle filtering. The benefit
of the HMM is visible through its ability to smooth, by estimating the optimal sequence,
the determination of the most likely view at each time step. It is particularly the case
the Spot sequence 3 (Figure 3.21) for which three reference views (views 1, 46 and 47)
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still have similar appearance, despite the hierarchical clustering technique described in
section 3.2. Views 46 and 47 have been generated from quite opposite viewpoints with
respect to view 1. We observe that their observation probabilities tend to be similar, with
some switches and with view] being initially preponderant. Since view 46, which is a
consistent match, has a slightly larger observation probability than view 1 and since view
47 (which is spatially close to view 46) is gaining likelihood along the sequence, view 1 is
progressively rejected, in terms of marginal joint probability, thanks to the inference of the
HMM, and the marginal probability of view 46 is increasing. False positive can also be
observed on the initial match for the Spot sequences 1 (Figure 3.19) and 5 (Figure 3.23),
for instance due to the coarse segmentation for sequence 5 (Figure 3.23(a)). Likelihoods
of actual matches remaining large or increasing through the particle filtering refinement,
the HMM rapidly discard these false positives and probabilities of actual matches reach
large values with respect to the other reference views. Similar observations can be made
for the Amazonas sequence on Figure 3.24, with the two quite similar views (7 and 14),
through the progressive refinement and, the HMM disambiguates. Ambiguities can also
be observed for the Soyuz sequence 3.25 between view 6 and view 19.

On Figure 3.20, due to the coarse segmentation, the orientation of the object in the
image is initially not proper, as seen on Figure 3.20(b), but through the particle filter-
ing framework, the most likely view, which is consistent with the image, is progressively
aligned, its marginal probability increasing. On this sequence we can see the effect of re-
moving the particle filtering refinement step by directly traversing through the view graph
at the first frame, from the most likely view usingx’ = [0 0 0 1] " and initializing the
frame-by-frame tracking (see Figure 3.18). Despite a consistent view can be determined,
tracking fails.

(a) Matched view 0 (b) Pose refinement (c) Initialized tracking

Figure 3.18 — Segmentation, detection and pose estimation process - Spot sequence 1
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(a) Input segmented frame

(d) Aligned view 9 (e) Pose refinement (f) Initialized tracking

Observation probabilities of the reference views - Spot Probabilities of the reference views - Spot
0.5 — : 1 — .
View | —a— View | —&—
View 28 —&— View 28 —&—
View 32 —=— View 32 —=—
04  View37 —=— 0.8 -~ View 37 —=—
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View 42 View 42
View 46 —=— View 46 —=—
z 03 z 06
z E
g 5
£ 02 £ 04
0.1 02 |
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0 = 0 —
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Frame Frame
(g) Observation probabilities of the views (h) Marginal joint probabilities of the views

Figure 3.19 — Segmentation, detection and pose estimation process - Spot sequence 1
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(a) Input segmented frame
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(d) Aligned view 9
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(g) Observation probabilities of the views

Figure 3.20 — Segmentation, detection and pose estimation process - Spot sequence 2

(e) Pose refinement
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(f) Initialized tracking
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(d) Aligned view 9 (e) Pose refinement (f) Initialized tracking
Observation probabilities of the reference views - Spot Probabilities of the reference views - Spot
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(g) Observation probabilities of the views (h) Marginal joint probabilities of the views

Figure 3.21 — Segmentation, detection and pose estimation process - Spot sequence 3
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(a) Input segmented frame

(d) Aligned view 9 (e) Pose refinement (f) Initialized tracking
Observation probabilities of the reference views - Spot Probabilities of the reference views - Spot
0.5 T T 1 T T
View 1| —e— View 1 —e—
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(g) Observation probabilities of the views (h) Marginal joint probabilities of the views

Figure 3.22 — Segmentation, detection and pose estimation process - Spot sequence 4
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(a) Input segmented frame (b) Aligned view 0 (c) Aligned view 2
; W ] N ] | y WV w
S b N A
S\ NPT St
b ¢ o hn A A Y ol § X F

(d) Aligned view 9 (e) Pose refinement (f) Initialized tracking
Observation probabilities of the reference views - Spot Probabilities of the reference views - Spot
0.5 ~ : 1 ~ ;
View | —a— View | —&—
View 28 —&— View 28 —&—
View 32 View 32
04  View37 —=— 0.8 -~ View 37 —=—
View 41 View 41
View 42 View 42
View 46 —=— View 46 —=—
z 03 z 06
£ 5
£ 02 £ 04
0.1 A S - 0.2
— e .
0 T 0 — —
0 1 2 4 5 6 7 8 9 0 1 2 3 5 6 7 8 9
Frame Frame
(g) Marginal joint probabilities of the views (h) Observation probabilities of the views

Figure 3.23 — Segmentation, detection and pose estimation process - Spot sequence 5
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(a) Input segmented frame (b) Aligned view 0 (c) Aligned view 2

(d) Aligned view 9 (e) Pose refinement (f) Initialized tracking
Observation probabilities of the reference views - Amazonas Probabilities of the reference views - Amazonas
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(g) Observation probabilities of the views (h) Marginal joint probabilities of the views

Figure 3.24 — Segmentation, detection and pose estimation process - Amazonas sequence
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(a) Input segmented frame (b) Aligned view 0 (c) Aligned view 9

(d) Pose refinement (e) Initialized tracking

Observation probabilities of the reference views - Atlantis Probabilities of the reference views - Atlantis
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Figure 3.25 — Segmentation, detection and pose estimation process - Soyuz sequence
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(a) Input segmented frame

(b) Aligned view 0

(d) Pose refinement
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Figure 3.26 — Segmentation, detection and pose estimation process - Atlantis sequence 1
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(d) Pose refinement (e) Initialized tracking
Observation probabilities of the reference views - Atlantis Probabilities of the reference views - Atlantis
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Figure 3.27 — Segmentation, detection and pose estimation process - Atlantis sequence 2
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Influence of some tuning parameters

A focus can be paid on the influence of the parameter o, introduced in equation 3.3.4,
which is the standard deviation accounting for the variability of viewpoints and which
tunes the transition probabilities between reference views. It was set to o, = 0.2 rad.
for the results presented above. For the Spot sequences 3 and 5 (Figures 3.21 3.23), by
setting this parameter to 0.7, increasing transition probabilities, matched reference views
consequently get lower marginal joint probabilities, and switches are more likely to occur,
as seen on Figures 3.28(a) 3.28(b).

Probabilities of the reference views - Spot Probabilities of the reference views - Spot

0.2 T T 0.2 T T
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View 28 —&— View 28 —=—
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View 47 —=— View 46 —=—
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[ ‘ 0 ‘ 3
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(a) (b)

Figure 3.28 — Marginal joint probabilities of the views, for the Spot sequences 3 (a) and 5 (b) -
with o, = 0.2 rad.

We also evaluate the effect of A\ (equation(3.57) which tunes the balance between
the distances between the edges and the difference between their orientations. For the
sequence featuring Amazonas presented on Figure 3.24, it was set to A = 1. For the
results on Figure 3.29, it is set to A = 2. We observe that observation probabilities
are more discriminative, despite some switches between the two views 14 and 7, and
the HMM rapidly accumulates evidence for view 5, showing the benefit of integrating
orientations in the similarity measure.

Including the segmentation phase, the overall process of matching and aligning such
sets of reference views to the input image can be executed in less than 1 fps.

3.5 Conclusion

In this chapter we have described the method we propose to address the challenging issue
of full-viewpoint detection and initial pose estimation in the case of complex poorly tex-
tured 3D objects such as spacecrafts. The idea is to match or align synthetic views of the
3D model with successive initial frames. In order to efficiently cover the parameter space,
the views are classified into a hierarchical view graph. We also take advantage of the seg-
mentation technique, which guides the probabilistic edge-based matching and alignment
process to provide a sufficiently precise pose to initialize a classic frame-by-frame track-
ing. Despite the fact we have restricted this study to space objects to test and validate our
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(a) Input segmented frame (b) Aligned view 0 (c) Aligned view 2

(d) Aligned view 9 (e) Pose refinement (f) Initialized tracking
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Figure 3.29 — Segmentation, detection and pose estimation process - Amazonas sequence -
A=2
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approach, this technique could be applied to any case involving a moving camera, a single
moving object and a stationary background.

In, the next chapter we present our approach to handle the second issue of the objective
of this thesis, which is achieving visual localization using tracking.
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Chapter 4

Pose estimation by model-based
tracking

In chapter 3, we have presented our solution to handle the problem of detecting and lo-
calizing a target, based on a short sequence of initial images, captured by a camera. This
process is operated at the beginning of the considered robotic task, consisting in Space
rendezvous and proximity operations, between a chaser spacecraft and a target spacecraft.
In this context, the target is assumed to be constantly in the field of view of the camera
mounted on the chaser, throughout the approach or inspection maneuver. The localiza-
tion task, initialized by the detection step, can be achieved on the next input images by
using pose estimation by frame-by-frame tracking, whose principle and state-of-art have
been exposed in chapter 2. As previously noted in section 1.4, the studied application
involves industrial objects for which 3D CAD models can be provided. With the knowl-
edge of the complete 3D model, and assuming that the structure of the target is consistent
with this model, we suggest to address this tracking problem using a 3D model-based
tracking algorithm, whose concepts and related works have been reviewed in section 2.5.
Sections 4.1-4.5 present the type of model-based pose estimation framework which is
adopted and the types of visual information which are processed in this work. Finally
section 4.6 gives some experimental results obtained using the testing facilities presented
in section 1.4.

4.1 A local non-linear optimization problem

4.1.1 Classical approaches

Our solution deals with model-based tracking, using a 3D CAD model of the target. As
introduced in section 2.5.1.1, the goal is to determine an estimate T of the camera pose
r,r € SE(3), by minimizing, with respect to r, the forward projection error A(r). A(r)
accounts for errors ¢;(r) between a set of visual features extracted from the image and the
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forward projection of their 3D homologues in the image plane according to the pose:
T = argmin A(r) 4.1)

with A(r) = (ei(r))”. (4.2)
This is a non-linear minimization problem with respect to the pose parameters r, which
can be handled through a Newton-like minimization framework such as Gauss-Newton or
Levenberg-Marquardt, by iteratively updating the pose r.

Based on the knowledge of the 3D model of the target, common approaches solve this
problem by using edge features [Lowe 91, Drummond 02, Vacchetti 04c, Comport 06b] as
visual features to compute the set of errors {e;(r)}. Edge features offer a good invariance
to illumination changes or image noise. Such approaches have proven to be very efficient
and various formulations of the problem have been proposed. Although one can find
some differences between these solutions, the main idea is the following. Given a new
image, the 3D model of the scene or the target is projected in the image according to
the previous estimated camera pose r. With classical methods, the 3D model is made of
lines or segments, and each projected line /;(r) = pr(L;, r) of the model is then sampled,
leading to a set of 2D points {x;;}. Then from each sample point x; ; a 1D search along
the normal of the projected edge is performed to find a corresponding point x; ; in the
image, as depicted on Figure 4.1.

3D model projection,
with the previous pose

3D model projection

Image

Figure 4.1 — Model projection in the image and low-level tracking through a 1D search for a
corresponding edge along the normal to the model edge points.

The error function A(r) is then computed to account for distances between points x; ;
and the projected lines /;. It can be written as:

A= Z Z(dl(li(r), x;))? (4.3)

where d (I;(r),x; ;) is the distance between a point x; ; in the new image and the corre-
sponding line /;(r) projected in the image with a pose r. The underlying idea of minimiz-
ing such an error function is to realign, according to the pose, the edges of the projected
3D model with edges extracted from the image.
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In order to minimize the objective error function A with respect to the pose parame-
ters, a Gauss-Newton approach, presented on Frame 4, is generally adopted. This is also
the technique used in this work. At each iteration k, a displacement is performed in the
parameter space which is SE/(3):

rpi1 = Iy D or 4.4)

In the manner of the Gauss-Newton minimization technique, the displacement dr is com-
puted through:

or=—-J"e (4.5)

where J* is the Moore-Penrose pseudo inverse of J, with J the Jacobian matrix of the
error vector e(r):

de(r)

J= or

(4.6)

@ is an internal compositional law in the parameter space. SF(3) is a Lie group (sec-
tion 2.1.1), for which summation and distance cannot be applied, but there exists a one-
to-one map between S F(3) and associated algebra se(3) defined by:

v

se(3) = {g = [ [C‘B]X 0 } | [w],, € s0(3),v € R3} C R4,
This map is the exponential map, defined in section 2.1.2.3:

se(3) — SE(3) 4.7)
& — M=exp(&). (4.8)
Here, 0r = (v, w) denotes a screw displacement (or "velocity" of the pose), with v the

translation displacement parameters and w the rotation displacement parameters, and the
exponential map enables to express the rigid motion 6 M generated by dr:

M = exp([or]) 4.9)
with: [o1] = { [“’O]X B’] (4.10)

Based on equation (4.4), the pose r, represented by its homogeneous matrix My, can
be updated as follows:

M1 = exp([or]) M. 4.11)

In our context, following justifications provided for the detection method (section 2.3),
space objects (spacecrafts, debris) are often poorly textured objects and illumination con-
ditions which can be encountered in space environments are variable and harsh, from dark
conditions to significant specular effects due for instance to the insulating film covering
the object.
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For these reasons, as a starting point, edges have been selected as the central visual
information to be dealt with. Besides, the promising results obtained in [Petit 11], which
is a study of the approach proposed in [Comport 06b] on a telecommunication satellite
mock-up , has reinforced this choice.

However, some limitations are inherent to edges and to the classical formulation of the
model-based tracking framework presented above. They are presented in section 4.1.2,
and a major challenge of the thesis has been to circumvent them.

4.1.2 Limitations of classical approaches and motivations

4.1.2.1 Making model projection efficient for complex objects

A first limitation of the classical approaches regards implementation issues, since most
of these techniques process polygonal 3D models which are made of segments. But
achieving the model projection in the image this way faces limitations. Some problems
indeed appear when dealing with objects made of cylindrical, spherical, curved or com-
plex shapes, and space objects are likely to be made of such shapes. Furthermore, com-
plete polygonal models for complex objects can be too heavy and need to be manually
redesigned to keep the most relevant and visible edges of the scene and to make the
algorithm computationally efficient. This burdensome phase had to be operated in our
previous work [Petit 11]. For testing purposes, the provided 3D model of the satellite
(Figure 4.2(a)) was too complex to deal with real-time applications, and its 34MB initial
size had to be reduced to an acceptable size of about 10kB for real-time concerns. The
goal had thus been to considerably simplify the model, by keeping the most significant
geometry (Figure 4.2(b)).

(b)

Figure 4.2 — Complete provided 3D model of the object (a) and example of a model used for
tracking (b)

Because of this major limitation, a first challenge of the solution proposed in this
thesis is to automatically process a complete polygonal 3D model. In this sense, the
whole information from the geometrical shape of any kind of object or scene can be used
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and a heavy phase of a manual redesign of the model is avoided. Section 4.2 presents
the consequent elaborated techniques to fulfill these objectives, through the use of a 3D
rendering engine and graphics acceleration.

4.1.2.2 Robustifying the pose estimation process

Though they have proven their efficiency, edges require an image segmentation process
which can involve outliers and, contrary to feature points which can be specifically de-
scribed, suffer from having similar appearances. It can result in ambiguities between
different edges, leading to tracking failures, particularly in the case of complex objects
like satellites or space debris.

Let us synthesize different techniques intended to make model-based tracking more ro-
bust, especially under different illumination, imaging conditions or scene constraints such
as occlusion or background clutter. In the literature review presented in section 2.5, we
have distinguished three different kinds of approaches tackling these problems of robust-
ness.

e One solution is to combine the information provided by edges with information pro-
vided by other features, such as interest points [Masson 03, Vacchetti 04b, Rosten 05,
Pressigout 07], optical flow [Brox 06, Pressigout 08], color local statistics [Panin 08b],
or by additional sensors[Klein 04], see section 2.5.2.3.

e Some researches have focused on the low-level robustness. To reject outliers in the
edge matching process, methods like RANSAC [Bleser 05, Choi 12] or the use of
M-Estimators such as the Tukey estimator [Vacchetti 04b, Comport 06b] are com-
mon trends to make the algorithm robust to occlusions or background clutter.

With M-estimators, [Vacchetti 04b, Comport 06b] suggest to rewrite the error func-
tion A as:
Alr) =) plei(r)) (4.12)

where p is a robust estimator (see section 2.5.3.2 and Frame 8). It is associated
to a diagonal weight matrix D whose role is to specify a confidence in each fea-
ture location given the error vector e. D takes the form of D = diag(wy, ..., wy,)
[Comport 06b]. Each w; reflects the confidence in the i*" feature. Consequently, the
pose update in equation (4.5) becomes:

5r = —(DJ)*De. (4.13)

e Instead of handling a single hypothesis for a potential edge in the image, multiple
hypotheses can be extracted and registered in the pose estimation [Vacchetti 04a,
Teuliere 10].

e Other studies have considered Bayesian filters such as Kalman filter [ Yoon 08] and
more recently particle filters [Klein 06, Teuliere 10, Choi 12].

In this work, we have focused on these four categories to improve the state-of-the art
methods.
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For this purpose, some different and complementary types of robust visual features are
introduced in section 4.3, a hybrid framework combining these features is proposed in
section 4.4. In section 4.5 are presented tools to measure the uncertainty of the pose
estimation process and some filtering and pose prediction issues are also tackled. Finally,
comparative results, on both qualitative and quantitative aspects, on both synthetic and
real data, are given in section 4.6.

As an overview, the general structure of the tracking and pose estimation system pre-
sented in this work can be outlined as follows:

1. Projection of the complete model with respect to the pose r; computed for the pre-
vious image I;. To achieve this process we rely on the Graphics Process Units
(GPU) and graphics libraries (openGL) that allows to perform quickly this projec-
tion regardless the complexity of the model, thanks to the use of a 3D rendering
engine.

2. From the model projection we generate a set of 3D control points by back-projecting
on the 3D model points corresponding to model edges or from detected interest
points in the image.

3. Low-level tracking in the image to determine 3D-2D correspondences for some
visual features.

4. Pose estimation step, by minimizing an objective function accounting for errors
provided by the visual features.

5. Pose filtering, and pose prediction for the next frame.

4.2 Efficient projection and management of the complete
CAD model

As asserted in the previous section, one of the drawbacks of classical 3D model-based
methods is that all the segments making of the 3D polygonal model are treated. It implies
dealing with simple objects or performing manual and heavy pre-processing on the CAD
model to make it compliant with real-time or computationally efficient implementations.
The approach presented in this work considers the direct use of a complete, but non nec-
essarily polygonal model, which can be textured or untextured. We thus propose to rely
on the graphics process units (GPU) and on a 3D rendering engine.

Due to their highly parallel structure, by dedicating most of their transistors to 3D
graphics calculations, Graphics Process Units are designed to accelerate geometric com-
putations on a potentially very large set of 3D vertices that build up a 3D model, to ac-
celerate texture mapping, and to perform real-time rendering of the processed data. The
significant improvements of GPU capabilities for the last 15 years and their availability
on standard commercial laptops have made them a popular tool in virtual reality and more
recently computer vision and augmented reality communities.
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In our case, a 3D rendering engine is employed in order to automatically manage
the projection of the 3D model, which can be potentially very large, and to determine
the visible and prominent edges from the rendered scene. Such a method has also been
considered in [Wuest 07, Reitmayr 06, Panin O8b]. An advantage of this technique is
to automatically handle the hidden face removal process and to implicitly handle auto
occlusions.

Since some of the considered visual features (see section 4.3) are based on edges
determined from the the projection of the 3D model, an objective is to provide techniques
to efficiently extract these visible and salient edges from the rendering of the complete 3D
model.

Considering complex shape targets leads to forget the notion of 3D sharp edges as
in [Comport 06b] or in our previous work [Petit 11] and to deal only with 3D points that
belongs indifferently to sharp edges or to the "occlusion boundaries" or rims [Koenderink 90].
Two issues have then to be considered: complex model projection and 3D points selection.

As in [Wuest 07, Reitmayr 06, Panin 08b], for each new image I, the model is ren-
dered and projected using an openGL-based rendering engine (which takes advantage of
the computer GPU), with respect to the previous estimated pose ry.

Our goal is then to obtain a set of /N, 3D points {Xl}f\igl that belong to target rims,
edges and visible textures from the rendered depth buffer and textured scene. Our ap-
proach follows [Wuest 07] and is related to the techniques of silhouette generation of
polygonal models described in [Isenberg 03].

4.2.1 Edge extraction from the projected model

4.2.1.1 Salient edges

Salient edges are extracted from the rendered depth or Z-buffer, which results from the
projection of the 3D model. The depth buffer which corresponds to the depth values of
the scene according to the camera location, at each pixel point (Figure 4.3(a)). Based on
these depths we can determine the discontinuities which suit the geometrical appearance
of the scene. Values given by the Z-buffer are actually non-linear with respect to the Z-
coordinates in the camera frame, and are related to the near and far clipping planes, which
bound the range of depth values to be rendered. Z-buffer values are normalized between
0 and 1 and the following transformation has to be applied to retrieve the true linear depth

values:
Znear Zfar

_Zbuf(i7j><Zfar - Znear) - Zfar

where 7., and Z¢,, are the near and far clip distances defining the clipping planes,
Zpuf (i, 7) is the z-buffer value and Z (3, j) is the Z-coordinate in the camera frame of the
projected point located at pixel (7, 7). The nonlinearity means that the z-buffer values
2y (%, j) show better precision closer to the near clip distance, and the smaller the ratio
% is, the less precision we obtain for the depth Z (i, j) close to Z¢,,. Thus these clip
distances have to be precisely adapted to the object position in the camera frame. With the
knowledge of a tight bounding cube of size d enclosing the 3D model and the knowledge
of the Z-coordinate Z, of the barycenter of the model, these clipping distances are set to:

Z(1,79) = (4.14)
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d

Lnear = Zo_§ (415)
d
Zjor = Zot 5. (4.16)

With the aim of extracting prominent edges, we apply a second order differential operator,
such as a Laplacian filter, to these computed Z values. It results in a binary edge map of
the visible scene ((Figure 4.3(b)).

In our approach, we have implemented the filtering computations on the GPU through
shader programming, resulting in a much lower computational time, due to the parallel
structure of the process.

(a) (b)

(©

Figure 4.3 — On (a) is represented the z-buffer of the rendered 3D model using Ogre3D, from
which the edge map is computed (b).This edge map is then sampled to generate the control
points. (c) shows the normal map of the rendered scene.

4.2.1.2 Texture edges

In case of highly textured scenes, geometrical edges are not sufficient and ambiguities
with texture edges may occur, resulting in false matching and thus local minima during



4.3 Visual features 123

the pose estimation process. An improvement of our method is then to combine the depth
discontinuities with texture discontinuities. The rendered textures of the 3D model are
thus processed by a classical Canny edge algorithm and the obtained edges are added to
the ones generated from the depth buffer.

4.2.1.3 Generation of 3D control points

The steps described above provide us with the edge map of the complete scene. Dealing
with the whole edge map can be computationally intensive, we propose to sample it, ac-
cording to the specified number of edge control points N,. These edge control points are
thus selected on a regular grid in the image, and we finally obtain a set of N, 2D control

. N,
points {x;},.

The 3D coordinates of the edge points in the scene or object frame can be computed
by back-projecting them on the 3D model, using the Z-buffer and the pose used to project
the model, based on the rigid transformation and camera projection equations presented
in sections 2.2 and 2.1. With this operation, a set of N, control points {xz}fi’1 is generated.

Besides, the tracking phase, which will be developed in section 4.3.1.1, requires the
orientations of the edges underlying the control points {xl}f\[:"1 For the texture edges,
the orientation is computed within the Canny algorithm on the rendered textures and it is
then directly available. For the depth edges, we compute the gradients along x and y on a
grayscale image of the normal map of the scene. On the normal map (see Figure 4.3(¢)),
the channels of the RGB values of the pixels are related to the coordinates, in the scene
frame, of the normal to the corresponding surface in the scene. Since the rendering phase
can suffer from aliasing, the grayscale image of the normal map is filtered using a Gaus-

sian kernel before computing its Sobel gradients.

These basic image processing steps, as the retrieval of the normal map, are also pro-
cessed on the GPU by composing vertex and fragment shaders, significantly optimizing
computations.

4.3 Visual features

From the projected 3D model in the image, various visual features can then be considered
to completely and pertinently represent the object. As presented in sections 2.5.2 and
4.1.2.2, two classes of visual features can be distinguished, some of them relying on
geometrical distances between feature correspondences and others being based on a dense
visual description using an intensity or color based similarity function. We propose to
use both geometrical and intensity-based visual information, by designing three different
visual features which are described hereafter. With these three visual cues, the general
idea is to consistently describe the object, using its edges, its shape or silhouette and its
texture through a set of interest points.
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4.3.1 Geometrical edge-based features

As introduced in section 4.1 and as in many classical model-based tracking algorithms
such as [Drummond 02, Vacchetti 04c, Comport 06b, Wuest 07], our solution has been
first based on edges to design geometrical visual features, in order to compute a geomet-
rical edge-based objective error function AY.

4.3.1.1 Low-level tracking from the control points

The edge control points {Xi}f\igl extracted from the projected 3D model are processed
to track corresponding edges in the new image I, determining a corresponding set of
points {X;}fvqu In a similar manner to [Vacchetti 04b, Comport 06b, Wuest 07], we per-
form a 1D search along the normal n; of the edge underlying each x; (Figure 4.4 ). A
common approach is to choose on the scan line the pixel with the maximum gradient as
the matching edge point x| in the new image. The considered approach is based on the
ECM algorithm [Bouthemy 89] for which a likelihood ratio (; representing the convolu-
tion value, using a convolution mask M, computed in I, for each candidate x; ; along
the normal n; and up to a range R. The maximum is selected as the corresponding point
x;. The convolution mask My, classically set to a 5 x 5 size, is oriented according to the
orientation of n; in the image. A temporal constraint can also be added by evaluating the
considered mask on x; in the previous image I and taking into account the resulting value
in ;. Besides, for the selected point x;, (; must be greater than a certain threshold to be
considered as a pertinent point and to be further taken into account in the minimization
process.

4.3.1.2 Error computation and Jacobian matrix
A distance to a line

Once correspondences between the set of control points {xz _’, and the set of image edge
points {X;} ., are established, our approach considers the distance between the projected
3D line /;(r) underlying the projected control point x;(r) (projected from the 3D point
X;) and the selected matching point x; in the image (see Figure 4.4). The error function
AY(r) to be minimized with respect to the pose r can be written as:

A(r) = Nin%e?(r» (4.17)
= —Zp o, di(Li(r),x}))) (4.18)

with €f(r) = o, 'dy (I;(r),x])). di(li(r),x])) is the distance between the point x; and
the corresponding line /;(r) (see Figure 4.4). p? is a Tukey robust estimator and o, is
a normalization factor accounting for the standard deviation of the error e/. We use the
estimate:

N 1
0g = \/EZ po(dL(li(ry),x})) (4.19)
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Figure 4.4 — Moving edge principle: from the initial pose ri, 1D search along the projected contour
underlying the control point x;. Visual error: distance d (l;(r),x}) = px, — px; Of @ point x; to a
corresponding line I;(r) = pr(L;,r) within the minimization process. In contrast to the approach
in [Comport 06b] for instance (Frame 6), control points are independently processed and a 3D line
L; is computed for each x;.

with r the pose computed at the end of the previous minimization process.

Remark

It has to be noted that for sharp edges the 3D points X;(r) are not modified when we
modify r. This is no longer the case for points X;(r) that belong to an occlusion rim
or silhouette. Nevertheless, since the camera motion between two successive images is
small, this approximation has no impact on the efficiency of the approach. The criterion
AY improves other approaches [Wuest 07, Panin 08b, Choi 12] which consider the dis-
tance between x;(r) and x; along the 2D normal vector n; to the edge underlying x;(r),
but neglecting the dependence of n; w.r.t to the pose r, what is taking into in our compu-
tation of the Jacobian matrix of e7.

A key requirement is to compute the 3D equation in the scene or object frame of
the line L; such that [;(r) = pr(L;,r). This is necessary to perform the projection
li(r) = pr(L;,r) during the minimization process, to compute the error ¢/ and the cor-
responding Jacobian matrix J.s. The computation of the equation of L; is addressed by
first expressing the polar coordinates (px,, fx,) of [;(ry) in the image. py, is the distance
between the projected line /;(r)) and the center of the image and 0y, is the angle between
the image frame and the line (Figure 4.4):

xcos by, +ysinby, = px,, V(x,y) € l;(rg). (4.20)

From the model rendering phase, we know 0y, through the gradient computations intro-
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duced in section 4.2.1 and we can compute py,, since x;(ry) € [;(ry). Then, thanks to the
normal map (see Figure 4.3(c)) the equation of the surface underlying /; is retrieved, and
it is finally quite straightforward to obtain the 3D equation of L; in the scene frame.

l; can thus be projected with respect to the pose r, updating px, and 6y,. The distance
dy(li(r),x})), related to the error e, can then be computed as follows (Figure 4.4):

dl(li(r)7 X;) = Px; — Px}- (421)

K3

where
Px;, = Ty, COS O, + Yy Sin Oy, (4.22)

with 7, and y,, being the image coordinates of x;.

Jacobian matrix

An issue consists in the derivation of the Jacobian matrix J.¢. Its definition is given by:

oef  0dy(l;(r),x})

Jo=— 4.23
“ Or or (4.23)
Using equation (4.21), J.¢ can be expressed as:
dpx; dpx:
Jo = —— : 4.24
€ or or (4.24)
0px, x;
= % + (T, sin Oy, — Yy cos by,) arZ
Opx; n 00y,
= Q@
or or
= Jp, +ado,, (4.25)

with o = Ty sin Oy, — Yx COS Ox,. J px; and J 0., can be derived from [Espiau 92] where
the interaction matrix related to a straight line is provided, for visual servoing purposes.
It gives:

Jo,, = [Moy, cosby, Ao, sinfy, —Xo, px, Px; COSOx, —px;sinfy, —1] (4.26)

Jpo = [Pox, €080y, Ay sinbsx, =N, pr; (14 p3)sinby, —(1+ p})cosby, 0]
with
(Apx, cos Oy, + Bsinby, + C)
Apw, =
i D
(Apx, sin by, — B cosby, + C)
Ao, = o) )

AX + BY +CZ + D = 0 is the equation of a 3D plane which the 3D line L; belongs
to. The normal map ((Figure 4.3(c)) of the rendered 3D model directly gives us the co-
efficients A, B and C, D being computed thanks to the 3D coordinates, in the scene or
object frame, of the control point X;.
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From (4.25) and (4.26) J.s takes the following form:

- 1T
Ad, cos Oy,

Aa, sin Oy,
_)\dl Px;
J (1+ p2,)sin Oy, — apx, cos by, 4.27)
—(1+ p2.) cos Ox, — aupx, sin by,
—a

S
I

with )\dl = )\pr_ + Oz>\9x1_ .

4.3.1.3 Multiple-hypotheses framework

In order to improve the robustness of the pose estimation and to avoid problems due to
ambiguities between edges, it is possible to consider and register different hypotheses
corresponding to potential edges. They correspond to different local extrema resulting
from the ECM algorithm, described in section 4.3.1.2, along the scan line (see Figure 4.5).
As in [Vacchetti 04b], we choose the hypothesis which has the closest distance to the
projected 3D line /; during the minimization process. The error function becomes :

1 1
A=) (o mindy(l(r). X)) (4.28)

where points x; ; are the selected candidates for each control point x;. For oy, this time

we use the estimate: ¢, = \/N%,Zz p9(min; d, (I;(r), %} ).

? g

Multiple-hypotheses framework with line clustering

We have also elaborated a novel multiple-hypotheses solution intended to improve ro-
bustness. This approach extends the one presented above, by taking advantage of some
elements proposed in [Teuliere 10]. The idea presented in the previous section was to
consider and register different hypotheses corresponding to potential edges. But the pro-
jected model edge points {xi}ﬁ\i’l are treated independently, regardless their membership
to primitives such as lines or particular curves. To overcome this issue, the idea is to
cluster the model edge points into different primitives and to register different hypotheses
consistently with these primitives. Here, we restrict ourself to line primitives, for compu-
tational reasons, and because objects considered in our applications are likely to contain
lines.

Clustering model edge points into lines: from the edge map provided by the projection

of the 3D model, a set of NV; 2D line segments {li}j\f:l1 is locally extracted using a Hough

line detector [Duda 72]. A model edge point x; for which the distance to the closest line
is under a certain threshold is associated to this line. We obtain a set of clusters {Ci}ﬁ\ll
of model edge points corresponding to the extracted lines {l’}lN:l1
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Figure 4.5 — Multiple hypotheses framework

Multiple-hypotheses registration: for each cluster C?, we process in a similar manner
to [Teuliere 10]. For a point x; ; in C’, we consider several edge hypotheses x| ;; (see

Figure 4.6). These candidates are then classified into k; sets of points or classes {cﬁn}:::l
using the k-mean algorithm. Each ¢! is then represented by a mean line I’ , which best
fits the points of ¢;,, and a corresponding weight wy,. w;, represents the likelihood of
class ¢, with respect to the others in C’.

In [Teuliere 10], random weighted draws are then performed in order to get several
hypotheses on the pose. In our case, since it is time consuming, by requiring a pose
estimation step for each hypothesis, we simply use here the weights w;, to determine the
probability m; ;; of a candidate x; ;, to belong to a line. If ct,, denotes the class including
x; ;;» We have:

migi = Py N X1 50) = (6 )P(X 0 | ) (4.29)
with p(c},,) o wy, and where the probability p(x;;; | c,,) is related to the distance
between x; ;; and the mean line [;, associated to ¢;, . The function corresponding to the

points X; ; clustered into the line classes {Ci}f\il can be written as:

A§ oY > gy (li(r), %5, ) (4.30)
i

with [, = arg mlin(dL(li,j (r),x;.)) (4.31)

Z’7j7l

with [; ; the projected line, for pose r, underlying x; ;. For the remaining points x; which
have not been classified into line clusters, we apply the multiple hypotheses approach
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Figure 4.6 — Multiple hypotheses framework. Points x; ; (blue dots) form the cluster C' corre-
sponding to the extracted line I'. For a pointx; ;, several hypotheses x; ; , are registered, and are
used to build classes ¢t tied to lines I,. The hypotheses in the class ¢ (red dots), which matches
I*, will have higher weights than the hypotheses of classes ci, and ci (green and light blue dots),
which correspond to clutter. Thus model edge points x; ; will more likely converge towards the
hypotheses of class ci.
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proposed in equation (4.28), giving an objective function AY:
A! x Z i (mind, (1i(r), X, )) (4.32)

and AY is finally simply written as:

AY = A+ AL (4.33)

4.3.2 Intensity-based features along silhouette edges

When dealing with potentially weakly textured objects, instead of defining edges in terms
of gradient maxima in the image, they can be characterized by the separation between
their both sides, in terms of luminance or colors of the pixels. Following this idea, a
color-based error function A€ has been designed, based on the edges of the projected 3D
model.

The technique we have used to address this problem refers to the Contracting Curve
Algorithm [Hanek 04], tried out by [Panin 06, Panin 08b] for 3D tracking purposes, and
which is also similar to the approaches proposed by [Brox 06, Prisacariu 12].

In order to compute A, as in [Panin 06, Panin 08b], we restrict ourself to edges be-
longing to the silhouette of the object. Indeed the separation between the object and
the background makes more sense than for internal crease or texture edges and it lim-
its the computational burden. The underlying idea is thus to describe how the shape or
the silhouette of the object in the image can be segmented from the background. The
foreground/background segmentation method presented in section 3.1 is handled with a
global energy minimization framework on the whole set of pixels, with very few a priori
knowledge. In contrast, the goal is here to finely perform this segmentation or separation
task with respect to the pose r and locally, based on an a priori knowledge, which is the
pose computed for the previous frame. It is particularly suitable in our context of space
objects since color contrast is likely to be observed between the object and a potentially
deep space black background.

More precisely, we densely consider pixel colors or simply luminance in the vicinity
of the projected model silhouette edges as image features, with the goal of providing more
accuracy. The principle is then to compute local color statistics (means and covariances)
along the normals to the projected silhouette edges, on both sides of the edges. For each
pixel along the normals, we determine a residual which represents the consistency of
the pixel with these statistics, according to a fuzzy membership rule to each side. A
contribution we suggest consists in adding consistency with respect to the color statistics
computed on the previous frame, providing a temporal constraint.

4.3.2.1 Computation of color local statistics

More formally, a set of /N, model edge control points {xl}fil belonging to the silhouette
of the projected 3D model is determined from the whole set of control points {x; Z]-le,
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s

resulting from the step described in section 4.2. From the set {x;(r)}~*,, we compute
color statistics up to the 2"? order, on both side (object side O and background side B) of
the edge underlying each x;. In order to handle this task, we use 2D + 1 pixels along the
edge normal n;, regularly sampled up to a distance L (see Figure 4.7). For the object side,
we obtain:

D
O = >l (4.34)
j=—D
D
vi? = > plIyis) (4.35)
j=—D
D
VZ2’O = Z /JJZOJI(yZ’]>I(yZ7]>T (436)
j=—D
1/? 9, I/Z-I’O and 1/1-2 'O respectively refer to the 0,1% and 2"¢ moments of the pixel intensities

along the normal n;. y; ; = x;(r) + L d n; are the pixels located on both sides. d= % is

the normalized signed distance to x;(r). I(y;;) = [Ri(yi;) Gi(yi;) Bi(ym-)]T is the
RGB color vector of pixel y; ; and ,ugj are local weights giving a higher confidence on

the object side, close to the edge (see [Hanek 04]). Let us note that l/? ©isa scalar, 1/2.1’0

is vector of size 3 (RGB) and 1/1-2’0 is a 3 X 3 matrix. As in [Panin 08b], these statistics

are then blurred with respect to the other silhouette points, for smoothness concerns. This

step provide moments 7,%¢, 7,19 and ;%°:

IJZ_O,O — E 6_/\|1_]‘VJQ7O (437)
J

~1 sl 1

v, 0 _ E e Al lej,O 4.38)
J

~2,0 _ —\i—j|,,2,0

0 =) e e, (4.39)

J

. . =0
These moments are then normalized, to define RGB means I, and covariances R, for
each x;(r):

~ 2,0
= i =50 v~
Ii = Ij,070 and Rz = W (440)

We proceed the same way for the background B, leading to:

ol = e NI k= 0,1,2 (4.41)
J
~1,B L ~ 2B
=2 _ and R, =2 . (4.42)
v v
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Figure 4.7 — Computation of local color statistics on both the background (B) and object (O) sides.

4.3.2.2 Error computation and Jacobian matrix

The computation of the local errors e ;(r) of the error function A°(r) is based on on the
consistency of observed color components of pixels y; ; according to the computed color
statistics. This consistency is evaluated using a function a(d) as a fuzzy membership rule
to the object side:

a(d) = (erf(\/:aa +1),d=—1..1 (4.43)

er f being the Gauss error function [Abramowitz 64] whose shape can be seen on Fig-
ure 4.8. 0, is a standard deviation defining the sharpness of the membership rule. Both
object and background statistics can thus be mixed, resulting in means L, ;(r) and covari-
ances 15{Z ;(r), smoothed along the normal n;:

I (r) = a(@()I + (1 — a(d(r)L
R, (r) = a(d(r))R + (1 - a(d(r)))R

(4.44)
(4.45)

=B
=7
I, ;(r) can thus be seen as a desired color value for the j% pixel y;; on the normal
n;, wether it is on the object O or background side B, with j = Dd(r), and R, ;(r) the
associated covariance. I, ;(r) is vector of size 3 (RGB)and R, ;(r) is a 3 x 3 matrix.
The error ¢f ;(r) can then be defined as:

ei(r) = (Ly(r) —Lyiy) Ry Tij(r) — Iy ))) (4.46)
£, (r) R () (4.47)

with f7,(r) = I,(r) — I(y:,). With the error ef ;(r), the general idea is to optimize the
position d(r) of the membership rule a along the normal, so that the desired value I, (r)
best matches the actual value I(y; ;), minimizing ef ;(r). Let us note that the dependence
of R@', ;(r) w.r.t. the pose r is neglected to reduce computational costs.

In order to cope with possible outliers and to improve robustness with respect to occlusion
noise or clutter, we propose to integrate a Tukey M-estimator in A°, which becomes:
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Figure 4.8 — Profile of the error function er f.

A“(r) = Ni PIANDIEHO) (4.48)

J

with N, = (2D + 1)N; accounting for the number of color features. p° is applied to a
N x 1 vector accounting for errors computed for each silhouette edge control point x;(r),
reflecting the quality of the separation, in terms of color likelihood, between the object
and the background at this particular point, by summing the errors along n,.

The Jacobian matrix J e, can be computed as follows:

det .
J. — Oei;(r) (4.49)
i or
1 Off,(r) .
— 2 R+ R TYfe, 4.50
2ef;, Or (R;™+ R, )”(r) ( )

Since R[l is a symmetric matrix, we have:

c T
1 ,0ff(r) "

Jee = R; ' 4.51
i, ef,j ( ar ) () 1,7 (I‘) ( )
. . Off .(r) .
The Jacobian matrix J £ =~ 1S computed as:
o1
Jee = L) (4.52)
i or

<0 =B o C
I, and I, are updated at each iteration of the minimization process. However, to reduce
the complexity, their dependence on the pose r are neglected.

-B. Oa(d(r)) Od

=0
= @ -L) =5 "5 (4.53)
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As in [Panin 08b, Choi 12], we have:

% = %n;f Jx, (4.54)
The dependence of n; on r is also neglected, saving computations. Jy, = 8"8;15” is the
Jacobian matrix for a point, which is given by;
— _ 2
e P A P B
with
K, = {5" ;J (4.56)

the focal ratio parameters of the camera. (x, y) denotes the meter coordinates of the image
point x;, and Z the depth of the corresponding 3D point.

As stated before and as previously suggested by [Panin 06], the 2D + 1 pixels y; ;
used to compute the local color statistics are regularly sampled along the normal n; with
a sample step 0p = %, with L the fixed range along n;. Consequently 2D + 1 errors
e; ; and their corresponding Jacobians J ec, are computed. Increasing L would provide
more robustness to large motions and blur or noise, while increasing 6, would aim at
saving computations, while being less accurate. Since the computation of local statistics
is much less costly than the computations of errors and Jacobians, an alternative would be
to compute these statistics with dp = 1, while we would compute and retain errors and
Jacobians with p > 1, improving the ratio accuracy /computations.

4.3.2.3 Temporal constraint

For more smoothness and accuracy, we introduce a temporal constraint to the objective
function by considering the information of past frames. The idea is to integrate the color
statistics computed on the previous frame ©'T for the silhouette edge points x;(ry) at the
first iteration of the minimization process. This is handled by rewriting the computation
of local statistics detailed in equation (4.36) the following way, for the object side:

D
VZ(LO _ Z Ngj (4.57)
j=D
D
v = Y ud(d(yig) + (1) "Iy ) (4.58)
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1 (al(yiz) + (1= a) "Iy ) (od(yi; + (1 — ) "Iy ))"(4.59)
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J

with a a weighting factor, 0 < o < 1. The same operation si performed for the back-

A A

ground side. From these new statistics, mixed means I; ;(r) and covariances I, ;(r), as
well as errors e7 ; and Jacobian matrices J e, can be consequently derived, following the
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steps previously described.

Let us note that instead of using colors, these visual features and errors could also be
simply based on luminance. In that case vector f; ; and covariances R; ; become scalars.

4.3.3 Keypoint-based features

Another class of visual features which can be used are interest points (or keypoints)
tracked across the image sequence. As previously suggested by [Vacchetti 03, Brox 06]
or by [Vacchetti 04b, Pressigout 08] within their hybrid approaches, the idea is to design a
texture-based objective function A, accounting for geometrical distances between interest
points extracted and tracked or over successive images. But in contrast to [Pressigout 08],
which process 2D-2D point correspondences to estimate the 2D transformation from I, to
11 of planar local regions underlying the points. We use 3D-2D point correspondences
to directly minimize A, with respect to the pose r.

More specifically, let us denote {xi}f-vz”l a set of detected interests points in frame
I;. Assuming the pose rj has been properly estimated, we can restrict these points to
be lying on the projected 3D model with respect to r;. Since we rely on a complete
3D model, the depth of the points in the scene can be accurately retrieved, and using r,
we can back-project these points on the 3D model, giving a set {Xz}fvjl of 3D points of
the 3D model. This is a major difference with respect to [Vacchetti 04b] which aims at
simultaneously optimizing the camera poses and projections of the matched points in two
successive frames, relaxing the assumption of having an accurate previous pose estimate
and an accurate 3D model, but increasing computations. Our knowledge of a complete
3D model, along with the use of convenient rendering techniques allows us the keep this
assumption valid.

Approaches presented in [Brox 06, Pressigout 08] process regularly spread points ly-
ing on the 3D model [Brox 06] or on planar surfaces of the model [Pressigout 08] and
determine the 2D-3D [Brox 06] or 2D-2D [Pressigout 08] correspondences by comput-
ing their optical flow from I, to I;,;. These methods, though providing dense accurate
information, can however be computationally challenging. Instead, we employ the Har-
ris corners detector inside the silhouette of the projected model in the image to extract
{XZ}Z , in I,. Then, the KLT tracking algorithm enables to track this set of points in

o . N,
frame I, resulting in a corresponding set {x}},”;.

Error computation and Jacobian matrix

From the correspondences between {Xi}fvz”l and {x .1 AP can be computed as follows:

Np

1
=N Z (4.60)

with
ef = o, (xi(r) —x)) (4.61)
and x;(r) = pr(X;,r)). (4.62)
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pP is the Tukey robust estimator associated to these errors. o, accounts for the standard
deviation of errors e?. Similarly to 0,4, we use the estimate:

R 1
o, = \/Fp Z pP(xi(ry) — %5). (4.63)

The Jacobian matrix Js” is the Jacobian matrix of a point, given by equation(4.55):

b — _ 2
J@P:&BZ 1/z 0 z/Z xy (1+2?) _yx (4.64)

T or { 0 -1/Z y/Z (1+y?) Ty

with (x,y) the meter coordinates of the image point x; = pr(X;,r)), and Z the depth of
the corresponding 3D point.

4.4 Hybrid approach

Several attempts [Masson 03, Vacchetti 04b, Pressigout 07, Pressigout 08, Panin 08b] have
been made to fuse different visual features to improve the tracking accuracy and robust-
ness. In the same spirit and following ideas suggested in [Panin 08b], which fuses geo-
metrical edge feature with color ones, and in [Vacchetti 04b], which proposes a hybrid
method incorporating edge and interest point features, we suggest to integrate the differ-
ent features presented in section 4.3 in the pose estimation process. The goal is to benefit
from their complementarity and to overcome the limitations of classical edge-based ap-
proaches. Let us recall the specificities of these primitives:

e Geometrical features based on edges or interest points such as Harris corners rely
on line-to-point or point-to-point correspondences and on geometrical distances ac-
counting for these correspondences. Both features correspond to complementary
local regions in the images. On one hand, edges have the advantage of being ro-
bust to illumination conditions but suffer from having similar appearances, result-
ing in ambiguities between different edges and potential local minima. On the other
hand, points features can be described more specifically, with a more discriminative
matching process, imposing a better spatio-temporal constraint. Though begin lo-
cally performed, the KLT algorithm allows a larger convergence radius. However,
these keypoints are more sensitive to illumination conditions, for both extraction
and tracking steps. Besides, since point features are based on the extraction of Har-
ris corners which are back-projected on the 3D model, pose errors resulting from
the tracking phase at the previous frame are integrated in the back-projection pro-
cess, leading to potential drift problems across the sequence. Whereas for edges,
the edge matching process in the image instead rely on the absolute reference of the
projection of the 3D model.

e With color or intensity edge-based feature, the idea is to avoid any image extraction
or segmentation that could lead to outliers and mismatches, especially in the case
of noise, background clutter or image blur. By processing a dense information
along the silhouette of the projected 3D model by modeling the color (or luminance)
appearance on both sides of the edges, using simple statistics, and optimizing their



4.4 Hybrid approach 137

separation, a much better accuracy can be achieved. A main advantage is also a
better robustness to image or motion blur, background clutter or noise. However,
among drawbacks these features need color contrast to perform efficiently and are
limited by their computational costs, making them restricted to silhouette contours.

By combining these different complementary cues in the pose estimation framework
means integrating their respective error function into a global one. A can indeed be rewrit-
ten as:

A = wIAI + wA° + wP AP (4.65)

As defined in section 4.3, AY refers to the geometrical edge-based cost function, A°
stands for the color-based one and AP corresponds to the interest point features. w?, w*
and w? are the respective weighting parameters (0 < w < 1).

The combination of the three types of features and their respective errors ¢ (r), ef ;(r)
and e; (r) in the minimization framework is achieved by stacking the error vectors €7, ef ;
and e’ into a global error vector e and their corresponding Jacobian matrices Joo, Jec
and Jer into a global Jacobian matrix J. By setting parameters \9 = %—Z, A= %—C and

NP = w
Np

NI

e= Aee’ (4.66)
vV \PeP
ef € ef
with: €9 = | ¢ |, e°= : , ef=1"1: (4.67)
e?\/g €N, 2D 611;\/,,

and their Jacobian matrices are given by:

NSYA

J= | V3l (4.68)
NJeP
Jeg JCC Jel’
1 1,1 1
with Jeg = Jec = Jeg = (469)
Joo Jee Jor
Ng Ng,2D Np

eisa N, + N. + N, vector and J is a (N, + N, + N,) x 6 matrix. Regarding the
weighting matrix D, it is written as D = blockdiag(D#®, D¢, D?), where DY, D€ and DP
are the respective weighting matrices associated to the robust estimators p?, p¢ and pP.

The computation (4.5) of the displacement for an iteration of the Gauss-Newton min-
imization becomes:

or = —(DJ)"De(r) (4.70)
—(NITDITDITI + XTI DI DI +
AP IPTDPTDP IR L (A JITDIT DY (1) +
AT TDID%C(r) + AW IPTDPTDPer (1)) (4.71)
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4.5 Filtering and pose prediction

The previous section presented the general framework for our tracking system, which
is for the moment based on a purely deterministic approach. However, based on the
assumption that the r can be considered as a random variable, statistical or probabilistic
tools can be integrated to improve this deterministic framework:

e The camera pose and the camera displacement between successive frames can be
assumed to be random variables, following Gaussian distributions. Through co-
variances, their uncertainty can be characterized, propagated from the low-level
uncertainty (section 4.5.1), giving an indicator of reliability of the tracking process.

e With a purely deterministic framework, pose estimation can suffer from jittering,
which can potentially lead to tracking failures. In order to avoid this, a Kalman
filter is proposed to smooth pose estimates (section 4.5.2.1), with the knowledge of
a particular dynamic model of the system.

e Based on this dynamic model, the filtering process can be used to provide a pre-
diction of the pose, so that the deterministic minimization can be initialized more
finely.

4.5.1 Pose uncertainty as a measure of tracking integrity

An important tool to set up is the measurement of the quality and reliability of the track-
ing process, based on the errors provided by the different cues integrated in the objective
function. For this purpose, we can compute the covariance matrix 35, on the parameters
of the pose error dr, which results from the errors e, based on equation (4.11). We can
indeed assume that the pose error dr follows a Gaussian distribution dr ~ AN(0, X5, ).
We also assume that error e follows a Gaussian distribution e ~ A(0, X,), with X, =
blockdiag(MIn,xn,, ANIn.xn., APIn, xn, ), since the errors are normalized. From equa-
tion (4.5) giving the value of dr, 35, can be written as:

Ysr = E[5r5rT}
— E[(DJ)'De((DJ)*De)’]
_ E[(DJ)+DeeTDT((DJ)+)T} 4.72)

Since the uncertainty lies on e we have:

% = (DJ)*DE [ee”] DT((DJ)")"

= (DJ)*DXDT((DIH)" (4.73)

We can actually determine a covariance matrix for the whole set of the visual features
or one for each type, giving three covariance matrices, Egr, sy and Eg’r, with following
expressions:
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24, = (D?Jes) "D ((D9Jes)*)" (4.74)
5 = (DJe) "D (D))" (4.75)
3? = (D"Jen) "D (DPJer) ™) (4.76)

Covariances enable to propagate uncertainty from the low-level visual features (through
equation(4.19) and (4.63) for the geometrical edge and keypoint features, and through the
covariances computations for the color features) to the high-level estimate of the camera
pose. The covariance matrix s, is further used in the derivation Kalman filter presented
in the next section.

4.5.2 Kalman filtering and pose prediction

4.5.2.1 Kalman filtering

In order to smooth pose estimates, we propose to incorporate a filtering process, relying
on the Kalman filtering theory. To achieve this, we employ an linear Kalman filter on the
parameters of the camera velocity v, which is integrated to determine the pose so that:
My 11 = exp([vi+10t]) My, at each time step k& (we use the notation M instead of °M,,
for clarity reasons). We assume a constant velocity dynamic model. This model is par-
ticularly suitable in our context of space rendezvous since constant velocity motions are
generally involved.

As the state of the system (X, X ) we simply choose the velocity parameters, so that
X) = Vy, is the actual system state at time step &, with X;, = V,, the a posteriori estimate
of x;, and ¥, the corresponding covariance matrix:

Xp = Xp+ N 4.77)
and M = exp([not]) Mg (4.78)

with 7, ~ N (0, ), and K/I\k the posterior estimate of the actual pose M.
With a constant velocity model, the true state at time step k& + 1 is evolved from the
state at k according to:

Xpr1 = Xp + Dy 4.79)

with n, ~ AN(0,Qy) the state noise, and Q; = diagblock(Xq, ) the state noise
covariance matrix, with X¢ = O'%I;;X sand Yy = aZ,IgX 3, op and oy being state noise
standard deviations respectively on the translation and rotation parameters of v. As an
observation zj_ 1, the minimization process described in section 4.1 (and equation(4.71))
provides us with a pose measure M, |, and with a measure of the velocity v}, ;:

vl = exp” (M M} 7Y (4.80)
Zpy1 = VZL = Xj4+1 + Wit (4.81)

with w;, ~ N (0, Ry), with Ry, the observation noise covariance matrix. The noise wy,
can actually be interpreted as equal to dry, which is the pose error at the end of the mini-
mization process of the pose estimation, so that Ry = 35, the computation of 35, being
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developed in section 4.5.1. The prediction step can then be achieved, giving prior estimate
of future state:

§k+1|k =X (4.82)
Yk = 2 + Qrpr (4.83)

Similarly we can obtain a prior pose:
Mty = ep([Rirape] )M (4.84)

The update step is classically performed, resulting in the Kalman gain K, and in pos-
terior stated estimates X1 and X 1:

K1 = S (Sppape + Ri) ™! (4.85)
X1 = Xp1jk + K1 (Zrg1 — X1k (4.86)
Y1 = (I = K1) ik (4.87)

A posterior pose estimate ﬁkH can also be determined:
M1 = exp([ K1 (zrs1 — Risaje) | ) Mt (4.88)

4.5.2.2 Pose prediction

From the estimate pose M 1, we suggest to use it, along with the Kalman filter equations,
to provide a predicted pose M _ ; which is intended to initialize the pose estimation phase
for the next time step. A natural idea is to choose the prior estimate at k£ + 1 so that:

M = eap(([Ry 1)) Mg pr (4.89)

However such a prediction step can be too harsh when the state noise covariance param-
eters are not properly tuned. We can also propose to incorporate the Kalman gain Ky
with the objective of making this prediction smoother, as a trade-off between the dynamic
model and the previous pose posterior estimate:

M = eap([(T — K1) Rip1]) My (4.90)

This prediction step will be particularly useful when large inter-frame motions are
observed in the image, since the model projection with respect to ﬁif{i can bring the
error function A closer to its actual minimum, avoiding local ones and avoiding to tune
low-level tracking parameters such as 1D ranges for the Moving Edge process or the color

features computation, to large but risky values.

4.6 Experimental results

This section provides some results of experiments carried out to evaluate the performance
of the solutions proposed in this work to handle the problem of pose estimation via frame-
by-frame tracking. These experiments were mainly performed in the case of space ren-
dezvous and proximity operations applications but, as it will be seen, it is not restricted to
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such issues. These experiments aim at determining qualitative results, on both synthetic
and real images, but also quantitative results on synthetic images since such data can be
provided with ground truth (section 4.6.1). A comparative study has also been achieved
between the different approaches proposed in this work and with respects to some state-of-
the-art methods, emphasizing their respective advantages and drawbacks. The relevance
of these approaches, particularly concerning the pose measurement requirements involved
in a rendezvous mission, as described in section 1.2, is also shown.

Another line of experiments have intended to prove the feasibility of a GNC frame-
work of a close range rendezvous only based on a monocular camera sensor by applying

our pose estimation framework within a closed control loop using visual servoing (sec-
tion 4.6.2).

4.6.1 Qualitative and quantitative evaluation

In this section we validate the proposed method, both qualitatively on real images and
qualitatively on synthetic images in order to verify the benefits of our contributions.

4.6.1.1 Implementation

The rendering process of the 3D polygonal and textured model relies, as for the detec-
tion method previously presented, on OpenSceneGraph. As presented in section 4.2, we
have considered shader programming for some image processing steps during the render-
ing and edge generation phases. This is done using OpenGL Shading Language (GLSL),
supported by OpenSceneGraph, which enables classic shading techniques such as com-
position of successive shaders. The remainder of the algorithm has been implemented
thanks to the C++ ViSP library [Marchand 05]. Regarding hardware, a standard laptop
with an NVIDIA NVS 3100M graphic card has been used, along with a 2.8GHz Intel
Core 17 CPU.

4.6.1.2 Results on synthetic images

We have achieved a quantitative evaluation of our algorithm on synthetic images, using the
realistic ray-tracing simulator developed by Astrium for space environments, and which
has been introduced in section 1.4.2. We present a sequence which features a Spot satellite
and which is provided with ground truth.

Spot satellites are earth observation satellites whose orbit is approximately polar, cir-
cular, sun-synchronous, at an altitude of around 830 kilometers, and with an inclination
of 98.7 degrees (see Figure 4.9). For space debris removal concerns, we consider an arbi-
trary rotation for the target attitude and a chaser spacecraft is supposed to be located on a
similar orbit, with a slightly different eccentricity in order to make the chaser fly around
the target, in the z ., — 20 plane of the orbital frame (see Figure 4.10). The chaser is also
equipped with a virtual camera providing images of the target and a spot light to lighten
the target, especially to handle sun eclipses. This sequence allows to evaluate the different
solutions under various conditions for the distance range (from 20m to 76m, Figure 4.11),
for the illumination conditions (low luminosity on frame 920, Figure 4.13), for noise and
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specular effects (on frames 40 and 1410) and for the background (cluttered on frame 40
with the earth, uniform on frame 1270 with deep space).

Ye

Spot orbit
Earth orbit

F_: Earth referential frame Sun

Figure 4.9 — Spot sun-synchronous orbit.
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Figure 4.10 — Chaser and target (Spot) orbits in the Earth reference frame (a). Chaser trajectory
in the target local orbital frame (b), whose x.,-axis is in the target velocity vector direction, with
the zor» axis pointing towards the earth center.

We have investigated the performances of the different solutions designed in this the-
sis comparatively between them and comparatively to state-of-the art methods such as
[Vacchetti O4c, Panin 06, Panin 08b] and [Comport O6a]. Let us first classify the different
contributions of this thesis regarding pose estimation by 3D frame-by-frame tracking:

e (0: efficient model projection and model edge control point generation, exposed in
section 4.2, and pose estimation based on geometrical edge features with a single
hypothesis edge registration phase.

e ('1: integration of a multiple-hypothesis framework in the edge registration process.
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Figure 4.11 — Range between the camera and the target.

e ('2: incorporating line primitives into our multiple-hypotheses framework for the
edge-based registration process, as described in section 4.3.1.3.

e ('3: integration of the color-based visual features, see section 4.3.2.

e ('4: temporal consistency for the color-based objective function, presented in sec-
tion 4.3.2.3.

e ('5: integration of the geometrical interest points features, introduced in section 4.3.3.

e (6: Kalman filtering and pose prediction step (section 4.5).

Solution C'0 is actually quite close to [Comport 06a] in terms of low-level edge-based
tracking and pose estimation minimization process. However, let us remind and point out
that the management of the 3D model projection is very different and that [Comport 06a],
based on lines of polygonal model, would actually be inapplicable with complex targets.
We also propose to compare our solutions with the approaches suggested by [Panin 06],
which is equivalent to solution [C'3], and by [Panin 08b]. For [Panin 08b] we have not
implemented the algorithm exactly the same way as in the paper. Instead we have tested a
solution fusing the edge-based and color-based objective functions, without M-estimators,
without the multiple-hypotheses frameworks and without the temporal consistency for
the color-based criteria. It is equivalent to combining C'0 (but without M-estimators)
with C3. Let us finally note that combining C'0 with C'1 and C5 actually makes up an
approach similar to [Vacchetti 04b], although [Vacchetti 04b] suffers from the same prob-
lem as [Comport 06a] regarding model projection and 2D-2D point correspondences are
processed instead of 3D-2D correspondences in our case for the interest points registration
phase.
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Results for single cue approaches

The first set of experiments with this sequence concerns the comparison of single cue ap-
proaches. More formally, we compare the solutions provided by [C'0], [C'0, C'1], [C0, C'1, C2],
and by [C'3]. The results can be seen on Figure 4.14 where the accuracy of rotation and
translation components of an estimated camera pose T with respects to the true pose r*

is determined throughout the sequence, through error plots on the pose parameters. Fig-
ures 4.12, 4.13 qualitatively show the performances of [C0], [C'0, C'1] and [C3], with the
reprojection of the processed edge control points depicted in green in the image. Tracking
failures can be observed for [C'3] and [C'0] respectively around frames 920, as confirmed

by the error plots.
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Figure 4.12 — Results, from top to bottom with [C0], [C3] and [C0, C1], frames 40-750

We notice that among the single cue solutions, only [C0, C'1], which consists in the
geometrical edge-based criteria along with a multiple hypothesis framework is able to
track and estimate the pose of the camera with respect to the target object throughout the
sequence. With simply [C0] or [C'3], tracking fails around frame 900 when the target
is getting far, with low luminosity (as depicted with frame 920 on Figure 4.13), result-
ing in noisy edges and in a poor color contrast. The absence of multiple-hypothesis for
[C0] causes the numerous outliers encountered in these conditions not to be rejected. For
[C3], the contrast being low, the separation of colors between both of the object silhouette
contour cannot be properly carried out. We can finally note on Figure 4.14 that the incor-
poration of line clustering [C'2] for the multiple-hypothesis framework slightly improves
tracking performances.
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frame 920 frame 1270 frame 1410 frame 1500
Figure 4.13 — Results, from top to bottom with [CO0], [C3] and [C0, C1], frames 920-1500.

Results for hybrid approaches

Here we suggest to compare solutions fusing the different sorts of visual features proposed
in this work (C0, C'3 and C'5), along with the different other contributions (C'1, C2, C4
and C6).

The results presented on Figure 4.17 show that the combination [C'0, C'3], (without the use
of M-estimators), what is similar to the solution proposed in [Panin 08b], is not sufficient
and the tracking fails around frame 850, as also depicted on Figure 4.15, 4.16). However
performances until failure are better, in terms of accuracy, than simply [C'0] or [C'3] or
than [C'0, C'1], color features providing more accuracy in quite neat conditions. With the
addition of multiple hypotheses solutions (C'1, C'2) and M-estimators for both geometrical
and color-based criteria (solution [C'0, C'1, C'3]), tracking is properly performed until the
end of the sequence (Figures 4.15, 4.16, 4.17).

We besides observe that the approach combining geometrical edge and interest points
features [C'0, C'1, C'5], similar to [Vacchetti 04b], also succeeds to track to object. It tends
to improve performances on certain phases (frames 1300-1500) with respect to [C'0, C'1]
but can also give poorer results (frames 700-900) due to the presence of too few interest
points under low luminosity and due to the relative drift resulting from the constraint in-
duced by the tracking of the points. Finally, the solution employing [C0,C1, C3, C5]
(Figures 4.15, 4.16, 4.17), combining all the different visual features shows, as expected,
the best performances and appears to be the most robust to the different conditions in-
volved in this sequence, especially when the satellite is far, with low luminosity (between
frame 1200 and 1500). Let us note that since contribution C'2 requires many model edge
control points to be efficient (N, = 2000 in these experiments), hence a quite heavy
computational burden, and since it provides only few improvements in the tracking per-
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formances, next tests on hybrid solutions have been carried out without this process. Root
mean square errors on the pose parameters are also represented on Table 4.1.

Table 4.1 — RMS erros, for the whole sequence. t,, t,, t, (in meters) and R;, R,, R. (in radians)
respectively refer to translation and rotation (Euler angles) parameters.

Mode te ty t, R, R, R,
co,C1,C2 0.069 | 0.109 | 0.739 | 0.075 | 0.029 | 0.012
C0,C1,C3 0.055 | 0.046 | 0.401 | 0.015 | 0.021 | 0.021
C0,C1,C5 0.069 | 0.147 | 0.810 | 0.083 | 0.031 | 0.029

C0,C1,C3,C5 | 0.054 | 0.045 | 0.373 | 0.015 | 0.020 | 0.016

‘l
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frame 40

forward-projected KLT points.
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Figure 4.15 — Results, from top to bottom with [C0, C3], [C0,C1,C3,C4] and [C0,C1,C3,C4,C5],
frames 40-750. Blue and red dots for [C0,C1,C3,C4,C5] respectively represent tracked and

frame 550

frame 750
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frame 890 frame 1270 frame 1410 frame 1500

Figure 4.16 — Results, from top to bottom with [C0, C3], [C0,C1,C3] and [C0,C1,C3,C5], frames
890-1500. [C0,(C3] fails around frame 850-900, whereas [C0,C1,C3] and [C0,C1,C3,C5] suc-
cessfully track the object throughout the sequence.

Compliance with close range navigation requirements for space proximity opera-
tions

Relating these different performances (Figures 4.14 4.17) with the space rendezvous nav-
igation requirements specified in section 1.2 (from [Fehse 08, Astrium 10]), we can no-
tice that errors for lateral position measurements for [C'0, C'1, C'3] and [C'0, C'1, C'3, C5]
(along t, and ?,), almost remain under 0.10m for the whole sequence, except around
frames 800 and 1300 for which conditions are challenging. 0.10m is the requirement for
lateral misalignment at contact for a docking-based rendezvous mission (Table 1.1). For
[CO,C1] and [CO, C1, C2] lateral errors can be maintained below 0.50m (except around
frame 1250), which is the performance required for the berthing maneuver at "contact".
By plotting the relative position errors with respect to the range (Figure 4.18), we can ob-
serve that the accuracy for lateral position measurements of 1% of the range (in the case
of a closed loop maneuver) can be clearly achieved by [C0, C1,C3], [C0,C1,C3,C5],
and [C0, C'1, C2] (and [C'0, C'1] which is very similar), and almost by [C'0, C'1, C'5].

In terms of angular misalignment, the requirements (at contact) given on Table 1.1 for
docking can vary between 1° and 5° (or 0.0174 rad. and 0.087 rad.). The upper bound can
be almost respected throughout the sequence by [C'0, C'1, C'3] and [CO, C1, C3, C5]. For
berthing, [C'0, C'1, C'3] and [CO0, C'1, C'3, C'5] clearly fulfill the requirements (10°).
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[C0,C1,C3], [C0, C1,C5] and [C0,C1, C'3,C5].
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Figure 4.18 — Relative translation errors with respect to the range, on the Spot sequence, with
solutions [C0,C3], [C0,C1,C2], [C0,C1,C3], [C0,C1,C5] and [C0,C1,C3,C5].
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Robustness to inter-frame motions

In order to emphasize the efficiency of the hybrid approaches designed in this work, es-
pecially with respect to the inter-frame motion of the target in the image, we have down-
sampled the image sequence by a factor f, meaning that the object appears to move f
times faster. With f = 3, all the single cue solutions, including [C'0, C'1, C'2], quickly fail
(around frame 10), and so are the hybrid solutions [C0,C1,C5] and [C0, C'3] (around
frame 50). However the other hybrid approaches are still able to properly track the target,
even with f = 5, as depicted on Figure 4.19. We can notice that the addition of C'4,
which imposes a temporal constraint on color-based error function, slightly improves and
smooths results, especially around frame 10, when the solar panels of the satellite flip in
the image and around frame 150, when the satellite gets far, with low luminosity (around
frame 150). Finally, the incorporation of interest points (C'5) enables lower errors around
frame 150 but some peaks can be observed around frames 50 and 170, when the solar
panels flip, due to the fact that interest points detected on the panels failed to be tracked in
this case (harsh appearance changes, imprecision of the back-projection). Let us note that
N, = 500 model edge control points (resulting in around 250 silhouette edge points) were
processed in these tests, and that the scanning ranges R and L (defined in sections 4.3.1
and 4.3.2) for both the geometrical edge features and the color features are set to 14 (the
same as the previous experiments).
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Figure 4.19 — Pose errors on the Spot sequence down-sampled by a factor f = 5, with solutions
[C0,C1,C3]and [C0,C1,C3,C4], emphasizing the advantage of C4.
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Influence of some low-level parameters

By measuring the effect of NV, and L and R, results shown on Figure 4.20, still generated
with f = 5, emphasize the observations made above. As expected, with L = D = R =
10, performances are degraded, tracking being lost with [C'0, C'1, C'3]. The addition of
C4 avoids the failure but some large errors can still be observed between frame 120 and
140. With N, = 1000 and L = D = R = 14, the benefit of C'4 can also be remarked.
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Figure 4.20 — Pose errors on the Spot sequence down-sampled by a factor f = 5, with solutions
[C0,C1,C3] and [CO,C1,C3,C4], using different tuning parameters: number N, of edge control
points considered and ranges R and L respectively for the geometrical edge feature and the color
features.
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Kalman filtering

The advantage of the Kalman filtering technique is now examined. Figure 4.21 shows
tracking errors for the whole sequence, for the complete solution

[C0,C1,C3,C4,C5], along with its filtered version [C0,C1,C3,C4,C5,C6]. As ex-
pected, errors are smoothed and some peaks are avoided. Let us note that the prediction
step is here based on equation (4.90). N, = 500, L = D = R = 14 in these experiments.

The benefit of the filter and the prediction are even more stressed out on Figure 4.22
which depicts the tracking performances for the sequence down-sampled with f = 7,
which implies very large inter-frame motions (up to 25 pixels), making previous tested
solutions fail. However through filtering and prediction, tracking can be handled cor-
rectly for [C'0,C'1,C3,C4,C6] and [C0,C1,C3,C4,C5,C6]. Prediction is here based
on equation (4.89), resulting in a harsher prediction than (4.90) to cope with these large
motions. Though enabling a correct initialization from frame-to-frame, this prediction
scheme can be sensitive to poor posterior estimate of the velocity parameters from the
filter, and thus requires a finer tuning of the state noise parameters than (4.90). N, = 500,
L = D = R = 14 in these experiments.
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Pose errors on the Spot sequence, with solutions [C0,C1,C3,C4,C5] and

[C0,C1,C3,C4,C5,C6], showing the contribution of the Kalman filter.
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Figure 4.22 — Pose errors on the Spot sequence down-sampled by a factor f = 7, with solutions
[C0,C1,C3,C4,C6]and [C0,C1,C3,C4,C5, C6], tracking failing without the prediction step based
on the Kalman filter.
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4.6.1.3 Results on real images
Soyuz sequence

This sequence shows the Soyuz TMA-03M undocking from the International Space Sta-
tion (ISS). It can be found on Youtube!. We have directly used a descent complete 3D
model available on Google 3DWarehouse?.

We have run on this sequence single cue solutions [C'0], [C'0, C'1] and [C'3] (see Fig-
ure 4.23). [C'0] shows poor performances until the tracking can be qualitatively consid-
ered as lost on frame 400-450. [C'0, C'1] enable improvements, until frames 400-450 when
it also diverges. [C'3] achieves tracking quite correctly until approximately frame 1100,
despite misalignment, as seen on frame 750 for instance. The advantage, on this sequence,
of the color-based cue with respect to the geometrical edge-based one can be explained
by the noise observed on the internal edges of the object, which degrades performances
of [C0], and by the background which progressively turns into deep space, favoring the
object/background separation and consequently [C'3].

Figure 4.24 shows tracking performing for hybrid solutions [C'0, C'3], [C0, C'1, C3, C'4]
and [C0,C1,C3,C4,C5]. [C0, C'3] shows poorer performances than simply [C'3], for the
reason presented before. However, by adding multiple-hypotheses for edge and temporal
constraint for the color cue [C0, C'1, C3, C'4], we observe that the tracking is properly per-
formed until frame 1700. Results are improved with [C0, C'1, C'3, C'4, C'5], with proper
tracking until frame 2000. By down-sampling the sequence with f = 5, the advantage of
introducing interest points is even more obvious since tracking with [C'0, C'1, C'3, C'4, C5],
which not affected by the increased frame rate (see Figure 4.25), in contrast
to [C0, C1,C3, C4] which rapidly fails. The ability of interest points of being properly
tracked with large inter-frame motions (up to 25 pixels) is here stressed out.

For the same down-sampled sequence, the uncertainty of the pose for
both [C0,C1,C3,C4] and [C0, C1,C3,C4,C5] methods is represented on Figure 4.26
by the global covariance matrix 3., which as been introduced in section 4.5.1 as a tool
to measure the reliability of the tracking process. On the left is depicted the uncertainty
on the translation parameters, by plotting:

ov = v/ 3s:(0,0) + Bse(1,1) + T5:(2,2) (4.91)

Similarly, the figure on the right shows the uncertainty on the rotation parameters, with
the plot of:

0w = V25:(3,3) + X5 (4,4) + 25:(5,5) (4.92)

We can point out a larger uncertainty when both solutions tend to fail (around frame 20
for [C'0,C'1, C'3, C4] and around frame 420 for [C'0, C'1, C'3, C4, C5]).

"http://youtu.be/MIRmTgsDY jk
’http://sketchup.google.com/3dwarehouse/details?mid=
6eb4c556c1£836c3567d8125dd72ccde


http://youtu.be/MlRmTgsDYjk
http://sketchup.google.com/3dwarehouse/details?mid=6eb4c556c1f836c3567d8125dd72cc4e
http://sketchup.google.com/3dwarehouse/details?mid=6eb4c556c1f836c3567d8125dd72cc4e
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Figure 4.23 — Tracking for the Soyuz sequence with [C0] (top), [C0, C1] (middle), [C3] (bottom).

-
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Figure 4.24 — Tracking for the Soyuz sequence with [C0,C3] (top), [C0,C1,C3,C4] (middle),
[C0,C1,C3,C4,C5] (bottom).
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Figure 4.25 — Tracking for the Soyuz sequence with [C0,C1,C3,C4] (top) and with
[C0,C1,C3,C4,C5] (bottom), for a down-sampling factor f = 5.
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Figure 4.26 — Covariances on the pose errors for [C0,C1,C3,C4] and [C0,C1,C3,C4,C5]. s,
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Atlantis sequence

A second example concerns the tracking of the Atlantis Space shuttle, performing a pitch
maneuver as it rendezvous with the ISS, prior to docking, for the STS-135 mission. The
investigated sequence can also be found on Youtube® . An untextured 3D model of the
spacecraft has been directly processed for the tracking (available on Google 3DWare-
house* ). This target also presents a complex shape, with curved parts, such as the fuse-
lage or the engines.

Figure 4.28 shows the tracking performed over the sequence with [C0,C1] (row 1),
[C0,C1,C3,C4] (row 2), [C0,C1,C3,C4,C5] (row 3), [CO, C1,C3,C4,C5, C6] (row
4), the addiction of the successive contributions making the tracking robust to some illu-
mination changes, to some large motions (thanks to C'5 around frame 80) and challenging
situations when the shuttle flips in the image (around frame 660 and 2540 thanks to C'3 and
C6). In the same manner as for the Soyuz sequence, the covariance parameters are also
represented on Figure 4.29 for the different considered tracking solutions. The succes-
sive failures of [C'0, C'1], [C0, C1,C3,C4] and [C0, C0, C1,C3,C5| can be respectively
observed around frames 650, 2700 and 2800 with growing covariance parameters.

Shttp://youtu.be/ZYb0p991x1lY
“http://sketchup.google.com/3dwarehouse/details?mid=
a46d59be3ac09%ac4843ecb708acc7f22&prevstart=0


http://youtu.be/ZYb0p991x1Y
http://sketchup.google.com/3dwarehouse/details?mid=a46d59be3ac09ac4843ecb708acc7f22&prevstart=0
http://sketchup.google.com/3dwarehouse/details?mid=a46d59be3ac09ac4843ecb708acc7f22&prevstart=0
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s

frame & frame 80 frame 335

Figure 4.27 — Tracking for the Atlantis sequence with, from top to bottom, [C0,C1],
[C0,C1,C3,C4], [C0,C1,C3,C4,C5] and [C0,C1,C3,C4,C5,C6], frames 8-335
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S

frame 660 rame 1700

Figure 4.28 — Tracking for the Atlantis sequence with, from top to bottom, [C0,C1],
[C0,C1,C3,C4], [C0,C1,C3,C4,C5] and [C0,C1,C3,C4,C5,C6], frames 660-2540.
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Figure 4.29 — Covariances on the pose errors, for [C0, C1], [C0,C1,C3,C4], [C0,C1,C3,C4,C5]
and [C0,C1,C3,C4,C5,C6]. Square root of traces on translation and rotation parameters of X,
are represented.

Mock-ups video sequences

Two sequences involving mock-ups of satellites are processed.

Amazonas sequence: the first one has been taken using the Lagadic robotic platform,
presented in section 1.4, and the 1/50 mock-up of Amazonas-2, provided by Astrium (sec-
tion 1.4). The six degrees of freedom robot has been used to simulate a space rendezvous,
with a camera mounted on the end-effector of the robot, and enables to have regular and
quite realistic movements. Let us however remind that the specific dynamic of the chaser
spacecraft is not considered in this work. Sun illumination is also simulated by a spot
light located around the scene (see Figure 1.11), setting up a quite decently realistic space
context, with light/dark and specular effects on the target.

Tracking results can be observed on Figure 4.30 for [C'0, C'1, C3, C'4].

Figure 4.30 — Tracking results for the sequences involving Amazonas satellite mock-up.

The Envisat sequence: the second sequences has been provided by Astrium and con-
cerns a fly-around a mock-up of Envisat, an observation satellite which has been consid-
ered as a space debris since April 2012 and the sudden loss of contact with the satellite, for
some inexplicable reason. Figures 4.31,4.32,4.33 respectively show tracking performed
by [C0,C1], [C0,C1,C3,C4] and [C0,C1,C3,C4,C5], along with the corresponding
covariance parameters (Figures 4.31(e), 4.32(g), 4.33(g)). In order to show the uncertainty
induced by each of the visual cue involved in the different tested solutions, marginal co-
variances XJ . (Edge covariance), 3§, (Color covariance) and 3% (Point covariance) are
also investigated. For each matrix, parameters o (equation (4.91)) and o, (equation
(4.92)) are thus evaluated over the sequence.

Similarly to the Amazonas sequence, complicated illumination conditions, involving
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darkness, specularities, can be noticed. Besides, the motion of the satellite is here mostly
rotational, on the y-axis of the camera frame, and can be hardly observable on some
phases. For the three tested solutions, let us first note that the covariances are principally
impacted for the rotation parameters, since a rotational motion is involved. With [C'0, C1]
(Figure 4.31), tracking on this challenging sequence can be properly achieved until frame
200, the rotation around y-axis then failing to be tracked, as observed on Figure 4.31(d)
and on Figure 4.31(e), with growing covariances. With [C0, C1,C3, C4] (Figure 4.32),
tracking is correct until frame 700, as observed on Figure 4.32(f). The growth of the global
covariance at this moment is noticeable, though slight. The larger uncertainty observed for
the color-based features can be explained by the challenging color separation between the
object and the background, due to the poor color contrast. The addition of C'5 (interest
points) allows slight improvements, tracking being correctly achieved until frame 760
(Figure 4.33(f). The marginal covariance on the tracked interest points shows a quite
erratic behavior, with some peaks, especially between frame 400 and 500. This trend can
be justified by the low luminosity (see frame 420 on Figure 4.33(d) for instance), which
causes the extraction of few interest points to be tracked. If the Jacobian matrices of some
of these points show low values, for instance a point close to the optical axis or with a
large depth, then uncertainty greatly propagates for the whole set of points, and it results
in a large 3%
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Figure 4.31 — Tracking for the Envisat sequence with [C0,C1] and covariances on the camera
pose error. X (Edge) is represented.
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Figure 4.32 — Tracking for the Envisat sequence with [C0,C1,C3,C4] and covariances on the
camera pose error. 39 (Edge), X5, (Color) and 35, (Global) are represented.
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Figure 4.33 — Tracking for the Envisat sequence with [C0,C1,C3,C4,C5] and covariances on the
camera pose error. ¥ (Edge), 3¢, (Color), % (Point) and s, (Global) are represented.
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Itokawa asteroid sequence

Besides space rendezvous and proximity operation applications, we have also experi-
mented our approaches to the case of navigation with respect to asteroids, for landing
and sample return applications.

During the Hayabusa probe mission, a sequence of the Itokawa asteroid was captured,
and a complete 3d model of the asteroid was reconstructed based on data collected by
the probe and can be found on the Internet. We have directly processed the full model
(30MB) using our efficient projection and edge generation system. The tested sequence,
features a purely rotational motion of the target on the y-axis of the camera.

Solutions [C0, C1], [C0,C1,C3,C4] and [C0,C1, C3, C4, C'5] have been tested and
respective tracking results are represented on Figures 4.34, 4.34, 4.35, 4.36, with their re-
spective covariance parameters. With [C'0, C'1], tracking fails around frame 90, as proven
by Figure 4.34(b) for frame 100, and by the growth of the covariance from this frame (Fig-
ure 4.34(e)). Since a pure rotation is involved, mostly rotation parameters are impacted
by the failure. Tracking also fails with [C'0, C'1, C'3, C'4] around frame 80, due to some
ambiguities on edges and on the shape, bringing the geometrical edge and color-based
cues to local minima. For the covariance parameters (Figure 4.35(e)), a growth can be
observed after frame 80 for the global covariance. This growth is however minor, espe-
cially with respect to the one observed for [C0, C'1]. This can be explained by the fact
that the uncertainty provided by the color-based features is quite small, since the color
separation is very clear between the asteroid and the black background and since local
minima are likely to be obtain due to ambiguities on the shape or silhouette. As an indi-
cator, the uncertainty provided by interest points (3% ), which are not taken into account
in the global error function is represented, showing large values after the failure. The
incorporation of interest points ([C0, C'1,C'3,C'4, C'5]) enables to track the asteroid over
its whole rotational motion. As seen on Figure 4.36, numerous reliable Harris corners can
be extracted and correctly tracked. The ability of these points to raise the ambiguity on
silhouette edges can be stressed out. The covariances parameters (Figure 4.36(e)) can be
kept low, with a standard deviation for the rotation parameters almost under 0.002 over
the whole sequence. A peak can however be noticed for X} around frame 80 (which is
quite equivalent to frame 30 for the sequence presented on Figure 4.37). It can be justified
by the fact that fewer interest points, mostly located around the image center, are extracted
at this moment.

By down-sampling the sequence with f = 3, we are able to emphasize the benefit of
out Kalman filtering and prediction frameworks. The resulting fast motion of the asteroid,
with quite constant velocity, can be correctly tracked (Figure 4.37, bottom), based on the
prediction step proposed on equation (4.90), in order to cope with the large motions. It
fails with [C0, C'1,C3,C4, C5] (Figure 4.37, top).
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Figure 4.34 — Tracking for the ltokawa sequence with [C0, C1] and covariances on the pose error.
9. (Edge) is represented.
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Figure 4.35 — Tracking for the ltokawa sequence with [C0,C1,C3,C4] and covariances on the
pose error. X9 (Edge), 3¢, (Color) and X5, (Global) are represented. X% is represented but is
not taken into account in the computation of Xs,.
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Figure 4.36 — Tracking for the ltokawa sequence with [C0,C1,C3,C4,C5] and covariances on the
pose error. X9 (Edge), 3§, (Color), 3% . (Point) and X5, (Global) are represented.
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Figure 4.37 — Results with [C0,C1,C3,C4,C5] (top) and [C0,C1,C3,C4,C5,C6] (bottom) with
f=3.
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4.6.1.4 Algorithm complexity and computational costs

In the suggested approaches, several issues are to be considered in the evaluation of the
complexity of the algorithms.

e Size of the image, H x W, with a H the height and W the width of the image.
e Size of the 3D model and number of generated model edge points V.

e Number of extracted and tracked Harris corners N,,.

e Number of iterations in the minimization process K.

For a given image size, we can evaluate and compare the overall complexity of the differ-
ent solutions, only focusing the minimization process.

e With C0, the complexity C' can be determined as: C' = O(N; K).

e The integration of multiple hypotheses C'1, errors have to be computed for each
hypothesis, in order to select the one with the smallest residue at each iteration of
the minimization process. However the complexity of the computation of the errors
can be neglected with respect to the computations of the Jacobian matrices, so that
we also have: C' = O(N,K).

e With (2 the complexity is also similar.

e With ('3, an error function and a Jacobian matrix are computed for each point along
the normal to the projected model edge points /N belonging to the silhouette, and
for each of the 3 color channel (RGB). Besides the computation of the local color
statistics can be neglected with respect to the computations of errors and Jacobian
matrices, giving: C' = O(6(L/dp)N2K). By using luminance instead of colors,
complexity can also be reduced to C' = O(2(L/5p)N2K). The integration of C'4
can be neglected.

e Using C'5, the complexity is simply evaluated as: C' = O(NZK).

As a consequence, the complexity of the hybrid solution [C0, C'1, C2,C3,C4, C5], for
instance, can be set, for the minimization process, to: C' = O((N,+6(L/dp)Ns+N,)?K).

Tables 4.2 and 4.3 respectively gather the number of processed control points and
the different computational costs obtained for the different methods used to obtain results
presented for the Mario sequence A.2 in appendix A, which is built of 1500 frames. In
these cases, K is set to 10. D is set to 20 and H to 4, and 640 x 480 images are processed.
Regarding N, it has been originally set to 300 and edge control points are then regularly
sampled given this number, and the average resulting number of generated edge control
points is given. Mean over the execution times on the considered sequence are presented,
for the different phases of the pose estimation system, which are the projection and ren-
dering of the 3D model, the generation of control points (egdes, silhouette edges, interest
points), the low-level tracking (edge extraction and KLT algorithm) and the minimization
process. For solutions including C'3, the average number of generated silhouette edge
control points /N, is also given, as well as the average number of extracted and tracked
interest points when C'5 is employed.
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Data c0,C1 | C0,C1,C3,C4 | C0,C1,C3,C4,C5H
Number of edge points 310 307 306
Number of silhouette edge points 202 197
Number of interest points 32

Table 4.2 — Processed control points: number of edge points, silhouette edge points, and Harris
corners interest points processed for the different methods

Phases Co0,C1 | C0,C1,C3,C4 | CO,C1,C3,C4,C5
Model projection and rendering (ms) | 21.48 18.37 19.39
Generation of points (m.s) 15.26 15.59 85.92
Low-level tracking (ms) 3.28 2.84 19.54
Minimization process (1ms) 11.24 42.3 45.58
Total (ms) 51.26 79.1 170.43

Table 4.3 — Execution times.

We can remark that the rendering phase is quite heavy, around 20ms, what is due to the
size of the processed 3D model which 5.5MB, with 15000 vertices. Another observation
to stress out is the weight of the generation of control points based on Harris corners
extraction, which is quite costly, as well as the KLT algorithm used to track them. The
extra complexity gendered by the addition of ('3, and to a lesser extent of C'5, since
much fewer interest points than edge points are processed, can also be noticed for the
minimization process. Let us finally point out that incorporating the Kalman filtering
framework is negligeable in terms of computations.

4.6.2 Feasibility of space rendezvous using visual servoing

The idea of the following tests is to carry out a simulation of a closed loop rendezvous
approach between the robotic arm available on the Lagadic robotic platform and the mock-
up of the telecommunication satellite provided by Astrium, using visual servoing.

2 1/2 D visual servoing

In order to servo the robot, we propose to use the 3D-model based tracking algorithm
within a 2 1/2 D visual servoing control loop. Visual servoing consists in using data pro-
vided by a vision sensor for controlling the motions of a dynamic system [Chaumette 06].
Classically, to achieve a visual servoing task, a set of visual features s has to be selected
from the image to control the desired degrees of freedom. The goal is to minimize the
error between the current values of visual features s extracted from the current image and
their desired values s*. For this purpose, techniques [Chaumette 06] depend on the fea-
tures s used : they can be 2D points directly extracted from the image, for Image-based
Visual Servoing (IBVS) or 3D parameters recovered thanks to image measurements like
pose computation for Position-based Visual Servoing (PBVS). Here we apply a hybrid
solution, 2 1/2 D visual servoing approach [Chaumette 07, Chaumette 00], which avoids
the shortcomings of the two basic approaches, by combining features in 2D and 3D, in
order to decouple position and rotational movements, with a simpler interaction matrix,



172 Pose estimation by model-based tracking

and with a better stability than IBVS or PBVS :
s=[r y Ou, t] (4.93)

where x and y are the metric coordinates in the image of a point of the object, here the
center of the mock-up, fu, is the third coordinate of the fu vector, which represents the
rotation the camera has to perform to reach the desired pose, and t is the translation vec-
tor the camera has to perform to reach the desired pose, expressed in the desired camera
frame. fu, and t have thus to be regulated to 0. We need to minimize the error e = s — s*
where features s are recovered thanks to model-based tracking. A kinematic controller,
which is convenient for most of robot arms, is then designed to servo the robot. A propor-
tional control scheme is defined, to make the error exponentially decreases, leading to the
following control law:

Ve=—AL, (s—s%) (4.94)

with f;+ the estimate of the pseudo-inverse of Lg, the interaction matrix associated to
the visual features. The paper described in [Chaumette 06] details how this matrix can be
computed. It can here be estimated thanks to the parameters of the pose computed by the
model-based tracking algorithm.

Experimental set-up and results

The experimental set up is very similar to the one depicted on Figure 1.11. Regarding the
simulated rendezvous maneuver, it has been divided into two phases: a first displacement
to bring the target into the center of the image and to realign to the docking port axis of the
target, and a final translation until a secure distance to the mock-up docking. Three differ-
ent 1llumination conditions have been tried out: favorable, almost darkness and variable
with harsh changes. The servoing performed on the mock-up has successfully achieved
the intended goal, for the three different illumination conditions (Figure 4.38, 4.39, 4.40).
The model-based solution adopted for these tests is [C'0, C'1, C3, C'4, C5]. Figure 4.41
presents results obtained with a proportional gain A\ twice the one used for the former ex-
periments, with [C'0, C'1, C'3, C'4, C'5]. Let us note that with such a gain tracking solution
[C0,C'1,C3, C4] is unable to perform correctly due to the larger inter-frame, making the
servoing task fail.

4.7 Conclusion

In this chapter we have presented our solution to address the problem of efficiently and
robustly estimating the pose between a camera and a target object in an image sequence
by tracking it frame-to-frame, based on the 3D model of the target. With respect to state-
of-the-art approaches, the overall goal of our approach has been to provide improvements
on several aspects of the problem:

e Implementing an efficient system to project the 3D model and generate a set of
control points from the projection. Through this phase, the aim is to be able to
deal with complete 3D models of any kind of object. This task has been handled
by using a 3D rendering engine and GPU-based operations to generate the control
points.
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Figure 4.38 — 2 1/2D visual servoing under favorable illumination conditions for
[C0,C1,C3,C4,C5].

Figure 4.39 — 2 1/2D visual servoing under weak illumination conditions for [C0,C1,C3,C4,C5].

e Designing a robust pose estimation process. Based on the projection of the 3D
model or the generated 3D control points, pose estimation relies on a deterministic
non-linear minimization process of an error function accounting for some visual
information extracted from the image. With the general idea that a 3D object can
be quite fully and pertinently representedby its edges, its shape or silhouette and
by a set of interest points such as corners, our contributions have consisted in com-
bining in the global criterion to be minimized three different visual cues related
to these three different representation modes. For this purpose we have elaborated
two geometrical cues, relying on distances between edge features and interest point
features, and a intensity-based one, relying on color features computed along the



174 Pose estimation by model-based tracking

Figure 4.40 — 2 1/2D visual servoing under variable illumination conditions and with a higher gain,
for [CO,C1,C3,C4,C5].

Figure 4.41 — 2 1/2D visual servoing under variable illumination conditions for
[C0,C1,C3,C4,C5].

silhouette edges, each cue providing complementary benefits.

e Characterizing the reliability of the tracking process. By using uncertainty prop-
agation, a global and marginal (for each visual cue) covariance matrices on the pose
errors parameters can be obtained, from the low-level uncertainty of the visual fea-
tures. Based on this uncertainty, a Kalman filtering and pose prediction module
has been designed, to smooth pose estimates and to cope with large inter-frame
displacements.

Our approach has been tested via numerous experiments, on both synthetic and real
images. The objective has been to validate our contributions under various conditions.
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The tried out sequences indeed feature various complex 3D objects, various motions of
these targets, various illumination conditions, with motion blur, with background clut-
ter, noise... By dealing with synthetic images, quantitative and comparative evaluations
of our solutions have been carried out. All these tests have shown the benefits of each
visual cues: robustness with respect to illumination conditions for the geometrical edge-
based criterion, accuracy and robustness to motion blur for color-based features, temporal
smoothness and robustness to large motions for interest points. Finally, the Kalman fil-
tering and prediction framework is able to smooth pose estimates and to deal with large
motions through the prediction step. Through our efficient projection system of the 3D
model, any sort of 3D models can be processed, with reasonable execution times. Most
of the experiments have dealt with space objects for space rendezvous navigation appli-
cations. The benefit of our method has made it suitable for visual servoing purposes,
showing the feasibility of a pure vision-based close range rendezvous mission. However,
the generic nature of our tracking algorithms makes them also applicable for other fields,
such as augmented reality, on any kind of complex objects.
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Conclusion and perspectives

The challenge of autonomy for robotic systems involves the need for a reliable sensing
technology. When dealing with localization issues, cameras are a common and preferred
choice in many applications. Through the design of pattern recognition, motion analysis
or tracking algorithms, computer vision can supply the considered robotic system with
accurate and robust visual localization capability with respect to a known or unknown
environment.

In space robotics, for technical, economic or safety reasons, the topical and critical
problems of on-orbit servicing and space debris removal has involved an accrued interest
on incorporating a high-level of autonomy for the related space rendezvous and proximity
operations. In order to handle uncooperative targets, the use of monocular cameras and
computer vision appear as a pertinent choice to accurately localize the target, given the
stringent navigation measurement requirements involved for such an operation.

In this thesis we have proposed a unified solution to address the task of fully localizing
a known object with respect to a monocular camera, with a focus on the navigation con-
cerns of space autonomous rendezvous operations. We suppose the knowledge of the 3D
model of the object. This unified solution first consists in visually detecting and initially
fully localizing the target object. Then, the output of this detection module initializes a
visual localization system of the target using frame-by-frame tracking.

The issue of the detection and initial localization step is addressed through pose es-
timation based on a set of initial images. The approach we propose lies in the field of
template matching methods, where the templates are synthetic views of the object gener-
ated using its a priori known 3D CAD model.

A first step consists in classifying the views into a hierarchical view graph to effi-
ciently handle the large search space. Assuming the single foreground object is mov-
ing in the image with respect to the background, our method then benefits from a fore-
ground/background segmentation to guide a registration procedure of the reference views
with the set of initial input image. From the most likely view, a pose refinement is finally
performed via a best match search in the view graph.

Among our contributions, we can mention our foreground/background segmentation
technique which is particularly suited for the context of space rendezvous. We have also
elaborated a robust edge-based similarity measure, for both the learning and the online
matching process, whose advantage with respect to a classical measure has been demon-
strated. A last notable contribution is the incorporation of particle filtering to refine simi-
larity transformation parameters.
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The results, performed on various objects (more or less textured) and imaging condi-
tions (synthetic images, real images, cluttered background, specular effects) have shown
the efficiency and the robustness of the method to these challenging conditions, as well as
its ability to provide a sufficiently precise pose to initialize the tracking step.

For the visual tracking step, it is based on pose estimation through a 3D model-
based tracking algorithm. In this work, we relied on a classical deterministic non-linear
optimization framework, intended to minimize an error between visual features observed
in the image and the forward projection of their 3D homologues, using the 3D model. We
propose three different types of visual features which enable to pertinently represent the
object with its whole set of edges, its silhouette and with a set of interest points, providing
two geometrical errors (edges and interest points) and an intensity-based error (colors
along silhouette edges). The main contributions of this solution has been to implement
an efficient projection system of a potentially complete and large 3D model, to handle
any sort of complex objects, and to combine these complementary visual cues. Other
contributions principally involve the designs of multiple-hypotheses frameworks for the
geometrical edge-based registration process and the addition of a temporal constraint on
the color features.

In order to determine an indicator of the uncertainty of the localization process,
we suggest to propagate the uncertainty from the low-level errors of the visual features,
giving a covariance matrix on the pose error. This uncertainty feeds a linear Kalman filter
on the camera velocity parameters. We propose to use this Kalman filtering framework
for both smoothing pose estimates and predicting the pose for the next frame, enabling to
handle large displacements.

Comparative experiments on various objects and with various conditions (illumina-
tion, specular effects, background...) have been carried out, showing the advantages of
the different contributions, quantitatively and qualitatively. Besides its relevance regard-
ing space rendezvous issues with a space object such as a satellite, this method is also
suitable for any other complex scenes (asteroid navigation, augmented reality).

Discussions and perspectives

Detection and initial pose estimation

Our detection and initial pose estimation has proven its efficiency when the moving target
can be segmented from the background, especially in the case of a space context with
"deep space" black background or "terrestrial" backgrounds. Although it can be robust
to some segmentation errors, thanks to the alignment procedure, it can still be sensitive
to this step. For both terrestrial backgrounds, a solution would be to use the localization
information provided by chaser spacecraft with respect to the earth to provide prior infor-
mation on the earth apparent motion. Otherwise, some priors on the apparent motion or
color of the earth surface could be used, as in [Criminisi 06, Yin 07], requiring learning
steps but relaxing our assumptions quite specific to our application (stationary and planar
background). Without learning or supervision, the approach proposed in [Brox 10], in a
similar spirit to ours regarding clustering of foreground/background trajectories, would be
interesting.

Besides, in order to make our matching and alignment process of the views more
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generic, we could relax the prior step of segmenting the moving target from the back-
ground. For this purpose, we could think of integrating some region or part descriptors
based learning methods such as the promising one proposed in [Stark 10]. The idea would
be to learn local salient parts of the 3D model into a probabilistic spatial model with re-
spect to the pose parameters, using visual descriptors such as Shape Context [Belongie 02]
or HOG [Dalal 05]. This probabilistic model would be inferred by processing correspon-
dences between the learned descriptors and descriptors provided by the image, providing
the pose or a viewpoint estimate. In [Stark 10] viewpoints or pose estimates still appear
to be coarse. By combining this method with our template matching and alignment pro-
cedure, an accurate pose could be obtained. The method in [Payet 11], which relies on an
edge-based template matching strategy, using natural training images, could be interesting
to experiment, by applying it to a set of non-photorealistic synthetic views of the object.

Tracking

Regarding visual tracking issues, our solution considers a known object, and relies on a
prior fixed accurate 3D CAD model of the object to perform correctly. In the case of a par-
tially known object, with missing parts (such as damaged space debris), or with a partial
or coarse 3D model, our tracking and pose estimation algorithm would be enhanced and
ameliorated by Simultaneaous Localization and Mapping (SLAM) techniques. As sug-
gested in [Tamaazousti 11, Prisacariu 13b, Prisacariu 13a], a partial [Tamaazousti 11] ora
very coarse [Prisacariu 13b, Prisacariu 13a] 3D model could be processed in a SLAM sys-
tem, using points [Tamaazousti 11] or shape information [Prisacariu 13b, Prisacariu 13a],
to simultaneously reconstruct the whole scene or refine the 3D model, pose estimation
benefiting from this reconstruction.

Let us also note that our tracking approach could easily be implemented to deal with
multiple objects, or, with few improvements, with articulated objects, in the case of the
solar panels of a satellite for instance.

Space robotics applications and others

With the works proposed in this document, we have essentially focused on space ren-
dezvous and proximity operations applications.
For potential on-orbit implementation of our solution, two issues shall be discussed:

e First, our visual tracking localization system, based on a model-based tracking al-
gorithm, relies on hardware acceleration using the Graphics Process Units (GPU).
The projection of the 3D CAD model and the generation of the control points (for
the edges, the silhouette, and the interest points) is managed through a 3D rendering
engine. This is essential to automatically and efficiently handle potential complete
3D models of complex objects, achieving reasonable computational performances,
independently of the complexity of the 3D model.

However, GPUs are not likely to be embedded onto spacecrafts in a very near future,
but the parallel architecture of actual on-board processors could be sufficient to
handle the problem. Another solution would be to deal with lighter pre-processed
3D models, and to rely on the implementations of the model projection system
proposed in [Comport 06b, Petit 11].
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e This document provides full localization solutions for navigation purposes in the
context of the final approach of a space rendezvous. As shown by the feasibil-
ity study of a closed Guidance Navigation Control (GNC) loop, using visual ser-
voing on a mock-up of a telecommunication satellite (section 4.6.2), under chal-
lenging imaging conditions, the detection and tracking solutions could be directly
integrated in such a loop. However, this study does not consider the specific dy-
namics of the chaser spacecraft (or approximates it by a simple integrator). Further
works could aim at investigating realistic control issues using this sensing mod-
ule, as it has been performed, in simulation, for aircraft landing applications for
instance [Coutard 11b].

In this study, we have performed experiments on some very challenging image se-
quences, involving difficult illumination conditions, large motions, noise, to compara-
tively emphasize the advantages of the different contributions, their robustness and their
applicability for space robotics concerns. Let us note that failing solutions on these se-
quences ([C'0],[C'3] for instance) shall work properly on more conventional data, for space
applications or others.

Finally, other applications of our unified solution (both initial pose estimation and
tracking) can be considered. We can think of aerospace applications such as aircraft re-
fueling, aircraft landing, for instance on carriers [Coutard 11a, Coutard 11b] or planetary
landing of spacecrafts or probes, as evoked by our tests on the Itokawa asteroid. But we
can also think of completely different application fields such as augmented reality or any
robotic systems involving a monocular camera and a known 3D object.
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Mario sequence and augmented reality applications

Our tracking method has been tested on a figurine of "Mario". The target, which is 35cm
high, is made of curved and complex shapes. Since no 3D model is available, we have
reconstructed it automatically using a Kinect sensor and the ReconstructMe software,
which is an easy to use real-time 3D reconstruction system. Views of the resulting 3D
model can be seen on Figure A.1. Despite rough modelization of some parts (on the cap,
the hands for instance), this model, which is made of 15000 vertices, for a 5.5MB size, has
been, as for the Itokawa asteroid, directly used and processed in our tracking algorithm,
showing the convenience of the proposed method.

Figure A.1 — Views of the reconstructed 3D model of Mario.

The results of some solutions are shown on Figures A.2 and A.3. [C0, C'1], [C0,C1,C3, C4],
[C0,C1,C3,C4,C5,C6], are able to correctly track the object on the whole sequence,
whereas [C'0], [C'3], [CO, C3] fail. The incorporation of multiple hypothesis for edges,
of the color features, of the interest point features and of the Kalman filter, whose pre-
diction scheme is based on equation 4.89, provides less sensitivity to local minima, more
accuracy, temporal constraint, smoothness and the ability to handle large motions.

With [C0,C1,C3,C4], tracking gets quickly lost (Figure A.4(b)) due to the large
inter-frame motion, whereas [C'0, C'1, C'3, C4, C5] achieves it successfully throughout
the sequence, even in the case of very large motions in the image (up to 40 pixels) and
important motion blur (see Figure A.5(a)).

The uncertainty of the pose for both methods is also represented (Figures A.4(c), A.5(e)),
for the different visual features, with Zf;’r, 35, and Zgr, and for the whole set with X,.
On Figure A.4(c) X% is represented but is not taken into account in the computation
of X;.. We can observe that the effective fail of the tracking for [C'0, C'1,C3,C4, C5]
around frame 5 does not have much effect on the global covariance, however, the covari-
ances generated by the interest points and the geometrical edge features take much larger
values.

We have augmented this object with a virtual "Yoshi", whose 3D model was found
on Google 3DWarehouse. The rendering process of the 3D models of both the tracked
and the augmenting objects also relies on OpenSceneGraph. Figures A.6 shows the re-
sults of the tracking and the corresponding augmenting task on two different sequences,
with fixed and hand held cameras (see provided videos). Despite the motion blur, clut-
tered background or shaky displacements the object is correctly augmented throughout
the sequences.
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frame & frame 25 frame 65 frame 125

Figure A.2 — Results, from top to bottom with [CO], [C3] and [C0, C3].

frame & frame 25 frame 135 frame 915

Figure A3 - Results, from top to bottom with [CO,C1], [C0,C1,C3,C4] and
[C0,C1,C3,C4,C5,C6].
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Figure A.4 — Tracking for the Mario sequence with [C0, C1,C3,C4] and covariances on the pose
error. 9 (Edge), =5, (Color), X5, (Global) are represented. X% is represented but is not taken
into account in the computation of X,.
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Figure A.5 — Tracking for the Mario sequence with [C0,C1,C3,C4,C5] and covariances on the
pose error. Square root of traces on translation and rotation parameters of ¥  (Edge), X5,
(Color), 3% (Point) and X, (Global) are represented.
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Figure A.6 — Tracking and augmenting Mario.
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Abstract

In this thesis, we address the issue of fully localizing a known object through computer
vision, using a monocular camera, what is a central problem in robotics.A particular at-
tention is here paid on space robotics applications, with the aims of providing a unified
visual localization system for autonomous navigation purposes for space rendezvous and
proximity operations. Two main challenges of the problem are tackled: initially detect-
ing the targeted object and then tracking it frame-by-frame, providing the complete pose
between the camera and the object, knowing its 3D CAD model. For detection, the pose
estimation process is based on the segmentation of the moving object and on an efficient
probabilistic edge-based matching and alignment procedure of a set of synthetic views of
the object with a sequence of initial images. For the tracking phase, pose estimation is
handled through a 3D model-based tracking algorithm, for which we propose three types
of visual features, pertinently representing the object with its edges, its silhouette and with
a set of interest points. The reliability of the localization process is evaluated by propagat-
ing the uncertainty from the errors of the visual features. This uncertainty besides feeds
a linear Kalman filter on the camera velocity parameters. Qualitative and quantitative
experiments have been performed on various synthetic and real data, with challenging
imaging conditions, showing the efficiency and the benefits of the different contributions,
and their compliance with space rendezvous applications.

Keywords : Visual tracking, object detection, moving object segmentation, space robotics

Résumé

Dans cette these nous traitons le probleme de localiser un object connu par vision artifi-
cielle, de maniere complete, précise et integre, en utilisant une caméra monoculaire, ce
qui constitue un probleme majeur dans des domaines comme la robotique. L’attention
est ici portée sur des applications de robotique spatiale, dans le but de concevoir un sys-
teme de localisation visuelle pour des operations de rendezvous spatial autonome. Deux
aspects principaux du probleme sont abordés: celui de la localisation initiale de I’objet
ciblé, puis celui du suivi de cet objet image par image, donnant la pose compléte entre
la caméra et 1’objet, connaissant son modele 3D. Pour la détection, 1’estimation de pose
est basée sur une segmentation de 1’objet en mouvement et sur une procédure probabiliste
d’appariement et d’alignement basée contours de vues synthétiques de I’objet avec une
séquence d’images initiales. Pour la phase de suivi, I’estimation de pose repose sur un
algorithme de suivi basé modele 3D, pour lequel nous proposons trois types de primi-
tives visuelles, dans 1’idée de décrire 1’objet considéré par ses contours, sa silhouette et
par un ensemble de points d’intéréts. L’intégrité du systeme de localisation est evaluée
en propageant I’incertitude sur les primitives visuelles. Cette incertitude est par ailleurs
utilisée au sein d’un filtre de Kalman sur les parametres de vitesse. Des tests qualitatifs et
quantitatifs ont été réalisés, sur des données synthétiques et réelles, avec notamment des
conditions d’image difficiles, montrant ainsi I’efficacité et les avantages des différentes
contributions proposées, et leur validité dans un contexte de rendezvous spatial.

Mots clefs : Suivi visuel, detection d’objets, segmentation, robotique spatiale
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