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Résumé

La localisation des sources en azimuth repose sur le traitement des différences de temps
d’arrivée des sons a chacune des oreilles: les diffrences interaurales de temps (“Inter-
aural Time Differences” (ITD)). Pour certaines espéces, il a été montré que cet indice
dépendait du spectre du signal émis par la source. Pourtant, cette variation est souvent
ignorée, les humains et les animaux étant supposés ne pas y étre sensibles. Le but de
cette thése est d’étudier cette dépendance en utilisant des méthodes acoustiques, puis
d’en explorer les conséquences tant au niveau électrophysiologique qu’au niveau de la
psychophysique humaine.

A la proximité de sphéres rigides, le champ sonore est diffracté, ce qui donne
lieu a des régimes de propagation de l'onde sonore différents selon la fréquence. En
conséquence, quand la téte d’un animal est modélisée par une sphere rigide, I'I'TD pour
une position donnée dépend de la fréquence. Je montre que cet effet est reflété dans les
indices humains en analysant des enregistrements acoustiques pour de nombreux sujets.
De plus, j'explique cet effet a deux échelles: localement en fréquence, la variation de
I’ITD donne lieu a différents délais interauraux dans I’envelope et la structure fine des
signals qui atteignent les oreilles. Deuxiémement, I'I'TD de sons basses-fréquences est
généralement plus grand que celui pour des sons hautes-fréquences venant de la méme
position.

Dans une seconde partie, je discute 1’état de l’art sur le systéme binaural sensible
a I'I'TD chez les mammiféres. J'expose que ’hétérogénéité des réponse de ces neurones
est prédite lorsque ’on fait I’hypotheése que les cellules encodent des ITDs variables
avec la fréquence. De plus, je discute comment ces cellules peuvent étre sensibles a
une position dans l'espace, quel que soit le spectre du signal émis par la source. De
maniere générale, j’argumente que les données disponibles chez les mammiféres sont en
adéquation avec I’hypothése de cellules selectives a une position dans l'espace.

Enfin, j’explore 'impact de la dépendence en fréquence de I'I'TD sur le comporte-
ment humain, en utilisant des techniques psychoacoustiques. Les sujets doivent faire
correspondre la position latérale de deux sons qui n’ont pas le méme spectre. Les
résultats suggérent que les humains percoivent des sons avec différents spectres a la
méme position lorsqu’ils ont des I'TDs différents, comme prédit part des enregistrements
acoustiques. De plus, cet effet est prédit par un modeéle sphérique de la téte du sujet.

En combinant des approches de différents domaines, je montre que le systéme bin-
aural est remarquablement adapté aux indices disponibles dans son environnement.
Cette stratégie de localisation des sources utilisée par les animaux peut étre d’une

grande inspiration dans le dévelopment de systémes robotiques.






Summary

Azimuth sound localization in many animals relies on the processing of differences in
time-of-arrival of the low-frequency sounds at both ears: the interaural time differences
(ITD). It was observed in some species that this cue depends on the spectrum of the
signal emitted by the source. Yet, this variation is often discarded, as humans and
animals are assumed to be insensitive to it. The purpose of this thesis is to assess this
dependency using acoustical techniques, and explore the consequences of this additional
complexity on the neurophysiology and psychophysics of sound localization.

In the vicinity of rigid spheres, a sound field is diffracted, leading to frequency-
dependent wave propagation regimes. Therefore, when the head is modeled as a rigid
sphere, the ITD for a given position is a frequency-dependent quantity. I show that this
is indeed reflected on human ITDs by studying acoustical recordings for a large number
of human and animal subjects. Furthermore, I explain the effect of this variation at two
scales. Locally in frequency the ITD introduces different envelope and fine structure
delays in the signals reaching the ears. Second the ITD for low-frequency sounds is
generally bigger than for high frequency sounds coming form the same position.

In a second part, I introduce and discuss the current views on the binaural ITD-
sensitive system in mammals. I expose that the heterogenous responses of such cells are
well predicted when it is assumed that they are tuned to frequency-dependent I'TDs.
Furthermore, I discuss how those cells can be made to be tuned to a particular position
in space irregardless of the frequency content of the stimulus. Overall, I argue that
current data in mammals is consistent with the hypothesis that cells are tuned to a
single position in space.

Finally, I explore the impact of the frequency-dependence of ITD on human behav-
ior, using psychoacoustical techniques. Subjects are asked to match the lateral position
of sounds presented with different frequency content. Those results suggest that hu-
mans perceive sounds with different frequency contents at the same position provided
that they have different ITDs, as predicted from acoustical data. The extent to which
this occurs is well predicted by a spherical model of the head.

Combining approaches from different fields, I show that the binaural system is
remarkably adapted to the cues available in its environment. This processing strategy
used by animals can be of great inspiration to the design of robotic systems.



La science est affaire d’ennui et de

bon goiit.

C. Lorenzi
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Introduction

Biological systems constantly interact with a complex, fluctuating environment. The
environment itself is govern by a number of physical rules, for example on how acous-
tical pressure waves propagate in space. Those rules impose some structure on the flow
of sensory inputs that an animal perceives. Gibson proposed that perception consists
in the detection of wnvariant structures in sensory flows: it is the concept of ecological
computation [Gibson, 1986]. For example, when a sound source is present at a given
position in space, the acoustic signals reaching the ears (the two monaural signals) are
slightly different. That is, both contain a version of the source signal, only filtered
in different ways by the body, head and ears of the subject. In particular, whatever
sound is presented at the right of a subject, it will arrive at the left ear delayed by a
certain amount, that depends on the position of the source. The position of a sound
source therefore is a relationship between the two sensory inputs, here the sounds at
the ears. It is a structure invariant on the signal emitted by the sounds: the position
of a speaker does not depend on what he/she says. In this context, the Interaural Time
Difference (ITD) is a cue to source location because it can be mapped to a position.
In reality, the structure imposed by our body and environment on the sounds reaching
our ears is much more complex. That is to say that the signals reaching our ears are
not exactly delayed versions of one another. Rather, because the sound waves reflect
and diffract on our head, the monaural signals are linked by a more complex structure.
This structure includes differences in level: the sound at the contralateral ear is also
attenuated with respect to the ipsilateral ear. The present thesis, however, is only

concerned with the temporal structure of the binaural inputs, the ITDs.

It is commonly assumed that, for a given position in space, the ITD is the same
quantity whatever signal is emitted by the source. Yet, the presence of the head in
between the ears make the temporal structure of binaural inputs much more complex.
As a consequence, the ITD for a given position depends on the frequency of the signal
emitted by the source. While this additional complication is oftentimes regarded as
noise, or unwanted variability, I argue that it is added richness. Indeed, because ITD

varies systematically across frequencies and positions in a way that is imposed by phys-
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1cal laws, those variations provide more information about the position of the sound
source. Therefore, the binaural structure is both more complex and more informative
than was previously believed. This observation is the starting point of this project,
which will be dedicated to understanding the consequences of this added complexity
on our understanding of the binaural system. The problematics of this thesis are there-
fore: how do mammalian neural systems integrate frequency-dependent I'TD cues so as
to produce a sense of sound location that does not depend on the source signal? An
important insight of this work may be formulated as follows: if a sensory system is
tuned to a complex stimulus, then its response to simple stimuli may appear complex.
If, on the other hand, the system is probed with the complex stimulus it expects, then
responses will appear much simpler. Necessarily, such an endeavor requires the use of

three complementary approaches:

e Acoustical analysis of the temporal structure of binaural inputs. This includes
understanding the physical basis of this structure, assessing its effect in terms of

signal processing, and measuring this structure across different species.

e Neurophysiological study of the binaural system that is involved in the processing

of ITDs, and modeling of this function.

e Psychoacoustical evaluation of human listeners’ ability to detect a frequency-

dependent temporal structure in sounds presented over headphones.
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Method

. Chapter 5 Chapter 9
Review ITD sensitivity Introduction to
and models psychophysics of ITD
Chapter 2 Chapter 7 Chapter 8
Envelope and Spectrum invariant Normalized peak
Theory fine structure ITDs model for azimuth code for ITD
Chapter 1 Chapter 4
Human ITDs are Reconstructing
frequency-dependent  animal HRTF
i Chapter 3 Chapter 6 Chapter 10
Experiment Variation of ITDs The fiction of the Integration of
in animals Best Delay ITD cues
>
Part I: Acoustical cues Part 1I: Neural models Part IlI: Psychoacoustics Approach

Figure 1: Organization of the manuscript. The chapters are represented according
to their approach, and the method used (state-of-the-art, theoretical and experimental
chapters).

Organization of the manuscript

The thesis is divided into three parts that approach the problem of ITD-based sound
source localization through different angles. The organization of the thesis is pictured
on Fig. 1, wherein the different chapters are represented according to their approach
(acoustics, modeling, behavioral studies), and their method (review chapters, experi-
mental chapters, theoretical chapters). First, acoustical timing cues are computed and
discussed in the first four chapters (1, 2, 3 and 4). The neural basis of the I'TD process-
ing system in the mammalian brainstem is first introduced in Chapter 5, and then three
modeling studies are presented (Chapters 6, 7 and 8). Finally, the psychoacoustics of
sound localization is reviewed in Chapter 9, and a behavioral study of lateralization is

presented on Chapter 10.

Part I: Studies of acoustical timing cues

Chapter 1 starts with the presentation of acoustical models of ITD. This provides insight
into the physical rules that create frequency-dependent ITDs for the same position.
Then, I record and compute ITDs for human subjects as a function of the frequency
of the input for many positions on the sphere. Those recordings confirm that human
ITDs display a coupled frequency- and position dependence, that can be predicted on
the basis of morphological parameters. The concept of a frequency-dependent ITD is
then developed in Chapter 2, where a signal processing approach is used to explain the
effect of such ITDs. At this point, it is shown that envelope and fine structure ITD
were different when the ITD varies, providing two cues to localization. An estimation
method for those cues is provided, and they are reported using human data of the

17



first chapter. Chapter 3 uses the same approach to report ITD cues available to a
wide range of naturalized animals of different species (cat, rabbit, owl, guinea pig,
chinchilla, macaque, and rat). The range of possible envelope and fine structure I'TDs
is then discussed. Finally, Chapter 4 presents a numerical method to simulate animal

HRTFs from raw photographs alone.

Part IlI: Models of sound localization

This part is introduced by a review of the current knowledge on the binaural ITD
sensitive system in mammals (Chapter 5). It develops both how single binaural neurons
can be made to be tuned to a particular ITD, and how this can be understood in terms
of computational models. Then, the current views on how the azimuthal position of
the sound source is represented across populations of heterogenously-tuned neurons
are discussed. The next chapter, Chapter 7, is the main result of this thesis. Using
electrophysiological data gathered by Philip Joris, I argue that binaural ITD-sensitive
cells in the cat IC are in fact tuned to a frequency-dependent ITD, rather than a
constant ITD as is commonly assumed. Furthermore, I show that this complex ITD
sensitivity reflects the variation of ITD found in acoustical data. Next, Chapter 7
develops on the insights of the previous chapter to formulate a complete model of
spectrum-invariant sound localization through ITD. The acoustical data is used to fit a
model consisting of cells receiving inputs with mismatched frequency from both sides,
and different axonal propagation delays. Finally, a study is presented that deals with
the problem of coding space with I'TD-sensitive neurons (Chapter 8). I argue that the
available data in mammals is in fact consistent with the hypothesis that cells encode

single positions in space.

Part Il1l: Psychoacoustics of ITD processing

In this last part, the psychoacoustics of sound localization is introduced, and discussed
in the context of frequency-dependent ITD cues Chapter 9. Current arguments against
the perceptual salience of frequency-depedent ITDs in binaural inputs are reviewed
and discussed. Finally, preliminary results from a behavioral study of I'TD perception
humans are presented. I argue that they suggest that the frequency-dependence of ITD
is relevant to human localization.
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Quantifying binaural timing cues
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This part of the manuscript is concerned with the notion of binaural disparities,
the differences between the signals that reach the ears. Intuitively, a sound to the left
of a listener will be less intense at the right ear than at the left ear, and also arrive later.
Because these disparities depend on the position of the sound source, they are essential
to sound localization. Using experimental and theoretical models of the acoustics of the
animal, we study the binaural t2ming disparities in animals and humans alike. They
correspond, intuitively, to the additional time it takes the sound wave to reach the
contralateral ear (the ear opposite to the source) with respect to the ipsilateral ear.

Put in other words, the acoustical environment and the body of the animal impose
a certain structure on the acoustical signals reaching the ears. Namely, the vibration
pattern of the contralateral tympanon is a delayed and filtered version of the ipsilateral
vibration pattern. Compelling evidence exists showing that both humans and other
mammals use these structure to localize sound sources. Moreover, the Interaural Time
Differences (ITDs), seem to play an important role in the perception of position of
low-frequency sounds (below 3 kHz) [Wightman and Kistler, 1992]. In order to make
sense of the data acquired in behavioral of electrophysiological studies, it is important
to first quantify which structure is imposed by the acoustical environment and body
on the signals entering the ears.

In this part of the dissertation, I measure I'TDs as a function of position and fre-
guency, over a wide array of animal and human subjects. In Chapter 1, I show that ITD
depends on the frequency of the signal using acoustical recordings in human subjects.
I explore the acoustics of this phenomenon, and explain that this arises because of the
diffraction the sound wave in the vicinity of the head. In Chapter 2, implications of the
frequency-dependence of ITD on the structure of signals reaching the ears are studied.
I show that in fact the ITDs in the fine structure and the envelope of the signal are
different, and bear information about the location of the sound source. In Chapter 3,
the findings of the first chapter are replicated on naturalized animal subjects, and the
same analysis is applied. Frequency-dependent envelope and fine-structure I'TDs are
also found in all recordings, which is quantified using the metrics of the previous chap-
ter. Finally, Chapter 4, deals with the simulation of animal directional acoustic filters
for reseach. We expose a method that relies solely on raw photographs and affords
efficient computation of acoustical head-related directional filters. The method is then
validated using recordings and measures of binaural cues. As an example application
of this method, we study the posture-dependence of binaural cues in the cat.
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In this chapter I characterize the coupled frequency- and position-dependence of ITD
in humans subjects, and understanding its physical basis. The frequency-dependence of
human ITDs for a given position has already been measured [Kuhn, 1977], and modeled
using a spherical model of the head [Duda and Martens, 1998]. I present recordings
of directional acoustic filters performed on many human subjects, alongside analysis of
the spherical head model to assess the coupled dependence in frequency and position
of the I'TD.

The variation of ITD across frequencies can be understood as the result of sound
wave diffraction around the head, due to the head’s spherical shape [Duda and Martens,
1998]. I review known approximations of broadband ITD [Kuhn, 1977], and explain
their meaning in the context of physical acoustics. I show that diffraction of sound waves
around the head is the primary source of variability of ITD for a given source position.
Therefore, for a given position the ITD is in always smaller for high-frequency sounds
than for low frequency sounds. This is a quasi-monotonic trend where the transition
occurs around a frequency related to the size of the head.

Insights from the spherical head model help understand the effect morphological
differences amongst subjects have on the magnitude and variation of ITD cues. Com-
pensating for those differences, I was able to study the ITDs across a population of sub-
jects with different head sizes. I compute ITDs from existing and specifically-recorded
acoustic data on human subjects in anechoic settings. I show that the variations of ITD
across frequency for a given position is not attributable to measurement noise, and is
consistent across subjects.

For a given position, we argue that ITD variation over the spectrum takes place
at two scales. Because the difference between the low- to high-frequency ITDs are
big, when compared to the human ability to discriminate ITDs, we argue that global
variations of ITD must be relevant to the perception of source location in humans.
Furthermore, the I'TD varies strongly inside the frequency range of ITD dominance,
therefore the I'T'D cannot be considered constant across the bandwidth of single auditory
filter.
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1.1 Introduction

For a given listener, ITDs are modified by the spatial position of the sound source, z.e.
its direction [Blauert, 1997] and its distance [Duda and Martens, 1998, Brungart and
Rabinowitz, 1999]. In essence, this variation in the structure of the inputs is why ITD
is an primary directional localization cue. For example, when a sound is presented with
conflicting cues (e.g. level differences, ILDs), it is perceived at the position indicated
by the ITD, provided that it has energy below 2kHz. Therefore, in this range ITD is
said to dominate the perception of laterality [Wightman and Kistler, 1992].

Yet, the spatial position of the sound source it is not the only parameter affecting
the ITD in a given species. Among human listeners, morphological parameters [Fels
and Vorlander, 2009, Duda et al., 1999a, Algazi et al., 2001b, Treeby et al., 2007, Xie
and Zhang, 2010, Jo et al., 2008, Nicol, 2010] such as head radius and shape, torso,
ear positions, and even hair, have been shown to influence ITDs. As an example, the
morphological parameter that influences I'TDs the most is the head radius: bigger heads
imposing bigger ITDs than smaller ones. For a given listener, it was shown that early
reflections on the ground the subject stands on [Gourevitch and Brette, 2012] creates
variations in ITD at different frequencies. Similarly, it is thought that early reflections
on the torso is the cause of bigger absolute ITDs in humans [Kuhn, 1977]. Finally,
for a given listener and a given spatial position, ITDs are frequency-dependent in the
low-frequency range (j1.5kHz) because of the diffraction of sound waves occurring in
the vicinity of the head [Kuhn, 1977].

The variation of I'TD across frequencies for a given position was first experimentally
shown in [Abbagnaro et al., 1975] in humans and a sophisticated manikin, and soon
after by [Kuhn, 1977] who also provides estimates for low- and high-frequency ITDs. In
this study, ITDs have been measured in the horizontal plane for an artificial human head
and correlated successfully with a theoretical approach based on a spherical head. For a
rigid sphere, the fact that the inter-aural phase differences (IPDs) are not linear with the
frequency (which leads to frequency-dependent ITDs) had been established at the early
beginning of the XX century [Stewart, 1914,Hartley and Fry, 1921]. Later, [Wightman
and Kistler, 1989] showed experimentally the frequency-dependence of the ITDs for
real human subjects. In their structural model for binaural sound synthesis, [Brown
and Duda, 1998b] also rendered these ITD variations with the frequency. [Brungart
and Rabinowitz, 1999] show theoretically and experimentally that for humans ITDs
were frequency- but not much distance-dependent. In the animal realm, frequency-
dependence of ITDs has been highlighted in many species, including cat [Roth et al.,
1980b], the Rhesus monkey [Spezio et al., 2000b], the guinea pig [Sterbing et al., 2003a],
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the Mongolian gerbil [Maki and Furukawa, 2005a], the rat [Koka et al., 2008a], and the
Chinchilla [Koka et al., 2011a]. In the rabbit [Kim et al., 2010a], ITDs decrease with
decreasing distance and with increasing frequency.

The precise coupling between the frequency- and direction-dependence of ITDs re-
mains an open question that can be addressed both theoretically for a rigid sphere and
experimentally on human acoustical recordings. Unlike the influence of morphological
and spatial parameters on I'TDs, the variation with frequency of I'TD has received signif-
icantly less attention. One of the reasons is that measuring frequency-dependent ITDs
is a tedious process. A common way to measure acoustical ITDs was the pulse mea-
surement method [Abbagnaro et al., 1975]. A signal is presented in space and recorded
at the ears, the I'TD is obtained by computing the difference of the onset-times of each
monaural recording Therefore, to compute ITDs, [Abbagnaro et al., 1975, Kuhn, 1977]
had to perform one measurement per frequency point. In contrast, modern methods
allows one to compute the complete acoustical filter in one recording [Farina, 2000,Ham-
mershi et al., 1992]. For each position in space, a pair of Head Related Transfer Func-
tions (HRTF's) (one for each ear) fully describes the acoustical transformation of sound
by the head and body. Available computational power allows nowadays to simulate
easily spherical-head HRTFs, and a great number of HRTFs [Blauert, 1997, Wightman
and Kistler, 2005a] have been measured [Algazi et al., 2001b] on humans listeners for al-
most all directions. These data afford the possibility of studying the ITD across a wide
population of subjects and conditions, while simulations of the head model provides
insight into the physical processes at play [Feuillade, 2004].

Before we turn to the developments of this chapter, it is important to note that the
definition of ITD taken here is the total time difference between the fine structures of
the monaural signal at each frequency. This is the total phase ITD, which will be noted
ITDy, it is computed by dividing the unwrapped interaural phase by the frequency, as
precisely put in Subsection 1.3.2. Much will be said as to the precise interpretation of
this ITD in the next chapter.

First I introduce classical estimates of broadband ITDs (i.e. invariant on frequency),
highlighting the acoustical hypotheses made to derive them. The spherical model is the
simplest acoustical model that accounts for the diffraction of the sound wave around the
head. This phenomenon is responsible for the variation of ITD in the low-frequencies.
Given this theoretical basis for the variation of ITD across the spectrum, we turn to
measuring human HRTF data in an anechoic setting. I expect that, consistent with
previous observations, the ITD in humans is frequency-dependent. I generalize this
result across populations of human subjects, an approach made possible by normalizing
out the contribution of morphological parameters of each subject. I then quantify the
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Figure 1.1: A Depiction of the situation: two microphones are positioned at a distance
2a of each other. A source is presented a azimuth 6, The additional path length §(6)
(green) is obtained using simple trigonometry. B ITD as a function of position as
predicted by the two-mics model. C Influence of the head radius a on the maximal
ITD (at 90°) in the two-mics model. The second row shows results of recordings made
in anechoic settings with two mics positioned 15 cm apart. D Positions reported on
E for the recordings in the two-mics setup. E Measurements of ITD, as a function
of frequency for a two-mics setup. Colored dots on the y-axis report the estimates
according to Equation 1.1.

potential computational and perceptual impact of this phenomenon, and argue that the
variation of ITD happens at two scales. Overall my results suggest that the frequency-
dependence of ITD is a ubiquitous feature of binaural acoustics, that bears worthy
information about the position of the sound source.

1.2 Models of ITDs

1.2.1 A geometrical model of ITD

A simple estimate of ITD as a function of position and head size can be inferred from
a geometrical model. This model I term the two-mics model, and it is depicted in
Fig. 1.1, A, for a source at 6 azimuth (here § < 0). It is based on the idea that
ITDs originate from the additional path-length the sound has to cover to reach the
contralateral ear, §(6) (green segment on A). Assume that the ears are two receivers
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separated by a distance of 2a where a is the half of the interaural distance, i.e. the
head radius of the subject (Fig. 1.1). It is clear that §(8) = 2 x asin(f), thus dividing
by the celerity of sound in the air, the IT D, (6) the geometrical ITD is obtained (8
in radians):

ITDeom(8) = 2 x %sin(@) (1.1)

This formula for ITD displays two interesting dependencies. First it is a sine function
of the azimuth, as plotted in Fig. 1.1 (plain green line), which means that it can be
uniquely mapped back to the azimuth of the sound source. Secondly, it includes a
morphological parameter: the head radius a, and predicts that the maximal ITD (the
ITD for 8 = 90°) is linearly dependent on this parameter, as shown on Fig. 1.1 (C,
green line). Hence smaller animals experience smaller I'TDs than bigger ones for the
same positions, which is an intuitive result.

This geometrical approach for computing the ITD is acoustically justified when some
assumptions are met. The ears are modeled as two omnidirectional point receivers in
space separated by 2a. Real microphones are not omnidirectional, let alone human
ears. Furthermore, the environment is empty of other object than a point source. This
source also is situated far enough from the receivers so that the emitted wave can be
modeled as propagating as a plane wave. In this case only, the wave front is a straight
line (as opposed to a circle centered on the source), propagating orthogonally towards
the receiver. Provided that those assumptions are met, the argument and Equation 1.1
are physically valid.

Yet, these assumptions obliterate many parameters influencing the I'TDs. Because
the ears are point receivers, there are no frequency-dependent ILD cues: informational
dips and notches in the mid to high frequencies. Here no influence of the azimuth or
elevation of the source on the monaural responses of the ears is taken into account.
Furthermore, the head is considered acoustically transparent: no acoustical energy
is absorbed or reflected away by its surface. Also, because the wave is assumed to
be planar, there is no influence of distance on the ITD. Finally, the environment is
free of any other acoustical object. This kind of environment is usually known as
anechoic, which can be achieved by covering walls with carefully shaped acoustic foam
that absorbs all acoustic energy. Because they are neutral environments, I'TDs are
commonly measured in anechoic setups, which ensures that data can be compared
across different setups. Yet, in natural environments the ITD depends on a multitude
of other environmental parameters, for example ground reflections [Gourevitch and
Brette, 2012].

Acoustical measurements confirm that under these constraints, the two-mics model
(Equation 1.1) accurately predicts the ITD. I performed acoustical measurements with
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two miniature microphones separated by d = 15¢m placed in an anechoic chamber
Fig. 1.1. The setup was common with the other acoustical measurements performed
for this project, that are described in Section 1.3. From those measurements, the total
phase I'TD, ITDy, at each frequency and position was computed from HRTF data. The
definition of ITD, can be found in Subsection 1.3.2, and it was computed according
to the method described there. E displays the ITD, as a function of frequency for
four positions depicted in D. We observe that the total phase ITD (for § = 90°, green
line) is in very good adequation with the estimates provided by the two-mics model
(colored dots on the y-axis, Equation 1.1) Namely, measured ITDs are independent on
frequency for all positions.

1.2.2 Spherical head model

Assuming a spherical model of the human head, a more realistic model of acoustical
ITDs is obtained. The head is assumed to be a rigid sphere, which reflects all incoming
acoustical energy away, and the ears lie on a diameter of this sphere. Incoming and
reflected waves interact, creating interferences and frequency-dependent effects. An ex-
ample is the frequency-dependence of ILD, which is classically explained using insights
from a spherical model. ILDs are observe to be quasi non-existing for low-frequency

sound sources (say, below 600 Hz)

Spherical head models have also been extensively studied in the context of the
ITD [Blauert, 1997, Duda and Martens, 1998, Brungart and Rabinowitz, 1999, Algazi
et al., 2001b, Treeby et al., 2007]. It is also the simplest acoustical model that accounts
for the frequency-dependence of ITD. It can be solved, using a development provided
by lord Rayleigh [Rayleigh and Lodge, 1904], providing an efficient HRTF simulation
tool. In what follows, we recall main results and intuitions about I'TD gained from the
spherical head model. A more complete development of the physics of model can be

found in Appendix 1.B.

ITDs for a rigid sphere

Low-frequency approximations Low-frequency analytic developments can be obtained
from the equations in Appendix 1.B. Keeping only the first two terms in the spherical
harmonic development of the solution (Equation 1.B.3), the low-frequency approxima-
tion of the ITD [Kuhn, 1977, Duda and Martens, 1998] is obtained for a sound source
positioned at 6 azimuth (in radian) on the horizontal plane (cases with nonzero eleva-
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tions are reported in Appendix 1.B):
ITDyx(6) = 3% x sin(6) (1.2)

This estimate has the same form as Equation 1.1, it is a sine function of the azimuth

and a linear function of head radius.

High-frequency approximations High frequency approximations are harder to obtain
because the convergence of the solution is slower in high frequencies (see Appendix 1.B)
Equation 1.B.3). Therefore one cannot rely on the first terms of the infinite series as we
did in the low-frequency case. A solution was provided by [Kuhn, 1977], formulating
the equation in terms of creeping waves. This is the classical Woodworth model of
the ITD [Kuhn, 1977, Blauert, 1997, Larcher and Jot, 1997]:

ITDyr(4) = % % [0 + sin(6)] (1.3)

This limit is best understood geometrically, wherein the computation of the contralat-
eral path is changed. The wave first approaches the sphere tangentially and covers the
rest of the path on the surface of the sphere This is shown in Appendix 1.B, Fig. 1.14,
A. The plain blue line shows 6'(9) the additional path the creeping wave travels to
reach the contralateral ear.

In Equation 1.3, for positions close to the median plane (6 < 1), we can approximate
the sine term, sin(6) ~ 6. Therefore, in this limit the equation can be put in the same
form as the low-frequency approximation of Equation 1.2:

ITDyz () = 2% x sin(6) for 8 < 1 (1.4)

Which is incidentally, the same value of ITD as that predicted in the case of a a
transparent head (two-mics model, Equation 1.1). Furthermore, the low-frequency
ITD for a given position (near the median plane) is 1.5 greater than the high-frequency
limit ITDyp:

mmgforwu (1.5)
For all positions, Equation 1.2 and Equation 1.3 provide ITDs that are larger or equal
than ITDs provided by Equation 1.1 for the acoustically transparent head. Therefore
the diffraction phenomenon overall increase ITDs, and this increase is more pronounced

in the low-frequency range, over which ITD cues dominate lateralization (below 2 kHz).
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Normalized time and frequency

Introducing a non-transparent head between the ears produces frequency-dependent
responses at each ear. Before we introduce the results, it is necessary to explain the
normalized frequency scale used to present them. The solution to the spherical model
equation, when the diameter of the head is the unit of space, is independent on fre-
guency. This means that a change in frequency translates into a change of the sphere
radius. In essence, the response of the spherical model for a given frequency and head
size (f,a) is the same as for f/2,2a and so forth. This motivates the introduction of a
normalized frequency with which to describe the results.

For a given head radius a, the “real” frequency f is linked to the mormalized

frequency f, via:
c

f=fuxf with f=_— (1.6)

2ma

Where c is the celerity of sound waves in the air (¢ = 342m.s™'), and thus f is frequency
of a sound wave having a wavelength of exactly one sphere circumpherence.

The time dimension is also scaled with respect of the head size via the speed of
sound. This means that in turn the ITD, which is a duration, will be reported normal-
ized. The “real” ITD can be obtained via the relation:

ITD, x % — ITD (1.7)

To conclude with, and ease the interpretation of the figures in the rest of this chapter,
I provide the following relations to obtain the “real” time and frequencies. Assuming
a radius of a = 10.3 cm, roughly corresponding to a human (see Subsection 1.3.2), the
folowing relations hold:

ITD, =1 — ITD:%%SOO,us

fo=1 = d=-—— ~520Hz
2ma

Variation of ITD with frequency: diffraction effects

A spherical head model was computed in the steady-state regime (as described in Ap-
pendix 1.B), so as to assess the physical origin of the variability of I'TD across frequen-
cies. The results of I'TD, computation on this model (according to Appendix 1.B) are
reported on Fig. 1.2, B, for a range of positions to the left of the subject (6 > 0). ITD
estimates from the equations in the previous section are reported and consistent with
the I'TDycomputed in high and low frequencies. At all positions ITD; is dependent on
frequency, showing a decreasing trend between the two spherical estimates on B. The
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Figure 1.2: Acoustical origin of the binaural cues in a spherical head. The first row
shows ITD,, and ILD, computed for 10 positions between 0 and 90°(color code on A).
B: normalized ITD, as a function of f, a different positions. The position § = 90°,
simulated in the bottom four panel is thicker. C ILD as a function of normalized
frequency at the same positions. Panels D through G: the left column shows the
differences in time between the transparent and spherical head models (see text) and
the rightmost panels show the differences in level. The first row (middle row) is the low
frequency case with f, = 0.2, and the last row is the high frequency case with f, = 2.
D additional phase, f, = 0.2 E additional gain, f, = 0.2 F additional phase, f, =2 G
additional gain, f, = 2
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roughly sigmoidal shape of the curve is quite consistent across positions, as well as the
frequency at which it transitions.

In addition to computing ITDs for a rigid sphere, I modeled the acoustical field near
the head of the subject ( [Feuillade, 2004] and Appendix 1.B. This helps to understand
the acoustical phenomena at play, by comparing the simulation to predictions made in
the absence of a head. We report the additional phase delay and additional gain that the
wave undergoes at each point in space (and two frequencies), relative to the situation
with a transparent head (the incidence field in Subsection 1.B). These differences are
reported for two normalized frequencies 0.2 and 2 (bottom and middle rows), in time
on the left panels and in level on the right panels. Perhaps this is better understood
in gain, the plots E and G show the gain difference of the wave at this point in space
when the sphere is present versus when it is absent. When it is positive, it indicates an
increase in intensity due to the present of the head, as on E, at the left ear. Conversely,
positive values of the additional phases reported on D and F stand for an advance in
phase, and negative values a delay in phase. Note that advances in phase are possible
only because the acoustical pressure field are computed in the steady-state.

On Fig. 1.2, C I show the ILD in decibels computed for a spherical model across
frequencies and for various positions (A). As expected, the ILD is almost zero in low
frequencies. This is because the head does not shadow the incoming wave. When
simulated in the field near a spherical head, on Fig. 1.2, E, one can see that the difference
with respect to the two-mics case is null. In high frequencies, on the contrary (G), the
wave is shadowed and hence the level at the contralateral ear is greatly reduced. On
Fig. 1.2, G, the field displays the so-called “bright spot” [Duda and Martens, 1998], the
wave pressure is higher for positions completely opposite to the sound source. This is
justified by the fact that the waves travelling around the head always arrive in phase
at this point, creating constructive interferences.

As for ITDs, in high-frequencies (Fig. 1.2, F) the phase of the at the contralateral
ear is lagging, which is consistent with any explanation based on acoustical rays (e.g.
the two-mics model). At the ipsilateral ear, in high-frequencies (F), there is no no-
ticeable difference, because there is no reflection on the surface of the sphere. When
the frequency is lowered (D), diffraction comes into play: the incoming wave now is
in advance of phase at the ipsilateral ear. At the contralateral ear, the situation ap-
pears similar in the two frequencies considered. Therefore, the ispilateral advance in
phase creates the additional ITD in the low-frequencies in the spherical model. This is
confirmed by the more detailed development of the spherical head model provided in
Appendix 1.B.
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Morphological parameters

In a spherical head model, the only morphological parameter of interest is the sphere
radius a. It is the only space constant of the model, and it influences at which fre-
quencies diffraction effects will start to play an important role. On Fig. 1.3 the ITD
and ILD curves are shown for the same position but two different simulated head sizes,
a = 10cm for the green curve and a = 5¢m for the blue curve. The ITD is an in-
creasing function of head size, because both the high frequency and the low frequency
ITDs are higher for a bigger head (A). This relationship is linear, as shown on C where
the low and high frequency estimates are recalled. Additionally, the size of the head
changes the frequency at which the binaural cues transition from they low-frequency
to high-frequency regimes. It is especially obvious from the ILD plots on B: the ILD
curve for a bigger head is not merely a vertical stretch of that for smaller heads, it is
rather a translated version of it along the frequency axis. Note that in our case, it is
not a perfectly translated version of the ILD curve, because the source was modeled
as coming from a source at a finite distance, in this case the ILDs in low-frequency

increase, which is a cue to distance in for close sources [Duda and Martens, 1998].

The fact that binaural cues scale with frequency when the head size varies is not
surprising from the physics of the model. An interesting measure of an ITD curve in this
respect is the frequency of transition between high and low regimes of propagation. This
transition starts to occur in the vicinity of f, = 1, yet from Fig. 1.3, A the frequency of
maximal ITD; variation is in general closer to f, = 2. Irregardless, the real frequency
at which this transition occurs will be proportional to f (i.e. f, =1). The dependence
of f on head size is plotted on D of Fig. 1.3. The frequency at which the I'TD transitions
between its low and high frequency regimes is proportional to f and thus, it is lower in
animals with bigger heads. Finally, in all cases the transition frequency is well within
the range in which the ITD is a dominant cue to sound source azimuth. For human
listeners f ~ 600 Hz, well below 1.5 kHz [Brown and Duda, 1998b, Wightman and
Kistler, 1992], Fig. 1.3, D. It also holds for other animals: e.g. cats have heads that
are roughly twice as small as a human’s, their transition frequency is of about 1200Hz.
This is also in the range where cats use ITD cues for localization [Grothe et al., 2010].

I will now show the results of acoustical measurements on humans to show how these
insights hold for acoustical data. Because human heads are reasonably approximated
by a sphere, it is expected that the transition frequency between high and low plateaus
in humans also variesd with head size. Therefore, when averaging across subjects,
the head-size dependence of the ITD will add biases, and should be accounted for. I
describe a method to do so and then turn to the presentation of the results.
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Figure 1.3: A Two ITD vs frequency curves simulated on a spherical head model for
the position at 90°. The blue curve is for a model with head radius a = 6cm and the
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model B The ILD vs frequency curves in a similar situation as on C Both the low and
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Figure 1.4: Measuring human HRTFs. A Depiction of the situation, the goal is to
measure the two acoustical filters HY and H®. B Depiction of the signal path in the
experimental setup

C Picture of a human subject in the anechoic chamber.

1.3 Methods

We first explain the experimental apparatus used to measure human HRTFs in Sub-
section 1.3.1, then we turn to the HRTF database analysis in Subsection 1.3.2.

1.3.1 Measuring human HRTFs

We need to measure two acoustical filters per position of the sound source, one for
each ear (Fig. 1.4, A). The method used was largely based on the aparratus used to
record the IRCAM LISTEN database [Database, 2002]. The signal path is depicted
on Fig. 1.4, B. Microphones are placed in each of subject’s ears and a probe sound is
played through a speaker at a given position. The two filter responses (one for each
ear) are then processed out of the probe sound and the sounds recorded at the ears, and
constitute the HRTF at that position. The same process is repeated for every position
of interest while keeping the subject seated still (Fig. 1.4 C). On this picture, the crane
is in position for measuring a low elevation, while the subject has the speakers to his
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left.

The method introduced by A. Farina [Farina, 2000] was used to measure the acous-
tical filters. It is based on exciting the system with and exponential sine-sweep, and
deconvolving the excitation signal out of the recorded responses. More details is pro-
vided in the appendix Appendix 1.A, in what follows we provide description of the
recording apparatus and then the useful definitions and notations.

Recording apparatus

Subjects were positioned in an anechoic room at IRCAM in Paris, depicted on C of
Fig. 1.4. The room was designed to fit a concert piano, with wall-to-wall dimensions
of 8.1 x 6.2 x 6.45 meters, which is plenty for a full HRTF recording setup. The walls
are covered by 1.1 m thick glass wool wedges, which absorbs sound waves above 75 Hz,
sufficient to ensure anechoicity.

Three speakers are arranged on a crane so that they face the subject from three
positions separated by 5°degrees in azimuth (at 0 elevation). They were positioned so
as to be at 1.95 meter from the subject. The subject was seated on a rotating platform,
to measure horizontal positions the subject’s chair is rotated. The crane supporting the
speakers (white foam on Fig. 1.4, C) moved around a horizontal axis, and was rotated
so that the speakers were at different elevations. It could reach from the lowest position
-40°elevation to the apical position (90°elevation). The crane was carefully weighed to
avoid using motors to stabilize it and hence produce noise.

The initial position of the subject relative to the system was set manually using
lasers. Two lasers pointed from the crane supports so as to indicate the horizontal axis
of rotation. The crane’s horizontal rotation axis matched the intaraural axis when the
subject was in position facing the speaker at 0°azimuth. A third laser pointing down
indicated the center of rotation of the support.

Miniature, custom-made microphones were placed in a mold fitted to the ear.
Recordings are thus in a blocked-meatus setting. The signal was first amplified by
a specialized amplifier circuit (as in [Database, 2002]). This was done inside the ane-
choic room in order to get the signal strong enough to be carried all the way to the
outside workspace Fig. 1.4, B.

The computer was connected to a RME Fireface 800 which received amplified signals
from the microphones. Those signals were recorded by the computer using Max MSP
and analyzed through various Matlab scripts. Max/MSP also controlled the movement
of the turntable and crane between each recording. Recordings were performed at 24 bit
resolution and 44.1 kHz sampling frequency for 16384 samples. They are compensated
for the response of each of the three individual speakers, by measuring the “bare”
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Figure 1.5: A depiction of the coordinates system used for sources in the horizontal
plane. Positions are referred to with azimuths 8 between -180°and 180°. By convention,
positive azimuths produce positive ITDs (blue part of the circle), and conversely (green
part of the circle.

response between the speakers and a microphone placed at the origin of the coordinates

space.

1.3.2 HRTF database analysis

In this section I describe the analysis method used to exploit ITDjdata across sub-
jects and databases. I explain briefly the way the total phase ITD,was computed on
each pair of HRTF for a given position, then present the additional publicly available
HRTF databases used. Finally I describe the method that was used to compensate the
morphological parameters influencing the ITD data.

Definition of the total phase ITD

Several definitions of the ITD exist (e.g. the interaural group delay, ...) and are
discussed in depth in Chapter 2. Throughout this manuscript, ITD will corresponds
to the total interaural difference in fine structure, that is the total phase delay ITD;.
Given a couple of HRTF files for one position, H- and HE, I'TD;, as function of frequency
is defined from the Interaural Phase Differences (IPD). Notice that, ITD, and IPD are
defined in such a way as to be positive when the azimuth of the sound source 8 itself
is positive, as shown on Fig. 1.5.
The IPD for a given position is the phase difference of the two monaural filters:

IPD(6, f) — 217r <m> (1.8)
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Where the notation (.) is the phase operator that returns the phase in radians. Here,
the IPDs are expressed in cycles, whithin the range IPD €] — 0.5,0.5]. From this, the
total phase ITD is defined as

U(IPD(6, f))

ITD,(6, f) = =

(1.9)
Where U(.) is the unwrapping operator. On a set of discrete measures of IPD, (I PDy)
arranged by ascending frequencies, it replaces any absolute jump greater than half a
cycle, that is App = |[IPDy — IPD; 4| > 0.5 by its complement IPD, = IPD;, —
sgn(App), where sgn is the sign (+1 or -1) of App. This effectively unwraps the
phase information that is returned by the Fourier transform.

Raw Impulse Responses (IRs) measured in the experimental setup are first trimmed
to a smaller size. This is done by locating the maxima of each impulse response, and
taking a fixed-length window around it. This allows for removal of parts of the IR that
does not contain any meaningful information. The IPD is then computed out of the
pair of HRTF in the frequency domain. The phase of the ratio of the two HRTFs at
any given location is the IPD, which is converted to cycles and then unwrapped. The

total phase ITD is finally attained by dividing by the frequency.

Estimates of low frequency ITD, high frequency ITD, transition frequency

For each position recorded in the HRTF dataset under study, the total phase ITD, ITD,
was computed at all frequencies between 400 Hz and 5 kHz. From these computed ITD
curves, statistics are reported, to estimate the range of variation of the function between
the low and high frequencies, and the band in which this transition happen.

The low- and high-frequency ITD estimates in the data, ITDyrand ITf)HFfor each
position are computed as averages of ITD,( f) over a given normalized frequency range.
The ITDris the mean of the normalized averaged ITDs between the frequencies f, =
0.5 and 0.6 (260 Hz and 320 Hz for the average head). The ITDypis the mean of the
normalized averaged ITDs between the frequencies f, = 7 and 8 (3700 Hz and 4200
Hz for the average head). In the Results section I take the difference and the ratio of
those two quantities to quantify the magnitude of the I'TD variation.

Another interesting measure of the ITD,(f) function for a given position is the
transition frequency, that is the frequency at which the ITD transititions from the
low to the high frequency regime. To estimate this quantity in the data, I define the
transition frequency fi..nas the frequency at which the ITD, is equal to the mean of

its high and low frequency values, ITDprand ITDyp. The transition frequency is the
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Database Fg N, Ng Ay N Room type

LISTEN (previous recordings) | 44.1 kHz 8192 15° ~15° 49 Anechoic

LISTEN (present project) 44.1 kHz 8192 5° ~15° 35 Anechoic
CIPIC 44.1 kHz 200 ~10° 5.6° 36 Anechoic
ARI 48 kHz 2400  5° 10° 10  Semi-anechoic

Table 1.1: Overview of the different databases from which ITDs have been extracted.
For each database, Fs: sampling frequency. N,: length of the head-related impulse responses
in sample. Ay, Ay : approximate spatial resolution in azimuth and elevation. N,y;: number of
subjects from each database that have been used in the present study. The LISTEN database
is made of the 49 subjects freely available on the IRCAM website and of 35 subjects that
have been measured later using a setup with an increased spatial resolution in azimuth (for this
specific project). Measurements for the ARI database have been performed under semi-anechoic
conditions and because of measurement artifacts, only 10 subjects have been retained and the
spatial resolution in elevation has been decreased to 10°.

frequency at which an ITD closest to this intermediate ['TD:
ftran(e) — argmianTDp(f’ 9) - ITDintermediate|
Where the intermediate ITD is defined as a function of the HF and LF ITDs:

1p . )
ITDmia = 5 [ITD1p(6) + ITDrp(6)] = ITDp(£iran, 6)

Databases under study

In addition to the recordings performed for the specifics of this study, the same anal-
ysis was conducted on publicly available HRTF databases, listed in Tab. 1.1. Those
databases are the CIPIC [Algazi et al., 2001c], ARI [ARI, 2010], and LISTEN databases
[Warusfel, 2002] (the setup of which was used to performs the recordings specific to
this study). To compensate for different temporal sampling rate, the ARI impulse
responses were downsampled to 44.1kHz, this samplerate was used throughout the
analysis. Compensating for the different spatial samplings of each database was a
somewhat more complicated issue. First, measures of interest were obtained separately
on each database’s spatial grid. Those measures were then spatially interpolated to a
common grid, corresponding to the LISTEN database (present project, Tab. 1.1). This
interpolation was performed using a nearest-neighbor approach, no special care for the

circularity of both azimuth and elevation measures was taken in this process.
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Morphology normalization

Thanks to insights from the spherical head model explained in Subsection 1.2.2, the
shape of the ITD curves for one position should vary across the population of subjects
in two ways. Extremal ITDs in HF and LF should scale with the head size, and the
transition frequency with the inverse of the head size. Thus, to compare the direction-
and frequency-dependent I'TDs extracted among the different listeners it is necessary
to normalize frequencies and ITDs with respect to listeners morphological parameters.

In the spherical head model (assuming ears lie on a diameter) the only morpho-
logical parameter that is necessary to compensate for morphological differences is the
spherical head radius a. The real spherical head radius can be measured on the human
directly, but it is not available in some of the databases under study here (Tab. 1.1). In-
deed, human heads are not spherical but more or less ellipsoidal [Duda et al., 1999a, Jo
et al., 2008], an “equivalent spherical head radius” is then needed for normalization
purposes. This equivalent spherical radius is estimated from the acoustical data itself.
In this project it was done by minimizing, in a least square sense and over the whole
sphere, the difference between high-frequency ITD in the data ITDypfrom the Wood-
worth high frequency approximation (Equation 1.3). This procedure was inspired by
the one proposed by [Algazi et al., 2001b].

When applying this procedure to the HRTF's of the 130 listeners of the databases of
Tab. 1.1 a mean equivalent spherical head radius of 10.3 cm with a standard deviation
of 0.6 cm are obtained. The obtained mean value is higher than the mean value of
8.7 cm reported by [Algazi et al., 2001b] among 25 listeners, and commonly used in the

literature.
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1.4 Results

1.4.1 ITD as a function of frequency in humans
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Figure 1.6: Means (solid line) and standard deviations (Grey area) of normalized ITDs.
A ITD,o in the horizontal plane (and frontal positions). B ITD,, in the upper in-
teraural plane (the vertical plane containing the interaural axis). All data is averaged
over the 130 listeners of the different databases for the frontal horizontal plane and
in the upper interaural plane. The x symbols stand for the low-frequency approxima-
tions ITDyr calculated using Equation 1.2. The e symbols indicate the high-frequency
approximations [TDyp calculated using Equation 1.3.

Following morphological normalization, the frequency- and direction-dependence of
the obtained ITDs can then be analyzed across the populations in normalized values.
Means and standard deviations of the normalized ITDs averaged over the 130 listeners
of the different databases for the frontal azimuthal plane and the upper inter-aural
plane are presented in Fig. 1.6. The x and e symbols on the panels show the theoretical
predictions provided by Equation 1.2 and Equation 1.3. Recall that the high frequency
estimate was used for the morphology normalization, and is therefore necessarily a
good fit to the data . The low-frequency approximation ITDrr (calculated using the
radii fitted on the high-frequency ITDs) Equation 1.2) is reported, and is a good fit
to the low-frequency ITD regime. This suggests that the normalization mechanism,
based on the spherical model, does not fail to account for the increase in ITD in low
frequencies. For comparison, the exact same analysis was performed on HRTF's modeled
from the spherical head model. The result of this analysis is reported in Appendix 1.B.5
(Fig. 1.15).
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Standard deviations associated with the normalized ITDs averaged over the 130
listeners are very small (Fig. 1.6, shaded area), of the order of tenth of microseconds.
This validates a posteriori the use of the “equivalent head radius estimation” of Sub-
section 1.3.2 and of the normalization procedure. Furthermore, the standard deviation
at each frequency (here about 0.2 normalized ITD, 60 us for the average subject) are
smaller than the variation of the ITD across freuqency (1 normalized ITD, 300 us for
the average listener).

The variation of ITD observed across the spectrum for each position on Fig. 1.6,
A is consistently bigger than would be attributable to noise. Indeed, the difference
in high and low frequency ITDs relative to the standard deviations across subjects is
large. Therefore, the variation of I'TD observed in our data cannot be attributed to
noise, and are robust to individual variations of head shape.

1.4.2 ITDs at low- and high-frequencies

The ratio and the difference in the low- and high- frequency ITDs (ITBLFand ITBHF)
are reported for positions in the horizontal plane on A of Fig. 1.7.

The difference in high- and low-frequency ITDs in the data has to be understood
relative to human perception. A measure of the ability of humans to discriminate
sounds with different ITDs is the Just-Noticeable-Difference (JND) (see Chapter 9 for
the psychoacoustics of ITD processing). This measure gives the smallest ITD that
humans can discriminate in binaural sounds. The JND for ITD discrimination by
human listeners is of about 20us [Mossop and Culling, 1998, Akeroyd, 2006]. The
difference in LF and HF ITD reported in Fig. 1.7 is in units of JND, that is 1 JND
= 20 wus. Therefore, when the ITD difference reported is bigger than one, then it is
detectable by humans. For most azimuth, the ITD difference is of several JNDs with
a mean of 5.63 JND (standard deviation = 2.17, and 5.53 JND, std = 2.4 on the
full sphere). In the bright spot, around 110°, the ITD difference is minimal Fig. 1.7.
In fact, ITDs at those positions are roughly constant, even though the histogram on
Fig. 1.7, B shows that the I'TDs are bigger than 2. Overall, these results suggest that
the ITD variation across frequencies is of sufficient magnitude over the whole sphere to
be discriminated by human subjects.

On Fig. 1.7, C, the pattern of ITD differences is plotted for all azimuths and ele-
vations. It can be noticed that the ITD difference is not centrally symmtric around
90°azimuth, as predicted in the spherical head model Fig. 1.15. Rather, the cones of
confusion are distorted and centered around a position at 115°. This azimuth corre-
sponds to the ear position, and thus the I'TD is constant when the source is facing the
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Figure 1.7: Mean ratios and JND-normalized difference between the low- and high-
frequencies ITDs. A The ratio (blue curve) and JND-normalized difference (black curve)
between high and low frequency ITDs are reported for all positions on the horizontal
plane. Differences can amount to up to 10 JNDs for the intermediate positions (around
60°and 150°). B Histograms of the average ratios and differences over the full sphere
(from -20°to 80°elevation and one side). C and D show the average ratios and differences
as a function of azimuth and elevation. Notice that the expected symmetries are not
quite respected (front/back and up/down).
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ear. The relative brak of symmetry can also be attributed to the contributions of the

shoulders and of the torso.

As opposed to the I'TD difference, the ratio of low- to high-frequency I'TDs provide
a measure of ITD independent on the head size. The ratios are presented on Fig. 1.7,
at elevation 0°on A and as a function of azimuth and elevation on D. This ratio is
maximal for positions around 60°and 140°, where the low-frequency ITD is 60% bigger
than the high-frequency ITD. On average, the ratio is 140% (std = 14 %), and minimal
when sound source points at the ears (azimuth 115°). This is also reflected on the
histogram of ratios reported in Fig. 1.7, B. The LF/HF ITD ratios, when observed
across elevation and azimuth Fig. 1.7, D is quite close to the predictions of the same
measure in a spherical head (Appendix 1.B.5), with the noticeable difference that the
symmetry is displaced around the ear (100°azimuth). These data suggest that in all
instances the low-frequency ITD is bigger than the high frequency ITD by 40 % on
average (over the full sphere).

1.4.3 Transition between low- and high-frequencies

The frequency band in which the transition from low and high frequency regimes is
especially important because in this zone the ITD varies strongly with frequency. In-
deed, in the low and high frequency regimes, the I'TD plateaus and therefore can be
said to be constant I'TD. In particular, if the transition frequency is well outside of the
range where I'TD is a dominant cue to sound source azimuth, then it cannot be argued
that the variation of ITD is relevant to perception.

The transition frequency that is the frequency at which ITDs switch from their
estimated low frequency value to their high frequency one, are examined here on
the databases of human HRTFs. Normalized transition frequencies have been com-
puted from the averaged normalized ITDs using Equation 1.3.2 (described in Subsec-
tion 1.4.2). They are reported on Fig. 1.8, A, as a function of azimuth and elevation,
and B on the horizontal plane. Consistently with the spherical model, transitions be-
tween low- and high-frequency averaged normalized ITDs occur always for normalized
frequencies larger than 1. Furthermore, for normalized transition frequency appears to
be direction-dependent in a way that is qualitatively similar to the theoretical predic-
tions (Fig. 1.15). Dormalized frequency increases as the source is moving away from
the median plane, up to an azimuth angle ~ 70° where a maximum value fi., ~ 2.8
is reached Fig. 1.8. Normalized frequency then decreases and a minimum value is ob-
tained for positions close to the ear position (115°). Overall, the transition frequency

is well within the range in which humans are known to rely on ITD for azimuth sound
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localization, consistently below 1.5 kHz Fig. 1.8, B.

1.5 Discussion

I have shown that for human listeners, the ITD cues are different for sounds with
different frequency content at the same position. This tendency is broadly consistent
with predictions based on a spherical head model. To some extent, this analogy is
limited for some regions of space, by the fact that several minor breaks of symmetry
and the positioning of the ears influence ITD. Also, the head is ellipsoidal, rather
than spherical [Duda et al., 1999a]. Yet, the spherical model-inspired morphology
normalization allowed me to show that the magnitude of variation of the spectrum is
on average of several JNDs, and that the variation occurs below 1.5 kHz. I argue that
the variation of ITD are relevant to human perception on two scales, For any given
position, ITD in high-frequency and low-frequency sounds are different. For a given
sound with a sufficiently broad spectrum, or within a cochlear channel, the ITD is in
fact also significantly variable.

1.5.1 Global variations of ITD
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Figure 1.9: A ITDs as a function of frequency for three positions, one human subject
(main author, new recordings). Positions plotted are 90°, 60°and 30°azimuth. B ITD
as a function of frequency for three positions, same subject. Because recordings are
spaced 5°apart, the curves are vertically quantized. C show HF and LF physiological
ranges

The frequency-dependence of I'TD means that a given ITD value signals different po-
sitions depending on the frequency content of the source signal. On A of Fig. 1.9 we
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show example ITD curves for one human and three positions in the horizontal plane.
If we were measuring an ITD of 700 us, on a bandlimited signal of 500 Hz, we would
conclude to a position of 60°. But if we were to measure it at 1500 Hz, then the ITD
would signal the position 90°. Using multiple recordings on the azimuthal plane we
can reconstruct the function that gives the signaled position as a function of frequency
for a given ITD value. This is reported on B of Fig. 1.9

It has been argued in the literature that the frequency-dependence of the I'TD was
not meaningful to the lateralization of sounds, we review those studies in the next
section. We argue that this cannot, logically, be the case because of the property high-
lighted in Fig. 1.9 The binaural system has to somehow take into account this variation
of I'TD across frequency in order to produce a consistent perception of azimuth. If it
didn'’t, it would mean that in the high frequencies sounds at 90° would be perceived

closer to the midline (this prediction is tested in humans in Chapter 10).

Because of the tonotopicity of the auditory and binaural system, the problem of
taking into account the frequency dependence of ITDs is not hard to solve. In most
animals, mammals and bird alike, there exists populations of neurons that are sensitive
to the ITD presented to the animal. This is also done in a tonotopic way, that is
arranged in frequency bands, and each cell only is excited by a small part of the
spectrum, centered around its Center Frequency (CF). In sum, each neuron has a
preferred frequency (the center of the neuron’s passband), and an ITD selectivity curve,
of which the Best Delay (BD) is the maximum.

Those populations of neurons have been for a long time assumed to represent col-
lectively the cross-correlation of the inputs (see, e.g. [Colburn and Durlach, 1978]). A
common problem is to estimate the position of the sound source from th activity of
such a population of cells, the binaural display [Joris and Yin, 2007] Amongst those
models, the lateral-image model [Stern et al., 1988] provides a mechanism in which the
position of the sound source is read out using a the weighed activity of the population.
The relevant weight component in their model to our problem is the straightness of
ITD. The authors argue that the neurons that represent the same I'TD across different
frequency bands should be weighed together. The argument is that a stimulus evokes
a consistent ITD over its spectrum, which may encompass many cochlear filters. This,
as we show in this chapter is actually not the case, indeed, even in anechoic settings
the ITD for a given position is not constant. In the framework of [Stern et al., 1988],
the meaning of straightness can be modified to account for our findings: the weighing
should be done according to the consistency of ITDs across frequency bands with the
ITD vs. frequency curve of a given position. Therefore, taking into account the

global frequency dependence of ITDs in the usual view of binaural hearing is just a
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matter of changing a the “wiring” between successive layers of neurons.

1.5.2 Local variations of ITD

In the previous section we have shown that the ITD varied across frequencies, with
on average two plateaus and a transition. We have shown as well that because of the
tonotopy of the binaural system, this feature can be quite naturally incorporated in
neural models of the perception of sound. It could be argue that in the low and high
frequency regimes the ITD is roughly constant, at least over the width of a human
cochlear filter, or a neuron’s frequency tuning. But as is clear from Fig. 1.8, the
transition between those two regimes always occurs well inside the range where ITD
is a dominant cue to localization [Wightman and Kistler, 1992]. Hence it is likely
that ITD is best understood as being variable even at the scale of a single neuron.
To quantify this, the difference in ITDs over bands of frequency was measured on the
human data. A sliding passband with Q = 3 was used, and the difference of the two
ITDs at the edge of the band is plotted on Fig. 1.10, A as a function of the center
frequency of the band. This graph illustrates for a few positions (black lines) the ITD
extent, that is the amount to which ITD varies over a third octave band centered on
this frequency. The right axis provides the ITD in time units. The variation of ITD
over this small bandwidth is quite big, of the order of 30 us, (C and D), and can reach
a hundred microseconds around f, = 1, that is 600 Hz in humans.

Therefore, in some frequency bands, the ITD varies significantly even within the
bandwidth of a single auditory filter. This effect could be boosted by effects of the
environment. A recent study has shown that the environment could have a great
effect on the ITD, and specifically on the magnitude of its variation across frequencies
[Gourevitch and Brette, 2012]. The fact that the ITD depends locally in frequency
implies that each monaural filter has a non-constant total phase delay. This kind of
delays is not trivial to understand, and introduce phase-distortion in the signal. This

point is specifically adressed in the next chapter of the dissertation.
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Figure 1.8: Transition frequency between the low- and high-frequency ITD regimes
and local variations of ITD. For humans and all positions reported before, the transition
frequency is color coded on A. Notice that similarly to before, the up/down front/back
symmetries are lost. The transition frequency on horizontal plane positions is plotted
as a function of azimuth on B, which emphasizes the lack of front/back symmetries.
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Figure 1.10: Variation of ITD in a cochlear bandwidth. The variation of ITD across a
third-octave bandwidth is shown for a few positions on A. A discussed, the ITD varies
broadly over the bandwidth of a single cochlear filter, especially around the normalized
frequency equal to 1-2. B Histograms of the I'TD extent as measured on third octave
band, top panel reports the normalized ITD values and lower panel the ITD value in
microseconds.
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1.A Measuring filter responses: deconvolution

Many methods have been devised in the signal processing field to characterize the
transformation imposed by a system. Especially in the audio field have those measures
been critical, for example to ensure a proper response of audio recording or rendering

systems, but also the acoustics of a room...

Such measurements generally consist in recording the response of the system to an
excitation stimulus s(t), the system can then be characterized by comparing the output
y(t) to the input. Consider the system on figure 1.11, we are interested in finding the
system response h. In the case of linear, time invariant systems, this task only requires
the measure of an impulse response (see, e.g. [Oppenheim et al., 1999]), that is the
response of the system to a Dirac function. As an illustration, a method that is still
widely used in the field of concert hall acoustics consists in recording a pistol shot. The
pistol shot indeed has a wide band of energy concentrated at a time point, much like
a Kronecker delta function. Another method (used in [Kuhn, 1977]) it to measure the
response of the system to pure tones at various frequency points. Obviously this is a

very time consuming endeavor.

But more sophisticated methods have been developed over time. The Maximum
Length Sequence (MLS) method used a pseudo random, spectrally flat stimulus that
has a delta-like autocorrelation. Cross-correlating the output y(¢) with the excitation
signal s(t) yields the response of the system. This method is tedious to use in practice,
as the MLS excitation stimulus has to be quite long for the approximation of the auto-
correlation is Kronecker delta. It also requires precise synchronization of the excitation
stimulus and the response recording. Furthermore, if one wants to compute the non-
linear part of the response of the system, one has to make another set of recordings,
for example using Time-Delay Spectrometry. This method was used in the context of
binaural recordings in many instances, see e.g. [Koka et al., 2008a, Tollin and Koka,

2009c] for recordings in animals.

The method used here was developed by A. Farina [Farina, 2000]. It relies on a
logarithmic frequency sweep as an excitation signal. The excitation signal can then be
deconvolved out of the response of the system. The probe stimulus used was an 8192
samples long upward logarithmic frequency sweep at 44.1 kHz sampling frequency (or
192 kHz in the case of animals). This signal was then deconvolved out of the recorded

response so as to extract the impulse response of the filters.

This method has been shown to be robust to jitter between the excitation and
recorded stimulus, and provides a fast measure of the impulse response of the linear
part of the system. Also, because the energy is spread out over time this method allows

50



excitation signal s(t) system y(t) .
. response signal
(swept sine) ? h i
B C
T T 15
3 3
> >
2 2 10
() ()
=] =]
O O
g g 5
[T [T
0 10 200 0 100 200
Time (ms) Time (ms)
D
s(t) y(t)

[time opposition]

s(~t) I_[

convolution }

]

- 0 100
l trim + pad l Time (ms)

h) o1 3 5 4 5 e
Time (ms)

Figure 1.11: Depiction of the deconvolution process. A Shows the system under study.
A signal s(t) is fed through the system with impulse response h. The output signal,
y(t), in our case the signal at the ear is recorded. B The excitation signal is an upward
ramping sine sweep with exponential instantaneous frequency. C The recorded signal
is almost the same signal as in B It is only sometimes visibly attenuated at some time
and space points. D Schematics of the deconvolution process. Because the sweep’s
autocorrelation is a Dirac function the cross correlation of the excitation signal and the
response signal is an impulse. This impulse response is then trimmed to retrieve the
linear part of the response of the filter.
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to output the sound through loudspeakers with minimal artifacts due to non linearities.
It is even possible to obtain a sequence of impulse responses one for each harmonic
distortion order. This information can be used to completely identify a subclass of
non linear systems, as shown in [RBillat et al., 2011]. But in our case, because the
head is a passive acoustic object, we can safely consider that the system is linear. The
nonlinearities observed have to arise from the rendering (loudspeakers) or recording
(microphones, amplifier) apparatus, which were already assessed [Database, 2002] on

the same recording setup.

1.B Spherical model

The problem is that of the scattering of a planar sound wave by a rigid sphere centered
on the origin? In this section I provide the solution to this problem in the steady state
for spherical coordinates and derive the estimates of the ITD shown in the main text.
Also, I explain how the contribution of the spherical head to the acoustical field can be
assessed by computing the diffracted and incident fields separately, as done in Fig. 1.2.

The problem of the scattering of the sound field by a sphere was first solved by
Lord Rayleigh [Rayleigh and Lodge, 1904], in the beginning of the XX'* century. The
same formalism was then developed by many authors, [Wiener, 1947] provides the first
recordings on crafted wooden balls that experimentally validates the model on rigid
spheres. Then [Anderson, 1950] provided the modern formulation of this problem in
the context of sound scattering of small animals in marine acoustics. Spherical-head
models based on rigid spheres have been widely used in the literature in order to study
acoustical localization cues. Among the first studies showing the variation of I'TD across
frequency for a given position, [Abbagnaro et al., 1975, Kuhn, 1977] both relate this
phenomenon to the spherical head model and diffraction effects. The latter provides
the well known ITD estimation in low frequencies Equation 1.2 (which is derived here).
Interesting developments of the theory of the problem of the scattering of the sound
waves by a sphere can be found in [Morse and Ingard, 1968, Bruneau, 2010].

1.B.1 Notes about incidence angle and spherical coordinates

In general, I will be working in standard spherical polar coordinates (Fig. 1.12). A
point is identified by its distance to the origin, the radius r, and two angles between
—m and 7w. The azimuth 6 and the elevation ¢. In the main text, only the horizontal
plane is considered, in which case ¢ = 0 all the time. The left of the subject is at

azimuth 8 = 7 and the right at § = —.
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Figure 1.12: The spherical coordinates system used in the acoustics part. A The
standard spherical coordinates used in this part. The subject faces along the x axis.
B A planar wave is incident on a sphere centered on the origin. The points on the
green circle all have the same pressure values because of the rotational symmetry of
the problem. The only spatial variables of interest are the incidence angle 8 and the
radius r.

The problem of the scattering of a planar wave by a rigid sphere is invariant under
rotation around the axis of propagation of the sound wave. This means that in planes
parallel to the wave front, all points on circles centered on the projection of the sphere
have the same pressure (green circle, Fig. 1.12). This means that in essence, only the
angle to any vector to the green circle on Fig. 1.12 with respect to the axis sphere-
wavefront are relevant to the computation of the sound field. Hence one introduces the
incidence angle B (Fig. 1.12, B), which is related to the azimuth and the elevation by
the following formula:

B = arcsin {cos(¢) sin(8)} (1.10)

1.B.2 Acoustical pressure field for a planar sound wave
In Cartesian coordinates

Let us assume that there is a harmonic source emitting a sound in the direction z — oo.
Further, I assume that the wave is planar and propagates along the x-axis. Therefore,
the wavefront is a plane orthogonal to the x-axis, and all points on the plane have the

same pressure values. I compute the incident pressure field, that is the pressure field
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in the absence of a sphere, due to a planar incoming wave. p;(z,t) expressed in complex
notation, reads:

wt

pi(z,t) = po x €% x e

The physical pressure field p is obtained by taking the real part, 7 = R{p}. The wave
number, k, which has the unit of the inverse of space is introduced:

_2rf

k=
w/c .

(1.11)

1 and

Where c is the speed of sound propagation in the atmosphere ¢ = 340m.s™
2= -1

The above expression is simple because I am assuming that the sound source was
originating from a particular coordinate axis. When describing situations in which the
incident wavefront has varying directions, the solution to the wave equation has a more

complex formulation.

In spherical coordinates

The problem is that of computing the acoustical pressure field from an arbitrary inci-
dence direction defined by an incidence angle g and a modulus 7 (as in Fig. 1.12). The
incident pressure field in spherical coordinates p;(r, 8), can be decomposed on a basis

of spherical harmonics (see, e.g. [Bruneau, 2010]):

[ee)

pi(r, B) = po zjoz”(%, + 1)7.(kr) P, [cos(B)] (1.12)
Where P, [.] are the Legendre polynomial of degree n, and j, (.) the n'® order spherical
Bessel function. The multiplicative term p, is the pressure amplitude of the source.
This is the textbook expression for a planar wave in spherical coordinates, it assumes
that the source is at infinity, but this can also be included in this analysis (see [Duda
and Martens, 1998]).

1.B.3 Expression of the pressure field diffracted by a sphere

When a sphere scatters the sound, it can be modeled by assuming that the total pressure
field p is the sum of an incident field p; and a diffracted field py (also called scattered
or reflected field in the literature). I assume that there is a diffracted field p,; that
originates from the center of the sphere. This diffracted field must be a solution of
the Helmholtz equation, verifying the Sommerfeld condition that the reflected field is
null at infinity, and a boundary condition at the surface of the sphere. Notice that
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all this study applies to steady state wave propagation. Such an outward-diverging
(radiating) spherical wave originating from the origin can be expressed in spherical
harmonics [Bruneau, 2010]:

pa(r, B) = ioanhn(kr)Pn[cos(,B)] (1.13)

The a, are free complex coefficients. Where h, is the spherical Hankel function of
the second kind. The spherical Bessel function 7, that we met in the expression of
the incident field is the real part of the spherical Hankel function A, = 7, — 1y,. The

imaginary part, y, is sometimes called the Neumann function (e.g. in [Kuhn, 1977]).

Because the total pressure field must verify some boundary conditions on the surface
of the sphere, the coefficients a,, can be identified. The boundary condition is that the
normal velocity should be continuous at the surface of the sphere. This is linked to the
specific acoustical impedance Z, defined as the ratio of sound pressure p and particle
velocity v, Z = p/v (measured in rayls). The boundary condition reads:

0 kpc

§p+7p:0 for r=a

Where p is the density of air and ¢ speed of sound in air.

One can express the total pressure field, p = p; + p4, and the normal velocity dp/or,
as a function of the a, coefficients. Doing this and applying the boundary condition,

the expression of the a, coefficients is obtained:

" in(ka) + ij;,(ka)
koch,(ka) + ih, (ka)

Z

an, = —pot"(2n + 1) x
Where the notation ' designates taking the derivative function with respect to its ar-
gument, as in j. (z) = 0j,/0z.

An interesting limiting case is that when the sphere is rigid. In this case the mag-

nitude of the impedance Z goes to infinity and the coefficients become:

: n In(ka)
ZIE)I;.o an = —pot"(2n + 1) X n (ka)
In the end, the diffracted field reads:
X . (ka
pilri8) =10 3= "(an + 1) x | 209 b o) cos(o)
‘n,:O n(ka’)
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And the total field is obtained as the sum of the diffracted and incident fields:

p(r, B) = pi(r, B) + pa(r, B)

~ g "(2n + 1) |, (5r) — i:((’;‘;)) ho(kr)| Py [cos(B)]

Expressed as a function of time in the case of a harmonic source, the pressure at
(r, B) reads:

P ,0) =10 3= °(2n 1) 1o (kr) — 202, (k)| P (o)

From the above relationship, computing an HRTF is just a matter of taking » = a in
the above definition. Doing so, the expression of p is simplified. The transfer function
from the source to a point on the sphere reads:

p(,ka) = 3 °(2n + 1) [1o(ka) - 22503 | P fos()]

This expression can be simplified further given the following relationship between spher-
ical Hankel and Bessel functions:

Vavz R (2)ja(2) — 5, (2)ha(2) = ;2

Rearranging the terms in the expression of the total pressure field p yields:

R S e e L)

Which leads to the common expression provided in [Kuhn, 1977] and [Duda and
Martens, 1998]:

p(B, ka) = (ki)z iz’”“@n +1) lhn(lka)] P, [cos(B)]

Notice that because the wave number has units of inverse distance, the term ka =
27 fa/c is unit less. For a given a, it is proportional to frequency of the input wave f,
hence the frequency-dependence in the above equation is “hidden” in the term ka.
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Near field (plots in the main text)

In the main text, Fig. 1.2 (D-G) shows the computation of the additional delay and
gain in amplitude between the two-mics case and the case where a spherical head is
present.

In our current framework, this is simple. The incident field, p;, is the solution of
the wave equation in the absence of a sphere, and hence is the description of the two-
mics model of the head (see main text). To quantify the difference in the two cases,
we are interested in computing the ratio of those two complex pressure fields, which is
a transfer function H defined for each point outside the sphere:

_ p(r,B)
7= pi(r, B)

The phase of this transfer function is the additional delay the wave undergoes in the
presence of the sphere as opposed to the case without a sphere. The amplitude is the
difference in amplitude between those two cases.

Those are reported as a function of position on a Cartesian grid on Fig. 1.2, D-G.
Because the incident field in this case is more easily expressed in Cartesian coordinates,
the incident field was computed according to Equation 1.B.2. The coordinates were
then changed into polar coordinates and the diffracted field was computed according to
Equation 1.13. All computations of Hankel, Bessel functions and Legendre polynomials,

was done using the development of [Duda and Martens, 1998].

Estimates of the ITD

1.B.4 Low-frequency approximation

In the low frequencies, one can approximate the ITD using a development by [Kuhn,
1977]. Only the first two terms of the series in the expression of the total pressure field
Equation 1.B.3 have to be computed, because the convergence of the series is quite fast
for ka < 1 [Duda and Martens, 1998]:

p(r, B) ~
~1— igka cos(B)

Now, here 8 is the incidence angle.
We want to compare the pressure field at the left and right ears. The situation
is depicted on Fig. 1.13. The left ear has an incidence angle §;, and the right ear an
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Figure 1.13: Depiction of the situation when computing the low frequency ITD approx-
imation.

incidence angle 8, = B; + m. Hence, the pressures at the left and right ears read:
3
plka, f1) = 1~ i ka cos()
3 .3
p(ka,B,) =1— zika cos(Bi+m) =1+ zika cos(fBr)
We can compute the IPD by computing the phases of each pressure field:

Z(p(ka, Br)) = —Z(p(ka, B.))
/(p(ka, B,)) = tan™( ka cos(6,)

The IPD (here measured in radians) reads:

IPD(ka, B;) = Z(p(ka, B; + 7)) — Z(p(ka, B))
=2 tan_l(;)ka cos(B;))

Assuming that the argument of the tan ' function is sufficiently small with respect
to 7/2, then the tan™' function is approximately linear, therefore:

IPD(ka, B;) ~ 3kacos(B;) for gkza cos(f)) € /2 (1.14)
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Figure 1.14: Similar plots as Fig. 1.1 with the creeping wave formulation A The blue
path §'(0) represents the additional path that high frequency waves travel along the
sphere to reach the contralateral ear. The dotted green line recalls §(6) from the two-
mics development. B ITD as a function of position as predicted in the creeping waves
formulation (blue line) and two-mics situation (dotted green line). C Influence of the
head radius a on the maximal ITD in the creeping wave formulation (at 90°).

In turn, the phase ITD is the IPD in radians divided by the pulsation:

ITD(ka, B;) = w

It is more common to express this formula using the spherical coordinates system of
azimuth and elevation. This can easily be done by replacing the incidence angle g
by the incidence angle computed from 6 and ¢ (Equation 1.10). In the case where
¢ = 0, the incidence angle directly relates to the azimuth (as seen on Fig. 1.13), and
cos(fB;) = sin(f). The expression of the low-frequency ITD is simpler:

ITD(§) = 35111(9)% (1.15)

Which is the expression obtained by Kuhn [Kuhn, 1977, Kuhn, 1983].

High-frequency approximation: creeping waves

The infinite series Equation 1.B.3 converges more slowly at high frequencies. Thus, one
cannot rely on the first few terms of the sum. An alternative solution to the problem,

formulated in creeping waves provides estimates of the I'TD in high frequencies [Kuhn,
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1977]. In this formalism, which is only briefly described here, the limit of the shadow
boundary on the sphere emits an infinite series of dispersive modes in both directions.
Under this hypothesis, the pressure at the ear facing away from the source is expressed
as an attenuation wave traveling around the sphere to the ear.

Therefore, the computation of ITD in this limit can be achieved by geometrical
considerations, quite close to the case of the two-mics method. The additional path
that the wave has to cover is defined as 6'(6), and corresponds to the blue line in
Fig. 1.14. Intuitively, the wave approaches the sphere tangentially, and when this point
is reached, travels around it. Similarly to the two-mics situation the ITD is given by

the difference in propagation time outside of the sphere and on the sphere:
a, .
ITDgr(6) ~ _(sin(B) + f)

Where S is the incidence angle, defined as usual (Equation 1.10). This equation is also
presented in the main text Equation 1.3.

The dependence of this high-frequency ITD estimator on both the azimuth and the
head radius is very similar to that of the geometric ITD of the two-mics model. Both
are reported on B and C of Fig. 1.14 as a function of azimuth and head radius (respec-
tively). Notice that, as it is obvious from Equation 1.3, the ITD in this formulation is
always bigger or equal to that predicted by the two-mics model. That is, even in high
frequencies a simple geometrical model always underestimates the I'TDs imposed by a

spherical head.

1.B.5 Analysis of ITDs on the spherical head model

We simulated spherical head HRTF's for the same positions as was done for the human
data. We then used those impulse response and computed the same metrics as in the
main text. The results are reported on Fig. 1.15 for the upper-left-frontal quadrant.
A shows the low to high frequency ITD ratio, B the low to high ITD difference and
finally C the transition frequency as a function of position.

The solution of the spherical head model only depends on the incidence angle, as
shown in this section. Hence the variation of ITD in a spherical model also displays
symmetries, namely, the ITD in fact only depend on the incidence angle of the wave onto
the sphere. This means that the incidence angle is an even function of the elevation,
and an odd function of the azimuth (in Equation 1.10).

This justifies the apparition of so-called cones of confusion, those a cones around
the ears where the binaural cues are equal. This is obvious from the ITD statistics (ra-
tio, difference, transition frequency) for the spherical model (as reported on Fig. 1.15),
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Figure 1.15: The results of the same analysis as for the human databases on the
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where the statistics are equal on circles concentric on the origin of the graph. The
data can intuitively extrapolated by respecting the equality of the statistics on cones

of confusion.
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Chapter 2

Envelope and fine-structure ITDs
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In the first chapter, I showed that ITD varied with frequency, even within the
bandwidth of a single auditory filter. If it is easy to understand what the effect of a

63



pure delay is on a given sound signal, the interpretation of non-constant phase delays
is more complicated. In this chapter I use signal-processing to explain how one can
interpret the effect of frequency-dependent ITDs.

I show that the variability of ITD implies that the monaural filters have have non-
constant phase delays. Therefore, mononaural filters have a non-linear phase response.
These filters produce phase-distortion artifacts in audio. I propose to study this kind
of distortion by approximating the non-linear phase response of monaural filters locally
(in frequency) by an affine function. The slope of this function, the group ITD ITDy, is
the delay of the envelopes of the two monaural signals. The intercept of this function
we define as the Interaural Iiffraction Index IDI. The main intuition of this chapter is
that the IDI represents an additional phase difference between the fine structures of the
monaural signals. I show how this is true by applying such filters amplitude-modulated
(AM) signals and passing them through a model of the auditory periphery.

Finally, I explain that those two cues are not independent for one given position,
i.e. because they covary negatively. Yet, I argue that they can be extracted from the
cross-correlation of the two monaural signals, and therefore convey separate information

about the position of the sound source.
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2.1 Introduction

2.1.1 Non-linear phase and phase-distortion

Assuming that I'TD is constant across the frequency spectrum is convenient for multiple
reasons. As we have seen, it is a simplification of the acoustics of the subject, and
provides an understanding of the existence of I'TDs in graspable terms: acoustical rays,
difference in path-length. More relevant to the present part of the dissertation, it
also affords a simple understanding of the effect of the ITD on source signals. Indeed
(assuming there are no ILDs), one of the two ears receives the same signal as the other
one, simply delayed in time by the ITD. In other words, there exists a time delay 7
such that one signal is the delayed version of the other: z(¢) = y(t — 7). In this context
the task of the binaural system is simple: find the delay such that the signals at the
two ears are equal.

As we have seen in the previous chapter, the total phase ITD depends on frequency.
This is in fact because each monaural HRTF filters have varying phase delays (data not
shown). Equivalently, monaural HRTF filters have non-linear phase spectra. Such non-
linear monaural HRTF phase spectra are present in the spherical head model, as well as
the structural model for humans HRTF by [Brown and Duda, 1998b]. Moreover, they
are most likely the source of the frequency dependent ['TDs observed in many studies
(see Chapter 3 for a review).

Filters with non-linear spectra introduce phase-distortion in their input signals.
Phase-distortion is not the common form of distortion, as characterized by distortion
product, or level-dependent effects. Yet, many filters have non-linear phase responses,
e.g. the Butterworth filter's phase response is a hyperbolic tangent (tanh) function
of frequency (e.g. [Oppenheim et al., 1999]). It is only approximately linear for the
high and low frequencies, when the hyperbolic tangeant is approximately constant.
Otherwise, in the transition band of a Butterworth filter, the signal is phase-distorted.
Note that this is not usually a problem because those frequencies are attenuated by
the gain of the filter. To quantify this, the group delay is usually defined, it is the
derivative of the phase response with respect to the pulsation (27 times frequency). The
guantity of phase-distortion imposed by the filter is then measured by the variations
of the group delay.

The first organ of the auditory system, the cochlea, transduces acoustical signals into
neural signals. The cochlea is usually described as a frequency analyzer, because each
point on the basilar membrane of the cochlea is excited by a small band of frequencies.
As a result of this, binaural neurons that are responsible for the processing of I'TD
(e.g, in the cat medial superior olive [Yin and Kuwada, 1983]) only respond to acoustic
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signals in a restricted range of frequency. Consequently, it is safe to restrict ourselves
to the study of ITDs locally around a frequency, representing the center frequency of
a neuron’s pass-band. I argue that ITDyaround a frequency is best understood as an
affine-phase delay. Those kind of filters have phase responses that are “affine”, and are
consequently not strictly speaking linear, namely because their phase response does not
vanish at zero frequency. These considerations lead to the definition of two local ITD
cues: the Interaural Diffraction ndex (IDI) and the Interaural Group Delay (ITD,).
Then, I expose a simple mathematical framework that allows us to understand the
phase-distortion imposed by frequency dependent delays on band-pass filtered signals.
Namely, I show that the group ITD is the total ITD of the envelope of the monaural
signals, and that the IDI is a measure of the additional difference in phase between the
fine structure of the monaural signals

I finally provide a way to estimate those quantities from HRTF data, and expose
the results for one human subject recorded as part of the project of Chapter 1. Finally,
I discuss how those cues relate to the position of the sound source, and how they could

be extracted independently from the cross correlation of the monaural signals.

2.1.2 lllustration of phase-distortion effects

As an illustration of this phase-distortion, and the analysis I am about to make of it,
I provide a simple mathematical example for a stimulus consisting in the sum of two
pure tones. This section is meant to be an intuitive approach to the analysis that is
conducted in the rest of the chapter.

Let us consider a signal consisting in the sum of two infinitely long pure tones at

different pulsations wy and wy:
s(t) = sin(wpt) + sin(w;t)

Now, if this signal is passed through a filter with a variable total phase delay, with
unit amplitude response. This means that each frequency component is delayed by two
different phase delays, 7(wp) and 7(w;). This delaying is equivalent to dephasing each

individual sine component by ¢(wg) = T(wo)wo and ¢(w;) = T(w;)ws:

y(t) = sin(wo(t — 7o)) + sin(w1(t — 7))
= sin(wpt — ¢o) + sin(wit — ¢1)

Let us try to find a delay value 7 such that the output signal is a delayed version of s.
We try to solve the equation s(t — 7) = y(t) for 7. To solve the equation one has to

66



identify the sin terms at different pulsations, which leads to:

$o = Two[27] — @:ﬁ_

¢1 = TWw1 [271'] Wo w1 B

In essence, the output signal is similar to the input provided that the phase response is
proportional to the pulsation (hence frequency), here with factor 7. This means that
the total phase delays are constant, equal to 7. When this condition is not met, i.e.
the total phase delay is not constant, the output signal is phase-distorted.

Now, let us examine the effect of phase-distortion. I consider a case where the phase

is an affine function of the frequency:
d(w)=-Tw+d

In usual terms, 7 is the group delay of the filter, while d in radians is the intercept of
the phase response. When d is nonzero, then the phase response is non-linear: it is
affine (i.e. it does not vanish at zero). Thus, it is expected that phase-distortion should
occur. First, because the signal is the sum of two sinusoidal functions, it is possible to
write it as a product of sine and cosine functions:

s(t) = sin(wot) + sin(w;)

— 9sin (;(wo 4 wl)t> cos <;(w0 _ wl)t> — 2 cos(w.t) sin(w.t)

When the two pulsations are close enough, that is |wy — w;| is sufficiently small, then
it is common to say that the signal s(¢) is a pure tone carrier signal, modulated by a
low-frequency envelope. Thus, w. > w. is the pulsation of the carrier signal and w,
the pulsation of the envelope. If I now compute the result of filtering with an affine
phase the signal s(¢) I obtain y(%):

y(t) = sin(wot + ¢(wo)) + sin(w; + ¢(w1))
Writing the signal in terms of envelope and fine structure I obtain:
y(t) = 2cos(we(t — 7)) sin(we(t — 7) + d)

In the representation using envelope and fine structure it is clear that the envelope of
the signal is delayed only by 7 the slope of the phase response of the filter. On the other
hand, the fine structure of the signal is delayed by a 7, and then undergoes an additional
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phase shift equal to d. Hence I showed that an affine phase delay has differential effects
on the fine structure and envelope of this rudimentary signal. Phase-distortion effects
can be understood as the existence of such differential delays on envelope and fine
structure of the signal. The intercept of the phase response of the filter quantifies its
non-linearity (i.e. when it is zero, the filter is linear). I will now use this kind of
approximation to describe IPDs locally, to asses the effect of non-linear IPD in terms

of interaural envelope and fine structure delays.

2.2 Study of frequency-dependent interaural delays

In this section, the main text only contains the mathematical development through an
example model of human frequency-dependent ITDs. The Appendix 2.A will be quoted
often, as it contains more details and demonstrations.

2.2.1 Frequency-dependent ITDs: Working example

A human ITD vs. frequency curve is modeled, for simplicity as a sigmoidal curve, with
a hyperbolic tangeant (tanh) shape. It roughly corresponds to the situation of a human
being of head radius a = 8cm. This model is inspired by the human data, but is rather
arbitrary in its parameters.

The low and high frequency limits of the ITD are given by the Kuhn and Wood-
worth formulas (Chapter 1, Equation 1.2 and Equation 1.3) for a source at 90°azimuth.
The values here are ITDyr & 700us, ITDyr = 470us. Furthermore, the transition
frequency of the sigmoidal curve is given by the frequency f defined in Chapter 1:
f= c/2ma =~ 680Hz. Hence the ITD function under study here is given by:

1+ tanh(351)
2

It must be noted that the value of the ITD,(0) is not exactly ITD.p. The value
of the function is plotted on Fig. 2.1, as well as the two low- and high- frequency
approximations of the ITD.

I now consider the IPD associated with this ITD,(f). It is defined as the unwrapped
IPD measured in cycles therefore:

IPD(f) = ITD(f) x f

Because ITD,, here is a positive function, and has no short-scale variations, the IPD is
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a monotonously increasing function of the frequency as shown on Panel B of Fig. 2.1.
Furthermore, because the ITD admits two limits near 0 and +o00, the IPD function
admits two linear asymptotic limits. They are reported on Panel B of Fig. 2.1 as well
(two black lines). Each corresponds to the IPD function if the ITD were a constant
function of frequency, with value ITDrp (plain line) and IT' Dgr (dashed line). Note
that the function ITD,(f) is not exactly equal to IT Dz at zero frequency, it converges
to it as f — —oo. I will assume that f is sufficiently big so that I can make this
approximation. Furthermore, the IPD function in any case admits an asymptotic limit

at zero, which is what I show here.

2.2.2 Local approximation of ITD,

As T argued in the introduction, it is safe to study the variation of ITD, locally around
a frequency, because of the frequency selectivity imposed on the binaural system by
the cochlea. If the pass-band of a binaural neuron is narrow enough, the IPD function
on this range can be approximated by its tangeant. This is a first-order Taylor series
expansion of the function around this point. Doing this, two quantities are defined
locally around any f, frequency point in the spectrum Fig. 2.1 D. The group ITD,
ITD,(fo) is the slope of the function at that point, which corresponds to the usual
definition of group ITD (as in, e.g. [Roth et al., 1980b]):

dIPD(§)

ITD,(f) = =

(2.1)

fo

It is plotted across the whole spectrum on Panel E of Fig. 2.1. The ITD, for one
position seems to match the ITD, when the latter is constant, and deviate from it
when it varies. This follows from the definition of ITD,, plugged in the Equation 2.1:

1TD,(f) = 5 [ITD,(N)] = | 7D, 4 1TD4(1)

Hence, when f > 0, the group ITD is greater than ITD, when ITD, increases and
conversely is smaller when it decreases. On E of Fig. 2.1 the group delay is always

below the I'TD, because it is strictly decreasing.

I am interested in quantifying the difference between the group and phase I'TDs. The
Interaural Diffraction Index, IDI is the intercept of the tangeant of the IPD function
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Figure 2.1: A The example of ITD function of a modeled human (blue curve). Low
and high frequency limits of the ITD function are plotted, in plain and dashed lines
respectively. B IPD patterns corresponding to the model ITD function (blue curve).
Dashed and plain black lines correspond to the phase response of pure delay filters
with delay equal to the low and high frequency approximations of the example ITD.
C Depiction of the situation. If the stimulus spectrum is narrow around f, (upper
panel, gray area) then it is sensible to approximate the IPD pattern (blue curve) by
its tangeant function around this point. D The slope of the tangeant is homogeneous
to a time and is usually called the group ITD, ITD,. The intercept of the tangeant
is homogeneous to a phase, and is termed the diffraction index IDI. E The derivative
function of the IPD is the group delay, plotted here (black plain curve) as a function
of frequency. The dashed blue curve is the total phase ITD as in A. F The IDI for the
example model as a function of frequency, plotted here (black plain curve).
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at the frequency point f.

IDI(f) = (IPD(f) — ITD,(f)f)
= (ITDp(f) — ITDg(f))f

Because IDI is a phase quantity, it is presented wrapped in cycle units within the
interval | — 0.5,0.5]. IDI is plotted as a function of frequency on F of Fig. 2.1. We
observe that it deviates from zero when the variation of ITD; is the greatest, or when
the difference between group and phase [TDs is greatest. This occurs, in our model,
for frequencies higher than the unit normalized frequency here f = 680Hz. A non-zero
value of the IDI is thus indicative of the transition of the ITD, from its two plateaus.
As I showed in Chapter 1, is the result of the diffraction of the sound wave around the
head For this reason, we have called this quantity the Interaural Diffraction Index.
Interestingly, in signal-processing the quantity of phase-distortion introduced by
a filter is measured by the variations of group delay. The IDI is a measure of these
variations, since when the ITD, is constant over a sufficiently big range, it is equal to
the ITD,. Therefore the IDI quantifies the degree of phase-distortion in narrow band

signals due to diffraction.

2.2.3 Fine structure and envelope ITDs

Let us now turn to the signal processing interpretation of IDI and ITD,,. For simplicity,
we construct one filter whose phase response is an IPD modeled as an affine function
with parameters ITD, and IDI. Such a filter would correspond to the Interaural Transfer
Function associated with an HRTF pair ITF = H?/H”. Assuming that s’ is the signal
at the left ear, applying the ITF to s’ yields s,. Because it is a common stimulus
for auditory electrophysiology (see, e.g. [Joris et al., 2004]), I take the example of an
amplitude modulated pure tone. This original signal can be thought of as the signal
at the left ear.

Results shown in the Appendix 2.A prove that such a filter imposes separate delays
on the envelope and the fine-structure of the signal. These interaural delays can be

recapitulated as follows:
e The whole signal (envelope + fine structure) is delayed by the value of ITD,
e The fine structure of the delayed signal is phase shifted, by the value of IDI

An example of this is shown on Fig. 2.2. The original signal (A) is a 100 Hz carrier

modulated by a 40 Hz envelope. It is also ramped up and down with a raised cosine
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Figure 2.2: Schematic effect of affine phase filters. An original amplitude-modulated
signal A, has a 100 Hz carrier and is modulated by a 10 Hz envelope. First panel is
the signal, next two are inserts of the envelope and fine structure respectively. This
signal is passed through an affine phase filter with ITD; = 500us and DI = 0, that is
a linear filter. The IPDand ITDof this filter are reported as a function of frequency
on B. Graphs on the line of C are similar to A, they show the signal, its envelope
and fine structure. B Left plot: the signal, as delayed by a pure delay of group delay
ITD, = 500us. Both the fine structure and the envelope of the signal are delayed by
the same amount. Right plot: notice that the envelope and fine-structure are still in
the same relative phase. D and E show the same as B and D except IDI = 0.1 cycles.
In both filter case, the envelope is delayed by the same amount on the middle row
panels. Yet, in the presence of a non zero IDI (bottom-most panels) the fine structure
undergoes an additional delay.
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ramp r(z) = cos*(z). On B, I show the model ITD, and IPD for and affine filter
with zero IDI and a constant ITD, = 500us. As seen on C, both the envelope (middle
and rightmost row) and fine structure are delayed by the same amount (timescales are
not the same). The same analysis is applied on D and E, this time with a filter with
IDI = 0.1 cycles and the same ITD,. As reflected on E (middle row), the envelope is
delayed by the same amount as with IDI = 0 cycles.

Yet, the fine structure of the signal is not the same as in the previous case, showing
that introduction of a non zero IDI imposes different interaural delays on the envelope
and fine structure of the signal. In fact, as shown in Appendix 2.A, it undergoes an
additional phase shift. Going back to the total phase ITD (B and D, bottom insert),
when a non zero I DI introduced, the phase response is affine strictly (top inserts). This
translates in a hyperbolic shaped delay, because each pure tone undergoes a constant
phase shift. Therefore, the effect of IDI when measured in time, is bigger for lower
frequencies. For example, a half-period phase-shift represents 500us at 1000Hz but
5ms at 100Hz.

2.3 Application to human HRTFs

As shown in the previous chapter (Chapter 1), human ITDs are frequency-dependent
for a given position in space. It is now possible to quantify the cues that derive from this
property, namely the interaural envelope delay as measured by ITD, and the additional
interaural phase shift measured by IDI. This analysis was performed on human subjects
using acoustical data measured as described in the previous chapter. The method used
to compute ITD, and IDI is explained in Appendix 2.B.

One human subject’s HRTFs were measured, and the ITD, computed as described
in Chapter 1. This is reported for four positions in the horizontal plane (Fig. 2.3, A) on
B of Fig. 2.3. ITD, and IDI are reported for the same positions and frequencies on C
and D. The ITD, displays a clear dependency on position: for all frequencies, the ITD,
is an increasing function of position. As a function of frequency, ITD, oscillates around
the ITD,, curve, which is consistent with our theoretical developments. The group ITD
ITD, is greater than the phase ITD ITD, when ITDy is increasing, and vice-versa.

The variation of IDIwith position is less trivial (D), because at some frequencies, it
seem to be a decreasing function of eccentricity. As a function of frequency, IDIoscillates
around zero, an is in general quite low. This is because IDI is proportional to the
difference between ITD, and ITD,. Notice that relatively low IDI may represent quite
long delays when in the time domain. For example for a tone at 500 Hz, the IDI for
position 30°is of 0.15, which represents a delay of 0.15/500 = 300us. Finally, IDI has a

73



front
1000 F _ _ _ = _ _ o ____________ 1
wn 500 F ]
2
right DQ. o 7\/—5——’—/ ]
= -500 ¢t : 1
S _1000 :——"’—_’——;'k‘—— - == _\ —————— ST ‘_ - =]
back 0.2 0.6 1 1.4 1.8
Frequency (kHz)
Dos : E 1200 ;
—~ 600 | \ .
g 3 \
8 0 Dcn 0r x h
= E 600 | N
: -0.5 D R 1200 :
05 1 1.5 05 1 15 -0.5 0.5
Freq (kHz) Freq (kHz) IDI (cyc)

Figure 2.3: ITD,; and IDI for one human subject. A A picture of the coordinates
presented on this plot. B ITDyas measured for a human subject (main author) C ITD,as
a function of frequency for the same coordinates. D IDIas a function of frequency for
the same coordinates. E The group ITD as a function of IDI at all frequencies on the
ITD,, IDIplane.
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significant peak around 600 Hz, consistent with observations that this was the frequency
at which ITD,, varies the most, and the developments of the previous sections. Because
in this range, the effect of non zero IDIcan cause long additional delays on the fine
structure of the signals (one period of a tone at 100 Hz one millisecond).

On E the ITD, is plotted against IDI for the same positions (A) and frequencies as
in the previous panels. This visualization allows us to see that for any given position,
ITD, and IDI measurements across the spectrum are negatively correlated. This can
be explained intuitively, as reported in Appendix 2.C, because of the very definition of
those quantities. As a result of this, for each position the (ITD,, IDI) curve clusters
along a negative trend. This is observed for all positions, even though it is reduced
as the position is closer to the midline. The relationship is not completely trivial (see
Appendix 2.C, and both cues do not lie on a segment (E of Fig. 2.3).

In conclusion, ITD, and IDI are cues to the location of the sound source present
in human recordings. IDI translate into delays of sufficient magnitude to be This is

despite the fact that they covary to some degree for a given position.

2.4 Discussion: ITDg, IDI and cross-correlation

As acoustical data suggests, when the sound source emits a sound in space, the envelope
and fine structure of signals at the “output” of the cochlea have different envelope and
fine structure delays. At each ear, those delays are different, creating two independent
frequency-dependent ITD cues, the IDI and ITD,. Those cues can be recovered by
measuring independently ITD; and ITD,. The total phase ITD ITDjcan be computed
from the maximum of the cross-correlation of the monaural inputs: it is the position of
the peak of this function. A lesser known result is that the group ITD is the position
of the peak of the cross correlation of the envelopes of the signal. This is shown, for
example in [Marple Jr, 1999]. As a consequence of this, all three timing cues can be
extracted from a representation of the cross correlation of the binaural signal. In this
section, we model the cochlea as a set of Gammatone filters, and extract those cues
from the cross correlation of each frequency band.

A depiction of the model is shown on A of Fig. 2.4. A 100 ms long white noise
input is filtered by HRTF filters, simulating the effect of head and torso. The HRTF
filter is taken at 8 = 70° in the horizontal plane. Each monaural pathway consists in
a bank of Gammatone filters, with bandwidths on an ERB scale and simulated using
the Brian.Hears package [Fontaine et al., 2011]. In each frequency band, the cross-
correlation of the signals on both sides is computed (Fig. 2.4. An example of such
cross correlation, for the filter with center frequency CF = 600H z, is shown on B (blue
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Figure 2.4: Recovering timing cues from the cross correlation of the monaural signals.
A Schematics drawing of the situation. A white noise input is filtered through two
monaural HRTF filters. Each is then band-passed filtered by a bank of Gammatone
filters. Channels on both sides are then cross-correlated. B The results of the cross-
correlation are presented here, the cross-correlation (blue) and its envelope (green).
Each maximum represents the envelope or fine structure delays. The IDI is the differ-
ence between those two delays, divided by the frequency of the carrier. D The total
phase delay predicted (blue line) and measured from the cross-correlated signals (blue
circles). Green dashed curve is the predicted group delay (as in E). E The total phase
delay predicted (blue line) and measured from the cross-correlated signals (green cir-
cles). Blue dashed curve is the predicted total phase delay (as in D). coordinates. F
The predicted D (red line) and measured from the cross-correlated signals (red circles).
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curve), alongside the envelope of the cross-correlation function (green curve). The
maximum of the cross-correlation provides a measure of I'TD, at that frequency. This
is reported for one simulation on C, blue dots. The peak of the envelope curve is the
delay between the envelopes of the signals, and it is reported on D (green dots). This
total envelope ITD should correspond to the the group ITD, [Oppenheim et al., 1999].
From both the envelope and fine structure ITDs, the IDIis computed by dividing the
difference by the center frequency of the filter. This data is reported on E, as red dots
for the same simulation.

As we have seen in the previous sections, those delays can be predicted from the
phase response of the monaural filters. The binaural measures IDIand ITD,were also
computed from the HRTF data and are reported on Fig. 2.4 (plain lines on B-D),
alonside the simulation results. The prediction of the envelope ITD on D provides a
good fit to the cross-correlation data. ITD,(and thus IDI) is not as good of a predictor
to the position of the peak of the cross-correlation (C). This validates the measure
and interpretation of the interaural delays that have been defined and studied in this
chapter.

From a full representation of the cross correlation of the two signals it is thus
possible to extract both ITD, and IDI. This makes it plausible that the binaural
system processes those two quantities separately. Since those quantities cluster nicely
even across frequencies (Fig. 2.3), a single ITD, IDI measure on the whole spectrum is
enough to uniquely identify a position in space. This is not the case with the phase ITD,
because a given ITD, signals different positions depending on the frequency content of
the signal.
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2.A Mathematical developments

The rest of this section is dedicated to understanding the effects of filters with non-linear
phase response. The phase response of a filter is an arbitrary differentiable function ¢
of frequency of the frequency f. In the main text, the case where ¢ is the IPD of the
ratio of two monaural HRTF filters was shown, here I provide a more complete study

in the general framework of arbitrary linear filters.

2.A.1 First-order phase approximation

Let us consider then the first order approximation of the phase delay around a given
frequency fo. Using a Taylor series expansion and rearranging one obtains:

¢(f) = ¢(fo) + %(fo)(f — fo) + O(f = fo)
= [¢(fo) — §2(fo) fo] = [55(fo)]f + O(f — fo)

Where we can identify two quantities of interest, the first one is the well-known group
delay [Oppenheim et al., 1999] termed 7,:

n(f) = e )

The remainder (the zeroth order component) I term the diffraction index, because in
the case of the ITD (in a spherical model), this quantity is non zero where diffraction
occurs (i.e., here, when 7, varies). It is a phase quantity measured in radians between

—7 and 7

D(f) = $(fo) jjf(fo>fo

Geometrically, those quantities are respectively the intercept and the slope of the

tangeant of the phase response curve around fy, as in Fig. 2.1.

¢(f) = D(fo) + 7,(fO) f

2.A.2 Affine phase filters

Let us now consider a perfect band pass filter with an affine phase. That is, the transfer
function of the filter reads:

g(f) = ]1pF(f)6¢(f) where ¢g(f) = 2m7,f + ¢po and PF = {f. — BW/2, fc+ BW/2}
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For now, let us consider that the filter is an all pass filter, i.e. PF = R. The effect of
such a filter on a pure tone can be understood easily by considering Fourier’s convolution

theorem

g(t) * sin(w.t) = Gw)(m[d(w + we) — §(w — we)])]
= e I (5[ (w + we) — 8w — w.)])]

sin(w.(t — 7,) + ¢o) = e (jre’ P[5 (w + we) — 6(w — w.)])]

We can see that the pure tone undergoes two separate delays, a group delay of value
T, and an additional phase shift of value ¢,. Hence the total phase delay depends on

the signal frequency and can be computed. Consider that:

9(t) * sin(w.t) = sin(w.(t — 7,) + ¢o)
= sin(w.(t — (1, + ¢o/we))

The total phase delay finally reads:
$o $o

Tp=Tg+ — =T+

We 27 f.

2.A.3 Effect on AM stimuli

A more useful thing to do is to consider the effect of such a filtering on an amplitude
modulated stimulus. Let s(¢) a signal as defined with its temporal envelope a(t) and

carrier frequency f.

s(t) = a(t) sin(27 f.t) <?> Gw) [Aw) *x (J7[6(w + w.) — §(w — w.)])]
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The result of passing this stimulus through an affine phase filter is straightforwardly

computed by the following sequences of identitites:

(9% 5)(t) = G(w) [A(w) * (47[0(w + we) — 6(w — we)))]
= &) [A(w) x (j(8(w + we) — 8w — we))]
5(t — 75) * (a(t) sin(we(t) + ¢o)) = €7 [A(w) * (jre’®[§(w + we) — 6(w — we)])]

a(t — 1,) sin(w.(t — 75) + ¢o) <?>

Hence it is observed that, as expected, the group delay acts on both the envelope and
the fine structure of the stimulus. The whole signal is delayed by this same amount,
and in the case of linear phase filters it is the only delay happening. In the case of affine
phase delays, the fine structure undergoes an additional phase shift, corresponding to
the D of the filter.
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2.B Estimating IDI and ITD,
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Figure 2.5: Circular linear regression of I'TD curves. Each panel illustrates the compu-
tation of ITD, and IDI in our example modem, at two different center frequencies (first
and second row).. In phase space (leftmost panels), the IPD (blue circles) is regressed
against frequency with an affine function (green line). This is equivalent to fitting the
phase ITD ITD, (middle panel) against frequency with an hyperbolic curve. Black
dashed curve represents the full ITD, response. Rightmost panels: The computed
ITD, and IDI curves for the model ITD curve. The circles depict the point at which
the fit is taken in the panel. A Center frequency of 600 Hz, Q = 2 B Center frequency
of 1000 Hz, Q = 2

2.B.1 Circular-linear regression of IPD

The estimation of IDI and ITD, from the phase spectrum of the HRTFs is not neces-
sarily trivial. This arises from multiple reasons: on discretized sets of measurements,
the unwrapping operator is not perfect. For example, in the case of very large delays,
it might be that the unwrapping underestimates the actual phase shift response. Sec-
ondly, in noisy data, the unwrapping process is unstable, and errors in unwrapping

accumulate as one goes up in frequency. Therefore I perform circular-linear fits of the
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IPD data against frequence to estimate I'TD, and IDI from the wrapped phase response
of the HRTFs. This is not completely failsafe, as the least square problem typically
admits many local minima.

On Fig. 2.5, the computation of ITD, and IDI is illustrated at two different frequency
points. On a bandwidth with a constant Q value (here Q = 4), the IPD points (blue
circles) are linearly regressed against frequency. In B an example where frequency
wrapping arises is shown, because the algorithm works with circular distances this is
no real issue. On the middle panel of each row in Fig. 2.5 the equivalent delay fit
is shown, alongside the original ITD, curve (black dotted line). The rightmost panel
shows the result of this computation on the whole spectrum. The blue dot on each line

shows the point where the regression was taken in the leftmost panel.

2.B.2 Fitting procedure

Assume that we are to compute ITD, and IDI for a given center frequency CF and
bandwidth BW. The passband is defined as:

PB={f||f — CF| < BW/2}

The next step is to compute a circular-linear regression of the IPD(f) function for
the frequency points in PB. The IPD data is inherently circular: it is a phase value
measured in cycles in the interval [—0.5,0.5[. This means that in order to perform
a linear fit, one has to be careful with phase jumps, i.e. when in the passband two
consecutive phase values are separated by at least . One way to alleviate that issue is to
unwrap the IPD function, that is replace every m-or-more jump by its 27 complement.
The problem with this method is that it is quite unstable, and the threshold (biggest
allowed consecutive jump) is generally arbitrarily set, which adds a free parameter to
the analysis. Hence I use a circular linear regression, this kind of regression allows one
to regress a circular value (here, IPD) against a linear value (here, frequency). It can

be formulated as a non linear least square problem as follows:

IDI,ITD, = argminIDI,ITDg Z ITPD(f) — (IDI + ITDgf)H2
fePB

Where the norm used here is a circular norm over phases measured in cycles, that is:

1 — cos(2mz)

2 __
a2 = ==
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This norm is more easily understood geometrically. Assume that we have two angles
6 and ¢ measured in radians and the two associated complex numbers z; = €* (and
zg = €'%) with unit modulus. Those complex numbers can be interpreted as vectors
that form a @ (and respectively ¢) angle with the first plane axis.

A distance between the two angles can be inferred from the dot product of those
vectors. If 8 and ¢ are equal, then the two vectors are colinear and in turn the dot
product is maximal (and equal to one because the vectors are of unit amplitude). If,
on the opposite, § and ¢ are in antiphase 8 = ¢ + 7 then the two vectors are opposed
and the resultant dot product is -1. The dot product of two complex vector reads:

zg - 24 = ||26]|||24|| cos(8 — ¢)

= cos(f — ¢)

Because by construction ||z4|| = ||2¢|| = 1. Furthermore, we want that the defined norm
be always positive, and between 0 and 1. Because the cos function varies between -1
and 1, we do an affine transformation and let ||z||* = (1 — cos(27z))/2, which will
always be in the [0, 1] range, minimal (= 0) when the angles are equal, and maximal
(=1) when they are in antiphase.
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2.C Covaration of IDI and ITD,
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Figure 2.6: Depiction of the inverse covariation of ITD, and IDI for a given position.
Each point color corresponds to a frequency, as in the colorbar on B, and the grey
arrows point along the direction of increasing frequencies on each line C Plot of the
ITD, against IDI across all frequencies for one position. The color code is the frequency,
as reported in B and consistent throughout panels. A and C recall the individual curves
as a function of frequency. At all frequency points, the curve (IDI,ITD,) has a slope
parallel to the second diagonal. It has one special point where it disconstinuously
changes value. Note that in LF and HF, the curve goes back to the line IDI = 0 at a
point that corresponds to the ITDylimit.

An interesting point to study is the covariation of IDI and IDI for a given position across
frequencies. That is I study the curve (IDI(f),ITDg(f)) for all frequencies. When the
frequency is very low, then the IPD curve is almost linear with slope ITD;¢, hence the
IDI tends to zero while the ITD, converges to ITD,s. Similarly, in HF, the curve in
the IDI, ITDg-plane goes back to the line IDI = 0 to reach it at the I'TD,s point. This
is illustrated on figure Fig. 2.6. The derivative vector, giving the direction of the curve
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in the IDI, ITD4-plane reads:

d d d d? d d?
(EIDI’ EITDg) = (EIPD(f) - (?IPD(f)f + EIPD(f)), ?IPD(f))
d? d?
= (—?IPD(f)f, FIPD(JC))

When f is positive, this vector will always be such that it is pointing to the lower-right or
upper-left direction on the (IDI, ITD,) plane shown on Fig. 2.6, C. Therefore, for a given
position there is a negative correlation between ITD, and IDI measurements at different
frequencies. Importantly, this means that ITDgand IDIare not completely independent
cues to location, because of their covariation. This is related to the fact that the
estimators for slope and intercept in a linear regression covary (see the appendices to
Chapter 7).
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Chapter 3

Variation of ITD in animals
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3.3.1 ITD across frequencies for animals . . . . .. ... ... .. ..
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3.4 Discussion . . . . . . ... e

3.4.1 Physiological ranges of ITD in different species . . . . . . .. ..

3.2 ITDg and IDI physiological ranges in each species

The variation of ITD across frequencies for a given position has been observed in

many animals, including the cat [Roth et al., 1980b]. Yet, across-species study of

acoustical cues, and specifically the variation of ITD across frequencies exist to date.

The study of cues available to laboratory animals is just as important as in humans,

if not more, because those laboratory animals are good models for electrophysiology.

Furthermore, the range and the nature of possible ITDs can help modelers understand

the way I'TDs are coded by binaural neurons.

In this chapter, a thorough study of the binaural timing cues available to a wide

range of species is presented. I measured HRTFs on stuffed animals, and applyied
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the same approach as in the first chapter of this part to assess the ITD variation
with frequency. I show that the ITD varies in mammals, in a way consistent with
humans case. Finally, I refine the notion of physiological range, and provide ecological
distributions of I'TD for all measured species.
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3.1 Introduction

3.1.1 Existing animal HRTF studies

Numerous studies have recorded animal HRTFs in relation with all aspects of binau-
ral hearing. Because of the animal’s individual shape, the monaural acoustical filters
depend on the position of the sound source, which constitutes an interesting binaural
cue. It is often observed that high-frequency spectral dips, “notches” are present in
the monaural HRTFs. The frequency of those notches depend on the elevation of the
sound source, therefore it is believed to be a cue to elevation. In the rhesus mon-
key [Spezio et al., 2000b], those spectral notches are also present at frequencies higher
than 9 kHz. They are primarily due to the pinnae, which is of a small enough size
to interact with waves at those frequencies. In the cat [Koka et al., 2008a], and the
chinchilla [Koka et al., 2011a], removal of the pinnae results in elimination of spectral
monaural notches. Similar conclusions are drawn in the rabbit [Kim et al., 2010a],
where the effect of distance on the binaural cues are also discussed.

Another interesting aspect is the evolution of ILD for a given position across the
spectrum. In most species, ILD is a monotonous function of frequency for a given
position, influenced by the presence of the pinnae, and its orientation. In the barn owl
realm, studies focus on the importance of the inter-aural canal in the binaural cues or
on the facial ruff of the animal [Campenhausen and Wagner, 2006]. HRTFs are also
sometimes studied in the context of the development of the localization system [Tollin
and Koka, 2009c], both for monaural and binaural cues.

In most studies that recorded animal HRTFs, the focus is generally on one of the
two aforementioned lines of study: monaural cues and ILDs. Yet, measures of the
ITD in animals are well documented. The frequency-dependence of I'TDs has been
first demonstrated in the cat [Roth et al., 1980b], by measuring ITDs on pure tone
stimuli. The authors report that the maximal ITDs are in general found to be greater
in low than high frequencies, consistent with the spherical model. Yet, the ITDs found
using the classical estimates of ITD and a measure of the animal’s head radius are
consistently smaller than measured acoustical ITDs. This indicates that the spherical
model underestimates the magnitude of the ITD. All studies of ITD in other mam-
malian species are consistent with the spherical model story, with a slightly bigger head
radius. As reviewed on Tab. 3.1.1, the same conclusions can be drawn from data in
guinea pigs [Sterbing et al., 2003a], rats [Koka et al., 2008a], chinchillas [Koka et al.,
2011a], rabbits [Kim et al., 2010a], macaque monkey [Spezio et al., 2000b].

Other interesting data in the rabbit point that I'TDs decrease with increasing dis-
tance [Kim et al., 2010a] (also with increasing frequency), but also that the rather
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Animal ITDrp, us ITDyF, us Head radius Reference

Barn owl 300us 300 us 3.5 cm [Campenhausen and Wagner, 2006]
Barn owl [Keller et al., 1998]

Cat 350us (300 Hz) 280 us (7 kHz) 2.8 cm [Roth et al., 1980b]

Cat 390us (< 3.5 kHz) 30 mm [Tollin and Koka, 2009c]+
Chinchilla 340us (250 Hz) 220 ps (4000 Hz) 17.5 mm [Koka et al., 2011a]
Guinea pig 330us (400 Hz) 250 ps (1500 Hz) [Sterbing et al., 2003a]
Mongolian gerbil 130us (1 kHz) 100 ws (10 kHz) 17 mm [Maki and Furukawa, 2005a]
Rabbit 350us 200 us 28 mm [Kim et al., 2010a]

Rat 158us 100 + 25us 18 mm [Koka et al., 2008a]
Rhesus monkey 500us (1000 Hz) 400 (10 kHz) 52 mm [Spezio et al., 2000D]
Humans Chapter 1

Table 3.1: Summary of the available ITD recordings in animals species in the literature.
In parenthesis the approximate Frequency at which the ITD is estimated. Methods used
vary, yet the trend is clear

voluminous pinnae of the rabbit also enhances ITDs. A similar effect is seen in the cat
by [Tollin and Koka, 2009c].

3.1.2 Motivation of the study

Recordings of animal HRTFs also also useful for the interpretation of binaural electro-
physiological experiments. In many situations, small mammals are used as models for
testing the neural basis of sound localization. Yet, usual laboratory setups generally
are not anechoic and do not have sufficient space for an array of speakers. This severely
limits the possibility of doing free-field experiments in which the stimuli are directly
presented by a speaker in the lab space. For this reason, most of the electrophysio-
logical experiments use artificially induced stimuli presented over headphones. In this
case, recording HRTF's on an animal can be used to render spatialized binaural stimuli,
hence emulating free-field experiments. One can record from the animal electrophysi-
ologically using stimuli that have exactly the acoustical binaural cues. This technique
is called Virtual Acoustic Space (VAS, e.g. in [Mrsic-Flogel et al., 2005, Sterbing et al.,
2003a)).

Another important aspect of study of binaural cues is the discussion over the range
of ITDs that an animal is likely to “hear” in its environment: the physiological range
of ITDs. As an example, this argument has had a prominent position in the recent
debate opposing tenants of the peak code and slope code hypotheses. Neurons in the
mammalian MSO are sensitivite to the ITD presented in the binaural stimuli. Actually,
their rate-ITD curve, measuring the rate of the neuron as a function of the I'TD in the
stimulus, displays peaks for multiple ITDs. For tenants of the peak code hypothesis,
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the meaningful part of the rate-ITD curve is the peaks. When the ITD presented in
the stimulus is equal to a neuron’s BD, it fires maximally. Hence it is expected to be
the most active neuron of the population, signaling that the ITD in the input is its BD.
This peak code view has been presented as the textbook view of the binaural system.
Yet, it has been oftentimes found since then that cells sensitive to low frequencies had
BDs well oustide of the physiological range of the animal studied (e.g. [McAlpine
et al., 2001]). Cells with such large BDs suggested that not only the peak of the rate-
ITD curve was relevant to the system: a cell would then never effectively witness its
preferred I'TD. This lead to the proposal that the relevant measure is the slope of the
rate-ITD curve around the midline (zero ITD), which leads to a population code of the
azimuth.

Hence, we seek to provide measures of the physiological range, in many common
laboratory species. Those are a valuable asset in the perspective of the study of the
neural coding of sound azimuth through ITD. The purpose of this chapter is to conduct
a study of the variation of ITD in many animal species, and using the same tools as
those provided in Chapter 2. We measure HRTFs on naturalized animal models, as
presented on Fig. 3.1. The species measured are the rat, cat, chinchilla, barn owl,
macaque monkey, guinea pig and rabbit.

3.2 Methods

The HRTF measurement setup used to measure the animals was the same as that
previously described for humans in Chapter 1. Here we recall only the parts of the

measurement setup that are specific to the animal recordings.

3.2.1 Recording stuffed animal

When measuring HRTF's, the subject has to sit as still as possible for the complete
period of the recordings. In the human recordings of Chapter 1, this was about one
hour and a half. While human subjects can be made to sit still through promises of
great retribution, this is merely possible with animals. Recording of HRTFs with awake
animals has only been achieved in the rabbit [Kim et al., 2010a], while all the other
animal recordings rely on anaesthetized animals (in Tab. 3.1.1). Keeping an ecological
stance with an anaesthetized animal can prove to be a tedious process, which clutters
the space where the animal is recorded with reflective objects.

Let aside the goal of displaying exotic species to the general public in museums,
taxidermy is a serious craft that was initially developed in the context of biological
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Human Macaque

Rabbit Guinea pig

Barn owl Rat

Figure 3.1: Pictures of all the recorded animals in the anechoic chamber. Miniature
microphones are placed in the animal’s ears. The red dots are the lasers that helped
correct positioning of the animal with respect to the crane and speakers. Animals
recorded: A Human B Macaque C Cat D Chinchilla E Rabbit F Guinea pig G Barn
Owl H Rat
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sciences. Zoologists, still today use naturalized animal specimens to make observations.
For this purpose, great care is always taken in positioning the animal in a natural
stance: the biological validity of the stance always constrains the “artistic” interest
of the piece. In France, there is a “Meilleur Ouvrier de France” (MOF, Best French
Craftsman) diploma in taxidermy. The MOF is a competition held in France every four
years, recognizing outstanding achievement in various crafts domains. As an example,
MOF holders in cooking usually have multiple Michelin starred restaurants.

If the ecological validity of the stance of the models is justified, the models are
not generally in a neutral stance. It is seldom found an animal with a completely
straight, front-facing position, but the poses are nontheless ecological. The animals
were picked according to two main criteria. The “neutrality” of the pose: the animal
has to be standing with its head facing as straight as possible. The overall quality: the
animal had to be sufficiently well conserved, especially with the ears. Cartilages are
hard to preserve and it happens that animals have broken ears. The chosen animals all
had reasonably conserved pavillons and correct positions, as can be judged from figure
Fig. 3.1

All stuffed animals depicted on Fig. 3.1 were borrowed at the Museum d’Histoire
Naturelle de Paris, which has a collection of about 250 000 taxidermized mammals
and birds. Most of the animals were “mounted” (or stuffed) in the course of the 19th
century, when the popularity of taxidermy was at its peak . The technique used, based
on arsenic soap, ensured longevity, and most of the animals are well preserved. But it
prevented us from touching the animals bare hands.

3.2.2 Animal setup

. moving crane

— loudspeakers
— subject

— rotating table

Figure 3.2: Pictures of all the recorded animals in the anechoic chamber. A A picture
of the setup with the rabbit positioned for recording. B Drawing of A reporting the
main components of the experimental setup.

The figure Fig. 3.2 shows a depiction of the recording setup with the rabbit in position
facing the three speakers. The setup used is very close to that presented in Chapter 1
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for humans, constrained by the animal model. The animals could not be separated
from their wooden plate base. This plate varied in shape and size greatly across the
animals Fig. 3.1. Those plate may introduce some reflections, especially for animals
in which the plate is big (e.g. our macaque model), which means that low-elevation
recordings should be taken with care. Animals were always placed so that the plate

faced the 0°direction at the beginning of the experiment.

Animal Equivalent head radius (cm) Head pointing azimuth (°)
Human (main author) 10.3 cm 0°

Cat 4.34 cm -55°

Chinchilla 4.04 cm -20°

Guinea pig 2.6 cm 20°

Macaque 5.09 cm -30°

Barn Owl 3.54 cm 5°

Rabbit 3.99 cm -10°

Rat 1.86 cm 10°

Table 3.2: Equivalent head radii of the measured animal species, and angles used to
compensate for the head pointing direction.

Because not all models we used were facing straight (relative to their body or sup-
porting plate), the HRTF recorded when the setup is in position for 0°might not corre-
spond to the position where the speaker is in the midline of the animal’s head Fig. 3.2.
This is corrected for in all the recordings, by re-centering the data on the position
that yields the most similar left and right responses on the horizontal plane. Here,
we computed the root-mean-square of the ITD, over a broad spectrum and taking the
minimum over positions. Those compensation angles are reported in Tab. 3.2.

Quantity Notation Value
Sampling frequency fs 192 kHz
Frequency spacing Ay 11.17 Hz
Number of samples N 16384
IR duration Tir 85 ms
Sample duration T, 5.2 us
Recorded positions Neoords 651
Approx. azimuth spacing AbG 5°
Approx. elevation spacing A¢ 10°

Table 3.3: Summary of the recordings’s characteristics

On Tab. 3.2.2 the main characteristics of the recordings that were taken on the

animals are recalled. Note that because most of the animals have smaller heads, thus

94



smaller ITDs, we chose to measure at a greater sampling frequency than for the human
recordings of Chapter 1. Furthermore, because the animals are completely still, this
also makes the data very reliable in high frequencies.

3.3 Results

3.3.1 ITD across frequencies for animals

The total phase ITD, ITD, was computed for all recorded animals, for frequencies
between 500 Hz and 3 kHz, and is reported on Fig. 3.3. Reported are the two extreme
contralateral and ipsilateral positions (6 = +90° and ¢ = 0°), and two positions closer
to the midline, 8 = +30°and ¢ = 0°. We observe that the highest low frequency
and high frequency ITDs in all animals seem to match the predictions of the Kuhn
formula for high frequencies Equation 1.3, where the head radius was estimated from
the response itself Tab. 3.2. The extent of the LF to HF variation of ITD; is also
qualitatively similar to that predicted by the estimations. This indicates that the
qualitative predictions of the spherical model are in general met in those animals. Note
that in our method the head radius has been estimated form the HF ITDs, so the only
important prediction is the LF ITD.

The dashed line indicates the transition frequency estimated for the animal, that
is the frequency at which the spherical model predicts the greatest variation of ITD
Chapter 1. We observe that for all animals this transition frequency is always in the
range in which the ITD is a dominant cue to localization.

In most animals, it seems like the ITD variation observed is not the same for sym-
metrical positions around the head (e.g. +90°). This emerges from the fact that the
animals are in general not in symmetrical positions Fig. 3.1.

Note: it happens that the median sagittal plane, wherein the cues should be close

to null because the head is quasi symmetric, had non zero cues.

3.3.2 ITD;g and IDI in animals

We have observed in Fig. 3.3 that the I'TD varies with frequency across the spectrum in
all animals. As was already done using cat data, we compute the group ITD, ITD, [Roth
et al., 1980b], and the IDI according to Chapter 2. Because of the results of the previous
chapters, we expect the group I'TDs to be different from the total phase I'TD. Hence,
it is interesting to measure separately I'TD, and ITD, from the phase response of the
HRIRs. This is done according to the method developed in Chapter 2. The results of
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Figure 3.3: ITD, as a function of frequency in all animal species, plotted in the
relevant frequency ranges for each animal. ITDs are reported for five positions on the
azimuthal plane. A Human (main author) B Macaque C Cat D Chinchilla E Rabbit F
Guinea pig G Barn Owl H Rat
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this analysis are plotted on Fig. 3.4. As expected, the IDI is generally nonzero at all
positions.

The I'TD, functions for two positions are in general well separated. This means that
at any given frequency point, the ITD, seems to be an increasing function of deviation
from the midline. This property does not seem to hold easily when considering the
IDI. Indeed, the different curves reported on Fig. 3.4 cross and overlap many times,
and at some frequency points they are indistinguishable. This could be seen as an
argument to discard IDI altogether, because a clear dependency (say, cosine) between
the measure and the azimuth cannot be found. When considering the plots in the
(IDI,ITD,) plane (Fig. 3.4, the picture becomes clearer. Patches of points aligned in
a downward trend indicate the position of the sound source. In this plane there seems
to be a clear dependency on the azimuth of the sound source, and positions are well

segregated.

3.4 Discussion

3.4.1 Physiological ranges of ITD in different species

Here focus on the physiological range of ITD.. We adopt a proper definition of the
physiological range, which corresponds to the absolute probability of observing an I'TD
given the frequency. Because we have evenly spaced positions in the HRTF data, this
is actually assuming that the sound sources are distributed uniformly in terms of solid
angle. Rather counterintuitively, this assumptions in turn leads to the fact that ITDs
are not distributed uniformly for a given frequency. As an example, the ITD of a two-
mics system (as in Chapter 1) is a sine function of the azimuths. If one measures the
distribution of ITDs when sources are uniformly distributed in azimuth, then it will
have peaks at almost-extreme ITDs. This is because the sine function dampens around
7 /2, which are the extremal value 90°and -90°. Those ITDs will be overrepresented, as
opposed to the more central ITDs.

Physiological ranges of ITD are reported as a single value in different papers. On
Fig. 3.5, we observe the ITD physiological ranges as 2D plots. In all species, the
physiological range spans a greater range in low frequencies than high frequencies,
consistent with the spherical model hypothesis. Interestingly, in small mammals, the
low frequency I'TD and high frequency I'TDs are in general bigger than the ones provided
in the literature (e.g. on a spherical model, Chapter 1), even though the difference
might be accounted for by interindividual differences.

In general the arguments based on the physiological range were only interested in
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Figure 3.4: For each animal, two leftmost panels are I'TD, and IDI as a function of
frequency. The third panel corresponds to the curve (IDI(f),ITD,(f)) for all positive
frequencies. All I'TDs are reported for five positions on the azimuthal plane, the panel
of each animal is the same as in Fig. 3.3.

98



A Human B Macaque

1000 o T——
w 500
=1 L
- 0
a
E -500
-1000 - = = ; -
04 06 08 1 1.2 14 16 18 2 0.5 1 1.5 2 2.5 3
Frequency (kHz) Frequency (kHz)
D 600 Chinchilla
__ 400 B
g 200
- 0
g -200
-400 oo
-600
0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3
Frequency (kHz) Frequency (kHz)
E Rabbit F Guinea pig

0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3
Frequency (kHz)

Barn owl

0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3
Frequency (kHz) Frequency (kHz)

Figure 3.5: Physiolgoical ranges of ITDyfor all the stuffed animals presented here.
Each panel is a color plot of the distribution of ITDyon the azimuthal plane, as a
function of frequency and ITD,. Only the positions near the horizontal plane (within
20°0f 0°elevation) are reported. Color code: blue is improbable, red is highly probable
and white is intermediate.
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the mazimal possible ITD, which is a single figure. From our data, we observe that the
physiological range of ITDs is not a uniform distribution, and that it also varies with
the frequency in all measures. Hence, a description of the possible acoustical cues in
an animal species cannot be obtained with a single figure. Indeed, for low-frequencies
the physiological range is generally bigger in than in higher frequencies (Fig. 3.5
From these observations, we can draw a few conclusions, namely on the intrinsic
limitation of the ability to localize sound sources. If we assume that the subject has
a constant ability to discriminate positions, that is it is just as good in telling apart
0 and 5°than 80 and 85 °. ITDs of extremal positions (say, 80 and 85 °) are closer
together than ITDs around the midline. Thusly, under this hypothesis, the ability to
discriminate /T'D whould be better for bigger ITDs. This is not what is obseved, first
the ability to discriminate positions in free field is better for sounds around the midline,
and second, it is generally observed that JNDs in ITD (i.e. an index of the precision
in ITD discrimination) are bigger for bigger I'TDs. Therefore, the data that we have
gathered suggests that the ability to discriminate the position of a sound source is
rather limited by discrimination abilites in I'TD, and not the contrary. A constant ITD
discrimination ability is consistent with the data indicating that humans are worse at

telling appart sound positions for excentric positions

3..2 ITDg and IDI physiological ranges in each species

We computed the physiological range for all species, in a manner similar as for Fig. 3.5
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Figure 3.6: Physiological ranges of ITD, for all the measured species. Data same as
in Fig. 3.5
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Chapter 4

Reconstructing HRTF from pictures:

case of the cat
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In this section we present a quick and efficient method to measure low frequency
HRTFs in animals using pictures and numerical simulation. We apply this method to
generate HRTF's for a cat model. Finally, we validate the appraoch by comparing its
results with acoustical recordings performed on a stuffed cat.

This paper, done in collaboration with Marc Rébillat was submitted to JASA.
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4.1 Abstract

Reliable animal head-related transfer function (HRTF) estimation procedures are needed
for several practical applications.

For example, t oinvestigate the neuronal mechanisms of sound localization using
virtual acoustic spaces, or to have a quantitative description of the different localization
cues available to a given animal species.

In this context, we present and validate a method to estimate an animal’s HRTF
from photographs by taking into account as much morphological detail as possible. The
first step of the method consists in building a 3D-model of the animal from pictures
taken with a standard camera. The HRTF are then estimated by means of a rapid
boundary element method implementation. The method is validated on a stuffed cat
by comparing binaural and monaural localization cues extracted from estimated and
measured HRTF. The main advantage of this method is that it can be used for any
animal and necessitates no time-consuming acoustical measurements and no expensive

equipment.

4.2 Introduction

Animals can localize a sound source in space by analyzing the sound signals arriving at
their two ears. The acoustical transformation occurring between a point source and a
receiving ear is usually termed “Head Related Transfer Function” (HRTF) [Wightman
and Kistler, 2005b]. HRTF convey all the acoustical cues available for the animal to
localize a sound source in space: binaural cues, such as interaural-time differences
(ITDs) and interaural level differences (ILDs), and monaural cues, such as spectral
cues [Blauert, 1997]. These acoustical cues however greatly depend on the morphology
of the animal under study [Xu and Middlebrooks, 2000, Schnupp et al., 2003, Tollin and
Koka, 2009d, Tollin and Koka, 2009a, Jones et al., 2011]. Reliably estimating the HRTF
of a given animal is a challenging task that is necessary for various applications.

For example, to investigate the neuronal mechanisms of sound localization with
physiological and behavioral experiments, HRTF can be used to generate controlled bin-
aural stimuli presented through headphones using a virtual auditory environment [Ja-
cobson et al., 2001]. Ideally, the use of HRTF that are not specific to the animal
under study should be avoided as it alters the virtual-spatial sensitivities of neurons
in the central nervous system [Mrsic-Flogel et al., 2001, Schnupp et al., 2001, Sterbing
et al., 2003b]. Reliable HRTF are also needed to quantitatively estimate the local-
ization cues available for different animal species. For this purpose, animal HRTF
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are commonly measured experimentally by placing miniature microphones at the ear
canal entrances and by measuring their responses to controlled sounds played through a
movable loudspeaker [Mehrgardt and Mellert, 1977, Roth et al., 1980a,Xu and Middle-
brooks, 2000, Spezio et al., 2000a, Maki and Furukawa, 2005b, Koka et al., 2008b, Koka
et al., 2011b, Tollin and Koka, 2009d, Tollin and Koka, 2009a, Kim et al., 2010b, Jones
et al., 2011]. Such procedure nevertheless require dedicated hardware and facilities as
well as a substantial amount of time. In particular, sound localization in the horizontal
plane relies mainly on low frequency ITDs, but such measurements are often limited
in the low frequency range by the quality of the measurement setup (which is mostly
degrader by loudspeaker response) and of the measurement room (anechoic or not)
being used. Alternative HRTF estimation methods are thus needed to address those

issues and to obtain reliable localization cues in the low frequency range.

To avoid HRTF measurements for each animal, HRTF of a given animal can be esti-
mated using HRTF measured on another animal of the same species on the basis of some
morphological parameters. For cats [Xu and Middlebrooks, 2000], ferrets [Schnupp
et al., 2003], and gerbils [Maki and Furukawa, 2005c], HRTF amplitudes can be quite
accurately predicted by a scaling operation on the log-frequency axis and by a rotation
of the HRTF around the source coordinate sphere. The optimal scaling factor (OSF)
and the optimal coordinate rotation (OCR) can furthermore be predicted on the basis of
morphological parameters. However, this approach requires that for each species under
study one reference measurement and the relations between morphological parameters
and the OSF and OCR are available.

Simplified geometrical models such as spherical models [Brown and Duda, 1998a,
Duda et al., 1999b, Algazi et al., 2001b], head and torso models [Algazi et al., 2002, Per-
naux, 2003, Zotkin et al., 2003], or dummy head models [Dellepiane et al., 2008] have
also been proposed to estimate human listener’s HRTF. The morphological parame-
ters needed to feed the geometrical model can be easily estimated, for example from
photographs [Pernaux, 2003, Zotkin et al., 2003, Dellepiane et al., 2008]. However, the
resulting estimated HRTF are only approximate and valid in the lower frequency range,
where fine morphological details not taken into account in the simplified geometrical
model have negligible influence. This approach is furthermore limited to humans as it

relies on dummy models which are generally not available for animals.

Finally, animal HRTF can be estimated using a full 3D-model of the animal’s body
obtained for example from a scanning laser [Quaranta, 2003, Muller, 2004, Grace et al.,
2008,De Mey et al., 2008]. As all the fine morphological details are taken into account
in the full 3D-model, HRTF estimated using this method are valid over a larger fre-
quency range than when estimated using simplified geometrical models. However, this
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approach relies on expensive equipment that is not always available in practice.

In this paper, we present and validate a general method to estimate HRTF from
raw photographs by taking into account as much morphological detail of the animal as
possible. The first step of the method consists in building a 3D-model of the animal
from photographs taken with a standard camera [Lafarge et al., 2010]. Based on this
3D-model, the HRTF are then computed by means of a rapid boundary element method
(BEM) implementation [Otani and Ise, 2006]. The main advantages of this method are
that it is generic, fast, and necessitates no direct acoustical measurements as well as no
expensive equipment.

The proposed method is described in Sec. 4.3 and used to estimate the HRTF
of a stuffed cat, which are also experimentally measured and compared to a simple
spherical model. The method is then validated in Sec. 4.4 by comparing the binaural
and monaural localization cues provided by the estimated, spherical, and measured
HRTF. The limitations and new possibilities offered by the method are finally discussed
in Sec. 4.5.

4.3 Methods

The HRTF estimation pipeline presented here is based on two steps and is illustrated
on the stuffed cat (a female felits domestica) shown in Fig. 4.1(a). The HRTF of
the stuffed cat are also measured on the actual stuffed cat and compared to a simple
spherical head model.
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b) c)

Figure 4.1: Stuffed cat used to validate the HRTF computation procedure. (Color
online) (a) Examples of photographs used for the 3D-model estimation. (b) Overview of the
estimated 3D-model of the cat. (c) Detail of the left ear of the cat: real cat (top) and 3D-model
(bottom).

4.3.1 HRTF estimation procedure
3D head and body model reconstruction

In order to build a 3D-model of a given object, some input data carrying geometrical
information regarding the object to be modeled is needed. A classical way to acquire
such data consists in using laser scanning equipments [Bernardini and Rushmeier, 2002].
However, such equipment is particularly expensive and hard to use in practice. An
alternative method to build 3D-models consists in using a set of raw photographs
of the object as input data [Seitz et al., 2006, Strecha et al., 2008]. This kind of
method requires only a standard camera and is able to provide 3D-models that are
qualitatively in good agreement with the ones obtained through laser scanners [Seitz
et al., 2006, Strecha et al., 2008].

For its practical ease of use, a method based on photogrammetry [Leberl and Thur-
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good, 2004, Mayer, 2008] and using raw photographs as input data has been retained
here [Lafarge et al., 2010]. This method models an arbitrary 3D-object as a combi-
nation of meshes and of geometrical primitives. On the basis of raw photographs, a
Jump-Diffusion process [Grenander and Miller, 1994] is designed to sample these two
types of elements simultaneously. The 3D-models reconstructed by this method have
been shown to be qualitatively comparable to models acquired through the use of laser
scanners [Lafarge et al., 2010]. Only the camera focal distance is required for the

method to output a scaled 3D-model.

We applied this 3D-model estimation procedure to the cat shown in Fig. 4.1(a). A
3D-model of the stuffed animal was estimated based on 68 photographs taken with a
standard 10 Mpixels camera under normal lighting conditions, see Fig. 4.1(b). This
model is made up of 11526 triangles with sides of ~ 1 cm, which is larger than the

resolution of scanning lasers (~ 1 mm).

As is shown in Fig. 4.1(c) the fine geometrical details, such as the exact concave
shape of the cat pinnae, are not well captured by this method. It should also be noted
that the cat fur has been modeled here as a continuous surface. However, all the major
body part shapes, z.e. the head, body, legs and tail are accurately modeled. The 3D-
model obtained here is thus more precise than a simple geometrical model (spherical
model or head and torso model) but not as precise as would be obtained using a precise
laser scanner.
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Boundary element method formulation

Figure 4.2: Overview of the measurement and BEM procedures. (Color online) (a) Red
dots indicate the position of the acoustical sources in the BEM calculations. HRTF measurement
setup for the cat: (b) zoom on the positioning laser and ear canal microphone and (c) overview.

The HRTF are then computed from this 3D-model using the fast HRTF calculation
algorithm proposed by [Otani and Ise, 2006] based on the boundary element method
(BEM). In this BEM formulation, the reciprocity theorem is incorporated into the
computational process in order to shorten the processing time. Moreover, all the factors
independent of the source position are precomputed in advance. Using this algorithm,
the HRTF for any source position are obtained in a few seconds with a standard PC,
once the pre-computation process has been achieved on the estimated 3D-model.

It is generally assumed that BEM performs well up to the frequency for which there
are 6 to 10 triangular mesh elements per wavelength [Katz, 1998, Kahana, 2000]. Given
that the nodes are spaced by ~ 1 cm (see Sec. 4.3.1) and according to this criterion,
the upper frequency limit below which the HRTF are accurately computed is expected
to be between 3 and 5 kHz.
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Regarding boundary conditions, the acoustical properties of the cat fur are not
known. It is however known that absorption coefficients are larger for a haired animal
than for a hairless one [Ackerman et al., 1957, Katz, 2000]. More specifically, some
studies focused on the effects of the hair and clothes on human HRTF: [Burkhard and
Sachs, 1975] found that the ear entrance sound pressure was relatively insensitive to the
head impedance. [Kuhn, 1977] has shown that ITD and ILD differences between a bare
and a clothed torso are relatively small below 2 kHz. [Katz, 2001, Treeby et al., 2007]
studied the effect of hair on HRTF and concluded that they do not play an important
role below 3 kHz. [Katz, 2001] furthermore emphasized the fact that modeling hair
or fur as a normal reactive impedance is only a rough approximation of the physical
reality. Thus, since 1) we are interested mainly in the frequency range below 3 kHz
due to the relatively coarse meshing of our model, 2) no data about the impedance of
the cat fur were available, and 3) the BEM implementation of impedance still is not
perfect, we chose to apply rigid boundary conditions over the whole cat surface.

Figure 4.3: Coordinate system definition: a) top view (¢ = 0°) with azimuth 8 and b)
side view (6 = 0°) with elevation ¢. See [Warusfel, 2002] for more details.

We computed the HRTF for the cat from the previously obtained 3D-model, see
Fig. 4.1(b), with rigid boundary conditions. Acoustical sources were placed sequentially
at two points situated a few millimeters in front of the 3D-reconstruction of the cat ears,
as shown by the red dots in Fig. 4.2(a). The HRTF were computed for 651 positions at
a distance of 1.95 m, with a frequency resolution of 43 Hz and a sampling frequency of
44.1 kHz. The spatial resolution of the computed HRTF is 5° in azimuth, from —175°
to 180°, and 15° in elevation, from —40° to 90° following the LISTEN coordinates
system [Warusfel, 2002] shown in Fig. 4.3. Pre-computation took about 7 hours on a
Red Hat Linux, Xeon 3.33 GHgz, 8 cores, 48 Gbyte RAM workstation.
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4.3.2 HRTF measurements for the cat

In order to validate the HRTF estimation pipeline described above, the actual HRTF
of the cat have also been measured experimentally. The HRTF of the cat shown in
Fig. 4.1(a) were measured by means of the IRCAM HRTF measurement system [Warus-
fel, 2002]. Measurements were done in an anechoic chamber covered with glass wool
wedges, see Fig. 4.2(c). HRTF were obtained through the blocked ear canal measure-
ment method, which has been shown to be sufficient to acquire directional information
in humans [Hammershoi and Moller, 1996, Wightman and Kistler, 2005b]. A pair of
miniature microphones have been placed at the entrance of the occluded ear canal of
the stuffed animal as shown in Fig. 4.2(b). The cat head was positioned so that the
center of the interaural axis was located at the center of the sphere and the horizontal
plane was parallel to the support plane. This was accomplished using two low-powered
lasers to align the head correctly. The sound source was a speaker placed on a rotating
crane. HRTF were measured at the same 651 positions at which computations were
performed, with a frequency resolution of 11.7 Hz and a sampling frequency of 192 kHz.

4.3.3 HRTF estimation using a spherical head model

In order to emphasize the benefits offered by the estimation procedure proposed here
in comparison with procedures based on simple geometrical models, the HRTF of the
cat have also been estimated using a simple spherical model. The implementation
of the spherical model proposed by [Duda and Martens, 1998] has been used here.
The diameter of the sphere modeling the cat’s head has been chosen to be equal to
the interaural cat distance, z.e. 7.3 cm (see Fig. 4.2). Using this spherical model,
the HRTF were estimated for a distance of 1.95 m at the same 651 positions at which
computations and measurements were performed, with a frequency resolution of 10.8 Hz

and a sampling frequency of 44.1 kHz.

4.4 Results: Comparison of localization cues

In this section the localization cues provided by the different HRTF sets obtained in the
previous section are compared. HRTF estimated with the procedure proposed in the
paper will be referred to as estimated HRTF (see Sec. 4.3.1), experimentally measured
HRTF as ezxperimental HRTF (see Sec. 4.3.2), and HRTF obtained using the spherical
model as spherical HRTF (see Sec. 4.3.3).
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4.4.1 Definitions

Before comparing the different HRTF sets, the monaural and binaural localization cues
that will be used in the following are defined.

The monaural spectral cues for the left and right ears are defined as the left and
right directional transfer functions (DTF) as done by [Kistler and Wightman, 1992a].
For each considered HRTF set, the mean across the 651 positions of the HRTF log-
magnitude is computed. These mean functions include the direction-independent spec-
tral features shared by all the HRTF of a given set. To remove these features, the
appropriate mean function is then subtracted from the log-magnitude of each HRTF
of a given HRTF set. With means removed, the resulting 651 log-magnitude functions,
denoted DTF,(f) and DTF,(f) in the following, represent direction-dependent spectral
effects.

Let us now consider a pair of HRTF, H;(f) and H,.(f), corresponding to a given
source position. The interaural level differences, ILD(f) (in dB), and interaural phase
differences, IPD(f) (in radians), are defined according to Egs. (4.1) and (4.2), where
/(.) denotes the unwrapped-phase operator, i.e. the operator that changes absolute

jumps greater than or equal to 7 to their 2 complement:

ILD(f) = 20log,, Hgl((]})) H (4.1)
IPD(f) = £ [ gl((;))] (4.2)

Two binaural time localization cues are defined from the interaural phase differences
by Egs. (4.3) and (4.4) following [Roth et al., 1980a]. ITDy(f) is the interaural phase
delay and ITD,(f) is the interaural group delay. They correspond to the interaural
delay of the temporal fine structure and of the envelope, respectively. These two quan-
tities generally differ and depend on frequency because of sound diffraction by the head
and body [Kuhn, 1977,Roth et al., 1980a].

ITD,(f) = L (43)
1TD,(f) = 5 ) (4.4

To quantify this difference, we additionally define in Eq. (4.5) a new index, the
Interaural Diffraction Index IDI(f) (in radians). This cue denotes the phase-lag in-
duced by diffraction effects between the envelope and the fine structure of the incoming
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sound. For example, an acoustically transparent head (z.e. a case without any diffrac-
tion effects), leads to equal and frequency-independent inter-aural group and phase
delays, and thus would give a zero IDI at all considered frequencies.

IDI(f) = 2rf [ITDp(f) — ITDg(f) (45)

Summing up all the above-defined cues, there are thus 6 frequency-dependent local-
ization cues (respectively ITD,(f), ITDg(f), IDI(f), DTF(f), DTF.(f) and ILD(f))
to be compared for the 3 HRTF sets obtained in Sec. 4.3. All cues are smoothed in the
frequency domain with a third octave sliding window, narrower than the cat auditory
filters [Mc Laughlin et al., 2007].

4.4.2 Qualitative comparison

10 Experimental HRTF 10 Estimated HRTF 10 Spherical HRTF

DTF, (dB)
i

DTF, (dB)

ILD (dB)

Frequ’el%c‘yiﬂin Hz) Frequér;c;/i?izn Hz) Freq’uel%é?lsiin Hz)
Figure 4.4: Comparison of amplitude-based localization cues DTF,(f), DTF.(f), and
ILD(f) for the 3 HRTF sets for 5 positions in the frontal azimuth plane and between

100 Hz and 5 kHz. (Color online)
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Figure 4.5: Comparison of time-based localization cues ITDy(f), ITD4(f) for the 3
HRTF sets for 5 positions in the frontal azimuth plane and between 100 Hz and 5 kHz.
(Color online)

In Fig. 4.4, amplitude-based loaclization cues DTF(f), DTF.(f), and ILD(f), com-
puted according to the procedure highlighted in Sec. 4.4.1 and to Eq. (4.1) are plot-
ted for the experimental, estimated and spherical HRTF sets for 5 azimuths in the
frontal horizontal plane. In Fig. 4.5, time-based localization cues ITD,(f), ITDg(f),
and IDI(f), computed according to Egs. (4.3), (4.4) and (4.5), are plotted for the 3
HRTF sets and for the same 5 azimuths.

It can be seen in Fig. 4.4 that there is very good qualitative agreement between the
amplitude-based localization cues obtained through the proposed method and those
experimentally measured. A much less accurate agreement is observed between those
obtained using the simple spherical model and the experimental ones. It is also par-
ticularly striking to see that the proposed method is able to render fine changes of the
various localization cues with frequency and that the simple spherical model cannot
capture such details (see for example the curves for 8 = —140°). In Fig. 4.5, it can
furthermore be observed that the same comments generally hold for time-based local-
ization cues above 200 Hz. There is thus globally an excellent qualitative agreement

between the estimated and experimental HRTF sets for the 5 positions tested here.

4.4.3 Quantitative comparison

In order to perform a global comparison between the estimated and experimental
HRTF sets over the whole sphere, the differences observed between the monaural and
binaural localization cues over the 651 positions have been computed between 100 Hz
and 5 kHz. Fig. 4.6 shows the histograms of these differences and Tab. 4.1 provides their
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mean and associated standard deviation. In the following, we denote the differences
associated with each cue as ADTF;, ADTF,, AILD, AITD,,, AITD, and AIDI.
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Figure 4.6: Histograms of the differences in localization cues between the ezperimental
and estimated HRTF sets over the 651 positions and between 100 Hz and 5 kHz. For
each localization cue, the dashed line (---) stands for the mean difference and the
dotted line () depicts two lines lying one standard deviation apart from the mean

difference line. (Color online)

Cue Mean STD
ADTF, | —0.42 dB | 0.95dB
ADTF, | 042dB | 1.24dB
AILD 0.84dB | 1.21dB
AITD, 1.2 us 23 us
AITD, 10.1 us 38 us
AIDI 0.07 rad | 0.27 rad

Table 4.1: Mean and standard deviation (STD) of the differences between the different
localization cues over the 651 positions between 100 Hz and 5 kHz.

It can be observed that for amplitude-based cues, the differences between the two
data sets remains very low between 100 Hz and 3 kHz highlighting the fact that there
is quantitative agreement between the amplitude based cues derived from the two
HRTF sets in that frequency range. Regarding AILD only, it can be observed that
the standard deviation of these differences has a global tendency to increase with the
frequency. Focusing on ADTF; and ADTF,, it can be seen that the differences are
very small between 100 Hz and 5 kHz, with a slight increase around 700 Hz. For time-
based cues, the same picture can be drawn highlighting again the fact that HRTF are
correctly estimated between 300 Hz and 3 kHz. AITD, exhibits a positive bias below
300 Hz and remains very low above. Standard deviations associated with AITD, and

AIDI also increase below 300 Hz and above 3 kHz.
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In summary, there is thus global quantitative agreement between 300 Hz and 3 kHz
between the estimated and experimental HRTF sets for the 651 positions tested
around the whole sphere.

4.5 Discussion

4.5.1 Validity range of the estimation procedure

Results from behavioral experiments in cats indicate that the just-noticeable difference
is ~ 20 ps for ITD, and ~ 1 dB for ILD [Wakeford and Robinson, 1974]. This is the same
order of magnitude as the differences obtained between experimental and estimated
HRTF sets between 300 Hz and 3 kHz (see Sec. 4.4.3). We can thus conclude that for
the presented cat example, the HRTF estimation procedure is accurate up to behavioral
precision in that frequency range.

For frequencies higher than 3 kHgz, it can be seen in Fig. 4.6 that the differences be-
tween the estimated and experimental HRTF suddenly increases for all the localization
cues, except ITD,(f). As measurements are thought to be reliable in that frequency
range, this thus means that the estimation procedure produces unreliable results here.
This upper frequency limit is nevertheless in good agreement with the upper frequency
limit related to the BEM procedure (see Sec. 4.3.1). We conclude that the 3 kHz up-
per bound obtained here is a direct consequence of the limited mesh resolution of the
3D-model used here. A solution to go beyond this upper frequency limit could thus be
to increase the 3D-model mesh resolution by refining the mesh using smaller triangles
or by taking more photographs. Nevertheless, as the influence of fur is supposed to
increase with the frequency, the upper frequency limit may not be extended broadly
using only mesh refinement.

For frequencies lower than 300 Hgz, it can be seen in Fig. 4.6 that the differences
between the estimated and experimental HRTF also suddenly increase but only for
the time-based localization cues. By looking closer at Fig. 4.5, it can be seen that there
is a systematic increase of ITD,(f) as the frequency decreases for the erperimental
HRTF, which is not observed for the two other HRTF sets. As there is no obvious
reason to explain this systematic shift, we conclude that the experimental HRTF are
poorly impacted by the measurement setup and room reflexions below 300 Hz. By
comparing the estimated and spherical model HRTF in that frequency range, one
can see that there is a good agreement above 200 Hz. Below that frequency, ITD,(f)
seems to tend toward 0 and ITD,(f) to diverge for the estimated HRTF and not for
the spherical model. This may be a side effect of the BEM procedure which produces
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only one point every 43 Hz in the frequency domain (see Sec. 4.3.1) and thus does not
provide enough reliable information in the low-frequency range. A solution to go below
this lower frequency limit could thus simply be to increase the frequency resolution
associated with the BEM procedure.

Finally, our measurements and estimations were done on a stuffed animal, which
may differ from a live animal by its acoustical impedance. Nevertheless, the acoustical
impedance differences between the stuffed and live animal are expected to be small in
comparison with the acoustical impedance differences between the stuffed animal and
a rigid model. As the latter differences are expected to have a very small influence on
the binaural cues below 3 kHz (see Sec. 4.3.1), results obtained here for a stuffed cat

can thus confidently be extended to a live cat.

In summary, the estimation procedure proposed here produces HRTF that can be
used for a live animal and that are accurate up to behavioral precision between 300 Hz
and 3 kHz. These frequency bounds can furthermore be easily extended as they are

directly related to technical implementation details and not to the method itself.
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4.5.2 Case study: effects of posture on the cat ITDs
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Figure 4.7: Influence of the posture on ITD,(f) in the horizontal plane. (a) ITD,(f)
when the cat’s head is straight or turned by 50°. Each line stands for ITD,(f) at a
given azimuth. The front horizontal plane corresponds to azimuth varying between
—90° and 90° by steps of 5°. The back horizontal plane corresponds to azimuth varying
between 90° and 180° by steps of 5°. (b) 3D-model of the cat with the turned head.
(c) Modified 3D-model of the cat with the head straight.

To illustrate the potential applications offered by this method, ITD,(f) is plotted in
Fig. 4.7 for the cat model with its head turned by 50°, which was the original posture, or
modified to be straight. The front horizontal plane corresponds to € varying between
—90° and 90° by steps of 5°. The back horizontal plane corresponds to 6 varying
between 90° and 180° by steps of 5°. This figure highlights first the fact that ITD,(f)
varies in a complex, but organized, manner depending both on frequency and head
position. By comparing front and back curves, this figure also emphasizes the fact that
the organization of the ITD,(f) curves is greatly influenced by the presence of the cat’s
body. Building on the pioneering work of [Algazi et al., 2002] in that direction, this
method thus potentially allows studying on a systematic manner the effect of body

posture on binaural cues.
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Part 1l

Consequences of the variation of ITD

on the binaural system
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In the previous part I characterized the binaural timing cues to position available
to animals of different species. I showed that ITD for a given position depends on the
frequency of the stimulus, on a global scale (across different auditory filters) and on a
local scale (within a single auditory filter). In this part I study the neural structures
that encode the azimuth of a sound source, thus underlying the ability of animals to
localize sound sources. I am interested in the consequences of the fact that I'TD is not
constant across frequencies on the understanding of the binaural system.

In the late 60’s, the responses of neurons in the cat Inferior Colliculus (IC) were
found to be modulated by the ITD in the inputs [Rose et al., 1966]. It is now known that
neurons in an afferent nuclei to the IC, the medial superior olive (MSO), are primarily
sensitive to I'TD (i.e. not to ILD) in stimuli. I propose to approach the study of those

nuclei through two classes of questions.

The first class of questions is mechanistic: how is the auditory system arranged (in
a broad sense) so that the neurons display a sensitivity to ITD. This involves under-
standing the neural pathways from the ears to the neurons exhibiting I'TD sensitivity:
from the cochlear function to the morphology and biophysics of the cells. A response to
this question was provided very early by Jeffress [Jeffress, 1948], who postulated that
axonal delay lines and coincidence detection could provide a mechanism for ITD sensi-
tivity. This is a mechanistic explanation in that it says how the particular input-ouput
relationship of a neuron can be explained. To this date, this situation is accepted as
a fact in the avian realm [Konishi, 1971], even though it is still discussed in the mam-
malian realm [Joris and Yin, 2007]. In any case, this will never explain how the nervous
system further makes sense of the ITD of a sound sourc to create a percept of space,
and ultimately a behavioral response.

The second, maybe more interesting class of questions is about coding problems:
How do I'TD-sensitive neurons collectively represent the position of sound sources? This
involves a full understanding of the response of the neurons in an MSO population,
across all possible stimuli (different levels, different frequency contents, ...). This is a
hard problem because simultaneous measurements of a complete population of neurons
is hard, yet, hypotheses about the encoding of position provided by binaural neurons
exist. An answer to this question was also provided by Jefiress, who proposed that the
ITD could be encoded by the identity of the maximally active neuron in a population
of heterogeneous ITD-sensitive neurons. This is referred to as a peak code in the
literature, and again, while this is the accepted answer in birds, it is still a matter of
debate in the mammalian realm.

I argue that the variability of ITD for a given position has consequences on the

neural functioning both those issues. The local variation of ITD, we showed, introduced
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distortion between the signals in the form of different envelope and FS delays. It is a
mechanaistic question: is it possible that single MSO neurons are sensitive to both
these cues? The global variations of ITD across the spectrum means that there is no
longer a one-to-one mapping from the cue (ITD) to the position of the sound source. It
is a coding question: How is the position of broadband stimuli encoded by a population
of I'TD-sensitive neurons?

This part consists in one introductory chapter (Chapter 5) that describes the current
knowledge about the binaural ITD processing system in mammals. I examine the
mechanistic problem of single neurons being sensitive to ITD in the signals at the ears,
and then study the population coding of auditory space, or how populations of neurons
collectively represent space. The rest of the part is dedicated to showing that the two
types of ITD variability that we observed in the previous chapter (across and within
cochlear channels) have consequences on those scales.

Chapter 6 represents the most important result of this disseration. We use recorded
from cells in the cat IC and find that neurons encode frequency-dependent I'TDs, con-
sistently with previous observations [Yin and Kuwada, 1983]. We test the hypothesis
that this frequency-dependence is explained by the fact that ITDs for a given position
in space are frequency dependent. We argue that this means that the cells are coding
for position instead of pure ITD, in a peak code fashion. In Chapter 7 we provide the
basis for a model of neurons sensitive to a position in space irregardless of the fre-
quency content of the input. I show that this can be achieved through a combination
of axonal delay lines and mismatches in the wiring of binaural neurons to the cochlea
on each side. Finally, in Chapter 8, I discuss the notion of place and populations codes.
I propose an alternative peak code to the Jeffress-type code. This model predicts that
low-frequency ITD sensitive neurons have BDs outside of the physiological range of
ITDs, as observed in mammalian data.
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Chapter 5

State of the art

Contents
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In this chapter I introduce the state of the art of the neurophysiology of sound
localization. It is divided into two parts, first [ review the results on the mechanisms
leading to single-cell sensitivity to I'TD, and then turn to the models of how populations

of neurons encode space.
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I argue that I'TD sensitivity necessarily arises in binaural neurons because of a hand-
ful of computational primatives. First, the transduction of the acoustical signals into
neural signals must preserve the temporal information imposed by the head. Second,
it must be that neural signals are delayed by different quantities on the left and right
pathways. Finally, binaural neurons must act as coincidence detector neurons, able to
detect synchronous inputs from both sides. I then explain how those different com-
putational components are thought to be implemented on the neural substrate. The
transduction of the signal, from the cochlea through the Cochlear Nucleus is studied.
Possible delaying mechanims are then reviewed, from axonal delay to cochlear delays
and inhibition. Finally, the ability to detect coincidences is assessed and key features
of the MSO are highlighted.

In a second part I introduce the controversial problem of the encoding of source
location by populations of MSO neurons. I review the different schemes that have been
devised for the coding of auditory space. This is where the Jeffress-type “peak code” is
opposed to the recently proposed hemispheric model [McAlpine et al., 2001]. I review
the arguments in favor of each alternative, as well as the criticism they received.

124



5.1 Introduction

Sound source localization is a hard mathematical problem, for which solutions exist in
the form of algorithms generally developed in the context of robotics (see e.g. [Durkovic
et al., 2011]). Yet, the robustness of the human auditory system to noise, concurrent
sources, different acoustical environments, is remarkable and yet to be achieved using
traditional signal processing. This is a good motivation to the study of neural sound
source localization. Neural computing is different from classical digital computing, for a
main part because neurons communicate with discrete asynchronized events. Therefore

one may ask: what makes the neural substrate especially suitable to this processing?

Schematically, the peripheral auditory system is an ascending hierarchy of neural
structures. At the bottom of this hierarchy, the acoustical pressure waveform is trans-
duced into an electrical neural signal. This signal is carried by the auditory nerve to the
auditory brainstem, which consists of bilateral nuclei (that is, symmetrically present
on both sides). Source location can be extracted by the processing of interaural cues,
which is necessarily done by comparing the signals at both ears. Some brainstem cells
receive bilateral inputs, which makes them interesting candidates for the function of
sound localization. From these structures on, the neural signal is carried to the medial
geniculate nucleus, a structure in the midbrain, which then “projects” the signal into

the auditory cortex.

Here I introduce the neurophysiology of sound source localization in mammals, and
more specifically the ITD-processing structures. Two types of problems arise when
trying to account for the functioning of the binaural system. First, how can the activity
of a single cell be modulated by the I'TD This entails both describing the nature of that
modulation, and how this modulation arises from properties of the neurons and their
wiring. I study ITD sensitivity first, in Section 5.2. Such results, though, will fall
short of providing a complete understanding of the system. The step from single-cell
sensitivity to such encoding spatial position is a conceptual leap that is conditioned
by and constrains the observed single-cell sensitivities. In Section 5.3, I explore the
current views on how the position of the sound source is represented by binaural neuron

populations.

5.2 Neural basis of the sensitivity to ITD
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Figure 5.1: Schematics of the auditory pathways leading to Medial Superior Olive
(MSO) and Inferior Colliculus (IC). Blue lines signal excitatory projections while red
lines signal inhibitory projection. LSO: Lateral Superior Olive, LNTB: Lateral Nucleus
of the Trapezoidal Body, MNTB: Medial Nucleus of the Trapezoidal Body, AVCN:
Antero-Ventral Cochlear Nucleus

5.2.1 Sensitivity to binaural cues in the auditory brainstem

In most common single-cell electrophysiological setups, an electrode is placed in the
vicinity of a neuron in the nucleus of interest, while the animal is anaestetized. The
experimenter then presents acoustic stimuli to the subject repeatedly, while the re-
sponse of one cell is recorded from an electrode. Generally, the stimuli are pure tones
(sinusoids), or white noise presented separately at both ears. In each stimulus, the ex-
perimenter can introduce binaural cues (ITD, ILD, ...), and then measure the response
of the neuron as a function of the cue.

Such work was conducted in the mammalian auditory brainstem in the second half
of the XX century. An early report [Rose et al., 1966], showed that neurons in the
Inferior Colliculus (IC), were sensitive to ITD cues and ILD cues in the stimuli. It was
later shown that this property is inherited from the Superior Olivary Complex (SOC),
which provides inputs to IC [Aitkin and Schuck, 1985,0liver et al., 2003]. SOC is mostly
concerned with localization in the azimuthal plane, as assessed in lesion experiments.
In this study, [Masterton et al., 1967], the experimenter surgically lesions selected parts
of the auditory brainstem and then probes the localization abilities of the animal in
behavioral experiments. Results of these studies, and later [Casseday and Neff, 1975],
show that lesioning the SOC highly degrades the animal’s localization abilities. Overall,
reports agree that the SOC is the first locus of binaural cues processing.

The SOC mainly consists in two nuclei, both providing inputs to the IC: the Medial
(MSO) and lateral (LSO) superior olivary nuclei. Those structures, much as the IC,
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are bilateral. Therefore, mammals have two symetrically placed MSOs (resp. LSOs) at
both sides of the brainstem. Both are binaural, in the sense that they receive inputs
from both the ipsilateral and contralateral ear. Moreover, they receive inputs from
the contralateral ear through the Cochlear Nucleus (CN) which is almost exclusively
a monaural nucleus. Hence, only three synapses away from the ear, SOC structures
are the first binaural structures in the auditory brainstem. Other periolivary nuclei
exist in the SOC (e.g. superior paraolivary, SPON), but will not be discussed in this
manuscript.

MSO receives bilateral (from both ears) inputs, via the spherical bushy cells of
each side’s anteroventral cochlear nuclei (AVCN) [Oliver, 1987, Karino et al., 2011].
A depiction of the pathways leading to MSO is provided on Fig. 5.1. Ipsilateral and
contralateral inhibitory inputs also converge to MSO, through the Lateral Nucleus
of the Trapezoidal Body (LNTB) and the Medial Nucleus of the Trapezoidal Body
(MNTB), respectively. MSO neurons are primarily neurons sensitive to low-frequency
signals, relative to the hearing range of the animal. As first demonstrated in the dog
by [Goldberg and Brown, 1969], those neurons are sensitive to ITD in the stimulus.
In general a given neuron is preferentially activated by free-field sounds played in the
contralateral hemifield (e.g. [Aitkin et al., 1985]), hence to I'TDs congruent with those
positions.

LSO also receives bilateral inputs, but asymetrically. It is excited by spherical bushy
cells of AVCN, and inhibited by contralateral inputs through the Medial Nucleus of the
Trapezoidal Body (MNTB) [Tollin, 2003]. Neurons in the LSO are primarily excited
by high-frequency stimuli. Note that some low-frequency cells in LSO are also sensitive
to timing differences in their inputs [Tollin and Yin, 2005]. Yet, the role of LSO seems
constrained to the encoding of interaural level differences (ILDs), in a way that is
independent of MSO [Tollin, 2003].

Other neural structures are involved in sound source localization, using other sets
of acoustical cues. The Dorsal Cochlear Nucleus (DCN) is for example thought to be
responsible for the processing of monaural cues (spectral notches) to location [Imig
et al., 2000]. These notches are the result of acoustical resonances in the pinnae of the
animal, and carry information about elevation even in the median plane. Similarly to
MSO and LSO, information contributed by the DCN is then carried on to IC.

ITD sensitivity in different species

Studies of ITD sensitivity in animal hearing have been conducted in a wide array
of mammalian species, including the dog [Goldberg and Brown, 1969], cat [Kuwada
et al., 1984], rabbit [Kuwada et al., 2011, Batra et al., 1997, Fitzpatrick et al., 1997a]
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guinea pig [McAlpine et al., 1996], or mongolian gerbil [Lesica et al., 2010]. Yet,
all non-mammal vertebrates also have a sense of hearing and exhibit fine localization
abilities. In this regard, the barn owl (Tyto alba) is a very widely studied bird for
its localization abilities [Konishi, 1971]. The analog of MSO in the avian auditory
system is the Nucleus Laminaris (NL), in which cells are sensitive to ITD [Konishi,
1971, Knudsen and Konishi, 1978]. Other birds share the same organization as the
barn owl, for example ITD sensitivity in the chicken [Koppl and Carr, 2008] or emu’s
NL [MacLeod et al., 2006] is also documented. Some reptilians also have a functional
analog of MSO, this is documented in the alligator [Carr et al., 2009] or the gecko.
Interestingly, a potential mechanism for ITD sensitivity in the gecko and some birds
is the acoustic coupling between both ear drums due to the presence a canal between
the ears [Christensen-Dalsgaard et al., 2011].

Nature of ITD sensitivity

Remarkably, the response properties of ITD sensitive cells across species are quite
similar. Schematically, cells always have a sensitivity similar to that shown on Fig. 5.2,
A. The neuron discharges maximally around values of ITD that are evenly separated by
periods of the Best Frequency of the cell (that is the tone frequency to which the neuron
responds the most). The shape of LSO cells tuning to ILD is noticeably different, with
a sigmoidal shaped tuning curves. Because ITD sensitive cells in many species have the
shape depicted on Fig. 5.2, it was quickly assumed that the basic neural mechanisms
were the same [Phillips and Brugge, 1985]. This is despite the fact that the auditory
system has evolved differently for, e.g., mammals and birds.

When measured with white noise stimuli, the tuning curve of a neuron to ITD
is termed the noise-delay curve (Fig. 5.2, A). The response of binaural neurons is
modulated by the frequency of the input, and the frequency that yields the strongest
response is known as the Best Frequency (BF). Typical noise-delay curves have multiple
modes (or peaks) separated by one period of the BF of the cell (Fig. 5.2, A). The Best
Delay (BD) is a common measure of the ITD sensitivity of a neuron, it measures the
ITD that elicits the strongest response across I'TDs, i.e the peak of the noise-delay curve.
The BD is in general within the m-l¢mst, that is within one CF period of zero ITD.
Therefore, the biggest peak of the noise delay curve is most often the closest to zero
ITD (as on Fig. 5.2, A), [Joris and Yin, 2007, Fontaine and Brette, 2011]. Sometimes
for simplicity, BD is also measured with a pure tone at BF. This is justified because the
noise-delay curve is in fact well approximated by a weighed sum of tone-delay functions,
with a strong weight on the tone-delay curve at BF [Yin and Kuwada, 1983].
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IMlustration of measures of ITD sensitivity. A Schematics of the noise-delay
curve of an MSO cell. Grey dots indicate the peaks of the function, they are separated
by one period of the BF of the cell, here about 1kHz. The main peak is the BD, here
about 200 us. B Tone delay curves are tuning curves to I'TD measured with tones at
different frequencies (insert). Measured in phases, the BD of each tone-delay curve is
the BP of the cell E. Linear regression of the BP points provide CP and CD (D). C
and E show the tone-delay curves for a peaker (CP = 0)and a trougher cell (CP = 0.5).
Notice how either the peaks (in C) or the troughs (D) are aligned (downward gray



Description of stimulus-dependent ITD sensitivity When measured with pure tone
stimuli at different frequencies, the tuning curve of a neuron is the tone-delay curve
(Fig. 5.2, B). A “Best Delay” measured on a tone-delay curve at frequency f, is often-
times reported as a phase quantity (in cycles) the Best Phase, BP = BD x f. Measured
on tone-delay curves, the BD generally varies with the frequency of the tone (e.g. in
the cat MSO [Yin and Kuwada, 1983, Yin and Chan, 1990]). The relationship between
BP and frequency is almost linear, therefore two quantities characterize the delay sensi-
tivity of a cell: the Characteristic Phase (CP) and Characteristic Delay (CD) [Yin and
Kuwada, 1983, Fitzpatrick et al., 2000]. These are the intercept (CP) and slope (CD) of
a linear fit of the BP data against frequency. This is depicted on Fig. 5.2, D. Assuming
that the cell has a constant BD, then BD(f) = CD, therefore the characteristic phase
is zero. Therefore, CP measures the degree to which BD varies with the frequency of

the stimulus.

This has lead to the classification of cells into two classes: peaker and trougher
cells. When CP = 0, BD is constant so visually the tone-delay curves at different
frequencies have aligned peaks. On the other hand, when CP is close to half a cycle,
then the minima (troughs) of the tone-delay curves align for different frequencies (see
Fig. 5.2, C-E). Througher cells, because their response is suppressed for small ITDs,
contribute to the encoding of large ITDs in low-frequency sounds [Fitzpatrick et al.,
2000]. The distinction in peakers and troughers is somewhat artificial since available
data show that in ITD sensitive cells, the distribution of CP is essentially unimodal
(e.g. [Yin and Chan, 1990]), that there is a continuum of response types rather than

two separate classes of cells.

5.2.2 Computational primitives necessary for ITD sensitivity

The function of MSO in mammals and NL in birds is to process the azimuth of a sound
source from the binaural inputs. Those ITD-sensitive structures in different species ex-
hibit similar response properties, suggesting that similar computation strategies are
used. A theory explaining such strategy had been suggested prior to any electrophysi-
ological evidence, by Jeffress [Jeffress, 1948]. It should be clear to the reader that I am
not discussing the “place code” meaning of the Jeffress model here. The population-
wise predictions of the Jeffress code will be discussed in the next section (Section 5.3).
Rather, I explain what core computational components are used in the Jeffress model.
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Figure 5.3: Schematics of the Jeffress model of ITD sensitivity. A Acoustical pressure
waveforms at both ears are transformed into spike trains via the cochlea. The spike
trains are also delayed versions of one another. If the leading signal is delayed by an
amount equal to the I'TD then the spike trains are coincident. B Coincidence detection
in LIF neurons. Two presynaptic neurons (blue and green) target the same postsynaptic
neuron (gray). In each panel, the spike outputs from the two presynaptic neurons are
reported alongside a schematics of the membrane potential of the postsynaptic cell
(V). Dotted line is the threshold. With a single presynaptic spike, or asynchronous
spikes, the membrane potential does not reach threshold. On the opposite when the
spikes are synchronous, the EPSPs sum and the threshold is reached, and the neuron
spikes. C shows the result of such a simulation with a neuron whose BD is 500 us. The
neuron spikes more strongly when then acoustical inputs have an ITD close to its BD.
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Computational primitives for ITD sensitivity

Let us assume that the acoustical environment is made of stimuli with a frequency-
independent ITD depending on the azimuth of the sound source (this is the case when
the head is acoustically transparent, Chapter 1). The acoustical signal reaching the
tympanii are equal up to a delay, the ITD. This signal is then transduced into a “neural
signal” by the cochlea, as shown on Fig. 5.3, A. The first important point is that the
transduction operation must preserve the structure imposed by I'TD on the input. Put
simply, if the acoustical signals are delayed versions of one another by a given amount,
the neural signals must be delayed as well to maximize their cross-correlation (A of
Fig. 5.3). Under this condition, a cell is sensitive on ITD if it is sensitive in the difference
in delays of the neural signals from both sides s; and s,. A cell with interaural neural
delay that compensates for the ITD in the inputs will receive perfectly synchronous
inputs. This interaural neural delay 7 is the difference of the delays at both ears: when
it is positive, the delays from the right side are longer than the left side.

In fact, neurons are sensitive to the synchronicity of their inputs [Rossant et al.,
2011], a property known as coincidence detection. This is shown in Fig. 5.3, B for a
LIF neurons receiving inputs from two presynaptic neurons. Therefore, a neuron with
interaural neural delay 7 will fire more strongly when the presented sound has an I'TD
equal to 7 than for other ITDs. The cell is tuned to the ITD that compensates for its
interaural neural delay. In summary, I'TD sensitivity can be achieved through faithful
transduction of the physical signal into a neural signal, delaying of the neural signals

from both ears before they converge to a coincidence detector neurons.

In a 1959 paper, [Licklider, 1951] argues that this scheme can also be applied to
the computation of the autocorrelation of the monaural signals, which can be used
to model pitch perception. Furthermore, a recent paper [Brette, 2012] shows that a
similar scheme based on delays and coincidence detection can be used in a variety of
sensory tasks, e.g. in olfaction. In the rest of the chapter, we study the experimental
and theoretical support for the existence of those different mechanisms in the context
of ITD processing.

lllustration: An ITD-sensitive toy model

Those computational properties can be implemented in a simple spiking-neuron instan-
tiation of this model. This subsection is meant to be a quick illustration of how those
components can make a spiking neuron sensitive to ITD, and what are the limitations

of the different components of such a model.
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Transduction The only assumption needed here is that the sequence of spikes at the
left and right ear preserve the ITD in the input. In this toy model, we derive the
spike train for one input side using a noisy Leaky Integrate-and-Fire neuron (see, e.g.
this recent paper from the group [Fontaine et al., 2013]). The acoustical signal is
simply rectified, and integrated to yield the membrane potential of a model cochlear
hair cell. This hair cell is set to discharge (i.e. emit a spike) whenever the membrane
potential reaches a threshold. As usual, the membrane potential is then reset to 0. The
result of this model is a sequence of spike times, possibly representing the spike trains
propagating along the ipsilateral auditory nerve. The contralateral spike train is then
explicitly delayed from the ipsilateral one.

Delay mechanism Monaural sequences of spikes reach a binaural cell with different
delays on each side. These could be, for example, due to differences in the presynap-
tic axon morphology of the inputs to the binaural cell. Due to limited propagation
speed along axons, differences in length or diameter of the axon contribute to imposing
differential propagation delays onto the spike trains [Seidl, 2013].

Coincidence detection A leaky integrate-and-fire binaural neuron is used, for which
the presynaptic spikes have exponential Excitatory Postsynaptic Potentials (EPSPs)
(as depicted on B of Fig. 5.3). That is, the neuron’s membrane potential reflects the
integration of the sum of the spike inputs from both ears. This is presented in more
details in Appendix 5.A.

Such neurons are sensitive to coincidences. If the binaural I&F neuron has a low
enough membrane time constant (7, = 1lms), it can be made to spike only when pre-
sented with synchronous inputs. If the spike trains are asynchronous, the depolariza-
tion of the membrane is not sufficient to make the membrane potential reach threshold
Fig. 5.3, C.

Therefore, the ITD for which the neuron responds the most in this model, the Best
Delay (BD) corresponds to the difference in delays between the monaural pathways. If
a sound is presented with an I'TD away from a given cell’s BD, the chance of observing
coincident inputs decreases, and hence the firing rate of the binaural cell.

The simulation of the spike rate of such a neuron is presented on D of Fig. 5.3, for
white noise input stimuli and a BD of 500us. It reproduces the sensitivity of a neuron
to an ITD in the stimuli. More details on the model are available in the Appendix 5.A.
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Preliminary conclusion

One can identify three key properties of the system that lead to ITD sensitivity. First,
the transduction of the acoustical signal into a neural signal must preserve the tem-
poral structure of the signal. If the binaural sound has a given ITD, then the neural
signals at the output of the cochlea must also be delayed versions of one another. Tem-
poral information can be lost, for example, because of time-variant transformations at
the cochlea. Second, mechanisms that impose delays on monaural neural signals are
necessary so that each cell receives a differently-delayed signal. Those delays must be
able to produce sensitivity in cells consistent with I'TDs in the environment, that is
have effects of the same order of magnitude. Third, it must be ensured that binaural
neurons are sensitive to the synchrony of their inputs. In particular, because ITDs
are typically very small (hundreds of microseconds), the binaural cell’s sensitivity to

synchrony must be precise enough.

5.2.3 Auditory transduction

The pressure waveform in the ear canal generates a vibration of the tympanic mem-
brane which excites the ossicles in the middlej-ear. Those ossicles are part of a complex
impedance-matching mechanism, that transmits the acoustical energy to the oval win-
dow of the cochlea. When the sounds entering the ear have very high levels, middle
ear muscles stiffen the ossicles to avoid damage on the cochlea (an acoustic reflex).

The cochlea itself is a coil-shaped tube containing two compartments longitudinally
separated by the basilar membrane. When the oval window is set in vibration, the
basilar membrane is excited by a travelling wave. The locii of greatest excitation on the
basilar membrane depend on the stimulus’s frequency content: low frequencies excite
the apex of the basilar membrane (where it is narrower), and the higher frequencies at
the basal part of the membrane. This property is known as tonotopy: it refers to the
fact that changing the frequency of the stimulus also changes the place where cells are
the most excited by it. Tonotopy is a very important property, inherited as we will see
in most nuclei of the auditory system. Characteristics and models of this property are
described in further details in Subsection 5.2.3.

The basilar membrane still carries a mechanical signal: it can be measured by the
displacement of the membrane and/or the fluid in the cochlea. Specialized cells in the
cochlea transduce the mechanical vibrations into ionic currents: those are the inner
hair cells (IHC). IHC are arranged in bundles on the basilar membrane (stereocilia),
when the fluid is set in motion by a sound, the hair cells mechanically vibrate. Due
to those vibrations, parts of the cells are mechanically stretched. In turn, special-
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ized mechanoreceptor channels present on the membrane of those cells translate the
mechanical stretch into ionic currents.

Inner hair cells, unlike common neurons, do not emit action potentials. Instead
the hair cells excite the nearby spiral ganglion cells (SGC, via neurotransmitters).
This depolarization in turn leads to a spike being produced and propagated along
the axons of SGC, which make up the auditory nerve (AN). AN fibers provide input
to Cochlear Nucleus (CN) neurons, which exhibit different types and specializations.
Excitatory efferents to MSO are the spherical bushy cells (SBC) of the antero ventral
CN (AVCN), which reliably transmits the temporal structure of AN firing [Wu and
Oertel, 1984]. Octopus cells (also named onset cells) detect broadband transients in
the stimulus [Spencer et al., 2012], and stellate cells encode the amplitude spectrum of
stimuli. The Dorsal Cochlear Nucleus (DCN) is thought to process spectral cues to the
elevation of sound sources [Oertel and Young, 2004].

Cochlear filtering

The primary property of the cochlea is the fact that it introduces frequency-selectivity
in the downstream system. Different points of the cochlea are excited preferentially
by different frequency bands. For this reason, the cochlea is usually modeled using a
bank of band-pass filters: the displacement of the basilar membrane at any point on
the cochlea is a band-pass filtered version of the vibration at the oval window (e.g.
in [Zhang et al., 2001]). The characteristics of those filters depend on the position of
the point along the cochlea, in a tonotopic way: nearby points on the basilar mem-
brane are excited by close stimulus frequencies. AN fibers connect on the cochlea at
different points, therefore frequency-selectivity is carried in the AN [Narayan et al.,
1998]. Similarly, this property is carried onto downstream nuclei, wherein cells are
anatomically arranged by their preferred frequency band. As an example, cat MSO
neurons are arranged on a dorsoventral tonotopic axis [Guinan et al., 1972].

This frequency selectivity is usually characterized through two measures: a measure
of the bandwidth of the filter and a measure of the center frequency of the filter.

Best and Characteristic Frequencies Measurements of the cochlea-induced frequency-
selectivity can be based on observations of the basilar membrane displacement. How-
ever, it is oftentimes measured via the spiking frequency of auditory nerve fibers, be-
cause measurements at the apical part of the cochlea (low-frequencies) are hard. Simul-
taneous measurements reveals that the spiking frequency in AN fibers is a high-pass
filtered version of the basilar membrane displacement [Narayan et al., 1998].
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Most auditory neuron’s spiking frequency varies when presented with pure tones at
different frequencies. The measurement of the spike rate as a function of frequency is
known as a rate-frequency curves. The peak of a rate-frequency curve is a measure of
the selectivity of the neuron termed the Best Frequency (BF). Rate-frequency curves
change with the level of the stimulus [Pickles, 1988], therefore so does the BF: it
decreases with the level of the input [Ruggero and Rich, 1983]. This is reflective of
cochlear non-linearities [Sachs and Abbas, 1974].

The Characteristic Frequency (CF) is by construction a level-independent measure
of frequency selectivity [Pickles, 1988]. The CF is intrinsically a threshold measure,
defined as the frequency that triggers a significant response at the lowest sound level.
Intuitively, it is the BF measured with the softest sound that can be distinguished
from looking at the data. To measure a CF, multiple rate-frequency curves have to
be obtained at different levels, therefore commonly only the level-dependent BF is

measured.

Measures of cochlear bandwidth Tone-frequency curves generally have a pronounced
mode, where the cell is most active over a certain bandwidth. It is measured by fixing
a threshold on the tone-frequency curve, and often reported as a quality Q measure
(where Q@ = BW/CF) [Pickles, 1988]. In typical AN measurements, the rate-frequency
curve of a fiber is recorded. The Q¢ is measured from the frequency bandwidth BW
over which the discharge rate is 10 dB above the noise threshold [Evans, 1972, Pickles,
1988]. Recordings in the cat show that these are generally between 1 to 10 (over a
range of CFs between 100 Hz and 15 kHz) and between 1 and 4 below 2 kHz [Evans,
1972, Lopez-Poveda, 2005].

In humans, measurements of cochlear selectivity relies on less invasive techniques
such as psychoacoustical methods or otoacoustic emissions. Behavioral studies quantify
the bandwidth of the filter generally using frequency-masking paradigms (e.g. [Oxen-
ham and Shera, 2003]). These are more prone to variations across paradigms than
animal models and it is unclear how exactly they relate to cochlear functioning [Rug-
gero and Temchin, 2005]. Furthermore, these behavioral studies are hard to replicate
on lab animals for which auditory nerve data is available.

Another method to measure cochlear bandwidths is through the measure of sounds
emitted by the cochlea. Because of the cochlear amplification, when presented with a
sound the cochlea produces measurable sounds termed otoacoustic emissions. Those
can be used to infer the cochlear tuning width, and can be used in animals and humans
alike [Shera et al., 2010, Joris et al., 2011]. Recent data using otoacoustic emissions

in humans and monkeys seem to indicate that humans do indeed have a very sharp
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filtering (Q between 10 and 20), sharper than cats (Q between 3 to 10 on the same
frequency range) [Joris et al., 2011].

Models of cochlear filtering Models of cochlear filtering have to account for both
the basilar membrane dispacement and the auditory nerve firin. Responses of human
subjects in psychoacoustical experiments can be explained by a model of the auditory
periphery consisting in a bank of bandpass filters followed by a compression opera-
tion [Patterson, 1971, Irino and Patterson, 1997]. When AN fiber responses are used,
more features have to be accounted for, AN responses typically exhibit adaptation,
synchronization, high dynamic range [Lopez-Poveda, 2005]. Therefore, these models
must include mechanisms modeling the inner and outer hair cell functioning as well
as the spiral ganglion cell spiking. A way to build such models is to compute revcor
filters, using the reverse correlation of the spike train and the sound [Carney and Yin,
1988]. This method has been developed into models of AN properties in the Carney
model [Carney, 1993] and later Tan & Carney [Tan and Carney, 2003]. Other models
include DRNL filters [Lopez-Poveda and Meddis, 2001, Sumner et al., 2003], and are
thoroughly reviewed in [Lopez-Poveda, 2005]. All these model architectures are imple-
mented in the Brian Hears package, developed in the lab which was the subject of a
publication [Fontaine et al., 2011].

Temporal properties of auditory transduction

A second important aspect of sequences of spikes on single auditory nerve fibers is
that they display a high degree of temporal structure. When an AN fiber is recorded in
response to a pure tone, the neuron tends to spike more at certain parts of the period of
the stimulus, i.e. specific phases. This is reproduced by the toy model response of the
introduction, as pictured on Fig. 5.4, A. When the stimulus is a pure tone, this property
is referred to as phase-locking, and was observed in a wide range of animal models.
Phase locking is only defined for pure tone stimuli, that have provide a good definition
of phase. When a broadband stimulus is presented, then there is no real stimulus phase,
but still temporal structure referred to as time-locking Because the stimulus undergoes
the narrow cochlear filtering, then the cochlear output is best understood as having
two components: an envelope and a temporal fine structure (TFS). TFS is essential to
many aspects of human hearing, including speech [Lorenzi et al., 2006]. In mammals,
phase-locking was first observed in the AN of squirrel monkeys [Rose et al., 1967], and
is now very well documented in many nuclei up to IC [Dynes and Delgutte, 1992, Joris
et al., 2006, Sullivan and Konishi, 1986].

137



Raster plot
100
C L]
S 8ot
L
©
o 60
= .
~ L]
S 40
C
2
0 20f
0 L
0.010 0.014 0.016
Time (second)
B . ,
Period histograms
3.0 45
40t
> 2.5F . i
= 35
S 2.0 1 30t
25F
O 15t .
“q—) 20f
X 1.0f 1 15¢
o
) 10t
0.5} 1 .l
0.0 Q

3.0 02 04 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Phase (cycle)

Figure 5.4: Phase locking to pure tones in a model of AN fiber A Superimposed raster
plot and stimulus (a 500 Hz pure tone). Each model fiber tends to spike at a given
phase of the tone. B Histograms of relative spike phase (in cycles) of three different
model fibers. The distributions have a well-defined mode showing that spiking occurs
more at some phases relative to the tone than others.
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The Vector Strength (VS) measures the phase locking abilities AN fibers. Spikes
are aggregated in period histograms, which the histogram of spike phases relative to
the stimulus tone (Fig. 5.4, B). The VS is the magnitude of the resultant vector of this
period histogram [Sullivan and Konishi, 1984]. It is a measure of the inverse of the
dispersion of a circular distribution (see, e.g. [Mardia, 1975]), thus quantifies to quality
of the phase locking of a spike train to the stimulus.

Phase locking to the stimulus frequency degrades as the CF of the fiber increases.
An influential hypothesis for this low-pass behavior is electrophysiological: it is due to
limited time-constants in the IHC [Palmer and Russell, 1986]. In this study, the upper
limit for phase-locking was found at 3.5 kHz in guinea-pigs. For cats, phase locking
cuts off at around 3-5 kHz ( [Rose et al., 1967], [Kiang, 1965]). Human data [Joris and
Verschooten, 2013] suggests that phase-locking in humans is not higher than a few kHz.
For higher frequencies, high-CF AN fibers time-lock to the envelope of high-frequency
sounds (in the cat, [Dreyer and Delgutte, 2006]).

The precise value and reason for this upper limit is still debated. For example,
some species display phase-locking considerably further up in CFs. Barn owls AN
fibers phase-lock up to 10kHz [Koppl, 1997], consistent with the fact that they use ITD
information in those high frequencies [Konishi, 1971].

Time-locking, much as tonotopy, is carried on to some extent in the higher nuclei of
the auditory system. Intuitively, jitter build up and increasing time constants should
contribute to a degradation of time-locking [Koppl, 1997, Anderson, 1973, Paolini et al.,
2001]. Still, enhancements of the quality of time-locking have been found in axons of
low-CF cells from the AVCN (in the cat [Joris et al., 1994]). In any event, temporal
coding in the inputs of MSO neurons is well-preserved, [Wu and Oertel, 1984, Joris
et al., 1994], and remarkably invariant on level [Michelet et al., 2012]. Calyces of Held,
the biggest synapses in the brain [Cant and Casseday, 1986] seem to be a special-
ization of the auditory system to preserve spike-timing information. Those synapses
are present in the MNTB, that is on the contralateral inhibitory pathway to MSO and
LSO [Schneggenburger and Forsythe, 2006] An hypothesis is that their size makes them
highly precise and reliable in the transmission of spikes.

As discussed in the introduction, it is necessary for ITD based sound localization
that temporal information be preserved in the spike trains leading to binaural neurons.
The auditory periphery leading to MSO is a temporally reliable system, that faithfully
conveys I'TD information [Louage et al., 2005].

139



5.2.4 Coincidence detection property of neurons

Integrate-and-fire neurons are a good description of biological neurons [Brette and Ger-
stner, 2005], while being sufficiently graspable, therefore I will be use them to explain
the notion of coincidence detection. An integrate and fire neuron has a continuously
varying membrane potential and a threshold that is responsible for spike output. In
those models, presynaptic spikes have an additive impact on the membrane potential,
and in the absence of an input, the membrane potential relaxes to a resting value. When
the membrane potential reaches the threshold because of incoming spikes, an impulse
is transmitted to the postsynaptic neurons, and the membrane potential is reset. This
mechanism makes neurons good coincidence detectors, indeed, if the spikes they re-
ceive are aligned in time, their contribution will sum and increase the probability of
spiking. When they arrive out of timing, the membrane potential might have relaxed
enough for the second spike to fail to make the potential reach threshold much as in
Fig. 5.3, B. This feature is seen as a key computational feature of the nervous system,
leading to synfire chains [Abeles, 1991], polychronization [Izhikevich, 2006], [Brette,
2012]. When cells are in a regime where excitatory and inhibitory balance each other,
neurons are maximally performant in detecting coincident spikes. This was shown using
in vitro preparations, and is well explained using integrate-and-fire models [Rossant
et al., 2011, Rossant and Brette, 2010].

A typical action potential lasts 1 ms, which is somewhat higher than the maximal
ITD in most species. Therefore, in the study of the MSO, the mechanisms underlying
the microsecond precision of ITD sensitivity has been the subject of much research [Carr
and MacLeod, 2010]. It was shown that MSO neurons receive few number of excitatory
and inhibitory inputs, driving neurons in the balanced regime [Couchman et al., 2010]
where they are most sensitive to ITD. Furthermore, it was proposed that low-threshold
potassium currents [Svirskis et al., 2004] enchance coincidence detection, which is also
the case in birds [Rathouz and Trussell, 1998]. Voltage-dependent KLVA channels could
ensure sharpening of EPSPS in the gerbil MSO, [Mathews et al., 2010] and further
ensure temporal fidelity. EPSPs are also amplified at the soma, as shown in [Scott
et al., 2005] with voltage and current clamp techniques. Even assymetries between the
monaural inputs, for example in the EPSPs [Jercog et al., 2010] seem fine tuned to
improve ITD processing. Also of interest is the fact that this coincidence detection
ability might be enhanced by dentritic tree geometry [Agmon-Snir et al., 1998].

In the chicken, for example it was found that the coincidence detection abilities
measured in NL (the avian equivalent to MSO) was consistent with the observed ITD
sensitivity [Kuba et al., 2003]. All in all, it seems that the MSO (resp. NL) exhibits
a number of specializations that allow it to be sensitive to coincidences on very short
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time-scales of the order of tenth of microseconds, relevant to ITD coding.

5.2.5 Neural delays

As underlined in the introduction, neural delays are an essential prerequisite of the
computation of ITDs. Moreover, they are an important matter of debate among the
community of binaural auditory processing. Interestingly, the nervous system affords
many ways of implementing such delays, more or less specific to auditory processing.
The simple conceptual way of introducing neural delays in the transmission between
two neurons is to make assumptions as to the geometry of the axon between the two.
Indeed, the propagation speed of spikes along myelinated axons of neurons (of the order
of 10-40 m/s, [Hutchinson et al., 1970]) is modulated by the length and diameter of
the axon (see, e.g. [Seidl, 2013]). Longer axons, as well as smaller diameters lead to
longer transmission delays (other parameters, such as the inter-Ranvier node distance
also greatly affects the propagation delay).

Axonal delays hypothesis

Anatomical evidence for different geometries of the axons targetting MSO, including
length and diameter, exists in mammals [Beckius et al., 1999, Smith et al., 1993, Oliver
et al., 2003]. All in all, it is typically found that axons can provide delays, consistent
with BDs measurements in bird species, but not in mammals. Data in the cat [Karino
et al., 2011] show that axon geometry cannot account for the full range of observed
BDs. This is still debated, as in [Seidl et al., 2010], the authors argue that the complex
3D morphology of axons is necessary to account for axonal delays covering the full
physiological range of ITDs (this includes both the Ranvier nodes distances, length
and diameters of the axons). In smaller mammals (gerbil, guinea pigs), though, some
BDs of low-CF cells are very big (circa 1 ms). This is not merely consistent with the
axonal delays that are found in all studies, and raises an important problem as to the
possible origin of such delays.

The lack of evidence for a map of ITD, and the unclear quantitative match between
the BDs and axonal propagation time delays has led to the proposal of other sources of
delays in the context of binaural processing. Yet, it must be noted that axonal delays
only are indeed able to account for a big part of the BDs in most species, all in the

case of birds.
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Figure 5.5: Cochlear mismatches in Gammatone filters. A and B depict the phase
response and the total phase delay derived from gammatone filters at different frequen-
cies (color code on the right). Observe that phase responses are non-linear, and all
different. On the second row, the difference of the gammatone filter at 800 Hz and at
800 Hz plus a CF mismatch are shown. C shows the difference in phase response and
(D) total phase delay as a function of frequency and CF mismatch (color code to the
right). The total phase delay (D) shows that: a) it is possible to construct non zero
intaural neural delays with CF mismatches and b) that this creates non-linear phase
distortions.
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Cochlear mismatches hypothesis

Another possible source of neural delays in the binaural system comes from the me-
chanics of the cochlea. Indeed, it is known that the excitation imposed on the cochlea
when presented with a sound takes the form of a travelling wave. On top of the
tonotopy property already mentioned, points on the cochlea are excited at a different
ttmes depending on their position. Close to the oval window, at the high-CF base
of the cochlea, cells are excited by the travelling wave before the apical part of the
cochlea (low-CF'). Intuitively, one can introduce a delay between cochlear channels, at
the expense of slightly mismatching the monaural CFs. This idea was first proposed
by Schroeder [Schroeder, 1977], and later the name stereausis was proposed in a more
complete development by [Shamma et al., 1989], and [Bonham and Lewis, 1999].

Let us assume that a binaural neuron receives inputs from the contralateral cochlea
at C'F' and the ipsilateral cochlea at CF + dCF'. If the difference CF' is not too big,
then it can be assumed that the two frequency ranges on both sides are the same, i.e.
the neuron is sensitive to the same left and right frequency bands. But, because of this
small difference, the signal it receives on the ipsilateral side will arrive later than at the
contralateral side. This is shown on Fig. 5.5, assuming that the neural signals input to
a binaural cell are Gammatone-filtered versions of the signal. A and B of Fig. 5.5 show
the phase response and the total phase delay of Gammatone filters. The magnitude of
the created delays can be seen from the bottom two plots of Fig. 5.5 (C and D) which
show the expected difference in interaural phase and delay for small CF mismatches
(less than 0.2 octave). The range of possible delays is quite wide, and consistent with
the magnitude of ITDs: hundreds of microseconds [Bonham and Lewis, 1999].

Cochlear mismatches indeed introduce propagation delays that are consistent with
observed ITDs. Furthermore, [Joris et al., 2006] showed that the response of AN fibers
could be correlated across frequency channels to predict the inverse BD/BF relationship
observed in MSO. In the barn owl, analysis of the monaural revcors (i.e. empirical
monaural filters computed from spikes in NL) suggests that cochlear mismatches are
not required in order to explain the ITD sensitivity observed in NL [Pena et al., 2001].
The authors show that cochlear mismatches, despite being present, did not correlate
with the BD, which cannot formally rule out the contribution of cochlear mismatches
in conjonction with other counterbalancing source of delay (e.g. axonal).

More recent studies have even shown that axonal delays and cochlear mismatches
could account for finer features of the ITD sensitivity of cells. As an example, it is
commonly observed that MSO cells have frequency-dependent BDs (see Chapter 6 for
more on this), which can also be accounted for by cochlear mismatches (see, e.g. the
recent [Day and Semple, 2011] study). This is because cochlear mismatches intrinsically
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provide frequency-dependent interaural neural delays, as shown on Fig. 5.5 D. This

specific point will be in more depth in Chapter 7.

Inhibition hypothesis

Including inhibition in a model of localization originates from [Lindemann, 1986], as
an attempt to predict the lateralization of binaural stimuli in psychoacoustical data.
This was at the time also presented to account for the law of first wave front. This
phenomenon, occuring in the presence acoustical reflections, refers to the fact that
perceptual location of a source in the presence of reflections is dominated by the first
arriving wavefront.

The presence of ispilateral glycinergic inhibition targetting MSO has been a longlast-
ing puzzle in the sound localization neurophysiology field. This is interesting because
inhibition plays a role in the sensitivity to ILD in the LSO (e.g. [Tollin and Yin, 2005]).
But it is also present in MSO, wherein MNTB cells also project inhibitory, glycinergic
connections to MSO cells [Grothe and Sanes, 1994].

The first observation that glycinergic inhibition may influence the ITD tuning of
single cells was brought by in vitro studies of the timecourse of EPSPs and IPSPs
[Grothe and Sanes, 1994]. The intuition is that by arriving precisely-timed, inhibition
could change the shape of the ipsilateral post-synaptic potential (PSP). Intuitively, if
the peak of the PSP is shifted, then the I'TD at which the cell is most excitable is shifted
accordingly. Therefore, the BD of the cell may also be shifted. Furthermore, if the
bilateral inhibition is assymetric this shift ought to be in one direction. Experimentally,
the presence of inhibition shifts the BDs to more contralateral values (bigger absolute
ITD) by hundreds of microseconds [Brand et al., 2002].

The original #n vitro study was followed by the very influential [Brand et al., 2002]
study, which showed in vivo that gerbil MSO cell’s I'TD sensitivity was modified when
glycinergic inhibition was blocked. The model provided in this study also provided
insight into the mechanism, which requires highly precisely timed inhibition. Those
results were replicated by [Pecka et al., 2008] who also conclude that precisely timed
inhibition plays a critical role in the shaping of single-cell BD sensitivity. Modeling
studies confirmed these requirements [Zhou et al., 2005], and also attribute a role to
the precise anatomy of MSO cells, receiving inhibition at the soma and excitation at
the dendrites.

Other interesting properties include the fact that the frequency-dependent BDs
observed in cells can be accounted for only by contralateral phase locked inhibition.
This was first suggested by a rabbit model [Batra et al., 1997], and later on gerbil
data [Leibold, 2010]. The second study also shows that axonal propagation delays
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are superfluous, because inhibition was able to explain all their data. This is to be
contrasted with the recent [Day and Semple, 2011] study wherein the authors show
that cochlear mismatches and axonal delays alone are sufficient to account for the
frequency-dependent BDs observed in gerbil data.

Yet, the mere fact that glycinergic inhibition shifts the BD curves is still a con-
troversial issue, even 20 years after [Grothe and Sanes, 1994]. The assumption that
contralateral inhibition operates on fast time-scale is debated, which is an essential
requirement of the models in [Leibold, 2010, Brand et al., 2002]. Using a different ap-
proach, [vanderHeijden et al., 2013] show that inhibitory inputs do not affect the ITD
tuning of gerbil MSO neurons. In the avian realm, while inhibition is known to exist,
but the contribution to ITD tuning is unclear [Burger et al., 2011].

5.2.6 Conclusion

We have observed that binaural cells of the SOC in mammals are tuned to ITD. This
tuning seems to arise by a combination of coincidence detection and neural delays.
Interestingly, a number of specializations observed in SOC neurons make this compu-
tation easier. Transduction of sound pressure waves at the ears preserves the temporal
differences in the signals (i.e. the ITD) by time-locking to the sound wave’s TFS. Bio-
physics of MSO neurons make them especially sensitive to coincidences on a very short
time-window. And finally, different mechanisms give rise to neural delays, amongst
which the most proeminent seem to be cochlear mismatches and axonal propagation
delays.

5.3 Coding for auditory space

The neurons sensitive to ITDs in the mammalian brainstem exhibit a high degree of
heterogeneity in their responses. In most cases, a given MSO cell can be character-
ized by two parameters. A measure of the frequency selectivity of the cell, e.g. the
Characteristic Frequency (CF), and a measure of the cell’s sensitivity to ITD, the Best
Delay (BD). The current view of the MSO population is that it is a sort of binaural
display [Joris and Yin, 2007]: showing at any time the activity of cells over an array of
BDs and CFs. The position of the sound sources present is necessarily represented in
this pattern of activities. The Jeffress model was formulated as a peak code [Jeffress,
1948]: a cell is the most active of the population provided that the ITD is equal to
its BD. In other words ITD is represented in the BD of the most active cell of the
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Figure 5.6: A depiction of the peak or labelled-line code for ITD. A Drawing of
the situation, in each MSO (blue: ipsilateral, green: contralateral) cells have different
BDs (materialized by different axonal length). B As a result, each neuron’s tuning
curve peaks for different I'TDs, blue curves are the contralateral MSO tuning curves
and green curves are the ipsilateral MSO tuning curves. Gray area is the physiological
range, between -500 and 500 us. C When a sound is presented, the most active neuron
of the population (red tuning curve) signals the ITD in the input (red dot on the
x-axis).

population. Peak codes are place codes in the sense that the identity of the cell (here
the BD) contributes information to the code.

Recent electrophysiological data have raised a debate about the validity of this
model, which lead to the introduction of the hemispheric model [McAlpine et al., 2001]
which failed to reach consensual status. This code is very different from the peak code
idea, for two important reasons. First it is a population code in the sense that the
only relevant quantity is the summed activity of each MSO. A cell’s BD is ultimately
irrelevant to the subsequent system. This is to be opposed to place codes. The purpose
of this section is to introduce both those models, and the arguments that have been

put forward in this debate.

5.3.1 The Place code a la Jeffress
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Jeffress and peak-coding

[Jeffress, 1948] originally formulated his model as “representing a temporal dimension
[ITD]” in the “place of activation” in a population of neurons. It is not clear, however,
whether the only relevant information was the identity of the most active neuron of the
population. Yet, in one of its modern meaning, a Jeffress-type code is a peak code, as
presented earlier. In this manuscript, a peak code (and thus Jeffress) stands for a code
in which in any given frequency band, the most active celle of the population signals
the ITD of the input.

The Jeffress model is also sometimes taken as predicting that there should be a
systematic arrangement of axonal delay lines leading to binaural neurons. As a conse-
quence of this, MSO neurons should be anatomically arranged by BD along a spatial
dimension, therefore exhibiting a sort of BD-topy. It is necessary to emphasize that
those were not explicit predictions by Jeffress, yet this interpretation has driven the
field for years. Such properties are actually found in the avian NL (see e.g. [Konishi,
2003]), where the Jeffress peak-code is the consensual view. In the mammalian litera-
ture, the evidence for this kind of delay arrangement has proven unconclusive, despite
a long seach. For example, many studies report that a gradient of axonal delays from
the contralateral CN exists in the cat [Smith et al., 1993, Beckius et al., 1999, Oliver
et al., 2003], but the resulting BD arrangement is coarse at best [Joris and Yin, 2007].
Furthermore, some argue that axonal morphology leading to MSO [Beckius et al., 1999]
can not account for the complete range of observed BDs.

Despite the fact that predictions about a systematic arrangement of delay lines or
an anatomical arrangement of BDs were not made explicit by Jeffress, lack of clear
evidence in mammals in favor of those predictions was always a motive of suspicion
about the Jeffress model. Yet, the peak code idea in itself does not make any specific

assumptions as to those points.

The BD anomaly

Low-CF cells in the mammalian MSO sometimes exhibit unusually large BDs, which has
long been a puzzle for the field [Phillips and Brugge, 1985]. Data acquired from small
mammals, such as the gerbil and guinea pig [McAlpine et al., 2001, Pecka et al., 2008]
consistently report neurons with BD > 1ms. A cell with such a large BD, will never
be maximally activated because ITDs are naturally constrained to the physiological
range of the animal. The argument is that cells with large BDs would never be the
most active of the population, because they will never be maximally activated. It must
be noted outright that this is not necessarily true, because recorded MSO cells typically
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have very heterogeneous maximal firing rates. Therefore, a neuron can be the most
active of a population, without necessarily being presented with a sound at its BD,
argument that will be developped later in this part.

The BD itself is not necessarily a well-defined quantity, for example we have observed
in the previous section that it depended on the frequency content of the input. Further-
more, the BD is generally measured on the tone-delay curve obtained at BF [McAlpine
et al., 2001]. This poses a number of problems, because BF also varies with the level
of the input (as exposed in the previous section). All in all, the BD is not necessarily
the best quantity to quantify the sensitivity of MSO neurons, because it only accounts
for the response of the cell to a narrow subset of possible stimuli.

The notion of the physiological range can also be discussed, because it is often based
on a crude simplification of the acoustic space. As I showed previously in Chapter 3,
the physiological range is in general broader in low than in high frequencies. This can
accout for part of the negative correlation between BD and CF, yet it falls short of

explaining the unsually large BDs in low-frequencies.

Generalized place codes

A peak code only uses of the relative activities of the neurons in the population. This
means that most of the information bore by the pattern of activities across the pop-
ulation is lost. Some models assume that the full pattern of activity across neurons
contributes information to the ITD. Those are generalized place codes, in the sense
that they do not lose the information about the cell BD, yet do not necessarily rely on
the maximally active neuron (peak code).

Developments on such codes stem from the motivation of accounting quantitatively
for the psychoacoustical localization performance of human subjects. More often than
not, those models include some mechanism to deal with ILDs, but the present devel-
opment will focus on the ITD coding mechanism. The first attempt at providing a
prediction of subjective lateralization based on a model wherein binaural neurons rep-
resent the cross-correlation of the input signals was introduced in [Sayers and Cherry,
1957]. This has lead to many developments of binaural models, designed to be tested
against psychoacoustical data, as reviewed in [Stern and Trahiotis, 1995], or [Colburn,
1996].

The influential “coincidence-counting” model [Colburn, 1973] used a model of AN
firing alongside statistical analysis to show that the Jeffress scheme of representation
of the cross-correlation of the neural signals is sufficient to account for the Just Notice-
able Differences observed in human subjects. Developments on this model make the

mapping from the activity of the binaural display neurons to the position of the sound
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source more explicit. The “position-variable” model by [Stern Jr and Colburn, 1978]
introduced the idea that the subjective lateral position of the sound source was encoded
in the modes of the activity pattern in a single CF-band of the binaural display. In the
case of a unimodal activity, this means that the centroid, along the BD dimension, of
the activity maps to the lateral position of the sound source.

As discussed earlier, this model takes more information out of the activity pattern
of the population of binaural cross-correlators than peak codes do. Those studies
typically include additional mechanisms, the most prominent of which compensating
for the effects of the ILDs. Another interesting development of the model proposed
in [Stern Jr and Colburn, 1978] is that it includes a way to aggregate data across CF-
bands according to the straightness of the activity, that is emphasizing CF bands that
point to the same ITD (idea further developed in [Stern and Trahiotis, 1992, Trahiotis
and Stern, 1994]). To account for the increased precision around the midline, a weighing
emphasizing more central position can be included, as in the lateral-image model [Stern
et al., 1988]. An interesting argument is made in [Fitzpatrick et al., 1997b], showing
that the position variable model together with sharpening of ITD sensitivity along the

auditory pathway achieves good acuity while recruiting a small amount of cells.

5.3.2 The hemispheric model
Origin and motivation for the hemispheric model

The orignal Hemispheric model was suggested by [Boehnke and Phillips, 1999] in the
context of psychoacoustical studies. Because of the presence of large BDs in low fre-
quency ITD sensitive neurons of the gerbil, an alternative model of the coding of space
in the binaural display was devised. This model is a population code, usually termed
the hemispheric model, or the two-channel model. In this coding scheme, I'TD is coded
in the relative summed activity of each hemisphere, that MSO neurons (or cortical
area) in each side. The only relevant statistic of the binaural display is the sum of the
activity of all neurons on one side [McAlpine et al., 2001, Grothe et al., 2010, Stecker
et al., 2005]. This population activity is bell-shaped as well, [McAlpine et al., 2001],
centered on BDs outside the physiological range, with a bandwidth such that the steep-
est part of the slope centers on zero. This means that on the physiological range, this
population activity is an increasing function of the I'TD, that can be inverted to decode
the position of the sound source.

In fact, the position is read out of the difference (or ratio) of the population responses
of two MSO populations, each most active to an ITD widely contralateral. Studies
confirm that the performance of this decoder is correct [Lling et al., 2011, Lesica et al.,
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Figure 5.7: A depiction of the hemispheric code for ITD. A Drawing of the situation,
in each MSO (blue: ipsilateral, green: contralateral) cells have different BDs. The
population response (sum of all tuning curves in one MSO) has a single peak outside
of the physiological range (B). Schematically, the neurons all have the same axonal
projections in A. As a result, B, the population tuning curve peaks for a single ITD
on each side, blue curve is the contralateral MSO and green curve is the ipsilateral
MSO tuning curve. Gray area is the physiological range, between -500 and 500 us. C
When a sound is presented, the difference in the two activities is taken (x-dimension).
It uniquely identifies the ITD in the input (y-dimension), provided that the ITD is in
the physiological range.
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2010]. Those studies suggest that the BD of a single neuron is irrelevant to the decoding
of I'TD, which is consistent with and “averaging” the hemispheric view.

A prominent fact in human behavioral studies is that human localization abilities
in azimuth are better for sounds close to the mid-sagittal plane (see Chapter 9). The
hemispheric model predicts that the sensitivity around the midline is optimal, hence
consistent with behavioral results. This is was, as we saw, also accounted for by place
codes such as the lateral-image model [Stern et al., 1988]. This makes this model a
very popular framework to explain psychoacoustical data. The two-channel model is
by construction maximally sensitive around the midline [McAlpine et al., 2001}, and
a recent study [Dingle et al., 2013] addressing this precise point shows that the two
channel code predicts lateralization judgements without the need for an additional
centered channel.

Criticism for the hemispheric model

Optimal code One line of criticism against the hemispheric model is to address the
optimality arguments made in favor of the model. Indeed, the original study [McAlpine
et al., 2001] claimed that the code was optimal. In fact, this model is optimally
sensitive to ITD, that is will allow for optimal discrimination of two I'TDs in the same
stimulus. Yet, as argued in [Brette, 2010] the model is not optimal if the stimuli are
allowed to vary along other dimensions, e.g. different levels, frequency contents. This
arises from a misinterpretation of the notion of information.

In studies that adress the optimality of the hemispheric model, the decoder task
generally is that of discriminating between stimuli with different ITDs [Lling et al.,
2011, Lesica et al., 2010]. This is not, however, what the binaural system does, because
it is concerned with absolute localization. Therefore the relevant performance is the
accuracy (absolute location), rather than the acuity (dicrimination performance).

As an example, in the original study [McAlpine et al., 2001], the activity of an
hemisphere only varies with the ITD of the stimulus. Specifically, this activity is
not modulated by other dimensions of the stimulus: level, spectrum and background
noise. If this activity is modulated by other dimensions of the stimulus, hence the
inversion operation mentioned requires the prior knowledge of the other dimensions
of the stimulus. The decoders presented in [Lling et al., 2011, Lesica et al., 2010] are
therefore over-fitted, in the sense that they are performant on the same set of stimuli
they are trained with, while being poor on novel data. The hemispheric decoder may
be optimally acute to ITD, whilst being biased and inaccurate [Brette, 2010].

For a model to be optimal, it must be taken into account that ITD is only one

out of many dimensions of the stimulus that affect the response of binaural neurons.
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Therefore, optimality is out of the scope of models that rely on crude descriptions of

the acoustical environment.

Low- and high- CF neurons An important remark as to the argument about the
presence of large BDs in binaural cells is that it is generally not observed for mid-
CF's, higher than a few hundred Hertz. In essence, most studies in mammalian MSO
report that the BDs of cells above a certain CF fall within the physiological range
(see, e.g. [Joris et al., 2006] for cat data). Therefore, the hemispheric model does not
seem appropriate for this range of frequencies. An attempt to explain this discrepancy
was pushed forward by the same [Harper and McAlpine, 2004], where it is shown that
hemispheric-type and peak-type codes are optimal in different ranges of frequencies.
Namely, because of phase-ambiguity, peak-type models are more appropriate in higher
frequencies (or smaller heads). This also provides a functional explanation for the
discrepancy observed in the coding of ITD in birds (barn owls) and mammals.

First, this study does not avoid the pitfall mentioned in the previous paragraph, as
the set of possible stimuli considered consists in pure tones at different frequencies. This
represents a quite narrow subset of the possible stimuli that an animal will encounter in
his environment. Second, this study provides a unifying explanation of across-species
differences in ITD tuning, it is actually not consistent with electrophysiological data.
A good animal model is the chicken, because chickens and gerbils both use I'TD cues
on the same frequency range, while having similar-sized heads. According to [Harper
and McAlpine, 2004], both those species should use the same ITD coding strategy. Yet,
this was shown to be by [Kppl and Carr, 2008, Schnupp and Carr, 2009]. Indeed, the
chicken’s NL does not display large BDs in low frequencies, therefore is inconsistent
with a hemispheric code. Rather, they are thought to be implementing a place code. On
the other hand, gerbil MSO neurons are known to exhibit large BDs in low frequencies,
and implement a hemispheric model [McAlpine et al., 2001]. Therefore functional
constraints alone (or at least those considered in [Harper and McAlpine, 2004]) cannot
account for the coding differences in different species.

Lesion studies Another line of criticism against the hemispheric model can be found
in lesion studies. It has been found indeed that unilateral lesions of binaural structures
(SOC) [Jenkins and Masterton, 1982] result in degradation of the localization only in
the contralateral field. This is consistent with the widespread idea that sound source
location is coded in the contralateral structures. More importantly, it is in direct con-
tradiction with the hemispheric model, as ITD is extracted by comparing the activities

of the binaural structures on both sides.
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5.3.3 Discussion
Frequency-dependence of BD

As wa have seen in the previous section, the BD of ITD sensitive cells varies with a
number of factors. In the cases where it is measured on the tone-frequency curve at
BF, it is dependent on BF therefore on stimulus level. Furthermore, the BD also varies
with the frequency of the input tone. Therefore, the BD is an incomplete measure
of the tuning of a binaural cell to ITD. That is, the response of cells is much more
heterogeneous than BD data seem to indicate: they vary with more dimensions of the
stimulus.

Modeling arguments in favor of the hemispheric model [McAlpine et al., 2001,Harper
and McAlpine, 2004,Lesica et al., 2010] also rely on a frequency-independent description
of the BD. Furthermore, the response of any given cell is considered constant for all
frequencies. In conclusion, those models cannot account for the precise frequency-
dependent response of MSO neurons.

An alternative hypothesis is that neurons are not sensitive to I'TDs, as summarized
by the BD, but rather to position I have shown that ITDs are variable across small
frequency ranges, could it be that encode these frequency-dependent ITD? In this case,
the relevant characteristic is no longer a Best Delay, it is a Best Position. In the next
Chapter 7 we explore the hypothesis that BDs across freugency can be predicted on

the basis of acoustical measurements alone.

Place and population codes

At the core of the arguments against the Jeffress model is the presence of large BDs
in the low frequencies. This, we argue, is not a direct contradiction with the idea of
a place code. Indeed, a neuron can be the most active of the population for a given
ITD, while being more active at another ITD. In essence, a neuron is not necessarily the
most active neuron of the population when the stimulus is presented at its BD, and a
neuron is not necessarily the most active of a population when the ITD is its BD. This
is a confusion between the measure of BD which is the ITD that leads to the highest
response across ITDs and the place code readout which is the most active neuron of
a population presented with a given ITD. Single unit recordings are measurements of
one cell across stimuli, and care should be taken when generalizing those results to
populations of cell. This precise idea is discussed in Chapter 8, in which we present an
alternative place code that exemplifies this phenomenon.
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5.A A simple ITD sensitive model

We us a leaky integrate and fire neuron with unitless membrane potential. The dynam-
ics of the membrane potential (here adimensional) are defined by the linear equation:

d

Thanks to the linearity, the EPSPs have fixed exponential shape and sum exactly. The
neuron spikes iff V,,,(¢) > V4, = 1 and the membrane potential is subsequently reset to
V, = 0. The time constant of the neuron is picked as 7,, = 1ms. The noise £(¢) is a
gaussian white noise term, with a sigma value of 0.1.

The inputs to the neuron are the output of a simple auditory periphery model. The
output of a gammatone filter with center frequency 600 Hz is rectified and compressed,
maz(H * s, 0)%, and fed to an integrate and fire neuron at each side that model the AN
fiber. Those AN fiber inputs are then fed to the neuron with a zero delay on the left
and BD delay on the right.

Simulations are performed for 100 ms long white noise stimuli. The number of
output spikes of the binaural neuron is recorded for each ITD in the input, mimicking
an noise delay measure. All simulations were performed using the Brian simulator
[Goodman and Brette, 2009] and the Brian Hears toolbox [Fontaine et al., 2011].

This can be set by setting the monaural weights to w = 0.55, which means that
each spike in the monaural input creates an increase of 0.55 of the membrane potential.
On the opposite, two synchronous spikes are enough to trigger an output spike from
the binaural neuron (1.1 > 1).

From these considerations, one can work out a combination of delays that makes

the neuron spike for a given ITD. Indeed, if the cell’s neural delays are such that:
—ITD -7, =—T1=ITD=1—1,

Then the neuron receives synchronous input signals, hence produces spikes.

5.B Behavioral studies in animals

Animal models for the electrophysiological study of sound source lcoalization are care-
fully chosen according to different criteria. Essentially there are two criteria, first the

match between the animal’s hearing range and that of humans. This is the case mostly
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in mammals (because humans are mammals), e.g. cat, guinea pig, chinchilla, gerbil,
that hear on roughly the same range as humans. A second criterium is the behavioral
ability to localize sound sources. For this reason, birds such as the barn owls are often
used because they strongly rely on acoustical cues to hunt. Yet, because behavioral
data is hard to gather in animals, the extent to which usual lab animals are really able
to localize sound sources, in this section we review the literature on behavioral studies
with animals, that provide information as to the localization abilities of those different

animal species.

5.B.1 Minimum Audible Angles in animals

The most common experimental paradigm for assessing the localization performance
of animals is the measure of Minimum Audible Angles (MAA). This is a threshold
measure (generally defined on a hit rate of 75%) for the discrimination of two free-field
sources symmetrically placed around the midline [Casseday and Neff, 1973].

This paradigm was applied by Heffner to a wide variety of common lab animals,
and less common species (blind mole rats, cattle, etc...). In cats, and for reasonably
long (> 40ms) broadband sounds, the MAA is measured at 5° [Casseday and Neff,
1973, Heffner and Heffner, 1988b]. This value is similar to the Macaque monkey and
relatively close to human psychoacoustics [Blauert, 1997]. Furthermore, in the cat
study [Casseday and Neff, 1973] using pure tones, the sound localization ability does not
seem to degrade over the range of frequencies where I'TD is used (below 4 kHz). Gerbils,
however, seem to have especially poor localization abilities [Heffner and Heffner, 1988a].
This result was recently confirmed [Carney et al., 2011}, which questions the relevance
of data gathered in the context of sound-localization studies in this species.

Similar experiments were performed on barn owls, e.g. [Knudsen et al., 1979] show
that the MAA is of about 2°. Absolute localization judgement precision in barn owls
is also greater around the midline [Knudsen et al., 1979]. In [Fischer and Pea, 2011],
the authors argue that barn owl have a systematic bias to judge position closer to the
midline. This behavior can be explained by assuming Bayesian model that puts a prior
on central positions: representing the fact that the animal assumes that sound sources
are close to the midline.

5.B.2 Across-species prediction of localization precision

Another interesting point is made by Heffner, who is interested in the evolutionary
pressure constraining sound localization abilities. In a thorough across-species study,
[Heffner and Heffner, 1992] show that the best predictor of a mammal’s ability to
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localize is the width of the width of the field of best vision. The field of best vision is
defined using the spatial distribution of retinal ganglion cells, and is thus quite small
in mammals with foveas. More precisely, the localization threshold increases with the
width of the field of best vision. Surprisingly, this correlation is stronger than other
studied dimensions, e.g. interaural distance, visual precision, This results suggests that
sound localization is essentially useful for directing gaze for visual inspection of a sound
source.

The hypothesis that vision is essential to proper auditory localization is emphasized
by the fact that early-blind humans have auditory localization deficits [Zwiers et al.,
2001]. Furthermore, current data overall agree on the influence of sounds on visual
search performance. Presentation of auditory stimuli, simultaneously to visual targets
can help direct gaze [Doyle and Snowden, 2001]. Yet, the spatial position of the sound
does not seem to influence the accuracy of gaze direction [Doyle and Snowden, 2001, Zou
et al., 2012]. In other words, it is the mere presence of a sound, not the position of
the sound that helps directing gaze in [Zou et al., 2012, Doyle and Snowden, 2001].
Therefore, the hypothesis that sound source separation helps direct visual gaze is not
completely supported by the human behavioral data.
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Chapter 6

Local variations of ITD: The fiction of
the Best Delay
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This chapter is the result of a collaboration with Philip Joris, who kindly provided
us with binaural-beat data from single IC cells. All the data was therefore gathered
by Philip Joris, while I performed the analysis together with Bertrand Fontaine and
Romain Brette. The work presented in this chapter is in submission.

The relative time it takes for a sound to travel from its source to the two ears varies
systematically with direction. In the auditory system of many animals, there are neu-
rons sensitive to this interaural delay. It is thought that their firing rate provides a
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measure of this delay, from which sound direction can be inferred. However, we find
by analyzing in vivo responses of 200 neurons in cat that tuning to delay is highly
dependent on sound frequency. On the other hand, we show that interaural delays
measured acoustically at the ears of a cat also depend on frequency, because of diffrac-
tion of sounds by the head. We demonstrate that the frequency-dependence of neural
tuning to delays matches that found in acoustical recordings. We propose that binaural
neurons are tuned to space rather than to time, and that sensitivity to interaural delay

derives from spatial tuning.
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6.1 Introduction

Acoustical waves produced by a sound source reach the two ears at slightly difference
times depending on its direction. Interaural time differences (ITDs) are used by many
species to localize sounds in the horizontal plane. In mammals, neurons in the medial
superior olive, just three synapses away from the ear, are sensitive both to ITD and to
sound frequency. It is thought that their activity encodes ITD in each frequency band.
They project to neurons in the inferior colliculus (IC), which inherit these properties.
The firing rate of these cells is strongly modulated by the ITD of a tone presented
binaurally through earphones (Fig. 6.1, A). The “best delay” (BD) is defined as the
ITD where the cell fires at highest rate. Equivalently, the firing rate represents the
similarity between the sounds ITD and the cells BD, and therefore may form the basis
of a neural code for ITD. However, the BD of a cell is not a fixed quantity: it can vary
with sound frequency. Fig. 6.1, A shows normalized I'TD selectivity curves of a neuron
in the IC of a cat for tones at frequencies between 800 Hz and 1400 Hz, where the cell
responds strongly. The BD varies between 400 and 100 us over this frequency range
(Fig. 6.1 B). We examined such responses for cells tuned to characteristic frequency
(CF) between 97 and 3341 Hz. We found that the BD of a cell spanned on average
an interval of 128 us (4- 240 us) over the relevant frequency range (Fig. 6.1 C). This
extent is large, considering that the maximum natural ITD in cats is about 350 us and
that cats can discriminate ITD differences of just 20 us. This observation challenges
the view that these neurons encode the ITD of sounds, since the code seems to change
depending on the nature of the sound.

Frequency-dependence of BD has been observed in many species. To quantify it, the
standard method consists in calculating a linear regression between the best phase (BP
= BD times frequency) and the tones frequency (Fig. 6.1 D). If the BD is constant, then
the BP depends linearly on frequency, i.e., the intercept is zero. Thus this intercept,
called the characteristic phase (CP), quantifies the frequency-dependence of the BD.
The slope of the regression is called the characteristic delay (CD). In the special case
when CP=0, the BD is constant and equals the CD. Linear circular fits were highly
significant for almost all our cells (Fig. 6.5). The distribution of CPs, wrapped within
one cycle (-0.5 to 0.5), is shown for all 203 cells on Fig. 6.1 E. As observed in other
species, many cells have CPs near zero, but the distribution is broad, meaning that
many cells do not have a fixed BD. There is also a small bias for positive CPs. Finally
the distribution is unimodal, suggesting that the differences in CPs are not due to
the cells being of different types. The CDs are mainly positive (corresponding to
contralateral leading sounds) and mostly within the natural range of 350 us, but a
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large minority of cells have negative CDs and a smaller minority have CDs larger than
350 us (Fig. 6.1 F). Most intriguingly, as observed in other species, CDs are negatively
correlated with CPs (Fig. 6.1 G). We checked with bootstrap analysis that this negative
correlation is not due to measurement artifacts (Fig. 6.9).

These features are difficult to comprehend if cells are assumed to encode frequency-
independent ITDs. However, it has been demonstrated with physical models and acous-
tical measurements that for a given source direction, ITD varies with frequency, because
of sound diffraction by the head. This variation can be fully quantified by analyzing
head-related transfer functions (HRTFs), which measure the acoustical filtering of the
head for sources at various positions (Fig. 6.2, A). Fig. 6.2, B shows the variation of
ITD with frequency for three source directions in an anesthetized cat. These varia-
tions are consistent with previous acoustical measurements in cats (Fig. 6.7, A). To
make sure that these variations are generic, we also measured HRTFs for a taxidermist
model of a cat in a natural posture (Fig. 6.7, B), which we compared with numerically
computed HRTF's from a 3D model of the same cat (Fig. 6.7, C-D), so as to make sure
that these variations were not due to artifacts of acoustical recordings. In all cases,
similar variations of ITD with frequency were observed. A simple spherical head model
also displays this phenomenon (Fig. 6.7, E), particularly when a ground is included
(Fig. 6.7, F). If a cell were tuned to a constant BD, then its best azimuth (azimuth at
which it fires most) would vary with frequency (Fig. 6.2, C, top). On the other hand,
if the cell had a constant best azimuth, its BD would vary with frequency to match the
variation of ITD with frequency at that position (Fig. 6.2, C, bottom). Therefore, we
tested whether the features seen in the electrophysiological data could be explained by
the hypothesis that cells are tuned to an azimuth rather than to an ITD.

6.2 Results

For each source direction in the horizontal plane, we examined the variation of interaural
phase difference (IPD) with frequency using linear regressions, in the same way as we
previously examined the variation of BP with frequency in cells (Fig. 6.1 D). For
example, at 70°(Fig. 6.2, D), the linear regression gives two different results in low
frequency and in high frequency. Acoustically, the slope of these regressions corresponds
to the group ITD (ITD,), defined as the derivative of IPD with respect to frequency. It
corresponds to the ITD of the sound envelope (Fig. 6.10, A-B). When there is no sound
diffraction, the ITD of the fine structure (IPD divided by frequency, or ITD,) equals
the group ITD, and the linear regression intercepts the vertical axis at zero cycle. But

these two ITDs are not always equal with sound diffraction, as is seen in Fig. 6.2, E

161



400 > "~::‘\
o TARWED -
O] \‘ L RSN :
m o Hemeemnn
3
o 300
>
£
200 g
500 1000 2000 ,
Frequency (Hz) f
D IDI =-0.03 cyc., ITDg = 398 us  IDI = 0.32 cyc., ITD; = 180 us E
7 0.5 3 05 AN ITDg
ﬁ 0 o P—-2—2—0o _5 0 . 600 \|TDp
g o ""‘...,p,'!_'.“""". g. F
& 05 500F 600 y 700 g 0. 2000 2400 2800 E 400 | \‘ /\\_
requency (Hz) Frequency (Hz) |: 200} v
— L M | . M
o 0 0.5 1 2 3
S Frequency (kHz)
L 0.57
a) mn
a @ 0.25¢
9 — N
. . . . . . ! §-0.25 -
0.5 1 15 2 25 3 B — 5 3
Frequency (kHz) Frequency (kHz)

Figure 6.2: Frequency-dependence of ITD. A Head-related transfer functions are mea-
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(top). For this reason, we call the intercept “interaural diffraction index” (IDI).
equals the difference between I'TDyand ITD,, in cycles of the frequency (Fig. 6.2, E,
bottom; Fig. 6.10, C). In our cat HRTFs, ITD,and ITDyhave different distributions
(Fig. 6.10, D) and IDlare broadly distributed around zero (Fig. 6.10, E).

If a cell were tuned to a constant azimuth, then the variation of BP with frequency,
measured electrophysiologically, should match the variation of IPD with frequency at
the preferred azimuth, measured acoustically in the HRTFs. Therefore its CD should
equal the ITD,for that azimuth, and its CP should equal the IDI. We generated predic-
tions by considering that azimuth is uniformly represented across cells in the contralat-
eral hemifield (front and back), and that characteristic frequencies (CF) are distributed
as in the recorded cells. We obtained a set of model cells characterized by a CD and CP
extracted from the acoustical data, which we compared with the electrophysiological
measurements (Fig. 6.3). Quantitatively, the distributions of CD and CP in the model
cells depend on the chosen distribution of best azimuths, which could alternatively be
uniform over directions in the front only (Fig. 6.8, A), or inferred from the electrophys-
iological recordings (Fig. 6.8, B), or biased towards the side (Fig. 6.8, C) or the center
(Fig. 6.8, D), as suggested in the barn owl. Despite the quantitative differences, the
same qualitative features remain. In particular, in agreement with measured data, the
model predicts that the distribution of CP is unimodal and broad, with a small but
significant positive bias (Fig. 6.3, A). In contrast, a model with constant BD would
predict that all CPs are zero (Fig. 6.3, B). As in the measured cells, the predicted
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CDs are mainly positive and mostly within 350 us, but with a minority of cells with
negative CDs and with large BDs (Fig. 6.3, C). In contrast, a model based on a peak
code for ITD predicts that almost all CDs should be positive and smaller than the
maximal natural ITD of 350 us (Fig. 6.3, D, left). Another model in which BDs are
1/8th the characteristic period (1/CF) also predicts that most cells should have positive
CD (Fig. 6.3, D, right); an alternative interpretation of this model is that cells have a
constant BP of 1/8th of cycle, meaning that CP = 1/8 and CD = 0 for all cells, which
is also not in agreement with the data.

Finally, the model based on HRTF's is the only one to correctly predict that CD is
inversely correlated with CP (Fig. 6.3, C). This non-trivial feature can be explained by
the variation of ITD with frequency, in a simple spherical head model (Fig. 6.4, A). In
this model, ITDs are larger at low frequency than at high frequency (Fig. 6.4, B; Kuhn).
More variations are introduced by the complex shape of head and body of real animals
(Fig. 6.7), and also by early reflections on the ground (Fig. 6.4, B, green; [Gourevitch
and Brette, 2012]). As a result of these variations, the IPD vs. frequency curve is
non-linear (Fig. 6.4, C). When a tangent is moved along this curve (dashed lines), the
slope (ITD,) decreases at the same time as the intercept (IDI) increases. It follows that
ITD,and IDIare inversely correlated for a given position (Fig. 6.4, D).

6.3 Discussion

A number of studies have shown that there is a strong negative correlation between BD
and best frequency (BF). We found the same trend in our data, with a slope of -560
us/kHz (Fig. 6.6, A). However, since BD can vary widely within the bandwidth of a
binaural cell, this relationship quantitatively depends on the choice of definitions. The
BD can also be calculated as the fixed interaural delay that gives the best fit to the BP
vs. frequency relationship. In this case, the slope of the linear regression with BF is
-329 us/Hz (Fig. 6.6, B). Another slope value, -181 us/kHz, is found when the linear
regression is calculated against characteristic frequency (CF), which is generally higher
than BF (Fig. 6.6, C). Spearman coefficient, which quantifies nonlinear correlation, is
also smaller (p = -0.22 vs. -0.40). Finally, we can select the pair of HRTF's for source
directions in the frontal horizontal plane that gives the best fit to the BP vs. frequency
relationship for each cell (Fig. 6.6, D). We call the corresponding azimuth is the best
azimuth (BA). In this case, the slope of regression with CF is about 12°/kHz, with a
small Spearman coeflicient (p = —0.16). Previous measurements in free field did not
show strong correlations either. In Fig. 6.6, E, we split the cells into two equal groups
with CF804 Hz and CF;804 Hz. It appears that the distribution of BAs is similar in
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the two groups.

These results support the hypothesis that ITD-sensitive cells in the cat are tuned
to a specific location, or more generally to a feature in the interaural phase spectrum
of natural sounds, rather than to a fixed ITD. Since the frequency-dependence of ITD
is a general feature due to sound diffraction, it should also apply to other species.
We applied our analysis to barn owls HRTFs (Fig. 6.11, A-C), which use ITDs in
high frequency (2-10 kHz), and we also found some variability in predicted CP. This
variability was broader in human HRTFs (Fig. 6.11, D-F), which suggests that the
frequency-dependence of I'TDs may have behavioral consequences.

Finally, by which mechanism can the best delay of cell depend on sound frequency?
This observation implies that the internal source of delay is not only a conduction delay.
Frequency-dependent best delays can be produced by small mismatches in the CF's of
the monaural inputs to a binaural cell, in addition to conduction delay mismatches.
The binaural cell then responds preferentially when the mismatch in its monaural fil-
ters corresponds to the mismatch in the directional acoustical filters, a principle that
can be used to accurately estimate sound location with realistic acoustics. This re-
quires precise correspondence between monaural filters, but such correspondence has
been demonstrated in the barn owl, and can be obtained with activity-driven plastic-
ity. Therefore we suggest that, rather than measuring timing differences across the
ears, ITD-sensitive cells are tuned to complex acoustical features of natural ecological
environments, which are acquired during development
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6.A Electrophysiological recordings

All electrophysiological recordings were performed by Philip Joris in K. U. Leuven.,
according to the method presented in [Joris, 2003]. Single-cells in the cat IC central
nucleus were measured in response to binaural beats at different frequencies. All neu-
rons presented in this study were recorded at 60 dB SPL. Characteristic frequency (CF)
(frequency of lowest threshold) was determined with a threshold tracking algorithm to
contra and/or binaural stimulation. All procedures were approved by the K. U. Leuven
Ethics Committee for Animal Experiments and were in accor- dance with the National
Institutes of Health Guide for the Care and Use of Laboratory Animals.

6.A.1 Analysis of electrophysiological data
Calculation of CP and CD

The characteristic Phase and delays are respectively defined as the [Yin and Kuwada,
1983] intercepts and phase of a circular linear fit of the BP spectrum of the cell. The

computation was done here according to [Lling et al., 2011].

The regression operation is not linear because a circular variable (BP, a phase in
cycles) is regressed against a linear variable (frequency). Hence, the fit is obtained by

minimizing a circular distance to the affine fit:
BP(fy~CP+CD x f [1 cycle]

The BP spectrum of the cell consists of measurements of BP(f) at different frequency
points. This represents an average of 9.5 points per cell (std = 3.96), and cells with
less than 5 measured frequency points were discarded.Those frequency points were in
general not uniformly spaced in frequency. Moreover the cell might have a sensitivity
to IPDs in tones at some frequency and not others. Hence the response of the cell
as a function of IPD at all frequencies was tested for uniformity using a Rayleigh
test. Frequency points where the null hypothesis of uniformity couldnt be rejected
(p < 0.001). Additionally, we weigh each BP measurement by the reliability of the
response. This is usually done [Yin and Kuwada, 1983] by using the product of the
discharge rate and the Vector Strength (VS) of the response of the cell. This quantity
is known as the sync rate SR(f) = r x vs.

This quantity can be for example used to reconstruct an approximate noise-delay

curve (the composite curve) using tone-delay curves [Yin and Kuwada, 1983].
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Finally we are faced with solving the following non-linear least square problem:

(CP,CD) = argmincpcp Y ||SR(f)BP(f) — (CP + CDf)|
f

Where the norm used here is a circular norm:

1 — cos(2mz)

2 _
ol = =2

The fit is obtained in a two-steps process: first the parameter (CP, CD) space is uni-
formly sampled (CP in the full range, CD between 2ms and -2 ms). This yields a
distance per point. The best-fitting point is used as a seed to the second part of the
fitting procedure. In this second part a gradient descent approach is used to solve the

least square problem.

The reason for such a two steps fit is that the energy space has a lot of local minima
in which the gradient descent procedure can get caught. This approach ensured that the
computed CP and CD be the same, and was better suited to reconciling the simulated
to the measured cell results. Also, not using a linear fitting procedure allows one
to circumvent the unwrapping of the IPD pattern, which is in general an unreliable

operation.
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Figure 6.5: Linearity of best phase (BP) vs. frequency curves. A Distribution of
residual error in linear fits of BP vs. frequency in cells (green) and in acoustical
predictions (blue). B Statistical significance of linear fits. Cells are selected for further
analysis when p < 0.05. C BP vs. frequency and linear regressions for two cells with
the same number of data points (different frequencies) and different residual errors. D
Same as C, for acoustical recordings.

The quality of the circular linear regression (that is, the fit of CP and CD) can be
assessed by measuring the distance of the BP(f) spectrum to the regression line. This
is in general known as the residual error. In our case this is a circular root mean square
measure defined as:

residual( BP(f),CP,CD) = \l Ji/'z ||SR(f)BP(f) — (CP + CDf)|?
f

This quantity measures the adequation of the circular linear fit of the BP(f) data.
To test whether a cell had a linear BP(f) spectrum, we used the same approach as
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Figure 6.6: Distribution of best delays (BD) and best azimuths (BA). A BD measured
at best frequency (BF) vs. best frequency (BF). B BD of the linear fit to BP vs.
frequency curves, plotted against BF. C BD of linear fits vs. characteristic frequency
(CF). Note that CF is generally larger than BF. D BA of the fit of BP vs. frequency
curves to HRTF, plotted against CF. E Distribution of BA over all cells (top), over
high frequency cells (middle, CF greater than median CF'), and over low frequency
cells (bottom, CF lower than median CF).

in [Yin and Kuwada, 1983], Fig. 6.5. We want to reject the null hypothesis that the
cells have uniformly distributed BP(f) at each frequency points between 0.5 and 0.5
cycles, using this residual measure as a statistic. We perform simulations of cells under
the null hypothesis with variable degrees of freedom (i.e. number of measured frequency
points), perform the circular linear fit and measure the residual. This in turns yield
a probability distribution of observing a given residual under the null hypothesis for
different degrees of freedom. The cumulative of that distribution gives the linearity
significance measure (Fig. 6.5, B). The null hypothesis could not be rejected in only

1.2% of the case for the measured cells.
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Best delay, best frequency, characteristic frequency, alternative best delay

The Best Frequency of the cell was measured as the frequency of the tone at which the
cell responds maximally when presented at 0 ITD. This is, unlike the Characteristic
Frequency, variable with level, because in general a cell has different BFs at different
stimuli level. The characteristic frequency is measured as the frequency at which the
cell has a response significantly above noise for the lowest level. It can be understood
as the minimal observable BF in that it is akin to the BF measured at the lowest level
that the cell responds to.

The Best Delay is usually measured as the ITD that elicits the highest response
in a cell, when presented in a tone at the Best Frequency (BF). This means it can be
computed out of our binaural beat data, by converting the BP at the BF to a time:

BP(BF)

BDpr = —p%

This has been shown to be the same value as the maximum of the noise delay curve [Yin
and Kuwada, 1983]. Yet, as it depends on BF, it in turn depends on the level of the
stimuli presented.

We also measured BDs at CF using the formula:

Which is a measure that does not depend on the sound level of the stimulus presen-
tation. Because some ITD sensitive cells display ITD sensitivity only at frequencies
lower than CF (in the tail of the cochlear filter), sometimes binaural beats measure-
ments werent available around the CF which prevented us from computing BP(CF).
Those cells were excluded from the analysis in Fig. 6.6.

An alternative measure of BD is proposed here, that does not rely on measurement
of BP at a single frequency, but rather the complete BP(f) spectrum. If the cell has a
constant BD, then we show that the BP(f) spectrum is linear. Consequently, the best

possible constant-BD representation of a cell is in fact given by the circular-linear fit
BP(f)~ BDs:f [1 cycle]

That is the same fitting procedure as in the CP/CD analysis, except that CP is con-
strained to be zero. This BD measure we term BDy;. It was measured exactly in the
same way as for the CP/CD analysis, for the same frequency points etc. ..
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6.B Acoustical measurements

The HRTF data used for the main figures of the paper was already published by another
group [Tollin and Koka, 2009b]. It consists of 26 measurements of HRTFs in the
horizontal plane evenly spaced in azimuth. Each monaural filter was represented by
1999 samples obtained at roughly 96.0 kHz.

Other HRTF measurements reported in Fig. 6.7 were measured or computed in the
lab. The naturalized cat (Panel B) was borrowed at the Paris Museum of Natural
History, and measured in the IRCAM Anechoic chamber in Paris, using the same
experimental setup as the IRCAM LISTEN database [Database, 2002] using the sine-
sweep method. Miniature microphones were placed in the entry of the meatus, which
had been occluded by the stuffing procedure.

The anechoic BEM simulations were performed using 3D meshes extracted from
pictures (C, D, inserts). The BEM method is that of Chapter 4, and provided 1024
measurement samples at 44.1 kHz per monaural filter. Similar simulations were per-
formed on the 3D model after manually tilting the head 45°so as to align it with the
body (Fig. 6.7, D).

The spherical model HRTFs were computed according to the 1998 paper [Duda and
Martens, 1998], based on the analytic solution of the wave equation by Lord Rayleigh
[Rayleigh and Lodge, 1904]. The head diameter was measured on the stuffed cat 3D
model (d = 7.3 cm), and the HRTFs were generated for 1024 points at 44.1 kHz.
Naturalistic ground reflections were included in the spherical model (Fig. 6.7, F) using
the method described in [Gourevitch and Brette, 2012]. The situation modeled was
that of a cat with its head 20 cm above ground. The sound source was placed at a 1
meter distance from the animal at 0°elevation, and then the azimuth was varied. The
ground was modeled with flow resistivity of 5.10%, which was picked so as to roughly
correspond to situations from grass fields (10°) or sand (10°), as opposed to highed
values corresponding to rougher grounds, e.g. concrete is 2.10° [Gourevitch and Brette,
2012].

The rest is relative to Fig. 6.11. The Human HRTF measurements used to generate
the predictions of Fig. 6.11, are that of one randomly picked subject of the openly
available IRCAM LISTEN HRTF database [Database, 2002]. They consisted of 4096
data points measured at 44.1 kHz, for 72 positions on the horizontal plane.

The barn owl measurements were kindly obtained from H. Wagners group in Old-
enburg. They consisted of pairs or monaural filters of 4800 samples at a sampling
frequency of 96 kHz for 34 positions.
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Figure 6.7: Frequency-dependence of ITD in several acoustical datasets. A ITD
vs. frequency for 6 sound directions on the horizontal plane (15-90°, spaced by 15°),
measured in a live cat and previously reported in (Roth et al., 1980). B Acoustical
measurements on a taxidermist model of a cat in a large anechoic room (same sound
directions). Note that the head is tilted on the left; directions are relative to the
head (not the body). C Numerical calculation of ITDs by boundary element method
(BEM) simulation on a 3D model of the same cat as B (grey shape), obtained from
photographs. D Same as C, but with a straightened head. E Analytical calculation of
ITDs for a spherical rigid head. F Same as E, but with an additional reflection on the
ground. Head and source are placed one meter from each other and 20 cm above the
ground.
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6.B.1 Acoustical analysis

Consider the HRTF filter at position 6 with the interaural phase response ¢(f), mea-
sured in cycles. There exist two common definitions of interaural delays: The group
delay: measures the delay of the envelope

ITD,(6, f) = ;;sb(f)

The phase delay: measures the total delay of the signals fine structure at any frequency.

ITD,(6, f) = 4;¢(f>>

Where the brackets operator /.) is the unwrapping operation. On discrete phase spec-
tra, it replaces phase jumps ||¢r — ¢ 1 greater than 1 cycle to their 27 complement.
If the phase is linear, then the IPD expression reads ¢(6, f) = ITDg(6)f, and both
those delays are equal. Conversely, if the phase is non-linear, then there is a difference
between the two quantities. In measurements and in models of HRTFs, the ITD is
found to vary with frequency [Roth]. This is indicated by a non-linear IPD spectrum
(see Fig. 6.2). This arises because of diffraction of the sound wave around the head,
as modeled by a spherical model [DudaMartens|. When the sound wavelength is the
same as the circumference of the head of the animal (i.e. when f=c/d), then the ITD
transitions between a low and high frequency regimes. We thus define the Interaural
Diffraction Index (IDI), a frequency dependent quantity that represents how much the
ITD varies because of diffraction effects. We define it as:

IDI(6, f) = f(ITDy(6, f) — ITDq(6, £))

It is a phase quantity (measured in cycles) that has an interesting interpretation in
terms of signal processing. Even though in general it is hard to analyze the effects
of such phase distortions, a simple case can be analytically solved. When the source
emits a band pass noise one can show [MarpleJr| that ITD, (6, f) measures the interaural
envelope delay, that is the difference in delay imposed on the envelope of the signal at
both ears. The IDIis the additional phase ITD imposed between the fine structure of
the source signal, here because or diffraction. We argue that because the time delay
ITD,(0, f) — ITDg(0, f) varies with the inverse of the frequency, it is in fact better
formulated in terms of additional interaural phase delay (as opposed to the description
in [Roth]).
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6.C Model and predictions

6.C.1 Labeled line code for sound location (HRTF-based)

We hypothesize that cells are sensitive to the frequency-dependent ITD cues associated
with their preferred position BA. This can be achieved by assuming that, for all fre-
quency points, the BD tuning of the cell match the ITD in the acoustics at the BA. In
phase terms, the BP(f) spectrum (as defined in Computation of CP and CD) should
be the opposite of the IPD spectrum at all frequency points. This ensures that the cell
receives a maximal number of coincident inputs from both sides, hence is maximally
active, when the sound is presented at the BA [GoodmanBrette].

To create a population that codes uniformly (in terms of solid angle) the position
of the sound source, one has to create a population such that the distribution of BAs
across the population is flat. This is very similar to the labeled-line idea as introduced
by [Jeffress|, even though it generalizes to non-axonal delays (because it allows for
variable BDs across frequencies). In this simple scheme, the position of the sound
source can be read out by finding the most active cell of the population. The azimuth
of the source is then the BA of that cell.

We design a model of IC cells wherein each cell has two parameters, the CF (Char-
acteristic frequency) and the BA (Best Azimuth). The CF of the cell defines the range
of frequencies over which this cell responds. The passband of the cell is defined as a
centered interval of width BW(CF)=CF/Q(CF), the Q function was a linear function
of CF derived from the cell recordings. Model cells were created for 256 different CF's,
from 300 Hz to 3 kHz, roughly corresponding to the range CFs in the recorded cells.

The BA of a model cell is the azimuth to which the cell is tuned. This means that,
for a cell with a given CF and BA, its BP spectrum is defined as:

BP(f) = —IPD(BA, f)for f € |CF — B;/V, CF+ B;V
That is, the BP(f) spectrum of the cell exactly compensates for the IPD spectrum
acoustically recorded for a source at the BA. This ensures that the cell receives maxi-
mally coincident inputs when a sound is emitted at the BA [GoodmanBrette|. From this
BP(f) spectrum, we compute CPs and CDs according to the same method described in
Computing CP and CD. The frequency points considered in the circular-linear regres-
sion are those in the passband of the model cells. The VS of the response of the cells
was modeled as a constant, hence in essence no weighing in the CP/CD computation
was considered. Additional statistics (non linearities, etc) were computed in the same

way as in cells.
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A mother population of such cells was generated for 256 CFs, and the 36 BAs
for which acoustical recordings were available (see Acoustical Measurements). This
means that the mother population contains 9216 cells sensitive to different positions
and frequencies. We sample randomly from this population to report statistics, as
explained next.

In order to compare with the recordings in IC, we have to equate the distribution of
CF's in the modeled and measured populations. This is especially important because
the distribution of interaural delays (IDIand ITD,) varies with frequency. The pre-
dicted populationwise CP and CD distributions depend critically on this population
CF distribution. We use a bootstrap approach to generate populations of cells with the
right distribution of CFs. We first estimate the distribution of CFs in the data using a
Gaussian kernel estimation. Then, we sample cells from the mother population using
the prior distribution of CF estimated before, and a uniform distribution of BA. An
example of such a population is represented in Fig. 6.3 of the main text, with N = 200.
This operation can be repeated multiple times to obtain average distributions of CPs
and CDs, as reported on Fig. 6.3, A of the main text.

Effect of azimuth prior

In the procedure presented above, the populations of modeled cells encode space uni-
formly. That is, the probability of selecting a cell from the mother population with any
BA is equal. Some data suggest that this might not be the case, at least in the barn
owl [Fischer and Pea, 2011]. To study the effects of changing the marginal distribu-
tion of BAs, we slightly modified the bootstrap algorithm presented above to sample
the (CF, BA) with a non-uniform marginal distribution of BA. The CFs and the BAs
of the cells were still chosen independently. Four situations were modeled, Panel A
describes a situation where cells only encode from frontal-contralateral positions, in
a uniform way. Panel B describes the situation were the marginal prior of BAs is
matched with the one in the electrophysiological recordings (see Best Azimuths). That
is, this prediction should be the closest from the recorded measures. Panel C describes
the situation wherein cells are selective to the most contralateral positions, that is the
positions around 90°are overrepresented. The marginal distribution of BA is a raised

cosine distribution (before being normalized):
P(BA) = (1 + cos(BA — m/2))*

D is the situation in which the marginal is that found in [Fischer and Pea, 2011}, that
is a central preference modeled with the same raised-cosine distribution as for E, but
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Figure 6.8:

Acoustical predictions of CD and CP distributions for various prior spa-

tial distributions. A First column: Uniform distribution of preferred positions in the
0-90°quadrant. Second to fourth columns: Prediction of CP, CD and joint CP-CD dis-
tributions (100 sample cells drawn at random; inset: color-coded probability density).
B Distribution of preferred positions inferred from cell recordings (best fits to HRTFs).
C Bias for positions near 90°. D Bias for positions near the center.
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strictly contralateral.

Other models

Labeled line code for ITD (Jeffress) We modeled a population of IC cells coding
uniformly for azimuth around different Center Frequencies (CFs). This means that at
any given CF, we built 36 cells sensitive to evenly spaced Best Azimuths in the con-
tralateral hemifield. The CF's were chosen according to the distribution of CFs observed
in the data. The Jeffress model is usually formulated as a labelled line code, wherein
the cell responding maximally to a given ITD in the stimulus. In this description, the
Jeffress model is a special case in which each neurons INFs phase response is linear,
i.e. the delays are pure delays (e.g. axonal). This has the immediate consequence that
the CPs are all zero, which predicts a dirac function-like distribution. To construct the
whole population of cells, we computed I'TDs for each position around the animal using
a broadband approximation. Because the INF is linear-phase, the CD distribution is
exactly the distribution of ITDs across position and frequencies. Note that, because
ITD varies as the sine of the azimuth, the distribution isnt flat, but has a peak at higher
CD values.

Hemispheric model The hemispheric model is usually formulated as a pure delay
model (hence the CP distribution, see previous paragraph). In this model, though, a
cell at CF has BDs of at 7 /CF, outside of the 7-limit. As in the previous model, the
distribution of BDs is the same as the predicted distribution of CDs. The distribution
has a long tail because in this model, lower frequency cells have BDs that diverge to +

as the frequency goes to zero.

Best azimuths

For all the cells, the Best Azimuth is defined as the azimuth position on the horizontal
plane that elicits the biggest response in that cell. According to the model, we expect
this to occur when the IPD and BP compensate each other. Hence the best azimuth
BA of the a cell is defined as:

BA= argmins ;3 ||BP(f) — IPD(f)|
f

The norm used here is a cosine-like because the quantities are circular (and measured in
cycles). We used the same norm as for the circular linear regression used for computing
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CP and CD (see Calculation of CP and CD). Similarly, the frequency points over which
the sum is taken were picked according to the same criteria.

Since best phases and IPDs are not necessarily measured at the same frequency
points, the IPD spectrum was approximated to its nearest neighbor. Because the HRTF
measurements have many frequency points, the nearest neighbor was never further than
a few hertz away. This is not reported here because it yields qualitatively the same

results and complicates the statistical comparison with pure delay HRTF's.

CP CD correlation analysis

It could be argued that the CP/CD inverse correlation that is found in the data is just a
statistical artifact. Indeed, if we consider the simple case of a linear regression, then it is
known that the intercept estimate and the slope estimate covary negatively. That is to
say that when the intercept is over-estimated, then the slope will be underestimated.
The same reasoning can apply to our circular-linear regression used to estimate CP
and CD. It could be argued that this is reflected on the correlation of estimates of CPs
and CDs on different cells, even though they are in fact independent, and hence the
observed correlation is artefactual.

We performed statistical simulations so as to show that this is in fact not the case.
On Fig. 6.9 we show the measured distribution of CP/CD including the global linear
regression (Panel A). For any given point (i.e. cell) in Panel A, we can estimate the
covariation of CP and CD by using a bootstrap approach. This is illustrated on Panel
B. We pick frequency points at random (for the sake of the example, just one out of two
points), and compute the CP/CD on this subset of the actual data. This yields two
different estimates of CPs and CDs, and we can see on this example that the intercept
gets bigger (red intercept is bigger than blue intercept) as the slope gets lower (red
slope is smaller than blue slope). Panel C shows the result of this procedure on 4 cells
(each color is a cell, and each point the result of the estimate on a different subset
of frequency points). From Panel C we do observe the expected inverse correlation
between estimates of CPs and CDs for a given cell. That is, the noise distribution
evaluated for each cell is not independent in CP and CD. What we see though, is that
it is perfectly sensible that there is a genuine correlation between CP and CD across
cells despite the negative correlation between the estimates within cell. Here, a positive
correlation was intentionally included, so as to illustrate this counter intuitive fact.

Here we want to show that the negative correlation observed in the data is not due to
an artifact. We try to reject the null hypothesis that the CPs and CDs are independent
across the population of cells, despite the covariation of CP and CD estimates for each

cell. To do so, we run simulations wherein we sample CPs and CDs independently
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Figure 6.9: Stastistical signifance of CP-CD correlation. A Characteristic delay (CD)
vs. characteristic phase (CP) for all cells, and linear regression (dashed). Spearmans
rank correlation p is -0.357. B Illustration of spurious correlations due to noise. Two
subsets of BP vs. frequency data points (red and blue dots) are fitted to lines: intercept
(CP) and slope (CD) are inversely correlated. The solid curve shows the sync-rate. C
Linear regression performed on bootstrap samples for 4 cells: CD and CP are inversely
correlated for each cell, but positively correlated overall. D-G Statistical test of CP-CD
correlation. D Data points are generated at random under the hypothesis that CP and
CD are independent, using the distributions measured in cells. E Correlated noise is
added to each (CP, CD) point, with the distribution previously measured in bootstrap
samples, as shown in C. Each new point is shown in green, connected by a line to the
original point (blue). F Correlation is measured across all data points (dashed: linear
regression). The procedure D-F is reiterated many times with new sets of random
samples. G The distribution of Spearmans p in the generated data points has a small
negative bias, much smaller than in the original data points (dashed, p < 1079).
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from the measured marginal distributions of CP an CD. This yields a set of CP/CD
measurements that are not correlated (Panel D). We then introduce the measurement
noise in each of this estimate (Panel E). This is done by using a randomly chosen
noise distribution amongst that of measured cells (as evaluated using the bootstrap
method of Panel B/C), centered so as to keep only the second-and-higher moments
of the noise. The result of this procedure is that all the data points are moved in a
way that reflects the covariation of CP and CD estimates (Panel F, most black bars
have negative slopes). A Spearman correlation test is then run on the data, and the
rho statistic is recorded. On the example of Panel F, there is a positive correlation,
which appeared by chance. Repeating this procedure provides us with an estimate of
the distribution of Spearmans rho values under the null hypothesis that the original
population of CPs and CDs displayed no correlation (Panel G). As expected, this is
on average a negative correlation, even though occasionally positive correlations may
occur. Comparing the measured correlation in the original data to the cumulative of
the distribution on Panel G provides us with a p-value of 1076. This leads us to reject
the hypothesis that the observed CP/CD correlation is due to a covariation of the
estimates of CPs and CDs.
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6.D Interpretation of variable ITDs

6.E Model predictions for different species
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Figure 6.10: Envelope and fine structure ITDs. A Top: A filter with linear phase
response delays signals by a constant group delay (GD). Bottom: A filter with affine
phase response introduces an additional frequency-dependent delay, equal to a constant
fraction of cycle, the diffraction index (DI). B The group delay is the delay applied to
the signal envelope, while the diffraction index is the additional delay applied to the
fine structure, in cycles. Two monaural signals at the left and right ear are shown
(blue). The two envelopes (green) are delayed from each other by the group ITD
(ITD,, difference in GD). If the interaural difference in DI (IDI) is 0, then the entire
signals are delayed by ITD,. If it is non-zero (third signal), there is an additional
delay in fine structure equal to the IDI(in cycles). C When cross-correlating the signals
from the ears, the fine structure and the envelope peak at the same lag when IDI= 0
(top), otherwise they are delayed by a fraction of cycle equal to the IDI(bottom). D
Distribution of phase ITD (ITD,, green) and group ITD (ITD,, blue) in the cat HRTF's
over the 300-3000 Hz frequency range.
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Chapter 7

A model of spectrum-invariant sound

localization
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This part of the thesis lays the basis for a full spiking model of spectrum-invariant
sound source localization. We hypothesize, that binaural cells are sensitive to the local
ITD variations (with respect to ) associated with a source at their best position. We

show theoretically how this enables the cell to represent the position independently of

the frequency of the input.

185



It is known that the neural sensitivity to frequency-dependent ITDs can be attained
by a combination of axonal and cochlear delays (e.g. [Day and Semple, 2011]). Assum-
ing that the population is a place code, the distributions of such delays and cochlear
mismatches can be predicted from acoustical HRTF data. I expose a method performs
this task, present the results in the case of a model of cat binaural cells and discuss

their validity.
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7.1 Introduction

In the previous chapter we showed that cells are sensitive to the fine ITD cues associated
with one position. Given a set of acoustical recordings, we demonstrated that cells
can be tuned so as to be maximally active for a given position irregardless of the
source stimulus’s frequency content. What neural mechanisms could give rise to such
selectivity ni binaural cells have not been developed in Chapter 6. The problem is
that of constructing a model of binaural cells that are sensitive to frequency-dependent
ITDs. Interaural neural delays, i.e. differences in delays imposed on the signals on
each monaural pathway, are necessary for I'TD tuning to emerge in binaural cells (see
Chapter 5). Hence a mechanism for introducing frequency-dependent neural delays is

necessary for implementing this model.

The precise mechanism by which neural delays arise in the context of I'TD processing
is the topic of much discussion (reviewed in Chapter 5), because it constrains the
plausible neural codes. For example, axons converging onto binaural IC neurons in
the cat have differential lengths and diameters that can account for binaural neurons’
BDs [Cant and Casseday, 1986], although not the unusually long BDs low-CF neurons.
Other sources of delays were sought, and it was found that cochlear mismatches could
give rise to interaural neural delays [Shamma et al., 1989]. Cochlear mismatches have
other interesting properties, for example AN fibers with mismatched frequencies show
maximal synchrony when they were delayed to each other [Joris et al., 2006]. This may
also contribute to the BD and BF relationship observed in many mammals. Another
property is that cochlear mismatches provide a mechanism for frequency-dependent
neural delays. In a recent study, [Day and Semple, 2011] showed that the responses of
cells in the guinea pig MSO could be fully accounted for by a model comprising cochlear
mismatches and axonal delays. This is because mismatched cochlear filters have non-
linear phase responses which explains nonzero CPs in the tuning of MSO cells (i.e. the
frequency-dependent component of the selectivity to ITD) [Bonham and Lewis, 1999].
The [Day and Semple, 2011] study suggests that axonal delays and cochlear mismatches
together can account for the full range of observed ITD tuning in mammals.

When the inputs to a binaural neuron have slightly different CF's, they originate
from positions on the cochlea that are excited by the travelling wave at different times.
In fact, because cochlear filters have non-linear phase responses (with respect to fre-
quency), the interaural delays imposed on the neural signals will also depend on fre-
quency. This is very similar to what we have seen with acoustical delays in Chapter 2.
This property cannot in principle arise with axonal delays alone, which by definition
impose constant BDs. In the [Day and Semple, 2011] study, the authors fit a model
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consisting of cochlear mismatches and axonal delays to the Best Phase (BP) response of
the cell in the guinea pig MSO. Furthermore, we have shown in Chapter 2 that the BP
response of a cell could be predicted by the frequency-dependent ITD cues in the an-
imal’s acoustic environment. Taken together, these results suggest that a labelled-line
code for azimuth as described in the previous chapter could be implemented by means
of axonal delays and cochlear mismatches. Furthermore, because both do not have a
completely interchangeable role, acoustical data can predict the relative contribution
of axonal delays and cochlear mismatches in interaural neural delays.

In this chapter, we start by developing the theory of the model presented in the pre-
vious chapter. Then we show that it can be implemented using axonal delays, cochlear
mismatches and cross correlator neurons. We show that cochlear mismatches introduce
non-zero CPs in binaural cross correlators, and quantify this effect as a function of the
mismatch and the center frequency. We then use this scheme to fit a population of
cross correlator neurons to a set of synthetic cat HRTF data. Finally, We show the

relative contribution of neural and cochlear delays, relative to the acoustical delays.

7.2 Spectrum invariant azimuth representation

7.2.1 Binaural cross-correlators model

Along the lines of the model described in the previous chapter, we construct a model
of binaural cells that are tuned to frequency dependent I'TDs. Each neuron receives
inputs from both ears that are filtered by a different monaural filter and compute the
cross-correlation.

In this model, the monaural filters describing the transduction of the sound signal
from the eardrum to the neuron have been termed “neural” filters [Goodman and
Brette, 2010, Fischer et al., 2008]. These filters represent both the cochlear filtering
and further linear processes such as delays (axonal or not). A cell thus is defined by
its two neural filters, that will be assumed linear for simplicity N”(f) and N®(f) (and
their time-domain counterparts n® and n”). In a cross correlation model, the firing
rate in response to the signals s” and s® (and their frequency-domain counterparts S*
and S”) is given by:

r(s®,s¥) o« XCORR(ny * s¥,ng * s7)(t = 0) (7.1)

Where XCORR designates the cross correlation function of two signals, and is taken
at the time lag zero in Equation 7.1. When the two monaural signals are equal, the

cross correlation at time zero is maximal. Hence the cells best stimuli are signal pairs
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(s®,st) such that:
NZ x 8 = Nf x g%

We define the Interaural Neural Filter INF = Nt / NZE, that describes the response of
the binaural cell (up to a gain factor). The INF is closely linked to common measures
of binaural cells’s ITD sensitivity. The phase spectrum of the INF is the Best Phase
spectrum BP(f) of the cell. The modulus is proportional to the binaural sync-rate,
because the noise-delay curve of a cell is the sum of tone-delay curves weighed by the
VS (e.g. [Yin and Chan, 1990]).

We assume that the cell is tuned to respond maximally when the sound is at its
Best Azimuth (BA). This means that Equation 7.1 holds iff the signal s is emitted from
the BA. Because of the filtering of the head and body, the signals are filtered by the
HRTFs at this position H(6, f) and H?(9, f), which introduces binaural cues:

Sr(f) =H™(6, f) x S(f)
Si(f) =H"(8, ) x S(f)

A cell thus responds maximally ff:

INF(f) = HY6, 1) (7.2)

H"(6, f)

Note the similarity to the Interaural Transfer Function definition [Blauert, 1997]: ITF(6) =
HY /HE. Interestingly, this formulation shows that the response of the cell is maximal
under a condition that does not depend on the sound source signal. This is the rea-
son why in this model cells can be said to achieve sound source localization invariant
on the spectrum of the source. In particular, when presented with pure tones in free
field at different frequencies, such a cell will respond maximally to the same position

in space, albeit to frequency-dependent BDs.

In the present context, binaural neurons are only sensitive to the timing cues, and
thus we are only interested in equating the phase spectra in Equation 7.2 The phase
spectrum is often referred to as the Interaural Phase Difference (IPD). It follows thus
that the Best Phase response of the cells exactly compensates for the IPD associated
with its BA:

BP(f) = IPD({)

In a spiking network formulation, an interesting object is the Synchrony Receptive
Field of the two presynaptic monaural cells. It represents the set of positions that
lead to synchronous firing of those two cells (as introduced in [Brette, 2012]). In our
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Figure 7.1: Simulations of cochlear mismatches and axonal delays A a depiction of
the situation, the listener (a cat) receives two inputs, filtered by the HRTFs at that
azimuth. B The signal is transduced into a neural signal by the cochlear filtering.
Binaural neurons compute the cross correlation of the input with the right pathway.

formulation, by construction the SRF of the two monaural presynaptic cells is exactly
the best azimuth of the binaural postsynaptic cell.

In the present study, we simulate the BP spectrum of model cells in the presence
cochlear mismatches and axonal delays. Using acoustical data recorded in the cat (as
part of Chapter 3, we fit the sensitivity of individual cells to the acoustical IPDs. There-
fore, we can predict the optimal cochlear mismatches and axonal delays distributions

for a population of binaural neurons in the cat.

7.3 Methods

7.3.1 Model of the cat auditory periphery, and INF simulations

Monaural inputs to cells are modeled as the succession of a non-linear phase cochlear
filter [Tan and Carney, 2003] and a linear-phase axonal delay. The left monaural filter
reads:

N = CL(CF) x Dr(0ax)
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Where CL(CF) is the cochlear filter as a function of the CF and Dj(d.,) the axonal
delay. For any given cell, the INF can be expressed:

INF:CL/CRXDL/DR: M(CF,éCF) * A(éax)
—_—— ———r

cochlear mismatches axonal delays

The axonal delay component A of the neural filtering is modeled as a simple delay:
A(b)(w) = %

Where 0. = drignt — dies 1s the delay imposed by the differences in axonal lengths on
the monaural pathways. The cochlear mismatch component M(CF,écr) depends on
two parameters: the CF of the left monaural cell, and the CF mismatch, that is the
difference écr = (CFr — CFp).

Unfortunately, the phase spectra of M(CF,écr) for arbitrary CFs and mismatches
cannot be computed analytically from the model of cochlear filtering. This is easy in
linear models like Gammatone filters. In our case, so we simulate the response of the
Tan & Carney model to compute the phase spectrum of this filter as a function of the

CF and the cochlear mismatch for a broad range of parameters.

Simulating cochlear mismatches

We used a Tan and Carney [Tan and Carney, 2003] model of the auditory periphery
modeled which accurately predicts the response of AN fibers for cats. Because such a
model has a non-analytic phase response, evaluating the INF means computing numer-
ically the phase response of the model for each pair of parameters we consider. This
part was done using Brian.Hears, a toolbox developed in the lab to do this kind of
simulations [Fontaine et al., 2011].

INFs of [Tan and Carney, 2003] model alone were computed for 128 positions on the
left cochlea arranged between 100 Hz and 3 kHz in a logarithmic scale. For these CF's,
simulations were done for N = 100 frequency mismatches dcp, that is 100 different
points on the right cochlea. The mismatches spanned an octave centered around the
CF in a logarithmic scale. For each CF computed, we have access to 100 frequency
mismatches between one half octave up and one half octave down.

For any given CF and écr we compute the response of the Tan & Carney model [Tan
and Carney, 2003] on 20 CF periods-long white-noise stimuli at a constant level (60
dB SPL). We then cross-correlate the left and right responses to measure the phase
response of the INF for each combination of parameters. Cross-correlation functions
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are upsampled 4 times, and the phase response is then averaged (in a circular sense)

over 100 iterations.

Measure of CP and CD

The BP spectrum of a model cell can be inferred, for each combination of axonal
delays and cochlear mismatches (as the phase of the INF filter). In order to quantify
the influence of cochlear mismatches on the frequency dependent ITD sensitivity of
cells, we can compute the BP of model cells with different cochlear mismatches. From
the BP spectrum, we compute CPs and CDs as a function of the cochlear mismatch
parameters. Those are the center frequency of the left cochlear, and the difference
in CF such that dcp + CF; = CF,. The CPs and CDs are computed using the same
method as was applied to IC cells in the previous chapter (Chapter 6). The bandwidths
over which fits were computed is defined by a Q-factor of 2.

7.3.2 Fitting to acoustical data
Acoustical data

We used simulations of the BEM method described in Chapter 4. It is the synthetic cat
recordings, with the head aligned to the body (i.e. modified 3D model). This allows
us to make use of the phase response of the filters down to a very low frequency, which
is more complicated with the acoustical data due to noise, and very low-frequency

reflections in the room.

Fitting procedure

We construct cells such that their BP spectrum matches the IPD at their Best Azimuth
(BA):
BP(CF,écr,0.x) = IPD(CF,BA)

Where the BP spectra are computed from the measured INFs in the simulations of
the Tan & Carney model [Tan and Carney, 2003], and adding the contribution of an
interaural axonal delay. We now look for the parameters deltacF and delta,z such
that this relationship is met, across center frequencies and positions in space. This is
done by minimizing a circular measure as presented in Chapter 6. The values of the
IPD and BP are compared over an octave centered on the CF, the passband PB. Those
fits are performed with a broader range (Q = 1) than used to measure CP and CDs on
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Figure 7.2: Influence of cochlear mismatches on CP and CD. A CP as a function of
cochlear mismatch (x axis) and center frequency (line color). The color bar is on the
right. B CD as a function of cochlear mismatch (x axis) and center frequency (line
color).

cells. Hence the non-linear least squares problem reads:

dcr, 0ax = aTgMinse, 5., > d(—IPD(CF,BA), M(CF,dcr) — 6uxf))?
fcPB
Where the circular distance is defined as in the previous chapter (see Chapter 6).

The algorithm used here is different, because we use an exhaustive search approach:
computin the distance function for all combinations of parameters on a wide range, and
the taking the minimum. Therefore we are also able to inspect the distance function on
the whole space of parameters to check the validity of the fits. Also, we can get an idea
of the relative importance of each parameter. The ranges of possible parameters were
chosen wide, interaural axonal delays d,, could span +1 ms range, and the cochlear

mismatches half an octave up and half an octave down the CF.

7.4 Results

7.4.1 Cochlear mismatches and neural CPs and CDs

We first reproduce the results (also obtained with a Tan & Carney model) in [Bonham
and Lewis, 1999], by setting d., = 0 in our model. Fig. 7.2 shows the influence of
cochlear mismatches on the CP and CD of a binaural cell. The BP spectrum is in
general well approximated by a circular-linear regression. The Characteristic Phase
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(CP) of the cell is the intercept of the fit and the Characteristic Delay (CD) is the
slope of the fit (see Chapter 6). Results in Fig. 7.2 report the predicted CP and CD as
a function of the cochlear mismatch, for 100 linearly spaced CFs between 300 and 700
Hz. The result of these simulation is reported on Fig. 7.2, around C'F = 500 Hz and
with small mismatches |6cp| < 50 Hz.

As expected, cochlear mismatches introduce significant CDs (Fig. 7.2, B), reaching
up to 500 us for relatively low mismatches (roughly semitone). This effect is much
more pronounced in the low-CF range, than it is in the high-CF range. In essence,
this suggestst that cochlear delays can replace axonal delays, in that they impose a
linear-phase component to the monaural signals. Notice that it can account for delays
biggers than the physiological range for cats ~ 400us, even in this restricted range of
mismatches. Consistent with the [Day and Semple, 2011] study, cells with mismatched
monaural CFs have non zero CP in general (Fig. 7.2, B). Again, this phenomen is
more clearly observed for the low-CF neurons. Yet, the magnitude of the phenomenon
at those frequencies is limited, only about a quarter cycle advance for the range of
mismatches considered here (a 100 Hz band). However, greater CPs can be predicted
assuming bigger mismatches (not shown).

The prediction of non-zero CPs for non-zero cochlear mismatches expresses that
in fact cochlear and axonal delays are not completely equivalent. Axonal delays are
linear-phase and cannot account for the presence of non-zero CPs. On the other hand,
the effect of a cochlear delay is more complex and introduces non-linearities in the

monaural phase responses, leading to non-zero neural CPs.

7.4.2 Fit to the positions

Given a set of HRTF measurements for a position, we can fit a cell such that it is
sensitive to the precise ITD variation present in the acoustical data. This cell will
then be said to have a Best Azimuth equal to that position in space. This is done
by minimizing a circular distance between model BP spectra and the IPD pattern
at the BA. For each position and center frequency CF, many combinations of d..and
dcrparameters are simulated, and their fit to the acoustical data is computed. The
fit value on the whole simulated parameter space for two positions and two center
frequencies is reported on Fig. 7.3. We observe that for one given BA and CF, the
range of parameters that yields a good fit is broad (blue valley), and that there is an
obvious interplay between d,.and dcr. The aboslute value of the fit quality is in general
very low, about 0.02. Further, from visual inspection of Fig. 7.3 it appears that in the
range of parameters considered, the minimum is global and therefore is well-defined.
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Figure 7.3: Fitting to a position. Each panel shows a color plot of the distance
between the IPD at the BA and the cell’s BP spectrum (see Methods). The fit quality
is color-coded as a function of the axonal delay mismatch d,, and the cochlear mismatch
dcr. White stars on each panel show the optimal parameter value (minimum of the
function). Values of the color code are common across panels (color bar to the right) and
simulations were performed in four conditions. Rows correspond to cells with different
Best Azimuths € while columns are the same cells with different Center Frequencies:
A 6 = 30°, CF, = 300Hz, B 8 = 30°, CF;, = 1000Hz, C 8 = 90°, CF, = 300Hz, D
8 =90°, CF, = 1000H 2.
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As shown on Fig. 7.2, cochlear mismatches introduce both a neural CP and a neu-
ral CD. Axonal delays, on the other hand, only contribute additively to the CD, the
linear component of the phase response. Therefore, ignoring CPs, a cochlear mismatch
is equivalent to an axonal delay in terms of phase response. Consistent with those
observations, on Fig. 7.3 the dcr and the 6., seem compensate each other, the blue
“valley” of good parameters has a positive slope, indicating that positive cochlear mis-
matches compensate for positive axonal delays. Yet, this valley has a limited extent in
both directions, which reflects the fact that d.,and dcpare not exactly interchangeable.
This justifies the use of a fit to predict the relative contribution of axonal delays and
cochlear mismatches, as is discussed in the next section. Indeed, had their role been
totally indentical, then there would be an infinite number of optimal parameter com-
binations, corresponding to equivalent effects. Yet, this is not required here, and the
relative contribution of the two delay mechanisms are obtained solely on the basis of
acoustical data.

7.4.3 Predicted distributions of cochlear mismatches and axonal de-

lays differences

For each CF and BA, we compute the optimal combination of axonal delays and cochlear
mismatch for our frequency-invariant cells (Fig. 7.4, A and B). In Fig. 7.4, A the optimal
axonal delay difference is color-coded as a function of frequency and position on the
contralateral hemifield. As expected, the most excentric positions (i.e. away from
the midline) necessitate large axonal delays, and at all frequencies, this relationship is
almost monotonous. The parameters for which the axonal delays are greatest are low
frequency and about 100°azimuth. The analysis of the optimal frequency mismatches
displays a different story: predicted CF mismatches are mainly negative, and the only
positive dcp occur for positions on the back and at quite high frequencies. This plot
is consistent with the idea that cochlear mismatches are necessary when the cell has a
non zero CP. In turn, this means that the CP should correlate with the acoustical IDI
measure introduced in Chapter 2. This happens when early reflections are present on
the body, so for positions originating from the back of the animal (see Discussion of
Chapter 4). Also, IDI is nonzero in the cat for mid-frequencies in the range of 2-3 kHz,
which is consistent with the frequency mismatch prediction.

Population-wise statistics of the cochlear mismatches and axonal delays are obtained
by assuming that the cells in the population have linearly spaced BAs (every 5°), and
arranged in frequency bands with logarithmically scaled CFs (128 frequency bands
between 100 Hz and 3000 Hz). This is broadly consistent with the distribution of CFs
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Figure 7.5: Comparison of predicted delay mechanisms and ITD cues. A Total phase
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tribution of axonal delays. B Each point is the predicted cochlear mismatch magnitude
for a cell (in percentage of the CF), plotted against the IDI in the HRTF at the cell’s
BA, around the cell’s CF. C Each point is the predicted axonal delay mismatch for a
cell as a function of the group ITD ITD, (similar as B).

found in IC recording data (see, e.g. Chapter 6). On Fig. 7.4, C and D we report the
population-wise distributions of predicted axonal delay and cochlear mismatch. The
predicted distribution of §., is also consistent with data, within the range or observed
axonal delays [Joris et al., 2006]. The dcp are also in general quite small, because
they occur only for the small amount of CF and position combinations that lead to

frequency-dependent ITDs.

7.5 Discussion

7.5.1 Neural and acoustical delays

Axonal delays and cochlear mismatches are sufficient to compensate for the acousti-
cal delays in the environment of the animal. As it is shown here, they have non-
interchangeable roles, and some of the contribution of the axonal delay can be com-
pensated for by cochlear mismatches. Thus, it is possible that they are involved in
compensating for the two different interaural timing cues defined in Chapter 2.

In A of Fig. 7.5, we show the distribution of total phase ITDs ITD, (blue area)
alongside the predicted distribution of axonal delays. The black area is the distribution
of the ITDs when the positions are uniformly distributed in azimuth. Axonal delays
are consistently smaller than the total phase ITD range, which suggests that some of
the neural delaying is performed by the CF mismatches. Therefore, it is not surprising
from our model that observed axonal delay mismatches cover a smaller range than the
physiological range of the species. Our model predicts that axonal delays of the value
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of (or greater than) the biggest ITDs should not occur. Instead, cochlear mismatches
always contribute a small portion of the total neural delay.

Cochlear mismatches are also hypothesized to be responsible for the frequency-
dependent BDs observed in MSO cells [Bonham and Lewis, 1999, Day and Semple,
2011]. As we also report in Fig. 7.2, cochlear mismatches can explain the presence of
non-zero CPs in binaural cells, and furthermore, as we reported in Fig. 7.4, they seem
to occur only in some range of positions and frequencies. We argue that axonal delays
and cochlear mismatches are separate mechanisms involved in separately compensating
for the two types of acoustical inteaural delays available to the cat: group I'TD and IDI
(Chapter 3). Therefore, we expect that CF mismatches occur for BAs and CFs wherein
IDI are non-zero. This is indeed the case in the data reported on Fig. 7.5, B where a
strong nergative correlation is found between the relative CF mismatch (dcp/CF) and
the IDI (Spearman’s 7 = —6, p < 10'%). For each cell, the IDI (and later the group ITD,
ITD,) are computed on the pair of HRTF measurements corresponding to a source at
the cell’s BA, and around the cell’s CF. We also expect that the axonal delay, because
it only contributes a linear-phase delay to the neural signals, compensates for ITD,
and therefore is correlated with it on a population scale. This is shown on Fig. 7.5,
C, where similarly to B, the cell’s J.xis plotted against the corresponding ITD,in the
acoustical data, and a positive correlation is observed. In conclusion, CF mismatches
and axonal delays do compensate separately for IDI (CF mismatches), and group ITD
(axonal delay differences).

7.5.2 Models of ITD based localization

The present study shows that cells can be made to be maximally active when presented
with a sound at their BA using a combination of axonal delays, cochlear mismatches
and coincidence detector neurons. This scheme implements a labelled-line code for
frequency-invariant I'TD based sound localization. Because all positions in the acousti-
cal data can be fitted using biologically plausible axonal delay and cochlear mismatch
parameters, the primary result of this study is that it lays a basis for future spiking
implementations of this scheme.

The mathematical framework developed here is very close to ideas from the sig-
nal processing realm [MacDonald, 2008, Durkovic et al., 2011}, where algorithms that
encode the precise variations of ITD across frequency are shown to be more robust to
noise and reverberation. Those results could well apply to a neuromorphic instantiation
of this scheme, wherein the cochlea is implemented in silico [Chan et al., 2007]. Such

hardware was sucessful in implementing an axonal delays only I'TD-based localization
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mechanism [Yu et al., 2009], which could be extended to making use CF mismatches

with the developments described in this chapter.
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Chapter 8

A normalized peak code for ITD
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The textbook model of ITD coding is that the most active neuron of a population
signals the ITD in the inputs. This model was recently challenged because it was
observed that neurons were maximally active for ITDs too large for the animal to
experience. In this chapter I argue that this is in general not in contradiction with the
idea of a place code. To show this, I provide an instantiation of a peak code that is
consistent with the observation of large BDs in low frequencies, without postulating
large neural delays. In this model, the response of each cell is normalized so that the

average population response is constant whatever the ITD in the input. [ show that
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this simple model is indeed a peak code of ITD, in which the cells are the most active
of the population for ITDs away from the Best Delay as observed from the noise delay
curve.

I explore the predictions of BD distributions for this model across populations of
cells having different CFs, and for different animals. In the low frequencies, the observed
BDs are consistently well oustide of the physiological range, in a manner consistent
with the data in different species. I discuss the various possible implementations of
this model, and its biological plausibility. Further, I argue that this model reveals a
fundamental misinterpretation of single cell sensitivity data.
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8.1 Introduction

In the mammalian MSO, the activity of populations of cells is modulated by ITD. The
way in which the position is encoded in this ITD-dependent pattern of activity is still a
matter of debate (as argued in Chapter 6). In his 1948 paper, [Jeffress, 1948] considers
that his model transforms a “difference in time” (the ITD) represented as a “difference
in place”: it is a place code. In the present meaning, a place code does not necessarily
refer to physical space, i.e. does not postulate a particular spatial arrangement of
neurons. Rather, in a place code, it is only assumed that the neuron’s individual
identity contributes information to the read-out. As an example, in the code proposed
by Jefiress, the ITD is represented as the Best Delay of the most active neuron in the
population. The read-out depends on the “identity” of the cell in the sense that if
we shuffle the neurons by randomly shuffling the BD and response measures of the
population, then the readout result is different. Alternatives to place codes exist, and
maybe provide a better understanding of the meaning of place codes. As an example, in
a population code, the position of the sound source is encoded in the summed activity
of all neurons across the population. The relevant quantity is a scalar (the summed
activity), and if the BDs of the cells are shuffled, the result is identical. I such codes,
the read-out does not not depend on individual characteristics of the cells, it is not a

place code.

The Jeffress-like code is in fact a specific instance of a place code termed a peak
code, because only the peak of the activity pattern across cells matters. This has
to be contrasted with other codes that take into account the activity of the whole
population, such as the weighed-image model [Stern et al., 1988]. In such models, the
activity of the population represents the short-time cross-correlation of its inputs (the
BD). Each neuron’s activity corresponds to this cross-correlation function measured
at a given time-lag. From this activity it is possible to read-out the position using a
centroid function, that is more or less finding the modes of the cross-correlation, weighed
according to other factors (such as centrality or consistency of ITD across bands, [Stern
et al., 1988]). In the sense exposed here, this is also a place code, because the weighing
and centroid operations depend on the BD of each individual cell. Interstingly, the
current debate on the code relevant to the binaural I'TD-sensitive cells functioning in

mammalian MSO opposes place and population codes.

In mammalian MSOs, it is consistently found that some (not all) low-CF cells have
very large BDs, well outside of the range of ITDs that the animal naturally encounters.
This was argued to be in contradiction with peak codes, which lead to the introduction
of a population code, the hemispheric model (see Chapter 6). Here we argue otherwise,
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Figure 8.1: A depiction of the model for a population of N = 2 cells. A The sensitivity
curves of the cells in the absence of normalization. BD* = 0.5 ms for the blue cell and
BD* = 1. for the red cell. B The responses of the cells (plain curves) are the sensitivity
(response without normalization, dashed curve) divided by the summed response of
the N = 2 neurons (black curve). This normalization depends on ITD, but is the same
for both cells. Because of this term, the observed BD of the red cell is shifted away
from BD*.

by providing an example of a peak code that is consistent with the observations of
large BDs in low frequencies. The reasoning is that in a place code, the readout is not
necessarily exactly the BD of the most active cell, rather, it is a function of it (much
like in the lateral-image model). In the model presented here, a cell can have a large
BD, while being the most active of the population for I'TDs within the physiological

range.

8.2 A normalized peak code for ITD

8.2.1 Single cell sensitivity in the model

A mammalian MSO is modeled as a population of cells sensitive to the same band of
the spectrum of the inputs, as identified by the Characteristic Frequency (CF). The
population consists in N binaural cells, identified by a neural Best Delay quantity,
noted BD*. This neural BD corresponds to the difference in neural delays converging
to the cell from the two ears, that gives rise to the neuron’s sensitivity to I'TD. Therefore

it is, for example, the difference in axonal propagation delays leading to an MSO neuron,
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if we assume that propagation delays only contribute to MSO sensitivity. Yet, be aware
that the development presented here does not depend on the nature of this delay.
The response of a cell can be expressed as a function of the cell identity (its neural
BD) and the stimulus value I'TD. We let sgp+(ITD) bet the spiking frequency of the cell
with BD when presented with a stimulus with ITD, presented here in an adimensional
unit. This response value is termed sensitivity of the cell, because it solely depends
on BD* the difference in monaural delays leading to the binaural cell. It represents the
activity of a cell as a function of ITD, without the normalization that will be devised
in the rest of this chapter. In other words, it is the tone-delay curve of the cell in the
absence of normalization. The sensitivity is modeled as a raised-cosine function of the
ITD:
sgp+(ITD) = [cos(2nrC F(BD* — ITD))]® (8.1)

The sensitivities of two model cells are presented on A of Fig. 8.1, in the case where
CF = 500 Hz. This shape reproduces the allure of noise-delay curves, namely: it
respects the 1/CF periodicity of electrophysiological noise-delay curves (e.g. in gerbil
data [Day and Semple, 2011]). Further, it exhibits a maximum at I'TD = BD*, that is

when the ITD in the stimulus compensates for the neural delays leading to the cell.

8.2.2 Population normalization

Crucially, we assume that the total activity of the population when presented with an
ITD sums to a constant value. This means that a cell’s response is modulated by the
response of all other cells in the population. Therefore, the activity of the cell with BD

BD* reads:
SBD* (ITD)

ZBD SBD(ITD)

The numerator is the sensitivity of the cell, and the denominator is the summed ac-

I'pp* (ITD) =

(8.2)

tivity corresponding to the normalization factor. With normalization, the response
is modulated by a constant term for all cells, that depends solely on the ITD. This
normalization could correspond to homeostatic constraints, enforcing, in particular,
that the energy budget attributed to the population is constant for all ITDs (see the
Discussion Section 8.4.1).

In the presence of normalization, the noise-delay curve of a cell is modeled by rgp+ of
Equation 8.2. I will sometimes refer to a situation “in the absence of normalization”. In
this case a cell’s response is equal to its sensitivity sgp+, with both functions modelling

the electrophysiological noise delay curve.
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8.2.3 Peak code

In the introduction, we used the word code to refer to a decoder, that is a mapping
from the activity of the population to an ITD. Therefore, a code is a function G of the

activities of all N cells, at a given ITD:
ITD = G(r(BD}, ITD), ...r(BD}, ITD)) (8.3)

In a peak code, the estimated ITD ITD given the responses of the population, is the
Best Delay of the cell that has maximal activation. In essence, this is an argmax

operation across the population of cells:
ITD = argmaxgp:rep+(ITD)

For simplicity, we assume that the reponse function r is reasonably regular, and that the
neurons are arranged in a continuous array of BD*. In this case, computing dr/8BD*,
and looking at the zeros of this function that correspond to maximas of r provide the
identity of the most active neurons in the population.

Without normalization, we are in the same situation as the classical Jeffress model.
The estimated ITD, ITD = argmaxgp:Spp+(ITD), is exactly the neural delay BD* of the
most active cell of the population. This is because, in Equation 8.1 the two variables
BD* and ITD have interchangeable roles. Hence, the maxima along the ITD dimension
and along the BD* dimension occur at the same place. In other words, each cell is most
active of the population when it is presented with an ITD at its BD*.

When the responses are normalized, this intuitive result may not be so clear. Yet, we
oberve that the normalization term, 1/(3>gp 7(BD, ITD)) does not depend on identity
BD* of the cell: it only depends on the stimulus dimension value (here ITD). Therefore,
the derivatives of rgp+(ITD) and sgp+(ITD) with respect to BD* are equal up to a
factor (that depends on ITD). In particular, s and r vanish for the same values of BD*.
Therefore, the maxima of the responses rgp+(ITD) across the population (i.e. across
BD*) are the same as the maxima of the sensitivities sgp+(ITD). Thusly, the decoded
ITD ITD is not affected by normalization. In conclusion, in the present peak code
scheme, each cell is the most active of the population for ITDs close to its neural BD*,

whether normalization is present or not.

8.2.4 (Observed BD and neural BD

The usual definition of the Best Delay in electrophysiology is the maximum of the

response of the cell, across ITDs. In the absence of normalization, it is obvious that
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the observed BD should be the same as the neural BD (that is, BD* for all cells), because
by construction, the response is equal to the sensitivity and sgp+ has peaks at BD*.
This means that in the absence of normalization, the Best Delay measured from the
noise delay curve is exactly the difference in neural delays leading to the binaural cell.
This result is rather intuitive, and is a very common assumption in neurophysiology.
As an example, large BDs computed from noise delay curves in the low-frequency cells
of small mammals is thought of as reflecting correspondingly interaural neural delays
converging to the cell. Here we show that the BD, as extracted from the noise delay
curves of the cells do not necessarily reflect the interaural neural delays BD*. In our
model, this is by virtue of the introduction of normalization across cells.

Let us define the observed BD of the cell BD,,(BD*), i.e. the value of ITD that

makes the tone-delay curve maximal:
BD,;s(BD*) = argmax;rprep+(ITD) (8.4)

This definition is to be contrasted with the estimated ITD IT‘TD, corresponds to the

position of the maximum of the response across the population of cells.

Along the arguments of the previous section, the observed BD is obtained by com-
puting the partial derivative of rgp+ with respect to I'TD. Because the normalization
term depends on the ITD, it will affect the partial derivative of the response, which
may not peak anymore at the same I'TDs as the sensitivity. This leads to a difference
between observed BD and neural BDs.

This is shown in Fig. 8.1, B, for a population of N = 2 cells. The normalization
term (black curve), is constant for all cells, but depends on the ITD in the input. For
ITDs between the two BD*, its value is strong because both cells respond to those I'TDs
strongly. The response of a cell close to the maximum of the normalization (here 0.75
ms) is attenuated strongly to keep the population response constant. On the opposite,
the response away from this maximum is amplified. In our simplified example, this
effect is extreme because the normalization curve almost vanishes for I'TDs bigger than
1.5 ms.

As a result of the divisive normalization, the observed BD BD,,, for the red cell is
equal to 1.5 ms, 50 % bigger than the neural BD. In fact, it can be shown that BD,,
is always shifted away from the value of the neural BD, in the direction corresponding
to a decrease in normalization value.

In conclusion, each cell is the most active of the population for a delay corresponding
to its neural delay BD*, yet this delay may not be the maximum of the noise delay curve
of the cell (the observed BD). This means that care must be taken in the interpretation
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of BDs observed in noise-delay measurements. We now turn to the analysis of such
a model for more realistic populations of cells comprising many more cells, and for

populations responding at different CFs.

8.3 Results

In this section we are interested in the predictions of the normalized model with a
realistic number of cells, and as we vary the CF of the population of cells. We simulated
two populations consisting of N=100 neurons of the same CF, one at CF = 300 Hz and
the other at 2000 Hz. The cells had neural BDs BD* linearly distributed between -350
and 350 ps. These values roughly correspond to the range of axonal delay differences
observed in the cat [Joris and Yin, 2007]. Each cell responded as Equation 8.2, the
activity was normalized so that the population activity for a given I'TD summed to one.

From this population of cells, observed BDs were recorded according to the definition
Equation 8.4. Local maxima are computed over a range of ITD spanning -1/CF, 1/CF,
that is two-periods of the stimulus. Indeed, because the sensitivity curves are periodic,
it is expected that the curves exhibit maxima separated by the period 1/CF. We pick
the lowest maximum, i.e. the closest to zero in absolute magnitude, that yields BD ;.

8.3.1 Behavior of the model as a function of CF

The results of the model are shown on Fig. 8.2, for two CFs in the case of a cat.
A cell’s sensitivity (in Equation 8.1) depends on the CF of the population. In low
frequencies (A), the curves are periodic, but the period (2 ms) is big, and hence over
a wide range of ITDs the sensitivity curves do not have multiple peaks. Consequently,
the normalization curve as a function of ITD has a unimodal behavior on this range
of ITD. For negative and positive ITDs close to the maximal value, ITD 4+ 300us, the
normalization decreases as the absolute I'TD increases. Therefore, we expect that the
observed BDs are shifted to bigger absolute values by normalization.

On the other hand, in high frequencies (CF = 2000 Hz, B), each sensitivity curve
has multiple peaks over the physiological range of ITDs (here only plotted within the -
limit). Consequently, the normalization curve is much flatter than in the low frequency
case. Furthermore, the normalization rather increases with increasing absolute ITD.
Therefore, we expect that the observed BDs are shifted to smaller absolute values by
normalization (see Fig. 8.2 A, C, E).

We check that those predictions are met, by computing in the two cases the nor-
malized responses of each cell. This is plotted in Fig. 8.2, C and D, for the two CF
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Figure 8.2: Behavior of the peak code with normalization model. A Sensitivity curves
and global normalization as a function of ITD, for a population with CF = 300 Hz.
B Sensitivity curves and global normalization as a function of ITD, for a population
with CF = 200 Hz. C Response of the cells, computed from A with CF = 300 Hz.
D Response of the cells, computed from B with CF = 2000 Hz. E Histogram of the
observed BD distributions in low frequencies, high frequencies, and the distribution of
neural BDs BD* F Observed BD for different CFs of the population.
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cases. As a result of the normalization, the maxima of the response curves in the low
frequency case (C) are shifted away from the physiological range. Furthermore, the
range of response values is increased, and the maximal response for each curve can
vary 6-fold in this model. This heterogeneity of responses is observed in electrophysi-
ological recordings, where the response of MSO cells to stimuli presented at their best
ITD varies within ten and several hundred hertz. Within the physiological range, it
should be noted that the maxima of each curve is still attained at its neural BD*. In
the high frequency case, the peaks of the responses (D) are not noticeably shifted away
from the peaks without normalization (B). The curves are sitll heterogenous though,
with the curves for extreme ITDs having on average a smaller response rate than those
with BD* close to 0.

Computing the histograms of the observed BDs over cells with positive BD* for the
two CFs (E), we observe that indeed, in the low frequencies observed BDs are shifted
away from the physiological range, whereas in high frequencies the distribution is more
concentrated around zero. This is also confirmed for more CF's, as reported on F for 30
CFs linearly spaced between 100 and 3000 Hz. In the low frequencies, the distribution
of observed BDs is bimodal, with peaks well outside of the physiological range. As the
CF increases, the BD gradually shifts back within the physiological range.

This in good agreement with measures of BDs in the cat, which exhibit large ob-
served BDs in some low-CF neurons [Joris and Yin, 2007]. Yet, one should keep in
mind that cells’ neural BDs (BD*) are still in the physiological range. That is, those
extreme BD values are not the result of postulating correspondingly long neural de-
lays. In fact, the delays chosen here are in agreement with delays as derived from axonal
reconstruction [Beckius et al., 1999].

8.3.2 Predictions for different species

In the previous section we have been working with a fixed maximal BD* corresponding
roughly to the case of a cat. Yet, the results of the previous section crucially depend
on this parameter. Indeed, the normalization term becomes flatter as the CF increases,
because multiple periods of the sensitivity curves overlap. The CF above which this
phenomenon occurs depends on the maximal I'TD. Consequently, it is possible to obtain
distributions of BDs for different species, by varying the maximal I'TD.

The results of such simulations are reported in Fig. 8.3. Two head sizes are con-
sidered, in one case we use a maximal ITD of 300 us, roughly corresponding to a cat.
In the other case, the maximal ITD is 125 us, corresponding to the case of the gerbil.
On both panels of Fig. 8.3 the same trend of BD,,; distributions is broadly obtained.
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Figure 8.3: Result of the model for two species (maximal |[BD*|). Each panel represents
the probability distributions of observed BDs at all CFs. Each column represents the
distribution of BDs at this CF, color coded. Each curve is normalized to a maximum
of 1 so that the modes appear clearer. A Case of the cat with a maximal ITD of 300
us B The case of the gerbil with a maximal ITD of 125 us

In low frequencies the observed BDs are shifted well outside of the physiological range,
but not in high frequencies. The difference arises in the CF at which the BD distri-
bution stops being bimodal with two modes at extreme BDs. This frequency seems
to decrease with maximal ITD, as previously expected. Therefore, large BDs at low
frequencies are predicted to occur over a broader range of frequencies for smaller mam-
mals. This is consistent with published data that shows that in the gerbil, large BDs
are still observed for quite large frequencies [Pecka et al., 2008]. In the cat, this effect

seems rather restrained to much lower CF cells [Joris and Yin, 2007].

8.4 Discussion

8.4.1 On the normalization mechanism

The model presented here provides a theoretical proof that the observation of large
BDs in low-frequencies is not inconsistent with an efficient peak code in the physiolog-
ical range. It is based on realistic neural delays, but the question remains of whether
a normalization mechanism of the kind that is postulated here is biologically plau-
sible. Functionally, such normalization could arise from homeostatic constraints: the
energy budget allocated to the population is constant, irregardless of the stimulus ITD.
Unfortunately, the way such a mechanism could be implemented is not clear.
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An interesting recent result on the physiology of binaural neurons in gerbil MSO
provides a candidate mechanism for this normalization. The mammalian MSO receives
contralateral glycinergic inhibitiong through the MNTB [Spangler et al., 1985] and ip-
silateral from the AVCN through the LNTB [Cant and Hyson, 1992]. This inhibition
is highly temporally precise [Grothe and Sanes, 1994], and it was long unclear what
its precise role was. By blocking the inhibition in an #n vivo model, [Brand et al.,
2002, Pecka et al., 2008] showed that the observed BDs lie outside of the physiological
range only when inhibition is present. Together with the insights about the hemispheric
model [McAlpine et al., 2001], it was then argued that this precise inhibition was a pre-
requisite of a robust ITD encoding in mammals [Grothe et al., 2010,Pecka et al., 2008].
In our context, glycinergic inhibition is an interesting candidate for the implementation
of the normalization mechanism. Indeed, the same shift in observed BD is predicted (as
shown [Brand et al., 2002, Pecka et al., 2008]): when inhibition is blocked the BDs are
inside the physiological range. Our model offers additional insights: only in the absence
of inhibition does the observed BD reflect the difference in neural delays leading to the
neuron under consideration. It must be noted that very recent results challenge the
view that temporally-precise inhibition shapes the ITD sensitivity of MSO cells. [van-
derHeijden et al., 2013] argues that such a mechanism requires that the inhibition has
an effect that depends on the input phase at both ears. In their gerbil animal model, no
influence of this sort is found, suggesting that inhibition is in fact not precise enough
to significantly affect an MSO cell’s ITD sensitivity. [vanderHeijden et al., 2013] finally
suggest that the difference between their data and the previous data from [Brand et al.,
2002, Pecka et al., 2008] may be due to their use of extracellular recordings or different
anesthetization techniques.

Direct evidence for a population-wise normalization in MSO is not available in the
literature, because recording from this structure is notoriously hard [Yin and Chan,
1990]. Such data might be more easily recorded in IC which may afford easier multi-
electrode recordings. Yet, the function achieved by those neurons may also be different
from MSO (e.g. effect of ILDs). Nonetheless, some insight can be found in fMRI ex-
periments that provide coarse but population-wise measurements of brainstem activity.
In such an experiment on human subjects [Thompson et al., 2006], the activities of the
brainstem on each side is modulated by the ITD of the stimulus Because the summed
activity of all the cells in the two lateral MSOs is normalized (instead of across one
MSO), then it is each MSO’s population activity is modulated by ITD.
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all cells is represented on D alongside the maxima along the two dimensions (cell for
given stimulus, stimulus for given cell). Cells are not most active at their best stimulus
D.
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8.4.2 Interpretation of sensitivity data

Because of experimental constraints, data from MSO is gathered for a small number of
cells, presented with a very large number of stimuli. In a typical experiment, about a
hundred cells are recorded in turn, possibly on different animals, and over the course of
weeks. For each cell, data is aquired for many repetitions of a wide range of stimuli, e.g.
with varying I'TD. Therefore, the sensitivity of individual binaural cells across stimul:
is very well documented, whereas the population response for any given I'TD is not. A
difficulty arises when making sense of this data in terms of coding. Indeed, observing
sensitivity data is inherently different from what the system itself is doing. Indeed, the
only accessible data for the neural system is the observation of all the cells presented
with one ITD (for a single source). That is to say that the collective behavior of the
cells is really relevant to the system. The framework developed here shows that care
must be taken when interpreting single-cell data. Even in a peak code, a cell is not
necessarily the most active of the population when the stimulus is its best stimulus.

The example peak code provided above treats the case where the cells are modulated
by the summed activity. But in fact, we can show that this happens whenever the cells’
responses are modulated by a function of the stimulus, that is constant for all cells.
On Fig. 8.4, this behavior is shown in the case where neurons respond as the product
of their semsitivity (which depends both on the stimulus dimension ¢ and the cell’s
best stimulus 8), and a global modulation term that does not depend on the cell’s
best stimulus. This modulation, in particular, could depend on other dimensions of
the stimulus. This is shown on A of Fig. 8.4, where the equation for the schematic
population of cells is shown. For each cell and possible stimulus dimension, B and C
show the contribution of the sensitivities (sq(¢), C) and the global modulation (g(8),
B) terms. On D, the response of each cell to each stimulus dimension is computed and
reported, also, dots indicate the best cell for a given stimulus, that is the read-out cell
of the population when presented with a given stimulus value, and the best stimulus
for each cell (according to the color code in A).

Similar conclusions can be drawn from this schematic results: the most active cell
of the population for a given input dimension ¢ is not necessarily attained when it is
equal to its best stimulus. There is an inherent duality between responses across cells
and stimuli. If the experimentalist typically has access to some data across stimuls,
the nervous system (and theoreticians) really are only interested in the response of the
population (that is, across cells) to any given input. Because the response of the cells
can be modulated by other dimensions of the stimulus

This general feature is the crux of the argument of this chapter. In the context of
MSO neurons, observed in vivo noise-delay curve recordings are highly heterogenous
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(e.g. [Yin and Chan, 1990] in the cat). That is, the maximal spike frequency, measured
for example as the magnitude of the peak of the noise-delay curve, is highly variable
from neuron to neuron. Overall this fact suggests that it is more likely that a hidden

global modulation exists than not.
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As the results of Chapter 1 show, a sound emitted by a source in space will reach the
ears with different ITDs depending on its frequency content. Despite this observation,
already predicted more than a century ago, the variation of ITD for a given position was
ignored. This poses a logical problem, which can be formulated as follows. Assume that
humans integrate I'TD cues such that a given I'TD is mapped to a position irregardless
of the frequency content of the signal. A prediction of this is that the lateralization
percept is the same for all signals that have the same ITD. Assuming that there is no
ILD, free-field sound sources in high-frequencies are lateralized to more central positions
than low-frequency ones. That is, subjects necessarily misinterpret the lateral position
of sound sources in real environments, which this seems intuitively inconsistent with
intuition.

In this part of the manuscript I am interested in studying the consequences of the
variability of ITD across frequencies on the localization behavior of human subjects.
First, in Chapter 9, I review classical and recent results on the psychoacoustics of sound
localization. This is done with an emphasis on binaural cues, and more specifically
the ITD. Then, in Chapter 10, I test the hypothesis that human subjects lateralize
sounds with different frequency contents according to the ITD expected from a free
field source, i.e. integrating the frequency-dependent nature of the cue. I designed and
ran an experiment to test this prediction, in the form of a matching paradigm. Pilot
results show that humans perceive sound sources as a function of both the ITD and
the frequency content of the signal. Furthermore, the extent to which this happens is
consistent with the acoustical data that was presented in the first part of this thesis.
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0.1 Free-field localization abilities

Localization of an object through the visual modality is much more precise than through
the auditory modality. Yet, the visual field is restrained in lateral extent, while sound
source can be localized for all positions around the subject. This fact suggests that au-
dition is primarily relevant for directing the gaze towards events not in the frontal field
(i.e. that cannot be seen) [Perrott et al., 1990, Heffner and Heffner, 1992]. Localization
sound sources in space is also essential for a number of hearing-related problems: e.g.
to separate the sound signals emanating from different sources.

In this chapter, I introduce the most important results in behavioral studies of the
localization abilities in humans. I first discuss the perception of the 3D position of a
sound source (azimuth, elevation and distance) in free-field situations. When sounds
are presented over headphones, the sound is heard inside the head, at a more or less
lateral position. I then discuss lateralization experiments that provide understanding
in the roles of binaural cues, with an emphasis on ITD. Finally, I discuss the impact
of the frequency-dependence of ITD for a given position (shown in Chapter 1) on our

understanding of the binaural system.

9.1.1 Perception of azimuth and elevation

In this section I review measures of human perception of space. Using a threshold
measure, one can measure the ability of subjects to discriminate stimuli on the basis of
a variable dimension (here, the position). Such a measure can be obatined in discrimi-
nation tasks, and quantifies the acuity of human perception of sound location. Another
way to measure the system is by asking the subjects to perform absolute localization
judgements. In this case, the accuracy of the human response is quantified. This can
be acheived using, for example pointing tasks.

I first discuss the acuity of the system: the ability of humans to distinguish sounds
based on their position. Second I study the accuracy of the system: the absolute
localization abilities of humans. In a third part [ discussed the perception of egocentric
distance to the sound and the impact of reverberation on sound localization.

Threshold measures

Localization sound sources in space is essential for a number of hearing-related prob-
lems: e.g. to separate the sound signals emanating from different sources. This is
generally known as the “cocktail party” problem. In many common situations (not

restricted to fancy social gatherings), humans hear many concurrent sound sources,

222



emanating for example from different speakers around them. Despite those distractors,
humans are able to only lzsten and understand a single selected sound source. It can
be shown that discriminating the speakers positions is essential in solving the cocktail
party problem [Hawley et al., 2004].

Discrimination abilities are usually assessed via threshold measures. An example
measure is the Just-Noticeable Difference (JND), that is the smallest variation of the
studied dimension that can be perceived by subjects. Those measures provide a good
idea of the precision of the system: stimuli whose dimension differ by less than one
JND are not distinguished.

In the context of binaural hearing, one can measure the JNDs in all attributes of
the spatial position: azimuth, elevation and distance to the sound source. For angular
measures this is measured in Minimum Audible Angles (MAA) [Mills, 1958], that is the
smallest angle between two sound sources that can be resolved by a subject. Human
JNDs can be as low as 1°in azimuth for low-frequency sounds around the midline [Mills,
1958,Blauert, 1997]. Yet, this performance is not uniform either in space and frequency.
The MAA as measured around the most excentric positions (at azimuths £90°) is bigger
~ 8° [Blauert, 1997]. It does not appear, though, that the elevation of the sound source
significantly degrades azimuth localization performance [Perrott and Saberi, 1990]. At
some frequencies, between 1 and 2 kHz, the thresholds are higher [Mills, 1958, Perrott
and Saberi, 1990], indicating that the acuity of human localization is not completely
invariant on frequency. Similar studies can be conducted to assess MAAs in elevation
of the source. Human elevation-localization abilities are in general coarser than in
azimuth, of about 3.5°around the horizontal plane, and increasing as the sources is
elevated from this plane [Perrott and Saberi, 1990, Blauert, 1997].

Absolute localization error

Human localization abilities are also the subject of a number of biases and complex
errors that are not captured through threshold measures. For example, sources that
are placed symmetrically in the front and back hemifield are often mistook for one
another, this effect is usually known as the front /back ambiguity [Blauert, 1997]. More
generally, if one assumes that the subject has a spherical head, with ears positioned on
the diameter, then sources are theoretically indistinguishable when they are presented
on cones with their axes aligned on the interaural axis: the so-called cones of confusion.

Ambiguity between front and back may be resolved in a variety of ways. In usual
situations, vision can help confirming that a sound source is present in the frontal
hemifield. Even in the absence of vision, movements of the subject (and not the sound
source) also help alleviate the confusion [Wallach, 1940]. Indeed, the dynamic varia-
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tion of cues is different for static sources in the front and in the back hemifields. By
encouraging a subject to move its head or restraining the subject’s heads [Wightman
and Kistler, 1999], it can be shown that self-generated movements very efficiently allow

front /back disambiguation.

9.1.2 Perception of other attributes, impact of reverberation

When a sound source is present in a real environment, it will reflect on the big enough
surfaces, but also be scattered by objects in the environment that have smaller sizes.
This represents a considerable issue for sound localization, and most common algo-
rithms fall short of properly localizing sources in arbitrary echoic environments. It
appears that humans are able suppress the reflections, and accurately perceive the lo-
cation of the sound, almost irregardless of the environment [Hartmann, 1983]. Yet, it
is not clear how this can be done, because listeners do not have a complete knowledge

of their acoustic environment at all times.

Therefore, it is quite surprising that human localization abilities are essentially
unaffected (if not facilitated) by the presence of arbitrary reflections [Hawley et al.,
2004]. Artifical reflections can be introduced in binaural sounds, by presenting a sound
together with the same sound with a very short delay. This simulates the additional
path-length the sound has to cover when it reflects on an object before reaching the
ear. Humans consistently report hearing only one sound when this delay is sufficiently
short (between 3 to 5 ms, depending on the sound). This phenomenon belongs to
the so-called precedence effect [Litovsky et al., 1999]. When the delay between the two
sounds is increased, humans hear two distinct sound sources. It is thought that humans
are able to suppress the response to the second sound, thus being quite insensitive to
the clutter of information due to reflections.

Reflections are also important to judge the egocentric distance to a sound source.
The relative distance between sound sources is judged using the difference in pressure
level due to absorption of the acoustic energy by the air. This ability is greatly reduced
when this relative level cue is removed, suggesting that distance perception via the
auditory modality is coarse [Ashmead et al., 1990]. In fact, when the environment is
anechoic [Nielsen, 1992], subjects are unable to judge the distance to a sound source. In
all other reflective environments, humans are able to report the distance to the sound
source. This is believed to rely on the processing of the ratio of the direct signal from
the source and the reverberated energy from reflections [Hartmann, 1983].
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0.2 Lateralization: ITD and ILD cues

The existence of two separate acoustical cues to location had also been proposed by
Lord Rayleigh’s work [Rayleigh, 1907], and then [Hartley and Fry, 1921]. Lord Rayleigh
first realized that for most broadband and high frequencies sounds, varying the relative
levels of the monaural signals (i.e. applying ILDs) resulted in lateralization of the sound
source. He reasoned that because ILDs were absent in the lower frequencies, because
of the physics of the head, some other cue was used in this range. By presenting
subjects with tones at slightly mismatched frequencies (binaural beats), he was able to
show that in low-frequencies humans are sensitive to time differences in the monaural
inputs. Therefore, in low frequencies the cue to location is the ITD. This theory,
postulating different roles for I'TDs and ILDs in high and low frequencies, became
known as the Duplex Theory. This view has since then been confirmed by many
experiments, providing a good theory as to the way different binaural cues interact.

Yet, when presented over headphones, stimuli reproducing ITDs and ILDs are in
general perceived in a virtual line between the ears, inside the ead. This kind of percept
is generally known as lateralization. For reasons that are not completely clear to this
day, reproducing the perception of sounds outside a listener’s head (externalization)
over headphones is hard, even when the full HRTF filters are reproduced. Nonetheless,
the use of artificial stimuli, with only ITD or ILD imposed on them is a good way of
probing the mechanisms by which the binaural system recovers the position of a sound
source.

Using modern HRTF measurements, it is possible to quantify the information that
are available to a subject when sounds are presented in free field. The cues fall in two
general categories, monaural cues which we have left aside for most of the manuscript,
and binaural cues (ITD and ILD). Here I report some fundamental results as to the
perception of all those cues. Starting from monaural elevation cues, to ILD and finally
a strong emphasis on ITD and its interplay with ILD.

0.2.1 Monaural cues and ILD

Monaural cues

The filtering imposed by a monaural HRTF filter shows amplitude variations, such as
notches and peaks, which depend on the source position: these are termed monaural
cues. Those cues are incomplete in that they inherently require the knowledge of the
original signal to extract the position: i.e. the spectrum of the source signal and the
contribution of the monaural filter are mixed in the signal at the ear. Therefore, it
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is a prior: impossible to extract the influence of the filtering of the head without
substracting the original signal’s contribution.

Despite this limitation, monaural cues are important in the cases where binaural
disparities are absent. For example when a sound source is present in the median
sagittal plane: the plane such that each point on the plane is at the exact same distance
from both ears. In this plane, the interaural differences are absent (assuming that the
head is symmetric), or in any case very small. Another example is when one ear is
occluded, or the stimulus is presented at only one ear (e.g. over one headphone side).
This arises in some common listening situations, but also for deaf people (as studied
in [Wanrooij and Opstal, 2004)).

When narrow band sounds, such as tones, are presented in space, subjects with an
occluded ear are unable to locate the sound source, despite having a consistent judge-
ment about the position [Butler, 1971]. [Butler and Helwig, 1983]. In fact, monaural
cues only influence lateralization for broadband signals, with energy above 4 kHz (see,
e.g. [Musicant and Butler, 1985]). In the horizontal plane, [Oldfield and Parker, 1986]
the lateraliaztion of broadband sources, presented monaurally is very coarse and much
degraded with respect to when binaural information is available. In fact, when sounds
are presented binaurally, monaural cues only have little influence on the perceived
azimuth of the sound source [Macpherson and Middlebrooks, 2002].

In the medial sagittal plane, narrow bands of noise presented binaurally perceptually
originate from different directions (front or back), depending on their center frequency
[Butler and Helwig, 1983]. For low-frequency sounds in this plane, spectral features
resulting from the head and torso reflections are are also important to resolve the
elevation of the source [Algazi et al., 2001a].

Therefore, available results suggest that the perception of position through monaural
cues is: limited to positions where binaural information is unabailable, and encoded

via the complex pattern of monaural HRTF amplitude, in most cases above a few kHz.

ILD cues

Interaural level differences, ILDs, are also very important binaural cues to sound po-
sition, which were left aside for the most part of this thesis. When presented over
headphones, ILDs also produce a lateralized percept.

The acuity of the system can be probed by similar measures as the JND presented
in the introduction. Reports of JNDs in ILD on various sounds consistently report
values between 1-3 decibels [Yost and Raymond H. Dye, 1988, Mills, 1958]. This JND
varies with a number of factors, first with the reference point, that is around which
lateral position the JND is measured. As this lateral position increases, the JND also
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increases [Hartmann and Constan, 2002, Francart and Wouters, 2007]. The JND also
depends on the nature of the stimulus, namely broader frequency bands lead to smaller
JNDs [Buus, 1990]. As a function of the center frequency of the stimulus spectrum,
the JND in ILD seems to be roughly constant over a broad range of frequencies [Yost
and Raymond H. Dye, 1988], with a slight degradation around 1-2 kHZ. Recent data
are consistent with this, even though some argue that the JND is reduced in higher

frequency stimuli [Francart and Wouters, 2007, Hartmann and Constan, 2002]

9.2.2 Psychophysics of human ITD processing
Perception of timing differences at different frequencies

Threshold measures and limit of ITD processing In general, human JNDs for ITD
on broadband sounds are of the order of 10-50 us depending on the experimental
setup. On a small number of subjects, [Mills, 1958] reports an I'TD threshold as low as
10us, and more recent studies put this measure at around 20 ps [Mossop and Culling,
1998, Akeroyd, 2006, Yost, 1974]. These threshold measures, however, are strongly
dependent on the stimulus, e.g. on its center frequency [Dunai and Hartmann, 2011].
ITDs when presented in pure tones (i.e. IPDs) are not always lateralized. Rather, in
high frequencies pure tones with arbitrary IPDs do not produce a sense of lateralization
anymore. This upper limit of IPD sensitivity has long been measured, leading results
with a high variability, albeit contrained to the < 3kHz range. Some early data, [Wever,
1949] report lateralization for tones up to 3-5kHz (citing a unlocatable thesis), while
most other (and more recent) studies report limits in the range 1-2 kHz [Perrott and
Nelson, 1969, Yost, 1974, Zwislocki and Feldman, 1956, Dunai and Hartmann, 2011].
There are two hypotheses to account for this limit. The first one is physiological:
this limit arises from a frequency limit in the coding of temporal fine structure. This
argument is made first by J.C.R. Licklider in [Licklider et al., 1950], who in a very
concise and intuitive paper describes that because of the fixed temporal resolution
of the brain (defined as the EPSP time constant), ITDs in high frequencies are not
resolvable. In this hypothesis, the behavioral IPD perception limit reflects the upper
limit of time-locking in the auditory nerve (discussed in Chapter 5). In humans, the
precise limit of phase-locking is unknown and the subject of much debate ( [Joris and
Verschooten, 2013]), because of its huge implications on, e.g. pitch perception.
Another hypothesis is that IPD cues are ambiguous above a certain frequency. A
tone of period T delayed by 7 is indistinguishable from the same tone delayed by 7+ T
Therefore, when multiple periods of the stimulus “fit” within the ecological range of

ITD, then the ITD information is ambiguous. As an example, for pure tone sounds this
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happens whenever T' < ITDp.y, Or 1/f < 2a/c using the Woodworth formula which
amounts to around 1.7 kHz for a human subject. This hypothesis is still the subject
of much discussion because it does not seem to match the precise frequency-dependent
pattern of JNDs in ITD (as argued by [Hartmann et al., 2013]).

Envelope and FS ITDs When the stimulus is a high frequency pure tone (above a
few kHz), it is known that humans cannot resolve ITDs, consequently such tones do
not produce a sense of lateralization. Yet, it is still possible that for more complex
stimuli, some temporal information is present and possibly processed by the binaural
system. This is the case of amplitude-modulated stimuli, that is tones modulated by
a lower-frequency envelope. The fine structure ITD, usually termed ongoing ITD is
carried by too high frequency components to be resolved. Nonetheless, the envelope of
the stimulus, a much lower frequency signal, also bears ITD information: the envelope
ITD. The same argument can be made about the onset of the stimulus, because the
transient has low-frequency components, it is possible that an ITD be detected in this
part of the signal: it is the onset I'TD.

The fact that humans are able to distinguish sounds with different onset or enve-
lope ITDs has been shown by [Henning, 1974]. In this experiment, the authors use a
(binaural) masking paradigm to show that the ITDs in complex stimuli with spectral
energy constrained to high frequencies (above 3kHz) can still be distinguished. Fur-
thermore, the threshold measures of sensitivity for envelope ITDs are very close to that
for low-frequency sounds [McFadden and Pasanen, 1976]. Yet, the importance of the
envelope ITD information as a cue to location is debated. For example, [Eberle et al.,
2000] argue that imposing strong amplitude modulation does not improve the free-field
localization accuray. Conversely, data in [Macpherson and Middlebrooks, 2002] suggest
that when fine-structure ITDs are absent, then onset and envelope ITDs contribute
to the lateralization percept. In conclusion, high-frequency envelope ITD cues only
contributed to the lateralization when both ILD cues and fine-structure ITD cues (in

low frequencies) are absent.

ITD dominance and trading experiments

It is generally accepted that I'TD is a more reliable cue to sound location in low fre-
quencies than ILD, because physically level cues are almost absent in this range. As
shown in Chapter 1 this is because when the sound wavelength is smaller than the
diameter of the sphere, then almost no shadowing occurs. This is reflected in behavior,
as was postulated by Lord Rayleigh’s Duplex theory [Rayleigh, 1907].
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More recent studies corroborate this fact, for example [Wightman and Kistler, 1992]
show that I'TD better predicts the perceived location as soon as there are low frequencies
(below 1.5 kHz) in the stimulus. Therefore, the location of any low-pass filtered stimulus
is dominated by the ITD cue. Furthermore, when the stimulus is band limited to the
range in which ITDs dominate, the preceived location of the sound is unaffected by
ILDs up to 10 dB [Wightman and Kistler, 1997].

Those results can be generalized in the context of what is termed ITD/ILD trad-
ing experiments. In such experiments, listeners are presented with conflicting ITDs
and ILDs for which they provide lateralization judgements. It is assumed that the
judgement varies as a weighed sum of the two cues, and the relative weighing thereof
is recorded. The time-intensity trade is then defined as the ITD necessary to center
a virtual source with 1 dB of ILD (pointing in the opposite direction). In an early
study [Harris, 1960], this ratio is measured at 25us/dB for low-pass filtered sounds
(and about 60us/dB for high-pass stimuli). This measure is sensible to a number of
factors, and displays a wide inter-subject variability. The most important of those fac-
tors is the shift: the position at which the subject has to match the ITD and ILD cues.
Moreover, the presentation of stimuli with conflicting ITD and ILDs sometimes leads to
the perception of two sepatate sources (one dominated by ITD and the other by ILD)
which further complicates the interpretation of trading experiment data [Macpherson
and Middlebrooks, 2002].

9.3 Discussion: Perceptual relevance of ITD variation

with frequency

In Chapter 1, I showed that ITDs vary with frequency in a manner that is direction
dependent. Additionally, there can be several JNDs between the low and high frequency
values of ITD for a given position. Essentially, a high- and a low-frequency sound with
the same ITD are not at the same position. These are good reasons to believe that the
frequency variations of ITDs is perceptually relevant to human listeners. Yet, the ITD
is most commonly thought of as being a constant value across frequencies for any given
position. This is based on the widespread belief that reproducing the fine frequency
variation of ITD does not make any difference when presenting spatialized sounds, for
example in the context of spatial audio.

The perceptual salience of the frequency dependence of ITDs has been first ad-
dressed indirectly by the literature in trying to reduce the computational costs as-
sociated with the use of HRTFs. One mean to do so is to implement HRTFs as
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their minimum-phase versions with accompanying pure delays [Kistler and Wightman,
1992b,Huopaniemi et al., 1999]. Such an operation distorts the natural frequency varia-
tions of I'TDs and it was found that these distortions were perceptually noticeable under
certain circumstances, rarely met for real HRTFs [Minnaar et al., 1999]. Distortions
of the natural variations of the I'TDs with frequency resulting from their modelization
as minimimum-phase HRTFs and accompanying pure delays are thus thought to be
almost imperceptible [Kulkarni et al., 1999, Plogsties et al., 2000, Toledo and Mller,

2008], suggesting that humans are not sensitive to the frequency variations of ITDs.

Other studies faced the problem more directly and tried to find which perceptual
impact the frequency dependence of ITDs can have on several tasks. [Hartmann and
Wittenberg, 1996] does not find a dependence of externalization on dispersion around
the head, and thus on the frequency variations of ITDs. The conclusion that can
be drawn from this result is that the frequency-dependence of ITDs does not help
to externalize sound sources. Yet, given that no headphone reproduction technique
conclusively leads to externalization, those results cannot merely be argued to rule out
the importance of ITD variation. On the other hand, some studies hint at a potentail
relevance of frequency-dependent ITDs. For example, vowels presented in separate
spectral bands, they be grouped [Culling and Summerfield, 1995] have shown that
listeners were unable to separate noise in different frequency bands on the basis of a
constant I'TD.

Other results furthermore showed that virtual sounds synthetized using real HRTF's
(i.e. with frequency dependent ITDs) or HRTFs having a linear phase (z.e. with
frequency-independent ITDs) were perceptually indistinguishable [Kulkarni et al., 1999],
[Constan and Hartmann, 2003], and [Breebaart et al., 2010]. Nevertheless, the method-
ology consisting in perceptually comparing signals having frequency-independent [TDs
to ones having frequency-dependent I'TDs does not address directly the issue at hand
here. This is because those measures assess the discriminability and/or identification of
sounds with different ITDs. Indeed, consider that one position in space is perceptually
encoded, but rather by a frequency-dependent ITD curve, spanning multiple ITD val-
ues The prediction of this is that the perceived location of sounds with the same I'TD in
different frequency bands varies. This would appear as bzas in lateralization, which is
out of the scope of discrimination studies [Hartmann and Wittenberg, 1996], [Kulkarni
et al., 1999], [Constan and Hartmann, 2003|, and [Breebaart et al., 2010].

Therefore, I argue that the results in the literature cannot completely rule out the
perceptual salience of the variation of ITD across frequencies. I suggest that further
experimental work based on a different methodological approach is needed to provide
conclusive evidence as to the impact of the variation of ITD. Namely, absolute localiza-
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tion judgements for sounds with different frequency contents and different ITD. Those,
I hypothesize, should exhibit a bzas: lower frequency sounds are perceived more cen-
trally than high frequency sounds for the same ITD. Such an experiment is designed
and performed in the next chapter (Chapter 10).

231



232



Chapter 10

Integration of ITD cues across

frequencies
Contents
10.1 Introduction . . . . . . . . .. 234
10.2 Methods . . . . . . . . .. 234
10.2.1 Experimental design . . . . . . ... ..o 236
10.2.2 Theoretical model and predictions . . . . . . . ... ... .... 239
10.3 Results . . . . . . . . 240
10.3.1 Analysis of results for the different positions . . . . . .. .. .. 240
10.3.2 Othereffects . . . . . .. ... . 241
10.4 Discussion . . . . .. . ... 242
10.4.1 Conclusions of thestudy . . . . . . . . .. ... ... 242
10.4.2 Experiment limitations: ILD . . . . . .. ... ... ... .. .. 242

233



10.1 Introduction

Sounds presented binaurally over headphones with a non-zero ITD result in the subject
hearing a lateralized sound. As it is clear from human acoustical data of the first part of
this thesis (Chapter 1), the ITD for a given position in space depends on the frequency
content of the stimulus. A consequence of this is that a given ITD signals a different
position, depending on the frequency of the stimulus. This is reported, assuming
a human subject with a spherical head on Fig. 10.1 (radius of 10.3 cm). For any
position, the ITD is a decreasing function of the frequency of the stimulus (Fig. 10.1,
A). Therefore, it is expected that a given ITD signals a more excentric position in high
frequencies than in low frequencies. It is possible to quantify this effect by computing
the position signalled by a given ITD across frequencies. The result of this operation
is reported on Fig. 10.1, for ITDs between 0 and 800 us. The extreme ITD of 800 us,
presented in a narrowband signal centered around 1kHz arises from a source at 70°,
whereas when presented in a signal centered around 300 Hz the same I'TD arises from a
source at 60°. The shift in position occurs well below 1.5 kHZ for all ITDs (Fig. 10.1, B),
within the range in which I'TD is the dominant cue to azimuth [Wightman and Kistler,
1992]. For broadband sounds, the perceived laterality of a source is a monotonous
function of the ITD in the input [|] I hypothesize that, for band-limited sounds, the
perceived lateral position of the sound source is the closest position that accounts for
the ITD observed in the frequency band of the stimulus. This operation is performed
for different I'TDs on Fig. 10.1, B.

I designed an experiment to test this hypothesis: assuming that two sounds are
presented, with energy within different ranges of frequencies, then they should be
lateralized at the same position when presented with different ITDs. This difference we
call a bzas, and propose to measure in a matching experiment. At each trial, subjects
are presented with two sounds, one of which has a fixed ITD and the other sound’s ITD
can be parameterized at will by the subject. He also is able to replay the sequence of
sounds until he perceives the two sounds at the same position, at which time the I'TDs
in the stimuli are recorded, and the bias computed. Assuming that humans assign a
constant ITD to each position in space, then this bias will be zero. On the other hand,
if humans use the ITD variation across frequencies for a given position, then the bias

should be a non zero value, of measurable magnitude.

10.2 Methods
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Figure 10.2: Depiction of the experimental paradigm. A Each stimulus presentation
consisted in two sounds, the TARGET sound with a fixed ITD and the PARAM sound
with an ITD that could be modified by the subject. Each sound is a bandpass noise
stimulus, in all trials the TARGET and PARAM sounds had different non-overlapping
spectra. B A schematic of the interface presented to the subject. Within each trial, the
ITD of the PARAM sound could be varied in positive (4 signs) or negative (- signs)
of two magnitudes (++/- and -/+). The subject could replay the sequence of sounds
in A at will. He/she was instructed to click “Done” when the two sounds were in the
same lateral position. At this point a new trial starts.

10.2.1 Experimental design
Paradigm

We use a matching paradigm to design the pilot experiment, as depicted in Fig. 10.2.
Subjects are asked to match the perceived position of two sounds with different fre-
quency contents presented in a sequence (A of Fig. 10.2). One of the sounds, the
TARGET sound is presented with a constant ITD at each trial. Another sound, the
PARAM sound has an ITD that can be adjusted by the subject. The subject increments
or decrements the I'TD of the PARAM sound, and can then replay the pair TARGET-
REF at will (B of Fig. 10.2). When the subject responds that he/she perceives the
sounds at the same position, the trial ends. At this point the ITD in the PARAM
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sound is recorded, and the experiment goes on to the next trial. The main point of the
experiment was to use two different noise having energy in different frequency bands,
and measure the ITDs for which they are perveived in the same position. The difference
between those ITDs is the ITD bzas.

Parameter Value
ITDLp (norm.) 2.71, 2.33, 1.69
CFrp (norm.) 0.6 (~ 320Hz2)
BW_Lp (norm.) 0.4
ITDyp (norm.) 2.3,1.82, 1.21
CFyr (norm.) 1.8 (~ 960Hz)
CFyp (norm.) 1.2
(++/- -) ITD step 200 us
(+/-) ITD step 20 us

Table 10.1: Parameters used in the experiment

Stimuli consisted of random phase white noise, further filtered using Butterworth
filters to ensure no energy overlap. The main parameters of the experiment are reported
on Tab. 10.1. TARGET sounds were generated with I'TDs picked so as to maximize
the expected bias. Therefore, they were parametrized in terms of normalized ITD (as
in Chapter 1). For each subject, the I'TD is adapted to the head size so that it should
produce the same laterality percept in all subjects. This is done by multiplying the
normalized ITD value by a/c where a is the head radius and c the speed of sound. The
same applies to the center frequencies of the stimuli in the different conditions (reported
in Tab. 10.1), which were converted into frequencies by multiplying by ¢/(27a).

The buttons controlling the ITD of the param sound incremented the I'TD in either
direction, the magnitude of the smallest possible step was set to approximately one
JND, 20us (for a head of radius a = 10.3cm) [Mossop and Culling, 1998, Akeroyd,
2006]. The ++ and - - buttons incremented the ITD with a magnitude of 10 JNDs.
Note that the absolute ITD on the PARAM signal was constrained to be smaller than
1 ms.

Three conditions were distinguished :

1. Frequency content The TARGET sound can be presented either with low-frequency
content, that is with CF = 0.6, BW = 0.4, or with a high-frequency content
CF = 1.8,BW = 1.2. The REF sound is always presented with a different
frequency content, high-CF when TARGET is low-CF and vice-versan.

2. Position The absolute value of the ITD as presented in the TARGET sound is
computed from a spherical model (a = 10.3cm, Fig. 10.1).

237



1500 150
1000 100
% 500 3 50
2 0
©
2 o £
w °
I -500 g -50
[a
—1000 —-100
_1599000 —-500 0 500 1000 _15—0100 -50 0 50 100
LF ITD (us) Azimuth (deg)

Figure 10.3:  Theoretical predictions of ITD matching bias. A reports the low-
frequency ITD (around 320 Hz) and the high frequency ITD (around 960 Hz) plotted
against each other (different points are different positions). The main diagonal is re-
ported (black dotted line) as well as the points chosen for the experiment. On B the
predicted bias is shown, that is the difference between the LF ITD and the HF ITD.
This signed bias peaks for positions around 40 degres, same as in A the azimuth points
chosen for the experiment are reported.

3. Side The sign of the ITD, that is the side at which lateralization should occur in
the TARGET sound, could be either left or right.

At the end of each trial, that is at the point where the subject perceives the two
sounds at the same lateral position, the I'TDs in the two sounds is recorded. I then

compute the normalized ITD bias:
ITDbias — ’ITDLF — ITDHF’
We can make qualitative predictions under our hypothesis:

1. Frequency content The bias in ITD should be a positive nonzero value.

2. Position The magnitude of I'TDy;.s should be a function of position, because the
difference between the LF and HF values of ITD is a function of position (see
Fig. 10.1, A).

3. Side The ITD bias, defined as the difference in absolute LF and HF ITDs should

not depend on position.
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10.2.2 Theoretical model and predictions

HRTF data provides us with estimates of the I'TD for a given position in all frequency
bands. To make theoretical predictions, such HRTF data was generated on the basis of
a spherical model, with a 10.3 cm diameter. ITDs in the frequency bands of the stimuli
of the experiment are computed (they are reported on Tab. 10.1). On Fig. 10.3, the
ITD found in the LF band and in the HF band are plotted against each other. Were
they equal, then all the points would lie on the diagonal (black dotted lines). This is
more striking on the difference of the I'TDs in those two bands as a function of the
azimuth of the sound source. Consistent with observations of Chapter 1, this bias is
maximal for intermediate positions around 40-50°. The dots on A and B correspond
to the points in azimuth that were chosen for the experiment so as to maximize the
predicted bias. That is, they correspond to the azimuth positions in Tab. 10.1. We
compute the difference between the high frequency and low frequency ITDs, to compute
the absolute normalized bias, this is our prediction of what bias should be measured in

human subjects.
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Figure 10.4: Results of the pilot experiment on N=9 subjects, measurement of the I'TD
bias at the end of the trials. A ANOVA on frequency content B ANOVA on position C
ANOVA on side

10.3 Results

10.3.1 Analysis of results for the different positions

Data aggregated along the different position conditions is shown on Fig. 10.4. The
magnitude of the predicted bias, as extracted from a large number of HRTF recordings
(those of Chapter 1) is shown as green points plus or minus half a standard deviation
for all positions. The normalized ITD bias is presented as blue dots, with standard
deviation indicated as error bars. Becasue we use the standard deviations, those error
bars are quite high, while the standard error would be 3 times smaller.

Results from an ANOVA performed on the ITD bias against the position show that
there does not seem to be a significant impact of position on the bias. This is contrary
to what is predicted by analysis of the HRTF data, even though the magnitude of the
predicted change is quite small (some tenths of microseconds). In any event, for two
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out of three positions (80°and 40°) the measured ITD bias is significantly different from
zero (p < 0.05). A clear tendency is observed in the last (60°) position, even though
we are unable to reject the null hypothesis in this case (p = 0.07). For all positions,
it cannot be rejected either that the average ITD bias is equal to that predicted by
the HRTF data. Furthermore, this tendency is confirmed by visual inspection of the
results on Fig. 10.4, wherein it is observed that the mean of the bias is always within
one standard deviation of the predicted bias.

Overall, our results suggest that there is indeed a measurable bias in I'TD, that is
sounds are perceived at the same location for different frequency content when pre-
sented at different ITDs. Furthermore, this seems relatively well accounted for by the
acoustical data.

10.3.2 Other effects
Effect of side

REF and PARAM sounds were presented with either positive or negative ITDs, re-
sulting in a lateralization percept either to the left or to the right of the listeners. We
measured the ITD bias as normalized, i.e. the ITD biased is the absolute ITD difference
between the low and high frequency ITDs in the data. Thus it is to be expected that
this bias does not depend on the presentation side of the stimulus. As expected, the

two conditions do not lead to significantly different measured biases.

Effect of presentation order

Stimuli were always presented so that the first sound is the TARGET sound. Therefore,
in some trials the first sound was the HF sound, and in others the LF sound. Testing for
the effect of presentation order revealed that there is a significant interaction (repeated
measure ANOVA, p < 0.05). Visual inspection of the results Fig. 10.4 reveals that the
ITD bias when the first presented sound contains low frequencies then the observed ITD
bias is not significantly different from 0. When the first sound has a higher frequency
content, then the ITD biais is significantly different from zero, albeit also bigger than
the bias predicted using HRTF data.

This could be understood as an effect of masking of the second presented sound by
the first, because of the relatively low interstimulus interval 300ms. The unidirectional
nature of this masking effect can be explained as well considering cochlear filters have
a broad lower frequency tail. That is, when the second stimulus comes in, lower-
frequency cochlear filters may still be excited by the REF sound, biasing perception
towards the lateral position indicated by REF.
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10.4 Discussion

10.4.1 Conclusions of the study

Despite its limitations, our pilot experiment lays the basis for further investigation of
the extent to which ITD variations across frequencies contributes to human lateraliza-
tion. Our initial results suggest that sounds presented with different ITDs at different
frequencies can be perceived in the same location, provided that the ITDs they bear
are congruent with the ITDs of a position in space. Because the predicted effect is of a
quite big magnitude, it is possible to observe it, even amongst a small set of listeners,
with a relatively low number of repetitions.

Our results support the idea that humans use all the information about the position
that is found in the frequency-dependent I'TDs imposed on binaural sounds for a given
position. This could seem in disagreement with the results of [Constan and Hartmann,
2003|, who argue that humans are insensitive to the frequency-dependent ITD cues
imposed by a spherical head. Yet, those results are based on discrimination experi-
ments, where the subjects are asked to discriminate between sounds with constant and
frequency-dependent ITDs. In particular, the sounds to discriminate have energy in the
same bands, i.e. the spectra are not varied. The same argument applies to experiments
by [Kistler and Wightman, 1992b, Hartmann and Wittenberg, 1996, Kulkarni et al.,
1999]. In this study I used an absolute localization paradigm, to directly address the
accuracy of perception of sounds with different spectra. Therefore directly addressing
the existence of a bias in the perception of azimuth of sounds with different frequency

contents.

10.4.2 Experiment limitations: ILD

There is an inherent flaw in this experiment, due to the fact that in natural conditions
binaural stimuli contain both an ITD and an ILD. As described in the previous chapter,
this may lead to a modification of the perceived lateralization. In our case, the absence
of ILD means that the (inexistant) ILD cue points to more central positions. Because
the ILD is expectedly bigger in the higher frequency sounds, then this centering effect
should be greater on high frequency sounds. Therefore, to compensates for this effect a
subject should match high-frequency stimuli with higher ITDs than the low frequency
stimuli. Therefore, the absence of ILD in our paradigm should go against the effect
that we were trying to observe.

Value of such a bias can nevertheless roughly be predicted from the literature. Ac-

cording to Harris et al. [Harris, 1960], 1 kHz low-pass click trains need a compensation
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Figure 10.5: Expected results based on the means and standard deviations values as
predicted in the previous figures text. A shows the expected results in the presence of
a bias due to ILD.

of AT/AI ~ 25 us/dB to be perceptually recentered. From the spherical model, ILD
differences of 8 dB, 10 dB and 5 dB are observed between 1 kHz and 1.5 kHz for az-
imuths of 40°, 60° and 80°. The additional ITD needed to compensate for the absence
of ILD difference can be predicted. The results are shown in Fig. 10.5, A, where the
ITD biases predicted as a function of position and frequency content of the source are
shown. The magnitude of the bias predicted in that way is bigger than the effect,
predicting that the measured I'TD bias with the present analysis would be opposed to
what our initial hypothesis implies.

Surprisingly enough, the results of our experiment show that human subjects are
not sensitive to this bias, or at least that its magnitude is smaller than modeled in the
results presented on Fig. 10.5. This is to be expected, because typical experiments used
to measure the weighing ratio of ITD and ILD are measured using sources around the
midline [Harris, 1960]. And it is to be expected that this ratio is different for different
central positions, that is when the subject is asked to center two sounds at the same
position off the midline. Furthermore, this effect is strongly dependent on a variety
of parameters, e.g. the sound onset time, or amplitude modulation [Macpherson and
Middlebrooks, 2002]. Therefore, it is to be expected that the magnitude of the ITD
bias measured using this paradigm is an underestimation of the ITD bias predicted
with the HRTF data.

In conclusion, a more thorough approach to this problem will necessarily include
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conditions wherein the relative impact of the absence of ILDs is assessed on a per subject
basis. Furthermore, our experiment should also include a condition for which the two
sounds have equal ITDs, so as to provide a measure of the JND in ITD discrimination

at different frequencies, and compare it with the magnitude of the bias.
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Discussion

General conclusion

I have shown that, for a given source, binaural inputs have a temporal structure; they
are equal up to a non-linear phase filter. This is because animal ears are not point
receivers in space, rather they are embedded on a more or less spherical object: the
head. Therefore, the cues available to an animal depend, in a predictable manner,
on the frequency of the signal and the animal’s head size. In signal processing, the
problem of sound source localization is often reduced — for analytical ease — to that
of localizing using inputs from two microphones in an anechoic environment. I argue
that, as compared to this situation, the binaural structure available to animals is much
richer. For example, it provides different cues to the location of the sound source in the
fine structure and the envelope of the signals reaching the ears. Finally, I exposed how
these cues can be quantified from the recording of HRTF filters, and how those filters

can be modeled using a spherical head model, or more complex numerical techniques.

In a second part, I have shown that the richness of the ITD cues is reflected in
the heterogeneous sensitivity of binaural neurons. More precisely, my results suggest
that I'TD-sensitive cells of the cat IC can be said to be tuned to a single position in
space. Previously, binaural cells were considered tuned to constant ITD, in a way that
varied with frequency [Yin and Kuwada, 1983]. My result simplifies this description:
when presented with ecological stimuli, the response of the cells can be accurately
characterized by the preferred position of the cell. Therefore, the complex pattern
of ITD cues imposed by the “acoustical shape” of the animal’s head are essential to
the neural processing of sound source position. Following on this work, I showed that
such cells can emerge from a combination of two properties: differential axonal delays
from each side, and mismatches in the frequency tuning of the afferent monaural cells.
Finally, I showed that the position of a sound source could be estimated from the
activity of a population of neurons tuned to different ITDs with normalized avtivities,
in a place code manner. I show how this model is consistent with the large low-CF,
high-BD cells found in mammalian MSO, a puzzling anomaly of the field. This type
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of code depends critically on the heterogeneous nature of the tuning of binaural cells,
as opposed to the recently proposed hemispheric code for ITD [McAlpine et al., 2001].
Overall, my results suggest that heterogeneity of the tuning of binaural cells is finely
tuned to the environment of the animal, and contributes to the efficiency of sound
source localization.

In the third part, I provided evidence that human subjects are indeed sensitive
to variations of ITD across the frequency spectrum for a given position. Therefore,
the perceived sound position in a lateralization experiment can be predicted from the
variation of ITD specific to the shape of human heads. This suggests that, unlike
previously thought, the variation of I'TD for a given position across stimuli with different

spectra is indeed integrated by human listeners when making lateralization judgments.

On binaural timing cues

The notion of the spatial position of an object should not depend on other attributes of
the object. For example, the position of an apple does not depend on its volume, color,
or taste. In the very same way, the position of a sound source in space should be defined
in a way that is tnvariant on frequency. As the results of the first part suggest, a notion
of source azimuth that relies on a single broadband ITD is ill-defined in this respect:
a sound source changes “position” as the signal it emits changes. Therefore, a spatial
location in acoustical space must be defined with respect to the frequency-dependent
cues associated with it.

It could be argued that this notion of spatial position is also ill-defined, as the
precise pattern of variation of ITD for a given position depends on other parameters.
These include the nature and geometry of the acoustical environment that is known
to influence ITD (and ILD) cues [Gourevitch and Brette, 2012]. But they also include
attributes of the sound source, e.g. the spatial extent of the sound source, its movement
speed, or pointing direction. For most real sources (human speech), those attributes
vary and yet we are still able to localize those sources. An interesting question then
is to understand what structure in the binaural inputs is invariant on the other en-
vironmental parameters. HRTF measurements obtained under many environmental
configurations may help understand the — probably complex — nature of this invari-
ant structure. Another problem is that of dynamical cues, how do the cues vary with
dynamically changing attributes of the stimuli. Those include movement speed, but
also movement direction, which may also dynamically change the apparent size of the

source (e.g. sources moving towards the subject).
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Neurophysiology of sound localization

As the results of the second part suggest, much of the heterogeneity in a binaural cell’s
frequency-dependent ITD tuning can be accounted for by using a richer description of
the sensory inputs. Because it reflects the complexity of the acoustical environment,
this heterogeneity seems to be essential to the robust localization of sound sources. I
argue that this is true in two different respects: for single-cell sensitivity to I'TD to
arise, but also for population-wise coding of auditory space.

First, heterogeneities in the auditory periphery leading to a binaural cell, i.e. axonal
delay differences and cochlear wiring mismatches, are shown to be primordial for the
sensitivity of single cells to ITD. Those are finely tuned so that cells receive a maximal
number of coincident inputs when the sound emanates from their preferred-position,
i.e. precisely reflecting the complexity of the acoustical environment. An important
prediction of the model of binaural cells that is proposed in Chapter 6, and Chapter 7
is that binaural ITD-sensitive cells are in fact tuned to a position in space, invariant
on the frequency content of the source signal. This prediction opens a new array of
possible experiments that can be performed using free-field methods. This invariance
property is remarkable, because it necessarily requires a fine adaptation of the binaural

system to its environment.

Second, heterogeneous tuning to ITD cues is a constitutive component of peak code
models (or place codes, as opposed to population codes). I provide arguments in favor
of place codes, which are shown to be in agreement with the data in MSO. As I show
in Chapter 6, a peak code is sufficient to explain the frequency-dependent sensitivity
of binaural cells, provided that the complexity of ITD cues is taken into account.
Nonetheless, the debate between the place and population codes evoked in Chapter 7,
is not settled by this thesis. Conclusive evidence on this topic will necessarily come
from simultaneous measurements of the whole population of binaural ITD sensitive
cells. Such techniques are available, yet the laminar nature of MSO, and the strong
neurophonic potential, make most of them unsuitable for these measures (e.g. multi
electrode arrays). The development of two-photon imaging provide good leads for

population-wise measurement paradigms in IC.

Behavioral studies of ITD processing

The psychoacoustical study presented in the present thesis, despite being preliminary,
suggests that the traditional view of an I'TD that is the same for all signals coming from

the same source is incomplete. Rather, humans seem to attribute the same position to
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sounds with different I'TDs. In other words, the percept of space, precisely because it
is invariant on frequency, relies on a frequency-dependent representation of I'TD.

As discussed in Chapter 1, the variation of ITD occurs at two scales, and our psy-
chophysics data only addresses the global variation of ITD (i.e. across cochlear chan-
nels). On the local scale, filtering by the head and body introduces two separate cues:
envelope and fine structure ITDs. Furthermore, at the neurophysiological level those
cues seem to be indeed integrated (Chapter 6). Therefore, an interesting development
is to try and assess the independent contribution (if any) of these cues to human lo-
calization abilities. Results from Chapter 2 indicate that for a given position, envelope
and fine structure ITDs in anechoic conditions are equal over a range of frequencies
(below 600 Hz). Therefore, a prediction could be that the localization performance
degrades in this band when only one of the two ITD cues is presented in the stimulus.

In silico sound localization

Finally, the results presented in this study suggest that the problem of sound source
localization in biological system cannot be solved without taking into consideration its
embodied aspect. For biological systems, in this sense, it provides an advantage to have
complex shapes in the sense that the binaural structure is then much more informative.
This, as I show, is by virtue of the presence of a head, body and their interaction with
the environment. The results I present in a second part indicate that the binaural
system’s heterogeneity makes it especially suited to perform sound localization.

Moreover, theoretical requirements for spike-based integration of those cues were
studied: time-invariant transduction into spikes, axonal delays and differences in CF
wiring at both ears, and finally coincidence detection. Neuromorphic sensors, that
mimic the transduction of physical signals into neural signals, have become available
and provide an exciting use-case for these theoretical developments [Liu and Delbruck,
2010]. Recently, groups have developed in silico cochleas, using either analog [Chan
et al., 2007], or digital [Domnguez-Morales et al., 2011] hardware. The analog-based
AER-EAR cochlea [Chan et al., 2007] provide a real-time implementation of two 64-
channels cochleas. The parallel filtering of the cochlea, otherwise computationally
expensive (in digital hardware), is here provided in real-time and for low-power con-
sumption.

If this hardware is implemented in, e.g. a spherical shape, the developments from
this thesis can be used to design the specific arrays of coincidence detectors that are
necessary for spectrum-invariant sound localization. Yet, designing an n silico array
of coincidence detectors, with sufficiently long delays is a challenge. The reason is
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that imposing long delays on fast electrical signals is complicated without using digital
hardware. Nonetheless, I believe that this is a fruitful endeavor: first by virtue of the
improvements that such a technology introduces (e.g. in terms of energy consumption).
Furthermore, using such a platform in a robot could provide a way of testing the peak
and hemispheric codes in a real-world context.
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