

Vers la mesure d'ondes circonférentielles guidées par la coque corticale du col du fémur

Pierre Nauleau

Directeur de thèse : Pascal Laugier Encadrants : Quentin Grimal, Jean-Gabriel Minonzio *Collaboration : Claire Prada, Institut Langevin*

Soutenance de thèse 26 Novembre 2013

Introduction	Principe de la méthode DORT	Propriétés matérielles	Géométrie	Vers l'application à l'os
0 0000000				

Les fractures ostéoporotiques

L'ostéoporose

Van Rietbergen, JBMR, 2003

- Fragilité accrue du squelette
- Diminution de l'épaisseur de l'os cortical
- Modification des propriétés élastiques

Introduction	Principe de la méthode DORT	Propriétés matérielles	Géométrie	Vers l'application à l'os
••••••	000		000000000	0000000

Les fractures ostéoporotiques

L'ostéoporose

Van Rietbergen, JBMR, 2003

- Fragilité accrue du squelette
- Diminution de l'épaisseur de l'os cortical
- Modification des propriétés élastiques

Les fractures ostéoporotiques

- 50000 fractures du col du fémur par an
- 49% des morts liées à une fracture
- Coût direct d'une fracture : 15000€

Strom et al., Arch. Osteoporos., 2011

 Introduction
 Principe de la méthode DORT
 Propriétés matérielles
 Géométrie
 Vers l'application à l'os

 00000000
 000
 0000000000
 0000000000
 000000000
 000000000

L'extrémité supérieure du fémur

Introduction Principe de la méthode DORT Propriétés matérielles Géométrie Vers l'application à l'os ocococococo coco cococococo cococococo cococococo

L'extrémité supérieure du fémur

Importance de la coque corticale Bousson et al., OI, 2006 et Holzer et al., JBMR, 2009

- $\bullet~{\rm Epaisseur}\sim {\rm de}~1$ à $3~{\rm mm}$
- $\bullet~{\rm Diamètre~max}\sim 32~{\rm mm}$
- $\bullet~{\rm Diamètre~min}\sim 24~{\rm mm}$

Introduction	Principe de la n 000	néthode DORT	Proprié 00000	tés matérielles		Géométrie 0000000000	Vers l'application à l'os 0000000
Techniq	ues de	prédiction	du	risque	de	fracture	

Méthode standard

- Mesure de la densité osseuse par absorptiométrie biphotonique
- Insuffisant (mesure 2D, sans distinction cortical/trabéculaire)

Introduction	Principe de la méthode DORT 000	Propriétés matérielles	Géométrie 000000000	Vers l'application à l'os
			c .	

Méthode standard

- Mesure de la densité osseuse par absorptiométrie biphotonique
- Insuffisant (mesure 2D, sans distinction cortical/trabéculaire)

Méthodes ultrasonores

Approche Sites de mesure	Premier signal Vitesse du premier signal	
Périphériques	1 ^{ers} dispositifs clinique et recherche <i>Talon, Radius, Tibia</i>	

Introduction	Principe de la méthode DORT 000	Propriétés matérielles	Géométrie 000000000	Vers l'application à l'os
			~	

Méthode standard

- Mesure de la densité osseuse par absorptiométrie biphotonique
- Insuffisant (mesure 2D, sans distinction cortical/trabéculaire)

Méthodes ultrasonores

Approche Sites de mesure	Premier signal Vitesse du premier signal	Ondes guidées Epaisseur et propriétés matérielles
Périphériques	1 ^{ers} dispositifs clinique et recherche <i>Talon, Radius, Tibia</i>	Recherche et start-up Azalée <i>Radius, tibia</i>

Moilanen et al., IEEE, 2008 Minonzio et al., JASA., 2011

Introduction	Principe de la méthode DORT 000	Propriétés matérielles	Géométrie 000000000	Vers l'application à l'os
			~	

Méthode standard

- Mesure de la densité osseuse par absorptiométrie biphotonique
- Insuffisant (mesure 2D, sans distinction cortical/trabéculaire)

Méthodes ultrasonores

Approche Sites de mesure	Premier signal Vitesse du premier signal	Ondes guidées Epaisseur et propriétés matérielles
Périphériques	1 ^{ers} dispositifs clinique et recherche <i>Talon, Radius, Tibia</i>	Recherche et start-up Azalée <i>Radius, tibia</i>
Col du fémur	FemUS <i>Barkmann OI 2009</i> Thèse <i>Grondin 2010</i>	

Introduction	Principe de la méthode DORT 000	Propriétés matérielles 000000000000	Géométrie 000000000	Vers l'application à l'os 0000000
-			<u>_</u>	

Méthode standard

- Mesure de la densité osseuse par absorptiométrie biphotonique
- Insuffisant (mesure 2D, sans distinction cortical/trabéculaire)

Méthodes ultrasonores

Approche Sites de mesure	Premier signal Vitesse du premier signal	Ondes guidées Epaisseur et propriétés matérielles
Périphériques	1 ^{ers} dispositifs clinique et recherche <i>Talon, Radius, Tibia</i>	Recherche et start-up Azalée <i>Radius, tibia</i>
Col du fémur	FemUS <i>Barkmann OI 2009</i> Thèse <i>Grondin 2010</i>	?

Introduction	Principe de la méthode DORT	Propriétés matérielles	Géométrie	Vers l'application à l'os
	000	0000000000000	0000000000	0000000
Ondes	guidées			

• Onde stationnaire dans l'épaisseur de la plaque se propageant en étant guidée entre les frontières du guide

Introduction	Principe de la méthode DORT 000	Propriétés matérielles	Géométrie 0000000000	Vers l'application à l'os 0000000
Ondes	guidées			

- Caractéristiques des modes guidés
- $10 \begin{bmatrix} -c_1, c_7, e \\ 10 \end{bmatrix} \xrightarrow{(s_1, s_2)} 0 \xrightarrow{(s_1, s_2)} 0 \xrightarrow{(s_2, s_3)} 0 \xrightarrow{(s_3, s_3)} 0 \xrightarrow{($

 Onde stationnaire dans l'épaisseur de la plaque se propageant en étant guidée entre les frontières du guide

Introduction	Principe de la méthode DORT 000	Propriétés matérielles	Géométrie 0000000000	Vers l'application à l'os 0000000
Ondes (guidées			

Caractéristiques des modes guidés

 Onde stationnaire dans l'épaisseur de la plaque se propageant en étant guidée entre les frontières du guide

• Ces modes dépendent de l'épaisseur du guide et des propriétés matérielles

Introduction	Principe de la méthode DORT	Propriétés matérielles	Géométrie	Vers l'application à l'os
	000	0000000000000	0000000000	0000000
Ondes a	guidées			

Caractéristiques des modes guidés

 Onde stationnaire dans l'épaisseur de la plaque se propageant en étant guidée entre les frontières du guide

• Ces modes dépendent de l'épaisseur du guide et des propriétés matérielles

Introduction Principe de la méthode DORT Propriétés matérielles Géométrie Vers l'application à l'os

Particularités de la mesure au col du fémur

Introduction Principe de la méthode DORT Propriétés matérielles Géométrie Vers l'application à l'os

Particularités de la mesure au col du fémur

Particularités de la mesure au col du fémur

- Présence de tissus mous Mesure sans contact
- Forme complexe

Particularités de la mesure au col du fémur

- Présence de tissus mous Mesure sans contact
- Forme complexe

Exploitation des ondes se propageant dans la **circonférence** de la coque corticale

Introduction Principe de la méthode DORT Propriétés matérielles Géométrie Vers l'application à l'os

Diffusion des ondes acoustiques par un tube

Introduction Principe de la méthode DORT Propriétés matérielles Géométrie Vers l'application à l'os conconcesso Néthode de mesure pour le contrôle non-destructif

Mesures de courbes de dispersion avec la méthode DORT

- Décomposition de l'opérateur de retournement temporel
- Validé pour un <u>tube</u> <u>fin</u> <u>d'acier</u> rempli d'air

Prada et al. J. Acoust. Soc. Am (1998)

Mesures de courbes de dispersion avec la méthode DORT

- Décomposition de l'opérateur de retournement temporel
- Validé pour un <u>tube</u> <u>fin</u> <u>d'acier</u> rempli d'air

Prada et al. J. Acoust. Soc. Am (1998)

- Dimensions et propriétés matérielles
- Contenu de la cavité médullaire
- Géométrie

Introduction	Principe de la méthode DORT 000	Propriétés matérielles	Géométrie 0000000000	Vers l'application à l'os 0000000
Objecti	f			

Développer une méthode de mesure, adaptée de la méthode DORT, permettant de **caractériser** *in vivo* les **propriétés** de l'os **cortical** (épaisseur et propriétés matérielles) directement **au col du fémur**.

Plan

- 2 Principe de la méthode DORT
- 3 Prise en compte des propriétés matérielles de l'os
- Prise en compte de la géométrie de l'os
- 5 Vers l'application à l'os

Plan

Introduction

- Principe de la méthode DORT
 - Diffusion des ondes par un tube
 - Les étapes de la méthode DORT
- 3 Prise en compte des propriétés matérielles de l'os
- 4 Prise en compte de la géométrie de l'os
- 5 Vers l'application à l'os

$$\sin\theta(f) = \frac{c_0}{c_{\varphi}(f)}$$

$$\sin\theta(f) = \frac{c_0}{c_{\varphi}(f)}$$

Onde incidente et ondes circonférentielles générées Ondes circonférentielles rayonnées

$$\sin\theta(f) = \frac{c_0}{c_{\varphi}(f)}$$

Onde incidente et ondes circonférentielles générées Ondes circonférentielles rayonnées **Ondes reçues par la barrette...**

$$\sin\theta(f) = \frac{c_0}{c_\varphi(f)}$$

Onde incidente et ondes circonférentielles générées Ondes circonférentielles rayonnées Ondes reçues par la barrette...

$$\sin \theta(f) = \frac{c_0}{c_{\varphi}(f)}$$
$$\sin \theta(f) = \frac{d_{AB}(f)}{D}$$

Onde incidente et ondes circonférentielles générées Ondes circonférentielles rayonnées Ondes reçues par la barrette...

$$\sin \theta(f) = \frac{c_0}{c_{\varphi}(f)}$$
$$\sin \theta(f) = \frac{d_{AB}(f)}{D}$$

$$c_{\varphi}(f) = c_0 \frac{D}{d_{AB}(f)}$$

Introduction	Principe de la méthode DORT	Propriétés matérielles	Géométrie	Vers l'application à l'os	
000000000	●○○		0000000000	000000	
Diffusion des ondes par un tube					

Ondes circonférentielles rayonnées

Ondes reçues par la barrette...

...semblant provenir d'une source virtuelle B'

$$\sin \theta(f) = \frac{c_0}{c_{\varphi}(f)}$$
$$\sin \theta(f) = \frac{d_{AB}(f)}{D}$$

$$c_{\varphi}(f) = c_0 \frac{D}{d_{A'B'}(f)}$$

Marston et al., J. Acoust. Soc. Am., 1985

Ondes circonférentielles rayonnées

Ondes reçues par la barrette...

...semblant provenir d'une source virtuelle B'

$$\sin \theta(f) = \frac{c_0}{c_{\varphi}(f)}$$
$$\sin \theta(f) = \frac{d_{AB}(f)}{D}$$

$$c_{\varphi}(f) = c_0 \frac{D}{d_{A'B'}(f)}$$

Marston et al., J. Acoust. Soc. Am., 1985

Ondes circonférentielles rayonnées

Ondes reçues par la barrette...

...semblant provenir d'une source virtuelle B'

$$\sin \theta(f) = \frac{c_0}{c_{\varphi}(f)}$$
$$\sin \theta(f) = \frac{d_{AB}(f)}{D}$$

$$c_{\varphi}(f) = c_0 \frac{D}{d_{A'B'}(f)}$$

Marston et al., J. Acoust. Soc. Am., 1985

Introduction	

Principe de la méthode DORT

Propriétés matérielles

Géométrie

Vers l'application à l'os 0000000

La méthode DORT

Introduction 000000000	Principe de la méthode DORT ○●○	Propriétés matérielles	Géométrie 0000000000	Vers l'application

La méthode DORT

Introduction

Principe de la méthode DORT

Propriétés matérielles

Géométrie 0000000000 Vers l'application à l'os 0000000

La méthode DORT

Introduction 000000000	Principe de la méthode DORT ○●○	Propriétés matérielles	Géométrie 0000000000	Vers l'application

La méthode DORT

ntroduction	Principe de la méthode DORT ○●○	Propriétés matérielles	Géométrie 0000000000	Vers l'application à l'os 0000000
1 /.				

La méthode DORT

- Le phénomène est invariant par retournement temporel.
- Les vecteurs singuliers de la matrice de transfert correspondent aux invariants.
- 1 mode = 2 ondes guidées = 2 vecteurs singuliers

Prada et al. J. Acoust. Soc. Am. 1996, 1998

 Acquisition de la matrice de transfert (FFT des signaux rétro-diffusés par le cylindre)

Pierre Nauleau

Ondes guidées au col du fémur

Introduction	Principe de la méthode DORT	Propriétés matérielles	Géométrie	Vers l'application à l'os
000000000	○0●		0000000000	0000000
Les éta	pes de la méthod	e DORT		

- Acquisition de la matrice de transfert (FFT des signaux rétro-diffusés par le cylindre)
- 2 Décomposition en valeurs singulières

Introduction	Principe de la méthode DORT	Propriétés matérielles	Géométrie	Vers l'application à l'os
000000000	○0●		0000000000	0000000
Les étai	oes de la méthod	e DORT		

- Acquisition de la matrice de transfert (FFT des signaux rétro-diffusés par le cylindre)
- 2 Décomposition en valeurs singulières
- **③** Repropagation, à chaque fréquence, de vecteurs singuliers choisis

Introduction	Principe de la méthode DORT	Propriétés matérielles	Géométrie	Vers l'application à l'os
000000000	○0●	0000000000000	0000000000	0000000
Les étai	pes de la méthoc	le DORT		

- Acquisition de la matrice de transfert (FFT des signaux rétro-diffusés par le cylindre)
- 2 Décomposition en valeurs singulières
- **③** Repropagation, à chaque fréquence, de vecteurs singuliers choisis

Introduction	Principe de la méthode DORT	Propriétés matérielles	Géométrie	Vers l'application à l'os
000000000	○0●		0000000000	0000000
l es éta	pes de la méthod	e DORT		

- Acquisition de la matrice de transfert (FFT des signaux rétro-diffusés par le cylindre)
- Décomposition en valeurs singulières
- 8 Repropagation, à chaque fréquence, de vecteurs singuliers choisis
- Calcul de la vitesse de phase des ondes circonférentielles pour chaque fréquence

Plan

Introduction

- Principe de la méthode DORT
- Prise en compte des propriétés matérielles de l'os
 Fantôme rempli d'air
 Fantôme rempli de fluide
- 4 Prise en compte de la géométrie de l'os
- 5 Vers l'application à l'os

Introduction 000000000 Principe de la méthode DORT 000 Propriétés matérielles

Géométrie 0000000000 Vers l'application à l'os 0000000

Matériel et méthodes

Introduction	Principe de la méthode DORT	Propriétés matérielles	Géométrie	Vers l'application à l'os
000000000	000		0000000000	0000000
Sonde i	ıtilisée			

- 128 éléments
- 1 MHz
- Pré-focalisation cylindrique (F = 160 mm et L = 4 mm)

Introduction 000000000	Principe de la méthode DORT 000	Propriétés matérielles	Géométrie 0000000000	Vers l'application à l'os 0000000	
Sonde	utilisée				
• 128 é	léments		2		

- 1 MHz
- Pré-focalisation cylindrique (F = 160 mm et L = 4 mm)

Introduction	Principe de la méthode DORT	Propriétés matérielles	Géométrie	Vers l'application à l'os
00000000	000		0000000000	0000000
Sonde i	ıtilisée			

- 128 éléments
- 1 MHz
- Pré-focalisation cylindrique (F = 160 mm et L = 4 mm)

Introduction 000000000 Principe de la méthode DORT

Propriétés matérielles

Géométrie 0000000000 Vers l'application à l'os 0000000

Fantôme étudié

Propriétés géométriques

Diamètre : 26 mm Epaisseur : 2.1 mm

Propriétés matérielles

 $\begin{array}{l} \mbox{Atténuant} \\ \mbox{Vitesse longitudinale} : 2870 \ m \cdot \ s^{-1} \\ \mbox{Vitesse transverse} : 1520 \ m \cdot \ s^{-1} \\ \mbox{Masse volumique} : 1640 \ kg \cdot \ m^{-3} \end{array}$

Ondes guidées au col du fémur

26 Nov. 2013 18 / 45

Résultats sur le fantôme circulaire rempli d'air

5 modes sont observés...

- 5 modes sont observés...
- ... et identifiés : A, A_1 , S_1 , S_2 et A_0 .

- 5 modes sont observés...
- ... et identifiés : A, A_1 , S_1 , S_2 et A_0 .
- L'atténuation explique, en partie, pourquoi tous les modes ne sont pas observés.

Pierre Nauleau

- 5 modes sont observés...
- ... et identifiés : A, A_1 , S_1 , S_2 et A_0 .
- L'atténuation explique, en partie, pourquoi tous les modes ne sont pas observés.
- Il est difficile de mesurer les points proches des fréquences de coupure.

Plan

Introduction

- Principe de la méthode DORT
- Prise en compte des propriétés matérielles de l'os
 Fantôme rempli d'air
 Fantôme rempli de fluide
- 4 Prise en compte de la géométrie de l'os
- 5 Vers l'application à l'os

Fantôme rempli de fluide

• Coque corticale Même tube que précédemment

Moelle osseuse

Glycérol Impédance acoustique plus élévée Atténuation proche

Mayhew et al. Lancet, 2005

Fantôme rempli de fluide

• Coque corticale Même tube que précédemment

Moelle osseuse

Glycérol Impédance acoustique plus élévée Atténuation proche

	Glycérol	Moelle
Z (MRayl)	2.39	1.39
α (dB.cm ⁻¹)	0.2	0.15

Les ondes circonférentielles sont mélangées aux réflexions sur les parois.

Propriétés matérielles

Méthode de filtrage proposée

Nécessité d'un critère de séparation des différentes contributions

Méthode de filtrage proposée

Nécessité d'un critère de séparation des différentes contributions

- Les branches associées aux réflexions convergent vers l'axe central lorsque la fréquence augmente
- Les branches associées aux ondes circonférentielles divergent de l'axe central.

Analyse de la contribution des réflexions

Simulation de la diffusion des ondes par un tube de matériau fictif très atténuant

Analyse de la contribution des réflexions

• Décroissance de la largeur de la tâche focale avec la fréquence

• Alignement des taches focales autour de la première

Introduction	Principe de la méthode DORT	Propriétés matérielles	Géométrie	Vers l'application à l'os
000000000	000	○○○○○○○○○○○	0000000000	0000000
Origine du critère proposé-2				

Analyse de la contribution des ondes guidées

• Décroissance de la vitesse de phase avec la fréquence

Analyse de la contribution des ondes guidées

- Décroissance de la vitesse de phase avec la fréquence
- Proportionnalité inverse entre la distance d_{AB} et la vitesse de phase

• Un certain nombre de modes sont observés...

- Un certain nombre de modes sont observés...
- et identifiés (mais plus difficilement).

- Un certain nombre de modes sont observés...
- et identifiés (mais plus difficilement).
- L'atténuation explique pourquoi certains modes ne sont pas observés.

- Un certain nombre de modes sont observés...
- et identifiés (mais plus difficilement).
- L'atténuation explique pourquoi certains modes ne sont pas observés.
- Le principe de la méthode explique pourquoi les branches sont plus petites que dans le cas du tube vide.

Pierre Nauleau

Ondes guidées au col du fémur

Résultats sur le fantôme circulaire rempli de glycérol

- Un certain nombre de modes sont observés...
- et identifiés (mais plus difficilement).
- L'atténuation explique pourquoi certains modes ne sont pas observés.
- Le principe de la méthode explique pourquoi les branches sont plus petites que dans le cas du tube vide.

Plan

1 Introduction

Principe de la méthode DORT

3 Prise en compte des propriétés matérielles de l'os

- Prise en compte de la géométrie de l'os
 - Forme de l'os
 - Variation d'épaisseur

5 Vers l'application à l'os

Si la section de la coque n'est plus circulaire,

• les points de rayonnement apparent ne sont plus nécessairement situés sur l'axe médian du tube...

• ...et la relation n'est plus valable.

Introduction 000000000	Principe de la méthode DORT 000	Propriétés matérielles	Géométrie 0●00000000	Vers l'application à l'os
Méthod	le proposée : Loc	calisation des	points de	

Hypothèse : Les points de rayonnement apparent sont situés aux centres de courbure des fronts d'ondes rayonnées.

Pour une géometrie donnée, pour chaque vitesse de phase possible, on calcule :

• l'équation du front d'onde rayonnée

 $\sin \beta = \frac{\mathbf{c_0}}{\mathbf{c}_{\phi}}$

Introduction	Principe de la méthode DORT	Propriétés matérielles	Géométrie	Vers l'application à l'os
000000000	000		0●00000000	0000000
Méthod	le proposée : Loc	calisation des	points de	

Hypothèse : Les points de rayonnement apparent sont situés aux centres de courbure des fronts d'ondes rayonnées.

Pour une géometrie donnée, pour chaque vitesse de phase possible, on calcule :

- l'équation du front d'onde rayonnée
- les centres de courbure du front d'onde rayonnée

Hypothèse : Les points de rayonnement apparent sont situés aux centres de courbure des fronts d'ondes rayonnées.

Pour une géometrie donnée, pour chaque vitesse de phase possible, on calcule :

- l'équation du front d'onde rayonnée
- les centres de courbure du front d'onde rayonnée

Hypothèse : Les points de rayonnement apparent sont situés aux centres de courbure des fronts d'ondes rayonnées.

Pour une géometrie donnée, pour chaque vitesse de phase possible, on calcule :

- l'équation du front d'onde rayonnée
- les centres de courbure du front d'onde rayonnée reçu par la barrette

30 / 45

 Paramétrisation de la position des points de rayonnement apparent par la vitesse de phase

Méthode proposée : Détermination de la vitesse de phase

- Paramétrisation de la position des points de rayonnement apparent par la vitesse de phase
- Superposition, à chaque fréquence, des images de repropagation

Méthode proposée : Détermination de la vitesse de phase

- Paramétrisation de la position des points de rayonnement apparent par la vitesse de phase
- Superposition, à chaque fréquence, des images de repropagation
- Détermination de la vitesse de phase des ondes guidées se propageant effectivement à cette fréquence

Géométrie

Méthode proposée : Détermination de la vitesse de phase

Pierre Nauleau

26 Nov. 2013 31 / 45

Introduction	Principe de la méthode DORT	Propriétés matérielles	Géométrie	Vers l'application à l'os
00000000	000		000€000000	0000000
Fxnérie	nces réalisées			

Fantôme Matériau imitant l'os Epaisseur : 1 mm

⊡paisseur : 1 mm Dmin : 24 mm Dmax : 32 mm

Introduction	Principe de la méthode DORT	Propriétés matérielles	Géométrie	Vers l'application à l'os
000000000	000	0000000000000	000●000000	0000000
Expérie	nces réalisées			

Expérience

Fantôme Matériau imitant l'os Epaisseur : 1 mm Dmin : 24 mm Dmax : 32 mm Immergé Rempli d'air Rempli d'eau

Introduction	Principe de la méthode DORT	Propriétés matérielles	Géométrie	Vers l'application à l'os
000000000	000		000●000000	0000000

Expériences réalisées

I	Dmax
	×Th

Expérience

Simulation

Cassereau, Nauleau et al. Ultrasonics 2013

Fantôme Matériau imitant l'os Epaisseur : 1 mm Dmin : 24 mm Dmax : 32 mm Immergé Rempli d'air Rempli d'eau

Résultats sur les fantômes elliptiques

- Trois modes sont observés.
- L'écart aux hautes vitesses est dû à la répartition non linéaire des vitesses.

- Trois modes sont observés. ٠
- L'écart aux hautes vitesses est dû à la répartition non linéaire des vitesses.

Introduction Principe de la méthode DORT Propriétés matérielles Géométrie Vers l'application à l'os ocoocococo coo coco cocococococo cococo cocococo

Résultats sur les fantômes elliptiques

- Trois modes sont observés.
- L'écart aux hautes vitesses est dû à la répartition non linéaire des vitesses.
- Les modes sont identifiés, ce qui valide la méthode.

Ondes guidées au col du fémur

Plan

1 Introduction

Principe de la méthode DORT

3 Prise en compte des propriétés matérielles de l'os

- Prise en compte de la géométrie de l'os
 - Forme de l'os
 - Variation d'épaisseur

5 Vers l'application à l'os

Fantôme étudié : ellipse d'épaisseur variable

• Différence de sollicitation mécanique

00000000	000	0000000000000	0000000000	0000000
Introduction	Principe de la méthode DORT	Propriétés matérielles	Géométrie	Vers l'application à l'os

Fantome étudie : ellipse d'épaisseur variable

- Différence de sollicitation mécanique
- Théorie des modes adiabatiques La vitesse de phase s'adapte à l'épaisseur locale du guide

- Le traitement proposé précédemment s'applique a priori.
- On exploite uniquement la simulation par la suite.

Courbes de dispersion

Courbes de dispersion

• Les courbes de dispersion correspondent à celles d'une plaque d'épaisseur 1 mm.

Analyse des ondes se propageant dans le sens anti-horaire

Courbes de dispersion

• Les courbes de dispersion correspondent à celles d'une plaque d'épaisseur 1 mm.

 Dans la zone d'épaisseur variable, la vitesse de phase s'adapte à l'épaisseur locale.

Analyse des ondes se propageant dans le sens anti-horaire

0.8

0.6

0.4

0.2

Courbes de dispersion

• Les courbes de dispersion correspondent à celles d'une plaque d'épaisseur 1 mm.

- Dans la zone d'épaisseur variable, la vitesse de phase s'adapte à l'épaisseur locale.
- Dans la zone d'épaisseur constante, d'où émergent les ondes observées, la vitesse de phase ne varie plus.

Introduction 00000000	Principe de la méthode DORT 000	Propriétés matérielles	Géométrie ○○○○○○○○	Vers l'application à l'os
Intérêt	pour notre applic	ation		

On pourrait déterminer relativement aisément l'épaisseur dans la moitié supérieure du fantôme.

Introduction 00000000	Principe de la méthode DORT 000	Propriétés matérielles	Géométrie ○○○○○○○○○●	Vers l'application à l'os
Intérêt	pour notre applic	ation		

On pourrait déterminer relativement aisément l'épaisseur dans la moitié supérieure du fantôme.

• L'épaisseur est effectivement constante dans la coque supérieure du col.

Introduction	Principe de la méthode DORT	Propriétés matérielles	Géométrie	Vers l'application à l'os
000000000	000		○○○○○○○○○●	0000000
Intérêt	pour notre applie	cation		

On pourrait déterminer relativement aisément l'épaisseur dans la moitié supérieure du fantôme.

- L'épaisseur est effectivement constante dans la coque supérieure du col.
- Cette épaisseur permet de **discriminer** les patients **sains** des patients **fracturés**. *Carballido-Gamio et al., JBMR, 2013*

Plan

1 Introduction

- Principe de la méthode DORT
- 3 Prise en compte des propriétés matérielles de l'os
- 4 Prise en compte de la géométrie de l'os
- 5 Vers l'application à l'os
 - Application à un fantôme de forme réaliste
 - Application in vivo

Fantôme de forme réaliste

Fantôme de forme réaliste

Pierre Nauleau

Ondes guidées au col du fémur

Introduction 000000000	Principe de la méthod 000	e DORT	Propriétés matérielles	Géométrie 000000000	Vers l'application à l'os

Lieux des centres de courbure

Lieux des centres de courbure

• Difficulté à distinguer les différentes vitesses

Lieux des centres de courbure

- Difficulté à distinguer les différentes vitesses
- Forte variabilité selon l'orientation de la coque

Lieux des centres de courbure

- Difficulté à distinguer les différentes vitesses
- Forte variabilité selon l'orientation de la coque
- Nécessité de définir, avant la mesure, la meilleure position d'observation

• Images « bruitées »en raison de la répartition des centres de courbure

- Images « bruitées » en raison de la répartition des centres de courbure
- Modèle de plaque d'épaisseur constante

Des portions de courbes de dispersion des ondes circonférentielles ont été observées expérimentalement et/ou en simulation...

• ... sur un fantôme d'os circulaire vide en utilisant des signaux spécifiques d'excitation ;

(Nauleau et al. JASA 2012)

Des portions de courbes de dispersion des ondes circonférentielles ont été observées expérimentalement et/ou en simulation...

- ... sur un fantôme d'os circulaire vide en utilisant des signaux spécifiques d'excitation; (Nauleau et al. JASA 2012)
- ... sur un fantôme d'os rempli de fluide en utilisant un traitement du signal spécifique;

(Nauleau et al. JASA, en révision)

Conclusion : bilan des méthodes développées

Des portions de courbes de dispersion des ondes circonférentielles ont été observées expérimentalement et/ou en simulation...

Propriétés matérielles

- sur un fantôme d'os circulaire vide en utilisant des signaux spécifiques d'excitation; (Nauleau et al. JASA 2012)
- ... sur un fantôme d'os rempli de fluide en utilisant un traitement du signal spécifique;

(Nauleau et al. JASA, en révision)

• ... sur un fantôme d'os de section elliptique en analysant le rayonnement des ondes guidées par cet objet;

Vers l'application à l'os

000

26 Nov. 2013 43 / 45

Conclusion : bilan des méthodes développées

Des portions de courbes de dispersion des ondes circonférentielles ont été observées expérimentalement et/ou en simulation...

Propriétés matérielles

- ... sur un fantôme d'os circulaire vide en utilisant des signaux spécifiques d'excitation; (Nauleau et al. JASA 2012)
- ... sur un fantôme d'os rempli de fluide en utilisant un traitement du signal spécifique; (Nauleau et al. JASA, en révision)
- ... sur un fantôme d'os de section elliptique en analysant le rayonnement des ondes guidées par cet objet ;
- ... dans la coque supérieure d'un fantôme d'os de forme réaliste.

Vers l'application à l'os

000

• Le col du fémur est supposé être un cas intermédiaire entre le tube vide et le tube uniquement rempli de fluide.

Introduction	Principe de la méthode DORT	Propriétés matérielles	Géométrie	Vers l'application à l'os
000000000	000	0000000000000	0000000000	
Conclus	ion : application	à l'os		

• Le col du fémur est supposé être un cas intermédiaire entre le tube vide et le tube uniquement rempli de fluide.

• La zone susceptible d'être caractérisée est la zone d'où rayonne l'onde guidée reçue par la sonde.

Introduction	Principe de la méthode DORT	Propriétés matérielles	Géométrie	Vers l'application à l'os
000000000	000		000000000	○○○○○●○
Conclusion : application à l'os				

• Le col du fémur est supposé être un cas intermédiaire entre le tube vide et le tube uniquement rempli de fluide.

• La zone susceptible d'être caractérisée est la zone **d'où rayonne** l'onde guidée reçue par la sonde.

• Il est nécessaire de **connaître la forme** externe du col et **sa position** par rapport à la sonde.

Introduction 000000000	Principe de la méthode DORT 000	Propriétés matérielles	Géométrie 0000000000	Vers l'application à l'os
Conclus	ion : application	à l'os		

- Le col du fémur est supposé être un cas intermédiaire entre le tube vide et le tube uniquement rempli de fluide.
- La zone susceptible d'être caractérisée est la zone **d'où rayonne** l'onde guidée reçue par la sonde.
- Il est nécessaire de **connaître la forme** externe du col et **sa position** par rapport à la sonde.
- Le col du fémur est une structure tridimensionnelle.

Principe de la méthode DORT	Propriétés matérielles	Géométrie	Vers l'application à l'os
			000000

Merci pour votre attention

Evolution des courbes sous l'effet d'une variation réaliste d'épaisseur

Problème posé par l'atténuation intrinsèque du matériau

Emission d'une impulsion brève par l'élément central (Simulation)

Problème posé par l'atténuation intrinsèque du matériau

Emission d'une impulsion brève par l'élément central (Expérience)

Réduction du niveau de bruit

Augmentation du niveau de signal

Réduction du niveau de bruit

• Moyennage des signaux reçus après 20 émissions successives identiques Augmentation du niveau de **signal**

Réduction du niveau de bruit

• Moyennage des signaux reçus après 20 émissions successives identiques Augmentation du niveau de signal

- Emissions par l'ensemble des éléments simultanément
- Emission d'un signal plus énergétique qu'une impulsion

Réduction du niveau de bruit

- Moyennage des signaux reçus après 20 émissions successives identiques Augmentation du niveau de signal
 - Emissions par l'ensemble des éléments simultanément
 - Emission d'un signal plus énergétique qu'une impulsion

Fenêtrage des signaux enregistrés/simulés

- Fenêtrage des signaux enregistrés/simulés
- 2 Sélection des $6 \times 2 = 12$ premières valeurs et vecteurs singuliers

Pierre Nauleau

- Fenêtrage des signaux enregistrés/simulés
- 2 Sélection des $6 \times 2 = 12$ premières valeurs et vecteurs singuliers
- 8 Repropagation des vecteurs singuliers choisis

- Fenêtrage des signaux enregistrés/simulés
- 2 Sélection des $6 \times 2 = 12$ premières valeurs et vecteurs singuliers
- 8 Repropagation des vecteurs singuliers choisis
- Galcul des nombres d'ondes et vitesses de phase correspondantes

• Chaque élément reçoit le mode guidé avec une vitesse de phase différente.

- Chaque élément reçoit le mode guidé avec une vitesse de phase différente.
- La barrette ne voit qu'une partie de la coque.

Nécessité de définir une nouvelle approche

• On ne peut associer les taches focales à une vitesse de phase donnée.

Nécessité de définir une nouvelle approche

- On ne peut associer les taches focales à une vitesse de phase donnée.
- On **ne peut** donc pas **obtenir** de portions de **courbes de dispersion**.

Nécessité de définir une nouvelle approche

- On ne peut associer les taches focales à une vitesse de phase donnée.
- On ne peut donc pas obtenir de portions de courbes de dispersion.
- Néanmoins, on peut déterminer à quel mode correspond chaque tache focale.

