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This thesis presents our work about information dissemination in large-scale
networks. The probabilistic gossip algorithms are studied over random topologies,
which model many typical distributed applications. We have �rstly introduced a
new parameter denoted E�ectual Fanout, to uniformly evaluate the di�erent gossip
algorithms over the random graphs. Then, an e�cient dissemination algorithm is
proposed for scale-free topologies that are representative of some social networks.

In this chapter, the motivation of the thesis is presented in 1.1. Section 1.2
introduces two families of gossip protocols, while the impact of topology over gossip
algorithms' performance is pointed out in Section 1.3. Two main contributions of
our work are stated in Section 1.4. Finally, Section 1.5 shows the road map of the
following chapters.

1.1 Motivation

In this thesis, we focus on one of the basic problems in many distributed systems
and applications: information dissemination in large-scale networks. More precisely,
a message generated by a source site in a considerably wide system should be broad-
casted to all other sites throughout the network by successive retransmissions. For
example, in an RSS delivery system, to achieve a desirable quality of service, an up-
dated stream from any publisher needs to notify every site when the dissemination
ends.

Information dissemination is an important subject, as well as a di�cult issue for
the large-scale networks since the past decades. A large number of gossip algorithms
have been proposed to deal with it. However, as far as we know, there was not a
general method to compare the gossip algorithms. Therefore, in the �rst step of our
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research, we gave a method to conduct a fair comparison of some principle gossip
algorithms. We have observed di�erent dissemination power that widely used gossip
algorithms have over various random graphs, which typically model peer-to-peer
system, sensor network, and social network. We thus introduced a new parameter
denoted E�ectual Fanout to uniformly quantify such a power. Then, the impact of
the topology on the performance is fairly compared for the gossip algorithms with
di�erent natures of pre-con�gured input parameters. This gives us insight how to
combine the gossip algorithm and the topology to have the best gain in terms of
reliability.

Since the global choice of pre-speci�ed input parameter for gossip algorithms is
not always feasible for gossip algorithms, in the second step, we proposed an e�cient
distributed gossip algorithm that detects and exploits property of the underlying
network topology, which is a scale-free network, to take retransmission decision. It
outperforms some classic gossip algorithms.

1.2 Gossip Protocols

The most straightforward distributed solution for information dissemination is the
pure �ooding protocol [82]. Basically, every site forwards the message that has
been received for the �rst time to all its neighbors. In principle, when the mes-
sage dissemination �nishes, 100% of the sites have delivered a copy of the message.
Nevertheless, actually, broadcast storm [111] may occur. It is a phenomenon that
extreme amounts of broadcast messages are generated in the network, which can
turn to a serious bottleneck, entailing for instance network congestion and message
loss, hindering normal retransmissions within the large-scale broadcast.

In order to minimize the above drawbacks, many optimized gossip protocols have
been provided, such that a study �eld of gossiping or epidemics algorithms emerges.
For instance, upon a disease contagion, every contaminated site randomly infects
some of its neighbors. After some time, the epidemics will sweep through the whole
system, whereas global information about every site infection is never required.
The e�ectiveness of gossip algorithms can be evaluated by some metrics, such as
reliability, message complexity, and latency [65, 86, 92]. When the information
dissemination �nishes, the reliability measures the percentage of messages received
by all the sites in the system; the message complexity expresses the average message
redundancy in every site; and latency de�nes the time required to send a message
from the source site to the last site that delivers the message.

There are three basic approaches for dissemination algorithms that are presented
in [35]. They are respectively push, pull, and push-pull algorithms. Push algorithms
allow every site to push a message to its neighbors, while in pull algorithms, every
site asks its neighbors to send it missing messages if they have. Push-pull algorithms
in turn combine the two methods correspondingly into two phases to disseminate
information. As shown in the literature, the pull algorithm is di�cult to implement
[86], and constraints of push-pull algorithm mainly consist in its push phase [78].
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We thus concentrate our work on push algorithms. We discuss in the future work
how our solution can leverage the performance of push-pull algorithms in our future
work.

Basically, push algorithms require some sites of the system to be responsible
for relaying message to some of their neighbors. In contrast to the pure �ooding,
they substantially reduce duplicated messages during message dissemination. On
the other hand, as there are usually many paths from the source to every site,
protocols that choose the optimal ones are able to ensure high reliability with low
message complexity (i.e., in an ideal case the message reaches every site at the
end of the dissemination). Moreover, the latency also catches a great attention.
However, as shown in [92], there are trade-o�s amongst reliability, latency, and
message redundancy. The avoidance of message transmission over some channels of
a network can eliminate some short routes from the source site to every site, or even
cut the unique path between them. In this case, both the reliability and the latency
would degrade. Therefore, an e�cient dissemination algorithm must provide high
reliability, while minimizing both message redundancy and latency. To this end, a
large sum of literature answers how to e�ciently choose such forwarding sites and
forwarded neighbors to satisfy application constraints.

The decision of such a forwarding scheme is either carried out in a deterministic
or probabilistic way. The former can ensure high reliability, but its implementation
is commonly very hard (e.g., some of them are proved to be NP-hard to reach the
optimal performance). For the latter, it lightly takes advantage of local information
of the sites in one-hop or two-hop neighborhood, while the reliability depends on
the choice of their pre-con�gured input parameters.

1.2.1 Deterministic Gossip Protocols

Generally, there are two principal approaches behind the deterministic gossip al-
gorithms: neighbor coverage based algorithms [96, 143] and dominating sets based

algorithms [152, 153]. In the former, a site forwards the message if some of its
neighbors cannot receive the message from other sites. Thus, it ensures that every
site can receive the message before the end of dissemination. On the other hand, it
reduces message complexity compared to the pure �ooding. The second principle
exploits the fact that every site is either in a forwarding list or at least one of its
neighbors is in the list. Thereby, if the sites in such a list are connected, all of them
are thus connected, which ensures reliable information dissemination. Yet, both
principles are proved to be NP-complete problems.

There are some other heuristical techniques to implement the gossip algorithm.
Resource aware algorithms [97, 139] take the site resource availability (e.g., battery
energy) into consideration, when deciding whether to relay the message. Cross-layer
designs are thus required, which is not trivial at all.

Radius based algorithms [23, 141] help every site �ne-tune its radius to minimize
overlap of neighboring sites' transmission region. Latency may increase, since the
message that could have been transmitted from one site to another in merely one hop
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must cross several hops whose transmission ranges are shorter than before. Finally,
counter based algorithms [87] use the number of duplicated copies overheard in every
site to determine retransmission policies. It is simple, though their reliability is not
ensured on arbitrary topology.

1.2.2 Probabilistic Gossip Protocols

Probabilistic algorithms are widely applied either to overlay networks [47, 52, 86], as
well as wireless ad-hoc and sensor networks [15, 61, 65, 132, 145]. Simply with the
information of the one-hop neighbors, probabilistic gossip algorithms mitigate the
undesirable broadcast storm phenomenon [54] by reducing at random the number
of edges over which messages are transmitted [32, 51, 61, 86] or by forwarding
messages with some probability [65]. Despite such advantages, probabilistic gossip
protocols do not always ensure 100% of reliability (i.e., all sites receive the message
by the end of the dissemination). Moreover, neither the probability nor the size
of randomly chosen subset of edges to forward the message can be easily pre-�xed.
Consequently, the probabilistic algorithms found in the literature mainly focus on
how to �nely tune the input parameters of di�erent natures in order to �nd a good
trade-o� between the reliability and message complexity. A percolation phenomenon
has been observed: above some threshold of message complexity, a zero reliability
immediately goes close to 100%, which is in accordance with the percolation theory
[63].

There are three principal probabilistic gossip families, which we denote (1) Fixed
Fanout Gossip (GossipFF ) [86], (2) Probabilistic Edge Gossip (GossipPE ) [132],
and (3) Probabilistic Broadcast Gossip (GossipPB) [65]. Many other probabilistic
broadcast protocols are based on these gossip algorithms (see Section 2.4.3). Gos-
sipFF , has as input, the fanout which is the number of randomly selected neighbors
that a site should send a message. In GossipPE , based on an input probability pa-
rameter, a site randomly chooses those edges over which received message should be
retransmitted. In GossipPB , the input parameter de�nes the probability with which
a site broadcasts the message to all its neighbors. In addition, in this work, Degree
Dependent Gossip (GossipDD) [32, 51, 61] is an improved version of GossipPB . It
pre-speci�es a degree threshold value. If a site degree is greater than this value, its
retransmission probability is di�erent from the case where the site degree is smaller
than the threshold value.

Unlike deterministic gossip algorithms, probabilistic algorithms highlight their
simplicity, scalability, and high reliability [54, 144], which is required by many ap-
plications in large-scale systems.

1.3 Impact of the Topology

It should be pointed out that an e�cient gossip algorithm in one network may be
ine�cient in another, due to the di�erent properties of the underlying graph.
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The edge dependency or clustering coe�cient, for instance, is an important graph
property, which has a signi�cant impact over gossip algorithms. It expresses which
sites in a graph tend to cluster together (see Section 2.3). In wireless ad-hoc net-
works, it is large, while social networks have a very low edge dependency.

In [53], the authors exploit this property to propose an algorithm for wireless
ad-hoc network, where the fewer the number of neighbors of a site, the higher the
probability that such a site forwards its �rst time received message. It outperforms
some classic gossip algorithms, while taking advantage of the graph's property that,
in such a network, low degree sites are clustered together, as well as high degree
sites. Therefore, if a low site does not retransmit the message, it is highly probable
that some of its neighbors will never get it later. On the other hand, a high degree
site may waste retransmission copies, if its forwarding probability is large, since its
neighbors may have many opportunities to receive the message from other sites.

Contrarily, this approach cannot be applied for a social network with low edge
dependency, where low degree sites are commonly connected to sites with high
degree. Every new participant of social network usually becomes friend with popular
people, who becomes, therefore, more popular. Thereby, the popular participants
compose the heart of the network. Moreover, if the latter do not gossip the message
at all, the communication system might be partitioned, since some of their friends
that are solely acquainted with them will never receive it. Thereby, sites with
higher number of neighbors should retransmit messages with greater probability in
this topology.

1.4 Contributions

In this thesis, we are interested in the impact of topologies over the performance
of gossip algorithms. Three distinct random topologies have been studied, as they
model typical networks for real applications. Bernoulli (or Erd®s-Rényi) graph [45]
is applied to model the overlay of peer to peer system in [86], since every site in-
dependently connects to each other with certain probability. Random geometric
graph [7, 119] is extensively used to simulate wireless ad-hoc environment [65]. All
sites are uniformly distributed at random in an area at �rst. Each site has, there-
fore, limited signal transmission region, which is generally considered as a disc with
certain radius. Finally, a scale-free topology generated by Barabási-Albert model
represents social networks [6]. It is based on preferential attachment social behavior
as in Facebook and Twitter [39]. In such networks, the new users tends to connect
to popular participants who have a great number of neighbors rather than a per-
son with very few friends. Having understood their speci�c characteristics for each
graph, we are able to evaluate the impact of their properties over gossip algorithms.

In the context of information dissemination over large-scale networks, this thesis
has two main contributions.

Contribution 1: Both the con�guration parameters of a probabilistic gossip
algorithm and the properties of the underlying random topology on top which it
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executes (e.g., edge dependency) have an impact on the performance of the algo-
rithms. For example, the number of messages retransmitted by a probabilistic gossip
algorithm depends not only on its respective input parameters (e.g., the number of
target neighbors for reception, or the probability of forwarding), but also on the
graph's degree distribution (i.e., the fraction of sites having a speci�c number of
neighbors). Nonetheless, the nature of such parameters is very di�erent, as well as
the properties of the graph. Aiming at conducting a fair uniform comparison of gos-
sip algorithms over the random topologies, it is necessary to be enabled to evaluate
the interaction between the gossip algorithms and random topologies for the sake of
performance. We have, therefore, introduced a new parameter, denoted E�ectual
Fanout. For a �xed topology and gossip algorithm, the e�ectual fanout character-
izes the mean dissemination power of the sites that have received the message from
the source site. It is used to theoretically analyze the in�uence of topology over
the performance of gossip algorithms. Performance evaluation metrics are tightly
related to its value. Thanks to the e�ectual fanout concept, it is possible to de�ne
the reliability of gossip algorithms as a function of the algorithm's input parameters.

Contribution 2: Notwithstanding the simplicity exhibited in the probabilis-
tic gossip algorithms, we argue that the choice of optimum values, for the input
parameters of a gossip algorithm at initialization phase is not feasible for gossip
algorithms in networks whose structure is unknown. Therefore, after having stud-
ied the impact of random topologies on the performance of gossip algorithms, we
focus our work on scale-free graphs that model social networks, web, and complex
networks, where some sites named hubs have much more dissemination power than
the others. By exploiting the information given by neighbors in every site, we pro-
posed an algorithm that, without any pre-�xed input argument, can automatically
detect hubs in a distributed way. By a simple hub connection phase, the algorithm
eventually guarantees that all hubs are well connected and every site has at least
one hub or a forwarder in its one-hop neighborhood. Then, solely the hubs and
forwarders take charge of message retransmissions. The reception of message by all
sites is ensured in the end of information dissemination phase. The number of re-
dundant messages is signi�cantly reduced, which is even more outstanding than the
probabilistic gossip algorithms. Latency is also reduced, when compared to other
probabilistic algorithms, since hubs create many short-cuts.

1.5 Road Map

The road map of this thesis is organized as follows.

Chapter 2 gives the state of the art about gossip algorithms and dissemination of
information where performance evaluation metrics, random networks, and existing
information dissemination algorithms are addressed.

In Chapter 3, we present a thorough performance comparison of three widely
used probabilistic gossip algorithms over well-known random graphs. These graphs
represent some large-scale network topologies: Bernoulli (or Erd®s-Rényi) graph,
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random geometric graph, and scale-free graph. In order to conduct such a fair
comparison, particularly in terms of reliability, we propose a new parameter, called
e�ectual fanout. It enables to make an accurate analysis of the behavior of a gossip
algorithm over a topology. Furthermore, it simpli�es the theoretical comparison of
di�erent gossip algorithms on the topology. Based on extensive experiments on top
of OMNET++ simulator, which make use of the e�ectual fanout, we discuss the
impact of topologies and gossip algorithms on performance, and how to combine
them to have the best gain in terms of reliability.

Chapter 4 presents a new dissemination algorithm suitable for scale-free random
topologies which model some complex real world networks. In these topologies, some
sites, denoted hubs, have many more connections than the others. By exploiting
then the dissemination power of hubs, we propose a new gossip algorithm. Our
algorithm o�ers a very high reliability and does not require any input parameter
value that informs each site if it is a hub or not. Such information is deduced by
every site during the algorithm execution. Compared to well-known probabilistic
gossip algorithms, performance simulation results show that our algorithm presents
good performance in terms of message complexity and latency.

Finally, Chapter 5 concludes our work and gives some perspectives for future
work.
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2.1 Introduction

Information dissemination is essential for many distributed systems and applica-
tions, including large-scale ones. Basically, if sites have not direct connection to all
others, a source site attempts to broadcast messages to all the other sites across
the network by successive retransmissions. For example, the Usenet newsgroup
servers spread post. Many routing protocols [15, 102] also rely on communications
amongst routers to exchange the up-date tra�c information, thereby improving
routing tables. Another important application comes from the area of unstructured
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peer-to-peer computing. In order to successfully locate an object, which has been
replicated throughout the network, a typical solution is to apply to a kind of query
broadcast [103].

The principle behind information dissemination mimics the spread of epidemics,
which in [49], is denoted epidemic information dissemination. It is similar to a
contagious disease which is transmitted one by one from a sick person to a large
population. During transmission, even though many infected people either die before
infecting others, or are immunized, such epidemics are still able to be propagated
across populations. This phenomenon is analyzed by Susceptible-Infection-Recovery
(SIR) model in [78]. More precisely, di�erential equations are established to follow
the rate of site contamination and immunization in a large-scale system.

Another close analogy for such an information dissemination is the rumor gos-
siping in social network [78]. A person is aware of some news, and tells it to some
others, who in turn, continue to gossip it around, and so forth. In the end, the news
is di�used to everyone in the society.

Due to these analogies, in the sequel, epidemiological and gossip terminology is
interchangeable in the thesis. Sites that have received at least once the message are
denoted infected sites, while those that received no message are denoted isolated
sites hereafter.

Other than controlling [93] or resisting [135] such a propagation of disease or
rumor, the distributed applications in which we are interested, require a dissemina-
tion protocol that e�ciently broadcasts messages as far and as soon as possible. In
other words, it provides high reliability, which expresses the percentage of broad-
cast messages that are received by all sites of the system, with both low latency and
message complexity.

A straightforward but ine�cient method to disseminate information throughout
the network is using pure �ooding protocol [82] which does not require global view
of the system. In this protocol, upon the �rst reception of a message, every site of
the network relays it once to its neighbors. The ine�ciency of such an approach
is due to the fact that a very large number of messages may be generated, which
entails broadcast storm problems [111].

Di�erent types of dissemination protocols aim at resolving such a storm prob-
lem in a more scalable and reliable way. More precisely, only some sites in the
system forward the message to some of their neighbors, which can still ensure that
every site delivers the message by the end of the dissemination. To evaluate such
improvement in contrast to the pure �ooding, many metrics have been employed,
which will be addressed in Section 2.2. For example, message redundancy is thus re-
duced. In Section 2.3, three families of random topologies are introduced. They are
Bernoulli graph, random geometric graph, and scale-free graphs, whose properties
are exploited in our study. Then, in Section 2.4, we classify the gossip protocols.
However, the underlying topologies restrict the choice of the forwarding sites and
their forwarded neighbors, having thus an important impact on the performance of
gossip algorithms. For example, some site with only one neighbor must require such
a neighbor to forward a message. Otherwise, it will become an isolated site. In
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Section 2.5, we focus on four probabilistic gossip protocols used in our work.

2.2 General Metrics

In the context of information dissemination, many metrics have been used for per-
formance evaluation. There are principally three basic metrics: reliability, message
complexity, and latency. Achievement of a good reliability is a direct criterion of a
reliable information dissemination, which is presented in 2.2.1. As de�ned in Sec-
tion 2.2.2, message complexity mainly mesures redundant message copies generated
by gossip algorithms. Latency introduced in Section 2.2.3 is related to information
dissemination rate. Furthermore, some other metrics that are also used in some
speci�c contexts are shown in Section 2.2.4.

2.2.1 Reliability

De�nition 1: Reliability in [92] is de�ned as the percentage of correct sites in
a system that delivers a given broadcast message when dissemination ends. As
expected, ideal gossip protocols must be able to obtain a reliability of 100% despite
network omissions or site failures.

This de�nition also corresponds to Fraction of Sites that have received the
message in [65]. Then, in [147], without calculating the proportion, Number of
Infected Sites is taken as a straightforward performance metric. On the other
hand, in [35], a complementary metric, Residue, represents the number of non-
infected sites (i.e., the sites did not receive the message) when epidemic �nishes.
The main goal of gossip algorithm is to have such a residue as small as possible.

Besides considering the infected sites, some literature mesures the percentage of
experimentations that can have a given number of infected sites. For example, in
[16], Fraction of Executions expresses the percentage of experiment executions
to reach a certain Fraction of Sites that have delivered the message.

De�nition 2: In [48, 102], they let ∆ represent any pair of real numbers (ψ, ρ)

(ψ, ρ ∈ [0, 1]). A broadcast protocol is ∆-reliable, i� the three properties below are
simultaneously satis�ed with probability Ψ:

� Integrity : for any message m, every correct site delivers m at most once, and
only if m was previously broadcast by the source.

� Validity : if a correct site broadcasts a message, then it eventually delivers such
a message.

� ∆-Agreement : if a correct site delivers a message, then eventually at least a
fraction ρ of correct sites deliver such a message.

In this way, ρ is the same as the reliability that has been addressed at �rst,
while ψ indicates the probability that once a message is di�used by a correct site,
the fraction ρ of correct sites eventually deliver it.
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In [86], Atomic Broadcast1is de�ned as a broadcast where all sites in the
system deliver the message in end of its dissemination. Both the percentage of
such a broadcast and average fraction of infected sites in non-atomic broadcast are
evaluated in their work.

2.2.2 Message Complexity

Message Complexity generally indicates the number of redundant messages copies
received by every site. The higher the message complexity, the worse the e�ciency
of the gossip algorithm. In [92], they measured Relative Message Redundancy
(RMR). It captures the message overhead in a gossip broadcast protocol, which is
de�ned as:

RMR =
Ω

N − 1
− 1, (2.1)

where Ω is the overhead (i.e., the total number of messages exchanged during the
dissemination), and N is system size (i.e., the total number of sites in the system)
which is greater than 2 due to the fact that the denominator should not be zero.
In [3, 7], the total overhead Ω is straightly used without this constraint. The op-
timal value for RMR is 0, which means that no redundant copy of the message is
exchanged for each site. Contrarily, the higher its value, the poorer usage of net-
work resources. Due to the trade-o� between reliability and RMR, this metric is
solely comparable for protocols that exhibit similar reliability. Beyond it, in [87],
Number of Rebroadcasts is used to evaluate the number of sites that forward
message.

Control messages are ignored in this metric. The reason comes from the fact
that their size is typically smaller with regard to payload messages; they can usu-
ally be sent by delay and piggyback strategies, thereby saving the available network
resources. However, in [112], the Number of Control Packets can be also con-
sidered as metric. A similar evaluation on control overhead is also presented in
[90], since the authors believe that control communications can cause collision and
channel contention as well.

2.2.3 Latency

Latency is the time between the �rst and last instant that the broadcast message
is received (see [87]). In [92], they evaluate Last Delivery Hop (LDH), which
measures the number of hops required to deliver a message to all recipients, i.e., the
number of hops of the longest path among all the shortest paths from the source
to all other sites that received the message. Intuitively, this metric is related with
the diameter (see Section 2.3) of the network's topology. Its value should be mini-
mized in a dissemination protocol. Moreover, LDH can provide some comparative

1This notion is not the classic total order broadcast as introduced in many distributed systems

[34].
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measure relatively to the latency of information dissemination. For example, if all
retransmissions present the same latency, the total latency of a gossip broadcast is
the LDH multiplied by the per hop latency that is de�ned in [90]. As shown in
[86], like the trade-o� between reliability and RMR, the latency has a trade-o� with
redundant message.

2.2.4 Other Metrics

For some speci�c contexts, some other metrics should also be evaluated. For in-
stance, in [10], their analysis aims at obtaining fast data replication. Then, data
accuracy and exchange bu�er size are taken into account. A performance metric as
function of time is optimized in [109] for delay tolerant networks.

Furthermore, the reliability de�ned by the percentage of infected sites is mea-
sured in di�erent ways. In [81], Packet Delivery Ratio is considered, while in
[75], Reception Percentage is taken into account. In [7], they observed Giant
Component Size (GCS), which indicates the connectivity of a network. Thus,
when GCS is equal to 1, the entire network is connected, which implies that every
site has a message transmission path from the source site. This term is also de�ned
as Coverage in [90], or Reachability in [87].

Instead of counting the message copies in the network such as RMR to compare
the message complexity, some routing protocol comparisons in ad hoc networks
[108, 125, 154], directly study the average energy consumption at each site for every
message dissemination. Energy E�ciency de�ned in [90] evaluates the ratio of
the number of sites that received the message over the number of transmissions per
time. In [3], they compared Average Collision Rate that is the total number of
packets dropped resulting from the collisions at the MAC layer. Another metric,
Throughput was also used. It is de�ned as the total number of data packets
received (bytes) at destinations per second. In [2], the Normalized Throughput
is introduced. It normalizes the throughput by theoretical throughput. The authors
in addition, presented the Connectivity Success Ratio, that is the ratio of the
number of route reply packets received over the number of route request packets
transmitted at the source site. This metric indicates the success rate of establishing
paths.

In terms of latency, the End to End Delay is used in [88] to describe the
average delay that a data packet takes to travel from source to destination. This
metric includes all possible delays caused, such as bu�ering during route discovery
delay and queuing at the interface.

2.3 Large-scale Network Topologies

Three widely used networks have caught our attention for information dissemination:
peer-to-peer system overlay, wireless sensor network, and social network. See Figures
2.1(a), 2.1(b), and 2.1(c).
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(a) Peer-to-Peer System (b) Sensor Network (c) Social Network

Figure 2.1: Three real application networks

(a) Bernoulli Graph

ρ

(b) Random Geometric Graph

hubs

(c) Scale-Free Graph

Figure 2.2: Examples of the three random topologies with 30 sites and mean de-
gree=4

Their properties (e.g., degree distribution, edge dependency, etc.) are analyzed
by random graphs. Figures 2.2(a), 2.2(b), and 2.2(c) show Bernoulli (or Erd®s-
Rényi) graph B (N, pN ) [45], random geometric graph G (N, ρ) [119], and scale-free
graph S (N,m) [6] respectively. These random topologies model the peer-to-peer
system in [86], the wireless sensor network in [65], and the social network in [26]
respectively.

In the sequel, | l | denotes the size of set l. Pconnect(�) denotes the probability
that concerned sites are connected to each other.

A network underlying a large-scale dissemination system Π can be viewed
as a bidirectional or undirected graph. It is comprised of N sites (or vertices)
{s1, s2, · · · , sN}. The set of all si's neighbors that have an edge with si (i.e., si ∼ sj),
is denoted Λi and Vi =| Λi | denotes the degree of si. Of a given topology, we de�ne
three important graph's properties, which are the degree distribution, edge depen-
dency, and the diameter of a graph.

Degree Distribution, denoted P(k) is the fraction of sites with degree k in
the graph.

The corresponding degree distributions for the three random graphs are illus-
trated in Figure 2.3.

Then, we denote the mean degree as V̄ . Therefore, V̄ =
N−1∑
k=0

P (k) · k.
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The degree distribution expresses the distribution of dissemination power in a
given network.
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Figure 2.3: The degree distributions of the three random graphs

Edge Dependency (or Clustering Coe�cient), denoted C of a given
random graph, for distinct sites si,sj ,sk, is de�ned as the conditional probability
that, given the existence of edges si ∼ sk and sj ∼ sk, an edge si ∼ sj also exists
(i.e., Pconnect (si ∼ sj |si ∼ sk, sj ∼ sk)).

In [13, 110], the authors proposed an alternative de�nition that is widely used
to measure such a conditional probability. The local edge dependency at site si is
�rstly quanti�ed as

Ci =
number of triangles connected to si
number of triples centered on si

,

where a triple centered on si means an unordered pair of neighbors of si in an
undirected graph. Thereby, the denominator is Vi·(Vi−1)

2 . Figure 2.4 illustrates an
example. The edge dependency of a colored site si is derived in three di�erent cases,
where solely solid lines represent connected edges. Then, the edge dependency for
the whole graph is the average across all sites. Thus,

C =
1

N

N∑
i=1

Ci

.
This property has a high impact on the number of redundant copies received by

sites for pure �ooding broadcast, where the greater the edge dependency, the higher
the redundancy.

The Diameter of a graph is the longest length of shortest path amongst all
shortest path between any two sites in the graph.

In other words, a graph's diameter is the largest number of sites which must be
traversed in order to travel from any site to another one. Hence, as described in
Section 2.2.3, this property is closely related to the latency.

The di�erences in properties of the random graphs will be addressed in the next
sections, and they are also resumed in Table 2.1.
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Si 

(a) Ci = 1

Si 

(b) Ci = 1/3

Si 

(c) Ci = 0

Figure 2.4: The edge dependency of site si

Graph Notation
Degree Degree Edge

Diameter P.A.2
Dist. P (k) Variance Dependency

Bernoulli B (N, pN ) exp
(
−V̄
)
V̄ k

k! V̄ pN
log(N)
pN ·N No

Random G (N, ρ) exp
(
−V̄
)
V̄ k

k!
V̄ 0.5865

√
a2+b2

ρ
No

Geometric

Scale-free

S (N,m) 2m(m+1)
k(k+1)(k+2) ∞ m0−1

8
(logN)2

N
logN

log logN Yes

Deg. Seq. k−τ

ζ(τ) ∞ − − No
Based

Table 2.1: Properties of Graphs

Beyond the properties that have been presented so far, there exist some others,
such as the Connectivity and the Accuracy discussed in [92]. In order to evalu-
ate the performance of dissemination algorithms, the former should be satis�ed in
order to ensure that all sites are connected in the network (i.e., the connectivity is
1). Otherwise, isolated sites will inevitably appear, and the reliability never reaches
100%, even with execution of pure �ooding protocol. The accuracy of site is de�ned
as the number of its neighbors that have not failed till the end of broadcast divided
by its degree. The fault-tolerance is not taken into account in our research yet,
but will be tackled in our future work. Furthermore, Expansion properties (e.g.,
edge expansion) is also exploited in some existing work in order to study some limit
conditions for spread of epidemics in [58]. Informally, a graph can e�ciently and
quickly di�use information, if it has a low mean degree and high expansion parame-
ters. Besides, in [107], conductance property is used to show connectivity properties
of Internet topology. It can be used to explain the information dissemination rate.
Some further properties, such as network resilience, degree correlations, mixing pat-
terns, community structure, etc. are discussed in [110] for complex networks.

2Preferential Attachment: a new site preferring connecting to an existing site with high degree

in the network.
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2.3.1 Bernoulli Graph B (N, pN)

Unstructured overlays of peer-to-peer system can be modeled by Bernoulli Graph
in [86]. Bernoulli (or Erd®s-Rényi) graph B (N, pN ) is a random bidirectional graph
constructed by connecting N sites randomly with probability pN , independently of
other edges. Based on [44], pN > (1+ε)·ln(N)

N , with a positive constant ε, aiming at
having a giant component which would have N sites.

Degree Distribution: In B (N, pN ), every pair of sites (si, sj) is connected inde-
pendently with probability pN . Thereby, Pconnect(si ∼ sj) = pN . Then the degree
distribution is given by P (k) =

(
N−1
k

)
pkN (1− pN )(N−1−k). If N is large, we can ap-

proximate that by Poisson-law distribution P (k) = exp
(
−V̄

)
V̄ k

k! , where V̄ = pN ·N
(See Figure 2.3(a)).

Edge Dependency: In [8], it has been proved that B (N, pN ) has little edge
dependency, i.e., the existence of an edge over B (N, pN ) does not depend on the
others. Therefore, C = Pconnect (si ∼ sj |si ∼ sk, sj ∼ sk) = Pconnect (si ∼ sj) = pN .

Diameter: In [27], the authors showed that, if pN · N > 1 then, asymptotically,
the diameter tends to log(N)

pN ·N , as N →∞.

2.3.2 Random Geometric Graph G (N, ρ)

The random geometric graph G (N, ρ) is a graph whose sites are positioned uniformly
at random in a bounded region. In our research, such a region is a rectangular
plane with length a and width b, as introduced in [65]. Furthermore, two sites are
connected, whenever the distance between them is at most ρ. Based on [120], we

can �ne-tune ρ >
√

(1+ε)·ln(N)·a·b
N ·π with a positive constant ε in order to ensure that

the graph is connected [119].
There are variants in the descriptions on G (N, ρ), either considering it as a �nite

graph [7], or an in�nite graph [119] without border e�ect, when the topology of a
wireless sensor network is analyzed. The Border E�ect is a phenomenon that the
sites on the borders of a graph have fewer neighbors than those inside the graph.
Thereby, the border e�ect can make message transmission at border sites di�cult
and then, average dissemination power decreases. The reliability is thus reduced.
The in�uence of border e�ect on the �nite graph will be elaborated in Section 3.5.

Degree Distribution: The probability of any pair of sites si and sj being con-
nected is equal to the probability that si is located in the circle of radius ρ around
sj . Then, Pconnect(si ∼ sj) = πρ2

a·b . Due to the independent placements of each site,

the degree distribution is given by P (k) =
(
N−1
k

) (πρ2
a·b

)k (
1− πρ2

a·b

)
(N−1−k). Similar

to random process of B (N, pN ), G (N, ρ) follows the Poisson-law degree distribution
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P (k) = exp
(
−V̄
)
V̄ k

k! , where V̄ = N ·πρ2
a·b when ignoring the border e�ect of the region

(See Figure 2.3(b)).

Edge Dependency: In [8], G (N, ρ) presents a high edge dependency and the
existence of edges is correlated. More precisely, when border e�ect is neglected
C = Pconnect (si ∼ sj |si ∼ sk, sj ∼ sk) = 0.5865, a value typically greater than the
probability pN in B (N, pN ) that models the peer-to-peer system overlay.

Diameter: According to [20], for our rectangular G (N, ρ), the diameter can be

bounded as
√
a2+b2

ρ if N is large. In regard with B (N, pN ) whose diameter is small
with rare cliques, over G (N, ρ), its diameter tends to be large, and many small
cliques turn out.

2.3.3 Scale-Free Graph S (N,m)

Social networks like Twitter or Facebook can be modeled as scale-free graph, which
characterizes their properties, as, for example, power-law degree distribution. Con-
sequently, unlike B (N, pN ) and G (N, ρ), scale-free graph's degree variance is quite
high. There are mainly two ways to generate a graph satisfying such a condition.
One proposed in [136] is based on degree sequence; the other applies Barabási-Albert
model [6]. In regard with the former, the latter introduces the so-called preferential

attachment, which conforms to some social behavior [110].

Graph Generation 1: A feasible generation given in [136] is achieved in two
phases. First, a degree sequence {V1, V2, · · · , VN} is obtained by sampling the N
values from a power-law distribution P (k) = k−τ

ζ(τ) , where τ is an exponent parameter,

and ζ(x) is the Riemann zeta function [155]. Then,
N∑
i=1

Vi (an even value) labeled

balls are put inside an imaginary urn, where label i between 1 and N is given to
exactly Vi balls. In the second phase, a pair of balls labeled by i and j is randomly
drawn from the urn and an edge si ∼ sj is added to the graph. This process is
repeated until the urn becomes empty.

Obviously, the degree distribution follows the power-law, by which the degree
sequence is produced. However, the theoretical study on its other properties has
not been found so far. Even though, we can have some intuitions. Due to the
independent ball picking for edge connection, the edge dependency for this graph
can be bounded in order of 1/N , while its diameter must be in the same order of
B (N, pN ).

Despite this straightforward manner, our attention focus on the second method
i.e., Barabási-Albert model, to carry out a scale-free graph S (N,m), which is widely
used to explain some inherent social actions.

Graph Generation 2: Scale-free graph S (N,m) is a random bidirectional graph
generated by Barabási-Albert model [6]. Starting from a small clique of m0 sites,
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at every time step a new site is added such that its m (6 m0 � N) edges connect
it to m di�erent sites already present in the graph. The probability p that a new
site will be connected to an existing site is proportional to the degree of the latter.
This is called Preferential Attachment. This behavior will be studied in Chapter
4. Figure 2.5 shows that due to the preferential attachment, a new site s6 is more
likely to connect to sites with high degree. Therefore, much more probably, s6 will
connect to sites s2 and s3 that have highest degree in the graph at the moment.

 𝑺𝟏 

 𝑺𝟐 

 𝑺𝟒 
 𝑺𝟑 

 𝑺𝟓 
 𝑺𝟔 

Figure 2.5: Preferential attachment in Barabási-Albert model with m0 = 4 and
m = 2

Degree Distribution: This process ensures that the graph S (N,m) is connected
with power-law degree distribution approximately equal to P (k) = 2m(m+1)

k(k+1)(k+2) where

k = m,m + 1, · · · , N − 1 and V̄ = 2m which does not depend on N [123] (See
Figure 2.3(c)). In this network, there are hub and periphery sites which have
degree greater than 2m and between m and 2m respectively. Hence, the system Π

is composed of the set of hubs denoted Πh and the set of peripheries denoted Πp.
Some theoretical results on their characteristics will be shown in theorems of our
research later. For instance, we can deduce that | Πp |> 3 | Πh |.

Edge Dependency: In [55], Fronczak et al. deduced edge dependency in graph

S (N,m). The authors obtained C = m0−1
8

(logN)2

N , if both N and m0 are large.
Notice that the edge dependency is very low in S (N,m), i.e., almost in the same
order of B (N, pN ).

Diameter: The diameter of the network S (N,m) increases logarithmically with
network size. If γ = 0.5772 denotes the Euler constant, then in [56], it has
been demonstrated that the mean average shortest path length of S (N,m) is
logN−log(m0/2)−1−γ

log logN+log(m0/2) + 3
2 . From another perspective, compared to the two other
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graphs, S (N,m) has the smallest diameter due to the hubs that create short-cut
paths [17].

2.4 Taxonomy of Algorithms

Implementation of a gossip algorithm may be carried out in a probabilistic or deter-
ministic way, based on whether or not a random number selection was used to make
decisions. Section 2.4.1 presents three basic approaches to disseminate information.
Deterministic gossip protocols are introduced in Section 2.4.2, while Section 2.4.3
shows three families of probabilistic gossip algorithms and their percolation models.
Finally, in section 2.5 we compare four gossip protocols that have been analyzed in
our study.

2.4.1 Dissemination Algorithms

According to [35], there are essentially three basic approaches as follows to retrans-
mit message at every site for information dissemination.

Figure 2.6: Push Algorithm

� Push Algorithm: upon the �rst reception of the message generated by a
source site, every site locally decides how to forward the message to its neigh-
bors. An example is illustrated in Figure 2.6.

� Pull Algorithm: periodically, every site queries its neighbors for information
about their recently received or available messages. Once being aware of any
message that has not been received yet from them, the site explicitly requests
the concerned neighbors to forward the missing message. Figure 2.7 shows
an example. This is a strategy that works best as a complement to a best-
e�ort broadcast mechanism (i.e., IP Multicast [33]). Trivially, though enabling
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Figure 2.7: Pull Algorithm

Figure 2.8: Push-Pull Algorithm

higher reliability to be reached, it requires both periodic meta-information ex-
changes. As shown in [78], it has lower information dissemination rate than
Push Algorithms at the beginning when very fewer sites have the message,
while it can spread information signi�cantly faster than Push Algorithms,
whenever less than half of sites have not been infected.

� Push-Pull Algorithm: as the hybrid name implies, two distinct phases are
involved. We can observe it from Figure 2.8. The �rst phase applies Push
Algorithm to disseminate a message in a best-e�ort manner. Within the second
phase, Pull Algorithm is used to recover message loss due to some isolated sites.
Owing to the second phase, the forwarding decision in the �rst phase can be
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somewhat conservative to entail fewer retransmissions. The idea is to ensure
a high reliability with tolerable extra information exchanges.

The study of these three algorithms can give a sound knowledge to propose new
e�cient reliable gossip algorithms.

In [121], the authors discussed the latency of Push Algorithm, while in [84],
Phone-Call model is exploited to study message complexity and latency resulted
from Push-Pull algorithm. Moreover, the bounds of both message complexity and
latency are conjectured on top of simulations in [35] for the three algorithms. The
theoretical results obtained in [84] are outlined in Table 2.2.

Algorithm Message Complexity3 Latency (cycles)
Push ln(N) log2(N) + ln(N)

Pull ln ln(N) ln(N) + ln ln(N)

Push-Pull ln ln(N) log3(N) + ln ln(N)

Table 2.2: Performance of three dissemination approaches

We observe that Push-Pull algorithm takes advantages of both Push Algorithm
and Pull Algorithm in terms of message complexity and latency. In fact, in order to
ensure high reliability it is necessary to detect and retrieve lost messages for some
protocols after push algorithm has been executed [114].

In practice, Push-Pull Algorithm is widely implemented, for instance, in anony-
mous gossip [25] and in Publish-Subscribe system [30]. Some overlay broadcast
systems apply Push-Pull algorithms [38] to ensure high reliability. Setting start-up
time for the pull phase has an impact on the performance of Push-Pull Algorithm.
Furthermore, as concluded in [86], the pull phase is di�cult to implement, and then
constraints of push-pull algorithm mainly consist in its push phase [78]. Therefore,
we restrain our following stated works to pure push algorithms.

Algorithm and Variants: Aiming at better performance, some authors propose
other hybrid algorithms.

Smart Gossip protocol [90] introduces a push-pull-push algorithms based on
heuristics. More precisely, after a time interval for the �rst push phase, whenever
a site has not obtained as many local information updates from its neighbors as a
pre-con�gured threshold, it will send a request to the last neighbor that updated its
information. The latter directly transmits its message to the former. After a random
period, holding such a message, the site pushes it to its neighbors with probability
as a sigmoid function of the number of infected neighbors. Moreover, the threshold
and transmission probability can be updated for message disseminations.

In [92], a lazy push algorithm is considered as a similar strategy to pull algo-
rithm in terms of latency. In this approach, once receiving a new message, a site

3The authors only considered the messages that are disseminated from the source.
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gossips only the message identi�er (e.g., a hash of the message) to its neighbors. If
the neighbors receive an identi�er for a message they have not yet received, they
explicitly request the message from the sender.

In [24], the authors replace the pull phase by the lazy push in their push-pull
algorithm. It is worth pointing out that in terms of memory usage perspective,
similarly to the pull approach, lazy push gossip strategy requires a site to maintain
message copies for later retransmission upon request.

2.4.2 Deterministic Gossip Algorithms

In this section, we give an overview of deterministic push algorithms, which are con-
cerned without any probabilistic parameter. We can group them into localized and
globalized methods. Globalized methods require global topology information and
attempt to work out optimum executions, in terms, for instance, of message com-
plexity, broadcast tree, etc. Their computing complexity is usually NP-Hard [95].
Localized methods exploit merely information of one or more hop neighborhood or
some other intrinsic information. As our work focuses on Push Algorithms with-
out global knowledge of network topology, we are going to discuss some localized
deterministic gossip algorithms proposed in the literature.

2.4.2.1 Neighbor Coverage Based Algorithms

Generally, if only the local view about one-hop neighborhood is available, it is not
e�cient to implement deterministic gossip algorithms. Neighbor Coverage Based
Algorithms exploit neighborhood information within at least 2 hops to compose a
forwarding list with the minimum neighboring sites in order to connect all 2-hop
neighborhood sites.

In [96, 143], a piggybacked forwarding list helps in the decision of which sites
within two hops from a site are eligible to retransmit the message of this site. The
authors' approach is called Dominant Pruning (DP). For example, a site will not
retransmit a message, whenever detecting that its neighbors will be infected by oth-
ers. Nonetheless, �nding such list is a NP-complete problem. In [100], the authors
o�er two pruning algorithms: Total Dominant Pruning and Partial Dominant Prun-
ing. The former bene�ts from the piggybacked information of three-hop neighbors
in order to take a decision about retransmission, while the latter is similar to DP.

Multipoint Relaying Pruning (MPR) in [124] uses two-hop neighborhood knowl-
edge to reduce message redundancy, and it is implemented in OLSR protocol [77].
The principle of the algorithm is to create a cover set. This set contains two kinds of
neighbors of a site. Firstly, the neighbors connect to the sites that will be isolated,
if such neighbors do not retransmit the message. Secondly, the neighbors have very
high degree, thus mighty dissemination power to infect sites within 2-hop neighbor-
hood. In [4], they construct this cover set by ordering the identi�ers of the two hop
neighbors. MPR is a source aware pruning, where the forwarding list depends on
the preceding broadcasting site.
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The neighborhood information can also be exploited to decide forwarding prior-
ity. A scalable broadcast algorithm proposed in [118] introduces a broadcast delay

for every site, aiming at de�ning a retransmission priorities. The delay is the ra-
tio of the max degree amongst the neighbors of a site over the degree of the site.
The authors in [140] designed a Lightweight and E�cient Network-Wide Broadcast
algorithm in an asynchronous and distributed manner. It gives the retransmission
priority to higher degree sites.

2.4.2.2 Dominating Sets Based Algorithms

In [152, 153], the authors describe a distributed algorithm for calculating Connected
Dominating Set (CDS) in ad hoc wireless networks, while site identi�ers should
be totally ordered. In [138] instead of the identi�ers, site coordinates are used to
obtain a CDS. Such algorithms require two-hop neighborhood information available
for each site.

More precisely, CDS is such a connected set, that any site in the network either
belongs to the set or is a direct neighbor of some site in it. Message retransmission
is restricted to sites in the CDS, which therefore, infect all sites. Unfortunately,
the problem of �nding such a minimum CDS has been shown to be NP-complete
[64]. Several phases are required for meta-information exchanges amongst two-hop
neighbors to determine the forwarding list, which may consume much bandwidth
and result in high latency.

There are a great number of variants using CDS to compose forwarding list.
The hexagonal dominating set �ooding algorithms of [116] proposes to reduce

message redundancy. Every site chooses six closer neighbors that better form an
approximate regular hexagon to forward messages. However, as observed in [89],
there is a consensus problem on the choice of ideal neighbors at every site. Thus,
an additional stopping condition is proposed to resolve it. Evidently, both of them
cannot ensure that all sites are infected when dissemination �nishes.

Compared to MPR, though independent of the source, the abovementioned CDS
is not optimal due to many redundant sites that compose the CDS itself. Then,
a new algorithm comes out by combination of the two principles. In [4], MPR-
Dominating set is determined by two conditions: if a site has the smallest identi�er
in its neighborhood, and if the site is a forwarding neighbor of the neighbor with the
smallest identi�er, then the site belongs to such a set. To further reduce the size of
relaying set, [151] enhanced the �rst condition as follows: the site has the smallest
identi�er in its neighborhood and also two unconnected neighbors. Moreover, both
approaches compute the set by heuristic greedy set cover algorithm proposed in
[124] for MPR.

There are also alternative ways to �nd out a CDS, which adapt to some speci�c
application context.

In ad hoc networks, the available energy resource can also be taken into con-
sideration to improve performance. Cross-layer designs emerge as such awareness is
involved. In [139], a scheduling scheme is presented to maximize lifetime of every
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site and networks. A site is either in an active or a passive state. All sites are
dynamically and fairly activated to create a CDS to disseminate information. Then,
sites in passive mode can save their energy when sleeping.

In [112], the network topology is divided into several disjoint overlapping clus-
ters whose size is bounded by two values a priori. Each cluster elects one site as
the cluster-head. The cluster-head of each cluster is responsible for message re-
transmission. Another type of site, the gateway, has two or more cluster-heads
as its neighbors and also relays messages. However, cluster-head election requires
every site to have a unique identity in the system, and the identity of the elected
cluster-based sites cannot be simultaneously deduced by all sites in just one-hop
information exchange. To some extent, the cluster-based broadcasting can be seen
as a distributed way to get a CDS.

2.4.2.3 Other Approaches

Besides the two main methods discussed above, there are also some other distributed
approaches to ensure the connectivity of networks.

In some wireless networks, some works in the literature optimize the performance
by varying the transmission radius. Namely, underlying topology is �ne-tuned to
make dissemination redundancy as little as possible. In [141], they studied a Relative
Neighborhood Graph (RNG), which minimizes the mean degree, and on the other
hand, it holds graph's connectivity. In [22], the authors proposed a distributed
algorithm to �nd out a RNG relay subset. Solely the sites in such a subset forward
messages.

Localize Minimum Spanning Tree (LMST) described in [23] requires one-hop
neighbor information. However, it is not a tree anymore but with loops inside.
Furthermore, they proved that LMST is a subset of RNG. Consequently, LMST
always performs better than RNG in terms of message redundancy.

TreeCast, proposed in [83], is a distributed and asynchronous algorithm which
detects and repairs the broken links in the tree. Since the radius depends on site
power as well, in [98] every site decides a minimal Power Broadcasting Tree (PBT)
(i.e., a substitution of a high power broadcast at a site with two or more successive
lower power di�usions), when being aware of the power of its neighbors. Trivially,
the latency is increased. In [76], a localized Broadcast Incremental Power algorithm
intends to �nd out such a tree within k-hop neighborhood. Thereby, redundant
copies are reduced to the detriment of rise of controlling messages.

Some deterministic protocols make use of counters. In [87], a color-based scheme
has been proposed. In the authors' approach, each node forwards a message if it
can assign it a color from a given pool, which it has not yet overheard after a time.
Using geometric analysis, they have shown that the size of the rebroadcasting group
is bounded by a small constant factor times the minimum CDS size. The color-based
scheme is actually a kind of a counter-based scheme, whereas it does not guarantee
high reliability on arbitrary topologies.

Furthermore, in some algorithms, message acknowledgement (ACK) is also in-
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troduced [101, 115, 133] to ensure reliable broadcast [34].
All the localized deterministic methods are summarized in Table 2.3.
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2.4.3 Probabilistic Gossip Algorithms

In contrast to deterministic approaches, probabilistic gossip algorithms highlight
their simplicity, high reliability, and scalability [54, 144]. Either applied to overlay
networks [47, 52, 86], or exploited in wireless ad hoc and sensor networks [15, 61, 65,
132, 145], they reduce the number of duplicated messages and well satisfy application
constraints. Nevertheless, probabilistic gossip protocols do not always ensure that
100% sites are infected. As a result, aiming at a trade-o� between reliability and
message complexity, the algorithms found in the literature �ne-tune their input
parameters of di�erent natures. There are three main probabilistic gossip families,
namely (1) Fixed Fanout Gossip (GossipFF ) [86], (2) Probabilistic Edge Gossip
(GossipPE ) [132], and (3) Probabilistic Broadcast Gossip (GossipPB) [65]. Many
other probabilistic broadcast protocols are based on these gossip algorithms.

 𝑺𝒊 fanout= 𝟑 

(a) Degree > fanout

 𝑺𝒊 
fanout= 𝟑 

(b) Degree < fanout

Figure 2.9: GossipFF with fanout = 3

 𝑺𝒊 𝒑𝒆 = 𝟎. 𝟓 

(a) Edge Choice with pe = 0.5

 𝑺𝒊 𝒑𝒆 = 𝟎. 𝟓 

(b) Edge Choice with pe = 0.5

Figure 2.10: GossipPE with pe = 0.5

� GossipFF applies as input the fanout parameter, which de�nes the number of
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 𝑺𝒊 𝒑𝒗 = 𝟎. 𝟓 

(a) Retransmission

 𝑺𝒊 𝒑𝒗 = 𝟎. 𝟓 

(b) No Retransmission

Figure 2.11: GossipPB with pv = 0.5

neighbors that every site selects at random to forward the received message.
Figures 2.9(a) and 2.9(b) show that in two di�erent topologies, site si needs
to forward a message using GossipFF with fanout = 3. In the �rst scenario,
the number of si's neighbors is greater than the value of the fanout, whereas
in the second scenario (Figure 2.9(b)), the value of the fanout is larger than
si's degree.

� GossipPE is based on an input probability parameter pe; each site randomly
chooses one by one, the edges over which received message will be retrans-
mitted. Figures 2.10(a) and 2.10(b) show two scenarios after execution of
GossipPE with pe = 0.5 in a given topology.

� GossipPB has as input parameter probability pv, with which a site broadcasts
the message to all its neighbors. Similarly to GossipPE , in a given topology,
two di�erent execution scenarios obtained by GossipPB with pv = 0.5 are
shown in Figures 2.11(a) and 2.11(b). In the �rst scenario, si transmit the
message to all its neighbors, contrary to the second one.

2.4.4 Percolation

The typical random graphs are already described in 2.3. As a matter of fact, the
performance of gossip algorithms over the random graphs is always studied by the
percolation theory, since many mathematical results are ready to be used for refer-
ence. Thereby, a brief presentation about it is given in this section.

2.4.4.1 Percolation Theory

Percolation theory is a research �eld in the domain of spatial random processes [105].
It is widely applied in electro-engineering [150], physics [122, 131], biology [128], and
many other �elds. The term "percolation" comes from a physical phenomenon, when
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Figure 2.12: Percolation probability θS4 (p) as a function of the probability p. pc =

0.65 is the critical value when the system changes its behavior so that (θS4 (p) = 1),
e.g., an in�nite component turns out or, in the context of wireless networks, almost
all the sites receive the packets. [65]

a layer of some porous, for instance, Styrofoam or pumice stone is considered. If
the cavities in it are distributed by some random process, how likely is it that some
water can percolate through such a layer? Some other examples are the spreading
of diseases in a population that is deployed at random over an area, or the forming
of wet areas (pools of water) when rain randomly falls.

A system is said to percolate at a speci�c probability pc (critical point), when
a phase transition is observed. In the example with the porous material, where the
probability p decides whether there is a cavity at each position: if p > pc (super-
critical) there will be a path from the top to the bottom; otherwise there is none
(subcritical). For a probabilistic gossip broadcast, the percentage of messages that
are delivered to all sites can be as function of the probability of message retrans-
mission in every site [65] (see Figure 2.12). In the subcritical phase there is very
limited opportunity that the system percolates, whereas in the supercritical phase
the percentage is almost 100%. It should be pointed out that the phase transition
can exhibit di�erent shapes [5], which are either quicker or slower. Thus, pc becomes
an interval, beyond whose bounds there are the two distinct phases, though usually
in percolation theoretical problems the transition is a rapid process. Further on, the
in�nite systems [67] are taken into account as it makes the mathematical study much
more simple, e.g., the border e�ect (see Section 2.3.2) can be ignored. Although clas-
sic percolation models are static, they can be dynamic or move according to some
stochastic process [146].

The analysis of the models of percolation theory are always related to the re-
search on random graphs [44]. These graphs are generated by some random processes
(see Section 2.3). A common question for the models is to determine the pc so that
all sites in the network are connected to each other with high chance.
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2.4.4.2 Percolation Models

There are two types of percolation in the percolation theory: Site Percolation and
Bond Percolation, which model some probabilistic gossip algorithms. Without
loss of generality, we take Figures 2.13(b) and 2.13(c) to present the site percolation
model and bond percolation model respectively. As shown in Figure 2.13(a), the
network is an originally empty square lattice that is divided into 4× 4 squares.

For site percolation model, the small squares (sites) in the lattice is either oc-
cupied with probability p or empty with probability 1 − p (see Figure 2.13(b)).
The occupation or emptiness of a square is totally independent of the state of its
neighboring squares. In Figure 2.13(b), all occupied squares next to each other are
connected and form a component. With increasing value of p, more squares are
occupied and larger component turns out. Evidently, if a square is around by four
other occupied squares becomes occupied, all of the �ve squares are connected. The
site percolation model well represents the porous material in the above examples.

The bond percolation model depends on the sides of the squares in a square
lattice. With probability p, a side is open and with probability 1 − p it is closed
(see Figure 2.13(c)). Neighboring squares form a component only when the sides in
between are open.

(a) Orignal Square Lat-

tice. All squares are

empty and their sides are

closed.

(b) Site Percolation.

Horizontally or vertically

neighboring occupied

squares are connected to

each other.

(c) Bond Percolation.

The edges connect neigh-

boring squares whose

sides in between are open.

Figure 2.13: Percolation models over a 4× 4 square lattice

The square lattice in 2-dimension as we have explained above can be replaced
by many other �nite or in�nite structures: higher dimensional lattices, honeycombs,
hypercube, and so on. The critical value pc depends on the network type and
the percolation model. Some values are selected in Table 2.4. We notice that
only for some of these combinations, analytical results are available, whereas for
the others, such a pc is based on the empirical studies (i.e., simulations) [137].
Overall it is observed that networks with higher dimensions have lower critical values.
Interestingly, as demonstrated in [63], in any topology, the critical value pc for the
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Lattice Type Site Degree Site Percolation Bond Percolation

Honeycomb 6 0.6962 0.65271
Square 4 0.592746 0.5

Triangular 3 0.5 0.34729
Diamond 4 0.43 0.388

Simple Cubic 6 0.3116 0.2488
Body-centered Cubic 0.246 0.1803
Face-centered Cubic 0.198 0.119
Hypercubic (4d) 0.197 0.1601
Hypercubic (5d) 0.141 0.1182
Hypercubic (6d) 0.107 0.0942
Hypercubic (7d) 0.089 0.0787

Table 2.4: Critical values for the site and bond percolation models [137]

site percolation model is never smaller than for the corresponding bond percolation
problem.

Percolation is also usable in other random graphs to study other problems. In
[21], the authors argue that some power-law graphs such as Internet [50] are tolerant
to a single site failures (i.e., the graphs are still well connected). However, the latter
is true only for the random sites failures. If a particular fraction of sites with very
high degree fail, the component in the graph may be disconnected.

2.5 Probabilistic Gossip Protocols

Information dissemination in large scale network is commonly studied on basis of
Algorithm 1. Initially, the source sends a message to all of its neighbors (lines 2 and
3). A site delivers and retransmits a received message provided it has not previously
received it; otherwise the message is discarded.

Algorithm 1: Generic Gossip Algorithm

Broadcast (〈msg〉)1

foreach sj ∈ Λi do2

Send(〈msg〉, sj)3

Receive (〈msg〉)4

if msg /∈ msgHistory then5

Deliver(〈msg〉) ;6

msgHistory ← msgHistory ∪ {〈msg〉} ;7

Gossip(〈msg〉,parameters) ;8

There are four probabilistic gossip protocols that we are interested in to carry out
the retransmission Gossip() procedure, namely (1) Fixed Fanout gossip (GossipFF )
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[86], (2) Probabilistic Edge gossip (GossipPE ) [132], (3) Probabilistic Broadcast
gossip (GossipPB) [65], and (4) Degree Dependent gossip (GossipDD) [61]. They
comprise the three families addressed in Section 2.4.3. Besides the received message,
all these algorithms receive one or more parameters whose value is the same for all
sites.

In the following algorithms, Random() generates a random number in the interval
[0, 1].

2.5.1 Fixed Fanout Gossip (GossipFF)

Algorithm 2: Fixed Fanout Gossip (at si)

/* fanout: number of selected neighbors */9

GossipFF (〈msg〉,fanout)10

if fanout > Vi then11

toSend← Λi12

else13

toSend← ∅14

for f = 1 to fanout do15

random select sj ∈ Λi/toSend16

toSend← toSend
⋃
sj17

foreach sj ∈ toSend do18

Send(〈msg〉, sj)19

In GossipFF (Algorithm 2), site si sendsmsg to a �xed number of sites, denoted
fanout, in Λi, which are randomly selected (lines 15 - 17). Notice that if fanout >
Vi, si transmits msg to all its neighbors (lines 11 and 12). Particularly, if fanout >
max {V1, V2, · · · , VN}, Algorithm 2 is a pure �ooding algorithm.

2.5.1.1 Theoretical Analysis

In [86], the reliability of GossipFF in peer-to-peer system is �rstly studied by both
simulation and random graph theory [44]. The article mainly concludes that in a
system with N sites to have the reliability equal to R, it requires to �x fanout =

− ln
(
− ln(R)
N

)
. It is essential to know the system size in advance. Distributed

algorithms in [80, 106] can estimate the system size.
Besides, in [47], a Markov Chain model is introduced to explain its infection

process.

2.5.1.2 Algorithm and Variants

When GossipFF is carried out in real applications without theoretical assumptions,
some problems in [49] are issued, such as membership maintenance, network aware-
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ness, bu�er management, and message �ltering. Therefore, many solutions have
been proposed to make it adaptable to the applications.

To optimize the choice of the input parameters for some real applications, local
estimations are introduced during message dissemination. Based on the relation
amongst reliability, system size, and fanout in GossipFF over Bernoulli (or Erd®s-
Rényi) graph, the authors in [52] make use of TCP connections to implicitly �gure
out available bandwidth, thus dynamically varying fanout according to the band-
width.

In [129], the bu�er resources at every site is managed in a realistic way. It exploits
message history and discards a message on the basis of its age and site bu�er at hand.
The age is the number of times that a message has been forwarded. Furthermore, in
[41], an overlay called irrigation graph is established in sensor network by GossipFF ,
which outperforms GossipPE and GossipPB in terms of reliability.

The temporally adaptive fanout calculated in [147] requires the information of
infected and non-infected sites for every hop, which seems unrealistic.

Random Walks in [12] can be generalized as a GossipFF with fanout = 1. More
precisely, every site relays a rumor message, called token to one of its neighbor, which
is chosen with probability as a function of its degree. Moreover, the length of such
random walks is heuristically pre-speci�ed to avoid in�nite information dissemina-
tion in the overlay.

2.5.1.3 Applications

GossipFF is a basic algorithm that a large number of protocols have employed so
far to achieve some real requests.

The �rst introduction of GossipFF into traditional information dissemination
protocols dates from [14] in its anti-entropy phase.

In [134], dynamic wired network system exploits it to meet requirements in
mobile wireless applications. This random peer selection algorithm is widely utilized
in publish-subscribe systems [9, 46] and the data aggregation [19, 37].

Particularly, in order to uniformly maintain a partial view (i.e., the recognition
of neighbors) for a site of an overlay, GossipFF is the simplest way to sample and
di�use network information [79]. To this end, this algorithm is either implemented
in a proactive protocol or a reactive one.

The typical proactive protocol is Cyclon [148]. In it, a partial view is periodically
updated by exchange of randomly selected one or more neighbors. Thus, a partial
view can be changed, even if the global system membership is stable.

The reactive protocol, Scamp [59, 60], makes the site's partial view evolved in
response to some detected changes (e.g., churns) of system. Unless the membership
is instable, the partial view remains unaltered.

Furthermore, in [36], a gossip protocol for rapid dissemination (i.e., with low
latency), CREW applies random walks to maintain the partial view.

Geographic Gossip in [37] is also based on random walks. It improves the esti-
mation accuracy for data aggregation, on account of exploitation of topology infor-
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mation.
Despite the random walks, Astrolabe in [127] and Spatial Gossip in [85] spread

information with fanout = 1, to ful�ll network resource location service.

2.5.2 Probabilistic Edge Gossip (GossipPE)

Algorithm 3: Probabilistic Edge Gossip (at si)

/* pe: probability to use an edge */20

GossipPE (〈msg〉,pe)21

foreach sj ∈ Λi do22

if Random() 6 pe then23

Send(〈msg〉, sj)24

In GossipPE (Algorithm 3), site si randomly chooses those edges over which
msg should be transmitted with regard to a �xed probability pe (see line 23). Note
that when pe = 1 for all sites, we obtain the �ooding algorithm.

2.5.2.1 Theoretical Analysis

The theoretical study on GossipPE always goes along with GossipPB , since they
are referred to the results in Percolation Theory.

As mention in 2.4.4.2, there exist two types of percolation in the percolation
theory: Site Percolation and Bond Percolation. In the former, a site becomes
inactive (respectively, active) with probability 1−pv (respectively, pv), blocking (re-
spectively, forwarding) the disseminating information from itself to all its neighbors;
for the latter, the edge of a site is removed (respectively, kept) with probability 1−pe
(respectively, pe), blocking (respectively, forwarding) the disseminating information
from the site to the neighbor linked through it.

Thereby, GossipPE is modeled by bond percolation in [132], while GossipPB

matches site percolation in [108].
Both percolations over Bernoulli graph and scale-free graph are theoretically

analyzed in [11]. Moreover, the percolation threshold of site percolation is always
greater than that of bond percolation in any topology [63]. That is the reason
that GossipPE entails less message redundancy than GossipPB to reach the same
reliability. The related protocols will be stated in the following.

2.5.2.2 Applications

GossipPE is implemented for the directional antenna broadcast in wireless ad hoc
networks in [132]. It presents better performance than GossipPB over random
geometric graph G (N, ρ), which is studied as a function of the system size (or the
site degree).

In [126], it is pointed out that the choice between GossipPE and GossipPB

depends on the di�erent application constraints over G (N, ρ).
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2.5.3 Probabilistic Broadcast Gossip (GossipPB)

Algorithm 4: Probabilistic Broadcast Gossip (at si)

/* pv: probability to broadcast */25

GossipPB (〈msg〉,pv)26

if Random() 6 pv then27

foreach sj ∈ Λi do28

Send(〈msg〉, sj)29

Unlike Algorithm 3, in GossipPB (Algorithm 4), each site, except the source,
di�uses msg to all its neighbors with �xed probability pv (see line 27). In particular,
when pv = 1 this protocol becomes the �ooding algorithm.

2.5.3.1 Theoretical Analysis

Besides the analysis by the percolation theory, GossipPB is also modeled in some
other ways.

A relation between the reliability and pv is revealed by a recurrence model in
[102] for a route driven gossip protocol.

In [113], not only the reliability is discussed by percolation property over
Bernoulli graph B (N, pN ), but also the asymptotic expressions with respect to the
average number of messages and the average time required to complete network
coverage are derived, showing the bene�ts of a proper choice of pv.

Dissemination latency of a modi�ed version of GossipPB , where every site sends
message to one neighbor with certain probability several times over a scale-free
graph S (N,m), has been theoretically studied in [58] by using SIS (Susceptible-
Infective-Susceptible) model. Nevertheless, reliability is not taken into account in
the authors' study.

2.5.3.2 Algorithm and Variants

GossipPB is a simple approach addressed in [65] for ad hoc network broadcast. It
turns out a bimodal behavior : for a majority of broadcasts, either a large or a small
proportion of the sites can receive message when the probabilistic broadcast ends.

There are many other variant probabilistic algorithms from GossipPB that are
classi�ed as follows.

Algorithm and Variants with Globally Chosen Input Parameters: Some
algorithms globally pre-specify the same input parameters for every site in the net-
works or sub-networks before information dissemination.

In [65, 15], the authors proposed and studied the following variants of GossipPB .

� GossipPB0(pv): each site, after receiving a message for the �rst time, relays
it with some probability pv < 1.
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� GossipPB1(pv, k): it extends Gossip0(pv) by setting pv = 1 in the �rst k hops
of a broadcast. In the remaining hops, sites relay with probability pv < 1 .

� GossipPB2(pv1, k, pv2, d): pv1 and k retain the same meaning described for
Gossip1(pv, k). However, pv2(> pv1) speci�es the probability of relay for sites
receiving the message from a site with less than d neighbors.

� GossipPB3(pv, k, z): like Gossip1(pv, k), when a site receives a message for
the �rst time, it will relay it with probability pv, with pv = 1, if the source
is less than k hops away. Then, each site decides not to relay, if a su�cient
number (z) of received redundant copies is reached. In this way, the broad-
cast does not die during the gossip. The site will relay if it does not hear
z duplicates within a short period of time. This may be advantageous for
wireless senor networks, since it reduces the number of collisions in multiple
access MAC protocols as [28] without additional cost. However, the reception
of duplicates would be problematic, as it requires substantial energy due to
ampli�cation of signal.

� GossipPB4(pv, k, k
′): it is similar to Gossip1(pv, k), while it limits its focus

on routing a unicast message by dividing the systems into several zones with
diameter of k′ hops. When a site receives a message for the �rst time in the
source zone, it will relay it with probability p 6 1, while setting pv = 1 in
the �rst k hops. When the message goes outside the source zone, it will be
directly forwarded to the destination in the zone.

� GossipPB5(pv, k, z = Vi): it is a Gossip3(p, k, z) where z equals to the degree
of site si.

Moreover, in [156], the authors have proposed a probabilistic approach which
combines both GossipPB and CDS based methods. They classify all sites into four
groups according to their connectivity characteristics in two-hop neighborhood infor-
mation, and assign the sites in each group with a di�erent probability heuristically
�xed a priori.

Algorithm and Variants with Locally Chosen Input Parameters: In
some algorithms, every site �ne-tunes the forwarding parameters according to local
information from neighbors.

Enhanced RAPID in [40] gives a better infection performance with lower over-
head than GossipPB3. After receiving a message for the �rst time, the algorithm
waits for a small random delay, while monitoring the network. The message relay
is canceled, either by none of its copy that has been heard from any other site, or

by a locally chosen probability 1−min
{

1, cvVi

}
, where Vi is the degree of site si and

a reliability factor cv is related with the number of sites that take responsibility to
forward message in one hop neighborhood. Then, a site that decides not to relay
continues to monitor the network for an additional random time. This second mon-
itoring period has a larger interval. The site will relay with probability 1, if it does
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not hear any copy during this period. On top of this, an up-graded version in [53]
performs against malicious attacks.

In [3], every site tailors the probability as a function of the number of neighbors
that probably have not received the message yet, which is estimated by the former
message disseminations. Notwithstanding, their optimal forwarding schemes require
converge time and need a bu�er to store the message reception history.

Similarly to [156], the authors distinguish all sites by four levels in [2]. Then,
they simply adapt the probability in each level proportionally reverse to the number
of the level for sensor network, which ensures that sites in the sparse density area
forward with higher probability. Exploiting this approach, authors in [75] propose
an adaptive source-dependent method that reckons on the direction of message �ow
from the source to adjust probability for every site in each of the four group levels.

Smart Gossip protocol proposed in [91] associates deterministic principles
(see Section 2.4.2) with GossipPB , which shows an improvement compared to
GossipPB2 and aforementioned protocol in [94]. It automatically and dynamically
adapts forwarding probability at each site to network topology. Knowing two-hop
neighborhood information, every site constructs a local relationship tree, which is
composed of its parents, children and siblings. Every child in turn calculates the
probability pv for its parent to optimize message redundancy. Such a probability
choice satis�es both reliability and local topology constraints. Then, the parent se-
lects the maximum pv from his children. Trivially, like many deterministic broadcast
protocols, it requires two-hop neighborhood maintenance.

Some works, such as Gossip-based Sleep Protocols [69, 108] and NAPS [62],
randomly decide whether a site can go to sleep. A message is eligible to be retrans-
mitted by a site, whenever the site is awake once receiving it for the �rst time. The
probability in NAPS [62] is set such that site's sleeping time is proportional to its
degree. Article [42] reviewed some protocols with probabilistic sleeping mode. Not
only the probability can be as a function of site degree, but also it can depend on
the tra�c that satis�es delay constraints, or available device battery. Yet, their
goal is to save energy while still maintaining connectivity in a network, whereas our
purpose is to disseminate data to all sites e�ciently.

In delay tolerant networks (DTN), the forwarding scheme can be modeled as an
optimization problem in [109]. Every site �nally chooses a message relay probability,
which is a consensus value. Such a result aims at minimizing the cost as a function
of time to meet application requirements.

2.5.3.3 Applications

GossipPB and variants are initially applied and compared in traditional AODV rout-
ing protocol over regular and random geometric topologies [65]. Compared to pure
�ooding in mobile ad hoc networks, the most signi�cant performance improvement
is obtained by GossipPB3, while GossipPB0 performs the worse, since its execu-
tion terminates at sites very few hops away from the source. Unlike our problem,
GossipPB4 is integrated in unicast routing protocols. However, to reach desirable
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reliability, the input parameters of the algorithms are heuristic on top of simulation.

A realistic implementation without faulty sites in [15] on DES-Testbed [16] tests
the abovementioned GossipPB1, GossipPB2, GossipPB3, and GossipPB5. Some
explications are given for their experimental results in the end.

The percolation driven �ood routing algorithm proposed in [145] can be seen
as an advanced version of GossipPB1 in large-scale sensor networks. It gives an
answer how to choose pv to ensure high reliability. In [104], the protocol improves
GossipPB1 by tailoring its forwarding probability as a function of site degree. Its
performance is explained by a theoretical model.

In regard to GossipPB3, variant protocols arm a time counter as shown in [111]
for copy accumulations. Hop Counter Aided Broadcast (HCAB) protocol in [74]
makes the sites, upon the �rst reception of a message, start a random timer and
record the value of hop counter. The message will be relayed by the site if, when
the timer expires, no message with a hop counter higher than the �rst was received.
Implicitly, every site in HCAB attempts to know whether each relay is done by some
other sites, hopefully covering (i.e., infecting) additional regions of the network.

Another distance-based protocol is also proposed in [74], which is called Self-
Adaptive Probability Broadcasting (SAPB) protocol. It stipulates that the prob-
ability of a site to relay a message is given by an aggregation of three metrics:
pv = K · f(z) · g (Sx), where K is a constant to make pv 6 1, z is the number of
the copies received by the site during a time interval, and Sx is the maximum of
Received Signal Strength Indicator (RSSI) of all copies of the message received dur-
ing the time interval, which implies coverage (i.e., infection) contribution brought
by this site. And Functions f(x) and g(x) should be monotonously decreasing, so
that the probability of relay decreases with the number of relay messages heard and
with their RSSI.

In [130], the authors exploit GossipPB3 to make a robust Geocast against DoS
attacks by �xing an adaptive threshold of duplicate messages during information
dissemination. Unless the number of copies is under such a threshold, the gossip
message is not forwarded anymore.

The protocol in [94] is based on GossipPB2 and GossipPB3, which has forward-
ing probability pv for a message with sequence number nseq, in reverse proportion
to the number of duplicate messages overheard for message nseq − 1.

Furthermore, [18] shows that gossip-based protocols can bene�t from Kleinberg-
like small-world overly topologies to reduce latency with very little cost. The impact
of scale-free topologies on some of the probabilistic gossip algorithms has been eval-
uated by simulation in both [32] and [61] in the context of ad hoc networks and
heterogeneous large-scale networks respectively. Yet, their analysis remain at ex-
periment level to give intuitions.

Beyond this, in [26] and [39], theoretical insights of the latency performed by
gossip algorithms are o�ered for information dissemination over a scale-free topology
S (N,m). In [57], an optimal latency bound is derived for mobile ad hoc networks
that are modeled by random geometric graph G (N, ρ).
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2.5.4 Degree Dependent Gossip (GossipDD)

Algorithm 5: Degree Dependent Gossip (at si)

/* d: degree threshold */30

/* phigh: retransmission probability for high degree sites */31

/* plow: retransmission probability for low degree sites */32

GossipDD (〈msg〉,d,phigh, plow)33

if Vi > d then34

if Random() 6 phigh then35

foreach sj ∈ Λi do36

Send(〈msg〉, sj)37

else38

if Random() 6 plow then39

foreach sj ∈ Λi do40

Send(〈msg〉, sj)41

GossipDD (Algorithm 5) tries to improve the performance of GossipPB by sep-
arating sites into two sets. Sites with higher degree retransmit msg with a high
probability phigh whereas lower degree sites retransmit it with a low probability
plow with phigh > plow. The decision about the degree level of a site (high or low)
depends on a threshold degree d (see line 34).

2.5.4.1 Algorithm and Variants

 𝑺𝒊 𝒅 = 𝟑 

(a) Degree > d

 𝑺𝒊 
𝒅 = 𝟑 

(b) Degree 6 d

Figure 2.14: GossipDT with d = 3

If we �x phigh = 1 and plow = 0, then only sites with higher degree retransmit
the message, which is named Degree Threshold Gossip, and denoted (GossipDT ).
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Our study will address this gossip protocol in Chapter 4.
Figures 2.14(a) and 2.14(b) show two scenarios that respectively represent the

site degree is higher and lower to the threshold value d. Hence, the retransmission
only happens in the �rst scenario, where site si's degree is greater than d.

2.5.4.2 Applications

GossipDD marries GossipPB and a degree-based deterministic algorithm, which
has been evaluated in scale-free networks [32, 51], or compared in several topologies
[61]. In scale-free networks, GossipDD shows its better performance than some other
probabilistic gossip algorithm, since the sites with high degree are better exploited
for message forwarding. However, in wireless ad hoc network the high degree sites
should have lower relay probability in order to reduce collisions.

The comparison of all the probabilistic gossip protocols is summarized in Table
2.5.
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2.6 Conclusion

In this chapter, we have discussed some concept and existing works related to in-
formation dissemination over large-scale networks. To avoid the broadcast storm
problem, many gossip algorithms protocols have been proposed in a deterministic
or a probabilistic way. Though deterministic algorithms present 100% of reliabil-
ity and substantial message redundancy reduction, most of them are proved to be
NP-complete to achieve optimal performance. Therefore, we have focused our work
on probabilistic gossip algorithms and several described existing works. We have
also presented a discussion about the percolation theory, which explains dissemina-
tion power of some probabilistic gossip algorithms. Since the network topology over
which the gossip algorithm runs has an impact on its performance we have analyzed
some typical properties of three random topologies that model some real networks.
Such a study has given us some intuition on how to improve the performance of
gossip algorithms by taking such properties into account.

On the other hand, input parameters of the gossip protocols are not always the
same, as for instance, probability in GossipPB , or fanout in GossipFF . Further-
more, topology properties like degree distribution or edge dependency may di�er
depending on the random graph.
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3.1 Introduction

As discussed in Section 2.4.3, there are essentially three families of probabilistic
gossip algorithms. Although they do not always ensure 100% of reliability, they are
widely used to reduce the number of messages and satisfy application constraints,
thanks to their simplicity and scalability [54, 144]. The algorithms usually have
input parameters of di�erent natures. GossipFF applies as input the fanout, which
is the number of neighbors that a site will send the message; in GossipPE , based
on an input probability parameter, a site randomly chooses those edges over which
received message should be retransmitted; in GossipPB , the input parameter de�nes
the probability with which a site broadcasts the message to all its neighbors. Besides
the con�guration parameters, the properties of underlying topology (e.g., degree
distribution, edge dependency, etc.) have also an impact on the performance of
gossip algorithms, such as message complexity, fraction of infected sites, reliability,
and latency.

Considering the above discussed di�erences, our aim is to compare the three
families of gossip algorithms: GossipFF , GossipPE , and GossipPB (see Section
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2.5), evaluating them over three random graphs (see Section 2.3): Bernoulli (or
Erd®s-Rényi) graph B (N, pN ) [45], random geometric graph G (N, ρ) [119], and
scale-free graph S (N,m) [6], which respectively model peer-to-peer system [86],
wireless sensor network [65], and the Internet [110]. We should point out that our
study can be extended for other gossip algorithms and random topologies.

In order to carry out a fair comparison, we have introduced a new parameter,
called e�ectual fanout which expresses the average number of messages per retrans-
mission. It characterizes, therefore, the mean dissemination power of infected sites,
i.e., those that received the message at least once. In large scale systems, the ef-
fectual fanout has thus a strong linear correlation with message complexity metric
as we show and prove in Section 3.3. For a given value, the e�ectual fanout can
be analytically calculated as function of the input parameter of the corresponding
gossip algorithm (e.g., fanout, probability, etc.) and thus, it simpli�es the theoret-
ical comparison of di�erent gossip algorithms on a �xed topology. The advantage
of using the e�ectual fanout compared to message complexity metric is that, the
former can be easily calculated analytically, while the latter requires knowing the
total number of messages generated by each algorithm as function of the topology.

Exploiting the e�ectual fanout, we will also present in this chapter results of an
extensive performance evaluation, conducted on top of OMNET++ [1]. We have
compared GossipFF , GossipPE , and GossipPB over the above mentioned three
topologies. In order to have a fair comparison, the value of the respective input pa-
rameter of each algorithm has been varied and, the e�ectual fanouts for the di�erent
values have been applied (see Section 3.3). The performance evaluation results are
then presented as a function of the e�ectual fanout: for di�erent values of the e�ec-
tual fanout, we have evaluated the fraction of infected sites, reliability, and latency
of the three gossip algorithms over the three topologies.

The remainder of this chapter is organized as follows. Section 3.2 introduces
some performance metrics. The e�ectual fanout is presented in Section 3.3. Section
3.4, Section 3.5, and Section 3.6 respectively show simulation results of the gossip
algorithms over Bernoulli (or Erd®s-Rényi) graph, random geometric graph, and
scale-free graph on top of OMNET++, while Section 3.7 shows how to combine
them to have the best gain in terms of reliability. Section 3.8 discusses some previous
work. Finally, Section 3.9 concludes this work.

3.2 Performance Metrics

In the context of information dissemination, there are many existing metrics to
evaluate performance of gossip algorithms (See Section 2.2). We use the common
metrics introduced in the literature [65, 86, 92] as follows:

Message Complexity, denoted M: measures the mean number of messages
received (or sent, since no message loss is taken into consideration) by each site:

M =
Ω

N − 1
, (3.1)
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where Ω is the total number of messages exchanged during the dissemination.
Fraction of Infected Sites, denoted α: is de�ned as the percentage of all

sites in the system that delivered a message generated by a source in the end of the
dissemination.

Reliability, denoted R: is de�ned as the percentage of messages generated
by a source that are delivered by all sites. A reliability value of 100% is indicative
that the algorithm was successful in delivering any given message to all sites (i.e.,
α = 100% for any given message) ensuring thus atomicity similarly to pure �ooding
algorithms [86].

Latency, denoted L: measures the number of hops required to deliver a mes-
sage to all recipients, i.e., the number of hops of the longest path among all the
shortest paths from the source to all other sites that received the message.

An e�cient dissemination algorithm aims at providing both large fraction of
total infected sites and high reliability, while minimizing both message complexity
and latency.

3.3 E�ectual Fanout

The number of retransmitted messages of the three gossip algorithms, and therefore
their message complexity, depend on their respective input parameters (pv, pe or
fanout), which are, in fact, quite di�erent. Hence, aiming at conducting a fair
uniform comparison of these algorithms over the topologies described in Section 2.3,
we have introduced a new parameter: e�ectual fanout denoted Feff . The latter
enables to make an accurate analysis of the behavior of a gossip algorithm over a
topology. Furthermore, it simpli�es the theoretical comparison of di�erent gossip
algorithms on the topology. For a �xed topology and gossip algorithm, the e�ectual
fanout characterizes the mean dissemination power of infected sites. Thereby, when
the number of sites of the system is very large, the e�ectual fanout has a strong
linear correlation with message complexity, as shown in Theorem 7 of the current
section. Notice that as function of both an algorithm and a topology, it is possible,
for a given e�ectual fanout to deduce the value of the mentioned input parameter
of the gossip algorithm in question, as shown in the following.

Based onGossipPE ,GossipPB , andGossipFF algorithms, we de�ne respectively
that:

FGossipPE
eff = pe · V̄ (3.2)

FGossipPB
eff = pv · V̄ (3.3)

FGossipFF
eff =

fanout−1∑
k=1

P (k) · k +
N−1∑

k=fanout

P (k) · fanout (3.4)
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due to the two conditions in Algorithm 9 described in Section 2.5.1 (lines 11 and
13).

We respectively denote Uh and Ih the expected number of sites that have not
been infected before the end of hop h and the expected number of newly infected
sites within hop h, for 1 6 h 6 L where L is the latency. Observe that U0 equals to
N − 1, I0 equals to 1, and UL = (1− α)N .

For hop h, Uh and Ih are related as follows:

Ih = Uh−1 − Uh, 1 6 h 6 L (3.5)

Theorem 1. For the three probabilistic gossip algorithms over large scale random

topologies (N � 1), message complexity is M ≈ αFeff .

Proof. Since there is no loss of messages, the total number of messages received by
each site is equal to the number of transmitted messages. In every hop h, a site will
relay Feff messages to its neighbors, while the expected number of newly infected
sites in hop h is Ih. Thus, the expected number of transmitted messages in hop h
is Feff · Ih.

Considering all hops and Equation (3.5), we obtain Ω, the total number of
received messages:

Ω =
L∑
h=1

Feff · Ih = Feff ·
L∑
h=1

Ih = Feff · (N − 1− UL)

By Equation (4.7), M = (N−1−UL)
N−1 · Feff = (αN−1)

N−1 · Feff and, since N is very
large we then get M = αFeff .

In fact, using the number of redundant transmissions resulted in delivering a
given message to an infected site, which is measured in [29], we may obtain the
same result.

Corollary 2. In order to have high reliability for the three probabilistic gossip algo-

rithms over large-scale random topologies, message complexity is M ≈ Feff .

Proof. When the high reliability is reached (e.g., heuristically, over 95% of total sites
are infected on average at the end of a message dissemination), α is very close to
100% and, according to Theorem 7, the result is obtained.

From now on, we will present a series of experimentations implemented over
OMNET++. From that, we can understand the importance of e�ectual fanout on
the fair performance evaluations.

We consider that the network is composed of N = 1000 sites and, in order to
ensure connectivity, ε = 1 for B (N, pN ) and G (N, ρ). Since we aim at having almost
the same mean degree for all topologies (V̄ ≈ 14.0), the topology parameters were
chosen as shown in Table 3.1:
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(a) On B (N, pN )
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(b) On G (N, ρ)
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(c) On S (N,m)

Figure 3.1: Relation between Message Complexity and E�ectual Fanout
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(b) On G (N, ρ)
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(c) On S (N,m)

Figure 3.2: Di�erence between Fanout in GossipFF and E�ectual Fanout.

For each gossip algorithm, 200 di�erent messages are generated by 200 di�erent
sources that are chosen uniformly amongst 1000 sites over 20 di�erent graphs related
to each of the topologies. Then, the results for each e�ectual fanout are averaged
by the 200× 20 = 4000 message disseminations.

As explained, our aim is to fairly compare the performance of the three gossip al-
gorithms, especially the reliability, using the e�ectual fanout. Such fairness requires
the equivalence in terms of message complexity of the three algorithms over a given
topology. Therefore, we would like to verify the linear relation between the e�ec-
tual fanout and message complexity, which is proved in Corollary 8. Figures 3.1(a),

1Since the graph is a rectangular area with border e�ect, its degree distribution should be

adjusted on basis of the results in Section 2.3.2 for in�nite G (N, ρ). The choice of ρ will be

pinpointed in Section 3.5.

TOPOLOGY PARAMETERS
B (N, pN ) pN = 0.014

G (N, ρ) a = 7500, b = 3000, ρ = 3301

S (N,m) m0 = 9 (m0 − clique), m = 7

Table 3.1: Topology Parameters
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3.1(b), and 3.1(c) show this relation. They con�rm that the linearity Feff = M

holds whenever Feff value is great enough (Feff > 3). On the other hand, for
smaller Feff values, the fraction of infected sites (α) is too small to be neglected
in the equation of Theorem 7. The only exception is for GossipPB over G (N, ρ)

(Figure 3.1(b)) since, in this case, a clustering e�ect (see Section 3.5) prevents this
algorithm to bene�t from the growth of the dissemination power. Notice that such
value is much smaller than the dissemination power value which provides reliability.
Hence, the fairness of the algorithm comparison is ensured in this case.

Fanout vs. E�ectual Fanout : Contrarily to the fanout in GossipFF , the e�ec-
tual fanout takes into account the degree distribution of the topology, which makes
measures and performance evaluation fairly comparable for all the three topologies.
In order to well understand the di�erence between the fanout in GossipFF and ef-
fectual fanout, Figures 3.2(a), 3.2(b), and 3.2(c) present the value of e�ectual fanout
for each random topology as a function of fanout in GossipFF . We observe that
for small values there is an equality between them, while their values diverge for
large fanout values (i.e., the e�ectual fanout is proportionally smaller). In fact,
those sites whose number of neighbors is inferior to fanout always retransmit less
than fanout messages. In S (N,m), where the degree variance is very high and the
number of sites, such as peripheries, with small number of neighbors is very large,
this phenomenon is much more remarkable (see Figure 3.2(c)). Such a phenomenon
also explains why in a great number of theoretical studies, the fanout of GossipFF
is always considered as inferior or equal to the minimum degree of the graph.

3.4 Algorithms Comparison over B (N, pN)
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Figure 3.3: Infected Sites over B (N, pN )

We discuss now the performance evaluation for the gossip algorithms over
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Figure 3.4: Reliability over B (N, pN )
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Figure 3.5: Latency (hops) over B (N, pN )

B (N, pN ). On the one hand, both the fraction of infected sites (α) and the relia-
bility (R) in Figures 3.3 and 3.4 present a threshold e�ect as a function of e�ectual
fanout. In other words, the fraction of infected sites or the reliability equals to 0

for some small e�ectual fanout values, but it quickly comes to 100% for a threshold
value (e�ectual fanout = 4). On the other hand, we observe that the performance
for all gossip algorithms is the same for the same e�ectual fanout.

However, if we compare the thresholds for the fraction of infected sites and
reliability, they are di�erent. The fraction of infected sites percolates with smaller
e�ectual fanout than reliability (respectively, Feff = 4 in Figure 3.3 and Feff = 13
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in Figure 3.4). As a matter of fact, when the e�ectual fanout is great enough such
that almost all sites receive each message (i.e., α ≈ 100%), none of the messages
is received by all sites (i.e., R = 0). Only when the e�ectual fanout equals to 13

that almost all messages are surely received by every site (i.e., R ≈ 100%). We thus
observe a great gap in terms of e�ectual fanout value between the dissemination
power necessary for infecting almost every site and high reliability.

Since the algorithms have the same behavior over B (N, pN ), then we can use the
theoretical result of GossipFF [86] to determine the corresponding thresholds for

GossipPE and GossipPB : fanout = − ln
(
− ln(R)
N

)
. For instance, for R = 99.4%,

fanout = − ln
(
− ln(.994)

1000

)
≈ 12. By Equation (6.3) in Section 3.3 we obtain Feff =

11.3. Thereby, pe = pv = Feff/V̄ = 11.3/14 = 0.81. Hence, it becomes possible to
dimension the input probabilities of GossipPE and GossipPB to obtain a desired
reliability.

In Figure 3.5, after a given e�ectual fanout, latency does not decrease anymore,
but converges towards pure �ooding approach (i.e., the shortest routes between the
source and the other sites), and therefore, towards the minimum latency.

Effectual 
Fanout 

Message 
Complexity 

Latency Reliability 

Fraction of 
Infected Sites 

+ 

+ 

+ 

+ 

+ + 

+ 

+ 

- 

- 

- 
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Figure 3.6: Trade-o� amongst the metrics related to E�ectual Fanout

By the means of e�ectual fanout, we can summarize the trade-o� amongst the
four metrics in Figure 3.6. The positive (resp., negative) sign in the �gure represents
a rise (resp., fall) of the corresponding value. Such relations are con�rmed not only
over B (N, pN ), but over other random graphs as well. More precisely, on the one
hand, the increase (resp., decrease) of e�ectual fanout results in the rise (resp., fall)
of message complexity, reliability, and fraction of infected sites. On the other hand,
it reduces (resp., raises) the latency for the gossip algorithms.

3.5 Algorithms Comparison over G (N, ρ)

We now present simulation results related to the performance of the gossip algo-
rithms on G (N, ρ) (Figures 3.8, 3.9, 3.10, and 3.11). If the performance of the
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gossip algorithms is identical on B (N, pN ), it is not always the case for other ran-
dom topologies.

(𝑠′)

1 − 𝑡2

Figure 3.7: Percentage of a circle covered by s′

Since G (N, ρ) in our simulation is a �nite graph, we �rstly adjust its degree
distribution that is shown in Section 2.3.2, where the border e�ect is not taken into
consideration. To this end, we consider a site s′ located near the border. Then, we
estimate the percentage of a circle covered by s′ that lies inside the rectangle (see
Figure 3.7). Since our interest is the percentage, we can assume that ρ = 1. Clearly,
if the distance of s′ from the edge of the �eld is 0 6 x 6 1, the area of the disc lying
inside the �eld is given as∫ x

−1
2
√

1− t2dt =
(
x
√

1− x2 − arccos(x)
)

+ π

Thereby, the fraction is given by:

F (x) :=
1

π

(
x
√

1− x2 − arccos(x)
)

+ 1

We can now compute the degree distribution as: P (k, x) = exp
(
−V̄ (x)

) V̄ (x)k

k! ,

where V̄ (x) = V̄ · F (x). Finally using Ps(k) = exp
(
−V̄
)
V̄ k

k! , we can write

P (k) = Ps(k)

(
(a− 2ρ)(b− 2ρ)

ab
+

2aρ+ (b− 2ρ)ρ

ab
ϕ(k)

)
,

where (a−2ρ)(b−2ρ)
ab is the probability that the round area covered by a site is totally

inside the rectangle, 2aρ+(b−2ρ)ρ
ab is the complementary probability to the previous

one, and ϕ(k) represents the average impact of the border e�ect, calculated as:

ϕ(k) =

∫ 1

0
exp

(
−V̄ (F (x)− 1)

)
· F (x)kdx

It should point out that the above formula ignores the corners, where the ex-
pected degree of a site is even smaller. However, when ρ � a and ρ � b, such an
e�ect is negligible.
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Therefore, its mean degree can be calculated as V̄ =
N−1∑
k=1

P (k) ·k. This is reason

that we have chosen ρ = 330 to ensure V̄ = 14 in our simulation.
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Figure 3.8: Infected Sites over G (N, ρ)
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Figure 3.9: Reliability over G (N, ρ)

Now, we can compare the performance for three gossip algorithms in G (N, ρ)

with border e�ect. If we consider the reliability (see Figure 3.9), we notice that
GossipFF is much more e�cient (i.e., with merely Feff = 8.5, R = 99% is reached)
than the two other algorithms that require Feff = 14 to reach R = 99%. Further-
more, we can observe in the same �gure that the threshold e�ect for both GossipPE

and GossipPB is much smoother (i.e., from 5.5 to 14) than for GossipFF and, that
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Figure 3.10: Latency (hops) over G (N, ρ)

GossipPE presents a slightly better performance than GossipPB . However, if we
look at the performance in terms of the fraction of infected sites in Figure 3.8, the
comparison results are quite di�erent. GossipPE has very similar performance to
GossipFF which is the most e�cient. GossipPB shows the worst performance: it
requires about Feff = 8 in order to infect almost every sites.

The behavior of the latency curves of Figure 3.10 for G (N, ρ) is similar to that
of B (N, pN ), except that the minimum latency value is around 22 hops since the
diameter of the former is greater than the latter.

In order to thoroughly analyze the results, we conducted a series of experi-
mentations by placing the source in the center of a rectangular plane of dimension
3000×7500 with 1000 sites uniformly distributed at random. The mean degree cor-
responding to the radius ρ = 330 is about 14. The results are presented in Figure
3.11. Several values of Feff are chosen for the three gossip algorithms. The x-axis
and y-axis represent the geographic position of the site in the graph, whereas the
z-axis characterizes the percentage of messages received by every site. The greater
the value towards the z-axis for a site, the greater the number of messages received
by the site. The plane z-axis=0 indicates the sites that never received any message.

The performance of GossipFF is shown in the �rst column of Figure 3.11. We
can verify that this algorithm is the most e�cient for infecting all sites (i.e., with
Feff merely equal to 6.97) contrarily to the other two algorithms (see Columns 2
and 3) that cannot broadcast every message from the source to the whole system Π

until Feff = 9.77. Even though these two algorithms complete the broadcast with
almost the same performance, the evolution of their infections is quite di�erent.

On the last column, we notice that GossipPB presents a peek for several values
of Feff in the graphs. Such a behavior implies that the infected sites are located
around the source and message dissemination stops quickly. It can be explained
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(a) GossipFF with Feff =1 (b) GossipPE with Feff =1 (c) GossipPB with Feff =1

(d) GossipFF with Feff =2 (e) GossipPE with Feff =2 (f) GossipPB with Feff =2

(g) GossipFF with Feff =3.99 (h) GossipPE with Feff =3.99 (i) GossipPB with Feff =3.99

(j) GossipFF with Feff =4.99 (k) GossipPE with Feff =4.99 (l) GossipPB with Feff =4.99

(m) GossipFF with Feff =6.97 (n) GossipPE with Feff =6.97 (o) GossipPB with Feff =6.97

(p) GossipFF with Feff =9.77 (q) GossipPE with Feff =9.77(r) GossipPB with Feff =9.77

Figure 3.11: The message reception of every site over G (N, ρ)
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by the clustering e�ect entailed by the broadcast probability pv: in this algorithm,
sites stop retransmitting the message with probability 1 − pv. If this probability
is high, the sites that do not relay the message give rise to a con�nement around
the source (i.e., the border of the peak). On the other hand, by increasing pv, the
clustering e�ect is reduced and the message can be received by every site. The study
of such phenomenon is particularly important since, as explained in Section 2.3.2,
G (N, ρ) has very high edge dependency which induces a higher number of possible
peak borders which increase the risk of dissemination stopping.

Inversely, for GossipPE (see the second column), by slightly increasing the value
Feff , almost all sites receive every message from the source. Nevertheless, contrarily
to GossipFF , there are always some sites which receive only a few messages. Such
sites are located either on the border of the rectangular plane or in areas with
small site density of the graph. As a matter of fact, GossipPE imposes random
choice for each edge of every site no matter its degree. Therefore, sites having very
few neighbors, with high probability, do not receive all messages. This explains
GossipPE 's bad reliability (see Figure 3.9) even when almost all sites are infected
(see Figure 3.8). For instance, when Feff = 5, α ≈ 100% whereas there is zero
reliability.

This study thus shows why GossipFF is particularly e�cient over G (N, ρ). By
forcing each site to retransmit some messages, it reduces the clustering e�ect more
e�ciently than the other algorithms. Furthermore, by obliging the sites with small
degree (i.e., smaller than fanout) to broadcast the message to all its neighbors, it
prevents the risk of dissemination stopping of small density areas.

3.6 Algorithms Comparison over S (N,m)
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Figure 3.12: Infected Sites over S (N,m)
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Figure 3.13: Reliability over S (N,m)
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Figure 3.14: Latency (hops) over S (N,m)
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We discuss now the performance of the di�erent gossip algorithms over S (N,m).
Results are completely di�erent from the other two random topologies. Similarly to
B (N, pN ), the three algorithms present the same performance behavior in terms of
the fraction of infected sites as shown in Figure 3.6. Nevertheless, contrarily to the
reliability over G (N, ρ), GossipFF turns to be the worst choice (see Figure 3.6).

Such a performance behavior is a consequence of the degree distribution of the
graph which has sites with higher degrees, the hubs (see Section 2.3.3). Such a
group of sites only consists of less than 1/4 of total sites in the system, which is
proved in Theorem 3. In addition, the peripheries whose degrees are much lower,
connect to the hubs with high probability due to the preferential attachment in
S (N,m). Thus, intuitively, the hubs can be infected before the peripheries, and to
some extent, the former determine the �nal broadcast performance.

Theorem 3. In S (N,m), we have | Πp |> 3 | Πh |. where | Πp | is the total number
of periphery sites, and | Πh | is the total number of hubs.

Proof. First of all, we compute the percentage of the peripheries in the system as
follows.

| Πp |
N

=
2m∑
k=m

2m(m+ 1)

k(k + 1)(k + 2)

=2m(m+ 1)

2m∑
k=m

1

k

(
1

k + 1
− 1

k + 2

)

=2m(m+ 1)
2m∑
k=m

[(
1

k
− 1

k + 1

)
− 1

2

(
1

k
− 1

k + 2

)]

=2m(m+ 1)

2m∑
k=m

(
1

k
− 1

k + 1

)
−m(m+ 1)

2m∑
k=m

(
1

k
− 1

k + 2

)
=2m(m+ 1)

(
1

m
− 1

2m+ 1

)
−m(m+ 1)

(
1

m
+

1

m+ 1
− 1

2m+ 1
− 1

2m+ 2

)
=2(m+ 1)− 2m(m+ 1)

2m+ 1
− (m+ 1)−m+

m(m+ 1)

2m+ 1
+
m

2

=1− m(m+ 1)

2m+ 1
+
m

2

=1− m

2(2m+ 1)

=1− 1

2

1

2 + 1
m

>0.75.

Since | Πh | + | Πp |= N , then

| Πh |
N

< 0.25.
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Thereby, we obtain

| Πp |> 3 | Πh | .

In order to understand the dissemination power of the hubs, we have measured,
for di�erent Feff values, the reliability of the hubs (i.e., the proportion of messages
generated by the source that are received by all hubs in the system Π). The results
are presented in Figures 3.6, 3.6, and 3.6. For each algorithm, the latter are com-
pared with the reliability when we consider all sites of Π (denoted global reliability).
This comparison shows that hubs are infected on priority no matter which algorithm
is applied. Thereby, with a Feff equal to 6, the reliability of the hubs is 100% for
all the three algorithms whereas almost none of the messages is received by all sites
(i.e., the global reliability is still zero).
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Figure 3.15: The reliability of all hubs and all sites by GossipFF over S (N,m)

GossipFF presents the worst performance which can be explained by its poor
exploitation of hubs. In fact, even if hubs degree is quite high, the algorithm limits
their dissemination power to the value �xed by the fanout. On the other hand, it
should be understood that a transmission of 10 messages by one site is more pow-
erful than a transmission of 1 message by 10 sites. In the �rst case, all receivers are
di�erent, which ensures a better message dissemination with less message redun-
dancy.

The fact that the dissemination potential of hubs is not fully exploited also
explains the latency of Figure 3.6. As we can observe, GossipPB and GossipPE

present the same latency but not GossipFF which has a higher latency when its
reliability is near to 100%. As a matter of fact, in S (N,m), the hubs are the heart
of the network: the peripheries have at least one hub in its neighborhood with high
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Figure 3.16: The reliability of all hubs and all sites by GossipPE over S (N,m)
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Figure 3.17: The reliability of all hubs and all sites by GossipPB over S (N,m)
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probability. By limiting the dissemination power of the hubs, GossipFF discards
numerous short-cut paths.

3.7 Impact of the Topology on the Algorithms

In the previous sections, by applying the e�ectual fanout parameter, we have �nely
disclosed the reliability, fraction of infected sites, and latency for the three families of
gossip algorithms in each of the three typical random topologies. On the other hand,
the e�ectual fanout is also useful to uniform comparison of all reliability obtained
from gossip algorithms over random networks with di�erent degree distributions. In
this way, we can discover the impact of the topology on the algorithms.
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Figure 3.18: Topologies impact on algorithms

Since in our simulations we have considered topologies with the same mean
degree (V̄ ≈ 14.0), we can compare the reliability of the algorithms over the di�erent
topologies, which is shown in Figure 3.18 and summarized in Table 3.2. When the
graph has low edge dependency and low degree variance as in (B (N, pN )), the
three algorithms present the same behavior. When edge dependency (resp., degree
variance) is introduced in the graph, but the degree variance (resp., dependency)
does not change as in G (N, ρ) (resp., S (N,m)), the performance of GossipPB and
GossipPE (resp., GossipFF ) decrease.

Such results con�rm that the best algorithm choice for the reliability with the
same message complexity depends on the properties of network topology. It should
be pointed out that the performance of GossipPE is never worse than GossipPB ,
since in the percolation theory [63], the former can be modeled by bond percolation
while the latter matches the site percolation. The percolation threshold of site
percolation is always greater than that of bond percolation in any topology.

We have also measured the relative e�ectual fanout gain of the gossip algorithms
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Low Degree High Degree
Variance Variance

Low Edge B (N, pN ): GossipFF , S (N,m): GossipPE ,
Dependency GossipPE ,GossipPB GossipPB

High Edge G (N, ρ): −−
Dependency GossipFF

Table 3.2: Algorithm choice

in comparison to the e�ectual fanout needed by the �ooding algorithm (i.e., the max-
imum message complexity) when reliability reaches 80% and 99% and the fraction
of infected sites is high (i.e., α is approximate to 100%). The results over the three
random topologies are shown in Tables 3.3 and 3.4 respectively. We observe that
over G (N, ρ) to reach R = 99% the gain of GossipPB and GossipPE is zero. Hence,
they need almost the same message complexity as the pure �ooding. On the other
hand, to reach R = 80%, B (N, pN ) exhibits the best gain for GossipPB and Gos-

sipPE amongst all random topologies. Furthermore, GossipFF over G (N, ρ) is the
best combination for achieving the highest gain.

B (N, pN ) S (N,m) G (N, ρ)

GossipFF 14% 14% 43%
GossipPB 14% 21% 0%
GossipPE 14% 21% 0%

Table 3.3: Gain in terms of e�ectual fanout to reach R = 99%

B (N, pN ) S (N,m) G (N, ρ)

GossipFF 40% 23% 52%
GossipPB 40% 34% 27%
GossipPE 40% 34% 31%

Table 3.4: Gain in terms of e�ectual fanout to reach R = 80%

In conclusion, in order to reduce message complexity of gossip algorithms in con-
trast to the �ooding algorithm, it is necessary to consider both the gossip algorithm
and the topology.

3.8 Previous Work

Many works have already established some similar implementations and analysis,
but solely for a given algorithm over one or two graphs in terms of some restricted
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metrics. To the best of our knowledge, our study is the �rst time to ful�ll a complete
comparison.

In the following, we provide a brief presentation of these works which are sum-
marized in Table 3.5.

[11] [13]

[20]

[7]

[25] [4] [18]

[16] [12]

[15]

[29] [30]

B (N,pN) S (N,m) G (N, ρ)

GossipFF

GossipPE

GossipPB

[16]

[15]

[29] [30]

Table 3.5: Previous studies of random gossip algorithms

The reliability of the information dissemination is studied in [86] by applying
GossipFF over B (N, pN ). The authors assumed that the fanout of every site is
always smaller than the number of its neighbors. The article mainly concludes
that in a system with N sites to have the reliability equal to R, it requires to �x

fanout = − ln
(
− ln(R)
N

)
. Results for GossipFF over B (N, pN ) which are based on

simulations are also discussed in [47, 52]. However, the other gossip algorithms are
neither studied nor compared in the articles. It is worth pointing out that since the
fanout is not linear to message complexity and the other two gossip algorithms take
the probability as input parameter, the comparisons amongst them as a function of
their probabilistic input become di�cult due to the lack of one generic parameter
like the e�ectual fanout.

The performance of GossipPB over G (N, ρ) is discussed and implemented in
[15, 65] and it is theoretically analyzed over B (N, pN ) in [31]. The former is also
studied in [145], concentrating on answering how to choose pv in order to reach high
reliability. Besides the discussion about the reliability by percolation property over
B (N, pN ), the asymptotic expressions in [113] with respect to the average number
of messages and the average time required to complete network coverage are derived
as well, showing the bene�ts of the properly choice of pv. However, compared to
our work, their e�orts are focused on the performance of one gossip algorithm over
a certain random topology, which can be considered as one aspect of our discussion.
Over the two random topologies S (N,m) and B (N, pN ), the latency of a modi�ed
version of GossipPB algorithm which lets every site send message to one neighbor
with certain probability several times is theoretically studied by SIS (Susceptible-
Infective-Susceptible) model in [58].

According to the heuristic results �rstly shown in [61], the performance of the
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three probabilistic gossip algorithms over S (N,m) is better than B (N, pN ). How-
ever, without e�ectual fanout, they cannot obtain the quantitative gains for all
gossip algorithms in terms of message complexity to reach the same reliability.

GossipPE presents better performance than GossipPB over G (N, ρ), which is
studied as a function of the system size (or the site degree) in [132]. Moreover,
the three algorithms over S (N,m) are compared in the same way in [51]. Article
[126] points out that the choice between GossipPE and GossipPB depends on the
di�erent application constraints over G (N, ρ). Compared to their work, we exploit
the e�ectual fanout, which is linear to message complexity, and thus, the di�erence
of all metrics can be fairly compared.

3.9 Conclusion

Contrarily to the fanout in GossipFF , the e�ectual fanout takes into account the
degree distribution of the topology, which makes measures and performance evalu-
ation fairly comparable for all the three topologies. Therefore, e�ectual fanout is a
useful parameter to uniform comparison of gossip algorithms over random networks
with di�erent degree distributions. It characterizes the mean dissemination power
of infected sites.

By exploiting the e�ectual fanout parameter, we have ful�lled the comparison
of the reliability, fraction of infected sites, message complexity, and latency for the
three families of gossip algorithms over three typical random topologies. We have
shown that in terms of reliability, GossipFF is the best algorithm on G (N, ρ) but
the worst on S (N,m) and that the three algorithms have the same performance on
B (N, pN ).

The results obtained in this study help in the decision of choosing the most
suitable combination between a gossip algorithm and a random topology that sat-
is�es the requirements of an application. Furthermore, since the e�ectual fanout
simpli�es the theoretical comparison of di�erent gossip algorithms on a topology,
it can thus be used to theoretically analyze some of the algorithms' behaviors as,
for instance, the clustering e�ect of GossipPB on G (N, ρ) or the fact that hubs are
infected before peripheries on S (N,m), regardless of the gossip algorithm.
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4.1 Introduction

Information dissemination over P2P networks like Gnutella or social networks like
Twitter and Facebook becomes a very critical issue when high reliability, low latency,
and low message redundancy are required. These networks are commonly known as
scale-free networks since their degree distribution follows a power-law distribution.
Furthermore, a minority of the sites (so-called hubs) have a higher degree than the
average degree of the network.

Probabilistic gossip algorithms have emerged as an e�ective solution to imple-
ment highly reliable and scalable broadcast protocols. The topology properties of a
network have a strong impact on the e�ciency of information dissemination. There-
fore, gossip algorithms should be tailored to exploit them. For instance, in the case
of scale-free topologies, sites with high degree should retransmit received messages
with a higher probability than the others since the former are highly connected site
implying that messages will be disseminated faster.

We thus propose in this chapter a dissemination algorithm suitable for scale-
free topologies generated by Barabási-Albert model [6]. This model makes use of
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preferential attachment which is a basic idea used by many other models [66, 68]
for characterizing some real networks. Scale-free topologies are characterized by the
presence of sites, denoted hubs, that have many more connections than the others.

Our algorithm exploits then as much as possible the potential dissemination
power of hubs: it dynamically tries to reduce the set of sites that retransmit received
message to these sites. Therefore, in our algorithm non-hub sites, whose number
is much greater than the former, do not retransmit messages whenever they are
directly connected to a hub. On the other hand, in order to ensure a high reliability,
a site which believes that it does not have any hub as a neighbor requires all of
its neighbors to become forwarders of received messages, creating thus a path to
the closest hub. We show in this chapter that very few sites must be forwarders.
Interestingly, that the deduction of hub-neighbors are performed in a distributed
way, based only on sites' local view and exchange of neighbors' knowledge.

Our algorithm is composed of two phases. The �rst one is responsible for provid-
ing, with high probability, the above mentioned hub-neighbor connection require-
ment while the second one disseminates messages. In the second phase, based on
received messages, a site locally deduces the average degree of the network, and if
it should behave like a hub or not. Therefore, without any global parameters, but
just exploiting processes' local view and information kept by received messages, our
algorithm ensures extremely high reliability with only half of message complexity
when compared to pure �ooding algorithm that entails the broadcast storm problem
[111], as con�rmed by some performance evaluation results on top of OMNET++
[1].

The road map of this chapter is organized as follows. Section 4.2 gives an
overview of scale-free random networks. Section 4.3 introduces our algorithm and
presents an example of its execution, while simulation results on OMNET++ are
shown in Section 4.4. Finally, Section 4.5 concludes this work.

4.2 Scale-Free Random Topology

In scale-free networks, the degree distribution follows a power law. It is characterized
by the presence of sites, denoted hubs, whose number of edges are much higher
than the others. The non-hubs sites are denoted peripheries. Moreover, in social
networks, new participants are more likely to make friends with people who have a
great number of neighbors than a person with very few friends. We call it preferential
attachment behavior, which can be imitated by the network S (N,m) generated by
Barabási-Albert model [6] (see Section 2.3.3). In S (N,m), hub and periphery
sites have degree greater than 2m and between m and 2m respectively. Hence, the
system Π is composed by the set of hubs denoted Πh and the set of peripheries
denoted Πp. We have deduced

| Πp |> 3 | Πh |

in Theorem 3 (see Section 3.6 in Page 57).
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We denote Pconnect (hub | si) (resp., Pconnect (per | si)) the probability that a site
si connects to a site in Πh (resp., Πp).

Lemma 4. Over S (N,m), Pconnect (hub | si) = Pconnect (per | si) = 0.5

Proof. S (N,m) generated by Barabási-Albert model is an uncorrelated network
described in [149]. In such a network [117], the probability that a site si connects
to another site sj can be written as:

P (Vj | Vi) =
VjP (Vj)

V̄
.

Thus, the probability that a site si connects to a hub is

Pconnect (hub | si) =
N−1∑

k=2m+1

P (k) k

2m
(4.1)

=

N−1∑
k=2m+1

k

2m
· 2m(m+ 1)

k(k + 1)(k + 2)
(4.2)

=

N−1∑
k=2m+1

(m+ 1)

(k + 1)(k + 2)
(4.3)

=(m+ 1) ·
N−1∑

k=2m+1

(
1

k + 1
− (1)

k + 2

)
(4.4)

=0.5, (4.5)

while the probability that the site si connects to a periphery is

Pconnect (per | si) =

2m∑
k=m

P (k) k

2m
= 0.5. (4.6)

4.3 Our Algorithm

The main idea of our gossip algorithm is that only the sites in Πh (i.e., hubs whose
degree is greater than 2 times the minimum degree of S (N,m)), whose degree is
much higher than those in Πp (i.e., peripheries), should relay received messages. In
this way, since | Πp |> 3 | Πh | (see Section 3.6), intuitively half of the message
complexity may be reduced compared to �ooding algorithm.

Primarily knowing the degree of its one-hop neighbors, each site can deduce,
in a distributed way, whether one of its neighbors belongs to Πh or not. If it is
the case, the site never retransmits received messages since it knows that its hub
neighbor will do it. On the other hand, if a site believes that it is not directly
connected to any hub, all sites between that site and the closest hub must forward
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every message they receive. We denote such sites forwarders. Our algorithm is
thus composed of two phases. The �rst one is responsible for satisfying, with high
probability, this hub-neighbor connection requirement over S (N,m) and the second
one for disseminating messages. An example will explain these phases just after the
study of our gossip algorithm.

4.3.1 E�cient Gossip Algorithm

Algorithms 6 and 7 respectively describe the above two phases of our gossip algo-
rithm. The variablemini corresponds to the minimum degree amongst the neighbors
of si and itself, while maxi corresponds to the maximum degree of si's neighbors.
Initially, si knows maxi and mini.

Algorithm 6: Hub Connection Algorithm (at si)

/* mini: min neighbor and its degree in local view */42

/* maxi: max neighbor degree in local view */43

HubConnection ()44

if maxi 6 2×mini then45

foreach sj ∈ Λi do46

sj .forwarder = true47

Algorithm 7: Hub-Based Gossip (at si)

/* m̂in = mini: the updated min degree in the network */48

/* 〈msg〉.min = mini: estimated min piggybacked in message */49

GossipHB (〈msg〉,-)50

if si.forwarder or Vi > 2× Approxm(〈msg〉) then51

foreach sj ∈ Λi do52

Send(〈msg〉, sj)53

Approxm (〈msg〉)54

if m̂in > 〈msg〉.min then55

m̂in = 〈msg〉.min56

else57

〈msg〉.min = m̂in58

return m̂in59

Algorithm 6 is simultaneously executed by all sites before information dissem-
ination. A site locally suspects that it is not connected to a hub if the degree of
all its neighbors (i.e., the sites in Λi) is smaller or equal to 2 × mini since in the
Barabàsi-Albert model, hubs have degree greater than 2 ×m (see line 45). In this
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case, by setting its neighbors' forwarder variable to true, the site forces all of them
to forward every message received in the second phase of the algorithm (lines 51
and 52).

The relative number of sites that need forwarders in their neighborhood is very
small, which is inferred from Theorem 5. For instance, if m = 5, theoretically,
about 1% of the total sites in S (N,m) require forwarders to reach a hub, whereas
if m = 15 fewer than 6× 10−6 of the sites need forwarder sites.

Theorem 5. Over S (N,m), the fraction of sites that need forwarders in their

neighborhood is

Padd 6
N−1∑
k=m

0.5kP (k),

where P (k) = 2m(m+1)
k(k+1)(k+2) .

Proof. Since the probability for a site si with degree k whose Λi ⊆ Πp is smaller
than or equal to (Pconnect(per | si))k, then the probability that any site in Π requires
a forwarder is

Padd 6
N−1∑
k=m

(Pconnect(per | si))k P (k).

As deduced in Lemma 4 that Pconnect(per | si) = 0.5, the result is obtained.

After the �rst phase, the second phase of the algorithm, Hub-Based Gossip de-
noted GossipHB , starts up message dissemination. If the site is either a forwarder
or a hub, it should retransmit the messages it receives to all its neighbors (see line
15). For a site to conclude that it is a hub, it must deduce m of S (N,m). To this
end, it calls the function Approxm(〈msg〉). Every messagemsg piggybacksmsg.min,
i.e., the minimum degree of the graph known by the sender of the message. If the
value in the message is smaller than the minimum degree value kept by the receiver
of the message in its local approximation m̂in variable, the receiver updates this
variable (lines 15 and 15).

Thanks to this approximate estimation, a site eventually deduces the mean de-
gree of S (N,m) (i.e., 2×m̂in) which distinguishes hubs from peripheries (see Section
2.3.3).

Theorem 6 shows the message complexity induced by our algorithm, without
considering the number of messages sent by the sites for hub-neighbor connection
requirement of the �rst phase. GossipHB saves half of the message complexity (i.e.,
2×m) compared to pure �ooding algorithm where all sites relay the message to all
their neighbors.

Theorem 6. Over S (N,m), message complexity of GossipHB is m.

Proof. Since m̂in converges to m, according to Algorithm 7, then P (k) =
2m(m+1)

k(k+1)(k+2) . Besides, Theorem 5 shows that the fraction of forwarders is negli-
gible. Applying the theory in [72], we thus calculate the message complexity as
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M =
N−1∑

k=2m+1

P (k)k

= 2m(m+ 1)
N−1∑

k=2m+1

(
1

k + 1
− 1

k + 2

)
= m.

4.3.2 Example

In this section, we describe an execution of our algorithm. We consider a scale-free
graph with 17 sites generated by Barabási-Albert model, where m = 2 and m0 = 3

(see Figure 4.1(a)). Thus, the mean degree is about 4. Sites s1, s2, and s3 are
hubs whose degree is strictly higher than 4, while the others are peripheries (see
Section 2.3.3). However, s1 is not directly connected to the two other hubs. After
the execution of the �rst phase in the algorithm, s4 will become a forwarder to
relay messages, and therefore, all hubs will be connected. These four sites compose
the heart of the network.

𝑠1 𝑠2 

𝑠3 

𝑠4 

(a)
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Figure 4.1: Hub Connection
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Figure 4.2: Hub Detection and Message Dissemination
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Figure 4.1 shows the �rst phase of our algorithm, where hub connection algorithm
is executed before information dissemination. It ensures, therefore, that all hubs are
connected, and every periphery has at least one hub in its one-hop neighborhood.
Knowing that min1 = 2 and max1 = 4, s1 suspects to be isolated from hubs, due to
the algorithm's condition (see line 45). Then, all its neighbors including s4 will set
their forwarder variable to true. In other words, they will take charge of message
retransmission in the second phase (see Figure 4.1(c)).

When the message dissemination starts, every site runs hub-based gossip al-
gorithm as shown in Figure 4.2. Trivially, s1 and s3 are detected to be hubs by
themselves, since their degree is strictly higher than the twice of the estimated min-
imum degree of the graph (i.e., it is greater than the mean degree 2 ×m = 4). In
particular, although s2 locally assumes that min2 = 3 at the beginning, it also turns
to be a hub due to its degree, which is larger than 6. Upon reception of a msg from
other hubs, s2 can accurately update its knowledge on the minimum degree of the
graph, when the function Approxm(〈msg〉) is called with the piggybacked informa-
tion (see line 55). Its character of hub can thus be de�nitely updated. Then, both
hubs and forwarders retransmit their newly received message (see line 51), whereas
almost half of the message complexity is reduced compared to the pure �ooding.
The atomicity (R = 100%) is ensured as well (see Figure 4.2(c)). We should point
out that such a gain can only be obtained, when the fraction of sites that require
the hub connection in the �rst phase is very small, and thus very few non-hub for-
warders are designated to rebroadcast messages. Furthermore, both our theoretical
analysis and simulation con�rm that such a requirement is negligible.

4.4 Performance Evaluation

In this section, we present and discuss some evaluation performance results concern-
ing the �ve algorithms described in both Sections 2.5 and 4.3: GossipFF , GossipPE ,
GossipPB , GossipDD , and our algorithm.

As the �rst phase of our proposed algorithm is executed only once before message
disseminations, we denote our algorithm GossipHB in the sequel. For GossipDD ,
we have �xed phigh and plow to 1 and 0 respectively in order to ensure that only
sites with higher degree retransmit the message. This version of GossipDD is named
Degree Threshold Gossip, and denoted GossipDT hereafter.

Experiments have been conducted on top of the simulator OMNET++ [1]. We
have considered two S (N,m) topologies with 1000 and 10000 sites respectively.
Since for m = 1 the graph becomes a tree, we consider m > 1. For each value of
m between 2 and 15 and m0 = m+ 2 for the initial clique, we generated 50 graphs
with di�erent seeds and then chose 200 di�erent random sources in each graph. All
results represent the average of these experiments.

The following metrics are used for our performance evaluation:
Message Complexity, denoted M: measures the mean number of messages

received (or sent, since no message loss is taken into account) by each site:
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M =
Ω

N − 1
, (4.7)

where Ω is the total number of messages exchanged during the dissemination.
Reliability, denoted R: is de�ned as the percentage of messages generated

by a source that are delivered by all sites. A reliability value of 100% is indicative
that the algorithm was successful in delivering any given message to all sites (i.e.,
every site is infected for any given message) ensuring thus atomicity similarly to
pure �ooding algorithms [86].

Latency, denoted L: measures the number of hops required to deliver a mes-
sage to all recipients, i.e., the number of hops of the longest path among all the
shortest paths from the source to all other sites that received the message.

An e�cient dissemination algorithm aims at providing high reliability, while
minimizing both message complexity and latency.

Figures 4.3 and 4.4 aim at respectively studying the reliability and latency of
gossip algorithms that require a pre-speci�ed parameter, i.e., our algorithm (Gos-
sipHB) was not included in these studies. We �xed the parameter values to reach a
given message complexity, and then we evaluated reliability and latency metrics of
the four algorithms.

4.4.1 Impact of forwarders' requirement

In Section 4.3.1, we have theoretically studied the fraction of sites that require its
neighbors to become forwarders. The simulation results in Table 4.1 con�rm our
study and that such a fraction is negligible.

HHHN

m
2 3 4 5 6 7 8 9 10 11 12 13 14 15

1000 0.0167 0.0093 0.0037 0.0017 0.0007 0.0003 0.0002 10−4 10−4 10−4 10−4
0 0 0

10000 0.0172 0.0089 0.0040 0.0020 0.0009 0.0004 0.0002 10−4 4 × 10−5 10−5 10−5
0 0 0

Table 4.1: Fraction of sites that require forwarders in neighborhood

4.4.2 Reliability of pre-speci�ed parameter algorithms

Figure 4.3 shows, for di�erent topologies, the reliability R in regard to message
complexity M . We can observe that, for reaching high reliability, beyond a given
message complexity value, GossipFF , GossipPE , GossipPB , and GossipDT present
a threshold behavior which is in accordance with the percolation theory [63].

Another interesting comparison result is that, in order to reach the same reliabil-
ity, GossipPE and GossipPB present the same message complexity, while GossipFF
and GossipDT induce the most and the least message complexity respectively. The
di�erence in performance can be explained since in GossipDT only sites with higher
degree, for example the hubs, which are a minority in the network, are responsible
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(a) m = 5 and N = 1000
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(b) m = 10 and N = 1000
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(c) m = 15 and N = 1000

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

Message Complexity

R
el

ia
b

ili
ty

(%
)

(d) m = 5 and N = 10000
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(e) m = 10 and N = 10000
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(f) m = 15 and N = 10000

Figure 4.3: Reliability comparison over S (N,m).

for message retransmission while in the other probabilistic algorithms, all peripheries
relay messages as well.

4.4.3 Latency of pre-speci�ed parameter algorithms

Figure 4.4 presents the latency L in relation tomessage complexity M . We only
present the performance when the reliability reaches at least 85%.

After a given message complexity, latency does not decrease anymore, but con-
verges towards pure �ooding approach (i.e., the shortest routes between the source
and the other sites). GossipDT converges to the minimum latency with the lowest
message complexity when reliability is over 99.9%, whereas GossipFF entails quite
substantial message complexity for converging. The reason for GossipDT better
performance is that when atomicity is reached, the sites that are responsible for
retransmission form a connected subgraph of hubs whose diameter is smaller than
S (N,m).

A �rst conclusion from both studies is that GossipDT is the best choice for
S (N,m) in terms of message complexity and latency. Nevertheless, for reaching
such a performance, the threshold d parameter must be set to an optimum value and
the latter should be known by all sites. Since our algorithm (GossipHB) overcomes
this restriction by estimating m (and therefore the mean degree of the network) at
runtime, it turns out quite interesting to compare the results of our algorithm with
the other algorithms. For comparison reasons, we have also included in our study a
�ooding algorithm since the complexity of this algorithm increases linearly with m
and proves, if necessary, the interest of gossip algorithms.
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Figure 4.4: Latency (hops) comparison over S (N,m).

4.4.4 Comparison of the best algorithms' performance
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Figure 4.5: message complexity comparison with reliability over 99.9%.

Figure 4.5 presents, for each algorithm, the minimum message complexity to
obtain R > 99.9% for m within 2 to 15. The minimum for each gossip algorithm
has been empirically deduced by varying the values of its corresponding parameters
till reaching such reliability.

We can observe that the greater the value of m, the greater the number of
redundant messages received by each site regardless network size. Intuitively, when
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Figure 4.6: Latency (hops) comparison with reliability over 99.9%.

a site degree increases, there will be more message transmission paths towards the
same site from other sites.

On one hand, GossipFF has the highest message complexity, while GossipPB

and GossipPE have almost the same message complexity. On the other hand,
GossipDT and our algorithm outperform them on all network topologies. Whenm >
5, which implies that the number of sites that require forwarders in our algorithm's
�rst phase is very small (see Theorem 5), our algorithm (GossipHB) presents a linear
relation between message complexity and m, which con�rms Theorem 6. This linear
behavior is also responsible for reducing half of the messages in comparison to the
pure �ooding algorithm that presents message complexity 2 × m (i.e., the mean
degree of graphs). Furthermore, when m < 5, though not having such a linear
message gain, our algorithm still presents the lowest message complexity, whereas
the other algorithms perform closely to the �ooding one.

We should also point out that with regard to GossipFF , GossipPB , and Gos-

sipPE , our algorithm's message complexity gain is considerable, as well as the la-
tency. For GossipDT we observe that the growth of message complexity slows down
with m. In fact, the greater the value of m, the higher the hub dissemination power
and the smaller the number of hubs needed to ensure reliability. Thanks to the
�rst phase, our algorithm (GossipHB) algorithm ensures that hubs are connected
by paths composed by very few periphery sites, (i.e., the forwarders), whereas Gos-
sipDT does not for topologies whose mean degree is small. This di�erence explains
why below a given threshold value of m, our algorithm (GossipHB) presents bet-
ter message complexity than GossipDT since in the former there is fewer message
retransmission by periphery sites than in the latter. However, beyond such a thresh-
old value, where the connectivity of hubs is ensured without periphery paths (i.e.,
forwarders in the case of GossipHB), their complexity message performance is in-
verted: in our algorithm (GossipHB), all hubs relay messages while in GossipDT

only a subset of hubs, i.e., those that have degree greater than d. Notice that the
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value of thism threshold increases when N increases (m = 13 andm = 14 in Figures
4.5(a) and 4.5(b) respectively).

In Figure 4.6, for m within 2 to 15, we show some results related to latency,
aiming R > 99.9%. Latency decreases as function of m, since the greater the mean
degree is, the larger the number of short-cuts in the graphs. In addition, compared
to the system with 1000 sites, the one with 10000 sites has longer diameter, which
results in higher latency. In the two systems, the latency of our algorithm is close
to GossipDT 's. If m < 5, both latencies are higher than GossipPB and GossipPE ,
requiring many more transmissions per site (see Figure 4.5), thus creating many
shorter paths in the graphs. Otherwise, their latencies are equal or lower than the
other two algorithms, since the greater ism, the greater the degree of hubs, which in-
duces shorter paths from the source. In particular, when the mean degree of graphs
is very small, for example, 4, all algorithms present performance close to �ooding.
As expected, the �ooding algorithm presents the shortest latency, but at the ex-
pense of the largest number of redundant messages, which expresses the tradeo�
between message complexity and latency. Moreover, GossipFF has the worst mes-
sage complexity performance which can be explained by its poor exploitation of
hubs [72].

4.5 Conclusion

Based on the property that hubs are highly connected in scale-free networks, we
have presented a new gossip algorithm, GossipHB , where periphery sites directly
connected to hubs do not retransmit messages. As the number of the former is much
larger than the latter in scale-free networks, the message complexity of the algorithm,
when compared to �ooding one, is considerably reduced. In our algorithm, the
average degree of the network is not a pre-de�ned parameter of the algorithm, but
deduced during the execution of the algorithm. In order to ensure high atomicity, our
algorithm (GossipHB) has a �rst phase algorithm, where each site easily deduces
if it has a direct connection to a hub or not. Thus, without a global view, this
phase establishes short paths that connect hubs, ensuring then connectivity of hubs,
necessary for information dissemination over the network.

Theoretical analysis and evaluation performance results con�rm the correctness
and e�ectiveness of our algorithm. Compared to other well-known probabilistic
gossip algorithms, simulation results over S (N,m), show that our algorithm (Gos-
sipHB) reduces message complexity, while the minimum latency is held and high
reliability ensured.

We have observed that only if connectivity of hubs is ensured, GossipDT outper-
forms our algorithm (GossipHB) in terms of message complexity. However, for such
gain it is necessary to set its input parameter to an optimum value at initialization
phase. We claim that global choice of parameter values is not suitable for gossip
algorithms in networks where the structure of the network is not known. Therefore,
our algorithm (GossipHB) turns out to be the best choice, since the mean degree of
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the network is deduced at runtime and it exploits at the maximum the dissemination
power of hubs of scale-free networks.

As a near future work, we conduct new performance experiments using social
networks traces, such as Facebook in [142].
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5.1 Introduction

A brief conclusion of our work is drawn in this chapter, while we also discuss some
future perspectives.

5.2 Our Study and Contributions

Our work focuses on studying the behavior and performance of gossip algorithms
over random graphs. To this end, we considered three families of gossip algorithms
(GossipFF , GossipPE , and GossipPB) over three di�erent random topologies :
B (N, pN ), G (N, ρ), and S (N,m). After such study, we proposed a new gossip
algorithm for scale-free topologies, which does not need any pre-�xed parameter to
tailor the algorithm to the topology.

Contribution 1: In order to uniformly compare all probabilistic gossip algo-
rithms over the random graphs, we introduced a new parameter, denoted E�ectual
Fanout [72]. It has two-fold exploitations. We can beforehand estimate the mes-
sage complexity that is linearly correlated to it. For a �xed topology and gossip
algorithm, the e�ectual fanout characterizes the mean dissemination power of the
sites that have received the message from the source site. On the other hand, it
is used to theoretically explain the in�uence of topology over the performance of
gossip algorithms. All results become comparable. The trade-o� amongst reliabil-
ity, message complexity, and latency is clearly addressed by e�ectual fanout. The
best choice of the gossip algorithms depends on the properties of their underlying
topologies. Evaluation on top of OMNET++ has shown that when the graph has
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low edge dependency and low degree variance as in (B (N, pN )), the three algorithms
present the same behavior; when edge dependency (resp., degree variance) is intro-
duced in the graph, but the degree variance (resp., dependency) does not change as
in G (N, ρ) (resp., S (N,m)), the performance of GossipPB and GossipPE (resp.,
GossipFF ) decrease.

Contribution 2: After having gained a sound knowledge about the impact of
di�erent characteristics of random graphs on the gossip algorithms' performance,
we have proposed a dissemination algorithm for scale-free topologies [73], which ex-
ploits the dissemination power of hubs, aiming 100% reliability. Since globally setting
parameter to an optimum value at initialization phase is not suitable for gossip al-
gorithms as we have seen in probabilistic gossip protocols, every site automatically
detects whether itself is a hub merely by the knowledge from one-hop neighbors. In
particular, a simple hub connection phase in our algorithm eventually guarantees
that all hubs are well connected and every site has at least one hub or forwarder in
its one-hop neighborhood. Messages passed by hubs and forwarders can reach every
site throughout networks in the end of information dissemination. Moreover, our al-
gorithm substantially reduces message redundancy, which is even more outstanding
than the other probabilistic gossip algorithms studied in the previous contribution.
Latency is reduced as well, since in contrast with other probabilistic algorithms that
do not fully exploit hubs' dissemination power, many more short-cuts are created
by our approach.

5.3 Perspectives

Our work opens the following perspectives.

5.3.1 Mathematical model and fair analyses of other probabilistic
gossip algorithms over other random graphs

We provide a mathematical model that establishes a relation between reliability

and e�ectual fanout for the basic probabilistic gossip algorithms over the random
networks. According to such a relation, we can �ne-tune input parameters in the
gossip protocols to obtain a desirable reliability before information dissemination,
while traditionally we resort to heuristic simulations to choose right parameters.

The e�ectual fanout typically requires input arguments of gossip algorithms and
degree distribution of random graphs. Thus, there is no restriction for using it
on other probabilistic gossip algorithms, such as the reliable broadcast protocol
proposed in [53], or for other random graphs like a scale-free topology generated by
[136].

Therefore, thanks to e�ectual fanout, we are able to evaluate probabilistic gossip
algorithms over some random graphs and the impact of a given topology on the
gossip algorithms. However, the best algorithm choice for a graph with both high
degree variance and high edge dependency has not been analyzed yet. We could
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then observe which property has a dominant e�ect on the performance of gossip
algorithms.

Finally, we could apply the e�ectual fanout approach to learn about gossip al-
gorithms' performance over mobile networks. Considering mobility model, our ef-
fectual fanout could dynamically adapt mobile context.

5.3.2 Real dissemination applications and multisource dissemina-
tion problem

Our new algorithm presented in Chapter 4 has been evaluated and compared
with other probabilistic gossip algorithms in the scale-free topologies generated by
Barabási-Albert model [6]. It will be executed in some other scale-free networks.
The di�erence of their performance in real social networks like Facebook is an on-
going work, accomplished in very near future.

Even though our research is about one source dissemination problem, some re-
sults can be extended to multisource broadcast applications. In reality, the classi-
cal probabilistic gossip algorithms can also be implemented in many peer-to-peer
publish-subscribe systems or sensor network code update protocols that dissemi-
nate multiple streams (e.g., RSS subscribers fetch data from multiple streams, or
queries come from di�erent sensor sites). Yet, most of gossip mechanisms handle
each stream independently. Messages are sent to the same destinations from di�er-
ent sources when sharing common network channels. Trivially, the overhead of the
network now is the sum of all the streams, as every site periodically sends gossip
messages that contain constituent messages from several streams. In this context,
instead of being taken into account for only one source, the reliability of dissemi-
nation will be evaluated for all streaming messages from distinct producers. One
of the most straightforward questions is how every site decides whether to include
a stream in its combined gossip message within the limit of channel capacity when
being aware of underlying topologies. In particular, such information dissemination
can take place in social networks, where dissemination power of each site is quite
di�erent one from another. Besides our evaluation metrics, fairness and maximum
utilization of such a power should also be considered for multisource messages.

Furthermore, if there is message loss or wrong data due to unreliable noisy
transmission channels, my previous contributions [70, 71] on source-channel conjoint
coding theory can be exploited for information recovery. It will be another theme
on multimedia processing in wireless network communications.
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6.1 Introduction

La dissémination d'informations (broadcast), où un site tente de di�user des
messages à tous les autres sites dans le réseau, est essentielle pour beaucoup
d'applications réparties.

Les protocoles inondation (�ooding) sont une solution simple mais ine�cace pour
disséminer des informations. Lors de la première réception d'un nouveau message,
tous les sites le retransmettent à tous leurs voisins [82, 99]. Pour réduire le nom-
bre de messages, les algorithmes probabilistes de gossip sont apparus comme une
solution e�cace pour implémenter les protocoles de di�usion de façon extrêmement
�able et scalable [54, 144]. Ils sont ainsi couramment utilisés dans les réseaux cou-
vrants (overlay) [47, 52, 86], les réseaux sans �l ad-hoc, ou encore les réseaux de
capteurs [15, 61, 65, 132, 145].

Nos recherches se focalisent sur l'amélioration des algorithmes de gossip en pro�-
tant des propriétés des topologies sous-jacentes pour la dissémination d'informations
(par exemple, la distribution des degrés, la dépendance d'arêtes, etc.). L'objectif
est d'adapter les algorithmes de gossip aux topologies, en tenant compte des besoins
des applications en termes de �abilité.

Nous avons fait deux contributions :

1. Nous avons premièrement proposé des études théoriques et comparé expéri-
mentalement les trois classes d'algorithmes de gossip les plus répandus [61]
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sur trois familles de graphes aléatoires représentant les topologies des réseaux
à grande échelle. Plus précisément, nous avons étudié : (1) le gossip avec
fanout �xé (GossipFF ) [86], (2) le gossip avec choix d'arêtes probabiliste
(GossipPE ) [132] et (3) le gossip basé sur une di�usion probabiliste (Gos-
sipPB) [65]. Nous avons considéré les topologies suivantes : (1) le graphe
de Bernoulli (ou Erd®s-Rényi) (B (N, pN )), (2) le graphe géométrique aléa-
toire (G (N, ρ)) et (3) le graphe scale-free (S (N,m)). Ces trois familles des
graphes modélisent respectivement un système pair à pair [86], un réseau de
capteurs [65] et un réseau ad-hoc [61]. Cette étude permet de choisir le meilleur
algorithme en fonction de la topologie et une �abilité souhaitée. De plus,
pour que les analyses théoriques et les comparaisons de performance soient
e�ectuées équitablement, nous avons introduit un nouveau paramètre : le
fanout e�ectif. Le fanout e�ectif caractérise la puissance moyenne de dissémi-
nation des sites infectés dans le système. Ce paramètre simpli�e non seulement
l'analyse des résultats expérimentaux, mais aussi l'étude théorique des algo-
rithmes. Ainsi, je travaille actuellement sur une série de preuves reprenant les
résultats expérimentaux.

2. Nous avons proposé un nouvel algorithme de gossip réparti : le gossip basé sur
les hubs (GossipHB) pour un graphe scale-free S (N,m). GossipHB exploite
les sites hubs ayant beaucoup plus de voisins que les autres. Il arrive à réduire
la message complexity par rapport aux trois algorithmes de gossip avec la
même �abilité pour la di�usion des messages.

Ce chapitre est organisé comme suit. La section 6.2 décrit les trois graphes aléa-
toires, lorsque les trois familles des algorithmes de gossip sont présentées à la section
6.3. La section introduit les métriques que nous avons utilisées pour l'évaluation de
performances. L'état de l'art est relaté dans la section . La section 6.6 introduit le
fanout e�ectif. Finalement, la section 6.7 conclut nos recherches et dessine le travail
du futur.

6.2 Topologies étudiées

(a) Le graphe de Bernoulli

ρ

(b) Le graphe géométrique

aléatoire

hubs

(c) Le graphe scale-free

Figure 6.1: Exemples des topologies aléatoires avec 30 sites et de degré moyen=4
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Dans la suite, | l | dénote le cardinal de l'ensemble l.
On considère que le système de dissémination Π comprend N sites

{s1, s2, · · · , sN}. L'ensemble des voisins de si est noté Λi et Vi =| Λi | indique
le degré de si. P (k) représente la distribution des degrés d'un site ayant k voisins
(c'est-à-dire, la fraction de sites avec un degré k) dans le graphe et V̄ est le degré
moyen du graphe. Donc, V̄ =

∑N−1
k=0 P (k) · k. Aucune perte de message n'est prise

en compte.
Trois topologies aléatoires sont étudiées dans nos recherches : le graphe de

Bernoulli (ou Erd®s-Rényi) B (N, pN ) [45], le graphe géométrique aléatoire G (N, ρ)

[119] et le graphe scale-free S (N,m) [6] (voir respectivement les �gures 6.1(a), 6.1(b)
et 6.1(c)).

Le graphe de Bernoulli (ou Erd®s-Rényi) B (N, pN ) est un graphe aléatoire bidi-
rectionnel, construit en créant indépendamment une arête entre deux sites du sys-
tème avec une probabilité pN .

Le graphe géométrique aléatoire G (N, ρ) est un graphe aléatoire bidirectionnel
dans une région bornée. Dans nos études c'est une région rectangulaire de longueur a
et de largeur b. G (N, ρ) est généré en plaçant les sites uniformément, aléatoirement
et indépendamment dans la région.

Le graphe scale-free est un graphe aléatoire bidirectionnel dont la distribution
des degrés suit une loi de puissance. Un graphe scale-free S (N,m) peut être généré
par le modèle Barabási-Albert [6]. La génération du réseau commence à partir
d'une clique de m0 sites (m0 � N). Puis chaque nouveau site crée m(6 m0)

arêtes connectées à m di�érents sites déjà présents dans le graphe. La probabilité
p qu'un nouveau site soit connecté à un site existant est proportionnelle au degré
de ce dernier. Ceci est appelé l'attachement préférentiel. Ce processus assure que
le graphe est connecté avec une distribution des degrés suivant la loi de puissance.
Dans ce graphe, il y a hubs et sites périphériques dont les degrés respectifs sont
supérieurs à 2m et entre m et 2m. On peut déduire | Πp |> 3 | Πh |, où Πh est
l'ensemble de hubs et Πp est l'ensemble de sites périphériques.

La dépendance d'arêtes (ou le coe�cient de clustering) d'un graphe
aléatoire donné, pour trois di�érents sites si,sj ,sk, est dé�nie par la probabilité
conditionnelle sachant l'existence des arêtes si ∼ sk et sj ∼ sk, qu'une arête si ∼ sj
existe (c'est-à-dire, P (si ∼ sj |si ∼ sk, sj ∼ sk)).

[8] a prouvé que B (N, pN ) possède une très faible dépendance d'arêtes,
c'est-à-dire, l'existence d'une arête dans B (N, pN ) ne depend pas des autres.
Ainsi, P (si ∼ sj |si ∼ sk, sj ∼ sk) = P (si ∼ sj) = pN . En revanche, G (N, ρ)

présente une très forte dépendance d'arêtes et l'existence d'arêtes corrélées :
P (si ∼ sj |si ∼ sk, sj ∼ sk) = 0.5865, si l'on néglige l'e�et de la borne. Cette valeur
est plus importante que la probabilité pN dans B (N, pN ).

[43] a montré que la dépendance d'arêtes sur S (N,m) est très faible, c'est-à-dire,
du même ordre que B (N, pN ). Toutefois, par rapport à B (N, pN ) et G (N, ρ), sa
variance des degrés est très importante.

De plus, par rapport aux deux autres graphes, S (N,m) possède le diamètre le
plus petit à cause des hubs qui créent les raccourcis [17]. Le diamètre de B (N, pN )
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est petit avec les cliques rares, tandis que dans G (N, ρ), le diamètre est le plus
grand.

6.3 Algorithmes de gossip

La dissémination d'informations dans un réseau à grande échelle s'appuie sur
l'algorithme de gossip générique illustré par l'algorithme 8. Initialement, la source
envoie son message à tous ses voisins (lignes 61 et 62). Un site retransmet le message
reçu en appelant la procédure Gossip() (ligne 67) à condition qu'il ne l'ait jamais
reçu. Sinon, le message est abandonné. Les sites qui reçoivent le message au moins
une fois sont appelés sites infectés, tandis que ceux qui ne reçoivent aucun message
sont les sites isolés.

Algorithm 8: Algorithme de gossip générique

Broadcast (〈msg〉)60

foreach sj ∈ Λi do61

Envoyer (〈msg〉, sj) ;62

Recevoir (〈msg〉)63

if msg /∈ msgHistory then64

Livrer(〈msg〉) ;65

msgHistory ← msgHistory ∪66

{〈msg〉} ;
Gossip(〈msg〉,paramètres) ;67

Il y a trois grandes classes d'algorithmes de gossip pour implémenter la procé-
dure Gossip() : (1) le gossip avec fanout �xé (GossipFF ), (2) le gossip avec choix
d'arêtes probabiliste (GossipPE ) et (3) le gossip basé sur une di�usion probabiliste
(GossipPB). Nous considérons également l'algorithme GossipDD qui est une amélio-
ration de GossipPB dans le graphe S (N,m).

/* fanout : nombre de voisins sélectionnés */68

GossipFF (〈msg〉,fanout)69

if fanout > Vi then70

toSend← Λi71

else72

toSend← ∅73

for f = 1 to fanout do74

aléatoirement selectionner sj ∈ Λi/toSend75

toSend← toSend
⋃
sj76

foreach sj ∈ toSend do77

Envoyer (〈msg〉, sj)78

Algorithm 9: Gossip avec fanout �xé (dans si)

Dans GossipFF (Algorithme 9), le site si envoie le message msg à un nombre
�xé de sites, noté fanout, qui sont aléatoirement sélectionnés dans Λi (lignes 74-
76). Notons que si fanout > Vi, si transmet msg à tous ses voisins (lignes 70 et
71). Particulièrement, si fanout > max {V1, V2, · · ·VN}, Algorithme 9 devient un



6.3. Algorithmes de gossip 89

algorithme de �ooding.

Dans les algorithmes suivants, Random() génère un nombre aléatoire dans
l'intervalle [0, 1].

/* pe : probabilité d'utiliser l'arête */79

GossipPE (〈msg〉,pe)80

foreach sj ∈ Λi do81

if Random() 6 pe then82

Envoyer (〈msg〉, sj)83

Algorithm 10: Gossip avec choix d'arêtes probabiliste (dans si)

Dans GossipPE (Algorithme 10), chaque site choisit avec une probabilité pe les
arêtes sur lesquelles msg est retransmis (voir ligne 82). Notons que si pe = 1 pour
tous les sites, nous obtenons un algorithme de �ooding.

/* pv : probabilité de broadcast */84

GossipPB (〈msg〉,pv)85

if Random() 6 pv then86

foreach sj ∈ Λi do87

Envoyer (〈msg〉, sj)88

Algorithm 11: Gossip basé sur une di�usion probabiliste (dans si)

Dans GossipPB (Algorithme 11), chaque site, excepté la source, di�use msg à
tous ses voisins avec une probabilité pv (ligne 86). Si pv = 1, ce protocole devient
un algorithme de �ooding.

/* d : seuil de degré */89

/* phigh : probabilité de retransmission pour les sites avec un90

grand degré */

/* plow : probabilité de retransmission pour les sites avec un91

faible degré */

GossipDD (〈msg〉,d,phigh, plow)92

if Vi > d then93

if Random() 6 phigh then94

foreach sj ∈ Λi do95

Envoyer (〈msg〉, sj)96

else97

if Random() 6 plow then98

foreach sj ∈ Λi do99

Envoyer (〈msg〉, sj)100

Algorithm 12: Gossip dépendant du degré (dans si)

GossipDD (Algorithme 12) essaie d'améliorer la performance de GossipPB sur
le graphe S (N,m) en distinguant deux types de sites. Les sites avec un plus grand
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degré retransmettent msg avec une forte probabilité phigh, et ceux dont le degré est
petit le retransmettent avec une faible probabilité plow, où phigh > plow. La décision
du niveau du degré pour un site dépend du seuil de degré d (ligne 93).

6.4 Métriques de performance

Dans le contexte de la dissémination d'informations, les métriques suivantes sont
couramment utilisées dans les littératures [65, 86, 92] pour l'évaluation des perfor-
mances. La Complexité en Messages, notée M : mesure le nombre de messages
envoyés (ou reçus, car il n'y pas de perte de message) par chaque site M = Ω

N−1 où
Ω est le nombre total de messages échangés pendant la dissémination.

La Fraction de Sites Infectés, notée α : dé�nit le pourcentage de sites dans
le système qui ont reçu le message généré par la source à la �n de la dissémination.

La Fiabilité, notée R : dé�nit le pourcentage de messages générés par la
source, qui ont été reçus par tous les sites. La �abilité égale à 100% indique que
l'algorithme réussit à di�user tout message généré par la source à tous les autres
sites dans le système, ce qui assure l'atomicité [86].

La Latence, notée L : mesure le nombre de sauts nécessaire pour di�user
un message à tous les destinataires, c'est-à-dire, la longueur du chemin le plus long
parmi les chemins les plus courts de la source à tous les sites qui ont reçu le message.

6.5 État de l'art

De nombreuses recherches ont étudié la performance des quatre algorithmes sur les
trois topologies en termes de la �abilité, la message complexity et la latence.

Dans [86], les auteurs étudient la �abilité de la dissémination d'informations en
appliquant l'algorithme GossipFF dans B (N, pN ). En supposant que le fanout de
tous les sites dans le système est inférieur au nombre de ses voisins, cet article conclut
que pour qu'un système avec N sites atteigne la �abilité R, il faut �xer fanout =

− ln
(
− ln(R)
N

)
. Des études reposant sur des simulations [47, 52], aboutissent à des

résultats similaires. Cependant, ils n'ont considéré que GossipFF dans B (N, pN ).
La performance de GossipPB dans G (N, ρ) est discutée et implémentée dans [15,

65], alors que [31] a théoriquement analysé GossipPB dans B (N, pN ). La per-
formance de GossipPB dans G (N, ρ) est également étudiée de façon théorique
dans [145], dans le but de choisir pv a�n d'atteindre une forte �abilité. À partir
de la discussion dans [113] sur la �abilité, en s'appuyant sur la propriété de percola-
tion dans B (N, pN ), les auteurs proposent une expression asymptotique du nombre
moyen de messages et de la latence moyenne nécessaire pour atteindre l'atomicité.
Néanmoins, par rapport à nos recherches, leurs e�orts se sont focalisés sur la per-
formance d'un algorithme de gossip dans une topologie aléatoire précise. Sur les
deux topologies aléatoires S (N,m) et B (N, pN ), la latence d'une version modi�ée
de GossipPB , qui permet tout site de renvoyer le message plusieurs fois à un de
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ses voisins avec certaine probabilité, est analysée par le modèle SIS (Susceptible-
Infection-Susceptible) dans [58].

Dans [61], les auteurs montrent que la performance des quatre algorithmes de
gossip dans S (N,m) est meilleure que dans B (N, pN ).

GossipPE présente de meilleures performances que GossipPB dans G (N, ρ), en
fonction de la taille du système (ou le degré du site) dans [132]. En plus, Gos-
sipFF , GossipPE et GossipPB dans S (N,m) sont comparés de la même manière
dans [51]. Dans [126], le choix entre GossipPE et GossipPB dépend des contraintes
des di�érentes applications dans G (N, ρ). Néanmoins, pour une �abilité donnée, il
n'existe pas de méthode générale pour obtenir les gains quantitatifs pour tous les
algorithmes dans les di�érents graphes en termes de la message complexity. Nous
présentons donc un nouveau paramètre générique : le fanout e�ectif, qui exprime la
puissance moyenne de dissémination des sites infectés et permet les comparaisons
équitables des algorithmes de gossip.

6.6 Fanout e�ectif

Le nombre de messages retransmis des trois algorithmes dépend des paramètres
d'entrée (pv, pe ou fanout) qui sont très di�érents. Dans le but de faire une com-
paraison équitable entre ces algorithmes de gossip sur les topologies décrites dans
la section 6.2, nous introduisons un nouveau paramètre : le fanout e�ectif noté
Feff . Ce paramètre permet des analyses précises du comportement d'un algorithme
de gossip sur une topologie. Il simpli�e la comparaison des di�érents algorithmes sur
une topologie. Ainsi, pour un algorithme et une topologie donnés, Feff caractérise
la puissance moyenne de dissémination des sites infectés. Pour une topologie �xée,
il est possible de déduire les paramètres d'entrée à partir du fanout e�ectif.

Pour les algorithmes GossipPE , GossipPB et GossipFF , nous dé�nissons respec-
tivement que :

FGossipPE
eff = pe · V̄ (6.1)

FGossipPB
eff = pv · V̄ (6.2)

FGossipFF
eff =

fanout−1∑
k=1

P (k) · k +

N−1∑
k=fanout

P (k) · fanout (6.3)

Uh et Ih dé�nissent respectivement le nombre espéré de sites qui ne sont pas
infectés après h itérations des algorithmes (h sauts) et le nombre espéré de sites
nouvellement infectés entre la (h− 1)ième et hième itération, pour 1 6 h 6 L où L
est la latence. Ainsi, U0 = N − 1, I0 = 1, et UL = (1− α)N .

Les variables Uh et Ih sont liées de la manière suivante :

Ih = Uh−1 − Uh, 1 6 h 6 L (6.4)
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Theorem 7. Pour les trois algorithmes de gossip sur les trois topologies à grande

échelle (N � 1), la message complexity M ≈ αFeff .

Proof. Comme il n'y a aucune perte de messages, le nombre total de messages reçus
par chaque site est égal au nombre de messages transmis. À chaque saut h, un site
renvoie Feff messages à ses voisins. Le nombre espéré de messages transmis au saut
h est alors Feff · Ih.

Considérant tous les sauts et l'équation (6.4), nous obtenons le nombre total de
messages reçus pour tous les sauts :

Ω =

L∑
h=1

Feff · Ih = Feff ·
L∑
h=1

Ih = Feff · (N − 1− UL)

Par la dé�nition de la message complexity,M = (N−1−UL)
N−1 ·Feff = (αN−1)

N−1 ·Feff .
Comme N est très grand, on obtient M ≈ αFeff .

En e�et, en exploitant la mesure dans [29] du nombre de transmissions redon-
dantes qui entraînent l'envoi du message reçu à un site infecté, on pourrait obtenir
le même résultat.

Corollary 8. Pour atteindre une forte �abilité pour les trois algorithmes de gossip
sur les trois topologies, à grande échelle, la message complexity M ≈ Feff .

Proof. Pour qu'une forte �abilité soit atteinte, (par exemple, heuristiquement, plus
de 95% de sites totaux sont infectés en moyenne à la �n d'une dissémination), α
doit être très proche de 100% et, selon le théorème 7, le résultat est obtenu.

6.7 Conclusion

Dans ma thèse, nous avons comparé et cherché à améliorer les algorithmes de gossip
dans diverses topologies aléatoires. Notre méthodologie a été d'étudier l'impact des
propriétés propres à chaque graphe pour proposer des solutions e�caces adaptées à
chacune des topologies. Dans la suite, j'envisage de continuer avec la même approche
en améliorant nos premiers résultats dans le cadre des graphes scale-free.

6.7.1 Perspectives à court terme

Dans un premier temps je veux approfondir les premiers résultats obtenus dans les
topologies scale-free. Ainsi j'envisage deux nouveaux travaux complémentaires :

1 - Évaluation sur des traces réelles Une des limites de nos résultats ex-
périmentaux réside dans l'utilisation du modèle Barabási-Albert pour générer des
graphes du type scale-free. Si cette approche est largement utilisée dans la littéra-
ture, il induit quelques e�ets de bord comme l'existence d'un degré minimal égal
à m. J'envisage donc de compléter notre étude en intégrant dans notre simulateur
des graphes réels issus de traces obtenues sur des réseaux sociaux. Ces nouvelles
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expériences permettront entre autre de mesurer l'impact de la présence de quelques
sites ayant un degré inférieur à m.

2 - Modélisation sur la �abilité des algorithmes Les premières études sur
les comparaisons de performances ont montré l'impact des propriétés de topologie
sur la �abilité. Cependant, nous n'avons pas encore déduire mathématiquement la
relation entre la �abilité et le fanout e�ectif. Ainsi, une modélisation sur la �abilité
des algorithms dans les topologies aléatoires sera cherchée et proposée.

6.7.2 Perspectives à long terme

À plus long terme, j'envisage d'utiliser les résultats obtenus sur d'autres topolo-
gies et plus particulièrement sur les graphes géométriques dans le but de proposer
des algorithmes optimisés pour ce type de topologies. Nous pourrons par exemple
chercher à exploiter la propriété de la dépendance d'arêtes présente dans ce type
de graphe. Tout comme les solutions proposées dans le cadre du graphe scale-free
on s'attachera à n'utiliser que la connaissance locale des sites. Parmi les pistes
envisagées : la détection de ponts, de zones peu denses, d'e�et de bordures, etc..
De plus, mes anciennes recherches sur le codage source-canal conjoint pourront être
utilisée pour récupérer les données, si les dernières sont perturbées dans le canal de
transmission, par example, les réseaux sans �l.
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Epidemic dissemination algorithms in large-scale networks:
comparison and adaption to topologies

Abstract: Information dissemination (broadcast) is essential for numerous dis-
tributed applications. This must be e�cient, which limits the message redun-
dancy, and ensures high reliability as well as low latency. We consider here the
distributed algorithms that bene�tting from the properties of the underlying topolo-
gies. Nonetheless, these properties and the parameters in the algorithms are het-
erogeneous. Thus, we should �nd a method to fairly compare them. First of all,
we study the probabilistic protocols for information dissemination (gossip) executed
over three random graphs. The three graphs represent the typical topologies of
large-scale topologies: Bernoulli graph, the random geometric graph, and scale-free
graph. In order to fairly compare their performance, we propose a new generic pa-
rameter: e�ectual fanout. For a given topology and algorithm, the e�ectual fanout
characterizes the mean dissemination power of infected sites. Furthermore, it sim-
pli�es the theoretical comparison of di�erent algorithms over one topology. After
having understood the impact of topologies and algorithms on the performance, we
propose an e�cient reliable algorithm for scale-free topologies.

Keywords: Information dissemination, distributed algorithms (Gossip), large-
scale networks, random topologies, performance comparison, reliability, message
complexity, latency.



Algorithmes de dissémination épidémiques dans les réseaux à
grande échelle : comparaison et adaptation aux topologies

Abstraire : La dissémination d'informations (broadcast) est essentielle pour de
nombreuses applications réparties. Celle-ci doit être e�cace, c'est à dire limiter la
redondance des messages, et assurer forte �abilité et faible latence. Nous consid-
érons ici les algorithmes répartis pro�tant des propriétés des topologies sous-jacentes.
Cependant, ces propriétés et les paramètres dans les algorithmes sont hétérogènes.
Ainsi, nous devons trouver une manière pour les comparer équitablement. D'abord,
nous étudions les protocoles probabilistes de dissémination d'informations (gossip)
exécutées sur trois graphes aléatoires. Les trois graphes représentent les topologies
typiques des réseaux à grande-échelle : le graphe de Bernoulli, le graphe géométrique
aléatoire et le graphe scale-free. A�n de comparer équitablement leurs perfor-
mances, nous proposons un nouveau paramètre générique : le fanout e�ectif. Pour
une topologie et un algorithme donnés, le fanout e�ectif caractérise la puissance
moyenne de la dissémination des sites infectés. De plus, il simpli�e la compara-
ison théorique des di�érents algorithmes sur une topologie. Après avoir compris
l'impact des topologies et les algorithmes sur les performances , nous proposons un
algorithme �able et e�cace pour la topologie scale-free.

Mots-clés : Dissémination d'information, algorithmes répar-
tis (Gossip), réseaux à grande-échelle, topologies aléatoires, com-
paraison de performance, �abilité, complexité de message, latence.
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