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(Paris)

Présentée par

Rafael Misoczki

Pour obtenir le grade de

DOCTEUR

Sujet de la thèse:
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Gilles Zémor Université Bordeaux 1 Rapporteur
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Overview

Nowadays, cryptography is undoubtedly present everywhere. The necessity of
secrecy, and more often privacy, is a crucial requirement for the modern world.
Financial transactions, e-commerce and military applications are only a few
examples that demonstrate the huge impact this research field has on our lives.

Due to its importance, many researchers have dedicated enormous amount
of effort and time to propose and analyze efficient and secure cryptographic
schemes. Number-theory cryptosystems, such as RSA and Elliptic Curves cryp-
tosystems, are good candidates and widely deployed in practice. Although they
provide a good trade-off between efficiency and security, they are not optimal in
other features. For example, they are vulnerable to attacks mounted with the
help of quantum computers.

This is not the case of cryptography based on coding-theory, where hard
problems related to linear codes are exploited. Its security relies on the hard-
ness of distinguishing a public code from random and on correcting errors in a
seemingly random code. No quantum (nor classical) polynomial algorithm able
to solve the decoding problem is known. The distinguishing problem has a more
complex assessment and strongly depends on the choice of the code-family.

Besides its post-quantum resistance, code-based cryptography is several times
faster than its number-theory counterparts. Nonetheless, it is not widely de-
ployed in practice. Mostly due to its important drawback: huge key sizes. In
this thesis, we propose two different approaches to address this issue.

The first one uses algebraic codes, presenting a way to construct Goppa codes
that admit compact representation. These are the p-adic Goppa codes. We show
how to construct these codes to instantiate public-key encryption schemes, how
to extend this approach to a signature scheme and, finally, how to generalize the
approach to codes defined over characteristic p ≥ 2. In summary, we managed
to produce very compact keys based on the reputable family of Goppa codes.

Although efficient, p-adic Goppa codes have a non-desirable property: strong
algebraic structure. This leads to our second approach, using LDPC codes of
increased density, or simply MDPC codes. These are graph-based codes, which
are free of algebraic structure. It is quite reasonable to assume that MPDC
codes are only distinguishable by finding their dual low-weight codewords, a
largely studied coding-theory problem. This is an important advantage not
only in comparison to all previous compact-keys McEliece-like variants but also
regarding the classical McEliece based on binary Goppa codes. Here, compact
keys are obtained by using a quasi-cyclic structure.

xi
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Résumé

Aujourd’hui, la cryptographie est indubitablement présente partout. La nécessité
de confidentialité est une condition essentielle pour le monde moderne. Les
transactions financières, les applications de commerce électronique et militaires
ne sont que quelques exemples qui démontrent l’impact énorme que ce domaine
de recherche a sur nos vies.

En raison de son importance, de nombreux chercheurs ont consacré énormé-
ment de temps et d’efforts pour proposer et analyser des systèmes cryptographi-
ques qui sont à la fois efficaces et sûrs. Les cryptosystèmes basés sur la théorie
des nombres, tels que RSA et les courbes elliptiques, sont de bons candidats. Ils
sont largement déployés dans la pratique, puisqu’ils offrent un bon compromis
entre efficacité et sécurité. Néanmoins, ils ne sont pas optimaux pour d’autres
caractéristiques. Par exemple, ils sont vulnérables aux attaques menées à l’aide
d’ordinateurs quantiques.

Ce n’est pas le cas de la cryptographie basée sur des problèmes difficiles
liés aux codes linéaires. La sécurité ici repose sur la difficulté à distinguer un
code public d’un code aléatoire et sur la correction des erreurs dans un code
apparemment aléatoire. Il n’existe pas d’algorithme quantique (ni classique)
capable de résoudre le problème de décodage en temps polynomial. Par contre,
le problème de la distinction de codes a une complexité fortement dépendant
du choix de la famille de codes.

En plus de sa résistance post-quantique, la cryptographie basée sur les codes
est largement plus rapide que ses homologues basés sur la théorie des nombres.
Néanmoins, elle est très peu déployée dans la pratique, son inconvénient ma-
jeur étant: des tailles de clés énormes. Dans cette thèse, nous proposons deux
approches différentes pour résoudre ce problème.

Le premier utilise des codes algébriques, présentant un moyen de construire
des codes de Goppa qui admettent une représentation compacte. Ce sont les
Codes de Goppa p-adiques. Nous montrons comment construire ces codes pour
instancier des systèmes de chiffrement à clé publique, comment étendre cette
approche pour instancier un schéma de signature et, enfin, comment généraliser
cet approche pour définir des codes de caractéristique p ≥ 2. En résumé, nous
avons réussi à produire des clés très compactes basées sur la famille reputée de
codes de Goppa.

Bien qu’efficace, les codes de Goppa p-adiques ont une propriété non désirée:
une forte structure algébrique. Cela nous amène à notre deuxième approche, en
utilisant des codes LDPC avec densité augmentée, notés codes MDPC. Ce sont

xiii
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des codes basés sur des graphes, qui sont libres de toute structure algébrique.
Il est très raisonnable de supposer que les codes MDPC sont distinguable seule-
ment en trouvant des mots de code de poids faible dans son dual, un problème
de la théorie de codes largement étudié. Ceci constitue un avantage important
non seulement par rapport à toutes les autres variantes du système de McEliece
à clés compactes, mais aussi en ce qui concerne la version classique basée sur
les codes de Goppa binaires. Ici, les clés compactes sont obtenues en utilisant
une structure quasi-cyclique.



Chapter 1

Introduction

Cryptography is the research field where techniques for achieving secure com-
munication in the presence of adversaries are studied. These techniques rely on
challenges to legitimate the right to access the exchanged information. In gen-
eral, these challenges are computational problems that are easy to solve when
the user is equipped with some privileged information and hard otherwise.

In the last decades, a wide range of mathematical problems have been an-
alyzed in order to identify those which hold interesting cryptographic proper-
ties. Number theory is a rich field for such a purpose. Integer factorization
and discrete logarithm are remarkable examples from this field, supporting the
wide-spread RSA cryptosystem [RSA78] and the cryptosystems based on elliptic
curves [Mil86], respectively. These schemes ensure, at the same time, adequate
security levels and reasonable time and space complexity.

Despite some good features, problems from number theory are not optimal
in many other particularities. For example, they are probably insecure against
attacks mounted with the help of quantum computers. This distrust comes
from the work of Peter Shor [Sho97], where quantum polynomial algorithms
for solving the integer factorization and discrete logarithm problems were pre-
sented. Although quantum computers are not available yet, the modern society
must dispose of secure alternatives if or when this technology becomes a reality.
Fortunately, some work has already been done on this direction.

At the moment, there exist four categories of cryptography that seem to
overcome this weakness. Cryptography based on: coding-theory, hash func-
tions, lattices and multivariate quadratic equations (MQE). The first two cat-
egories date from the 1970’s and present cryptosystems whose security remain
almost unscathed so far (see Merkle’s hash-tree public-key signature [Mer79]
and McEliece cryptosystem using binary Goppa codes [McE78]). The two other
categories (lattices and MQE based cryptography) are more recent and date
from the 1990’s. It is worth to mention that lattice-based cryptography has
already presented interesting security-reduction proofs.

In this thesis, we will focus on the first category, code-based cryptography.

1



2 CHAPTER 1. INTRODUCTION

1.1 Code-Based Cryptography in a Nutshell

Coding-theory proposes the study of techniques to efficiently transmit informa-
tion through channels subject to noise. This is done by correcting the noise at
the receiver end. Equivalently, it means decoding the received message into the
original one. Linear codes are usually employed for this purpose.

Code-Based Cryptography (CBC) makes use of hard problems related to lin-
ear codes to implement different cryptographic primitives. For example, public-
key encryption schemes, digital signature schemes and hash functions have been
successfully designed employing coding-theory problems.

The McEliece public-key encryption scheme [McE78] is the best known code-
based scheme. It dates from 1978, the same period when the public-key cryptog-
raphy concept was invented [DH76]. In 1986, when elliptic curves cryptography
first appeared [Mil86], the Niederreiter public-key code-based encryption scheme
was proposed [Nie86]. It is very similar to the McEliece scheme, being called
its dual version since it uses the dual code instead of the original one. In 2001,
the first code-based signature scheme, the CFS scheme [CFS01], was proposed.
It is built upon the Niederreiter scheme.

CBC benefits from practical advantages when compared to number-theory
cryptography. For example, it is several orders of magnitude faster than their
RSA and elliptic-curves counterparts. Besides, it is easily implemented since its
operations boil down to the manipulation of simple vectors and matrices.

These code-based schemes share the very same modus operandi.

Setup: A linear code that has an efficient decoding algorithm is selected at
random. The private-key is a code description that enables efficient de-
coding. The public-key is a disguised version of this code which should
not enable efficient decoding.

Challenge: The idea is to purposely add errors to a codeword of this code in
such a way that only the owner of the private code would be able to effi-
ciently decode. Obviously, it is expected that recovering the private code
from the public description is computationally unfeasible. Since it is hard
to foresee which properties might be leaked by the public description, it
is desirable to have the public description indistinguishable from random.

In this sense, code-based cryptography has its security based on two things:

– The hardness of correcting errors in linear codes.

– The hardness of distinguishing the public code description from random.

The decoding problem is believed to be hard after decades of research. No
quantum (nor classical) polynomial algorithm able to solve such a problem is
known, promoting CBC to the select group called post-quantum cryptography.
This computational problem has critical importance in contexts such as telecom-
munications and information systems. All algorithms to solve it have exponen-
tial complexity [Pra62, Ste89, BLP08, FS09, MMT11, BJMM12]. Thus any im-
portant progress contradicting this hardness would definitely be a breakthrough.

On the other hand, the distinguishing problem has a more complex assess-
ment and strongly depends on the choice of the code-family.



1.1. CODE-BASED CRYPTOGRAPHY IN A NUTSHELL 3

Choosing the Code-Family

The classical McEliece encryption scheme was proposed using binary Goppa
codes. Since then, many other code-families have been investigated to instanti-
ate code-based cryptosystems.

In 1986, the Niederreiter scheme was suggested with the use of Generalized
Reed-Solomon codes [Nie86]. Six years later, it was proved that this choice
for the code-family was insecure [SS92]. In 1991, Gabidulin, Paramonov and
Tretjakov studied the use of rank-metric codes [GPT91] for the McEliece scheme.
Due to the strong code structure, the proposal has been subsequently broken in
[Gib95, Gib96]. In 1994, Sidelnikov studied the use of Reed-Muller codes [Sid94]
and it was subsequently broken in [MS07]. In 1996, Janwa and Moreno studied
the use of algebraic geometric codes [JM96], which was also broken [FM08].
More attempts to replace Goppa codes by other linear codes will be discussed
in Section 1.2, but with these few examples we can already see that the task of
choosing secure code-families for CBC has not been easy.

Curiously, the classical McEliece proposal using binary Goppa codes has
resisted almost unscathed from practical attacks for more than thirty years.
For this reason, they became a consensus in the code-based community. They
have been suggested to instantiate both Niederreiter encryption scheme and
CFS digital signature scheme as well.

Although reputable, it is worth mentioning that Goppa codes might not
be the optimal choice. A recent result [FGO+11] presented a distinguisher for
some Goppa codes (of high rate). A distinguisher does not necessarily lead to a
practical attack, but should be seen as a first-step on that direction. In short, it
reinforces that distinguishing Goppa codes might not be always a hard problem.

Practical applicability

Although efficient in terms of complexity, simple to implement and probably se-
cure against quantum attacks, code-based cryptography is not widely employed.
This is mainly due to two major drawbacks. One is the excessive overhead per
message, which can be partially circumvented by introducing information data
into the errors. The other one refers to the key sizes which are much larger
than those used in number-theory cryptography. This discrepancy is showed in
Table 1.1. It presents the key sizes of elliptic curves (EC), RSA and the classical
McEliece scheme instantiated with binary Goppa codes [BLP08], for different
security levels.

Security Level EC RSA McEliece
280 160 1 024 460 647
2128 256 3 072 1 537 536
2256 512 15 360 7 667 855

Table 1.1: key size comparison in bits.

Finding ways to reduce the key sizes of code-based cryptosystem without
compromising its security is therefore a relevant research problem. It may fi-
nally promote CBC to real-world applications, strengthens its position as a
competitive alternative to number theory cryptography. In next section, we
discuss some recent results toward this goal.
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1.2 Related Work

In this section, we describe the works that influenced our contributions. In
summary, they studied the impacts of replacing binary Goppa codes by other
linear codes to instantiate code-based cryptosystems, aiming at reducing the
key sizes. We divide this discussion in two parts, regarding algebraic and graph-
based codes.

Algebraic Codes: In 2005, Gaborit presented a way to significantly reduce
the key sizes of McEliece-type schemes [Gab05] which consists of replacing
binary Goppa codes by quasi-cyclic BCH codes. These codes benefit from
the compact representation of cyclic blocks. Unfortunately, this proposal
contains weaknesses. The private code is selected from a too restricted set
of possible codes, implying that the secret code is, in practice, publicly
known. Moreover the the permutation used to map the public and the
private codes is too restrictive, leading thus to a total break of the scheme.

In [BCGO09], Berger et al. presented another way to reduce the McEliece
keys. It consists of using quasi-cyclic alternant codes. The authors intro-
duced an interesting way to hide the secret code structure, making public
only a punctured-permuted subfield subcode version of the secret code.
Thus the public and private code are not permutation-equivalent as usu-
ally adopted. However, the combination of algebraic and cyclic structures
led to successful structural attacks1. These attacks boil down to setting
up a system of equations derived from the alternant structure. Among
other reasons, the cyclicity adds an important redundancy to this system,
drastically reducing the number of unknown variables, thus enabling the
computational feasibility of the attack.

Graph-Based Codes: In 2000, Monico et al. investigated the use of LDPC
codes to instantiate the McEliece cryptosystem [MRS00]. These codes
have sparse parity-check matrices, which are used to perform efficient de-
coding using belief-propagation decoding techniques and can be efficiently
stored. In the end, the authors concluded that pure LDPC codes, like
those used for telecommunication applications, are not secure to code-
based cryptography. The problem is related to the easiness of recovering
the low-weight codewords present in the dual code. Once recovered, they
allow the adversary to build an alternative sparse parity-check matrix
which permits efficient decoding.

In [BCG06, BCGM07, BC07], a new trend suggesting QC-LDPC codes
for achieving compact keys started. Here, the authors suggest the use
of auxiliary matrices to artificially increase the dual codeword weight.
Unfortunately, this extra structure was defined in a too constrained way,
leading to successful attacks. Finally, in [BBC08], Baldi et al. managed to
present a QC-LDPC McEliece variant that apparently resists to structural
attacks and achieve compact-keys. Note this last proposal still makes use
of auxiliary matrices to artificially hide the low-weight dual codewords.

1These attacks have also affected some parameters of one of our results (p-adic codes
defined over intermediate fields).
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1.3 Thesis

1.3.1 Objectives

The objective of this thesis is twofold:

1. Improve the efficiency of code-based cryptosystems, possibly allowing one
to deploy such solutions in practical scenarios. Since the main obstacle to
this purpose has been its excessively long key-sizes, one of our subjects of
investigation consists of finding ways to reduce the key-sizes of code-based
cryptosystem without compromising its security.

2. The distinguishing problem as we have now is dangerously obscure. It is
not a desirable feature for code-based cryptography, being the keystone of
many recent attacks. Thus, the other subject of investigation consists of
reducing the distinguishing problem to some well known problem.

1.3.2 Metrics and Methodology

The metrics to measure if we attained the aforementioned objectives are:

1. key sizes of a few kilobits.

2. Distinguishing problem reduced to a well known coding-theory problem.

The methodology to accomplish our objectives will be mostly founded in
investigating the use of different families or sub-families of linear codes to in-
stantiate code-based cryptosystems.

1.3.3 Original Contributions

In this section, we describe our contributions. We split it in two parts, regarding
our progresses using algebraic codes and graph-based codes.

Algebraic Codes: Since 1978, when the original proposal of the McEliece
cryptosystem was presented, binary Goppa codes have resisted against
structural attacks. Remarking that all previous (in most cases, unsuccess-
ful) attempts to reduce key-sizes of code-based cryptosystem have replaced
Goppa codes by other code families, we decided to investigate the possi-
bility of achieving compact keys without leaving the Goppa family. The
use of cyclicity did not seem to be adequate for Goppa codes and thus we
sought for alternative compact-representation matrix structures. Dyadic
matrices ended up to be good candidates for this purpose. Using similar
techniques to hide the secret code as introduced in [BCGO09], we man-
aged to construct the innovative class of binary Quasi-Dyadic Goppa codes
[MB09a]. As a main result, it achieves public keys of only 9216 bits for
80-bits of security. Later, this approach was extended to instantiate the
CFS signature scheme [BCMN10] and generalized to Goppa codes defined
over finite fields of characteristic greater than 2 [BLM11].
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Graph-Based Codes: LDPC codes are free of algebraic structure. This is an
interesting feature for code-based cryptography. Nonetheless, the easiness
of finding their dual low-weight codewords would compromise the security
of an LDPC-McEliece variant. Thus some countermeasures are required.
All previous attempts have tried to use auxiliary matrices to hide these
low-weight codewords, being successful attacked (except [BBC08]). In this
scenario, we came up with an innovative approach: the use of LDPC codes
of higher density, a.k.a. Moderate Density Parity-Check (MDPC) codes,
discarding all auxiliary structures. The parity-check equations of increased
weight prevent the effectiveness of dual low-weight codeword attacks, at
the price of degrading the error-correction capability. Fortunately, in code-
based cryptography, we are not necessarily interested in correcting many
errors, but only a number of errors which ensures an adequate security
level, a condition satisfied by MDPC codes. This work resulted in the
proposal of two McEliece variants [MTSB13]. One from MDPC and an-
other from QC-MDPC codes. It is quite reasonable to assume that these
codes are only distinguishable by finding their dual low-weight codewords,
a largely studied coding-theory problem. This represents an important ad-
vantage not only in comparison to all previous compact-keys McEliece-like
variants but also regarding the classical McEliece based on binary Goppa
codes. Moreover, the QC-MDPC variant provides keys of only 4801 bits,
for 80-bits of security.

We present as an appendix the preliminary investigation on extending the
MDPC approach to construct nearly sparse parity-check matrices of ran-
dom codes. Random codes have minimum weight close to what is known
as the Gilbert-Varshamov (GV) distance. In short, the idea is to construct
codes with parity-check equations of weight close to the GV distance of a
code of same size. In this sense, this construction would produce nothing
more than a convenient (nearly sparse) description of random codes.These
codes should be able to correct a quite small number of errors using belief
propagation techniques, but still good enough to provide an advantage
in comparison to adversaries. So far, we have not been able to develop
techniques to prove the validity of this construction. Nevertheless, this
preliminary investigation may provide some interesting thoughts towards
achieving public-key cryptography based on random codes.

1.3.4 Organization

The remainder of this thesis is organized as follows.

– Chapter 2: Background.
It summarizes the essential concepts related to coding-theory, cryptogra-
phy and code-based cryptography.

Part I: Algebraic Codes. This part encompasses our results on the domain
of algebraic codes.

– Chapter 3: Introduction.
It describes some algebraic codes useful to the understanding of our
proposal, and some previous attempts of reducing the key size of
code-based cryptosystems by using algebraic codes.
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– Chapter 4: p-adic Goppa codes.
It describes our proposal of using p-adic Goppa codes to reduce the
key size of code-based cryptosystems.

Part II: Graph-Based Codes. This part encompasses our results on the do-
main of graph-based codes.

– Chapter 5: Introduction.
It describes LDPC codes and how they are decoded and some pre-
vious attempts of reducing the key size of code-based cryptosystems
by using graph-based codes.

– Chapter 6: Moderate-Density Parity-Check (MDPC) Codes.
It describes our proposal of using MDPC codes to reduce the key size
of code-based cryptosystems and achieve better indistinguishability
condition.

Part III: Synopsis.

– Chapter 7: Conclusion.
This chapter compares both algebraic and graph-based approaches,
present our conclusions and ideas for future works.

Appendices:

– Appendix A: Random Codes.
It describes our preliminary investigation on generalizing the MDPC
approach to define random codes.
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Chapter 2

Background

This introductory chapter is divided into the general background of coding the-
ory, the basic concepts of cryptography and a discussion regarding the com-
bination of both (coding-theory and cryptography) leading to the code-based
cryptography topic.

2.1 Coding Theory

Coding theory proposes the study of techniques to efficiently transmit informa-
tion through channels subject to noise. This goal is achieved by the employment
of codes, which allow: encoding, decoding and, under certain conditions, error
correction capability. Encoding is the process which maps a message, here called
a plaintext, to an element of the code, here called a codeword. Decoding is a
priori the process which performs the opposite, mapping a codeword to a plain-
text. However, adding some redundancy during encoding, it might be possible
to recover the plaintext even when a noisy codeword, here called simply word,
is received. Figure 2.1 presents a flowchart describing this process.

m = (m1, . . . ,mk)
plaintext

c = (c1, . . . , cn)
codeword

y = c⊕ e
word

m̂ = (m̂1, . . . , m̂k)
recovered plaintext

e = (e1, . . . , en)
⊕

error

Source Encoder Channel Decoder Sink

Figure 2.1: Communication channel.

There are different types of codes. A dictionary which maps univocally
plaintexts into codewords can be seen as a code. However it is easy to see that
this construction is rather restrictive and does not provide many tools for error-
correction. Linear codes, on the other hand, provide many properties that are
useful for this purpose.

9
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2.1.1 Linear Codes

Let p be a prime number and q = pm, for some positive integer m. Additionally,
let Fq be a finite field of q elements. Informally, a linear code defined over Fq is
a code whose the encryption function is a linear map.

Definition 2.1 (Linear map). A function f : D → I is a linear map iff for all
x, y ∈ D:

1. f(x+ y) = f(x) + f(y).

2. f(αx) = αf(x), ∀α ∈ Fq.

This property leads to a very natural way to represent and operate over
linear codes: using vector subspaces.

Definition 2.2 (Linear code). An (n, k)-linear code C is a vector subspace of
length n and dimension k.

Thus, codes can be defined and represented by matrices, and tuples (plain-
texts, codewords and words) by vectors. Below we present two matrices used
to represent a linear code.

Definition 2.3 (Generator matrix). A matrix G ∈ Fk×nq is called a generator
matrix for a (n, k)-linear code C iff

C = {mG | m ∈ Fkq}.

Definition 2.4 (Parity check matrix). A matrix H ∈ F(n−k)×n
q is called a

parity-check matrix for a (n, k)-linear code C iff

C = {c ∈ Fnq | HcT = 0}.

Remark 1. For any generator-matrix G ∈ Fk×nq and parity-check matrix H ∈
Fr×nq of an (n, k)-linear code C, it holds that

HGT = 0.

From the previous remark, a parity-check (generator) matrix can be com-
puted from a generator (parity-check) matrix in polynomial time. A generator
matrix provides a straightforward way to encode messages: the codeword c ∈ Fnq
corresponding to a plaintext m ∈ Fkq is obtained from c = mG. On the other
hand, a parity-check matrix allows the syndrome computation, an important
step for decoding.

Definition 2.5 (Syndrome). The syndrome s ∈ Frq of a vector c ∈ Fnq with

respect to a parity check matrix H ∈ Fr×nq is sT = HcT ∈ Frq.

Remark 2. From Definition 2.4, the syndrome of any codeword is always the
zero-vector.

Along the text, we assume a codimension r = n − k. Next we gather other
basic concepts related to linear codes.

Definition 2.6 (Hamming weight). The Hamming weight (or simply weight)
wt of a vector x ∈ Fnq is the number of its nonzero components.
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Definition 2.7 (Hamming distance). The Hamming distance (or simply dis-
tance) dist(x, y) of two vectors x, y ∈ Fnq is the number of components whose
they differ, i.e. dist(x, y) = wt(x− y).

Different linear codes have different properties. One of the most important
property of a linear code is its minimum distance, which provides an upper-
bound for its error correction capability.

Definition 2.8 (Minimum distance). The minimum distance d0 of a linear code
C is the minimum distance of its codewords

d0 = min dist(c, c′)

= minwt(c− c′), c ∈ C, c′ ∈ C, c 6= c.

Equivalently, it is the minimum weight of any nonzero codeword

d0 = min
c∈C
c6=0

wt(c), c ∈ C.

Theorem 2.1 (Minimum distance and error correction capability [MS78]). A
linear code with minimum distance d0 can correct up to bd0−1

2 c errors.

The relationship between minimum distance and error correction capability
stated above can be explained through a vector space interpretation. Suppose
that each codeword is a point in the vector space, rounded by a sphere. The
radius of this sphere is such as the whole vector space is fulfilled by these spheres
without intersections. Since each codeword is at least at distance d0, the radius
of this sphere should not be greater than bd0−1

2 c. In this scenario, a codeword

that is perturbed by an error of weight not greater than bd0−1
2 c can be unam-

biguously associated to the single, closest codeword. Along the text, we will
work with different types of linear codes that perform this association between
words and codewords (i.e., error-correction) using a wide variety of techniques.

c1 c2

⌊ d0−1
2

⌋

d0

Figure 2.2: Two codewords separated by a distance of d0.

2.1.2 Algebraic Codes

Algebraic codes perform efficient decoding taking advantage from some algebraic
structure. In general, this structure consists of polynomials over a ring. By
evaluating such polynomials, it is possible to determine the error positions and
error values present in a noisy codeword. Examples of algebraic codes recently
used in cryptography: Generalized Reed-Solomon (GRS), Alternant and Goppa.
In Chapter 3 of Part I, the definitions and features of these codes are presented.
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2.1.3 Graph-Based Codes

Low-Density Parity-Check (LDPC) codes, which are graph-based codes, have
been (re-)discovered recently. They have interesting properties for error cor-
rection that had been unexploited for decades due to the limited computing
hardware. This story begins in 1963, when Robert G. Gallager introduced
what the LDPC codes [Gal63], which are able to approach the channel capacity.
These codes have no algebraic structure and just meet a very simple combina-
torial property: they admit a sparse parity-check matrix. In 1996, David J.C.
MacKay and Radford M. Neal have re-enlightened this concept [MN96]. This
work has been followed by several other works that, using the more advanced
available hardware, could attest their excellent error correction attributes. Re-
cently, they have also been used for cryptographic purposes. In Chapter 5 of
Part II, we present the definitions and features of these codes.

2.2 Cryptography

As discussed before, cryptography gathers techniques for achieving secure com-
munication in the presence of adversaries. This can be done in several ways
and regarding different purposes. In this section, we describe a few different
cryptographic concepts and primitives that will be useful along the text.

Hard Problems

Cryptosystems rely their security on computational problems that are easy to
solve when the user is equipped with some privileged information and hard oth-
erwise. The concepts of easy and hard are purposely loosely defined, although
some insights on how classify computational problems within these two qualifiers
are discussed next.

Computational problems are divided into complexity classes. We assume the
familiarity of the reader with the concepts of deterministic and non-deterministic
Turing machines. The most important complexity classes are:

– Class P: Problems that can be solved in polynomial time in a deterministic
Turing machine. In practice, these are the easy problems.

– Class NP: Problems that can be solved in polynomial time in a non-
deterministic Turing machine. Additionally, a solution for this problem
can be verified in polynomial time in a deterministic Turing machine.

– Class NP-Hard: Problems that are at least as hard as the hardest
problem in NP.

– Class NP-Complete: Subclass of NP which contain decisional prob-
lems that are also inNP-Hard. A problem inNP is inNP-Complete
if it is polynomially reducible to any other problem in NP-Complete.
In practice, these are the most difficult problems in NP.

Figure 2.3 illustrates the relationship between these classes, assuming the valid-
ity of the conjecture P 6= NP.
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P

NP

NP-Hard

NP-Complete

Figure 2.3: Relationship between some complexity classes.

Problems may not be always hard or easy. Their behavior can variate de-
pending on the type of input. In this context, the complexity class of a problem
only tells us its worst-case behavior, i.e. how difficult is to solve this problem
when considering the worst input possible. In cryptography, however, we are
interested on problems that will remain hard for any instance (or, except for
a negligible number of instances that can be beforehand identified and elimi-
nated). These are the hard problems in the average-case.

In practice, even problems not proven to be hard on average are considered
for cryptography. This is the case of factoring numbers in prime numbers, a
problem used in the widely deployed RSA cyrptosystem [RSA78]. Moreover, the
way the cryptosystem or the protocol use the underlying problem may introduce
vulnerabilities which do not necessarily depend on solving such a problem.

For practical purposes, we will be interested on problems that are most likely
hard on average, for which no algorithm able to solve it in less than a given
exponential number of steps is known. We call the exponent of this minimum
number of steps as the security parameter of the scheme.

Definition 2.9 (Security parameter). λ is the security parameter of a scheme
if there is no known algorithm that can break the scheme in less than 2λ steps.

Next, we discuss some cryptographic primitives.

2.2.1 Encryption

An encryption schemes is designed to ensure the secrecy of a transferred mes-
sage. There are two types of encryption schemes, symmetric and asymmetric.
In this text, we will be solely interested on asymmetric schemes, but to illustrate
the concept, we describe both.

The symmetric scheme needs, at some point, a secure channel between the
parts. The asymmetric schemes do not require this secure channel, but they
are much less efficient in terms of algorithmic complexity.

Both schemes use keys, i.e. piece of information that when combined with
a cryptographic procedure allows one to hide the content of a message from
adversaries. A more practical difference between symmetric and asymmetric
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schemes regards the different number of keys used in the process. Symmetric
schemes use only one key. This explains the requirement of having a secure
channel at some point (for sharing such a key between both users). Asymmetric
schemes use a pair of keys that can be distributed by a trusted third party.

Next, we defined both types of encryption schemes. Let S be the key-space
from where the keys are sampled. In the symmetric case, S is the set of all keys,
and in the asymmetric case, S is the set of all key pairs. Let K : Z → S be
a key-generation function which receives the security parameter λ and returns
an element randomly chosen from S which reaches such a security level. We
begin with the symmetric scheme, which uses the cryptographic encryption and
decryption function φ : S × Fnq → Fnq .

KeyGen:

1. sk ← K(λ).

Enc: The encryption of m ∈ Fnq is:

1. x← φ(sk,m).

Dec: The decryption of x ∈ Fnq is:

1. m← φ(sk, x).

Table 2.1: Symmetric Encryption Scheme.

An asymmetric encryption scheme uses two keys, a secret to encrypt, and a
public to decrypt. There is no previous communication between sender and re-
ceiver for agreeing about the key, at the price of requiring a third party authority
trusted by both users to distribute the key pair.

We consider S as a tuple of (Ss, Sp), where Ss is the set of secret keys
and Sp is the set of public keys. They are univocally associated to each-other.
Consider φ : Ss × Fkq → Fnq the encryption function and θ : Sp × Fkq → Fnq the

decryption function. For any pair (sk, pk) ∈ S and message m ∈ Fkq , it holds:
θ(sk, φ(pk,m)) = m. The asymmetric encryption scheme is defined in Table 2.2.

KeyGen:

1. (sk, pk)← K(λ).

2. pk is public. sk is kept in secret by its owner.

Enc: The encryption of m ∈ Fkq is:

1. x← φ(pk,m).

Dec: The decryption of x ∈ Fnq is:

1. m← θ(sk, x).

Table 2.2: Asymmetric Encryption Scheme.
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2.2.2 Digital Signature

A digital signature scheme permits to validate the authenticity of a digital mes-
sage or document. For this purpose, the scheme must attain three features.

– Authentication: It allows a receiver of a digitally signed document to attest
that such a document was produced by a known sender.

– Non-repudiation: It states that the sender cannot deny the message’s
authority.

– Integrity: It allows the receiver to attest the message was not modified
during transmission.

Digital signature schemes are asymmetric schemes. Its private-key is able
to sign documents. Its public-key is able to verify signatures. For the signing
process, it is convenient when the document to be signed, here denoted by D,
is an element of the ciphertext space. In this setting, the signer uses its private
key to decrypt D, obtaining a corresponding plaintext x. Then he sends the
tuple (D, x) to the receiver. The verification is done by re-encrypting x and
comparing it with D. The aforementioned explanation, although illustrative,
is not quite precise. The document has an unknown size, which prejudices the
mapping of documents into ciphertexts. It is preferable to use a fixed-length
identifier for each document. This is done by a hash function.

Definition 2.10 (Hash function). A hash function is a function that maps
strings of arbitrary length to strings of fixed-length, called hash-values.

We need hash functions that are collision-resistant, i.e. two different doc-
uments should not have the same signature. Moreover, it is not ensured that
the hash-values can be seen as ciphertext. When this condition is not satisfied,
an intermediate step must map the hash-value to ciphertexts. On the other
hand, we call The Full Domain Hash (FDH) approach, when it is satisfied. For
simplicity, we assume a collision-resistant hash H in the FDH case. C, P and
S denote the ciphertext, plaintext and key spaces. The notation come from the
asymmetric encryption schemes. Table 2.3 describes a signature scheme.

KeyGen:

1. (sk, pk)← S.

Sign: To sign a document D ∈ Fn>0
q :

1. h← H(D) ∈ C.

2. x← θ(ks, h) ∈ P .

3. The signature is: (D, x).

Verify: To verify a signature (D, x):

1. h′ ← H(D).

2. If h′ = ψ(kp, x), then accept. Otherwise, reject.

Table 2.3: Simplified Digital Signature Scheme
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2.3 Code-Based Cryptography

In this section, we formally describe the most important code-based cryptosys-
tems and provide their theoretical and practical security assessment.

2.3.1 Code-Based Cryptosystems

The cryptosystems here described are based on the same security idea.

General security idea. A linear code that disposes of an
efficient decoding algorithm is selected at random. The private-
key is a code description that enables efficient decoding. The
public-key is a disguised version of this code which should not
enable efficient decoding. The challenge consists of purposely
adding errors to a codeword of this code in such a way that
only the owner of the private code is able to efficiently decode.

Obviously, it is expected that recovering the private code from the public
description is computationally unfeasible. Since it is hard to foresee which
properties might be leaked by the public description, it is reasonable to have
this public description indistinguishable from random.

We denote by ΨC a t-error correction procedure for a linear code C. Suppose
that a word y = x + e is transmitted, where x ∈ C and wt(e) = t. In the
McEliece scheme, the output of ΨC(y) will be the codeword x, whilst in the
Niederreiter and CFS scheme it will be the error vector e.

McEliece Cryptosystem

The McEliece cryptosystem [McE78] is described in Table 2.4. The key-generation
was already discussed in the general security idea. The encryption consists of
encoding a message and adding it to an error vector. The decryption consists
of correcting such errors and then recovering the original plaintext.

KeyGen:

1. Generate a linear code C − (n, k) able to correct t errors.

– Secret-Key: ΨC , a t-error correcting procedure for C.
– Public-Key: G ∈ Fk×nq , a systematic generator-matrix for C.

Enc: The encryption of m ∈ Fkq is:

1. Select at random a vector e ∈ Fnq of weight t.

2. x← mG+ e.

Dec: The decryption of x ∈ Fnq is:

1. m← Extract the first k positions of ΨC(x).

Table 2.4: McEliece Encryption Scheme.
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Note that we use the public matrix in systematic form. This is possible due
to the use of a CCA2-secure conversion, e.g. [KI01], preventing the leakage of
information when using such a compact representation.

The McEliece cryptosystem is often described using a scrambling matrix
S ∈ Fk×kq and a permutation matrix P ∈ Fn×nq . Thus the transformation from
the secret to the public code description are made through matrix products.
However, the only security requirement necessary for McEliece-like cryptosys-
tems is that the public-key does not reveal any useful information for decoding.
Since this can be done in several ways, we stick to the simplest and more general
McEliece description as presented in Table 2.4, which is in accordance with the
security reduction to be presented in Section 2.3.2.

Niederreiter Cryptosystem

The Niederreiter cryptosystem [Nie86] is known as the dual version of McEliece
cryptosystem. It permits smaller public key-sizes and equivalent security [LDW94].
The main differences from McEliece scheme is that the message is represented
by the error vector and that parity-check matrices are used instead of generator
matrices.

In this scheme, we need a function that translates messages into vectors of
a given length and weight. This is done by what is called a constant-weight
encoding function, here denoted by ϕ (see [Sen05]). This function receives a
vector of length n′ and convert it into another vector of length n > n′ of constant
weight t. Obviously, not all vectors can be encoded uniquely into vectors of fixed
length and weight. In fact, working on a finite field of q elements, only logq

(
n
t

)
messages can be univocally encoded into vectors of weight t and length n. The
scheme is described in Table 2.5.

KeyGen:

1. Generate a linear code C − (n, k) able to correct t errors.

– Secret-Key: ΨC , a t-error correcting procedure for C.

– Public-Key: H ∈ F(n−k)×n
q , a parity-check matrix for C.

Enc: The encryption of m ∈ Fn′q is:

1. s← H(ϕ(m))T .

Dec: The decryption of s ∈ F(n−k)
q is:

1. m← ϕ−1(ΨC(s)).

Table 2.5: Niederreiter Encryption Scheme.
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CFS Digital Signature Scheme

As discussed in Section 2.2.2, cryptosystems that permit see any fixed-length
vector as a ciphertext can be easily translated into a digital signature scheme.
Unfortunately, this is not the case in code-based cryptography.

The CFS signature scheme [CFS01] was the first proposal to present a solu-
tion to this problem. It is built upon the Niederreiter scheme. This encryption
scheme has decodable syndromes as its ciphertexts and error vectors of fixed
weight as its plaintexts. Note that we cannot directly construct a digital sig-
nature from Niederreiter scheme, since a fixed length vector (e.g. a hash of a
document) is not necessarily a decodable syndrome. Therefore we need a way
to map any input of fixed length to the set of decodable syndromes. There are
two ideas to overcome this issue:

Adding a random vector. The idea here is to sample a random vector and
add it to the hash of the document. Then we check if it is a decodable
syndrome. This process is repeated until a decodable syndrome be found.

Complete decoding. The idea here is to be able to decode any output given
by the hash function. Thus, one needs to modify the decoding algorithm
in order to be able to correct more than t errors. A simple and sufficient
approach is to use exhaustive search for correcting the additional errors.
More precisely, for a code of length n and codimension r, we need to
consider a δ additional errors as the smallest integer such that

(
n
t+δ

)
> 2r.

Then, any syndrome can (with a good probability) be decoded into an
error vector of weight t+ δ or less.

Obviously the efficiency of this scheme strongly depends on how many at-
tempts one has to try (random vectors or patterns of weight at most δ) until
a decodable syndrome be found. This condition makes the choice of the code
family quite challenging. Only codes that have a high density of decodable syn-
dromes are suitable, e.g. binary Goppa codes. This issue is discussed in details
in Section 4.1.5. We denote byH the hash function and by ϕ the constant-weight
encoding function. The scheme is described in Table 2.6.

Parallel-CFS

An unpublished attack against the CFS scheme due to D. Bleichenbacher is
described in [FS09]. It represents a successful way to forge valid CFS signa-
tures, for its usual parameters. Improved parameters would result in a signa-
ture scheme with excessive cost of signing time or key length. This attack is
described in Section 2.3.3.

In [Fin10], Finiasz introduces the Parallel-CFS, which fixes the security is-
sues related to Bleichenbacher’s attack. The idea here is to produce not only
one hash (using a function H) from a document D. Instead one produces σ
hashes (using σ different functions H1, . . . ,Hσ) and sign all H1(D), . . . ,Hσ(D)
in parallel.

For well chosen parameters, this strategy avoids the effectiveness of Ble-
ichenbacher’s attack, at the price of increasing the cost of signing, verifying and
storing signatures by a factor σ.
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KeyGen:

1. Generate a linear code C − (n, k) able to correct t errors.

– Secret-Key: Ψ, a t-error correcting procedure for C.

– Public-Key: H ∈ F(n−k)×n
q , a parity-check matrix for C.

Sign: The signature s of a document D is:

1. z ← H(D).

2. Choose a vector i at random.

3. s← H(z||i).
4. While s is not decodable, repeat steps 2 and 3.

5. e← Ψ(s).

6. s← (ϕ−1(e)||i).

Verify: The verification of a document D of signature (ϕ−1(e)||i) is:

1. e← ϕ(ϕ−1(e)).

2. s1 ← HeT .

3. s2 ← H(H(D)||i)
4. if s1 = s2 then accept.

Otherwise, reject.

Table 2.6: CFS Digital Signature Scheme.

2.3.2 Security-Reduction Proof

A security reduction is a proof that an adversary able to attack the scheme
is able to solve some (presumably hard) computational problem with a similar
effort. In this section, we recall the security reduction presented in [Sen09]
to the Niederreiter scheme [Nie86], which is as secure as the McEliece scheme
[LDW94].

Let Sn(0, t) denote the sphere centered in zero of radius t in the Hamming
space Fn2 and let Ω denote the probability space consisting of the sample space
Hn,k × Sn(0, t) equipped with a uniform distribution. Moreover let:

– Fn,k: A code family of (n, k)-linear codes able to correct t.

– Hn,k: The set of all full rank matrices in Fk×n2 .

– Kn,k ⊂ Hn,k: The public-key space of Fn,k.

A distinguisher, decoder and adversary against Kn,k-Niederreiter scheme are
described in Table 2.7.
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Distinguisher. A program D : Hn,k −→ {0, 1} is a (T, ε)-
distinguisher for Kn,k (vs. Hn,k) if it runs in time at most T
and the advantage of D for Kn,k

Adv(D,Kn,k) = |Pr
Ω

[D(H) = 1 | H ∈ Kn,k]− Pr
Ω

[D(H) = 1]|

is greater than ε.

Decoder. A program φ : Hn,k × Fr2 −→ Sn(0, t) is a (T, ε)-decoder for
(Hn,k, t) if it runs in time at most T and its success probability

Succ(φ) = Pr
Ω

[φ(H, eHT) = e]

is greater than ε.

Adversary. A program A : Hn,k×Fn2 −→ Sn(0, t) is a (T, ε)-adversary
against Kn,k-Niederreiter if it runs in time at most T its success
probability

Succ(A,Kn,k) = Pr
Ω

[A(H, eHT) = e | H ∈ Kn,k]

is greater than ε.

Table 2.7: Distinguisher, Decoder and Adversary definitions.

An adversary against Kn,k-McEliece could be defined as a program Hn,k ×
Fn2 → F(n−r)

2 ×Sn(0, t) of probability space Ω and sample setHn,k×Fk2×Sn(0, t).
As stated before, this setup would only make all the statements and proofs more
cumbersome. Next, the proposition which supports the security reduction.

Proposition 2.1 ([Sen09]). Given the security parameters (n, r, t) and t, if
there exists a (T, ε)-adversary against Kn,k-Niederreiter, then there exists either
a (T, ε/2)-decoder for (Hn,k, t) or a (T + O(n2), ε/2)-distinguisher for Kn,k vs.
Hn,k.

Proof. LetA : Hn,k×Fr2 → Sn(0, t) be a (T, ε)-adversary againstKn,k-Niederreiter.
We define the following distinguisher:

D: input H ∈ Hn,k.

e
$←Sn(0, t)

if (A(H, eHT) = e) then return 1 else return 0.

which implies:

Pr
Ω

[D(H) = 1] = Pr
Ω

[A(H, eHT) = e]

= Succ(A)

Pr
Ω

[D(H) = 1 | H ∈ Kn,k] = Pr
Ω

[A(H, eHT) = e | H ∈ Kn,k]

= Succ(A,Kn,k)
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thus Adv(D,Kn,k) = |Succ(A,Kn,k)− Succ(A)| and particularly:

Adv(D,Kn,k) + Succ(A,Kn,k) ≥ Succ(A)

Since Succ(A,Kn,k) ≥ ε, we either have Adv(C,Kn,k) or Succ(A) greater or
equal to ε/2 (recall that both are positive). The running time of D is equal to
the running time of A increased by the cost for picking e and computing the
product eHT, which cannot exceed O(n2). So either A is a (T, ε)-decoder for
(Hn,k, t) or D is a (T +O(n2), ε/2)-distinguisher for Kn,k.

A distinguisher for Kn,k vs. Hn,k and a decoder for (Hn,k, t) provide a solu-
tion respectively to the Code Distinguishing Problem and to Syndrome Decoding
Problem as described next.

Problem 1 (Code Distinguishing Problem).
Parameters: Kn,k, Hn,k.
Instance: a matrix H ∈ Hn,k.
Question: is H ∈ Kn,k?

Problem 2 (Computational Syndrome Decoding Problem).
Parameters: Hn,k, an integer t > 0.
Instance: a matrix H ∈ Hn,k and a vector s ∈ Fr2.
Problem: find a vector e ∈ Sn(0, t) such that eHT = s.

Thus, given a parameter setting (Kn,k,Hn,k, t), it is enough to assume that
none of those two problems can be solved efficiently to ensure that no efficient
adversary against the scheme exists. These are the two assumptions required
by code-based cryptosystems to be secure, as presented in Table 2.8.

Key-Distinguishing Assumption. (Kn,k,Hn,k)-code distinguish-
ing problem is a hard problem.

Decoding Assumption. (Hn,k, t)-computational syndrome decod-
ing problem is a hard problem.

Table 2.8: Security assumptions for code-based cryptography.

2.3.3 Generic Attacks

The practical security assessment of a public-key cryptosystems encompasses
two categories of attacks. Key-recovery attacks and message attacks. The for-
mer aims at recovering the private-key from the public-key. The second aims at
recovering the corresponding message from a particular ciphertext.

Key-recovery attacks are strongly connected to the concept of distinguishing
a public-key from random. If an adversary can distinguish a public-key, it might
be possible that some private information is being leaked by the public-key. On
the other hand, if no adversary is able to distinguish a public-key from random,
then surely no adversary is obtaining private information from the public-key.
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In the code-based cryptography context, distinguishing means distinguish-
ing the public generator or parity-check matrix of a linear code from a random
matrix. Since this discussion is intended to be generic (and the distinguish-
ing problem depends on which code-family is used), we move forward to the
discussion regarding message attacks.

Assuming indistinguishable public-keys, the messages attacks in code-based
cryptography consists of correcting errors in a random linear code. This problem
is easily translated to Problem 2 (computational syndrome decoding). Here, we
describe the best strategies to solve Problem 2 and provide their complexity.

Information Set Decoding techniques.

The best known algorithms for decoding random linear codes derive from the
Information Set Decoding technique, first appeared in [Pra62].

Definition 2.11 (Information Set). Let G be a generator-matrix of a (n, k)-
linear code, I = {i1, . . . , ik} be a subset of {1, . . . , n} and GI be the k × k
submatrix of G defined by the columns of indices I. If GI is invertible then I
is an information set.

The matrices G′ = G−1
I G and G generate the same code, and for any code-

word c = mG′, the entries corresponding to the indices in I contain the infor-
mation symbols. For this reason, I is called an information set.

Using a parity-check matrixH, an information set I implies the non-singularity
of the block formed by the columns of indices I ′ = {1, . . . , n}\I. The description
in terms of parity-check matrices, although less intuitive, favors the explanation
on how ISD algorithms work. Consider:

– A code C of parity-check matrix H.

– A word y = c+ e, where c ∈ C and wt(e) = w.

The classical information set decoding [Pra62] works as follows. It computes
the syndrome sT ← HyT and samples a set I ′ = {i1, . . . , in−k} from {1, . . . , n}.
Then it computes a matrix H ′ = H−1

I′ H, where HI′ is the block of columns of
indices I ′ in H, and y′ ← H−1

I′ s. If e has its w non-zero values concentrated
in the entries defined by I ′, then the syndrome will reveal the error vector.
Figure 2.4 illustrates this idea.

I ′ IH ′:

error profile:

×
w 0

=
s′

n− k k

Figure 2.4: Prange Information Set Decoding.
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In all ISD variants, the algorithm samples different sets I ′, until finding one
that satisfies the error profile. We denote the event of finding the sought pattern
by E. The algorithm build lists of size L of candidates that might match the
error profile. When the algorithm parameters are optimal, the cost of these
algorithms is C ≈ L/P (E), up to a small factor.

In the classical information set decoding, the event of matching the sought

error pattern has probability Pr(EPra62) =
(n−kw )
(nw)

.

Many improvements have been made since then. In [LB88], the authors
relaxed the constraint on the positions of the errors, permitting some p < w
errors to be out of the positions indexed by I ′. Thus, all combinations of p
columns are evaluated. Those ones that their sum plus the syndrome vector
gives a vector of weight w− p will give a solution. The idea is that other w− p
columns from the identity block defined by I ′ can be selected to complete the
sought error pattern. This changes the probability of finding such an error

vector to Pr(ELB88) =
(n−kw−p)(

k
p)

(nw)
.

In [Ste89], Stern proposed a relevant improvement. The first difference con-
sists of considering a 0-window in the last l bits of the error vector. This implies
that the sum of the p columns above mentioned must results in a vector with a
0-window in its last l positions. This condition cab be satisfied by considering
two sets of p/2 columns and finding collisions on these two sets. This approach
benefits from the birthday paradox. The leads the probability of success to

Pr(ESte89) =
(n−k−lw−p )(k/2p/2)

2

(nw)
.

In [FS09], Finiasz and Sendrier improved this attack suppressing the 0-
window present in the Stern version. Thus, the probability of success is Pr(EFS09) =
(n−k−lw−p )((k+l)/2

p/2 )
2

(nw)
.

In summary, the works proposed in [Pra62, LB88, Ste89, FS09] changed the
complexity of decoding by considering different error patterns.

k l n− k − l

Prange: 0 w

Lee-Brickell: p w − p

Stern: p 0 w − p

Finiasz-Sendrier: p w − p

Figure 2.5: Different error-patterns.

The most recent improvements [MMT11, BJMM12] generalize the way to
find collisions in the last l bits, of the p columns in I. These modifications
change the candidates list size L. They provide slight improvements on the
exponential of the cost, but it is worth mentioning that in practice they require
an important overhead to process such lists.
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In [MMT11] the authors improve ISD by using the representation technique.
It exploits the fact that a solution vector can be obtained from the sum of
different vectors. For example, a position with value 1 can be obtained by two
different ways: 1 + 0 and 0 + 1. By retaining a single combination for each
solution, the authors could demonstrate an asymptotic gain.

Finally in [BJMM12], the authors extends the representation technique.
Here, it is also considered that a zero position can be obtained by 0 = 0 + 0
and 0 = 1 + 1, in a finite field of characteristic 2. In [MMT11], it was implicitly
restricted to the case 0 + 0 = 0.

We conclude the discussion about ISD techniques citing some ad-hoc ap-
proaches for particular scenarios. In [Pet10, Pet11], Peters extends the infor-
mation set decoding technique to codes defined over Fq. In [Sen11], Sendrier
studies improvements on solving one instance of the decoding problem, when
N instances of the problem are available. It results in a gain by using the
birthday-paradox. This variant will be analyzed in the context of MDPC codes,
in Section 6.5.2.

Generalized-Birthday Algorithm (GBA).

For some particular parameter sets, another technique is more advantageous
than ISD. This is the Generalized-Birthday Algorithm (GBA), which was first
proposed in [Wag92] to solve the k-sum problem. The application of the GBA
to the context of decoding is due to D. Bleichenbacher appeared in [FS09]. This
algorithm has been used in the successful forge valid CFS signatures [FS09].

1. Build 3 lists L0, L1, and L2 of the sum of respectively t0, t1 and t2 columns
of H (with t = t0 + t1 + t2).

2. Merge the two lists L0 and L1 into a list L′0 of the sum of t0 + t1 columns
of H, keeping only those starting with λ zeros.

3. Repeat the following steps:

(a) Choose a counter and compute the corresponding document hash,

(b) Sum this hash with all elements of L2 matching on the first λ bits,

(c) Look up each of these sums in L′0: any complete match gives a valid
signature.

The workfactor of this attack is lower bounded in [FS09]. Consider a code
of length n, codimension r and error weight w. Then the workfactor to correct
w errors using GBA is at least:

WF (n, r, w)GBA ≥
r − a
a

2
r−a
a ,

such that 2−a
(
n
2w
2a

)
= 2

r−a
a .
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Chapter 3

Introduction

Algebraic codes are the most used linear codes in cryptography. Since 1978,
when Robert J. McEliece proposed the first code-based cryptosystem based on
binary Goppa codes, they have been studied for cryptographic applications.
Posteriorly, many other algebraic codes have been investigated for such a pur-
pose, such as BCH and Alternant codes. In this chapter, we give the definition
of some codes that will be useful along the text and describe how some of them
have been applied to reduce the keys of code-based cryptosystems. We refer to
[MS78] for more details about algebraic codes.

Organization of Chapter 3. In the first part of this chapter, we give the
definition of Generalized Reed-Solomon, Alternant and Goppa codes. These
codes play a key role in our work. In the second part, we discuss the previ-
ous proposals for reducing the key-length of code-based cryptosystems using
algebraic codes.

3.1 Some Algebraic Codes

In this section, we give the definition of some codes that will be useful along
the text. Some of them are defined in terms of a parity-check matrix, others
in terms of a syndrome. These codes are the Generalized Reed-Solomon codes,
also known as GRS codes, the Alternant codes and the important family of
Goppa codes.

The relationship between these codes is given as follows. Goppa codes form
a sub-family of alternant codes, i.e. every Goppa code is also an alternant code.
Alternant codes are sub-field subcodes of Generalized Reed-Solomon codes. Sub-
field subcodes can be produced by different methods. In this section, we describe
two constructions for producing sub-field subcodes, namely, the trace and the
co-trace construction.

All these codes are decoded in a very similar way. In summary, a polynomial
equation is built from the syndrome of the received message and from some
particular algebraic structure of the code. When solved, this equation (usually
called as the key-equation for decoding) provides enough information to find the
positions and the values of the errors contained into the received message.

27
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Representing tuples by polynomials over rings. Usually, plaintext, code-
words and words are interpreted as vectors with elements in a finite field. An
alternative representation uses polynomials over a ring. Let p be a prime num-
ber, q = pm for some positive integer m and Fq be a finite field of q elements.
We denote by Fq[x] the polynomial ring in Fq, i.e. the ring that consists of
polynomials with coefficients in Fq. Consider a vector f = (f0, . . . , fk−1) ∈ Fkq .
Its polynomial representation in the polynomial ring Fq[x] is

f(x) = f(k−1) · x(k−1) + f(k−2)x
(k−2) + · · ·+ f1x+ f0.

Polynomials have many features that have been explored in coding theory.

3.1.1 Generalized Reed Solomon Codes

The GRS code family is a remarkable example of codes that uses the polynomial
interpretation for achieving efficient decoding.

Definition 3.1 (GRS code). Let F be a finite field, v = {v1, . . . , vn} ∈ Fn a
sequence of non-zero elements and α = {α1, . . . , αn} ∈ Fn a sequence of distinct
elements. The (n, k)-generalized Reed-Solomon code defined by (v, α) is

GRSn,k(α, v) = {(v1f(α1), v2f(α2), . . . , vnf(αn)) | f(x) ∈ F[x]k}.

In other words, the code GRSn,k(α,v) is the evaluation of all polynomials
f(x) ∈ Fq[x] of degree up to k at α, scaled by the components of v. This
operation can be seen as the product of a vector f = (f1, . . . , fk) ∈ Fkq by a
particular generator matrix for GRSn,k(α,v). This particular generator matrix
is called the canonical generator matrix, which is the product of a Vandermonde
matrix and a diagonal matrix.

Definition 3.2 (Vandermonde matrix). The Vandermonde matrix of sequence
α = (α1, . . . , αn) is defined by Vij = αji , i.e.

V (α) =



1 1 . . . 1
α1 α2 . . . αn
...

...
...

...
αi1 αi2 . . . αin
...

...
...

...

αk−1
1 αk−1

2 . . . αk−1
n


Definition 3.3 (Diagonal matrix). The diagonal matrix of sequence v = (v1, . . . , vn)
is defined by Dii = vi and Dij = 0 for i 6= j.

Definition 3.4 (Canonical Generator Matrix of a GRS code). The canonical
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generator matrix of a code GRSn,k(α, v) is:

G = V (α)D(v) (3.1)

=



1 1 . . . 1
α1 α2 . . . αn
...

...
...

...
αi1 αi2 . . . αin
...

...
...

...

αk−1
1 αk−1

2 . . . αk−1
n





v1 0 . . . 0
0 v2 . . . 0
...

...
...

...
0 0 vi 0
...

...
...

...
0 0 . . . vn



=



v1 v2 . . . vn
v1α1 v2α2 . . . vnαn

...
...

...
...

v1α
i
1 v2α

i
2 . . . vnα

i
n

...
...

...
...

v1α
k−1
1 v2α

k−1
2 . . . vnα

k−1
n


(3.2)

An interesting property of these codes is that it is possible (and convenient)
to express the dual of a GRS code as another GRS code of same sequence α.

Proposition 3.1. Let ui = (vi
∏
j 6=i(αi − αj))−1 and r = n− k. Then

GRSn,k(α, v)⊥ = GRSn,r(α,u)

The main consequence of Proposition 3.1 is that it gives a straightforward
way to build the canonical parity-check matrix for GRSn,k(α,v).

Definition 3.5 (Canonical Parity-Check Matrix of a GRS code). The canonical
parity-check matrix of a code GRSn,k(α, v) is:

H = V (α)D(u) (3.3)

=



1 1 . . . 1
α1 α2 . . . αn
...

...
...

...
αi1 αi2 . . . αin
...

...
...

...
αr−1

1 αr−1
2 . . . αr−1

n





u1 0 . . . 0
0 u2 . . . 0
...

...
...

...
0 0 ui 0
...

...
...

...
0 0 . . . un



=



u1 u2 . . . un
u1α1 u2α2 . . . unαn

...
...

...
...

u1α
i
1 u2α

i
2 . . . unα

i
n

...
...

...
...

u1α
r−1
1 u2α

r−1
2 . . . unα

r−1
n


(3.4)
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where the sequence u is defined as in Proposition 3.1.

The canonical parity-check matrix gives a convenient definition for the GRS
syndrome vector. More precisely, the syndrome vector corresponding to a vector
c ∈ Fnq is:

sj =

n∑
i=1

(ciuiα
j
i ), for 0 ≤ j ≤ r − 1

Note that when writing this vector in polynomial form in respect to a variable
z, we have:

S(z) =

r−1∑
j=0

n∑
i=1

ciuiα
j
i z
j

=

n∑
i=1

ciui

r−1∑
j=0

(αiz)
j (3.5)

The sum
∑r−1
j=0(αiz)

j can be replaced by a more convenient expression. This
comes from the fact that we are actually interested in S(z) mod zr and that the
inverse of 1− αz in Fq[z] mod zr is:

1

1− αz
=

r−1∑
j=0

(αz)j mod zr

Thus, by replacing
∑r−1
j=0(αiz)

j by 1
1−αz into 3.5, we obtain a polynomial defi-

nition of the GRS syndrome, which is more convenient for decoding.

Definition 3.6 (Syndrome of GRS codes). Let c = (c1, . . . , cn) ∈ Fnq . The
syndrome of c in respect to the code GRSn,k(α, v) over Fq is

Sc(z) =

n∑
i=1

ciui
1− αix

mod zr

where u−1
i = vi

∏
j 6=i(αi − αj).

3.1.2 Alternant Codes

Informally, an alternant code is a subfield subcode of a GRS code. It consists of
all codewords with components in the basefield. Let q = pm be a prime power.

Definition 3.7 (Alternant code). Let v = {v1, . . . , vn} ∈ Fnq be a sequence
of non-zero elements and α = {α1, . . . , αn} ∈ Fnq be a sequence of distinct
elements. The alternant code An,k(α, v) consists of all c ∈ Fnp such that Hct =
0, where H ∈ Fr×nq is given by 3.4.

It is possible and convenient to use a parity-check matrix defined over Fp,
instead of the one defined over Fq given by 3.4. Below, we discuss two approaches
for this construction.
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Trace construction. The trace construction defines a parity-check matrix
H̃ ∈ Fmr×np from H ∈ Fr×nq by replacing each element of H by the corresponding
column vector of length m from Fq. Therefore each column of H will produce
r vectors of length m. This is the simplest construction for subfield subcodes.

Co-trace construction. The co-trace construction defines a parity-check ma-
trix H̃ ′ ∈ Fmr×np from H ∈ Fr×nq by writing the coefficients of equal degrees of
all components of H onto a column vector of length r. Therefore each column
of H will produce m vectors of length r. This construction will present some
advantages in comparison to the trace construction for storing particular types
of matrices (e.g. Quasi-Dyadic Goppa codes, see Chapter 4).

3.1.3 Goppa Codes

Goppa codes are one of the most important code families for cryptography. They
are defined by a Goppa polynomial g(z) and a sequence α = {α1, . . . , αn} ∈ Fnq
such that g(αi) 6= 0 for 1 ≤ i ≤ n. Next, the Goppa syndrome definition.

Definition 3.8 (Goppa syndrome). Let c = (c1, . . . , cn) ∈ Fnp . The syndrome
of c in respect to the code Γ(α, g) over Fp is

Sc(z) =

n∑
i=1

ci
z − αi

mod g(z)

A straightforward definition for Goppa codes is the set of all vectors c ∈ Fnp ,
such that Sc(z) = 0 mod g(z). However, Goppa codes are subfield subcodes of
GRS codes and therefore they must admit a similar definition to 3.7. Indeed,
a Goppa code Γ(α, g) is the restriction to Fp of a GRSn,k(α,v) code, where
v = {g(α1)−1, . . . , g(αn)−1} ∈ Fnq .

Definition 3.9 (Goppa code). Let q = pm be a prime power. Let α =
{α1, . . . , αn} ∈ Fnq be a sequence of distinct elements, g(z) ∈ Fq[z] be a poly-
nomial such that g(αi)1≤i≤n 6= 0 and v = {g(α1)−1, . . . , g(αn)−1} ∈ Fnq . The
Goppa code Γ(L, g) consists of all c ∈ Fnp such that Hct = 0, where H ∈ Fr×nq

is given by 3.4.

Remark 3. If the Goppa polynomial is irreducible, then it is called an irreducible
Goppa code.

Remark 4. The minimum distance of a Goppa code Γ(L, g) is d0 ≥ deg(g) + 1.

Remark 5. If g(z) has no multiple zeros then Γ(L, g) = Γ(L, g2). This particu-
larly implies that the minimum distance of Γ(L, g) ≥ 2 deg(g) + 1.

As discussed for Alternant codes, Goppa codes admit parity-check matrices
with elements in the base field Fp, instead of in Fq. Both Trace and Co-trace
construction (see 3.1.2) are valid for building such a parity-check matrix.

3.2 Previous Algebraic Proposals for Key Size
Reduction

In this section, we discuss about two attempts to reduce the key-length of code-
based cryptography using algebraic codes. The first one was proposed by Ga-
borit using quasi-cyclic BCH codes [Gab05]. The second attempt was proposed
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by Berger et al. using quasi-cyclic alternant codes [BCGO09]. Finally we show
why these proposals failed to achieve security against structural attacks.

Circulant Matrices

Circulant matrices are the central point in many attempts to reduce the key-
size of code-based cryptosystems. They provide both efficient representation
and algorithmic complexity.

Definition 3.10 (Circulant Matrix). A matrix M ∈ Fp×p is called circulant if
its rows are obtained by cyclically shifting its first row.

M =


m0 m1 . . . mp−1

mp−1 m0 . . . mp−2

...
...

. . .
...

m1 m2 . . . m0


Circulant matrices are closed under product and sum, i.e. these operations

preserve cyclicity. Moreover a circulant matrix is completely defined by a sin-
gle vector, for example its first row or column. In the previous section, we
introduced the polynomial representation of tuples, which can also be used for
circulant matrices. Thus the above matrix can be described by the polynomial

m(x) = m0 +m1x+m2x
2 + ...mp−1x

p−1 ∈ F[x].

The i-th row of a circulant matrix can be obtained by xi ·m(x) mod (xp−1).
Moreover the product of a vector v ∈ Fp, with polynomial representation v(x) ∈
F[x], by a circulant matrix can be computed by v(x)·m(x) mod (xp−1). Finally
the product of two circulant matrices M1 ∈ Fp×p, M2 ∈ Fp×p, with polynomial
representation m1(x), m2(x) ∈ F[x] respectively, can be computed by m1(x) ·
m2 mod (xp − 1). These properties are formally described in Proposition 3.2.

Proposition 3.2. Circulant matrices of size p× p with elements in F are iso-
morphic to polynomials in F[x]/(xp − 1).

Quasi-Cyclic and Cyclic Codes

Quasi-cyclic and cyclic codes are linear codes that benefit from the features of
circulant matrices. Thus linear codes that have efficient decoding procedures
and a non-empty intersection with cyclic or quasi-cyclic codes are natural can-
didates for achieving efficient code-based cryptosystems.

Definition 3.11 (Quasi-Cyclic Codes). A linear code is quasi-cyclic of order
p and index n0 iff any cyclic shift of a codeword by n0 coordinates is again a
codeword. Moreover, these codes admit both generator and parity-check matrices
composed by circulant blocks of size p× p.

A linear code with n = n0p, k = k0p and r = n − k = (n0 − k0)p = r0p is
quasi-cyclic and admit a k0 × n0 generator matrix G such that

G =


G1,1 G1,2 . . . G1,n0

G2,1 G2,2 . . . G2,n0

...
...

. . .
...

Gk0,1 Gk0,2 . . . Gk0,n0
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and a r0 × n0 parity-check matrix H such that

H =


H1,1 H1,2 . . . H1,n0

H2,1 H2,2 . . . H2,n0

...
...

. . .
...

Hr0,1 Hr0,2 . . . Hr0,n0


where each block Gi,j and Hi,j is a p× p circulant block.

Definition 3.12 (Cyclic Codes). Cyclic code is a quasi-cyclic code with n0 = 1.

Remark 6. A cyclic code of length n is a quasi-cyclic code of any order which
divides n.

An equivalent definition for cyclic codes is: a cyclic-code C of length n is an
ideal of the ring F[x]/(xn − 1). Every cyclic code is associated to a polynomial
g(x) of degree r which divides (xn − 1) called its generator polynomial. Any
codeword c(x) ∈ C of this code can be obtained by c(x) = m(x)g(x), where
m(x) ∈ F[x] of degree at most n− r− 1. Thus a generator-matrix for this code
is built using the coefficients of g(x) in its first-row.

3.2.1 Using Quasi-Cyclic BCH Codes

In [Gab05], Gaborit proposed the use of Bose-Chaudhuri-Hocquenghem (BCH)
codes to instantiate the McEliece cryptosystem. Below, we give the definition
of these codes, we present the scheme and we explain why it fails at achieving
security against structural attacks.

BCH Codes

BCH codes are cyclic codes and therefore can be described in terms of a gener-
ator polynomial. Let q = pm be a prime power and α be a primitive n-th root
of unity, i.e. α is a root of the polynomial (xn − 1) over Fq.

Definition 3.13. An (n, k)-BCH code C over Fq is a cyclic code with generator
polynomial g(x) such that for some integers b ≥ 0, δ ≥ 1,

g(αb) = g(αb+1) = · · · = g(αb+δ−2) = 0.

A primitive BCH code is a BCH code with length n = q − 1.

BCH codes, as defined above, have minimum distance at least δ and there-
fore allow the correction of, at most, b δ−1

2 c errors. There are many decoding
algorithms for BCH codes and they usually proceed as briefly described next.
The syndrome of the received word is computed, which permits the computation
of the error locator polynomial and the error evaluator polynomial. The roots of
these polynomials provide the position and the value of the errors, respectively.
The decoding algorithm solves an equation to determine such polynomials and
then it corrects the errors.
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The QC-BCH McEliece Variant [Gab05]

The idea proposed by Gaborit is to pick a primitive BCH code, which is orig-
inally cyclic, and then produce a quasi-cylic subcode by using the following
method. Let C0 be a cyclic code of length n = pn0 and dimension k = pk0.
Let {c1, c2, . . . , ck0−1} be random codewords of C0. Consider the code C =
Sn0

(c1) + · · · + Sn0
(ck0−1), where Sn0

is the symmetric group of order n0. We
assume that C is a code of dimension k − p = p(k0 − 1). Any vector ci can be
seen as vector (ci,0, . . . , ci,n0−1), where each ci,j can be seen as an element of
Fp[x]/(xp − 1). Thus C is a quasi-cyclic code that admits the generator matrix

G =

 c1,1 . . . c1,n0

...
...

ck0−1,1 . . . ck0−1,n0

 .

This code can be efficiently decoded and thus represents the private-key of
the McEliece cryptosystem. The public-key must allow encoding and therefore
should be closely related to the original private code. A usual approach is to
have the public code C and the private code C′ as permutation-equivalent codes.
In other words, there exists a permutation that maps codewords from C into
codewords of C′. This is equivalent to the existence of a permutation matrix
Π ∈ Fk×kq such that G′ = ΠG, where G′ ∈ Fk×nq is a generator-matrix for C′.
Note however that to maintain the quasi-cyclicity in G′, some restrictions are
required to the permutation Π. For such purpose, Gaborit suggests Π as

Π =


π

π
. . .

π

 , (3.6)

where π ∈ F
k
n0
× k
n0

q is a permutation block. This leads to a public generator
matrix of the form

G′ =

 c1,π(1) . . . c1,π(n0)

...
...

ck0−1,π(1) . . . ck0−1,π(n0)

 .

The author suggests parameters for 80 bits of security, with public-key sizes
of 40505 bits, and for 90 bits of security, with public-key sizes of 12302 bits.

Claimed security n Number of errors Size of the cyclic block
280 2047 31 23
290 4095 26 45

Table 3.1: Parameters of the QC-BCH Variant.

Attacking the QC-BCH McEliece Variant

Two things make the scheme [Gab05] vulnerable against structural attacks, as
explained in [OTD10].
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1. The code used in the scheme is derived from a primitive BCH code.

For all parameters suggested by the author, the number of possible primitive
BCH codes is limited to at most just a few hundreds. Since an adversary is able
to enumerate all of them, in practice the private code must be considered as a
public information. For this reason, the security of the scheme relies solely on the
unknown permutation that maps the private and public codes. Unfortunately,
the permutation also has security flaws, leaking private information.

2. The permutation Π as presented in 3.6 is too restrictive.

The permutation Π actually relies only on the smaller permutation block π.
This enables adversaries to build and solve an over-constrained linear system,
revealing the secret permutation.

3.2.2 Using Quasi-Cyclic Alternant Codes

Rather than considering subcodes of a BCH code, the scheme proposed in
[BCGO09] suggests the use of subfield subcodes of generalised Reed-Solomon
codes, also known as Alternant codes. We defined Alternant codes in section
3.1.2. The authors suggest the following method to generate the codes.

1. Generate a Reed-Solomon code, which is a cyclic code.

2. Using shortening, scaling and block-permuting transformations, produce
a Generalized-Reed-Solomon code which is quasi-cyclic.

3. Take its subfield sub-code, which results in an alternant quasi-cyclic code.

Parameters for different security levels and key sizes are suggested. Let q0 be
the size of the finite field of the original code, q be the size of the subfield where
the public code is defined, N0 the number of original blocks, n0 is the number
of blocks after shortening the code, ` the order of the quasi-cyclic code (i.e. the
size of each circulant block), t the number of errors and n, k are the usual code
parameters. Table 3.2 presents the parameters suggested by the authors. The
key-size column refers to the public key-size in bits and the security column to
the logarithm in base 2 of the expected number of steps necessary to break the
scheme.

q0 ` N0 t n k q n0 security key-size
216 51 1285 25 663 561 28 13 80 8980
216 51 1285 37 663 510 28 13 95 12240
216 51 1285 37 1020 867 28 20 116 20800
216 85 771 42 1105 935 24 13 83 14960
220 93 11275 23 744 651 210 8 80 6510
220 93 11275 46 744 558 210 8 107 11160
220 75 11275 36 750 675 210 10 100 12120
220 165 6355 40 1320 1155 25 8 90 11480

Table 3.2: Parameters of the QC-Alternant variant.
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Attacking the QC-Alternant McEliece variant

The attack presented in [FOPT10a] succeeded in break all the parameters pro-
posed in [BCGO09]. This attack is explained in Section 4.4.3. Briefly, it consists
of setting up and solving the system generated by GHT = 0, where G is the
public generator matrix and H is an unknown alternant parity-check matrix.
The system can be described as{
gi,0Y0X

j
0 + · · ·+ gi,n−1Yn−1X

j
n−1 = 0|i ∈ {0, . . . , k − 1}, j ∈ {0, . . . , r − 1}

}
(3.7)

This system is also valid for the classical McEliece cryptosystem instantiated
with binary Goppa codes. However the usual parameters prevent the effective-
ness of this approach.

Regarding the QC-Alternant variant, the scenario is much better for adver-
saries. In short, two features makes possible to solve this system.

1. The system is bihomogeneous and bilinear.

2. The quasi-cyclic structure allows a drastic reduction of the number of
unknowns.

This kind of attack is exponential in nature and can be easily prevented by
choosing more conservative parameters. Note that this attack is also effective
against the preliminary version of the quasi-dyadic Goppa proposal [MB09b],
where the public code was defined over an intermediary field (see discussions in
Sections 4.1.4 and 4.4.3).

3.2.3 Lessons Learned

The two previous approaches have an important impact on our contributions
related to algebraic codes, namely the p-adic Goppa proposal.

The first one, based on QC-BCH codes, presented a new trend on code-based
cryptography by using the quasi-cyclicity of some linear codes to achieve com-
pact keys for code-based cryptosystems. On the other hand, this work warned
us about two possible menaces against compact-keys code-based variants. The
first one refers to the importance of choosing a large code-family. When the
code family is not large enough, adversaries have the advantage of knowing the
private code, since they can exhaustive examine each possible private code. This
notably improves the possibilities of attacks. The second possible threat refers
to the mapping between public and private code. Very constrained permuta-
tions might permit the setup of system of equations, which can be used to break
the scheme.

The second approach, based on QC-alternant codes, presented an interesting
and apparently effective way to hide private information into the public code.
This is done by using punctured permuted subfield sub-codes. This technique
is also used in our construction. On the other hand, this proposal also suffered
from using intermediary fields for the public code. This particularity led to the
effectiveness of algebraic structural attacks.

As a last remark, none of these proposals have used the reputable family
of Goppa codes and both of them were broken. This code-family, especially its
binary case, has been used to instantiate the McEliece cryptosystem for more
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than thirty years, remaining almost unscathed from practical attacks. Thus it
seems prominent to investigate the possibility of achieving compact keys using
the lessons learned in previous attempts without leaving the Goppa family, as
in the classical McEliece setup.
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Chapter 4

p-adic Goppa Codes

The McEliece cryptosystem was originally built upon the class of binary Goppa
codes, which remains secure to this date but leads to very large public keys.
Many other code-families have been analyzed for this code-based cryptosystem,
for different purposes. Unfortunately, the majority of them have been subse-
quently broken, highlighting the possibly strengthened security of Goppa codes.

One of the main reasons to replace Goppa codes by other code families refers
to reduce its key-size. The idea is to use codes that admit compact representa-
tion. Natural candidates for this approach are codes that admit generator and
parity-check matrices in quasi-cyclic form. For example, [Gab05] and [BCGO09]
suggested quasi-cyclic BCH and alternant codes, respectively. As discussed in
Chapter 3.2, the algebraic structure of these codes combined with the quasi-
cyclicity permitted to successfully attack all these variants.

In this chapter, we describe a simple way to significantly reduce the key
size of McEliece and related cryptosystems without leaving the Goppa family.
More precisely, we propose a subclass of Goppa codes which admits compact
representation.

The initial property that allowed our construction comes from Theorem 4.1,
where it is proven that certain Goppa codes admit parity-check matrices in
Cauchy form. Matrices in Cauchy form admit very efficient representation (oc-
cupying linear space, instead of quadratic), but they are not directly suitable to
code-based cryptosystems. For example, the matrix-product operation, required
by McEliece-like cryptosystems, do not preserve the Cauchy structure.

An alternative consists of finding a family of matrices that has a non-empty
intersection with Cauchy matrices (thus useful for representing Goppa codes),
which also enjoys from compact representation and preserves its structure after
manipulations. Matrices called p-adic matrices have a particular structure and
are excellent candidates for this purpose. The index p comes from the fact that
they are defined over a finite field of characteristic p. Similarly to cyclic matrices,
they are completely defined by their first row/column and closed under matrix
products. Moreover, they have a non-empty intersection with Cauchy matrices.

Note that p-adic matrices cannot be directly applied in code-based cryptosys-
tems. The overly constrained algebraic structure would be easily recovered by
adversaries. Thus, strategies to hide such structure are required. To address
this issue, we followed the techniques proposed in [BCGO09] to disguise codes,
exploiting Wieschebrink’s theorem on the NP-completeness of distinguishing

39
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punctured codes. The result is the family of Quasi-p-adic Goppa codes.
These codes benefit from very compact parity-check or generator matrices

leading to McEliece-type keys that are up to a factor t = Õ(n) smaller than keys
produced from generic t-error correcting Goppa codes of length n. Moreover,
the complexity of all typical cryptographic operations become Õ(n). Specifi-
cally, under the common cryptographic setting t = O(n/ lg n), code generation,
encryption and decryption all have asymptotic complexity O(n lg n).

This approach first appeared regarding a particular case of p-adic matrices,
called dyadic matrices, which corresponds to p = 2. The generalization to p-
adic matrices for p > 2 came afterwards. Since we judge the dyadic case more
illustrative, we start the discussion by the dyadic case and then we generalize
it. An important remark regarding the dyadic case is that initially we have
considered non-binary Goppa codes in dyadic form. This strategy has been
shown insecure due to [FOPT10a] (as in [BCGO09]). For this reason, non-
binary dyadic codes were not considered for the final, published version of this
work.

Organization of Chapter 4. The remainder of this chapter is organized as
follows. In Section 4.1, we present the Quasi-Dyadic Goppa codes and show how
to build them. In Section 4.1.4, we explain the preliminary version of the quasi-
dyadic proposal. In Section 4.1.5, we extend this construction to the CFS digital
signature scheme. In Section 4.2, we discuss the general case (for codes over
Fp≥2), which leads to Quasi-p-adic Goppa codes. In Section 4.3.1, we consider
the algorithmic complexity and, in Section 4.3.2, the storage complexity of our
proposal. The security issues are discussed in Chapter 4.4. To conclude, we
provide guidelines on how to choose parameters in Section 4.5.

Publications presented in Chapter 4. The first version of this work (con-
sidering the attacked non-binary Quasi-Dyadic Goppa codes) has been published
as a pre-print in:

1. [MB09b]: Rafael Misoczki and Paulo S. L. M. Barreto. Compact McEliece
keys from Goppa codes. Cryptology ePrint Archive, Report 2009/187,
2009. http://eprint.iacr.org/2009/187.

The final, published version of the Quasi-Dyadic Goppa codes appeared in:

2. [MB09a]: Rafael Misoczki and Paulo S. L. M. Barreto. Compact McEliece
keys from Goppa codes. Proceedings of the Selected Areas in Cryptogra-
phy, pages 376–392, 2009.

The extension of QD-Goppa codes to CFS signature scheme appeared in:

3. [BCMN10]: Paulo S. L. M. Barreto, Pierre-Louis Cayrel, Rafael Misoczki,
and Robert Niebuhr. Quasi-dyadic CFS signatures. Proceedings of the 6th
China International Conference on Information Security and Cryptology
(Inscrypt 2010), LNCS, pages 336–349. Springer, 2010.

The extension to codes over characteristics greater than 2 appeared in:

4. [BLM11]: Paulo S. L. M. Barreto, Richard Lindner, and Rafael Misoczki.
Monoidic codes in cryptography. In the Proceedings of the 4th Post-
Quantum Cryptography, volume 7071 of Lecture Notes in Computer Sci-
ence, pages 179–199. Springer Berlin Heidelberg, 2011.
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4.1 The Dyadic Case (p = 2)

Dyadic matrices are p-adic matrices defined over finite fields of characteristic
p = 2. p-adic matrices are defined for p ≥ 2 and therefore encompass dyadic
ones. We start by the dyadic case since it is the most illustrative case.

4.1.1 Preliminaries

In this section, we define the different types of matrices needed by our proposal:
dyadic, quasi-dyadic and Cauchy matrices. In what follows, all vector/matrix
indices are numbered from zero onwards.

Definition 4.1 (Dyadic Matrices). Given a commutative ring R and a vector
h = (h0, . . . , hn−1) ∈ Rn, the dyadic matrix ∆(h) ∈ Rn×n is the symmetric
matrix with components ∆ij = hi⊕j, where ⊕ stands for bitwise exclusive-or on
the binary representations of the indices. The sequence h is called its signature.

One can recursively characterize dyadic matrices when n is a power of 2.
Any 1× 1 matrix is dyadic and for k > 0 any 2k × 2k dyadic matrix M has the
form

M =

[
A B
B A

]
where A and B are 2k−1 × 2k−1 dyadic matrices. Figure 4.1 illustrates this
behavior.

1× 1

2× 2

4× 4

Figure 4.1: Illustration of dyadic matrices of size 1× 1, 2× 2 and 4× 4.

Remark 7. The signature of a dyadic matrix coincides with its first row.

Remark 8. Dyadic matrices form a commutative subring of Rn×n as long as R
is commutative [Gul73].

We denote by ∆(Rn) the set of dyadic n×n matrices over R and by ∆(t, h)
the matrix ∆(h) truncated to its first t rows, for a given integer t > 0. Along
the text, we will be mainly concerned with the case R = Fq, the finite field with
q (a prime power) elements. A particularly interesting type of dyadic matrices
consists of dyadic permutations.
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Definition 4.2. A dyadic permutation is a dyadic matrix Πi ∈ ∆({0, 1}n)
whose signature is the i-th row of the identity matrix.

Note that a dyadic permutation is an involution, i.e. (Πi)2 = I.

Remark 9. The i-th row of the dyadic matrix defined by a signature h can be
written ∆(h)i = hΠi.

Now we introduce the quasi-dyadic matrices, which will be effectively used
in our approach and that are derived from dyadic matrices.

Definition 4.3 (Quasi-Dyadic Matrices). A quasi-dyadic matrix is a (possibly
non-dyadic) block matrix whose component blocks are dyadic submatrices.

Figure 4.2: A (4× 4)-quasi-dyadic matrix composed by (2× 2)-dyadic blocks.

These matrices are defined by the first row of their component blocks, and
not only by the first row of the whole matrix. In terms of storage, this is no as
optimal as dyadic matrices, but still provides an important gain. For example,
quasi-dyadic matrices of size k × n composed by dyadic blocks of size p × p
only need k

pn elements to define it, i.e. only k/p rows of length n. Therefore,
dyadic and quasi-dyadic matrices have compact representation. However note
that they have no direct connection with Goppa codes. To address this issue,
we will need Cauchy matrices.

Definition 4.4. Given two disjoint sequences z = (z0, . . . , zt−1) ∈ Ftq and
L = (L0, . . . , Ln−1) ∈ Fnq of distinct elements, the Cauchy matrix C(z, L) is the
t× n matrix with elements Cij = 1/(zi − Lj), i.e.

C(z, L) =


1

z0 − L0
. . .

1

z0 − Ln−1
...

. . .
...

1

zt−1 − L0
. . .

1

zt−1 − Ln−1


Remark 10. Any sub-matrix of a Cauchy matrix is nonsingular [Sch59].

As a side note, Cauchy and dyadic matrices have previously appeared in the
cryptology literature in the context of symmetric block ciphers [Yan90, YMT97].
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4.1.2 Construction

A property of Goppa codes that is fundamental to our proposal is that they
admit a parity-check matrix in Cauchy form.

Theorem 4.1 ([TZ75]). The Goppa code generated by a monic polynomial
g(x) = (x−z0) . . . (x−zt−1) without multiple zeros admits a parity-check matrix
of the form H = C(z, L), i.e. Hij = 1/(zi − Lj), 0 6 i < t, 0 6 j < n.

This theorem (also appearing in [MS78, Ch. 12, §3, Pr. 5]) is entirely general
when one considers the factorization of the Goppa polynomial over its splitting
field, in which case a single root of g is enough to completely characterize the
code. We will restrict our attention to the case where all roots of that polynomial
are in the field Fq itself.

In general, Cauchy matrices are not dyadic and vice-versa. However, the
intersection of these two classes is not always empty. Below we present a method
to construct codes on this intersection. This construction is derived from the
following Theorem 4.2, which characterizes all Cauchy matrices in dyadic form.

Theorem 4.2. Let H ∈ Fn×nq with n > 1 be simultaneously a dyadic matrix
H = ∆(h) for some h ∈ Fnq and a Cauchy matrix H = C(z, L) for two disjoint
sequences z ∈ Fnq and L ∈ Fnq of distinct elements. Then Fq is a field of
characteristic 2, h satisfies

1

hi⊕j
=

1

hi
+

1

hj
+

1

h0
, (4.1)

and zi = 1/hi + ω, Lj = 1/hj + 1/h0 + ω for some ω ∈ Fq.

Proof. The proof is done using the following remarks.

1. Dyadic matrices are symmetric. Thus, the sequences that define it must
satisfy 1/(zi − Lj) = 1/(zj − Li), hence Lj = zi + Li − zj for all i and j.

2. Then zi + Li must be a constant α, and taking i = 0 in particular this
simplifies to Lj = α− zj .

3. Substituting back into the definition Mij = 1/(zi − Lj) one sees that
Hij = 1/(zi + zj + α).

4. But dyadic matrices also have constant diagonal, namely, Hii = 1/(2zi +
α) = h0. This is only possible if all zi are equal (contradicting the def-
inition of a Cauchy matrix), or else if the characteristic of the field is
2.

5. In this case we see that α = 1/h0, and hence Hij = 1/(zi + zj + 1/h0).

6. Plugging in the definition Hij = hi⊕j we get 1/Hij = 1/hi⊕j = zi + zj +
1/h0, and taking j = 0 in particular this yields 1/hi = zi + z0 + 1/h0, or
simply zi = 1/hi + 1/h0 + z0.

7. Substituting back one obtains 1/hi⊕j = zi + zj + 1/h0 = 1/hi + 1/h0 +
z0 + 1/hj + 1/h0 + z0 + 1/h0 = 1/hi + 1/hj + 1/h0, as expected.
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8. Finally, define ω = 1/h0 + z0 and substitute into the derived relations
zi = 1/hi + 1/h0 + z0 and Lj = α − zj to get zi = 1/hi + ω and Lj =
1/hj + 1/h0 + ω, as desired.

Therefore all we need is a method to solve Equation 4.1. The technique we
propose consists of simply choosing distinct nonzero h0 and hi at random where
i scans all powers of two smaller than n, and setting all other values as

hi+j ←
1

1

hi
+

1

hj
+

1

h0

for 0 < j < i (so that i+ j = i⊕ j), as long as this value is well-defined.
For convenience, we introduce the concept of essence of the sequence h. It

comes from the fact that the values of h0 and hi (for i powers of two smaller
than n) completely define all others. Then, the essence η of h is:

ηs = 1/h2s + 1/h0, for s = 0, . . . , dlg ne − 1

ηdlgne = 1/h0

such that

1/hi = ηdlgne +

dlgne−1∑
k=0

ikηk, for i =

dlgne−1∑
k=0

ik2k

Algorithm 1 captures this idea. The notation u
$←U means that variable u

is uniformly sampled at random from set U .

From Dyadic to Quasi-Dyadic Goppa Codes

A cryptosystem cannot be securely defined on a Goppa code specified directly
by a parity-check matrix in Cauchy form, since this would immediately reveal
the Goppa polynomial g(x): it suffices to solve the overdefined linear system
zi − Lj = 1/Hij consisting of tn equations in t + n unknowns. Therefore, we
need a way to hide the Goppa structure.

We adopt the same technique as proposed in [BCGO09] to hide cyclic codes,
namely, working with a block-shortened subfield subcode of a very large code.
This idea is also built upon the work of Wieschebrink [Wie06] who proved that
deciding whether a code is equivalent to a shortened code is an NP-complete
problem. Below we describe how we implemented this approach.

Initially, we construct a subfield subcode of the original code. As discussed
in Chapter 3, a subfield subcode can be obtained from either trace or co-trace
construction. In our case, we have to preserve the dyadic symmetry in this
basefield construction and the usual trace construction leads to a generator of
the dual code that most probably violates it. In contrast, by using the co-trace
construction, one can view H as a superposition of m = [Fq : F2] distinct binary
dyadic matrices. Each of them can be stored in a separate dyadic signature.

Then we proceed puncturing and block permuting the code. The principle
to follow here is to select and permute the columns of the original parity-check
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Algorithm 1 Constructing a binary Goppa code in dyadic form
Input: q (a power of 2), n 6 q/2, t.
Output: Support L, generator polynomial g, dyadic parity-check matrix H for a binary

Goppa code Γ(L, g) of length n and design distance 2t + 1 over Fq , and the essence η of
the signature of H.

1: U ← Fq \ {0}
. Choose the dyadic signature (h0, . . . , hn−1). N.B. Whenever hj with j > 0 is taken from
U , so is 1/(1/hj + 1/h0) to prevent a potential spurious intersection between z and L.

2: h0
$←U

3: ηdlgne ← 1/h0
4: U ← U \ {h0}
5: for s← 0 to dlgne − 1 do
6: i← 2s

7: hi
$←U

8: ηs ← 1/hi + 1/h0
9: U ← U \ {hi, 1/(1/hi + 1/h0)}

10: for j ← 1 to i− 1 do
11: hi+j ← 1/(1/hi + 1/hj + 1/h0)
12: U ← U \ {hi+j , 1/(1/hi+j + 1/h0)}
13: end for
14: end for
15: ω

$←Fq

. Assemble the Goppa generator polynomial:
16: for i← 0 to t− 1 do
17: zi ← 1/hi + ω
18: end for
19: g(x)←

∏t−1
i=0 (x− zi)

. Compute the support:
20: for j ← 0 to n− 1 do
21: Lj ← 1/hj + 1/h0 + ω
22: end for
23: h← (h0, . . . , hn−1)
24: H ← ∆(t, h)
25: return L, g, H, η

matrix so as to preserve quasi-dyadicity in the target subfield subcode and the
distribution of introduced errors in cryptosystems. A similar process yields a
generator matrix in convenient quasi-dyadic, systematic form. Here, we describe
the technique step-by-step.

1. For the desired security level, choose q = 2m for some m, a code length
n and a design number of correctable errors t such that n = `t for some
` > m. For simplicity we assume that t is a power of 2, but the following
construction method can be modified to work with other values.

2. Run Algorithm 1 to produce a code over Fq whose length N � n is a
large multiple of t not exceeding the largest possible length q/2, so that
the constructed t×N parity-check matrix Ĥ can be viewed as a sequence
of N/t dyadic blocks [B0 | · · · | BN/t−1] of size t× t each.

3. Select uniformly at random ` distinct blocks Bi0 , . . . , Bi`−1
in any order

from Ĥ.

4. Select uniformly at random ` dyadic permutations Πj0 , . . . ,Πj`−1 of size
t× t.

5. Compute Ĥ ′ = [Bi0Πj0 | · · · | Bi`−1
Πj`−1 ] ∈ (Ft×tq )`.
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6. Compute the co-trace matrix H ′ = T ′m(Ĥ ′) ∈ (Ft×t2 )m×`.

7. Finally, compute the systematic form H from H ′.

The resulting parity-check matrix defines a binary code of length n and
dimension k = n − mt, and since all block operations performed during the
Gaussian elimination are carried out in the ring ∆(Ft2), the result still consists
of dyadic submatrices which can be represented by a signature of length t. Hence
the whole matrix can be stored in space a factor t smaller than a general matrix.
However, the dyadic submatrices that appear in this process are not necessarily
nonsingular, as they are not associated to a Cauchy matrix anymore; should
all the submatrices on a column be found to be singular (above or below the
diagonal, according to the direction of this process) so that no pivot is possible,
the whole block containing that column may be replaced by another block Bj′

chosen at random from Ĥ as above.

The trapdoor information consists of the sequence (i0, . . . , i`−1) of blocks, the
essence η of h and the sequence (j0, . . . , j`−1) of dyadic permutation identifiers.
It relates the public code defined by H with the private code defined by Ĥ.

4.1.3 A toy example

Let F25 = F2[u]/(u5 + u2 + 1). The dyadic signature

h = (u20, u3, u6, u28, u9, u29, u4, u22, u12, u5, u10, u2, u24, u26, u25, u15)

and the offset ω = u21 define a 2-error correcting binary Goppa code of length
N = 16 with g(x) = (x− u12)(x− u15) and support

L = (u21, u29, u19, u26, u6, u16, u7, u5, u25, u3, u11, u28, u27, u9, u22, u2).

The associated parity-check matrix built according to Theorem 4.1 is

Ĥ =

[
u20 u3 u6 u28 u9 u29 . . . u10 u2 u24 u26 u25 u15

u3 u20 u28 u6 u29 u9 . . . u2 u10 u26 u24 u15 u25

]
,

with eight 2 × 2 blocks B0, . . . , B7 as indicated. From this we extract the
shortened, rearranged and permuted sequence Ĥ ′ = [B7Π0 | B5Π1 | B1Π0 |
B2Π1 | B3Π0 | B6Π1 | B4Π0] (because in this example the subfield is the base
field itself, all scale factors have to be 1), i.e. Ĥ =

[
u25 u15 u2 u10 u6 u28 u29 u9 u4 u22 u26 u24 u12 u5

u15 u25 u10 u2 u28 u6 u9 u29 u22 u4 u24 u26 u5 u12

]
,

whose co-trace matrix over F2 has the systematic form:
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H =



0 1 0 1 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 1


= [MT | In−k],

from which one readily obtains the k×n = 4×14 generator matrix in systematic
form:

G =


1 0 0 0 0 1 0 1 0 0 0 1 1 1
0 1 0 0 1 0 1 0 0 0 1 0 1 1
0 0 1 0 0 1 0 0 1 1 1 0 0 0
0 0 0 1 1 0 0 0 1 1 0 1 0 0

 = [Ik |M ],

where both G and H share the essential part M :

M =


0 1 0 1 0 0 0 1 1 1
1 0 1 0 0 0 1 0 1 1
0 1 0 0 1 1 1 0 0 0
1 0 0 0 1 1 0 1 0 0

 ,
which is entirely specified by the elements in boldface and can thus be stored in
20 bits instead of, respectively, 4 · 14 = 56 and 10 · 14 = 140 bits.

4.1.4 The Preliminary Version

The preliminary version of the quasi-dyadic work has appeared in [MB09b]. The
only difference between the presented version and this preliminary work is the
finite field where the final subfield sub-code is defined.

In the construction discussed in this thesis, we begin with a code defined
over a finite field Fq, for some prime power q = pm. Then, in the co-trace
construction, we define a subfield sub-code defined over the base field Fp.

In contrast, in the preliminary version, we begin with a code defined over a
finite field Fqm , where q is a prime power, i.e. q = pc. However, in this case,
the co-trace construction would produce a subfield sub-code defined over the
intermediary field Fpc , not over the base field Fp. Working on larger finite fields
seemed to enable to reduce even more the code description and consequently
the key-sizes. Unfortunately, as we will discuss in Section 4.4.3, the choice
regarding the finite field where the public code is defined is a critical point in
the security assessment of the scheme. In practice, this difference was enough
to make algebraic structural attacks effective [FOPT10a, UL09].

4.1.5 Extending the Construction to CFS Signatures

Actually, the construction provided by Algorithm 1 is not optimal in terms
of maximal code-length, which is restricted to n 6 2m−1. In this section, we
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explain how to improve it to n 6 2m − t. The increased maximal code-length
will allow the application of our codes to the CFS digital signature scheme. This
improvement appeared in [BCMN10].

As discussed in Section 2.3.1 of Chapter 1, the CFS scheme is only practical
when instantiated with codes whose density of decodable syndromes is high. For
example, consider a t-error correcting Fp-alternant code of length n derived from
a code over Fpm . The syndrome space has size pmt, but the decodable syndromes
are only those that correspond to error vectors of weight not exceeding t. In
other words, only

∑t
w=1

(
n
w

)
(p− 1)w nonzero syndromes are decodable, and

hence its density is

δ =
1

pmt

t∑
w=1

(
n

w

)
(p− 1)w.

If the code length is a fraction 1/pc for some c > 0 of the full length, i.e.
n = pm−c, the density can be approximated as

δ ≈ (nt/t!)(p− 1)t/pmt = (pm−c)t(p− 1)t/(pmtt!) = (p− 1)t/(pctt!).

A particularly good case is therefore δ > 1/t!, which occurs when (pc/(p−1))t 6
1, i.e. c 6 logp(p−1), or n > pm/(p−1). For binary codes, this implies that the
highest densities are attained only by full or nearly full length codes, otherwise
the density is reduced by a factor 2ct. For full length binary codes (p = 2,
n = 2m) the density simplifies to

δ ≈ 1

2mt
nt

t!
=

1

t!
.

Algorithm 1 produces Goppa codes of fairly low density of decodable syn-
dromes. Since the sequences z and L are disjoint and composed by distinct
elements, the length of the codes Algorithm 1 produces are upper bounded by
n 6 2m−1, and hence the syndrome density is bound by 1/(2tt!). Clearly, if z
and L were not disjoint at least one element Hij = 1/(zi − Lj) of matrix H
would be undefined due to division by zero.

However, the CFS signature scheme only needs a very small t (say, t . m),
meaning that most elements of the sequence z, and hence the corresponding rows
of the largest possible matrix ∆(h), are left unused anyway when defining the
actual code. It is therefore possible to allow matrix ∆(h) to contain undefined
entries, as long as the rows and columns containing those entries are removed
afterwards, and that ∆(t, h) itself contains only well-defined entries. This means
the code length can be naturally extended all the way up to 2m−t, corresponding
to an exact partition of the field elements from F2m into two disjoint sequences
z and L.

In principle, this strategy can fail and the first t rows could contain an
undefined element. This can be handled by either choosing a different code,
or else by carefully rearranging the dyadic signature h into some h′ in order
to permute the rows of ∆(h) and eliminate undefined elements from ∆(t, h′).
Empirically, we noticed that the best strategy for when an improper element
appear on the first t rows of ∆(h) is the simplest one: just try another code.

This idea is captured in Algorithm 2, which in practice is as simple to imple-
ment and as efficient as Algorithm 1. In a sense it is actually somewhat simpler,
since less field elements have to be computed and discarded from the remaining
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allowed set U . Notice that improper array elements, whose evaluation would
cause division by zero, are represented by a zero value, since this cannot ever
occur on a proper array entry.

Algorithm 2 Constructing a CFS-friendly binary Goppa code in dyadic form
Input: m, n, t.
Output: A dyadic signature h from which a CFS-friendly t-error correcting binary Goppa

code of length n can be constructed from a code over F2m , and the sequence b of all
consistent blocks of columns (i.e. those that can be used to define the code support).

1: q ← 2m

2: repeat
3: U ← Fq \ {0}
4: h0

$←U, U ← U \ {h0}
5: for s← 0 to m− 1 do
6: i← 2s

7: hi
$←U, U ← U \ {hi}

8: for j ← 1 to i− 1 do
9: if hi 6= 0 and hj 6= 0 and 1/hi + 1/hj + 1/h0 6= 0 then

10: hi+j ← 1/(1/hi + 1/hj + 1/h0)
11: else
12: hi+j ← 0 . undefined entry
13: end if
14: U ← U \ {hi+j}
15: end for
16: end for
17: c← 0 . also: U ← Fq

18: if 0 6∈ {h0, . . . , ht−1} then . consistent root set
19: b0 ← 0, c← 1 . also: U ← U \ {1/hi, 1/hi + 1/h0 | i = 0, . . . , t− 1}
20: for j ← 1 to bq/tc − 1 do
21: if 0 6∈ {hjt, . . . , h(j+1)t−1} then . consistent support block
22: bc ← j, c← c+ 1 . also: U ← U \ {1/hi + 1/h0 | i = jt, . . . , (j + 1)t− 1}
23: end if
24: end for
25: end if
26: until ct > n . consistent roots and support

27: h← (h0, . . . , hq−1), b← (b0, . . . , hc−1) . also: ω
$←U

28: return h, b . also: ω

Algorithm 2 produces a code that is amenable to the same treatment as
described for the codes produced by Algorithm 1, i.e. 1) select a sub-set of
blocks 2) permute them, 3) dyadic-permute each block individually, 4) apply
the co-trace construction to get a description of a binary quasi-dyadic alternant
code, and 5) compute its systematic form. This has to be done carefully so as
to fully hide the code structure. The obvious approach is to delete more blocks
and/or to replace them (and also the blocks that contain improper columns) by
random dyadic blocks (the latter case corresponds to Wieschebrink’s technique).
One has to be careful here as well, since if only a fraction 1/2c of the columns
remain, the syndrome density effectively decreases by a factor 2ct as seen above.
A sensible choice, which we will usually adopt, is to take a fraction 2−1/t of full
code length (i.e. c = 1/t), since this only increases the average signing time by
a factor of 2.

In an independent work, Kobara proposed a construction [Kob09], called
“Flexible Quasi-Dyadic”, to increase the maximum code-length from what is
obtained by Algorithm 1, as well. This approach is based on solving linear
restrictions that prevent the existence of non-defined entries in the final quasi-
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dyadic Goppa code. Although both approaches achieve similar results, the
“flexible” construction demands an extra cost for solving and manipulating these
linear equations.

4.2 The General Case (p ≥ 2)

Most attempts at decreasing key sizes deal with codes in characteristic 2, in
spite of evidence that odd characteristics may offer security advantages [Pet10].
In this section we explain how the approach started with quasi-dyadic codes can
be generalized to codes defined over finite fields of characteristic greater than 2.
We start by introducing p-adic matrices, which generalize dyadic matrices.

Definition 4.5 (p-adic Matrices). Let A = {a0, . . . , aN−1} be a finite abelian
group of size |A| = pd with neutral element a0 = 0, R a commutative ring and
h : A −→ R a sequence indexed by A. The p-adic matrix M(h) associated with
this sequence is one for which Mi,j = h(ai − aj) holds, i.e.

M =


h(0) h(−a1) · · · h(−aN−1)
h(a1) h(0) · · · h(a1 − aN−1)

...
...

. . .
...

h(aN−1) h(aN−1 − a1) · · · h(0)

 .

Remark 11. p-adic matrices form a commutative subring of Rn×n as long as R
is commutative.

In Definition 4.5, we use the additive notation for the finite abelian group
A. However, the definition can be generalized to all groups, in which case one
might prefer the multiplicative notation.

Some A-adic matrices have special names, for example the p-adic matrices
for p = 2 are dyadic for p = 3 are triadic matrices. If we do not want to
specify the group A explicitly, we will say the matrix is p-adic. We continue
by giving necessary and sufficient conditions for Cauchy matrices to be p-adic,
thus identifying all p-adic Goppa codes.

Theorem 4.3. Let M(h) be p-adic matrix for a sequence h of length pd over
Fpm . Then M is Cauchy iff

(1) h(ai) are distinct and invertible in Fpm for all 0 ≤ i < pd, and

(2)
1

h(ai − aj)
=

1

h(ai)
+

1

h(−aj)
− 1

h(0)
for all 0 ≤ i, j < pd.

In this case M(h) = C(β, γ), where

β(ai) =
1

h(ai)

γ(ai) =
1

h(0)
− 1

h(−ai)
.

Proof. We start by showing that our conditions indeed imply that M is Cauchy.
For the disjointness, assume that there are indices i and j, such that β(ai) =
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γ(aj). In this case we get 0 = β(ai) − γ(aj) = 1/h(ai − aj), which is a con-
tradiction. Finally we compare the matrices M(h) and C(β, γ) resulting in the
equality

Mi,j = h(ai−aj) = 1/(1/h(ai)+1/h(−aj)−1/h(0)) = 1/(β(ai)−γ(aj)) = Ci,j .

We continue by showing that if M is Cauchy, i.e. , M(h) = C(β′, γ′), then
indeed our conditions must hold. Since C(β′, γ′) = C(β′+ω, γ′+ω) for any ω ∈
F, we can choose the sequences in such a way that γ′(0) = 0. Now, Mi,0 = Ci,0
for all i, which means h(ai) = 1/β′(ai). By the properties of β′ this gives us
condition (1), i.e. , that all h(ai) are distinct and invertible, as well as β′ = β.
We use similarly that M0,i = C0,i which implies h(−ai) = 1/(β(0) − γ′(ai)).
Solving for γ′ reveals that it equals γ. Since β = β′ and γ = γ′, we get that
M(h) = C(β, γ) implying condition (2).

Now, we will show how to construct random p-adic Cauchy matrices.

Corollary 4.1. Let A be a finite abelian group of order |A| = pd with generators
b1, . . . , bd and M(h) be p-adic and Cauchy for a sequence h over F. Then for
all c1, . . . , cd ∈ Z,

(h(c1b1+· · ·+cdbd))−1 = c1(h(b1))−1+· · ·+cd(h(bd))
−1−(c1+· · ·+cd−1)(h(0))−1.

Moreover, the field characteristic of F divides the order of any element in A\{0}.

Proof. By Theorem 4.3, we know that for all a, a′ ∈ A the following holds

(h(a+ a′))−1 = (h(a))−1 + (h(a′))−1 − (h(0))−1.

By repeatedly using this equation, we prove the first claim.

(h(c1b1 + · · ·+ cdbd))
−1 = (h(b1 + · · ·+ b1︸ ︷︷ ︸

c1 times

+ · · ·+ bd + · · ·+ bd︸ ︷︷ ︸
cd times

))−1

= (h(b1))
−1 + (h(b1 + · · ·+ b1︸ ︷︷ ︸

(c1−1) times

+ · · ·+ bd + · · ·+ bd︸ ︷︷ ︸
cd times

))−1 − (h(0))−1

= c1(h(b1))
−1 + (h(b2 + · · ·+ b2︸ ︷︷ ︸

(c2) times

+ · · ·+ bd + · · ·+ bd︸ ︷︷ ︸
cd times

))−1 − c1(h(0))
−1

= c1(h(b1))
−1 + · · ·+ cd(h(bd))

−1 − (c1 + · · ·+ cd − 1)(h(0))−1.

For the second claim, let a ∈ A \ {0} be a non-neutral group element and
k = ord(a), i.e. , ka = 0. By the equation we have just shown, we know that

h(0)−1 = h(ka)−1 = kh(a)−1 − (k − 1)h(0)−1

k(h(0)−1 − h(a)−1) = 0

Since a is not the neutral element, all elements of h are distinct, and the field
characteristic is prime, the second claim follows.
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Note that since the field characteristic p divides the order of any element,
only groups of size pd can be used. Conversely, let b1, . . . , bd be group elements
that form an Fp set of generators, then the sequence elements h(0), h(b1), . . . , h(bd)
completely determine the sequence. We call these values the essence of the se-
quence h, analogously to the essence defined for dyadic matrices. For example,
if A = Fdp, then such a set of generators b1, . . . , bd is given by the generators
of the d distinct copies of Fp in A. For a given set of generators, we can sam-
ple a p-adic sequence uniformly at random with the algorithm in Algorithm 3.
Figure 4.3 summarizes the restriction over the parameters.

Description Parameter Restriction

Field char p prime
Extension field pm –
Group order pd d ≤ m− 1
Goppa roots t < n/m
Goppa multiplicity r < n/(tm)
Blocksize b gcd(t,N)
Code length n b` < N

Figure 4.3: Parameters for quasi-p-adic Goppa codes.

Algorithm 3 Constructing a Goppa code in p-adic form. Choosing A-adic
Cauchy sequences, where A = {0, a1, . . . , apd−1} has set of generators b1, . . . , bd.

Input: p, m, d.
Output: .
1: U ← Fpm \ {0}
2: h(0)

$←U
3: for i = 1, . . . , d do
4: U ← Fpm \ {Fph(0) + Fph(b1) + · · ·+ Fph(bi−1)}
5: h(bi)

$←U
6: end for
7: for c1, . . . , cd ∈ Fp do
8: h(c1b1 + · · ·+ cdbd)← c1h(b1) + · · ·+ cdh(bd)− (c1 + · · ·+ cd − 1)h(0)
9: end for

10: return
(
h(0)−1, h(a1)−1, . . . , h(apd−1)−1

)

We will briefly argue why Algorithm 3 is correct. Assume it is not. The
only situation resulting in an error is in line 7, if the computed quantity is not
invertible, so let us assume this to be the case. Since only zero is not invertible,
we have

0 = c1h(b1) + · · ·+ cdh(bd)− (c1 + · · ·+ cd − 1)h(0).

Now, not all coefficients of h(0), h(b1), . . . , h(bd) can be zero simultaneously, so
there is an Fp-linear dependency among them. However, by our choice of F in
line 4, from which all h(bi) are chosen, no such dependency can exist.

Algorithm 3 produces a code that is amenable to the same treatment as
described for the codes produced by Algorithm 1, producing then a quasi-p-adic
Goppa code:

1. Construct a random fully p-adic Goppa code of length pd with Algorithm 3.
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2. Split the support in blocks of length b and select ` such blocks at random
to comprise the support of the quasi-p-adic code.

3. To each chosen support block, apply a random p-adic permutation, i.e. ,
multiply with the matrix M(χaπ ), where χaπ is the characteristic function
of the group element aπ, for a randomly chosen π. Since χ is a charac-
teristic function, this matrix will have a single non-zero coefficient being
1 per row and column, so it is a permutation matrix. Furthermore, this
transformation preserves the p-adic structure of the block and indeed all
p-adic permutations have this form.

4. Generate a parity-check matrix for the corresponding subfield subcode
over the base field Fq. Recall that Fpm = Fq[x]/〈f〉 for some irreducible
polynomial f of degree m. We can identify each matrix coefficient hi,j
with its representative polynomial hi,j,0 + hi,j,1x + · · · + hi,j,m−1x

m−1

of smallest degree. We expand the matrix rows by a factor of m and
distribute the entries as follows hnew

kt+i,j ←− hi,j,k,i.e. , in order to keep
the block structure intact, we first take all constant terms of coefficients
in a block then all linear terms and so on.

5. Compute the quasi-p-adic systematic form of the parity-check matrix. It
does so by identifying each p-adic block with an element of the correspond-
ing ring of p-adic matrices and performing the usual Gauss algorithm on
those elements. Since this ring is not necessarily an integral domain, the
algorithm may find that a pivot element is not invertible. In this case,
the systematic form we seek does not exist and the algorithm has to loop
back to the “Block permutation” step. Fortunately, the chance of this is
small. The probability that the matrix is nonsingular is

∏k−1
j=0 1− 1/pk−j ,

which approaches a constant (to be determined numerically) for large k.
This constant is different for each p but tends to 1 for large p.

Decoding p-adic Goppa codes. p-adic Goppa codes can be efficiently de-
coded by the decoder presented in [BML13]. This work is a generalization of
Patterson’s decoding algorithm for Goppa codes with square-free Goppa poly-
nomial defined over finite fields of characteristics greater than 2. Note that
p-adic Goppa codes also have square-free Goppa polynomials since their roots
are distinct by construction.

A priori, this decoding algorithm can correct (2/p)t errors with high prob-
ability. Nonetheless, the correction capability is higher than (2/p)t if the dis-
tribution of error magnitudes is not uniform, approaching or reaching t errors
when any particular error value occurs much more often than others or exclu-
sively. This is good for cryptography, where we could be allowed to arbitrarily
choose all-equal error magnitude.

Generalized-Srivastava codes in p-adic form. In [BLM11], it is also dis-
cussed the possibility of extending the p-adic construction to define Generalized-
Srivastava codes. This remark is related to the work of Persichetti [Per11], where
the dyadic construction (p = 2) was used to define Quasi-Dyadic Generalized-
Srivastava codes. In this thesis, we preferred to focus on obtaining compact-keys
either from the reputable family of Goppa codes or from codes free of algebraic
structure.
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4.3 Efficiency

In this section, we discuss the efficiency of our approach in terms of both algo-
rithmic and storage complexity.

4.3.1 Algorithmic Complexity

Below, the algorithmic complexity for key-generation, encryption and decryp-
tion using p-adic Goppa codes.

Key-Generation: The predominant cost in the key generation is the Gaussian
elimination needed to convert a quasi-dyadic matrix to systematic (eche-
lon) incurring about m2` products of dyadic t × t submatrices, implying
a complexity O(m2`t lg t) = O(m2n lg n), which simplifies to O(n lg3 n)
in the typical cryptographic setting m = O(lg n). The other steps have
complexity O(n) and therefore do not influence the overall complexity.
More precisely, Algorithm 1 has complexity O(n) because each element
of the signature h is assigned a value exactly once. Also, the inversion
has complexity O(n), since a binary dyadic matrix ∆(h) of dimension n
satisfies ∆2 = (

∑
i hi)

2I. This implies that its inverse, when it exists,
is ∆−1 = (

∑
i hi)

−2∆, which can be computed in O(n) steps since it is
entirely determined by its first row.

Encryption: The operation of multiplying a vector by a (quasi-)dyadic ma-
trix is at the core of McEliece encryption. The fast Walsh-Hadamard
transform (FWHT) [Gul73] approach for dyadic convolution via lifting1

to characteristic 0 leads to the asymptotic complexity O(n lg n) for this
operation and hence also for encoding.

Decryption: The decryption in McEliece-like schemes boils down to decoding.
Sarwate’s decoding method [Sar77] sets the asymptotic cost of that op-
eration at roughly O(n lg n) as well for the typical cryptographic setting
t = O(n/ lg n). For p-adic Goppa codes, the efficient decoding algorithm
for square-free (irreducible or otherwise) Goppa codes over Fp for any
prime p presented [BML13] can be used.

4.3.2 Storage Complexity

In this section, we discuss the cost of storing both private and public information
regarding our codes. Note that due to their simple structure, the matrices can
be held on a simple vector not only for long-term storage or transmission, but
for processing as well.

Private-key: The space occupied by the trapdoor information, i.e. the private
McEliece key, is thus m2+` lgN bits. If one starts with the largest possible
N = 2m−1, this simplifies to the maximal size of m2 + `(m− 1) bits.

Public-key: The total space occupied by the essential part of the resulting
binary generator (or parity-check) matrix, i.e. the public McEliece key, is

1We are grateful to Dan Bernstein for suggesting the lifting technique to emulate the
FWHT in characteristic 2.
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mt × (n −mt)/t = mk bits, a factor t better than generic Goppa codes,
which occupy k(n− k) = mkt bits. Had t not been chosen to be a power
of 2, say, t = 2uv where v > 1 is odd, the final parity-check matrix would
be compressed by only a factor 2u.

Implementation. In [Hey11], a complete implementation of the McEliece
cryptosystem instantiated with quasi-dyadic Goppa codes is presented. This
implementation takes into account a CCA2-secure conversion for achieving se-
mantic security. Due to the extremely compact key-size of our proposal, the au-
thors were able to make such implementation on a 8-bits AVR microcontroller,
without any external memory. Moreover, according to the authors, this work
outperforms the previous available implementations of the original McEliece in
encryption and storage complexity.

4.4 Security Assessment

The key security of the p-adic Goppa proposal deserves much attention. As an
example, the pre-print version of the dyadic Goppa proposal had some parame-
ters successfully attacked. These parameters had to be discarded, but they were
useful to better understand the trade-offs present in the security assessment of
our proposal. In this section, we analyze possible attacks aimed at recoveirng
the private p-adic Goppa codes in McEliece-like cryptosystems.

4.4.1 Exhaustive Search in the Key Space

The first type of attacks that must be considered is the exhaustive search in the
key space.

Theorem 4.4. Algorithm 1 produces up to
∏dlgne
i=0 (q − 2i) distinct essences of

dyadic signatures corresponding to Cauchy matrices.

Proof. Each dyadic signature produced by Algorithm 1 is entirely determined
by the values h0 and h2s for s = 0, . . . , dlg ne − 1 chosen at steps 2 and 7 (ω
only produces equivalent codes). Along the loop at line 5, exactly 2i = 2s+1

elements are erased from U , corresponding to the choices of h2s . . . h2s+1−1. At
the end of that loop, 2 + 2

∑s
`=0 2` = 2s+2 elements have been erased in total.

Hence at the beginning of each step of the loop only 2s+1 elements had been
erased from U , i.e. there are q − 2s+1 elements in U to choose h2s from, and
q − 1 possibilities for h0. Therefore this construction potentially yields up to

(q − 1)
∏dlgne−1
s=0 (q − 2s+1) =

∏dlgne
i=0 (q − 2i) possible codes.

Note that Algorithm 2, used to build binary quasi-dyadic Goppa codes suit-
able for CFS signatures, is a relaxed version of Algorithm 1 and thus generates
more possible outputs. Therefore we can use the analysis presented to Algo-
rithm 1 as a lower bound to Algorithm 2, which has a non-trivial estimation.

In Theorem 4.5, we prove the bound for p-adic Goppa codes generated by
Algorithm 3, which coincides with Theorem 4.4 when p = 2.

Theorem 4.5. Algorithm 3 produces up to
∏dlgp ne
i=0 (q − pi) distinct essences of

p-adic signatures corresponding to Cauchy matrices.
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Proof. Each dyadic signature produced by Algorithm 3 is entirely determined by
the values hi, i ∈ (1, . . . , d). For each value (hi)1≤i≤d, all possible combinations
of the previous hi′<i elements are erased from U . Then for each (hi)1≤i≤d it

is possible to choose hi from q − pi−1. Thus it yields up to
∏dlgp ne
i=0 (q − pi)

possible codes.

For each p-adic code produced by either Algorithm 1 and Algorithm 3, the
number of codes generated by this construction is

(
N/t
`

)
× `!× t`, hence

(
N/t
`

)
×

`! × t` ×
∏dlgpNe
i=0 (q − pi) p-adic Goppa codes are possible in principle. This

estimation is a lower bound for when using Algorithm 2.

4.4.2 OTD Attack

The attack presented in [OTD10] was successful against the scheme proposed
by Gaborit using quasi-cyclic BCH codes [Gab05]. This attack relies on the fact
that public and private code are permutation-equivalent. For this reason, it is
not effective against our construction, since we use the same technique to hide
the private code structure as presented in [BCGO09]. It consists of using as the
public code a subfield subcode of a punctured block-permuted version of the
private code. This approach relies on the work of Wieschebrink [Wie06], who
proved that deciding whether a code is equivalent or not to a shortened code is
an NP-complete problem.

4.4.3 FOPT Attack

The attack proposed in [FOPT10a] by Faugère, Otmani, Perret and Tillich is
based on the relationship between generator and parity-check matrices, namely

GHT = 0. (4.2)

The generator matrix G ∈ Fk×nq is public. The authors use the fact that
Goppa codes are also alternant codes, an thus they propose to solve the system
defined by 4.2 for an unknown alternant parity-check matrix H of the form:

H =



Y0 Y1 . . . Yn−1

Y0X0 Y1X1 . . . Yn−1Xn−1

...
...

...
...

Y0X
i
0 Y1X

i
1 . . . Yn−1X

i
n−1

...
...

...
...

Y0X
r−1
0 Y1X

r−1
1 . . . Yn−1X

r−1
n−1


(4.3)

This leads to a system of rn non-linear equations and 2n unknowns:

{gi,0Y0X
j
0 + · · ·+ gi,n−1Yn−1X

j
n−1 = 0|i ∈ {0, . . . , k − 1}, j ∈ {0, . . . , r − 1}}

(4.4)
This system cannot be solved for usual parameters of the original McEliece

scheme using binary Goppa codes. However, the redundancy added by the
dyadic (or cyclic) structure strongly decreases the number of unknowns of this
system. Below we analyze the scenario for quasi-dyadic Goppa codes.
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Consider a quasi-dyadic Goppa code of length n = n0t, with dyadic blocks
of size t× t. Thus, for any 0 ≤ j ≤ n0 − 1 and 0 ≤ i, i′ ≤ t− 1, it holds that:

Yjt+1 = Yjt (4.5)

Xjt+i +Xjt = Xi +X0 (4.6)

Xjt+(i⊕i′) = Xjt+i +Xjt+i′ +Xjt. (4.7)

Relation 4.5 states that all Y ’s in the same t × t dyadic block are equal.
Thus, the number of unknowns Y ’s is actually n/t− 1 = n0− 1. The minus one
comes from the fact that we can arbitrarily choose one of Y ’s. Since all Y ’s in
the same block are equal, they define redundant equations. Thus, the number
of relevant equations involving Y ’s is k/t = n0 −m. The number of unknowns
X’s is n0 + log2 t − 2 unknowns, and it comes from 4.6 and 4.7. Finally, there
are tk − k non-linear equations and, since k = t(n0 − m), it corresponds to
t(t− 1)(n0 −m).

Normal Goppa Code Quasi-Dyadic Goppa Code
Unknowns Y ’s n n0 − 1
Unknowns X’s n n0 + log2(t)− 2

Equations involving Y ’s k n0 −m
Non-Linear Equations rn t(t− 1)(n0 −m)

Table 4.1: Differences between attacking normal and quasi-dyadic Goppa codes.

Algorithm 4 illustrates the steps of the attack. The input is a code defined
over Fpc built from a code defined over Fmq , where q is a prime power q = pc,
which coincides with the preliminary version of p-adic Goppa codes [MB09b].

Algorithm 4 FOPT Attack.

Input: A generator-matrix G ∈ Fk×n
pc , with entries (gi,j)0≤i≤k−1,0≤j≤n of the code defined

over Fc
p, composed by blocks of size t× t. Then n = n0t, k = k0t and r = r0t.

Output: A parity-check matrix H defined over Fqm = Fpmc .

1: Build the system of equations:

{gi,0Y0Xj
0 + · · ·+ gi,n1Yn−1X

j
n−1 = 0|i ∈ {0, . . . , k − 1}, j ∈ {0, . . . , t− 1}}

2: Choose nY ′ ≥ n− k variables Y ′ from Y .
3: Express all other variables in Y \ Y ′ in terms of Y ′.
4: Compute the project of the solutions regarding the variables Y ′.
5: Once having determined Y ′, the system can be expressed only in terms of X:

{g′i,0X
j
0 + · · ·+ g′i,n1

Xj
n−1 = 0|i ∈ {0, . . . , k − 1}, j ∈ {0, . . . , t− 1}}

6: Consider now the subset of the equations having degree equal to a power of two, i.e.
j = 2l, for l = {1, . . . , log2(t− 1)}.

7: Use the Frobenius automorphism to produce a system over F2, consisting ofmcn unknowns
and mc log2(t− 1)k equations.

8: Solve the system for Xi and return H built from (X,Y ) as presented in 4.3.

In step 3, the variables in Y depend on the variables of Y ′. For this reason,
variables in Y are called dependent and variables in Y ′ are called free-variables.
Step 4 is done by computing a Gröbner basis. This is the most expensive step of
this attack. Note that the system in step 6 can be solved when log2(t−1)k > n.
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This technique was effective in attacking p-adic Goppa codes defined over
intermediate fields (as presented in 4.1.4). However, the attack failed in breaking
the parameters that use public-codes defined over the binary field. In this case,
the computation of the Gröner basis cited in the previous paragraph is easy,
but trivial. It results in only one equation, not providing enough information
to proceed with the attack. This is mostly due to the fact that only a subset of
equations can be selected (see step 5 of Algorithm 4).

The algorithmic complexity of this attack is exponential, but a precise es-
timation of its cost remains an open problem. Recently the authors presented
more accurate formulas in [FOPT10b], which justifies the reasoning that its
complexity increases steeply as the codes are defined over smaller extension
fields, making it unfeasible for public codes defined over the base field. For this
reason, we select only p-adic Goppa codes defined over the base field Fp, for p
a prime number.

4.5 Suggested Parameters

In this section, we present parameters for dyadic and p-adic Goppa codes to
instantiate encryption (McEliece and Niederreiter schemes) and for signatures
(Parallel CFS scheme). For dyadic Goppa codes, the security levels are accord-
ing to the non-asymptotic analysis of [BJMM12], the most recent variant of the
information set decoding technique. For p-adic Goppa codes, the security levels
are according to [Pet11, Remark 6.9] and also [BLP11]. In all tables, ‘level’
refers to the security level.

4.5.1 Quasi-Dyadic Goppa Codes for Encryption

Table 4.2 contains suggested parameters for different practical security levels to
instantiate the McEliece cryptosystem. The number of errors is always a power
of 2 to enable maximum size reduction, and the original code from which the
binary Goppa code is extracted is always defined over F216 .

The ‘Size’ column contains the amount of bits effectively needed to store
a quasi-dyadic generator or parity-check matrix in systematic form. The size
of a corresponding systematic matrix for a generic Goppa code at roughly the
same security level as suggested in [BLP08] is given on column ‘Generic’. In
both cases we take into account only the redundant part of the key in systematic
form. The ‘Shrink’ column contains the size ratio between such a generic matrix
and a matching quasi-dyadic matrix.

Level m n k t WF Size Generic Shrink
80 11 1792 1088 64 82.518 11968 661122 55.2
80 12 3840 768 256 81.499 9216 661122 71.7
112 12 2944 1408 128 116.735 16896 1524936 90.3
128 12 3200 1664 128 131.235 19968 1991880 99.8
192 13 5888 2560 256 205.804 33280 5215496 156.7
256 15 11264 3584 512 279.002 53760 9276241 172.5

Table 4.2: Sample parameters for a [n, k, 2t + 1] binary Goppa code generated
by Algorithm 2.
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The second parameter set for 80-bits of security achieves very compact key-
sizes, at the price of a reduced code rate.

4.5.2 Quasi-Dyadic Goppa codes for Signatures

Table 4.3 presents the suggested parameter for the Parallel CFS signature
scheme with quasi-dyadic Goppa codes. The ‘Size’ column contains its key
size in systematic form. The ‘Generic’ column contains the key size in system-
atic form of generic Goppa codes. We assume codes of maximum length, namely
n = b(2m − t)/tct. The column σ presents the number of signatures and the
column δ the number of additional errors to perform the complete decoding
approach as described in Section 2.3.1.

Level t m σ δ Generic Keys
80 8 20 3 2 20480 KiB 2560 KiB
112 8 27 4 1 3456 MiB 432 MiB
128 12 22 3 3 132 MiB 33 MiB

Table 4.3: Parallel-CFS signature with quasi-dyadic Goppa codes.

4.5.3 Quasi-p-adic Goppa Codes for Encryption

In this section, we present parameters for quasi p-adic Goppa codes. Table 4.4
suggests parameters for encryption schemes, aiming at achieving compact keys.
It is assumed the ability to correct t errors of equal magnitude, using e.g. the
decoding method for square-free Goppa codes proposed in [BML13].

Level p m n k t Keys (bits) Syndrome (bits)
80 2 12 3840 768 256 9216 3072
80 3 8 2430 486 243 6163 3082
80 5 5 1000 375 125 4354 1452
112 2 12 2944 1408 128 16896 1536
112 3 8 2673 729 243 9244 3082
112 11 5 1089 484 121 8372 2093
128 2 12 3200 1664 128 19968 1536
128 3 9 3159 972 243 13866 3467
128 5 5 5000 625 625 10159 10159
192 2 14 6144 2560 256 35840 3584
192 3 10 4131 1701 243 26961 3852
192 29 6 5887 841 841 24514 24514
256 2 15 11264 3584 512 53760 7680
256 7 9 5145 2058 343 51998 8667
256 37 6 9583 1369 1369 42791 42791

Table 4.4: Encryption quasi-p-adic Goppa codes.

Table 4.5 presents parameters also for encryption schemes, but focusing on
achieving compact syndromes. One can argue that minimizing keys may not be
the best way to reduce bandwidth occupation. We might expect to exchange
encrypted messages considerably more often than certified keys. Therefore, they
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are suitable for Niederreiter scheme. Table 4.5 suggests codes that satisfy these
requirements, without incurring unduly long keys. One sees that the choice for
short syndromes often implies longer codes for larger characteristics.

Level p m n k t Key (bits) Syndrome (bits)
80 2 11 1792 1088 64 11968 704
80 7 5 735 490 49 6879 688
80 41 3 451 328 41 5272 659
128 2 12 3200 1664 128 19968 1536
128 3 9 2106 1377 81 19643 1156
128 7 6 1813 1519 49 25587 826
192 2 14 5376 3584 128 50176 1792
192 3 11 4536 3645 81 63550 1413

Table 4.5: Encryption quasi-p-adic Goppa codes yielding short syndromes.

4.5.4 Quasi-p-adic Goppa Codes for Signatures

In Table 4.6, we present parameters to instantiate the Parallel-CFS signature
scheme. The signature size presented in ‘Sign. (bits)’ column is slightly smaller
than the product of the the syndrome size by the number of parallel signatures.
The signing times are O(t!). Quasi-p-adic codes in larger characteristics yield
either shorter keys and signatures than in the binary case, or else considerably
shorter signing times due to smaller values of t. Recall that σ denotes the
number of signatures and δ the additional number of errors necessary to use the
complete decoding approach.

Level p m n k t Key(KiB) σ δ Sign.(bits)
80 2 15 32580 32400 12 178 2 4 326
80 3 11 177048 176949 9 377 3 2 375
80 13 4 28509 28457 13 52 2 4 342
112 2 20 1048332 1048092 12 7677 3 3 636
112 11 6 1771495 1771429 11 4489 3 2 558
112 13 5 371228 371163 13 839 3 3 624
128 2 23 8388324 8388048 12 70652 3 2 684
128 5 8 390495 390375 15 2656 3 4 759
128 13 6 4826731 4826653 13 13082 2 3 514

Table 4.6: Parallel CFS with quasi-p-adic Goppa codes.
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Chapter 5

Introduction

The code-based cryptography community has been mainly focused on algebraic
codes for more than thirty years. The theory behind these codes is widely under-
stood and they present features such as efficient decoding algorithms and easy
minimum distance estimation. Recently, a new trend started in [MRS00] has
attracted much attention. It consists of instantiating code-based cryptosystems
with graph-based codes. This new approach presents many security advantages.

As discussed in Chapter 1, the security of code-based cryptosystems is based
on two hardness assumptions: the indistinguishability of the code family and
generic decoding. The decoding problem is a well studied NP-complete prob-
lem [BMvT78], believed to be hard after decades of research. On the other hand,
the indistinguishability problem is usually the weakest one, strongly depending
on the choice of the code family.

Even Goppa codes, very reputable as a secure choice for code-based cryp-
tosystems, have recently been affected. In [FGO+11], a distinguisher for high
rate Goppa codes was presented. Thus the indistinguishability problem for
Goppa codes might not be always sufficiently hard. Although it does not nec-
essarily lead to a practical attack, it suggests that Goppa (and more generally,
algebraic) codes may not be the optimal choice for code-based cryptography.

Algebraic codes have also been suggested for reducing the code-based cryp-
tosystem keys. They were combined with some redundant structure, such as
cyclic or dyadic structure. However, structural algebraic attacks [FOPT10a]
succeeded in breaking many of them (this does not include p-adic Goppa codes,
as presented in Chapter 4). The effectiveness of this attack is due to the strong
algebraic structure of the suggested code-families, which allows the adversary
to set up an algebraic equations system and solve it with Gröbner bases tech-
niques. This kind of attack is exponential in nature and can be easily prevented
by choosing more conservative parameters. However, codes that do not have
any algebraic structure would completely prevent this practical threat.

Low-Density Parity Check (LDPC) codes [Gal63] are good candidates for
this purpose. They are codes with no algebraic structure which meet a very
simple combinatorial property: they admit a sparse parity-check matrix. Their
use in cryptography has been originally analyzed in [MRS00]. Subsequently, it
was followed by a sequence of works [BCG06, BCGM07, BC07] until the most
recent ones [BBC08, BBC12]. In this chapter, we give the basic concepts of this
type of codes and describe how they have been applied in cryptography.
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Organization of Chapter 5. This chapter is organized as follows: Sec-
tion 5.1 presents the definition of LDPC codes. Section 5.2 explains how to
decode these codes. Section 5.3 explains the previous proposals using LDPC
codes to reduce the key size of code-based cryptosystems.

5.1 LDPC codes

LDPC codes were created in the 1960’s by Robert G. Gallager [Gal63]. Over
35 years, they remained almost forgotten by the coding-theory community. An
exception refers to the work of Michael Tanner [Tan06], which introduced the
graph interpretation for those codes. But only in 1996, David J. C. McKay
(re)discovered these codes (in an apparently independent result from Gallager’s
work). This work has been followed by several others, attesting their excellent
error correcting features and promoting them to the select group of good linear
codes for telecommunication applications. This section is based on [Rya03].

LDPC codes admit two different representations.

1. Matrix representation. Like all linear codes, LDPC codes can be rep-
resented by a parity-check or generator matrix. Here, we will prefer the
parity-check matrix representation.

2. Graph representation. Differently from other linear codes (for example,
algebraic ones), LDPC codes admit a graph representation. This graph,
also know as Tanner graph, is bipartite, composed by check nodes and
variable nodes. These nodes are connected following the rule: a check
node j is connected to a variable node i if the element Hj,i 6= 0, where H
is the sparse parity-check matrix that defines the code.

For example, a binary linear code (10, 4)-C with sparse parity-check matrix

H =


0 1 1 0 0 0 0 0 1 0
1 0 0 1 0 0 1 0 0 0
0 1 0 0 1 0 0 1 0 0
0 0 1 0 1 0 0 0 0 1


has the following associated Tanner graph

c1 c2 c3 c4

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Figure 5.1: Tanner graph associated to a (10, 4)-LDPC code.
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Tanner graphs have interesting properties that help to describe (and evaluate
the quality of) LDPC codes. The degree of a node is the number of edges that
connect this node to any other. A cycle of length ν in a Tanner graph is a path
containing ν edges which ends on itself. The girth ν of a Tanner graph is the
minimum cycle length of the graph. The concept of girth is important because
short cycles tend to degrade the error-correction performance of LDPC codes.

Below, we give the convenient definition for this class of linear codes in terms
of the sparse parity-check matrix.

Definition 5.1 (LDPC codes). An LDPC code is a linear code which admits a
sparse parity-check matrix.

• We denote by wr its row weight and by wc its column weight.

• A Regular LDPC code has constant row weight.

• An Irregular LDPC code does not require constant row weight.

• We denote by (n, r, w)-LDPC codes the ensemble of LDPC codes of length
n, co-dimension r and constant row weight w.

For LDPC codes employed in practice, sparse usually means linear codes
that admit a parity-check matrix of row weight less than 10. This sparsity is
used by iterative decoding algorithms.

5.2 Decoding LDPC codes

The first decoding algorithm for LDPC codes was introduced in the seminal work
of Gallager [Gal63]. The general idea is to compute the a posteriori probability
that a given bit ci of the transmitted codeword c = [c1, . . . , cn] is equal to 1,
given the received word y = [y1, . . . , yn]:

Pr(ci = 1 | y), (5.1)

equivalently, we can consider its likelihood ratio:

l(ci) =
Pr(ci = 0 | y)

Pr(ci = 1 | y)
. (5.2)

This information is propagated across the Tanner graph from variable nodes
to check nodes, and vice-versa, by the edges connecting these two types of
nodes. This is done repeatedly until some stop condition is reached. Basically,
each iteration has two steps, described next. To illustrate this technique, we
consider a code with variable nodes of degree wc = 3 and check nodes of degree
wr = 4.

The first step of an iteration consists of each variable node sending its most
likely value for each connected check-node. To have a correct propagation effect,
a variable node vi that needs to send its most likely value to a check node cj ,
will not consider the previous value contained in cj . Figure 5.2 illustrates this
step for a particular pair of variable-check nodes (v1, c3), but the reasoning is
valid for all (vi, cj), when vi is a variable node connected to the check node cj .
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c1 c2 c3

v1

y1

Figure 5.2: First step of an iteration for a given check and variable node.

In the second step of each iteration, the messages are passed in the opposite
sense, i.e. the variable nodes send messages to the check nodes. The value a
check node cj sends to a variable node vi consists of the value vi should have
to the check cj sums to 0. Figure 5.3 illustrates this step for a given pair of
check-variable node (c1, v4).

c1

v1 v2 v3 v4

Figure 5.3: Second step of an iteration for a given check and variable node.

The idea is that these two steps are repeated until HcT = 0 be satisfied.
However, sometimes the number of errors is too high (or the given code has a
non sufficient error correction capability to correct). Then this process either
takes too long or HcT = 0 is never accomplished. To deal with these cases,
a maximum number of iterations Imax is previously stipulated. Then if the
decoder iterates more than Imax times without success, the decoding algorithm
stops and returns a failure symbol.

This decoding algorithm has a simple guideline implementation as described
by Gallager [Gal63] for what became known as the Bit-Flipping Algorithm. At
each iteration, the number of unsatisfied parity-check equations associated to
each bit of the message is computed. Every bit associated to more than b
unsatisfied equations is flipped and the syndrome is recomputed. This process
is repeated until either the syndrome becomes zero or after a maximum number
of iteration. It is easy to see that this algorithm has complexity O(nwI), where
I stands for the average number of iterations.
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5.2.1 Estimating LDPC Error-Correction Capability

A weak estimation for the error correction capability of LDPC codes is provided
in [Gal63]. It is based on the probability that a bit is in error after a given
number of decoding algorithm iterations. When such a probability converges
to zero, assuming that each bit is independent from the others, reliable error
correction can be achieved.

Consider an LDPC code of length n, column weight wc and row weight wr.
Let also Pi be the probability that a bit X is in error after i iterations of the
decoding algorithm. Suppose that we are verifying the convergence of Pi to 0
when messages containing t errors are received. Such convergence depends on
the initial probability of errors P0 = t/n. When P0 is small enough, Pi converges
to zero for increasing i. Also, it depends on the required number of unsatisfied
parity-checks to flip a bit, here denoted by b. The choice of b is discussed later.

Given P0 and b, we define the probability Pi. A bit is in error after iteration i
in two cases: when there was an error before i-th iteration and the algorithm did
not correct it and when there was no error before iteration i but the algorithm
wrongly flipped it. Without loss of generality, we denote an error by X = 1 and
no error by X = 0. Also we denote by Si+1 the event when the bit is flipped at
iteration i+ 1 and by Si+1 when the bit is not flipped at iteration i+ 1.

Pi+1 = P0 · P [Si+1|X = 1] + (1− P0) · P [Si+1|X = 0] (5.3)

In order to estimate the probability of the event Si+1, we need to estimate the
probability of a parity-check be unsatisfied. This occurs when an odd number of
bits is in error. Such a probability can be estimated using the following lemma.

Lemma 1 ([Gal63]). Consider a sequence of m independent bits in each l-th
bit is a 1 with probability Pl. Then the probability that an odd number of digits
are 1 is:

1−
∏m
l=1(1 + 2Pl)

2
From Lemma 1 and assuming the bits are independent, the probability ri

that an odd number of errors among wr − 1 digits occur (i.e. a parity-check be
unsatisfied) after iteration i is:

ri =
1− (1− 2Pi)

wr−1

2
(5.4)

Then we can define the inner probabilities of Equation 5.3:

P [Si+1|X = 1] =

b−1∑
l=0

(
wc − 1

l

)
(1− ri)lrwc−1−l

i (5.5)

P [Si+1|X = 0] =

wc−1∑
l=b

(
wc − 1

l

)
rli(1− ri)wc−1−l (5.6)

Using (5.5) and (5.6) in (5.3):

Pi+1 = P0·
b−1∑
l=0

(
wc − 1

l

)
(1−ri)lrwc−1−l

i +(1−P0)·
wc−1∑
l=b

(
wc − 1

l

)
rli(1−ri)wc−1−l

(5.7)
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According to [Gal63], the integer b that minimizes the probability Pi+1 is
the smallest integer b for which

1− P0

P0
≤
[

1 + (1− 2Pi)
wr−1

1− (1− 2Pi)wr−1

]2b−wc+1

. (5.8)

Therefore, the maximum value t such that Pi → 0, where P0 = t/n , will
provide the threshold from where reliable error correction can be achieved.

5.3 Previous Graph-Based Proposals for Key Size
Reduction

LDPC codes have an interesting feature for code-based cryptosystems: they
are free of algebraic structure. This potentially strengthens the security of
code-based schemes against distinguishers and key-recovery attacks. In this
section, we discuss how these codes have been used to instantiate code-based
cryptosystems. We denote by ΨH the error correcting procedure able to correct
t errors using a sparse parity-check matrix H of a linear code C.

5.3.1 Using LDPC codes

The first work proposing LDPC code to instantiate McEliece cryptosystem was
presented in [MRS00]. Sparse matrices have can be represented only by the
indices of the non-zero entries. The scheme is presented in Table 5.2.

KeyGen:

1. Generate a random r × n sparse parity-check matrix H of a
binary LDPC code C able to correct up to t.

2. Generate a sparse invertible r × r matrix T .

3. Generate a sparse invertible k × k matrix S.

4. Compute a systematic generator-matrix G obtained from H̃.

5. Compute G̃← S−1G.

– Public key: (G̃, S, t), where H̃ = TH. Private key: (H,T ).

Enc: The encryption of m ∈ Fkq is:

– Generate an error vector e of length n and weight t.

– Compute y ← mG̃+ e.

Dec: The decryption of y ∈ Fnq is:

– mS−1G← ΨC(y).

– mS−1 ← first k entries of mS−1G.

– m = mS−1S.

Table 5.1: LDPC-McEliece Variant.
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As explained by the authors, this scheme is insecure since the low weight
parity-check equations of the private parity-check matrix H can be easily recov-
ered. This can be done by searching for low-weight codeword in the dual of the
public code. Note that this is equivalent to solve the computational decoding
problem for a syndrome which is a zero-vector. Therefore, general decoding
algorithms can be employed to search these low-weight codewords (see 2.3.3).
The authors concluded that sparsity is not secure approach to reduce key-sizes.

5.3.2 Using Quasi-Cyclic LDPC codes

QC-LDPC McEliece #1. In [BCG06], the first use of QC-LDPC codes to
instantiate the McEliece cryptosystem was presented. Actually the cryp-
tosystem proposed is essentially the same as described above, but using a
LDPC code in quasi-cyclic form. The idea was to use the quasi-cyclicity
to achieve compact keys, as first suggested in [Gab05]. As expected, the
cryptosystem suffers from the same weaknesses as in [MRS00].

QC-LDPC McEliece #2. In [BCGM07], the authors suggest a slightly changed
version of the previous variant. They recommend the use of dense matri-
ces T and “sufficiently dense” S, instead. However, as claimed in [BC07],
this strategy is not sufficient to avoid effectiveness of the dual low weight
codeword finding attack.

QC-LDPC McEliece #3. In [BC07], a new variant is proposed.

KeyGen:

1. Generate a random r× n sparse parity-check matrix with col-
umn weight dv of a binary LDPC code C able to correct t
errors.

2. Generate its corresponding generator matrix G in reduced ech-
elon form.

3. Generate a sparse invertible n×n quasi-cyclic matrix Q of row
weight m, as discussed below.

4. Generate a sparse invertible k×k quasi-cyclic matrix S of row
weight s.

– Public key: G′ = S−1 ·G ·Q−1

– Private key: (S,H,Q).

Enc: The encryption of m ∈ Fkq is:

– Generate an error vector e of length n and weight t′.

– Compute y ← mG′ + e.

Dec: The decryption of y ∈ Fnq is:

– y′ ← yQ = mS−1G+ eQ.

– mS−1G← ΨC(mS
−1G+ eQ).

– mS−1 ← extract first k entries from mS−1G.

– m = mS−1S.

Table 5.2: QC-LDPC-McEliece Variant # 3.
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Note that the error vector e is affected by the matrix Q leading to a
propagation error of weight up to t = t′ ·m. Therefore the parameters t, t′

and m should be scaled in such a way that allows the decoder to efficient
correct t = t′ ·m errors.

Two important details of this variant have to be stressed. The former is
that the public code is not a permutation-equivalent of the private one,
as seen in the McEliece cryptosystem original proposal. The second one
refers to the construction of the matrix Q and the sparsity of both matrices
Q and S, leading to a successful attack. The authors suggested to have
Q with diagonal blocks with row/column weight m and the rest of the
matrix to be zero weight blocks. Since G is in row reduced echelon form,
from the public matrix G′ = S−1 ·G ·Q−1, an eavesdropper easily derives
the following matrix:

G′≤k = S−1 ·


Q−1

0 0 . . . 0
0 Q−1

1 . . . 0
...

...
. . .

...
0 0 . . . Q−1

n0−2


Using the isomorphism of the polynomials mod x − 1 and knowing that
both Q and S are sparses, it is possible to successfully attack this variant
as claimed in [OTD10].

QC-LDPC McEliece #4. In [BBC08], the authors propose a dense, instead
of sparse, scrambling matrix S. This choice prevents the eavesdropper
to obtain the blocks in Q and in S, even knowing the product of these
blocks. Note that a dense matrix S implies an increased cost for decoding.
Regarding the matrix Q, it is proposed to avoid the block diagonal-form,
since it also facilitates the work of the attacker.

This proposal has (an overestimated) key size of 49152 bits. In Section
6.4.3, we present a discussion about the actual minimum key size. Both of
those variants use the same encryption and decryption processes described
above in the third QC-LDPC McEliece proposal.

It is important to stress that this proposal has never been successfully
attacked, but as we will see in the next Section, there are several improve-
ments that can be adopted in order to obtain a more secure, efficient and
simpler cryptosystem.

5.3.3 Lessons Learned

The first general remark on using LDPC codes in code-based cryptography refers
to the key-recovery attacks which consist in searching for low weight codewords
in the dual of the public code. This is a valid procedure since LDPC codes only
require a sufficiently sparse parity-check matrix to perform efficient decoding.
This means that any sufficiently large set of low-weight codewords can be used
as a private-key.

This was the first problem reported in this research topic [MRS00] and
still remains an important concern. Different approaches to hide such dual
low weight codewords have been proposed [BCG06, BCGM07, BC07, BBC08].
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Many of them use an auxiliary matrix of row weight m that when multiplied by
the sparse parity-check matrix results in an increased dual weight codeword by
a factor m. Note however this matrix equally affects the error weight, which has
its weight also increased by a factor m. This obliges the private code to correct
not only the errors introduced by the legitimate user, but this number increased
by a factor m. This significantly restricts the chooses for selecting parameters.

Moreover, many of these attempts (except [BBC08]), were successfully at-
tacked due to the particular structure imposed on these auxiliary matrices.
Thus, it seems to be valuable to find ways to discard these auxiliary matrices,
originating a scheme more efficient and, more importantly: with a simpler and
secure security assessment. Ideally, we would like to have a scheme which still
relies its security on the low weight codeword finding problem (a well known
coding-theory problem polynomial-equivalent to decoding), but not in the de-
generate case of LDPC codes, which is composed by easy instances.
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Chapter 6

Moderate Density
Parity-Check (MDPC)
Codes

LDPC codes have an interesting feature: they are free of algebraic structure.
This tends to strengthen the security of code-based cryptosystems regarding the
distinguishing problem. Pure LDPC codes are not recommended to instantiate
code-based cryptosystems, as discussed in Chapter 5, since their low weight
parity-check equations can be easily recovered by adversaries. A possible solu-
tion consists of disguising LDPC codes with an auxiliary matrix of fixed row
weight m. Thus, the dual low weight codewords would be increased by a factor
m, which might be scaled to avoid this sort of attack. However, the structure
imposed by this auxiliary matrix may also lead to structural weaknesses.

In this chapter, we propose a simple and powerful alternative: the use of
Moderate Density Parity-Check (MDPC) codes. MDPC codes are LDPC codes
of higher density than what is usually adopted for telecommunication applica-
tions. In general, this leads to a worse error-correction capability. However, in
code-based cryptography, we are not necessarily interested in correcting many
errors, but only a number of errors which ensures an adequate security level, a
condition satisfied by MDPC codes.

The benefits of employing MDPC codes are many. At first, we analyze
the security implications. MDPC codes are only defined by some low weight
codewords existent in their dual code. Therefore it is natural to assume that
the only way to distinguish such codes is by finding (or attesting the existence
of) these low weight dual codewords. This is a remarkable advantage of our
variant not only in comparison with compact-keys McEliece proposals, but also
regarding the classical McEliece scheme instantiated with binary Goppa codes.

MDPC codes are decoded by using belief propagation techniques. This fact
leads to two issues. The first one is its poor error correction performance when
working with codes of higher density. The second one is regarding its proba-
bilistic nature, i.e. the decoding process is susceptible to fail.

Regarding its poor error correction capability, we had to use MDPC codes of
very long code-length to correct a number of errors necessary to thwart generic
decoding attacks. Unfortunately, this particularity led to key-sizes larger than

73
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the classical McEliece scheme instantiated with binary Goppa codes. To cir-
cumvent this problem, we considered the addition of a quasi-cyclic structure,
leading to the family of QC-MDPC codes. This approach, on the other hand,
provides extremely compact-keys: public-keys of only 4801 bits for 80-bits of
security. Note that the state of the art indicates that a quasi-cyclic structure,
by itself, does not imply a significant improvement for adversaries. All previous
attacks on compact-key McEliece variants are based on the combination of a
quasi-cyclic/dyadic structure with some algebraic code information, a charac-
teristic absent in MDPC codes by design.

As for its probability of decoding failure, a non-desired feature for crypto-
graphic applications, we managed to propose three different approaches to ad-
dress this issue. The first one consists in scaling the parameters in order to make
such probability negligible. The second one consists in switching to more elab-
orate decoding algorithms that achieve a better error-correction performance.
The last one consists in requiring a CCA2-security conversion, permitting one to
request a new encryption in case of failure without leaking private information.

A side note: the terminology MDPC has appeared before in the communi-
cations literature for the same concept [OB09], but applied in different scenarios
and for different purposes. In summary, the authors showed that certain quasi-
cyclic MDPC codes may perform well at moderate lengths for correcting a rather
large number of errors by using a variation of the belief propagation decoding
technique, taking advantage of the quasi-cyclic structure.

Organization of Chapter 6. The remainder of this chapter is organized as
follows. Section 6.1 defines Moderate Density Parity-Check codes. Section 6.2
explains the construction of MDPC codes and the setup for the new MDPC/QC-
MDPC McEliece variants. Section 6.3 encompasses the decoding aspects of our
proposal. Section 6.3.1 discusses how we estimate the error correction capabil-
ity of MDPC codes. Section 6.3.2 explains a variant of bit-flipping decoding
algorithm that is suitable for MDPC codes. Section 6.3.3 gives three different
approaches to deal with decoding failures. Section 6.4 discusses the algorithmic
and storage complexity of our proposal. Section 6.5.2 assesses the security of
our proposal. Section 6.5.1 present a security-reduction proof that, under a
reasonable assumption, shows that our proposal relies its security only on the
decoding problem. Section 6.5.2 assesses the practical security of our proposal.
Section 6.6 present our suggested parameters.

Publications presented in Chapter 6. The results concerning MDPC codes
led to a long, pre-print paper and a short, published paper.

1. [MTSB12]: Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and
Paulo L.S.M. Barreto. MDPC-McEliece: New McEliece variants from
moderate density parity-check codes. http://eprint.iacr.org/2012/409. Sub-
mitted preprint, 2012.

2. [MTSB13]: Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and
Paulo L.S.M. Barreto. MDPC-McEliece: New McEliece variants from
moderate density parity-check codes. In IEEE International Symposium
on Information Theory – ISIT’2013, pages 2069–2073, Istambul, Turkey,
2013.
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6.1 Preliminaries

We start by defining MDPC codes, which differ from LDPC codes simply by
the magnitude of the row weight of the sparse parity-check matrix. Recall that
LDPC codes have small constant row weights (usually less than 10).

Definition 6.1 (MDPC codes). An (n, r, w)-MDPC code is a linear code of
length n, codimension r which admits a parity-check matrix of a constant row
weight w = Õ(

√
n).

– When quasi-cyclic, we call it an (n, r, w)-QC-MDPC code.

6.2 Explaining the Construction

The construction of both MDPC and QC-MDPC codes is quite simple and
basically boils down to the selection of random vectors of a given weight.

MDPC code construction.

A random (n, r, w)-MDPC code is easily generated by picking a random parity-
check matrix H ∈ Fr×n2 of row weight w. With overwhelming probability this
matrix is of full rank and the rightmost r × r block is always invertible after
possibly swapping a few columns.

QC-MDPC code construction.

We are specially interested in (n, r, w)-QC-MDPC codes where n = n0p and
r = p. This means that the parity-check matrix has the form

H = [H0|H1| . . . |Hn0−1] ,

where Hi is a p× p circulant block.

We define the first row of H picking a random vector of length n = n0p
and weight w. The other r − 1 rows are obtained from the r − 1 quasi-cyclic
shifts of this first row. Each block Hi will have a row weight wi, such that
w =

∑n0−1
i=0 wi. In general, a smooth distribution is expected for the sequence

of wi’s.

A generator matrix G in row reduced echelon form can be easily derived from
the Hi’s blocks. Assuming the rightmost block Hn0−1 is non-singular (which
particularly implies wn0−1 odd, otherwise the rows of Hn0−1 would sum up to
0), we construct a generator-matrix as follows.

G =

 I

(H−1
n0−1 ·H0)T

(H−1
n0−1 ·H1)T

...
(H−1

n0−1 ·Hn0−2)T
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MDPC/QC-MDPC McEliece variant

As described in Chapter 1, McEliece-like cryptosystems do not need any auxil-
iary permutation and scrambling matrices. Moreover, due to the use of CCA-2
security conversion, it is possible to have the public generator matrix in system-
atic form. Thus our variants have as secret key the sparse parity-check matrix
H ∈ Fr×n2 and as public key the generator matrix G ∈ Fk×n2 in systematic form.

KeyGen:

1. Generate a sparse parity-check matrix H ∈ Fr×n2 of a
(n, r, w)-MDPC code C equipped with a t-error-correcting
procedure ΨC , as described above.

2. Generate its corresponding generator matrix G ∈ Fk×n2 in
systematic form.

– Secret-Key: H.

– Public-Key: G.

Enc: The encryption of m ∈ Fkq is:

1. Select at random a vector e ∈ Fnq of weight t.

2. x← mG+ e.

Dec:The decryption of x ∈ Fnq is:

1. m← ΨC(x)G−1.

Table 6.1: MDPC-McEliece Variant.

6.3 Decoding MDPC codes

For decoding MDPC codes, we naturally suggest the use of LDPC decoding
techniques. This brings two main challenges. The first one regards the error-
correction performance of MDPC codes. LDPC decoding techniques strongly
depends on the very sparse parity-check matrix, and thus a degradation should
be noticed when moving from LDPC to MDPC codes. However, in cryptogra-
phy, we are not necessarily interested in correcting a large number of errors, but
only a number which ensures an adequate security level. The second challenge
refers to the inherent property of probabilistic decoding, namely the chance of
having decoding failures, and this situation must be addressed for applications
in cryptography. Next, we discuss how to deal with these two challenges.

To star our discussion, we precise that we will use a variant of Gallager’s bit
flipping decoding algorithm [Gal63]. This iterative decoding algorithm provides
an error-correction capability which increases linearly with the code-length and
decreases nearly linearly when the weight of the parity-checks increases, thus
explaining the degradation in the error-correcting capability when moving from
LDPC, where w = O(1), to MDPC codes, where w = Õ(

√
n) using a soft

notation that omits logarithmic factors.
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6.3.1 Error-Correction Capability

In Section 5.2.1, we discussed the Gallager’s analysis for the error-correction ca-
pability of the bit flipping algorithm [Gal63] applied on LDPC codes. This anal-
ysis is valid for increasing code-length and when each variable node is considered
independent from the others. In practice, it provides a satisfactory performance
description for long codes without short cycles in the Tanner graph.

MDPC codes are randomly constructed and therefore do not prevent the
presence of short cycles in the associated Tanner graph. Actually, since the
density is reasonably increased, these codes most likely have such short cycles,
and thus the aforementioned analysis is not as precise as for LDPC codes. So
far, codes having such short cycles have never attracted much attention due
to their restrictive or none practical applicability, thus limiting the literature
focused on estimating their performance.

For this reason, we propose a simple method to estimate the performance
of bit-flipping algorithm applied on (n, r, w)-MDPC codes. It is divided in two
steps. The first one consists of using the Gallager’s analysis to estimate an
upper-bound on the error correction capability. In Section 5.2.1, this upper-
bound is called the threshold for achieving reliable decoding. The second step
consists of estimating the quality of these codes in correcting a given number of
errors. This is done by performing exhaustive simulation, providing the decoding
failure rate (DFR), i.e. the fraction of decoding failures among a reasonably
large number of decoding tests and different random (n, r, w)-MDPC codes.

In fact, we will use a slightly changed version of bit-flipping algorithm. It
is inspired on the bit-flipping algorithm as described in [HP03], which slightly
improves the error correction capability by relaxing the rule to flip a bit.

In summary, for choosing the number of errors our codes must correct, we
start by considering the upper bound provided by Gallager’s analysis and then
we perform exhaustive simulation for computing its DFR. We proceed by de-
creasing the number of errors until reaching an adequate DFR. Using this ap-
proach, we validate that the parameters of Section 6.6 reach a DFR below 10−7.

6.3.2 Bit-Flipping Variant Suitable for MDPC Codes

We recall the Gallager’s bit flipping algorithm. At each iteration, the number
of unsatisfied parity-check equations associated to each bit of the message is
computed. Each bit associated to more than b unsatisfied equations is flipped
and the syndrome is recomputed. This process is repeated until either the
syndrome becomes zero or after a maximum number of iteration. This algorithm
has complexity O(nwI), where I stands for the average number of iterations.

Due to the increased row weight and to the existence of short-cycles in the
corresponding Tanner graph, MDPC codes may lead to an increased number of
iterations. To minimize this problem, we suggest a modification for choosing b.
Below a few possibilities for this choice, followed by our approach:

I. Given P0 = t/n and using Equation (5.7), precompute b as the smallest
integer b for which:

1− P0

P0
≤
[

1 + (1− 2Pi)
w−1

1− (1− 2Pi)w−1

]2b−w+1

This is the method proposed by Gallger, as discussed in Section 5.2.1.
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II. In [HP03], at each iteration, b is chosen as the maximum number of un-
satisfied parity-check equations, here denoted by Maxupc.

III. Our approach is: b = Maxupc − δ, for a small integer δ. In the case of a
decoding failure, we decrease the value of δ by 1 and restart the process.

The main feature of each approach is: Approach I uses an estimation for b and
therefore avoids its computation at each iteration. Approach II is more general
than I, leading to a better error-correcting capability at the price of an increased
number of iterations. Finally, Approach III combines the benefits from I and II:

– It reduces the overall number of iterations obtained by Approach II, since
much more bits are flipped at each iteration.

– In the case of a decoding failure, we suggest to decrease the value of δ by 1
and restart the process. Thus, after δ decoding failures, we have δ = 0 and
we are back to Approach II ensuring at least its error-correcting capability.

The optimal initial value for δ is determined empirically. For the parameters
suggested in Section 6.6, a good choice is δ ≈ 5, reducing the number of itera-
tions from ∼ 65 to less than 10.

6.3.3 Failure Decoding

As discussed above, MDPC codes (like any other code that use probabilistic
decoding techniques) suffer from a non-zero decoding failure probability. In
cryptography, this must be treated. Next we present three approaches to deal
with this problem.

Conservatively choosing the parameters: A straightforward approach con-
sists of conservatively choosing the number of errors so that the decoding
failure rate becomes negligible. For example, a common approach in error-
correcting systems consists of using codes whose DFR is smaller than the
machine failure rate where the system is deployed.

Switching to more sophisticated decoding algorithms: A second approach
deals with these unlikely events on the fly. In the case of a decoding fail-
ure, more sophisticated decoding algorithms with better error correction
capability can be used, e.g. [HOP96]. Note however that this comes at
the price of a significantly increased decoding complexity.

Requesting a new encryption: When the application allows, a third ap-
proach consists of using a CCA-2 security conversion, e.g. [KI01]. In short,
a CCA2-security conversion uses hash functions and random sequences to
ensure the indistinguishability of the encrypted messages. Thus, in the
case of a decoding failure, new encryptions can be requested. Since the
encrypted messages behave like random sequences, the adversary cannot
extract information from this redundancy.

6.4 Efficiency

In this section, we discuss the efficiency of our approach in terms of both algo-
rithmic and storage complexity.
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6.4.1 Algorithmic Complexity

In this section, we discuss about the algorithmic complexity for code-generation,
encoding and decoding using our codes.

Key-Generation: The key-generation process is mainly based on the selection
of random vectors of a given weight. therefore, the main cost in the
key-generation process is reduced to the cost of obtaining the systematic
generator matrix from the sparse parity-check matrix. The quasi-cyclic
variant has an advantage since its cyclic blocks can be manipulated as
polynomials in the ring F2[x] mod (xp − 1).

Encryption: The encryption depends on a matrix-vector product and an vec-
tor addition. For the quasi-cyclic variant, these operations have linear
complexity, whilst for the standard MDPC variant, the matrix-vector
product has quadratic complexity.

Decryption: As explained before, the Gallager’s bit-flipping algorithm has
complexity O(nwI), where I stands for the average number of iterations.
Note that due to the approach presented in 6.3, we managed to reduce
the average number of iterations to less than 10.

6.4.2 Storage Complexity

In this section, we discuss about the cost of storing both private and public
information regarding our codes. In summary, the private key consists of the
sparse parity check matrix of the code, and the public key consists of the gen-
erator matrix of the code. The cost of storage will depend on each variant:
QC-MDPC or standard MDPC codes.

Private-key: For the standard variant, the private key will need r × n bits.
For the quasi-cyclic variant, the private key will need n bits.

Public-key: For the standard variant, the public key will need k × r bits. For
the quasi-cyclic variant, the public key will need k bits.

MDPC variant QC-MDPC variant
Private key r × n n
Public key k × r k

Table 6.2: Key-sizes of MDPC and QC-MDPC variant.

As we can see in Table 6.2, the MDPC variant will provide huge keys, whilst
the QC-MDPC variant provides very compact keys. Also note that the private
description, here described in terms of matrices can be improved depending on
how sparse the matrices are. For example, a binary vector of length n with only
w � n non-zero positions could be more efficiently stored by the indices of this
non-zero positions, rather than the whole vector n. This will depend on the
storage required for each index. The same holds for a sparse matrix.
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6.4.3 Comparison with the QC-LDPC McEliece Variant

In this section, we show that our variant permits the legal user to introduce
more errors than the QC-LDPC McEliece proposal presented in [BBC08], using
codes of same size. At first, we recall this QC-LDPC McEliece variant.

– Private-key:

– Parity-check matrix H ∈ Fr×n2 of a code C, of column weight dc and
row weight dr.

– Sparse matrix Q ∈ Fn×n2 of row weight m.

– Dense matrix S ∈ Fr×r2 .

– Public-key: Generator matrix G′ ← S−1GQ−1, where G is a generator
matrix for C.

Thus, the dual of the public-code contains codewords of weight mdr. An user

that wants to encrypt a message m ∈ F(n−r)
2 must compute y ← mG′+e, where

e ∈ Fn2 is a vector of weight t. The decryption of y starts with a multiplication of
y by Q, i.e. : y′ ← yQ = mS−1G+eQ. Then the legal receiver user must correct
all errors present in y′. Note that the errors in y′ are not limited to t anymore,
they were increased by a factor m, i.e. wt(y′) = mt. Therefore the user must
correct m times more errors than the number of errors purposely introduced by
the sender. Apart the fact that this situation represents a restrictive requirement
for selecting parameters, it also introduces an important disadvantage when
compared to our proposal.

– Using the same public code, our scheme permits to introduce more errors
than in [BBC08].

This comes from the fact that an LDPC code with parity-check matrix of
row weight increased by a linear factor m has its error correction capability
degraded by less than a factor m. In this sense, if the scheme was based solely
on the capability of its public code, the users will be able to introduce more
errors than in the aforementioned scheme.

We can illustrate this discussion by using their own parameters. Let n =
12288, dv = 13, dc = 39 and m = 7, as proposed in [BBC08] for 80-bits of
security. Then the scheme uses a private code whose dual C contains codewords
of weight 39, whilst the dual public code C′ contains codewords of weight 39 ·7 =
273. We estimate the threshold for reliable decoding as explained in Section
5.2.1 for both codes C and C′. For C, the threshold obtained with this technique
is 207. However, in principle, we are restricted by the design of the scheme
to correct only 1/7 of this, which corresponds to 30. On the other hand, the
threshold for H ′ is 50 errors, which represents an improvement of 66% more
errors. This was the initial motivation to use LDPC codes of increased density.

6.4.4 Implementing QC-MDPC McEliece

In [HMG13], the authors present an implementation of the QC-MDPC McEliece
variant for embedded devices. More precisely, the platform used was a reconfig-
urable hardware Xilinx Virtex-6 FPGA and an embbeded microcontroller Atmel
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AVR ATxmega (which is a popular low-cost 8-bit microcontroller). Their im-
plementation used the parameters set for achieving 80-bits of security, with
key-sizes under 5000 bits of length. This implementation demonstrated the ex-
cellent practical applicability of our proposal, achieving much smaller storage
requirement than previous McEliece implementations. Moreover, it is faster and
it requires less storage requirement than RSA.

6.4.5 Recent Construction Related to Our Proposal

In [GMRZ13], the authors introduce the family of Low-Rank Parity-Check
(LRPC) codes with an efficient decoding algorithm. It is also analyzed their
use to instantiate code-based cryptosystems. According to the authors, their
scheme is the equivalent to the MDPC proposal in the rank-metric. This pro-
posal achieves very compact public keys of only 1517 bits for a security of 280.
Moreover, they can made the decryption failure rate arbitrarily small.

Note that rank-metric codes require more complex operations and they have
been much less studied than codes in Hamming metric for cryptography. Before
the aforementioned variant, they have only appeared in [GPT91] to instantiate
the McEliece scheme, but being subsequently broken due to the strong algebraic
structure present in this particular variant.

6.5 Security Assessment

The security assessment of code-based schemes instantiated with MDPC/QC-
MDPC codes is divided in two parts. In the former, we adapt the generic
security-reduction proof presented in Chapter 2 for schemes instantiated with
our codes. In the second part, we estimate the practical security of our proposal.

6.5.1 Security-Reduction Proof

In this section, we adapt the security reduction of Chapter 2 to a Niederreiter
scheme instantiated with our codes. All the statements in this section are valid
in both MDPC and QC-MDPC cases.

The main result here is: under the reasonable assumption that MDPC codes
can only be distinguished by finding their dual low weight codewords, the dis-
tinguishing problem is reduced to the problem of finding low weight codewords,
which is problem polynomially equivalent to the decoding problem. We will use
the following problems.

Problem 1 (Code Distinguishing Problem).
Parameters: Kn,k, Hn,k.
Instance: a matrix H ∈ Hn,k.
Question: is H ∈ Kn,k?

Problem 2 (Computational Syndrome Decoding Problem).
Parameters: Hn,k, an integer t > 0.
Instance: a matrix H ∈ Hn,k and a vector s ∈ Fr2.
Problem: find a vector e ∈ Sn(0, t) such that eHT = s.
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Problem 3 (Codeword Existence Problem).
Parameters: Hn,k, an integer w > 0.
Instance: a matrix H ∈ Hn,k.
Question: is there a codeword of weight w in the code of generator matrix H?

Problem 4 (Codeword Finding Problem).
Parameters: Hn,k, an integer w > 0.
Instance: a matrix H ∈ Hn,k.
Problem: find a codeword of weight w in the code of generator-matrix H.

Problems 1 and 2 were already used in Chapter 2. We introduced Problem 3,
which consists of deciding the existence of words of given weight in a given linear
code, and Problem 4, which is its computational version. Note that in these
two last problems, we consider a code that has a generator matrix H ∈ Hn,k.

We adapt the previous notation to our codes.

– Fn,k : Family of (n, n− k,w)-(QC)-MDPC codes able to correct t errors.

– Kn,k : Public-key space of Fn,k composed by parity-check matrices.

– Hn,k : The apparent public-key space of Fn,k. More precisely:

Note that Kn,k ⊂ Hn,k. Moreover, the apparent public-key space depends
on which code-family is used.

– MDPC codes:

– Hn,k: Set of all full rank matrices in Fr×n2 .

– QC-MDPC codes:

– Hn,k: Set of all full rank block circulant matrices in Fr×n2 .

Ideally, we would like to replace the distinguishing problem by Problem 3
in Proposition 2.1. Unfortunately, one would need to replace the distinguisher
advantage by the quantity:

Adv(E ,Kn,k) = |Pr
Ω

[E(H) = 1 | H ∈ Kn,k]− Pr
Ω

[E(H) = 1]|,

where E denotes a program deciding the existence of a word of weight w in
a given code. However this quantity is not directly related to the hardness
of Problem 3 and therefore cannot be considered. Nevertheless we reach our
purpose if we assume the following assumption.

Assumption 1. Solving Problem 1 for parameters (Hn,k,Kn,k) is not easier
than solving Problem 3 for the parameters (Hn,k, w).

Within this assumption we could modify the reduction to a claim that the
Kn,k-McEliece scheme is at least as hard as either Problem 2 and Problem 3.
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Proposition 6.1. Given Assumption 1:

– Breaking the MDPC variant of McEliece or Niederreiter is not eas-
ier than solving the easiest problem between the syndrome decoding
problem and the codeword existence problem for a random linear code.

– Breaking the QC-MDPC variant of McEliece or Niederreiter is not
easier than solving the easiest problem between the syndrome decoding
problem and the codeword existence problem for a random quasi-cyclic
linear code.

Proof. This follows directly from Proposition 2.1.

However, we can do much better when the parameter w of Problem 3 is
smaller than the minimum distance of the code of parity check matrix H of
Problem 2. In this scenario, we can prove that these two problems era polyno-
mially equivalent, i.e. they can be reduced in polynomial time to each other.

To prove this equivalence, we start by showing that the codeword existence
problem is polynomially equivalent to the codeword finding problem. Then
we sow that the codeword finding problem is polynomially equivalent to the
computational syndrome decoding problem.

Lemma 2. Problem 3 is polynomially equivalent to Problem 4.

Proof.

I - Reducing Problem 3 to Problem 4:

An algorithm that solves Problem 4 obviously provides an answer to Prob-
lem 3.

II - Reducing Problem 4 to Problem 3:

Let Gn,k denote a subset of Fk×n2 composed by full rank matrices.

A matrix G ∈ Gn,k is the generator matrix of a (n, k)-linear code C. For
any 1 ≤ i ≤ n, we denote Ci the code shortened at i, that is

Ci = {c = (c1, . . . , cn) ∈ C | ci = 0}.

We will denote by Gi a generator matrix of Ci. We assume we have
a program E that solves Problem 3, that is E : Gn,k → {0, 1} such that
E(G) = 1 if and only if there exists a word of weight w in the code spanned
by G. The following program called on input G such that E(G) = 1 will
return a word of weight at most w in the code spanned by G.

A: input G ∈ Gn,k
for i from 1 to n while G has a rank > 1
if E(Gi) = 1 then // false at most w times
G← Gi

return the first row of G of weight at most w
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Note that Program E is called at most n times.

Lemma 3. Problem 4 is polynomially equivalent to Problem 2.

Proof.

I - Reducing Problem 4 to Problem 2:

Assume that we have a program A which solves the computational syn-
drome decoding problem for parameters (Hn,k+1, w)

B: input H ∈ Hn,k
(g1, . . . , gk)← a basis of C // where C is the code of parity check matrix H
for j from 1 to n
H ′ ← parity check matrix of

⊕
i 6=j〈gi〉 // subcode of C without gj

if A(H ′, gjH
′T) 6= fail then

z ← A(H ′, gjH
′T)

return z + gj
fail // A fails to decode for all j

If exists a codeword of weight w, the decoder A will succeed for at least one
value of j. B provides a solution to Problem 4 for parameters (Hn,k, w).

II - Reducing Problem 2 to Problem 4:

Assume that we have a program B which solves the Problem 4 for param-
eters (Hn,k+1, w), we define the following program

A: input H ∈ Hn,k, s ∈ Fr2
y ← solve Hy = s. // No restriction over the weight of y.
G← a generator matrix of the code of parity-check H.

G′ ←
[
G
y

]
// y is the (k + 1)-th row of G′.

return B(G′)

Note that w should be smaller than the minimum distance of the code
of parity check matrix H in order to the call A(H, s) never fail. This
provides a solution to Problem 2 with parameters (Hn,k, w).

Within Assumption 1, Lemma 2 and Lemma 3, and assuming that the num-
ber of errors is smaller than the minimum distance of the code, we are able to
produce strong security statements.

Proposition 6.2. Given Assumption 1:

– Breaking the MDPC variant of McEliece or Niederreiter is not easier
than solving the syndrome decoding problem for a random code.

– Breaking the QC-MDPC variant of McEliece or Niederreiter is not
easier than solving the syndrome decoding problem for a random quasi-
cyclic linear code.
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Proof. This follows directly from Proposition 2.1 and the polynomial equivalence
of problems 3–4 (Lemma 2) and 4–2 (Lemma 3).

6.5.2 Practical Security

In this section, we analyze the practical attacks against the proposed scheme.
Consider the McEliece (or Niederreiter) scheme with an (n, r, w)-MDPC code C,
possibly quasy-cyclic, correcting t errors. The public-key is a generator matrix
of C for McEliece or a parity-check matrix of C for Niederreiter. We claim that
the best attacks for each context are:

– Key distinguishing attack: Exhibit one codeword of C⊥ of weight w.

– Key recovery attack: Exhibit r codewords of C⊥ of weight w.

– Decoding attack: Decode t errors in a (n, n− r)-linear code.

For all those attacks we have to solve either the codeword finding problem
or the computational syndrome decoding problem. For both problems and for
the considered parameters the best technique is information set decoding (ISD).
ISD workfactors are commonly used to the security assessment of code-based
schemes. However our proposal requires an extra caution.

The problem of finding a single low weight codeword in an MDPC code
may admit many solutions.

We denote by WFisd(n, r, t):

– Cost of decoding t errors in an (n, r)-binary linear code;

– Cost of finding a codeword of weight t in an (n, r)-binary linear code when
there is a single solution of the problem.

As discussed in Chapter 2, ISD algorithms assume a pattern for the error
vector. It analyzes a certain set of candidates until a solution be found. This
set of candidates is usually stored in lists of a certain size L and each candidate
has a probability P to produce the solution. When the algorithm parameters
are optimal, up to a small factor, it holds that

WFisd(n, r, t) ≈ L/P.
In [Sen11], the Decoding One Out of Many (DOOM ) setting is presented.

In this work, the author analyzes the gains when the decoding problem have
multiple solutions and the adversary is satisfied in finding a single one.

In short, when the problem has Ns solutions, the probability of success P
increases by a factor Ns (as long as NsP � 1) and when Ni instances are treated
simultaneously the list size L increases at most by a factor

√
Ni. Therefore:

The DOOM technique provides a gain1 of Ns/
√
Ni.

1In fact, the real gain might be fact slightly smaller, since these algorithms depend on
optimal parameters which might not be the same for multiple instances.
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Key Distinguishing Attack. We want to estimate the cost WFdist(n, r, w)
of distinguishing our codes, i.e. of producing one word of weight w in the
dual code C⊥. In this context, an adversary applying ISD to the all-zero
syndrome will face a problem with r solutions (the r rows of the sparse
parity-check matrix). Then Ns = r and Ni = 1 and the distinguishing
attack cost drops by a factor of r:

WFdist(n, r, w) =
WFisd(n, n− r, w)

r
.

In the quasi-cyclic case, there is no obvious speedup and the distinguishing
attack has the same cost as above.

Key Recovery Attack. We want to estimate the cost WFreco(n, r, w) of re-
covering the private code, i.e. of producing r codewords of weight w in
the dual code C⊥. All ISD variants are randomized and thus we can make
r independent calls to a codeword finding algorithm. Each call costs on

average WFisd(n,n−r,w)
r since there are r codewords of weight w. Therefore

on average, recovering all equations will cost:

WFreco(n, r, w) = r · WFisd(n, n− r, w)

r
= WFisd(n, n− r, w).

In the quasi-cyclic case, any word of low weight will provide the sparse
matrix and thus the key recovery attack is no more expensive than the
key distinguishing attack.

WFQC
reco(n, r, w) = WFQC

dist(n, r, w) =
WFisd(n, n− r, w)

r
.

Decoding Attack. We want to estimate the cost WFdec(n, r, t) of decoding t
errors. In the MDPC case, it holds that:

WFdec(n, r, t) = WFisd(n, r, t).

In the quasi-cyclic case, any cyclic shift of the target syndrome s ∈ Fr2
provides a new instance whose solution is equal to the original, up to a
block-wise cyclic shift. Thus the number of instances and solutions are
Ni = Ns = r. Therefore a factor

√
r is gained:

WFQC
dec(n, r, t) ≥ WFisd(n, r, t)√

r
.

MDPC QC-MDPC

Key distinguishing
1

r
WFisd(n, n− r, w)

1

r
WFisd(n, n− r, w)

Key recovery WFisd(n, n− r, w)
1

r
WFisd(n, n− r, w)

Decoding WFisd(n, r, t)
1√
r

WFisd(n, r, t)

Table 6.3: Best attacks against MDPC (or QC-MDPC) codes
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Choosing p as a prime number. We recommend to select blocks of prime
length as a precaution to prevent possible attacks that exploit the symmetry of
codewords in a quasi-cyclic code [FL08, Loi13].

6.6 Suggested Parameters

In this section, we explain how to choose secure and efficient parameters. The
idea is to produce a code from a given code-rate R and decoding failure rate.
Initially we start with a code-length n and dimension k = Rn. At first, we com-
pute the minimum integer t such that WFisd(n, k, t) > 280. Then, we compute
the minimum integer w such that WFisd(n, n − k,w) > 280. Finally, we verify
if t errors is under the threshold from where reliable error correction can be
achieved (see discussion in 6.3.1 and 5.2.1). If so, we verify by exhaustive sim-
ulation if random codes of same parameters attain the desired decoding failure
rate. If these codes cannot correct t errors or they do not attain the desired de-
coding failure rate, the process is restarted with an increased code-length n. In
practice, this process converges very quickly for code-lengths of a few thousands.

In Table 6.4, we present some parameters obtained from this method for
our quasi-cyclic variant, the most relevant for practical applications. For each
security level, we propose three parameter sets (n0 = 2, n0 = 3 and n0 = 4),
leading to different code rates (1/2, 2/3, 3/4, respectively). The column r also
gives the syndrome size in bits.

Security. The security assessment is based on the workfactor of the ISD vari-
ant [BJMM12] decreased by the possible gains of the DOOM setting [Sen11].

Example: Let n0 = 2, n = 9602, r = 4801, w = 90, t = 84. The ISD
cost for key-recovery is WFisd(n, n− r, w) = 292.70 and for message-recovery is
WFisd(n, r, t) = 287.16. Decreasing it by the gains of DOOM, a factor of 4801
and
√

4801, respectively, the final workfactors are 280.47 and 281.04.

Decoding. These QC-MDPC codes attain decoding failure rates below 10−7,
using the bit-flipping variant presented in Section 6.3.2.

Security n0 n r w t Key-size

80 2 9602 4801 90 84 4801
80 3 10779 3593 153 53 7186
80 4 12316 3079 220 42 9237
128 2 19714 9857 142 134 9857
128 3 22299 7433 243 85 14866
128 4 27212 6803 340 68 20409
256 2 65542 32771 274 264 32771
256 3 67593 22531 465 167 45062
256 4 81932 20483 644 137 61449

Table 6.4: Suggested parameters. Syndrome and key-size given in bits.
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Chapter 7

Conclusion

Code-based cryptosystems have been neglected to a second-class of crypto-
graphic solutions for more than thirty years. Although efficient and secure
against quantum attacks, its drawback concerning its huge keys never permit-
ted to be considered for practical applications. In this thesis, we presented two
different approaches that significantly overcome this problem.

The first one uses algebraic codes. We presented the p-adic Goppa codes,
which are Goppa codes that admit compact representation. These codes can be
used to instantiate public-key encryption schemes, like McEliece or Niederreiter
schemes. With a simple modification in their generator algorithm, we showed
that these codes are also suitable to instantiate the Parallel-CFS digital sig-
nature scheme. Finally, we demonstrated that these codes can be generalized
to codes defined over any characteristic p ≥ 2. In summary, we managed to
produce very compact keys based on the reputable family of Goppa codes.

Although never attacked in practice, generic Goppa codes have recently in-
spired some distrust. In [FGO+11], a distinguisher for high-rate Goppa codes
was presented. A distinguisher does not lead necessarily to a practical attack,
but it might be seen as an alert. Distinguishing the presence of private infor-
mation (in this case, its algebraic structure) is the first step on obtaining such
information.

Although efficient, our p-adic Goppa proposal suffers from an significant un-
desired feature: strong algebraic structure. This fact motivated our second ap-
proach, using LDPC codes of increased density, or simply MDPC codes. These
are graph-based codes, which are free of algebraic structure. The only relevant
way to distinguish such codes is by finding low weight codewords in their dual
code. Note that for certain parameters this problem is polynomially equivalent
to decoding. This is an important advantage of an MDPC-McEliece variant
not only in comparison to the previous attempts to reduce code-based keys but
also regarding the classical McEliece based on binary Goppa codes. Moreover,
adding a quasi-cyclic structure, it was possible to achieve very compact keys.
Note that the state of the art indicates that a quasi-cyclic structure, by itself,
does not imply a significant improvement for adversaries. All previous attacks
on compact-key McEliece variants are based on the combination of a quasi-
cyclic/dyadic structure with some algebraic code information, property absent
in MDPC codes by design.

91
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7.1 Algebraic vs. Graph-based approach

As discussed above, the MDPC proposal has an important advantage in com-
parison to the p-adic proposal: they are free of algebraic structure. Actually,
this feature is an advantage even compared to the classical McEliece setup using
generic binary Goppa codes.

On the other hand, MDPC codes impose important restrictions for their
practical implementation. The first issue refers to the decoding step. MDPC
codes are decoded by using probabilistic algorithms. This means that there is
a probability of failure for the decoding process. By conservatively selecting
parameters, we can decrease the decoding failure probability, yet never com-
pletely vanish it. To address this issue, we propose three different approaches
for dealing with this problem. In short, these countermeasures impose either
less flexibility for choosing parameters, an extra cost for decoding or additional
requirements for the protocol. In this context, algebraic codes which benefit
from deterministic decoding present an important practical advantage.

Still regarding practical applicability, we must compare their storage com-
plexity. p-adic Goppa codes requires mk bits for storing the public-key, which
is a factor t better than generic Goppa codes but not enough to overcome our
graph-based variant. Using QC-MDPC codes, the public-key size is reduced to
only k bits. Nevertheless, when considering the syndrome sizes, the p-adic pro-
posal achieves a better performance. This is notably advantageous for situations
where messages are exchanged more often then public-keys.

Regarding the flexibility of the approaches, the p-adic proposal has another
advantage. It can be used to efficiently instantiate Parallel-CFS digital signature
scheme. MDPC codes have an extremely low decodable syndrome density and
therefore would require a prohibitive algorithmic or storage cost.

In summary, both approaches have advantages and drawbacks. Choosing
one solution over the other will strongly depend on the target application.

Impact of Our Contributions

Our contributions have already generated related investigations.

p-adic Goppa proposal:

– In [Per11], the author extends our construction to define Generalized-
Srivastava codes, another sub-family of alternant codes.

– In [Kob09], the author extends our construction to define Goppa
codes of increased maximum length. The author used a different
approach to the one presented in Section 4.1.5.

– In [Hey11] an implementation of the p-adic Goppa proposal was pre-
sented.

MDPC proposal:

– In [GMRZ13], the authors present a similar technique than our MDPC
approach but considering the rank-metric.

– In [HMG13], the authors present an implementation for QC-MDPC
parameters for embbeded devices.
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All these works demonstrate the interest of the community in our contribu-
tions and in the goal of achieving efficient code-based cryptosystems in general.

7.2 Future Works

Our contributions lead to several possible future works. Regarding algebraic
codes, the recent attacks against the preliminary quasi-dyadic proposal together
with the distinguisher for high-rate Goppa codes definitely motivate a better
understanding on the security of using Goppa codes for cryptography.

As for the graph-based approach, there is room for some improvements.
For example, the MDPC proposal does not achieve arbitrarily small decoding
failure rate, as demonstrated for the rank-metric variant [GMRZ13]. It would be
interesting to investigate if MDPC codes can also benefit from similar analysis.
This would probably come along with more precise estimations for the error
correction capability.

A particularly interesting investigation consists of extending the MDPC
approach to generate nearly sparse parity-check matrices of random codes.
Random codes have minimum weight close to what is known as the Gilbert-
Varshamov (GV) distance. In short, the idea is to construct codes with parity-
check equations of weight slightly above the GV distance of a code of same size.
In this sense, this construction would produce nothing more than a convenient
description of random codes.These codes should be able to correct a quite small
number of errors using belief propagation techniques, but still good enough to
provide an advantage in comparison to adversaries. In Appendix A, we present
a discussion about a preliminary investigation on this direction. It is important
to emphasize that, so far, we have not been able to prove that this construction
can attain an uniform distribution, much less admit practical parameters. How-
ever, these preliminary thoughts may encourage further investigation towards
achieving public-key cryptography based on random codes.
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Appendix A

Random Codes

Note. We discuss an attempt to extend the MDPC ap-
proach to construct random codes. So far, we have not been
able to develop techniques that prove the validity of this con-
struction.This chapter intends to encourage further stud-
ies on achieving public-key cryptography based on random
codes.

MDPC codes present an interesting advantage for code-based cryptography in
comparison to algebraic proposals, namely the absence of algebraic structure.
This feature led to the security reduction proof presented in Chapter 6. This
security reduction is not tight and relies on a (reasonable) assumption: the
only way to distinguish MDPC codes consists of finding dual low-weight code-
words. Although better than the scenario for algebraic codes, the security of
this McEliece variant still relies on the distinguishing assumption.

In this chapter, we analyze the possibility of extending the MDPC construc-
tion to define random codes. Random codes have minimum weight close to
the Gilbert-Varshamov distance dGV . Therefore, our approach is to construct
codes from parity-check matrices with equations of weight slightly above dGV of
a code of same size. Using belief propagation decoding, these codes should be
able to correct an increasing, albeit small, number of errors. These codes will
suffer from extremely long code-lengths and low code-rate. Nevertheless, they
might provide a sufficiently good advantage for who has the sparse description,
permitting one to build a secure cryptosystem upon them. We believe that a
McEliece-like scheme satisfying these conditions would have parameters as in
Table A.1.

Parameter Magnitude
Code-length n: n→ +∞
Code-rate R: R→ 0

Code dimension k: Õ(
√
n)

Code co-dimension r: O(n)

Parity-check equations weight w: Õ(dGV (n, k))

Number of errors t: Õ(
√
n)

Table A.1: Magnitude of Parameters.
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A.1 Preliminaries

Definition A.1 (Gilbert-Varshamov distance). We denote by dGV the smallest
integer such that (

n

dGV

)
> 2n−k

Definition A.2 (Number of codewords of a given weight). We denote by Aw(C)
the number of distinct codewords in a code C of weight exactly w, i.e.

Aw(C) = |{v ∈ C | wt(v) = w}|

The expectation of the random variable Aw is:

E[Aw] =

(
n
w

)
2r

.

A.2 Construction

We begin our discussion by introducing the simple Algorithm 5 that would
generate the private-key of our proposal.

Algorithm 5 Private-Key Generation.

Parameter: n, k, w.
Output: k × n generator-matrix G.

1: G← [0]k×n

2: for i ∈ [1 . . . k] do

3: Gi
$←Sn,w

4: end for
5: if G is not full-rank then
6: go to Step 1.
7: end if
8: return G

In practice, the idea is to use the output of Algorithm 5 as a parity-check
matrix. The algorithm is described in terms of a generator-matrix because in
the majority part of this chapter, we will be analyzing the properties of the
code-family generated by such outputs.

Algorithm 5 can be used to define different family of codes. The difference
refers of the order of parameter w in comparison with the code-length n. LDPC
codes require w = O(1), for example.

In this chapter we want to prove the following informal statement:

Algorithm 5 generates almost all (n, k)-linear codes almost uniformly, when n
is large enough and w = dGV + α log2(n), for some α > 0.
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A.3 Analysis

Let log(x) denotes the logarithmic function in base 2. From now on, we denote

w = dGV + α log(n).

Initially, we want to prove that the expected number of codewords of weight
w is polynomial in n, for well chosen values of α. This is necessary to attest
that a random linear code would contain at least k codewords of weight w, thus
it is a valid output for Algorithm 5.

Proposition A.1. For some positive integer a and for any α ≥ a

log
(
n−dGV
dGV

)
that defines w = dGV + α log2(n), it holds that

E[Aw] ≥ na.

Proof. We want to find α such that:

E[Aw] =

(
n
w

)
2n−k

≥ na (A.1)

Since
(
n
dGV

)
> 2n−k, it is enough to prove that:(

n
w

)(
n
dGV

) ≥ na (A.2)

The simplified Stirling’s approximation for binomial coefficients says that:(
n

w

)
≈ 2nh(w/n), (A.3)

where h is the entropy function h(x) = −x log(x)− (1− x) log(1− x). Thus

E(Aw) =

(
n
w

)(
n
dGV

)
≈ 2nh(w/n)

2nh(dGV /n)

= 2n(h(w/n)−h(dGV /n)) ≥ na. (A.4)

Taking the logarithm in both sides, it holds that:

n

(
h
(w
n

)
− h

(
dGV
n

))
≥ a log(n). (A.5)

The entropy is concave function with maximum value h(1/2) = 1. Since both
w/n and dGV /n are smaller than 1/2 and w > dGV , it holds that

h(w/n)− h(dGV /n)

w/n− dGV /n
≤ h′(dGV /n)
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The first derivative of the entropy function is h′(x) = log
(

1−x
x

)
. Thus:

h(w/n)− h(dGV /n)

(w/n− dGV /n)
≤ log

(
n− dGV
dGV

)
.

h(w/n)− h(dGV /n) ≤ (w/n− dGV /n) log

(
n− dGV
dGV

)
. (A.6)

Then we can use the upper bound for h(w/n) − h(dGV /n) from A.6 into A.5,
to obtain the α that ensures E[Aw] ≥ na:

n(w/n− dGV /n) log

(
n− dGV
dGV

)
≥ a log(n)

(w − dGV ) log

(
n− dGV
dGV

)
≥ a log(n)

α log(n) log

(
n− dGV
dGV

)
≥ a log(n)

α log

(
n− dGV
dGV

)
≥ a

α ≥ a

log
(
n−dGV
dGV

) (A.7)

With Proposition A.1, we could verify that w can be chosen such that nearly
all linear codes can be produced by Algorithm 5.

The other requirement to attest that Algorithm 5 indeed produces random
linear codes refers to the distribution of its outputs. Although reasonable, prove
that the output of Algorithm 5 follows an almost uniform distribution seems to
be a hard problem. This is due to the fact that some few codes may contain an
abnormal large number of codewords of weight w, thus leading to a predominant
probability to be generated by our algorithm. Unfortunately, we were not able
to prove that this condition does not affect our construction significantly.

A.3.1 Error-Correction

The codes generated by Algorithm 5 should correct an increasing, albeit small,
number of errors, when the code-length increases. Apparently, there would be
different approaches to prove this intuition, but so far we have not been able to
develop a satisfactory one. Next we describe two different attempts.

Using Gallager’s Analysis

An idea is to use the weak estimation for error correction capability of LDPC
codes as presented by Gallager and explained in Chapter 5. It is based on the
probability Pi that a bit is in error after i iterations of decoding algorithm.
When such a probability converges to zero, reliable error correction could be
achieved. Next we describe some remarks on this analysis.
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We recall the definition of Pi from Chapter 5, for a code of length n, dimen-
sion k and columns weight wc.

Pi+1 = P0·
b−1∑
l=0

(
wc − 1

l

)
(1−ri)lrwc−1−l

i +(1−P0)·
wc−1∑
l=b

(
wc − 1

l

)
rli(1−ri)wc−1−l,

where ri = 1−(1−2Pi)
k−1

2 .
In order to Pi → 0 for increasing i, we need to satisfy Pi+1 < Pi. If

we consider the simplest case when b = dwc/2e, then the probability P0 ·∑b−1
l=0

(
wc−1
l

)
(1− ri)lrwc−1−l

i becomes negligible and therefore

P1 ≈ (1− P0)

wc−1∑
l=b

(
j − 1

l

)
rl0(1− r0)wc−1−l

< P0

Thus it would suffice to show that

wc−1∑
l=b

(
wc − 1

l

)
rl0(1− r0)wc−1−l <

P0

1− P0
,

for k and wc as defined in Table A.1.
However, this analysis is prejudiced by the fact that we cannot assume the

message bits are independent from each other. We believe that by adopting
very long code-lengths this undesired effect might become negligible, a remark
to be verified.

Using Expander Codes

The other approach is based on a technique developed for expander codes [SS96],
which are codes based on graphs that can be randomly generated. This is similar
to our construction, considering sparse matrices as the adjacency matrices of
graphs. In this work, the authors present decoding algorithms and prove their
effectiveness to correct a constant number of errors at each decoding iteration.
Expander codes use expander graphs, which have the expander property.

Definition A.3 (Expansion Property). Let G = (V,E) be a graph on n vertices.
Every set of at most m vertices expand by a factor of δ if, for all sets S ⊂ V :

|S| ≤ m⇒ |{y : ∃x ∈ S such that (x, y) ∈ E}| > δ|S|

More precisely, the graphs here discussed are unbalanced bipartite graphs,
i.e. the vertices of the graph are divided into two sets in such a way that no
edges between vertices in the same set will exist. Note that this type of graph
is also used to represent LDPC and MDPC codes.

Definition A.4 ((c, d)-regular graph). A graph is (c, d)-regular if is bipartite
and all nodes in one set have degree c and all nodes in other have degree d.

Definition A.5 ((c, d, ε, δ)-expander graph). A graph is (c, d, ε, δ)-expander if
it is a (c, d)-regular graph in which every subset of at most an ε fraction on the
c-regular vertices expands by a factor of at least δ.
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Remark 12. The values c and d can be seen respectively as the column and the
row weight of the adjacency matrix of the graph.

In the [SS96], the values c and d remain constant, when n increases. In our
analysis, these values should increase along with n, since we define d slightly
above the Gilbert-Varshamov distance, which increases with n. Thus, using a
similar approach to what is obtained for expander codes, we tried to prove the
following informal statements:

1. Algorithm 5 generates adjacency matrices of good expander graphs.

2. The decoding algorithm for expander codes can be used to correct an
increasing, albeit small, number of errors when applied to our codes.

However, the fact that c and d are not constant seems to strongly prejudice
this analysis, and so far, we have not been able to circumvent this problem.

A.3.2 Security Assessment

To obtain a secure cryptosystem we have to prove that our scheme would pro-
vide a super-polynomial advantage for legal users (who are allowed to perform
efficient decoding) in comparison to adversaries (who can only perform general
decoding).

The best algorithms to perform general decoding are derived from the infor-
mation set decoding technique [Pra62]. These recent improvements have intro-
duced a collision search as a part of the algorithm. It is easy to see that, as long
as the parameters increases, the gain provided by this collision step vanishes by
the cost of the Gaussian elimination. In this sense, the original information set
decoding algorithm becomes more efficient than its recent variants.

Consider a code of length n and dimension k. Moreover, suppose we want to
estimate the cost of the original information set decoding for decoding t errors
in this code. As stated in Chapter 2, this cost is proportional to the inverse of
the probability of finding an error vector with the following profile: t errors into
n− k positions and 0 errors into the other k positions. Thus:

WFPra62(n, k, t) ≈
(
n
t

)(
n−k
t

)
≈ nt

(n− k)t

≈
(

1− k

n

)−t
(A.8)

Suppose that we want to correct t =
√
n (lnn)γ errors and that the dimension

of the code is of the form k =
√
n (lnn)β . Then (A.8) becomes:

WFPra62(n, k, t) ≈
(

1− (lnn)γ√
n

)−√n(lnn)β

, (A.9)

which is approximately exp((lnn)γ+β) and that can be rewritten as:

WFPra62(n, k, t) ≈ n(lnn)γ+β−1

(A.10)

Therefore, a super-polynomial advantage is ensured for k =
√
n (lnn)β and

t =
√
n (lnn)γ when γ + β > 1.
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A.4 Conclusion

In this chapter, we discussed a few remarks on extending the MDPC approach to
construct random codes for instantiating code-based cryptosystems. We believe
that this construction is possible for long code-lengths and small code rates.

These codes should be able to correct a small number of errors. We have
seen that if the number of errors is of the form t =

√
n (lnn)γ and the dimension

is k =
√
n (lnn)β , then it is possible to ensure a super-polynomial advantage

for the legal users when compared to adversaries using information set decod-
ing techniques. Note that, for such parameters, the original information set
decoding algorithm [Pra62] is not worse than its most recent variants.

Another barrier to such a construction is the proof that Algorithm 5 gen-
erates codes uniformly distributed. This is due to the fact that very few codes
might have an abnormal large number of codewords of weight w. In this context,
some codes would have an abnormal high probability to be generated over other
codes, reducing the set of private-keys in practice.
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