
HAL Id: tel-00933645
https://theses.hal.science/tel-00933645v1

Submitted on 20 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Load-balancing and resource-provisioning in large
distributed systems

Mathieu Leconte

To cite this version:
Mathieu Leconte. Load-balancing and resource-provisioning in large distributed systems. Data Struc-
tures and Algorithms [cs.DS]. Telecom ParisTech, 2013. English. �NNT : �. �tel-00933645�

https://theses.hal.science/tel-00933645v1
https://hal.archives-ouvertes.fr

T

H

È

S

E

2013-ENST-0092

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Informatique et Réseaux »

présentée et soutenue publiquement par

Mathieu LECONTE
le 18 décembre 2013

Équilibrage de charge et répartition de ressources

dans les grands systèmes distribués

Directeur de thèse : Laurent MASSOULIÉ
Co-encadrement de la thèse : Marc LELARGE

Jury
M. Laurent Massoulié, Directeur du centre MSR - INRIA, Palaiseau Directeur de Thèse
M. Marc LELARGE, Chargé de Recherche, ENS - INRIA Rocquencourt Co-encadrant de Thèse
M. David GAMARNIK, Professeur, MIT, Cambridge, USA Rapporteur
M. James ROBERTS, Chercheur Senior, IRT SystemX, Palaiseau Rapporteur
M. François BACCELLI, Professeur, University of Texas, Austin, USA Examinateur
Mme. Nidhi HEGDE, Chercheuse, Technicolor, Paris Examinatrice
M. Alain JEAN-MARIE, Directeur de Recherche, LIRMM - INRIA Sophia-Antipolis Examinateur
M. Florent KRZAKALA, Professeur, Université Paris VI et ENS Examinateur

TELECOM ParisTech
École de l’Institut Mines-Télécom - membre de ParisTech

46 rue Barrault 75013 Paris - (+33) 1 45 81 77 77 - www.telecom-paristech.fr

1

Remerciements
Mes premiers remerciements vont naturellement à mes directeurs de thèse, Marc
Lelarge et Laurent Massoulié, pour leurs conseils et les échanges fructueux que j’ai
eus avec eux durant ma thèse. Je remercie chaleureusement Marc pour sa gentillesse,
sa patience et sa disponibilité, et bien sûr pour les nombreux sujets de recherche
auxquels il m’a exposé. Je suis également très reconnaissant envers Laurent pour
sa vision des problèmes scientifiques actuels, qu’il est toujours prêt à partager, ainsi
que pour sa patience et sa sympathie. Merci à vous deux également pour la liberté
très formatrice que vous m’avez accordée dans la conduite de ma recherche.

I wish to thank James Roberts and David Gamarnik for their careful review
of this thesis and their detailed comments, and for the discussions that followed.
Je suis également reconnaissant envers François Baccelli, Florent Krzakala, Alain
Jean-Marie et Nidhi Hegde pour avoir accepté de faire partie de mon jury, et envers
Laurent Viennot et Laurent Decreusefond pour avoir constitué mon jury de mi-
parcours.

I am also thankful to R. Srikant, Jian Ni, Xinzhou Wu, Cyril Measson and the
Qualcomm team where I interned for a few month. It is the excellent atmosphere
and fascinating work there that finally decided me to do a PhD.

Je suis très heureux d’avoir pu travailler au sein de deux équipes excellentes
et chaleureuses, l’équipe DYOGENE (anciennement TREC) de l’INRIA et le labo-
ratoire de Technicolor Paris, et je tiens à exprimer ma gratitude envers François
Baccelli et Christophe Diot pour m’y avoir accueilli. Pour la bonne ambiance
qu’ils savent y faire règner, merci aux membres permanents de ces deux équipes:
Ana, Anne, Bartek, Hélène, Marc, et Pierre pour DYOGENE; et Augustin, Fabio,
Henrik, Jaideep, Joris, Laurent, Martin, Nidhi, Pascal, Pieter et Theodoros pour
Technicolor. Bien évidemment, je remercie tous les doctorants, post-doctorants et
stagiaires qui se sont succédés au fil des années et avec qui j’ai pu partager un bout
de chemin: Abir, Aleksander, Anastasios, Bruno, Calvin, Chandra, Emilie, Frédéric,
Florence, Furcy, Hamed, Justin, Kumar, Lucas, Miodrag, Nadir, Omid, Paul, Rémi,
Rui, Stéphane, Thibaut, Thomas, Tien et Yogesh pour DYOGENE; et Anna Kaisa,
Abderrahmen, Dan-Cristian, Fernando, Giuseppe, Italo, Lou, Lucas, Marianna, Si-
mon, Stéphane, Stratis et Valentina pour Technicolor. Merci également à Florence
Besnard, Nicole Buatu, Isabelle Delais, Joëlle Isnard et Hélène Milome pour m’avoir
assisté dans les démarches administratives.

Pour finir, je remercie mes amis et ma famille, et tout particulièrement Lise, pour
leur soutien précieux pendant ces années et tout ce qu’ils m’apportent au quotidien.

2

Résumé
Cette thèse porte principalement sur l’équilibrage de charge dans de grands graphes
aléatoires. En informatique, un problème d’équilibrage de charge survient lorsque
différentes tâches ont besoin d’accéder à un même ensemble de points de ressources.
Il faut alors décider quelles ressources spécifiques seront allouées à quelles tâches.
Suivant le contexte, les notions de “tâche” et de “ressource” peuvent avoir différentes
interprétations. Afin de prendre des exemples concrets, on se concentrera sur deux
applications en particulier:

• un système de hachage à choix multiples (plus précisément, le “cuckoo hash-
ing”). L’objectif est ici d’allouer des cellules d’un tableau à des objets, afin
de pouvoir ensuite vérifier facilement la présence d’un objet et récupérer les
données associées. Les tâches sont liées aux objets à stocker, et les ressources
sont les cellules du tableau.

• un réseau de distribution de contenu distribué, au sens où les contenus peuvent
être stockés sur une multitude de petits serveurs aux capacités individuelles
très limitées. Ici, les tâches sont des demandes de téléchargement (ou requêtes)
pour un contenu et les ressources sont liées aux serveurs et à la façon dont leurs
espaces de stockage sont utilisés. Le problème d’équilibrage de charge consiste
à décider quel serveur va servir quelle requête.

Les contraintes locales portant sur chaque ressource (en quelle quantité est-elle
disponible et pour quelles tâches est-elle convenable?) ainsi que la charge de travail
associée avec chaque tâche peuvent être représentées efficacement sur un graphe bi-
parti, avec des contraintes de capacité sur ses sommets et ses arêtes. De plus, en
pratique, les systèmes considérés sont souvent de très grande taille (avec parfois des
milliers de tâches et de points de ressources différents) et relativement aléatoires
(que ce soit par choix ou une conséquence de leur grande taille). Une modélisation
à l’aide de grands graphes aléatoires est donc souvent pertinente.

L’ensemble des solutions envisageables pour un problème d’équilibrage de charge
donné étant vaste, il est primordial de commencer par déterminer des bornes sur les
performances que l’on peut espérer. Ainsi, on considérera dans un premier temps
une solution optimale du problème (même si elle ne serait pas réalisable avec des
contraintes pratiques). Les performances d’une telle solution peuvent être obtenues
en étudiant les appariements de taille maximum dans un grand graphe aléatoire, ce
que l’on réalisera à l’aide de la méthode de la cavité. Cette méthode vient de l’étude
des systèmes désordonnés en physique statistique, et on s’attachera ici à l’appliquer
de manière rigoureuse dans le cadre que l’on considère.

Dans le contexte du cuckoo hashing, les résultats obtenus permettent de calculer
le seuil sur la charge du système (le nombre d’objets à insérer par rapport à la taille
du tableau) en-dessous duquel on peut construire une table de hachage correcte
avec grande probabilité dans un grand système, et également de traiter de manière
similaire de variantes de la méthode de hachage basique qui tentent de diminuer
la quantité d’aléa nécessaire au système. Au-delà du problème d’équilibrage de
charge, dans le cadre des réseaux de distributions de contenu distribués, un sec-
ond problème se pose: comment décider quel contenu stocker et en quelle quantité,

3

autrement dit comment répliquer les contenus? On appelle ce second problème un
problème d’allocation de ressources. A nouveau, l’étude déjà réalisée permet de
quantifier l’efficacité d’une politique de réplication fixée en supposant que la poli-
tique d’équilibrage de charge fonctionne de manière optimale. Il reste cependant à
optimiser la politique de réplication de contenus utilisée, ce que l’on effectue dans un
régime où l’espace de stockage disponible au niveau de chaque serveur est important
par rapport à la taille d’un contenu. Finalement, afin de quantifier maintenant les
performances minimales atteignables en pratique, on s’intéressera aux mêmes ques-
tions lorsque la politique d’équilibrage de charge utilisée est un simple algorithme
glouton. Cette étude est réalisée à l’aide d’approximations de champs moyen. On
utilisera également les résultats obtenus afin de concevoir des politiques de réplica-
tion de contenus adaptatives.

4

Abstract
The main theme of this thesis is load-balancing in large sparse random graphs. In
the computer science context, a load-balancing problem occurs when we have a set
of tasks which need to be distributed across multiple resources, and to resolve the
load-balancing problem one needs to specify which tasks are going to be handled by
which resources. Depending on the context, tasks and resources may have different
interpretations. To make things more concrete, we focus in this document on two
particular applications:

• a multiple-choice hashing system (often refered to as cuckoo hashing in the
literature), where the goal is to efficiently assign buckets to items so that the
items or any associated data can be stored to be later retrieved quickly. Tasks
are here linked to items, and resources to buckets.

• a content delivery network (CDN) with a multitude of servers to handle storage
and service of the contents. In this context, tasks are requests for a particular
content and resources are linked with the servers and the particular contents
they store, and resolving the load-balancing problem means assigning servers
to requests.

The local constraints of which resource is suitable for a particular task as well as
the initial amounts of the different available resources and the workload associated
with each task can be efficiently represented as a capacitated bipartite graph. Also,
in practice and in particular for the two examples mentioned, the systems consid-
ered are often of very large size, involving maybe thousands of different tasks and
resources, and they tend to be quite random (either by design or due to a lack of
coordination capabilities). Therefore, the context of large random graphs is partic-
ularly well-suited to the considered evaluations.

As the spectrum of solutions to a particular load-balancing problem is vast, it
is primordial to understand the performance of the optimal solution to the load-
balancing problem (disregarding its potential complexity) in order to assess the
relative efficiency of any given candidate scheme. This optimal load-balancing per-
formance can be derived from the size of maximum capacitated matchings in a large
sparse random graph. We analyze this quantity using the cavity method –a powerful
tool coming from the study of disordered systems in statistical physics–, showing
in the process how to rigorously apply this method to the setups of interest for our
work.

Coming back to the cuckoo hashing example, we obtain the load thresholds under
which cuckoo hashing succeeds with high probability in building a valid hashtable
and further show that the same approach can handle other related schemes. In
the distributed CDN context, the performance of load-balancing is not the end of
the story, as an associated resource-placement problem naturally arises: in such a
system, one can choose how to provision resources and how to pool them, i.e., how
to replicate contents over the servers. Our study of capacitated matchings already
yields the efficiency of static replications of contents under optimal load-balancing,
and we further obtain the limits of the optimal replication when the storage capacity
of servers increases. Finally, as optimal load-balancing may be too complex for

5

many realistic distributed CDN systems, we address the issues of load-balancing
performance and resource-placement optimization under a much simpler –random
greedy– load-balancing scheme using mean-field large storage approximations. We
also design efficient adaptive replication algorithms for this setup.

6

Contents

1 Introduction 9
1.1 Notions of graph theory . 10
1.2 Load-balancing problems . 15
1.3 Introduction to the cavity method . 21
1.4 Overview of the results . 24

2 Maximum capacitated matching via the cavity method 31
2.1 Introduction . 32
2.2 Asymptotic size of maximum capacitated

matchings . 33
2.3 Main proof elements . 34
2.4 Structural properties of local operators 37
2.5 Finite graphs . 41
2.6 Limit of large graphs . 44
2.7 Exactness in finite bipartite graphs 50

3 Cuckoo hashing thresholds 57
3.1 Introduction . 58
3.2 Cuckoo hashing threshold and hypergraph orientability 59
3.3 An analysis of double hashing . 64

4 Load-balancing and resource-placement in distributed CDNs 73
4.1 Introduction . 74
4.2 Edge-assisted CDN model and statistical

assumptions . 75
4.3 Related models and replication strategies 77
4.4 Performance under optimal matching 79
4.5 Performance under random greedy matching 87
4.6 Adaptive replication schemes to minimize losses 99

7

8 CONTENTS

Chapter 1

Introduction

The main theme of this thesis is load-balancing in large distributed systems. In
the computer science context, a load-balancing problem occurs when we have a set
of tasks which need to be distributed across multiple resources, and to resolve the
load-balancing problem one needs to specify which tasks are going to be handled by
which resources. Depending on the context, tasks and resources may have different
interpretations. To make things more concrete, we focus in this document on two
particular applications:

• a multiple-choice hashing system (often refered to as cuckoo hashing in the
literature), where the goal is to efficiently assign buckets to items so that the
items or any associated data can be stored to be later retrieved quickly. Tasks
are here linked to items, and resources to buckets.

• a content delivery network (CDN) with a multitude of servers to handle storage
and service of the contents. In this context, tasks are requests for a particular
content and resources are linked with the servers and the particular contents
they store, and resolving the load-balancing problem means assigning servers
to requests.

The local constraints of which resource is suitable for a particular task as well as
the initial amounts of the different available resources and the workload associated
with each task can be efficiently represented as a capacitated bipartite graph. Also,
in practice and in particular for the two examples mentioned, the systems consid-
ered are often of very large size, involving maybe thousands of different tasks and
resources, and they tend to be quite random (either by design or due to a lack of
coordination capabilities). Therefore, the context of large random graphs is partic-
ularly well-suited to the considered evaluations.

This document is organized as follows: in the remainder of the introduction,
we start by recalling a few standard notions of graph theory, including local weak
convergence and some classical random graph models. We then explain how the two
examples of cuckoo hashing and distributed CDNs can both be abstracted as a more
general load-balancing problem, related to generalized matchings (called capacitated
matchings) in a bipartite graph describing the constraints of a particular instance
of the problem. In particular, the performance of large random systems can then be
phrased in terms of local weak convergence of these constraints graphs. Then, we

9

10 CHAPTER 1. INTRODUCTION

give a short introduction to the cavity method, which underlies most of our work.
To conclude the introduction, we provide an overview of the results obtained in this
thesis. In Chapter 2, using the framework of local weak convergence, we extend
the current range of rigorous applications of the cavity method by computing the
asymptotic size of maximum capacitated matchings in a large sparse random graph.
Chapter 3 is devoted to computing the cuckoo hashing thresholds, below which
cuckoo hashing succeeds in building a valid hashtable, and to demonstrating the
potential of this approach to handle related hashing schemes with little extra work.
Finally, Chapter 4 is about load-balancing and resource-placement in distributed
CDNs.

1.1 Notions of graph theory
In this section, we recall the notions of graph theory that will be useful in this work,
including local weak convergence and standard random graph models. Additional
concepts and notation will appear in the document as they are needed.

1.1.1 Graph terminology

A (simple, undirected) graph G consists of a possibly infinite set of vertices V
and a set of edges E, each edge in E linking two distinct vertices of V together; if
edge e ∈ E links vertices u and v together, we write e = uv and also u ∼ v. The
neighborhood of a vertex v ∈ V in the graph G is the set of other vertices which are
linked to v by an edge in E, i.e.,

N (v) = {u ∈ V : uv ∈ E},

and the cardinality of N (v) is called the degree of v. The set of edges adjacent to a
vertex v ∈ V is denoted by

∂v = {e ∈ E : e = uv for some u ∈ V }.

If the degrees of all the vertices in V are finite, then we say G is locally finite. If
the set V itself is finite, then we say G is finite.

A (simple) path of length k in G between the vertices u and v is a sequence
of k + 1 distinct neighboring vertices of G, the first one being u and the last one
v. If there exists a path (of any length) between two vertices, then we say those
vertices are connected together. If all pairs of vertices in V are connected together,
then the graph G is itself connected. In the same way that N (v) is the set of
vertices connected to v by a path of length 1, we denote by N k(v) the set of vertices
(excluding v) connected to v by a path of length at most k, for k ≥ 2. A simple
cycle in a graph is a path of length k > 2 starting and ending at the same vertex
and visiting at most once any other vertex. A connected graph without cycles is
called a tree. A bipartite graph G = (L∪R,E) is a graph where the vertex set V
can be partitioned into two disjoint sets L and R (for “left” and “right”) such that
all the edges in E link a vertex in L and a vertex in R, i.e., for all e ∈ E there exists
l ∈ L and r ∈ R such that e = lr.

1.1. NOTIONS OF GRAPH THEORY 11

Figure 1.1: Example of capacitated graph and a capacitated matching of it.

Additionally, one can associate a mark to each element of a graph (vertex or
edge). In our context, marks will most of the time be integers and represent capacity
constraints associated with the corresponding element. Therefore, we will often
directly call them capacities instead of marks. We denote by b = (bv)v∈V the set of
capacities of vertices v ∈ V , and by c = (ce)e∈E the set capacities of edges e ∈ E. For
simplicity, we write G = (V,E), omitting mention of the marks when no confusion
is possible. A capacitated matching (or c-capacitated b-matching [97]) x of the
graph G = (V,E) is an integer-valued vector with a coordinate associated with each
edge in E, i.e., x ∈ NE, such that

• the coordinate of x associated with an edge does not exceed the capacity
(mark) of that edge, i.e., xe ≤ ce for all e ∈ E;

• the sum of coordinates of x over the edges adjacent to a vertex does not exceed
the capacity of that vertex, i.e.,

∑
e∈∂v xe ≤ bv for all v ∈ V .

If the capacity constraints are all equal to 1, i.e., b ≡ 1 and c ≡ 1, then a capaci-
tated matching of G is simply a matching of G. We let MG be the set of capacitated
matchings of G. The size |x| of a particular capacitated matching x ∈ MG is the
sum of its coordinates, i.e., |x| =

∑
e∈E xe, and the maximum size of capacitated

matchings of G is denoted byM(G). As a notational rule, to denote a sub-collection
of a vector, such as (xv)v∈S where S ⊆ V , we use the notation xS. Hence, for exam-
ple, the vertex-constraint on the capacitated matching x could be written |x∂v| ≤ bv,
∀v ∈ V .

As an example, Figure 1.1 shows a bipartite capacitated graph G = (L ∪ R,E)
on the left, with the vertex-capacities written inside the vertices and edge-capacities
all equal to 2 (to avoid having too many numbers on the figure), and a capacitated
matching x ∈MG of it on the right: the value xe on an edge e is indicated by a red
number at the left-endpoint of the edge and it can also be visualized in the thickness
and color of the lines (black dotted lines indicate edges e which are not used by the
capacitated matching, i.e., xe = 0; red lines are for edges that are used, and they
are thicker for larger xe). The particular capacitated matching represented here has

12 CHAPTER 1. INTRODUCTION

size |x| = 11 and one can check that the maximum size of capacitated matchings in
this graph is M(G) = 12, although the sum of vertex-capacities is equal to 13 on
both sides L and R.

In this thesis, we will mainly consider large random graphs, with the size of
both parts |L| = n and |R| = m tending to infinity together, i.e., with n ∼ τm for
some fixed τ > 0, while the number of edges remains of the order of the number
of vertices, i.e., |E| = Θ(|V |): this is called the sparse regime or the diluted
regime. We will use the expression “with high probability” (or, in short, w.h.p.)
to mean with probability tending to 1 as m,n → ∞. In this regime, the graphs of
interest converge in a sense explained in Section 1.1.2.

1.1.2 Local weak convergence

The notion of local weak convergence of a sequence of graphs was introduced by
Benjamini and Schramm [15] to study random walks on planar graphs. This frame-
work was further formalized by Aldous and Steele in [5] and by Aldous and Lyons
in [4]. More recent studies on the subject include [19, 23, 22].

A first step is to introduce the notion of local convergence of rooted graphs.
A rooted graph (G, v) is a graph G together with a distinguished vertex v of G
which is called the root. An isomorphism of rooted graphs is a graph isomorphism
which sends the root of one to the root of the other, i.e., a one-to-one mapping of the
vertices of a graph to those of another graph which preserves the root, the edges (and
their marks). We denote by [G, v] the isomorphism class of (G, v) and by G∗ the set
of isomorphism classes of rooted locally finite graphs. For any k ∈ N, we denote by
(G, v)k the rooted subgraph obtained from (G, v) by keeping only those vertices at
graph-distance at most k from v, and we write [G, v]k = [(G, v)k] for its isomorphism
class. We can turn G∗ into a complete separable metric space (i.e., a Polish space)
by defining the following metric: let the distance between [G, v] and [G′, v′] be
1/(1 + δ), where δ is the supremum of those k ∈ N such that [G, v]k = [G′, v′]k.
Then, a sequence of rooted graphs ((Gn, vn))n∈N converges locally to (G, v) in G∗
if the distance between (Gn, vn) and (G, v) goes to 0 as n→∞. Equivalently,

(Gn, vn) −→
n→∞

(G, v) locally ⇐⇒ ∀k ∈ N, ∃nk such that, ∀n ≥ nk, [Gn, vn]k = [G, v]k.

At this point, we recall that a sequence of probability measures (ρn)n∈N on a
certain metric space S converges weakly to a probability measure ρ, which we
denote by ρn ρ, if for every bounded continuous function f : S → R,

∫
fdρn

converges to
∫
fdρ. As G∗ is a Polish space, we can endow it with its Borel σ-algebra

(see, e.g., [16]) and consider the complete separable metric space of probability
measures over G∗, denoted by P(G∗). The definition of weak convergence then
applies to probability measures in P(G∗). Furthermore, given a finite graph G there
is a natural way to form a probability measure on G∗: we let U(G) be the distribution
over G∗ obtained by choosing a uniform random vertex of G as a root. Then, we
say the sequence of finite graphs (Gn)n∈N converges locally weakly towards the
measure ρ on G∗ when the sequence of distributions (U(Gn))n∈N converges weakly
towards ρ.

1.1. NOTIONS OF GRAPH THEORY 13

Any measure ρ which is the limit of a sequence of finite graphs in the sense seen
above has the property that it is unimodular [5], which we define next. Similarly
to the space G∗, we define the space G∗∗ of isomorphism classes of locally finite
connected networks with an ordered pair of distinguished vertices and the natural
topology thereon. We call ρ unimodular if it obeys the Mass-Transport Principle
(MTP): for Borel functions f : G∗∗ → [0,∞], we have∫ ∑

v∈V

f(G, o, v)dρ([G, o]) =

∫ ∑
v∈V

f(G, v, o)dρ([G, o]).

We let U denote the set of unimodular Borel probability measures on G∗. For ρ ∈ U ,
we write b(ρ) for the expectation of the capacity constraint of the root with respect
to ρ.

1.1.3 Some classical random graph models

In this section, we introduce the Erdős-Rényi random graph, which is possibly the
simplest random graph model, as well as some more complicated random graphs
which we will use throughout the thesis. We should warn the reader that we will
often use the notation for a particular random variable to refer in fact to its distri-
bution when the meaning is clear from the context, so as to avoid introducing one
more notation for the distribution itself.

The Erdős-Rényi random graph and the Poisson-Galton-Watson tree

The Erdős-Rényi random graph is the simplest and most studied random graph
model. Two related versions of the model were introduced by Gilbert [54] and Erdős
and Rényi [40]. For a set of n vertices and p ∈ [0, 1], the Erdős-Rényi random graph
G(n, p) is obtained by including independently each edge among the

(
n
2

)
possible

edges with probability p. Therefore, taken individually, each vertex has a degree
given by a binomial random variable Bin(n − 1, p). As we are interested in the
sparse regime, we focus mainly on p = p(n) ∼ λ/n as n → ∞, for some fixed
λ ∈ R+. Then, a sequence of Erdős-Rényi random graphs

(
G(n, λ/n)

)
n∈N with

increasing sizes admits almost surely a local weak limit in P(G∗). This local weak
limit is the Poisson-Galton-Watson (Poisson-GW) distribution GW(Poi(λ)) over
trees with expected offspring λ, which was introduced in 1873 by Galton to study
genealogical family trees [110]. A sample Poisson-GW tree is obtained through a
branching process as follows: the root o has a number of children X given by a
Poisson random variable with mean λ, i.e.

P(X = k) = P(Poi(λ) = k) =
λk

k!
e−λ.

Then, each of these children also independently has a number of children equal
to Poi(λ), and so on. The rooted tree obtained via this process is almost surely
locally finite. For a detailed study of brancing processes and random graphs, one
can refer to [9, 107]. A detailed proof of the almost sure local weak convergence of
the Erdős-Rényi random graph can be found in [6, 18, 61].

14 CHAPTER 1. INTRODUCTION

Random graphs with prescribed degree distribution

The Erdős-Rényi model has only one parameter which can be adjusted, the average
degree. In order to better fit real-life graphs, it is useful to be able to capture
more of their features and incorporate them into a random graph model. The so-
called configuration model (introduced by Gallager [48] and refined by Bender
and Canfield [14], Bollobás [17] and Wormald [115]) is one step in this direction,
where one can specify the degree distribution of the n vertices of the graph. Given
a degree distribution Φ ∈ P(N) with finite mean, we first sample independently
from Φ the degree dv of each vertex v ∈ V . Starting from an empty graph, with
vertex set V and no edges, we then add edges at random by pairing successively,
uniformly and independently the stubs at each vertex in a manner consistent with
the degree sequence d = (d1, . . . , dn). This procedure produces a few self-loops
and multiple edges: they can be either corrected [75] to obtain a simple random
graph G(n,d) uniform among all graphs with the prescribed degree sequence d, or
erased / merged [26] to obtain simply a simple random graph with an empirical
degree distribution d̃ converging to Φ as n → ∞. In any case, a sequence of such
random graphs

(
G(n,d)

)
n∈N (or

(
G(n, d̃)

)
n∈N) with increasing sizes admits almost

surely a local weak limit GW(Φ) ∈ P(G∗), which is the unimodular Galton-
Watson distribution with degree distribution Φ (see Example 1.1 in [4], and [39]
for detailed proofs of the convergence). The procedure to sample a unimodular GW
tree is very similar to that explained before in the special case of Poisson-GW trees:
the root o has a number of children drawn from Φ; however, all its descendants
have numbers of children X independently drawn from the size-biased offspring
distribution Φ̃ ∈ P(N) defined by:

P(X = k) = Φ̃k =
(k + 1)Φk+1∑

i∈N iΦi

.

For the applications considered in this thesis, we will often encounter a sim-
ilar model for bipartite random graphs G = (L ∪ R,E), where the degree (and
constraints) distributions are different for the two parts of the graph: given two
distributions ΦL and ΦR specifying jointly the degree, the vertex-constraint and the
adjacent edge-constraints for vertices in L and R respectively, we can sample two
sequences (dl,bl, c∂l)l∈L and (dr,br, c∂r)r∈R indicating these quantities for each ver-
tex of the graph. Provided these sequences meet some basic consistency conditions
(the sum of degrees should be the same in L and R and the number of edges with
a given capacity should be the same when counted from L and from R), we can
generate a uniform random bipartite graph accordingly (see [29, 51] for more details
on the bipartite case). A jointly defined sequence of such random graphs (Gn)n∈N
rooted at a random left-vertex, with |Ln| = n and |Rn| ∼ 1

τ
n for some fixed τ > 0,

converges almost surely to a local weak limit in P(G∗). This time, the local weak
limit GW(ΦL,ΦR) is a two-step unimodular Galton-Watson distribution with
laws ΦL and ΦR, and a sample from this distribution can be obtained in a very
similar way as before: the parameters of the root o are sampled from ΦL, the pa-
rameters of its descendants at even and odd generations are drawn from size-biased
offspring distributions Φ̃L and Φ̃R respectively, conditionally on the capacity of the

1.2. LOAD-BALANCING PROBLEMS 15

edge linking them to their parent. More details on this model can be found in
Chapter 2.

In the next section, we present the two applications considered in this thesis in
more detail.

1.2 Load-balancing problems
Load balancing is the process of distributing tasks among resources so as to make
the load level of the resources as even as possible. This issue has grown very popular
in particular with the emergence of distributed computing, where loading equally
all the available processors ensures the quickest completion for a given set of tasks.
However, even a basic setup, with two identical processors and a large number n
of tasks with known durations, is already an NP-complete problem, as shown by
Karp [63]. Furthermore, many internet applications are nowadays supported by
server farms comprising thousands of machines. Therefore, in many applications
of interest the number of resources itself is also growing. In this situation, with a
large number of tasks and resources, the coordination capabilities of the distributed
system become a predominant limitation, and it is often more important to find
a simple yet efficient scheme –for which randomization is a useful tool– than an
optimal deterministic solution, which complexity and communication requirements
would render impractical.

In this thesis, we consider two main examples of load-balancing problems which
share a common abstraction: the performance in the two setups is characterized
by the size of a capacitated matching in a bipartite random graph describing the
constraints of the problems. This section introduces more formally the two load-
balancing examples mentioned and the main questions we try to answer in each
context. Each time, we will point out the connection with capacitated matchings as
well as the relevant random graph models.

1.2.1 Cuckoo hashing

A hashtable is a data structure that maps items to buckets so as to be able to
later retrieve the items or any associated data. The idea is that the item (or an
associated descriptor called a key) is hashed into the index of a bucket in an array
(also called a value). Among the many possible items, only a small number is
expected to be present at any time, therefore it is advantageous to dimension the
array to store only that smaller expected number of items rather than the whole
collection of items. The purpose of the hashing step is then to map many items to
the same bucket index, as hopefully only one of those items is present most of the
time; otherwise, a collision occurs and it needs to be resolved in some way. Cuckoo
hashing is a particular scheme used to resolve such collisions.

The hashing paradigm is as follows: we are given n items and m buckets. In the
most basic setting, we want to have exactly one bucket per item and at most one
item per bucket. In more complex versions, multiple copies of each item must be
stored, each bucket can hold many items simultaneously and there are restrictions
on how many times an (item,bucket) pair can be used. Critical performance metrics

16 CHAPTER 1. INTRODUCTION

Figure 1.2: Two realizations of the hashing graph, with and without valid hashtable.

for such systems are the size of the hashtable (the number of buckets) needed to hold
a given number of items, and the time it takes to either retrieve or insert items. The
multiple-choice hashing strategy is one that guarantees a constant look-up time,
while requiring with high probability a hashtable of size m proportional to n. This
strategy consists in pre-defining a set of d ≥ 2 buckets for each item, which is then
only allowed to pick a bucket within that set. Of course, depending on the choices of
the pre-defined sets of buckets, it may be impossible to handle simultaneously some
sets of items and inserting a new item may not be easy. The first issue becomes very
unlikely if the hashtable contains enough buckets compared to the number of items
it needs to hold, and a lot of work has actually been devoted to figuring out exactly
how large the hashtable needs to be. As for the second issue, cuckoo hashing
was proposed by Pagh and Rodler [89] as a simple, randomized way to search for
a new valid assignement upon arrival of an item: one first checks whether one of
the buckets pre-defined for the new item is available, in which case it suffices to
pick one of these; otherwise, one of the pre-defined buckets is chosen at random and
re-allocated to the new item. The same procedure is then used for the item that has
just been evicted (which is thus treated as a new item). An interesting survey [81]
reviews the state of research on cuckoo hashing as of 2009 and states some related
open questions at that time.

Formally, an instance of the cuckoo hashing scheme can be described by a bipar-
tite graph G = (L ∪ R,E) called the hashing graph (or cuckoo graph), where
L is the set of n items and R the set of m buckets. The edges adjacent to an item
l ∈ L indicate the d pre-determined buckets to which l can be assigned. To capture
the more complex versions of cuckoo hashing, where one needs to store h copies of
each item or where each bucket can hold at most k items at a time, we add respec-
tively capacity constraints bL ≡ h to the left-vertices (items) and bR ≡ k to the
right-vertices (buckets); similarly, if each (item,bucket) pair can be used at most

1.2. LOAD-BALANCING PROBLEMS 17

s times, it is indicated by the edge-capacities c ≡ s. Note that minimum number
of copies h of each items is modeled as a capacity-constraint bL in the constraint
graph; this will be required to establish a link between the feasibility of a cuckoo
hashing instance and the size of maximum capacitated matchings in the correspond-
ing hashing graph G. To illustrate the cuckoo hashing setup, Figure 1.2 shows two
different hashing graphs, with the items on the left and the buckets on the right
side. The two realizations have the same values for the parameters, i.e., the same
degrees d = 3 for the items, each item must be stored h = 4 times, each bucket
can store up to k = 3 items and each (item,bucket) pair can be used at most twice.
Note that the two graphs differ by only one edge (between the central vertices of
each part in the right figure). However, one cannot build a valid hashtable from the
hashing graph on the left, while we pointed out a valid assignement on the right
using the same notations as for capacitated matchings in Figure 1.1.

A given fixed graph G only represents a particular choice for the pre-determined
buckets associated with each item. In theory, these pre-determined buckets are de-
termined via d independent hash functions applied to each item, and we can assume
that one makes sure each item obtains d distinct buckets. This should yield for each
item a set of pre-determined buckets which is a random subset of size d choosen
uniformly at random among all such subsets of buckets and independently for each
item. Then, the hashing graph Gn,m is actually a random bipartite graph with a
constant degree d for left-vertices and Poi(dn/m) for right-vertices. As described in
Section 1.1.3, the hashing graph Gn,m almost surely converges locally weakly to a
two-step unimodular Galton-Watson limit, as the size of the system increases with
n ∼ τm.

In this context, the main question we try to answer is how large does the
hashtable need to be to handle n items chosen at random among the possible ones?
We mentioned the number of buckets m required is proportional to n with high
probability. The problem is thus to compute precisely the proportionality threshold
τ ∗ = τ ∗d,h,k,s such that, if n = τm with τ < τ ∗, in the limit of m,n → ∞ cuckoo
hashing will yield a valid hashtable with high probability.

Before proceeding to the next application, we attempt to give some intuition
on why cuckoo hashing works well. Cuckoo hashing relies on a principle called the
power of two choices : let us forget about the restriction that each bucket has a
limited capacity for now, and suppose that we want to throw the n items –just as
if they were balls– in the m buckets (and m = n for simplicity) with the goal of
minimizing the maximum number of items in any bucket. The simplest distributed
scheme for approximately balancing the load (i.e., the number of items) of each
bucket is to throw each item in a random bucket. This leads to each bucket holding
on average one item, and the maximum load is approximately logn

log logn
items with high

probability [55]. However, a very simple distributed scheme provides an exponential
improvement over this basic result, provided one throws the items sequentially: for
each item, d ≥ 2 random buckets are proposed, and one throws the item in the
least loaded of the d buckets. This method yields a maximum load of log logn

log d
+ Θ(1)

with high probability, as shown by Azar, Broder, Karlin and Upfal [10], a result
known as the power of (at least) two choices (see [83] for a survey of the techniques
used to show this type of result and the applications stemming from it). Broadly

18 CHAPTER 1. INTRODUCTION

speaking, in the hashing context, the very slowly growing log log n term tells us that
buckets with a fixed capacity will hardly ever overflow, and even then the cuckoo
hashing scheme will come into play and try to re-arrange the items to find a new
valid assignement.

The next section is about distributed CDNs. For more explainations on cuckoo
hashing, see the corresponding chapter of the thesis (Chapter 3).

1.2.2 Distributed CDNs

According to Cisco [31], the amount of multimedia traffic –the majority of which
is video– carried over the Internet nowadays is of the order of exabytes (1018) per
month and growing quickly, and most of this traffic is carried by dedicated over-
lay networks called content delivery networks (CDNs). A centralized hosting
solution for many of these contents does not seem a scalable solution, as the de-
livery of a lot of delay-sensitive contents from a large data center in the core of
the network to end-users located at the edge of the network would require massive
bandwidth provisioning. Therefore, many of the large CDNs have rather adopted a
distributed architecture, taking advantage of the low storage prices and deploying
a large number of servers and small data centers over many networks (see [37] for
a description of the challenges associated with this distributed nature and faced by
the CDN Akamai). A similar move towards distributed caching is also visible in
the content-centric approach to networking, initiated by Nelson [88] and which
realized that more than 90% of Internet traffic is due to content dissemination and
that tremendous bandwidth savings can be achieved via distributed caching. Within
this framework, the Internet Service Providers (ISPs) create a cache network by
disseminating small caches in the network –e.g., by attaching them to the routers–,
and contents are cached on their way to the end-user so that closer service points are
available should the same content be requested again. However, deploying a CDN
in such a way requires the cooperation of ISPs, which certainly involves quite a bit
of negotiations, and even then it is not clear at this point how to efficiently orga-
nize the system. Alternatively, one can take inspiration from peer-to-peer (P2P)
systems, which have become incredibly popular for file-sharing since Napster was
introduced in 1999 and with BitTorrent now accounting for more than half of all file-
sharing on the Internet. Such systems tend to be highly scalable and cost-efficient,
as users who want to participate have to provide resources as well as using them.
However, they may have a hard time providing high quality of service guarantees,
especially for delay-sensitive content such as for a Video-on-Demand (VoD) service
for example, due to the unpredictable behavior of peers (there have been nonetheless
a few attempts at deploying such systems, e.g., PPLive). For large-scale delivery
of delay-sensitive content, it is very tempting to combine some of the ideas above,
by having a (smaller) data center assisted by devices already deployed at the users’
premises, e.g., set-top boxes or triple-play gateways (e.g., as done in NaDa [106] and
the People’s CDN). Indeed, leveraging the resources (storage, upload bandwidth)
already present at the edge of the network offers considerable potential for scala-
bility, cost reduction and base performance upgrade, while the data center provides
reliability and quality of service guarantees. We call such a system, where a central

1.2. LOAD-BALANCING PROBLEMS 19

data center is assisted by small devices (which we call servers) located at the edge
of the network, an edge-assisted CDN. We stress the fact that the small servers
may have limited capabilities, which makes cheap devices eligible for that role.

In an edge-assisted CDN, as the small servers are mainly there to reduce per-
ational cost, one would want to use them as much as possible and to only direct
requests to the data center as a last resort. Therefore, to understand and design
such a system, we focus on the operation of the small servers and try to under-
stand the performance of this sub-system. As we focus mainly on delay-sensitive
contents (video streaming), when a request arrives we cannot delay it even if it
cannot be served immediately by the small servers, therefore it has to be sent to
the data center and can be viewed as lost for the small servers. We can thus adopt
a loss network model (see [64]) for this sub-system, in contrast to queueing (also
called waiting) models, where similar issues of efficient scheduling and replication
have been considered notably in [7]. As a result of the analysis of the servers’ loss
network, one can then dimension appropriately the data center to meet global per-
formance requirements. We could even imagine that the data center is hosted via a
cloud service, which allows it to dynamically adapt service capacity to meet instan-
taneous demand. The efficiency of the system constituted of the small servers alone
critically depends on two factors:

• content replication within servers, which mainly amounts to determining how
many times contents must be replicated,

• and how incoming service requests are matched to servers holding the re-
quested content.

These two issues are called the replication and the matching problems respec-
tively. The latter can be seen as a load-balancing problem, where tasks are requests
for contents and they need to be assigned servers storing the requested content.
As for the replication problem, it allows us to play with the constraints of the
load-balancing problem by modifying the set of resources which are suitable for a
particular task; we refer to this as a resource-placement problem. Ideally, the design
of solutions for these two problems should be done jointly. However, it might be
a too amibious objective at this point. Therefore, we rather focus on two partic-
ular solutions to the matching problem: an optimal solution, which might not be
practical, and a random greedy one, which is on the contrary quite simplistic and
should always be feasible. As these two particular load-balancing strategies are in a
sense extremal in the set of reasonable algorithms, understanding how they perform
and when/why their performance differ should yield fundamental insights as well as
quantitative reference points for the design of real systems. Once the performance
of the load-balancing policy can be characterized for a given fixed replication, we
can turn to the resource-placement problem and attempt to find the best possible
replication policy, at least in large system / large storage limits. More details on
distributed CDNs can be found in Chapter 4.

To make things more concrete for the reader as well as to make more appar-
ent the connection with capacitated matchings and with the random graph models
introduced previously, we now describe succinctly the edge-assisted CDN model.
In the edge-assisted CDN model, a data center is assisted by a large number m of

20 CHAPTER 1. INTRODUCTION

Figure 1.3: Content-server graph with a particular assignement of servers.

small servers. The major feature of this model is its focus on modeling the basic con-
straints of a realistic system, in particular regarding the limited capacity of servers
(in terms of storage, service and coordination) and the way requests are handled,
i.e., the matching policy. We work most of the time with a basic version of the
model, in which all the contents have the same size (and we do not allow splitting
them to parallelize service), and each server stores a fixed number d of contents and
can provide service for only one request at a time. The information of which server
stores which content is represented as a bipartite graph G = (S ∪ C,E), where S
is the set of servers, C the set of contents, and there is an edge in E between a
content c and a server s if s stores a copy of c (and is thus eligible to serve requests
for c). The contents have different popularities, given by their request arrival rates
λc, and each service takes and exponential time with mean 1. This results in an
instantaneous number of requests Rc for each content given by independent Poi(λc)
random variables. At any time, the current assignment of servers to contents forms
a capacitated matching of the graph G (with capacities Rc for the contents and 1 for
the servers). As an illustration, Figure 1.3 shows a particular content-server graph,
with the contents on the left and servers on the right. Requests are shown as red
rectangles beside the corresponding content and the contents stored by the servers
are shown in the storage space on the right of the servers. If the servers are serving
the contents as indicated by the edges in red, then one of the requests for content b
must currently be handled by the data center.

Due to the lack of coordination between the servers, it is not feasible to carefully
design the content of all the caches in a joint manner. Therefore, at best, one can
specify a number of replicas Dc for each content c, and the servers will do random
caching choices accordingly, so that the graph G will be a random bipartite graph
with a prescribed degree sequence for the contents. At worst, very little information
is known a priori on the contents, which are simply grouped into K classes of size
α1n, . . . , αKn, and the servers have instructions on the caching preferences in the
form of a distribution π ∈ P({1, . . . , K}) over the different classes. They will then
choose independently for each of their d memory slots a random content in a class
drawn from π, so that G is a random bipartite graph with a prescribed degree

1.3. INTRODUCTION TO THE CAVITY METHOD 21

distribution Poi(dmπk/nαk) for the contents of each class k. In this second case,
the random graphs admit a two-step unimodular Galton-Watson local weak limit,
as described in Section 1.1.3. However, if the precise sequence of degrees of the
contents is imposed, then it is clear that we have to impose some conditions on this
degree sequence for the graphs to have any chance to converge.

The next section explains the basics of the cavity method, which is used as a
tool in the study of load-balancing throughout this thesis.

1.3 Introduction to the cavity method

1.3.1 Context

The cavity method was proposed in 1985 by Mézard, Parisi and Virasoro [79] (see
also [77, 78]) to study spin glasses in statistical physics and more generally disordered
systems (in our case especially, random graphs in the sparse regime). The goal is
generally to compute various algebraic, combinatorial or probabilistic quantities as
the size of the system increases. In many scenarios, one can work under the heuristic
that the asymptotics of these quantities should only depend on the local geometry of
the graphs and that long-range correlations should fade away. When this heuristic
argument holds, the interest is twofold:

• firstly, the quantities of interest can be efficiently approximated via distributed,
message-passing algorithms;

• secondly, these quantities are continuous with respect to local weak conver-
gence and their limit can be defined on the local weak limit of the graphs, and
sometimes computed explicitly.

To cite only a few applications of the cavity method: on the practical side, this ap-
proach led to the survey-propagation algorithm for constraint-satisfaction problems
(see [80, 25, 74]), to the design of efficient LDPC codes [93] and to polynomial-time
approximation algorithms and asymptotic expressions for many counting or deci-
sion problems (see, e.g., [112, 13, 50, 11, 49]); and on the theoretic side, to the
ζ(2) limit in the assignement problem [2], the asymptotic enumeration of spanning
trees in large graphs [73], the phase transitions for the random graph coloring prob-
lem [86, 118]. For a more extensive presentation of the cavity method itself, the
interested reader can refer for example to [5, 4] or [34, 76].

1.3.2 The cavity method

We present here a short introduction to the cavity method, which is sufficient for
understanding the principles and problems encountered in this thesis.

Suppose we are given a set of elements S and we consider simple configurations
over S, i.e., vectors in {0, 1}S. Suppose also that to each of these configurations
x is associated an energy U(x) (also called Hamiltonian). If U(x) = +∞, we say
that x is forbidden; on the contrary if U(x) < ∞, then x is an admissible or valid

22 CHAPTER 1. INTRODUCTION

configuration. Now, consider a parameter β > 0 and the Gibbs distribution µ on
configurations over S given by

µ(x) =
e−βU(x)

Z(β)
, (1.1)

where Z(β) =
∑

x e
−βU(x) is a normalizing factor called the partition function. In

physics, the parameter β would play the role of an inverse temperature, i.e., β = 1/T ,
and the distribution µ would indicate the probability that a system of particles
is in a particular state given that they interact according to some specific local,
energy-dependent dynamics. The expected energy E[U(X)] =

∑
x U(x)µ(x) can be

computed from

E[U(X)] = − ∂

∂β
logZ(β),

and the entropy of the distribution H(β) = E[− logU(X)] from

H(1/T) = − ∂

∂T
log TZ(1/T).

Therefore, these quantities can be computed for example from the partition function
Z(β), or from the free energy function F (β) = − 1

β
logZ(β).

To better motivate the computation of the expected energy or the entropy of the
Gibbs distribution, let us describe briefly two examples where these quantities are
meaningful. The first example concerns matchings and a more complex version of
this problem is the topic of Chapter 2. Let S be the set of edges of a finite graph
(we will therefore write S = E) on a set of vertices V , and let the energy U take
the following form:

U(x) = −|x| −
∑
v∈V

log 1(|x∂v| ≤ 1),

so that U(x) = −|x| if x is a matching of G, and U(x) = +∞ otherwise and x is
a forbidden configuration. Then, µ is a distribution over the matchings of G which
weights each matching x proportionally to e−β|x|. As β → ∞, the distribution µ
concentrates on maximum matchings of G, so that expected energy at temperature
T = 0 measures the size of maximum matchings while the entropy gives the number
of maximum matchings of G:

lim
β→∞

E[U(X)] = min
x
U(x) = − max

x∈MG

|x| = M(G),

lim
β→∞

H(β) = log | arg min
x
U(x)|.

The second example we provide here is the graph-coloring problem. Suppose we
want to determine if the vertices of a graph G = (V,E) are colorable using q colors
so that no two adjacent vertices have the same color. This time, we let S be the set
of vertices V of G and U count the number of edges with the same color at both
endpoints:

U(x) =
∑
uv∈E

1(xu = xv) for x ∈ {1, . . . , q}V .

1.3. THE CAVITY METHOD 23

If the expected energy at temperature T = 0 equals 0, then the graph is q-colorable
and the limit limβ→∞H(β) gives the number of proper q-colorings; otherwise the
graph is not q-colorable.

In general, computing the partition function of a system is NP-hard. The cav-
ity method essentially aims at computing this partition function when the energy
function U is a sum of local contributions and the problem has a particular tree struc-
ture: suppose that U(x) =

∑
a∈A Ua(xa), where A is a collection of subsets of S and

xa = (xv)v∈a, and that the bipartite graph G = (S ∪A,E) is a tree, where va ∈ E if
v ∈ a. This graph is called a factor graph, and the vertices in S (resp. A) are called
the variable nodes (resp. factor nodes). Then, the Belief-Propagation (BP) or
Bethe-Peierls algorithm [90, 91] (also known as the sum-product algorithm) allows
to compute the value of Z(β) in an iterative manner: let us write ψa(xa) = e−βUa(xa),
so that µ(x) = 1

Z(β)

∏
a∈A ψa(xa), and let o be an arbitrary factor node in A; then

Z(β) =
∑
x

∏
a∈A

ψa(xa) =
∑
xo

ψo(xo)
∏
v∈o

νv→o(xv),

where messages ν between neighboring variable nodes v and factor nodes a are
defined by

νv→a(xv) =
∏

b 6=a, v∈b

νb→v(xv),

νa→v(xv) =
∑
xa\v

ψa(xa)
∏
u∈a\v

νu→a(xu).

The messages can be correctly initiated at the leaves of the treeG and then computed
iteratively while climbing the tree up to the root o. It turns out that it will be
more convenient to use normalized messages η ∝ ν so that

∑
xv
ηv→o(xv) = 1 =∑

xv
ηo→v(xv). These are defined by the following equations, which we call the BP

update equations:

ηv→a(xv) =
∏
b 6=a, v∈b ηb→v(xv)∑

yv

∏
b 6=a, v∈b ηb→v(yv)

,

ηa→v(xv) =

∑
xa\v

ψa(xa)
∏
u∈a\v ηu→a(xu)∑

y ψa(ya)
∏
u∈a\v ηu→a(yu)

.
(1.2)

Note also that we can obtain the marginal probabilities of µ at a factor node o from
the incoming BP messages η:

µ(Xo = xo) =
ψo(xo)

Z(β)

∏
v∈o

νv→o(xv) =
ψo(xo)

∏
v∈o ηv→o(xv)∑

yo
ψo(yo)

∏
v∈o ηv→o(yv)

We next define the local contributions to the partition function Z(β) and to the
free energy F (β), which are computed only from the incoming messages to the
corresponding nodes:

zv =
∑

xv

∏
a3v ηa→v(xv),

za =
∑

xa
ψa(xa)

∏
v∈a ηv→a(xv),

zav = zva =
∑

xv
ηa→v(xv)ηv→a(xv) for va ∈ E,

(1.3)

24 CHAPTER 1. INTRODUCTION

and fv = −T log zv, fa = −T log za, and fav = −T log zav. Then,

Z(β) =

∏
v zv

∏
a za∏

a,v zav
,

F (β) =
∑
v

fc +
∑
a

fa −
∑
a,v

fav.

In graphs G which are not trees, the message-passing iteration (1.2) that com-
putes the normalized BP messages η cannot be safely initiated and it is not guaran-
teed to converge, at least, not to a meaningful value. In general, it is not clear when
the BP iteration will converge. For the purpose of the explanations of this section
we therefore assume that BP converges; specifically, this issue needs to be addressed
when applying the cavity method to a particular problem. Let us consider the case
where, as the size of the system increases, the graph G = (S ∪ A,E) converges lo-
cally weakly to a distribution ρ over unimodular trees. Then, provided correlations
between BP messages decay sufficiently fast with the graph distance, which results
in continuity properties with respect to local weak convergence, the limiting distri-
bution of the BP messages η incoming to a random root of G is obtained directly on
the local weak limit ρ as the distribution of the BP messages incoming to the root of
ρ. Furthermore, as ρ is concentrated on unimodular trees, the quantities of interest
(e.g., the marginal distribution of µ around o and the local contributions (1.3) of o)
can be computed from the BP messages incoming to the root of ρ. This allows to
define a limiting object for the Gibbs measure and the partition function directly
on the local weak limit via an infinite set of local equations. Finally, when the local
weak limit is a Galton-Watson distribution ρ = GW for some degree law –as for
the random graph models discussed before–, then the local equations simplify into
recursive distributional equations (RDEs), which may be solved explicitly in some
cases to obtain an explicit formula for the quantities of interest (see the survey [3]
by Aldous and Bandyopadhyay).

1.4 Overview of the results
In this section, we present a summary of the problems addressed, along with some
relevant related work, and of the results obtained in this thesis.

1.4.1 Maximum capacitated matching via the cavity method

The cavity method has been successfully used to obtain results in many problems
of computer science, combinatorics and statistical physics. As we explained, this
method generally involves the Belief-Propagation message-passing algorithm for
computing marginals of probability distributions. Belief-Propagation has been ex-
tensively used in various domains where it has been observed to converge quickly to
meaningful limits [117, 74]. Although sufficient conditions for its convergence and
correctness exist and the theoretical understanding of what may cause BP to fail
advances [103, 58, 59, 85], there are only few cases where one can prove rigorously
its convergence and the uniqueness of its fixed points for specific problems when the
underlying graph is not a tree [111, 52, 12].

1.4. OVERVIEW OF THE RESULTS 25

The issue of convergence of BP to a unique fixed point is easily resolved when the
problem exhibits a property called correlation decay, which means that differences
in a far-away portion of the system will have negligeable effects locally and gener-
ally implies continuity with respect to local weak convergence. However, in some
cases, correlation decay fails at low (zero) temperature –a situation described as
ergodicity breaking– and then multiple fixed-points to the BP equations may exist,
which happens in particular for the problem of counting maximum matchings [119].
To resolve this issue, one can apply the cavity method at positive temperature and
then take the limit when temperature T goes to 0 (i.e., β → ∞). In the case of
maximum matchings as well as in extensions [21, 96, 70], monotonicity and unimod-
ularity arguments ensure the convergence of BP to a unique fixed point and also
allow us to take the limit as T → 0: in particular, the operator which computes the
updated messages outgoing from vertices from the other incoming messages accord-
ing to Equations (1.2) is non-increasing. Starting from the smallest possible initial
messages, this automatically constructs a convergent sequence of BP messages, as it
gives rise to two adjacent subsequences of messages (at even and odd numbers of BP
iterations). The relevant monotonicity properties were captured precisely by Salez
[96] and are related to the theory of negative association of measures initiated by
Pemantle [92]. They hold in a context where the system can be encoded with binary
values on the edges of the underlying graph and as a result involves BP with scalar
messages. As a result, one can compute the size of the largest capacitated match-
ings, with unit edge capacities, in graphs Gn = (Ln ∪ Rn, En) converging locally
weakly to two-step unimodular Galton-Watson trees GW(ΦL,ΦR) with a formula of
the following form:

lim
n→∞

1

|Ln|
M(Gn) =M(ΦL,ΦR) = inf

q∈[0,1]

{
FL(q), q = gL ◦ gR(q)

}
,

where FL is a function which computes the local contribution to a maximum capac-
itated matching around the root of the GW tree, and gL and gR are the expected
BP update operators at vertices in L and R respectively, so that q = gL ◦ gR(q) is
the two-step BP fixed-point equation. We do not give the expression for the various
functions here, as their particular form is not very informative.

Motivated in particular by the two applications of this thesis and also by the gen-
eral idea that many problems may require similar extensions, we want to go beyond
unit edge capacities in the maximum capacitated matching problem, which neces-
sarily involves non-scalar BP messages. The main obstacle here is that BP messages
essentially represent distributions over the integers, which introduces a difficulty
when trying to compare messages as P(N) is not totally ordered (contrary to the
case of binary values on the edges). Nonetheless, similar monotonicity properties
as in the scalar case hold when using the upshifted likelihood ratio (lr ↑) stochastic
order for comparing BP messages: for two probability distributions m,m′ ∈ P(N)
on integers, the lr ↑-order is defined by

m ≤lr↑ m
′ if m(i+ k + l)m′(i) ≤ m(i+ l)m′(i+ k),∀i, k, l ∈ N.

In particular, the BP update operator is non-increasing for the lr ↑-order, and we
can obtain similar convergence results as in the scalar case. Note that the relevant

26 CHAPTER 1. INTRODUCTION

monotonicity properties do not trivially hold for all the natural stochastic orders:
for example they do not hold for the strong stochastic order. The important fea-
ture of the lr ↑-order which makes it appropriate for our purpose is its preservation
with respect to conditioning on intervals, a property characteristic of the uniform
conditional stochastic order (ucso, see Whitt [113, 114]). Intuitively, such a preser-
vation property is necessary for a local property (the BP update is non-increasing)
to translate into a global effect (the even and odd iterations of BP yield adjacent
sequences of messages), because the “important” part of a message incoming to a
vertex v to determine the marginal of the Gibbs distribution (1.1) around v may
end up being any interval due to the effect of the other messages incoming to v.

As an outcome of the study of the BP update operators, we can prove con-
vergence of BP to a unique fixed point on any locally finite unimodular graph.
Then, following the cavity method, the asymptotic behavior of M(G) as the size
of G increases can be obtained in the 0 temperature limit on the local weak limit
GW(ΦL,ΦR) (defined in Section 1.1.3). Due to ergodicity breaking at temperature
0, there are however many BP fixed-points, and to identify the correct one we rea-
son as in in [96, 70]. Furthermore, we do not need to solve recursive distributional
equations on the BP messages themselves (which would be recursive equations on
distributions over distributions) but rather only RDEs over the boundaries of the
support of the BP messages, which are here intervals due to log-concavity of the BP
fixed-point messages. The expression for the asymptotic of M(G) is finally given
by Theorem 2.1, which generalizes the formulas in [96, 70]. Furthermore, it is in-
teresting to note that a similar expression is also valid for finite bipartite graphs
(Theorem 2.11), which extends a result of Chertkov [30].

1.4.2 Cuckoo hashing

In the simplest settings, a popular approach to the problem of cuckoo hashing has
been to study a certain core of the hashing graph, whose density of right-vertices
exceeds a certain value at the same time as cuckoo hashing starts failing in random
graphs of the type described above. The study of this core of the hashing graph can
be done using various techniques (combinatorics and differential equation approxi-
mation of a pealing algorithm), each of them being more or less likely to apply to
extensions of the original problem. Therefore, the thresholds for various generaliza-
tion of the basic scheme (d = 2, h = k = s = 1) have been computed step by step:
the extension to d ≥ 2 random choices was done in [35, 42, 46]; allowing each bucket
to store at most k items was done in [36, 27, 41]; the case where each item needs
to be replicated h times is the most recent, with [53] solving a restricted range of
parameters and [70] the general case. The extension where each (item,bucket) pair
can be used a maximum of s times was not covered previously. In all the cases,
the expression of the load threshold τ ∗ involves a solution of a fixed-point equation
which can be traced back to the cavity method and fixed-point messages of BP.

An alternative approach to the cuckoo hashing problem is to establish a link
with a (capacitated) matching problem, as remarked in [46, 70] and also in [35]
with a detour by XORSAT. Indeed, a partial assignement of items to buckets can
be mapped to a capacitated matching of the hashing graph G, and conversely any

1.4. OVERVIEW OF THE RESULTS 27

capacitated matching of G corresponds to a partial assignement of items to buckets,
because none of the constraints imposed by the hashing scheme can be violated due
to the capacity constraints imposed on the matching. However, for a capacitated
matching x ∈MG to map to a valid hashtable, the corresponding assignment needs
to keep h copies of each item, i.e., |x∂l| = h for every item l ∈ L. Therefore, it
is possible to build a valid hashtable whenever there exists a capacitated matching
x ∈ MG of size |x| = h|L|. At this point, we can leverage results from the study
of capacitated matchings for the random graphs considered here. This allows us to
compute the limit limm,n→∞

1
n
M(Gn,m) = M(ΦL,ΦR

τ) with n ∼ τm and where ΦL

and ΦR
τ are the joint laws for the vertex-degrees, vertex-constraints and adjacent

edge-constraints on each part (here, the degrees are fixed equal to d on Ln and
randomly drawn from Poi(dτ) on Rn, and the capacity constraints are fixed equal
to h on Ln, to k on Rn and to s on En). The threshold τ ∗ is then computed
(Theorem 3.1) as

τ ∗ = sup
{
τ : M(ΦL,ΦR

τ) = h
}

= inf
{
τ : M(ΦL,ΦR

τ) < h
}
.

Note that an additional step is needed to obtain the result above (as in [70]), as
limn→∞

1
n
M(Gn,m) = h does not prevent failure on a vanishing fraction of items. In

fact, this property that only a vanishing fraction of items cannot be stored in the
hashtable defines a second threshold τ̃ ∗ ≥ τ ∗. Fortunately, one can show that the
two thresholds are equal for the random graph models considered here.

We also explore another issue related to cuckoo hashing, which concerns schemes
with limited randomness. Indeed, a major drawback of the fully random (multiple-
choice) hashing scheme described previously is the amount of randomness involved:
the standard approach requires n independent, uniform choices of sets of d buckets
among m. Phrased differently, this means roughly d logm independent random bits
per item. Generating unbiased, perfectly independent random bits does not come
for free [122, 109]. Therefore, a lot of effort has been put into reducing the amount
of randomness needed (see [82] and references therein for an account of some of the
directions investigated so far). A candidate alternative is double hashing [56, 72],
which seems to have similar performance to the fully random scheme while requiring
only roughly 2 logm independent random bits per item: assumem is a prime number
and label the m buckets with the integers from 1 to m; for each item, independently
draw two random numbers f ∈ {1, . . . ,m} and g ∈ {1, . . . , m−1

2
}; the pre-defined set

of buckets associated with a couple (f, g) are the buckets labeled f+ig (mod m), for
i ∈ {0, . . . d − 1}. Although the reduced randomness of the double hashing scheme
is the very reason why this method could be preferred over fully random hashing, it
also makes the theoretical analyzis of its performance more difficult. Mitzenmacher
and Thaler [82, 84] managed to prove that the performance of double hashing is
essentially the same as that of fully random hashing in the balls and bins setup
of Azar, Broder, Karlin and Upfal [10] already mentioned in Section 1.2.1: they
show that the maximum load is log logn

log d
+ O(d) w.h.p. and only conjecture that the

double hashing threshold is equal to the (fully random) cuckoo hashing threshold
τ ∗. It turns out that the cavity method is very suitable to study such an extension
of the fully random cuckoo hashing scheme. Indeed, only two steps of the proof
need to be done again for the double hashing random graph model: one needs to

28 CHAPTER 1. INTRODUCTION

show that such random graphs converge a.s. locally weakly to the same two-step
unimodular Galton-Watson distribution GW(ΦL,ΦR

τ) as the original cuckoo hashing
scheme, and then one would need to perform the additional step we mentioned to
get from the threshold τ̃ ∗ to the actual threshold τ ∗. The local weak convergence
of the double hashing graphs can be proved by studying a two-step Breadth-First
Search Exploration (BFS) of the hashing graph, which is a variation of the single-
step BFS used to prove local weak convergence of the classical (unipartite) random
graphs (see e.g., [20]). We stop after showing that the second threshold τ̃ ∗ of double
hashing is equal to the load threshold τ ∗ of fully random hashing, as we consider it
is sufficient to demonstrate the potential of the cavity method for this problem.

1.4.3 Load balancing and resource placement in distributed
CDNs

The content replication policy within servers of a CDN strongly influences the per-
formance of the system, therefore the problem of optimizing this replication has been
considered under many viewpoints, with different modeling assumptions and perfor-
mance metrics leading naturally to different content replication proposals. However,
there is one replication strategy which arises frequently under many different models:
it is proportional replication, which keeps for each content a number of copies
proportional to its popularity. Using large deviation inequalities, [101] investigated
this replication under the edge-CDN model with an optimal matching policy, and
proved that it is efficient for a large system and large storage.

In order to characterize more precisely the performance of the proportional repli-
cation, we can use the connection with capacitated matchings. Indeed, if we allow
requests to be re-allocated at any time between servers or even with the data center,
then the performance of the system under optimal matching is given by the expected
size of a maximum capacitated matching of the graph G (computed in Theorem 2.1),
with the capacities mentioned before. This result can in fact be obtained under a
richer model than the one explained above: the addition of arbitrary integer edge-
capacities allows to deal with the case where the servers have non-unitary service
capacities, and the contents may have different sizes as long as they are segmented
into constant size coded segments. However, this more complex model is not very
easy to manipulate, so we prefer to stick to the basic model to analyse the perfor-
mance asymptotics. For the model where the contents are grouped into popularity
classes, in the limit of large storage size we can discriminate between the multiple
fixed-points of BP at 0 temperature depending on the value of the load ρ. The
asymptotic behavior of the correct fixed-point of BP then yields a large deviation
principle for the inefficiency ι of the system (Proposition 4.2):

log(ι)

d

d→∞→

− infk

πk
ταk

if ρ < 1,

log
(∑K

k=1 πke
−λk
)

if ρ > 1,

min
(
− infk

πk
ταk

, log
(∑K

i=k πke
−λk
))

if ρ = 1,

where we recall that π is the distribution servers use to choose which class of content
to cache, αk is the fraction of contents in class k, λk is the request arrival rate for

1.4. OVERVIEW OF THE RESULTS 29

class k, and τ ∼ n/m. It turns out that inefficiency decays exponentially fast to
0 as storage increases for any reasonable replication policy (therefore the asymp-
totic efficiency property shown before for proportional replication is actually a quite
common property) and the decay exponents have simple expressions pointing out
the very local nature of the events that typically cause inefficiency. Furthermore,
from the expressions obtained, it is easy to compute the asymptotics of the optimal
replication of contents for the various load regimes. Surprisingly, proportional repli-
cation is never asymptotically optimal: it favors too much the popular contents in
the underloaded regime, and not enough in the overloaded regime.

The performance under optimal matching being better understood, we turn to
the study of the random greedy matching algorithm. The first question there is
whether the inefficiency of the system will also decay exponentially fast to 0 under
greedy matching. Secondly, we seek understanding of how to efficiently replicate
contents in this setup. To give an answer to the first question we consider a static
setting where all the contents have the same popularity and the requests for the
contents arrive in random order. Then, it is a classical approach to approximate by
differential equations [33] the evolution of this large system under greedy matching.
Unfortunately, we cannot solve these differential equations. However, they are suf-
ficient to obtain the asymptotic behavior of the inefficiency for large storage. The
inefficiency under greedy matching still decays exponentially fast to 0 (although
slower than for optimal matching) for non-critical loads, but it undergoes a phase
transition at critical load ρ = 1:

ι ≤ e−
d
τ
|ρ−1|(1+o(1)) if ρ 6= 1,

ι = τ log 2
d

+ o(1/d) if ρ = 1.

This hints that one may need to go beyond greedy matching for certain applica-
tions, where for example regions of the system may naturally be maintained in a
critical regime due to load-balancing happening at higher levels. Nevertheless, as
long as the system stays in the underloaded regime ρ < 1, it makes sense to study
the performance of replication strategies under greedy matching. In order to un-
derstand the influence of the replication of a particular content c, we approximate
the evolution of the number Zc of available replicas of c by a simple Markov chain,
based on asymptotic behaviors and a mean-field heuristic. This allows us to obtain
an expression for the stationary distribution of Zc as well as for the stationary loss
rate γc (Equation (4.21)), with the following large deviation principle:

γc ≈ e−Dc| ln ρ|(1+o(1)),

where we recall that Dc is the number of replicas for content c. Note that this ex-
pression again confirms the exponential decay of the inefficiency as storage increases
and the phase transition at critical load, although the expressions for the decay
exponents cannot be compared as the models are slightly different (“batch arrival”
against stationary distribution). The accuracy of these approximations is confirmed
by simulations. A simple optimization problem then gives the asymptotic expres-
sion for the optimal replication of contents (which is uniform with corrections that
are logarithmic in the storage size) and the general principle that one should aim
to equalize the loss rates of the contents. Guided by this principle and inspired by

30 CHAPTER 1. INTRODUCTION

replication strategies based on eviction rules from cache networks, we design adap-
tive replication schemes reacting to losses in the system. Finally, we can leverage
the precise expression obtained for the loss rate to propose a virtual loss mechanism
which anticipate losses in order to react faster, and still manage to equalize the
loss rates. The static optimized replication as well as the dynamic algorithms are
compared in simulations to the proportional replication policy and show significant
improvements. Generally, the principle of equalizing the loss rates is supported by
the simulations, and the speed enhancement provided by the virtual loss method is
quite significant.

Chapter 2

Maximum capacitated matching via
the cavity method

Towards answering questions related to load-balancing in random environments,
in terms of average performance as well as guaranteed maximum load, we study
capacitated matchings in random graphs via the cavity method. Our main result
is a law of large numbers characterizing the asymptotic maximum size capacitated
matching in the limit of large bipartite random graphs, when the graphs admit a
local weak limit that is a tree. An analysis of belief propagation algorithms (BP) with
multivariate belief vectors underlies the proof. In particular, we show convergence of
the corresponding BP by exploiting monotonicity of the belief vectors with respect
to the so-called upshifted likelihood ratio stochastic order, providing a new set of
structural conditions which ensure convergence of BP.

31

32 CHAPTER 2. MAXIMUM CAPACITATED MATCHING

2.1 Introduction

Belief Propagation (BP) is a popular message-passing algorithm for determining
approximate marginal distributions in Bayesian networks [91] and statistical physics
[76] or for decoding LDPC codes [93]. The popularity of BP stems from its successful
application to very diverse contexts where it has been observed to converge quickly
to meaningful limits [117, 74]. In contrast, relatively few theoretical results are
available to prove rigorously its convergence and uniqueness of its fixed points when
the underlying graph is not a tree [12].

In conjunction with the local weak convergence [5], BP has also been used as
an analytical tool to study combinatorial optimization problems on random graphs:
through a study of its fixed points, one can determine so-called Recursive Distribu-
tional Equations (RDE) associated with specific combinatorial problems. In turn,
these RDEs determine the asymptotic behaviour of solutions to the associated com-
binatorial problems in the limit of large instances. Representative results in this
vein concern matchings [21], spanning subgraphs with degree constraints [96] and
orientability of random hypergraphs [70].

All these problems can be encoded with binary values on the edges of the un-
derlying graph and these contexts involve BP with scalar messages. A key step in
these results consists in showing monotonicity of the BP message-passing routine
with respect to the input messages. As an auxiliary result, the analyses of [96] and
[70] provide structural monotonicity properties under which BP is guaranteed to
converge (when messages are scalar).

The present work is in line with [96, 70] and contributes to a rigorous formaliza-
tion of the cavity method, originating from statistical physics [79, 67], and applied
here to a generalized matching problem [71]. The initial motivation is the analysis
of generalized matching problems in bipartite graphs with both edge and node ca-
pacities. This generic problem has several applications. In particular, it accurately
models the service capacity of distributed content delivery networks under various
content encoding scenarios, by letting nodes of the bipartite graph represent either
contents or servers. It also models problem instances of cuckoo hashing, where in
that context nodes represent either objects or keys to be matched.

Previous studies of these two problems [70] essentially required unit edge capac-
ities, which in turn ensured that the underlying BP involved only scalar messages.
It is however necessary to go beyond such unit edge capacities to accurately model
general server capacities and various content coding schemes in the distributed con-
tent delivery network case (see Chapter 4). The extension to general edge capacities
is also interesting in the context of cuckoo hashing when keys can represent sets of
addresses to be matched to objects (see Chapter 3).

Our main contribution is Theorem 2.1, a law of large numbers characterizing the
asymptotic size of maximum size generalized matchings in random bipartite graphs
in terms of RDEs. It is stated in Section 2.2.

Besides obtaining these new laws of large numbers, our results also have algo-
rithmic implications. Indeed to prove Theorem 2.1, in Section 2.3 we state Propo-
sition 2.2, giving simple continuity and monotonicity conditions on the message-
passing routine of BP which guarantee its convergence to a unique fixed-point. This

2.2. ASYMPTOTIC SIZE OF MAXIMUM CAPACITATED MATCHINGS 33

result is shown to apply in the present context for the so-called upshifted likelihood
ratio stochastic order. Beyond its application to the present matching problem, this
structural result might hold under other contexts, and with stochastic orders possi-
bly distinct from the upshifted likelihood ratio order to establish convergence of BP
in the case of multivariate messages.

The overall proof strategy is exposed in Section 2.3. The local properties of the
BP update and estimate routines that will be useful are explained in Section 2.4.
We then exploit these properties to demonstrate convergence of BP in finite graphs
in Section 2.5 and show that the BP estimates are asymptotically exact for asymp-
totically tree-like graphs in Section 2.6, which proves Theorem 2.1. Finally, in
Section 2.7 we present exactness results for the case of finite bipartite graphs.

2.2 Asymptotic size of maximum capacitated
matchings

Let G = (V,E) be a finite graph, with additionally integer constraints bv attached
to vertices v ∈ V and integer constraints ce attached to edges e ∈ E. Recall that a
vector x = (xe)e∈E ∈ NE is called a capacitated matching of G if

∀e ∈ E, 0 ≤ xe ≤ ce and ∀v ∈ V,
∑
e∈∂v

xe ≤ bv,

and we denote by M(G) the maximum size of a capacitated matching of G. Our
aim is to characterize the behaviour of M(G)/|V | for large graphs G in the form of
a law of large numbers as |V | goes to infinity.

We focus mainly on sequences of graphs (Gn)n∈N which converge locally weakly
towards a Galton-Watson distribution. In particular, for the applications considered
in this thesis, the graphs are bipartite graphs G = (L ∪ R,E) and their local weak
limit is a bipartite GW distribution GW with joint laws ΦL and ΦR for the degree
distributions, the vertex-constraints and the adjacent edge-constraints (Dv, Bv, C∂v)
of each vertex v depending on whether it is in L or R. To sample a tree from GW ,
assuming the root is in L (the other case being totally symmetrical), we first draw
a sample from ΦL for the root o. Then, the parameters of its descendants at even
and odd generations are drawn from size-biased offspring distributions Φ̃L and Φ̃R

respectively, conditionally on the capacity of the edge linking them to their parent.
The size-biased offspring distributions Φ̃L and Φ̃R are defined by

Φ̃L
k,b,{c1,...,ck}|c =

ΦL
k+1,b,{c,c1,...,ck}(1 +

∑k
i=1 1(ci = c))∑

d′,b′,{c1,...,c′d′−1
}
ΦL
d′,b′,{c,c′1,...,c′d−1}

(1 +
∑d′−1

i=1 1(c′i = c))
,

and similarly for R. We denote the offspring, vertex-constraints and edge-constraints
sampled from the sized biased distributions, say from Φ̃L, as D̃L, B̃L and C̃L. Note
that the distributions ΦL and ΦR have to satisfy a consistency constraint, which
imposes that the probability of edges with a given capacity c is the same seen from

34 CHAPTER 2. MAXIMUM CAPACITATED MATCHING

vertices in L and in R:

1

E[DL]
E

DL∑
i=1

1(CL
i = c) =

1

E[DR]
E

DR∑
i=1

1(CR
i = c).

Before stating the main theorem of this chapter, we define the following nota-
tions: we let [z]yx = max {x,min{y, z}} and (z)+ = max{z, 0}.

Theorem 2.1 (Maximum capacitated matching for Galton-Watson limits). Let
(Gn)n∈N be a sequence of bipartite graphs, with Gn = (Ln ∪ Rn, En), converging
locally weakly towards a two-step unimodular Galton-Watson distribution with laws
ΦL and ΦR for the degree distributions, the vertex-constraints and the adjacent edge-
constraints (Dv, Bv, C∂v) for vertex v. Provided E[BL] and E[BR] are finite, the limit
M(ΦL,ΦR) = limn→∞M(Gn)/|Ln| exists and equals

M(ΦL,ΦR) = inf

{
E
[
min

{
BL,

∑DL

i=1 Xi(C
L
i)
}]

+E[DL]
E[DR]

E

[(
BR −

∑DR

i=1

[
BR −

∑
j 6=i Yj(C

R
j)
]CRi

0

)+

1
(
BR <

∑DR

i=1C
R
i

)]}

where for all i, (Xi(c), Yi(c))c∈N is an independent copy of (X(c), Y (c))c∈N, and the
infimum is taken over distributions for (X(c), Y (c))c∈N satisfying the RDE

Y (c) =

B̃L −

D̃L∑
i=1

Xi(C̃
L
i)

c
0

∣∣∣∣∣CL
0 = c

 ;

X(c) =

B̃R −

D̃R∑
i=1

Yi(C̃
R
i)

c
0

∣∣∣∣∣CR
0 = c

 .

Remark 2.1. A similar result holds when the graphs are not bipartite; the limiting
tree is then simply a Galton-Watson tree described by a joint distribution Φ. We
set ΦL = ΦR = Φ, and the formula in Theorem 2.1 then yields limn→∞

2M(Gn)
|Vn| =

M(Φ,Φ).

2.3 Main proof elements

We start with a high level description of the path followed towards Theorem 2.1.
The proof strategy uses a detour, by introducing a finite activity parameter λ > 0,
which plays the role of e−β in Section 1.3.2. For a given finite graph G, a Gibbs
distribution µλG is defined on edge occupancy parameters x (Section 2.3.1) such that
an average under µλG approaches the quantity of interest M(G)/|V | as λ tends to
infinity. Instead of considering directly the limit of this parameter over a series of
converging graphs Gn, we take an indirect route, changing the order of limits over
λ and n.

2.3. MAIN PROOF ELEMENTS 35

We thus first determine for fixed λ the asymptotics in n of averages under µλGn .
This is where BP comes into play. We characterize the behaviour of BP associated
with µλG on finite G (Section 2.3.2), establishing its convergence to a unique fixed
point thanks to structural properties of monotonicity for the upshifted likelihood
ratio order, and of log-concavity of messages (Sections 2.4 and 2.5). This allows us
to show that limits over n of averages under µλGn are characterized by fixed point
relations à la BP. Taking limits over λ → ∞, one derives from these fixed points
the RDEs appearing in the statement of Theorem 2.1. It then remains to justify
interchange of limits in λ and n. These last three steps are handled similarly to [70].

Before we proceed, we introduce some necessary notation. Letters or symbols
in bold such as x denote collections of objects (xi)i∈I for some set I. For a subset
S of I, xS is the sub-collection (xi)i∈S and |xS| :=

∑
i∈S xi is the L1-norm of xS.

Inequalities between collections of items should be understood componentwise, thus
x ≤ c means xi ≤ ci for all i ∈ I. For distributionsmi, we letmS(x) :=

∏
i∈Smi(xi).

When summing such terms as in
∑

x∈NS :|x|≤b, x≤c mS(x), we shall omit the constraint
x ∈ NS. Similarly, we let ∗Sm = ∗i∈Smi, where ∗ is the convolution of two vectors
(will be defined in Section 2.4).

Finally, we will work most of the time as if bv ≤ |c∂v| for all v ∈ V and ce ≤ bv
for all e ∈ ∂v. If one of these assumptions were not verified, we would have to
replace bv by min{bv, |c∂v|} and cuv by min{cuv, bu, bv} everywhere, which would
quickly become cumbersome. However, note that these considerations have been
taken care of in the expression of Theorem 2.1 with the otherwise useless term
1
(
BR <

∑DR

i=1C
R
i

)
.

2.3.1 Gibbs measure

Let G = (V,E) be a finite graph, with collections of vertex- and edge-constraints
b = (bv)v∈V and c = (ce)e∈E. The Gibbs measure at activity parameter λ ∈ R+ on
the set of all vectors in NE is then defined, for x ∈ NE, as

µλG(x) =
λ|x|

ZG(λ)
1(x ∈M(G))

=
λ|x|

ZG(λ)

∏
v∈V

1(
∑
e∈∂v

xe ≤ bv)
∏
e∈E

1(xe ≤ ce),

where ZG(λ) is a normalization factor called partition function.
When λ → ∞, µλG tends to the uniform probability measure on the set of all

allocations of G of maximum size. Thus, limλ→∞ µG(|X|) = M(G), where µλG(|X|)
is the expected size of a random allocation X drawn according to µλG. Hence, we
can compute M(G)/|V | as follows:

M(G)

|V |
= lim

λ→∞
µλG

(∑
v∈V

1

|V |

∑
e∈∂vXe

2

)

=
1

2
lim
λ→∞

E

[
µλG

(∑
e∈∂o

Xe

)]
, (2.1)

36 CHAPTER 2. MAXIMUM CAPACITATED MATCHING

where o is a root-vertex chosen uniformly at random among all vertices in V , and
the first expectation is with respect to the choice of o.

2.3.2 Associated BP message passing

We introduce the set
−→
E of directed edges of G comprising two directed edges −→uv

and −→vu for each undirected edge uv ∈ E. We also define
−→
∂v as the set of edges

directed towards vertex v ∈ V ,
←−
∂v as the set of edges directed outwards from v, and−→

∂e := (−→wv)w∈∂v\u if −→e is the directed edge −→vu.
An allocation puts an integer weight on each edge of the graph. Accordingly the

messages to be sent along each edge are distributions over the integers. We let P
be the set of all probability distributions on integers with bounded support, i.e.

P =
{
p ∈ [0, 1]N;

∑
i∈N

p(i) = 1 and ∃k ∈ N such that p(i) = 0,∀i > k
}
,

and P̃ the set of distributions in P whose support is an interval containing 0.
A message on directed edge−→e with capacity ce is a distribution in P with support

in {0, . . . , ce}. The message to send on edge −→e outgoing from vertex v is computed
from the messages incoming to v on the other edges via

R(λ)
−→e [m](x) =

λx1(x ≤ cvu)
∑
|y|≤bv−xm∂−→vu(y)∑

t≤cvu λ
t
∑
|y|≤bv−tm∂−→vu(y)

,

where we introduced the operator R(λ)
−→e : P̃

−→
∂e → P̃ . For notational convenience, we

write R(λ)
−→e [m] instead of R(λ)

−→e [m−→
∂e

]. We also write R−→e for R(1)
−→e . The two operators

are linked via the relationship

R(λ)
−→e [m](x) =

λxR−→e [m](x)∑
t≥0 λ

tR−→e [m](t)
.

We also define an operator Dv : P̃
−→
∂v → R+ meant to approximate the average

occupancy at a vertex v under µλG from the messages incoming to v:

Dv[m] =

∑
|x|≤bv |x|m−→∂v(x)∑
|x|≤bv m−→∂v(x)

.

Finally we denote by R(λ)
G the operator that performs the action of all the R(λ)

−→e

for all −→e simultaneously, i.e., R(λ)
G [m] =

(
R(λ)
−→e [m]

)
−→e ∈
−→
E

(the same type of notation
will be used for other operators). It is well known that belief propagation converges
and is exact on finite trees [76]:

Proposition 2.1. If the graph G is a finite tree, the fixed point equation m =

R(λ)
G [m] admits a unique solution m(λ) ∈ P̃

−→
E , and it satisfies for every vertex v:

µλG

(∑
e∈∂v

Xe

)
= Dv[m(λ)].

2.4. STRUCTURAL PROPERTIES OF LOCAL OPERATORS 37

However, to be able to take the limit as the activity parameter λ goes to infinity
as well as to deal with cases when G is not a tree anymore, we need to study further
the operators R−→e and Dv, which we term the local operators.

2.4 Structural properties of local operators
In this section, we obtain monotonicity properties for the operators R−→e and Dv
that will ensure convergence of belief propagation, but for that we need to decide
which order to use for distributions in P . One would expect the operator R−→e to
be non-increasing in some sense (as it is the case in [96, 70], where the inputs to
the operators are real values instead of vectors), however this does not hold if we
use the strong stochastic order on distributions. We will show that another order,
namely the upshifted likelihood-ratio order, is more adapted. We focus on the one-
hop neighborhood of a vertex v of a graph G, i.e., on vertex v and its set ∂v of
incident edges. We thus only consider the directed edges in

−→
∂v ∪

←−
∂v. We let bv be

the vertex-constraint at v and c = (ce)e∈∂v be the collection of the edge-constraints
on the edges in ∂v.

As λ → ∞, we will have to deal with limiting messages that may not have 0
in their support. We thus define α−→e as the infimum of the support of m−→e ∈ P ,
i.e., α−→e = min{x ∈ N : m−→e (x) > 0}. When there may be confusion, we will write
α(m−→e) for the infimum of the support of m−→e . We also extend the definition of the
local operators given previously so that they allow inputs with arbitrary supports in
N: for an edge −→e outgoing from vertex v, we define R−→e : P

−→
∂e → P̃ , Dv : P

−→
∂v → R+

and S−→e : N
−→
∂e → N as

R−→e [m](x) =

{
1(x≤ce)

∑
|y|≤bv−xm−→∂e(y)∑

t≤ce
∑
|y|≤bv−tm−→∂e(y)

χ0(x) := 1(x = 0)

if |α−→
∂e
| ≤ bv

otherwise (2.2)

Dv[m] =

{ ∑
|x|≤bv |x|m−→∂v(x)∑
|x|≤bv m−→

∂v
(x)

bv

if |α−→
∂v
| ≤ bv

otherwise (2.3)

S−→e (x) =
[
bv − |x−→∂e|

]ce
0
. (2.4)

Note that the support of R−→e [m] is {0, . . . ,S−→e (α)}.
Among the many stochastic orders for comparing distributions (see e.g., [87]),

the one best adapted to the structure of operators R−→e and Dv is the so-called
upshifted likelihood-ratio stochastic order (abbreviated lr ↑). For two vectors m and
m′ in RN, we say that m is smaller than m′ (for the lr ↑ stochastic order) and we
write m ≤lr↑ m

′ if

m(i+ k + l)m′(i) ≤ m(i+ l)m′(i+ k), ∀i, k, l ∈ N.

If m ≤lr↑ m
′, then α(m) ≤ α(m′) and a similar statement holds for the supremum

of the support of the two vectors. We will almost always use the lr ↑-order when
comparing distributions.

We shall also need the following definition. A distribution (pj)j≥0 is log-concave
if its support is an interval and pipi+2 ≤ p2

i+1, for all i ∈ N. This property has strong

38 CHAPTER 2. MAXIMUM CAPACITATED MATCHING

ties with the lr ↑-order. In particular one can note that p is log-concave if and only
if p ≤lr↑ p. We let Plc ⊂ P be the set of all log-concave distributions over integers
with finite support, and P̃lc = P̃ ∩ Plc:

Plc =
{
p ∈ [0, 1]N;

∑
i∈N

p(i) = 1, p is log-concave,

and ∃k ∈ N such that p(i) = 0,∀i > k
}
.

The key result of this Section is then the following:

Proposition 2.2 (Monotonicity of the local operators for the lr ↑-order). The op-
erator R(λ)

−→e is non-increasing; furthermore, if the inputs of R(λ)
−→e are log-concave,

then the output is also log-concave. The operator Dv is non-decreasing, and strictly
increasing if all its inputs are log-concave with 0 in their support.

The proof will rely on the following lemma from [98] establishing stability of
lr ↑-order w.r.t. convolution ∗, where m ∗m′(x) =

∑
ym(y)m′(x− y):

Lemma 2.1. For a set
−→
S of directed edges, if m1−→

S
≤lr↑ m

2−→
S
in P

−→
S , then ∗−→

S
m1 ≤lr↑

∗−→
S
m2.

We shall also need the following notions:

• the reweighting of a vectorm by a vector p is defined bym�p(x) := m(x)p(x)∑
y∈Nm(y)p(y)

for x ∈ N, for p and m with non-disjoint supports and |p| < ∞ or |m| < ∞.
If p or m is in P , then m � p ∈ P . Note that R(λ)

−→e [m] = λN � R−→e [m], where
λN = (λx)x∈N.

• the shifted reversal of a vector p is defined by p�(x) = p(b − x)1(x ≤ b) for
b, x ∈ N; if p ∈ P and its support is included in [0, b], then p� ∈ P as well. We
did not mention what b is in the previous definition, because we are going to
use different values of b (and hence in fact different operators) when applying
the shifted reversal operator to different vectors. The rule will always be that
the value of b that must be used when applying � to a vector p−→e associated to
the directed edge −→e is the vertex-constraint bv of the tail v of −→e .

It is straightforward to check that

Lemma 2.2. Reweighting preserves the lr ↑-order; shifted reversal reverses the lr ↑-
order.

Note that by the previous lemma it suffices to prove the results of Proposition 2.2
for R−→e and they will then extend to R(λ)

−→e .

Proof of Proposition 2.2. Let −→e be an edge outgoing from vertex v, and m1−→
∂v
,m2−→

∂v
∈

P
−→
∂v such that m1−→

∂v
≤lr↑ m2−→

∂v
. Firstly, if |α2−→

∂e
| ≥ bv, then R−→e [m2] = χ0 and

automatically R−→e [m1] ≥lr↑ χ0 = R−→e [m2]. Then, if |α2−→
∂e
| ≤ bv, we also have

|α1−→
∂e
| ≤ |α2−→

∂e
| ≤ bv. Let χ[0,bv](x) = 1(0 ≤ x ≤ bv) and θi−→e = ∗−→

∂e
mi; we have

2.4. STRUCTURAL PROPERTIES OF LOCAL OPERATORS 39

χ[0,bv] ∗ θi−→e (x) =
∑

x−bv≤|y|≤xm
i−→
∂e

(y). χ[0,bv] is log-concave, so χ[0,bv] ≤lr↑ χ[0,bv]

and Lemma 2.1 then implies χ[0,bv] ∗ θ1−→e ≤lr↑ χ[0,bv] ∗ θ2−→e . Lemma 2.2 then says(
θ1−→e

)� ≥lr↑
(
θ2−→e

)�. It is easy to check that

R−→e [mi] = χ[0,ce] �
(
χ[0,bv] ∗−→∂e m

i
)�

; (2.5)

and furthermore, as
(
χ[0,bv] ∗−→∂e m

i
)�

(0) > 0, Lemma 2.2 again implies R−→e [m1] ≥lr↑
R−→e [m2].

If now m−→
∂e
∈ P

−→
∂e
lc , then m−→

∂e
≤lr↑ m−→

∂e
and R−→e [m] ≥lr↑ R−→e [m], which shows

R−→e [m] ∈ Plc.
Similarly, if |α2−→

∂v
| ≥ bv then Dv[m2] = bv and automatically Dv[m1] ≤ bv =

Dv[m2]. If now |α2−→
∂v
| < bv, we also have |α1−→

∂v
| < bv. Lemma 2.1 shows θ1

v =

∗−→
∂v
m1 ≤lr↑ θ

2
v = ∗−→

∂v
m2. As |αi| ≤ bv, Lemma 2.2 says χ[0,bv] � θ1

v ≤lr↑ χ[0,bv] � θ2
v.

This implies that the mean of χ[0,bv] � θ1
v is no larger than that of χ[0,bv] � θ2

v, which is
exactly Dv[m1] ≤ Dv[m2].

Furthermore, if m1−→
∂v

<lr↑ m2−→
∂v

in P
−→
∂v
lc and |α1−→

∂v
| = |α2−→

∂v
| = 0, then a direct

calculation will shows that χ[0,bv] � θ1
v <lr↑ χ[0,bv] � θ2

v, which implies Dv[m1] < Dv[m2].
More precisely, fix −→e ∈

−→
∂v; it is sufficient to work with m1

−→e ′ = m2
−→e ′ for all

−→e ′ 6= −→e ,
as then the loose inequality obtained before allows us to conclude. Then, there exists
a minimum i ∈ N such thatm1−→e (i+1)m2−→e (i) < m1−→e (i)m2−→e (i+1). It is then immediate
that θ1

v(i+1)θ2
v(i) < θ1

v(i)θ
2
v(i+1) as the only term differing between the two sides is

the one for which we have strict inequality. This implies (θ1
v(x))x≤bv <lr↑ (θ2

v(x))x≤bv ,
as we already obtained the loose inequality. For these vectors, reweighting by χ[0,bv]

preserves the strict lr ↑-ordering, thus we have χ[0,bv] �θ1
v <lr↑ χ[0,bv] �θ2

v as claimed.

To pave the way for the analysis of the limit λ → ∞, we distinguish between
two collections of messages m−→

∂v
∈ P

−→
∂v and n−→

∂v
∈ P̃

−→
∂v, and we define β−→e as the

supremum of the support of n−→e ∈ P̃ , i.e., β−→e = max{x ∈ N : n−→e (x) > 0}. Again,
when there may be confusion, we will write β(n−→e) for the supremum of the support
of n−→e .

We also introduce an additional operator: for an edge −→e outgoing from v we
define Q(λ)

−→e : P̃
−→
∂e → P̃ by Q(λ)

−→e [n] = R(λ)
−→e [λN � n], where λN � n =

(
λN � n−→e

)
−→e ∈
−→
E
.

As reweighting preserves the lr ↑-order, the operator Q(λ)
−→e is non-increasing. It also

verifies the following useful monotonicity property with respect to λ:

Proposition 2.3 (Monotonicity in λ). For n−→
∂e
∈ P̃

−→
∂e, the mapping λ 7→ Q(λ)

−→e [n] is
non-decreasing.

Proof. Let −→e be an edge outgoing from v, and n−→
∂e
∈ P̃

−→
∂e. First-of-all, the support

of the vectors considered is independent of λ ∈ R+. We will use the expression of
Re from equation (2.5). It is easy to check that

Q(λ)
−→e [n] = λN � χ[0,ce] �

(
χ[0,bv] ∗−→∂e

(
λN � n

))�
= χ[0,ce] �

((
λN
)� ∗−→

∂e
n
)�
,

40 CHAPTER 2. MAXIMUM CAPACITATED MATCHING

which shows that Q(λ)
−→e [n] is non-decreasing in λ (as shifted reversal is the only

operator used which reverses the lr ↑-order instead of preserving it, and it is applied
twice to λN).

Proposition 2.3 allows us to look at the limit of Q(λ)
−→e as λ→∞. We thus define

yet another operator, allowing inputs with arbitrary supports in N: for an edge −→e
outgoing from vertex v, we define Q−→e : P̃

−→
∂e → P as

Q−→e [n](x) =

{
1(x≤ce)

∑
|y|=bv−x n−→∂e(y)∑

t≤ce
∑
|y|=bv−t n−→∂e(y)

χce(x)

if |β−→
∂e
| ≥ bv − ce

otherwise (2.6)

Note that the support of Q−→e [n] is {S−→e (β), . . . , ce}. We now establish the following
result:

Proposition 2.4 (Continuity for log-concave inputs and limiting operators). The
operators R−→e and Dv given by equations (2.2),(2.3) are continuous for the L1 norm
for inputs in P̃lc. Also, Q−→e defined in equation (2.6) satisfies Q−→e [n] = lim ↑λ→∞
Q(λ)
−→e [n] for any n−→

∂e
∈ P̃

−→
∂e.

Proof. Consider a sequence (m
(k)
−→
∂v

)k∈N in P̃
−→
∂v
lc converging towards m−→

∂v
, which thus

belongs to P
−→
∂v
lc . Let −→e be an edge outgoing from v:

R−→e [m(k)](x) =
1(x ≤ ce)

∑
|y|≤bv−xm

(k)
−→
∂e

(y)∑
t≤ce

∑
|y|≤bv−tm

(k)
−→
∂e

(y)

If |α−→
∂e
| ≤ bv, then the expression above is clearly continous. If |α−→

∂e
| ≥ bv, then

the numerator is equivalent as k → ∞ to
∑
|y|=bv m

(k)
−→
∂e

(y) and the numerator to∑
|y|=bv−xm

(k)
−→
∂e

(y), for x ≤ ce. Then,

lim
k→∞
R−→e [m(k)](x) = χ0(x).

A similar reasoning applies to Dv:

Dv[m(k)] =

∑
|x|≤bv |x|m

(k)
−→
∂v

(x)∑
|x|≤bv m

(k)
−→
∂v

(x)

The expression above is clearly continous when |α−→
∂v
| ≤ bv. If |α−→∂v| ≥ bv, then the de-

nominator is equivalent to
∑
|x|=bv bvm

(k)
−→
∂v

(x) and the numerator to
∑
|x|=bv m

(k)
−→
∂v

(x).
So,

lim
k→∞
Dv[m(k)] = bv.

We now turn to the operator Q−→e . Let n−→∂e ∈ P̃
−→
∂e, we have

Q(λ)
−→e [n](x) =

1(x ≤ ce)λ
x
∑
|y|≤bv−xe λ

|y|n−→
∂e

(y)∑
t≤ce λ

t
∑
|y|≤bv−t λ

|y|n−→
∂e

(y)

2.5. FINITE GRAPHS 41

Suppose that |β−→
∂e
| ≥ bv − ce, then the denominator of the expression above is

equivalent as λ → ∞ to λbv
∑

bv−ce≤|y|≤bv n−→∂e(y) > 0 and the numerator to 1(x ≤
ce)λ

bv
∑
|y|=bv−xe n−→∂e(y) + o(λbv). Hence,

lim
λ→∞
Q(λ)
−→e [n](x) =

1(x ≤ ce)
∑
|y|=bv−xe n−→∂e(y)∑

bv−ce≤|y|≤bv n−→∂e(y)
.

Suppose now that |β−→
∂e
| < bv − ce. The denominator is equivalent to

λce+|β−→∂e|
∑

|y|=|β−→
∂e
|

n−→
∂e

(y) > 0

and the numerator to

1(x ≤ ce)λ
x+|β−→

∂e
|
∑

|y|=|β−→
∂e
|

n−→
∂e

(y) + o(λce+|β−→∂e|).

Thus,
lim
λ→∞
Q(λ)
−→e [n](x) = χce(x).

It follows naturally that Q−→e is non-increasing. Moreover, we can extend the
results of Proposition 2.2 to the extended operators, i.e., R−→e is still non-increasing
and Dv non-decreasing.

2.5 Finite graphs
Although we will work later (in Section 2.6) in the more general framework of
unimodular graphs, we begin with the more intuitive case of finite graphs, so as to
better explain the mechanisms of the proof. We exploit the properties of the local
operators shown in the previous section to show convergence of BP to fixed-point
messages m(λ) in finite graphs at finite activity parameter λ, and compute the limit
as λ→∞ of Dv[m(λ)] for any vertex v. However, this limit will not always be equal
to the limit of the marginal of µλG at v of equation (2.1), i.e., BP is not exact in all
graph. As for finite graphs, we have already mentionned that BP is exact in finite
trees, and it will further be shown in the appendix that it is also exact in finite
bipartite graphs (as an extension of [30]).

The main result of this section is the following:

Proposition 2.5 (Convergence of BP to a unique fixed point). Synchronous BP
message updates according to mt+1 = R(λ)

G [mt] for t ≥ 0 converge to the unique
solution m(λ) of the fixed point equation m = R(λ)

G [m].

Proof. For all −→e ∈
−→
E initialize the message on −→e at m0−→e = χ0 ∈ P̃lc. As R(λ)

G

is non-increasing and χ0 is a smallest element for the lr ↑ order, it can readily be
shown that the following inequalities hold for all t ≥ 0:

m2t ≤lr↑ m
2t+2 ≤lr↑ m

2t+3 ≤lr↑ m
2t+1.

42 CHAPTER 2. MAXIMUM CAPACITATED MATCHING

In other words the two series (m2t)t≥0 and (m2t+1)t≥0 are adjacent and hence con-
verge to respective limits m−, m+ in P̃

−→
E
lc such that m− ≤lr↑ m+. Continuity of

R(λ)
G further guarantees that m+ = R(λ)

G (m−) and m− = R(λ)
G (m+). Moreover,

considering any other sequence of vectors of messages (m′t)t≥0 with an arbitrary
initialization, since m0 ≤lr↑ m

′0, monotonicity of R(λ)
G ensures that for all t ≥ 0, one

has
m2t ≤lr↑ m

′2t,m′2t+1 ≤lr↑ m
2t+1.

The result will then follow if we can show that m+ = m−, which would then
be the unique fixed point of R(λ)

G . We establish this by exploiting the fact that Dv
is strictly increasing for inputs in P̃lc. As m− ≤lr↑ m+ and Dv is non-decreasing
for the lr ↑-order for all v ∈ V , it follows Dv[m−] ≤ Dv[m+] for all v ∈ V . Then,
summing over all vertices of G, we get

∑
v∈V

Dv[m−] =
∑
v∈V

∑
u∼v

∑
x∈N xm

−
−→uv(x)R−→vu[m−](x)∑

x∈Nm
−
−→uv(x)R−→vu[m−](x)

=
∑
v∈V

∑
u∼v

∑
x∈N xR−→uv[m+](x)m+

−→vu(x)∑
x∈NR−→uv[m+](x)m+

−→vu(x)

=
∑
u∈V

∑
v∼u

∑
x∈N xR−→uv[m+](x)m+

−→vu(x)∑
x∈NR−→uv[m+](x)m+

−→vu(x)

=
∑
u∈V

Du[m+].

Hence, in fact, Dv[m−] = Dv[m+] for all v ∈ V . As Dv is strictly increasing for
these inputs, m− = m+ = m(λ) follows.

We now state results on the limiting behaviour of the fixed point of BP on a
fixed finite graph G as λ → ∞. The fixed-point m(λ) at finite λ admits a limit
m(∞), and the value of

∑
v Dv[m(∞)] is equal to

∑
v Fv(α

(∞)), where Fv is defined
in the propositions below. This sum is computed from the infimum α(∞) of the
support of m(∞). Furthermore, it also happens that the value of

∑
v Fv(α

(∞)) can
be obtained directly as the smallest value of

∑
v Fv(α) over all two-step fixed points

α = SG ◦ SG(α).
It seems quite interesting that the value of

∑
v Dv[m(∞)] can be computed from

the support of the messages m(∞) only and through functions Fv which form was not
a priori obvious. It is also intriguing that we can bypass the computation of α(∞)

and perform instead a search over the fixed points α = SG ◦ SG(α). However, the
fact α(∞) is itself solution of the fixed point equation is not surprising: indeed, we
mentioned when introducing the limiting operators RG and QG (in equations (2.2)
and (2.6)) that the supremum of the support of messages n = RG[m] is computed
from the infimum of the support of the messages m using β(n) = SG(α(m)), and
similarly the infimum of the support of messages m = QG[m] is computed from
the supremum of the support of the messages n using α(m) = SG(β(n)). Hence,
for the fixed point m(∞) = QG ◦ RG[m(∞)], it is immediate that we have α(∞) =
SG ◦ SG(α(∞)).

2.5. FINITE GRAPHS 43

Proposition 2.6 (Limit of λ→∞). m(λ) is non-decreasing in λ for the lr ↑-order,
and m(∞) = lim ↑λ→∞ m(λ) ∈ P

−→
E
lc is the minimal solution (for the lr ↑-order) of

m(∞) = QG ◦ RG[m(∞)].

Proof. We first show that λ 7→ m(λ) and λ 7→ λ−N � m(λ) are respectively non-
decreasing and non-increasing, where λ−N(x) = λ−x for x ∈ N. We proceed by
induction: m0−→e = χ0 for all −→e ∈

−→
E , hence λ 7→ m0 and λ 7→ λ−N � m0 are

constant functions. Suppose now that λ 7→ mk and λ 7→ λ−N �mk are respectively
non-decreasing and non-increasing, for some k ∈ N. λ−N � mk+1 = RG[mk]. As
λ 7→ mk is non-increasing and RG is non-increasing, it follows λ 7→ λ−N �mk+1 is
non-increasing. Similarly, let λ′ ≥ λ and callm′ the messages associated with λ′. We
have mk+1 = Q(λ)

G [λ−N �mk] ≤lr↑ Q(λ)
G [λ′−N �m′k] because mk is non-increasing in λ

and Q(λ)
G is non-decreasing. Also, Q(λ) is non-decreasing in λ, so Q(λ)

G [λ′−N �m′k] ≤lr↑

Q(λ′)
G [λ′−N �m′k] = m′k+1.
Taking the limit k → ∞, we obtain that λ 7→ m(λ) and λ 7→ λ−N � m(λ) are

respectively non-decreasing and non-increasing. This allows us to define m(∞) =

lim ↑λ→∞ m(λ) ∈ P
−→
E
lc and n(∞) = lim ↓λ→∞ λ−N �m(λ) ∈ P̃

−→
E
lc . Passing to the limit

λ→∞ in λ−N �m(λ) = RG[m(λ)] and in m(λ) = Q(λ)
G [λ−N �m(λ)], we obtain

n(∞) = RG[m(∞)] and m(∞) = QG[n(∞)]. (2.7)

Let m ∈ P
−→
E be another solution of the two-step equation given by (2.7). For

all −→e ∈
−→
E we have m−→e ≥lr↑ χ0, hence m2k ≤lr↑

(
Q(λ)
G ◦ RG

)k
[m] ≤lr↑ m, where

the first inequality is obtained by applying the non-decreasing operator Q(λ)
G ◦ RG

k times and the second one follows from the fact Q(λ)
G ◦ RG[m] is non-decreasing in

λ, thus
(
Q(λ)
G ◦ RG

)k
[m] ≤lr↑ (QG ◦ RG)k [m] = m. Taking the limit k →∞ yields

m(λ) ≤lr↑ m, and then λ→∞ gives m(∞) ≤lr↑ m.

Then, it is possible to compute the limiting value of the BP estimate in any
finite graph G, i.e., the limit as λ → ∞ of the sum over the vertices v of G of
Dv[m(λ)]. The case of unimodular random graphs being more general, the proof of
the following proposition is included only in this context.

Proposition 2.7 (BP estimate in finite graphs). In a finite graph G, we have

lim ↑λ→∞
∑
v∈V

Dv[m(λ)] =
∑
v∈V

Dv[m(∞)]

=
∑
v∈V

Fv(α
(∞))

= inf
α=SG◦SG(α)

∑
v∈V

Fv(α),

where Fv(α) = min(bv, |α−→∂v|) + (bv − |α←−∂v|)
+.

Moreover, if G is bipartite with V = L ∪R, we have

1

2
lim ↑λ→∞

∑
v∈V

Dv[m(λ)] = inf
α=SG◦SG(α)

FL(α),

44 CHAPTER 2. MAXIMUM CAPACITATED MATCHING

where FL(α) =
∑

l∈L min
{
bl, |α−→∂l |

}
+
∑

r∈R, |c∂r|>br

(
br − |S←−∂r(α)|

)+.

We can define FR(α) with a similar expression with the roles of L and R inverted.
It is clear that FR(α) = FL(α).

Remark 2.2. In a finite tree, there is only one possible value for α−→e = S−→e ◦S−→∂e[α],
where ◦ is the composition operation, when −→e is an edge outgoing from a leaf v:
it is α−→e = min{bv, ce}. It is then possible to compute the whole, unique fixed-point
vector α = SG ◦ SG(α) in an iterative manner, starting from the leaves of the tree
and climbing up. This gives a simple, iterative way to compute the maximum size of
allocations in finite trees, which is the natural extension of the leaf-removal algorithm
for matchings.

2.6 Limit of large graphs
This section extends the results obtained so far for finite graphs to infinite graphs.
We show that most calculations done in the case of finite graphs extend naturally
to the context of (potentially infinite) unimodular graphs. The transition from
finite graphs to their local weak limit has already been dealt with in the literature.
Furthermore, when the infinite limiting graph is a Galton-Watson tree, the branching
property of this limiting tree allows us to transform the fixed-point equation of BP
into recursive distributional equations, which can be solved in practice.

2.6.1 Convergence of BP in unimodular graphs and compu-
tation of BP estimate

Our first result is that the BP updates admit a unique fixed-point at finite activity
parameter λ:

Proposition 2.8. Let ρ ∈ U with b(ρ) < ∞. Then, the fixed point equation m =
R(λ)[m] admits a unique solution m(λ) for any λ ∈ R+ for ρ-almost every marked
graph G.

Proof. As in the finite graph case and because R(λ)
G is a non-increasing operator,

we can define two adjacent sequences of messages over the directed edges of G by
iterating R(λ)

G : m0−→e = χ0 for every −→e and mt+1 = R(λ)
G [mt]. Then we can define

m− = lim ↑t→∞ m2t,

m+ = lim ↓t→∞ m2t+1.

Again, any solution of the fixed point equation m = R(λ)
G [m] must be between m−

and m+. However, the proof differs from the finite graph case when we want to
show that two limit points m− and m+ are identical. Indeed, we cannot sum Dv
over all the vertices of v anymore. Instead, we use the MTP for

f(G, o, v) =

∑
x∈N xm

−
−→vo(x)R−→ov[m−](x)∑

x∈Nm
−
−→vo(x)R−→ov[m−](x)

,

2.6. LIMIT OF LARGE GRAPHS 45

which yields∫
Do[m−]dρ([G, o]) =

∫ ∑
v∼o

∑
x∈N xm

−
−→vo(x)R−→ov[m−](x)∑

x∈Nm
−
−→vo(x)R−→ov[m−](x)

dρ([G, o])

=

∫ ∑
v∼o

∑
x∈N xR−→vo[m+](x)m+

−→ov(x)∑
x∈NR−→vo[m−](x)m−−→ov(x)

dρ([G, o])

=

∫ ∑
v∼o

∑
x∈N xR−→ov[m+](x)m+

−→vo(x)∑
x∈NR−→ov[m−](x)m−−→vo(x)

dρ([G, o])

=

∫
Do[m+]dρ([G, o])

Because b(ρ) <∞, these expectations are finite, and as Dv is strictly increasing
for all v ∈ V it yields that m−−→

∂o
= m+

−→
∂o
, ρ-almost surely. By Lemma 2.3 [4], this

result extends to the edges incoming to ρ-almost every vertex in G, hence m− =
m+ = m(λ) ρ-a.s.

The rest of the reasoning goes as in the finite graph case (using the MTP again,
instead of summing over all directed edges). Proposition 2.6 is still valid. If ρ ∈ U
is concentrated on bipartite unimodular graphs, with parts L and R, we introduce
the probability measures ρL and ρR on U by conditioning on the root being in L or
R:

ρL([G, v]) = ρ([G, v])
1(v ∈ L)∫

1(o ∈ L)dρ([G, o])
,

and similarly for ρR. To ease the notation, we also write ρ̃L =
∫
1(o ∈ L)dρ([G, o])ρL

and similarly for ρR. Of course, ρ̃L and ρ̃R are not probability measures. The
following proposition is analogous to Proposition 2.7:

Proposition 2.9 (BP estimate in unimodular random graphs). Let ρ ∈ U with
b(ρ) <∞,

lim ↑λ→∞
∫
Do[m(λ)]dρ([G, o]) =

∫
Do[m(∞)]dρ([G, o])

=

∫
Fo(α

(∞))dρ([G, o])

= inf
α=SG◦SG(α)

∫
Fo(α)dρ([G, o]),

where Fv(α) = min(bv, |α−→∂v|) + (bv − |α←−∂v|)
+ as before.

Moreover, if in addition the measure ρ is concentrated on bipartite graphs, with
parts L and R, we have

1
2

lim ↑λ→∞
∫
Do[m(λ)]dρ([G, o])

= infα=SG◦SG(α)

{∫
min

{
bo, |α−→∂o|

}
dρ̃L([G, o])

+
∫ (

bo − |S←−∂o(α)|
)+

1(|c∂o| > bo)dρ̃
R([G, o])

}
.

46 CHAPTER 2. MAXIMUM CAPACITATED MATCHING

We will need the following lemmas:

Lemma 2.3. Let m−→
∂v
∈ P

−→
∂v and n←−

∂v
= Q←−

∂v
[m]. We have

1(|β−→
∂v
| > bv)

∑
−→e ∈
−→
∂v

∑
x(x− S←−e (β))Q←−e [n](x)n−→e (x)∑

xQ←−e [n](x)n−→e (x)
=
(
bv − |S←−∂v(β)|

)+

Proof. Both sides are equal to 0 unless |β−→
∂v
| > bv. We have

1(|β−→
∂v
| > bv)

∑
−→e ∈
−→
∂v

∑
x(x− S←−e (β))Q←−e [n](x)n−→e (x)∑

xQ←−e [n](x)n−→e (x)

= 1(|β−→
∂v
| > bv)

∑
|x|=bv(|x| − |S←−∂v(β)|)n−→

∂v
(x)∑

|x|=bv n−→∂v(x)

= (bv − |S←−∂v(β)|)1(|β−→
∂v
| > bv)

= (bv − |S←−∂v(β)|)+

where the last line follows from the fact S←−e (β) = [bv − |β−→∂v| + β−→e]ce0 ≤ β−→e if
|β−→

∂v
| > bv, the inequality being strict whenever β−→e > 0, and it is then easy to check

that
∑
←−e ∈
←−
∂v
S←−e (β) ≤

∑
−→e ∈
−→
∂v
β−→e − (|β−→

∂v
| − bv) ≤ bv.

Lemma 2.4. Consider m′ = QG ◦ RG[m] such that α(m) = α(m′).

• If m′ ≥lr↑ m, then
∫
Do[m]dρ([G, o]) ≤

∫
Fo(α(m))dρ([G, o]).

• If m′ ≤lr↑ m, then
∫
Do[m]dρ([G, o]) ≥

∫
Fo(α(m))dρ([G, o]).

Proof. Let n = RG[m]. For any v ∈ V , |α−→
∂v

(m)| ≤ bv is equivalent to |β←−∂v(n)| ≥ bv.
We have ∫

Do[m]dρ([G, o])

=
∫ (

1(|α−→
∂o

(m)| < bo)
∑

v∈∂o

∑
x∈N(x−α(m−→vo))m−→vo(x)R−→ov [m](x)∑

x∈Nm−→vo(x)R−→ov [m](x)

+ min(bo, |α−→∂o(m)|)
)
dρ([G, o])

Furthermore, for any v ∼ o,
∑

x∈N(x−α(m−→vo))m−→vo(x)R−→ov[m](x) is non-zero only
if α(m−→vo) < S−→ov(α(n)), which also implies |α−→

∂o
(m)| < bo. Thus, the second term in

the expression of
∫
Do[m]dρ([G, o]) above is equal to∫ ∑

v∼o

∑
x∈N(x− α(m−→vo))m

′−→vo(x)R−→ov[m](x)∑
x∈Nm

′−→vo(x)R−→ov[m](x)
1(α−→vo < S−→ov(α(n)))dρ([G, o])

Suppose first that m′ ≥lr↑ m. Then, for any v ∼ o, we have m′−→vo �R−→ov[m] ≥lr↑
m−→vo �R−→ov[m], as also α(m′−→vo) = α(m−→vo). Hence, we have∑

x∈N(x− α(m−→vo))m
′−→vo(x)R−→ov[m](x)∑

x∈Nm
′−→vo(x)R−→ov[m](x)

≥
∑

x∈N(x− α(m−→vo))m−→vo(x)R−→ov[m](x)∑
x∈Nm−→vo(x)R−→ov[m](x)

2.6. LIMIT OF LARGE GRAPHS 47

It follows∫ ∑
v∼o

∑
x∈N(x−α(m−→vo))m

′−→vo(x)R−→ov [m](x)∑
x∈Nm

′−→vo(x)R−→ov [m](x)
1(α(m−→vo) < S−→ov(α(n)))dρ([G, o])

≥
∫ ∑

v∼o

∑
x∈N(x−α(m−→vo))m

′−→vo(x)R−→ov [m](x)∑
x∈Nm

′−→vo(x)R−→ov [m](x)
1(α(m′−→vo) < S−→ov(α(n)))dρ([G, o])

=
∫ ∑

v∼o

∑
x∈N(x−S−→vo(β(n)))Q−→vo[n](x)n−→ov(x)∑

x∈NQ−→vo[n](x)n−→ov(x)
1(S−→vo(β(n)) < β(n−→ov))dρ([G, o])

=
∫ ∑

v∼o

∑
x∈N(x−S−→ov(β(n)))Q−→ov [n](x)n−→vo(x)∑

x∈NQ−→ov [n](x)n−→vo(x)
1(S−→ov(β(n)) < β(n−→vo))dρ([G, o]),

where the last equality follows from by the Mass-Transport Principle. Given the facts
that S−→ov(β(n)) < β(n−→vo) implies |β−→

∂o
(n)| > bo, that the quantity Q−→ov[n](x)n−→vo(x)

is non-zero only if S−→ov(β(n)) ≤ β(n−→vo), and that |β−→
∂o

(n)| > bo implies S−→ov(β(n)) ≤
β(n−→vo), we have in fact∑

v∼o

∑
x∈N(x−S−→ov(β(n)))Q−→ov [n](x)n−→vo(x)∑

x∈NQ−→ov [n](x)n−→vo(x)
1(S−→ov(β(n)) < β(n−→vo))

=
∑

v∼o

∑
x∈N(x−S−→ov(β(n)))Q−→ov [n](x)n−→vo(x)∑

x∈NQ−→ov [n](x)n−→vo(x)
1(|β−→

∂o
(n)| > bo|)

= 1(|β−→
∂o

(n)| > bo|)(bo − |S←−∂o(β(n))|)+

= (bo − |α←−∂o(m
′)|)+,

according to Lemma 2.3. We thus obtained that∫
Do[m]dρ([G, o]) ≤

∫
Fo(α(m))dρ([G, o]) if m′ ≥lr↑ m.

The proof for the case m′ ≤lr↑ m is identical.

proof of Proposition 2.9. For any v ∈ V , as Dv is continuous for inputs in P̃lc such
as m(λ), we have lim ↑λ→∞ Dv[m(λ)] = Dv[m(∞)] and the first equality follows by
monotone convergence. Lemma 2.4 shows∫

Do[m(∞)]dρ([G, o]) =
∫
Fo(α(m(∞)))dρ([G, o]).

It is clear that α(m(∞)) = SG ◦ SG(α(m(∞))), as m(∞) = QG ◦ RG[m(∞)]. Con-
sider now α ∈ N

−→
E such that α = SG◦SG(α) and the measure ρ with marks α is uni-

modular. We definem(0)
−→e = χα−→e andm(k+1) = QG◦RG[m(k)]. We have α(m(k)) = α

for any k ∈ N, and then necessarily m(k) ≥lr↑ m
(0) (it suffices to look at the support

of m(k)
−→e and m

(0)
−→e to check this). It follows, because QG ◦ RG is non-decreasing,

that
(
m(k)

)
k∈N is a non-decreasing sequence, and thus

∫
Do[m(k)]dρ([G, o]) is non-

decreasing in k (as Do is non-decreasing).
We define m = lim ↑k∈N m(k). Clearly, α(m) ≥ α and m = QG ◦ RG[m].

Moreover, by monotone convergence, we have

lim ↑k→∞
∫
Do[m(k)]dρ([G, o]) =

∫
Do[m]dρ([G, o])

=

∫
Fo(α(m))dρ([G, o])

≥
∫
Do[m(∞)]dρ([G, o])

=

∫
Fo(α(m(∞)))dρ([G, o]),

48 CHAPTER 2. MAXIMUM CAPACITATED MATCHING

where we used Lemma 2.4 for m and for m(∞) and Proposition 2.6 together with
the fact Do is non-decreasing to get the inequality. For any k ∈ N we have m(k+1) =
QG ◦ RG[m(k)] ≥lr↑ m

(k), thus applying Lemma 2.4 we obtain that∫
Fo(α)dρ([G, o]) =

∫
Fo(α(m(k)))dρ([G, o])

≥
∫
Do[m(k)]dρ([G, o])

↗
k→∞

∫
Do[m]dρ([G, o])

≥
∫
Fo(α(m(∞)))dρ([G, o]),

which completes the proof of the first part of the proposition.
Assume now that in addition the measure ρ is concentrated on bipartite graphs,

with parts L and R. For λ ∈ R+, recall m(λ) = R(λ)
G [m(λ)]. Applying the MTP to ρ

with

fL(G, o, v) =

∑
x∈N xm

(λ)
−→vo (x)R−→ov[m(λ)](x)∑

x∈Nm
(λ)
−→vo (x)R−→ov[m(λ)](x)

1(o ∈ L)

and fR defined similarly, we obtain∫
Do[m(λ)]dρ̃L([G, o]) =

∫ ∑
v

fL(G, o, v)dρ([G, o])

=

∫ ∑
v

fL(G, v, o)dρ([G, o])

=

∫ ∑
v

fR(G, o, v)dρ([G, o])

=

∫
Do[m(λ)]dρ̃R([G, o])

Letting λ→∞ yields
∫
Do[m(∞)]dρ̃L([G, o]) =

∫
Do[m(∞)]dρ̃R([G, o]). As also∫

Do[m(∞)]dρ([G, o]) =

∫
Do[m(∞)]dρ̃L([G, o]) +

∫
Do[m(∞)]dρ̃R([G, o]),

we get
1

2

∫
Do[m(∞)]dρ([G, o]) =

∫
Do[m(∞)]dρ̃L([G, o]).

We then follow exactly the steps in the proof of the first part of the proposition,
for ρ̃L instead of ρ. This gives∫

Do[m(∞)]dρ̃L([G, o]) = inf
α=SG◦SG(α)

{∫
min(bo, |α−→∂o|)dρ̃

L([G, o])

+

∫
(bo − |α←−∂o|)

+dρ̃R([G, o])

}
,

which completes the proof of Proposition 2.9.

2.6. LIMIT OF LARGE GRAPHS 49

2.6.2 From finite graphs to unimodular trees

Showing that the BP estimate is asymptotically exact for sequences of (sparse)
random graphs is quite systematic and follows the same steps as in [21], [96] and
[70]. We simply state here that we can invert the limits in n and λ (see Proposition
6 in [70]).

Proposition 2.10 (Asymptotic correctness for large, sparse random graphs). Let
Gn = (Vn, En)n∈N be a sequence of finite marked graphs with random weak limit ρ
concentrated on unimodular trees, with b(ρ) <∞. Then,

lim
n→∞

2Mn

|Vn|
=

∫
Do[m(∞)]dρ([G, o])

= inf
α=SG◦SG(α)

∫
Fo(α)dρ([G, o]).

2.6.3 Galton-Watson trees

The main theorem follows quite straightforwardly from Propositions 2.9 and 2.10.
The missing steps are standard and can be found in [70]; they resemble much the
computation done in the proof of Proposition 2.9.

proof of Theorem 2.1. First-of-all, the fact that the sequence of graphs considered
converges locally weakly to unimodular Galton-Watson trees follows from standard
results in the random graphs literature (see [66] for random hypergraphs or [34] for
graphs with fixed degree sequence). Propositions 2.9 and 2.10 together then give:

lim
n→∞

2M(Gn)

|Ln|+ |Rn|
= inf

α=SG◦SG(α)

∫
Fo(α)dρ([G, o]),

lim
n→∞

2M(Gn)

|Ln|
= inf

α=SG◦SG(α)

{∫
min

{
bo, |α−→∂o|

}
dρL([G, o])

+
E[DL]

E[DR]

∫ (
bo − |S←−∂o(α)|

)+
1(|c∂o| > bo)dρ

R([G, o])

}
.

The second step uses the Markovian nature of the limiting Galton-Watson tree
to simplify the infinite recursions α = SG ◦ SG(α) into recursive distributional
equations as the ones described in Theorem 2.1: as G is a unimodular tree, for any
vertex v ∈ V , all the components of α−→

∂v
can be chosen independently (as they are

independent in α
(∞)
−→
∂v

, which achieves the infimum). Then, for −→e incoming to v, α−→e
is determined only from the subtree stemming from the tail of −→e ; furthermore it
satisfies α−→e = S−→e ◦ S−→∂e[α]. However, the distribution of the subtree at the tail of
an −→e ′ which is an input to S−→

∂e
is the same as that of the subtree at the tail of

−→e , by the two-step branching property of the two-step unimodular Galton-Watson
tree G. This implies that, for −→e incoming to a root o ∈ L, α−→e is solution of the
two-step RDE given in the statement of the theorem. As detailed in Lemma 6 of
[5], there is actually a one-to-one mapping between the solutions of α = SG ◦ SG[α]
on a Galton-Watson tree G and the solutions of the RDE considered here. This
completes the proof.

50 CHAPTER 2. MAXIMUM CAPACITATED MATCHING

2.7 Exactness in finite bipartite graphs

We finish by showing that the limiting BP estimate will actually be exact in the case
of finite bipartite graphs. In [30] Chertkov builds upon the fact an associated linear
programming relaxation is gapless due to the total unimodularity of the incidence
matrix of bipartite graphs to show that the limiting BP estimate is correct for
bipartite graphs, i.e., that

1

2
lim ↑λ→∞

∑
v∈V

Dv[m(λ)] = M(G). (2.8)

Even though [30] only deals with unitary capacities, it is possible to apply similar
ideas to our setup; however our proof will follow a slightly different path as we believe
it gives more insights on the interpretation of the BP messages.

Proposition 2.11 (Correctness for finite bipartite graphs). In a finite bipartite
graph G = (V,E) with V = L ∪R,

M(G) = inf
α=SG(α)

FL(α).

Remark 2.3. Note first that Proposition 2.11 displays an infimum over one-step
fixed points of SG, while Proposition 2.7 is concerned with two-step fixed points
instead. However, we are dealing here with bipartite graphs, hence from a two-step
fixed point α = SG ◦ SG(α) we can easily construct a one-step fixed point α′ in the
following manner: let l ∼ r be two neighbors, with l ∈ L and r ∈ R; let α′l→r = αl→r
and α′r→l = Sr→l(α). It is straightforward to check that α′ = SG(α′). Furthermore,
the expression for bipartite graphs in Proposition 2.7 can be computed from only the
set of messages going from L to R, denoted αL→R, and the messages SG(α) going
from R to L, denoted by SR→L(α). Hence in fact it can be computed from the one-
step fixed point α′ associated with a two-step fixed point α in the manner described
just before.

Conversely, from any two one-step fixed points α1 = SG(α1) and α2 = SG(α2)
we can construct a two-step fixed point α as follows: let l ∼ r be two neighbors,
with l ∈ L and r ∈ R; let αl→r = α1

l→r and αr→l = α2
r→l. It is easy to check that

α = SG ◦ SG(α). Furthermore, it is obvious from the expressions in Proposition 2.7
that

∑
v∈V Fv(α) = FL(α1) + FR(α2). Thus, we conclude that for bipartite graphs

the values are the same in Propositions 2.7 and 2.11 whether we consider one-step
or two-step fixed points in the infimums. It follows also that Propositions 2.7 and
2.11 together recover the result annouced in equation (2.8).

proof of Proposition 2.11. The maximum size M(G) of a c-capacitated b-matching
of G is given by the value of the following integer program (IP):

max |x|

s.t.
(

A
Id

)
x ≤

(
b
c

)
x ∈ N|E|

2.7. EXACTNESS IN FINITE BIPARTITE GRAPHS 51

where Id is the identity matrix of size |E| and A is the incidence matrix of G, i.e.,
Ave = 1(e ∈ ∂v).

Because the matrix
(

A
Id

)
is totally unimodular (see [57]), the value of the

above program is equal to that of its linear programming relaxation (P):

max |x|

s.t.
(

A
Id

)
x ≤

(
b
c

)
x ≥ 0

Due to strong duality of linear programming, the value of (P) is equal to that of
its dual (D):

min bTy + cTz

s.t. ATy + z ≥ 1

y, z ≥ 0

And again, total unimodularity gives that the value of this program is also equal to
that of its integer version (ID):

min bTy + cTz

s.t. ATy + z ≥ 1

y ∈ {0, 1}|V |, z ∈ {0, 1}|E|

If z = 0, then y satisfying the constraints of (ID) would be called a vertex cover
of G, hence we will call a vector (y, z) satisfying the constraints of (ID) a generalized
cover of the edges of G.

Lemma 2.5 (To each fixed point a generalized cover of the edges of G). Let α =
SG(α). We can associate to α a generalized cover (yα, zα) of the edges of G such
that

bTyα + cTzα = FL(α).

Proof. Let α = SG(α). We define the generalized cover (yα, zα) of the edges of G
as follows:

∀l ∈ L, yαl = 1 iff |α−→
∂l
| ≥ bl,

∀r ∈ R, yαr = 1 iff |α−→
∂r
| > br,

∀lr ∈ E, zαlr = 1 iff αl→r = αr→l = clr and yαl = 0

(and automatically yαr = 0 as well).

First-of-all, we should check that (yα, zα) is indeed a generalized cover of the
edges of G. Suppose l ∼ r are two neighboring vertices in L and R respectively.
If yαl = 0, then |α−→

∂l
| < bl and thus αl→r =

[
bl − |α−→∂l |+ αr→l

]clr
0

satisfies either
αl→r > αr→l or αl→r = αr→l = clr. The former implies yαr = 1 (because αr→l =[
br − |α−→∂r|+ αl→r

]clr
0

< αl→r is only possible if |α−→
∂r
| > br) and the latter means

yαr = 0 and zαlr = 1. Next, and similarly, if yαr = 0, then |α−→
∂r
| ≤ br and αr→l =

52 CHAPTER 2. MAXIMUM CAPACITATED MATCHING

[
br − |α−→∂r|+ αl→r

]clr
0
≥ αl→r. Again, either αl→r < clr, in which case yαl = 1

necessarily, or αl→r = clr = αr→l and then yαl = 1 or zαlr = 1. It shows that (yα, zα)
is a generalized cover of the edges of G.

Now, we want to compute the weight bTyα + cTzα of the generalized cover. We
have

bTyα + cTzα =
∑
l∈L

bl1(yαl = 1) +
∑
r∈R

br1(yαr = 1) +
∑
lr∈E

clr1(zαlr = 1).

On the other side, we have

FL(α) =
∑
l∈L

bl1(yαl = 1) +
∑
l∈L

|α−→
∂l
|1(yαl = 0) +

∑
r∈R, |c∂r|>br

(
br − |α←−∂r|

)+
.

For r ∈ R such that |c∂r| > br, we can notice that
(
br − |α←−∂r|

)+
> 0 ⇔ |α−→

∂r
| > br.

Hence, it follows ∑
r∈R, |c∂r|>br

(
br − |α←−∂r|

)+
=
∑
r∈R

(
br − |α←−∂r|

)
1(yαr = 1).

It remains only to show that∑
lr∈E

clr1(zαlr = 1) =
∑
l∈L

|α−→
∂l
|1(yαl = 0)−

∑
r∈R

|α←−
∂r
|1(yαr = 1).

If yαr = 1, then |α−→
∂r
| > br and we have αr→l =

[
br − |α−→∂r|+ αl→r

]clr
0

equal to 0 or
strictly smaller than αl→r. Hence,∑

r∈R

|α←−
∂r
|1(yαr = 1) =

∑
l∼r

αr→l1(αl→r > αr→l).

Similarly, if yαl = 0, then |α−→
∂l
| < bl and we have αl→r =

[
bl − |α−→∂l |+ αr→l

]clr
0

equal
to clr or stricly larger than αr→l. Hence,∑

l∈L |α−→∂l |1(yαl = 0)
=
∑

l∼r αr→l1(αl→r > αr→l) +
∑

l∼r clr1(αl→r = αr→l = clr and yαl = 0).

The condition in the last indicator function is equivalent to zαlr = 1, which completes
the proof of Lemma 2.5.

Lemma 2.6 (To a maximum c-capacitated b-matching a fixed-point). Let x be a
maximum size c-capacitated b-matching of G. We can obtain from x a fixed point
αx = SG(αx) such that

FL(αx) = |x|.

Proof. Let x be a maximum size c-capacitated b-matching of G. The proof will
proceed in many steps. First-of-all, we define from x a sequence of integer messages
αk ∈ N

−→
E , for k ∈ N, as follows:

∀−→e ∈
−→
E , α0−→e = xe;

∀k ∈ N, αk+1 = SG(αk).

2.7. EXACTNESS IN FINITE BIPARTITE GRAPHS 53

We will first show that this sequence converges. We will use the notion of alter-
nating and augmenting paths for x: for t ∈ N∗, an alternating path (−→e 1, . . . ,

−→e t)
for x, with −→e 1 = −−→v1v2, is an oriented path of G (not necessarily edge-disjoint) such
that

|x∂v1| < bv1 ,

xek < cek , for all odd k,
xek > 0, for all even k.

An augmenting path for x is an alternating path (−→e 1, . . . ,
−→e t) for x, with −→e t =

−−−→vtvt+1, such that t is odd and |x∂vt+1| < bvt+1 . If there exists an augmenting path for
x, then x can be augmented in the sense that there exists a c-capacitated b-matching
x′ of G with |x′| > |x|. Hence, as here x is of maximum size, we know that there
exists no augmenting path for x.

Lemma 2.7. For any −→e ∈
−→
E and k ∈ N, αk−→e > α0−→e iff there exist an alternating

path for x of odd length at most k that terminates with −→e ; αk−→e < α0−→e iff there exist
an alternating path for x of even length at most k that terminates with −→e .

As a consequence, for all v ∈ V , we have that αk−→
∂v

has its components either all
non-increasing or all non-decreasing in k.

Proof. The proof is by induction. The statement is void for k = 0. For k = 1
and −→e = −→vu, we need only consider the case α1−→e > α0−→e = α0←−e = xe, which implies
immediately xe < ce and |x−→∂v| < bu, thus the statement holds also for k = 1. Suppose
that the statement is true for all k ≤ K > 0.

First suppose also that there exists k, k′ ≤ K, v ∈ V and two (potentially
identical) neighbors u and w of u such that αku→v > α0

u→v and αk
′
w→v < α0

w→v, for
k, k′ ≤ K. Then, we can connect the two alternating paths, (−→e u1 , . . . ,−→e

u
t) of odd

length with −→e ut = −→uv and (−→e w1 , . . . ,−→e
w
t′) of even length with −→e wt′ = −→wv, to obtain

an augmenting path (−→e u1 , . . . ,−→e
u
t ,
←−e wt′ , . . . ,←−e

w
1) for x, impossible.

Hence, for all v ∈ V , we have either αk−→
∂v
≥ α0−→

∂v
for all k ≤ K or αk−→

∂v
≤ α0−→

∂v
for

all k ≤ K. A very quick induction further shows that, for all −→e ∈
−→
E , the sequence

(αk−→e)k≤K is monotone. Indeed, for −→e outgoing from v and assuming the sequences
(αk−→

∂v
)k≤t are non-increasing (resp. non-decreasing) for some t ≤ K, S−→e is non-

increasing so the sequence (αk−→e)1≤k≤t+1 is non-decreasing (resp. non-increasing). In
the case (αk−→e)1≤k≤t+1 non-increasing, as α1−→e ≥ α0−→e (because |α0−→

∂v
| = |x∂v| ≤ bv), we

immediately get that (αk−→e)k≤t+1 is non-decreasing. In the case (αk−→e)1≤k≤t+1 strictly
decreasing, we only need to show that α1−→e = α0−→e . We have that (αk−→

∂e
)k≤t is non-

decreasing in every component and strictly increasing in some. Therefore, there
exists −→e ′ ∈

−→
∂e such that there is an odd-length alternating path for x terminating

with −→e ′. If α1−→e > α0−→e , then |α
0−→
∂v
| = |x∂v| < bv, and the odd-length alternating path

we found is thus an augmenting path for x, impossible.
Then, consider some −→e = −→uv ∈

−→
E such that αK+1

−→e > α0−→e . If αK−→e > α0−→e , then it
is already known that there is some odd-length alternating path for x terminating
with −→e . If else αK−→e = α0−→e , and thus in particular α1−→e = xe. We have xe = α1−→e =[
bu − |x−→∂u|+ xe

]ce
0
< ce. Now, αK+1

−→e > αK−→e , so there must be some w ∼ u, w 6= v

54 CHAPTER 2. MAXIMUM CAPACITATED MATCHING

such that αKw→u < αK−1
w→u. Thus, we can find an alternating path for x of even

length at most K terminating with −→wu, to which we can add −→e = −→uv to obtain an
alternating path for x of odd length at most K + 1 terminating with −→e (because
also xe < ce).

Conversely, suppose there exists an alternating path (−→e 1, . . . ,
−→e t) for x of odd

length t ≤ K + 1 terminating with −→e = −→e t = −→uv, hence xe < ce. If t ≤ K,
then we are done. Else, t = K + 1 and necessarily t ≥ 3. Thus, (−→e 1, . . . ,

−→e K) is
an alternating path for x of even length terminating with some edge −→e K = −→wu,
with w 6= v. We must have αKw→u < α0

w→u, and thus also αK−→
∂u
≤ α0−→

∂u
. Then, we

have αK+1
−→e =

[
bu −

∑
w∼u, w 6=v α

K
w→u

]ce
0
≥ α1−→e with strict inequality if α1−→e < ce. If

α1−→e > α0−→e = xe, we are done; else, α1−→e = xe < ce and we are done as well.
The proof that αK+1

−→e < α0−→e is equivalent to the existence of an even-length
alternating path for x of length at most K + 1 is completely similar and completes
the proof of Lemma 2.7.

As every component of αk is either non-increasing in k or non-decreasing in k,
it is clear that

(
αk
)
k∈N converges to some αx ∈ N

−→
E which satisfies αx = SG(αx).

Furthermore, the interpretation provided by Lemma 2.7 still holds for αx, and thus
also, for all v ∈ V , either αx−→

∂v
≥ x∂v or αx−→

∂v
≤ x∂v. We will now show that

FL(αx) = |x| =
∑

l∈L |x∂l|, which will complete the proof of the Lemma 2.6.
Consider l ∈ L such that |αx−→

∂l
| > |x∂l|. This means αx−→

∂l
≥ x∂l and there ex-

ists r ∼ l such that αx
r→l > xlr. Then, we must have αx

l→r ≤ xlr, otherwise
we would have two alternating paths for x of odd length and terminating with−→
lr and

−→
rl , from which we would obtain an augmenting path for x. We have

αx
r→l > αx

l→r =
[
bl − |αx−→

∂l
|+ αx

r→l

]clr
0
, which implies |αx−→

∂l
| > bl. Suppose towards

a contradiction that |x∂l| < bl, then α1←−
∂l
≥ x∂l and there exists r′ ∼ l such that

α1
l→r′ > xlr′ , so that αx

l→r′ > xlr′ . Again, we must have αx
r′→l ≤ xlr′ otherwise we

could find an augmenting path for x, and so αx
r′→l < αx

l→r′ , which implies |αx−→
∂l
| < bl,

a contradiction. So, |αx−→
∂l
| > |x∂l| implies |x∂l| = bl.

It remains only to check that∑
l∈L, |αx−→

∂l
|<|x∂l|

|αx−→
∂l
|+

∑
r∈R, |c∂r|>br

(
br − |αx←−

∂r
|
)+

=
∑
l∈L

|x∂l|1(|αx−→
∂l
| < |x∂l|).

Consider now r ∈ R. We can easily check that the event that both |c∂r| > br and(
br − |αx←−

∂r
|
)+

> 0 is equivalent to the event |αx−→
∂r
| > br. For such an r, we have of

course |αx−→
∂r
| > |x∂r|, and thus αx−→

∂r
≥ x∂r. Furthermore, as seen above, |αx−→

∂r
| > |x∂r|

implies |x∂r| = br. Then, we can write
(
br − |αx←−

∂r
|
)+

=
∑

l∈L (xlr − αx
r→l)

+.

Conversely, for any r ∈ R, if there exists l ∼ r such that (xlr − αx
r→l)

+ > 0,
then, as before, we must have αx

l→r ≥ xlr, else we can find an augmenting path for
x. Now, αx

l→r > αx
r→l =

[
br − |αx−→

∂r
|+ αx

l→r

]clr
0

implies |αx−→
∂r
| > br. Finally,∑

r∈R, |c∂r|>br

(
br − |αx←−

∂r
|
)+

=
∑

l∈L, r∈R

(xlr − αx
r→l)

+ .

2.7. EXACTNESS IN FINITE BIPARTITE GRAPHS 55

Consider now l ∈ L such that |αx−→
∂l
| < |x∂l|. It means αx−→

∂l
≤ x∂l and thus

|x∂l| − |αx−→
∂l
| =

∑
r∈R (xlr − αx

r→l)
+.

Conversely, for any l ∈ L, if there exists r ∼ l such that (xlr − αx
r→l)

+ > 0, then
αx−→
∂l
≤ x∂l and thus |αx−→

∂l
| < |x∂l|. Finally,∑

l∈L

(
|x∂l| − |αx−→

∂l
|
)
1(|αx−→

∂l
| < |x∂l|) =

∑
l∈L, r∈R

(xlr − αx
r→l)

+ ,

which completes the proof of Lemma 2.6.

Lemmas 2.5 and 2.6 together imply Proposition 2.11.

56 CHAPTER 2. MAXIMUM CAPACITATED MATCHING

Chapter 3

Cuckoo hashing thresholds

A lot of interest has recently arisen in the analysis of multiple-choice cuckoo hashing
schemes. In this context, a main performance criterion is the load threshold under
which the hashing scheme is able to build a valid hashtable with high probability in
the limit of large systems. Various techniques have successfully been used to answer
this question (differential equations, combinatorics, cavity method) for increasing
levels of generality of the model. However, the hashing scheme analysed so far is
quite utopic in that it requires to generate a lot of independent, fully random choices.
Schemes with reduced randomness exists, such as double hashing –which is expected
to provide similar asymptotic results as the ideal scheme–, yet they have been more
resistant to analysis so far. As a first contribution, we extend even more the range
of setups in which the load thresholds are known, relying on a link with capacitated
matchings which can be studied via the cavity method. In addition, we point out
that this approach quite naturally extends to the analysis of double hashing and
allows us to compute the corresponding threshold. The path followed here is to
show that the graph induced by the double hashing scheme has the same local weak
limit as the one obtained with full randomness.

57

58 CHAPTER 3. CUCKOO HASHING

3.1 Introduction

A hashtable is a data structure that maps items to buckets so as to be able to later
retrieve the items or any associated data. The idea is that the item (or an associated
descriptor called a key) is hashed into the index of a bucket in an array. The array
contains much fewer buckets than there are potential items in the universe and the
purpose of the hashing step is that it maps many items to the same bucket index.
Hopefully, most of the time, only one of the items is present among those mapped
to the same bucket; otherwise, a collision occurs and it needs to be resolved in some
way. Cuckoo hashing is a particular scheme used to resolve such collisions.

The hashing paradigm is as follows: we are given n items and m buckets. In the
most basic setting, we want to have exactly one bucket per item and at most one
item per bucket. In more complex versions, multiple copies of each item must be
stored, each bucket can hold many items simultaneously and there are restrictions
on how many times an (item,bucket) pair can be used. Critical performance metrics
for such systems are the size of the hashtable (the number of buckets) needed to
hold a given number of items, and the time it takes to either retrieve or insert items.
The multiple-choice hashing strategy is one that guaranties a constant look-up time,
while requiring with high probability a hashtable of size m proportional to n. This
strategy consists in pre-defining a set of d ≥ 2 buckets for each item, which is then
only allowed to pick a bucket within that set. Of course, depending on the choices of
the pre-defined sets of buckets, it may be impossible to handle simultaneously some
sets of items and inserting a new item may not be easy. The first issue becomes
very unlikely if the hashtable contains enough buckets compared to the number of
items it needs to hold, and a lot of work has actually been devoted to figuring out
exactly how large the hashtable needs to be. As for the second issue, cuckoo hashing
was proposed by Pagh and Rodler [89] as a simple, randomized way to search for
a new valid assignement upon arrival of an item: one first checks whether one of
the buckets pre-defined for the new item is available, in which case it suffices to
pick one of these; otherwise, one of the pre-defined buckets is chosen at random and
re-allocated to the new item. The same procedure is then used for the item that has
just been evicted (which is thus treated as a new item).

In a fully random context, multiple-choice hashing has been shown to have good
performance: if the set of d buckets pre-defined for each item are chosen indepen-
dently and uniformly at random among all sets of d buckets, then there exists a
threshold τ ∗ such that, if n = τm with τ < τ ∗, in the limit of m,n → ∞ cukoo
hashing will yield a valid hashtable with high probability. Furthermore, the cuckoo
hashing update procedure is also quite efficient [47, 43], in that the insertion time
is polylogarithmic in the system size w.h.p. A recent refinement [65] of the update
algorithm also achieves constant average insertion time with high probability when
items are only inserted. A major drawback of the fully random (multiple-choice)
hashing scheme described above is the amount of randomness involved: the stan-
dard approach requires n independent, uniform choices of sets of d buckets among
m. Phrased differently, this means roughly d logm independent random bits per
item. Generating unbiased, perfectly independent random bits does not come for
free [122, 109], therefore a lot of effort has been put into reducing this amount of

3.2. CUCKOO HASHING THRESHOLD AND HYPERGRAPH ORIENTABILITY59

randomness needed (see [82] and references therein for an account of some of the
directions investigated so far). A candidate alternative is double hashing [56, 72],
which seems to have similar performances as the fully random scheme while requir-
ing only roughly 2 logm independent random bits per item: assume m is a prime
number and label the m buckets with the integers from 1 to m; for each item, in-
dependently draw two random numbers f ∈ {1, . . . ,m} and g ∈ {1, . . . , m−1

2
}; the

pre-defined set of buckets associated with a couple (f, g) are the buckets labeled
f + ig (mod m), for i ∈ {0, . . . d − 1}. Although the reduced randomness of the
double hashing scheme is the very reason why this method could be prefered over
fully random hashing, it also makes the theoretical analysis of its performance more
difficult. An interesting survey [81] reviews the state of research on cuckoo hashing
as of 2009 and state some related open questions at that time.

In this chapter, we consider two problems related to cuckoo hashing. The first one
is to extend the current setups for which the cuckoo hashing threshold is known: the
schemes for which the threshold is currently known require each item to be stored
multiple times and allow each bucket to contain many items simultaneously, yet
each item cannot be stored multiple times in the same bucket; we relax this last
constraint and compute the threshold in the case where each (item,bucket) pair be
used multiple times. The method employed relies on a characterization of maximum
generalized matchings using the cavity method. Then, we turn to the analysis of
double-hashing, and we show that the approach using the cavity method naturally
extends to the case of double hashing: the core of the work, which is computing the
asymptotic size of generalized matchings in large random graphs, need not be done
again; however, one needs to check that the hashing system using double hashing
has the same local characteristics as with fully-random hashing in the sense that
the graphs obtained need to converge in the local weak sense to the same limit (see
Section 1.1.2 for the definition). The remainder of this chapter is divided into two
parts: in Section 3.2, we compute the cuckoo hashing threshold for the extension
where (item,bucket) pair can be used multiple times, and Section 3.3 deals with
the double-hashing scheme and shows this scheme with limited randomness has
essentially the same load threshold as the fully-random scheme.

3.2 Cuckoo hashing threshold and hypergraph ori-
entability

In this section, we compute the cuckoo hashing threshold for the most general model,
where many copies of each item need to be stored, each bucket can hold several
items, and each (item,bucket) pair can be re-used up to a certain number of times.
The precise formulation of the problem is described next (as well as an alternative
formulation in terms of hypergraph orientation), before proceeding to the statement
of the result and its proof.

60 CHAPTER 3. CUCKOO HASHING

3.2.1 Hashing graph and hypergraph orientation formulation

A multiple-choice hashing system can be represented as a bipartite graph G =
(L ∪ R,E) that we call the hashing graph (or cuckoo graph), where the left part L
represents the items and the right part R the buckets; the edges of the graph indicate
which buckets can be assigned to which items. To capture the more complex versions
of cuckoo hashing, where one needs to store h copies of each item or where each
bucket can hold at most k items at a time, we add respectively capacity constraints
bL ≡ h to the left-vertices (items) and bR ≡ k to the right-vertices (buckets);
similarly, if each (item,bucket) pair can be used at most s times, it is indicated by
the edge-capacities c ≡ s. In the case of fully random hashing, the d edges adjacent
to a left-vertex can be anything, while for double hashing they are restricted to
having a certain structure. Given such a hashing graph G, it is possible to build
a valid hashtable if we can associate each items to h buckets (with re-use up to s
times of the same (item,bucket) pair) without exceeding the capacity of any bucket,
i.e., if there exists a left-perfect capacitated matching of G.

In addition, the items with which the hashing system is presented are random
and thus the hashing graph is random, following a different distribution whether we
consider fully random or double hashing. In the case of fully-random hashing, the
set of pre-determined buckets for each item is a random subset of size d choosen
uniformly at random among all such subsets of buckets and independently for each
item. Then, the hashing graph Gn,m is a random bipartite graph with a constant
degree d for left-vertices and Poi(dn/m) for right-vertices, and it almost surely con-
verges locally weakly to a bipartite unimodular Galton-Watson limit, as the size of
the system increases.

An alternative description of the above setup consists in the following hyper-
graph orientation problem, a terminology used in [53, 70]. For d ∈ N∗, a d-uniform
hypergraph is a hypergraph whose hyperedges all have size d. Hyperedges represent
items, and vertices buckets. We assign marks in {0, . . . , s} to each of the endpoints
of a hyperedge. For h < d in N∗, a hyperedge is said to be (h, s)-oriented if the sum of
the marks at its endpoints is equal to h. The in-degree of a vertex of the hypergraph
is the sum of the marks assigned to it in all its adjacent hyperedges. For a posi-
tive integer k, a (k, h, s)-orientation of a d-uniform hypergraph is an assignement of
marks to all endpoints of all hyperedges such that every hyperedge is (h, s)-oriented
and every vertex has in-degree at most k. If such a (k, h, s)-orientation exists, we say
that the hypergraph is (k, h, s)-orientable, which means that one can build a valid
hashtable. We now consider the probability space Hm,n,d of the set of all d-uniform
hypergraphs with m vertices and n hyperedges, and we denote by Hm,n,d a random
sample from Hm,n,s. The load threshold τ ∗ under which cuckoo hashing builds a
valid hashtable w.h.p. is also the edge-density threshold under which hypergraphs
drawn from Hm,n,s are (k, h, s)-orientable w.h.p.

3.2.2 Cuckoo hashing threshold via maximum capacitated
matchings

Given a collection of m buckets and n items, the cuckoo hashing threshold τ ∗ is the
largest value such that, for all τ < τ ∗, if n ∼ τm then it is possible to build a valid

3.2. CUCKOO HASHING THRESHOLD VIA THE CAVITY METHOD 61

hashtable w.h.p. as m,n→∞; on the contrary, if τ > τ ∗ then the probability of a
valid assignement of items to buckets will tend a.s. to 0 with the system size. The
threshold in the most basic schenario d = 2, h = k = s = 1 is equal to 1/2, and the
following extensions can be naturally considered:

• each item can choose among d ≥ 2 random buckets [35, 42, 46];

• each bucket can hold a maximum of k items [36, 27, 41];

• each item must be replicated at least h times [53, 70];

• each (item,bucket) pair can be used a maximum of s times (not covered pre-
viously).

When confusion may be possible and we want to insist on the value of the parameters
d, k, h, s, we may write τ ∗d,k,h,s for the cuckoo hashing threshold. In this context, we
can interpret Theorem 2.1 as follows:

Theorem 3.1 (Threshold for (k, h, s)-orientability of d-uniform hypergraphs). Let
d, k, h, s be positive integers such that k, h ≥ s, (d − 1)s ≥ h and k + (d − 2)s > h
(i.e., at least one of the two inequalities k ≥ s and (d−1)s ≥ h is strict). We define
ΦL and ΦR

τ by (d, h, {s}) ∼ ΦL and (Poi(τd), k, {s}) ∼ ΦR
τ , and

τ ∗d,k,h,s = sup
{
τ :M(ΦL,ΦR

τ) = h
}

= inf
{
τ :M(ΦL,ΦR

τ) < h
}
,

whereM(ΦL,ΦR
τ) is defined in Theorem 2.1. Then,

limm→∞ P
(
Hm,bτmc,d is (k, h, s)-orientable

)
=

{
1 if τ < τ ∗d,k,h,s,
0 if τ > τ ∗d,k,h,s.

This result extends those from [70], where the value of the threshold τ ∗d,k,h,1 was
computed. We now turn to the proof. The idea is that Theorem 2.1 gives that only
a vanishing fraction of the hyper-edges of Hm,bτmc,d may not be (h, s) oriented in
the limit m→∞; this property defines a second load threshold τ̃ ∗d,k,h,s ≥ τ ∗d,k,h,s. It
only remains to show that the two thresholds are actually equal for Hm,bτmc,s.

Proof. For any d-uniform hypergraph H, recall that G = (L∪R,E) is the associated
bipartite hashing graph, where R contains the vertices of H and L the hyperedges
of H, and that G is then a random bipartite graph with constant degree d on L and
degree Poi(d|L|/|R|) on R. Then, for Hm,n,d with m ∼ τn, the asymptotic value
of M(Gn,m) is described by Theorem 2.1. First-of-all, it is clear by coupling that
τ 7→ M(ΦL,ΦR

τ) is a non-increasing function. Theorem 2.1 immediately shows that

lim
m,n→∞

1

n
M(Gn,m)

{
= h if τ < τ ∗d,k,h,s,
< h if τ > τ ∗d,k,h,s,

which immediately implies that Hm,n,d is asymptotically almost surely not (k, h, s)-
orientable if τ > τ ∗d,k,h,s.

Let now τ < τ ∗d,k,h,s. There may still exist o(n) hyperedges which are not (h, s)-
oriented; in a sense. We will then rely on specific properties of Hm,n,d to show that

62 CHAPTER 3. CUCKOO HASHING

asymptotically a.s. all hyperedges are (h, s)-oriented. We follow here a similar path
as in [53, 70]. It is easier to work with a different model of hypergraphs, that we call
Hm,p,d, and that is essentially equivalent to the Hm,bτmc,d model [66]: each possible
d-hyperedge is included independently with probability p, with p = τd/

(
m−1
d−1

)
. We

denote by Gm,p the corresponding bipartite random graph.
We let τ̃ be such that τ < τ̃ < τ ∗d,k,h,s, and consider the bipartite graph Gm,p̃ =

(Lm,p̃ ∪ Rm, Em,p̃) obtained from Hm,p̃,d with p̃ = τ̃ d/
(
m−1
d−1

)
. Consider a maximum

capacitated matching x̃ ∈ NEm,p̃ of Gm,p̃. We say that a vertex of l ∈ Lm,p̃ (resp. a
vertex r ∈ Rm) is covered if

∑
e∈∂l x̃e = h (resp.

∑
e∈∂r x̃e = k); we also say that an

edge e ∈ Em,p̃ is saturated if x̃e = s.
Let l be a vertex in Lm,p̃ that is not covered. We define K(l) as the minimum

subgraph of Gm,p̃ such that:

• l belongs to K(l);

• all the unsaturated edges adjacent to a vertex in Lm,p̃ ∩K(l) belong to K(l)
(and thus their endpoints in Rm also belongs to K(l));

• all the edges e for which x̃e > 0 and that are adjacent to a vertex in Rm∩K(l)
belong to K(l) (and so do their endpoints in Lm,p̃).

The subgraph K(l) defined in this way is in fact constitued of l and all the paths
starting from l and alternating between unsaturated edges and edges e with x̃e > 0
(we call such a path an alternating path for x̃). It is then easy to see that all the
vertices in Rm ∩K(l) must be covered, otherwise we could obtain a strictly larger
capacitated matching by applying the following change: take the path (e1, . . . , e2t+1)
between l and an unsaturated vertex in Rm ∩K(l); add 1 to each x̃ei for i odd, and
remove 1 from each x̃ei for i even; all these changes are possible due to the way the
edges in K(l) have been chosen, and the resulting capacitated matching has size
larger by 1 than |x̃|.

We will now show that the subgraph K(l) is dense, in the sense that the average
induced degree of its vertices is strictly larger than 2. We first show that all the
vertices in K(l) have degree at least 2. We have (d− 1)s ≥ h and l is not covered,
hence l has at least two adjacent edges in Gm,p̃ which are not saturated, thus the
degree of l in K(l), written degK(l) l, is at least 2. Let r be a vertex in Rm ∩K(l).
By definition, there exists an edge e ∈ ∂r ∩K(l) through which r is reached from
l in an alternating path, and x̃e < s. Then, because

∑
e∈∂r x̃e = k and k ≥ s there

must be another edge e′ adjacent to r such that x̃e′ > 0; such an edge belongs to
K(l) and thus r is at least of degree 2 in K(l). Let now l′ be a vertex in Lm,p̃∩K(l),
l′ 6= l. By definition, there must exist an edge e ∈ ∂l′ ∩ K(l) such that x̃e > 0.
Because (d− 1)s ≥ h and x̃e > 0 there must be another edge e′ adjacent to l′ such
that x̃e′ < s; e′ belongs to K(l) and thus degK(l) l

′ ≥ 2.
Consider a path (e1 = (v1v2), . . . , et = (vtvt+1)) inK(l) such that v1 ∈ Lm,p̃∩K(l)

and any two consecutive edges in the path are distinct. We will show that at least
one vertex out of 2s consecutive vertices along this path must have degree at least 3
in K(l), by showing that x̃e2(i+1)+1

< x̃e2i+1
provided v2(i+1) and v2(i+1)+1 have degree

2 in K(l) for all i. v2(i+1) ∈ Rm ∩ K(l) must be covered, so if degK(l) v2(i+1) = 2
we must have x̃e2(i+1)

= k − x̃e2i+1
. Then, if degK(l) v2(i+1)+1 = 2, all the edges

3.2. CUCKOO HASHING THRESHOLD VIA THE CAVITY METHOD 63

adjacent to v2(i+1)+1 except e2(i+1) and e2(i+1)+1 must be saturated, thus we must
also have (d − 2)s + x̃e2(i+1)

+ x̃e2(i+1)+1
≤ h. This immediately yield x̃e2(i+1)+1

+
{k + (d− 2)s− h} ≤ x̃e2i+1

, and thus x̃e2(i+1)+1
< x̃e2i+1

as claimed. But x̃e2i+1
< s

and so x̃e2i+2s+1
≤ −1 if the hypothesis that all the vertices encountered meanwhile

have degree 2 in K(l) were correct, which is thus not possible. Note that we did not
need to assume that the path considered is vertex-disjoint, hence in particular it is
not possible that K(l) is reduced to a single cycle.

We will now count vertices and edges of K(l) in a way that clearly shows that the
number of edges in K(l) is at least η times its number of vertices, with η > 1. We
can always see K(l) as a collection P of edge-disjoint paths, with all vertices interior
to a path of degree 2 in K(l) and the extremal vertices of a path having degree at
least 3 in K(l). To form K(l) we would simply need to merge the extremal vertices
of some of these paths. We have shown before that each path in P has at most 2s
vertices. Let ρ = (e1 = (v1v2), . . . , et = (vtvt+1)) be a path in P , we let θE(ρ) = t
be the number of edges in ρ and θV (ρ) =

∑
ei∈ρ

1
degK(l) vi

+ 1
degK(l) vi+1

be a partial
count of the vertices in ρ (all the interior vertices are counted as 1 but the extremal
vertices are only partially counted in θV (ρ), as they belong to many different paths).
We have θV (ρ) = t− 1 + 1

degK(l) v1
+ 1

degK(l) vt+1
≤ t− 1 + 2

3
. Hence,

θE(ρ)

θV (ρ)
≥ t

t− 1 + 2
3

≥ 1

1− 1
6s

> 1.

Furthermore, it is easy to see that∑
ρ∈P

θE(ρ) = number of edges in K(l),∑
ρ∈P

θV (ρ) = number of vertices in K(l),

which shows that the number of edges in K(l) is at least η = 1
1− 1

6s

> 1 times the
number of vertices in K(l).

Now, it is classical that any subgraph of a sparse random graph like Gm,p̃ with a
number of edges equal to at least η > 1 times its number of vertices must contain at
least a fraction ε > 0 of the vertices of Gm,p̃, with probability tending to 1 as n→∞
(see [66, 53]). Therefore, K(l) contains at least a fraction ε′ > 0 of the vertices in
Lm,p̃.

There exists a natural coupling between Hm,p,d and Hm,p̃,d: we can obtain Hm,p,d

from Hm,p̃,d by removing independently each hyperedge with probability p̃− p > 0.
This is equivalent to removing independently with probability p̃ − p each vertex
in Lm,p̃. We let gapm,p̃ = h|Lm,p̃| −M(Gm,p̃) = o(m). For any uncovered vertex
l in Lm,p̃ we can construct a subgraph K(l) as above. If we remove a vertex l′

in Lm,p̃ ∩ K(l) for such a l, then either this vertex l′ is itself uncovered, and then
gapm,p̃ is decreased by at least 1, or l′ is covered and then it must belong to an
alternating path starting from l and we can construct a new capacitated matching
with size equal to that of x̃ and in which l′ is uncovered and there is one more
unit of weight on one of the edges adjacent to l, hence removing l′ will also reduce

64 CHAPTER 3. CUCKOO HASHING

gapm,p̃ by 1. We proceed as follows: we attach independently to each hyperedge
l of Hm,p̃,d a uniform [0, 1] random variable Ul. To obtain Hm,p,d we remove all
hyperedges l such that Ul ≤ p̃ − p. This can be done sequentially by removing
at each step the hyperedge corresponding to the lowest remaining Ul. Then, at
each step, assuming there are still uncovered vertices l in Lm,p̃ we can consider the
union K of the subgraphs K(l), which has size at least ε′|Lm,p̃| ≥ ε′bτmc. Hence,
with positive probability the hyperedge removed will decrease the value of gapm,p̃.
By Chernoff’s bound, the number of hyperedges removed is at least bτmc p̃−p

2
with

high probability as m → ∞, therefore gapm,p̃ will reach 0 with high probability as
m→∞ before we remove all the hyperedges that should be removed. Hence, Hm,p,d

(and thus Hm,bτmc,d) is (k, h, s)-orientable a.a.s.

3.3 An analysis of double hashing
In this section, we consider the double hashing scheme and show that the same
approach via the cavity method can be used to compute its load threshold. More
precisely, the process considered to obtain the load threshold for a particular hashing
model expected to perform as fully-random hashing can be decomposed in three
steps:

1. One shows that the hashing graph converges in the local weak sense to a certain
limit. Typically, this limit would be a bipartite unimodular Galton-Watson
distribution.

2. Theorem 2.1 then yields the asymptotic size of capacitated matchings –and
thus the value of τ̃ ∗– for the hashing graph model of interest.

3. Finally, a step similar to the proof of Theorem 3.1 above needs to be performed
to show that τ ∗ = τ̃ ∗.

Clearly, the second step is automatic. In this section, we perform the first step
for the double hashing model. The only missing part to obtain the double hash-
ing threshold is then a property similar to that taken from [66] in the proof of
Theorem 3.1 (about subgraphs with at least η > 1 times more edges than vertices
containing asymptotically a.s. at least a fraction ε of the vertices of the graph) for
the double hashing model. We do not attempt to address this issue here, as we
believe computing the threshold τ̃ ∗ is already enough to show the potential of the
approach used.

In this section, we first explain more formally how to construct the double hashing
graph, then we state the result about the local weak convergence of such graphs and
explain how the proof proceeds by analysing a two-step Breadth-First-Search (BFS)
exploration of the hashing graph. Finally, we give the proof of the result.

3.3.1 Double hashing graph

For our analysis of double hashing, it is convenient to see its hashing graph as
obtained in the following manner, where we merge all the items which are given

3.3. AN ANALYSIS OF DOUBLE HASHING 65

the same choices of buckets and keep track of the multiplicity of the vertices: we
start from the bipartite graph G̃ = (L̃ ∪ R,E) which contains all the information
about the choices of buckets offered to every item that can potentially be inserted
in the hashtable. We have |R| = m and |L̃| =

(
m
2

)
, with a left-vertex in G̃ for each

different neighborhood (different choice of buckets) allowed by the local structure
constraints of the hashing technique. If we label the vertices in R with the integers
from 1 to m and the vertices in L̃ with the couples (f, g) with f ∈ {1, . . . ,m} and
g ∈ {1, . . . , m−1

2
}, there is an edge in G̃ between vertex r ∈ R and l = (f, g) ∈ L̃ if

there exists i ∈ {0, . . . , d− 1} such that r = f + ig (mod m). To build the hashing
graph, f and g are drawn independently at random for each of the n items, which
corresponds exactly to a sampling with replacement of n left-vertices in L̃. We denote
by L′ ⊂ L̃ the set of left-vertices obtained in this way, and by Z ′l ∼ Bin(n, 1/

(
m
2

)
)

the multiplicity of the left-vertices l. The induced graph G′ = G̃[L′ ∪ R] is exactly
the graph obtained via double-hashing.

As we are interested in the regime n = bτmc → ∞, it is equivalent for our
problem to suppose n ∼ Poi(τm) instead. Indeed, the Poi(τm) random variable is
concentrated around τm with only logarithmic fluctuations for m → ∞, therefore
the existence and the value of a load threshold τ ∗ are identical in the two models.
Thus, we consider instead the set L obtained by taking Zl ∼ Poi(2τ

m−1
) copies of

each vertex in L̃, independently for each vertex in L̃, and keeping in L only those
vertices with at least one copy, as we did before for L′. We will focus mainly on the
random graph G = G̃[L ∪ R]; we denote by Gm a sample of this random graph for
a particular value of m (τ being fixed and n ∼ Poi(τm)).

3.3.2 Main Results and Overview of the Proof

The proof consists in similar steps as in [20], with the difference that in our case the
graphs are bipartite and have a more constrained local structure.

Let us call Gm = (Lm ∪Rm, Em) the random graph obtained at finite m and let
ρGm be the distribution of [Gm, r0], where r0 is a random root in Rm; let ρm be the
average of ρGm over the random graphGm. Let also ρ = GW(Poi(τd), d) be the law of
a bipartite unimodular Galton-Watson tree with laws Poi(τd) and Deterministic(d),
as defined in Section 1.1.3. In a first step, we will show that ρm converges weakly
towards ρ as m → ∞. Then, we will show that ρGm is concentrated around ρm
so that ρGm almost surely converges weakly towards ρ. Explained differently, there
are two sources of randomness involved in the sampling of a rooted graph [Gm, r0]:
the first one is artificial and is due to r0 being a random right-vertex. It has been
introduced to turn any fixed graph into a distribution over rooted graphs, which
then allows us to consider weak convergence of a sequence of such distributions.
The second one is inherent to the hashing scheme used: it comes from the fact
the couple (f, g) determining the choice of buckets offered to each item is chosen at
random upon arrival of the item, and it turns Gm itself into a random graph, in a way
described in Section 1.1.2. We first show that the measure ρm obtained by averaging
over both sources of randomness at the same time converges weakly towards the law
ρ of a two-step unimodular Galton-Watson, before showing that the averaging over
the random choices offered to the items is not required for the convergence to hold,

66 CHAPTER 3. CUCKOO HASHING

which means we do not need to average over different realization of a large hashtable
for the results to hold.

We will thus show the following results: the first one is the intermediate result
where we show local weak convergence with both types of averaging together.

Proposition 3.1. The average distribution ρm of the double hashing random rooted
graph [Gm, r0] rooted at a random vertex r0 ∈ Rm converges weakly towards the
distribution of a two-step unimodular Galton-Watson tree. In other words, we have

ρm ρ.

The result above, together with some results on concentration of measure, leads
to our main theorem, which is almost sure local weak convergence of the hashing
graph:

Theorem 3.2. The distribution ρGm of the double hashing random graph Gm almost
surely converges weakly towards the distribution of a two-step unimodular Galton-
Watson tree. In other words,

ρGm ρ a.s.

Finally, the announced result on the load threshold of double hashing is contained
in the following corollary, which is now a direct consequence of Theorem 3.2 and
Theorem 2 from [70].

Corollary 3.1. The load threshold τ ∗ under which all items can be inserted in the
hashtable for fully random hashing w.h.p. is also the load threshold under which all
n items but o(n) can be inserted for double hashing w.h.p.

In the next section, we introduce a main tool for our proofs: a two-step breadth-
first search (BFS) exploration of the hashing graph Gm; and illustrate its analysis
through the simple example of upper-bounding the number of short cycles in Gm.

3.3.3 Breadth-First Search Exploration

When it is clear from the context, we simply write G instead of Gm. For any k ∈ N∗
and any graph G∗, we let N k

G∗(v) denote the k-hop neighborhood of vertex v in the
graph G∗; to ease the notation, when G∗ = G we simply write N k(v), and when
k = 1 we write NG∗(v).

We consider the breadth-first search (BFS) exploration of the graph G, starting
from a random right-vertex r0 ∈ R. At each step, we select an active right-vertex
and explore all its left-neighbors as well as their own right-neighbors. We define
the sets CR

t and CL
t of connected right- and left-vertices at time t, the list of active

right-vertices ARt , and the sets of unexplored right- and left-vertices UR
t and UL

t . We
have

CR
0 = CL

0 = ∅,
AR0 = (r0),
UR

0 = R \ {r0},
UL

0 = L̃.

At each step t, we proceed as follows:

3.3. AN ANALYSIS OF DOUBLE HASHING 67

• we let rt be the first element in the list ARt (so that it is the closest vertex to
r0 in ARt);

• if ARt 6= ∅, we do the following updates:

CR
t+1 = CR

t ∪ {rt},
CL
t+1 = CL

t ∪N (rt),
ARt+1 = (ARt \ {rt},N 2(rt) ∩ UR

t),
UR
t+1 = UR

t \ N 2(rt),
UL
t+1 = UL

t \ NG̃(rt).

We let XR
t be the number of vertices added to ARt \ {rt} at step t, i.e., XR

t =

|N 2(rt) ∩ UR
t |, and XL

t (resp. X̃L
t) be the number of left-vertices of G (resp. G̃)

explored at step t, i.e., XL
t = |N (rt)∩UL

t | and X̃L
t = |NG̃(rt)∩UL

t |, where we identify
the vertices in G and G̃ with the same label. We also let θ = inf{t ≥ 1 : At 6= ∅}
be the time at which we complete the exploration of the connected component of
rt in G; θ is a stopping time for the filtration Ft = σ

((
CR
i , C

L
i , A

R
i , U

R
i , U

L
i

)
0≤i≤t

)
.

With these definitions and for all t ≤ θ, it is clear that

|CR
t | = t,

|CL
t | =

∑t−1
i=0 X

L
i ,

|ARt | = 1 +
∑t−1

i=0(XR
i − 1) ≤ 1− t+ (d− 1)

∑t−1
i=0 X

L
i ,

|UR
t | = m− 1−

∑t−1
i=0 X

R
i ,

|UL
t | =

(
m
2

)
−
∑t−1

i=0 X̃
L
i ≥ m−1

2
(m− dt).

To get used to reasoning on this model of random bipartite graphs with local
structure constraints as well as to understand why double hashing graphs converge
to trees, we start off by bounding the number of cycles of a given length in G:

Lemma 3.1. Let Ck be the number of cycles of length k in G. We have

E [C2k] ≤ d2kτ k +O(1/m)

Proof. Let r1, . . . , rk ∈ R be distinct vertices of R. For r1, . . . , rk to be on a cycle of
size 2k of G in this order, there must exist distinct vertices l1, . . . , lk ∈ L such that,
for all i, li connects ri−1 and ri, where r0 = rk. Fixing r and r′ distinct in R, the
number of vertices connecting them in G̃ is exactly

(
d
2

)
(as setting the set of indices

{i, i′} such that f + ig = r and f + i′g = r′ or f + i′g = r and f + ig = r′ leaves
exactly one possibility for the couple (f, g) ∈ L̃). Therefore, the probability that r
and r′ are connected by a vertex in L is

P
(
r and r′ are connected by a vertex in L

)
= 1− e−

2τ
m−1(d2)

=
(
d
2

)
2τ
m

+O(1/m2).

Furthermore, it is clear that the probability of existence of distinct vertices
l1, . . . , lk in L such that, for each i, li connects ri−1 and ri, is no larger than the

68 CHAPTER 3. CUCKOO HASHING

product of the probabilities of existence of each li independently of the others:

P
(
∀i, ∃li ∈ L connecting ri−1 and ri; li 6= lj, ∀j 6= i

)
≤
∏

i P
(
∃li ∈ L connecting ri−1 and ri

)
≤
(
τd2

m

)k
+O(1/mk+1).

We conclude by summing over all the m. . . (m − k + 1) ≤ mk possible choices of
r1, . . . , rk.

3.3.4 Proofs

We now return to the proof of the main theorem. Lemma 3.2 shows that the joint
distribution of the numbers of children of the left-vertices explored during the first
t steps of BFS is asymptotically very close to that we would obtain in a two-step
unimodular Galton-Watson tree.

Lemma 3.2. On an enlarged probability space, there exists a sequence (Y L
t)t≥0 of

i.i.d. Poi(τd) variables such that

P
(

(XL
0 , . . . , X

L
(t−1)∧θ) 6= (Y L

0 , . . . , Y
L

(t−1)∧θ)
)

≤ 1
m−1

(τd2t2 + τ 2dt+ 2τt).

We denote by dTV(p, q) the distance in total variation between the two distri-
butions p and q. To ease the notation, we will also use dTV for random variables,
which will refer to the distance between their distributions. The maximal coupling
inequality says that, over an enlarged probability space, there exists a coupling of
X and Y such that P(X 6= Y) = dTV(X, Y).

Proof. For any t ≤ θ, XL
t is a binomial random variable of parameters |UL

t ∩NG̃(rt)|
and 1 − e−

2τ
m−1 . We have that |NG̃(rt)| = m−1

2
d and, as any two vertices in R

(and in particular ri and rt for any i < t) are connected by exactly
(
d
2

)
vertices

in L̃, we obtain the bound m−1
2
d −

(
d
2

)
t ≤ |UL

t ∩ NG̃(rt)| ≤ m−1
2
d. Furthermore,

2τ
m−1
− 2τ2

(m−1)2
≤ 1− e−

2τ
m−1 ≤ 2τ

m−1
. It follows

P
(

(XL
0 , . . . , X

L
(t−1)∧θ) 6= (Y L

0 , . . . , Y
L

(t−1)∧θ)
)
≤ E

[(t−1)∑
i=0

1(i ≤ θ)P(XL
i 6= Y L

i

∣∣Fi)]
and

E
[
dTV(XL

i , Y
L
i)|Fi

]
≤ P

(
Bin(

(
d
2

)
i, 1− e−

2τ
m−1) 6= 0

)
+ dTV

(
Bin(m−1

2
d, 1− e−

2τ
m−1),Bin(m−1

2
d, 2τ

m−1
)
)

+ dTV
(
Bin(m−1

2
d, 2τ

m−1
),Poi(τd)

)
≤ 2τi

m−1

(
d
2

)
+ τ2d

m−1
+ 2τ

m−1
.

We conclude by using the maximal coupling inequality and then summing over i.

3.3. AN ANALYSIS OF DOUBLE HASHING 69

Next, Lemma 3.3 asserts that w.h.p. the graph explored in the first t steps of
BFS is a tree.

Lemma 3.3. For an integer t ≤ θ, the portion of the graph G explored until step t
becomes a tree w.h.p. as m,n→∞. More precisely,

P
(
G[(CR

t ∪ ARt) ∪ CL
t] not a tree

)
≤ τ 2d4t+ τ 2d4t2

m− 1
.

Proof. Loops get formed in the portion of the graph explored at step t when one of
the following events occur:

• there exists a vertex r ∈ UR
t connected to rt by at least two distinct vertices

in L;

• there exists a vertex l ∈ UL
t ∩ L which connects rt and some vertex r ∈ ARt .

Indeed, assuming G[(CR
t ∪ ARt) ∪ CL

t] is a tree and none of the two events above
occur, it is easy to see that G[(CR

t+1 ∪ARt+1)∪CL
t+1] is still a tree. At step t, if a loop

is created, it must contain a newly explored left-vertex (i.e., a vertex in CL
t+1 \CL

t),
otherwise it would not involve any new vertex or edge and hence would also be a
loop in G[(CR

t ∪ARt)∪CL
t]; furthermore, we can always assume that loop contains rt.

If the second event does not occur, the newly added vertices are connected to those
in (CR

t ∪ ARt) ∪ CL
t only through rt, and thus any new loop must be contained in

G[{rt} ∪ (ARt+1 \ARt)], which is prevented since the first event does not occur either.
Let us call Et and E ′t the two events considered.

P(Et) ≤ E
[∑

r∈URt
P(|N (r) ∩N (rt)| ≥ 2

∣∣Ft)] ≤ τ2d4

m−1
,

P(E ′t) ≤ E
[∑
r∈ARt \{rt}

P(N (r) ∩N (rt) 6= ∅
∣∣Ft)] ≤ τd2

m−1
(E[|ARt |]− 1).

We can bound E[|ARt |] as follows

E[|ARt |]− 1 ≤ −t+ (d− 1)
t−1∑
i=0

E[XL
i] ≤ τd2t.

Summing over t yields the desired result.

The hashing graph G obtained may be a tree, but remember that we merged all
the items with the same choices of buckets into a single left-vertex of G. Lemma 3.4
shows that each left-vertex explored in the first t steps of BFS actually correspond to
a single item, i.e., the items explored were given different choices of buckets, w.h.p.

Lemma 3.4. For an integer t ≤ θ, no left-vertex explored until step t has two copies
or more (i.e., Zl ≤ 1 for all l ∈ CL

t) w.h.p. as m,n→∞. We have

P
(
∃l ∈ CL

t : Zl ≥ 2
)
≤ 4τ 3dt

(m− 1)2
.

70 CHAPTER 3. CUCKOO HASHING

Proof. The result follows straightforwardly from the union bound:

P
(
∃l ∈ CL

t : Zl ≥ 2
)
≤ E[|CL

t |](1− P
(
Poi(2τ

m−1
) ≤ 1))

)
=

∑t−1
i=0 E[XL

i]
(
1− e−

2τ
m−1 − 2τ

m−1
e−

2τ
m−1

)
≤ τdt 4τ2

(m−1)2
.

We are now ready to show that the average distribution ρm of the k-hop neigh-
borhood of a random root-vertex r0 in a random graph Gm tends to the distribution
of a two-step unimodular Galton-Watson tree cut at depth k, for any k ∈ N and as
m→∞ (Proposition 3.1).

Proof of Proposition 3.1. Let k ∈ N. For any finite tree T of depth at most k (or
more generally for rooted graphs of radius at most k) and any collection of such
trees T , let AT = {[G] ∈ G∗, (G)k ' T}, where ' refers to rooted isomorphism,
and AT = ∪T∈TAT . For every ε > 0 and any finite k, there exists a finite set T of
trees of depths at most k in which every odd-depth vertex has degree d and such
that ρ(AT) =

∑
T∈T ρ(AT) ≥ 1 − ε. Let t be the maximum size of the trees in

T ; it means that, with probability at least 1 − ε, a BFS run during t steps on a
two-step unimodular Galton-Watson tree sampled from ρ will explore at least the
k-hop neighborhood of the root.

Let r0 be a random right-vertex in the random graph Gm. According to Lem-
mas 3.3 and 3.4 and with probability at least 1 − τ2d4t+τ2d4t2

m−1
− 4τ3dt

(m−1)2
→

m→∞
1, the

graph induced by [Gm, r0] on the vertices explored during the first t steps of BFS is a
tree, with all left-vertices having exactly one copy. Hence, in particular the offspring
of each left-vertex in this tree is of size d− 1. Furthermore, according to Lemma 3.2
and with probability at least 1 − τd2t2+τ2dt+2τt

m−1
→

m→∞
1, there is a coupling between

the numbers of newly explored left-vertices in the graph [Gm, r0] during the first t
steps of BFS and a sequence of i.i.d. Poi(τd) random variables. Therefore, on an
event of probability tending to 1 as m → ∞, we can couple the exploration during
the first t steps of BFS on [Gm, r0] and on a two-step unimodular Galton-Watson
tree sampled from ρ. On the event that these two exploration can be coupled and
for any T ∈ T such that the BFS exploration on T will have explored at least the
k-hop neighborhood of the root within t steps, it follows the BFS exploration on
[Gm, r0] will also have explored at least the k-hop neighborhood of r0. Then, for any
T ∈ T , we have

|P((Gm, r0)k ' T)− ρ(AT)| ≤ τ 2d4t+ τ 2d4t2 + τd2t2 + τ 2dt+ 2τt

m− 1
+

4τ 3dt

(m− 1)2
.

Then, it follows lim
m→∞

ρm(AT) = ρ(AT) for any T ∈ T .
For any bounded uniformly continuous function f , there exists k ∈ N such that

|f((G)k)− f(G)| ≤ ε for all rooted graphs G ∈ G∗. For this k we can define a finite
collection of trees T as before, such that ρ(T) ≥ 1− ε. For m large enough, we have
ρm(T) ≥ 1− 2ε, and∣∣∣ ∫ fdρm −

∫
fdρ

∣∣∣ ≤ ε(1 + 3||f ||∞) +
∑
T∈T

f(T)
∣∣ρm(AT)− ρ(AT)

∣∣.

3.3. AN ANALYSIS OF DOUBLE HASHING 71

Letting m→∞ and then ε→ 0 completes the proof.

We will now prove almost sure local weak convergence of the random graph Gm

towards the two-step unimodular Galton-Watson tree (Theorem 3.2). To that end,
we use the Azuma-Hoeffding measure-concentration inequality:

Proposition 3.2. Let M = (Mt)0≤t≤m be a martingale with respect to a filtration
F = (Ft)0≤t≤m. Suppose there exists constants c1, . . . , cm such that, for all 1 ≤ t ≤
m, the following holds: ∣∣Mt −Mt−1

∣∣ ≤ ct.

Then, for all ε > 0,

P
(∣∣Mm −M0

∣∣ ≥ ε
)
≤ 2e−2ε2/

∑
0≤t≤m c2m .

Proof of Theorem 3.2. Let k ∈ N∗ and H be a rooted graph of radius at most k. We
define AH as in the proof of Proposition 3.1. We let h be the number of right-vertices
in H; we focus on m large enough such that lnm ≥ h. Recall that

ρGm(AH) =
1

m

∑
r0∈Rm

1 ((Gm, r0)k ' H) .

For any r ∈ Rm = {1, . . . ,m}, we define

ζr = (Zl : l ∈ NG̃(r) and l /∈ NG̃(r′),∀r′ < r)

and we let Ft = σ
(

(ζr)1≤r≤t

)
. It is easy to obtain from Chernoff’s bound that

P(|ζr| ≥ lnm) ≤ P(
∑

l∈N
G̃

(r)

Zl ≥ lnm) ≤ me−τd

mln lnm
τd

,

so that

P(∃r ∈ Rm such that |ζr| ≥ lnm) ≤ m2e−τd

mln lnm
τd

→
m→∞

0.

We say that Gm is valid if |ζr| < lnm for all r, and that ζr is valid if |ζr| <
lnm. We will sometimes write Gm(ζ) and ρGm(ζ)(AH) to avoid confusion. We
define ρm(AH |Gm valid) as the expectation of ρGm(AH) over the random graph Gm

conditionally on Gm valid.
Now, we let

Mt = E[ρGm(AH)|Ft, Gm valid].

We have
E[Mt+1|Ft] = E[ρGm(AH)|Ft, Gm valid] = Mt,

thusM is indeed a martingale with respect to F . Note thatM0 = ρm(AH |Gm valid)
and, for Gm valid, Mm = ρGm(AH). Consider two sequences ζ = (ζr)1≤r≤m and ζ ′ =
(ζ ′r)1≤r≤m differing only in one value, say ζr 6= ζ ′r. There are at most (1+ |ζr|(d−1))h

72 CHAPTER 3. CUCKOO HASHING

right-vertices r0 in Gm(ζ) such that (Gm(ζ), r0)k ' H and r has a 2-hop neighbor
in R ∩ (Gm(ζ), r0)k. Assuming ζr and ζ ′r are valid, we obtain

|ρGm(ζ)(AH)− ρGm(ζ′)(AH)| ≤ 2dh lnm

m
.

Therefore, assuming ζt is valid for t < r, we have

|Mr −Mr−1| ≤ E
[

max
ζr,ζ′r

∣∣ρGm(ζ)(AH)− ρGm(ζ′)(AH)
∣∣∣∣∣Fr−1, Gm valid

]
≤ 2dh lnm

m
.

Then, the Azuma-Hoeffding inequality yields

P
(∣∣ρGm(AH)− ρm(AH |Gm valid)

∣∣ ≥ ε
∣∣∣Gm valid

)
≤ 2e−mε

2/(2h2d2 ln2m).

Furthermore, it is easy to check that∣∣ρm(AH)− ρm(AH |Gm valid)
∣∣ ≤ 2P(Gm not valid)

≤ 2m2e−τd

mln lnm
τd
,

and it follows that

P
(∣∣ρGm(AH)− ρm(AH)

∣∣ ≥ ε
)
≤ 2e−

mε2

2h2d2 ln2m +
2m2e−τd

mln lnm
τd

.

The term on the right-hand side is the general term of a convergent series, hence
we can conclude using the Borel-Cantelli lemma and then the same argument as for
Proposition 3.1.

Chapter 4

Load-balancing and
resource-placement in distributed
CDNs

This section considers large scale distributed content delivery networks, composed
of a data center assisted by many small servers with limited capabilities and located
at the edge of the network. The objective in such systems is to offload as much
as possible the data center, which operation is comparatively costly. The efficiency
critically depends on two factors: (i) content replication within servers, and (ii) how
incoming service requests are matched to servers holding the requested content. To
inform the corresponding design choices, we study two natural matching policies
with extremal features and which should yield fundamental intuition about the
system: optimal matching and greedy random matching. Under both matching
policies, the inefficiency of underloaded systems decays exponentially fast as storage
increases, however the simpler algorithm incurs a severe performance degradation as
the system load approaches criticality. For both policies, we explore the impact of the
content replication on the performance, and optimize replication in the large system
/ large storage limits. In a second time, we develop adaptive replication policies for
greedy matching designed for minimizing the overall loss rate and reacting quickly
to popularity changes.

73

74 CHAPTER 4. DISTRIBUTED CDN

4.1 Introduction

The surge in consumption of video over the Internet necessitates massive bandwidth
provisioning. At the same time, storage is extremely cheap. Extensive replication of
content not only within data centers, but also at the periphery of the network, e.g.,
in users’ computers, can thus be envisioned to leverage uplink bandwidth available
from users’ homes. People’s CDN is one particular commercial initiative in this
direction; the massively popular PPLive peer-to-peer system for video-on-demand
is another example of this approach.

Such systems feature two key resources, namely storage and bandwidth. Ideally,
one would like to utilize storage by pre-loading content replicas at individual servers,
in such a way that bandwidth of all servers is available to serve any incoming re-
quest. In other words, a challenge in engineering such systems is to create content
replicas so that bandwidth can be used maximally. Several strategies for content
replication have been considered: e.g., uniform replication does not discriminate be-
tween contents; proportional replication tunes the number of replicas to the average
number of requests, and automatically arises at cache memories when the so-called
random-useful cache eviction method is used (it is also approximately achieved by
the classical Least Recently Used (LRU) eviction rule [104]).

Our first objective is to develop a clear understanding of the relative merits of
distinct replication strategies in the context of large-scale distributed server plat-
forms. We also aim at characterizing the impact of the amount of storage available
on the performance. These properties certainly depend both on the content repli-
cation strategy and on the algorithm used to match incoming service requests to
servers capable of treating these requests. However, a joint study of the influence
of these two factors seems too ambitious, therefore we instead focus on two natural
matching algorithms: optimal matching and random greedy matching, which are in
a sense extremal and should give a clear view of the range of performance and typical
behaviors one can expect in such systems. Under both these matching algorithms,
we characterize the influence of the replication of contents, with a particular focus
on large system / large storage asymptotics. We notably identify replication policies
with the optimal asymptotic performance.

This chapter is organized as follows: in Section 4.2, we explain in detail our model
of an edge-assisted CDN, in particular the way replication strategies are captured
as well as the two matching policies considered. We then review related work on
similar systems and the replication strategies encountered there (Section 4.3). We
then turn to the analysis of the system under the two matching algorithms consid-
ered: Section 4.4 focuses on optimal matching, for which the expected performance
of the system can be obtained via the study of maximum capacitated matchings
(Theorem 2.1); and in Section 4.5, we use mean-field heuristics to study the system
under random greedy matching. For both matching algorithms, we pay a partic-
ular attention to the large storage regime, in which the optimal replications have
an explicit expression. Finally, Section 4.6 is devoted to designing adaptive repli-
cation algorithms under random greedy matching, which quickly attain the optimal
replication of contents by leveraging the detailed analysis of the previous section.

4.2. EDGE-ASSISTED CDN MODEL AND STATISTICAL ASSUMPTIONS 75

4.2 Edge-assisted CDN model and statistical
assumptions

In this section, we describe our basic edge-assisted CDN model. A more complex
model is described in Section 4.4.2. However this last model may be less amenable
to analysis, therefore we will stick to the basic model most of the time. Indeed, it
seems likely that most of the intuition can already be gathered under the simpler
model.

The basic components of an edge-assisted CDN are a data center and a large
number m of small servers. The CDN offers access to a catalog of n contents of
identical size (for simplicity). The data center stores the entire catalog of contents
and can serve all the requests directed towards it, whereas each small server can
only store a fixed number d of contents and can provide service for at most one
request at a time. We can represent the information of which server stores which
content in a bipartite graph G = (S ∪ C,E), where S is the set of servers, C the
set of contents, and there is an edge in E between a content c and a server s if s
stores a copy of c; an edge therefore indicates that a server is able to serve requests
for the content with which it is linked. We do not allow requests to be delayed or
split between many servers. As a result, at any time, the subset of edges of G over
which some service is being provided form a capacitated matching x of the graph
G, where the capacities are all 1 except the vertex-capacities of contents c, which
are equal to their current number of pending requests Rc.

The contents of the catalog may have different popularities, leading to different
requests arrival rates λc. We let λ be the average request rate, i.e., λ = 1

n

∑
c λc.

According to the independent reference model (IRM), the requests for the various
contents arrive as independent Poisson processes with rates λc. In addition, we
assume the service times of all the requests are independent Exponential random
variables with mean 1 whether a particular request is served by a server or by the
data center, so that at each instant the number of pending requests Rc follows a
Poisson distribution with mean λc. We let ρ denote the expected load of the system,
i.e., ρ = nλ

m
. The distribution of popularities of the contents is left arbitrary at this

stage. In practice, Zipf distributions are often encountered (see [45] for a page-long
survey of many studies), where the i-th most popular content in a Zipf distribution
of parameter α has popularity λi = λ i−α∑

j≤n j
−α . As an alternative popularity model,

we may often assume that the contents can be grouped into K popularity classes,
where the class k contains a fraction αk of all the contents and all of them have the
same popularity λk. In such a class model, the problem of adapting the replication to
the popularities of contents is still almost intact, while the analysis is more tractable
and the results easier to interpret.

The large scale of the system as well as the uncertainty ahead of time in the num-
ber of requests for each content make it hopeless to design with too much precision
the joint constitution of the caches of all the servers, i.e., deciding jointly of each and
every edges in the bipartite graph G. Indeed, we are interested in a regime where
the number of contents n and the number of servers m tend to infinity together,
with m ∼ τn for some τ > 0. In this regime, it seems reasonable that there will be
little fine-tuned cooperation between the servers, and they will thus essentially make

76 CHAPTER 4. DISTRIBUTED CDN

independent choices for their cache based on the available statistics on the requests.
In fact, we even assume for simplicity that a same server does independent caching
choices for all its memory slots. Then, at best, if the servers have some a priori
information on all the contents, they can ensure that each content has a given num-
ber of copies Dc, with

∑
c∈C Dc = md, and the content-server graph G is a random

bipartite graph with fixed degree d on S and a prescribed degree sequence on C. If
less information is available, e.g., the servers behave as if under the popularity class
model, then they may decide only of which class to store based on a distribution π
and then cache a random content from the corresponding class. Then the distribu-
tion of the degree D of a random content is a mixed Poisson distribution, and G is
a random bipartite graph with degrees d on S and a prescribed distribution D on
C. An extreme of this model is when the servers have no information beforehand on
the contents and do fully random caching choices, resulting in a Poi(md/n) degree
distribution for the contents.

We focus on two different matching algorithms. The first one is optimal match-
ing, i.e., the system uses a maximum capacitated matching of the content-server
graph at any time. For such a matching algorithm to be possible, we make the as-
sumption that one can re-assign requests during their service without losing the work
already done, e.g., the same request may at first be routed to the data center for
lack of available servers, then re-directed to a small server which has just completed
a service and then moved again to another server at some point to allow using a
better matching. This assumption that re-allocations are possible allows us to have
an optimal matching algorithm which does not require any knowledge of the future
requests arrivals. We do not specify a particular implementation for the optimal
matching algorithm: the algorithm may be centralized, with an authority knowing
the state of the system and the contents of all caches at any time and dispatching the
requests, or decentralized like for example the cuckoo hashing random walk insertion
algorithm seen in Chapter 3. Note that the problem of finding a maximum capac-
itated matching in a finite bipartite graph is known to be of strongly polynomial
complexity [8], using a strongly polynomial algorithm for maximum flow problems
by [102]. There may nonetheless exist lower-complexity methods, that yield compa-
rable performance for the graphs of interest. The purpose of studying the optimal
matching algorithm is that it provides upper-bounds on the efficiency for any given
replication policy under any other matching algorithm. This allows us to identify
the regimes as well as the potential causes for performance degradations under any
given candidate matching algorithm, and therefore also determine whether any sub-
stantial gain can be obtained by considering a more complex algorithm. The study
of the performance of the system and the asymptotics of an optimal replication
policy are the object of Section 4.4. In contrast with the optimal matching, which
may not be practical in some systems, the second matching algorithm we consider
is a very simple one which should be implementable in any system, called random
greedy. Under this policy, each request is directed upon arrival either to an available
server storing the corresponding content or to the data center if no such server exists,
and then no re-allocation of the request is possible. As this is the simplest possible
policy one could think of, it yields a lower-bound on the average performance of
the system under any reasonable matching strategy. The random greedy matching

4.3. RELATED MODELS AND REPLICATION STRATEGIES 77

algorithm is studied in Section 4.5.
Under both matching algorithms, the requests are served without delay, be it

by the data center or by a small server, therefore the performance of the system is
mainly described by the cost associated with the service. This cost is mostly tied
to the number of requests served by the data center, therefore the most relevant
performance metric here is the fraction of the load left-over to the data center.
Then, it makes sense to view the requests that the small servers cannot handle as
lost. In fact, the system consisting of the small servers alone with fixed caches is a loss
network in the sense of [64]. We call γc the rate at which requests for content c are
lost, and γ the average loss rate among contents, i.e., γ = 1

n

∑
c γc. The main goal is

to make γ as small as possible. In underloaded regime ρ < 1, we refer to the fraction
of lost requests as the inefficiency of the system ι = γ/λ. However, such a quantity
would not be adapted in overloaded regime (as it would automatically be bounded
away from 0 by a positive constant independent of matching and replication), thus
we define the inefficiency in this regime as the fraction of servers which are unused.
Therefore, a consistent definition of inefficiency in any regime is

ι = 1− ρ(1− γ/λ)

min{1, ρ}
=

{
fraction of lost requests if ρ ≤ 1,
fraction of unused servers if ρ ≥ 1.

(4.1)

In the following section, we review some of the related work, mentioning the dif-
ferent models and performance metrics considered as well as the associated content
replication strategies.

4.3 Related models and replication strategies
The edge-assisted CDN model is related to a few other models. A major difference
though is the focus on modeling the basic constraints of a realistic system, in par-
ticular regarding the limited capacity of servers (in terms of storage, service and
coordination) and the way requests are handled, i.e., the matching policy. The same
system model is also studied in [101] under the name “distributed server system”;
we merely use a different name to emphasize the presence in the core of the network
of a data center, which makes it clear what performance metric to consider, while
otherwise availability of contents for example may become a relevant metric. Also,
[7] studies the same issues of efficient matching and replication under a queueing
model of performance; in contrast, we focus on delay-sensitive contents, which must
be served without waiting. The edge-assisted CDN model is also related to peer-to-
peer (P2P) VoD systems, although in such systems one has to deal with the behavior
of peers, and to cache networks, where caches are deployed in a potentially complex
overlay structure in which the flow of requests entering a cache is the “miss” flow of
another one. Previous work on P2P VoD typically does not model all the fundamen-
tal constraints we mentioned, and the cache networks literature tends to completely
obliterate the fact servers become unavailable while they are serving requests and
to focus on alternative performance metrics such as search time or network distance
to a copy of requested contents.

More generally, the question of how to replicate content in distributed systems
is related to the general problem of facility location (see e.g., Vazirani [108] Chapter

78 CHAPTER 4. DISTRIBUTED CDN

24). The latter has received considerable attention from the standpoint of algorith-
mic complexity and approximability. The version that we consider here is atypical
in that it features capacity constraints on the locations (the servers), and stochas-
tic demand. Also, we aim at characterizing simple, easily implementable strategies
with good performance for practical workloads rather than placement algorithms
with low worst-case complexity.

There is a rich literature on cache management strategies motivated by server
memory and web cache management, an abstract version of which is the so-called
paging problem (see e.g., Albers [1]). In this context, the main focus has been
on characterization of hit rates, focusing on the temporal properties of streams of
requests. Capacity limits at the servers are typically not considered in these models,
while they are essential for the application scenarios we consider.

Our present motivation, namely efficient use of servers’ bandwidth through ade-
quate replication, has been considered in the specific context of ISP-managed Peer-
to-Peer networks (as described in [99, 60]). In [104, 24], an argument is made for the
proportional replication policy based on the analysis of delay in a queueing model of
performance. [99] and [24] propose replication policies that are oblivious to content
popularity. The first considers stochastic delay performance models, and the second
deterministic conditions on request arrivals to guarantee feasibility of service. The
three articles [116, 121, 120] are closer to our motivation in that they revisit the
proportional placement strategy, to which they propose alternatives. Their mod-
eling approach however significantly differs from ours. In contrast with the P2P
systems above, [106] models the requests in such a network as internally generated,
and thus they may not require any bandwidth usage if the requested content is
already present on the device. This results in an “hot-warm-cold” replication strat-
egy, where the very popular contents are replicated everywhere and the cold ones
not at all. Both the ISP-managed P2P system (with only internal requests) and
the edge-assisted CDN model (with only external requests) are investigated in [101],
which concludes that hot-warm-cold replication is indeed asymptotically optimal for
the former model and similarly advocates for proportional replication in the latter,
which keeps for each content a number of copies proportional to its popularity.

Another strand of research attempts to capture the impact of the particular
topology of the network, sometimes at the cost of a less realistic modeling at the
level of individual devices (e.g., no bandwidth limitations). The performance crite-
rion is then generally to minimize the total bandwidth consumed to reach a server
able to handle the requests. Modeling the geographical aspects only at a coarse
level, [62, 95, 94] solve content placement and matching problems between many
regions, while not modeling in a detailed way what happens inside a region. In ran-
dom networks, [105] advocates again for proportional replication to minimize total
bandwidth consumption under shortest path routing, while [32] proposes square-
root replication (i.e., with a number of copies proportional to

√
λc) to minimize

search-time. Finally, the precise hierarchical structure of storage points is modeled
in the literature on cache networks. In this context, [69] addresses the problem of
joint dimensioning of caches and content placement. However, it is hard to charac-
terize optimal replications of contents in cache networks, and one often has to resort
to heuristics: contents are then cached dynamically as they traverse the network

4.4. PERFORMANCE UNDER OPTIMAL MATCHING 79

towards the end-user, thereby replacing older contents based on various strategies.
The evicted content may be for example the least frequently used (LFU) content,
the least recently used (LRU) one, or even a completely random one. Under such
policies, in order to understand which type of content should be stored close to
the end-user, [45] studies specifically a two-levels hierarchy of caches using an ap-
proximation for LRU performance from [28, 44]: based on the differences in their
respective popularity distributions, it advocates that VoD contents are cached very
close to the network edge while user-generated contents, web and file-sharing are
only stored in the network core. Note that, in a sense, this agrees with the view
adopted in edge-assisted CDNs, where the most delay-sensitive contents (i.e., VoD
contents) are pushed even further towards the edge of the network up to the users’
premises.

4.4 Performance under optimal matching

In this section, we analyse edge-assisted CDNs under an optimal matching policy,
which dynamically re-directs requests so that at any time the load on the data center
is minimum given the current set of active requests. We begin this section by giving
an argument for why proportional placement is popular in such context: under this
replication policy, all the requests may be handled by the servers alone provided the
storage space grows mildly (logarithmically) with the size of the catalog of contents.
Then, we show how the performance of large families of replication policies can be
computed in large systems with fixed storage capacity per server, even for a richer
model with non-unitary service capacity for the servers and contents of different
sizes, using results on the size of maximum capacitated matchings. As it is hard
to get intuition from the finite storage expressions for the efficiency of the system,
we turn to an asymptotic analysis as storage grows for the basic version of the
edge-assisted CDN model; in this regime, the limits of optimal replications can be
explicitely computed, which notably shows proportional replication is never optimal,
in any load regime.

4.4.1 An argument for proportional placement

For this study of proportional placement, we will allow the memory size d of servers
to grow with n; a more precise characterization, at fixed d will be obtained in
later sections. Recall that the numbers of requests Rc for content c are mutually
independent over all c ∈ C, Rc having a Poisson distribution with parameter λc ≥ λ
for some fixed parameter λ > 0. Based on knowledge of the λc’s only (and not of
the Rc’s), the replication problem consists in determining the number of replicas
Dc of each item c and their placement onto servers. A candidate strategy consists
in taking the number of replicas Dc deterministic and proportional to the expected
number of requests λc: Dc ≈ τdλc/λ, where λ is the average content popularity.
The system is sub-critical, i.e., ρ < 1, if the expected number of requests is smaller
than the number of servers, which reads

δ = τ − λ = τ(1− ρ) > 0, (4.2)

80 CHAPTER 4. DISTRIBUTED CDN

where we used the notation δ for the stability margin τ −λ. In this context we have
the following:

Proposition 4.1. Assuming δ > 0 and proportional placement is used, all re-
quests can be met with high probability if the storage space per server d satisfies
d ≥ α log(n)(1 + o(1)), where α > 0 satisfies Equation (4.4).

As a corollary, this result implies that the inefficiency of proportional placement
is equal to 0 a.s. in under-loaded regime for d logarithmic in the number of contents
in the system.

Proof. For each content c and each of the corresponding Rc requests, we can split
the request equally into Dc sub-requests of size 1/Dc. To a given server s with
corresponding collection N (s) of stored contents, for each content c ∈ N (s) we
associate Rc sub-requests to that particular server. Then a service of all requests
will be feasible provided that for each such server s ∈ S one has∑

c∈N (s)

Rc

Dc

≤ 1. (4.3)

Indeed, this mapping of sub-requests to servers would constitute a fractional match-
ing of requests, and an integral matching would therefore exist, by the total uni-
modularity of the adjacency matrix of the graph G.

Calling As the event corresponding to Condition (4.3) and Ac
s its complement,

Chernoff’s inequality yields

P(Ac
s) ≤ exp

(
− supθ>0

[
θ −

∑
c∈N (s) logE[eθ(Rc/Dc)]

])
= exp

(
− supθ>0

[
θ −

∑
c∈N (s) λc

(
−1 + eθ/Dc

)])
.

Note that Dc ≥ dτλc/λ − 1 ≥ λcd
(

1 + δ
2λ

)
for d large enough, namely for d ≥

2λ/(δλ). Replacing Dc by this corresponding lower bound in the above expression,
we obtain

P(Ac
s) ≤ exp

− sup
θ>0

θ − ∑
c∈N (s)

λc

(
−1 + eθ

′/λc
) ,

where we introduced the notation θ′ = θ/(d(1 + δ
2λ

)). It is readily checked that the
function λc → λc

(
−1 + eθ

′/λc
)
is decreasing in λc, and is thus upper-bounded by its

value at λ for all λc ≥ λ. Using the fact that the cardinality of N (s) is precisely d,
it then entails

P(Ac
s) ≤ e

− supθ>0

[
θ−dλ

(
−1+e

θ/(dλ(1+ δ
2λ

))
)]

= e−dλh(1+ δ
2λ

),

where h(x) = x log(x)−x+1 is the Cramér transform of a unit rate Poisson random
variable. It follows that

P(Ac
s) ≤ n−αλh(1+ δ

2λ
)

4.4. PERFORMANCE UNDER OPTIMAL MATCHING 81

for d ≥ α log(n). Thus, provided

α >
1

λh(1 + δ/(2λ))
, (4.4)

by the union bound the probability that at least one event As fails is o(1). Con-
sequently, under the stability assumption (4.2), for popularities lower-bounded by
λ > 0, all requests are met with high probability as n→∞ provided

d ≥ max
{
α log(n), 2λ/(δλ)

}
,

where the constant α satisfies (4.4).

This result indicates that a logarithmic storage size d suffices to meet all the
requests, provided one uses the above proportional placement. Note also that pro-
portional placement is robust, in the sense that this feasibility property does not
depend on the particular way in which content replicas are co-located within servers
so long as one does not replicate content more than once at a single server.

Nevertheless, several questions of interest remain open. In particular, the above
argument does not say what happens when the stability margin δ becomes small:
indeed, for small δ, the lower bound (4.4) on α is Θ(δ−2), and it is thus not clear how
this replication policy behaves in a near-critical regime δ → 0. In addition, it does
not say how many requests remain unmatched under storage size restrictions, for
instance for constant rather than logarithmic d. Moreover, it states the existence of
a matching, but does not address whether such a matching is easy to find. Finally, it
only deals with the proposed proportional placement, but leaves open the question
of whether alternative placement strategies could be better suited, by maximising
the expected fraction of requests that can be matched under fixed storage size d.
In the following section, we show how to leverage the results from Theorem 2.1 to
characterize the performance at fixed d, not only for proportional placement but
also for replication policies as described in Section 4.3.

4.4.2 Performance characterization using maximum capaci-
tated matchings

We first focus here on the basic version of the edge-assisted CDN model, where each
server can only serve one request at a time and the contents all have the same size. In
this setup, we show how to deduce the inefficiency of the system from Theorem 2.1.
Then, we show how to capture a richer model, with non-unitary service capacities
and contents of different size fragmented into constant size segments.

As mentioned in Section 4.2, the servers have limited coordination capacities,
which does not allow them to control precisely how their caches are jointly consti-
tuted. In the popularity class model, the servers know the class to which each content
belongs but cannot distinguish between contents of the same class. Therefore, the
best the servers can do in this model is to set a specific distribution for the number of
replicas of the contents from the same class; the number of replicas Dk and number
of requests Rk of a random content of class k would then be independent given the
class k. Slightly more generally, for finite m and n, we can assume that the number

82 CHAPTER 4. DISTRIBUTED CDN

of replicas and number of requests follow a joint distribution (Dc, Rc) which may
not necessarily be obtained as the mixture of a finite number of pairs of indepen-
dent variables. The content-server graph Gm,n is then chosen uniformly at random
among the graphs with the same degree sequences. As explained in Section 1.1.3,
such random graphs converge almost surely in the local weak sense towards two-step
unimodular Galton-Watson trees with laws (DC , RC) ∼ ΦC and (d, 1) ∼ ΦS, where
(DC , RC) is the limiting distribution for the joint numbers of replicas and requests
of a random content and we did not mention the edge-capacities are they are all
unitary in this basic model.

As mentioned in Section 4.2, at any time, the links between the active servers and
the contents they are serving form a capacitated matching x ∈MGm,n of the content-
server graph Gm,n. In addition, as we consider an optimal matching policy, x is of
maximum size in MGm,n and thus |x| = M(Gm,n). Consistently with Equation (4.1),
the expected inefficiency of the system ιm,n under the maximum matching policy is
then equal to

ιm,n = 1− 1

min{1, ρ}
E[M(Gm,n)]

m
, (4.5)

where the expectation is with respect to both the varying number of requests Rc

for each content c and the graph Gm,n, which depends on the replication strategy
used. Then, the limit of E[M(Gm,n)]/m as m,n → ∞ with n ∼ τm is given by
Theorem 2.1 (or Theorem 3 from [70]) which takes here the simpler form:

Corollary 4.1. For a sequence of random graphs Gm,n converging locally weakly to a
two-step unimodular Galton-Watson tree with laws (DC , RC) ∼ ΦC and (d, 1) ∼ ΦS,
we have

lim
m,n→∞

M(Gm,n)

m
= inf FS(p, q),

where
FS(p, q) = P (Bin(d, p) > 0) + τE

[
RC1

(
Bin(DC , q) > RC

)]
,

and the infimum is taken over pairs (p, q) satisfying

p = P
(
Bin(D̃C , q) < R̃C

)
q = (1− p)d−1.

where (D̃C , R̃C) is drawn from the size-biased joint distribution Φ̃C (see Section 2.2),
i.e., (D̃C + 1, R̃C) is distributed as the joint number of (replicas, request) of the
content adjacent to an uniformly random edge of the graph.

The above result can be used to compare different replication policies based on
the definition of inefficiency under optimal matching given in Equation 4.5. In Sec-
tion 4.4.3, we will leverage the particular form this result takes under the popularity
class model when servers do independent caching choices based on a distribution
π over the different classes of content, but for now let us explain how the same
approach can capture a richer model.

First-of-all, with a simple modification, Theorem 2.1 allows us to handle the case
when the service capacity of servers is non-unitary: for example, let the storage and

4.4. PERFORMANCE UNDER OPTIMAL MATCHING 83

service capacities (DS, BS) be drawn from a joint distribution ΦS, and let the load ρ
be defined accordingly as ρ = λτ/E[BS]. Using infinite edge-capacities, Theorem 2.1
computes the limitM(ΦS,ΦC) = limm,n→∞

M(Gm,n)

m
, which yields the inefficiency of

the system using Equation 4.5.
Another restriction of the basic model which can be relaxed using the flexibility

offered by Theorem 2.1 is that the contents all have the same size: assume instead
that each content c can be fragmented in a number fc of constant-size fragments.
Assume further that when a server chooses to cache a segment from content c,
instead of storing the raw segment it instead stores a random linear combination of
all the fc segments corresponding to content c. Then, when a user requests content
c it only needs to download a coded segment from any fc servers storing segments
from c, as any fc coded segments are sufficient to recover the content c. Note that
in this context, it may also be relevant to use network codes such as in [38], however
this is beyond the scope of our study here. The storage and upload capacity of
servers is more appropriately measured in numbers of fragments, as well as the
number of requests for each content: for a random content c, we define the random
variables FC for its number of fragments, R′C = RCFC for its number of fragment-
requests, and D′C for the number of servers storing a fragment of c; for a random
server s, we define the random variables B′S for the number of fragments which s
can upload simultaneously and D′S for the number of contents of which s stores a
fragment (asymptotically, s will store fragments of different contents w.h.p.). Let
also Φ′C be the joint distribution of (D′C , R′C , {RC}) and Φ′S be the joint distribution
of (D′S, B′S, {RC

i }D
′S

i=1), where {RC
i }D

′S
i=1) is a collection of D′S independent random

variables distributed as RC . Then, we can again apply Theorem 2.1 to compute
the limit M(Φ′S,Φ′C). The appropriate definition for the load ρ is ρ = τ E[R′C]

E[B′S]
,

and the inefficiency is again obtained via Equation 4.5, although it should now be
interpreted as either the fraction of fragment-requests which are directed to the data
center or the fraction of servers’ upload capacity which is unused.

As one can easily guess from the expressions involved, the basic model is best
suited to continue our study and obtain a qualitative understanding of the behavior
of the system and of the optimal replications, as we do in the next section for the
popularity class model.

4.4.3 Large storage asymptotics and optimal replication

In this section, we focus on the popularity class model, because this model is more
suitable to obtain a qualitative understanding of the system and the interpretation
of results is more intuitive. Recall that under this model, the contents are grouped
into K classes, and the caches of the servers are constituted independently of each
other based only on average information over each class: for each memory slot,
each server chooses first a random class of contents k according to a distribution
π and then a content from class k uniformly at random. Therefore, the degree of
each content of class k is a Poi(mdπk

nαk
) random variable, where αkn is the number of

contents in class k. Under this model, the expression of ι = limm,n→∞ ιm,n obtained

84 CHAPTER 4. DISTRIBUTED CDN

from Corollary 4.1 simplifies into

ι = 1− 1

min{1, ρ}
inf FS(p, q),

where

FS(p, q) = 1− (1− p)d + τ

K∑
k=1

αkλkP (Poi(dkq) > Poi(λk) + 1) , (4.6)

with dk = dπk
ταk

is the expected degree of contents of class k, and the infimum is taken
over pairs (p, q) satisfying

p =
K∑
k=1

πkP (Poi(dkq) < Poi(λk)) (4.7)

q = (1− p)d−1. (4.8)

As storage is relatively cheap, the asymptotics for d → ∞ are of particular
interest. Furthermore, in this regime, we can solve explicitely the above fixed-point
equations on p, q to obtain an explicit expression for the inefficiency:

Proposition 4.2. Under the multi-class model, in which within class k the number
of requests is Poisson with mean λk and the number of replicas is Poisson with mean
dk, and assuming that dk = Ω(d) for all k ∈ 1, . . . , K, the inefficiency ι satisfies the
following large deviation principle:

log(ι)

d

d→∞→

− infk

πk
ταk

if ρ < 1,

log
(∑K

k=1 πke
−λk
)

if ρ > 1,

min
(
− infk

πk
ταk

, log
(∑K

i=k πke
−λk
))

if ρ = 1,

(4.9)

First-of-all, it is quite remarkable in the proposition above that the asymptotic
inefficiency as d→∞ is explained only by very local rare events. Indeed, exp(−dk)
is the probability that a content of class k is not replicated in any server cache,

and similarly
(∑K

k=1 πke
−λk
)d

is the probability that a server stores only replicas of
contents which have not been requested at all. Hence, asymptotically, the only no-
ticeable cause for inefficiencies in under-loaded regime (when anyway not all servers
can be busy) is contents that are stored nowhere; in over-loaded regime (when it is
not possible to satisfy all requests) the only visible inefficiency comes from servers
that store only unrequested contents; and in critically loaded systems, inefficiency
is due almost only to the dominant of these two effects.

Let us then first comment the implications of this result before turning to its
proof. First, we observe an exponential decay of the inefficiency in d as soon as
dk = Ω(d) for all k. This implies that the qualitative behaviour does depend on the
distribution π only through its support: as long as no class of content is too much
deprived, the inefficiency decays exponentially fast.

Second, it is possible to pick a distribution π that improve upon proportional
replication (for which πk = αkλk). Indeed, it follows at once from (4.9) that in

4.4. PERFORMANCE UNDER OPTIMAL MATCHING 85

under-load ρ < 1, for large d, inefficiency is minimized by setting π ≡ α, i.e., by not
discriminating between classes. It is also easy to show that in over-load ρ > 1, the
corresponding exponent in (4.9) is minimized by shifting replicas towards the most
popular class k∗ such that λk∗ = maxk λk. As for the critical case, it can be shown
that the corresponding exponent is minimized by equalizing the coefficients πk/αk
for k 6= k∗ in such a way that the two expressions − infk

πk
ταk

and log
(∑K

i=k πke
−λk
)

are equal. We summarize these statements in the following corollary:

Corollary 4.2. Under the multi-class model, the optimal rate functions for the
exponential decay of the inefficiency are given by

lim
d→∞

1

d
log(ι) =

−1/τ if ρ < 1,
− supk λk if ρ > 1,
−1/τ− if ρ = 1,

(4.10)

where τ− is the unique solution x in [τ,+∞) of the equation

x = τ

∑
k αk

(
e−λk − e−λk∗

)
e−x − e−λk∗

.

The corresponding distribution π is given by

π ≡ α if ρ < 1,
πk∗ = 1 and πk = 0 for k 6= k∗ if ρ > 1,
πk∗ = 1− τ

τ−
(1− αk∗) and πk = αk

τ
τ−

for k 6= k∗ if ρ = 1.
(4.11)

Figure 4.1 illustrates the optimal exponential-decay rate functions for various
replication policies in a two-class scenario, with two classes of equal sizes (α1 = α2),
respective popularities λ1 = 3 and λ2 = 1, and the content/server ratio therefore
governs the load of the system according to ρ = 2τ . As we vary π1, we span
replication policies from uniform at π1 = 1/2 to proportional at π1 = 0.75 to extreme
unbalance at π1 = 1. The curves represent the inefficiency exponents for various
values of d, namely d = 2, 5, 15 and the limit d → ∞. We also indicate by a cross
the optimal value of π1 and the corresponding exponent in the limit d → ∞, as
characterized in the previous corollary.

We observe in particular how the optimal value for finite d approaches this lim-
iting value: for d as small as 15, the asymptotic evaluations are already reasonably
accurate. Note however that for the super-critical case, one should not take π2 = 0
for any finite d, as is illustrated by the drop in the exponent of the right-most curve.

Proof. (of Proposition 4.2): The fraction of matched servers is given by Theorem 4.1
with the simplified expressions (4.6),(4.7) and (4.8) appearing at the beginning of
this section. We now consider the fixed points of (4.7),(4.8) in the regime of large
d. First, if p is bounded away from zero, by (4.7), q is exponentially small in d.
Plugging this into (4.8), we find that there is indeed a fixed point such that

p ∼
∑

k πk
(
1− e−λk

)
,

q =
(∑

k πke
−λk
)d(1+o(1))

.
(4.12)

86 CHAPTER 4. DISTRIBUTED CDN

0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

fraction of storage for class 1

in
ef

fic
ie

nc
y

de
ca

y
ra

te
−

fu
nc

tio
n underloaded regime (ρ=0.9)

d=2
d=5
d=15
d→∞

0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

fraction of storage for class 1

in
ef

fic
ie

nc
y

de
ca

y
ra

te
−

fu
nc

tio
n critical regime (ρ=1)

d=2
d=5
d=15
d→∞

0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

fraction of storage for class 1

in
ef

fic
ie

nc
y

de
ca

y
ra

te
−

fu
nc

tio
n overloaded regime (ρ=1.1)

d=2
d=5
d=15
d→∞

Figure 4.1: Inefficiency exponential-decay rate functions for various fractions of
storage space allocated to contents of the first class in underloaded, critical, and
overloaded regimes.

Next consider the case where p goes to zero with d. Then, necessarily by (4.8), qd
is large, and p = e−Θ(qd). Plugging this into (4.7) we obtain

q = (1− e−Θ(qd))d−1.

Assume then that qd = O(log(d)). This would entail that q → 0, and hence (1 −
p)d → 0; the corresponding evaluationof (4.6) would be equivalent to 1 + τ

∑
k αkλk

which is larger than 1, and hence cannot be the minimal evaluation. We can thus
assume qd� log(d). Then by (4.8), it follows that p = o(1/d), so that by (4.7), we
have q ∼ 1. Thus, the only other meaningful fixed point to consider satisfies

p =
∑

k πke
− d
τ

(1+o(1)) = e
−d infk

πk
ταk

(1+o(1))
,

q = 1− e−d infk
πk
ταk

(1+o(1))
.

(4.13)

It remains to evaluate Expression (4.6) at the two meaningful fixed-points (4.12)
and (4.13). Consider first (4.12): the last term in (4.6) is of order (dq)2, which is
negligible compared to the first term (1− p)d. This yields the first evaluation

FS(p, q) = 1− exp

(
d log(

∑
k

πke
−λk)(1 + o(1))

)
(4.14)

Next, we plug (4.13) into (4.6): the term (1 − p)d and the last term of (4.6) are
equivalent to 1 and ρ respectively, up to corrections of order e−d infk

πk
ταk

(1+o(1)) adding
up to each other, so that the corresponding evaluation is

FS(p, q) = ρ− exp

(
−d inf

k

πk
ταk

(1 + o(1))

)
. (4.15)

To complete the proof, one then simply need to check that the evaluation of FS(p, q)
for the fixed-point (4.12) can only be minimal for ρ ≥ 1, while the evaluation for
the fixed-point (4.13) can only be minimal for ρ ≤ 1.

4.5. PERFORMANCE UNDER RANDOM GREEDY MATCHING 87

To sum up the results on optimal matching, we have characterized the perfor-
mance of large families of replications strategies (Corollary 4.1) in a random context
which is suitable because of the limited coordination capabilities of the small servers.
In order to gather more intuition and discriminate between replication policies, we
have considered the large storage asymptotics of the performance and observed no-
tably that the inefficiency of the system decays exponentially fast in the storage
size under any reasonable replication policy (Proposition 4.2). In this regime, we
can identify features of optimal replications (Corollary 4.2) and in particular con-
clude that proportional replication is never optimal in terms of asymptotic decay
rate function, in spite of its many good properties which have been identified in the
literature (and exemplified in Proposition 4.1). In the next section, we turn to the
analysis of the system under random greedy matching.

4.5 Performance under random greedy matching
This section concerns edge-assisted CDNs under a random greedy matching proce-
dure, which simplicity guarantees its feasibility in most systems in contrast with
the optimal matching policy considered before. However, the online nature of the
random greedy matching algorithm, with no re-allocation of requests, may lead to
performance degradations in certain regimes, which we first point out by studying
a very simple model where replication strategies do not come into play as all con-
tents have identical statistical properties. This first approach tells us that random
greedy matching is only suitable in underloaded regime as it undergoes a severe loss
of efficiency neer criticality, where the inefficiency does not decay exponentially fast
anymore as storage increases. In underloaded regime, we use a mean-field approxi-
mation guided by large storage asymptotics to capture the impact of the replication
strategy on the loss rates of the contents. This analysis then allows us to identify
the large storage asymptotics of optimal replications, as well as a very simple and
intuitive efficiency principle: the best way to take into account the differences in
popularity of the various contents is to equalize the loss rates for all contents. Fol-
lowing this direction, the last section of this thesis focuses on designing adaptive
replication algorithms, which use both the loss and usage information to attain the
optimal replication of contents.

4.5.1 The phase transition at criticality

In order to decouple the effect on the system performance of the matching algorithm
and that of the replication policy, we consider the single-class model, where all the
contents have the same popularity and servers choose uniformly at random which
content they store. For simplicity, we will adopt a “batch arrival” view of the system,
similar to that used in [10] for example and typical in the study of balls-and-bins
processes, rather than studying the stationary regime. Under this approach, for a
given load ρ = λn

m
of the system, we start from an idle system and use the random

greedy algorithm to handle λn requests arriving successively, with no departures.
Adopting a temporal view of this process, upon arrival of a request, one chooses
a content uniformly at random to be the object of the request and then checks

88 CHAPTER 4. DISTRIBUTED CDN

whether there is an available server storing that particular content; if there are such
servers, one of them is chosen at random and assigned to the service of the request,
else the request is directed to the data center and the content is marked as being
depleted, i.e., no further requests can be served for that content as there are no ends
of service in the batch arrival model. This process stops after Poi(λn) arrivals of
requests, so that the number of requests for each content is Poi(λ), as in stationary
regime. Taking the limit m,n→∞ with n ∼ τm and focusing on the large storage
asymptotics, we obtain the following result:

Proposition 4.3. For ρ 6= 1, the inefficiency ι verifies

ι ≤ e−
d
τ
|ρ−1|(1+o(1)),

and in the critical regime ρ = 1, we have

ι =
τ log 2

d
+ o(1/d).

Thus, online matching incurs severe performance degradation at criticality, com-
pared to the under-loaded and over-loaded regimes. This is in sharp contrast with
optimal matching which does not suffer this singularity at ρ = 1. Such a result
suggests that it may be necessary in certain cases to use more complex matching
algorithms. Indeed, even though our analysis is oblivious of the geographical as-
pects of the real network, it seems likely that in practice one would want to ensure a
local service of the requests, for reasons both of delay and bandwidth consumption.
In that scenario, some areas may be overloaded, even though the global network
is underloaded. Then, some requests from the heavily loaded regions will have to
be transfered to servers in underloaded areas, and the overloaded regions will be
artificially maintained very close to criticality. The performance in the near-critical
regime is thus important, as parts of the network may be mainted in this regime
due to higher level optimizations and a preference for local service.

We now turn to the proof of Proposition 4.3, which relies on approximation by
differential equations of the Markov chain describing the evolution of the system (see
e.g., [33]). We let the time be discrete, t = 0 corresponding to an empty system,
and one request arriving at each unit of time. Note that due to concentration of the
Poisson random variable with mean λn around its mean for n→∞, it is equivalent
to stop the process at the deterministic time λn. We let Xn

t be the number of
matched servers at time t and Y n

t be the number of contents for which at least
one request has already been discarded by time t. It can be easily verified that
(Xn

t , Y
n
t)t∈N is a Markov chain. Indeed, it is enough to check that the induced

subgraph on the n − Y n
t available contents and the m − Xn

t unmatched servers is
still distributed according to the same random graph model, i.e., every unassigned
server stores exactly d available contents (because it cannot store depleted contents
as those would not be depleted otherwise) and the set of contents stored by an
unmatched server is chosen uniformly at random among the subsets of size d of the
set of available contents.

4.5. PERFORMANCE UNDER RANDOM GREEDY MATCHING 89

The one-step transition probabilities of the Markov chain are as follows:

(Xn
t+1, Y

n
t+1) =

(Xn

t , Y
n
t) w.p. Y nt

n

(Xn
t , Y

n
t + 1) w.p. n−Y nt

n
px,y

(Xn
t + 1, Y n

t) w.p. n−Y nt
n

(1− px,y)

where px,y is the probability that no unmatched server stores a particular available
content given Xn

t = x and Y n
t = y. We have

px,y =

((
n−y−1

d

)(
n−y
d

))m−x

∼
n→∞

e−d
m−x
n−y .

In the limit n → ∞, we use mean field techniques to approximate the Markov
chain (Xn

t , Y
n
t)t∈N by the solution of differential equations. We define x(t) and y(t)

as candidate approximations of X
n
tn

n
and Y ntn

n
respectively, by setting x(0) = y(0) = 0,

and x(t), y(t) are given by the following differential equations:

ẋ = (1− y)
(

1− e−d
1/τ−x
1−y

)
(4.16)

ẏ = (1− y)e−d
1/τ−x
1−y (4.17)

Classical results of Kurtz [68] then imply the following

Lemma 4.1. Almost surely, we have

lim
n→∞

1

n
(Xn

λn
, Y n

λn
) = (x(λ), y(λ)).

According to Equation (4.1), the limiting inefficiency ι of the random greedy
algorithm is thus given by

ι = 1− τx(λ)

min{1, ρ}
.

While the above differential equations do not admit closed form solutions, it is
possible to derive explicit upper and lower bounds based on more tractable ODE’s,
which become accurate for large d. Let thus u = d1/τ−x

1−y , we obtain

u̇ = ue−u + de−u − d (4.18)

ι = 1− 1

min{1, ρ}

(
1 +

τu(λ)

d
(1− y(λ))

)
To find a good surrogate for u, note first that u is a decreasing function, because

euu̇ = u + d − deu ≤ −(d − 1)u. Also, the term ue−u is always small compared to
the others when d is large.

It suggests that the behavior of u for large d should be captured by the solution
to the following equation:

v̇ = d(e−v − 1) (4.19)
v(0) = u(0) = d/τ

90 CHAPTER 4. DISTRIBUTED CDN

A change of variables leads to

v(t) = log
(
1 + ed(1/τ−t)(1− e−d/τ)

)
Note that, at all time, we have v ≤ u, because the functions are continuous and
v̇ ≤ u̇ whenever v = u. We then have

Lemma 4.2. In the regime ρ < 1, the solution of Equations (4.16)-(4.17) satisfies

ι ≤ (1 + 1/τ)e−
d
τ

(1−ρ).

Proof. At all time, d
τ
≥ u ≥ d

τ
(1 − ρ), thus u̇ ≤ d

(
(1 + 1/τ)e−

d
τ

(1−ρ) − 1
)
. We

immediately obtain

u(λ) ≤ d
τ
(1− ρ) + dλ(1 + 1/τ)e−

d
τ

(1−ρ),

ι = 1− 1
ρ

(
1 + τ

d
u(λ)(1− y(λ)) ≤ (1 + 1/τ)e−

d
τ

(1−ρ)
)
.

Lemma 4.3. In the regime ρ = 1, the solution of Equations (4.16)-(4.17) satisfies

ι ≤ τ log 2

d
+ o (1/d) .

Proof. Let c > 1. u(0) = d/τ so there exists 0 < Td ≤ λ such that u ≥ c log d on
[0, Td] and u ≤ c log d on (Td, λ] for large enough d. Furthermore, u̇ ≥ −d, so we
always have Td ≥ 1/τ − c log d

d
for d large enough. Then, on [0, Td], we have

u̇ ≤ d1−c/τ + d(e−u − 1) ≤ d1−c/τ + v̇

and, on (Td, ρ],
u̇ ≤ c log d+ v̇

We obtain an upper-bound on u(λ):

u(λ) ≤ v(λ) + T d
τ
d1−c + (λ− Td)c log d

≤ log (2− e− dτ) + d1−c

τ
λ+ c2 log2 d

d
.

As c > 1,
ι ≤ τ log 2

d
+ d−cρ+ c2τ2 log2 d

d2

= τ log 2
d

+ o(1/d)

Lemma 4.4. In the regime ρ = 1, the solution of Equations (4.16)-(4.17) satisfies

ι ≥ τ log 2

d
+ o (1/d) .

4.5. PERFORMANCE UNDER RANDOM GREEDY MATCHING 91

Proof. As y + x ≤ λ, it follows that y ≤ ι
τ
≤ log 2

d
+ o(1/d). Hence,

ι ≥ τ
d

log (2− e− dτ)
(
1− log 2

d
+ o(1/d)

)
= τ log 2

d
+ o(1/d).

As upper- and lower-bound coincide, we actually have that ι = τ log 2
d

+ o(1
d
) ∼
d→∞

v(λ).

Lemma 4.5. In the regime ρ > 1, the solution of Equations (4.16)-(4.17) satisfies

ι ≤ τ log 2

d2
e−

d−1
τ

(ρ−1)(1 + o(1)).

Proof. We already know that u(1/τ) = τ log 2
d

+ o(1
d
), so we can focus on the time

interval [1/τ, λ]. For d large enough and for all t ≥ 1/τ , as u is decreasing, u is
strictly less than 1. Then,

u̇ ≤ u+ d(1− u+
u2

2
− 1) = −(d− 1)u+ d

u2

2

As u is actually much smaller than 1 in the range [1/τ, λ], we can guess that the
influence of the term in u2 will be small compared to that of the term in u, and that
we did not lose much by neglecting higher order terms.

Let z such that z(1/τ) = u(1/τ) and ż = −(d − 1)z + d z
2

2
. At u = z, we have

u̇ ≤ ż, so u ≤ z on [1/τ, λ], and z is decreasing on [1/τ, λ] for d large enough.
As long as z 6= 0 and z 6= 2(1− 1

d
),

ż = −(d− 1)z + d
z2

2
⇔ ż

d− 1

(
1

z − 2(1− 1/d)
− 1

z

)
= 1

Integrating from λ to 1/τ , we obtain

1
d−1

[log (z − 2(1− 1/d))]λ1/τ −
1
d−1

[log z]λ1/τ = λ− 1/τ

1
d−1

log
1− z(λ)

2(1−1/d)

1− u(1/τ)
2(1−1/d)

+ 1
d−1

log u(1/τ)

z(λ)
= λ− 1/τ.

As 0 < z(λ) < u(1/τ) = log 2
d

+ o(1
d
), the first term is o(1). Thus, we obtain

u(λ) ≤ z(λ) = u(1/τ)e−
d−1
τ

(ρ−1)+o(1)

= log 2
d
e−

d−1
τ

(ρ−1)(1 + o(1)).

and also
ι ≤ τ log 2

d2
e−

d−1
τ

(ρ−1)(1 + o(1))

This completes the proof of the last lemma of Proposition 4.3.

Given the lengthy calculations involved to compute the asymptotics of the inef-
ficiency for large storage under a single-class model, we do not pursue this approach
under a more complex model, with different content popularities. Instead, in the
next section, we turn to mean-field approximations to understand the relationship
between the replication of a content and its loss rate in the stationary regime.

92 CHAPTER 4. DISTRIBUTED CDN

4.5.2 Mean-field approximation for the loss-rate

In this section, we propose an approximation to understand in a precise manner the
relation between any fixed replication of contents and the loss rates in the system.
This analytical step has many advantages: it allows us to formally demonstrate that
to optimize the system one needs to make the loss rates equal for all the contents;
as a consequence we obtain an explicit expression for the optimal replication (Sec-
tion 4.5.3); finally, in Section 4.6.2, we will leverage our analytical expression for the
full distribution of the number of available replicas of a content to propose a mech-
anism enhancing the speed of adaptive algorithms. We validate our approximation
and show that our optimized replication strategy largely outperforms proportional
replication through extensive simulations.

For a given fixed constitution of the caches (i.e., a fixed graph G), the system
is Markovian, the minimum state space indicating which servers are busy (it is not
necessarily to remember which content they serve). We want to understand how the
loss rate γc for a particular content c relates to the graph G, but using too detailed
information about G, such as the exact constitution of the caches containing c, would
have the drawback that it would not lead to a simple analysis when considering
adaptive replication policies (as the graph G would then keep changing). Therefore,
we need to obtain a simple enough but still accurate approximate model tying γc to
G. Here, we make no assumption on the popularity distributions of the contents.
We work in underloaded regime ρ < 1 as this is the most interesting regime and
furthermore the previous section showed random greedy matching is not suited for
critical regime.

The expected loss rate γc of content c is equal to its requests arrival rate λc
multiplied by the steady state probability that c has no replicas available. Let Dc

be the total number of replicas of content c and Zc be its number of available replicas,
i.e., those stored on a currently idle server. We thus want to compute π(Zc = 0) to
get access to γc. However, the Markov chain describing the system is too complicated
to be able to say much on its steady state. In order to simplify the system, one can
remark that in a large such system the state of any fixed number of servers (i.e.,
their current caches and whether they are busy or idle) are only weakly dependent,
and similarly the number of available replicas Zc of any fixed number of contents
are only weakly dependent. Therefore, it is natural to approximate the system by
decoupling the different contents and the different servers (similar phenomenon are
explained rigorously in [100]). In other words, this amounts to forgetting the exact
constitution of the caches; as a result, the correlation between contents which are
stored together is lost. Then, the evolution of Zc becomes a one dimensional Markov
chain, independent of the values of Zc′ for other contents, and we can try to compute
its steady-state distribution.

For any z < Dc, the rate of transition from Zc = z to z+ 1 is always Dc− z: it is
the rate at which one of the Dc − z occupied servers storing c completes its current
service; we do not need to distinguish whether a server is actually serving a request
for c or for another content c′ as we assume the service times are independent and
identically distributed across contents. For any z > 0, the transitions from Zc = z
to z − 1 are more complicated. They happen in the two following cases:

4.5. PERFORMANCE UNDER RANDOM GREEDY MATCHING 93

• either a request arrives for content c and as Zc = z > 0 it is assigned an idle
servers storing c;

• or a request arrives for another content c′ and it is served by a server which
also stores content c.

The first event occurs at rate λc and the second one at expected rate∑
c′ 6=c

λc′E
[
|{s ∈ S : s is idle and c, c′ ∈ s}|
|{s ∈ S : s is idle and c′ ∈ s}|

]
,

where c ∈ s indicates that the content c is stored on the server s. At any time
and for any c′, |{s ∈ S : s is idle and c′ ∈ s}| is equal to Zc′ . The term |{s ∈ S :
s is idle and c, c′ ∈ s}| is equal in expectation to the number of idle servers storing
c′ (i.e., Z ′c) times the probability that such a server also stores c. As we forget
about the correlations in the caching, this last probability is approximated as the
probability to pick one of the d−1 remaining memory slots in an idle servers storing
c′ when we dispatch at random the Zc available replicas of content c between all the
remaining slots in idle servers. Thus,

E [|{s ∈ S : s is idle and c, c′ ∈ s}|] ≈ Zc′(d− 1)

(1− ρeff)md
Zc,

where ρeff = ρ(1 − γ/λ) is the average load effectively absorbed by the system, so
that the total number of memory slots on the idle servers is (1 − ρeff)md. We also
neglected the Zc′ memory slots occupied by c′ in these idle servers when computing
the total number of idle slots (1− ρeff)md. We obtain the following approximation
for the expected rate at which the second event occurs:

Zc
∑
c′ 6=c

λc′
d− 1

(1− ρeff)md
≈ Zc

ρeff
1− ρeff

d− 1

d
= Zcθeff,

where we neglected the rate λc at which requests arrive for content c compared
to the aggregate arrival rate of requests, and we let θeff = ρeff

1−ρeff
d−1
d
. Note that

the interesting regime, with reasonably high effective load ρeff, corresponds to large
values of θeff, as ρeff → 1 implies θeff →∞. The Markov chain obtained satisfies the
local balance equations: for z < Dc,

(Dc − z)π(Zc = z) = (λc + (z + 1)θeff)π(Zc = z + 1),

This yields the following steady-state probability:

π(Zc = z) = π(Zc = Dc)θ
Dc−z
eff

(
Dc + λc/θeff
Dc − z

)
, (4.20)

where the binomial coefficient does not really have a combinatorial interpretation
as one of its arguments is not an integer, but should only be understood as

(
k+x
l

)
=

1
l!

∏k
i=k−l+1(i+ x), for k, l ∈ N and x ∈ R+.

94 CHAPTER 4. DISTRIBUTED CDN

We now have an approximation for the full distribution of the number Zc of
available replicas of content c, which yields an approximation for the loss rate
γc = λcπ(Zc = 0). We can also compute the mode ẑc of this distribution: ẑc ≈ Dc−λc

1+θeff
,

which can be used as an approximation for the expectation E[Zc] (in fact, simula-
tions show the two are nearly indistinguishable). We further simplify the expression
obtained by providing a good approximation for the normalization factor π(Zc = Dc)
in Equation (4.20):

π(Zc = Dc) =

(
Dc∑
x=0

θxeff

(
Dc + λc/θeff

x

))−1

.

To that end, we use the fact that we aim at small loss rates, and thus most of the
time at small probabilities of unavailability. Therefore, the bulk of the mass of the
distribution of Zc should be away from 0, which means that the terms for x close to
Dc should be fairly small in the previous expression. We thus extend artificially the
range of the summation in this expression and approximate π(Zc = Dc) as follows:

π(Zc = Dc)
−1 ≈

Dc+bλc/θeffc∑
x=0

θxeff

(
Dc + λc/θeff

x

)
≈ (1 + θeff)Dc+λc/θeff .

We obtain the following approximation for π(Zc = 0):

π(Zc = 0) ≈
(

θeff
1 + θeff

)Dc
(1 + θeff)

− λc
θeff

(
Dc + λc/θeff

Dc

)
.

Finally, as we are interested in large systems and large storage / replication, we can
leverage the following asymptotic behavior:(

k + x

k

)
≈ ex(Hk−CEuler)

Γ(x+ 1)
,

for k ∈ N large enough and where Γ is the gamma function: Γ(1+x) =
∫ +∞

0
txe−tdt;

Hk is the k-th harmonic number: Hk =
∑k

i=1
1
i
; and CEuler is the Euler-Mascheroni

constant: CEuler = limk→∞(Hk − ln k) ≈ 0.57721. For large number of replicas Dc,
we thus obtain the approximation:

π(Zc = 0) ≈ C(λc)

(
1 +

1

θeff

)−Dc
D

λc
θeff
c ,

where we let C(λc) = e−CEulerλc/θeff

(1+θeff)
λc
θeff Γ(1+ λc

θeff
)

and the term D
λc
θeff
c is an approximation of

e
λc
θeff

HDc . The approximation for π(Zc = 0) immediately yields an approximation for
the loss rate γc:

γc = λcπ(Zc = 0) ≈ λcC(λc)

(
1 +

1

θeff

)−Dc
D

λc
θeff
c . (4.21)

4.5. PERFORMANCE UNDER RANDOM GREEDY MATCHING 95

Note that the expression of θeff involves the average effective load ρeff, which itself
depends on the average loss rate γ. We thus have a fixed point equation in γ (just
as in [28, 44]), which we can easily solve numerically. Indeed, the output value γ of
our approximation is a decreasing function of the input value γ used in ρeff, which
implies simple iterative methods converge exponentially fast to a fixed-point value
for γ.

4.5.3 Large storage asymptotics and optimized replication

In this section, we exploit the approximation obtained in Equation (4.21) to un-
derstand which replication strategy minimizes the total loss rate in the system. In
other words, we approximately solve the optimization problem:

min γ s.t.
∑

cDc ≤ md
Dc ∈ N, ∀c (4.22)

Note that the approximation from Equation (4.21) is consistent with the intuition
that γc is a decreasing, convex function of Dc. Indeed, letting x = θeff

1+θeff
e

λc
θeff(Dc+1) ≤ 1

since we have Dc + 1 ≥ λc

θeff ln
(

1+ 1
θeff

) in the regime of interest, we compute

γc(Dc + 1)− γc(Dc) = ∆γc(Dc) = −γc(Dc) (1− x) ≤ 0,
∆γc(Dc − 1) = −γc(Dc)

(
1
x
− 1
)
≤ 0.

The loss rate γc is a convex function of Dc as shown by

∆γc(Dc)−∆γc(Dc − 1) ≥ γc(Dc)

(
x+

1

x
− 2

)
≥ 0.

As a consequence, the optimization problem (4.22) is approximately convex, and we
thus obtain an approximate solution by making the first derivatives of the loss rates
∆γc equal. Keeping only the dominant orders in Dc, we have

∆γc(Dc) = − γc
1 + θeff

(
1− λc

Dc

)
. (4.23)

In the first order, equalizing the first derivatives in (4.23) using the expression
in (4.21) leads to equalizing the number of replicas for every content, i.e., setting
Dc = D+ o(D)) where D = md

n
is the average number of replicas of contents. Going

after the second order term, we get

Dc = D + (λc − λ)
lnD

θeff ln (1 + 1/θeff)
+ o(lnD). (4.24)

We therefore obtain that the asymptotically optimal replication is uniform with an
adjustment due to popularity of the order of the logarithm of the average number
of replicas. Finally, inserting back this expression for Dc into Equation (4.21) yields

γc = (1 + 1/θeff)−DD
λ
θeff

(1+o(1))
, (4.25)

which shows that the average loss rate γ under optimized replication behaves as the
loss rate of an imaginary average content (one with popularity λ and replication D).

96 CHAPTER 4. DISTRIBUTED CDN

Properties class 1 class 2 class 3
number of contents ni 200 400 400

popularity λi 9 3 1
number of replicas Di 200 67 23

simulation data / approximation class 1 class 2 class 3
nb. of available replicas E[Zi] 21.7 / 21.6 7.28 / 7.25 2.51 / 2.50

103× loss rates γi 0 / 10−5 3.31 / 2.36 79.4 / 76.3
simulation data / approximation Zipf, α = 0.8 Zipf, α = 1.2
proportional: 103× inefficiency 5.69 / 5.46 11.8 / 11.6

Table 4.1: Properties of the content classes, and numerical results on the accuracy
of the approximation.

4.5.4 Assessment of the approximation accuracy via simula-
tions

In the process of approximating the loss rate γc of a content c, we performed many
approximations based on asymptotic behaviors for large systems and large storage /
replication. It is therefore necessary to check whether the formula of Equation (4.21)
is not too far off, which we do in this section via simulation. The systems we simulate
are of quite reasonable size (with a few hundred contents and servers). However, the
accuracy of the approximation should only improve as the system grows. We use two
scenarios for the popularity distribution of the contents: the popularity class model,
which allows us to compare between many contents with similar characteristics,
and a Zipf popularity model, which is deemed more realistic. We evaluate the
accuracy of the approximation using proportional replication (other replications were
also simulated and yield similar results). To compute the approximate expressions,
we solve numerically the fixed point equation in γ. We simulate systems under a
reasonably high load of 0.9. As often, it is mainly interesting to know how the
system behaves when the load is high, as otherwise its performance is almost always
good. However, as requests arrive and are served stochastically, if the average load
were too close to 1 then the instantaneous load would exceed 1 quite often, which
would automatically induce massive losses and mask the influence of the replication.
In fact, it is easy to see that we need to work with systems with a number of servers
m large compared to ρ

(1−ρ)2
in order to mitigate this effect.

The setup with the class model is the following: there are n = 1000 contents
divided into K = 3 classes; the characteristics of the classes are given in the first
part of Table 4.1. The popularities in Table 4.1 together with n = 1000 and ρ = 0.9
result in m = 3800 servers. Each server can store d = 20 contents, which is 2% of
the catalog of contents. We let the system run for 104 units of time, i.e., contents
of class 3 should have received close to 104 requests each.

Figure 4.2 and the second part of Table 4.1 show the results for the class model:
the left part of Figure 4.2 shows the distributions of the numbers of available replicas
for all the contents against the approximation from Equation (4.20) for each class;
the right part shows the loss rates for all the contents against the approximation

4.5. PERFORMANCE UNDER RANDOM GREEDY MATCHING 97

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

number of available replicas

st
at

io
na

ry
 p

ro
ba

bi
lit

y

simulation data
approximation
class 1
class 2
class 3

0 200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

index of content

st
at

io
na

ry
 lo

ss
 r

at
e

simulation data
approximation
class 1
class 2
class 3

Figure 4.2: Class model: distribution of number of available replicas and loss rates
Vs approximation.

from Equation (4.21) for each class. Although it is not apparent at first sight, the
left part of Figure 4.2 actually displays a plot for each of the 1000 contents, but the
graphs for contents of the same class overlap almost perfectly, which supports our
approximation hypothesis that the stationary distribution of the number of available
replicas is not very dependent on the specific servers on which a content is cached
or on the other contents with which it is cached. This behavior is also apparent on
the right part of Figure 4.2, as the loss rates for the contents of the same class are
quite similar. From Figure 4.2 and Table 4.1, it appears that the approximations
from Equations (4.20) and (4.21) are quite accurate, with for example a relative
error of around 5% in the inefficiency of the system (9.68×10−3 Vs 9.20×10−3). We
consider such an accuracy is quite good given that some of the approximations done
are based on a large storage / replication asymptotic, while the simulation setup is
with a storage capacity of d = 20 contents only and contents of class 3 (responsible
for the bulk of losses) have only 23 replicas each.

We now turn to the Zipf popularity model. In this model, the contents are
ranked from the most popular to the least; for a given exponent parameter α, the
popularity of the content of rank i is given by λi = i−α∑

j≤n j
−αλ. We use two different

values for the Zipf exponent α, 0.8 and 1.2, as proposed in [45]. The exponent 0.8
is meant to represent correctly the popularity distribution for web, file sharing and
user generated contents, while the exponent 1.2 is more fit for video-on-demand,
which has a more accentuated popularity distribution. We simulate networks of
n = 200 contents and m ≈ 2000 servers of storage capacity d = 10 under a load
ρ = 0.9. This yields an average content popularity λ = ρm

n
≈ 9. Note that under

proportional replication the numbers of replicas of the most popular contents are
actually larger than the number of servers m for α = 1.2; we thus enforce that no
content is replicated in more than 95% of the servers. As expected and confirmed
by the simulations, this is anyway benefical to the system. Each setup is simulated
for at least 104 units of time.

98 CHAPTER 4. DISTRIBUTED CDN

0 1 2 3 4 5 6
0

1

2

3

4

5

6

log of the rank of the content

lo
g

of
 n

b.
 o

f a
va

ila
bl

e
re

pl
ic

as

nb. available replicas
approximation
Zipf 0.8
Zipf 1.2

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

popularity rank of the content

st
at

io
na

ry
 lo

ss
 r

at
es

loss rates
approximation
Zipf 0.8
Zipf 1.2

Figure 4.3: Zipf model: expected number of available replicas and loss rates Vs
approximation.

0 50 100 150 200
0

2

4

6

8
x 10

−3

popularity rank of the content

st
at

io
na

ry
 lo

ss
 r

at
es

Zipf 0.8
Zipf 1.2

Figure 4.4: Zipf model: loss rates under optimized replication.

We show the results for the Zipf model with both exponent values in Figure 4.3
and in the third part of Table 4.1: the left part of Figure 4.3 shows the expected
number of available replicas for all the contents against the approximation from
Equation (4.20); the right part shows the loss rates for all the contents against the
approximation from Equation (4.21). Again, the results from both Figure 4.3 and
Table 4.1 confirm the accuracy of the approximations.

We now turn to evaluating the performance of the optimized replication from
Equation (4.24). Figure 4.4 shows the resulting loss rates under the optimized repli-
cation, with both Zipf exponents. This figure is to be compared with the right part
of Figure 4.3, which showed the same results for proportional replication. It is clear
that the optimized replication succeeds at reducing the overall inefficiency γ/λ com-
pared to proportional replication (from 5.7 × 10−3 to 5.1 × 10−4 for α = 0.8, and
from 1.2 × 10−2 to 1.6 × 10−6 for α = 1.2). Note that in the case of Zipf exponent

4.6. ADAPTIVE REPLICATION SCHEMES TO MINIMIZE LOSSES 99

α = 1.2 the popularity distribution is more “cacheable” as it is more accentuated,
and the optimized replication achieves extremely small loss rates. However, the loss
rates for all the contents are not trully equalized, as popular contents are still too
much favored (as can be seen for Zipf exponent α = 0.8). This may be because
the expression for optimized replication is asymptotic in the system size and stor-
age capacity. Hence, there is still room for additional finite-size corrections to the
optimized replication.

As an outcome of this section, we conclude that the approximations proposed
are accurate, even at reasonable system size. In addition, the optimized scheme
largely outperforms proportional replication. In the next section, we derive adaptive
schemes equalizing the loss rates of all the contents and achieving similar perfor-
mances as the optimized replication.

4.6 Adaptive replication schemes to minimize losses
In a practical system, we would want to adapt the replication in an online fashion
as much as possible, as it provides more reactivity to variations in the popularity of
contents. Such variations are naturally expected for reasons such as the introduction
of new contents in the catalog or a loss of interest for old contents. Thus, blindly
enforcing the replication of Equation (4.24) is not always desirable in practice. In-
stead, we can extract general principles from the analysis performed in Section 4.5.2
to guide the design of adaptive algorithms.

In this section, we first show how basic adaptive rules from cache networks can
be translated into our context based on the insights from Section 4.5.2 to yield
adaptive algorithms minimizing the overall loss rate. Then, we show how the more
detailed information contained in Equation (4.20) allows the design of faster schemes
attaining the same target replication. Finally, we validate the path followed by
evaluating through simulations the adaptive schemes proposed.

4.6.1 Simple caching + eviction algorithms reacting to losses

The analysis in Section 4.5.3 shows that the problem of minimizing the average loss
rate γ is approximately a convex problem, and that therefore one should aim at
equalizing the derivatives ∆γc(Dc) of the stationary loss rates of all the contents.
In addition, Equation (4.23) points out that these derivatives are proportional to
−γc in the limit of large replication / storage, and thus equalizing the loss rates
should provide an approximate solution for the optimization problem. An immedi-
ate remark at this point is that it is unnecessary to store contents with very low
popularity λc if the loss rate of the other contents is already larger than λc.

An adaptive replication mechanism is characterized by two rules: a rule for
creating new replicas and another one for evicting contents to make space for the
new replicas. In order to figure out how to set these rules, we analyse the system
in the fluid limit regime, with a separation of timescales such that the dynamics
of the system with fixed replication have enough time to converge to their steady-
state between every modification of the replication. Achieving this separation of
timescales in practice would require slowing down enough the adaptation mechanism,

100 CHAPTER 4. DISTRIBUTED CDN

which reduces the capacity of the system to react to changes. Therefore, we keep
in mind such a separation of timescales as a justification for our theoretical analysis
but we do not slow down our adaptive algorithms.

When trying to equalize the loss rates, it is natural to use the loss events to
trigger the creation of new replicas. Then, new replicas for content c are created at
rate γc, and we let ηc be the rate at which replicas of c are deleted from the system.
In the fluid limit regime under the separation of timescale assumption, the number
of replicas of c evolves according to Ḋc = γc − ηc, where all the quantities refer to
expectations in the steady-state of the system with fixed replication. At equilibrium,
we have Ḋc = 0 and γc = ηc for all the contents c, thus we need ηc = Cste for all
c to equalize the loss rates. This would be achieved for example if we picked a
content for eviction uniformly at random among all contents. However, the contents
eligible for eviction are only those which are available (although some systems may
allow modifying the caches of busy servers, as serving requests consumes upload
bandwidth while updating caches requires only download bandwidth). Therefore,
the most natural and practical eviction rule is to pick an available content uniformly
at random (hereafter, we refer to this policy simply as the RANDOM policy). Then,
the eviction rate for content c is given by ηc ∝ π(Zc > 0) = 1− γc

λc
. So, at equilibrium,

we can expect to have γc
1− γc

λc

= Cste, ∀c ∈ C. In a large system, with large storage
/ replication and loss rates tending to zero, the difference with a replication trully
equalizing the loss rates is negligeable. If we are confronted to a system with a large
number of very unpopular contents though, we can compensate for this effect at the
cost of maintaining additional counters for the number of evictions of each content.

Once the rule for creating replicas if fixed, we immediately obtain a family of
adaptive algorithms by modifying the eviction rules from the cache network context
as we did above for the RANDOM policy. Instead of focusing on “usage” and the
incoming requests process as in cache networks with the LFU and LRU policies, we
react here to the loss process. This yields the LFL (least frequently lost) and LRL
(least recently lost) policies. RANDOM, LRL, and LFL are only three variants of
a generic adaptive algorithm which performs the following actions at every loss for
content c:

1. create an empty slot on an available server, using the eviction rule (RANDOM
/ LRL / LFL);

2. add a copy of the content c into the empty slot.

The three eviction rules considered here require a very elementary centralized co-
ordinating entity. For the RANDOM rule, this coordinator simply checks which
contents are available, picks one uniformly at random, say c′, and then chooses a
random idle server s storing c′. The server s then picks a random memory slot and
clears it, to store instead a copy of c. In the case of LRL, the coordinator needs
in addition to maintain an ordered list of the least recently lost content (we call
such a list an LRL list). Whenever a loss occurs for c, the coordinator picks the
least recently lost available content c′ based on the LRL list (possibly restricting to
contents less recently lost than c) and then updates the position of c in the LRL list.
It then picks a random idle server s storing c′, which proceeds as for RANDOM.

4.6. ADAPTIVE REPLICATION SCHEMES 101

Finally, for LFL, the coordinator would need to maintain estimates of the loss rates
of each content (by whatever means, e.g., exponentially weighted moving averages);
when a loss happens, the coordinator picks the available content c′ with the smallest
loss rate estimate and then proceeds as the other two rules. This last rule is more
complicated as it involves a timescale adjustement for the estimation of the loss
rates, therefore we will focus on the first two options. Note that the LFL policy
does not suffer from the drawback that the eviction rate is biased towards popular
contents due to their small unavailability, and this effect is also attenuated under
the LRL policy. We point out that it is possible to operate the system in a fully
distributed way (finding a random idle server first and then picking a content on it
by whatever rule), but this approach is biased into selecting for eviction contents
with a large number of available replicas (i.e., popular contents), which will lead to
a replication with reduced efficency. It is of interest for future work to find a way
to unbias such a distributed mechanism.

4.6.2 Adapting faster than losses

In the algorithms proposed in the previous section, we use the losses of the system
as the only trigger for creating new replicas. It is convenient as these events are
directly tied to the quantity we wish to control (the loss rates), however it also has
drawbacks. Firstly, it implies that we want to generate a new replica for a content
precisely when we have no available server for uploading it, and thus either we send
two requests at a time to the data center instead of one (one for the user which we
could not serve and one to generate a new copy) or we must delay the creation of the
new replica and tolerate an inedaquate replication in-between, which also hinders
the reactivity of the system. Secondly, unless in practice we intend to slow down
the adaptation enough, there will always be oscillations in the replication. If losses
happen almost as a Poisson process, then only a bit of slow-down is necessary to
moderate the oscillations, but if they happen in batches (as it may very well be for
the most popular contents) then we will create many replicas in a row for the same
contents. If in addition we use the LRL or LFL rules for evicting replicas, then the
same contents will suffer many evictions successively, fuelling again the oscillations
in the replication. Finally, it is very likely that popularities are constantly changing.
If the system is slow to react, then the replication may never be in phase with the
current popularities but always lagging behind. For all these reasons, it is important
to find a way to decouple the adaptation mechanisms from the losses in the system
to some extent, and at least to find other ways to trigger adaptation.

We propose a solution, relying on the analysis in Section 4.5.2. A loss for content
c occurs when, upon arrival of a request for c, its number of available replicas is equal
to 0. In the same way, whenever a request arrives, we can use the current value of
Zc to estimate the loss rate of c. Indeed, Equation (4.20) tells us how to relate the
probability of Zc = z to the loss rate γc, for any z ∈ N. Of course, successive samples
of Zc are very correlated (note that losses may also be correlated though) and we
must be careful not to be too confident in the estimate they provide. A simple
way to use those estimates to improve the adaptation scheme is to generate virtual
loss events, to which any standard adaptive scheme such as those introduced in the

102 CHAPTER 4. DISTRIBUTED CDN

previous section may then react. To that end, whenever a request for c arrives, we
generate a virtual loss with a certain probability pc(Zc) depending on the current
number of available replicas Zc. The objective is to define pc(Zc) so that the rates
(γ̃c)c∈C of generation of virtual losses satisfy γ̃c = C̃ste × γc for all c ∈ C (so that
the target replication still equalizes loss rates) and C̃ste is as high as possible (to
get fast adaptation).

As a first step towards setting the probability pc(Zc), we write Equation (4.20)
as follows:

π(Zc = 0) = π(Zc = z)
z∏
i=1

λc + iθeff
Dc − i+ 1

.

This shows that, for any fixed value z with π(Zc = z) ≥ π(Zc = 0), we can generate
events at rate γc by subsampling at the time of a request arrival with Zc = z with
a first probability

qc(z) =
z∏
i=1

λc + iθeff
Dc − i+ 1

.

If on the contrary z is such that π(Zc = z) < π(Zc = 0), then the value of qc(z)
given above is larger than 1 as we cannot generate events at rate γc by subsam-
pling even more unlikely events. If we generated virtual losses at rate γc as above
for each value of z, then the total rate of virtual losses for content c would be
λc
∫ Dc
z=1

min {π(Zc = z), π(Zc = 0)}, which clearly still depends on c. We thus pro-
ceed in two additional steps towards setting pc(Zc): we first restrict the range of
admissible values of Zc, for which we may generate virtual losses, by excluding the
values z such that π(Zc = z) < π(Zc = 0). In the regime θeff ≥ 1, this can be done
in a coarse way by letting z∗c = Dc−λc

θeff
and rejecting all the values z > z∗c . Indeed,

qc(z
∗
c) =

z∗c∏
i=0

Dc − iθeff
Dc − i

≤ 1,

and the distribution of Zc is unimodal with the mode at a smaller value Dc−λc
θeff
≈ ρz∗c .

Now, subsampling with probability qc(Zc) when a request arrives for content c and
Zc ≤ z∗c would generate events at a total rate z∗cγc. Thus, it suffices to subsample
again with probability minc′∈C z

∗
c′

z∗c
to obtain the same rate of virtual losses for all the

contents (another approach would be to restrict again the range of admissible values
of z, e.g., to values around the mode ẑc).

To sum up, our approach is to generate a virtual loss for content c at each arrival
of a request for c with probability

pc(Zc) =
minc′∈C z

∗
c′

z∗c
1(Zc ≤ z∗c)qc(Zc).

The rate γ̃c at which virtual losses are generated for content c is then given by
γc × minc′∈C z

∗
c′ , which is independent of c as planned. Whenever a virtual loss

occurs, we can use whatever algorithm we wanted to use in the first place with real
losses; there is no need to distinguish between the real losses and the virtual ones.
For example, if we use the LRL policy, we update the position of c in the LRL

4.6. ADAPTIVE REPLICATION SCHEMES 103

list and create a new replica for c by evicting a least recently lost available content
(from a server which does not already store c). If we choose to test for virtual
losses at ends of service for c (which yields the same outcome in distribution, as the
system is reversible), the new replica can simply be uploaded by the server which
just completed a service for c. Furthermore, in practice, we advocate estimating
the values of z∗c and pc(Zc) on the fly rather than learning these values for each
content: θeff can be computed from ρeff, which is naturally approximated by the
ratio of the current number of busy servers to the total number of servers; similarly,
we can approximate λc by the current number of requests for c being served. From
these, we can compute z∗c and pc(Zc); it is only necessary to maintain an estimate for
minc′∈C z

∗
c′ , which can be for example an average over the few least popular contents

updated whenever a service ends for one of them.
Next, we evaluate the performance of the adaptative schemes proposed and the

virtual losses mechanism.

4.6.3 Evaluation of the Performance through Simulations

Before getting to the simulation results, let us just mention that the complexity of
simulating the adaptive algorithms grows very fast with the system size (with n,
m and d). Indeed, it is easy to see that simulating the system for a fixed duration
t requires Ω(mdλt) operations. Furthermore, the time needed for the RANDOM
algorithm to converge, when started at proportional replication, is roughly of the
order of maxc∈C Dc/γ, where γ is the average loss rate for the limit replication, which
decreases exponentially fast in d as seen in Equation (4.25). Therefore, if we want to
compare all the adaptive schemes, we cannot simulate very large networks. Anyway,
our intention is to show that our schemes work even for networks of reasonable size.

As in Section 4.5.4, we used Zipf popularity distributions with exponents 0.8
and 1.2 and a class model to evaluate the performance of the various schemes. The
results are qualitatively identical under all these models, so we only show the results
for Zipf popularity with exponent α = 0.8. We compare the various schemes in
terms of the replication achieved and its associated loss rates, as well as the speed
at which the target replication is reached. We do not slow down the dynamics of
the adaptive schemes even though this necessarily induces some oscillations in the
replication obtained. Nonetheless, this setup is already sufficient to demonstrate
the performance of the adaptive schemes. It would be interesting to quantify the
potential improvement if one reduces the oscillations of the replication obtained (e.g.,
by quantifying the variance of the stationary distribution for the number of replicas
for each content); we leave this out for future work. Also, we did not account for
the load put on the data center to create new copies of the contents; one can simply
double the loss rates for the adaptive schemes to capture this effect. Note that if
adaptation speed is not a priority, one can trade it off to almost cancel this factor
of 2. Finally, concerning the virtual loss mechanism, we estimate all the quantities
involved on the fly, as recommended in the previous section.

In Figure 4.5, we show results for the various adaptive schemes. On the left part
of the figure, we show the stationary loss rates of all the contents; on the right part
we show in log-log scale the stationary expectation of the numbers of replicas for each

104 CHAPTER 4. DISTRIBUTED CDN

0 50 100 150 200
0

0.005

0.01

0.015

popularity rank of the content

st
at

io
na

ry
 lo

ss
 r

at
es

fixed optimized
RANDOM
LRL
RANDOM virtual
LRL virtual

0 1 2 3 4 5 6
3

4

5

6

7

8

log of the rank of the content

lo
g

of
 n

b.
 o

f r
ep

lic
as

fixed proportional
fixed optimized
RANDOM
LRL
RANDOM virtual
LRL virtual

Figure 4.5: Adaptive schemes: loss rates and replication.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

50

100

150

200

250

300

350

400

time

nu
m

be
r

of
 r

ep
lic

as

10% most popular contents
10% least popular contents
RANDOM
LRL
RANDOM virtual
LRL virtual

Figure 4.6: Adaptive schemes: time evolution.

Replication strategy 103× inefficiency γ/λ
fixed proportional 5.69
fixed optimized 0.51
fixed uniform 67.3

adaptive RANDOM 0.36
adaptive LRL 0.38

RANDOM + virtual losses 0.35
LRL + virtual losses 0.42

Table 4.2: Performance of the fixed and adaptive schemes.

4.6. ADAPTIVE REPLICATION SCHEMES 105

content. This plot shows firstly that all the adaptive schemes converge to the same
replication and secondly that this replication equalizes the loss rates, as intended.
In addition, the adaptive schemes perform even better than the optimized static
replication, which suffers from finite network / finite storage effects, as they manage
to find the right balance between popular and unpopular contents. In Table 4.2, we
provide the inefficiency of the various schemes in the stationary regime for the Zipf
exponent α = 0.8. One can see that the adaptive schemes consistently outperform
the fixed optimized replication, which is already an order of magnitude better than
the fixed proportional replication. One can also note that a quick reaction speed
generally goes with a small penalty in average loss rate, as the replication attained
fluctuates slightly around the optimal replication, and the preventive replication
mechansim also artificially increases the load by a small amount (in practice, of
course, such a mechanism should be refrained when the load approaches 1).

We compare the adaptation speed of the various schemes on Figure 4.6, where
we plot both the evolution of the average number of replicas of the 10% most pop-
ular contents and that of the 10% least popular ones, starting from proportional
replication. As expected, the LRL schemes are faster than the RANDOM ones, but
more importantly this plot clearly demonstrates the speed enhancement offered by
the virtual loss method of Section 4.6.2. Regarding the benefits of such an enhanced
reaction capability, there is an interesting property which we did not point out nor
illustrate with the simulations: the virtual loss scheme has the potential to follow a
constantly evolving popularity profile at no cost, as the required creations of replicas
to adapt to the changing popularities can be done without requesting copies of the
contents to the data center.

106 CHAPTER 4. DISTRIBUTED CDN

Bibliography

[1] S. Albers, L. M. Favrholdt, and O. Giel. On paging with locality of reference.
Journal of Computer and System Sciences, 70(2):145–175, 2005.

[2] D. Aldous. The ζ (2) limit in the random assignment problem. Random
Structures & Algorithms, 18(4):381–418, 2001.

[3] D. Aldous and A. Bandyopadhyay. A survey of max-type recursive distribu-
tional equations. Annals of Applied Probability 15, 15:1047–1110, 2005.

[4] D. Aldous and R. Lyons. Processes on unimodular random networks. Electron.
J. Probab., 12:no. 54, 1454–1508, 2007.

[5] D. Aldous and J. M. Steele. The objective method: probabilistic combinatorial
optimization and local weak convergence. In Probability on discrete structures,
volume 110 of Encyclopaedia Math. Sci., pages 1–72. Springer, Berlin, 2004.

[6] N. Alon and J. H. Spencer. The probabilistic method. Wiley. com, 2004.

[7] M. M. Amble, P. Parag, S. Shakkottai, and L. Ying. Content-aware caching
and traffic management in content distribution networks. In INFOCOM, pages
2858–2866, 2011.

[8] R. P. Anstee. A polynomial algorithm for b-matchings: an alternative ap-
proach. Information Processing Letters, 24(3):153–157, 1987.

[9] K. B. Athreya and P. E. Ney. Branching processes, volume 28. Springer-Verlag
Berlin, 1972.

[10] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations.
SIAM J. Comput., 29(1):180–200, 1999.

[11] A. Bandyopadhyay and D. Gamarnik. Counting without sampling: Asymp-
totics of the log-partition function for certain statistical physics models. Ran-
dom Structures & Algorithms, 33(4):452–479, 2008.

[12] M. Bayati, C. Borgs, J. Chayes, and R. Zecchina. On the exactness of the
cavity method for weighted b-matchings on arbitrary graphs and its relation
to linear programs. Journal of Statistical Mechanics: Theory and Experiment,
2008(06):L06001, 2008.

107

108 BIBLIOGRAPHY

[13] M. Bayati, D. Gamarnik, D. Katz, C. Nair, and P. Tetali. Simple deterministic
approximation algorithms for counting matchings. In Proceedings of the thirty-
ninth annual ACM symposium on Theory of computing, pages 122–127. ACM,
2007.

[14] E. A. Bender and E. R. Canfield. The asymptotic number of labeled graphs
with given degree sequences. Journal of Combinatorial Theory, Series A,
24(3):296–307, 1978.

[15] I. Benjamini and O. Schramm. Recurrence of distributional limits of finite
planar graphs. Electron. J. Probab., 6:no. 23, 13 pp. (electronic), 2001.

[16] P. Billingsley. Convergence of probability measures, volume 493. Wiley. com,
2009.

[17] B. Bollobás. A probabilistic proof of an asymptotic formula for the number of
labelled regular graphs. European Journal of Combinatorics, 1(4):311 – 316,
1980.

[18] B. Bollobás. Random graphs, volume 73. Cambridge university press, 2001.

[19] B. Bollobás and O. Riordan. Sparse graphs: metrics and random models.
Random Structures & Algorithms, 39(1):1–38, 2011.

[20] C. Bordenave. Lecture notes on random graphs and probabilistic combinatorial
optimization!! draft in construction!! 2012.

[21] C. Bordenave, M. Lelarge, and J. Salez. Matchings on infinite graphs. Proba-
bility Theory and Related Fields, pages 1–26, 2012.

[22] C. Borgs, J. Chayes, and D. Gamarnik. Convergent sequences of sparse graphs:
A large deviations approach. arXiv preprint arXiv:1302.4615, 2013.

[23] C. Borgs, J. Chayes, J. Kahn, and L. Lovász. Left and right convergence of
graphs with bounded degree. Random Structures & Algorithms, 42(1):1–28,
2013.

[24] Y. Boufkhad, F. Mathieu, F. De Montgolfier, D. Perino, L. Viennot, et al.
Achievable catalog size in peer-to-peer video-on-demand systems. In Proceed-
ings of the 7th Internnational Workshop on Peer-to-Peer Systems (IPTPS),
pages 1–6, 2008.

[25] A. Braunstein, M. Mézard, and R. Zecchina. Survey propagation: An al-
gorithm for satisfiability. Random Structures & Algorithms, 27(2):201–226,
2005.

[26] T. Britton, M. Deijfen, and A. Martin-Löf. Generating simple random
graphs with prescribed degree distribution. Journal of Statistical Physics,
124(6):1377–1397, 2006.

BIBLIOGRAPHY 109

[27] J. A. Cain, P. Sanders, and N. Wormald. The random graph threshold for
k-orientiability and a fast algorithm for optimal multiple-choice allocation.
In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms, SODA ’07, pages 469–476, Philadelphia, PA, USA, 2007. Society
for Industrial and Applied Mathematics.

[28] H. Che, Y. Tung, and Z. Wang. Hierarchical web caching systems: Mod-
eling, design and experimental results. IEEE Journal on Selected Areas in
Communications, 20(7):1305–1314, 2002.

[29] N. Chen and M. Olvera-Cravioto. Directed random graphs with given degree
distributions. arXiv preprint arXiv:1207.2475, 2012.

[30] M. Chertkov. Exactness of belief propagation for some graphical mod-
els with loops. Journal of Statistical Mechanics: Theory and Experiment,
2008(10):P10016, 2008.

[31] Cisco White Paper. Cisco visual networking index: Forecast and methodology,
2012-2017. May 2013.

[32] E. Cohen and S. Shenker. Replication strategies in unstructured peer-to-peer
networks. In ACM SIGCOMM Computer Communication Review, volume 32,
pages 177–190, 2002.

[33] R. Darling, J. R. Norris, et al. Differential equation approximations for markov
chains. Probability surveys, 5:37–79, 2008.

[34] A. Dembo and A. Montanari. Gibbs measures and phase transitions on sparse
random graphs. Brazilian Journal of Probability and Statistics, 24(2):137–211,
2010.

[35] M. Dietzfelbinger, A. Goerdt, M. Mitzenmacher, A. Montanari, R. Pagh, and
M. Rink. Tight thresholds for cuckoo hashing via xorsat. In Proceedings
of the 37th international colloquium conference on Automata, languages and
programming, ICALP’10, pages 213–225, Berlin, Heidelberg, 2010. Springer-
Verlag.

[36] M. Dietzfelbinger and C. Weidling. Balanced allocation and dictionaries with
tightly packed constant size bins. Theoretical Computer Science, 380(1):47 –
68, 2007.

[37] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl. Glob-
ally distributed content delivery. IEEE Internet Computing, 6(5):50–58, 2002.

[38] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran.
Network coding for distributed storage systems. Information Theory, IEEE
Transactions on, 56(9):4539–4551, 2010.

[39] R. Durrett. Random graph dynamics, volume 20. Cambridge university press,
2007.

110 BIBLIOGRAPHY

[40] P. Erdos and A. Renyi. On the evolution of random graphs. Publ. Math. Inst.
Hungary. Acad. Sci., 5:17–61, 1960.

[41] D. Fernholz and V. Ramachandran. The k-orientability thresholds for Gn,p.
In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms, SODA ’07, pages 459–468, Philadelphia, PA, USA, 2007. Society
for Industrial and Applied Mathematics.

[42] N. Fountoulakis, M. Khosla, and K. Panagiotou. The multiple-orientability
thresholds for random hypergraphs. In Proceedings of the Twenty-Second An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA ’11, pages 1222–
1236. SIAM, 2011.

[43] N. Fountoulakis, K. Panagiotou, and A. Steger. On the insertion time of
cuckoo hashing. CoRR, abs/1006.1231, 2010.

[44] C. Fricker, P. Robert, and J. Roberts. A versatile and accurate approximation
for lru cache performance. In Proceedings of the 24th International Teletraffic
Congress. International Teletraffic Congress, 2012.

[45] C. Fricker, P. Robert, J. Roberts, and N. Sbihi. Impact of traffic mix on caching
performance in a content-centric network. In IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pages 310–315, 2012.

[46] A. Frieze and P. Melsted. Maximum matchings in random bipartite graphs and
the space utilization of cuckoo hash tables. Random Structures & Algorithms,
41(3):334–364, 2012.

[47] A. Frieze, P. Melsted, and M. Mitzenmacher. An analysis of random-walk
cuckoo hashing. In Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, pages 490–503. Springer, 2009.

[48] R. Gallager. Low-density parity-check codes. Information Theory, IRE Trans-
actions on, 8(1):21–28, 1962.

[49] D. Gamarnik, D. Goldberg, and T. Weber. Correlation decay in random
decision networks. arXiv preprint arXiv:0912.0338, 2009.

[50] D. Gamarnik and D. Katz. Correlation decay and deterministic fptas for
counting list-colorings of a graph. In Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 1245–1254. Society for
Industrial and Applied Mathematics, 2007.

[51] D. Gamarnik and S. Misra. Giant component in random multipartite graphs
with given degree sequences. arXiv preprint arXiv:1306.0597, 2013.

[52] D. Gamarnik, T. Nowicki, and G. Swirszcz. Maximum weight independent
sets and matchings in sparse random graphs. exact results using the local
weak convergence method. Random Structures & Algorithms, 28(1):76–106,
2006.

BIBLIOGRAPHY 111

[53] P. Gao and N. C. Wormald. Load balancing and orientability thresholds for
random hypergraphs. In Proceedings of the 42nd ACM symposium on Theory
of computing, STOC ’10, pages 97–104, New York, NY, USA, 2010. ACM.

[54] E. N. Gilbert. Random graphs. Annals of Mathematical Statistics, 30(4):1141–
1144, 1959.

[55] G. H. Gonnet. Expected length of the longest probe sequence in hash code
searching. Journal of the ACM (JACM), 28(2):289–304, 1981.

[56] L. J. Guibas and E. Szemeredi. The analysis of double hashing. Journal of
Computer and System Sciences, 16(2):226–274, 1978.

[57] I. Heller and C. Tompkins. An extension of a theorem of Dantzig’s. In H. Kuhn
and A. Tucker, editors, Linear inequalities and related systems, pages 247–254.
Princeton University Press, 1956.

[58] T. Heskes. On the uniqueness of loopy belief propagation fixed points. Neural
Computation, 16(11):2379–2413, 2004.

[59] A. T. Ihler, J. Fisher III, and A. S. Willsky. Loopy belief propagation: Conver-
gence and effects of message errors. In Journal of Machine Learning Research,
pages 905–936, 2005.

[60] S. James and P. Crowley. Isp managed peer-to-peer. In Proceedings of the 5th
ACM/IEEE Symposium on Architectures for Networking and Communications
Systems, pages 167–168. ACM, 2009.

[61] S. Janson, T. Luczak, and V. Kolchin. Random graphs. Cambridge Univ Press,
2000.

[62] W. Jiang, S. Ioannidis, L. Massoulié, and F. Picconi. Orchestrating massively
distributed cdns. In Proceedings of the 8th international conference on Emerg-
ing networking experiments and technologies, pages 133–144. ACM, 2012.

[63] R. M. Karp. Reducibility among combinatorial problems. Springer, 1972.

[64] F. P. Kelly. Loss networks. The annals of applied probability, pages 319–378,
1991.

[65] M. Khosla. Balls into bins made faster. In ESA, Lecture Notes in Computer
Science. Springer, 2013.

[66] J. H. Kim. Poisson Cloning Model for Random Graphs. ArXiv e-prints, May
2008.

[67] F. Krza̧kała, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, and L. Zde-
borová. Gibbs states and the set of solutions of random constraint satisfaction
problems. Proc. Natl. Acad. Sci. USA, 104(25):10318–10323 (electronic), 2007.

[68] T. Kurtz. Approximation of Population Processes. CBMS-NSF Regional Con-
ference Series in Applied Mathematics, 1981.

112 BIBLIOGRAPHY

[69] N. Laoutaris, V. Zissimopoulos, and I. Stavrakakis. On the optimization
of storage capacity allocation for content distribution. Computer Networks,
47(3):409–428, 2005.

[70] M. Lelarge. A new approach to the orientation of random hypergraphs. In
Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’12, pages 251–264. SIAM, 2012.

[71] L. Lovász and M. D. Plummer. Matching theory. AMS Chelsea Publishing,
Providence, RI, 2009. Corrected reprint of the 1986 original [MR0859549].

[72] G. Lueker and M. Molodowitch. More analysis of double hashing. In Proceed-
ings of the twentieth annual ACM symposium on Theory of computing, pages
354–359. ACM, 1988.

[73] R. Lyons. Asymptotic enumeration of spanning trees. Combinatorics, Proba-
bility & Computing, 14(4):491–522, 2005.

[74] E. Maneva, E. Mossel, and M. J. Wainwright. A new look at survey propaga-
tion and its generalizations. J. ACM, 54(4), July 2007.

[75] B. D. McKay and N. C. Wormald. Uniform generation of random regular
graphs of moderate degree. Journal of Algorithms, 11(1):52–67, 1990.

[76] M. Mezard and A. Montanari. Information, Physics, and Computation. Ox-
ford University Press, Inc., New York, NY, USA, 2009.

[77] M. Mézard and G. Parisi. The bethe lattice spin glass revisited. The European
Physical Journal B-Condensed Matter and Complex Systems, 20(2):217–233,
2001.

[78] M. Mézard and G. Parisi. The cavity method at zero temperature. Journal of
Statistical Physics, 111(1-2):1–34, 2003.

[79] M. Mézard, G. Parisi, and M. A. Virasoro. Spin glass theory and beyond, vol-
ume 9 ofWorld Scientific Lecture Notes in Physics. World Scientific Publishing
Co. Inc., Teaneck, NJ, 1987.

[80] M. Mézard, G. Parisi, and R. Zecchina. Analytic and algorithmic solution of
random satisfiability problems. Science, 297(5582):812–815, 2002.

[81] M. Mitzenmacher. Some open questions related to cuckoo hashing. In
Algorithms-ESA 2009, pages 1–10. Springer, 2009.

[82] M. Mitzenmacher. Balanced allocations and double hashing. CoRR,
abs/1209.5360, 2012.

[83] M. Mitzenmacher, A. W. Richa, and R. Sitaraman. The power of two random
choices: A survey of techniques and results. In in Handbook of Randomized
Computing, pages 255–312. Kluwer, 2000.

BIBLIOGRAPHY 113

[84] M. Mitzenmacher and J. Thaler. Peeling arguments and double hashing. In
Communication, Control, and Computing (Allerton), 2012 50th Annual Aller-
ton Conference on, pages 1118–1125. IEEE, 2012.

[85] J. M. Mooij and H. J. Kappen. Sufficient conditions for convergence of the sum-
product algorithm. IEEE Transactions on Information Theory, 53(12):4422–
4437, Dec. 2007.

[86] R. Mulet, A. Pagnani, M. Weigt, and R. Zecchina. Coloring random graphs.
Physical review letters, 89(26):268701, 2002.

[87] A. Müller and D. Stoyan. Comparison Methods for Stochastic Models and
Risks. Wiley, 2009.

[88] T. Nelson. Literary machines, 93.1 edn, 1993.

[89] R. Pagh and F. F. Rodler. Cuckoo hashing. In ESA, pages 121–133, 2001.

[90] J. Pearl. Reverend bayes on inference engines: A distributed hierarchical
approach. In AAAI, pages 133–136, 1982.

[91] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible
inference. The Morgan Kaufmann Series in Representation and Reasoning.
Morgan Kaufmann, San Mateo, CA, 1988.

[92] R. Pemantle. Towards a theory of negative dependence. Journal of Mathe-
matical Physics, 41:1371, 2000.

[93] T. J. Richardson and R. L. Urbanke. The capacity of low-density parity-check
codes under message-passing decoding. Information Theory, IEEE Transac-
tions on, 47(2):599–618, 2001.

[94] Y. Rochman, H. Levy, and E. Brosh. Max percentile replication for optimal
performance in multi-regional p2p vod systems. In Ninth International Con-
ference on Quantitative Evaluation of Systems (QEST), pages 238–248. IEEE,
2012.

[95] Y. Rochman, H. Levy, and E. Brosh. Resource placement and assignment in
distributed network topologies. In Proceedings IEEE INFOCOM, 2013.

[96] J. Salez. Weighted enumeration of spanning subgraphs in locally tree-like
graphs. Random Structures & Algorithms, 2012.

[97] A. Schrijver. Combinatorial Optimization : Polyhedra and Efficiency (Algo-
rithms and Combinatorics). Springer, jul 2004.

[98] J. G. Shanthikumar and D. D. Yao. The preservation of likelihood ratio order-
ing under convolution. Stochastic Processes and their Applications, 23(2):259–
267, 1986.

114 BIBLIOGRAPHY

[99] K. Suh, C. Diot, J. Kurose, L. Massoulie, C. Neumann, D. Towsley, and
M. Varvello. Push-to-peer video-on-demand system: Design and evaluation.
Selected Areas in Communications, IEEE Journal on, 25(9):1706–1716, 2007.

[100] A.-S. Sznitman. Topics in propagation of chaos. In Ecole d’Eté de Probabilités
de Saint-Flour XIX—1989, pages 165–251. Springer, 1991.

[101] B. Tan and L. Massoulié. Optimal content placement for peer-to-peer video-
on-demand systems. In Proceedings IEEE INFOCOM, pages 694–702, 2011.

[102] E. Tardos. A strongly polynomial algorithm to solve combinatorial linear
programs. Operations Research, 34(2):250–256, 1986.

[103] S. C. Tatikonda and M. I. Jordan. Loopy belief propagation and gibbs mea-
sures. In Proceedings of the Eighteenth conference on Uncertainty in artificial
intelligence, pages 493–500. Morgan Kaufmann Publishers Inc., 2002.

[104] S. Tewari and L. Kleinrock. On fairness, optimal download performance and
proportional replication in peer-to-peer networks. In NETWORKING 2005.
Networking Technologies, Services, and Protocols; Performance of Computer
and Communication Networks; Mobile and Wireless Communications Sys-
tems, pages 709–717. Springer, 2005.

[105] S. Tewari and L. Kleinrock. Proportional replication in peer-to-peer networks.
In Proceedings IEEE INFOCOM, 2006.

[106] V. Valancius, N. Laoutaris, L. Massoulié, C. Diot, and P. Rodriguez. Greening
the internet with nano data centers. In Proceedings of the 5th international
conference on Emerging networking experiments and technologies (CoNEXT),
pages 37–48. ACM, 2009.

[107] R. Van Der Hofstad. Random graphs and complex networks. Available on
http://www. win. tue. nl/rhofstad/NotesRGCN. pdf, 2009.

[108] V. V. Vazirani. Approximation algorithms. springer, 2001.

[109] S. Vembu and S. Verdú. Generating random bits from an arbitrary source:
Fundamental limits. Information Theory, IEEE Transactions on, 41(5):1322–
1332, 1995.

[110] H. W. Watson and F. Galton. On the probability of the extinction of families.
The Journal of the Anthropological Institute of Great Britain and Ireland,
4:138–144, 1875.

[111] Y. Weiss and W. T. Freeman. Correctness of belief propagation in gaussian
graphical models of arbitrary topology. Neural computation, 13(10):2173–2200,
2001.

[112] D. Weitz. Counting independent sets up to the tree threshold. In Proceedings
of the thirty-eighth annual ACM symposium on Theory of computing, pages
140–149. ACM, 2006.

BIBLIOGRAPHY 115

[113] W. Whitt. Uniform conditional stochastic order. Journal of Applied Probabil-
ity, pages 112–123, 1980.

[114] W. Whitt. Multivariate monotone likelihood ratio and uniform conditional
stochastic order. Journal of Applied Probability, pages 695–701, 1982.

[115] N. C. Wormald. Some problems in the enumeration of labelled graphs. PhD
thesis, Newcastle University, 1978.

[116] W. Wu and J. C. Lui. Exploring the optimal replication strategy in p2p-vod
systems: Characterization and evaluation. Parallel and Distributed Systems,
IEEE Transactions on, 23(8):1492–1503, 2012.

[117] J. Yedidia, W. Freeman, and Y. Weiss. Constructing free-energy approxima-
tions and generalized belief propagation algorithms. IEEE Transactions on
Information Theory, 51(7):2282 – 2312, july 2005.

[118] L. Zdeborová and F. Krząkała. Phase transitions in the coloring of random
graphs. Physical Review E, 76(3):031131, 2007.

[119] L. Zdeborová and M. Mézard. The number of matchings in random graphs.
Journal of Statistical Mechanics: Theory and Experiment, 2006(05):P05003,
2006.

[120] Y. Zhou, T. Z. Fu, and D. M. Chiu. A unifying model and analysis of p2p vod
replication and scheduling. In Proceedings IEEE INFOCOM, pages 1530–1538,
2012.

[121] Y. Zhou, T. Z. Fu, and D. M. Chiu. On replication algorithm in p2p vod.
IEEE/ACM Transactions on Networking, pages 233 – 243, 2013.

[122] D. Zuckerman. Simulating bpp using a general weak random source. Algorith-
mica, 16(4-5):367–391, 1996.

