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- CHAPTER 1 -

INTRODUCTION

In computer vision, camera pose estimation and 3D structure refinement
are approached by defining cost functions whose minimum corresponds
to desired model configuration. Because these two problems are by nature
geometrical, original image measurements are often replaced by 2D feature
points, which are extracted from the images. Feature points are distinctive
local regions, such as corners and edges, which can be matched across mul-
tiple images. Finally, a geometrical cost function determines which param-
eters are ideal in relation to all 2D feature point observations. Despite that
geometrical cost metric can provide precise estimates, the estimation pro-
cess paradoxally utilizes only indirectly the original image data. 2D points
must be extracted from images and matched in multiple views. This is
the weak link of the estimation process, because extraction and matching
errors can not be avoided. Especially matching errors must be addressed
by techniques such as RANSAC [18, 55] and M-estimators [27] to increase
tolerance to gross outliers. Feature extraction, also, is imprecise because
the points are likely to have an offset to the ideal projection of a 3D point.
For example, viewing angle and lighting conditions affect on the feature
extraction process.

In this work, image based estimation methods, also known as direct
methods, are studied which avoid feature extraction and matching com-
pletely. Cost functions are directly defined using raw pixel measurements
and the goal is to produce precise pose and structure estimates. The pre-
sented cost functions minimize the sensor error, because measurements
are not transformed or modified. In photometric camera pose estimation,
3D rotation and translation parameters are estimated by minimizing a se-
quence of image based cost functions. These cost functions are non-linear
due to perspective projection and lens distortion. In image based structure
refinement, 3D structure is refined by minimizing appearance variance to

1



2 Chapter 1. Introduction

the reference view using a number of additional views. Image based esti-
mation methods are usable whenever the Lambertian illumination assump-
tion holds, where 3D points have constant color despite viewing angle. The
main application domains considered in this work are indoor reconstruc-
tions, robotics and augmented reality, which all benefit from more precise
3D camera tracking and environment mapping.

§ 1.1 OBJECTIVES

The overall project goal is to improve image based estimation methods,
and to enable their use in real-time applications. The main questions for
this work are

• "What is an efficient formulation for an image based 3D pose estimation and
structure refinement task?"

• "How to organize computation to enable an efficient real-time implementa-
tion?"

• "What are the practical considerations of using image based estimation
methods in applications such as augmented reality and 3D reconstruction?"

Two application cases are considered. In the first one, an asteroid re-
construction mission is of interest, where multi-view inference is used for
autonomous pose estimation and 3D reconstruction. The first two pub-
lications describe developments carried out in I3S laboratory in Sophia-
Antipolis in an aim to bring state-of-the-art computer vision to space ap-
plications in collaboration with Thales-Alenia Space. Particularly compu-
tational efficiency and tracking robustness were considered. Since standard
benchmarking for visual odometry was not available, it was developed to
monitor the development in accuracy and robustness. Blender software
was used to generate synthetic datasets along with a ground truth trajecto-
ries. Also turn-table was used to test visual odometry with more realistic
input.

During the project, the Microsoft Kinect sensor was released, which
meant that relatively accurate RGB-D measurements could be captured in
textureless indoor environments at 30Hz using a structured IR light pat-
tern. Compared to depth maps generated from stereo camera input, struc-
tural accuracy became much more consistent and image content indepen-
dent. I made a request to transform this PhD project into a double-degree
with Lappeenranta University of Technology to be able focus on television
production studio environments. This change simplified data acquisition,
since real data could be easily captured in the actual application environ-
ment.
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The goal in the second part of this thesis was to develop a 3D camera
tracking solution to television production studios, which enables render-
ing AR graphics to live broadcasts. The film industry knows this technique
as matchmoving, which is traditionally done in post-processing using semi-
automatic trackers [17]. A tracker is a tool which estimates a 3D camera
motion trajectory based on observed 2D point tracks [85, 86]. In studios,
online matchmoving is typically done using an external motion capture
system [49], which tracks a camera in real-time based on passive markers
attached to the camera. For example, Brainstorm Multimedia software is
then used to render view-dependent graphics in real-time [7]. Although
motion capture is precise and enables a large operating volume, the total
price of a professional system is currently 200− 500k€. Also cheaper sys-
tems exists, such as NaturalPoint Optitrak [51], which cost around 25k€,
but their precision and capture rate are lower.

A real-time image based tracker was developed to allow affordable and
automatic camera tracking, which KyAMK University of Applied Sciences
in Kouvola could use for educational purposes. The project was funded
by European Regional Development Fund and The Federation of Finnish
Technology Industries. Particularly, a real-time implementation was nec-
essary, and drift was not an option. Therefore also 3D model acquisition
method must be developed to obtain a fixed reference. Some tolerance
with foreground actors was required in a setup where the program con-
tent is directly used to camera pose estimation. As alternative approach a
RGB-D sensor was pointed toward a textured carpet to avoid scene manip-
ulation. A lot of experimenting was carried out in the studio environment
along with studio people to obtain a usable system. The toolset was tested
using a wide range of input videos, both synthetic and real. Finally, the
tracking solution was experimented both in television programs with live
augmented reality content and in 3D reconstruction of indoors.

§ 1.2 CONTRIBUTION AND PUBLICATIONS

The following publications were written during the project:

Publication (i)
“A Dense Structure Model for Image Based Stereo SLAM”, T. M.
Tykkälä, and A.I. Comport, IEEE International Conference on
Robotics and Automation (ICRA), Shanghai, China, May 2011,

Publication (ii)
“Direct Iterative Closest Point for Real-time Visual Odometry”,
T. M. Tykkälä, C. Audras, and A. I. Comport, Workshop on
Computer Vision in Vehicle Technology: From Earth to Mars
in conjunction with the International Conference on Computer
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Vision (CVVT/ICCV), Barcelona, Spain, Nov 2011,

Publication (iii)
“RGB-D Tracking and Reconstruction for TV Broadcasts”, T.M.
Tykkälä, H. Hartikainen, A.I. Comport, and J-K. Kämäräinen,
8th International Conference on Computer Vision Theory and
Applications (VISAPP), Barcelona, Spain, Feb 2013,

Publication (iv)
“Live RGB-D Camera Tracking for Television Production Stu-
dios”, T.M. Tykkälä, A.I. Comport, J-K. Kämäräinen and H. Har-
tikainen, Journal of Visual Communication and Image Repre-
sentation, Elsevier, Apr 2013.

In publication (i), simultaneous estimation of 3D pose and structure pa-
rameters is formulated using an image-based SLAM cost function [82]. One
use case for such cost function is in autonomous navigation and mapping
of space environments. In a recent Itokawa asteroid sampling mission, also
asteroid images were collected using an autonomous robot. These image
were then used in manual 3D reconstruction of Itokawa asteroid. In our
work, the disparity values are treated as free parameters whose joint co-
variance with pose parameters is estimated. Image based disparity vari-
ances are obtained by marginalizing the motion parameters out. These
variances are then used to bound the estimation of the next disparity map.
This process boosts disparity map computation, which is commonly a bot-
tleneck. The topic was studied in collaboration with Thales-Alenia Space,
who funded a part of this work and provided a realistic orbiting trajectory
around Itokawa. The trajectories and available asteroid 3D models were
used to evaluate the method.

In publication (ii), 2.5D maps are represented as general RGB-D
measurements directly without depending on a specific measuring tech-
nique [81]. Maintaining as small drift as possible is essential for any visual
odometry problem. For reducing the drift, both RGB image discrepancy
and depth map discrepancies are concurrently minimized. When the er-
ror residual consists of two components with different units, the numerical
uncertainty (standard deviations) can also vary between the components.
This means that an additional adjustment parameter λ is required to bal-
ance the uncertainties in such a way that drift is minimized. To gain compu-
tational efficiency, it is proposed that salient image regions are selected us-
ing a gradient magnitude histogram. The histogram method reduces com-
putational requirements of pixel selection from O(nlogn) to O(n), because
sorting can be fully avoided. The experiments show that pose estimation
can be made more precise, especially in cases where Lambertian assump-
tion is only partially valid. The method is also demonstrated with using a
real space sequence in PRoVisG MARS 3D Challenge [29].
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In publication (iii), a system is presented which uses Microsoft Kinect
sensor for augmenting graphics to a live TV broadcast. Live augmented
reality is useful when designing TV and film scenes with interactive vir-
tual components. AR graphics are traditionally added in post-processing.
In case multiple shots are required, the process easily becomes expensive.
Using a live AR system, the scenes can be practised in real-time using suf-
ficient AR quality. When the scenes are captured in their final form, only
one post-processing will be required. RGB-D camera tracking is proposed
for live AR use in television studios to reduce post-processing needs and
lower the costs [84]. During a live AR broadcast, drift is not an option and
frequent loop-closure will be required. One method to implement loop-
closure is through keyframes. When tracking is defined relative to a set
of keyframes, the drift will not cumulate in time. A pre-defined keyframe
model is also necessary when avoiding moving actors in the scene. The
static model provides distance values and intensity values which are com-
pared with the current RGB-D measurement. By filtering out image regions
with too large discrepancy to the model, foreground motion does not bias
the tracking process. The keyframes are not allowed to contain dynamic re-
gions, because the appearance changes are modeled only by mathematical
camera model.

In publication (iv), a real-time RGB-D tracker is developed which ben-
efits from computational capacity and scalability of a GPU [80]. The im-
plementation is one of the first ones for GPU. Several GPU optimizations
are presented and discussed which enable real-time performance even on a
low-end GPU. The system is designed to be low-cost and it only requires a
RGB-D sensor and a laptop. RGB-D tracking is experimented in a TV pro-
duction studio with and without foreground actors. Novel tools are built to
pre-filter and refine 3D models generated by RGB-D tracking. The accuracy
is compared with a recent KinectFusion system which concurrently tracks
3D camera pose and builds a voxel-based 3D model [53]. The comparison
shows how the proposed method outperforms KinectFusion in a larger op-
erating volume. Using a keyframe based 3D model as reference requires
a nearest neighbor metric which measures pose similarity using a single
metric. A metric is proposed which unifies angular and translational units.
This thesis also provides examples how photorealistic and watertight ap-
partment models are generated by a RGB-D mapping process (Chapter 7).
The models are stored in a standard format to allow online visualization
and 3D printing.

§ 1.3 OUTLINE OF THE THESIS

The thesis is structured as follows. In Chapter 2, the basic methods of ge-
ometrical, vision-based pose and structure estimation methods are sum-
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marized. In Chapter 3, the image-based estimation methods are presented
which give context to this thesis. The following chapters describe the con-
tributions. In Chapter 4, disparity maps computation becomes more effi-
cient by a re-localization scheme, where a part of disparity map is estimated
within temporally propagated bounds. In Chapter 5 camera tracking de-
pendency on image quality is reduced by simultaneous minimization of
depth map error. In Chapter 6, a computationally efficient real-time GPU
implementation is developed which minimizes a image based cost func-
tion, and produces robust and precise pose estimates. In Chapter 7 the pro-
cess is described how watertight, textured 3D models can be produced by
RGB-D tracking process. In Chapter 8 the real-time tracking and mapping
technology is demonstrated in a real application case in a television produc-
tion studio. The camera tracking is used to render interactive 3D graphics
into a live television broadcast. The conclusions are made in Chapter 9.
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- CHAPTER 2 -

MULTI-VIEW GEOMETRY AND ESTIMATION

§ 2.1 PERSPECTIVE CAMERA MODEL

To understand the relationship between a 3D scene and it’s 2D projection
images, a mathematical camera model needs to be described. The model
is fundamental for computer graphics, computer vision and augmented
reality, because it enables rendering 2D images from 3D models (the for-
ward problem), reconstructing 3D models based on 2D images (the inverse
problem), and rendering graphics using the estimated camera poses. The
computer vision field has traditionally been focused on the inverse prob-
lem. However, due to rapid development of RGB-D sensors, the forward
process has also become increasingly important, because it enables gen-
erating synthetic but photo-realistic 2.5D images. 2.5D images are color
images associated with a depth map. In this work, image-based modeling
enables precise photometric cost functions for camera pose estimation and
structure refinement. The notations given in this section are at times less
general than the ones defined by Hartley [21] to focus only on the transfor-
mations required in this project. Namely, projective 3-spaces (P3) are not
considered, because the 3D points are assumed to have finite coordinates.

Essentially a camera model is a geometrical mapping P : R3 ⇒ R2,
which transforms 3D points Pk into 2D image points pk. The components
of the model are:

1. Extrinsic part, the 3D transformation of the geometry into a camera
reference frame. The transformation is defined by rotation matrix R ∈
SO(3) and translation vector t ∈ R3, which are often embedded in a
4× 4 matrix to allow better manipulation properties.

9
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2. Perspective projection from 3D to 2D, by normalizing a homogeneous
3D coordinates by the depth (3rd component). The normalization
function N (P) is defined explicitly to allow differentiation.

3. Lens distortion modeling using radial and tangential offsets using the
function D(p, α) whose coefficients α ∈ R5 are separately calibrated
for every physical lens.

4. Intrinsic part, 2D transformation to the image points by 3× 3 intrinsic
matrix K, which is the result of camera calibration. This transfor-
mation models image resolution, image aspect ratio, pixel skew and
projection center on the image plane. A projection matrix Π is used
to extract the final 2D coordinates. Π is used because 3-component
homogeneous form is redundant.

The full camera model is

p = ΠKD(N(RP + t), α), where Π =

[
1 0 0
0 1 0

]
. (2.1)

The color generation is typically modeled using a Bidirectional Re-
flectance Distribution Function (BRDF). BRDF defines how much an in-
finitesimally small surface patch at 3D point P reflects radiance into pro-
jected point p using various lighting parameters. In computer vision, Lam-
bertian BRDF is often assumed for simplicity. Lambertian surfaces reflect
the same color uniformly into all directions. Thus, images captured from
multiple viewpoints will be directly color-wise comparable.

2.1.1 Extrinsic matrix structure

The world coordinate system WC is the fixed coordinate system where all
3D geometry is finally transformed into. One or several camera coordinate
systems CC can be defined relative to WC. To map 3D points WC ⇒ CC, a
4× 4 extrinsic matrix T is required, which is composed of 3D rotation and
translation.

The extrinsic matrix structure is

T =

(
R t
0 1

)
=


rx1 ry1 rz1 t1
rx2 ry2 rz2 t2
rx3 ry3 rz3 t3
0 0 0 1

 ∈ SE(3), (2.2)

where R is 3× 3 rotation matrix and t is translation vector. The rows r1, r2,
and r3 are unit vectors which represent the X, Y, and Z-axes of the camera
in WC.
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The camera pose matrix T−1 maps points into the opposite direction
CC ⇒WC, and it is defined by

T−1 =

(
RT −RTt
0 1

)
=

(
RT c
0 1

)
, (2.3)

where c represents the camera origin in WC. Thus, general matrix inversion
procedure is not required.

Figure 2.1: A perspective camera model

2.1.2 Perspective projection

3D points are converted into projective coordinates (in group P2) by defin-
ing equivalence (x, y, z) ⇔ (x/z, y/z, 1) . This definition performs implicit
perspective projection, because 3D points move along 3D ray onto normal-
ized image plane at z = 1. However, explicit function N (P) : R3 ⇒ R3 is
necessary to allow differentiation.

The 3D points Pk in CC are projected into normalized image points pn
k

by

pn = N (P) =

 p1/p3
p2/p3

1

 =

 u
v
1

 . (2.4)

(u, v, 1)T are general image coordinates which do not depend on the
physical camera properties.

2.1.3 Lens distortion model

Real lenses, especially low-cost, produce images which can not be mod-
eled with simple perspective projection. The imaging process contains an
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additional non-linear component which performs lens distortion. The lens
distortions are typically radial and tangential displacements around the op-
tical axis [6]. The intersection point between the optical axis and the image
plane is called the principal point. The principal point does not have any
distortion and and is often very close to the center of the image.

We use standard Caltech distortion model to obtain distorted image
points pd by

pd = D(p, α) =

[
p(1 + α1r2 + α2r4 + α5r6) + dx

1

]
, (2.5)

where r2 = p2
1 + p2

2 and dx denotes the tangential distortion

dx =

[
2α3 p1 p2 + α4(r2 + 2p2

1)
α3(r2 + 2p2

2) + 2α4 p1 p2

]
. (2.6)

α1, α2, α5 are the radial coefficients, α3 and α4 are the tangential coeffi-
cients, Since lens distortions are mostly radial distortions, dx can often be
ignored.

This distortion model produces both pincushion and barrel distortions
depending on the parameters. In pincushion distortion, the focal length in-
creases with the radius of a lens. Barrel distortion, on the other hand, is the
opposite, and the focal length decreases with the radius. Both distortion
types are illustrated in Figure 2.2.

No distortion Pincusion Barrel

Figure 2.2: Pincushion and barrel distortion illustrated

2.1.4 Intrinsic matrix structure

The intrinsic matrix K scales and translates the normalized image coordi-
nates pn

k into pixel coordinates pk. The image resolution is (width, height).
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p = Kpn =

 − fx 0 ox
0 fy oy
0 0 1

 u
v
1

 =

 − fxu + ox
fyv + oy

1

 , (2.7)

and based on similar triangles fx and fy scale the normalized units into
pixel units, where

fx = F ∗ s = F ∗ width/2
F tan αx

2
=

width/2
tan αx

2
fy = a fx. (2.8)

F is the focal length in metric units, s converts the metric units into pixel
units, and a = height

width is the aspect ratio of the image. αx is the viewing angle
(radian units) in the X-axis direction. Square pixels are assumed when a =
1. o = (ox, oy)T is the principal point, which is the projection of c in pixel
coordinates. Here a convention from standard computer graphics libraries
is adopted as negative z-axis represents the viewing direction (Fig. 2.1) and
the origin of the image plane is in the upper left corner.

2.1.5 The inverse model

The inverse camera model maps image points pk into 3d rays rk(t) in WC.
The scale t0 which matches with the first intersection is not known, and re-
quires additional measurements. t0 can be recovered for example by using
multiple views and triangulation, or by direct measurement.

The rays are defined by

r(t) = tRTD−1(K−1
[

p
1

]
, α) + c. (2.9)

The inverse lens distortion model D−1(p, α) can be formulated either
as an image re-sampling problem or a point warping problem. When a
distorted source image Id is re-sampled by

I(pk) = Id(KD(K−1
[

pk
1

]
, α)), (2.10)

the image I will be undistorted. After replacing the original input images
Id by undistorted images I , lens distortion will not require further address-
ing. The inverse model will be

r(t) = tRTK−1
[

p
1

]
+ c. (2.11)

The problem is, however, that image undistortion degrades image quality,
because interpolation function must be used to obtain intensity values in
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between the pixels. I will also contain regions that do not map into any
intensity value in Id.

The undistorted points pk can also be directly estimated. Since D(p, α)
can not be analytically inverted, the first-order Taylor approximation can be
used [41]. The approximation works well especially for minor distortions,
because the mapping is relatively smooth.

D−1(pn, α) =

(
pn +

−pn(α1r2+α2r4+α2
1r4+α2

2r8+2α1α2r6)

(1+4α1r2+6α2r4)

1

)
, (2.12)

where pn is the distorted point, r = p2
1 + p2

2, and α are the distortion coeffi-
cients. In this model only radial components α1 and α2 are supported and
tangential distortions are ignored.

§ 2.2 3D POINT INITIALIZATION

In triangulation, a 3D point is produced by intersecting two or more 3D
rays. Stereo triangulation methods are relevant when generating dense
and sparse depth maps using two views. In this work, stereo triangula-
tion will be used mostly to generate a 3D point cloud from a disparity map.
Stereo triangulation methods are, however, also studied in unrectified case,
because the asteroid mission two satellites require initial guess of 3D struc-
ture (see Sec. A in Appendix).

Calculating an intersection point is purely geometrical problem when
noise is not present. However, when the projection points are extracted
from images, and the rays are intersected, the 3D point will be contam-
inated by noise or may not even exist if the rays did not intersect. Two
common approaches for triangulation will be described which can tolerate
small amount of noise.

2.2.1 Midpoint triangulation

Let there be two rays r1(s) = a + sb and r2(t) = c + td. a, c ∈ R3 are
the ray origins, and b, d ∈ R3 the direction vectors respectively. s, t ∈
R+ are the scales of the rays, which are free parameters. The problem is
to estimate such s and t which satisfy r1(s) = r2(t) and thus define the
intersection point. This point can be found by minimizing the Euclidean
distance between the rays. Euclidean squared distance is defined by

D(s, t) = ‖r1(s)− r2(t)‖2 = ‖sb− td + a− c‖2. (2.13)
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At the intersection point, the derivatives respect to s and t are both zero

∂D(s, t)
∂s

= 2b · (sb− td + a− c) = 0 (2.14)

∂D(s, t)
∂t

= 2d · (sb− td + a− c) = 0. (2.15)

s0 and t0 become

t0 =
(−a · b + b · c)(b · d)/‖b‖2 + a · d− c · d

‖d‖2 − (b · d)(b · d)/‖b‖2 (2.16)

s0 =
(b · d)t0 − (a · b) + (b · c)

‖b‖2 . (2.17)

In case the the rays do not intersect, s0 and t0 will match with the closest
points along the rays. The midpoint is trivially calculated P = r1(s0)+r2(t0)

2
(Figure 2.3a). The intersection may also have infinite solutions, when the
projection point coordinates are equal.

The midpoint method does not minimize optimal quantity and can
even increase error when compared to selecting either one of the points.
For example, when using the midpoint method in a situation where r1(s) is
a noiseless ray and r2(t) is not, the midpoint can not be more precise than
r1(s0). This case may occur when the other camera is much closer to the tar-
get. A better approach is to weight r1(s0) and r2(t0) with camera distance
and angle based weights.

2.2.2 Hartley-Sturm triangulation

Hartley and Sturm presented an optimal triangulation method for pro-
jections with Gaussian error distribution [21]. Instead of minimizing 3D
distance, a cost function can be directly formulated for the 2D projection
points. When r1(s) is projected into view 2 and r2(t) is projected into view
1, 2D epipolar lines e1 and e2 are produced. The problem is then to estimate
such image points ṗ1 and ṗ2 which satisfy epipolar constraint ṗT

1 Fṗ2 = 0
and minimize distance to the measured points p1 and p2 (Figure 2.3b). The
fundamental matrix F is 3× 3 matrix which can be estimated using a set of
corresponding 2D points or derived from the camera parameters [21].

The cost function is thus

c(ṗ1, ṗ2) = (p1 − ṗ1)
TW1(p1 − ṗ1) + (p2 − ṗ2)

TW2(p2 − ṗ2) (2.18)
subject to ṗT

1 Fṗ2 = 0, (2.19)

where Wk are the 2D covariances for 2D measurements.
The minimization finally requires estimating the roots of 6th order poly-

nomial [21]. Tossavainen presents a computationally faster approxima-
tion [78]. The final 3D point is triangulated from corrected 2D projections
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by using the midpoint method which is now guaranteed to produce the
exact result.

Figure 2.3: a) Midpoint triangulation, b) Hartley-Sturm triangulation.

2.2.3 Rectified stereo triangulation

Two views are rectified, when the epipolar lines are strictly horizontal. If this
is not the case, it is possible to rectify the stereo pair by re-sampling one
or both images. For a rectified stereo view, the rays will always intersect
and triangulation becomes simpler. The corresponding projection points
p1 = ( u, v, 1 )T and p2(d) = p1 + ( d, 0, 0 )T can be encoded by 1D
disparity parameter d.

Based on two similar triangles

1)
X

X− x1
=

Z
F + Z

, 2)
b− X

b− X + x2
=

Z
F + Z

, (2.20)

where (X, Y, Z) is a 3D point in the view 1, F is the focal length in metric
units, b is the distance between the focal points, and xk are the projection x-
coordinates in different views. Figure 2.4 illustrates the case geometrically.

The first equation implies X = −Zx1/F. By substituting X in the sec-
ond equation

Z =
Fb

x2 − x1
⇒ z(d) =

Fb
d

(2.21)

follows. Thus, the depth depends on the disparity value d, the focal length
F and the baseline b.
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Figure 2.4: Rectified stereo triangulation. P, optical center ck and the projec-
tion point xk are on the same line based on perspective projection model. Relation
between the disparity and depth value is determined by similar triangles. Right
triangles are formed from point P at distances Z and Z + F, where F is the focal
length.

§ 2.3 ESTIMATION USING NONLINEAR LEAST SQUARES

MINIMIZATION

Non-linear least squares minimization is widely used in computer vision
problems to estimate parameters when a cost function has been defined.
When a mathematical model exists, which generates data similar to ob-
served measurements, its parameters can be estimated using NLSQ. Typ-
ically the cost function is defined to be a sum of squared errors, because
NLSQ minimization methods can be used. When an initial guess x0 exists,
NLSQ produces an estimate which has the minimal cost. Due to limited
number of iterations, cost smoothness and numerical inaccuracy, the esti-
mate will still contain a small error. Let a vector function f : Rm ⇒ Rn

be the model, whose initial x0 ∈ Rm. The problem is to estimate x ∈ Rm

minimizing scalar error e(x) = e(x)Te(x) =
(
m − f (x)

)T(m − f (x)
)
=

‖m− f (x)‖2, where m ∈ Rn is the measurement vector.
In 3D computer vision problems, the model f is non-linear due to per-

spective projection, lighting effects, shadows, occlusions and complicated
surface models. However, if f is a piece-wise smooth mapping, the cost
function can be locally approximated by the first-order Taylor expansion
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e(δx) = e0 + Jδx, where e0 = e(x0) is the current residual, J = ∂e(x0)
∂x is the

Jacobian and δx is a parameter increment to be estimated.
The scalar error function becomes

e(δx) =
1
2

e(δx)
Te(δx) =

1
2

eT
0 e0 + δT

x JTe0 +
1
2

δT
x JTJδx (2.22)

where the derivative is zero when

JTJδx = −JTe0 . (2.23)

This linear system is also called normal equation, and it is solved by a
method which fits the exact matrix structure involved. Popular choices are
Cholesky decomposition and conjugate gradient method (Section 2.3.6). If
the cost function assumptions are valid, the estimated increment satisfies
e(x0 + δx) < e(x0). However, increment x0 + δx must be estimated multi-
ple times in cases where the mapping is not linear. The following sections
outlines few strategies to estimate the local minimum.

2.3.1 Levenberg-Marquardt

Levenberg-Marquardt (LM) optimization is typically used as a local opti-
mization method for non-linear least squares minimization, because it has
good convergence properties even when the initial guess is relatively far
away from the optimum [37]. LM has adaptive step control which adjusts
the rate of descend to take bigger steps when the function is flat. LM can, to
some extent, cope with ill-posed problems where the measurements do not
imply sufficient constraints to solve a unique estimate. In computer vision
problems, insufficient texturing may lead into an ambiguous problem. The
steps are computed by using Tikhonov regularized normal equation

δx = −(JTJ + µI)−1JTe, (2.24)

where δx is the parameter increment which minimizes the error, I is iden-
tity matrix and e is the residual vector. µ is Tikhonov regularizer which is
used to guarantee a safe iteration step size. δx is accepted only when the
increment actually minimizes the error. Otherwise, µ is increased until the
step size becomes so small that error is inevitably minimized. With accept-
able step, µ is decreased and the next iteration will try a larger step. The
algorithm listing is given in Algorithm 2.1. The maximum norm is defined
‖g‖∞ = max(|g1|, . . . , |gm|).

2.3.2 Gauss-Newton

Gauss-Newton minimization is a special case of LM, where µ = 0. Thus,
the step size is not adjusted, and each increment is estimated directly from
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Algorithm 2.1 Levenberg-Marquardt minimization algorithm.

Input: A function f : Rm ⇒ Rn, a measurement m ∈ Rn and initial parameters
x0 ∈ Rm.

Output: A vector x+ ∈ Rm minimizing ‖m− f (x)‖2.
1: x = x0, ν = 2, ε1 = ε2 = 10−15, τ = 10−3, kmax = 100
2: A = JTJ; µ = τ ∗maxi=1...m(Aii)
3: for all iterations k ∈ [0, kmax] do
4: repeat
5: A = JTJ, ex = m− f (x), g = JTex
6: Solve (A + µI)δx = g
7: if ‖δx‖ ≤ ε1‖x‖ or ‖g‖∞ ≤ ε2 then
8: return x # exit condition is met: increment or residual is sufficiently

small
9: else

10: xnew = x + δx
11: ρ = (‖ex‖2 − ‖m− f (xnew)‖2)/

(
δT

x (µδx + g)
)

# compute step condi-
tion variable

12: if ( ρ ≤ 0 ) then
13: µ = µ ∗ ν; ν = 2 ∗ ν # decrease step size
14: end if
15: end if
16: until ( ρ > 0 )
17: x = xnew # apply parameter increment
18: µ = µ ∗max

( 1
3 , 1− (2ρ− 1)3); ν = 2 # increase step size

19: end for
20: return x

the normal equation (eq. 2.23). The underlying assumption is that the ini-
tial guess is near the minimum of a smooth and convex cost function. In
this case, step control can be avoided completely and the minimization be-
comes very efficient (Algorithm 2.2).

2.3.3 Random sample consensus

False 2D correspondences lead into unrobust estimation. Traditional
sparse, feature-based pose estimation uses the Random Sample Consen-
sus (RANSAC) for focusing on a few noiseless 3D points [55]. It works by
finding subsets of points randomly until a consensus is found. The consen-
sus set yields to the motion parameter hypothesis, which is supported by a
sufficient number of inliers. Three 3D points or five 2D projection pairs are
required to define 3D rotation and translation [20, 54]. The problem of this
approach it’s computational requirement which can be in the worst case
O(n3) for n 3D points, if the last subset spans acceptable parameters. Also
the inlier threshold is very problem-specific.
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Algorithm 2.2 Gauss-Newton minimization algorithm.

Input: A function f : Rm ⇒ Rn, a measurement m ∈ Rn and initial parameters
x0 ∈ Rm.

Output: A vector x+ ∈ Rm minimizing ‖m− f (x)‖2.
1: x = x0, ε1 = ε2 = 10−15, kmax = 100
2: for all iterations k ∈ [0, kmax] do
3: A = JTJ, ex = m− f (x), g = JTex
4: Solve Aδx = g
5: if ‖δx‖ ≤ ε1‖x‖ or ‖g‖∞ ≤ ε2 then
6: return x # exit condition is met: increment or residual is sufficiently

small
7: end if
8: x⇐ x + δx
9: end for

10: return x

2.3.4 M-estimators

Due to the various noise sources in the estimation process, a mechanism
to prevent noise to alter estimation process is very useful. Such measure-
ments, which are not predictable by the generative model, are considered
outliers or noise. The M-estimator can be used for managing outliers when
the residual vector is of sufficient length for statistical purposes [27]. Essen-
tially a M-estimator is a function for producing uncertainty based weights
for residual elements. The main idea is to generate small weights for resid-
ual elements which are considered outliers. Spurious residual values are
detected by analyzing the distribution of residual values. Typically in
model fitting problems, the distribution of the residual has two compo-
nents. The first component resembles a Gaussian distribution and repre-
sents the elements which are in accordance with the assumed model (e.g.
values are close to zero). The second component consists of all elements
which do not follow the model, and thus can be considered to be outliers.
This rough division can be used to find such a threshold which optimally
divides the distribution into inliers and outliers. Inliers always have small
error whereas outliers may have any error value. Increased robustness is
obtained by damping the high error values out from the estimation (Fig-
ure 2.5). Instead of using a fixed threshold, M-estimators provide a certain
adaptation level to error profile variations. One method to determine the
damping weights is by the Tukey weighting function

uk =
|ek|

c ∗median(ea)
, (2.25)

wk =

{
(1− ( uk

b )
2)2 if |uk| <= b

0 if |uk| > b
, (2.26)



2.3. Estimation using Nonlinear Least Squares Minimization 21

where ea = {|e1|, |e2|, . . . , |en|} is a set of absolute residual values, c =
1.4826 is the robust standard deviation, and b = 4.6851 is the Tukey specific
constant. Thus, Tukey weighting generates adaptive weighting based on
the statistical distribution of the residual. The weights wk are produced
per each residual element and they are roughly proportional to the inverse
variances 1/σ2

k .
The weighted step is obtained by rewriting eq. 2.23 as follows

JTWJx = −JTWe, (2.27)

where W is a diagonal matrix with diag(W)k = wk. The robust step
is obtained by J ⇐

√
WJ and e ⇐

√
We and therefore both LM and

Gauss-Newton estimation can be trivially weighted. When the weights are
quadratic, the square roots do not need to be evaluated in practice.

Figure 2.5: Tukey M-estimator effect illustrated. The points with high error values
are given small or zero weight, because their appearance change is not explained
by the motion model.

2.3.5 Iteratively re-weighted least squares

In Iterative Re-weighted Least-Squares (IRLS) [27] minimization, the
weights are updated in each iteration using an element-wise weighting
function ρ : Rm ⇒ Rn. ρ usually corresponds to an M-estimator, but
also other weighting strategies can be used. IRLS algorithm is listed in
Algorithm 2.3. IRLS minimization may require more iterations than Gauss-
Newton, because often some inliers will also be given a small weight.

2.3.6 Linear system solvers

In this section, conjugate gradient method and Cholesky decomposition
are described, which can both efficiently solve a linear system Ax = b,
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Algorithm 2.3 IRLS
Input: A function f : Rm ⇒ Rn, a measurement m ∈ Rn, initial parameters

x0 ∈ Rm, and element-wise weighting function w : Rn ⇒ Rn.
Output: A vector x+ ∈ Rm minimizing ‖wT(x)

(
m− f (x)

)
‖2.

1: x = x0, ε1 = ε2 = 10−15, kmax = 100
2: for all iterations k ∈ [0, kmax] do
3: w = ρ(x), W = zeros(n, n), Wii = wi
4: J⇐

√
WJ, e⇐

√
We

5: A = JTJ, ex = m− f (x), g = JTex
6: Solve Aδx = g
7: if ‖δx‖ ≤ ε1‖x‖ or ‖g‖∞ ≤ ε2 then
8: return x # exit condition is met: increment or residual is sufficiently

small
9: end if

10: x⇐ x + δx
11: end for
12: return x

where A is a positive definite matrix. Linear system must be solved in
every iteration of the estimation process. Various other methods exist, such
as Singular Value Decomposition (SVD), but here we focus on the methods
most fit for real-time estimation.

2.3.6.1 Conjugate gradient method

Krylov subspace methods form an important class of iterative methods.
The Krylov subspace of order k generated by a d× d matrix A and a vector
b of dimension d is the linear subspace.

B(A, b) = span{b, Ab, A2b, . . . , Ak−1b}. (2.28)

Krylov subspace algorithms construct an orthogonal basis of subspace
B(A, b) and use the basis vectors as movement directions, going along each
one of them only once. Thus, at each iteration a method of this type elimi-
nates one of the possible directions of the motion and after d iterations the
solution is known. Thus, with exact arithmetic assumed, these methods
can be regarded as direct methods. However, due to the roundoff errors
in computations performed by computers, these methods can require more
than d iterations to converge. Moreover, usually the dimension of the prob-
lem is very large and the algorithms are stopped well before d steps are
done. An efficient method gives a good approximation in much less than d
iterations. In Krylov methods the iterates xk are constructed by minimizing
an error-function.

The Conjugate Gradient (CG) algorithm is a very effective and pop-
ular method for the optimization of quadratic functions and the solution
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of symmetric positive definite systems of equations. CG generates d con-
jugate search directions {δ0, δ1, . . . δd−1}, where conjugancy is defined by
δT

k Aδj = 0, when k 6= i. The CG directions δk form an orthogonal basis in
the Krylov subspace B(A, b). The iteration starts from x0 = 0. The initial
residual is then e0 = b − Ax0 = b, and the first search direction is cho-
sen to be δ1 = e0. Now assuming the solution can be written as a linear
combination

x =
d

∑
k=1

γkδk, (2.29)

iteration update for parameters and residual will be

xk+1 = xk + γk+1δk+1, ek+1 = ek − γk+1Aδk+1 (2.30)

To solve step lengths γk, the final residual is first written as

ed = b−
d

∑
j=1

γjAδj = 0. (2.31)

The optimal step length for iteration k is obtained when multiplying both
sides of the equation 2.31 by δT

k

δT
k

(
b−

d

∑
j=1

γjAδj

)
= 0⇒ γk =

δT
k b

δT
k Aδk

=
δT

k ek−1

δT
k Aδk

. (2.32)

All sum terms equal zero, except the k-th term due to conjugancy rule. The
same rule is also used in the last ek−1 ⇐ b substitution. Next an update is
of interest, which can produce conjugate directions as a linear combination
of ek and δk.

Let

δk+1 = ek + βkδk, (2.33)

where βk must be

δT
k+1Aδk = (ek + βkδk)

TAδk = 0⇒ βk = −
eT

k Aδk

δT
k Aδk

(2.34)

Computational requirements of the terms γk and βk can be reduced us-
ing the recursion formulas and conjugancy rule. The optimized conjugate
gradient method is listed in Algorithm 2.4.
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Algorithm 2.4 Optimized conjugate gradient method
Input: a d× d positive definite matrix A, a d× 1 vector b.
Output: A d× 1 vector x minimizing ‖Ax− b‖.

1: x0 = 0, δ1 = b, e0 = b
2: for all iterations k ∈ [1, d] do

3: γk =
eT

k ek

δT
k Aδk

4: xk = xk−1 + γkδk, ek = ek−1 − γkAδk

5: βk =
eT

k ek
eT

k−1ek−1

6: δk+1 = ek + βkδk
7: end for
8: return x

2.3.6.2 Cholesky factorization

A n× n real and positive definite matrix A can be factorized into A = LLT,
where L is a lower triangular matrix. A linear system Ax = b, becomes
easier to solve when substituting

L(LTx) = b⇒ Lz = b, LTx = z, (2.35)

because inverting a system with a lower or upper triangular matrix requires
merely back-substitution. In back-substitution, the rows can be solved in
an incremental order.

Thus the only problem is how to factorize A = LLT. A can be repre-
sented in a block matrix form

A = LLL =

(
l11 0
L21 L22

)(
l11 LT

21
0 LT

22

)
=

(
l2
11 l11LT

21
l11L21 L21LT

21 + L22LT
22

)
,

(2.36)
and thus l11 =

√
a11 and L21 = 1

l11
A21 trivially, where a11 is the upper-left

element in matrix A and A21 is the lower left sub-matrix.
L22 must be computed from

A22 − L21LT
21 = L22LT

22. (2.37)

The problem is identical to original factorization problem but the matrix
size is (n− 1)× (n− 1). Thus full factorization can be found recursively.

§ 2.4 3D POINT REFINEMENT USING MULTIPLE VIEWS

When a 3D point P has been triangulated using two views, but more 2D
observations are available, it is possible to refine the point to be in consen-
sus with all measurements. The cost function measures total re-projection
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error by

e(P) =
n

∑
k=0

ρ
(∥∥KkDk

(
N(RkP + tk), αk

)
− pk

∥∥2
)
= eTWe. (2.38)

The residual elements are

ek =
∥∥KkDk

(
N(RkP + tk), αk

)
− pk

∥∥2
= dTd, (2.39)

and the Jacobian elements are

Jkj =
∂ek

∂Pj
= 2dT

k
∂dk

∂Pj
= 2dT

k ΠKk
∂Dk(p, α)

∂p
∂N(P)

∂P
T̂k∂Pj. (2.40)

iX
Xi+1

Xideal

C2

C1

Ray 2Ray 1

C3

Ray 3

Measurement update

Measurement update

No measurement update

Figure 2.6: 3D point refinement using multiple views. Xk are 3D point estimates
at iteration k. In every iteration, the measurements which are near the projection
points are used in the update.

The cost function is the same that is used in bundle adjustment [79], but
here the viewing parameters remain fixed. 3D point estimation can be done
by minimizing the re-projection error in all views concurrently but also se-
quentially by applying measurement updates to the Extended Kalman Fil-
ter (EKF), which is initialized at P (Figure 2.6). EKF will be discussed in
more detail in Section 2.6.3.

§ 2.5 GEOMETRICAL POSE ESTIMATION METHODS

When points can be matched between the reference view and the current
view, the relative pose can be estimated by minimizing a geometrical cost
function. 2D or 3D Euclidean distances can be used as the error metric,
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depending on the dimensionality of the points in both views. Cost formu-
lations exist for 2D-to-2D, 3D-to-3D or 3D-to-2D cases, which are discussed
in this section.

2.5.1 Generating small motion

It is often sufficient to parameterize only small motion, assuming that
an initial guess exists. Especially when focusing on small angles, many
sources of ambiguity can be avoided. According to the Euler theorem, each
rotation sequence can be compactly expresses by rotation around a single
axis. However, rotations can be expressed using various mathematical rep-
resentations, such as quaternions, Euler angles, and axis-angle. Parame-
terized rotations are problematic for estimation because 1) they are non-
linear mappings and 2) they are not unique. Besides natural ambiguities
(α ∼ α± 2π), some rotation parameterizations suffer from additional im-
plicit ambiguities. For example, Euler angle parameterization allows pa-
rameterizing the same orientation in many ways. Quaternions contain an
implicit vector normalization, which generates ambiguity for estimation,
because axis-length can be arbitrary. Also other peculiarities exist such as
the gimbal lock, where certain Euler rotation sequences lose degrees of free-
dom and numerical stability/accuracy can vary in the parameter space.
Thus careful design is required when minimizing cost functions with rota-
tion parameters.

Euler parameterization is given by

T(α, β, γ, tx, ty, tz) =

(
R(α, β, γ) t

0 1

)
∈ SE(3), (2.41)

where R(α, β, γ) = RγRβRα, where α, β, and γ are the rotations around x-,
y-, and z-axises, and t = (tx, ty, tz) is the translation vector.

The explicit matrix components are

Rα =

 1 0 0
0 cos α − sin α
0 sin α cos α

 , Rβ =

 cos β 0 sin β
0 1 0

− sin β 0 cos β

 , (2.42)

Rγ =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 , (2.43)

and the product becomes

R =

 cos β cos γ − cos α sin γ + sin α sin β cos γ sin α sin γ + cos α sin β cos γ
cos β sin γ cos α cos γ + sin α sin β cos γ − sin α cos γ + cos α sin β cos γ
− sin β sin α cos β cos α cos β


(2.44)
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A common linearization strategy with small angles is to replace the
non-linear components by

R
′
α =

 1 0 0
0 1 −α
0 α 1

 , R
′
β =

 1 0 β
0 1 0
−β 0 1

 , R
′
γ =

 1 −γ 0
γ 1 0
0 0 1

 ,

(2.45)
and the product becomes

R
′
(α, β, γ) =

 1 αβ− γ β + αγ
γ αβγ + 1 βγ− α
−β α 1

 ≈
 1 −γ β

γ 1 −α
−β α 1

 (2.46)

The final form follows from applying the small angle approximations
sin θ = θ, cos θ = 1, and neglecting the higher than linear terms
(αβ, αβγ, αγ, βγ ⇐ 0 ). The linearized form can be used in small angle es-
timation, but it is not elegant, because the R

′
(α, β, γ) /∈ SO(3). This means

that the column vectors in R
′
(α, β, γ) must be normalized to obtain a valid

rotation matrix.
An alternative representation T(ω, υ) ∈ SE(3) forms a Lie group by

exponential mapping [40]:

T(ω, υ) = eA(ω,υ) =

(
R t
0 1

)
, A(ω, υ) =

[
[ω]× υ

0 0

]
, (2.47)

where (ω, υ) ∈ R6 encodes relative 3D rotation and translation between
two camera poses. ω is the rotation axis and ‖ω‖ is the rotation angle in
radians, and υ is the velocity twist.

[ω]× =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 (2.48)

produces a skew-symmetric matrix which performs a cross product.
The matrix exponential produces a 3× 3 rotation matrix R and a 3× 1

translation vector t embedded in a 4× 4 matrix. This form suits estimation
well, because linearization can be implemented without additional approx-
imations. When estimating small motion using an iterative method, previ-
ous increments can be concatenated into a fixed base transform T̂, because
the transformations form a group SE(3). The next increment is then param-
eterized by T̂T(x). Linearization of the iteration is only required at x = 0,
and the Jacobian becomes

J = T̂
∂T(0)

∂x
= T̂

∂eA(0)

∂A(0)
∂A(0)

∂x
= T̂

∂A(0)
∂x

. (2.49)

Now ∂A
∂xk

are constant matrices for each degree of freedom k = 1 . . . 6 inde-
pendently to parameterization (ω, υ).
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∂A
∂ω1

=


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 ,
∂A
∂ω2

=


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 ,
∂A
∂ω3

=


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


∂A
∂υ1

=


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,
∂A
∂υ2

=


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,
∂A
∂υ3

=


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .

When adding a motion increment to the base transform T̂, normaliza-
tions are not, in theory, required since T̂T(ω̂, υ̂) ∈ SE(3) applies without
special normalization tricks1.

A closed form solution exist for evaluating the matrix exponential

eA(ω,υ) =

 R(ω)

(
I−R(ω)

)
[ω]×υ+ωωTυ

‖ω‖
0 1

 , if ω 6= 0 (2.50)

eA(ω,υ) =

(
I υ
0 1

)
, if ω = 0 (2.51)

where
R(ω) = I + [ω]×

‖ω‖ sin(‖ω‖) + [ω]2×
‖ω‖2

(
1− cos(‖ω‖)

)
(2.52)

is the Rodriguez formula.
Unfortunately, there is an important degenerate case at ω = 0, which

is the important small angle case. This is why the closed form solution is
often replaced by the numerical Padé approximant. Calculating the matrix
exponential using Padé Approximation is defined by

eA(ω,υ) ≈ [Dpq(A)]−1Npq(A), (2.53)

where

Npq(A) =
p

∑
j=0

(p + q− j)!p!
(p + q)!j!(q− j)!

Aj, and Dpq(A) =
p

∑
j=0

(p + q− j)!q!
(p + q)!j!(q− j)!

(−Aj).

(2.54)
Notice the similarity with the Taylor series. If q = 0 then Eq. 2.53 would be
a Taylor series. The Padé algorithm has some advantages over the Taylor
series. In particular, Padé can obtain the same accuracy as Taylor in signifi-
cantly less time. A drawback of Padé is that the algorithm performs poorly

1In practise, all real valued matrix operations on a computer introduce numerical errors
which can be reduced by matrix normalization.
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as ‖A‖ increases. From Higham [24] it was seen that the Padé approxima-
tion is more efficient when p = q. Like the Taylor series there is the ques-
tion of where to terminate the series, and what are the appropriate values
of p. Most articles say that 8 or 6 terms will give the best approximation,
however Higham suggests that 13 terms gives the best approximation [24].

The main problem with the Padé approximation is that the accuracy
decreases and computational requirements increases as ‖A‖ increases. To
overcome this problem, the following identity

eA = (eA/n)n (2.55)

is used. This technique is called scaling-and-squaring and it works by solv-
ing eA/n using Padé and squaring the result to the power n. Typically, n is
chosen to be the smallest power of two such that ‖A/n‖ < 1.

2.5.2 Matrix normalization

By definition, a transformation matrix belongs to SE3 algebraic group,
where 3× 3 sub-matrix must be SO3 rotation matrix R. 3D rotation ma-
trices are orthonormal, which means that the column and row vectors have
unit length and u1 × u2 = u3, u2 × u3 = u1, and u3 × u1 = u2. When
small motion is generated, small amount of numerical error will be intro-
duced to 4 × 4 matrix T. Numerical errors cumulate in time especially
when extending a keyframe map. This is because additional real valued
matrix operations are required to estimate the relative transformation to
the nearest keyframe. When numerical bias cumulates in time, T /∈ SE3,
due to arbitrary scaling. Scaling increases exponentially and results in a
non-recoverable tracking state.

To prevent numerical errors to cumulate, matrix normalization is re-
quired. Gram-schmidt procedure is well known method to guarantee an
orthonormal base. The algorithm works by removing previously intro-
duced directions from the remaining directions (see Algorithm 2.5). De-
spite that the algorithm looks simple, it contains more operations than is re-
quired. Because orthogonalization is convenient after every iteration, even
small performance improvements are valuable. Algorithm 2.6 sketches
computationally efficient orthogonalization. In effect, orthogonalization
procedure removes scaling anomalies from SO3 matrices.

2.5.3 3D-to-2D

When the baseline between two views can be assumed to be small, and a
sufficient number of reliable feature points can be extracted from the im-
ages, it is possible to use a local minimization strategy for finding the rela-
tive pose between the views.
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Algorithm 2.5 Gram-schmidt orthogonalization procedure
Input: 3× 3 matrix R.
Output: Orthonormal 3× 3 matrix R

′
.

1: Extract column vectors from R⇒ (u1, u2, u3)
2: for all iterations k ∈ [1, 3] do
3: uk ⇐ uk

‖uk‖
4: for all iterations j ∈ [k + 1, 3] do
5: uj ⇐ uj − projuk

(uj)

6: end for
7: end for
8: Store column vectors back into R

Algorithm 2.6 Optimized orthogonalization procedure
Input: 3× 3 matrix R.
Output: Orthonormal 3× 3 matrix R

′
.

1: Extract column vectors from R⇒ (u1, u2, u3)
2: u3 ⇐ u3

‖u3‖
3: u2 ⇐ u3 × u1, u2 ⇐ u2

‖u2‖
4: u1 ⇐ u2 × u3
5: Store column vectors back into R

Let a set of 3D points Pk ∈ P exists in a reference view with associated
image descriptors fk ∈ Rn, whose length is n. pj ∈ R2 are extracted from
the current image and the associated image descriptors fc

j are stored. Now
m 2D-3D point pairs (p, P)k are generated by finding the most similar fc

j
for each fk. Note that this may produce false matches which have to be
eliminated by an outlier rejection mechanism (2.3.3,2.3.4).

The pose parameters (R, t) are estimated by minimizing the following
cost function

e(R, t) =
m

∑
k=1

ρ
(
‖KD

(
N(RPk + t), α

)
− pk‖2

)
= eTWe, (2.56)

where m is the amount of matching points, and ρ(x) : R ⇒ R neglects
statistical outliers by damping them to zero (Sec. 2.3.4).

The residual elements are

ek = ‖KD
(

N(RPk + t), α
)
− pk‖2 = dT

k dk, (2.57)

and the Jacobian elements become

Jkj =
∂ek

∂xj
= 2dT

k
∂dk

∂xj
= 2dT

k ΠK
∂D(p, α)

∂p
∂N(P)

∂P
T̂

∂A(0)
∂xj

Pk, (2.58)

With a decent initial guess and sufficient number of points, Gauss-Newton
method produces accurate estimates (Sec. 2.3.2).
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2.5.4 3D-to-3D

The traditional method for surface registration is the Iterative Closest
Point algorithm (ICP) which alternates between finding temporary point
correspondences and updating motion parameters until the system con-
verges [38]. The algorithm estimates pose parameters by minimizing a
point-to-plane distance in 3D. The computational efficiency depends on the
amount of points to be matched. A naive ICP implementation which does
not utilize parallel computation does not scale well when the number of
points increases. ICP can be made more noise tolerant when combining it
with M-estimation or RANSAC. ICP accuracy can improve when it is ini-
tialized by matching a set of 3D points by an effective 2D descriptor such
as SIFT [39]. There are various way of finding temporary point correspon-
dences during ICP iteration [59, 61] A common performance improvement
is to use kd-tree for nearest neighbor searches, when aiming at real-time ap-
plications. A more efficient matching, however, uses projective association,
in a case where the baseline is small [53].

The reference point cloud P∗ must be associated with normals N ∗ =
(nk

1 , . . . , nk
m). The point normals allow measuring a point set distance only

in normal direction. This way tangential displacements are free in the cost
function and surface alignment becomes more efficient. This cost metric
is called point-to-plane distance, despite that plane is not defined outside a
single point. Assuming 3D points are reconstructed from a depth map, the
normals are trivially estimated by

n(u, v) =
(

P(u + 1, v)− P(u, v)
)
×
(

P(u, v + 1)− P(u, v)
)

. (2.59)

Unit normals are generated by n(u, v)⇐ n(u, v)/‖n(u, v)‖.
The pose parameters (R, t) are estimated by minimizing the following

cost function

e(R, t) =
m

∑
k=1

ρ
((

RPk + t−Qk) · nk
)2
)
= eTWe, (2.60)

where m is the amount of matching points, and ρ(x) : R ⇒ R ne-
glects statistically large displacements by damping them to zero, and nk =
(nx, ny, nz)T are the point normals.

The point associations Pk ←→ Qk are generated automatically for each
iteration of the minimization. The nearest Qk are updated using Euclidean
or projective distance. In projective association, the source points are pro-
jected onto the destination mesh from the point of view of the destination
mesh’s range camera. Kd-trees have been used to speed-up nearest neigh-
bor searches to O(logN) time, but projective association can be done even
more efficiently in constant time [61].
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Point-to-plane distance does not vary when sliding along the reference
surface. This means that surface registration can often have larger conver-
gence domain than a one using point-to-point based Euclidean distance.
However, in mostly planar scenes, the motion will not be fully constrained
by the cost function. To reduce the problem, the points Pk can be selected in
such a way that their normals nk have as uniform distribution as possible
to all directions [61].

To minimize (2.60), it is useful to use the small angle approximation (eq.
2.46), and re-organize the residual elements into

ek = (Pk −Qk) · nk + r · ck + t · nk, (2.61)

where ck = Pk × nk, and r = (α, β, γ).
The Jacobian will be simply

J =

 c0(0) c0(1) c0(2) n0(0) n0(1) n0(2)
...

...
...

...
...

...
cm(0) cm(1) cm(2) nm(0) nm(1) nm(2)

 . (2.62)

2.5.5 Statistical matching

Besides using raw measurements for pose estimation, various other ap-
proaches exist which rely on matching abstract primitives derived from
the raw measurements. For example, statistical matching of point clouds
can be justified in case raw measurements contain noise. It is possible to
construct a mixture of Gaussians model from a raw point cloud and use
it directly to align a relative pose [72]. Assuming Gaussians N ∗k (µ∗, Σ∗) in
the reference coordinate system are associated withNk(µ, Σ) in the current
coordinate system, the following likelihood function can be formulated

p(x) = ∏
k

1

(2π)3‖Σk‖
1
2

exp
(
− dT

k (x)Σ
−1
k (x)dk(x)

)
, (2.63)

where

dk(x) = µk − T(x)µ∗k (2.64)
Σk(x) = Σk + R(x)Σ∗k R(x)T, (2.65)

where R(x) is 3× 3 rotation matrix embedded in 4× 4 rigid transformation
matrix T(x). The likelihood measures similarity between paired Gaussians.
dk are the 3D differences between the means in the current coordinates sys-
tem, and Σk are covariances which are summed together from the current
and projected reference covariances.
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Instead of maximizing likelihood, its possible to minimize the negative
logarithm

e(x) = −∑
k
− 3 ln(2π)− 1

2
ln |Σk| − dT

k (x)Σ
−1
k (x)dk(x) (2.66)

∼ ∑
k

1
2

ln |Σk(x)|+ dT
k (x)Σ

−1
k (x)dk(x), (2.67)

where |Σ| is the determinant of the covariance.
The benefit of this approach is that it is more invariant to measurement

noise, but the challenge is to construct and temporally match a mixture of
Gaussians which does not regularize the original data too much.

§ 2.6 BUNDLE ADJUSTMENT FOR SIMULTANEOUS ESTI-
MATION

In bundle adjustment, multiple camera poses and a 3D point set are concur-
rently optimized [8, 37, 79]. Bundle adjustment provides the best accuracy
possible and should be used whenever a decent initial guess and measure-
ment association can be provided. The name refers to the bundles of light
rays originating from each 3D point and converging on each camera centre,
which are adjusted optimally with respect to both structure and viewing
parameters. The problem is formulated by a cost function which measures
2D re-projection error of the current pose and the structure configuration.
The minimization requires an initial guess, which is iteratively improved
until the cost decreases below a threshold. The relative pose between two
views are often inferred from the essential matrix, which can be estimated
from 2D point correspondences. The structure can be initialized using di-
rect depth measurements or by triangulation from 2D projection points.
The pose estimation process suffers from some drawbacks. Feature point
extraction and matching is an error-prone process and requires an outlier
rejection mechanism such as RANSAC. Extraction of high quality features
such as SIFT can be expensive for real-time systems and still mismatches
can not be fully prevented. For example, repetitive patterns and homoge-
neous textureless regions easily produce mismatches.

The minimization often relies on Levenberg-Marquardt, because the
mapping from the parameters into 2D observations is non-linear. The cost
function is

e(a, b) =
m

∑
i=1

n

∑
j=1

ρ
(∥∥KjDj

(
N(RjPi + tj), αj

)
− pij

∥∥2
)
= eTWe, (2.68)

where a = (R1, . . . , Rn, t1, . . . , tn, K1, . . . , Kn, α1, . . . , αn)T contain the extrin-
sic, and intrinsic parameters of n cameras, b = (P1, . . . , Pm)T is a vector of
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m 3D points which are associated with the measured projections pij, and ρ
is the robust weighting function.

Concurrent minimization of all free parameters is the key to coherent
3D reconstructions and SLAM. Despite being theoretically sound method,
many practical problems arise when applying it to computer vision prob-
lems. One major problem is 2D feature extraction and matching between
2D views. General unrestricted images simply do not contain enough in-
formation to guarantee correct matches. As an example, repetitive patterns
and textureless images are impossible to match automatically without ad-
ditional information. Another problem is the large number of free param-
eters involved. n camera view introduces 6n extrinsic parameters, 3n in-
trinsic parameters (square pixels without skew), 5n distortion parameters,
and m points introduces 3m structure parameters. Often the intrinsic pa-
rameters and lens distortions can be estimated for each camera view prior
to bundle adjustment which reduces the number of free parameters from
14n + 3m to 6n + 3m. The cost function minimization requires careful de-
sign to enable as many views and points as possible. Traditional sba li-
brary [37] and recently introduced g2o library [36] implement various tech-
niques to reduce computational requirements. These libraries can provide
convergent estimates automatically, when close enough initial guess has
been provided. Initialization is finally the most critical phase, which can
be extremely expensive using exhaustive trial-and-error approach. Thus
manual or semi-automatic tools are considerable option to obtain correct
initialization in a limited time frame.

2.6.1 Sparse structure

Taking into account sparse structure of bundle adjustment problem, a sig-
nificant performance optimization is possible [37]. Let Aij be a 1× 6 matrix
which encodes linear relationship from camera parameters j to the projec-
tion distance of Pi in view j (eq. 2.58). Also let Bij be 1× 3 matrix which
encodes linear relationship from point Pi to projection distance in view j
(eq. 2.40).



2.6. Bundle adjustment for simultaneous estimation 35

The full Jacobian for n = 3 views and m = 4 points becomes

Jkj =
∂ek

∂xj
=



A11 0 0 B11 0 0 0
0 A12 0 B12 0 0 0
0 0 A13 B13 0 0 0

A21 0 0 0 B21 0 0
0 A22 0 0 B22 0 0
0 0 A23 0 B23 0 0

A31 0 0 0 0 B31 0
0 A32 0 0 0 B32 0
0 0 A33 0 0 B33 0

A41 0 0 0 0 0 B41
0 A42 0 0 0 0 B42
0 0 A43 0 0 0 B43



. (2.69)

Sparse Jacobian implies sparse normal equations

JTWJ =



U1 0 0 Q11 Q21 Q31 Q41
0 U2 0 Q12 Q22 Q32 Q42
0 0 U3 Q13 Q23 Q33 Q43

QT
11 QT

12 QT
13 V1 0 0 0

QT
21 QT

22 QT
23 0 V2 0 0

QT
31 QT

32 QT
33 0 0 V3 0

QT
41 QT

42 QT
43 0 0 0 V4


=

(
U Q

QT V

)
,

(2.70)

where Uk =
4
∑

i=1
AT

ijWijAij, Vk =
3
∑

j=1
BT

ijWijBij, Qij = AT
ijWijBij, and Wij is the

weight for measurement pi in view j.
Finally, the normal equation becomes

(
U Q

QT V

)(
δa
δb

)
=

(
ra
rb

)
, (2.71)

where the camera parameters are denoted δa, the structural parameters are
δb, and r = (ra, rb)

T = JTe.

2.6.2 Marginalization

A key technique for efficient bundle adjustment is marginalization of the
cost function. In practise, the error function 2.68 is more sensitive to cam-
era parameters than point parameters. This information can be used by
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solving the system in two phases: first δa, and then δb. Left multiplication
of eq. 2.71 by the block matrix(

I −QV−1

0 I

)
, (2.72)

results in(
U−QV−1QT 0

QT V

)(
δa
δb

)
=

(
ra −QV−1rb

rb

)
, (2.73)

Now estimation of δa is possible without δb by

(U−QV−1QT)δa = ra −QV−1rb (2.74)

followed by the estimation of δb

Vδb = rb −QTδa. (2.75)

These equations are also known as Schur complements.

2.6.3 Extended Kalman Filter

The bundle adjustment problem can also be formulated as a stochastic pro-
cess using the Extended Kalman Filter [87]. The non-linear cost function is
first linearized and Jacobian J is obtained which maps a parameter incre-
ment into linear displacement in the measurement space. The EKF esti-
mates parameters by an alternating sequence of linear predictions and cor-
rections. For every discrete time step, a motion model is used to predict
the current parameters x

′
k, which are then refined into xk using the cur-

rent measurement zk. A is the matrix which linearizes continuous motion
model, but it can also be set to identity which means that initial guess is
directly the previous estimate. The main difference to bundle adjustment
is that the EKF is an incremental method which aims at estimating only
the most recent state (current camera pose along with the 3D points). The
problem could be solved by marginalizing the previous pose parameters
out from the full linear system (Section 2.6.2). Because full marginaliza-
tion is not a computationally scalable process, EKF simplifies the estima-
tion by forward propagating a Gaussian parameter distribution in time
(xk+1 ⇐ xk, Pk+1 ⇐ Pk). The propagated Gaussian can correspond to
the marginal distribution after a system identification phase, where the noise
terms (Q, R) are tuned based on the application. The EKF essentially fil-
ters parameters from noisy measurements, where the noise must comply
with Gaussian assumptions. The EKF does not recover if the state (param-
eter estimates and covariance) is corrupted due to outlier measurements.
In practise, linearization and the process inaccuracies can result into non-
positive definite covariance P. One method for avoiding the problem is
regularizing P⇐ PTP when necessary.
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Predict motion

Kalman gain

Measurement update

Covariance update

Phase Formula

Kalman gain Kk = P
′
kJT(JP

′
kJT + R)−1

Measurement update xk = x
′
k + Kk(zk − Jx

′
k)

Covariance update Pk = (I−KkJ)P
′
k

Predict motion x
′
k+1 = Axk, P

′
k+1 = APkAT + Q

Figure 2.7: Kalman filtering process.

§ 2.7 FEATURE-BASED SIMULTANEOUS LOCALIZATION

AND MAPPING

When explicit an 3D model is not specified, camera pose tracking essen-
tially becomes Simultaneous Localization And Mapping (SLAM) where
both structure and motion are estimated concurrently. Several sparse,
feature-based systems have been presented, which extract feature points
from images, match them temporally and after tracking them during multi-
ple frames, can generate a sparse set of 3D points. The sparse point cloud is
used as a model with which 2D point locations can be predicted in the new
images. Camera pose and 3D points can then be simultaneously estimated
by minimizing the prediction error between the model points and 2D point
measurements. As tool bundle adjustment and EKF have been proven use-
ful. Davison’s MonoSLAM is the first real-time system to execute visual
SLAM [15]. It is based on Extended Kalman Filter. After MonoSLAM, var-
ious other systems have been built, such as Royer’s system [60], FrameS-
LAM [34] and PTAM [33], which do not use EKF but are based on bundle
adjustment.

2.7.1 Feature points as measurements

Features can be extracted by various feature detectors such as SIFT [39]
and SURF [4]. Features have 2D image coordinates and a descriptor which
describes the local appearance of a point. The descriptors are often scale-
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and rotation invariant, because the features have to be matched in differ-
ent views. Feature points simplify image data and allow defining smooth
distance based cost functions. The downside, however, is that compres-
sion loses information and feature point matching often fails which may
cost in the robustness and accuracy of the estimation. Although a rela-
tive camera pose can be estimated from a sufficient amount of 2D feature
matches [26, 37], the problem can be simplified by introducing depth mea-
surements. A RGB-D sensor such as a stereo camera or the Microsoft Kinect
sensor can provide depth measurements densely over the full image. There
are also methods for estimating depths by using a sequence of monocular
images [15]. The depth values can be used to measure camera pose error
in terms of 2D re-projection error or 3D point distance. In controlled en-
vironments, feature points can be efficiently extracted by using markers.
Markers may even carry identification information such as color or a blink-
ing pattern. The downside of markers is the manual effort in setting up the
system.

2.7.2 Loop-closure

Typically the estimation process suffers from time evolving drift, which is
often corrected by a loop closure mechanism. In a loop closure, the cur-
rent viewpoint is identified using a previously stored map. The cumulated
pose error can then be divided evenly along the loop for removing the
drift. Loop closure is illustrated in Figure 2.8. Loop closure mechanisms are
problematic in real-time AR applications unless they remove drift nearly in
every frame, because bigger corrections are often visually disturbing. No
loop closure can also be visually disturbing due to drift and false geom-
etry. Royer divides the SLAM problem into separate learning phase and
online phase which utilizes the pre-recorded visual learning path to guide
a robot [60].

2.7.3 PTAM

PTAM is a monocular system which estimates camera pose in an unknown
scene [33]. It is specifically designed to track a hand-held camera in a small
AR workspace. In PTAM tracking and mapping are split into two separate
tasks, processed in parallel threads on a dual-core computer: one thread
deals with the task of robustly tracking erratic hand-held motion, while
the other produces a 3D map of point features from previously observed
video frames. This allows the use of computationally expensive bundle
adjustment (sec.2.6) which is not usually associated with real-time opera-
tion: The result is a system that produces detailed maps with hundreds of
landmarks which can be tracked at 30Hz frame-rate, at best with an accu-
racy and robustness competing with state-of-the-art model-based systems.
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PTAM system is able to do loop closure via bundle adjustment for each
frame, but suffers from error-prone feature extraction and matching pro-
cess. It is noteable that the sparse 3D points must be initialized by a spe-
cial procedure which imitates a stereo camera using a horizonally moved
monocular camera. This has proven to be more practical than executing
EKF with initially unknown depth parameters.

2.7.4 FrameSLAM

FrameSLAM initializes 3D points using stereo triangulation method and
uses bundle adjustment (sec.2.6) for estimating camera poses and 3D points
in multiple frames simultaneously [34]. The pose configuration is esti-
mated within a sliding window of n recent frames, because the same scene
geometry may be visible only for short time when the camera is moving.
Despite that bundle adjustment is used to estimation, only a relative frame
pose information (a skeleton) is stored. The skeleton is a reduced nonlinear
system that is a faithful approximation of the larger system, and is used to
solve large loop closures quickly, as well as forming a backbone for data
association and local registration. Konolige illustrates the working of the
system with large outdoor datasets (10 km), showing largescale loop clo-
sure and precise localization in real-time.

Figure 2.8: Loop closure when re-entering same viewpoints. Loop-closure de-
tection effectively removes drift cumulated during the loop. Dashed trajectory is
contaminated by the errors cumulated during the loop.
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§ 2.8 DENSE TRACKING AND MAPPING

When the Kinect sensor was released, several emerging systems have
been presented for camera tracking and environment mapping, which
take advantage of dense and accurate depth maps. Henry et al. describe
an approach for indoor mapping, where traditional feature-point based
RANSAC pose estimate is refined using ICP and the final 3D maps are bun-
dle adjusted [22]. A recent KinectFusion system does effort to avoid bundle
adjustment completely [53]. It integrates dense depth maps into a voxel
grid and rasterizes smooth reference depth maps using a ray caster, which
are used with ICP method for camera tracking. Due to KinectFusion’s
memory-scalability problem, Kintinuous system has been introduced for
mapping larger indoor environments [89]. It simply uses moving recon-
struction volume and replaces the past geometry with a triangulated sur-
face. The problem is that triangulated surfaces can not be easily used for
loop-closure because triangulated surfaces have degraded texturing and
geometry.

2.8.1 Microsoft Kinect

A RGB-D sensor such as the Microsoft Kinect sensor is well-suited for cam-
era pose estimation because it produces a real-time feed of RGB-D mea-
surements. The sensor consists of IR projector, IR sensor and a RGB cam-
era. Internal hardware is used to generate a disparity map by matching IR
light pattern and projected IR image. The RGB images are in 640× 480 res-
olution at 30Hz, but due to Bayer filtering they are redundant. The depth
maps are also stored in 640 × 480 resolution. The sensor depth range is
≈ 1− 5m, and the accuracy decreases in distance [12].

Figure 2.9: Microsoft Kinect the plastic cover removed. Image is courtesy of
www.ros.org.
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2.8.1.1 Extended Caltech calibration

Since the Microsoft Kinect sensor can be set into a special mode where the
raw IR images can be stored, it is possible to use standard stereo calibration
procedure for obtaining the calibration parameters for the IR and the RGB
view [6] (Fig. 2.10). IR view and the depth view are trivially associated with
image offset (−4,−3).

A single camera calibration is used to initialize IR and RGB camera
parameters. Then calibration is followed by a stereo procedure which re-
estimates the Caltech parameters KIR, KRGB, kcRGB, and Tb. The IR lens
distortion parameters (kcIR) are forced to zero, because data has already
been used to generate the raw disparity map. This means that the IR
lens distortion is compensated by tweaking the enumerated Caltech pa-
rameters. The RGB camera lens distortion parameters kcRGB are estimated
without any special concerns. In practice, the distortion seems to be mi-
nor and the first two radial coefficients are sufficient. In our calibration
kcRGB ≈ (0.2370,−0.4508, 0, 0, 0), and the stereo baseline is b ≈ 25mm. Tb
stores the baseline transform as 4× 4 matrix. The conversion from raw dis-
parities into depth values can be done by z = 8p f

B−d , where p is the baseline
between the projector and the IR camera, B is a device specific constant and
f is IR camera focal length in pixel units. p and B are estimated by solv-
ing the linear equation

[
−1 Z

] [
A B

]T
= D, where A = 8p f , Z is n× 1

matrix of reference depth values zk from the chessboard pattern, and D is
a n× 1 matrix whose elements are dkzk. Typical values are p ≈ 75mm and
B ≈ 1090. Note, that this reconstruction method is merely an approxima-
tion which precludes measurements at long ranges [12].

Figure 2.10: RGB and IR images of the calibration pattern.

2.8.1.2 Oulu calibration

The Microsoft Kinect sensor is conveniently calibrated using a specialized
toolbox by Herrera et al., which jointly estimates all calibration parame-
ters [23]. A chessboard pattern is printed and a set of matching raw dis-
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parity images and RGB images are captured and loaded into the toolbox.
The toolbox then semi-automatically provides the intrinsic matrices KIR,
KRGB, the baseline transform Tb between the views, reconstruction param-
eters (c0, c1) ∈ R2 and distortion coefficients αRGB, α0, α1 and β. The raw
disparity map D(u, v) is then undistorted by

u(d, α0, α1, β) = d + β(u, v) exp (α0 − α1d), (2.76)

and converted into depth values by

z(d) =
1

c0 + c1u(d)
. (2.77)

The disparity undistortion model corrects bias which increases with dis-
tance [12], and also models per pixel distortions using a map β(u, v). The
RGB image lens distortion is modeled using the standard Caltech param-
eters αRGB ∈ R5, which models radial distortions using three coefficients
and tangential distortions using two coefficients [6]. Typically only the first
two radial components are necessary, and the rest can be fixed to zero to
speed up computation. The toolbox allows fixing distortion parameters
prior to calibration.

(a) (b) (c)

Figure 2.11: a) RGB b) planar board in disparity image c) disparity distortion
pattern β [23]

2.8.1.3 Depth noise removal by bilateral filtering

Unfortunately, the captured disparity maps can be contaminated by noise.
An amount of noise can be reduced by filtering the maps prior to use. Bi-
lateral filter smooths surfaces without mixing data from different depth lay-
ers [77]. A bilateral filter is defined by

Db(p) =
1
n ∑

q∈Ω
D(q) ∗ f (‖q− p‖, σf ) ∗ g(‖D(q)−D(p)‖, σg), (2.78)

where D(p) is the disparity value at 2d point p, Ω is a spatial neighbor-
hood around p, Db(p) is the filtered disparity value, and n is the amount
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of pixels in neighborhood Ω. The weights are calculated as a product of
two kernels f and g. f is the spatial damping which enforces weights to
decay when the distance to p increases. g is the data-dependent weighting
term which compares the value at p with a neighborhood value and damps
weight when the difference increases. g essentially prevents mixing values
at different depth levels and thus maintains the original edges. Generally,
f and g are taken to be Gaussian functions with standard deviations σf and
σg. Real-time bilateral filtering is possible when the filter is implemented
on the GPU. Figure 2.12 shows the benefit of a bilateral filter over a Gaus-
sian filter in depth map filtering.

Figure 2.12: Bilateral filter removes noise without altering range discontinuities.

2.8.2 KinectFusion

The KinectFusion system [53] is a recent technique for computationally fea-
sible camera tracking and reconstruction. It incrementally reconstructs a
voxel-based 3D model of the scene which is used as motion reference. ICP
is used to estimate camera pose (Sec. 2.5.4), because it can utilize dense
depthmap measurements directly. However, ICP algorithms are not robust
in planar environments. This is why problems can be expected for example
at offices with flat walls. The voxel volume is improved in time by fusing
current depth maps into it which are associated with ICP pose estimate.
The 3D points are reconstructed using the current depth map and replaced
by Truncated Signed Distance Functions (TSDF). TSDFs are 1D function-
als, which describe a scalar density in the direction of a ray through a pixel.
TSDF starts from +1 value, has 0-value at the expected surface and changes
sign to −1 after the surface. The negative value is truncated shortly after
the intersection point. Truncation is useful, because further intersections
are not known due to occlusion. A smooth surface is defined as zero level
set of the superposition of TSDF functions, and can it be reconstructed, for
example, using a ray caster. To obtain a degree of adaptation to environ-
ment changes, the density values of the voxel grid are IIR filtered in time.
This means that the influence of old depth maps decreases in time. Also
normal directions of 3D points can be optionally used in filtering to favor
measurements with similar normal. The KinectFusion system works well
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in smaller than 3m× 3m× 3m operation volumes where sufficient grid den-
sity can be guaranteed. KinectFusion executes in real-time on a high-end
GPU and consumes memory cubically as a function of voxel grid dimen-
sion.

2.8.3 Multi-resolution surfels

RGB-D measurements can also be converted into 6D Gaussians in 3D space,
and treated as density functions. Stückler et al. describe a 3D environ-
ment as a multi-resolution surfel map [72]. Surfels are 2D elliptical surface
patches whose coordinate system is determined by the two most signifi-
cant principal components. New measurements are converted into surfels
and associated with the model. The relative pose is estimated using statis-
tical pose inference (Sec. 2.5.5). The benefit of surfel representation is that
it allows fusing RGB-D measurements directly into the model by a simple
Gaussian update. The surfels are stored in an octree whose resolution is
adapted to measurement data distribution. Because surfels are oriented
surfaces, 6 surfels are required per each octree node to take into account
all viewing directions. The fused surfel maps are globally optimized using
g2o framework [36].
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DIRECT IMAGE-BASED ESTIMATION

2D feature point extraction and matching is an error-prone process which
produces bias to estimated parameters. 3D pose and structure estimation
can become more precise when using image-based cost functions to re-
fine a good initial guess [59]. Direct image based cost functions warp im-
age data into a reference view and measure the cost as a per-pixel differ-
ence [28, 2, 14]. The warping typically requires a 3D model or a relatively
accurate 3D estimate of the environment geometry. When tracking a planar
image region, homography mapping itself is sufficient for warping and ex-
plicit 3D model is not required [31]. Direct methods benefit of using more
points to estimate parameters than sparse feature-based methods. Denser
point clouds allow compensating with pixel noise, lighting variations and
occlusions. However, sometimes the number of salient points in an image
can be too small to allow parameter inference. Direct methods are thus of-
ten also directly dependent on the amount of texture in the environment.
The direct estimation produces, at best, very precise results. In many ap-
plications, such as industrial robotics, precise 3D models exist and can be
used. However, when estimating 3D structure also using image measure-
ments, the pose estimation accuracy directly depends on the reconstruction
accuracy, which can vary a lot especially when using dense stereo match-
ing methods. Lighting variations can be problematic to model at local pixel
level. The direct methods work well in environments with Lambertian sur-
faces, where 3D surface colors can be assumed to remain nearly constant
independently of the viewing angle. Lighting variations have also been
modeled at pixel level [46]. Due to view-dependencies in the appearance,
direct approaches are at their best in local optimization when initial guess
exists. In real-time applications, high frame rate is beneficial, because it re-
duces appearance changes at pixel level. The convergence domain can be
extended by using multiple image layers.

45
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§ 3.1 IMAGE REGISTRATION TECHNIQUES

Image registration techniques are rooted to the Lukas-Kanade method
which aims at minimizing photometrical difference between two image
patches [2]. The relation between a reference image I∗ and the current im-
age I is defined by the warping function w(x), which generates re-sampling
points using parameters x. The warping function usually perform a 2D or
3D transformation to the reference points.

3.1.1 Lukas-Kanade optical flow

Optical flow models the image appearance change due to 2D fronto-
parallel translation during a time interval dt [2]. The optical flow field is
the velocity field representing how much a single pixel at (u, v) moves be-
tween consecutive frames. Optical flow methods are useful when tracking
2D points over a time interval.

An image I∗ is captured at time instant t. When the camera moves
a few frames in side-ways, perpendicular to the scene, the problem is to
estimate the 2D translation parameters x = (du, dv)T ∈ R2 which satisfy
Lambertian assumption

I(p, t) = I(p + x, t + dt) ∀p ∈ Ω, (3.1)

which implies that the only difference between two image regions captured
at time instants t and t + dt is a 2D displacement. Ω ∈ R2 is the image
region around a point of interest.

The scalar error function encoding the problem is

e(x) = ∑
p∈Ω

(
I(w(x, p))− I∗(p)

)2
= eTe, (3.2)

where I is the current image captured at time instant t + dt, I∗ is the ref-
erence image captured at time instant t, the warping function w(x, p) =
p + x, and the n × 1 residual vector e contains error elements for every
p ∈ Ω.

The Jacobian becomes

J =
∂e
∂x

=
∂I
∂p

∂w(x, p)
∂x

=
(

∂I
∂u

∂I
∂v

)
, (3.3)

and the estimate becomes (
du
dv

)
= (JTJ)−1JTe. (3.4)

This estimation works only for small displacements, because the pixel
values change linearly only within 1 grid unit (see Fig. 3.1). Larger dis-
placements can be estimated by bootstrapping the estimation using a flow
field estimated at lower resolution.
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Figure 3.1: Lukas-Kanade optical flow. A 2D displacement (du, dv) is estimated
which minimizes image difference between I∗ and I .

3.1.2 Remarks on image gradient computation

The image gradient can be evaluated exactly at the warped points by dif-
ferentiating the interpolation function. Bilinear interpolation is defined by

I(s, t) = (1− s)(1− t)I1 + s(1− t)I2 + stI3 + (1− s)tI4 (3.5)

where I1, I2, I3, and I4 are the nearest pixel values, in clockwise-order
starting from upper-left corner, and (s, t) is the sub-pixel coordinate of the
warped sample point.

The differential becomes

∂I(s, t)
∂s

= −(1− t)I1 + (1− t)I2 + tI3 − tI4 (3.6)

∂I(s, t)
∂t

= −(1− s)I1 − sI2 + sI3 + (1− s)I4. (3.7)

Notice that bilinear interpolation is continuously defined only inside
its one pixel domain. Discontinuities can be expected at the borders of
a pixel. The Gaussian PSF would guarantee smooth derivatives over a
larger domain, but it is computationally expensive for real-time applica-
tions. Also interpolation functions generally produce only approximate
surfaces, which may not correspond to reality.

To obtain continuity over a larger image region, it is better to compute
numerical gradients based on measurements

Gx =
(
(Ix+1 − I) + (I − Ix−1)

)
/2 = (Ix+1 − Ix−1)/2

Gy =
(
(Iy+1 − I) + (I − Iy−1)

)
/2 = (Iy+1 − Iy−1)/2.

This does not produce exactly correct intensity derivatives, but the ben-
efit is that 3x3 regions provide larger convergence domain compared to
operating only inside one pixel.
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Figure 3.2: A normal n, plane distance to origin d and relative pose (R, t) define
a homography mapping h : R2 ⇒ R2 between the camera image and the plane.

3.1.3 Image registration using homography mapping

Camera tracking in 3D space becomes possible by introducing a priori infor-
mation of surrounding 3D geometry into the estimation. If a planar region
can be detected in an image sequence, a homography mapping describes
the optical flow analytically. Planar homography mapping is essentially a
3× 3 matrix

H(x, n, d) = R(x)− t(x)nT

d
, (3.8)

where x ∈ R6 are the motion parameters, n is the plane normal and d is the
plane distance to origin (Fig 3.2).

The warping function for a homography is then

w(x, n, d, p) = KH(x, n, d)K−1p, (3.9)

where p = (u, v, 1)T is a 2D point.
Using a planar homography for camera pose estimation is accurate and

works even with a monocular view. However, during motion the reference
patch must be updated before it moves outside the camera view. Reference
update systematically introduces cumulating drift. Also if the reference
patches are automatically initialized, the physical geometry under a patch
may not always be planar and tracking bias will be introduced.
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Figure 3.3: Planar patch based pose estimation by Silveira et al [68]. Planar
patches are automatically detected from image and tracked. When patches go out
of view, new patches are initialized.

Several algorithms have been developed to track a camera based on a
set of known 3D planar surfaces [68]. Silveira et al. describe an image-based
pose estimation approach using multiple planar patches extracted from an
image (Figure 3.3). In their work, an effort is made also to model light-
ing variation by introducing a local gain parameter α for each patch and a
global brightness parameter β. The residual elements to be minimized for
a patch are

ek =
(

αI
(
w(x, n, d, pk)

)
+ β

)
− I∗(pk), (3.10)

where I∗ is the reference image, I is the current image, and pk are the
points in 2D patch region R. As can be seen, the cost function is direct pixel
based error which does not rely on feature extraction.

In practise, the translations, rotations and normals must be initialized
with a closed-form solution before the minimization can take place. The
initialization is tricky because image noise may be more dominant than
motion during the first frames. Specifically a sufficient translational motion
is required. The problem is solved by tracking the patch region using a
8 degree of freedom homography matrix H without decomposition into
(R, t). After some frames, decomposition Ĥ ⇒ (R̂, t̂) would be possible,
but it has two solutions [40]. Silveira et al. choose to evaluate the residual
(eq. 3.10) using Ĥ and estimate subset (R̂, t̂, α̂, β̂) using approximate ∂w

∂x ,
without precise normals. Then (R̂, t̂) are used to initialize the normals.
After initialization phase, the estimation can be executed in SLAM mode,
by updating all parameters simultaneously including the normals.

3.1.4 Image registration using a rigid 3D structure

Lukas-Kanade style minimization can be extended to minimize 3D trans-
formation parameters of a fixed rigid 3D structure [14, 30, 59]. The projec-
tive pose estimation described in Section 2.5.3 can be modified to minimize
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appearance-based cost. In this case, the warping function is defined by the
camera transformation

w(x, P) = KD
(

N(R(x)P + t(x)), α
)
, (3.11)

and the pose parameters (R, t) are estimated by minimizing the following
cost function

e(x) =
m

∑
k=1

ρ
((
I
(
w(x, Pk)

)
− I∗

(
w(0, Pk)

))2)
= eTWe, (3.12)

where m is the amount of 3D points Pk, and ρ(x) : R⇒ R neglects statisti-
cally large displacements by damping them to zero (Sec. 2.3.4).

The residual elements are

ek = I
(
w(x, Pk)

)
− I∗

(
w(0, Pk)

)
, (3.13)

and the Jacobian elements become

Jkj =
∂ek

∂xj
=

∂I
∂p

ΠK
∂D(p, α)

∂p
∂N(P)

∂P
∂A(0)

∂xj
Pk. (3.14)

The minimization process is illustrated in Figure 3.4. In forward compo-
sitional minimization, the pose increments are concatenated into the right
side of the base transform T̂ (Sec. 2.5.1). When concentrating on the image
difference between Iw and I∗, the base transform T̂ becomes irrelevant to
linearization and the geometrical optical flow ∂w(0,P)

∂x can be computed only
once for all iterations. The gradient of the warped image Iw is computed
in every iteration. Gradient computation is problematic especially when
the reference point cloud is sparsified by saliency selection. With sparsified
points, it is not certain whether a neighborhood of a point p ∈ R2 is fully
defined to compute the numerical gradient at ∆Iw(p).

3.1.5 Inverse compositional image alignment

The inverse compositional approach is adopted for efficient minimization
of the cost function [2]. The cost is reformulated as

c∗(x) = I∗
(

w
(
P∗; e−A(x)

))
, cw = I

(
w
(
P∗; T̂

))
e = c∗(x)− cw,

where reference point colors in c∗ are now a function of the inverse mo-
tion increment (Figure 3.5). When the current camera pose estimate Tg is
expressed relative to the nearest reference T∗, the initial base transform be-
comes T̂ = Tg(T∗)−1. The current warped intensities cw are produced by
re-sampling I using T̂. The residual e is then minimized by re-sampling
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Figure 3.4: Forward compositional image alignment. The reference points are
warped from the reference to current image and the interpolated intensities gen-
erate warped image Iw. The increment T(x) is estimated which minimizes the
difference between Iw and I∗. ∆Iw must be updated in every iteration. Tg is the
initial guess of the current pose and T̂ is the base transformation.

the reference image I∗. The benefit can be observed from the form of the
Jacobian

Jij =
∂c(0)

∂x
= ∇I∗ (w(Pi; I))

∂w(Pi; I)
∂xj

, (3.15)

where ∇I(p) = [ ∂I(p)
∂x

∂I(p)
∂y ]. Now J does not depend on T̂ anymore

and it can be computed only once for eachK∗ for better computational per-
formance. The SE(3) group associativity enables collecting the estimated
increment into the base transform by T̂keA(x̂) ⇒ T̂k+1.

Figure 3.5: Inverse compositional image alignment. The inverse increment is
estimated which minimizes the difference between Iw and I∗. The full Jacobian is
computed only once using I∗ and P∗. Tg is the initial guess of the current pose.

3.1.6 Multi-resolution pyramid for better convergence

Considering that image gradient can change its direction between every
pixel, linearization from the motion parameters to pixel values is guar-
anteed to hold only within one pixel. This means that convergence do-
main depends on the image resolution and may remain small with high
resolution images. Convergence domain can be improved by utilizing a
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multi-resolution image pyramid during the estimation. In coarse-to-fine es-
timation, the motion parameters are first estimated using a low-resolution
image and refined layer-by-layer into precise estimate.

According to Nyquist sampling theorem, "If a function x(t) contains no fre-
quencies higher than B hertz, it is completely determined by giving its ordinates at
a series of points spaced 1/(2B) seconds apart".

In image processing, the function x(t) is a 2D image. The statement
means that a continuous image whose maximum frequency in Fourier do-
main is B sinusoidal cycles per a pixel, can be replaced without loss, by a
discrete image whose sampling points are 1/(2B) pixels apart in the orig-
inal image. Thus, depending on the image content, the multi-resolution
pyramid may represent the original image or may not. When the image
contains rapid intensity variation, low resolution layers are contaminated
due to aliasing. In aliasing high frequency data is falsely converted into low
frequency noise. Despite that a multi-resolution pyramid can not represent
all images without loss, a larger convergence domain is typically obtained
by using only few additional layers which are not too much contaminated
by aliasing. In practise, the convergence domain using 320× 240 images
can be extended by a multi-resolution pyramid with layers in 320 × 240,
160 × 120, and 80 × 60 resolutions. When a multi-resolution pyramid is
used in photometric camera tracking, discontinuities in the cost function
may occur when switching between different resolutions. This is why it
is better to use the highest available depth map resolution during tracking
with all pyramid layers.

Figure 3.6 illustrates aliasing effect after 80× 60 layer. To reduce alias-
ing effects, high frequencies are normally removed prior to downsampling
using a low-pass filter (Figure 3.7). Then a discrete image is converted into
a continuous form using an interpolation filter so that image can be resam-
pled.

320× 240 160× 120 80× 60 40× 30 20× 15

Figure 3.6: A cycle of B = 1/8px in 320× 240 resolution downsampled into
lower resolutions without filtering. Aliasing effects will occur after sampling
points are more than 4 pixels apart (80 × 60). In 40 × 30 and 20 × 15 layers
nothing is left of the original content. Lenna images also illustrated as reference.
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320× 240 160× 120 80× 60 40× 30 20× 15

Figure 3.7: A low-pass filter prior to downsampling removes high frequencies and
maintains better image quality. The cycle images are reconstructed using bi-linear
interpolation and Lenna using cubic interpolation.

A rapid method to generate a multi-resolution pyramid is to downsam-
pling layers recursively using a 2× 2 box filter as anti-aliasing filter. This
means that box filter size becomes 2L × 2L, where L is the layer index. The
drawback of this approach is a small displacement in the layer images. The
displacement occurs, because the origin of the downsampled image is av-
eraged from 4 nearest neighbors, whose coordinates are (0, 0), (1, 0), (0, 1)
and (1, 1). This displacement is taken into account by using the formula
pL = ap + b, when moving from high resolution coordinates to low res-
olution, where a = 1

2L and b = 0.5 ∗ (a − 1.0). Figure 3.8 shows how the
displacement is formed. In each layer, the units are scaled by 1

2 and −0.25
displacement is applied.

Figure 3.8: The multi-resolution pyramid layers are displaced when a rapid 2× 2
box filtering is used as anti-aliasing filter.

§ 3.2 DIRECT STEREO MATCHING METHODS

A slightly out-dated survey of dense matching methods is provided by
Scharstein et al [63]. The survey divides dense matching into following
subtasks:
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1. matching cost computation;

2. cost (support) aggregation;

3. disparity computation / optimization; and

4. disparity refinement.

Then disparity parameters are estimated either locally or globally. Es-
timating general dense structure is computationally expensive, but typi-
cally local methods have the advantage of being more easily parallelizable,
which makes them more attractive. Global methods try to find optimal
dense matching of full images instead of focusing on individual points.
According to Middlebury online stereo benchmark the global methods are
generally more successful as they are capable of producing correct matches
also in regions with homogeneous texturing or discontinuities. Global
methods aim to estimate a smooth map where the disparity map may have
complex inter-dependencies through smoothness constraints.

Both local and global methods first choose a comparison metric be-
tween stereo images. Then aggregation strategy differs between the ap-
proaches.

Local methods aggregate cost values from a templates, which are fixed
around both projection points. The costs are typically evaluated using SSD
(Sum-of-Squared-Difference), SAD (Sum-of-Absolute-Diffecence) or Cen-
sus, which uses Hamming distance for comparing internal intensity orders
within a template. Global methods, on the other hand, aggregate cost terms
for the full disparity map configuration, without specific rules. Global
method may need to visit all image pixels many times to produce a global
score.

For local methods, the disparity computation typically follows Winner-
Takes-All (WTA) principle, where the disparity value with lowest aggre-
gated cost is chosen. After rectification, the solution space is 1D horizon-
tal line, where all candidates are evaluated by exhaustive search. With
global methods, dynamic programming and graph-cut methods are pop-
ular choices for discrete optimization over all map configurations.

Finally, the parameter estimates are refined by a sub-pixel refinement
phase. The locally aggregated matching scores are enumerated in a discrete
pixel neighborhood, and then based on a parabol fit, provide an estimate
between the pixels.

The problem of local methods is the template size selection. Small tem-
plate sizes produce unreliable matches and bigger ones inaccurate matches.
This is why multi-resolution coarse-to-fine approach improves robustness
and precision in template matching [90]. Global methods mainly suffer
from computational complexity, but for example dynamic programming
has proven to be efficient also for real-time tasks. Selecting smoothness
parameters is also problematic, because universal values do not exist.
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3.2.1 Semi-global block matching

Global methods are often computationally too demanding for real-time
use, but a few methods, such as Semi-Global Block Matching (SGBM), have
proven to be sufficiently efficient. An example of real-time dense matching
method, semi-global block matching (SGBM) is described.

SGBM uses dynamic programming over a discrete cost volume which
can be done efficiently by using FPGA, GPU or multi-core CPU [25]. It has
been implemented into OpenCV and FPGA-based real-time implementa-
tion have also been developed [3]. The SGBM finds smooth disparity maps
by minimizing the following energy functional

E(d) = ∑
p

C(p, dp) + ∑
q∈Np

P1δ(|dp − dq| − 1) (3.16)

+ ∑
q∈Np

P2δ(|dp − dq| − k), (3.17)

where p ∈ R2 are center points of the pixels in the image grid and dp the
disparity values associated with them. Np is a set of points containing the
8 neighbor points of p. C(p, d) is the block matching cost for p and P1
and P2 are the constant discontinuity penalties for unit jumps and greater
jumps (k > 1, k ∈ Z) [25]. In sequences with little lighting variations, the
Birchfield-Tomasi metric is the recommended metric for block matching
due to it’s computational efficiency [76]. In block matching, single pixels
scores in the block are locally aggregated to obtain more reliable score. In
environments with lighting variations, lighting invariant block matching
such as the BRIEF must be used instead [10]. The minimum of E is ob-
tained by dynamic programming where the independent costs of 8 incom-
ing 1D directions are maintained per each point. The global aggregation of
the directional costs is done in two passes where, the first pass aggregates
the costs propagated from upper and left sides and the second pass ag-
gregates the lower and right side directions. Finally the disparities which
have the smallest cost sum of the eight directions are selected. Penalty con-
stants P1 and P2 need to satisfy P1 < P2 for penalizing slanted surfaces and
discontinuities appropriately. Disparity values are refined into sub-pixel
accuracy as a post-process. Occlusions are handled by a consistency check,
which means computing disparity map from left to right and right to left
and then removing the inconsistencies as occlusions. This is obviously an
expensive approach as the disparity map will be computed twice. Finally
the disparity values are refined to sub-pixel accuracy.

3.2.2 Stereo camera and calibration

A stereo camera consists of two cameras which have fixed baseline. The
standard Caltech calibration kit is often used to obtain intrinsic and extrin-
sic parameters [6]. Since Caltech calibration decides to use only extracted
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corner points in calibration, it could be further improved by refining the
parameters using a direct method. However, due to wide use of the kit,
the parameters are compatible with OpenCV and various other tools. The
calibration procedure requires a stereo sequence, which contains a planar
checkerboard pattern (Figure 3.9). The kit then finds the board corners and
gives them as input to Zhang’s method [91], which estimates the parame-
ters. After stereo calibration procedure, K1, K2 and Tb are known and 3D
point triangulation is well defined. Triangulation methods were discussed
in Section 2.2. Depending on the optics of the camera, lens distortion may
add radial and tangential displacement into the image which must be mod-
eled and corrected (Section 2.1.3). Usually the parameters of the distortion
are estimated as a part of calibration procedure. Although stereo baseline
is often roughly a horizontal displacement, rectification is still performed
for both views to ensure that epipolar lines are strictly horizontal. Then the
baseline transformation simplifies into a horizontal displacement, and the
disparity map is generated by storing per-pixel displacement dk as a result
of a dense matching method. Typically disparity maps are defined for the
right stereo view and dk > 0.

(a) (b)

Figure 3.9: a) RGB image 1 b) RGB image 2

3.2.3 Bayer filtering

In low-cost RGB cameras, such as Microsoft Kinect, a RGB measurement is
not done per each pixel. Instead, each pixel receives either R, G, or B mea-
surement, which are interpolated across the full image. The bayer filtering
pattern is illustrated in Figure 3.10. Due to interpolation, the image edges
can spread or disappear artificially and may not correspond with the true
scene edges anymore. If de-Bayered RGB image is bi-linearly interpolated,
two interpolations will be done. The other one can be eliminated by always
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interpolated directly using original Bayer data [19]. The effect can be no-
ticed especially when observing sharp edges (Figure 3.10). In this work,
640 × 480 images are Gaussian filtered by 5 × 5 kernel and sub-sampled
into 320 × 240 resolution to filter out potentially faulty high-frequencies.
When using image-based registration approach, the image quality should
be as good as possible. With professional HD cameras, Bayer filtering is
not used, but each pixel receives a unique RGB value.

(a) (b)

Figure 3.10: a) Bayer pattern in Kinect sensor. b) Examples how interpolation
can remove edges and spread them.

§ 3.3 QUADRIFOCAL STEREO TRACKING

Via a disparity map based dense 3D point cloud, it is possible track the cam-
era pose by minimized image difference at projected 3D points. Consider-
ing a 3D reference point P and the 2D projections p1 . . . pn into n views,
the correct motion x ∈ R6 has the property that c(P) = c(pi(x)), for all
i ∈ [1, n] where the function c returns the color of a point. This property
assumes Lambertian reflection for the surfaces of the environment, but the
assumption holds particularly well for the views which have a small base-
line to the reference view.

A quadrifocal relationship between all projection points pi means that
they are constrained by a common 3D point [21]. The constraint can be
expressed as 3× 3× 3× 3 array of scalar parameters called the quadrifocal
tensor. In an application to dense vSLAM, the constraint can be param-
eterized by 3D motion parameters x which define the pose between two
stereo views. Assuming a fixed reference view for which dense match-
ing has been solved, 3D points can be expressed either by projection pairs
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(p∗1 , p∗2) but also by (p∗1 , l∗2) where 3D points are generated at the intersec-
tion point of a ray and a back-projected plane through l∗2 . l∗2 can be arbitrary
2D line through projection point p∗2 . By varying the motion parameters x,
the quadrifocal constraint fixes the matching projection points in the cur-
rent stereo view. Thus it can be used as a model to warp points from the
reference view into the current view.

In the work of Comport et al, the quadrifocal warping of reference
points into the current view is formulated in terms of two trifocal tensors
in a stereo camera setting [14]. Trifocal tensor is a 3× 3× 3 array of scalar
parameters which defines the relative pose between three views. The first
trifocal tensor warps the 3D point defined by projection pair (p∗1 , l∗2) into
p3(x) in the right view of the current camera. The second trifocal tensor,
correspondingly, warps the point into p4(x) in the left view of the cur-
rent camera. Interestingly, the trifocal warping of 3D points from the ref-
erence view into the current view this way is equivalent to homography
mapping, where homographies are defined per-point. The motion fitness
is evaluated by color consistency c(P) = c(pi(x)). When the two trifo-
cal warps are applied simultaneously using the relative pose in the adjoint
map, the quadrifocal relationship holds between all four projection points
(p∗1 , p∗2 , p3(x), p4(x)).

3.3.1 Stereo cost function

The cost function measures the intensity difference between the reference
stereo image and the current stereo image. Bilinear interpolation is used to
interpolate a color value per each projection point which is then stored in
the warped image in the reference view. The warped image and the reference
image are re-organized into 1D vectors, which are then directly compared
pixel-by-pixel with robust least-squares metric. The cost function is

C(x) = eT
R(x)WReR(x) + eT

L(x)WLeL(x), (3.18)

where eR and eL are the intensity residuals between right and left views.
WR and WL are the robust weight matrices obtained from a M-estimator
(Sec. 2.3.4). This cost function form does not require any predefined tempo-
ral correspondences as they are solved iteratively via estimating the camera
pose increments. Figure 3.11 illustrates the components of the cost func-
tion. The minimization can be done using coarse-to-fine approach for im-
proving the convergence domain. An image pyramid is generated from
each original image by warping. The minimization starts from the lowest
resolution images and, after convergence, proceeds to higher resolutions
until the original resolution is met.
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(a)

(b)

Figure 3.11: a) In contrary to Silveira, Comport et al. use dense matched 3D
points to direct visual odometry. b) Left and right stereo images are matched from
the available 4 combinations.

§ 3.4 PIXEL SELECTION

The Jacobian of the cost function is composed of image gradient and ge-
ometric warp gradient J = JI ∗ JG . The elements of J will be zero for the
points which do not have any image gradient (JI = 0) or whose JG is in-
variant to a given motion. For example, points at infinity constrain only
rotation but not translation. J = [J1, J2, J3, J4, J5, J6], where the columns
[J4, J5, J6] contain the differentials for the rotational movement. The ele-
ments of these columns corresponding to points that are far away will be
close to zero. Meilland et al has taken into account these observations when
compressing large outdoor environment maps, consisting of a set of spher-
ical image and depth measurements [45]. An even amount of points are
selected from each column based on their magnitude. The points which
are already selected once are skipped. The sorting of columns is compu-
tationally expensive for real-time purposes which is why the processing is
done offline for the map.
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§ 3.5 LIGHTING VARIATIONS

Lighting variations can cause tracking problems when ∆t between image
measurements increases. Due to the Lambertian reflection assumption, the
colors of 3D points should stay constant independently of the point of view.
As the ∆t increases, the colors can change either due to non-Lambertian
reflection or by lighting variation and shadows. One approach to solve
the problem is simply to maintain a sufficiently high frame rate for the as-
sumption to hold. Explicit modeling of lighting variation is required in ap-
plications where high frame can not be maintained. Lighting variation can
be divided into global and local variation, where global variation means
overall image brightness changes and local variation are more complicated
phenomena such as non-Lambertian surfaces, spotlights and ramps. Al-
though some lighting effects, such as spotlights, can be tolerated by using
a M-estimator, an explicit model for local variations is useful, because it
allows using more data for the estimation. Meilland et al. have modeled
lighting variations [46] in similar way as Silveira et al. [68]. However Sil-
veira combines a global affine transformation with a robust model which is
not possible in the former work.

The lighting tolerant residual is

ek(x) = (αkI (w(x, dk)) + β)− I∗ (pk) (3.19)

where I∗ is the reference image, I is the current image, w(x, dk) is the tri-
focal mapping which depends on 3D camera motion x ∈ R6 and pk are
the points selected using pixel selection described in the previous section.
The cost function is robust as residuals are weighted by W. The lighting
parameters are α and β, where α is the gain per each pixel and β is the
global brightness. These parameters are updated during run-time based
on current images. Fixed 3D model is assumed throughout tracking, but
an approach is suggested for automatic 3D model acquisition.

§ 3.6 EFFICIENT SECOND-ORDER MINIMIZATION

Efficient Second-order Minimization (ESM) is a technique which can in-
crease convergence speed in image registration tasks [68]. The idea is to
replace

J⇐ 1
2

(
J(0) + J(x)

)
, (3.20)

where J(0) is the Jacobian of inverse compositional cost function and J(x) is
the current Jacobian which can be computed by warping the current image
data into reference coordinate system and using the same formula as with
J(0). By this procedure x will be defined in the same coordinate system
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without problems. ESM has been originally developed for homography
based warping function which can continuously map image data. A nu-
merical image gradient requires pixel samples both horizontally, and ver-
tically at ±1 units away from the reference pixel. When dealing with rigid
3D structures and a photometrical cost function, a problem arises for due to
pixel selection and missing depth measurements, since the image gradient
can not always be computed. There are two alternative methods to circum-
vent this limitation. One method to utilize ESM is to generate support pixels
which are dilated from pixel selection mask by one unit. The support pixels
are not used in the cost function, but merely enable obtaining the necessary
pixels for gradient computation. If all pixel neighbors have a valid depth
value, it is possible to warp a template region from the current image and
compute the current gradient. Another method is to use the original pixel
selection mask, sample the gradients from current image and then rotate
the image gradients to match reference image orientation. Because the gra-
dients can only be rotated in a 2D plane, only an approximation is possible
by projecting the current motion estimate into a simple z-axis rotation.

§ 3.7 PHOTOMETRICAL STRUCTURE REFINEMENT

Despite that the Kinect sensor is fairly accurate, the depth measurements
still contain an amount of noise which can be reduced by combining in-
formation from multiple maps. In the context of this work, photometrical
optimizations are interesting. The necessary pre-condition is that the pre-
cise depth values reside within bounded ranges, and image measurements
with relatively accurate camera poses are available.

Plane sweeping method use a photometrical cost function for discrete
depth optimization and can also operate in real-time [56]. The only dif-
ference to eq. 3.21 is that cost evaluations are grouped into planes with
same depth value (Figure 3.13b). The space before the reference camera is
discretized in planes. For every depth candidate zk, every pixel of the ref-
erence view is back-projected onto this plane and re-projected into every
additional view. Using these color values, a cost error can be calculated, al-
lowing to derive the optimal depth for that reference pixel. In case lighting
variations exist, normalized cross correlation can be used as as robust sim-
ilarity measure for plane-sweep [88]. Due to independent point optimiza-
tions, the algorithm can operate in parallel. The precision can be increased,
besides increasing the number of views, by taking into account a larger sup-
port region in the reference image. When the support region size is above
1 pixel unit, a fronto-parallel surface assumption is also introduced.

Figure 3.12 illustrates the cost curve within search bounds with and
without image gradient. The depth map estimate is generated from a stereo
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view using SGBM and the reference depth maps are produced by ray trac-
ing.

(a)

(b)

Figure 3.12: a) Textured Stanford bunny edges are associated with cost curves
from 16 views. The vertical white line represents the correct depth value within
the bounds. Yellow parabola’s minimum represents the final image based estimate.
b) Without edge information, image based estimation is not precise.

When total variation prior is neglected, the photometrical optimization
for individual 3D points is done by by defining a discrete number of solu-
tion candidates in domain [zm − δ, zm + δ] around initial guess depth zm.
A set of points Pk matching with the depth candidates zk is then gener-
ated, and projected into the surrounding images (Figure 3.13). The optimal
depth zo is selected using a photometrical error function

zo = eT
3

(
argmin

k

n

∑
j=1

(
I j(w(Pk; Tj))− I∗(w(Pk; I))

)2
)

, (3.21)

where eT
3 = (0, 0, 1)T selects the z-coordinate of solution point Po. It is

noted that this cost function will provide arbitrary results for points which
are on homogeneous image regions without any gradient. Therefore pho-
tometrical refinement can only be done for the points with sufficient image
gradient magnitude. In DTAM, this problem was addressed by assuming
smoothness when the image gradient has small magnitude [52]. The ben-
efit with discrete optimization is that it works even when the amount of
image measurements is small. In our implementation, the refinement is
not done in case the optimal depth is found at the search range boundary.
This is to ensure that a local minimum is within the range.
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(a)

(b)

Figure 3.13: a) Photometrical refinement using bounded depth range. The optimal
depth has the most similar color in all images. The pose configuration is assumed
to be precise. b) Traditional plane sweeping algorithm illustrated. A depth value at
reference image pixel is determined by the best color consistency in multiple views.

§ 3.8 DIRECT LOCALIZATION AND MAPPING

A direct localization and mapping task is typically divided into a separate
camera tracking and structure refinement problems, because simultaneous
problem is difficult to solve. The main difficulties are 1) unknown noise
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distribution with the point clouds, 2) maintaining low computational re-
quirements, and 3) view-dependent measurements.

3.8.1 From outdoor stereo systems to indoor environments

The point clouds generated from an image sequence with varying view-
point are contaminated by noise whose distribution depends on the image
content and the reconstruction method. To be able to use the first-order
Taylor approximation in photometrical pose estimation, the cost function
must be assumed to be locally smooth. In stereo systems, especially local
dense matching methods may produce noise in arbitrary magnitude, which
may sometimes prevent further mathematical inference. Global matching
methods work better in continuous and smooth environments, but easily
produce false surfaces at discontinuities with arbitrary error magnitude. In
textured outdoor environments, visual 3D maps have been experimented
for urban navigation. The maps consist of spherical keyframe images with
depth maps and GPS-based pose [45]. These maps have limited lifetime
due to changing weather and lighting conditions. However, with a valid
map, a robot which has cameras oriented to all directions can navigate in
outdoor environments despite that some of the stereo-based depth maps
may be contaminated by noise.

In indoor settings, more controlled lighting environment can be ob-
tained. Due to recent developments with RGB-D sensors, the noise in depth
maps has greatly reduced. Only a small bias is introduced when the dis-
tance to sensor increases to several meters [12]. RGB-D sensors can thus
produce depth maps whose noise is local and almost Gaussian. The re-
maining noise can be removed almost fully by a simple depth fusion mech-
anism (one method described in sec. 7.1). Also image content is contami-
nated by pixel noise, which is due to CCD sensor noise, bi-linear interpola-
tion, Bayer filtering, and complicated non-Lambertian surfaces. Compared
to depth noise, pixel noise sources are less problematic, because their mag-
nitude is relatively small. Thus, novel RGB-D sensors allow utilizing direct
localization and mapping approaches indoors with accuracy never seen be-
fore. Audras et al. presented a CPU desktop system performing photomet-
rical cost function minimization using a RGB-D sensor [1]. As follow-up
work, Chapter 6 presents a GPU implementation, which is efficient and
scalable with hardware development [80].

3.8.2 DTAM

DTAM is a system for real-time camera tracking and reconstruction which
relies not on feature extraction but dense, every pixel methods [52]. It is a
monocular system which aims at estimating dense textured depth maps at
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selected keyframes. For some reason it does extra effort in depth map esti-
mation by not utilizing a RGB-D sensor. Instead, it uses a non-convex op-
timization framework to minimize photometric cost and smoothness cost
over the full depth map domain. Particularly total variation smoothness
prior, imposed through primal-dual formulation minimization, is used to
de-noise depth maps [73]. In primal-dual minimization, iteration becomes
computationally more efficient by decoupling data and prior minimization
into separate phases. Total variation prior is used to guess a smooth surface
at image regions whose photometrical cost terms are small. Photometric
RGB-D camera tracking is used to update camera pose for each incoming
frame whose data can then be fused into depth map optimization. The al-
gorithm is parallelisable throughout and DTAM achieves real-time perfor-
mance using current high-end GPU hardware. Due to dense measurements
DTAM becomes more robust than PTAM under heavy motion. The draw-
backs of the system are a special initialization procedure, discretization of
the depth range, and incompatibility with dynamic scenes. Smoothness
terms also typically require parameter tuning.
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- CHAPTER 4 -

EFFICIENT STEREO TRACKING BY VARIANCE

BOUNDED DISPARITIES

In this chapter, bundle adjustment spirited joint cost function is presented
for direct simultaneous localization and mapping. Bundle adjustment was
discussed in Section 2.6. Direct estimation is often simplified into separate
structure and pose estimation phases, due to its computational complexity.
Here this simplification is not made and a Gaussian distribution for both
pose parameters and disparity parameters [82]. Stereo camera is used as a
RGB-D sensor and the disparity maps are generated from the stereo images
by using a local dense matching method (Sec. 3.2). The initial matching is
assumed to produce disparities whose error is local and Gaussian. The
motion is initialized to x = 0 assuming that previous increments have been
concatenated to the base transform T̂.

The joint cost function is

C(x) = eT
x Wxex + eT

d Wded, (4.1)

where

ex = IR

(
wR(x, dk)

)
− I∗R

(
pR

k

)
(4.2)

ed = I∗L
(

wL(dk)
)
− I∗R

(
pR

k

)
, (4.3)

where ex is the temporal residual between the subsequent images and ed is
the spatial residual of the direct and dense matching. Wx and Wd are the
corresponding robust weight matrices. Section 4.1 presents the associated
warping functions w∗(x, dk) and wL(dk) in detail. The task is to estimate
the motion parameters x ∈ R6 and the disparity bounds.

The cost function is direct and image-based as both structure and pose
depend purely on a photometric cost metric. The estimation process in
done soundly in two phases through marginalization and the conditional

68
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disparity variances are calculated. These bounds are then propagated into
the current stereo frame and they are used to boost disparity map compu-
tation.

§ 4.1 TRIFOCAL TENSOR WARPING

The warping from a reference stereo view to the current view can be mod-
eled by a trifocal tensor. The trifocal tensor requires fixed projection points
in the reference view and the motion parameters. As an example, the pro-
cess is described from the right reference image into the right current im-
age. A fixed reference pose of a stereo camera is expressed as (I, TRL),
where right camera view is chosen as the reference coordinate system
which as identity transformation, and TRL is the baseline transformation
from the right view into the left view. The motion of the current right view
is expressed relative to the reference as eA(x).

The dynamical configuration is expressed as trifocal tensor by
(s1, s2, s3), where each matrix slice of the tensor is sj(x) = ajbT

4 (x) −
a4bT

j (x), where aj are the columns of [TRL]3×4 and bj(x) are the columns

of [(eA(x))−1TRL]3×4. The homography mapping for a point k is denoted
hk(x), whose columns j are defined as

hj
k(x) = sT

j (x)(K
R)TlR

k , (4.4)

where KR is the intrinsic matrix of the right camera and lR
k = [1, 0,−xR

k ]
T

defines a vertical line through point pR
k .

For mapping all image points from the reference view to the current
right view, the following two warping functions are required:

wL(dk) = pR
k + (dk, 0)T (4.5)

wR(x, dk) = N
(

KRhk(x)(KL)−1[wL(dk) 1]T
)

, (4.6)

where KL is the intrinsic matrix of left camera, KR the intrinsic matrix of
target view and N(p) = (u/w, v/w)T for p = (u, v, w)T. wL(dk) warps
points to the left stereo view based on the given disparity map. wR(x, dk)
and wL(x, dk) warp points under motion x into current right and left view.
The process illustrated in Figure 4.1.
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Figure 4.1: The warping of a reference point pair into the current stereo view.
The intersection point Pk of a ray through wL(dk) and a plane through lR

k is thus
projected into next view using trifocal tensor.

§ 4.2 ESTIMATION IN TWO PHASES

The weighted normal equations show the linear relationship between
(∆x, ∆d) and (ex, ed)

JTWJ
[

∆x
∆d

]
= −JTW

[
ex
ed

]
, (4.7)

where JTWJ is the inverse covariance (or Hessian). The equation can be
decomposed into motion and structure specific blocks[

JT
x WxJx JT

x WxJxd
JT

xdWxJx JT
xdWxJxd + JT

d WdJd

] [
∆x
∆d

]
= −

[
JT

x Wxrx
JT

xdWxrx + JT
d Wdrd

]
, (4.8)

where Jx = ∂ex
∂x , Jxd = ∂ex

∂d and Jd = ∂ed
∂d .

The equation 4.8 can be simplified into form[
A B
C D

] [
∆x
∆d

]
=

[
E
F

]
, (4.9)

from which marginalized problems are obtained by Gaussian elimination

(A− BD−1C)∆x = E− BD−1F (4.10)
(D− CA−1B)∆d = F− CA−1E. (4.11)
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As in Section 2.6.2, the marginalized covariances are Cx =(
A− BD−1C

)−1 and Cd =
(
D− CA−1B

)−1. This pose estimation uses
IRLS optimization to estimate the marginalized motion from the linear sys-
tem

(A− BD−1C)x = E− BD−1F. (4.12)

Locally, disparity estimation problem involves estimating a Lukas-
Kanade problem (Section 3.1.1), whose Jacobian Jd = ∂ed

∂d depends on inten-
sities in the template region. However, due to template size problem, these
variances are valid only for fronto-parallel surfaces with sufficient textur-
ing. On the other hand, if the disparities are not associated with a template
and are treated as point offsets, the disparity cost function becomes a sin-
gle pixel intensity comparison, which is vulnerable to noise. In this work,
the latter cost function was chosen, despite that sufficient accuracy must be
assumed with stereo images and dense matching.

§ 4.3 DISPARITY INITIALIZATION AND PROPAGATION

An important concern in selecting the dense matcher (Section 3.2) is
that besides initialization, it can also be used for local refinement in a
bounded domain. This is why local dense matching methods are of inter-
est. Performance-wise they benefit of parallel computing and it is straight-
forward to re-localize a subset of points withing tight bounds while initial-
izing the rest of the points from scratch.

Various local dense matchers (SSD, SAD, NCC, Daisy, and multi-
resolution SAD) were experimented for producing initial disparity maps.
Template matching methods perform the best when the environment con-
sists of fronto-parallel surfaces with distinctive texturing. These two con-
ditions are not always met in general environments and large mismatches
can occur which produce structural noise of arbitrary magnitude. Disparity
map noise can be reduced by multi-resolution approaches that regularize
the 3D surfaces sufficiently. Therefore the estimates become for the major-
ity part, only locally deviated. Three multi-resolution layers are selected in
the experiments whose costs were summed up together. Yang et al. have
shown that this approach can be implemented efficiently for real-time ap-
plications [90].

Because template matching is prone to gross outliers. A local smooth-
ness constraint is valuable in filtering out bad matches. Disparity map
smoothness are measured trivially by

S(p) = ‖∂D
∂u

(p)‖+ ‖∂D
∂v

(p)‖. (4.13)
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During tracking, the disparity maps become unions of 3D points which
are measured at different time instants. The main idea is to gain compu-
tational efficiency by performing an exhaustive search only for the new
points whose previous observations are not available. Initially for the first
frame, the full 3D structure is determined by the multi-resolution SAD [90].
After previous motion has been estimated, the disparity values are search-
ing withing bounded domains. The diagonal elements in the disparity
covariance Cd matrix define the 1D variances for each dk in the reference
image. The intervals are solved as [−pσ, pσ], whose end points are warped
into the next reference frame for re-localization. σk are relative uncertainties
up-to-scale, because the linear system can be multiplied on both sides by
any non-zero scalar value. This is why reasonable scale p must be found ex-
perimentally. A sufficiently large p is selected to model also process noise.
The disparity bound propagation is illustrated in Figure 4.2. The propa-
gated bounds are projected into horizontal bounds, because their direction
in the new reference image can be arbitrary. The re-localized disparities at
discrete pixel coordinates are refined into sub-pixel accuracy by fixing the
bound mid point in the left image, and by estimating the exact correspond-
ing point in the right image based on the numerical cost gradient. The sam-
pling points are filtered using 3× 1 Gaussian kernel to reduce pixel noise.
Re-localization is not done for the full disparity map, because pixel selec-
tion, M-estimator and variance thresholding sparsify propagated data. The
combination map is illustrated in Figure 4.3.

§ 4.4 EXPERIMENTS

The Mars sequence using a real texture [50] was rendered in 640× 480 res-
olution with Blender along with a ground truth trajectory. No lighting con-
ditions were simulated and thus the model emitted texture colors directly.
Three multi-resolution layers were used for motion estimation (see video1).
A significant performance improvement is obtained by bounded search di-
rectly after the first frame (Fig. 4.5). Estimated trajectories for bounded
and non-bounded cases are illustrated in Fig. 4.4. As can be seen, using
a bounded search does not degrade pose estimation quality. The dispar-
ity map accuracy is improved by bounding in the problematic cases where
the camera is closer to homogeneously textured Mars (Fig. 4.5). Structural
accuracy is measured by 1

n Σ(dk − do
k)

2, where do
k are the ground truth dis-

parities. In practice, they are obtained by projecting the intersection point
between a ray and the object into the second view.

In another simulation, the method was evaluated using the Mars and
Stanford bunny sequences, where stereo camera was rotated 360◦ around

1http://youtu.be/T7skSaNTvQo

http://youtu.be/T7skSaNTvQo
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Figure 4.2: The transfer of a bounds into next stereo view. A bound is defined as
[−pσk, pσk] interval using the disparity variance σk. The appropriate bound scale
p is selected which includes also warping process noise.

the object. This simulation experiment was done as a preparation for using
a real turn-table sequence. Once again the amount of required template
operations drops dramatically when bounding is used (Fig. 4.6). The curves
show, how trajectory accuracy (Fig. 4.7) and structural accuracy (Fig. 4.8)
are slightly improved due to bounding.

The proposed method is also tested using a real rock sequence (Fig.
4.5). A rock sequence was recorded using a calibrated stereo camera and
a turn-table (Figure A.2). The original stereo images at 1280× 960 resolu-
tion were first downsampled into 320× 240, then background subtraction
and rectification were performed to simulate a video recorded in space (see
input videos23). A performance improvement is obtained by a bounded
search directly after the first frame (Fig. 4.9). The camera pose trajectory
is marginally better for the bounded version. Two multi-resolution layers
were used for motion estimation (see video4).

An implementation of the proposed method was built with C++. Ini-
tially simple template matching was used for generating disparity maps,
but as good template size was not found for real sequences, the exhaustive
search had to be done using multi-resolution SAD, which also minimizes
direct image error.

2http://youtu.be/F0TkNRzG2aI
3http://youtu.be/TPbqk4bxkhE
4http://youtu.be/U7kE-bemLsw

http://youtu.be/F0TkNRzG2aI
http://youtu.be/TPbqk4bxkhE
http://youtu.be/U7kE-bemLsw
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Figure 4.3: The disparity map as a combination of old and new points. New points
are initialized by using exhaustive search over the full epipolar line where as the
old points are re-localized efficiently within tight bounds.

§ 4.5 ANALYSIS AND LIMITATIONS

The proposed approach models current motion and structure estimate us-
ing a single parameter vector, and propagates disparity bounds over time.
The results show that pose estimation accuracy does not degrade while
computational requirements with disparity map generation are dramati-
cally reduced. Because motion error is larger than local structural error,
the minimization uses Schur complement (eq. 4.1). The 6D pose estima-
tion problem has shown to have good convergence properties, because the
number of point measurements is large compared to number of parame-
ters to be estimated [14]. The distribution of structural residual ultimately
depends on the measurement hardware. In case, the distribution variance
is large, global optimization method must be used. The marginalization
works only when an initial guess exists and disparity parameters are only
locally biased. Multi-resolution dense matching methods can provide rela-
tively accurate disparity maps, but the results vary a lot depending on the
image content. Template matching can, in worst case, produce errors with
arbitrary magnitude. The obtained results are therefore optimistic when
considering real application context. Semi-global block matching (SGBM)
has the clear advantage over simple template matching based methods,
because it abuses continuity constraint by penalizing discontinuities (Fig-
ure 4.10). Thus, relying on naive template matching produces significantly
worse depth maps than global methods with compatible smoothness con-
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Figure 4.4: Simulated Mars dataset, ground truth trajectory (blue) around Mars
with estimated camera trajectories. Non-bounded in red (×1.03) and bounded in
green (×0.97). As can be seen, the method can robustly track complicated 3D
motion with low drift.

straint. Global/semi-global matching methods on the other hand are com-
putationally demanding. Real-time implementations of SGBM method ex-
ist for GPU and FPGA hardware [3]. When combining disparity measure-
ments from multiple time instants, the disparity maps can be refined over
time (see sections 7.1 and 3.7).

When a camera is moving rapidly and a photometric cost function is
minimized, the reference image must be changed frequently to avoid im-
age interpolation based inaccuracy. The Lambertian assumption holds well
only within a short temporal window. If the camera is known to move
slowly compared to the frame rate, another Schur complement (eq. 4.11)
could be used to improve the reference disparity map accuracy. This, how-
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Figure 4.5: a) Mars stereo sequence with the corresponding disparity image. Com-
putational requirements of SAD dense matching are reduced without loss in track-
ing quality. b) The difference in amount of SAD operations with (green) and with-
out disparity (red) bounding. The Mars silhouette area varies during the sequence
causing fluctuations to the required computational requirement. c) The difference
in disparity map accuracy with (green) and without (red) disparity bounding. In
the problematic frames 60 and 140 camera is closer to Mars which, in general, has
homogeneous texturing.

ever, requires higher dense matching accuracy than what the current multi-
resolution SAD approach produces.

The initial disparity parameters were refined into sub-pixel accuracy.
By experiment, sub-pixel refinement improves tracking significantly. The
problem, however, is that the disparity covariances depends on a very local
image region, which becomes vulnerable to image noise. More stable dis-
parity covariances are obtained from the Lukas-Kanade template matcher.
Unfortunately larger template region implies degrades disparity precision.
In this work, a design choice was made to maintain as accurate initial dis-
parity values as possible, despite that covariance robustness decreases. As
future work, a hybrid approach could be experimented where disparity
values are kept accurate, but the covariances are computed using a larger
image patch.
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(a)

(b)

Figure 4.6: The difference in the amount of SSD operations with (green) and with-
out (red) bounding for a) 360◦ Mars sequence, b) 360◦ Stanford bunny sequence
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(a)

(b)

Figure 4.7: The difference in the cumulative rotation and translation error without
and with bounding for a) 360◦ Mars sequence, b) 360◦ Stanford bunny sequence.
Rotation and translation errors are slightly reduced when bounding is enabled.
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(a)

(b)

Figure 4.8: The difference in the disparity map error without and with bounding
for a) 360◦ Mars sequence, b) 360◦ Stanford bunny sequence. The structural accu-
racy improves in case a) due to bounding. With Stanford bunny occlusions exist,
which interfere bounding, but structural accuracy is still maintained.
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Figure 4.9: a) Rock with the corresponding disparity image. b) The difference
in amount of SAD operations with (green) and without disparity (red) bounding.
c) The difference in bounded trajectory (green) and non-bounded trajectory (red).
Bounded trajectory intentionally scaled by 0.98 for separation.

Figure 4.10: The difference in rock reconstruction quality between multi-
resolution SAD (on left) and SGBM (on right). The rock image is illustrated in
Fig. 4.9.
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ROBUST TRACKING BY CONCURRENT PIXEL AND

DEPTH MATCHING

Already known research confirms, that using local bundle adjustment pro-
duces more accurate estimates than filtering in the context of localization
and mapping [71]. Strasdat et al. conclude that : "In order to increase the
accuracy of visual SLAM it is usually more profitable to increase the number of
features than the number of frames. This is the key reason why BA is more efficient
than filtering for visual SLAM". When considering a visual odometry prob-
lem, this is a statement also in favor of using simply more data than prop-
agating covariances in frame-to-frame basis. In this chapter, the measure-
ments data is increased in frame-to-frame pose estimation by introducing
depth residuals into estimation. The drift is reduced by also aligning the
current depth map values with the reference points [81]. The combination
produces an image-based method which is comparable with the standard
ICP technique, but has advantages in computational requirements, preci-
sion and robustness. On the contrary to ICP, all data is stored in images
which makes it possible to avoid expensive nearest neighbor searches in
3D space. As the cost function is directly image-based, it is therefore robust
and precise. Instead of using KD-tree for point association [30], projective
point association is utilized to favor computational performance. Addi-
tional efficiency is gained by a rapid, histogram based point selection pro-
cedure and M-estimation. Similar bi-objective minimization has also been
experimented with Inertial Measurement Unit (IMU) and a hand-held cam-
era [47]. The dense depth measurements that can be obtained by using a
RGB-D sensor such as a stereo camera with a state-of-the-art dense match-
ing technique or alternatively with a LIDAR, a structured light patterns
(infra-red or visible light), sonar, etc. For indoor settings, the Microsoft
Kinect provides good results at low costs (Section 2.8.1).

81
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§ 5.1 COMBINING APPEARANCE AND STRUCTURE IN

COST FUNCTION

A bi-objective least squares cost function is proposed which measures pose
fitness using the cost

C(x) = eT
I WIeI + λ2eT

ZWZeZ, (5.1)

where

eI = I
(

w(P ; T̂T(x))
)
− I∗ (w(P ; I)) (5.2)

eZ = Z
(

w(P ; T̂T(x))
)
− eZT̂T(x)P , (5.3)

where eZ = (0, 0, 1) and WI and WZ are the diagonal weight matrices ob-
tained from a M-estimator. I : R2 ⇒ R is a color brightness function and
Z : R2 ⇒ R is a depth function. Reference variables and functions are
denoted by *. eZ measures depth map discrepancy, but it can be further
improved by neglecting penalization of tangential motion (sec.2.5.4).

5.1.1 Bi-objective minimization

Since C(x) (eq. 5.1) is a non-linear function of the unknown pose param-
eters, it has to be linearized with x for iterative minimization. With lin-
earization it is assumed that function is locally continuous, smooth and
differentiable.

This results in a Jacobian of the form

J(x) =
[

J1
λJ2

]
=

[
JI JwJT

λ(JZ JwJT − eZJT)

]
, (5.4)

where JI and JZ are the image and depth gradients with respect to pixel
coordinates of dimension n× 2n, Jw is the derivative of perspective projec-
tion of dimension 2n× 3n, and JT represents motion of a 3D point respect
to motion parameters x with a dimension of 3n× 6.

x is obtained using the pseudo-inverse by

∆x = −(JTWJ)−1JTW
[

eI
λeZ

]
(5.5)

The increments are updated into the base transformation by T̂⇐ T̂T(x) as
long as it is necessary until reaching convergent condition ‖x‖ < ε.

Now since the depth component depends directly on the pose param-
eters, forward compositional alignment is proposed for bi-objective mini-
mization, because the Jacobian must be updated in every iteration.
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Figure 5.1: Photometric and depth errors are minimized between subsequent im-
age frames. In practise, the 3D point associated with color I∗ is transformed and
re-projected into the current coordinate system where it is possible to compute
eI = I(x)− I∗ and eZ = Z(x)− Z∗(x).

5.1.2 Balancing the cost by λ

Looking at the Hessian matrix approximation,

H = JTWJ = JT
1 WI J1 + λ2JT

2 WZ J2, (5.6)

it can be seen how the local curvature of the cost function depends on both
intensity and depth differentials. The benefit of incorporating depth mea-
surement shows in this form where the Hessian is less likely to be singular,
because the curvature is gathered from two sources. H can be singular in
the cases where motion does not infer any appearance changes (e.g. homo-
geneous regions) or motion infers arbitrary appearance changes (e.g. non-
Lambertian surfaces, occlusions). λ acts as a gain for the depth component
and it is necessary to adjust it for proper balancing of the error function.

Depending on the metric unit of the 3D coordinate system and the local
covariances of the components, one of the components of the residual may
be negligible or fully dominate the error. This happens for example when
pixel noise is numerically comparable to depth variations. Mathematically
the wrong choice of λ results in cases H ≈ JT

1 WI J1 and H ≈ JT
2 WZ J2, where

the fusion does not bring any benefits.
The optimal λ is the one which improves the estimated camera trajec-

tory the most when compared to a purely intensity based cost function
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(Section 3.1.4) or plain ICP (Section 2.5.4). There are mathematical meth-
ods such as L-curve based metrics and cross validation for automatic selec-
tion [47]. L-curve based selection finds such Pareto optimal λ which mini-
mizes both cost components simultaneously by finding the optimal point
in the curve whose axices represent the costs of the separate components.
In cross validation, on the other hand, a geometry independent λ is learned
by finding such parameter which minimizes projection error for an average
cost over all leave-one-out combinations of the point data.

The manual selection of λ can be done by simulating the real application
by an image sequence with depth maps and experimenting with different
λ values. In many application cases the optimal λ can be fixed only once at
the beginning if the depth range is known a priori. To automatically deter-
mine λ in real-time, a robust ratio between the centers of the I and Z dis-
tributions is proposed such that λ = |(σI/σZ) ∗median(I)/median(Z)| ≈
|median(I)/median(Z)|. By experiments it was noticed that this pro-
duces close to manually chosen values for the test sequences used. This
formula finds a robust scale factor which balances between the relative un-
certainty of the components assuming unit standard deviations σI and σZ.
After balacing both depth and intensity distributions have similar numeri-
cal variance.

5.1.3 Multi-resolution and depth filtering

Commonly multiple resolutions are used for increasing the convergence
domain. The minimization starts from a low resolution and the solution
is refined using a sequence of higher resolution images. For generating a
multi-resolution pyramid each layer has to be low-pass filtered and then
sub-sampled to avoid aliasing effects. In the case of depth images, low-
pass filtering is problematic as it alters the underlying 3D structure. For
preventing this, depth values are always sampled at the highest resolution
even though matching intensity values are low-pass filtered.

When downsampling images using a 2× 2 box filter, the sub-samples
are produced in the middle of each 2× 2 region. This needs to be taken
into account, when matching points between different layers. In a case of
sampling the high resolution depth image, the bilinear filtering coordinates
at higher resolution are xh = 2Lx + 0.5(2L − 1), where L is the amount of
layers in-between.

5.1.4 Hybrid pixel selection

It is proposed that pixel selection is done efficiently without sorting the
columns J by neglecting the geometrical component of Jacobian and focus-
ing only on image and depth image gradients. Thus reference points P



5.2. Simulation experiments 85

Figure 5.2: A. Stanford bunny image. B. The best 15% pixels selected by im-
age gradients. C. The best 15% pixels selected by depth gradients. Combination
selection is required for constraining the motion the most efficiently.

are selected into motion estimation using a 2D selection mask where the
selection fitness is the combination gradient magnitude

S(x, y) = |∇Ix|+ |∇Iy|+ λ′(|∇Zx|+ |∇Zy|), (5.7)

where λ′ finds the balance between the depth and intensity gradient.
Selection scores S(x, y) are accumulated into a histogram and a portion

of pixels are selected from the end of the histogram. A histogram is useful,
because it is trivial to compute such a threshold which selects n best pix-
els efficiently without explicit sorting. A naive pixel selection first sorts n
points in O(nlogn) and then selects k points with the greatest S(x, y) score.
Using a histogram the complexity is O(n), because full image sorting is
avoided. A comparison of intensity and depth gradient based pixel selec-
tions is illustrated in Figure 5.2. Note, that same method can be used in
M-estimation phase to avoid median computation. These optimizations
are used also in the developed GPU implementation (Chapter 6).

Traditional point-to-plane ICP (section 2.5.4) does not focus only on
depth map gradient regions but takes the advantage of full 3D point set.
It, however, suffers from a degenerate case when the scene is mostly pla-
nar, because the motion is not fully constrained. By focusing on gradient
regions only, the computational requirement is reduced and the estimate
does not easily drift, because the gradient regions often contain varying
normals [61].

§ 5.2 SIMULATION EXPERIMENTS

Robustness and accuracy improvements were observed using two simu-
lated sequences. In the first sequence, synthetic RGB-D sensor was set to
rotate around Stanford bunny, whose image was toggled between textured
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and plain white. Because intensity based pose estimation relies on image
gradients, divergence occurs once in a while when the edge information
of the silhouette is not sufficient for tracking (Figure 5.5). This problem is
fixed by incorporated depth maps. The depth map matching keeps H non-
singular during tracking and the intended trajectory of a full circle is ob-
tained from camera pose estimation (see video1). In the second sequence,
the accuracy improvement is obtained by manually finding an optimal λ
for a rendered Itokawa sequence. A single gray image and depth image of
the sequence are illustrated in Figure 5.3. The depth maps are generated
using ray tracing and available asteroid model. The estimated trajectories
with and without incorporated depth maps are compared with the ground
truth trajectory in Figure 5.4. The figure shows how the camera trajectory
is improved when using depth data. Non-Lambertian surface properties of
the Itokawa sequence produces error in purely intensity based minimiza-
tion. The same result is illustrated in a video with2 and without3 depth
residual minimization.

Figure 5.3: Itokawa and the corresponding depth map. True Itokawa BRDF is
the same as the Hapke model. Specularity will cause problems for intensity based
estimation. The rendered picture has a general specular surface for simulating the
problem.

§ 5.3 RESULTS ON PROVISG MARS 3D CHALLENGE

The cost function was also experimented with a real stereo sequence pro-
vided by the PRoVisG MARS 3D Challenge [29]. In the task setting, the
aim is to automatically determine the 3D trajectory and the reconstruction
from a sequence of stereo images. The tasks are divided into dense match-
ing, camera pose estimation and 3D reconstruction. The given sequence

1http://youtu.be/VVJkMpFliJw
2http://youtu.be/JWqu97sp1tM
3http://youtu.be/hIgfGhbusLY

http://youtu.be/VVJkMpFliJw
http://youtu.be/JWqu97sp1tM
http://youtu.be/hIgfGhbusLY 
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consists of 35 stereo images at 1280 × 1024 resolution, which have been
captured using a moving Mars rover. The cameras have a 64◦ FOV and the
baseline of the stereo camera is 10 centimeters. The estimated length of the
rover trajectory is 7.8 meters. The frame rate of the sequence is relatively
low compared to the vehicle motion and the images do not contain a large
quantity of texture detail as the sand covers the most part of the views.
However 3–10 small rocks are visible in the view in all of the frames. There
are no major lighting effects in the sequence. An example intensity image
and a depth image of the right stereo view along with the corresponding
residuals is illustrated in Figure 5.7.

5.3.1 Depth map generation

Depth maps were generated by converting SGBM disparity maps into
depth format (Sections 3.2.1 and 2.2). The images are low-pass filtered and
downsampled into 320× 240 resolution using a multi-resolution pyramid
because pixel noise has to be filtered out and the minimization of the pro-
posed cost function works more efficiently with smoother gradients. The
baseline of the stereo used is small and thus the matching was done using
a discrete disparity range of [0, 32]. The disparity values were refined into
sub-pixel accuracy in post-processing. Finally the obtained disparity map
are converted into a depth map to evaluate the cost function.

Local stereo matching methods often produce false discontinuities (Fig-
ure 4.10), which are a potential problem for depth minimization as the
greatest depth gradients have the greatest influence in the final pose es-
timate. This is why using a global matcher, such as SGBM, is important
because smooth maps are produced by penalizing discontinuities. SGBM
assigns discontinuities implicitly whenever image matching starts to fail.
When the discontinuities are set locally in the wrong place, small devia-
tions may occur which are filtered out as a post-process by using 5 × 5
median filter.

5.3.2 Pose estimation

The proposed cost function is minimized in order to estimate the pose pa-
rameters. In a typical application case the frame rate is high enough for
using T̂ = I as the initial guess. For the given sequence the frame rate is
low and an initial guess must be obtained by other means. T̂ was gener-
ated by first matching temporally a set of 2D points and then minimizing
the 2D distance between the warped points and the fixed target points Psift
in the current image. In this experiment, the 2D points were extracted and
matched using SIFT. Initial pose parameters were estimated by minimizing
the residual

eG = ρ(Psift − w(P ; T(x)T̂)), (5.8)
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where ρ produces weighted distances and neglects statistically large dis-
placements. Simple M-estimator ρ(x) = ‖x‖ if ‖x‖ < τ and otherwise 0,
was used in the experiment where τ is a fixed threshold. After minimiza-
tion, the initial pose will have only small bias which can be corrected by
minimizing the proposed cost function (eq. 5.1).

Figure 5.7 illustrates the intensity and the depth residuals after conver-
gence. Real-time performance is reached by using the histogram based
pixel selection. Figure 2.5 shows how the Tukey window based M-
estimator rejects 20− 40% of all selected pixels. Pixel selection was set to
50% which produces 38400 points in 320× 240 resolution.

5.3.3 Results

The algorithm was executed on Samsung R530 laptop with dual-core Intel
i3 CPU (2.13GHz) of which only one core is used. The implementation was
written in C++ and relies on Fortran based LAPACK and EXPOKIT rou-
tines for linear algebra and matrix exponentials. Figure 5.8 illustrates the
optimization delay in milliseconds per frame with and without the depth
component. By incorporating the depth component, roughly 50% more
delay is added into computation. As a further optimization step, the al-
gorithm could be run in parallel with both cores for halving the delays. It
is unfortunate that the competition sequence has low frame rate and SIFT
extraction and matching is required. The computational requirement of us-
ing SIFT was not evaluated because it was considered redundant phase in
a real application where sufficient camera frame rate can be used. Three
iterations with the initial cost function were required. Then three multi-
resolution layers were used for convergence with the proposed cost func-
tion. In these sequences, the M-estimator rejects 20− 30% of the points by
setting zero weights (Figure 5.8). The matrix sizes of the linear equation
were kept the same, which is why the rejection does not show in Figure 5.8.
In a real-time application FPGA hardware can be used for computing dis-
parity maps [3]. The other additional phases such as pixel selection and
3D point extraction are O(n) passes for the raw images which are very fast.
The quality improvement when incorporating the depth component is dif-
ficult to evaluate as the ground truth trajectory for the PRoVisG MARS 3D
Challenge has not been published. However by observing Figure 5.6 the
camera trajectory and the 3D reconstruction are qualitatively good.

§ 5.4 ANALYSIS AND LIMITATIONS

The results show that the drift can be reduced by incorporating depth map
alignment into into pose the pose estimation. With simulated sequences,
depth noise does not exist, and therefore an improvement is easy to obtain.
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Figure 5.4: Simulated Itokawa asteroid sequence. A) A complex camera trajectory
is shown to be more accurate when also matching the depth maps. The green curve
represents the ground truth camera trajectory and the red curve is the estimated
one. B. trajectory of purely intensity-based minimization for comparison.

The PRoVisG sequence shows that estimation works but no ground truth
trajectory is available for measuring drift. A multi-resolution semi-global
block matching was used to produce the initial disparity maps which were
converted into depth maps. SGBM implements a smoothness constraint
which is somewhat compatible with the sequence. Adjusting λ can be te-
dious when testing with different sequences. Without an automatic pa-
rameter optimization tool, cost function balancing may prevent wider use
of this approach.

Two improvement ideas to this approach are a) using normal distance
instead of Euclidean distance (Section 2.5.4), b) divide all input points into
ones whose cost is measured by photometrical metric and the ones whose
cost are measured by normal distance. The first improvement is obvious
since the normal distance based metric has been proven beneficial over Eu-
clidean distance. One example of its performance is the KinectFusion sys-
tem [53]. The second improvement is based on the insight that one point
may not have strong gradient in both image and depth, and on the other
hand, full depth maps can be used with ICP. One interesting combination
approach is to measure photometrical cost terms for image regions with
strong gradient, and measure normal distance with the rest of the points.
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Figure 5.5: Orbiting sequence around Stanford bunny. A. image from the se-
quence, B. the corresponding depth map, C. the estimated camera trajectory (red)
along with the ground truth (green). Insufficient texturing produces a singular H
which causes divergence during pose estimation. This problem is fixed by incorpo-
rating depth maps.

Figure 5.6: PRoVisG MARS 3D Challenge sequence. The resulting camera tra-
jectory and 3d reconstruction illustrated. The reconstruction shows the part of
ground which is visible during the sequence.
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Figure 5.7: PRoVisG MARS 3D Challenge sequence. The minimization of the
proposed cost function is visualized. A) Image 1 B) Image 2 C) The intensity
residual after minimization D) Depth map 1 E) Depth map 2 F) The depth residual
after minimization. The remaining error is due to interpolation/filtering inaccu-
racy, occlusions and depth noise.
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Figure 5.8: PRoVisG MARS 3D Challenge sequence [29]. a) M-estimator func-
tionality illustrated for the rover sequence. Total amount of selected pixels (in-
liers+outliers) is set to 50% which produces 38400 points in 320× 240 resolution.
b) Optimization delay per frame in milliseconds with (blue) and without (red)
depth component. Incorporating the depth component increases computational re-
quirement by 50%. For a full real-time system disparity maps must be generated
by external hardware/GPU.
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REAL-TIME RGB-D TRACKING FOR A LOW-END GPU

The Microsoft Kinect sensor has sufficient RGB-D quality and frame rate
for RGB-D tracking. One of the contributions in this work is a real-time
GPU implementation for Microsoft Kinect which has been developed from
scratch and can be easily accommodated into applications. The library de-
pends on CUDA, which essentially performs all relevant computations in
parallel on GPU threads. The library has been tested using various input
RGB-D sequences. Our method was implemented in Ubuntu Linux envi-
ronment using open software tools, Microsoft Kinect and a commodity PC
laptop hardware on which the method runs real-time. The cost minimiza-
tion requires special attention when aiming at an efficient real-time imple-
mentation. Because the computational phases benefit from parallel com-
puting, we implement the full algorithm (6.4) on a commodity GPU. The
minimization algorithm can be used for both dense tracking and keyframe
tracking and it scales into multiple threads/cores. Only Cholesky inver-
sion and matrix exponential computation are executed on a single GPU
thread. Steinbrücker et al. have recently studied a similar minimization
and suggested a real-time GPU implementation [70]. In the following GPU
implementation also a M-estimator is supported which can increase robust-
ness with negligible computational cost and minimization is performed ef-
ficiently using inverse compositional approach. The implementation accu-
racy and computational requirements are compared with Kinfu, which is
an open-source implementation of KinectFusion [62].

The depth map registration proposed in Chapter 5 increases computa-
tional requirements linearly with the number of points selected for min-
imization. The least expensive way to implement it is to measure depth
error with the same points which are already selected based on image gra-
dient magnitude. Still Jacobian re-computation will be required in every
iteration. In environments where texturing can be increased, depth regis-
tration does not bring benefits. The current implementation is designed to

92
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be used in television broadcasting studios where real-time performance is
crucial therefore the cost function does not minimize depth residual. This
design choice simply favors computational efficiency in a textured environ-
ment. Also, when considering applications, where drift is not an option,
bundle adjustment or other global techniques are used to produce a consis-
tent model. It is important that the online tracker is merely locally precise
to be able to switch between the keyframes.

§ 6.1 TRACKING MODES

RGB-D pose tracking can be executed in three different modes: incremen-
tal, keyframe and SLAM. These modes have been implemented and this
section describes each mode. All modes minimize the photometric cost
(eq. 3.13) using the inverse compositional image alignment.

6.1.1 Incremental dense tracking

In incremental tracking, a keyframe model is not present and previous
RGB-D measurements are used as the motion reference frame. The ben-
efit is that reference will typically be a very similar image to the current
one, and photometrical minimization will produce good, smooth results.
Incremental tracking has the reference update frequency as free parame-
ter. Automatic reference update is possible by analyzing Median-Absolute-
Deviation (MAD) during M-estimation. When the modeling error increases
over a threshold, reference update can be signaled. However, signaling
reference updates from a GPU side is a bad idea, since it introduces con-
ditional statements and reading back variables into main memory which
both are slow on GPU. Therefore a fixed update rate is used. High up-
date frequency implies that Lambertian assumption holds better and track-
ing will be smooth and precise. The scene appearance can change quickly
within few frames and therefore a common update frequency is in prac-
tise between 1− 3 frames. The downside with incremental tracking is that
time-evolving drift will slowly cumulate in a long-term use. Reference up-
date at lower frequency implies that the same geometry will be fixed for
a longer period of time, with the cost of worse image similarity. In this
case, computational requirements will naturally be lower on average, but
the motion must be assumed to be limited.

6.1.2 Keyframe-based dense tracking

The incremental tracking suffers from time-evolving drift, which is not ac-
ceptable in studio use, because it causes virtual items to move away from
their correct pose. A fixed 3D model is required to avoid drift (Figure 8.1).
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Algorithm 6.1 Incremental dense pose tracking algorithm

Require: {P∗, c∗} ⇐Select the best points from 1st RGB-D.
Input: Tcur = Tre f = I
Output: Trajectory {I, T1

cur, . . . , Tn
cur}.

1: for each RGB-D measurement do
2: T̂⇐Minimize(I,P∗, c∗, Icur)
3: Tcur ⇐ T̂Tre f
4: if reference update signaled then
5: {P∗, c∗} ⇐ Select the best points
6: Precompute Jacobian
7: Tre f = Tcur
8: end if
9: end for

Algorithm 6.2 Dense keyframe tracking algorithm.
Require: Keyframe database available
Input: Tcur = I
Output: Trajectory {I, T1

cur, . . . , Tn
cur}.

1: for each RGB-D measurement do
2: {P∗, c∗, Tkey} ⇐FindKeyframe(Tcur)

3: T̂⇐Minimize(TcurT−1
key,P∗, c∗, Icur)

4: Tcur ⇐ T̂Tkey
5: end for

In keyframe tracking, a set of fixed RGB-D keyframes exist, which can be
used as a global reference for motion. The benefit is that time-evolving
drift does not exist. The downside is that the content of the keyframes
can easily change due to lighting variations and geometrical displacements
in a studio setting. Thus, the keyframe model must be updated when-
ever lighting conditions or environment configuration changes. However,
when keyframes are measured prior to online tracking, this problem can
be avoided. Also work has been done to increases tolerance to varying
lighting conditions (Section 3.5).

A keyframe model can be generated with various online/offline tech-
niques prior to broadcasting [86, 53]. The online tracking is initialized at
the first keyframe whose T̂ = I. The cost function (eq.3.13) is then mini-
mized in each frame to obtain 3D camera pose. The reference keyframe is
switched when the current pose becomes closer to another keyframe. The
keyframe tracking is sketched in Algorithm 6.2. Online tracking is drift-
less and very fast due to keyframe pre-computations and the utilization of
GPU.

A similarity metric is required to find the nearest key pose Tk. The
challenge is to unify rotation and translation differences, because they are
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expressed in different units. First, we define the relative transformation

∆Tk = TcurT−1
k ⇒ (θk, vk, dk), (6.1)

where Tcur is the current camera pose. The relative rotation is decomposed
into angle-axis representation (θ, v) based on the Euler’s rotation theorem.
The translation between the poses is expressed as the vector d between the
origins. We define a potential keyframe index set as

Ω = { |θk| < θmax, ||dk|| < dmax || k ∈ [1, n] }, (6.2)

where n is the number of keyframes in the database. Thus Ω contains a
subset of keyframe indices whose angle and distance are below user de-
fined thresholds θmax and dmax. This pre-selection prunes out distant poses
efficiently. Thresholds are easy to set based on keyframe density in a 3D
volume. The best keyframe is chosen by transforming the view frustum,
represented by a set of 3D points, from the keyframe into the current frame
and observing the 2D point discrepancy. This unifies rotation and transla-
tion errors into a single metric

s = argmin
k ∈ Ω

||w(P ; ∆Tk)− w(P ; I)||, (6.3)

where Ks is the nearest keyframe. The idea is illustrated in Figure 6.2. In
contrast to frustum intersection, this metric varies significantly also when
the camera is rotating around z-axis. The test point set P is a sparse rep-
resentation of the view frustum (Figure 6.1). In particular, the frustum is
approximated by three sparse 2D grids, each having uniformly sampled
depth coordinates in the overall depth range of the RGB-D sensor. The 3D
points at different layers are generated by discrete steps along the viewing
rays.

6.1.3 SLAM mode

In the SLAM mode, the keyframe database is built concurrently while
tracking the camera. The algorithm is listed in Algorithm 6.3. First, an
initial keyframe is generated with identity pose using the first RGB-D mea-
surement. Two search ranges {θ1

max, d1
max} ≤ {θ2

max, d2
max} are defined,

where the second one is required in case the nearest keyframe is out of
domain and the map should be extended. When the pose estimate is no
longer in the keyframe database domain, a new keyframe is generated. The
domain can be checked using the pose distance criteria developed in sec-
tion 6.1.2. In the current implementation, keyframes can be added until
GPU memory runs out. SLAM mode is useful especially when the camera
is known to re-enter scenes. For example, when building a 3D model of an
appartment, it is sometimes necessary to add missing keyframes to remove
holes in the model (see video1). Figure 2.8 showcases a loop-closure. The

1Video:http://youtu.be/aFrVROLja38

Video: http://youtu.be/aFrVROLja38
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(a) (b)

Figure 6.1: a) The 3D test point set P used to compare camera poses is illustrated.
P approximates the view frustum by three 2D point grids. The projection error
of P between the current view and each keyframe view is compared to find the
nearest keyframe. b) As comparison, frustum intersection volume based metric.
The metric varies little when rotating around z-axis and can behave un-predictable
way when the camera angles are significantly different.

downside of SLAM mode is that keyframes must have very small baseline
to the current measurement, otherwise more bias will be generated com-
pared to incremental tracking.

With a sequences that do not contain loop closures, the incremental
tracking is a better option, because the Lambertian assumption holds well
and large occlusions do not exist. In another example scene, the environ-
ment is scanned by hand in almost a direct 360◦ turn without a loop closure.
The incremental tracking produces more accurate result (Fig. 7.11). More
details are provided in Chapter 7.

§ 6.2 FEATURES

6.2.1 Embedding distortions in warping function

As discussed in Section 2.1.5, the lens distortions can be corrected by re-
sampling the input images using the distortion model. It is better to model
the distortions in the warping function, because image re-sampling de-
grades original image quality and part of the data is even lost. Image
re-sampling requires interpolation, which will not produce exact image in-
tensities between the samples. Also the number of distortion operations
for a set of points will be smaller than full image resolution even though
warping must be be done many times per frame.
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Figure 6.2: The phases of finding the nearest pose. a) Pruning out distant poses,
b) Finding the pose difference which minimizes optical flow of a 3D test point set.

6.2.2 Tolerating dynamic foreground

Comport et al. proposes intensity-based M-estimation in a stereo set-
ting [14], because disparity map computation is expensive for each frame.
Due to recent development with RGB-D sensors, it is possible to measure
both intensity and depth maps in real-time.

Now also depth correlation weights can be computed from the depth
residual

ez = Z
(

w(P ; T̂)
)
− eT

3 T̂
[
P
1

]
, (6.4)

where Z : R2 ⇒ R is the depth map function of the current RGB image
and eT

3 = (0, 0, 1, 0) is used to obtain the current depth value. When the
standard deviation of depth measurements is τ, the warped points whose
depth differs more than τ from the current depth map value can be inter-
preted as foreground objects. The depth weights become

wz
k = max

(
1− e2

z(k)/τ2, 0
)2

. (6.5)

The weighting matrix W is now a product of intensity and depth based
weighting diag(W)k = wk

cwk
z.

§ 6.3 SCALABLE GPU TRACKING

The pose estimation described in Section 3.1.4 is implemented on a low-end
GPU with 48 CUDA cores. This implementation is important, because it is
scalable. Scalability means that performance increases simply by adding
new CUDA cores and the code itself does not require any modifications.
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Algorithm 6.3 Keyframe SLAM algorithm.
Require: Keyframe database contains 1st RGB-D measurement
Input: Tcur = I, Search ranges {θ1

max, d1
max} ≤ {θ2

max, d2
max}

Output: Trajectory {I, T1
cur, . . . , Tn

cur}, Keyframe model K.
1: for each RGB-D measurement do
2: newKeyFlag = false
3: F = {P∗, c∗, Tkey} ⇐FindKeyframe(Tcur, θ1

max, d1
max)

4: if F = ∅ then
5: newKeyFlag = true
6: {P∗, c∗, Tkey} ⇐FindKeyframe(Tcur, θ2

max, d2
max)

7: end if
8: T̂⇐Minimize(TcurT−1

key, P∗, c∗, Icur)

9: Tcur ⇐ T̂Tkey
10: if newKeyFlag = true then
11: {P, c} ⇐ Select a subset of points with largest gradients
12: Precompute Jacobian
13: K = {K, {P, c, Tcur}}
14: end if
15: end for

CPU implementations have scalability problem, because the number of
CPU cores increases very slowly compared to GPUs. Whereas the high-end
CPUs may have 4-8 cores, the most powerful GPUs, such as the NVIDIA
Tesla K10, have 3072 CUDA cores. This GPU implementation has been de-
veloped using NVS4200m GPU which is low-end GPU, but achieves real-
time 30Hz frame rate. Considering that photometrical minimization bene-
fits from texture details, HD resolution at 1920× 1080 is interesting, because
improved image gradient accuracy directly increases pose estimation pre-
cision. According to the Kinect 2.0 sensor specifications, it will support HD
resolution and directly benefits from this scalable GPU implementation.

6.3.1 Warping

The warping function is applied in parallel to the selected Pk ∈ P in the
keyframe. The cost function (eq. 3.13) is evaluated using bilinear interpo-
lation. Additionally the points are transformed into IR view for evaluating
the nearest depth value (eq. 6.4). By evaluating the depth values directly in
the IR view, re-sampling errors are avoided. The depths are used to gener-
ate weighting Wz. The warping is illustrated in Figure 6.3.

6.3.2 M-estimator

Tukey based weighting using the median absolute deviation of the error
distribution, easily becomes a bottleneck on GPU. Therefore, it is pro-
posed that the histogram technique (eq.6.7) is used to find an approxi-
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Algorithm 6.4 Minimization on GPU.
Input: IL={1,2,3} with 320 × 240, 160 × 120, and 80 × 60 sizes. Z in 320 × 240.

Iteration counts {n1, n2, n3}. T̂ = T0.
Output: Relative pose T̂.

1: for all L = {3, 2, 1} do
2: for all j = {1 . . . nL} do
3: Compute residual e and Wz (6.3.1)
4: Determine M-estimator weights Wc (6.2.2)
5: W⇐ Wc ∗Wz
6: J⇐

√
WJ, e⇐

√
We

7: Reduce linear system (6.3.3)
8: Solving linear system for x̂ (6.3.3)
9: T̂⇐ T̂eA(x̂) (6.3.4)

10: end for
11: end for

Figure 6.3: The warping of points from keyframe into Microsoft Kinect RGB and
IR image coordinate systems. The additional depth lookup from an IR image is
required by Equations 5.3 and 6.4.

mate median. The distribution of the residual is represented using a 64-
bin histogram and n is set to half the residual length. The CUDA SDK
histogram64 routine fits this purpose, because it is fast enough to be ex-
ecuted at every iteration and is specifically designed for NVIDIA video
cards [57]. By experiment, 64 bins seems to provide sufficient adaptation to
different error distribution profiles.

6.3.3 Linear system reduction

The reduction of the linear system means computing JTJ and JTe.
This phase compresses the linear equations from n-dimensional to six-
dimensional space. Reduction is required for each iteration and, therefore it
must be implemented efficiently. Matrix multiplication is often computed
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Figure 6.4: Efficient reduction on GPU. Dot products are divided into sub-ranges
which are reduced in parallel. JTJ is symmetric 6× 6 matrix and elements can be
mirrored with respect to the diagonal. The Jacobian columns are transposed into
rows to improve memory caching.

in parallel by dividing k dot products into separate threads. In this case, we
have only 36 dot products, but our video card can manage 1024 threads in
parallel. To gain maximal efficiency, we parallelize the computation in the
dot product direction instead. The process is illustrated in Figure 6.4. Each
dot product has n elements, where n is usually 8192 or more. Dot prod-
ucts are reduced by dividing them into sub-blocks and summing them ef-
ficiently in parallel. The total sum is finally cumulated from the sub-sums.
JTJ is a positive semidefinite matrix which is also symmetric. This means
it is sufficient to compute only the upper triangle of the values and mirror
the results into the lower triangle. This property reduces the number of dot
products from 36 to 21. JTe requires six dot products. The inversion can be
efficiently calculated using Cholesky decomposition due to positive defi-
nite property (Section 2.3.6). The explicit inverse of JTJ can also be avoided
by using the conjugate gradient method (CGM) with six iterations. Both
approaches are fast due to the small matrix size. The execution times were
compared in practical use and CGM required on average 0.0119ms whereas
Cholesky 0.0251ms on a single GPU thread. These numbers are sequence
independent because the number of selected points remains fixed. CGM
was chosen, because it is slightly faster.

The parameter vector x contains both rotational units (radians) and
translational units, whose units are fixed in the calibration procedure. It
should be noted that a big difference in parameter magnitudes may in-
troduce numerical instability. For example, if the translation units are ex-
pressed in millimeters, their scale can be over 1000× radian unit scale. To
prevent any potential numerical problems, it makes sense to change the in-
put point scale before computing the Jacobian J and change it back after
final transformation increment has been estimated. In our implementation,
we pre-scale the points by 1

1000.0 and post-scale the translation increment
by 1000.0. This trick produces parameter vectors whose maximum magni-
tudes in our test sequences are uniformly order of ≈ 0.01.



6.3. Scalable GPU tracking 101

6.3.4 Evaluating matrix exponential

Matrix exponentials can be computed in closed form using the transla-
tion extended Rodriquez formula [40]. Unfortunately is not numerically sta-
ble in the most important small angle case. Expokit, however, provides
various numerical approaches which are guaranteed to produce smooth
mapping [67]. By comparing them with the MATLAB default implementa-
tion using Padé approximation, it seems that complex matrix exponential
(zgpadm) is the most accurate. Thus, we choose to evaluate T(x) = eA(x) by
the matrix exponential of a general complex matrix in full, using the irre-
ducible rational Padé approximation combined with scaling-and-squaring.
The exponential is computed in a single GPU thread due to sequential
nature of the operation. One evaluation takes 0.2613ms on average. The
evaluation is rather slow on GPU, because a single thread must manouver
many sequential operations. Despite using the Lie generators to produce
SE3 group transformations, normalization is still required (Section 2.5.2).

6.3.5 Selecting points on GPU

The points used in the motion estimation can be freely selected from a ref-
erence RGB-D keyframe. The points which do not contribute to the resid-
ual vector through linearization are not useful. A subset of points should
be selected, which are associated with the greatest absolute values of the
Jacobian [45]. The selected points will then have strong geometric flow
‖ ∂w

∂x ‖ > θw and/or strong image gradient ‖ ∂I
∂p‖ > θg. We use a simpler

selection criteria and focus on the set of points P∗s which only have strong
image gradient. This method fits GPUs better, because it does not require
sorting of the Jacobian elements.

P∗s = { Pk | ‖∇I∗(w(Pk; I))‖ > θg , Pk ∈ P∗}, (6.6)

where θg is the threshold which selects p percent of all points. p depends
on the computational capacity available and the amount of image edges in
the application context.

Even though keyframe reference points can be selected in a pre-process,
a fast implementation is useful when executing dense tracking incremen-
tally. We adopt the histogram technique to find the best points effi-
ciently [81]. We seek such histogram bin Bt for which

Σ255
k=Bt−1 h(k) < n <= Σ255

k=Bt
h(k), (6.7)

where n is the number of points to be selected and

G = |∇uI∗ (w (P∗; I)) |+ |∇vI∗ (w (P∗; I)) |
h = histogram(G/2.0)

Computing histograms on GPU is tricky, because simultaneous writing
into the histogram bins is not possible. CUDA SDK presents a method [57]
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thread 1 thread 2 thread 3 thread 4

Figure 6.5: Index buffer packing illustrated. Each thread selects points from a
sub-range. The sub-counts are shared between the threads and the output buffer
written.

(histogram256) which reduces the problem by creating partial histograms,
which are finally summed together. The data is processed in warp sized
blocks, where warp determines the amount of concurrent threads. Write
collisions can occur inside a warp, but they are avoided by tagging. In tag-
ging, a memory slot is tested after a write and if the result is not what is
expected, the operation is done again. This guarantees that at least one
thread in a warp will succeed. The gradient value range is pre-scaled into
[0, 255] which fits histogram256 method exactly. Shams et al. developed a
similar implementation independently [64]. The downside of the method is
that uncoalesced memory writes to global GPU memory are relatively slow.
The final n indices are collected into a packed array. Packing is important
because it allows eliminating all non-interesting points from further pro-
cessing in the pipeline. Packing is implemented on a GPU by assigning
each thread a slice of the original index range to compress (Figure 6.5).
Each thread stores the interesting points into a temporary packed buffer
with the count. The counts must be collected from all threads to determine
the final output range of each thread. This allows parallel point selection
which scales into multiple threads. Due to the discretization into bins, n
pixels may not match the bin boundary automatically. n must be divisible
by Tmax to match the maximum amount of threads on a GPU. On our GPU
Tmax = 1024. This is why it is useful to classify points into

Psemi = { |∇ck| = Bt | Pk ∈ P }
Pgood = { |∇ck| > Bt | Pk ∈ P },

where Pgood are all selected and the remaining points are chosen from Psemi
to obtain exactly n selected points. Bt is determined by Equation 6.7.
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6.3.6 Vertex attributes at different stages

The vertices extracted from RGB-D images originally are associated with 21
float attributes which are used in pre-processing phases. After points have
been selected, only 9 float attributes are useful during minimization. Nor-
mals are estimated to take into account normal distance based cost evalua-
tion (see Section 2.5.4). With fully image intensity based residuals the com-
pression could be taken further by removing also vertex normals. The table
of vertex attributes are illustrated in Table 6.1. Assuming that 320 × 240
points are pre-processed using point selection procedure and only 8192
points are selected and compressed, memory consumption per one point
cloud is 6.15MB ⇒ 0.28MB. This is very efficient compression since only
4.6% of original memory is required.

Table 6.1: Vertex attributes. During minimization only fraction of the attributes
are required. GPU memory is optimized as soon as preprocessing phase is finished.

Uncompressed vertex attribute Compressed vertex attribute

X-coordinate x X-coordinate x
Y-coordinate y Y-coordinate y
Z-coordinate z Z-coordinate z

Normal X-direction nx Normal X-coordinate nx
Normal Y-direction ny Normal Y-coordinate ny
Normal Z-direction nz Normal Z-coordinate nz
Image U-coordinate u Image intensity (layer 1) c1
Image V-coordinate v Image intensity (layer 2) c2

Color R r Image intensity (layer 3) c3
Color G g
Color B b

Image gradient-U (layer 1) ∆uI1
Image gradient-V (layer 1) ∆vI1

Image gradient magnitude (layer 1) ‖∆uI1‖+ ‖∆vI1‖
Image intensity (layer 1) c1

Image gradient-U (layer 2) ∆uI2
Image gradient-V (layer 2) ∆vI2
Image intensity (layer 2) c2

Image gradient-U (layer 3) ∆uI3
Image gradient-V (layer 3) ∆vI3
Image intensity (layer 3) c3

6.3.7 Preprocessing RGB images

The preprocessor converts 640× 480 Microsoft Kinect Bayer images into a
pyramid of 320 × 240, 160 × 120, and 80 × 60. A 5 × 5 Gaussian filter is
used with downsampling of the high resolution images. Downsampling
is almost lossless, because the Bayer images are redundant. 2 × 2 block
averaging is used to produce the rest of the layers. The lower resolution
coordinates are obtained by xL = 1

2L x + 1
2L+1 − 1

2 , where L is the amount of



104 Chapter 6. Real-time RGB-D tracking for a low-end GPU

layers in-between. The RGB pre-processing steps are per-pixel operations
which are executed in separate threads on the GPU.

6.3.8 Point cloud from raw disparity map

The 3D points are generated in parallel by a baseline transform

Pk = Tbz(dk)K−1
IR

[
pk
1

]
, (6.8)

where pk = (uk, vk)
T are the pixel coordinates in the IR view, K is the in-

trinsic matrix of the IR view, and the 4× 4 baseline matrix Tb maps points
from the IR view into the RGB view. Each cloud P has storage for 320× 240
points which are processed in parallel and stored in a linear array. The in-
tensity vector c∗ corresponding to the 3D points Pk ∈ P is produced by
bi-linear interpolation, because the points do not match with RGB image
pixels.

6.3.9 Online visualization issues

When designing a real-time implementation, visualization needs and per-
formance optimizations are contradictory. On one hand, visualization is
necessary for debugging purposes, but on the other hand, with CUDA it
can become expensive. CUDA interop is a technology which allows locking
OpenGL pixel and vertex buffers for CUDA use. The buffers can be manip-
ulated by CUDA programs and finally rendered using standard OpenGL
API. There is no need to copy any data from/to main memory. The buffer
locking delay with CUDA interop can vary from negligible delay to tens of
milliseconds depending on how it is done. If a locking call is done imme-
diately after graphics rendering has started, huge delay can occur because
the call will wait until the rendering has finished. Therefore CUDA ma-
nipulations and graphics rendering must be fully separated into different
phases. A normal delay with the NVS4200m graphics card is few millisec-
onds in the worst case. If there are many buffers to be visualized, the run-
time performance will be significantly degraded. Therefore it is necessary
to consider which data is the most valuable for debugging purposes. The
current GPU implementation allows setting a flag per each buffer to deter-
mine whether it is allowed to be rendered using CUDA interop or not. The
buffers which are withheld from rendering, are simply allocated from GPU
memory without a CUDA interop context. This small optimization saves
several milliseconds in the GPU implementation but still allows efficient
online visualization when necessary.
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§ 6.4 ACCURACY

The incremental dense tracking is sketched in Algorithm 6.1. In this section
the dense tracking accuracy is evaluated using the RGB-D SLAM bench-
mark provided by Technical University of Münich [74]. Kinfu is the open
source implementation of KinectFusion [62] (Sec. 3.8). The proposed dense
RGB-D tracking accuracy is also compared with Kinfu (Figure 6.6). Kinfu
experiments were executed on a workstation with the NVIDIA Quadro
2000 GPU with 1024MB RAM and 192 CUDA cores, because our develop-
ment laptop could not provide real-time computations. In this comparison,
a fixed 3D model is not used and time-evolving drift is present in both sys-
tems. Our real-time tracker is executed in incremental mode without depth
fusion. The depth maps were also re-sampled back into disparity maps to
fit our implementation.

Table 6.2: Drift and delay compared to Kinfu with (3m)3 and (8m)3 voxel grids.

Dataset Incremental dense Kinfu(3) Kinfu(8) Motion

freiburg1/desk 2.60cm/s 8.40cm/s 3.97cm/s 41.3cm/s
52.2ms 135ms 135ms

freiburg2/desk 1.08cm/s 0.64cm/s 1.30cm/s 19.3cm/s
35.5ms 135ms 135ms

Table 6.2 shows the comparison between our method and Kinfu numer-
ically using two Freiburg sequences with known ground truth trajectory.
Our method uses 320× 240 resolution where as Kinfu uses 640× 480 reso-
lution. The dense tracking drifts 1.08cm/s with the slower freiburg2/desk
sequence and 2.60cm/s with the faster freiburg1/desk sequence. Kinfu
has smaller drift with small voxel volumes (such as (3m)3), but seems to
suffer from gross tracking failures with bigger volumes such as (5m)3 and
(8m)3. The operation volume is limited because a 5123 voxel grid becomes
too coarse with increasing size and bigger grids not not fit into GPU mem-
ory. Also ICP breaks down easily when the scene contains mostly planar
surface (e.g. floor) 2. Thus the scene must contain sufficient geometrical
variations. Drift was measured by dividing the input frames into subseg-
ments of several seconds (10s and 2s correspondingly) whose median error
was measured against the ground truth. 1 second average error was com-
puted from the median subsegment. The error values were computed from
bigger windows to average out random perturbations and neglect Kinfu
tracking failures, which occurred in all cases except on freiburg2/desk

using (3m)3 volume. Our dense tracking has generally smaller drift with

2 Video: http://youtu.be/tNz1p1sdTrE

http://youtu.be/tNz1p1sdTrE
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the faster freiburg1/desk sequence, but both Kinfu (with the most com-
patible grid) and our method lose tracking once during the sequence. In
this case (3m)3 grid does not contain constraining geometry and operates
worse than a bigger volume. Re-localization issues are discussed later in
this chapter. Kinfu’s dependency on careful setting of volume size, and
dependency on geometrical variations makes it unsuitable to be used in
our application. In many applications, the scenes can easily be larger than
(3m)3 and sufficient geometrical variation is more difficult to guarantee
than sufficient texturing. Our dense tracking operates without failures even
when planar surfaces are present, because our cost function matches also
texturing. Memory consumption can be low even in larger operating vol-
umes, because the keyframe placement can be optimized based on the cam-
era motion zones.

§ 6.5 RESULTS

The minimization algorithm is implemented on a low-end NVIDIA
Nvs4200m GPU using CUDA. Our laptop GPU has 48 CUDA cores and
it allows executing 1024 parallel threads on a single multi-streaming pro-
cessor. Because our implementation divides the computational task into n
threads, it is scalable and benefits from GPU hardware development. How-
ever, despite that the system can be executed with a fraction of GPU capac-
ity compared to KinectFusion, the accuracy is not essentially different. In
effect, the system operates at 30Hz and the computation takes 23ms which
leaves 10ms for rendering the augmented graphics. The computation time
of the processing phases is illustrated in Figure 6.7. The green bars repre-
sent the minimization phases which directly scale into n threads and there-
fore become faster with more powerful GPU. 8192 points are selected and
the minimization uses three multi-resolution layers 80× 60, 160× 120 and
320× 240. The corresponding iteration counts are 2, 3, and 10 for each level
of the pyramid. These numbers are represent the current performance at
the time of writing this text. The drift removal is possible by tracking with
respect to a static keyframe model, which can has been globally optimized.
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Figure 6.6: Kinfu performance compared with incremental dense tracking using
freiburg_desk2 sequence with motion capture ground truth (green trajectory).
Kinfu is executed with (3m)3, (5m)3 and (8m)3 voxel volumes. The red trajecto-
ries on the left are output from from Kinfu. Based on the trajectories, Kinfu gains
lower drift due to structure integration, but planar surfaces cause tracking fail-
ures. (3m)3 volume does not contain the floor and therefore Kinfu works well. On
the right, the yellow trajectory is the proposed incremental RGB-D tracking result.
Problems with planar surfaces do not exist, and the method allows larger operating
volumes due to lower memory consumption. By using keyframes, the drift can be
completely eliminated. The green dots reveal the selected points.
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Figure 6.7: GPU tracking time distribution (23ms) for one frame. Green bars rep-
resent phases scalable to n threads. The red bar is executed by a single thread. The
gray bar (lock) contains CUDA interop delays which are only required for visu-
alization. d2z is disparity to depth conversion, multi is multi-resolution pyramid
generation, pcloud is the 3D reconstruction, warp contains the cost function eval-
uations, mest is the M-estimation, reduct is linear system reduction, and minc

motion estimation and update.
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WATERTIGHT AND TEXTURED 3D RECONSTRUCTIONS

BY RGB-D TRACKING

The keyframe SLAM algorithm (alg. 6.3) is tested in an appartment. The
goal is to generate a 3D model without holes in the geometry. After record-
ing a video, GPU-boosted RGB-D tracking is executed which produces 3D
trajectory. Whether or not RGB-D tracking uses keyframes, only the trajec-
tory is stored. The model keyframes are selected by looping the trajectory
and storing a keyframe whenever user-specified angular or translational
distance to the existing model is exceeded. The neighboring RGB-D mea-
surements to the keyframes are efficiently localized (timestamp or frame
index) and depth map fusion is executed. In depth map fusion, keyframe
depth maps are filtered using all RGB-D measurements available. Then,
optionally, bundle adjustment is possible for the full model. The results
presented in this paper do not use bundle adjustment at all, because the
sequences are relatively short and pose error remains small. Finally water-
tight polygon model is generated from the RGB point cloud using Poisson
reconstruction method. Keyframe images are stored into a single texture
and UV coordinates are generated for each polygon. The textured mesh
is then stored in a simple Wavefront format which can be loaded into var-
ious standard 3D modeling programs for further refinement. The video3

illustrates the full process for sequence Room A.
The phases in our process are thus

1. Record RGB-D video (manual)

2. Generate 3D trajectory by RGB-D tracking (automatic) (chap. 6)

3. Select keyframes (automatic)

4. Depth map fusion (automatic) (sec. 7.1)

5. Optional : bundle adjustment (semi-automatic) (sec. 7.2)
3Video:http://youtu.be/tD3lFxrCHaw
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Video: http://youtu.be/tD3lFxrCHaw
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6. Watertight polygonization (automatic) (sec. 7.3)

7. Texture map generation (automatic) (sec. 7.4)

8. UV coordinate generation (automatic) (sec. 7.4)

9. Store Wavefront mesh (automatic)

§ 7.1 DEPTH MAP FUSION USING RGB DATA

By noting that local tracking is always accurate, depth map accuracy can be
increased by local data fusion. Because the keyframes are sparsely selected
from the stream of RGB-D measurements, they do not automatically utilize
all information available. The intermediate point clouds, which are not se-
lected as keyframes, are warped into a nearest keyframe and the final maps
are filtered in post-processing. In effect, this improves depth map accuracy
and fills holes. If larger resolution is used during depth fusion, more pre-
cise depth maps can be obtained [44]. In general environments with occlu-
sions and complex geometries, the warped depths may form multi-peaked
depth distributions in the reference view, and a method is required for de-
termining a local depth range which contains the best depth value. The
depth maps are corrupted by measurement noise, whose magnitude and
distribution depends on the measurement device, the scene content and
the distance. Noise is often managed by imposing smoothness constraints
on the environment geometry. Such constraints can also cause problems as
they might connect sparse geometries and add surfaces where they do not
actually exist. One method to avoid smoothness constraints is to use me-
dian filtering for each points independently. This approach has been taken,
for example, by Hirschmüller [25]. When the depths are transformed, only
one point is allowed per each target pixel. In case of multiple points, the
nearest one to camera is selected. Median filtering is rapid, robust and can
be executed in parallel per each pixel using, for example, Quickselect al-
gorithm [58]. Median filtering is especially useful when the depth values
may have large variances (for example stereo camera + template matching).
Depth maps with small variance can be used as initial guess directly. When
the initial guess exists, bounds can be generated within which local averag-
ing can take place. The inverse depth samples within zm ± δ are averaged
to find the robust estimate (Figure 7.1). Inverse depths are more likely to
have Gaussian distribution in stereo based settings [13, 48]. δ is the depth
sample window, which is user-specified. δ depends on the RGB-D sensor
depth noise level.

As can be seen from Figure 7.2, the area covered by a pixel increases
with depth. If the median is computed per each pixel, care should be taken
that (∆x, ∆y) will be bounded for the samples. Ray distance based uncer-
tainty is roughly proportional to σr ≈ z

f σpix, where z is the depth value, f
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Figure 7.1: Robust depth estimation. A local average is computed within bounds
near the median depth. Inverse depths are more likely to have Gaussian distri-
bution in stereo camera settings. In case of small depth error, the bounds can be
directly initialized near a depth map measurement.

is the focal length and σpix is the standard deviation of an image coordi-
nate [13].

Figure 7.2: The area covered by a pixel becomes larger at longer distances. The
pixel median can be improved by focusing on samples near a ray which is defined
through the pixel center.

Now the depth values are defined by local averages near the median
depth. It is expected that depth values are close to correct value. Thus pho-
tometrical adjustment is possible within uncertainty bounds. The bounds
are generated by computing Gaussian variances from the depth samples
near the optimum. Raw disparity maps are provided without any confi-
dence measure. The Microsoft Kinect’s benefit over a stereo camera is that
structural error distribution is often local, where dense matching methods
may produce any distribution depending on the scene texturing. Local er-
ror distribution in structure is crucial both for pose estimation and struc-
tural estimation. Locality reduces computational requirements and allows
searching the best estimate within bounds. A large portion of the outlier
points can be neglected based on color deviation to the keyframe pixels.
Thus, prior to any filtering, it is useful to discard the points whose color
difference to the reference color is larger than a threshold. The basic algo-
rithm is listed in Algorithm A.1.

The filtered depth map can be photometric refined further using the
standard deviations with Algorithm A.2. In practise, OpenMP is used to
parallelize computations on CPU. The benefit with discrete optimization
is that it works even when the amount of image measurements is small.
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An example standard deviation image is illustrated in Figure 7.3b. As can
be seen, the standard deviations increase monotonically as function of dis-
tance. The standard deviations are used to bound a photometrical refine-
ment phase, which seeks the best depth value in terms of a re-projection
error into multiple views (Sec. 3.7). The candidate points are generated by
dividing the bound region evenly into n points.

(a) (b)

(c) (d)

Figure 7.3: Photometrical refinement for a 3D model. a) The green points are
selected for photometrical refinement. Only the regions with strong gradient can be
photometrically refined. b) Depth standard deviation image after depth map fusion
phase. The photometrical search bounds are set based on this image. c,d) The cost
values visualized for n depth values within the bounds. White color denotes low
cost and black high cost.
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§ 7.2 OPTIONAL BUNDLE ADJUSTMENT FOR A 3D
MODEL

In the case that pose errors at the boundary keyframes contain too much
drift, a global pose refinement must be done using bundle adjustment or a
graph optimization framework [36, 37]. In smaller spaces, the initial pose
estimates are, however, sufficiently accurate. Sparse bundle adjustment
(SBA) can be used to remove the small global error at the end of estimated
camera trajectory [37]. SBA does not converge without a good initial guess.
Sometimes an initial guess can be successfully extracted from an unordered
image set by extracting and matching feature points and initializing camera
configurations using their geometrical relations. The process is error-prone
because image content such as homogeneous texturing and repetitive pat-
terns prevents reliable extraction/matching. SBA is then used to optimize
global configuration. As a result the camera trajectory is improved and
multiple geometries disappear (Figure 7.4).

Figure 7.4: The effect of sparse bundle adjustment illustrated. Minor error at the
end of the trajectory is corrected.

7.2.1 Interactive editor for bundle adjustment

An interactive tool was built to generate annotations for projection points
(Figures 7.5,7.6). The editor produces a list of 3D points and their projec-
tions in all keyframe views in a small text file. A mouse is used for 2D
point selection and linking across the views. The editor visualizes a 3D line
segment for each 2D point. The line segment starts from the camera origin
and ends at the 3D point determined by the depth map. Therefore its easy
to verify that 3D points are associated with precise depth measurement. Fi-
nally, the output file is directly used to execute bundle adjustment function
in SBA library. SBA library has depth axis in reverse direction compared
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to OpenGL, which must be taken into account by mirroring camera depth
axices and all depth coordinates.

Figure 7.5: The interactive tool for semi-automatic annotation of projection points
illustrated. Annotated projection points can be added/removed using mouse. The
projections are linked into a unique 3D point.The tool also shows corresponding
3D points (green spheres) along with 3D ray which can be moved over a keyframe
image.

§ 7.3 WATERTIGHT POLYGONIZATION

Polygon models are compact in their memory consumption and are bet-
ter supported by standard 3D modeling programs than point clouds. A
polygonization phase generates a polygon mesh from a point cloud. There
are various methods available which generate polygon models from points
clouds[5], but the main criteria in our applications is tolerance to noise and
missing data. This rules out basic Delaunay based triangulation methods.
Marron et al. acknowledge noise in the point clouds and propose a greedy
method for rapid polygonization [43]. The method does not fit implicit sur-
face to a point cloud, but incrementally grows surfaces by inspecting the
near vertices with oriented normals. Triangles are generated based on local
planar regression, to take into account noise in the raw point data, and also
hole filling is supported. Marron’s method has been used in Kintinous sys-
tem which documents the results [89]. In the presence of sampling noise,
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Figure 7.6: The depth values for 3D points can be guaranteed to be correct by 3D
ray vs. surface comparison.

an alternative and common approach is to fit the points using the a zero
level-set of an implicit function, such as a sum of radial base or piecewise
polynomial functions [30].

In this work, the Poisson method is selected, because it produces
a watertight surface based on a photometrically refined, oriented point
cloud [83, 32]. The point normals are derived from the depth fused maps
(eq. 2.59). Oriented points are transformed into a reference coordinate sys-
tem. The Poisson method finds a scalar function whose gradients best
match the vector field, and extracts the appropriate isosurface. The al-
gorithm uses OpenMP for multi-threaded parallelization and octree data
structure to reduce memory consumption [32]. To further avoid mem-
ory limitations, the mesh could also be done piece-by-piece using a single,
moving reconstruction volume. The most interesting parameters are octree
grid resolution, point weights and minimum point count in an octree node.
Because octree resolution is limited, the resulting mesh may become over-
smooth at complex regions. The reconstruction accuracy depends mostly
on the precision of the oriented point cloud. With Microsoft Kinect sensor,
the depth noise increases with distance. In our tests, we measure distance
to the camera and set quadratically decaying point weights. Poisson re-
construction result without and with depth fusion can be observed in Fig-
ure 7.7b. Notice how Poisson method generates the floor and fills holes
despite that measurements do not exist (compare with Fig. 7.7a).
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(a)

(b)

Figure 7.7: Room B sequence. a) A keyframe model obtained by executing
keyframe SLAM in an appartment. b) Watertight Poisson reconstruction with-
out and with depth fusion. Notice how holes are filled and missing regions such as
the floor appears.
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§ 7.4 MESH TEXTURING

The example sweep in Figure 7.7a created 23 RGB-D keyframes whose tex-
tures are redundant in color due to Bayer filtering. The images are down-
sampled into 320 × 240 resolution and stored into a 2048 × 2048 texture
(Figure 7.8). The size is good for testing purposes and it allows 6 × 8
keyframes to be used.

Figure 7.8: Keyframe images are stored into a single big texture.

The Poisson polygons which are in the visible range of the RGB-D sen-
sor are projected onto all keyframe views and UV-coordinates are gen-
erated. Poisson reconstruction module outputs polygons with n corner
points. 2D area of a polygon4 is evaluated using the following formula

A(4) =
1
2

n

∑
k=0

det
( [ pT

k
pT

mod(k+1,n)

] )
, (7.1)

where points pk = (u, v)T are the corner points of a 2D polygon. The for-
mula applies to convex and concave polygons as long as they are not self-
intersecting. When a polygon is visible in more than one view, we choose
to favor largest spatial resolution with the formula

4uvkey = argmax
j

Aj(4) ∈N, (7.2)

where 4uvkey is the index of the best UV-mapping keyframe (Fig. 7.9). Be-
cause frequent switches in UV-mapping directions can cause visually dis-
turbing seams, mapping can be improved by enforcing the locally dom-
inant keyframe. One method to do so is to recursively enumerate con-
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nected polygon neighbors in n passes, and then prefer the mapping di-
rection which has the largest number of votes. Finally the selected UV-
coordinates are converted into global texture coordinates and stored. The
keyframe images are not undistorted to better maintain maximum texture
quality. The resulting meshes can be observed in Figure 7.12.

Figure 7.9: Poisson(7) polygons are projected onto keyframe images. UV-
coordinates can be chosen from the view which has the best spatial resolution. The
corner of the shelf is visible in two different keyframes, but the selection favors the
left image, because the camera is closer.

When final texturing is patched together from keyframes, some color
banding effects may occur if brightness varies across the images. Manual
camera settings reduce global lighting variation across images. To reduce
the problem further, averaging or median filtering could be attempted.
Also more sophisticated multi-texture blending methods exist [59, 75].

§ 7.5 MEMORY CONSUMPTION

The memory consumption is shown in Table 7.1. The consumption is sep-
arated into geometry and texture consumption for Poisson meshes. The
datasets Room A, Room B and Kitchen have 47, 23 and 14 keyframes. After
the trajectory has been estimated, a raw point cloud is generated. The min-
imum requirement per vertex is 9 attributes (position, normal and color).
After Poisson reconstruction and texture mapping, the vertices require only
3 floats (x,y,z) and n triangles have in total 9 ∗ n attributes (3 ∗ 2 UV coor-
dinates + 3 ∗ 1 index). In addition texture map requirement is computed
directly as k ∗ 320 ∗ 240 ∗ 3, where k is the number of keyframes. Table 7.1
shows memory footprint for 27, 28, and 29 octree grids. The correspond-
ing geometric quality is illustrated in Figure 7.10. The reconstructions in
Figure 7.12 are generated using 29 grid.
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Figure 7.10: Kitchen scene reconstructed with 27, 28 and 29 octree resolution.
Phong shading reveals the level of geometrical details at each resolution.

Table 7.1: Memory consumption of the test sequences.

Dataset Raw Poisson(9) Poisson(8) Poisson(7)

Room A 124MB (32 + 12)MB (7.8 + 12)MB (2.0 + 12)MB
Room B 60.6MB (21 + 5)MB (5.8 + 5)MB (1.6 + 5)MB
Kitchen 36.9MB (14 + 3)MB (3.8 + 3)MB (1.1 + 3)MB

(a) (b)

Figure 7.11: Room B sequence. Reconstruction bias in when operating in a) incre-
mental mode, b) SLAM mode. After 360◦ turn the first and last keyframe should
map points consistently into a single 90◦ corner. In this case a) is slightly more
precise, because subsequent images are photometrically the most comparable with
negligible interpolation errors.
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Figure 7.12: Final textured Poisson meshes loaded into Meshlab for inspection:
a) Room B, b) Kitchen. Poisson reconstruction produces watertight mesh, whose
texturing is photorealistic as it is directly mapped from the keyframe images. The
cost of reduced memory footprint is over-smoothing, which may occur at thin sur-
faces such as the shelf in 7.12a. Also lighting changes can be detected at seams
where texture data source switches from one keyframe to another. Otherwise the
models are photorealistic and in metric units.
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AUGMENTED REALITY IN LIVE TELEVISION

BROADCASTING

In this chapter, a real-time camera tracking system is developed for tele-
vision production studios based on our GPU implementation. The aim is
to reduce the costs of matchmoving in studio environments by introducing
an affordable RGB-D sensor based camera tracking tool which operates in
real-time, fits studio use, and only requires a low-end GPU. This system has
the following novelties in comparison to other low-cost camera tracking so-
lutions [1, 53]. 1) A RGB-D keyframe-based tracking method is proposed,
which does not suffer from time-evolving drift. A static studio scene is first
modeled as a database of RGB-D keyframes, which are obtained by using
incremental dense tracking approach and fine-tuned using bundle adjust-
ment. The database is then used as a reference for real-time pose estimation
(Figure 8.1)1. By defining the camera tracking problem relative to the near-
est keyframes, drift is avoided. It will be shown how the keyframe tracking
eventually outperforms incremental tracking. The estimation is robust due
to gradient-based pixel selection and an M-estimator.

When aiming at processing dense RGB-D data in real-time, the algo-
rithms must be parallelized to obtain sufficient performance and scalabil-
ity properties. 2) The computational scalability of the camera tracking is
improved by designing the full algorithm for a low-end GPU. A detailed
description from a cost function definition into an efficient GPU implemen-
tation is given.

3) With a static keyframe-based 3D model available, the dynamic fore-
ground points are rejected from the camera pose estimation by observing
discrepancies in intensity and depth simultaneously. Generally in RGB-D
tracking, outliers both in color and depth can exist (occlusions, foreground

1http://youtu.be/L_OLnFc7QxU
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Figure 8.1: A RGB sensor is used to build a keyframe database which contains the
views in the camera motion zone. The TV camera pose is estimated by registering
the image content with the nearest keyframe.

objects, lighting effects etc) and must be taken care of. Our results are ver-
ified in a real television broadcasting studio with and without foreground
dynamics. By these steps, RGB-D based tracking is evaluated in actual ap-
plication use [84].

§ 8.1 SYSTEM

An overall sketch of the full system is illustrated in Figure 8.2. The system
consists of a motion capture studio (NaturalPoint Optitrack [51]) which
sends motion capture stream in real-time to a Linux client which uses
Panda3D engine to render an interactive 3D character into live TV broad-
cast. The camera pose is tracked using the developed GPU implementa-
tion (Chapter 6). First a static keyframe model is recorded using keyframe
SLAM mode prior to broadcasting. Then live tracking utilizes the keyframe
model to obtain driftless tracking which is robust to foreground actors
when sufficient portion of background remains visible. A professional HD
camera is calibrated with the Microsoft Kinect sensor and the depth maps
are re-sampled to match HD camera point of view. The depth maps are
available to AR composition, where the final pixels are selected based on
the distance.



8.1. System 123

Figure 8.2: A schematic view of the overall broadcasting system. The RGB-D
sensor is attached to the TV camera and oriented either towards the scene or toward
the floor. The former configuration uses background scene texturing and the latter
textured carpet for 3D tracking.

8.1.1 AR graphics using Panda3D

AR graphics are rendered in real-time using Panda3D engine. Panda3D is
a library of subroutines for 3D rendering and game development [11]. The
library is C++ with a set of Python bindings, but in this project only C++
components were utilized. Panda3D was created for commercial game de-
velopment, and its primary users are still commercial game developers.
It was developed by Disney for their massively multi-player online game
Toontown, and has also been used in the Pirates of the Caribean game. It
was released as free software in 2002. Since version 1.5.3, Panda3D has
been released under the modified BSD license, which is a free software li-
cense with very few restrictions on usage. Panda3D is currently developed
jointly by Disney and Carnegie Mellon University’s Entertainment Tech-
nology Center. In this project, Panda3D is used to render AR graphics into
live video stream from the current camera angle (Figure 8.4). Panda3D
animates a character using the skinning technique, where a discrete set of
rigid bodies deform skin vertices based on their bone weights.
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8.1.2 Motion capture system for live character animation

In our studio application, we experiment the Optitrak system for live 3D
character animation. The Microsoft Kinect SDK has a built-in skeleton
tracker, but it is only useful for games which do not require maximal preci-
sion. The tracking uses a single point of view and therefore can not always
track the full body configuration. Tracking failures happen with compli-
cated/partially occluded motion. When the pose is too complicated for
the tracker, it is enforced to match its training data [65]. Despite the short-
comings, the Kinect SDK pose estimator is an alternative for low-cost live
motion capture. The NaturalPoint Optitrack system, however, is more pre-
cise, because it uses tens of cameras for skeleton tracking. The system is
bundled with Arena software which supports real-time 3D character pose
streaming. 24 cameras in a truss setup track character pose in 3D based
on retro-reflective marker motion (Fig. 8.3). The markers are illuminated
by IR light sources which are attached to the cameras. In this case, the
IR light will not interfere with the RGB-D sensor, because the motion cap-
ture system is not setup in the same space with the scene (Figure 8.2). An
actor wears a special full-body costume where the markers are attached.
The tracking operates fully in IR zone. Arena software receives a synchro-
nized set of IR images, extracts the marker 2D coordinates and reconstructs
a sparse 3D point cloud. The software fits a fixed skeleton structure into
point cloud and converts the data into a set of rigid bodies. The software
uses NatNet protocol for real-time data broadcasting over a network. A
custom client software was implemented which connects to Arena and re-
ceives the data. The motion parameterization is mapped to a Panda3D 3D
character, which is created in Blender. The skeleton armature was made
compatible by inspecting and replicating Arena software output. Because
the local coordinate systems did not automatically match, fixed conver-
sions were required from the Arena definition into the Panda3D format.
Also the bone scales vary depending on the motion capture actor. There-
fore local scale adjustment was made possible, which functions by scaling
the relative translations between the bones.

8.1.3 AR composition using depth maps

AR composition was experimented on the GPU using a custom-made cg

shader [42], which compares Kinect depth value and AR character depth
value and renders the source which is closer to the camera (Figure 8.4).
Depth map up-sampling is necessary when registering range images with
professional HD camera images. When a point cloud is transformed and
projected onto a RGB image, it will produce an irregular set of 2D sample
points whose data should be interpolated over the full image. If the point
set is relatively accurate, a connected mesh (based on the original image
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(a) (b) (c)

Figure 8.3: a) 24 cameras in truss setup are used to track live 3D character motion.
b) Optitrack skeleton structure c) Blender skeleton structure

grid) can be ray casted to obtain a depth value for each pixel. In a triv-
ial approximation, the source depth map is up-sampled and the points are
directly transformed into a target view. All holes are not filled, but compu-
tational requirements will be low when using a parallel implementation.

Also novel methods are available, but have not been tested in our appli-
cation. Joint bilateral up-sampling is a method which uses a high resolution
RGB image to guide depth map filtering [35]. A depth data is diffused
within precise edges in the HD image using a bilateral filter. The process
is continued by a sequence of post-processing passes which improve depth
map continuity locally until the quality is sufficient [69]. One pass dis-
cretely optimizes such depth variants which produce smoothest neighbor-
hoods. Local discontinuity is used as the error function, and pixel domain
is the same as with the initial bi-lateral pass. The subregions which are al-
ready smooth are not altered. This approach is GPU-friendly because each
subregion can be processed independently. Depth discontinuity weights
are not used, and therefore problems can be expected on depth discontinu-
ity regions where color does not significantly change.

Capturing HD images directly into GPU memory is possible using
NVIDIA SDI capture card which is placed to the side of a graphics card.
Then data transfer is possible transparently and directly into the GPU
memory. This setup is particularly useful because transfer of full HD im-
age resolution (1920× 1080) easily becomes a bottleneck. Typical graphics
cards store images first into RAM and then upload them into the GPU. In
this applications, the GPU is heavily used already and memory transfers
must also be optimized.

In practise, the depth maps obtained using a RGB-D sensor have an
amount of measurement noise, which produces noise to composition. The
depth values are captured correctly at sofa regions, but especially floor and
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background wall contain noise. Visual artifacts are possible only in preview
use, such as when practising scenes which have virtual 3D characters. For
noiseless composition, Ultimatte chroma keyer2 performs purely key color
based composition. Ultimatte was experimented in a live television broad-
cast without problems.

Figure 8.4: A real-time AR broadcast with virtual 3D characters which are ren-
dered from the estimated pose using Panda3D. See example video1.

§ 8.2 STUDIO LIGHTING AND MICROSOFT KINECT

In studio environments, the color constancy assumption works well, be-
cause lighting can be fixed. The keyframe database will be valid as long as
the lighting conditions do not change. However, the Microsoft Kinect sen-
sor adapts to environment lighting changes by default. This degrades the
tracking algorithm performance and prevents total lighting control during
broadcasting. Due to Ubuntu Linux operating system, the freenect API
was used in the project as it is compiles easily on Linux and is customiz-
able and open source. The API operates by sending and receiving messages

2http://www.ultimatte.com

http://www.ultimatte.com
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using the USB channel. According to reverse engineered protocol docu-
mentation, it is possible to fix white balance and exposure parameters. By
experiment, the initial values could not be set however. The initial values
are determined by the current lighting conditions. This is slightly restric-
tive since, for example, the frame rate easily switches into 15Hz if the initial
conditions are low light. Also OpenNI drivers are available for Linux, but
were not experimented. The Microsoft Kinect RGB camera is of low qual-
ity and in standard studio lighting conditions the colors can saturate (see
Fig. 8.5). Also specular surfaces must be avoided in the scene and external
IR light must not exist.

Figure 8.5: Brightness saturation effect with Microsoft Kinect sensor when in-
creasing studio lighting.

With professional HD cameras this is not the case since they have re-
markably better dynamic range (Figure 8.6). To circumvent this limitation,
the RGB-D sensor depth maps can be directly calibrated with a HD cam-
era [23] (Section 8.1.3).

Figure 8.6: HD camera (left) and Microsoft Kinect RGB image (right) in a typical
studio lighting conditions.

§ 8.3 TRACKING CONFIGURATIONS

Two different tracking configurations are considered. The RGB-D sensor is
oriented either towards the scene or towards a textured carpet on the floor
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(a) (b)

(c) (d)

Figure 8.7: The camera tracking was experimented in two different configura-
tions. a) The RGB-D sensor oriented towards the scene where and tracking uses
the background pixels. b) AR character added to a physical scene c) The RGB-D
sensor oriented toward the floor with a textured carpet. d) A virtual scene with a
real character extracted from video.

(Figure 8.7).

8.3.1 RGB-D sensor towards the scene

This is a novel approach, which allows using high quality gradient in-
formation from HD images to increase RGB-D tracking accuracy. Profes-
sional HD cameras are also compatible with studio lighting conditions (Sec-
tion 8.2). The challenge is, however, to avoid the foreground actors during
the estimation. When HD images are directly stored to GPU memory, AR
composition is possible with a customized technique. By implementing
chroma keying directly on GPU, the system costs are significantly reduced.
The de facto standard is the Ultimatte keyer, which performs chroma keying
in many production studios and costs 25k€.
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During broadcasting, the scene will contain moving actors. The pose
estimation should only use the static background in order to avoid estima-
tion bias. After the static keyframe model has been captured, the scene can
be segmented into static and dynamic components. The segmentation is
useful for weighting the dynamic foreground out from camera estimation.
The Tukey weighting is illustrated in Figure 8.8. The estimation requires
a sufficient amount of visible points and, therefore, foreground actors are
not allowed to occlude more than a fraction of the selected points. In the
Figure 8.8, rougly 1/3 of the keyframe points are occluded and the tracking
still works. See an example video of M-estimator performance in a scene
with extreme foreground motion 4. The moving actor does not disturb cam-
era tracking when relying on the keyframes.

In case multiple cameras are used during the broadcast, RGB-D sensors
interfere each other, because each sensor projects an IR pattern towards the
scene. Reconstructing a precise depth map from a mixed IR pattern is dif-
ficult. One solution has been proposed by Microsoft Research to overcome
this problem [9]. The idea is to literally shake the RGB-D sensors to blur
the interfering patterns out from the disparity map estimation. In prac-
tise, attaching a shaking device into TV camera requires special attachment
method.

8.3.2 RGB-D sensor towards the floor

This is a typical industrial solution, because outliers do not exist and a sim-
ply homography mapping models image changes (Section 3.1.3). In the
experiment, A flower pattern was printed on a 2.5m× 2.5m carpet and set
below a TV camera. The flower pattern provides excellent image gradients
in all directions and does not have repetitive texturing which could con-
fuse the tracker. The RGB-D sensor was attached as close to the TV camera
objective as possible and oriented towards the carpet. The RGB-D tracker
was executed in the SLAM mode (Section 6.1.3) and thus the pattern is
learned concurrently to tracking (Figure 8.9). Multiple AR characters were
positioned on the carpet and animated using a single 3D pose stream sent
by the Arena software. The floor was estimated from the first RGB-D mea-
surement by plane regression. Plane parameters are used to position AR
characters exactly on the floor level. Then camera is rotated and translated
in 3D space above the floor. AR graphics remain at their correct floor coor-
dinates through-out the experiment5.

This configuration allows using a green-screen for background subtrac-
tion and allows using multiple cameras, because the RGB-D sensors do not
interfere each other. Now the background scene is fully computer gener-
ated, and rotates and translates based on the camera pose (Figure 8.7d).

4http://youtu.be/iVdYPbHY2ro
5http://youtu.be/CpXXWeCDD5o

http://youtu.be/iVdYPbHY2ro
http://youtu.be/CpXXWeCDD5o
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Figure 8.8: The points which currently participate in pose estimation are selected
based on the image gradient magnitude. M-estimator weights are damped by the
depth residual based weights to neglect the dynamic foreground. The weight 1.0 is
assigned to the green points and 0.0 to the red points. The foreground actors can
cause a tracking failure in KinectFusion system [53].

Because TV camera and RGB-D sensor are pointed to different directions
without any overlap, the estimation of the relative transformation is trick-
ier. Rotational motion is the same for both cameras, because they belong to
the same physical body. The RGB-D sensor was placed as close to the TV
camera objective as possible to minimize translation bias.

The angle and translation range is limited when using a textured carpet
and a green-screen. In our studio, the green-screen was set only on one wall
and it was difficult to rotate the camera and maintain fully green images.
The rotation range was only ∼ 45◦. The carpet also limits translational mo-
tion to one meter in all directions. In many TV studios, fancy camera mo-
tion does not exist, and cameras are only rotated, translated and zoomed
little during the broadcast. Thus carpet solution is practical in studio use
and can replace pan/tilt heads, which mechanically measure limited cam-
era motion in a similar use case.
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(a) (b)

(c) (d)

Figure 8.9: a) A carpet with a flower pattern used for 3D camera tracking. Se-
lected points on green. b) 3D map of the carpet built concurrently. c) Nearest
keyframe points illustrated on green. d) AR graphics positioned on the carpet co-
ordinate system.

§ 8.4 3D MODELING OF A STUDIO ENVIRONMENT

The same pipeline described in Section 7 is useful for 3D modeling of a
studio environment, but in addition a keyframe consistency check turned
out to be useful (sec. 8.4.1). The initial setup contained an IR emitting light-
source and a specular statue which corrupted regions in the depth maps.

A polygon model is useful when designing AR interaction in a reference
coordinate system. It allows defining AR placement in the scene and en-
ables motion with collisions to real world objects. Despite the fact that the
algorithms formulated in this project all utilize point based reconstructions,
polygon models are more compact in their memory consumption and are
better supported by standard 3D modeling programs such as Autodesk’s
3DSMax and Meshlab. A Poisson polygonization was discussed in Sec-
tion 7 and an example in studio environment is illustrated in Figure 8.10
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with video3.

Figure 8.10: Wireframe model of TV studio scene via Poisson method.

8.4.1 Depth map noise in a studio environment

Image-based pose estimation depends on the depth map quality and the
amount of static edges. An experiment was carried out to check how con-
sistent 3D structure is produced when combining the selected keyframe
points from multiple keyframes into one reference coordinate system. An
example studio scene is illustrated in Figures 8.1 and 8.4. When four
keyframes are combined in Figure 8.11, it can be noticed how the IR emit-
ting light source and the black specular statue in the scene produce incon-
sistent edge information. False depth coordinates bias pose estimation, be-
cause motion across images is not fully explained by camera motion. M-
estimator reduces outlier problems, but does not prevent bias, because also
outlier points with small residual are accepted. IR emitting or specular
surfaces should not be placed into the studio scene, but the problem can
reduced by performing filtering described in section 8.4.2.

8.4.2 Depth map filtering for studio model

To increase keyframe quality for online 3D tracking, the depth maps are
fused from several RGB-D frames. As described in Section 7.1, it is also
useful to neglect points which are statistically rare. When a certain (x, y)
coordinate in the reference depth map does not collect a sufficient amount
of support with similar RGB color, it should be discarded. This mecha-
nism essentially filters out all geometry whose appearance is not directly

3 Video: http://youtu.be/Xnn_06r7tFE

http://youtu.be/Xnn_06r7tFE
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Figure 8.11: 4 keyframes transformed into same reference coordinate system.
Kinect reconstruction problems can be noticed from multiple edges. The blue circle
reveals how IR emitting light source does not have consistent edges. The purple
circle reveals how the black specular statue does not have consistent edges.

dependent on camera motion. Also the reconstruction problems illustrated
in Fig. 8.11 can be removed from the final reconstruction. Observe how
the incorrectly reconstructed specular statue and IR light source disappear
when increasing the minimum amount of support points N (Figure 8.12).
The result after geometric depth fusion illustrated in Figure 8.12f.

§ 8.5 EXPERIMENT: TRACKING ACCURACY

In Figure 8.13, it is shown how the drift increases with dense tracking when
moving front and back along a fixed rail in a studio environment. The pose
estimation problem could be replaced by a simpler one, since the motion
is restricted. The experiments are, however, carried out in the most gen-
eral 6DOF, because scene specific tuning degrades usability. Distance to
the ground truth is measured in every frame as an error metric. For this
sequence, the ground truth is generated using dense tracking but with-
out the bundle adjustment phase. The drift problem is solved by tracking
relative to corrected keyframes. In a long-term use, even a small num-
ber of keyframes eventually outperforms dense tracking due to drift. With
shorter sequences drift is naturally negligible6.

The demonstration video shows the difference between dense tracking
and keyframe tracking in terms of AR graphics 7. In this experiment, larger
tracking bias can be expected. The RGB-D sequence is difficult, because it
contains only few edges which can be used to track the camera. Some of

6http://youtu.be/wALQB3eDbUg
7http://youtu.be/zfKdZSkG4LU

http://youtu.be/wALQB3eDbUg
http://youtu.be/zfKdZSkG4LU
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(a) (b)

(c) (d)

(e) (f)

Figure 8.12: Filtering out inconsistent 3D points. The images illustrate final
keyframe model, when each 3D points must have at least N observations with
same color. a) N = 1 b) N = 32 c) N = 64 d) N = 128. Notice how the black
statue and IR emitting light disappear when N is increased. These object types are
not well supported by Microsoft Kinect sensor. e) The raw keyframe point cloud, f)
The keyframe points after depth map fusion. Random noise has disappeared.
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Figure 8.13: a) A rapid 3D scene reconstruction is made by moving a camera
along a fixed 3.30m studio rail. b) A comparison between dense tracking and
keyframe tracking. In dense tracking drift increases in time, but keyframe tracking
maintains small bounded error. A person is moving in the scene during the last
cycles.
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these edges are also associated to false depth values and must be filtered
out using the scheme proposed in Section 7.1. Depth map inaccuracy intro-
duces false edge motion which can increase bias during estimation.

Figure 8.14 shows how the online tracking accuracy depends on the
number of keyframes. The sequence is illustrated in Figure 8.1, but
keyframe switching error are quantified in an empty scene. The ground
truth is generated by applying bundle adjustment to 27 keyframes which
are initialized by dense tracking. Keyframe tracking is then executed with
a sparse number of ground truth keyframes (14, 9, 7, 5) by skipping a num-
ber of keyframes along the trajectory. The camera pose is compared in
each frame to the corresponding ground truth pose. A small number of
keyframes produce local drift which shows as error ramps between the
keyframes. This can be visually disturbing. With a sufficient number of
keyframes and sufficient scene texturing, the error remains small. In longer
sequences, keyframe pose error finally depends on the bundle adjustment
accuracy. Bundle adjustment removes global error but easily introduces
local variance to the key poses if the 2D point correspondences are not pre-
cise. With the demonstration video, 14 keyframes produce small switching
effects. Even more precise ground truth could be obtained by varying poses
and evaluating image-based consistency globally. This phase is avoided,
because the experiments are carried out with a laptop, whose computa-
tional capacity is limited.

§ 8.6 CONSTRAINTS

If the camera is moving too quickly, the minimization may not converge,
because we use local optimization strategy. Global minimization strategies
of the cost function are not discussed in this work because they are com-
putationally too expensive to operate in real-time. Therefore, to avoid re-
localization needs, we must assume limited camera speed, sufficient scene
texturing, sufficient keyframe density, and that a sufficient amount of se-
lected keyframe points are visible despite the occluding actors.

§ 8.7 SUMMARY

In this work, an affordable real-time matchmoving solution was de-
veloped, which can be used to produce broadcasts with interactive digi-
tal components, such as virtual characters and stage items. The solution
performs in real-time using a RGB-D sensor, and a laptop with a low-end
GPU (NVS4200m). This system was able to accurately and robustly track a
camera in broadcasting studio sized operating volumes which are too big
for voxel based approaches. Drift does not exist as the camera is tracked
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relative to the nearest keyframe. The pose error without bundle adjust-
ment is space-evolving, because the distant keyframes will contain more
error. The keyframes were generated using GPU-enhanced dense tracking,
and fine-tuned, when necessary, using sparse bundle adjustment. A M-
estimator was enhanced by segmentation-based weights, which allows ac-
tors to move in the foreground while tracking the camera. When operating
in the RGB-D sensor range, our pose estimation accuracy depends mostly
on the texturing, which is trivial to increase in studio environments. On the
other hand, when pointing RGB-D sensor towards the floor, a green-screen
can be used. Experimentation was also done how textured carpet works
when rendering fully virtual scene from the correct camera angle. Camera
tracking has been demonstrated in a real broadcast studio with and without
a dynamic foreground. Drift and keyframe switching errors have also been
quantified. Future work will address the practical issues of how studio staff
and cameramen can use this computer vision system in live broadcasts.
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Figure 8.14: The translation and rotation error as a function of keyframe count.
The sequence is illustrated in Figure 8.1 and the ground truth is generated by ap-
plying bundle adjustment technique for maximal amount of keyframes. Keyframe
switching error depends on the amount of keyframes. At least 14 keyframes are
required to obtain small keyframe switching error. Inconsistent keyframe geometry
and local errors in bundle adjustment produce ramps.
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CONCLUSIONS

The presented work covered many theoretical and practical aspects of RGB-
D tracking and reconstruction. Photometric cost functions were formulated
and efficiently minimized in different use cases. The accuracy and robust-
ness of theses approaches was verified using real and simulated sequences
with ground truth data. Temporal correspondence was elegantly expressed
via a photometric cost function and 3D structure was also photometrically
refined within the estimated depth bounds. Finally, an efficient GPU im-
plementation was developed, which minimizes photometric pose error in
real-time. Due to Lambertian assumption, photometric cost functions are
effective within a short temporal window. The precision is good because
they minimize true sensor error and the raw measurements need not to be
simplified into feature points. Image based refinement methods can replace
and enhance the initial estimates obtained using traditional geometrical es-
timation methods. Overall, this project became a path from photometric
cost function definitions to real-time and online systems, whose accuracy
and practical aspects were made visible using various sequences.

In publication (i) [82], a photometric cost function was presented, which
measures the fitness of 3D pose and dense disparity map with given stereo
images. Disparity variance based bounds were derived and propagated in
frame-to-frame basis to speed-up disparity map generation. The formula-
tion itself is mathematically sound, but problems arise in the practical ap-
plication setting (Section 4.5). Generating dense depth maps with sufficient
precision is difficult, because two satellites are required (see Appendix),
and also target texturing and compatibility with the chosen dense match-
ing method can not be verified without a real sequence. Also monocular
SLAM techniques exist, but they require special initialization phase, and
depend heavily on the optical flow quality. Based on the available aster-
oid imaginary, it is possible that dense and precise optical flow could be
extracted from the sequences, but real sequences are necessary to test the

139
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idea further. If the optical flow is not dense and the images contain insuf-
ficient texturing, the 3D surface must be guessed based on the smoothness
assumption [52]. Despite these practical problems, the proposed cost func-
tion provides novel insight on how joint estimation of 3D pose and struc-
ture is possible using a photometric cost function and also how to avoid
unnecessary disparity map computation.

In publication (ii) [81], 2.5D maps were represented as general RGB-
D measurements without depending on a specific measuring technique.
Both RGB and depth map discrepancies were concurrently minimized to
reduce drift. This novel formulation is more robust than purely image
based approach in environments with homogeneous texturing. Also novel
histogram based saliency selection was proposed to reduce computational
requirements in pixel selection from O(nlogn) to O(n),

Publications (iii) [84] and (iv) [80], focus on developing practical and
real-time tools for indoor mapping and augmented reality using a RGB-D
sensor. Camera tracking solution was developed for a television produc-
tion studio, which uses photometric minimization for pose estimation. A
procedure was proposed to build a 3D keyframe model of the static stu-
dio, which then provides a fixed reference for driftless camera tracking.
Keyframe model is post-processed in offline to increase depth map and
pose quality. An offline model is also useful when designing AR interaction
prior to the broadcast. Many computational enhancements were required
to be able to execute the system in real-time using the available low-end
GPU. A scalable GPU implementation was developed, which implements
various optimizations, but does not compromise tracking accuracy. De-
signing a real-time tracking system is by nature more reductive than incre-
mental in terms of new functionalities, because care has to be taken that
30Hz implementation is actually obtained using the available hardware. In
this project, the hardware has been more or less light-weight since all ex-
periments have been carried out using a laptop with a low-end GPU. All
tools used to experiment, validate, test, visualize and understand the char-
acteristics of photometrical estimation methods have been developed from
the scratch. The tracking and mapping methods were evaluated both in
television production studio and in an apartment (Section 7). High track-
ing precision was maintained in indoor environments and even foreground
actors were tolerated.

§ 9.1 PERSPECTIVES

This section discusses the remaining problems which could be addressed
in future work. In larger environments, the incremental keyframe genera-
tion will produce spatially-evolving error, which finally must be corrected
using a global technique. One correction solution is traditional SBA. SBA
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uses projection point associations in multiple views, which are tedious to
generate in environments with homogeneous texturing. More automatic
pose correction methods should be developed. One option would be to
initialize the configuration using the current approach and proceed with
automatic but bounded feature extraction and matching [59]. That would
eliminate gross feature matching problems. After traditional bundle adjust-
ment, final refinement could be done by photometric bundle adjustment.
Some novel techniques have been recently developed for global keyframe
optimization. For example g2o framework developed for graph optimiza-
tion tasks [36] has been used for automatic and global keyframe optimiza-
tion [72].

The re-localization problem is still to be solved. Re-localization is nec-
essary if the camera speed or occluded image region increases too much.
Image-based re-localization is very difficult in general environments, be-
cause nothing guarantees a unique mapping between a current view and
an available model. A feature vector histogram database (bag-of-words)
has been used to identify the current image from tens of thousands of im-
ages [16]. In our studio applications case, natural re-localization scheme is
to initialize the current camera pose using an external tracking system since
NaturalPoint Optitrak is available. Recent developments in re-localization
are reported by Shotton et al. [66].

In the current implementation, keyframes are stored uniformly in the
angle and position spaces. In online use, keyframe switching may some-
times cause small ramps, which could be avoided if the local keyframe
density would be selected appropriately. Comport et al. observe Median
absolute deviation (MAD) of the error residual to determine when the ref-
erence should be changed. Appearance changes are not uniform when a
keyframe is approached in different directions. Thus, a mechanism to opti-
mize keyframe amount to its minimum would be useful, which takes into
account various incoming directions.

The Microsoft Kinect is imprecise with specular surfaces and image re-
gions with external IR light (Figure 8.11). Gross reconstruction errors may
occur when the environment is not fully compatible with the device. This is
a problem especially when storing keyframe points, because invalid geom-
etry implies tracking problems. Currently a depth map fusion phase helps
in filtering out points whose appearance does not vary solely as a function
of the camera pose. This removes a large amount of outliers, but the model
should be qualitatively verified in a model editor, which supports manual
outlier removal.

In live AR application, which uses a textured carpet, a calibration tool
should be developed which produces exact calibration between the RGB-D
sensors oriented towards the floor and the TV camera oriented towards the
scene.
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RÉSUMÉ EN FRANÇAIS

En matière de vision artificielle, on approche l’estimation de la pose des
caméras et l’affinement des structures 3D en définissant des fonctions de
coût dont les minima correspondent à la configuration de modèle désirée.
Ces deux problèmes étant par nature géométriques, les mesures de l’image
originale sont souvent remplacées par des points caractéristiques 2D ex-
traits des images. Les points caractéristiques sont des régions locales par-
ticulières, comme les coins et les arêtes, que l’on peut faire correspondre
d’une image à l’autre. En fin de compte, une fonction de coût géométrique
détermine les paramètres idéaux par rapport à toutes les observations de
points caractéristiques 2D. Si les données de coût géométrique permettent
d’obtenir des estimations précises, le processus d’estimation n’utilise para-
doxalement qu’indirectement les données de l’image originale. Les points
2D doivent être extraits des images et une correspondance doit être établie
entre eux dans des vues multiples. C’est là le maillon faible du proces-
sus d’estimation, car il est impossible d’éviter les erreurs d’extraction et
de correspondance. Les erreurs de correspondance, en particulier, doivent
être résolues par des techniques telles que RANSAC et les M-estimateurs,
pour augmenter la tolérance aux aberrations évidentes. L’extraction de
points caractéristiques est elle aussi imprécise, car les points sont proba-
blement décalés par rapport à la projection idéale d’un point 3D. Par ex-
emple, l’angle de vue et les conditions d’éclairage influencent le processus
d’extraction des points caractéristiques.

Dans ce travail, les méthodes d’estimation basées sur l’image – aussi
appelées méthodes directes – étudiées évitent complètement l’extraction de
points caractéristiques et l’établissement de correspondance entre eux. Les
fonctions de coût sont directement définies à l’aide de mesures brutes en
pixels, et le but est d’obtenir des estimations précises de pose de caméra et
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de structure. Les fonctions de coût présentées minimisent l’erreur de cap-
teur, car les mesures ne sont pas transformées ni modifiées. En ce qui con-
cerne l’estimation de la pose des caméras photométriques, les paramètres
de rotation et de translation 3D sont estimés en minimisant une séquence
de fonctions de coût basées sur l’image. Ces fonctions de coût sont non
linéaires, à cause de la projection en perspective et de la distorsion de
l’objectif. En ce qui concerne l’affinement de structure basé sur l’image,
la structure 3D est affinée en minimisant l’écart d’apparence par rapport à
la vue de référence, en utilisant des vues supplémentaires. Les méthodes
d’estimation basées sur l’image peuvent être utilisées lorsque l’hypothèse
lambertienne d’éclairage se vérifie, les points 3D ayant une couleur con-
stante quel que soit l’angle de vue. Les principaux domaines d’application
considérés dans ce travail sont la reconstruction d’intérieurs, la robotique
et la réalité augmentée, pour lesquels plus de précision en matière de suivi
de caméra 3D et de mappage d’environnement est un avantage.

L’objectif global du projet est d’améliorer les méthodes d’estimation
basées sur l’image et de permettre leur utilisation dans le cadre
d’applications en temps réel. Les principales questions relatives à ce tra-
vail sont :

• « Qu’est-ce qu’une formulation efficace pour la pose et la structure 3D tâche
d’estimation basée sur des images? ? »

• « Comment organiser le calcul pour permettre une implémentation en temps
réel ? »

• « Quelles considérations pratiques s’appliquent à l’utilisation des méthodes
d’estimation basées sur l’image dans des applications telles que la réalité
augmentée et la reconstruction 3D ? »

Deux cas d’application sont considérés. Le premier concerne une mis-
sion de reconstruction d’un astéroïde, avec l’utilisation d’une inférence
multivue pour l’estimation autonome de la pose et la reconstruction 3D.
Les deux premières publications décrivent les développements réalisés
dans le laboratoire I3S de Sophia- Antipolis dans le but d’appliquer la vi-
sion artificielle de pointe aux applications spatiales, en collaboration avec
Thales-Alenia Space. L’efficacité du calcul et la robustesse du suivi ont par-
ticulièrement été prises en considération. L’évaluation comparative stan-
dard pour l’odométrie visuelle n’étant pas disponible, elle a été dévelop-
pée, afin de suivre le développement en termes de précision et de ro-
bustesse. Le logiciel Blender a été utilisé pour générer des ensembles de
données synthétiques avec des trajectoires vérité terrain. Une plaque tour-
nante a également été utilisée pour tester l’odométrie visuelle avec des don-
nées plus réalistes.

En cours de projet, Microsoft a lancé son capteur Kinect, ce qui a permis
de capturer des mesures RGB-D assez précises dans des environnements
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intérieurs sans texture à 30 Hz, à l’aide d’un motif lumineux IR structuré.
Par rapport aux cartes de profondeur générées à partir de caméras stéréo,
la précision structurale est devenue beaucoup plus régulière et indépen-
dante du contenu de l’image. J’ai fait la demande de transformer ce pro-
jet de doctorat en un double diplôme avec l’Université de technologie de
Lappeenranta, afin de pouvoir me concentrer sur les environnements des
studios de production télévisuelle. Ce changement a simplifié l’acquisition
de données, puisqu’il était alors possible de capturer facilement des don-
nées réelles dans l’environnement d’application réel.

L’objectif de la deuxième partie de cette thèse consistait à développer
une solution de suivi de caméra 3D pour les studios de production télévi-
suelle qui permette de calculer les rendus des images de réalité augmen-
tée sur les diffusions en direct. L’industrie du cinéma connaît cette tech-
nique sous le nom de matchmoving. Elle s’effectue habituellement en post-
production à l’aide de trackers semi- automatiques [17]. Un tracker est un
outil qui estime la trajectoire de mouvement d’une caméra 3D d’après des
tracés de points 2D [85, 86]. Dans les studios, le matchmoving en temps
réel s’effectue habituellement à l’aide d’un système externe de capture des
mouvements [49], qui suit une caméra en temps réel en se basant sur des
repères passifs fixés à la caméra. Le logiciel Brainstorm Multimedia, par
exemple, est alors utilisé pour calculer en temps réel le rendu des images
dépendantes de la vue [7]. Bien que la capture des mouvements soit précise
et permette de travailler sur un grand volume, le prix total d’un système
professionnel est actuellement de 200000 à 500000 €. Des systèmes moins
chers existent, comme NaturalPoint Optitrak [51], qui coûte environ 25000
€, mais leur précision et leur cadence de capture sont plus faibles.

Un tracker en temps réel basé sur l’image a été développé pour offrir
un suivi automatique de caméra économique, que l’université KyAMK de
sciences appliquées de Kouvola pourrait utiliser à des fins éducatives. Le
projet a été financé par le Fonds européen de développement régional et
la Fédération des industries technologiques finlandaises. Une implémen-
tation en temps réel était nécessaire et aucune dérive n’était tolérée. Pour
cela, une méthode d’acquisition de modèle 3D devait être développée pour
obtenir une référence fixe. Une certaine tolérance était nécessaire par rap-
port aux acteurs en premier plan, dans une configuration dans laquelle le
contenu du programme était directement utilisé pour estimer la pose de
caméra. Une approche alternative consistait à pointer un capteur RGB-
D vers un tapis texturé pour éviter toute manipulation de la scène. Une
expérimentation intense a eu lieu en environnement de studio, en collab-
oration avec le personnel du studio, afin d’obtenir un système utilisable.
L’ensemble d’outils a été testé avec une grande variété de vidéos de syn-
thèse et réelles comme sources. Enfin, la solution de suivi a été expérimen-
tée sur des programmes télévisuels avec des contenus de réalité augmentée
en direct et en reconstruction 3D d’intérieurs.
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§ 10.1 CONTRIBUTIONS ET PUBLICATIONS

Les publications suivantes ont été écrites au cours du projet :

Publication (i)
“A Dense Structure Model for Image Based Stereo SLAM”, T. M.
Tykkälä, and A.I. Comport, IEEE International Conference on
Robotics and Automation (ICRA), Shanghai, China, May 2011,

Publication (ii)
“Direct Iterative Closest Point for Real-time Visual Odometry”,
T. M. Tykkälä, C. Audras, and A. I. Comport, Workshop on
Computer Vision in Vehicle Technology: From Earth to Mars
in conjunction with the International Conference on Computer
Vision (CVVT/ICCV), Barcelona, Spain, Nov 2011.

Publication (iii)
“RGB-D Tracking and Reconstruction for TV Broadcasts”, T.M.
Tykkälä, H. Hartikainen, A.I. Comport, and J-K. Kämäräinen.
8th International Conference on Computer Vision Theory and
Applications (VISAPP), Barcelona, Spain, Feb 2013.

Publication (iv)
“Live RGB-D Camera Tracking for Television Production Stu-
dios”, T.M. Tykkälä, A.I. Comport, J-K. Kämäräinen and H. Har-
tikainen. Journal of Visual Communication and Image Repre-
sentation, Elsevier, Apr 2013.

10.1.1 Publication I

Dans la publication (i), l’estimation simultanée de la pose 3D et des
paramètres de structure est formulée à l’aide d’une fonction de coût SLAM
basée sur l’image [82]. Une telle fonction de coût peut être utilisée en
navigation autonome et pour le mappage d’environnements spatiaux. Au
cours d’une récente mission d’échantillonnage sur l’astéroïde Itokawa, des
images de l’astéroïdes ont été collectées par un robot autonome. Ces im-
ages ont ensuite été utilisées dans le cadre de la reconstruction manuelle
en 3D de l’astéroïde Itokawa. Dans notre travail, les valeurs de dispar-
ité sont traitées comme des paramètres libres dont la covariance liée aux
paramètres de pose est estimée. Les écarts de disparité basés sur l’image
sont obtenus en marginalisant les paramètres de mouvement. Ces écarts
sont alors utilisés pour limiter l’estimation de la carte de disparité suivante.
Ce processus accélère le calcul de la carte de disparité, qui constitue sou-
vent un goulot d’étranglement. Le sujet a été étudié en collaboration avec
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Thales-Alenia Space, qui a financé une partie de ce travail et fourni une tra-
jectoire d’orbite réaliste autour d’Itokawa. Les trajectoires et des modèles
3D d’astéroïde disponibles ont été utilisés pour évaluer la méthode.

10.1.2 Publication II

Dans la publication (ii), des cartes 2,5D sont représentées directement
comme des mesures RGB-D générales, indépendamment d’une technique
de mesure spécifique [81]. Il est essentiel pour tout problème d’odométrie
visuelle de maintenir une dérive aussi faible que possible. Pour réduire
la dérive, les différences de l’image RVB et de la carte de profondeur
sont simultanément minimisées. Lorsque l’erreur résiduelle consiste en
deux composants avec des unités différentes, l’incertitude numérique (les
écarts types) peut également varier d’un composant à l’autre. Cela signifie
qu’un paramètre d’ajustement supplémentaire λ est nécessaire pour com-
penser les incertitudes de telle manière que la dérive soit minimisée. Pour
améliorer l’efficacité de calcul, il est proposé de sélectionner les régions
significatives de l’image à l’aide d’un histogramme de magnitude de gra-
dient. La méthode avec histogramme réduit les exigences de calcul pour la
sélection de pixels de O(nlogn) à O(n), car on peut éviter totalement le tri.
Les expériences montrent que l’estimation de la pose peut être plus pré-
cise, surtout lorsque l’hypothèse lambertienne ne se vérifie que partielle-
ment. La méthode est également démontrée à l’aide d’une séquence spa-
tiale réelle du PRoVisG MARS 3D Challenge [29].

10.1.3 Publication III

Dans la publication (iii), un système utilisant le capteur Microsoft Kinect
pour insérer des éléments de réalité augmentée dans une télédiffusion
en direct est présenté. La réalité augmentée en direct est utile pour con-
cevoir des scènes télévisuelles et cinématographiques qui contiennent des
composants virtuels interactifs. Les éléments de réalité augmentée sont
habituellement ajoutés en post-production. Si plusieurs prises sont néces-
saires, le processus peut facilement revenir cher. Avec un système de réalité
augmentée en direct, les scènes peuvent être répétées en temps réel avec
une qualité de réalité augmentée suffisante. Au moment où les scènes sont
enregistrées dans leur forme définitive, une seule étape de post-production
est nécessaire. Le suivi de caméra RGB-D est proposé aux studios de télévi-
sion pour utiliser la réalité augmentée en direct, afin de réduire les besoins
de post-production et d’abaisser les coûts [84]. Lors d’une diffusion en
direct avec réalité augmentée, la dérive est interdite et une fermeture de
boucle fréquente est nécessaire. Une méthode d’implémentation de fer-
meture de boucle consiste à utiliser des images clés. Lorsque le suivi est
défini relativement à un ensemble d’images clés, la dérive ne se cumule pas
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dans le temps. Un modèle d’image clé prédéfini est également nécessaire
lorsqu’il faut éviter les acteurs en mouvement dans la scène. Le modèle sta-
tique offre des valeurs de distance et des valeurs d’intensité, qui sont com-
parées à la mesure RGB-D courante. En filtrant les régions d’image présen-
tant une trop grande différence avec le modèle, le mouvement en premier
plan n’influence pas le processus de suivi. Les images clés ne peuvent pas
contenir de régions dynamiques, car les modifications d’apparence sont
uniquement modélisées par modèle de caméra mathématique.

10.1.4 Publication IV

Dans la publication (iv), un tracker RGB-D en temps réel disposant de
la capacité de calcul et de l’extensibilité d’une unité centrale graphique
est développé [80]. Cette implémentation est l’une des premières pour
une unité centrale graphique. Plusieurs optimisations d’unité centrale
graphique permettant un fonctionnement en temps réel, même avec une
unité centrale graphique bas de gamme, sont présentées et décrites. Le sys-
tème est conçu pour ne pas coûter cher, et il ne nécessite qu’un capteur
RGB-D et un ordinateur portable. Le suivi RGB-D est expérimenté dans un
studio de production télévisuelle, avec et sans acteurs au premier plan. De
nouveaux outils sont créés pour préfiltrer et affiner les modèles 3D générés
par le suivi RGB-D. La précision est comparée à un système KinectFusion
récent, qui assure simultanément le suivi de la pose de caméra 3D et génère
un modèle 3D à base de voxels [53]. La comparaison montre en quoi la
méthode proposée est plus performante que KinectFusion pour un grand
volume de travail. L’utilisation comme référence d’un modèle 3D basé sur
les images clés nécessite une métrique du plus proche voisin pour mesurer
la similarité de pose à l’aide d’une seule métrique. Une métrique qui unifie
les unités d’orientation et de translation est proposée. Cette thèse fournit
également des exemples de la manière dont des modèles d’appartements
photoréalistes et étanches sont générés par un processus de mappage RGB-
D (Section 7). Ces modèles sont stockés dans un format standard pour per-
mettre leur visualisation en ligne et leur impression 3D.

§ 10.2 CONCLUSIONS ET PERSPECTIVES

Le travail présenté a couvert de nombreux aspects théoriques et pratiques
du suivi RGB-D et de la reconstruction. Des fonctions de coût pho-
tométrique ont été formulées et minimisées efficacement dans différents cas
d’utilisation. La précision et la robustesse de ces approches ont été vérifiées
à l’aide de séquences réelles et simulées avec des données de vérité terrain.
La correspondance temporelle a été exprimée de manière élégante via une
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fonction de coût photométrique et la structure 3D a aussi été affinée pho-
tométriquement dans les limites de profondeur estimées. Enfin, une implé-
mentation efficace d’unité centrale graphique minimisant l’erreur de pose
photométrique en temps réel a été développée. Étant donné l’hypothèse
lambertienne, les fonctions de coût photométrique ne sont valides que dans
un court intervalle de temps. La précision est bonne, car ces fonctions
minimisent l’erreur réelle des capteurs et les mesures brutes ne doivent
pas être simplifiées en points caractéristiques. Les méthodes d’affinement
basées sur l’image peuvent remplacer et améliorer les estimations initiales
obtenues à l’aide des méthodes d’estimation géométrique traditionnelles.
Globalement, ce projet est devenu un lien entre les définitions de fonctions
de coût photométrique et les systèmes en temps réel, dont la précision et
les aspects pratiques ont été révélés à l’aide de diverses séquences.

10.2.1 Perspectives

Cette section traite des problèmes restants, qui doivent être abordés dans
un travail futur. Dans des environnements plus grands, la génération
incrémentale d’images clés produit une erreur évoluant dans l’espace,
qui doit au bout du compte être corrigée à l’aide d’une technique glob-
ale. Une solution corrective traditionnelle est SBA. SBA utilise les asso-
ciations de points de projection dans des vues multiples, qui sont fas-
tidieuses à générer dans les environnements présentant une texture ho-
mogène. D’autres méthodes de correction automatique de pose devraient
être développées. Une option consisterait à initialiser la configuration
à l’aide de l’approche actuelle et de continuer avec l’extraction automa-
tique mais limitée de caractéristiques et leur mise en correspondance [59].
Ceci éliminerait les problèmes flagrants de correspondance des caractéris-
tiques. Après l’ajustement groupé habituel, un affinement définitif pour-
rait être effectué par ajustement photométrique groupé. De nouvelles tech-
niques ont récemment été développées pour l’optimisation globale des im-
ages clés. Par exemple, l’infrastructure g2o développée pour les tâches
d’optimisation graphique [36] a été utilisée pour l’optimisation automa-
tique et globale des images clés [72].

Le problème de relocalisation reste à résoudre. La relocalisation est
nécessaire si la vitesse de la caméra ou si la région cachée de l’image de-
vient trop importante. La relocalisation basée sur l’image est très diffi-
cile dans les environnements généraux, car rien ne garantit un mappage
unique entre une vue courante et un modèle disponible. Une base de
données d’histogrammes de vecteurs de caractéristiques (bag-of-words) a
été utilisée pour identifier l’image courante parmi des dizaines de milliers
d’images [16]. Dans notre cas d’applications pour studio, le procédé na-
turel de relocalisation consiste à initialiser la pose courante de la caméra
à l’aide d’un système de suivi externe, puisque NaturalPoint Optitrak est
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disponible. Les développements récents en matière de relocalisation sont
rapportés par Shotton et al. [66].

Dans l’implémentation courante, les images clés sont stockées unifor-
mément dans les espaces d’orientation et de position. Pour une utilisation
en temps réel, le changement d’image clé peut parfois provoquer de légers
changements de vitesse, ce qui peut être évité en sélectionnant la densité
d’image clé appropriée. Comport et al. observent l’écart médian absolu de
l’erreur résiduelle pour déterminer le moment auquel la référence doit être
changée. Lorsqu’une image clé est approchée dans différentes directions,
les changements d’apparence ne sont pas uniformes. Pour cette raison, un
mécanisme de minimisation de la quantité d’images clés prenant en compte
différentes directions d’approche serait utile.

Microsoft Kinect n’est pas précis pour les surfaces spéculaires et les ré-
gions de l’image soumises à une lumière IR (Figure 8.11). De grossières er-
reurs de reconstruction peuvent se produire lorsque l’environnement n’est
pas entièrement compatible avec le dispositif. Cela constitue un problème,
surtout lors du stockage de points d’images clés, car une géométrie non
valide implique des problèmes de suivi. À l’heure actuelle, une phase de
fusion de la carte de profondeur aide à filtrer les points dont l’apparence ne
varie pas uniquement en fonction de la pose de la caméra. Ceci supprime
une grande quantité d’aberrations, mais le modèle doit être vérifié qual-
itativement dans un éditeur de modèle prenant en charge la suppression
manuelle des aberrations.

Pour l’application de réalité augmentée en direct, qui utilise un tapis
texturé, un outil d’étalonnage permettant un étalonnage exact entre les cap-
teurs RGB-D orientés vers le sol et la caméra TV orientée vers la scène doit
être développé.
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APPENDIX: SIMULATED ASTEROID DATASETS

Synthetic datasets were rendered with the Blender along with ground-truth
trajectory. The Eros and Itokawa 3D models were obtained from NASA
and Thales-Alenia Space provided a real trajectory around Itokawa aster-
oid (Figure A.1). The material properties, however, could not be modeled
using default Blender and precise simulation of an asteroid mission was not
possible. Some softwares such as PANGU (Planet and Asteroid Natural Scene
Generation Utility) exist for simulating Hapke BRDF with asteroid models.
PANGU is designed by European Space Agency specifically for producing re-
alistic imaginery of space environments, but unfortunately it was not avail-
able for this project. Therefore, general specular material was used instead
as Hapke also contains some specular components. Despite the material
simulation problem, the asteroid orbiting case was not natural for a stereo-
based technology, because sufficient baseline would have required a very
large baseline (two separate satellites). The severity of this problem was
verified using Hartley-Sturm triangulation to reconstruct 3D points from
noisy 2D projections whose noise distribution is Gaussian (stdev 1px and
0.1px). The image resolution is assumed to be 800× 600 and camera field-
of-view is 49.13◦. The resulting graphs illustrate the reconstruction error
dependency on stereo baseline (Figure A.1). If the disparity stdev is merely
0.1px, 200m baseline will be sufficient. These numbers imply that apply-
ing stereo-based tracking and mapping technology is not feasible for aster-
oid missions. Also monocular approaches exist [15], but producing precise
dense reconstructions without explicit depth measurements is problematic.
In a recent DTAM system, dense reconstruction is obtained with a monoc-
ular camera by assuming continuous surface where measurements do not
exist [52].



(a) (b)

(c) (d)

(e) (f)

Figure A.1: Blender generated dataset for asteroid reconstruction mission. a)
Real Eros Asteroid. b) A rendered Eros using Blender, c) A real satellite trajectory
around the Itokawa asteroid provided by Thales-Alenia Space, d) Convergence was
verified by matching a precise target projection with an estimated projection points.
The precise projections on green and photometrically estimated ones on yellow be-
fore convergence. e) Hartley-Sturm reconstruction error in kilometers as a func-
tion of stereo baseline in an asteroid orbiting mission. Assuming 1px Gaussian
stdev in disparity values. Over 1km baseline is required to reduce reconstruction
error into tens of meters. f) Assuming 0.1px Gaussian stdev in disparity values.
200meters is a sufficient baseline, which produces 10m standard deviation for 3D
points. Calibration is exact without any noise.



Figure A.2: The turn-table at INRIA was used for recording the rock sequence.



Algorithm A.1 RGB-D depth map fusion procedure.

Input: Reference RGB-D image {I∗,Z∗}with depth map pose T∗, RGB-D images
{Ik,Zk}, and depth map poses Tk, where k = {1, 2, . . . , n}. Tb is the baseline
transform and K is the intrinsic matrix. B is initial mode bound, C is color
threshold, G is maximum distance to pixel center ray, N is a threshold to con-
trol statistical reliability.

Output: Filtered Z f and stdev image σ
1: A⇐ ∅
2: for all k = {1, 2, . . . , n} do
3: for all v = {1 . . . height} do
4: for all u = {1 . . . width} do
5: p = (u, v, 1)T

6: P⇐ Zk(u, v)K−1p # reconstruct a point
7: c⇐ Ik(w(Tb, P)) # sample color from associated RGB image
8: P∗ ⇐ T∗T−1

k P # warp point into reference frame
9: if ‖c− I∗(w(Tb, P∗))‖ ≥ C then

10: continue # Lambertian assumption does not hold, next point
11: end if
12: p∗ ⇐ round(KN(P∗)) # project and discretise into integers
13: r∗ ⇐ normalize(K−1p∗) # generate a unit ray through pixel center
14: if ‖P∗ − (P∗ · r∗)r∗‖ ≥ G then
15: continue # point too distant from ray
16: end if
17: A(p∗)⇐ {A(p∗), (0, 0, 1) · P∗} # collect z measurement
18: end for
19: end for
20: end for
21: for all p ∈ {width× height} do
22: if #A(p) < N then
23: Z f (p)⇐ 0, σ(p)⇐ 0, continue; # not enough statistical support
24: end if
25: Zm ⇐ median(A(p)) # calculate median z
26: Ω⇐ listIndices(‖A(p)−Zm‖ ≤ B) # enumerate z samples near median
27: Z f (p)⇐ 1.0/( 1

N ∑ 1.0/AΩ(p) ) # local average using inverted values

28: σ(p)⇐
√

1
N (Z f (p)−AΩ(p))2 # determine stdev image

29: end for



Algorithm A.2 Depth refinement using photometric minimization.

Input: Reference RGB-D {I∗,Z∗}, stdev image σ∗, reference depth map pose is
T∗. gradient mask M∗, RGB images Ik with poses Tk, where k = {1, 2, . . . , n}.
baseline matrix Tb, intrinsic matrix K, number of discrete candidates N.

Output: Photometrically refined Z f
1: for all v = {1 . . . height} do
2: for all u = {1 . . . width} do
3: if M(u, v) > 0 then
4: # enumarate discrete depth candidates in depth range
5: z0 ⇐ Z∗(u, v)− σ∗(u, v), z1 ⇐ Z∗(u, v) + σ∗(u, v)
6: S(u, v, p) = z0 + p ∗ (z1 − z0)/N , where p = {1, 2, . . . , N}
7: end if
8: end for
9: end for

10: C = ∅
11: for all k = {1, 2, . . . , n} do
12: T = Tk(T∗)−1

13: for all v = {1 . . . height} do
14: for all u = {1 . . . width} do
15: if M(u, v) > 0 then
16: # increment cost terms to the kth image
17: for all p = {1 . . . N} do
18: P⇐ S(u, v, p)K−1(u, v, 1)T # reconstruct a point
19: C(u, v, p) = C(u, v, p) + ‖Ik(w(T, P))− I∗(u, v)‖
20: end for
21: end if
22: end for
23: end for
24: end for
25: for all v = {1 . . . height} do
26: for all u = {1 . . . width} do
27: if (M(u, v) > 0) then
28: # avoid border samples (the minimum not within the bounds?)
29: bestIndex⇐ argmin

p
C(u, v, p))

30: if 1 < bestIndex < N then
31: Z f (u, v)⇐ S(u, v, bestIndex) # refine depth
32: end if
33: end if
34: end for
35: end for



BIBLIOGRAPHY

[1] AUDRAS, C., COMPORT, A. I., MEILLAND, M., AND RIVES, P. Real-
time dense rgb-d localisation and mapping. In Australian Conference on
Robotics and Automation. Monash University, Australia, 2011 (2011).

[2] BAKER, S., AND MATTHEWS, I. Lucas-kanade 20 years on: A unifying
framework. International Journal of Computer Vision 56, 3 (Feb. 2004),
221–255.

[3] BANZ, C., HESSELBARTH, S., FLATT, H., BLUME, H., AND PIRSCH, P.
Real-time stereo vision system using semi-global matching disparity
estimation: Architecture and fpga-implementation. In Embedded Com-
puter Systems (SAMOS), 2010 International Conference on (2010), pp. 93–
101.

[4] BAY, H., ESS, A., TUYTELAARS, T., AND VAN GOOL, L. Surf: Speeded
up robust features", computer vision and image understanding. Com-
puter Vision and Image Understanding 110, 3 (2008), 346–359.

[5] BOISSONNAT, J.-D., DEVILLERS, O., PION, S., TEILLAUD, M., AND

YVINEC, M. Triangulations in CGAL. Comput. Geom. Theory Appl. 22
(2002), 5–19.

[6] BOUGUET, J.-Y. Camera calibration toolbox for Matlab. Referred
Nov 4th, 2010. http://www.vision.caltech.edu/bouguetj/calib_

doc/index.html.

[7] BRAINSTORM MULTIMEDIA. Brainstorm products for managing
ar graphics at tv studios. Referred Apr 28th, 2013. http://www.

brainstorm.es/live.

[8] BROWN, D. The Bundle Adjustment—Progress and Prospects. Int.
Archives of Photogrammetry 21, 3 (1976), 3–33.

[9] BUTLER, D. A., IZADI, S., HILLIGES, O., MOLYNEAUX, D., HODGES,
S., AND KIM, D. Shake’n’sense: reducing interference for overlapping

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://www.brainstorm.es/live
http://www.brainstorm.es/live


structured light depth cameras. In Proceedings of the 2012 ACM annual
conference on Human Factors in Computing Systems (Austin, Texas, USA,
2012), CHI ’12, ACM, pp. 1933–1936.

[10] CALONDER, M., LEPETIT, V., STRECHA, C., AND FUA, P. Brief: binary
robust independent elementary features. In Proceedings of the 11th Eu-
ropean conference on Computer vision: Part IV (Berlin, Heidelberg, 2010),
ECCV’10, Springer-Verlag, pp. 778–792.

[11] CARNEGIE MELLON UNIVERSITY. Panda 3D engine. Referred Apr
28th, 2013. http://www.panda3d.org.

[12] CHANG, C., CHATTERJEE, S., AND KUBE, P. A Quantization Error
Analysis for Convergent Stereo. In International Conference on Image
Processing (ICIP) (Austin, Texas, USA, 1994), vol. 2, pp. 735–739.

[13] CIVERA, J., DAVISON, A. J., AND MONTIEL, J. Inverse Depth
Parametrization for Monocular SLAM. Robotics, IEEE Transactions on
24, 5 (Oct. 2008), 932–945.

[14] COMPORT, A. I., MALIS, E., AND RIVES, P. Accurate quadri-focal
tracking for robust 3d visual odometry. In IEEE International Conference
on Robotics and Automation , ICRA’07 (Rome, Italy, April 2007).

[15] DAVISON, A., REID, I., MOLTON, N., AND STASSE, O. MonoSLAM:
Real-time single camera SLAM. PAMI 29 (2007), 1052–1067.

[16] DENG, J., BERG, A. C., LI, K., AND FEI-FEI, L. What does classifying
more than 10,000 image categories tell us? In Proceedings of the 11th Eu-
ropean conference on Computer vision: Part V (Heraklion, Crete, Greece,
2010), ECCV’10, Springer-Verlag, pp. 71–84.

[17] DOBBERT, T. Matchmoving: The Invisible Art of Camera Tracking. Sybex,
2005.

[18] FISCHLER, M., AND BOLLES, R. Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography. In Workshop In DARPA Image Understanding
(University of Maryland, College Park, April 1980), pp. 71–88.

[19] GONÇALVES, T., AND COMPORT, A. I. Real-time direct tracking of
color images in the presence of illumination variation. In ICRA (2011),
pp. 4417–4422.

[20] HARALICK, R., LEE, C., OTTENBERG, K., AND NOLLE, M. Review
and analysis of solutions of the three point perspective pose estimation
problem. In Int. Journal of Computer Vision (1994), vol. 13,3, pp. 331–356.

http://www.panda3d.org


[21] HARTLEY, R., AND ZISSERMAN, A. Multiple View Geometry in computer
vision. Cambridge University Press, 2001.

[22] HENRY, P., KRAININ, M., HERBST, E., REN, X., AND FOX, D. RGB-D
mapping: Using Kinect-style depth cameras for dense 3D modeling of
indoor environments. The International Journal of Robotics Research 31,
5 (Apr. 2012), 647–663.

[23] HERRERA, D., KANNALA, J., AND HEIKKILA, J. Joint depth and color
camera calibration with distortion correction. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 34, 10 (2012), 2058–2064.

[24] HIGHAM, N. J. The scaling and squaring method for the matrix expo-
nential revisited. SIAM Journal on Matrix Analysis and Applications 26,
4 (2005), 1179–1193.

[25] HIRSCHMULLER, H. Stereo processing by semi-global matching and
mutual information. IEEE Transactions on Pattern Analysis and Machine
Intelligence 30, 2 (2008), 328–341.

[26] HORN, B. K. P. Recovering baseline and orientation from essential
matrix. MIT AI Memo, Internal Report (1990).

[27] HUBER, P.-J. Robust Statistics. Wiler, New York, 1981.

[28] IRANI, M., AND ANANDAN, P. About direct methods. In Proceedings
of the International Workshop on Vision Algorithms: Theory and Practice
(London, UK, UK, 1999), ICCV ’99, Springer-Verlag, pp. 267–277.

[29] JOANNEUM RESEARCH FORSCHUNGSGESELLSCHAFT, J. R. In-
stutute of Digital Image Processing, PRoVisG Mars Challenge,
Austria. Referred Apr 4th, 2013. http://provisg.eu/news/

provisg-mars-3d-challenge.

[30] JOHNSON, A. E., AND KANG, S. B. Registration and integration of
textured 3-d data. Image and Vision Computing 17, 2 (1999), 135–147.

[31] KATO, H., AND BILLINGHURST, M. Marker tracking and hmd calibra-
tion for a video-based augmented reality conferencing system. In Pro-
ceedings of the 2nd International Workshop on Augmented Reality (IWAR
99) (San Francisco, USA, Oct. 1999).

[32] KAZHDAN, M., AND HOPPE, H. Screened poisson surface recon-
struction. ACM Transactions on Graphics (2013). To Appear, Im-
plementation: http://www.cs.jhu.edu/~misha/Code/PoissonRecon/
Version4.51/.

http://provisg.eu/news/provisg-mars-3d-challenge
http://provisg.eu/news/provisg-mars-3d-challenge
http://www.cs.jhu.edu/~misha/Code/PoissonRecon/Version4.51/
http://www.cs.jhu.edu/~misha/Code/PoissonRecon/Version4.51/


[33] KLEIN, G., AND MURRAY, D. Parallel tracking and mapping for small
AR workspaces. In Proc. Sixth IEEE and ACM International Symposium
on Mixed and Augmented Reality (ISMAR’07) (Nara, Japan, November
2007), pp. 225–234.

[34] KONOLIGE, K., AND AGRAWAL, M. FrameSLAM: from bundle adjust-
ment to realtime visual mappping. IEEE Trans. on Robotics 24 (2008),
1066–1077.

[35] KOPF, J., COHEN, M. F., LISCHINSKI, D., AND UYTTENDAELE, M.
Joint bilateral upsampling. In ACM Transactions on Graphics, Proceed-
ings of SIGGRAPH 2007 (New York, NY, USA, 2007), vol. 26, p. 96.

[36] KÜMMERLE, R., GRISETTI, G., STRASDAT, H., KONOLIGE, K., AND

BURGARD, W. g2o: A General Framework for Graph Optimization.
In IEEE International Conference on Robotics and Automation , ICRA’11
(Shanghai, China, May 2011).

[37] LOURAKIS, M. A., AND ARGYROS, A. SBA: A Software Package for
Generic Sparse Bundle Adjustment. ACM Transactions on Mathematical
Software 36, 1 (2009), 1–30.

[38] LOW, K. Linear least-squares optimization for point-to-plane icp sur-
face registration. In Technical report TR04-004 (University of North Car-
olina, 2004).

[39] LOWE, D. G. Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision 60, 2 (November 2004),
91–110.

[40] MA, Y., SOATTO, S., KOSECKA, J., AND SASTRY, S. An invitation to 3-D
vision: from images to geometric models, vol. 26 of Interdisciplinary applied
mathematics. Springer, New York, 2004.

[41] MALLON, J., AND WHELAN, P. F. Precise Radial Un-distortion of Im-
ages. ICPR2004 - 17th International Conference on Pattern Recognition
Cambridge, UK, 23rd - 26th (August 2004), 18–21.

[42] MARK, W. R., GLANVILLE, R. S., AKELEY, K., AND KILGARD, M. J.
Cg: a system for programming graphics hardware in a c-like language.
ACM Trans. Graph. 22, 3 (2003), 896–907.

[43] MARTON, Z., RUSU, R., AND BEETZ, M. On fast surface reconstruc-
tion methods for large and noisy point clouds. In Robotics and Automa-
tion, 2009. ICRA ’09. IEEE International Conference on (2009), pp. 3218–
3223.



[44] MEILLAND, M., AND COMPORT, A. Super-resolution 3D Tracking and
Mapping. In IEEE International Conference on Robotics and Automation,
ICRA’13 (Karlsruhe, Germany., May 6-10 2013).

[45] MEILLAND, M., COMPORT, A. I., AND RIVES, P. A spherical robot-
centered representation for urban navigation. In IEEE International
Conference on Robotics and Automation, ICRA’10 (Taipei, Taiwan, 2010).

[46] MEILLAND, M., COMPORT, A. I., AND RIVES, P. Real-time dense
visual tracking under large lighting variations. In Proceedings of the
British Machine Vision Conference, BMVC’11 (University of Dundee,
Scotland, 2011), BMVA Press, pp. 45.1–45.11.

[47] MICHOT, J., BARTOLI, A., AND GASPARD, F. Bi-Objective Bundle
Adjustment With Application to Multi-Sensor SLAM. In Interna-
tional Symposium on 3D Data Processing, Visualization and Transmission
(3DPVT’10) (Paris,France, 2010).

[48] MONTIEL, J., CIVERA, J., AND DAVISON, A. Unified inverse depth
parametrization for monocular slam. In Proceedings of Robotics: Science
and Systems (Philadelphia, USA, August 2006).

[49] MOTIONANALYSIS CORPORATION. MotionAnalysis products for mo-
tion capture and live camera tracking. Referred Apr 28th, 2013.
http://www.motionanalysis.com.

[50] NASA/USGS. High resolution color texture map of Mars, captured
by Viking 26th October 2001. Referenced Apr 2013, http://www.

solarviews.com/cap/mars/marscyl1.htm.

[51] NATURALPOINT. Optitrack motion capture system for low-cost
tracking. Referred Apr 28th, 2013. http://www.naturalpoint.com/
optitrack.

[52] NEWCOMBE, R., LOVEGROVE, S., AND DAVISON, A. DTAM: Dense
Tracking and Mapping in Real-Time. In 13th International Conference
on Computer Vision (ICCV’11) (Barcelona, Spain, Nov. 2011).

[53] NEWCOMBE, R. A., IZADI, S., HILLIGES, O., MOLYNEAUX, D., KIM,
D., DAVISON, A. J., KOHLI, P., SHOTTON, J., HODGES, S., AND

FITZGIBBON, A. Kinectfusion: Real-time dense surface mapping and
tracking. In Proceedings of the 2011 10th IEEE International Symposium
on Mixed and Augmented Reality (Washington, DC, USA, 2011), ISMAR
’11, pp. 127–136.

[54] NISTÉR, D. An efficient solution to the five point relative pose prob-
lem. In Proceedings in IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2003, 2003), vol. 2, pp. 195–202.

http://www.motionanalysis.com
http://www.solarviews.com/cap/mars/marscyl1.htm
http://www.solarviews.com/cap/mars/marscyl1.htm
http://www.naturalpoint.com/optitrack
http://www.naturalpoint.com/optitrack


[55] NISTÉR, D. Preemptive ransac for live structure and motion estima-
tion. In Proceedings of the Ninth IEEE International Conference on Com-
puter Vision - Volume 2 (2003), ICCV ’03, pp. 199–.

[56] PAALANEN, P., AND KAMARAINEN, J.-K. Narrow baseline GLSL
multiview stereo. In 3D Data Processing, Visualization and Transmission
(3DPVT) (Paris, France, 2010).

[57] PODLOZHNYUK, V. Histogram calculation in cuda. In CUDA SDK,
Nvidia Corporation (2007).

[58] PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLAN-
NERY, B. P. Numerical recipes in C (2nd ed.): the art of scientific computing.
Cambridge University Press, New York, NY, USA, 1992.

[59] PULLI, K. Surface modeling and display from range and color
data. Ph.D. Thesis, 1997, Referred 29.8, 2013. http://grail.cs.

washington.edu/theses/PulliPhd.pdf.

[60] ROYER, E., LHUILLIER, M., DHOME, M., AND LAVEST, J.-M.
Monocular vision for mobile robot localization and autonomous nav-
igation. JOURNAL OF COMPUTER VISION 74, 3 (2007), 237–260.

[61] RUSINKIEWICZ, S., AND LEVOY, M. Efficient variants of the ICP al-
gorithm. In Third International Conference on 3-D Digital Imaging and
Modeling (3DIM2001) (Quebec City, Canada, 2001), pp. 145–152.

[62] RUSU, R. B., AND COUSINS, S. 3D is here: Point Cloud Library
(PCL). In IEEE International Conference on Robotics and Automation
(ICRA) (Shanghai, China, May 9-13 2011).

[63] SCHARSTEIN, D., SZELISKI, R., AND ZABIH, R. A taxonomy and eval-
uation of dense two-frame stereo correspondence algorithms. In Pro-
ceedings of the IEEE Workshop on Stereo and Multi-Baseline Vision, Kauai,
HI. (December 2001).

[64] SHAMS, R., AND KENNEDY, R. A. Efficient histogram algorithms for
NVIDIA CUDA compatible devices. In Proceedings of the International
Conference on Signal Processing and Communications Systems, IEEE (Gold
Coast, Australia, 2007), pp. 418–422.

[65] SHOTTON, J., FITZGIBBON, A., COOK, M., SHARP, T., FINOCCHIO,
M., MOORE, R., KIPMAN, A., AND BLAKE, A. Real-time human pose
recognition in parts from single depth images. In Proceedings of the
2011 IEEE Conference on Computer Vision and Pattern Recognition (Wash-
ington, DC, USA, 2011), CVPR ’11, IEEE Computer Society, pp. 1297–
1304.

http://grail.cs.washington.edu/theses/PulliPhd.pdf
http://grail.cs.washington.edu/theses/PulliPhd.pdf


[66] SHOTTON, J., GLOCKER, B., ZACH, C., IZADI, S., CRIMINISI, A., AND

FITZGIBBON, A. Scene Coordinate Regression Forests for Camera Re-
localization in RGB-D Images. In Proceedings in IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’13) (2013).

[67] SIDJE, R. B. Expokit: Software package for computing matrix expo-
nentials. ACM - Transactions On Mathematical Software 24, 1 (1998), 130–
156.

[68] SILVEIRA, G., MALIS, E., AND RIVES, P. An Efficient Direct Approach
to Visual SLAM. IEEE Transactions on Robotics 24, 5 (2008), 969–979.

[69] SMIRNOV, S., GOTCHEV, A. P., AND EGIAZARIAN, K. Methods
for depth-map filtering in view-plus-depth 3d video representation.
EURASIP Journal on Advances in Signal Processing (2012), 25.

[70] STEINBRÜCKER, F., STURM, J., AND CREMERS, D. Real-time visual
odometry from dense rgb-d images. In Workshop on Live Dense Recon-
struction with Moving Cameras at the International Conference on Com-
puter Vision (ICCV’11) (Barcelona,Spain, 2011).

[71] STRASDAT, H., MONTIEL, J. M. M., AND DAVISON, A. J. Visual
SLAM: Why filter? Image and Vision Computing 30, 2 (Feb. 2012), 65–77.

[72] STÜCKLER, J., AND BEHNKE, S. Integrating Depth and Color Cues for
Dense Multi-Resolution Scene Mapping Using RGB-D Cameras. In In
Proceedings of IEEE International Conference on Multisensor Fusion and
Information Integration (MFI) (Hamburg, Germany, Sep 2012).

[73] STÜHMER, J., GUMHOLD, S., AND CREMERS, D. Real-time dense ge-
ometry from a handheld camera. In Proceedings of the 32nd DAGM
conference on Pattern recognition (Berlin, Heidelberg, 2010), Springer-
Verlag, pp. 11–20.

[74] STURM, J., MAGNENAT, S., ENGELHARD, N., POMERLEAU, F., CO-
LAS, F., BURGARD, W., CREMERS, D., AND SIEGWART, R. Towards
a benchmark for rgb-d slam evaluation. In Proc. of the RGB-D Work-
shop on Advanced Reasoning with Depth Cameras at Robotics: Science and
Systems Conf. (RSS) (Los Angeles, USA, June 2011).

[75] SZELISKI, R. Image alignment and stitching: A tutorial. Tech. rep.,
MSR-TR-2004-92, Microsoft Research, 2004, 2005.

[76] TOMASI, C., AND BIRCHFIELD, S. Depth discontinuities by pixel-
to-pixel stereo. In Sixth International Conference on Computer Vision,
(ICCV’98) (Bombay,India, 1998), pp. 1073–1080.



[77] TOMASI, C., AND MANDUCHI, R. Bilateral filtering for gray and
color images. In Sixth International Conference on Computer Vision
(ICCV’1998) (Bombay,India, 1998), pp. 839–846.

[78] TOSSAVAINEN, T. Approximate and sqp two view triangulation. In
Computer Vision - ACCV 2010 - 10th Asian Conference on Computer Vi-
sion, Queenstown, New Zealand, November 8-12, 2010, Revised Selected
Papers, Part III (2010), R. Kimmel, R. Klette, and A. Sugimoto, Eds.,
vol. 6494 of Lecture Notes in Computer Science, Springer, pp. 1–14.

[79] TRIGGS, B., MCLAUCHLAN, P., HARTLEY, R., AND FITZGIBBON, A.
Bundle adjustment - a modern synthesis. In Vision Algorithms: The-
ory and Practice (2000), B. Triggs, A. Zisserman, and R. Szeliski, Eds.,
vol. 1883 of Lecture Notes in Computer Science, Springer-Verlag, pp. 298–
372.

[80] TYKKÄLÄ, T. M., , COMPORT, A. I., KÄMÄRÄINEN, J. K., AND HAR-
TIKAINEN, H. Live RGB-D Camera Tracking for Television Production
Studios. In Journal of Visual Communication and Image Representation, El-
sevier (Jun 2013).

[81] TYKKÄLÄ, T. M., AUDRAS, C., AND COMPORT, A. I. Direct iterative
closest point for real-time visual odometry. In 13th International Con-
verence on Computer Vision, (ICCV’11), 2nd IEEE Workshop on Computer
Vision in Vehicle Technology: From Earth to Mars (Barcelona, Spain, Nov
2011).

[82] TYKKÄLÄ, T. M., AND COMPORT, A. I. A Dense Structure Model for
Image Based Stereo SLAM. In IEEE International Conference on Robotics
and Automation (ICRA’11) (Shanghai, China, May 9-13 2011).

[83] TYKKÄLÄ, T. M., COMPORT, A. I., AND KÄMÄRÄINEN, J.-K. Pho-
torealistic 3D Mapping of Indoors by RGB-D Scanning Process. In
IEEE RSJ/International conference on Intelligent Robot and System, IROS
(Tokyo, Japan, Nov 2013).

[84] TYKKÄLÄ, T. M., HARTIKAINEN, H., COMPORT, A. I., AND

KÄMÄRÄINEN, J. K. RGB-D Tracking and Reconstruction for TV
Broadcasts. In 8th International Conference on Computer Vision Theory
and Applications (VISAPP’13) (Barcelona, Spain, Feb 2013).

[85] VICON. Boujou, professional matchmoving solution for film industry.
Referenced Apr 2013, http://www.vicon.com/boujou/.

[86] VISCODA. Voodoo camera tracker: A tool for the integration of
virtual and real scenes, Digital Laboratorium für Informationstech-
nologie, University of Hannover. Referenced Apr. 2013, http://www.
viscoda.com/index.php/en/voodoo-manual.

http://www.vicon.com/boujou/
http://www.viscoda.com/index.php/en/voodoo-manual
http://www.viscoda.com/index.php/en/voodoo-manual


[87] WELCH, G., AND BISHOP, G. An Introduction to the Kalman Filter.
Tech. Rep. TR 95-041, University of North Carolina at Chapel Hill, De-
partment of Computer Science, 2006.

[88] WENDEL, A., MAURER, M., GRABER, G., POCK, T., AND BISCHOF,
H. Dense reconstruction on-the-fly. In Proceedings in IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’12)
(2012), pp. 1450–1457.

[89] WHELAN, T., KAESS, M., FALLON, M., JOHANNSSON, H., LEONARD,
J., AND MCDONALD, J. Kintinuous: Spatially extended KinectFusion.
In RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras
(Sydney, Australia, Jul 2012).

[90] YANG, R., AND POLLEFEYS, M. Multi-resolution real-time stereo on
commodity graphics hardware. IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’03) 1 (2003), 211–217.

[91] ZHANG, Z. A flexible new technique for camera calibration. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI’00) 22,
11 (November 2000), 1330–1334.


	Acknowledgements
	Acronyms
	Introduction
	Objectives
	Contribution and publications
	Outline of the thesis

	I Background
	Multi-view Geometry and Estimation
	Perspective camera model 
	Extrinsic matrix structure
	Perspective projection
	Lens distortion model
	Intrinsic matrix structure
	The inverse model

	3D point initialization
	Midpoint triangulation
	Hartley-Sturm triangulation
	Rectified stereo triangulation

	Estimation using Nonlinear Least Squares Minimization
	Levenberg-Marquardt
	Gauss-Newton
	Random sample consensus
	M-estimators
	Iteratively re-weighted least squares
	Linear system solvers
	Conjugate gradient method
	Cholesky factorization


	3D point refinement using multiple views
	Geometrical pose estimation methods
	Generating small motion
	Matrix normalization
	3D-to-2D
	3D-to-3D
	Statistical matching

	Bundle adjustment for simultaneous estimation
	Sparse structure
	Marginalization
	Extended Kalman Filter

	Feature-based simultaneous localization and mapping
	Feature points as measurements
	Loop-closure
	PTAM
	FrameSLAM

	Dense tracking and mapping
	Microsoft Kinect
	Extended Caltech calibration
	Oulu calibration
	Depth noise removal by bilateral filtering

	KinectFusion
	Multi-resolution surfels


	Direct Image-based Estimation
	Image registration techniques
	Lukas-Kanade optical flow
	Remarks on image gradient computation
	Image registration using homography mapping
	Image registration using a rigid 3D structure
	Inverse compositional image alignment
	Multi-resolution pyramid for better convergence

	Direct stereo matching methods
	Semi-global block matching
	Stereo camera and calibration
	Bayer filtering

	Quadrifocal stereo tracking
	Stereo cost function

	Pixel selection
	Lighting variations
	Efficient Second-order Minimization
	Photometrical structure refinement
	Direct localization and mapping
	From outdoor stereo systems to indoor environments
	DTAM



	II Contributions
	Efficient stereo tracking by variance bounded disparities
	Trifocal tensor warping
	Estimation in two phases
	Disparity initialization and propagation
	Experiments
	Analysis and limitations

	Robust tracking by concurrent pixel and depth matching
	Combining appearance and structure in cost function
	Bi-objective minimization
	Balancing the cost by 
	Multi-resolution and depth filtering
	Hybrid pixel selection

	Simulation experiments
	Results on PRoVisG MARS 3D Challenge
	Depth map generation
	Pose estimation
	Results

	Analysis and limitations

	Real-time RGB-D tracking for a low-end GPU
	Tracking modes
	Incremental dense tracking
	Keyframe-based dense tracking
	SLAM mode

	Features
	Embedding distortions in warping function
	Tolerating dynamic foreground

	Scalable GPU tracking
	Warping
	M-estimator
	Linear system reduction
	Evaluating matrix exponential
	Selecting points on GPU
	Vertex attributes at different stages
	Preprocessing RGB images
	Point cloud from raw disparity map
	Online visualization issues

	Accuracy
	Results

	Watertight and textured 3D reconstructions by RGB-D tracking
	Depth map fusion using RGB data
	Optional bundle adjustment for a 3D model
	Interactive editor for bundle adjustment

	Watertight polygonization
	Mesh texturing
	Memory consumption

	Augmented Reality in Live Television Broadcasting
	System
	AR graphics using Panda3D
	Motion capture system for live character animation
	AR composition using depth maps

	Studio lighting and Microsoft Kinect
	Tracking configurations
	RGB-D sensor towards the scene
	RGB-D sensor towards the floor

	3D modeling of a studio environment
	Depth map noise in a studio environment
	Depth map filtering for studio model

	Experiment: Tracking accuracy
	Constraints
	Summary

	Conclusions
	Perspectives

	Résumé en français
	Contributions et publications
	Publication I
	Publication II
	Publication III
	Publication IV

	Conclusions et perspectives
	Perspectives


	Appendix: Simulated Asteroid datasets

	References

