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Sparsity-based detection strategies for faint signals in noise.
Application to astrophysical hyperspectral data.

Abstract: This thesis deals with the problem of detecting unknown signals at low Signal-
to-Noise Ratio. This work focuses on the definition, study and implementation of effi-
cient methods able to discern only-noise observations from those that presumably carry
the information of interest in a sparse way. The relevance of these methods is assessed on
hyperspectral data as an applicative part.

In the first part of this work, the basic principles of statistical hypothesis testing together
with a general overview on sparse representations, estimation and detection are introduced.

The second part of the manuscript is divided into two sub-parts. In the first sub-part,
two statistical hypotheses tests are proposed and studied. Both are adapted to the detec-
tion of sparse signals thanks to sparse estimates that can be interpreted in the Maximum A
Posteriori or in the Penalized Least Squares frameworks. The first approach is the Poste-
rior Density Ratio test, which computes the ratio of the a posteriori distribution under each
hypothesis of the data model. The second is a Likelihood Ratio test in which the Maximum
A Posteriori estimate replaces the Maximum Likelihood estimate. The behaviors and the
relative differences between these constrained likelihood ratios are theoretically investigated
through a detailed study of their analytical and structural characteristics. The tests’ detec-
tion performances are compared with those of classical frequentist and Bayesian methods
such as the unconstrained Generalized Likelihood Ratio test and the Bayes Factor.

According to the three-dimensional data sets considered in the applicative part, and
to be closer to realistic scenarios involving data acquisition systems, the second sub-part
presents detection methods seeking: i) to account for spectrally variable noise; ii) to exploit
the spectral similarities of neighbors pixels in the spatial domain and iii) to exploit the
greater accuracy brought by dictionary-based models, which take into account the spatio-
spectral blur of information caused by instrumental Point Spread Functions.

The tests are finally applied to massive astrophysical hyperspectral data in the context
of the European Southern Observatory’s Multi Unit Spectroscopic Explorer (whose first
light is foreseen for end 2013). The proposed methods have shown to be efficient for the
detection of general sources with this instrument. A particular attention is finally paid to
the detection of very faint and sparse sources known as Ly−α emitters, characterized by a
spectrum that contains essentially a sole visible emission line.

Keywords: Statistical Signal Processing, Sparsity, Detection, Estimation, Hyper-
spectral Imaging.
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Méthodes de détection parcimonieuses pour signaux faibles dans du bruit.
Application à des données hyperspectrales de type astrophysique.

Abstract: Cette thèse contribue à la recherche de méthodes de détection de signaux
inconnus à très faible Rapport Signal-à-Bruit. Ce travail se concentre sur la définition,
l’étude et la mise en œuvre de méthodes efficaces capables de discerner entre observations
caracterisées seulement par du bruit de celles qui au contraire contiennent l’information
d’intérêt supposée parcimonieuse. Dans la partie applicative, la pertinence de ces méthodes
est évaluée sur des données hyperspectrales.

Dans la première partie de ce travail, les principes à la base des tests statistiques
d’hypothèses et un aperçu général sur les représentations parcimonieuses, l’estimation et
la détection sont introduits.

La deuxième partie du manuscrit est divisée en deux sous-parties. Dans la première
sous-partie, deux tests d’hypothèses statistiques sont proposés et étudiés. Les deux sont
adaptés à la détection de signaux parcimonieux grâce à des estimations parcimonieuses qui
peuvent être interprétées au sens du Maximum A Posteriori ou dans le cadre des Moindres
Carrés Pénalisés. La première approche est le test du Rapport des Distributions a Poste-
riori (PDR, Posterior Density Ratio), qui calcule le rapport des distributions a posteriori
sous chaque hypothèse du modèle. La seconde approche est le test du Rapport de Vraisem-
blance où l’estimation par Maximum A Posteriori remplace l’estimation par Maximum de
Vraisemblance (LRMAP, Likelihood Ratio with Maximum A Posteriori estimate). Les com-
portements et les différences relatives entre ces rapports de vraisemblance contraints sont
étudiés à travers une étude détaillée de leurs caractéristiques analytiques et structurelles.
Les performances de détection des tests sont comparés à celles de méthodes fréquentistes
et Bayésiennes classiques telles que le test du Rapport de Vraisemblance Généralisé non
contraint et le facteur de Bayes.

Conformément aux données tridimensionnelles considérées dans la partie applicative,
et pour se rapprocher de scénarios plus réalistes impliquant des systèmes d’acquisition de
données, la deuxième sous-partie présente des méthodes de détection qui cherchent à: i)
prendre en compte le bruit fortement variable spectralement, ii) exploiter les similitudes
spectrales de pixels spatialement voisins, et iii) exploiter un modèle plus précis basé sur des
dictionnaires qui prennent en compte l’effet d’étalement spatio-spectral de l’information
causée par les fonctions d’étalement du point de l’instrument.

Les tests sont finalement appliqués à des données astrophysiques massives de type
hyperspectral dans le contexte du Multi Unit Spectroscopic Explorer de l’Observatoire
Européen Austral (première lumière prévue fin 2013). Les méthodes proposées s’avèrent
efficaces pour la détection de sources générales avec cet instrument. Une attention
particulière est finalement accordée à la détection des sources très faibles et rares appelées
émetteurs Ly−α, caractérisés par un spectre qui contient essentiellement une seule raie en
émission.

Keywords: Traitement Statistique du Signal, Parcimonie, Détection, Estimation,
Imagerie Hyperspectrale.





Metodi di sparsi di detezione per segnali deboli in presenza di rumore.
Applicazione a dati iperspettrali di tipo astrofisico.

Abstract: Questa tesi affronta il problema della detezione di segnali non noti caratter-
izzati da un basso Rapporto Segnale/Rumore. In particolare, questo lavoro si concentra
sulla definizione, lo studio e l’implementazione di metodi efficienti in grado di discernere le
osservazioni composte totalmente da rumore da quelle che contengono presumibilmente
l’informazione di interesse. La rilevanza di questi metodi é stata verificata valutando
l’applicazione al contesto di dati iperspettrali.

Nella prima parte di questo lavoro, si introducono i principi dei test di verifica di ipotesi,
delle rappresentazioni sparse, e della stima e detezione del segnale.

La seconda parte del manoscritto è divisa in due sotto-parti. Nella prima, vengono
proposti ed analizzati due test statistici di verifica di ipotesi. Entrambi sono adattati alla
rilevazione di segnali sparsi grazie all’utilizzo di stime sparse che possono essere interpre-
tate sia nel contesto del Massimo A Posteriori che in quello dei Minimi Quadrati Pesati.
Il primo metodo proposto è il test del Rapporto delle Densità a Posteriori (PDR, Pos-
terior Density Ratio), il quale calcola il rapporto tra le distribuzioni a posteriori sotto
ciascuna delle ipotesi del modello considerato. Il secondo metodo è un test del Rapporto
di Verosimiglianza, nel quale la stima del Massimo A Posteriori sostituisce la stima di Mas-
sima Verosimiglianza (LRMAP, Likelihood Ratio with Maximum A Posteriori estimate).
I comportamenti e le differenze relative tra questi due rapporti di verosimiglianza vinco-
lati sono considerati attraverso uno studio dettagliato delle loro caratteristiche analitiche
e strutturali. Le prestazioni in termini di detezione dei test proposti sono confrontate con
quelle di metodi classici frequentisti e Bayesiani, quali ad esempio il test del Rapporto di
Verosimiglianza Generalizzato ed il Fattore di Bayes.

Conformemente ai dati tridimensionali considerati nella parte applicativa, la seconda
sotto-parte presenta metodi di rilevazione che cercano di: i) tener conto della forte variabilità
spettrale del rumore, ii) sfruttare le somiglianze spettrali tra pixel spazialmente vicini e iii)
trarre vantaggio dalla maggiore precisione ottenuta considerando modelli di dati basati
sull’utilizzo di dizionari, tenenti conto della dispersione spazio-spettrale della informazione
causata dalla Funzione di Dispersione di un Punto dello strumento.

I test sono infine applicati a dati iperspettrali di tipo astrofisico nel contesto del
Multi Unit Spectroscopic Explorer dell’Osservatorio Europeo Australe. I risultati ottenuti
mostrano che i metodi proposti sono efficaci nel rilevamento di segnali informativi con
questo strumento. Particolare attenzione è stata rivolta alla individuazione di fonti molto
deboli e sparse note come emettitori Ly−α, caratterizzate da uno spettro contenente
essenzialmente una sola linea visibile in emissione.

Keywords: Trattamento Statistico del Segnale, Sparsità, Detezione, Stima, Imag-
ing Iperspettrale.
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Introduction

In everyday life, decision making takes place every time we have to make a choice in face
of uncertainty. Imagine a doctor examining a patient and trying to diagnose whether the
symptoms he shows are due to the presence of a particular disease or not. Even if the
decision reduces to a simple yes-or-no response, the presence of ambiguity (e.g. misleading
symptoms) can make the decision problem very difficult to solve. In this and countless others
kinds of decision problems, precise scientific techniques are needed to help in returning the
right verdict and assessing the risk of being misled by the observations.

A useful means to accurately describe, study and quantify in probabilistic terms the ma-
jority of decision problems is given by the Signal Detection Theory (SDT). The beginnings
of SDT date back to the 1950s, when researchers in the field of radar systems needed reliable
tools to determine the presence or absence of an approaching aircraft when monitoring the
sky [Skolnik 1980]. Since these origins, SDT has come to be used in a wide variety of fields
such as defense, psychology, medicine and engineering.

In SDT, a signal is the physical representation of any kind of information that varies
with time, frequency, energy or any other explanatory variable. Given a set of observed
data, a general signal detection approach consists in stating assumptions (or hypotheses)
allowing to explain or interpret the observations, and then decide which one between these
hypotheses is (or seems to be) true. Under each hypothesis, the observed data can be
statistically described by probability density functions (or probability mass functions, in
the discrete case). Depending on the hypotheses made and on the nature of the data, these
densities can be completely or partially known.

The reasons that may make signal detection problems hard to solve are multiple. First
of all, the observations on which we seek to make decision are usually affected by noise.
The noise can take many forms, it is not necessarily a stochastic signal, and it is generally
represented by any signal that masks the information we seek to acquire. In the example of
the medical diagnosis considered above, the noise could be represented by the presence of
misleading symptoms that do not allow the doctor to diagnose the disease with certainty;
for an antenna pointing towards the sky, as for example a radio-telescope, any other existing
transmitter is a nuisance for the radio astronomer who is interested in receiving signals from
the stars; other noise examples are for instance detection and calibration errors, and the
atmospheric effects affecting sensor-based systems that provide the information.

Second, the informative signal we seek to find may be unknown: the detection of signals
of unknown shape or position (e.g. signals coming from sensor devices whose location is
not known) is more difficult with respect to the case of perfect knowledge. Third, the
informative signal may have amplitude much lower than the noise level characterizing the
considered observations. This could be due to the presence of very strong perturbations,
to the intrinsically weak nature of the signal of interest or, in particularly unfortunate
circumstances, to both these events.

Most often, the signals we seek to find can be compactly modeled as sparse. A signal is
called sparse when most of its coefficients are (possibly approximatively) null. Many signals
are not sparse in their nature but often show up to be sparse in the domain of appropriate
transforms. According to this, sparse representations are based on the assumption that
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a considered set of observations (for instance a time series, an image or a spectrum) can
be described by a very reduced number of parameters defined in an adequate space of
representation. For example, audio signals are sparse in the time-frequency domain, while
images can be often represented by a sparse decomposition in an appropriate transform
basis (Discrete Wavelet Transforms, for instance).

The question addressed in this thesis is challenging because it considers cases that com-
bine the difficulties described above. We consider methods accounting for strong variable
noise level in the observations and for unknown signals assumed to be sparse, with some-
times very low amplitudes. In this framework, the devising of efficient detection techniques
will call for expertise from several related scientific domains such as statistics, sparse repre-
sentations and approximation algorithms, and the theories of detection and of estimation.

Thesis context

The research work presented in this manuscript has been carried out from October 2010 to
– 2013, at the J.L. Lagrange Laboratory (UMR7293, University of Nice - Sophia Antipolis,
CNRS, Observatoire de la Côte d’Azur). All along the thesis, an enriching collaboration
has been held within the ANR DAHLIA Project1, dedicated to the development of new
algorithms for hyperspectral imaging in astronomy.

Objectives

The main target of this work is to define and study methods for the detection of unknown
signals in highly noisy data. In particular, our research focuses on signals that are weak and
sparse that is, characterized by a very low number of informative components. Given a set
of noisy observations, we thus seek to discern only noise signals to those that presumably
carry the information of interest. The difficulty in this kind of problem is twofold:

1. Methodological: definition of statistical tests appropriate to the considered framework
of weak and sparse signals, and definition of new contributions and their connections
with respect to the existing literature (Part II of the manuscript);

2. Applicative: determination of consistent and realistic statistical data models; design,
study and implementation of efficient detection techniques in the context of astro-
physical hyperspectral data for an existing instrument (Part III of the manuscript).

Contributions

The works presented in this thesis have led to several scientific publications in the general
field of signal detection, with particular attention to the problem of detecting faint sparse
sources in highly noisy multi-dimensional data. All the contributions are listed below.

1. In [Paris 2011a], a precise study of the connections existing between the sparse esti-
mation and the sparse detection frameworks has been proposed. Two new detection

1The DAHLIA Project partially supported this work through founding the attendance to the EUSIPCO
2011 conference for the presentation of the work [Paris 2011c]
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tests have been presented: the Posterior Density Ratio (PDR) test, and a Likelihood
Ratio (LR) test using a Maximum A Posteriori (MAP) estimate with Generalized
Gaussian priors. We called this last approach the LRMAP test. The tests have been
analyzed and compared to classical detection strategies such as the Generalized Like-
lihood Ratio test and the Bayes Factor, in the case of scalar data model first and then
in the vector case. In the vector case, the two tests based on MAP estimates have
shown to outperform the classical approaches thanks to their test statistics tending to
focus on the informative components of the parameters vector, in accordance to the
thresholding properties of the scalar MAP estimate.

2. In [Paris 2011c], the PDR and the LRMAP detection tests were set in the context of
a dictionary-based data model for astrophysical hyperspectral data. The considered
dictionary was designed by finely discretising elementary spectral features (lines with
various widths, Heaviside steps, and continuum parameterisation). A study on the
relative detection performances of the two approaches in function of the tests’ parame-
ters (η, γ) was proposed. The tests were then analysed in the particular case of setting
the test threshold γ to zero. This setting allowed to easily implement the tests and to
univocally compute the corresponding Probability of False alarm. A first toy-model
designed for the exploitation of the spatio-spectral dependencies of neighbors pixels
in a given data set was introduced.

3. In [Paris 2011d], an asymptotic analysis (in the vector size) and a finite size analysis
of the performances of the PDR and the LRMAP tests was proposed.

4. In [Paris 2011b], the detection performances of the PDR and the LRMAP tests have
been improved introducing refined spatio-spectral models allowing to take into account
spectral similarities existing between neighbors pixels in hyperspectral data cubes.

5. In [Paris 2012], a precise analysis of the detection performances of the PDR and the
LRMAP tests in terms of p-values was proposed. This analysis allowed to assess
post-data statistical significance of the proposed tests.

6. In [Paris 2013b], a new method aimed at detecting weak, sparse signals in highly noisy
three-dimensional (3D) data has been introduced. Such data suffer from information
leakage caused by the acquisition system’s point spread functions. This function may
be different and variable in both the two image dimensions and the third dimension
(temporal, spectral or energy dimension). The detection test proposed in this work
was based on dedicated 3D dictionaries, and exploited both the sparsity of the data
along the third direction and the information spread in the three dimensions. This
method revealed to be efficient for the detection of very faint and sparse objects such
as Ly−α objects and evidenced detection limits of instrument MUSE to which it was
applied.

7. In [Paris 2013a], we deepened the study of the PDR and the LRMAP testing pro-
cedures. The behaviors and differences between the two tests were here investigated
through a detailed geometrical study of their structural characteristics. As a result,
we found out that the PDR test tended to better detect very sparse signals while the
LRMAP test was more adapted for less sparse signals.
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8. A journal paper is currently in preparation for the presentation of the detection meth-
ods developed in this work to the astrophysics community.

Organization of the manuscript

This manuscript is organized in three principal parts:

1. In the first part, Chapter 1 is dedicated to the description of the basic principles of
statistical hypothesis testing for decision making.

Chapter 2 introduces general principles in the sparse representation and sparse esti-
mation problems, and provides an overview of major previous works existing in the
sparse detection literature. This analysis allows to define the general issues of this
thesis and to justify the choices made for the rest of the manuscript.

2. The second part of the manuscript, which contains the main contributions of this
research work, is divided into two sub-parts.

• Sub-part II-A: in Chapter 3, two statistical hypotheses tests are proposed and
studied, both adapted to the detection of sparse signals and based on the Max-
imum A Posteriori estimate of the unknown vector of parameters. The first
approach is the Posterior Density Ratio test, which computes the ratio of the a
posteriori distribution under each hypothesis of the data model. The second is a
Likelihood Ratio test in which the Maximum A Posteriori estimate (or in another
interpretation, a Penalized Least Square estimate) replaces the Maximum Like-
lihood estimate. After the definition of the two approaches, the behaviors and
the relative differences between these tests are theoretically investigated and the
tests’ detection performances compared with those of classical frequentist and
Bayesian methods such as the Generalized Likelihood Ratio test and the Bayes
Factor.

In order to state which one of the two approaches better adapts to the detection
of faint sparse signals, a geometrical study of the structural differences between
the two detection techniques is addressed in Chapter 4.

• Sub-part II-B: According to the three-dimensional data sets considered in the
applicative part, and to be closer to realistic scenarios involving data acquisition
systems, this sub-part presents detection methods seeking to exploit both the
spectral similarities of neighbors pixels in the spatial domain, and the greater
accuracy of dictionary-based models that take into account the spatio-spectral
blur of information caused by instrumental Point Spread Functions.

In Chapter 5, the detection tests of Chapter 3 are reformulated and adapted
to the case of a dictionary-based spectral model. A special case of equivalence
of the proposed tests is found. In this case, the tests are equivalent to the
Max detection approach introduced in [Arias-Castro 2010]. A simple alternative
formulation of the Max detector as a constrained Generalized Likelihood Ratio
test is proposed. Numerical comparisons between the constrained Generalized
Likelihood Ratio test and the Higher Criticism detector of [Donoho 2004] are
made.
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Detection strategies for the identification of weak, sparse signals in highly noisy
three-dimensional data are introduced in Chapter 6. Here, the developed ap-
proaches seek to exploit both the spectral similarities of neighbors pixels in the
spatial domain, and the greater accuracy of dictionary-based models that take
into account the spatio-spectral blur of information caused by instrumental Point
Spread Function. With respect to Chapter 5, improved detection performances
are reached through the introduction of a multiple-round detection approach
based on a simple model of spatial dependencies. A more accurate and more eas-
ily exploitable 3D (spatio-spectral) model-based detection test, which accounts
explicitly for the instrument’s Point Spread Function model, is then considered.

3. The third part concerns the application of the detection approaches to the identifica-
tion of weak and sparse sources in astrophysical three-dimensional data sets. After
a brief introduction to hyperspectral imaging and some of its applications to astro-
physics, detection results are shown in Chapter 7 and Chapter 8 for the detection
tests implemented in the second part (sub-part II-B) of the manuscript.





Notations

General rules

a Scalar
a Vector
A Matrix

≈ Approximated to

a ∼ F a follows distribution F

a ≷ T a greater or less than T

N
�

i=1

Summation

||a||p lp− norm of vector a

E (a) Expectation of a

Sets and Spaces

H0,H1 Hypothesis 0, Hypothesis 1

{x : P} set of x with property P

{i, . . . , j} set of integers between i and j

�T� Subspace spanned by the columns of T

R
N N−dimensional Euclidian space

Matrices and Vectors

[a1, a2, . . . , aN ] (1×N) vector with components ai, i = 1, . . . , N

[a1,a2, . . . ,aN ] Matrix with columns ai, i = 1, . . . , N
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I Identity matrix

0 Vector of zeros

1 Vector of ones

At Transpose of a matrix A

A−1 Inverse of a matrix A

det (A) Determinant of a matrix A

Tr {A} Trace of a matrix A

diag [a1, . . . , aN ] Diagonal matrix with non-zero elements ai, i = 1, . . . , N

Acronyms

AUC Area Under the Curve
BF Bayes Factor

BPDN Basis Pursuit DeNoising
CDF Cumulative Distribution Function
ESO European Southern Observatory
GLR Generalized Likelihood Ratio

HC Higher Criticism
HT Hard Thresholding

LASSO Least absolute shrinkage and selection operator
LR Likelihood Ratio

LRMAP Likelihood Ratio with Maximum A Posteriori estimate
MAP Maximum A Posteriori

ML Maximum Likelihood
MP Matching Pursuit

MSE Mean Square Error
MUSE Multi Unit Spectroscopic Explorer

NP Neyman-Pearson
PDF Probability Density Function
PDR Posterior Density Ratio
PLS Penalized Least Square
PSF Point Spread Function
ROC Receiver Operating Characteristic

SCAD Smoothly Clipped Absolute Deviation
SSF Spatial Spread Function
ST Soft Thresholding

SVD Singular Values Decomposition
VLT Very Large Telescope
WSF Wavelength Spread Function
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Statistical hypothesis testing:

a general overview
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1.1 Introduction

Every time we face situations in which, from one or more observations of a physical phe-
nomenon, described through the use of an appropriate (probabilistic) model, we seek to
derive information on it, we find ourselves confronted to a statistical inference problem. We
call statistical inference the process allowing to draw reliable statistical conclusions on the
basis of experimental (observation) data. The type of information we seek to derive may
relate to either the determination (or estimation) of the parameters of the model, or to
the validity of scientific hypotheses on which this same model is built. In the latter case,
the question about which one of the stated hypotheses best matches the data is answered
through hypothesis testing methods. In hypothesis testing methods the number of tested
hypotheses must be at least of two, and varies in relation to the problem we consider. We
call binary tests all methods testing only two hypotheses, whilst for a number of hypotheses
greater than two we refer to multiple hypothesis tests.

Another distinction we make concerns the partial or the complete knowledge of the
Probability Density Functions (PDFs) of data under the considered hypotheses. If the
PDFs are completely known we refer to simple hypothesis tests. On the contrary, composite
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hypothesis tests have to manage with PDFs that are not completely specified under one or
more hypotheses of the model, because of their dependence on unknown parameters.

Hypothesis testing is a widely used topic in many different contexts of signal processing
and communications, as well as in biology, medicine, and other fields in which, given a set
of noisy data, we usually have to choose between two (or more) alternative hypotheses. To
make some examples, we may need to determine: whether or not a considered population
shows a particular characteristic; whether a person does or does not have a particular
disease; whether or not a received noisy signal (or observation) contains salient information.

This chapter, discusses first the basic steps we need to follow to design and then assess
the statistical significance of a hypothesis test. This is a very general introduction presenting
the very first principles of hypothesis testing. Secondly, an overview on the general main
approaches to hypothesis testing is given. For a more exhaustive analysis, we refer to the
comprehensive work of [Kay 1998a].

1.2 Building a hypothesis test

Classical hypothesis tests take account of four main parts, which always come in the fol-
lowing order:

• State hypotheses;

• Identify a test statistic;

• Specify a significance level;

• Make a decision.

To make clear the discussion on the structure of a hypothesis test, we shall keep in mind
the general signal detection problem of determining the presence or absence of significant
information over a noisy observation. This example could reflect, for instance, the particular
situation where from a received signal of a radar device should be stated the presence or
absence of an aircraft.

1.2.1 Definition of the hypotheses

A hypothesis (or claim) is a statement, or tentative explanation, about the available data.
In a hypothesis test, the number of considered hypotheses must be at least of two. In
this and the following sections we consider the case of binary hypothesis tests that is, tests
characterized by only two (different) claims, called

H0 : the null hypothesis;

H1 : the alternative.

A hypothesis test quantifies evidence for the alternative hypothesis H1, by setting up the
null hypothesis H0 as the opposite of H1, and tries to find and quantify evidence to disprove
it. The final decision always provides two possible conclusions: accept H0 as the true model,
or accept H1 (reject the null). The hypotheses of a test are formulated on the parameter(s)
from which the model may depend. For hypotheses defined on a given scalar parameter
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θ ∈ Θ, where Θ represents the space in which θ takes values, we are interested in hypotheses
tests of the form:

H0 : θ = θ0 ∈ Θ0; (1.1)

H1 : θ = θ1 ∈ Θ1, (1.2)

where θ0 is the value of θ under H0 taken in Θ0, θ1 the value of θ under H1 taken in Θ1,
the union of Θ0 and Θ1 defines the whole space Θ (Θ0∪Θ1 = Θ) and the intersection of Θ0

and Θ1 is the empty space (Θ0 ∩ Θ1 = ∅). The θ parameter on which the model depends
may be known or unknown. If unknown, it may be assumed as deterministic or stochastic
(random) leading to statistical inference in the frequentist or in the Bayesian frameworks,
respectively. Unless clearly specified, when unknown, the case of deterministic parameters
is considered in this chapter.

1.2.2 The test statistic

Once the hypotheses have been fixed, the very next question we need to solve is: “How do
we decide whether to accept H0?” To answer this question, we need to focus on the problem
of selecting an appropriate decision criterion, according to which decision is made on the
veracity of the assertions we test. In practice, the selection of the decision criterion concerns

- the identification of a discriminating function;

- the choice of a test threshold to fix the significance level of the test.

The discriminating function, also known as test statistic, is a mathematical function of
the data built according to the nature of the problem and to the hypotheses we want to
test. Taking for example a data vector x = [x1, . . . , xN ]t, we define the test statistic as the
function

T (x) = T (x1, . . . , xN ). (1.3)

This is a random variable if x is drawn from a random process. In a hypothesis test, T (x)
plays the fundamental role of decision variable. To be correctly designed, a test statistic
T (x) should provide as much information as possible on the considered problem, should
be characterized by a probability distribution that is as different as possible under H0 and
under H1, and should be completely known at least under H0.

All these points are not simple questions to solve, and the identification of a good test
statistic sometimes requires a lot of effort and imagination, as it will be illustrated for
instance in this work (see chapter 3).

When considering a testing problem, the discriminating function has no reason to be
unique. The choice between several statistical models represents another point of interest,
influencing for example the discriminating power of the test, that is, the probability of
correctly rejecting the null hypothesis H0 under the alternative H1 (see subsection 1.2.3 for
further details).

Once fixed, the decision variable T (x) is compared to a test threshold, say ξ ∈ R. In a
compact mathematical form, we write:

T (x)
H1

≷
H0

ξ, (1.4)
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where the null hypothesis is rejected if T (x) falls above the test threshold ξ, while it is
accepted when T (x) falls below ξ. Expression (1.4) represents a decision rule. The im-
portance of the threshold ξ resides in the fact that it allows to control the probability of
making wrong decisions. In fact, when models for H0 and H1 involve noise, at any taken
decision always corresponds a probability to make the right decision and a probability of
being wrong. The definition and the study of such probabilities is presented in the next
section.

We finally note that according to the hypotheses and to the test statistic’s nature, three
different types of hypothesis tests exist: the two-tailed (or two-sided) test, the left-tailed
test, or the right-tailed test. The left- and the right-tailed tests are often referred to as
one-tailed (or one-sided) tests. Examples of right-, left- and two-sided parameter testing
problems in the case of simple hypotheses are given below.

Example 1.2.1. - Right-, left- and two-sided parameter testing problems

Given a parameter θ on which the models depend, we consider the following same formula-
tion of the null hypothesis for the three types of model:

H0 : θ = θ0.

According to (1.2), we define the alternative hypothesis as the set of hypotheses

H1 : θ ∈ Θ1, with θ0 /∈ Θ1.

On this basis, examples of alternatives leading to one-sided (right- and left- tailed) and of
two-sided models are:

H1 : θ > θ0 one-tailed, right-sided models;

H1 : θ < θ0 one-tailed, left-sided models;

H1 : θ �= θ0 two-tailed models. (1.5)

Examples of right-tailed and two-tailed hypothesis tests in the case of Gaussian data dis-
tributions are given in subsection 1.3.1 and in subsection 1.3.2. �

1.2.3 Probability of error and significance level of a test

Evaluating a decision rule of the type (1.4) consists in choosing between the following four
possibilities: accepting Hi when Hj is true, with i, j ∈ {0, 1}. To each of those possibilities
always corresponds a probability to make the right decision or a probability of being wrong.
Of the four possible decision outcomes, the two leading to right decisions are those choosing
the Hi hypothesis when Hi is indeed true (with i = 0 or i = 1).

In the particular case of having i = 1, we refer to the conditional Probability of detection
(or power of a test)

PDET = Pr (“accept H1” | “H1 is true”) , (1.6)

or, written more simply,
PDET = Pr (H1 | H1) . (1.7)

On the other hand, the two possible outcomes leading to wrong decisions are:
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TRUTH

DECISION

Retain H0 Reject H0

CORRECT TYPE I ERROR
H0 True

(1− PFA) (PFA)

TYPE II ERROR CORRECT
H0 False

(PM) (1− PM)

Figure 1.1: Right and wrong decisions made evaluating a decision rule and corresponding
probabilities.

- to accept H1 when H0 is true;

- to accept H0 when H1 is true.

The first case yields the conditional Probability of false alarm

PFA = Pr (H1 | H0) , (1.8)

while in the second case we obtain the Probability of missed detection

PM = Pr (H0 | H1) . (1.9)

The PFA and the PM are also respectively known as Type I and Type II errors. Note that,
since

PM + PDET = 1, (1.10)

the probability of detection can also be expressed as

PDET = 1− PM. (1.11)

Figure 1.1 shows the four different alternatives we can take about the truth or the falsity
of the decision made on the null hypothesis.

Example 1.2.2. - Illustration of the distribution of the test statistics

Let us consider the case of a realization x of a scalar random variable X (that is, for
example, an observation received from a radar device), which shows Gaussian PDF p(x |
H0) ∼ N (θ0, σ

2) under H0, and p(x | H1) ∼ N (θ1, σ
2) under H1. The two PDFs here

depend on the values θ0 and θ1 (with θ1 > θ0) which we assume to be known. Based on
the single information x, we want to determine if θ = θ0 (no signal present) or θ = θ1
(signal present). On the basis of this single realization, assume we decide to reject H0 if our
sample falls above a test threshold ξ (this test actually corresponds to the scalar Likelihood
Ratio test, whose detailed analysis is reported in subsection 1.3.1). With reference to the
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decision rule defined in (1.4), where T (x) = x in this case, and assuming we are examining

a one-sided right-tailed test, with θ1 > θ0 and T (x)
H1

≷
H0

ξ, the expression of the PDET gives

PDET = Pr (T (x) > ξ | H1)

=

� +∞

ξ
p(x | H1) dx, (1.12)

with p(x | H1) the data distribution under H1.
On the other hand, the two errors that we can make in this kind of situation are: a

Type I error (occurring with probability PFA), expressed as

PFA = Pr (T (x) > ξ | H0)

=

� +∞

ξ
p(x | H0) dx, (1.13)

where p(x | H0) is the data distribution under H0, or a Type II error (occurring with
probability PM)

PM = Pr (T (x) < ξ | H1)

=

� ξ

−∞
p(x | H1) dx. (1.14)

This is illustrated in Figure 1.2. The blue and dark green curves here represent the data
distributions under the H0 and the H1 hypotheses. If we assume these two distributions to
be Gaussian, we have

p(x | Hi) =
1√
2πσ2

e−
1

2σ2 (x−θi)
2

(1.15)

with i = 0, 1, for the two hypotheses. Given a fixed test threshold ξ, the PFA (1.13) is
graphically shown by the region colored in yellow. The PM is highlighted in magenta. As
clearly visible, setting the value of the test threshold ξ plays a critical role in defining the
two probability regions. �

Note that since it represents the risk we want to control, the PFA covers a fundamental
role in a binary hypothesis test. In particular, the PFA tells us how extreme the observed
results must be in order to reject the null hypothesis. To tune the statistical significance
of a test, the PFA value is usually set in relation to the number N of observations and the
context characterizing the considered application. For instance, we consider the case of an
industrial robot finding defective bolts in the controlling process of a factory. PFA = 5%
means in this case that on 100 tested bolts we expect to have 5 pieces wrongly detected
as defective. For a company producing 20 × 104 pieces/day the chosen PFA level leads to
104 pieces wrongly claimed as defective over 20× 104, which could be cheaply and rapidly
further controlled by eye. But if instead of simple bolts we consider the case of testing high
performance computers, setting PFA = 5% is not appropriate in this case. In fact, over an
average of 100 machines produced per day, 5 of these will wrongly be labeled as defective,
requiring further control more involved with consequent financial loss for the company.

By definition of the PFA, the lower the value fixed for the PFA, the less unlikely the data
to be generated under H0. The PFA is also called significance level (or size) of a test (often
indicated with the symbol α).
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Figure 1.2: Distributions of the data under the H0 and H1 hypotheses of the model and
decision regions for a one-sided right-tailed test, in a one-dimensional case.

1.2.4 The p-value

The significance level of a hypothesis test should not be confused with another well known
statistical figure: the p-value. The p-value is one of the most conventional post-data measure
of confidence to grant to a hypothesis. It represents a probability and thus takes values in
the [0, 1] interval. Given an observed value of the test statistic under H0, say tobs, for a
one-sided right-tailed test we write it as

p = Pr(T (x) ≥ tobs | H0). (1.16)

Since it represents the smallest significance level at which we would reject the hypothesis
H0 for the data at hand, the PFA is also called observed significance level. The p-value thus
represents a kind of “observed PFA”: it is the probability that the random variable T (x) is
at least as “surprising” (that is, as extreme) as the observed value under the null hypothesis.

Under the null hypothesis, p-values p are uniformly distributed. This can be demon-
strated by the “Probability integral transform theorem” as follows. From (1.16) we have
that

p = 1− Pr(T (x) < tobs | H0). (1.17)

Denoting by FT (·) the Cumulative Distribution Function (CDF) of the test statistic T (x)
under the null hypothesis, (1.17) becomes

p = 1− FT (tobs). (1.18)

We assume p to be a realization of the random variable P = 1 − FT (T ) for T = tobs. We
want to show that the CDF of P , say FP (·), follows a distribution U(0, 1). For a given
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threshold x, we define FP (·) as

FP (x) = Pr(P < x)

= Pr(1− FT (T ) < x)

= Pr(FT (T ) > 1− x) (1.19)

If FT (·) is an increasing function, then

FP (x) = Pr(T > F−1
T (1− x))

= 1− FT (F
−1
T (1− x))

= x. (1.20)

Hence, FP (x) = x ∀x ∈ (0, 1) and P ∼ U(0, 1).
Very low values of the p-value constitute post-data evidence against H0. The lower

the p-value, the less likely such data are to arise under H0. Figure 1.3 shows an example
of comparison between the PFA at a given threshold ξ (yellow region) and the p-value,
calculated in function of an observed value of the test statistic tobs (dashed green region).
The larger tobs with respect to ξ, the higher the post-data confidence in rejecting H0. The
blue curve represents the distribution of the data under the null hypothesis.

Figure 1.3: Illustration of the PFA and the p-value for a one-sided, right-tailed test.

1.2.5 Performance of a test: ROC curves and AUC

The Receiver Operating Characteristic (ROC) is a curve that helps in summarizing the
detection power of a test, by expressing the PDET as a function of the PFA. In particular,
each point of a ROC curve plots the PDET versus the PFA for a given value of the test
threshold ξ. The analytical expressions of the PFA and PDET, for the right-, left- and
two-tailed tests of Example 1.2.1 are reported in the next example.
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Example 1.2.3. - Computation of the PFA and PDET, for right-, left- and two-
tailed tests

Let us consider again the case of a realization x of a scalar random variable X that shows
Gaussian PDF p(x | H0) ∼ N (θ0, σ

2) under H0, and p(x | H1) ∼ N (θ1, σ
2) under H1. In

this example the test statistic T (x) = x. As previously defined in (1.13) and (1.12), the

PFA and PDET of a one-sided, right-tailed test T (x)
H1

≷
H0

ξ write

PFA = Pr (T (x) > ξ | H0)

=

� +∞

ξ
p(x | H0) dx; (1.21)

PDET = Pr (T (x) > ξ | H1)

=

� +∞

ξ
p(x | H1) dx, (1.22)

or, equivalently,

PFA = 1−
� ξ

−∞
p(x | H0) dx; (1.23)

PDET = 1−
� ξ

−∞
p(x | H1) dx. (1.24)

Considering the definition of the CDF of a standard normal distribution

Φ (x) =
1√
2π

� x

−∞
e−

t2

2 dt, (1.25)

equations (1.23) and (1.24) become

PFA = 1− Φ

�

ξ − θ0
σ

�

; (1.26)

PDET = 1− Φ

�

ξ − θ1
σ

�

. (1.27)

Alternatively, for a one-sided, left-tailed test T (x)
H0

≷
H1

ξ we have

PFA = Pr (T (x) < ξ | H0) (1.28)

=

� ξ

−∞
p(x | H0) dx = Φ

�

ξ − θ0
σ

�

; (1.29)

PDET = Pr (T (x) < ξ | H1) (1.30)

=

� ξ

−∞
p(x | H1) dx = Φ

�

ξ − θ1
σ

�

. (1.31)
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Figure 1.4: ROC curve: PDET versus PFA for an increasing value of the test threshold ξ.
Two limit cases are shown: ξ → ∞ for which PDET = PFA = 0, and ξ → −∞ for which
PDET = PFA = 1.

In the case of a two-tailed test |T (x)|
H1

≷
H0

ξ finally, the PFA and PDET are defined as

PFA = Pr(|T (x)| > ξ | H0); (1.32)

PDET = Pr(|T (x)| > ξ | H1). (1.33)

These two expressions lead to

PFA = 2− Φ

�

ξ − θ0
σ

�

− Φ

�

ξ + θ0
σ

�

(1.34)

PDET = 2− Φ

�

ξ − θ1
σ

�

− Φ

�

ξ + θ1
σ

�

. (1.35)

An example of ROC curve, for a one-sided right-tailed test, is given in Figure 1.4. �

We see that when the threshold ξ increases both the PDET and the PFA decrease, and
vice-versa. Note that in the limit case of ξ → ∞, PDET = PFA = 0, while when ξ → −∞,
PDET = PFA = 1.

A ROC curve should always be above the 45◦ line. This line, commonly called the
random line, depicts the detection behavior of a test that randomly decides which one of
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the model hypotheses accept, independently to all other observations (dashed line in Figure
1.4). For all the points on this line, we have that PDET = PFA (same probability to choose
between H0 and H1).

Finally, another means that allows to assess the performance of a test is given by the
computation of the Area Under the Curve (AUC, dotted region in Figure 1.4). As its name
indicates, the AUC of a test simply corresponds to the value of the area under the associated
ROC curve, and takes consistent values between 0.5 < AUC ≤ 1: the larger the AUC, the
more powerful the test in a global sense (AUC = 1 corresponds to a perfect test). Note that
AUC = 0.5 corresponds to the performance of a useless test, with random decision rule and
ROC curve on the 45◦ line. The AUC is thus a measure of the global (over all PFA) power
of a test.

1.3 Major approaches to hypothesis testing

To conclude our general overview on statistical hypothesis testing, we discuss some simple
but widely known hypothesis tests approaches. The main purpose of the following sections
is to give a glimpse on largely used hypotheses tests, and highlight the differences between
frequentist methods based on likelihood functions and a Bayesian alternative.

Given an observed data vector x = [x1, . . . , xN ]t in R
N , the model we consider is

�

H0 : θ = θ0,

H1 : θ = θ1,
(1.36)

where the H0 and H1 hypotheses are described in terms of the parameter vector θ (with
θ1 �= θ0).

In the frequentist context, the first test we introduce is the Likelihood Ratio (LR) test.
The second test we consider is a straightforward generalization of the LR test, termed
the Generalized Likelihood Ratio (GLR) test. We finally analyze a Bayesian alternative,
introducing the so called Bayes Factor (BF) test.

1.3.1 The Likelihood Ratio test

1.3.1.1 The Likelihood function

In statistics, we define the Likelihood function (or simply, the Likelihood) a conditional
probability function measuring the fit between the observed data and the parameters of the
considered statistical model. Mathematically, writing x = [x1, . . . , xN ]t for a given a set of
observations and θ for a known parameter vector (on which the probability density functions
of the observations depend), the Likelihood function is given by the joint probability function

p(x | θ) = Pr(X1 = x1, X2 = x2, . . . , X3 = xN | θ). (1.37)

If the Xi are independently identically distributed (i.i.d.), then the likelihood function
simplifies to

p(x | θ) =
N
�

i=1

p(xi | θ). (1.38)
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Of course, the larger the value of the Likelihood, the better the data are in agreement with
the model’s parameters. This is the reason why many methods rely on the maximization of
the Likelihood function. The notion of Likelihood function plays a key role in the statistical
signal processing context, and is in particular extensively used to construct the most varied
forms of hypothesis tests. The simplest case of test that takes benefit from the use of the
Likelihood function is the so called Likelihood Ratio test (or Neyman-Pearson test, NP),
which we describe below.

1.3.1.2 The Likelihood Ratio test

The LR test is a statistical test expressing the data goodness-of-fit to two simple statistical
models like the ones expressed in (1.36). In the LR test the parameter vector θ has to be
known under the two hypotheses. According to the hypotheses in (1.36), the ratio between
the likelihood function of the data under H1, and the likelihood function of the data under
H0, is defined as

Λ(x) :=
p(x | θ1)

p(x | θ0)
. (1.39)

The function Λ(x) is commonly called the Likelihood Ratio. After choosing a test threshold
ξ, fixed in accordance to the desired significance level of the test (see subsection 1.2.3), we
obtain

LR : Λ(x)
H1

≷
H0

ξ, (1.40)

which is the general expression of the LR test. The LR test rejects the null hypothesis if
the test statistic Λ(x) falls above the test threshold ξ.

The following two examples explicit the computation of the LR test statistic in both the
scalar and the vector cases, when considering Gaussian distributed random variables.

Example 1.3.1. - Computation of the LR test statistic in the scalar case

Let us consider the case of a realization x of a scalar Gaussian distributed random variable
X. In particular, we assume that p(x | H0) ∼ N (θ0, σ

2) under H0, and p(x | H1) ∼
N (θ1, σ

2) under H1, where σ2, θ0 and θ1 are known, θ0 = 0 and θ1 �= 0. According to (1.39)
and (1.40) we have

Λ(x) =
exp

�

− 1
2σ2 (x− θ1)

2
�

exp
�

− 1
2σ2x2

�

H1

≷
H0

ξ. (1.41)

Taking the log-version of (1.41) gives

Λ(x) = − θ21
2σ2

+
xθ1
σ2

H1

≷
H0

ln ξ, (1.42)

which finally resumes to the test

Λ(x) = x
H1

≷
H0

ξLR, (1.43)

where ξLR = σ2

θ1

�

ln ξ +
θ21
2σ2

�

. Hence, the LR test amounts to compare x to a threshold,

which controls the PFA. An illustration of the test (1.43), which corresponds to the case
considered in Example 1.2.2, has been shown in Figure 1.2. �
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The computation of the LR test statistic in the N−dimensional case derives directly
from expressions (1.38), (1.39) and (1.40).

Example 1.3.2. - Computation of the LR test statistic in the vector case

We assume that the considered data vector x shows Gaussian PDF p(x | H0) ∼ N (θ0,C)
under H0, and p(x | H1) ∼ N (θ1,C) under H1. Similarly to the scalar case, the covariance
matrix C and the mean vectors θ0 and θ1 are known, θ0 = 0 and θ1 �= 0. For data that
are i.i.d, the LR test (1.40) writes

Λ(x) =

det(C−1/2)
(2π)N/2 exp

�

−1
2 (x− θ1)

t
C−1 (x− θ1)

�

det(C−1/2)
(2π)N/2 exp

�

−1
2x

tC−1x
�

= exp

�

−1

2
(x− θ1)

t
C−1 (x− θ1) +

1

2
xtC−1x

�

= exp

�

θt
1C

−1x− 1

2
θtC−1θ

�

. (1.44)

Taking the log-version of (1.44) we finally have

Λ(x) = θt
1C

−1x
H1

≷
H0

ξLR (1.45)

with ξLR = ln ξ + 1
2θ

tC−1θ. Test (1.45) corresponds to a matched filter in which data
weighted by C−1 are correlated to the signal under H1. �

Example 1.3.3. - LR test statistic in the vector case: a numerical example

We consider the case of a N = 2 dimensional Gaussian data vector x. For the mean vectors
θ0 = [θ01 , θ02 ]

t = [0, 0]t under H0 and θ1 = [θ11 , θ12 ]
t = [2, 2] under H1, and for a

covariance matrix C = I, the LR test (1.45) writes

Λ(x) = θ11x1 + θ12x2
H1

≷
H0

ξLR

= 2x1 + 2x2
H1

≷
H0

ξLR. (1.46)

This example is illustrated in Figure 1.5. The data distribution under H0 is plotted in blue,
while the one under H1 in green. The circles represent the iso-values of the PDF under both
hypotheses. The test detection edge (surface, for N>2) represented by the line of equation
2x1 + 2x2 = ξLR (ξLR = 4) and separating the two decision regions (retain H0 vs. retain
H1), is plotted in dashed red. In general (N > 2), θt

1x = ξ is a hyperplane, which represents
the detection surface of the LR test and ξ

||θ1||
is its distance to θ0. A study of the detection

surfaces of the detection approaches proposed in chapter 3 will be held in chapter 4. �

1.3.1.3 The LR test as optimal detector: the Neyman-Pearson lemma

Named after Jerzy Neyman and Egon Sharpe Pearson, who introduced it in 1933, the
Neyman-Pearson (NP) lemma, for the LR function described in (1.39), states that (the
Proof is given in Appendix A.1)
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Figure 1.5: Data distributions under the hypotheses of the model and decision regions (re-
tain H0, in red; retain H1, in green) for a one-sided right-tailed test in the two-dimensional
case. Here, θ0 = [θ01 θ02 ]

t = [0 0]t, θ1 = [θ11 θ12 ]
t = [2 2] and ξLR = 4.

Lemma 1.3.1. In order to maximize the PDET for a fixed PFA = α, we reject H0 if

Λ(x) > ξ, (1.47)

where
PFA = Pr(Λ(x) > ξ | H0) = α. (1.48)

For model (1.36), in the case of simple hypotheses (θ value known under H0 and H1),
this means that, with respect to a significance level PFA(ξ) = α, the LR test represents the
test with greatest detection power compared to any other test for that level of PFA.

1.3.2 The Generalized Likelihood Ratio test

The Neyman-Pearson approach requires that the values taken by the θ parameter under
the two hypotheses of the considered model are known. When the parameter values are not
available, an intuitive, well known and widely-applicable decision strategy is the Generalised
Likelihood Ratio test. Like the LR test approach, the GLR test also computes the ratio
of the likelihoods under the model hypotheses, with the only difference that it involves the
Maximum Likelihood (ML) estimate of the parameter vector θ (θ̂ML): the definition of the
GLR test is

GLR(x) :

sup
θ∈Θ1

p (x | θ)

sup
θ∈Θ0

p (x | θ)
H1

≷
H0

ξ. (1.49)
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An example of computation of the ML estimate for an unknown vector of parameters
θ is firstly shown. The definition of the GLR test together with the computation of the
expression of its test statistic will follow immediately after.

Example 1.3.4. - An example of computation of the GLR test statistic

We show the ML estimate θ̂ML of the unknown vector of parameter θ in the case of the
hypotheses model

�

H0 : θ = 0,

H1 : θ �= 0,
(1.50)

and for normally distributed data x ∼ N (θ,C), where C represents the covariance matrix.
By maximizing the likelihood function p (x | θ), with respect to θ we obtain

θ̂ML = argmax
θ

p (x | θ)

= argmax
θ

det
�

C−1/2
�

(2π)N/2
exp

�

N
�

i=1

− 1

2σ2
i

(xi − θi)
2

�

. (1.51)

Taking the logarithm of (1.51), computing the derivative with respect to the θ components
and equating to 0, we obtain

∂ ln p (x | θ)
∂θi

�

�

�

�

�

θ=θ̂ML

=
xi
σ2
i

− θ̂MLi

σ2
i

= 0, for i = 1, . . . , N (1.52)

from which is easy to see that

θ̂MLi = xi, for i = 1, . . . , N (1.53)

or, equivalently,
θ̂ML = x. (1.54)

For model (1.50), the definition of the GLR test (1.49) leads to

GLR(x) :
max
θ

p (x | θ)
p (x | 0)

H1

≷
H0

ξ. (1.55)

Consequently, the computation of the TGLR test statistic gives

TGLR(x) =

N
�

i=1

1√
2πσi

exp

�

− 1

2σ2
i

�

xi − θ̂MLi

�2
�

N
�

i=1

1√
2πσi

exp

�

− 1

2σ2
i

x2i

�

=

N
�

i=1

exp

�

− 1

2σ2
i

�

xi − θ̂MLi

�2
+

1

2σ2
i

x2i

�

= exp

�

N
�

i=1

− 1

2σ2
i

�

θ̂2MLi
− 2xiθ̂MLi

�

�

(1.56)
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Inserting in the log-version of (1.56) the value of the θ̂ML estimate computed in (1.53), and
denoting xi/σi = ui, we finally have that

TGLR(u) =

N
�

i=1

u2i
H1

≷
H0

ξGLR

= ||u||22
H1

≷
H0

ξGLR , (1.57)

where ξGLR = 2 ln ξ.
The computation of the GLR test statistic in (1.57) highlights the fact that this test

acts as an Energy Detector. An Energy Detector computes the energy of the signal u (sum
of the square values of its components) and compares it to an appropriate threshold. Note
that the data components in the GLR test statistic are all weighted by σ2

i reflecting that all
components do not present the same Signal-to-Noise Ratio (SNR). This test will be taken
into account all along the manuscript as a reference for comparison purposes.

Note that in the scalar case (H0 : θ = 0, H1 : θ �= 0), the GLR test (1.57) resumes to

TGLR(u) = u2
H1

≷
H0

ξGLR,

=
x2

σ2

H1

≷
H0

ξGLR,

= |x|
H1

≷
H0

ξ�GLR, (1.58)

with ξ�
GLR

=
�

σ2ξGLR. �

The scalar (1.58) and the vector (1.57) GLR tests are illustrated in Figure 1.6 and Figure
1.7, for the same parameter values used for the LR test in subsubsection 1.3.1.2 (see Figure
1.5 and Figure 1.2) and for ξ = 3. We note that in the scalar case (1.58) the absolute
value on the data x leads to a two-sided detection test, because of the unknown sign of
the parameter θ under H1. For a two-sided tests, we have reported the PFA and PDET

expressions in (1.32)−(1.35).
On the other hand, in the N = 2 vector case of Figure 1.7 the GLR detection edge

separating the two decision regions, is represented by a circle centered in the origin and
with radius r =

√
ξGLR.

Finally, a comparison between the LR and GLR tests detection performances in terms
of ROC curves is shown in Figure 1.8. According to model (1.50), we have considered a
N = 2 dimensional data vector x, characterized by a parameter vector θ = [2, 0] under
H1. As expected, the LR test (in blue) outperforms the GLR (in green), because while the
LR test has perfect knowledge of the true value of θ under H1, the GLR estimates it by

ML estimate leading to θ̂ML = x. When computing θ̂
t
MLx, which can be interpreted as an

approximation of a matched filter, the parameter estimate is thus inaccurate in correlating
with the data. This situation is obviously frequent in practice.
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Figure 1.6: Scalar GLR test for model H0 : θ0 = 0 and H1 : θ1 �= 0: distributions of the
data under the hypotheses of the model and decision regions. The GLR test represents a
two-sided test.

Figure 1.7: Vector GLR test for model H0 : θ0 = 0 and H1 : θ1 �= 0: distributions of the
data under the hypotheses of the model and decision regions (retain H0, in red; retain H1,
in green) for θ0 = [θ01 , θ02 ]

t = [0, 0]t, θ1 = [θ11 , θ12 ]
t = [2, 2] and ξGLR = 3. The detection

surface of the test is shown in dashed red.
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Figure 1.8: Comparison of the LR and GLR ROC curves for a N = 2 parameter vector
θ = [2, 0] under H1.

1.3.3 Bayesian approach to hypothesis testing and the Bayes Factor

1.3.3.1 The Bayes’ theorem and the Bayes’ Factor

In the Bayesian approach to statistical inference, the unknown model parameters are con-
sidered random variables. The basis to this approach is given by the Bayes’ theorem, called
after Thomas Bayes who first introduced it. For a data vector x and a vector of parameters
θ, the Bayes’ theorem states that

p (x,θ) = p (θ | x)π(x) = p (x | θ)π (θ) , (1.59)

where the joint probability p (x,θ) is obtained as the product of the posterior probability
p (θ | x), which gives the probability of the parameters θ given the data x, times the prior
probability on the parameters π(θ) or, equivalently, as the product of the likelihood p (x | θ)
times the prior probability on the data π(x). From (1.59) we have,

p (θ | x) = p (x,θ)

π(x)
=

p (x | θ)π (θ)

π(x)
. (1.60)

Because of its independence from the parameters θ, π(x), which acts like a normalizing
constant ensuring the posterior probability to be between 0 and 1, is often omitted. However,
if considered in the context of Bayesian hypothesis testing, this term is of crucial importance.
Under the two hypotheses of a given model, say Hi with i = 0, 1, π(x) can be obtained as

π(x | Hi) = p(x | Hi) =

�

p (x | θ)πi (θ) dθ. (1.61)
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This expression computes the marginal probability (since we marginalize over θ) of the data
and can be interpreted as a weighted average likelihood, where the weights are given by the
prior distribution πi(θ).

This quantity is the basis for the construction of a simple and widely used Bayesian
alternative to frequentist hypothesis tests, called the Bayes’ Factor (BF). According to the
likelihood p (x | θ) and to the hypotheses of the following model

�

H0 : θ ∼ π0(θ)

H1 : θ ∼ π1(θ),
(1.62)

where π0(θ) and π1(θ) are the prior probabilities on the random parameter under H0 and
H1 respectively, the BF is defined as

BF(x) =
p(x | H1)

p(x | H0)

H1

≷
H0

ξ

=

�

p (x | θ)π1 (θ) dθ
�

p (x | θ)π0 (θ) dθ
H1

≷
H0

ξ. (1.63)

Introduced by Harold Jeffreys in the middle of the last century [Jeffreys 1935], the BF
computes the marginal probabilities of the data under the two hypotheses of the considered
model giving a way to say which of two competing models better provides an accurate
explanation of the data. The uncertainty about the parameter is thus encapsulated in the
prior laws πi(θ).

Example 1.3.5. - Computation of the BF test statistic

We consider the statistical model x = θ + n with the following hypotheses

�

H0 : θ = 0

H1 : θ �= 0, and θ ∼ π1(θ).
(1.64)

In this case, definition (1.63) becomes

BF(x) =

�

p (x | θ)π1 (θ) dθ
p (x | 0)

H1

≷
H0

ξ. (1.65)

For a i.i.d noise n ∈ R
N , a data vector x ∈ R

N and a separable prior π1(θ) =

N
�

i=1

π1i(θi),

expression (1.65) leads to the test statistic

TBF(x) =
N
�

i=1

�

R
p (xi | θi)π1i (θi) dθi

p (xi | 0)
, (1.66)

where TBF(x) is simply obtained by the product of the BF test expression for each scalar
component xi in x. As the GLR test, the BF will be taken into account in next chapters
for comparison purposes. �
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1.3.3.2 The minimum PE detector

From the Bayesian framework considered in the sections above, the Probability of error PE

is defined as

PE = Pr {(“accept H1”, “H0 is true”) ∪ (“accept H0”, “H1 is true”)}
= Pr (H1,H0) + Pr (H0,H1)

= Pr (H1 | H0)Pr (H0) + Pr (H0 | H1)Pr (H1)

= PFAPr (H0) + PMPr (H1) , (1.67)

where Pr (H0) and Pr (H1) are probabilities assigned on the hypotheses, which express a
prior belief in the likelihood of the hypotheses. According to this, we have the following
result: the detector that minimizes the PE is the one that decides H1 if

p(x | H1)

p(x | H0)
>

p(H1)

p(H0)
= ξ. (1.68)

This detector corresponds to the BF (1.63). Thus, similarly to the LR test of Lemma 1.3.1,
the BF (or conditional likelihood ratio [Kay 1998a]) is compared to a threshold, computed
this time as the ratio of the prior probabilities of the model’s hypotheses. The Proof of this
result is reported in Appendix A.2.

1.4 Conclusion

In this chapter we have firstly introduced the basic steps that need to be followed to design
a hypothesis test. We have seen that these main steps are in a number of four. In fact,
to correctly build and perform a test we have to: state the hypotheses of the test, identify
an appropriate test statistic, specify the significance level of the test by selecting a test
threshold, and finally make a decision. These steps will indeed be considered for the design
of the detection tests introduced in the next chapters. We presented some statistical figures
helping to evaluate a decision rule, such as the decision/error probabilities (for instance,
Figure 1.2 and Figure 1.5), the p-value (Figure 1.3), the ROC and the AUC (Figure 1.4).

Secondly, we have given some examples on the principal methods used in hypothesis
testing highlighting the differences existing between frequentist methods, such as the LR
and the GLR tests, and Bayesian methods, such as the BF test. While in the former two
cases the considered vector of parameters is deterministic, in the latter it assumes random
values. The GLR and the BF tests will be taken into account as reference tests for purposes
of comparison.

The 1D and 2D analysis of the LR and the GLR tests’ detection surfaces illustrated in
Figure 1.5 and Figure 1.7 and in various examples, will help in chapter 4 to understand the
reasoning at the basis of the study of the detection surfaces of the approaches proposed in
chapter 3.
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2.1 Introduction

Signal processing is a research area that proposes to conceive, study and design systems for
the exploitation of signals. Generally speaking, a signal describes an evolving phenomenon
(e.g. over time) and usually carries a specific set of information.

Over the last decades, a new way of representing signals has experienced a growing
trend in the community of signal and image processing: the sparse representations. Since
the advent of the need of new strategies to store and analyze rising amounts of data,
methodologic and algorithmic advances have been proposed and this research theme still
keeps the interest of researchers very active.

Although the discussion cannot be complete owing to the large theoretical and applica-
tive extent of the subject, in this chapter we aim to summarize the main principles of
sparse signals representations. In section 2.2 the problem of representing sparse signals over
redundant dictionaries is addressed together with the question of the choice of a suitable
dictionary. In section 2.3, we present two main approaches to signals’ sparse estimation
leading to estimators with thresholding characteristics: the Penalized Least Squares and
the Bayesian Maximum A Posteriori. The chapter ends with a review of existing works
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on sparse signal detection, which lays the bases to the introduction of the sparsity-based
detection tests of chapter 3.

2.2 Sparse representations of signals

2.2.1 Sparsity of signals in a dictionary of atoms

By definition, a signal is called sparse when most of its coefficients are (approximatively)
null. Typically, if we consider a signal x ∈ R

N and its support I(x), that is the set of
non-zero components in x, the signal is said to be K−sparse when card(I(x)) = K � N .

Many signals are not sparse in their nature but show up to be sparse (or approximately
sparse) in the domain of an appropriate transform. This means that for all these signals
suitable spaces of representation exist in which they can be considered as sparse. To make
an example, a sinusoidal signal, not sparse in the canonical basis, reveals to be sparse in
the domain of the Fourier transform.

In the sparsity vocabulary the basis representation is called dictionary. The dictionary,
hereafter used as a synthesis dictionary, say R = [r1, . . . , rL], is a matrix containing the set
of all the prototype functions (elementary signals) ri through which our signal is modeled.
Each one of these functions, also called atoms, corresponds to a column of R. Fundamental
references on this subject are [Mallat 2008, Elad 2010, Starck 2010]. When a (full column
rank) dictionary contains more atoms than the signal length, we talk about redundant (or
over-complete) dictionaries. In this case, a signal x ∈ R

N is represented in the dictionary
R ∈ R

N×L, with N ≤ L, by a linear superposition of atoms ri in accordance with the
following linear model:

x =

J
�

i=1

αiri, J ≤ N. (2.1)

We say that the signal x is synthesized in the dictionary R.

When L > N , the atoms of the redundant dictionary are linearly dependent and no
unique representation of a given signal x in R exists. A signal x is thus K−sparse in a
dictionary R if the vector of coefficients α presents K non-zero components. The signal
model becomes

x = Rα =
�

i∈I(α)

αiri, with card(I(α)) = ||α||0 = K < N � L, (2.2)

where I(α) represents the support of α, that is the set of indices corresponding to the
non-zero components in the coefficients vector. An example is illustrated in Figure 2.1.
Here, a signal vector x is synthesized in a dictionary R of dimensions N × L through the
representation vector α. In the coefficients vector α, only three components are different
from zero (highlighted in green). Those components correspond to the three active atoms in
the matrix R, which provide the reconstruction of the signal x. Note that Figure 2.1 shows
the ideal case in which x = Rα. In practice, due to the complexity of the signal and/or to
the dictionary’s characteristics, signals x are often only approximately reconstructed from
atoms of R (x ≈ Rα). This is the case we will encounter in the sequel (see chapter 5 and
chapter 6).
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Figure 2.1: Synthesis of a N−dimensional vector x in a redundant dictionary R of dimen-
sions N×L, through a vector of coefficients α of length L. Here ||α0|| = 3 and x is 3−sparse
in R.

2.2.2 The choice of the dictionary

Dictionaries are one central piece in signals’ sparse representations. The quality of the
obtained representation, in terms of sparsity as well as in terms of approximation error,
directly depends on the choice of the number and of the nature of the elementary functions
that compose the dictionary.

In the redundant case, that is the one considered later on in this manuscript (see chap-
ter 5), the dictionary generally forms a large catalog containing precise signal’s forms. The
intuition is that the larger the number of elementary atoms in the dictionary, the better
the considered signal will be explained as the linear combination of a very few elementary
functions, leading to a sparse but very accurate reconstruction. If we want the signal (or a
class of signals) that we observe to be well represented, we need a dictionary that is suitable
for them. A straightforward approach is thus to put in the dictionary all the forms or struc-
tures that may appear in our data. Since real signals can have very different structures, this
reasoning could however lead to extremely large dictionaries, the use of which would make
the computation of the signal representation difficult in a reasonable time for a sometimes
negligible gain in presence of noise.

To overcome this problem, the overall dictionary is usually designed as the union of
several sub-dictionaries, say {Ri}i=1,...,P with P < L, where each sub-dictionary Ri repre-
sents a basis (or a set of simple functions) on which fast transforms are easily applicable.
Examples of frequently used sets of functions are, for instance, the Discrete Cosine and Sine
Transform bases (DCT and DST, respectively) to reproduce signal’s oscillatory behaviors,
the wavelet basis, to represent localized signals in time and frequency [Mallat 2008], and
the canonical basis obviously (I).

Despite their simplicity and their redundancy, those fixed and generic transform matrices
are not always well adapted to the particular and specific behavior of the processed data. In
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that case, two common issues are the following: i) to construct specific dictionaries, in accor-
dance to the processed signal (known) characteristics and to the application framework, such
as in [Starck 2010, Bourguignon 2011] for instance, in the field of astrophysics; ii) to resort
to dictionary learning techniques that allow to obtain very well suited dictionaries for the
signals we are considering. For dictionaries’ design purposes (see section 6.3 and section 8.3),
two different approaches to dictionary learning will be considered in this work: the first is
the K - Singular Values Decomposition (K-SVD) approach introduced in [Aharon 2006],
a brief presentation of which is proposed in Appendix B.3; the second is a minimax ap-
proach, which given a known set of possible signal features L ∈ R

N×L = [�1, . . . , �L] with
L � N representing all possible alternatives under H1, determines the optimized atom
r∗

minimax
∈ R

N , which maximizes the PDET(�i) occurring for the worst case of signal feature
�i in L [Lehmann 2005, Suleiman 2013]

r∗minimax = argmax
r, ||r||22=1

min
i

PDET(�i, r), (2.3)

with PDET(�i, r) = Pr(
�

�rtx
�

� > ξ | H1). This method will be used in section 8.3 to find
the spectral signature that maximizes the worst probability of detection under H1 over a
known library L of possible spectral line profiles.

2.3 Sparse estimation

Signal and image processing theories and methods have a long tradition of “sparsity pro-
moting/aware” approaches. Most of the corresponding literature can be related, widely
speaking, to an estimation framework and as opposed to the framework of detection −
which is the main theme of this work.

State-of-the-art signal and image models are often based on dictionaries of elemen-
tary features (atoms) through which, as explained in the previous section, the infor-
mation of interest can be synthesized with a good approximation by a linear combi-
nation of a relatively low number of atoms, with appropriate weights: most signal en-
ergy is living in a subspace (spanned by these atoms), whose dimension is much smaller
than that of the signal. In this framework, and as we will see in a few lines, sparse
estimation methods most often use sparsity-inducing (that is, thresholding) functions
[Antoniadis 2001, Moulin 1999, Nikolova 2000], whose goal is to localize where the relevant
information (the non-zero weights) concentrates.

In this section, we consider the problem of estimating a sparse deterministic unknown
signal θ ∈ R

N based on a noisy observation modeled as

x = θ + �, (2.4)

where x ∈ R
N and � ∼ N (0, I) is an additive white Gaussian noise vector. Note that (2.4)

also corresponds to the orthogonal case

y = Wθ + ��, (2.5)

with �� ∼ N (0, I) and W ∈ R
N×N so that WtW = I. Multiplying both terms in (2.5) by

Wt we obtain
Wty = θ +Wt��. (2.6)
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By noting Wty = x, Wt�� = �, the last equation reverts back to (2.4).
This kind of issue, also known as denoising problem, is often solved by estimating θ

through Penalized Least Squares (PLS). In a PLS problem, one wants to find θ so as to
solve a function of the form

θ̂PLS = argmin
θ

1

2
||x− θ||22 + µϕ(θ). (2.7)

We thus seek to minimize (with respect to θ) a particular energy function that is the sum
of a data-fidelity term 1

2 ||x− θ||22 and a penalty term µϕ(θ). Solutions to the PLS problem
represent a trade-off between the data-proximity term (Least Squares for Gaussian noise)
and the a priori signal characteristics taken into account through ϕ(θ). µ > 0 is called
regularization parameter and takes an important role in balancing between the penalty
function’s smoothness and the goodness-of-fit in the data fidelity term. While larger values
of µ will put more weight in the regularization, smaller values of µ will put more emphasis
on the data fidelity term. With reference to its dependence on the regularization parameter,
we hereafter refer to the penalty function as ϕµ(θ).

The performance of the estimator strongly depends on the nature of the penalty function
and on the cost function C(θ, θ̂PLS), where θ is the true value of the unknown parameter.

Next section illustrates the cases in which particular structures of the penalty function
ϕ(θ) lead to shrinkage techniques, allowing to find sparse solutions to the signal denoising
problem (2.7).

2.3.1 Penalty functions and thresholding estimators

We illustrate some examples of PLS estimators which, thanks to the characteristics of the
penalty term injected in the minimization problem, show up solutions with interesting
thresholding properties. For a more detailed and exhaustive investigation of the problem,
we make reference to the works of [Antoniadis 2001, Moulin 1999, Nikolova 2000].

In order to produce sparse solutions, a necessary condition is that the penalty function
ϕ(θ) is non-smooth at the origin [Antoniadis 2001] (examples are shown in Figures 2.2(a),
2.3(a) and 2.4(a)).

The choice of an additive function makes the estimation problem (2.7) separable. This
means that for each of the θ components, the corresponding PLS estimate can be computed
as θ̂PLS = [θ̂PLS1 , . . . , θ̂PLSN

], with

θ̂PLSi = argmin
θi

1

2
(xi − θi)

2 + ϕµ(θi). (2.8)

To simplify the notation, we hereafter refer to this scalar case as

θ̂PLS = argmin
θ

1

2
(x− θ)2 + ϕµ(θ). (2.9)

In the literature, many penalty functions are used. We illustrate three of them: the l1
penalty function, leading to the soft-thresholding (ST) estimator [Donoho 1994]; the clipped
l1 penalty function, leading to the hard-thresholding (HT) estimator [Donoho 1994]; and the
smoothly clipped absolute deviation (SCAD) penalty function [Antoniadis 1997], leading to
an intermediate between the soft- and the hard-thresholding estimators.
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2.3.1.1 The Soft-Thresholding estimator

When considering the PLS problem (2.9), the ST estimator arises when choosing an l1
penalty function of the form [Antoniadis 2001]

ϕµ(θ) = µ |θ| . (2.10)

Indeed, replacing (2.10) in (2.9) we have

θ̂PLS = argmin
θ

1

2
(x− θ)2 + µ |θ| . (2.11)

Since θ̂PLS is an even function in θ, we consider θ ≥ 0. Thus

θ̂PLS = argmin
θ

1

2
(x− θ)2 + µθ, (2.12)

which is the equation of a parabola. Computing the derivative with respect to θ and
equating it to zero yields

θ = x− µ. (2.13)

(2.13) holds for x > µ. If x > µ, x − µ > 0, so the minimum of the parabola for θ ∈ R
+

is θ̂PLS = x − µ. If x ≤ µ, the minimum is negative, so the minimum of the parabola for
θ ∈ R

+ is obtained in θ̂PLS = 0. According to this, we finally obtain

θ̂PLS = θSTµ(x) =

�

0, if |x| < µ

x− sgn(x)µ, if |x| > µ,
(2.14)

where the µ parameter takes the function of a threshold in the thresholding operator θST.
The ST estimator provides a continuous function of the data x that is biased in the sense

that the non-zero value of the estimate θ̂PLS always differ from the signal x of a quantity

(a) (b)

Figure 2.2: 2.2(a) Examples of l1 penalty functions. 2.2(b) Corresponding ST operators for
four different values of µ ∈ [0.2, 0.4, 0.8, 1].
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function of the threshold µ, which penalizes large coefficients values. Figure 2.2 illustrates
the l1 penalty functions (2.10) (in Figure 2.2(a)) and the corresponding ST operators (2.14)
(in Figure 2.2(b)), obtained for different values of the parameter µ ∈ [0.2, 0.4, 0.8, 1]. Note
that the stronger the µ threshold, the more sparse the θ̂PLS estimate we get, but also the
stronger the estimation bias.

2.3.1.2 The Hard-Thresholding estimator

The HT estimator can be derived from problem (2.9) by choosing a non-convex clipped l1
penalty function of the form [Antoniadis 2001]

ϕµ(θ) = µ2 − 1

2
(|θ| − µ)2I(|θ| < µ), (2.15)

where I(·)2 represents the indicator function. In accordance to the value of the indicator
function, expression (2.15) can be rewritten as

ϕµ(θ) =

�

µ2, if |θ| ≥ µ

µ2 − 1
2(|θ| − µ)2, if |θ| < µ.

(2.16)

Replacing (2.16) in (2.9) and solving with respect to the θ parameter (see proof in Appendix
B.1), we obtain the expression of the θ̂PLS as

θ̂PLS(x) = θHTµ(x) =

�

0, if |x| < µ

x, if |x| > µ,
(2.17)

which is the hard thresholding operator, also compactly, noted as [Donoho 1994]

θ̂PLS = xI(|x| > µ). (2.18)

This is a very simple and intuitive thresholding rule: once the threshold µ has been fixed,
the data coefficient is taken as the estimate of the parameter if its value falls above µ. On
the contrary case (coefficient value smaller or equal to µ), the estimate is set to zero. In
contrast to the ST operator, the HT solution (2.18) is unbiased. The clipped l1 penalization
function (2.15) and the corresponding HT operator (2.18) are shown for µ = 0.4 in Figure
2.3(a) and Figure 2.3(b), respectively.

2By definition I(x > a) = 1 if x > a and 0 otherwise.
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(a) (b)

Figure 2.3: 2.3(a) An example of clipped l1 penalty function for µ = 0.4. 2.3(b) Corre-
sponding HT operator.

2.3.1.3 The penalized SCAD thresholding estimator

We finally report an example of thresholding function that is intermediate between the ST
and HT operators respectively seen in (2.14) and (2.18). The SCAD thresholding operator
allows to overcome HT and ST drawbacks: HT always yields solutions that are not contin-
uous with respect to the data x. On the other hand, while providing continuous solutions,
the ST operator gives biased estimates because of the shifting of µ.

(a) (b)

Figure 2.4: 2.4(a) Example of SCAD penalty function for µ = 0.4 and a = 3.7. 2.4(b) Cor-
responding SCAD thresholding operator (in blue). The HT and ST functions are reported
in dashed green and dashed red, respectively.

Using in the PLS problem (2.9) a SCAD penalty function of the form [Fan 1997,
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Fan 2001]

ϕµ(θ) =















µ |θ| , if |θ| ≤ µ

−
�

|θ|2−2aµ|θ|+µ2

2(a−1)

�

, if µ < |θ| ≤ aµ

(a+1)µ2

2 , if |θ| > aµ

(2.19)

for a > 2, leads to the linear thresholding function

θ̂PLS = θSCAD(x) =











sgn(x)(|x| − µ), if |x| ≤ 2µ,

+ (a−1)x−aµ sgn(x)
a−2 , if 2µ < |x| ≤ aµ,

x, if |x| > aµ.

(2.20)

Figure 2.4 reports the penalized SCAD function (in Figure 2.4(a)) and the corresponding
continuous and asymptotically unbiased estimator (in Figure 2.4(b)) for a = 3.7 [Fan 2001]
and for µ = 0.4.

2.3.1.4 Case of lp penalty functions, with p ≤ 1

Another important particular case is when ϕ(θ) is chosen as

ϕµ(θ) = µ ||θ||pp = µ

N
�

i=1

|θi|p , (2.21)

with 0 < p ≤ 1. According to (2.21), the scalar PLS problem (2.9) becomes

θ̂PLS = argmin
θ

1

2
(x− θ)2 + µ |θ|p . (2.22)

The solution of this problem also yields thresholding estimators, a study of which can be
found in [Moulin 1999]. The particular case of p = 1, leading to the ST estimator, was
reported in subsubsection 2.3.1.1.

2.3.2 Bayesian framework for sparsity-promoting estimators

We now aim at investigating the sparse estimation problem from a Bayesian point of view.
In this purpose, we consider the case of the following scalar model

x = θ + �, (2.23)

where a noisy data component x is function of an unknown stochastic parameter θ, which
we want to estimate. Here, the noise component is � ∼ N (0, 1).

2.3.2.1 Bayesian Risk Functions

A Bayesian estimator can always be considered as the minimizer of some Bayesian risk
function R ([Kay 1998b], from which the results below are drawn). The Bayesian risk
function R gives a measure of the performance of the considered estimator. Denoting

� = θ − θ̂, (2.24)
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the error between the estimator θ̂ and θ, and C(�) the cost function dependent on the error
�, the risk is defined as

R = E [C(�)] , (2.25)

representing, in accordance with a Bayesian point of view, the expectation value of the cost
function C(�) with reference to the joint PDF p(x, θ) of x and θ.

Several types of cost functions exist. In this section we focus on two of the most com-
monly used ones: the quadratic loss function

C(�) = �2, (2.26)

shown in Figure 2.5(a), and the hit-or-miss loss function illustrated in Figure 2.5(b)

C(�) =
�

0, if |�| < δ

1, if |�| > δ, with δ > 0.
(2.27)

Definition (2.25) yields (summations are over the appropriate domains of x and θ)

R = E [C(�)] =
� �

C(�)p(x, θ) dxdθ. (2.28)

According to the Bayes’ theorem (1.60), which states that

p(x, θ) = p(θ | x)π(x), (2.29)

the expression of the R function in (2.25) becomes

R =

� �

C(�)p(θ | x)π(x) dxdθ

=

� ��

C(�)p(θ | x)dθ
�

π(x) dx. (2.30)

(a) (b)

Figure 2.5: 2.5(a) Example of quadratic function. 2.5(b) Example of Hit-or-Miss loss func-
tion.
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We make the following important observation: since π(x) ≥ 0, minimizing the R function
(2.30) is equivalent to minimize the integral in brackets over θ. This integral is hereafter
denoted as the function

g(θ̂) =

�

C(�)p(θ | x)dθ. (2.31)

For the two C(�) error functions above, the minimization of the corresponding risk function
R leads to two well known optimal estimators: the Minimum Mean Square Error and the
Maximum A Posteriori estimators. The explicit computation of their expression is addressed
below.

2.3.2.2 The Minimum Mean Square Error estimator

We replace in (2.30) the quadratic loss function introduced in (2.26). Recalling that C(�) =
�2 = (θ− θ̂)2, we seek to find the estimator θ̂ that minimizes the Mean Square Error (MSE)
risk function

R = E

�

(θ − θ̂)2
�

=

� �

(θ − θ̂)2p(θ | x)dθπ(x) dx. (2.32)

According to what stated above, this is equivalent to minimize

g(θ̂) =

�

(θ − θ̂)2p(θ | x)dθ. (2.33)

Taking the partial derivative of (2.33) with respect to θ̂ we have

∂

∂θ̂

�

(θ − θ̂)2p(θ | x)dθ =

�

∂

∂θ̂
(θ − θ̂)2p(θ | x)dθ

=

�

−2(θ − θ̂)p(θ | x)dθ

= −2

�

θp(θ | x)dθ + 2θ̂

�

p(θ | x)dθ. (2.34)

Since
�

p(θ | x)dθ = 1, (2.35)

setting (2.34) to zero finally gives

θ̂MMSE =

�

θp(θ | x)dθ

= E(θ | x). (2.36)

This expression tells us that the Bayesian estimator that minimizes the MSE is equal to the
mean a posteriori.

The expression of the MMSE estimator can be easily generalized to the vectorial case.
In fact, for a noisy data vector x, function of a parameter vector θ, the MMSE estimator
resumes to compute the mean of the posterior PDF for each component in the vector of
parameters, leading to

θ̂ = E(θ | x). (2.37)

We refer to [Kay 1998b] for the proof details.
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2.3.2.3 The Maximum A Posteriori estimator

We now replace in (2.30) the hit-or-miss loss function introduced in (2.27). In this case,
we have C(�) = 1 for � > δ and � < −δ (or equivalently for θ > θ̂ + δ and θ < θ̂ − δ,
respectively). The optimal Bayesian estimator is found minimizing the function

g(θ̂) =

� θ̂−δ

−∞
p(θ | x)dθ +

� +∞

θ̂+δ
p(θ | x)dθ. (2.38)

Since
� +∞

−∞
p(θ | x)dθ = 1, (2.39)

the g(θ̂) can be written as

g(θ̂) = 1−
� θ̂+δ

θ̂−δ
p(θ | x)dθ, (2.40)

from which we have that minimizing (2.40) actually corresponds to maximize the integral

� θ̂+δ

θ̂−δ
p(θ | x)dθ. (2.41)

The Bayesian estimator that minimizes the risk function R (2.30) for a hit-or-miss loss
function of type (2.27) with δ → 0 is thus the one that maximizes the posterior PDF of θ
given the data x. We call this estimator the Maximum A Posteriori (MAP) estimator, and
we mathematically write it as

θ̂MAP = argmax
θ

p(θ | x). (2.42)

In the next section, we introduce and study the advantageous sparsity promoting properties
of the MAP estimate using appropriate prior laws.

2.3.3 MAP sparsity-promoting estimate of unknown parameters

The question of finding an estimate of the unknown deterministic parameter vector θ has
been addressed in subsection 1.3.2 in the context of the GLR test. As specified by equations
(1.53) and (1.54), the ML estimate of θ for model (1.50), leads to θ̂ML = x. Nevertheless,
when taking into account sparse parameter vectors, as it is the case in our work, the un-
constrained ML estimate reveals not to be in agreement with the considered model because
it is not sparse. In this section we seek to find sparse estimates of θ that will be further
injected in the detection approaches later discussed. We focus on the MAP estimate of
θ because it is associated to the Hit-or-Miss cost function (see subsection 2.3.2), which is
appropriated for sparse vectors. In particular we focus on the appropriate priors which will
induce sparsity.

As already defined in the previous section, for a scalar parameter θ the MAP estimate
writes

θ̂MAP = argmax
θ

p(θ | x)

= argmax
θ

p (x | θ)π (θ) . (2.43)
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With − ln p (x | θ) = 1
2(x − θ)2 and − lnπ (θ) = ϕµ(θ), (2.43) reverts back to a

PLS thresholding problem (see subsection 2.3.1 and Example 2.3.1). From [Moulin 1999,
Antoniadis 2001], prior distributions π(θ) that are mono-modal and not differentiable at
the origin, will yield sparse estimates θ̂MAP.

For example, Laplacian priors indeed lead to soft-thresholding functions (see Example
2.3.1 and Figure 2.2(b)). Similarly, Generalized Gaussians (GG) with p−parameter smaller
than 1 correspond to the lp norms of subsubsection 2.3.1.4, which yield thresholding func-
tions that are well studied in terms of bias and threshold coordinates (as discussed in
[Moulin 1999, Antoniadis 2001]). Thresholding functions are also obtained using Bernoulli-
Gaussian priors [Pesquet 1996].

Examples of Laplacian and GG distributions for a scalar parameter θ are shown in
Figure 2.6: in Figure 2.6(a), a Laplacian prior of the form

πLAP (θ) =
1

2λ
e−

|θ|
λ (2.44)

is plotted for different values of the λ parameter (λ = 0.8, 1, 2, 4), while Figure 2.6(b) shows
a GG prior of the form

πGG (θ) =
p

2sΓ
�

1
s

�e−
|θ−µ|p

sp , (2.45)

where Γ(·) represents the Gamma function and s, p ∈ R
+ are real positive parameters. In

Figure 2.6(b), s = 1, µ = 0 and p = 0.4, 0.5, 0.6, 0.7.

(a) (b)

Figure 2.6: 2.6(a) Examples of Laplacian prior for three different values of λ ∈ {1, 2, 4}.
2.6(b) Examples of Generalized Gaussian prior for three different values of p ∈ [0, 1].

Thanks to the thresholding properties it yields and to the simple computation of the
solution it allows, the Laplacian prior encapsulates most of the desirable properties a sparse-
detection should possess. This prior law will be considered throughout this work. The
derivation of the ST operator when injecting a Laplacian prior in the MAP estimate is
reported in the example below.
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Example 2.3.1. - MAP estimate with Laplacian prior and ST operator

We consider the case of the following vector model

x = θ + �, � ∼ N (0,C) (2.46)

where a noisy data vector x is function of an unknown parameter θ, which we want to
estimate. We consider a Laplacian prior of the form

π(θ) =

N
�

i=1

1

2λi
e
−

|θi|

λi . (2.47)

For model (2.46) and prior distribution (2.47), the computation of the θ̂MAP estimate
can be made component-wise. We have

θ̂MAP =
�

θ̂MAP1 , · · · , θ̂MAPN

�t
, (2.48)

where each scalar component θ̂MAPi (noted θ̂MAP below) of θ̂MAP is given by

θ̂MAP = argmax
θ

p (θ | x)

= argmax
θ

p (x | θ)π (θ)

= argmin
θ

− ln p (x | θ)π (θ) . (2.49)

For a Gaussian Likelihood function p (x | θ) ∼ N
�

0, σ2
�

and a scalar Laplacian prior,
definition (2.49) becomes

θ̂MAP = argmin
θ

− ln

�

1

2σλ
√
2π

exp

�

−(x− θ)2

2σ2
− |θ|

λ

��

= argmin
θ

− ln

�

1

2σλ
√
2π

�

+

�

(x− θ)2

2σ2
+

|θ|
λ

�

= argmin
θ

(x− θ)2

2σ2
+

|θ|
λ
. (2.50)

Expression (2.50) is equivalent to the PLS problem (2.11) with σ2

λ = µ. Thus, the MAP
estimate is obtained by the soft-thresholding operator:

θ̂MAP =

�

0, if − σ2

λ < x < σ2

λ

x− sgn (x) σ2

λ , otherwise.
(2.51)

Examples of soft thresholding functions of the form (2.51) have already been shown in
Figure 2.2(b). Note that, the lower the λ parameter, which corresponds to a sharper prior
function (see Figure 2.6(a)), the higher the σ2/λ threshold. Consequently, the higher the
value of the threshold, the stricter the condition on data values x to obtain a nonzero MAP
estimate for the θ components.
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2.4 Sparse detection

All the works presented in this manuscript generally deals with the topic of sparse detection.
We aim at setting tests that are powerful for the detection of signals having many zeros or,
more generally, many very weak components.

In the particular but extremely frequent case of sparse parameters (as for instance in data
models using dictionaries), estimation and detection share a common goal: finding spaces
of reduced dimensions where useful information is located and discard the others. This
was illustrated through the thresholding functions of section 2.3. Despite this connection
and the popularity of sparsity, the signal processing literature in sparse detection is far less
abundant than that of sparse estimation. A brief survey is proposed below.

2.4.1 Previous works in sparse detection

In the seminal paper of Donoho and Johnstone [Donoho 1994], near optimality3 of hard-
and soft- thresholding operators is established in an estimation (denoising) framework using
orthogonal wavelets. These adaptive operators are introduced using a simple and powerful
heuristic argument: while all empirical wavelets coefficients contribute noise, only very
few contribute signal. Connection with detection is evoked in the same paper by relating
thresholding operators to an automated version of the model selection rule, using z-scores4

in statistics.

In the statistical literature, Fan [Fan 1996] makes more explicit the connection between
estimation of sparse parameters using thresholding operators and detection tests adapted
to such parameters. The introductory examples analyzed in [Fan 1996] show that classical
detection tests based on the empirical data distribution functions (like the Kolmogorov-
Smirnov and the Cramér-Von Mises tests5) are not appropriate for such parameters. One
existing test (the Neyman’s truncation6) would however be appropriate by relaxing the
assumption made in this test that the information is concentrated in the first components
of the parameter vector. Fan [Fan 1996] thus proposes a straightforward improvement to
adaptively select the components used in Neyman’s test, using thresholding operators.
Hence, the resulting test statistics are derived from the same heuristic as in [Donoho 1994],
rather than from the “canonical” form of explicit density or probability ratios − in which
we are interested, as this provides a precise ground for the interpretation of such tests.

As will be shown in section 3.3, the test described by Fan with soft-thresholding is
actually a special instance of another test, the Posterior Density Ratio (PDR) [Basu 1996],
introduced in the sixties by I. J. Good [Good 1965]. The PDR is discussed in [Basu 1996]

3With respect to an ideal estimator.
4For a realization x of a random variable X following distribution D(µ, σ), standard scores, also called

z -values or z -scores are are defined as z(x) = x−µ
σ

.
5The Kolmogorov-Smirnov (KS) test is a hypothesis test used to determine the goodness of fit beween

a sample’s empirical CDF and a reference distribution, or between the empirical CDF of two samples.
The Cramér-Von Mises (CVM) test has the same application of the Kolmogorov-Smirnov test. The main
difference between the two tests is that while the KS test focuses only on the maximum difference between
the empirical and the reference distributions is taken into consideration, the CVM test takes better account
of the data set involving the sum of those differences.

6Neyman’s truncation or Adaptive Neyman’s Test (ANT) [Fan 1996]: given an N-dimensional data vector

x, the ANT proposes to use the testing procedure ||x||22
H1

≷
H0

γ only on the first m components of x.
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in the case of scalar parameters, outside the framework of sparsity. This test seems absent
from the subsequent literature of the “sparse representation era” [Fuchs 2010] despite its
good behavior for sparse signals.

In the Signal Processing literature, a few works [Haupt 2007, Wang 2008, Paredes 2009,
Fuchs 2010, Malloy 2011, Bajwa 2013] have recently proposed detection tests exploiting
sparsity, mostly in the Compressed Sensing framework. In [Haupt 2007], a best k-term ap-
proximation of the parameter vector is injected in the Likelihood Ratio. This is similar in
spirit to the approach called LRMAP that we introduce in the next chapter. In these works,
however, no analytical study is attempted to investigate the effects of the randomness of
the estimate injected in the test. We propose such an analysis in section 3.5. The same
idea appears in [Wang 2008], where a MAP estimate is used (as a solution of the Basis
Pursuit DeNoising (BPDN) or LASSO (Least absolute shrinkage and selection operator)
[Tibshirani 1996, Chen 2001, Fuchs 2004]), and the tests efficiency is also evaluated numer-
ically. In [Paredes 2009], the sensing matrix is designed to correspond to the subspace of
the sparse signals, which is assumed to be known. The works presented in [Bajwa 2013]
propose to optimize Parseval frames for signal detection using the GLR. In [Malloy 2011],
sparse recovery is investigated in the framework of multiple testing where the number of
measurements per components is allowed to be optimized, with the constraint that their
total number is fixed. In [Fuchs 2010], Fuchs describes the connection between the support
detection performed by the BPDN and a GLR, testing whether data contain a signal that
has sparsity one in some dictionary. The model selection approach for sparse detection is
adopted in the paper of Larsson and Selen [Larsson 2007]. In this work, the considered
sparse models correspond to all the possible sparse configurations of the parameter vector.
In the MMSE estimation framework, a greedy algorithm is proposed in order to reduce the
combinatorial complexity of this approach.

Back to the statistical literature, the test called Higher Criticism (HC) is set in
[Donoho 2004] in order to detect faint sparse vector means of multivariate normal vec-
tors, whose covariates under H0 are zero-mean, independent and identically distributed. In
[Arias-Castro 2010], this test is applied to the case where data are observed through a sens-
ing matrix, which is a random and redundant dictionary. Another test, based on a simple
Bonferroni-type correction7 (the Max test), is also considered. The Max test corresponds
actually to a particular case of the proposed PDR and LRMAP approaches introduced in
the next chapter. Both the HC and the Max test will be shown to be powerful for highly
sparse signals (cf. chapter 5). For comparison purposes, these tests will be taken into
account in section 5.2 and section 6.3, in the context of dictionary model-based detection
tests. A brief description of HC procedure is thus proposed below.

2.4.2 The Higher Criticism

Introduced by J. W. Tukey in 1976 [Tukey 1976], the notion of Higher Criticism or second-
level significance testing, refers to a multiple comparison (multiple testing) problem that
occurs when a set of statistical inferences are considered simultaneously to discriminate
between two hypotheses.

7Bonferroni-type correction is a way to control the Type I error rate in multiple testing problems. When
testing n independent hypotheses on a set of data, each individual hypothesis is set to a statistical significance
level α/n, where α is the Type I error rate that would be set if only one hypothesis was considered.
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The following example introduces the problem: we want to state the efficiency of a new
medical treatment on a given set of n patients. For each patient we are given an observation
of the form

zi = θi + wi, i = 1, . . . , n (2.52)

where the index i designs the i−th patient, θi represents the effect of the treatment on the
i−th patient and wi is a measurement error assumed to be N (0, 1). The corresponding
testing model becomes

�

H0 : θ1 = θ2 = · · · = θn = 0

H1 : At least one θi �= 0,
(2.53)

which means to test the absence of the treatment effect on the overall joint null hypothesis
H0 versus its presence in at least one of the tested patients. To make the test valid, we set
a significance level α (say α = 5%) for each test performed on a single patient.

As seen in chapter 1, the significance level conditions the validation of the effects of
the treatment, allowing to quantify the risk of wrong conclusions, as for example Type I
errors. When multiple statistical tests are performed simultaneously however, the global
risk of getting wrong conclusions obviously rises. This is for example the case if the multiple
testing procedure involves n consecutive independent tests. In this case, the overall risk to
wrongly conclude on the effectiveness of the treatment is not 5% (the threshold for each
single test), but it is n times higher. The significance level α is said to be subject to inflation.

With his second-level significance testing [Tukey 1976], Tukey proposed a method to
control the inflation of the risk when multiple comparisons are needed. In 2004, Tukey’s
work has been further developed by D.L. Donoho and J. Jin [Donoho 2004], who applied
the HC procedure to the detection of weak sparse signals in white noise. The authors
were precisely interested in (2.53): testing whether n normal means are all zero versus the
alternative that a small fraction is positive and nonzero [Donoho 2004].

To implement the HC, the authors consider n independent models
�

H0i : zi ∼ N (0, 1)

H1i : zi ∼ N (µi, 1) µi > 0, i = 1, . . . , n.
(2.54)

Similarly to the example illustrated above, it is expected that in the majority of the tests
µi = 0, while for a small fraction of the tests, µi > 0. At this point, the data zi are converted
in terms of p-values (defined in subsection 1.2.4) under H0

pi = Pr {N (0, 1) > zi} . (2.55)

Denoting by p(i) the resulting p-values sorted in increasing order (p(1) < p(2) < · · · < p(n))
the HC test statistic writes:

HC∗
n = argmax

{1≥i≥α0n}
HCn,i, (2.56)

where the i -th normalized z -score HCn,i, defined as

HCn,i =
√
n ·

��

�i/n− p(i)
�

�

�

/

�

�

p(i)
�

1− p(i)
�

�

, (2.57)

is maximized over a considered range of p-values set by α0. The parameter α0 can be set
in accordance to the data degree of sparsity under H1. For instance, if α0 = 1/n, only the
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smallest p-value (the largest component) p(1) is accounted for. Choosing α0 = 1/2 allows
to test only on the half smallest p-values (the largest components).

The HC approach can be interpreted as follows:

• The test compares the maximal deviation of the empirical CDF Fn(t) of p-values pi,
evaluated at p(1), . . . , p(α0n) to their true CDF under H0, F (t). Figure 2.7 illustrates
an example of the two CDFs Fn(t) and F (t) when taking n = 5 and α0 = 1.

• As demonstrated in subsection 1.2.4, under H0, the p-values are uniformly distributed
as U(0, 1), and their CDF is F (t) = t (green plot). On the other hand, the empirical
CDF Fn(t) (blue plot) is a random variable that may take values 0, 1

n , . . . , α0. For

example, the realization Fn(t) = k
n means that we found k p-values (out of α0n)

having magnitude less or equal to t. Hence, Fn(t) =
K(t)
n , where K is the number of

p-values less or equal to t.

Since the p-values are independent, Fn(t) = K(t)
n ∼ B

�

µ = t, σ =
�

nt(1− t)
�

.

Asymptotically (when n → ∞), B
�

µ = t, σ =
�

nt(1− t)
�

d→ N
�

t,
�

nt(1− t)
�

8.

At this point, computing the z-scores (see subsection 2.4.1) of Fn(t) at values t = p(i), for i =
0, . . . , α0n, yields (2.57) and the HC procedure thus works at the maximal z-score in (2.56).

Figure 2.7: True (in green) and Empirical (in blue) CDF of p-values pi. The z-scores HC5,i

are indicated by red arrows (up to factor
√
n/

��

p(i)
�

1− p(i)
�

�

in (2.57)). The HC statistic

is the max of those weighted deviations to F (t).

8Convergence in distribution (
d
→): A sequence of random variables {Xn}n∈N is said to converge in

distribution to a random variable X if lim
n→∞

Fn(x) = F (x), for every number x ∈ R at which F is continuous.

Here, Fn and F are the CDFs of Xn and X, respectively.
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2.4.3 A glance at sparse detection in Hyperspectral Imaging

The main application of our work concerns the detection of low Signal-to-Noise Ratio and
sources sparse in dictionary in multi-dimensional noisy data. In particular, we focus on
hyperspectral three-dimensional data. As it will be detailed in chapter 6 and chapter 7,
to each pixel of a hyperspectral image is associated a vector, which reflects the pixel’s
characteristics in function of different spectral bands. In this context, a multitude of general
principles and methods have been proposed.

2.4.3.1 Spectral-based detection techniques

One of the most widespread problems in hyperspectral imaging is target detection. Accord-
ing to the spectral characteristics of a pixel under test, target detection algorithms aim to
find out if this pixel contains a target signature or not. Hyperspectral target detection algo-
rithms can be divided into two groups: anomaly detection algorithms and spectral matching
detection algorithms. In anomaly detection algorithms, no prior knowledge about the target
spectrum is required. Since target and background spectra usually show distinct spectral
characteristics, the main goal is to identify pixels that substantially differ from the image
background. On the other hand, spectral matching detection algorithms assume the target
spectral signature to be known. In this case, all those pixels whose spectrum is highly
correlated with the reference one are detected as targets.

Statistical hypothesis testing techniques have been extensively used for target detec-
tion [Manolakis 2002]. Two first examples are the Matched Filter (MF) and the Adaptive
Matched Filter (AMF) approaches introduced in [Trees 1968]. For a given N−dimensional
observation vector x, we consider the two following hypotheses

�

H0 : x ∼ N (µb,Cb)

H1 : x ∼ N (µt,Ct),
(2.58)

where x is normally distributed (with mean vector and covariance matrix that depend on
the considered hypothesis) and assumed to belong to the background under H0 (µ = µb and
C = Cb) or to the target under H1 (µ = µt and C = Ct). For C = Cb = Ct, computing
the LR (1.39) yields the following detector statistic

TMF = k(µt − µb)
tC−1(x− µb) (2.59)

where k is a normalization constant. (2.59) represents the test statistic of the (linear) MF
for model (2.58). The MF detector requires the mean vectors and the covariance matrices
under the two hypotheses of the model to be known. When not available, these quantities
need to be estimated. In this case, for known target spectral signatures, and for background
mean and covariance matrix estimated by ML, one refer to AMF detectors [Robey 1992].

A more general theory for hypothesis testing based techniques for target detection is the
Matched Subspace (MS), introduced by [Scharf 1994]. In this framework, a N−dimensional
observation vector x (i.e. a pixel vector in Hyperspectral Imaging) is modeled as

�

H0 : x = Bζ + �,

H1 : x = Tθ +Bζ + �,
(2.60)
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where T ∈ R
N×t and B ∈ R

N×b, with b < N − t, are two known matrices whose columns
span the target spectra �T� and the background spectra �B� subspaces respectively, θ ∈ R

t

and ζ ∈ R
b are the associated unknown coefficient vectors, and � ∼ N (0,C) is an N -

component Gaussian noise vector. In the most simple case, the covariance matrix C is
known. Other detection scenarios (e.g. known signal in subspace with unknown noise level)
are also studied in [Scharf 1994].

The target and background subspaces are assumed to be linearly independent in the
sense that no signal in �T� can be obtained as a linear combination of vectors in �B�
and vice-versa. According to this, the goal of a MS detector is to find out whether the
observation x belongs to the target or to the background subspace. The authors perform
subspace detection by using the GLR test for model (2.60). In particular, the GLR test
is derived and its properties studied for four different detection problems, which take into
account the complete or partial specification of the tested signal and the known or unknown
noise level. These scenarios resume the characteristics of the majority of practical detection
problems in time series analysis and multi-sensor array processing, and can be indeed applied
to Hyperspectral Imaging assuming T and B to be known.

In [Kraut 2001], MS detectors are adapted to the case of noise covariance matrix C

with unknown structure. Similarly to MS detectors, Adaptive Subspace (AS) detectors are
designed using the GLR test for the four detection problems mentioned above, estimating
the covariance matrix C by a given set of training data. An application of AS detectors
to pixel and sub-pixel target detection (with known spectral signature) in hyperspectral
images is proposed in [Manolakis 2001].

The same idea of [Haupt 2007], described in previous section, appears also in
[Theiler 2012], applied this time in order to perform gaseous plumes detection in noisy
hyperspectral images.

Numerous other works exist. We shall restrict to cite the sparsity-based algorithm for
target detection developed in the first part of [Chen 2011b] because it uses sparse models
and techniques connected to (but different from) what we propose in chapter 5. In this
study, the model used to describe data is somewhat similar to the one defined in (2.60) for
MS detectors. Each observation x is modeled using a structured dictionary R = [Rb Rt]
consisting in the concatenation of a set of background (Rb) and training (Rt) samples

x = Rα = [Rb Rt]

�

αb

αt

�

= Rbαb +Rtαt. (2.61)

Here, α = [αb αt]
t represents the corresponding unknown vector of sparse coefficients.

After recovering the α̂ = [α̂b α̂t]
t sparse vector using greedy pursuit techniques (see sec-

tion 6.2), the background rb(x) = ||x−Rbα̂b||2 and target rt(x) = ||x−Rtα̂t||2 residuals
are computed and the following detector’ statistic is established

T (x) = rb(x)− rt(x). (2.62)

If T (x) > ξ, with ξ a prescribed threshold, then x is labeled as a target pixel.

2.4.3.2 Spatio-spectral based detection techniques

When applied to Hyperspectral Imaging, the approaches described above perform detection
for each pixel in the image independently, without taking into account eventual spectral
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correlations existing between pixels in a same spatial neighborhood. A brief survey on
some works that propose spatio-spectral based detection techniques is proposed below.
Contributions for the particular case of 3D spatio-spectral model-based techniques will be
proposed in section 6.3.

In the second part of the paper [Chen 2011b], the authors suggest to exploit inter-pixel
correlation to perform detection of targets containing multiple pixels. To improve detection
performances, a spatial smoothing constraint is introduced in the detector to force spectral
similarity between spatially correlated pixels.

An alternative way to exploit spatio-spectral dependences between pixels has been pre-
sented in [Chen 2011a]. Based on the same detector of (2.62), a joint sparsity model is
introduced through which pixels in a same small neighborhood are approximated by a
sparse linear combination of a few common dictionary atoms, using weighting coefficient
vectors with same support but different values of the non-zero components.

In [Schweizer 2001], voxel’s inter-correlation is exploited performing a ML anomaly de-
tector based on spatio-spectral Gauss-Markov Random Field modeling.

A “top-to-bottom” l1−minimization algorithm for the detection of non-overlapping (spa-
tially sparse) point sources in additive noise is introduced in [Herranz 2010]. After filtering
the entire image with matched filter, point sources detection is performed downwards from
the brightest (top) to the faintest (bottom) picks in the filtered image.

In [Bourguignon 2012], a multi-step approach for astrophysical hyperspectral data pro-
cessing is presented. The whole hyperspectral cube is considered as a collection of spectra
in which data are sparsely modeled as a superposition of a line spectrum and a continuum
spectrum (modeled in the DCT domain). After performing data restoration from noisy
observations by using a PLS estimator with l1−norm penalization, an “object detection
strategy” is introduced. Based on the estimated data, pixels’ aggregation into objects is
performed connecting pixels with similar spectral characteristics as belonging to the same
object. More precisely, two neighbors spectra are aggregated if they share at least one
detected spectral line at the same wavelength. In the last step, estimation is addressed
again. For each object found, a separable model is considered aiming at representing the
corresponding part of the data cube as a unique spectrum weigthed by spatial amplitude
map.

In line with the works listed above, the spatio-spectral detection techniques presented
in Part II-B of this manuscript and then applied to astrophysical hyperspectral data in Part
III, will be based on sparse data models. These models will account for known noise charac-
teristics and will take advantage from adapted redundant dictionaries, designed according
to the characteristics of the sought target signatures. Moreover, the proposed approaches
will account for instrument’s specificities (see chapter 5 and chapter 6) not only in the
spectral domain (as in the works [Bourguignon 2012]), but also in the spatial domain. This
will substantially help in improving detection performances toward extremely faint objects
(see chapter 8).
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2.5 Conclusion

We have exposed some of the main basic concepts of sparse representations, sparse estima-
tion and sparse detection. By definition, a signal is called sparse when most of its coefficients
are (possibly approximatively) null. Many signals are not sparse in their nature but show
up to be sparse in the domain of an appropriate space of representation. In many sparsity-
based approaches, these spaces are represented by synthesis dictionaries, which form a large
catalog containing precise signal’s features (atoms). Dictionaries can be pre-specified or
learned. In the context of the presented work, the K-SVD dictionary learning approach (see
Appendix B.3), will be used in chapter 8.

In the estimation (denoising) framework, we presented the Soft-, Hard-, and SCAD
thresholding operators derived as solutions of Penalized Least Square problems. We pre-
sented their connection to sparsity-promoting (thresholding) properties of the Bayesian
Maximum A Posteriori estimator. Such thresholding properties are taken into account in
the design of the sparse signal detectors introduced in the next chapter.

Finally, a review of important previous works existing in the sparse detection literature
has been proposed including the HC procedure that will be used for comparison purposes
in chapter 5. The end of the chapter focuses on a quick survey of detection methods in
hyperspectral imaging, which is the application domain of our work (see chapter 7).
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3.1 Introduction

The main aim of this work is to design and study new detection tests that are powerful
when the alternative is sparse (i.e., when the parameter vector θ presents many zeros under
the H1 hypothesis of the considered model). In order to achieve this goal, we start putting
into practice all the concepts illustrated in the previous chapters.

The first thing we stress on concerns the model that we will use throughout this part.
All along this chapter we will consider the following elementary composite hypothesis test:

�

H0 : x = �, � ∼ N (0,Σ)

H1 : x = θ + �,
(3.1)

where a given signal x is supposed to be characterized by noise only (�) under the H0

hypothesis, and by noise plus a signal component θ �= 0 under H1. This model actually
corresponds to the one described in (1.50). We assume x,θ and � to be real N -vectors. θ

represents an unknown deterministic vector of parameters with few nonzero components. As
many applications involve non-identically distributed noise [Kay 1998a, Bourguignon 2011],
� is considered as Gaussian, with zero mean and known diagonal covariance matrix Σ =
diag

�

σ2
1, . . . , σ

2
N

�

.
In the following sections, we present two new approaches for the detection of sparse

signals: the LRMAP test, consisting in a LR test in which we inject a MAP estimate,
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and the PDR test, which computes the ratio of the posterior distributions under the two
hypotheses of the model. These two new methods are deeply investigated: after defining the
tests for N−dimensional data vectors in section 3.2 and section 3.3, we open a parenthesis
in section 3.4 to define and study the characteristics of the tests in the scalar case. In this
framework, interesting analytical properties on the test statistics are derived. Asymptotic
results and numerical insights are finally given in section 3.5. Note that, in both the scalar
and vectorial cases, the detection performances of the proposed approaches are compared
to that of the GLR and the BF classical methods introduced in chapter 1.

3.2 A first approach: the LRMAP detection test

The first approach to sparse signal detection we propose is directly inspired by the GLR test
discussed in Sec. 1.3.2. The idea on which the method is based is to improve the detection
performances of a GLR test by replacing the ML estimate of the unknown parameter vector
θ in the likelihood function under H1 with a MAP estimate, allowing so to take into account
an appropriate prior knowledge on it.

We refer to this strategy as the LRMAP test, and we define it as follows

LRMAP(x) :
p(x | θ̂MAP)

p(x | 0)
H1

≷
H0

γ. (3.2)

The computation of the TLRMAP test statistic for model (3.1) gives

TLRMAP(x) =
p(x | θ̂MAP)

p(x | 0)

=

N
�

i=1

1√
2πσi

exp

�

− 1

2σ2
i

�

xi − θ̂MAPi

�2
�

N
�

i=1

1√
2πσi

exp

�

− 1

2σ2
i

x2i

�

=
N
�

i=1

exp

�

− 1

2σ2
i

�

xi − θ̂MAPi

�2
+

1

2σ2
i

x2i

�

= exp

�

N
�

i=1

− 1

2σ2
i

�

θ̂2MAPi
− 2xiθ̂MAPi

�

�

(3.3)

Taking the logarithm of (3.3) and inserting in it the expression of the MAP estimate com-
puted for a Laplacian prior (2.51), we have

TLRMAP(x) =

N
�

i=1

�

− 1

2σ2
i

�

xi − sgn(xi)
σ2
i

λi

�2

+
xi
σ2
i

�

xi − sgn(xi)
σ2
i

λi

�

�

I

� |xi|
σi

>
σi
λi

�

=

N
�

i=1

�

x2i
σ2
i

− σ2
i

λ2
i

�

I

� |xi|
σi

>
σi
λi

�

, (3.4)
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where I(·) represents the indicator function and γLRMAP = 2 ln γ.
Denoting xi/σi = ui and σi/λi = ηi, the expression of the LRMAP detection test finally

becomes

TLRMAP(u) =

N
�

i=1

�

u2i − η2i
�

I (|ui| > ηi)
H1

≷
H0

γLRMAP. (3.5)

When θ̂MAP = 0, TLRMAP(u) = 0. According to (2.51), this happens when all the compo-
nents of the vector u satisfy −ηi < ui < ηi. On the contrary, when θ̂MAP �= 0, which means
that the absolute value of one or more components of u is above the correspondent threshold
ηi, TLRMAP(u) �= 0. In this case, if the TLRMAP(u) value is bigger than the γLRMAP test
threshold, the H1 hypothesis is accepted against H0. To make an example, we consider
the case of a N = 2 dimensional data vector u. For such a vector, we will retain the H1

hypothesis in the two following different situations:

1. the case in which u1 > η and u2 ≤ η (or similarly, permuting the u1 and u2 compo-
nents);

2. the case in which both components u1 and u2 are above the η parameter.

In the first case, detection is claimed if

TLRMAP(u) =
�

u2i − η2i
�

> γLRMAP, (3.6)

with i = 1, 2. In the second case, we have detection if

TLRMAP(u) =
�

u21 − η21
�

+
�

u22 − η22
�

> γLRMAP. (3.7)

We refer to chapter 4 for a thorough study on the characteristics of the TLRMAP test statistic
in the N = 2 and N > 2 dimensional cases.

3.3 A second approach: the PDR detection test

The second sparse signal detection method we introduce in this work is called the Posterior
Density Ratio (PDR) test. Differently from the line of thought followed for the construction
of the LRMAP test, the basic idea behind the PDR test is to compute the ratio between the
suprema of the parameter vector posterior distributions, calculated under each hypothesis
of the model. Likelihood distributions are often depicted as posterior distributions with
uniform priors. According to this, the PDR test can be seen as a sort of generalization of the
LRMAP test: the posterior distributions under H0 and H1 are here obtained as the product
of the Likelihood (in which, similarly to the LRMAP test, we inject the MAP estimate of θ)
times a Laplacian-like prior distribution on the parameter vector. This detection test is not
new in the literature. Introduced in the sixties by I. J. Good [Good 1965], the PDR test was
also discussed in [Basu 1996], in the case of scalar parameters. The PDR test seems absent
from the subsequent literature of the “sparse representation era” [Fuchs 2010], despite its
good behavior for detecting sparse signals, as we shall see.

We define the PDR detection test as

PDR(x) :
max
θ

p (θ | x)
p (0 | x)

H1

≷
H0

γ. (3.8)
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This definition leads to the test statistic

TPDR(x) =
p
�

x | θ̂MAP

�

π(θ)

p (x | 0)π(0) . (3.9)

Making explicit the expression of TPDR(x), using a Laplacian prior of the form seen in
(2.47), we obtain

TPDR(x) =
N
�

i=1

exp



− 1

2σ2
i

�

xi − θ̂MAPi

�2
−

�

�

�θ̂MAPi

�

�

�

λi
+

1

2σ2
i

x2i





=

N
�

i=1

exp





xiθ̂MAPi

σ2
i

−
θ̂2MAPi

2σ2
i

−

�

�

�θ̂MAPi

�

�

�

λi



 . (3.10)

Taking the logarithm of (3.10) and factorizing by the quantity
θ̂MAPi

σ2
i

, the expression of the

PDR test becomes

TPDR(x) =
N
�

i=1

θ̂MAPi

σ2
i



xi −
θ̂MAPi

2
−

σ2
i sgn

�

θ̂MAPi

�

λi



 . (3.11)

Inserting in (3.11) the value of θ̂MAPi �= 0 given in (2.51), we have

TPDR(x) =
N
�

i=1

�

xi
σ2
i

− sgn(xi)

λi

��

xi −
1

2

�

xi − sgn(xi)
σ2
i

λi

�

− sgn(xi)
σ2
i

λi

�

=
1

2

N
�

i=1

�

xi
σ2
i

− sgn(xi)

λi

��

xi − sgn(xi)
σ2
i

λi

�

=
1

2

N
�

i=1

�

x2i
σ2
i

− 2 |xi|
λi

+
σ2
i

λ2
i

�

=
1

2

N
�

i=1

� |xi|
σi

− σi
λi

�2

. (3.12)

According to (3.12) we finally write

TPDR(x) =

N
�

i=1

� |xi|
σi

− σi
λi

�2 H1

≷
H0

γPDR, (3.13)

where γPDR = 2 ln γ.
Similarly to the LRMAP test, denoting xi/σi = ui and σi/λi = ηi, the PDR test finally

gives

TPDR(u) =
N
�

i=1

(|ui| − ηi)
2I(|ui| > ηi)

H1

≷
H0

γPDR. (3.14)
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As seen for the LRMAP test in (3.5), when all the components of the vector u satisfy
−ηi < ui < ηi, θ̂MAP = 0 and, consequently, TPDR(u) = 0. Taking the same example as
before, when a N = 2 component vector u is considered, we have detection with the PDR
test when

TPDR(u) = (|ui| − ηi)
2 > γPDR, i = 1, 2, (3.15)

if only one component of u is above ηi, while when both u1 and u2 are bigger than ηi
detection is claimed when

TPDR(u) = (|u1| − η1)
2 + (|u2| − η2)

2 > γPDR. (3.16)

We note that both sums in the TPDR and TLRMAP test statistics involve only the largest
components of the data vector u. For this reason these tests tend under H1 to preferentially
select those components for which θi �= 0. This effect is indeed seen as an advantage with
respect to classical approaches such as the GLR, which uses all data components, and was
advocated in [Fan 1996] to use thresholding operators for detection purposes.

We also note that TPDR corresponds to the soft-thresholding statistic introduced in
detection by Fan [Fan 1996], with the objective of focusing the test on active components
only, in order to mimic an Oracle test. The Oracle test assumes that the support I =
{i | θi �= 0} of θ is known, but not the corresponding amplitudes θi, i ∈ I. These amplitudes
are estimated by ML, leading to estimates θ̂ML(I). This yields to the test

TOracle(x) =
p
�

x | I, θ̂ML(I)
�

p (x | 0)
H1

≷
H0

γOracle. (3.17)

Thus, the PDR test introduced by Basu [Basu 1996] furnishes a precise framework to Fan’s
soft-thresholding in detection. A detailed study of the TLRMAP(u) and the TPDR(u) char-
acteristics, and their geometrical comparison, is addressed in chapter 4.

3.4 Comparison of the tests performances in the scalar case

3.4.1 Scalar model and test statistics

As seen in previous sections, the computation of the test statistic for data vectors having
independent components can be done component-wise, involving a test statistic for each
one of the vector’s components. Inspired by this fact, we make a short digression and begin
the analysis and comparison of the detection tests introduced up to now in a very simple
case: the scalar case. The insights that can be drawn from such analysis are very useful
and lead inter alia to the formulation of some properties on the statistics of the considered
tests.

The model we consider is the following composite hypothesis:
�

H0 : x = �, � ∼ N
�

0, σ2
�

H1 : x = θ + �
(3.18)

where θ is an unknown deterministic parameter and � is a Gaussian noise component with
zero mean and variance σ2. According to the definitions seen in (3.5) and (3.14), the
computation of the LRMAP and PDR tests for model (3.18) yields
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- LRMAP test:

TLRMAP(u) = (u2 − η2)I(|u| > η)
H1

≷
H0

γLRMAP; (3.19)

- PDR test:

TPDR(u) = (|u| − η)2I(|u| > η)
H1

≷
H0

γPDR, (3.20)

where, similarly to previous sections, we have noted x/σ = u and σ/λ = η.

We compare the two approaches above with the GLR and the BF tests defined in Sec.1.3.
For model (3.18), the computation of the GLR test statistic gives

- GLR test:

TGLR(u) = u2
H1

≷
H0

γGLR. (3.21)

On the other hand, the definition of the BF test for the scalar model (3.18) with Gaussian
likelihood and Laplacian prior leads to

- BF test:

TBF(x) = e
1
2

�

x2

σ2+
σ2

λ2

�

�

2 cosh
�x

λ

�

− e−
x
λΦ

�

−x

σ
+

σ

λ

�

− e
x
λΦ

�x

σ
+

σ

λ

��H1

≷
H0

γBF,

(3.22)

where γBF = 2γλ/
√
2π (see Proof in Appendix B.2). Lightening the notation, similarly to

what done for the other tests, we obtain

TBF(u) = e
1
2(u

2+η2) �2 cosh (uη)− e−uηΦ (−u+ η)− euηΦ (u+ η)
�
H1

≷
H0

γBF. (3.23)

3.4.2 Analytical properties of the tests

For the GLR, LRMAP, PDR and BF detection tests the probability of false alarm (PFAtest,
already defined in (1.13)), is equal to

PFAtest = Pr {T (u) > γtest | H0} . (3.24)

According to this, the following Properties hold (see Fig. 3.1).

Property 3.4.1. Consider a detection test characterized by its test statistic T (u). If the
test statistic T (u) is an even function, identically 0 for |u| < u0 and strictly increasing for
u ≥ u0 with T (u0) ≥ 0, then the following properties hold :
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Prop. 3.4.1.1: ∀γtest ≥ γtest0 , with γtest0 = T (u0), the test

T (u)
H1

≷
H0

γtest (3.25)

is equivalent to a GLR with

γGLR =
�

T−1 (γtest)
�2

. (3.26)

Consequently, the ROC curve of T (u) coincides with that of the GLR.
Using

Φ (u) =

� u

0

1√
2π

exp

�

−1

2
t2
�

dt, (3.27)

and noting Φχ2
1
(γ) the cumulative distribution function of a central χ2 random variable

with 1 degree of freedom, the false alarm rate of the test is given by

PFAtest
(γtest) = 1− Φχ2

1

�

�

T−1 (γtest)
�2
�

. (3.28)

In particular, for γtest = γtest0 = T (u0), we have

PFA0 = 1− Φχ2
1

�

u20
�

. (3.29)

Prop. 3.4.1.2: ∀γtest ∈ [0; γtest0 ], PFAtest
= PFA0 .

(see Proof in Appendix A.3)
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Figure 3.1: Example of a thresholded test statistic considered in Property 3.4.1, which
yields the same test as the GLR for thresholds γtest above some value γtest0 . If T (u) is
continuous, then γtest0 = 0.

Property 3.4.1 holds for the LRMAP, PDR and BF test statistics defined in (3.19),
(3.20) and (3.23). In fact, for |u| ≥ u0 = σ

λ = η , both the TLRMAP(u) and TPDR(u) test
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statistics are even and strictly increasing functions. Accordingly, the ROC curves of the
LRMAP and PDR tests thus coincide with that of the GLR test, with

PFALRMAP
(γLRMAP) = 1− Φχ2

1

�

T−1 (γLRMAP)
2
�

= 1− Φχ2
1

�

γLRMAP + η2
�

, (3.30)

for the LRMAP test and

PFAPDR
(γPDR) = 1− Φχ2

1

�

T−1 (γPDR)
2
�

= 1− Φχ2
1

�

�√
γPDR + η

�2
�

(3.31)

for the PDR test. For both tests, the value of PFA0 is equal to

PFA0
= 1− Φχ2

1

�

u20
�

= 1− Φχ2
1

�

η2
�

. (3.32)

Since the probability of detection of the GLR is independent of the hyper-parameter η,
selecting a particular value of η for the PDR is equivalent to state a particular compromise
detection versus false alarm of the GLR. Moreover, since the value u0 = η is the same for
both the PDR and the LRMAP, the ROC curves of the two tests correspond for the same
range of false alarm.

Concerning the BF, the statistic function of this test is clearly an even function of x.
The following property shows that, for a more general class of priors, it is also a strictly
increasing function of x for x ≥ x0 = 0 and that, consequently, the BF test amounts here
to a GLR.

Property 3.4.2. For a Gaussian likelihood and even prior π(θ), the Bayes Factor test is
equivalent to a GLR test.

Proof of Property 3.4.2: First we show that BF(x) is an even function of x:

BF (x) =

� 0

−∞
e

xθ
σ2−

θ2

2σ2 π (θ) dθ +

� +∞

0
e

xθ
σ2−

θ2

2σ2 π (θ) dθ

Assuming θt = −θ and consequently dθt = −dθ, we obtain

BF (x) =

� ∞

0
2 cosh

�

xθ

σ2

�

e−
θ2

2σ2 π (θ) dθ,

which is even in x because cosh is even.
Secondly, we show that BF is an increasing function of x:

∂BF

∂x
=

� +∞

−∞

∂

∂x
e

xθ
σ2 e−

θ2

2σ2 π (θ) dθ

and after some simple algebra we obtain

∂BF

∂x
=

� ∞

0
2
θ

σ2
sinh

�

xθ

σ2

�

e−
θ2

2σ2 π (θ) dθ,
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which is strictly positive for x > 0. Consequently, BF(x) is an increasing function for x > 0.
For any even prior and Gaussian likelihood, BF(x) obeys the conditions of Property 3.4.1.
The BF test is thus equivalent to a GLR for PFA < PFA0 = 1− Φχ2

1
(0) = 1.

The equivalence in the scalar case of the GLR, PDR, LRMAP and BF tests, illustrated
for a Laplacian prior, can be finally generalized to the case of Generalized Gaussian priors
of parameter 0 < p < 1 (GG):

Property 3.4.3. For generalized Gaussian prior functions with 0 < p < 1, the PDR, the
LRMAP and the BF tests defined in (3.19), (3.20) and (3.23) are equivalent to a GLR.

Proof of Property 3.4.3: Consider the generalized zero mean Gaussian distribution

GG (θ, p) =
p

2sΓ
�

1
s

� exp

�

−|θ|p
sp

�

, (3.33)

where Γ represents the Gamma function, s is a real positive parameter, and p ∈]0; 1[.
In the case of the Gaussian likelihood function, such priors are known to produce MAP
estimates θ̂MAP(x) of the θ parameter, which are thresholding functions of x [Moulin 1999,
Antoniadis 2001]. In other words, similarly to what seen in Sec. 2.3.3, there exists x0 such
that

θ̂MAP(x) =

�

0, ∀x : |x| < x0,

is increasing, ∀x : x ≥ x0.
(3.34)

Moreover, θ̂MAP(x) is antisymmetric
�

θ̂MAP (−x) = −θ̂MAP (−x)
�

, and

θ̂MAP (x) = sgn (x) (|x| − ζ (x)), (3.35)

where ζ (x) is a positive bias with lim
x→∞

ζ(x) = 0.

From the log-version of the TLRMAP expression seen in (3.3), considered for only one
scalar component θ̂MAP, we have

TLRMAP(x) = θ̂MAP

�

x

σ2
− θ̂MAP

2σ2

�

. (3.36)

It is clear that TLRMAP(x) is even, because θ̂MAP(x) is antisymmetric. One also sees
that since θ̂MAP(x) is a thresholding function with threshold x0, the same will hold for
TLRMAP(x). Denoting by � the partial derivative with respect to x, we have

T �
LRMAP(x) =

∂TLRMAP

∂x
=

θ̂MAP

σ2
+

θ̂�
MAP

σ2
(x− θ̂MAP)

=
θ̂MAP

σ2
+

θ̂�
MAP

σ2
ζ, (3.37)

which is positive for x > x0. Consequently, by Property 3.4.1, TLRMAP(x) is equivalent to
a GLR for any GG with 0 < p < 1.
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The same results hold for the PDR for which, similarly to the expression in (3.11), we
can write

TPDR(x) = θ̂MAP

�

x

σ2
− θ̂MAP

2σ2

�

−

�

�

�
θ̂MAP

�

�

�

p

sp
. (3.38)

First, for the same reason as the LRMAP test statistic, TPDR is an even function. Second,
TPDR(x) is clearly zero ∀x < x0, and the derivative T �

PDR
(x) is positive for x ≥ x0. So

by Property 3.4.1 the PDR yields a GLR, which completes the proof. As far as the BF is
concerned, the GG is an even function, so the results of Prop. 3.4.2 hold also for GG priors
with 0 < p < 1.

3.4.3 Numerical simulations
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Figure 3.2: NP, GLR, LRMAP and PDR ROC curves in the case of a scalar parameter θ
= 0.8. Here, σ = λ = 1. The dotted vertical line highlights the value of the maximal PFA,
PFA0 ≈ 0.32, for the PDR and the LRMAP.

The results achieved in the previous section are confirmed by the numerical simulations
presented below. As shown in Figure 3.2, we have calculated the ROC curves of the GLR,
LRMAP and PDR tests in the scalar case for θ = 0.8, σ = 1 and λ = 1. The NP test (or LR
test (1.40), for which the alternative θ is known) is reported as a reference. Except for the
ROC of the NP, all the curves overlap (Properties 3.4.1.1 and 3.4.1.2). The curves of the
NP (in cyan), GLR (in green) and the BF (black circles) cover the whole range of PFA. As
expected, the LRMAP (blue continuous line) and the PDR (red stars) curves correspond
to that of the GLR for PFA ≤ PFA0. In this case, the maximal value of PFA for the PDR
and the LRMAP is equal to PFA0 ≈ 0.32, as highlighted in Figure 3.2 by a dotted vertical
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line. We reserve a more complete discussion on the maximal false alarm rate of the tests in
next section.

3.5 Comparison of the tests performances in the vector case

3.5.1 TPDR and TLRMAP parameter dependency and asymptotic results

We now come back to the analysis of the TPDR and TLRMAP test statistics for the vector
model defined in (3.1). As clearly visible from expressions (3.5) and (3.14), in this case the
LRMAP and PDR tests are both characterized by positive test statistics, which are null
if all components |ui| fall below ηi. Hence, when the test threshold γ is set to 0, a single
component |ui| above ηi under H0 is sufficient to cause a false alarm (FA). In this case, if
one wishes all components to have the same probability to cause a FA, the ηi should be
made equal to some value, say η.

Note that, if γ �= 0, the probability that one particular component |ui| causes a FA is
not the probability that |ui| > ηi, see subsection 4.2.2 and Figure 4.1. Hence, η generally
does not completely characterize the per-component false alarm rate.

We pause to note that the two detection tests,

TLRMAP(u, η)
H1

≷
H0

γ and TPDR(u, η)
H1

≷
H0

γ,

depend on the two parameters, η and γ. This dependency is different for the two tests,
and makes the analysis and comparison of the tests quite involved. For instance, different
pairs of values (η, γ) can yield the same PFA, as shown in Figure 3.3. In these simulations,
the empirical distributions of TLRMAP (on the left) and TPDR (on the right) under H0 are
obtained for 104 realizations of a random N = 1000 component standard normal vector, and
presented for three different values of the η parameter, respectively η = 1, 2.7, 3. The two
first figures of the left column illustrate how two different pairs of values (η = 1,γ1 = 503:
red) and (η = 2.7,γ2 = 15.8: green) may lead to the same PFA (PFA = 0.31, here).

Unfortunately, the analytical computation of the probability of false alarm,

PFA(η, γ) = Pr(T (η) > γ;H0), (3.39)

turns out to be intractable even in the framework of the most simple model (3.1). Looking
at Figure 3.3, while for small values of η (i.e. η = 1, here) the two test statistics distributions
tend to be Gaussian, as the η value is increased the TPDR and TLRMAP distributions suddenly
become very difficult to analyse. For instance, the distribution p̂

TLRMAP
(t) of TLRMAP under

H0 is the convolution of N χ2 distributions, truncated on [η,+∞[ and shifted back to zero.
This implies the presence of a probability mass at 0 of value equal to

Pr(0 ≤ χ2
N ≤ η) = [2Φ(η)− 1]N , (3.40)

followed by an (analytically unknown) tail.
Similarly to the work of Fan [Fan 1996] for TPDR, an asymptotic approximation of

TLRMAP under H0 can nevertheless be obtained for N → ∞. However, the Gaussian
approximation of the LRMAP test statistic suffers from slow convergence (see Figure 3.3)
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Figure 3.3: Empirical distributions of the test statistics TLRMAP (left column) and TPDR

(right column) under H0 for a random N = 1000 component vector and different values
of the η parameter. Top row: η = 1, middle row: η = 2.7, bottom row: η = 3. The
two first figures in the left column show how two different values of the couple (η, γ) can
generate the same false alarm rate. In particular, (η = 1,γ1 = 503: red vertical line) and
(η = 2.7,γ2 = 15.8: green vertical line) lead to the same PFA (PFA = 0.31, here).

and does not allow a reliable computation of the PFA, as it has been emphasized in [Fan 1996]
also for the PDR. We thus propose this approximation in Appendix B.4, but we will not
pursue asymptotic results in the rest of the manuscript.

3.5.2 On the relative power of the PDR and LRMAP tests

The beginning of this section focuses on two limit cases : η → 0 and γ → 0. Comparing
the two expressions in (3.5) and (3.14) we have:

TLRMAP = TPDR + 2η

N
�

i=1

(|ui| − η) I(|ui| > η). (3.41)
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From this relation we can show that TLRMAP converges to TPDR in the sense of the Mean
Squared Error (MSE) when η = σi

λi
→ 0. We define the error between the two tests statistics

as

TLRMAP − TPDR = 2η

N
�

i=1

(|ui| − η) I(|ui| > η). (3.42)

Taking the mean E(·) of the square value of (3.42) we have, for data vector components
|ui| > η,

E





�

2η

N
�

i=1

(|ui| − η)

�2


 = 4η2E





�

N
�

i=1

(|ui| − η)

�2


 . (3.43)

Using the Cauchy-Schwartz inequality, we can write that

4η2E





�

N
�

i=1

(|ui| − η)

�2


 ≤ 4η2nE

�

N
�

i=1

(|ui| − η)2
�

≤ 4η2n

N
�

i=1

E
�

u2i + η2 − 2η|ui|
�

≤ 4η2n
N
�

i=1

�

E
�

u2i
�

+ η2 − 2ηE [|ui|]
�

. (3.44)

Since E
�

u2i
�

and E [|ui|] are finite quantities (< ∞), the second member in (3.44) tends to
zero as soon as η → 0, showing the convergence of TLRMAP to TPDR in the MSE sense.

Having η → 0 corresponds to the following cases:

�

σi → 0, case of high signal-to-noise ratio

λi → ∞, case of uniform prior distribution.
(3.45)

In such cases, the two tests distributions tend under H0 to a χ2
N and are equivalent to the

test of the GLR. These cases are indeed of limited interest for sparse signals since when
σi → 0 there is no difficulty to locate the support of θ, and the GLR manages to do so
as well as the other tests. On the other hand, setting λi to a large value tends to remove
the thresholding effect, leading again to the GLR, that is, a global, non adaptive, energy
detector.

Within these limits, both tests always differ from the GLR. Another remarkable case of
equivalence between the PDR and the LRMAP tests occurs when, for a given value of η �= 0,
γ is set to 0. Since both test statistics are positive, detection is claimed for the two tests as
soon as at least one weighted component |ui| is larger than η. At γ = 0 the PDR and the
LRMAP correspond to the same test, which depends on the sole tuning of the η parameter.
This allows to easily compute the maximal probability of false alarm noted (PFA0). Since
this probability corresponds to the probability to have a strictly positive test statistic under
the H0 hypothesis, PFA0 is indeed the probability to have at least one component |ui| above
the η threshold

PFA0 = Pr(T (η) > 0|H0) = Pr(∃i : |ui| > η;H0). (3.46)
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Figure 3.4: PDR, LRMAP, BF and GLR ROC curves for η = 3.7 (blue dashed line for the
LRMAP, red dashed-dotted line for the PDR, orange long-dashed line for the BF) and 4.2
(blue continuous line for the LRMAP, red ticked line for the PDR, orange short-dashed line
for the BF), considering a N = 400 component vector θ of which only 10 are different from
zero, with linearly increasing values in [0.5; 5]. The Oracle test is reported as a reference
(cyan triangles). Magenta points correspond to the maximal probability of false alarm and
probability of detection at a given η. The coordinates of those points are written in closed
form in (3.48) and (3.49).

Since the probability to have all components |ui| < η is equal to

Pr(|ui| < η ∀i) = (2Φ(η)− 1)N , (3.47)

PFA0 is given by

PFA0 = 1− Pr(|ui| < η ∀i)
= 1− (2Φ(η)− 1)N . (3.48)

In the same way we obtain the maximal probability of detection for γ = 0:

PDET0(θ) = Pr(T (η) > 0;H1) = 1−
N
�

i=1

[Φ(η − θi) + Φ(η + θi)− 1]. (3.49)

When the threshold γ is set to 0, the tests are thus strictly equivalent and precisely char-
acterized by (3.48) and (3.49). Figure 3.4 shows the Receiver Operating Characteristic
(ROC) of the PDR, LRMAP, BF and GLR tests, plotted taking a N = 400 component
vector θ of which only 10 are different from zero, with linearly increasing values in [0.5; 5].
Two values of the η threshold are considered, precisely η = 3.7 (blue dashed line for the
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LRMAP, red dashed-dotted line for the PDR, orange long-dashed line for the BF) and 4.2
(blue continuous line for the LRMAP, red ticked line for the PDR, orange short-dashed line
for the BF). The computation of the BF test statistic in the vector case is the product of the
scalar test statistic (3.23) for each one of the N components of the considered data vector

TBF(u) =
N
�

i=1

e
1
2(u

2
i+η2i )

�

2 cosh (uiηi)− e−uiηiΦ (−ui + ηi)− euiηiΦ (ui + ηi)
�
H1

≷
H0

γBF.

(3.50)
As both the ML and the MMSE estimates of θ are in general not sparse (see chapter 2),
the GLR and the BF are not optimal here. For instance, as previously mentioned in
subsection 1.3.3, for any considered data vector u, the BF can be seen as the mean of the
NP test over all the values of the θ parameter. We note that while always outperforming
the BF and the GLR test (green squares), the LRMAP and the PDR tests generally differ,
in line with the considered values of the η threshold. Consequently, different values of PFA0

and PDET0 are reached for different η. These values correspond to the coordinates of the
two magenta points in the figure. The Oracle test is here reported as a reference and plotted
in cyan (triangles).

3.5.3 Numerical simulations

We finally show by numerical simulations that, depending on the parameters values, the rel-
ative performances of the PDR and the LRMAP tests can be inverted. Figure 3.5 compares

Figure 3.5: LRMAP (in blue, continuous line) and PDR (in red, dash-dotted line) ROC
curves for 3 different values of η and for the same parameter vector θ (mean over 5 · 104
realizations) of N = 400 components (see text). For η = 0.05 (on the left), the two tests
tend to coincide; for η = 1 (center), PDR outperforms the LRMAP while for η = 3.3 (on
the right) it is the opposite. The ROC curve of the GLR (independent of η) is plotted in
dashed green.

the ROC curves of the LRMAP, the PDR and the GLR tests for three different values of the
η parameter, respectively η = 0.05 (left figure), η = 1 (center) and η = 3.3 (right figure). In
these figures, the ROCs are shown for the same θ vector as in Figure 3.4. Since η is fixed in
each figure, different values of PFA are obtained by varying γ. The left figure, which corre-
sponds to η = 0.05, shows that when η → 0, the LRMAP and PDR tests are equivalent and
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tend to the GLR. This interesting case of equivalence of the tests was discussed in further
detail above. Conversely, for two other values of η (center and right figures), the relative
performances of the LRMAP and the PDR are inverted (while remaining above that of the
GLR). This is due to the strong but different parameters dependency of the two tests that
prevents to define (easily) general conditions for which, given a set of parameters, one test
is better adapted than the other. Since classical tools based on analytical distributions and
Monte Carlo (MC) simulations somewhat fail to address the question of how the two tests
compare, the next chapter tackles the problem differently, by a geometrical analysis. This
allows a structural study of the detection regions of the tests.

3.6 Conclusion

We have introduced two new approaches to sparse signals detection: the LRMAP and the
PDR detection tests. The two tests have been defined for a simple vector model and have
been deeply analyzed. Taking as references the two classical GLR and the BF tests, already
introduced in chapter 1, a comparison has been held in the case of a scalar parameter
first and then in the vector case. In the former situation, interesting properties on the
tests statistic functions have been derived. For example, we have shown that for a scalar
parameter θ the tests always behave like a GLR test. In the latter situation of a parameter
vector θ, we have focused our attention on the dependency of the LRMAP and the PDR
tests on the two parameters η and γ. We have seen that due to this dependency, the
analytical computation of the tests’ PFA becomes intractable even for the simple vector
model considered in this chapter. For this reason we have taken into account some limit
cases: fixing one of the two parameters allows in fact to easily implement the tests, and to
univocally set the desired value of PFA. We have also shown that while always outperforming
the GLR and the BF tests, the parameter’s values strongly influence the relative behavior of
the LRMAP and PDR tests. With the aim to go in further detail with this question and to
specify the conditions under which one test behaves better than the other for sparse signal
detection, next section tackles the problem differently, suggesting a geometrical analysis for
the structural study of the detection surfaces of the tests.
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4.1 Introduction

This chapter aims to point out the structural differences between the two tests, the PDR
and the LRMAP tests, previously proposed. This is important to specify the conditions
for which one test is better adapted than the other towards sparse signals detection goals.
Since classical tools based on an analytical comparison of the test statistics have limited
power in this case, as seen in section 3.5, we propose an original study focused on the shapes
of the PDR and LRMAP detection surfaces. As we shall see, this study suggests that the
PDR tends to better detect signals that are close to the axes.

The detection surfaces, that we respectively call SPDR and SLRMAP, represent the de-
cision boundaries between the two hypotheses of model (3.1), H0 and H1, and are defined
as

S = {u ∈ R
N | T (u) = γ}, (4.1)

where u are N component vectors and T (u) represents the test statistics of the LRMAP
and the PDR tests. Equation (4.1) means that a vector in the volume delimited by S
will not imply detection, while a vector outside will. Because of the symmetry in regard
to components permutation in the vector u, we consider, without loss of generality, that
u1 > u2 > · · · > uN > 0.

The chapter is organized as follows: as a warmup, the analysis of the PDR and LRMAP
detection surfaces is first presented in the simple case of N = 2 component vectors u. As
an illustration, the two special cases of equivalence of subsection 3.5.2 are then considered
for N = 2 and N = 3, before turning to the study of the general N−dimensional case.
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4.2 Study of the detection surfaces for N = 2

4.2.1 Shape of the detection surfaces

As seen in (3.5) and (3.14), for both tests, detection is claimed every time their test statistic
is above the γ threshold (in order to differentiate the PDR and the LRMAP test thresholds,
hereafter we will respectively refer to γP and γL). As previously mentioned in section 3.2
and section 3.3 , for N = 2 this may happen in two different cases:

1. the case in which u1 > η and u2 ≤ η (or similarly, permuting the u1 and u2 compo-
nents);

2. the case in which both components u1 and u2 are above the η parameter.

Otherwise (i.e., if both components ui ≤ η), T (u) = 0. SPDR and SLRMAP are obtained by
the computation of T (u) = γ in the two detection cases mentioned above. For the PDR,
the computation of TPDR(u) = γP , when only u1 is above the η threshold, leads to

u1 =
√
γP + η. (4.2)

On the other hand, when both u1 and u2 are above η, we have

(u1 − η)2 + (u2 − η)2 = γP , (4.3)

which corresponds, considering u1 > u2, to an arc of a circle centered in (η, η) and with
radius rPDR =

√
γP .

Fig.4.1(a) shows (in red) the SPDR surface plotted in the first quadrant of the (u1, u2)
plane (the surfaces on the other quadrants are obtained by symmetry with respect to both
axes). The region in which u1 > u2, with u1 > η, is highlighted in grey. In this region, the
SPDR part obtained by the combination of (4.2) and (4.3) is plotted in bold red.

Similarly, SLRMAP is obtained from the combination of the first detection condition

u1 =
�

γL + η2, (4.4)

computed from TLRMAP when only u1 is above η, and the second condition

u21 + u22 = γL + 2η2, (4.5)

which corresponds, for u1 > u2, to an arc of a circle centered on the origin of the axes and
with radius rLRMAP =

�

γL + 2η2. Fig.4.1(b) shows (in blue) the SLRMAP surface in the
first quadrant of the (u1, u2) plane. Considering u1 > u2 with u1 > η (grey region), the
combination of (4.4) and (4.5) leads to the SLRMAP part highlighted in bold blue.

Note that the two expressions in (4.2) and (4.4) represent, in the u1 > u2 case (and
similarly, when u2 > u1), the effective detection thresholds when only one component in
the u vector is above η and γP , γL �= 0. We can thus refer to these quantities as effective
per-component thresholds.
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Figure 4.1: Fig.4.1(a) and Fig.4.1(b) show the SPDR (in red) and SLRMAP (in blue) detection
surfaces for an N = 2 component vector u. The regions in which u1 > u2, with u1 > η, are
reported in grey. In these regions, the detection surfaces, obtained from the combination of
(4.2) and (4.3) for the PDR and of (4.4) and (4.5) for the LRMAP, are plotted in bold (see
text). Fig.4.1(c) illustrates the detection surfaces, for the two tests indistinctly, in the two
special cases of equivalence described in subsection 4.2.2: η = 0 (light green); γ = 0 (dark
green).
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4.2.2 Special cases of equivalence

The shapes of the two surfaces are strongly parameter dependent. Despite this fact, as seen
in subsection 3.5.2, for particular settings of the η and γ parameters the two detection tests
can be equivalent. This happens in the following cases, easily recognizable for N = 2 (see
Fig.4.1(c)):

1. For η �= 0 and γP = γL = 0, the two detection surfaces are identical squares (dark
green);

2. For η = 0 and γP = γL �= 0, the two detection surfaces are identical circles (light
green).

In case 1 , the SPDR and SLRMAP surfaces are thus characterized only by the detection edges
respectively computed in (4.2) and (4.4), with γP = γL = 0. Those conditions correspond
to have only one component above the η threshold and lead to two identical square-shaped
detection surfaces of edge η. In the second case of equivalence (η = 0), SPDR and SLRMAP

derive from (4.3) and (4.5). The surfaces represent two identical circles, centered in the
origin of the axes and with radius

√
γP =

√
γL =

√
γ. Fig.4.1(c) illustrates the detection

surfaces obtained for the two tests indistinctly, plotted in the first quadrant of the (u1, u2)
plane for the two cases of equivalence discussed above.

The same cases of equivalence can be considered in the N = 3 dimensional case. Here,
when η �= 0 and γP = γL = 0, SPDR and SLRMAP represent two identical cubes, while two
identical spheres are obtained for η = 0 and γP = γL �= 0. The detection surfaces obtained
for N = 3 are shown in Fig.4.2.

(a) (b)

Figure 4.2: 3D detection surfaces in the two different cases of equivalence of the tests.
Fig.4.2(a) shows the case of η = 0 and γL = γP �= 0 while Fig.4.2(b) the case of η �= 0 and
γL = γP = 0.

This study illustrates geometrically the results obtained in subsection 3.5.2 where, when
η → 0, the MAP-based tests are the same and coincide with the GLR’s one. In this case,
detection is claimed outside a sphere and is thus isotropic. Sparsity is not favored since
sparse vectors tend to be located close to the axes. On the contrary, when γ → 0, sparsity



4.3. General N-dimensional case 79

only on one component (1−sparsity) of the θ vector is promoted. Indeed, this effect is true
but to a lesser extent for signals that are not 1− but n−sparse, with n < N .

4.3 General N-dimensional case

The LRMAP and the PDR tests are now considered in the general case of N component
vectors. In this case, we are interested in characterizing the regions of intersection that may
exist between SPDR and SLRMAP. Those regions of intersection are of particular interest as
they will allow to compare the tests at a same PFA.

We first decompose the surfaces S as a union of subsurfaces S =

N
�

n=1

S(n), with the S(n)

defined as
S(n) = {u | T (u) = γ, ui > η, i = 1, . . . , n and ui ≤ η, i > n} . (4.6)

Definition (4.6) means that each u ∈ S(n) has the first n components above the η threshold
and the last N−n components less than or equal to η. Fig.4.3 shows the SPDR and SLRMAP

(a) (b)

Figure 4.3: 3D SPDR and SLRMAP detection surfaces. 3D SPDR, obtained for η = 1 and
γP = 1.35. 3D SLRMAP, obtained for η = 1 and γL = 4.2. For both detection surfaces we

distinguish three different types of subsurfaces: S(1)
PDR

(in red), S(2)
PDR

(in yellow) and S(3)
PDR

(in orange) in Fig.4.3(a), and S(1)
LRMAP

(in light blue), S(2)
LRMAP

(in cyan) and S(3)
LRMAP

(in
dark blue) in Fig.4.3(b).

shapes for N = 3, with, in this example, η = 1, γP = 1.35 and γL = 4.2. For both detection
surfaces we can distinguish three different subsurfaces: S(1) (in which only one component
of u is above the η threshold), S(2) (two components above η) and S(3) (three components
above η).

The following proposition reports the conditions that γP and γL must satisfy for SPDR

and SLRMAP to intersect.

Proposition 4.3.1. The intersection regions between the S(n)
PDR

and S(n)
LRMAP

subsurfaces
are specified considering the cases of having n = 1 or n ≥ 2 components over the η threshold.
For each case, the following conditions on the thresholds of the tests hold:
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1) n = 1: if γP = γL = 0, S(1)
PDR

and S(1)
LRMAP

coincide. In any other case, no intersection
between these two subsurfaces occurs. This means that, depending on the thresholds
values, one subsurface is above the other. In particular, if

γL < γP + 2η
√
γP , (4.7)

we have S(1)
PDR

> S(1)
LRMAP

. On the other hand, if

γL > γP + 2η
√
γP , (4.8)

we have S(1)
LRMAP

> S(1)
PDR

.

2) n ≥ 2: intersections between S(n)
PDR

and S(n)
LRMAP

occur if

γP + η
�

2nγP < γL < γP + 2η
√
nγP (4.9)

(see Proof in Appendix A.4).

(a) (b)

Figure 4.4: SPDR and SLRMAP 3D detection surfaces in the (u1, u2, u3) plane. Fig.4.4(a)
shows an example of no intersection between the two surfaces, obtained setting η = 1,
γP = 1 and γL = 5. Here, SPDR (in red) is included in SLRMAP (in blue). On the other
hand, Fig.4.4(b) illustrates a case of intersections between SPDR and SLRMAP (same color
code as in Fig.4.3), obtained for η = 1, γP = 1.35 and γL = 4.2. In particular, intersections

(highlighted by red dotted lines) occur for n = 2 and n = 3 (in which cases S(n)
PDR

> S(n)
LRMAP

)

, while S(1)
PDR

< S(1)
LRMAP

for n = 1.

From the results obtained above we see that if for example condition (4.8) holds, and
the right inequality of (4.9) is not satisfied, we fall in the particular case for which one
detection surface is included into the other and no intersection occurs. In this case, given
two detection surfaces, say for example S1 and S2, we state that S1 is above (below) S2
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if ∀u ∈ S1 and ∀v ∈ S2, we have that ||u||22 > ||v||22 (or, alternatively, ||u||22 < ||v||22).
This case is illustrated in Fig.4.4(a), which shows the SPDR (in red) and SLRMAP (in blue)
detection surfaces, computed for η = 1, γP = 1 and γL = 5. According to (4.8), we have
that SPDR ⊂ SLRMAP, and consequently PFAPDR

> PFALRMAP
(on the contrary, when (4.8)

and the left inequality in (4.9) are not verified, SLRMAP ⊂ SPDR and PFAPDR
< PFALRMAP

).
On the other hand, if for instance (4.8) is satisfied and we choose γL according to (4.9),

then S(1)
PDR

< S(1)
LRMAP

, with possibility of intersection in at least one of the n ≥ 2 domains.
This is shown in Fig.4.4(b), where the detection surfaces of the tests are obtained for η = 1,
γP = 1.35 and γL = 4.2. Here intersections, which are highlighted by red dotted lines, occur

in the n = 2 and n = 3 domains, with S(n)
PDR

> S(n)
LRMAP

. For n = 1, as condition (4.8) is

verified, we have that S(1)
PDR

< S(1)
LRMAP

. This means that, while the LRMAP better detects
off-axis (i.e. when two or more components of u are above the η threshold), the PDR test
tends to be better than the LRMAP on the axes directions, favoring the detection of highly
sparse signal vectors.

4.4 Comparison of the tests performances

The relevance of this interpretation is investigated by the simulations of Fig.4.5, which
compare the tests power in terms of area under the curve (AUC) values, calculated as a
function of different η thresholds. The AUC is the area under the ROC curves of the tests,
and takes consistent values between 0.5 < AUC ≤ 1 [Barrett 1998]. The AUC is a measure
of the global (over all PFA) power of a test: the larger the AUC, the more powerful the
test.

Fig.4.5(a) compares the tests in the case of different 1−sparse vectors of dimension
N = 20, in which the nonzero component takes increasing values in [0.01, 5]. For each
value of η (linearly varying in [0.01, 2.2]), the difference between the PDR AUC (AUCP )
and the LRMAP’s one (AUCL) is computed. Despite a few cases in which AUCL is above
AUCP (darkest regions in the figure, corresponding to very small negative values of the
AUCP − AUCL difference, the minimum of which is equal to −3 · 10−4), the PDR test
outperforms the LRMAP. This confirms the interpretation drawn from the geometrical
detection surfaces, that the PDR test tends to better detect on the axes directions with
respect to the LRMAP. On the contrary, when less sparse vectors are considered, this is the
opposite. Fig.4.5(b) shows the results obtained considering N = 20 component vectors, in
which n = 10 components are different from zero and of the same values, linearly varying
in the [0.01, 3] interval. This time, the LRMAP test outperforms the PDR.

4.5 Conclusion

Our conclusions of this comparative study are as follows. Both tests are equivalent and
adapted to 1−sparse signals for γ = 0. For η �= 0 and γ �= 0, the PDR tends to better
detect highly sparse signals while the LRMAP is more adapted to less sparse signals. There
may be marginal counterexamples to this general rule (see Fig.4.5(a)).

A geometrical explanation to this behaviour is that at the same probability of false
alarm, the shape of the PDR detection surface is closer to a cube than the detection surface
of the LRMAP. Bonferroni/Max test [Arias-Castro 2010] (see also (5.24)), whose detection
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(a) (b)

Figure 4.5: PDR and LRMAP AUCs difference as a function of η threshold values, linearly
increasing in the [0.01, 2.2] interval. Fig.4.5(a) shows the results obtained computing the
difference AUCP (η)−AUCL(η) on N = 20 component vectors (considering 5·104 realizations
for each vector), with only one nonzero value, linearly varying in the [0.01, 5] interval. On the
other hand, Fig.4.5(b) shows results obtained computing the difference AUCL(η)−AUCP (η)
on N = 20 component vectors of parameters (5·104 realizations for each vector), with n = 10
nonzero values, in [0.01, 3]. The lower-right part of both figures corresponds to regions of
non-detectability of signals (AUC = 0.5). For highly sparse vectors (1−sparse, here) the
PDR test tends to be better than the LRMAP, since AUCP (η) − AUCL(η) is positive in
the vast majority of cases, while for lesser sparse vectors the situation is reversed.

surface is a cube, is very efficient in detecting k-sparse signals for k = 1, but its power
decreases for k > 1. Hence, for data sets in line with Fig.4.5(b) (that is, composed by k > 1
nonzero signal components that have comparable magnitudes), the PDR presents lower
performances than the LRMAP. For such signals, the too sharp PDR detection surface
(cube-like) is less adapted than the LRMAP surface, whose softer edges account for the
possibility of lower sparsity.

We end by noting that another possible way to compare the performances of the two
tests could be to evaluate, for a same value of the PFA, the corresponding values of the
PDET = Pr(T (u, η) > γ | H1), in function of both the η and γ parameters. Since the
analytical computation of the PFA and PDET of the tests with respect to both the (η,γ)
parameters shows up to be very difficult even in the case of the simple model (3.1), we
suggest to perform this analysis by geometrically constructing and numerically computing
minimizing-maximizing approximating functions aimed at bounding the PFA and PDET of
the tests. The bases for such a problem, which is still under investigation, are presented in
Appendix B.5.
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5.1 Introduction

To be closer to realistic scenarios involving data acquisition systems and data sparse in
dictionaries, the model considered in this chapter accounts explicitly for appropriate known
redundant dictionaries R and for the spread of information caused by the instrument on
the signal explanatory dimension (which could be for example a temporal, frequency or
energy dimension). To be in agreement with the application domain considered later in
this work (see Part III), we refer to this dimension as λ (wavelength). We call Wavelength
Spread Function (WSF) the mathematical function that describes the instrument acquisition
system’s response to an infinitesimally thin line. Note that the WSF may not always be
translation invariant (we refer to subsection 7.2.4 for an instance where the WSF may vary
over the spectral bands of the considered signals).

We study and compare the detection tests of chapter 3 reformulated and adapted to
the case of a dictionary-based spectral model. In particular, we consider in section 5.2
the case of the PDR and LRMAP detection tests based on a data model that takes ad-
vantage from the use of a one-dimensional (spectral) redundant dictionary. Similarly to
subsection 3.5.2, we show that when setting the γ threshold to 0 the PDR and LRMAP
approaches resume to the same test, and are equivalent to the Max testing procedure con-
sidered in [Arias-Castro 2010]. This setting also allows to univocally compute the maximal
PFA as a function of the sole η parameter. In section 5.3, an alternative formulation of the
Max test is proposed in terms of a constrained GLR test. A comparison of the detection
performances of the constrained GLR test and the Higher Criticism, a second-level signifi-
cance detection procedure introduced in [Tukey 1976, Donoho 2004] (cf. subsection 2.4.2),
is finally broached in section 5.4.
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5.2 1D (spectral) model

We consider here the tests introduced in chapter 3 for the following simple one-dimensional
(1D) spectral model:

�

H0 : s = �, � ∼ N (0,Σ)

H1 : s = HRα+ �
(5.1)

where s ∈ R
Λ is a vector of noisy observations, R is a (Λ×L) appropriate known redundant

dictionary, which allows to efficiently (sparsely) model s (cf. subsection 7.3.1) and α is a
sparse L−vector of unknown parameters. Following the same choices made in chapter 3 for
model (3.1), the covariance matrix Σ is considered diagonal with Σ = diag{σ2

1, . . . , σ
2
Λ}. In

this model, the spectral variations due to the spreading effects of the data acquisition system
are taken into account through the use of its matrix form H. In particular, H represents
a (Λ × Λ) sparse matrix, whose non-zero elements placed around the diagonal contain the
WSF coefficients over all the Λ spectral bands. Considering the whitening matrix Σ−1/2,
the model above can be re-written as

�

H0 : Σ
−1/2s = Σ−1/2� = w, w ∼ N (0, I)

H1 : Σ
−1/2s = Σ−1/2HRα+w,

(5.2)

where Σ−1/2HR = DΣH appears as an equivalent dictionary. By noting

z = Σ−1/2s

D = DΣHN−1
DΣH

and θ = NDΣH
α, (5.3)

with D = [d1 . . .dL] a possibly redundant normalized (||di||22 = 1, ∀i = 1, . . . , L) dictionary
of size (Λ × L) with L ≥ Λ atoms, NDΣH

the diagonal matrix composed of the norms of
the columns of DΣH and θ a column vector of L components assumed to be sparse, model
(5.2) becomes

�

H0 : z = w, w ∼ N (0, I)

H1 : z = Dθ +w.
(5.4)

Model (5.4) acts in the weighted (by Σ−1/2) data domain. This normalization simplifies the
setting and interpretation of the detection tests discussed in chapter 3 because all atoms
are treated equally, and allows to implement the tests for any target PFA while including
the specificities of the data through the redundant dictionary R. Note that with L = Λ
and D = I, (5.4) reverts back to the model (3.1) studied in chapter 3. Also, L = Λ and

D = Σ− 1
2 applies to the case of sparse additive signals against a non-diagonal Gaussian

background with covariance Σ.
In the following, we first compute the ML (subsection 5.2.1) and MAP (subsection 5.2.2)

estimate expressions for model (5.4). The computations of the PDR and LRMAP test
statistics are then derived in subsection 5.2.3. A particular case of equivalence of the PDR
and the LRMAP tests is considered in subsection 5.2.4. This equivalence leads to a unique
approach, the PDR/LRMAP test, allowing to implement the tests using the sole η threshold.
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5.2.1 ML estimate of θ and TGLR for a dictionary-based model

As previously seen in Sec.1.3.4, the ML estimate of an unknown vector of parameters θ

writes

θ̂ML = argmax
θ

p (z | θ)

= argmax
θ

ln p (z | θ) . (5.5)

Hence, according to the linear model (5.4)

θ̂ML = argmax
θ

−1

2
(z−Dθ)t (z−Dθ)

= argmin
θ

1

2
||z−Dθ||22 . (5.6)

The ML estimator for θ obviously minimizes the square error ||z−Dθ||22 . From (5.6), the
solution θ̂ML that minimizes the least norm computed for a dictionary D (N × L) with
N � L through the right inverse Dt(DDt)−1 is

θ̂ML = Dt(DDt)−1z, (5.7)

which leads to
Dθ̂ML = z. (5.8)

It is easy to see that, similarly to the definition of TGLR given in subsection 1.3.2, we have

TGLR(z) =
max
θ

p (z | Dθ)

p (z | 0) = ||z||22 . (5.9)

This shows that even for model (5.4) the GLR test behaves as an energy detector, without
taking any advantage from the use of the redundant dictionary.

We will keep considering the GLR test for the purpose of comparison (see section 7.3).

5.2.2 MAP estimate of θ for a dictionary-based model

Following the notation of subsection 2.3.3, the MAP estimate of an unknown vector of
parameters θ writes:

θ̂MAP = argmax
θ

p (θ | z)

= argmax
θ

p (z | θ)π (θ)

= argmin
θ

− ln [p (z | θ)π (θ)] . (5.10)

For model (5.4) and a Laplacian prior of the same form as seen in (2.47), definition (5.10)
becomes

θ̂MAP = argmin
θ

1

2
||z−Dθ||22 + η ||θ||1 , (5.11)
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where in this case the hyper-parameter η equals 1
λ > 0 (thanks to the normalization in (5.4)

η is the same for all the vector’s components, see section 3.5). Equation (5.11) coincides
with the solution of the Basis Pursuit DeNoising (BPDN) introduced in [Tibshirani 1996,
Chen 2001]. In contrast with subsection 2.3.3, θ̂MAP cannot be obtained by direct soft-
thresholding here. A necessary and sufficient condition for θ̂MAP to be the global minimum
solution of (5.11) is that there exists a vector v in the sub-differential of �θ�1 which verifies
[Fuchs 2004]

Dt(Dθ̂MAP − z) + ηv = 0, (5.12)

and which satisfies
�

vi = sgn(θ̂MAPi) if θ̂MAPi �= 0

vi ≤ 1 if θ̂MAPi = 0.
(5.13)

As a consequence, for sufficiently large values of η, θ̂MAP is identically zero. The first non-
zero component of θ̂MAP appears when η falls below the quantity maxi(|di

tz|). It is easy
to see that, if η > maxi(|di

tz|), taking θ̂MAP = 0 in (5.12) automatically yields a v which
satisfies (5.13) and thus the solution in zero.

5.2.3 TPDR and TLRMAP test statistics for a dictionary-based model

According to the analysis described above, we compute the expressions of the TLRMAP and
TPDR test statistics.

For model (5.4), the definition of the TLRMAP test statistic seen in (3.2) gives

TLRMAP(z) = −1

2

�

�

z−Dθ̂MAP

�t �

z−Dθ̂MAP

�

− ztz

�

= ztDθ̂MAP − 1

2
θ̂
t
MAPD

tDθ̂MAP. (5.14)

Multiplying (5.12) by θ̂
t
MAP leads to

θ̂
t
MAPD

t(Dθ̂MAP − z) + η θ̂
t
MAP sgn(θ̂MAP) = 0. (5.15)

Noting

Dθ̂MAP = ẑMAP,

and

θ̂
t
MAP sgn(θ̂MAP) =

�

�

�

�

�

�θ̂MAP

�

�

�

�

�

�

1
,

where
�

�

�

�

�

�
θ̂MAP

�

�

�

�

�

�

1
represents the l1−norm of the θ̂MAP vector, we have

ẑtMAP(ẑMAP − z) + η
�

�

�

�

�

�θ̂MAP

�

�

�

�

�

�

1
= 0. (5.16)

Adding the quantity 1
2 ẑ

t
MAP

ẑMAP to both terms in (5.16) yields

ẑtMAPz−
1

2
ẑtMAPẑMAP =

1

2
ẑtMAPẑMAP + η

�

�

�

�

�

�θ̂MAP

�

�

�

�

�

�

1
. (5.17)
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Comparing (5.17) to the TLRMAP(z) expression in (5.14), we finally obtain

TLRMAP(z) =
1

2
||ẑMAP||22 + η

�

�

�
θ̂MAP

�

�

�

1
, (5.18)

which is the expression of the TLRMAP test statistic for model (5.4).

For the computation of the TPDR test statistic we follow a similar reasoning. According
to model (5.4), the definition of the test statistic TPDR seen in (3.8), for a Laplacian prior
of the form (2.47), gives

TPDR(z) = θ̂
t
MAP

�

Dtz− 1

2
DtDθ̂MAP − η sgn(θ̂MAP)

�

, (5.19)

which leads, noting Dθ̂MAP = ẑMAP, to

TPDR(z) = ẑtMAPz−
1

2
ẑtMAPẑMAP − η

�

�

�θ̂MAP

�

�

�

1
. (5.20)

From (5.17) we have that

1

2
ẑtMAPẑMAP = ẑtMAPz−

1

2
ẑtMAPẑMAP − η

�

�

�

�

�

�
θ̂MAP

�

�

�

�

�

�

1
. (5.21)

Replacing (5.21) in (5.20), we finally obtain

TPDR(z) =
1

2
||ẑMAP||22 , (5.22)

which is the expression of the TPDR test statistic for model (5.4).

Note the similarity of expression (5.22) and (5.18) with that of the unconstrained GLR
test defined in (5.9). Basically, while the GLR test acts as a global energy detector (5.9),
the PDR and LRMAP tests concentrate only on the energy in the subspace defined by the
MAP estimate through ||ẑMAP||22.

From equations (5.18) and (5.22) we also see that one of the main characteristics of the
two tests statistics is that both are strictly positive, or null if and only if θ̂MAP = 0 (that

is, if maxi(|di
tz|) ≤ η). Moreover, they both depend only on the term

�

�

�

�

�

�θ̂MAP

�

�

�

�

�

�

1
.

5.2.4 Computation of PFA and PDET at γ = 0: the PDR/LRMAP test

Similarly to subsection 3.5.2, we address the problem of computing the maximal probability
of false alarm PFA0 , considering both tests at γ = 0. This assumption allows us to bypass
the tedious question of the double parameter dependency of the tests (on the γ and η
thresholds), and to define the PFA in terms of the sole η parameter. As previously mentioned,
for both the LRMAP and PDR tests at least one non-zero component appears in θ̂MAP (and
thus in ẑMAP) if the quantity maxi(|di

tz|) falls above η.

For a fixed value of η, we have

PFA0 = Pr(T > 0 | H0)

= Pr(max
i

(
�

�di
tz
�

�) > η | H0), (5.23)
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where T represents either the LRMAP or the PDR test statistic. For this reason, the two
tests are strictly equivalent at γ = 0. We refer to this unique test as the PDR/LRMAP test.
Note that, since the dictionary D is redundant, the components of the L−vector Dtz are
not independent, and finding PFA0 analytically is thus a difficult problem (see [Fuchs 2010]).
We can nevertheless resort to MC simulations to obtain an accurate correspondence between
η and PFA0 (as illustrated in section 7.3). Note finally that for γ = 0, it is not necessary to
solve (5.11) to implement these detection tests, as they amount to reject the null hypothesis
if

max
i

(
�

�di
tz
�

�) > η. (5.24)

This test is not new in the literature and corresponds to the test used in [Fuchs 2010]. This
test is also called the Max test in [Arias-Castro 2010] and resembles a generalized matched
filter where L filters d1, . . . ,dL are tested. While less effective for the detection of low
sparsity level signals, the Max test was shown to be optimal with respect to the Bayes risk9

in the case of high sparsity levels, where it exhibits a power that is comparable to that of
the HC detector of [Donoho 2004]. The comparison of those two tests when applied to the
entries of Dtz [Arias-Castro 2010] is reported in section 5.4.

We note for now that the strategy of choosing γ = 0 leads to focus on highly sparse
signals in which the few non-zero components are only those above the η threshold. This
is justified in our application framework (see Part III), where the SNR is very low, so that
for most interesting signals under H1 essentially one or very few spectral features should be
detectable.

5.3 The Max test as a constrained GLR

As previously mentioned, an appropriate detector for very sparse data is the Max test,
introduced in [Arias-Castro 2010] as a Bonferroni-type testing approach. For this test, we
propose a simple alternative formulation as a constrained GLR test. Let us consider the
following constrained model:

H1 : s = HRα+ �, ||α||0 = 1, (5.25)

which similarly to (5.1)-(5.4), in the weighted domain leads to

H1 : z = Dθ +w, ||θ||0 = 1. (5.26)

In this new model, the signal component of the whitened data vector z is obtained as one
of the columns of the redundant dictionary D, selected and weighted by the sole non-zero
component of θ. We thus have

H1 : z = diθi +w, (5.27)

with i and θi unknown.
According to model (5.27), we define the constrained one-sparse GLR test as:

GLR
(1D)

1s :

max
j, θj

p (z | dj , θj)

p (z | 0)
H1

≷
H0

γ1s, (5.28)

9Defined in Appendix A.2
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which is equal to

GLR
(1D)

1s :

max
j, θj

exp
�

−1
2 �z− djθj�22

�

exp
�

−1
2 �z�

2
2

�

H1

≷
H0

γ1s. (5.29)

The (1D) apex refers here to the one-dimensionality of the considered model. This notation
will help to distinguish this test from the three-dimensional (3D) model-based detectors

introduced later (see chapter 6). The computation of the T
(1D)

GLR1s
test statistic gives

T
(1D)

GLR1s
(z) = min

j, θj
− zTdjθj +

1

2
θ2jd

T
j dj . (5.30)

For dj fixed, the ML estimate of θj is

θ̂jML = dT
j z. (5.31)

Replacing this expression in (5.30) we have

T
(1D)

GLR1s
(z) = min

j
− zTdj θ̂jML +

1

2
θ̂2jML

dT
j dj (5.32)

= min
j

− 1

2

�

dT
j z

�2
= max

j

1

2

�

�dT
j z

�

�

2

2
. (5.33)

This is equivalent to maximise

T
(1D)

GLR1s
(z) = max

j

�

�dT
j z

�

� . (5.34)

The GLR test for model (5.27) finally writes

GLR
(1D)

1s : T
(1D)

GLR1s
(z)

H1

≷
H0

ξ1s, (5.35)

where ξ1s = 2 ln γ1s. Thus

T
(1D)

GLR1s
(z) = max

j

�

�dT
j z

�

� = TMax (z), (5.36)

as in (5.24). Summarizing, the GLR test for (5.26) is equivalent to the Max test of
[Arias-Castro 2010] applied to

�

�Dtz
�

� and is also the particular case of the PDR and LRMAP
tests at γ = 0.

For a simple notation, we hereafter refer to this test as the GLR
(1D)

1s . This notation will

allow in chapter 6 to distinguish with the GLR
(3D)

1s , a GLR test applied to a more complete
3D (spatio-spectral) model.

5.4 Comparison between the GLR
(1D)

1s test and the Higher
Criticism

This section proposes a numerical comparison of the GLR
(1D)

1s test (5.35) and the HC detector
of [Donoho 2004] (cf. subsection 2.4.2), here applied to the entries of

�

�Dtz
�

�, so that pi =
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Pr
�

|N (0, 1)| >
�

�Dtz
�

�

i

�

here. In particular, we are interested in showing the corresponding
powers of the two tests for the detection of weak sparse signals buried in white noise.

We compare the HC detector and the GLR
(1D)

1s test for the three signals (which are
galactic spectra) of Figure 5.1. Here, the left figures show the noiseless test spectra (in
blue) and the corresponding noisy data (in gray). We note that the considered signals
have very different spectral characteristics: the first one (Figure 5.1(a)) essentially shows a
strong emission line around spectral channel 3100; the second one (Figure 5.1(b)) is mainly
characterized by an oscillatory behavior; the third one (Figure 5.1(c)) mainly combines a
continuum component with an emission line around spectral channel 2200.

According to the detection regime we are interested in, which reflects the detection
conditions we need to face in the application domain of this work, the spectra are buried in
a strong white Gaussian noise (SNR of about −21dB in these simulations). In this context,
the signals can all be considered as weak and sparse possibly in some appropriate dictionary
D, the construction of which will be explained in subsection 7.3.1. The plots in the right
column of Figure 5.1 compare the ROCs (run over 103 realizations) of the HC test applied

to the entries of
�

�Dtz
�

� (in red) and of the GLR
(1D)

1s test (in blue). Clearly, the HC and the

GLR
(1D)

1s test have very close detection power. This shows the effectiveness of the GLR
(1D)

1s

detector for very sparse signals with very low amplitude.
This equivalence holds only for very sparse signals: in the case of less sparse signals,

the HC detector shows to be more powerful than the GLR
(1D)

1s test. This is illustrated by

the simulations reported in Figure 5.2, in which we have run the HC and the GLR
(1D)

1s

tests on the two following spectra: the first one (Figure 5.2(a), left) obtained as the sum
of the noiseless spectra in Figure 5.1(b) and Figure 5.1(c); the second one (Figure 5.2(b),
left) obtained as the sum of the three noiseless spectra in Figure 5.1(a), Figure 5.1(b) and
Figure 5.1(c). Obviously, these two spectra are less sparse than those of Figure 5.1.

For both noisy signals of Figure 5.2, the SNR is of about −21dB. The corresponding

ROC curves for the GLR
(1D)

1s (in blue) and the HC test (in red), obtained over 2 · 103
realizations, are reported in Figure 5.2(a) (right) and Figure 5.2(b) (right). From these

curves, we clearly note that for less sparse signals the HC detector outperforms the GLR
(1D)

1s

test.
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Figure 5.1: Numerical comparisons of the GLR
(1D)

1s versus the HC for signals that can be
considered very sparse accounting for noise power: the left figures show the noiseless test
spectra (in blue) and the corresponding noisy data (in gray); the right figures compare the

ROCs (run over 103 realizations) of the HC detector (in red) and of the GLR
(1D)

1s test (in

blue). Clearly, the HC and the GLR
(1D)

1s tests have very close detection power.
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Figure 5.2: Numerical comparisons of the GLR
(1D)

1s versus the HC detector in the case of
less sparse signals (with respect to the spectra shown in Figure 5.1). The first noiseless test
spectrum in Figure 5.2(a) (right) is obtained as the sum of the noiseless spectra in Figure
5.1(b) and Figure 5.1(c); the second noiseless test spectrum (Figure 5.2(b), left) is obtained
as the sum of the noiseless spectra in Figure 5.1(a), Figure 5.1(b) and Figure 5.1(c). For

both spectra, the SNR is of about −21dB. The corresponding ROC curves for the GLR
(1D)

1s

and the HC tests, obtained over 2 · 103 realizations, are reported in Figure 5.2(a) (right)
and Figure 5.2(b) (right). We note that for less sparse signals the HC detector outperforms

the GLR
(1D)

1s .
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5.5 Conclusion

The PDR and LRMAP detection tests firstly introduced in chapter 3 have been here studied
in the more general context of a dictionary-based model accounting for instrument model
(through matrix H) and signal structure (through R). When setting the γ test threshold
to zero, the PDR and the LRMAP tests are equivalent. Thanks to this setting the PFA

can be uniquely fixed, allowing to implement the tests for a false alarm rate that is func-
tion of the sole η parameter. For model (5.4) and γ = 0 the PDR/LRMAP test rejects
the null hypothesis if maxi(

�

�di
tz
�

�) > η. This corresponds to the Max test introduced in
[Arias-Castro 2010], which was shown to be optimal with respect to the Bayes risk in the
case of high sparsity levels.

The Max test can also be derived as a one-dimensional constrained GLR test and we
note this test as GLR

(1D)

1s . This alternative notation will be later contrasted with a GLR on
a 3D spatio-spectral model (chapter 6).

The GLR
(1D)

1s test has been compared to the HC detector, a second-level significance
technique introduced in [Tukey 1976, Donoho 2004]. The comparison on different types
of weak and sparse spectra buried in white Gaussian noise have numerically shown the
comparable detection power of the two methods in the case of highly sparse signals.

The detection tests developed in this chapter accounted only for data’s spectral informa-
tion. When considering multi-dimensional data sets however, as it is the case in chapter 7,
the use of the sole spectral information may not be enough to reach satisfactory detection
results for extremely faint signals. In a multi-dimensional data set, spatial dependencies be-
tween neighbor elements usually exist. This fact can be exploited to increase the detection
performances of the proposed tests. We investigate this situation in the next chapter.
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6.1 Introduction

We tackle now the problem of designing efficient detection strategies for the identification
of weak, sparse signals in highly noisy three-dimensional (3D) data. 3D data sets (or data
cubes) usually combine two spatial directions x and y (e.g. image or video frame dimensions)
with an additional direction λ (e.g. temporal, spectral or energy dimension). Such data
most often suffer from information leakage caused by the data acquisition system, which
may be different and variable in the three dimensions. This effect is usually described by a
3D Point Spread Function (PSF), a function that mathematically specifies any instrument
acquisition system’s response to a point source in the x, y and λ dimensions. In this
chapter, spatial (resp. spectral) will refer to the x, y (resp. λ) dimensions, so that the
proposed methods can be generically applied regardless of the physical nature of x, y and
λ. Accordingly, we separate the PSF into a Wavelength Spread Function (WSF, already
defined in the previous chapter) and a Spatial Spread Function (SSF) that, similarly to the
WSF in the λ direction, depicts the acquisition system’s response to a point source in the
spatial dimensions.

We consider 3D data sets as a collection of spectra (or pixel-vectors), each spectrum
covering the whole set of wavelengths in the λ dimension at specific (x, y) spatial coordinates.
In this case, two spatially contiguous spectra are likely to share some spectral information,
either because the sources we look at are resolved (i.e. spread over several pixels), or because
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of the instrument’ SSF. Thus, it is likely that the detection of very faint spectra can be
improved by using the spectral information detected in contiguous brighter pixels. Next
sections describe the detection models and the detection tests designed to implement such
ideas. With respect to chapter 5, improved detection performances are reached in section 6.2
through the introduction of a multiple-round detection approach based on a simple model
of spatial dependencies.

A more accurate 3D (spatio-spectral) model-based detection test is then considered in
section 6.3. In order to correctly take into account the spatio-spectral blur of information
caused by the instrument’s PSF, both the WSF and the SSF effects are modeled. The de-
tection techniques based on this new model will take advantage from dedicated dictionaries
composed of 3D elementary atoms.

6.2 First attempts to account for spatial dependencies

6.2.1 A simple toy-case with equal spectra and same noise statistics

We denote zb and zf two contiguous, respectively bright and faint spectra in a given data
cube. The problem we address in this section is that of detecting unknown salient spectral
features in the faint spectrum zf by exploiting the spatial (and spectral) proximity with
the brighter one (zb), which we know contains consistent information about zf .

6.2.1.1 The model

For both signals we refer to spectral model (5.2), which in the weighted domain and under
the H1 hypothesis writes

z = Σ−1/2s

= Σ−1/2HRα+w, (6.1)

where, as seen in section 5.2, Σ−1/2 is the whitening matrix, H is the matrix form of the
instrument’s WSF, R is the redundant dictionary, α the sparse vector of coefficients and
w ∼ N (0, I) a white Gaussian noise vector. This model can be re-written as

z = Dθ +w, (6.2)

where D denotes a known normalized redundant dictionary and θ is an unknown vector of
weighting parameters. We thus obtain

zf = Dθf +w

= xf +w, (6.3)

for the faint spectrum, and

zb = Dθb +w

= xb +w (6.4)

for the bright one.
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In the first (crude) approximation considered in this section we assume that the whiten-
ing matrix Σ−1/2 involved in D is the same for the two spectra. Therefore, the normalized
redundant dictionary D = Σ−1/2HRN−1

DΣH
(cf. (5.3)) is unique for both zf and zb.

Since two spatially contiguous spectra are likely to share some spectral information, we
assume, again crudely, that the two unknown noiseless spectra xb and xf are the same:

Simple spatial dependency: xb = xf . (6.5)

In this context, a meaningful estimate of the noiseless faint spectrum xf can be computed
as

x̂f = Dθ̂(xb) = x̂b, (6.6)

where θ̂(xb) is the sparse parameter vector estimate based on the informative content of the
bright spectrum xb. θ̂(xb) can for instance be obtained as the solution of the BPDN problem
defined in (5.11) for x = xb (efficient strategies are discussed in [Bourguignon 2011]).

A fast and well known alternative to compute θ̂(xb) is to use a greedy algorithm such
as for example the Matching Pursuit (MP), firstly introduced in [Mallat 1993]. The MP
algorithm seeks to approach a given signal with a sparse decomposition of atoms selected
from a redundant dictionary D, initially set. Thus, at each iteration, the column of the
dictionary that is most correlated with the residual is scaled and subtracted from the data
to obtain a new residual, and the sparse vector of coefficients θ̂ is updated. The iterations
stop when the maximal correlation falls below a fixed significance threshold.

Hence, in the first approximation considered here, we obtain for the faint spectrum the
following simple model

H1 : zf = x̂f +w, (6.7)

where x̂f = Dθ̂(xb).

6.2.1.2 The LR-MP test

Injecting the estimate x̂f in the Likelihood Ratio (1.39), we define a matched filter-like
detection test for zf , which we call the LR-MP (Likelihood Ratio with Matching Pursuit
estimate) test

LR-MP :
p(zf |x̂f )

p(zf |0)
H1

≷
H0

γ. (6.8)

The computation of the LR-MP test statistic gives

TLR-MP(x̂f ) = ztf x̂f − 1

2
x̂t
f x̂f

H1

≷
H0

γ�, (6.9)

where γ� = ln γ.
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The PFA corresponding to the LR-MP test is computed as

PFA(x̂f ) = Pr
�

TLR-MP > γ� | H0

�

= 1− Pr
�

TLR-MP < γ� | H0

�

= 1− Pr

�

ztf x̂f − 1

2
x̂t
f x̂f < γ� | H0

�

= 1− Pr

�

ztf x̂f

||x̂f ||2
<

γ� + 1
2 x̂

t
f x̂f

||x̂f ||2
| H0

�

= 1− Φ

�

γ� + 1
2 x̂

t
f x̂f

||x̂f ||2

�

, (6.10)

where Φ(·) is the CDF of a standard normal distribution defined in (1.25). Note that since
the PFA (6.10) depends on the faint spectrum estimate x̂f and on the noise realization, for
a given test threshold γ slightly variable values of the PFA will be obtained from one pixel
to another. This will be numerically illustrated in Figure 6.4(a).

6.2.1.3 Upper limits

In the purpose of establishing upper limits, we compare the performances of the proposed
detection strategy with those of two Oracle tests (cf. (3.17)):

• Oracle 1: This Oracle has knowledge only of the faint spectrum (Oracle 1, for short),
and of the support If of θf (which is the same as that of θb), but not of the amplitudes
θi, i ∈ If . Those are here estimated by least squares using the faint spectrum zf .
This leads to the estimate

θ̂Or1 = argmin
θ

||zf −Dθf ||22. (6.11)

Denoting by DIf the restriction of the dictionary D to the columns corresponding to
If , the solution of (6.11) gives

θ̂Or1 = (Dt
If
DIf )

−1Dt
If
zf . (6.12)

According to this, the faint spectrum estimate is equal to

x̂Or1 = DIf θ̂Or1 . (6.13)

For the following observation model
�

H0 : zf = w, w ∼ N (0, I)

H1 : zf = x̂Or1 +w,
(6.14)

the Oracle 1 test is thus a GLR test with x̂Or1 estimate under H1 and yields

TOr1 = ztf x̂Or1 −
1

2
x̂t

Or1
x̂Or1

H1

≷
H0

γ. (6.15)

The Oracle 1 test is indeed an upper limit to any realizable detection test which
considers the detection of the faint spectrum independently from others.
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• Oracle 2: As another upper bound for the detection limit of (6.9) we consider the case
of an Oracle test that estimates the non-zero amplitudes in the parameter vector θf

using a neighbor bright spectrum zb, instead of the faint zf (Oracle 2, for short). Since
both parameters θf and θb are similar, the resulting estimate will still be meaningful,
up to a scaling factor for the faint spectrum. This leads to a parameter vector estimate

θ̂Or2 = (Dt
If
DIf )

−1Dt
If
zb, (6.16)

and to a faint spectrum estimate

x̂Or2 = DIf θ̂Or2 . (6.17)

Similarly to the Oracle 1 for model (6.14), the Oracle 2 test is a GLR with x̂Or2

estimate under H1 and yields

TOr2 = ztf x̂Or2 −
1

2
x̂t

Or2
x̂Or2

H1

≷
H0

γ. (6.18)

Since the bright spectrum is relatively less noisy than the faint one, we expect the
Oracle 2 to perform better than the Oracle 1.

6.2.1.4 Numerical results

The relevance of the LR-MP approach (6.9) presented in this section is illustrated taking a
synthetic bright spectrum

zb = Dθb +w, (6.19)

where w ∼ N (0, I) and θb is a sparse parameter vector with only 4 non-zero components,
which “activate” and weight the following four atoms in the dictionary D: one Heaviside
step, one smooth global oscillation, plus two emission lines with Gaussian shapes. The
resulting noiseless bright spectrum xb is illustrated in blue in Figure 6.1(a). The neighbor
faint spectrum is taken with parameters

θf = 0.5θb, (6.20)

leading to

xf = 0.5xb. (6.21)

The factor 0.5 is introduced in order to make model (6.7) only approximately accurate
and the data slightly more realistic, as in practice neighbor spectra will not have the same
parameters (see subsection 6.2.2). The faint noiseless simulated spectrum is illustrated in
red in Figure 6.1(a). The noisy data corresponding to the bright spectrum are shown in
gray Figure 6.1(b). The SNR of the two convolved spectra is equal to −20.9 dB for the
bright signal and of −26.9 dB for the faint signal, respectively. As clearly visible from
Figure 6.1(b), if compared to the strong noise level, the signals’ significant content seems
to be almost null.

Numerical results are shown in Figure 6.2. Simulations were run considering the sparse
faint and bright spectra of Figure 6.1. The ROCs obtained when considering contiguous
spectra as independent (“Detection round on independent spectra”) are compared for the
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Figure 6.1: 6.1(a) The bright (in blue) and the faint (in red) noiseless simulated spectra for
detection exploiting spatial proximity and spectral similarities. 6.1(b) Bright and the faint
noiseless simulated spectra and corresponding noisy data (in gray).

unconstrained GLR ((5.9), green crosses), the GLR
(1D)

1s ((5.35), blue stars) and the Oracle

1 ((6.15), red stars) tests. As expected, the GLR
(1D)

1s outperforms the unconstrained GLR

while the Oracle 1 is superior to both the GLR
(1D)

1s and the GLR.

We then compare the performances of the tests exploiting the spectral dependencies
between neighbor spectra (6.21). Here, the LR-MP detection test (6.9) is implemented using
a faint noiseless spectrum MP estimate x̂f based on xb. The resulting ROC is plotted in
cyan stars. The ROC of the Oracle 2 test (6.18) is reported as a reference (red dashed-dotted

line). The improvement of the LR-MP test with respect to the GLR
(1D)

1s test is significant.
Interestingly, the corresponding ROC is even better than the ROC of the Oracle 1 test: in
the Oracle 1, the knowledge of the good support of θf is not enough to compensate the
strong estimation noise level of the faint signal’s components with respect to the less noisy
bright one used by the LR-MP test. This shows that accounting for spatial dependencies is
indeed useful, even when using a simplistic model such as the one considered here.

6.2.2 Refined detection model: proportional neighbor spectra and spa-
tially variable noise statistics.

In practice, the relationships between spatial neighbors spectra in a data cube are not as
simple as that considered in the toy-case of the previous section (6.5). This section aims at
setting a more realistic detection model accounting for neighbors spectra with noise statistics
that are different because they depend on the spatial coordinates, and proportional noiseless
spectral contents depending on an unknown scaling factor.
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Figure 6.2: “Spectra considered independently”: compared ROC curves for the uncon-

strained GLR ((5.9), green crosses), the GLR
(1D)

1s ((5.35), blue stars) and the Oracle 1
((6.15), red stars) tests, by considering contiguous spectra as independent. “Spatial model
xf = xb”: ROC curves for the LR-MP ((6.9), cyan stars) and the Oracle 2 ((6.18), red
dashed-dotted line) tests by exploiting spatial dependencies.

6.2.2.1 The model

Let us consider again zb and zf two whitened contiguous, respectively bright and faint
spectra (with xb and xf �= 0) such that

zb = xb +w = Σ
−1/2
b HRαb +w

zf = xf +w = Σ
−1/2
f HRαf +w, (6.22)

where Σb (resp. Σf ) is the covariance matrix of the noise on the bright (resp. faint)
spectrum, H represents the matrix form of the WSF (see section 5.2), and w ∼ N (0, I).
For clarity of exposition we denote hereafter

Rαf = x�
f and Rαb = x�

b. (6.23)

A model which is more realistic than (6.5) defining the common spectral content that
the two neighbor signals share can be

x�
f = βx�

b, (6.24)

with β expected to be < 1, but we do not impose this constraint. According to this, in the
weighted data domain the model for the faint spectrum can be re-written as

zf = βΣ
− 1

2
f Hx�

b +w. (6.25)
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For such a spectrum, the most powerful detection test is the LR test (see subsection 1.3.1),

which correlates the spectrum zf to the noiseless signal component βΣ
− 1

2
f Hx�

b.
Since in practice the contiguous noiseless, unconvolved bright spectrum x�

b and the β
factor are unknown, they must be estimated. First, we propose to estimate the noiseless
bright spectrum x�

b by a MP algorithm which, as seen before, is a fast and efficient procedure.
This is important if we keep in mind implementations on large data sets. As explained in
section 5.2, in the weighted data domain the bright spectrum can be written as

zb = Σ
− 1

2
b Hx�

b +w

= Dbθb +w. (6.26)

Since Db is a normalized dictionary, the implementation of the MP algorithm is standard.
At each iteration, the column of Db that is most correlated with the residual is scaled
and subtracted from the data to obtain a new residual, and the vector of coefficients α̂b is
updated. The final estimate α̂b is used to obtain x̂�

b by

x̂�
b = Rα̂b. (6.27)

Second, the factor β is estimated by least square:

β̂ = argmin
β

1

2
||zf − βΣ

− 1
2

f Hx̂�
b||22

= argmin
β

1

2

�

zf − βΣ
− 1

2
f Hx̂�

b

�t�

zf − βΣ
− 1

2
f Hx̂�

b

�

= argmin
β

1

2
ztfzf − ztfβΣ

− 1
2

f Hx̂�
b +

1

2
β2||Σ− 1

2
f Hx̂�

b||22. (6.28)

Deriving (6.28) with respect to β and putting the obtained expression equal to 0 we finally
find

β̂ =
ztfΣ

− 1
2

f Hx̂�
b

||Σ− 1
2

f Hx̂�
b||22

. (6.29)

The model (6.25) for the faint spectrum thus becomes

zf = β̂Σ
− 1

2
f Hx̂�

b +w

= x̂∗
f +w, (6.30)

in which we have set x̂∗
f = β̂Σ

− 1
2

f Hx̂�
b. An example illustrating the relevance of model

(6.30) is shown in Figure 6.3. Here, the bright (in green) and faint (in blue) considered
spectra are drawn from a simulated but highly realistic data set, and hence do not exactly
follow (6.30). Nevertheless, a meaningful estimate x̂∗

f for the faint spectrum is obtained
(see subsubsection 6.2.2.3).

6.2.2.2 The LR-MPβ detection test

In accordance to model (6.30), we define the following matched-filter like detection test

LR-MPβ :
p(zf ; x̂

∗
f )

p(zf ;0)

H1

≷
H0

ξ, (6.31)



6.2. First attempts to account for spatial dependencies 105

where MP refers to Matching Pursuit and β to the unknown amplitude. The computation
of the LR-MPβ test statistic explicitly writes

TLR-MPβ =
p(zf ; x̂

∗
f )

p(zf ;0)

=

exp

�

−1
2 ||zf − β̂Σ

− 1
2

f Hx̂�
b||22

�

exp
�

−1
2 ||zf ||22

� . (6.32)

Taking the logarithm of (6.32) we have

TLR-MPβ = ztf β̂Σ
− 1

2
f Hx̂�

b −
1

2
β̂2||Σ− 1

2
f Hx̂�

b||22. (6.33)

Replacing in (6.33) the expression of β̂ computed in (6.29) and taking the square root of
both terms in the LR-MPβ test we finally find that

TLR-MPβ =
|ztfΣ

− 1
2

f Hx̂�
b|

||Σ− 1
2

f Hx̂�
b||2

H1

≷
H0

ξ�, (6.34)

with ξ� =
√
2 ln ξ. We recall that this model improves on the one proposed in (subsec-

tion 6.2.1), in which the model simply considered β = 1 and Σf = Σb.
The PFA of the LR-MPβ test is

PFA(x̂
�
b) = Pr (TLR-MPβ > ξ | H0)

= 2[1− Φ(ξ)], (6.35)

because TLR-MPβ ∼ N (0, I) under H0 (cf. (1.32) and (1.34) with θ0 = 0 and σ = 1). The
PFA (6.35) here depends on the estimate of the considered bright spectrum (x̂�

b) and on the
noisy realizations of the faint (xf ) and of the bright (xb) spectra. As already mentioned
in subsubsection 6.2.1.2, setting a particular test threshold ξ thus leads to slightly variable
PFA values from one test spectrum to another. This effect is illustrated in the numerical
simulation of Figure 6.4(a).

6.2.2.3 Numerical results

An example illustrating the relevance of model (6.30) is shown in Figure 6.3. This figure
reports a bright noiseless spectrum (in green) and a faint contiguous noiseless spectrum (in
blue). These spectra are drawn from the simulated 3D data set considered in section 8.2
(their precise positions are marked in Figure 8.1(a) with green and blue crosses, respec-
tively). Although these spectra are not strictly proportional, they share common features
(e.g. the emission line around spectral band interval 1500 − 1550). In grey are plotted
the noisy data corresponding to the faint spectrum. Clearly, the emission line around this
interval is below the noise level. In magenta is plotted the estimated noiseless faint spec-
trum x̂∗

f , built taking advantage from the MP denoised version of the bright spectrum. The
emission line was captured by the MP algorithm in the bright data spectrum. This estimate
is indeed meaningful for the faint spectrum.
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Figure 6.3: Faint spectrum estimate using model (6.30). The plot reports the bright noiseless
spectrum (in green) and a faint contiguous noiseless spectrum (in blue). In grey are plotted
the noisy data corresponding to the faint spectrum. The estimated noiseless faint spectrum
x̂∗
f is plotted in magenta.

The performances of the test LR-MPβ are shown in Figure 6.4 for the same bright and
faint spectra of Figure 6.3. When implementing the test with the faint spectrum estimate

x̂∗
f = β̂Σ

− 1
2

f Hx̂�
b, we get one particular ROC curve. Figure 6.4(a) plots hundreds of such

ROC curves, for different noisy realizations of the bright spectrum, each realization leading
to a different estimate x̂∗

f . The resulting average ROC is shown in red. Figure 6.4(b) com-
pares the detection performances of the LR-MPβ (6.34) to those of the unconstrained GLR

test (5.9), and of the GLR
(1D)

1s test (5.35). The LR-MPβ (in red) shows better performances

than the unconstrained GLR (in green) and the GLR
(1D)

1s (in cyan), taking advantages from
spatial dependencies existing between the two considered spectra.

6.2.3 Multiple-round detection strategy and analysis of the correspond-
ing PFA and PDET

6.2.3.1 Multiple-round detection strategy

Aiming to improve detection performances on spectra that are too faint to be directly

detected with the GLR
(1D)

1s approach (5.35), but that actually do contain salient information
because contiguous to brighter informative ones, we propose the following multiple-round
detection strategy for the whole data cube, illustrated in Figure 6.5.

After performing detection with the GLR
(1D)

1s test for a target PFA0(η) (5.23), we are
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Figure 6.4: Detection performances of the LR-MPβ test: 6.4(a) LR-MPβ ROC curves
obtained for 100 experiments. 6.4(b) Compared ROC curves of the LR-MPβ (in red), the

GLR
(1D)

1s (in cyan) and the unconstrained GLR (in green) tests for the faint spectrum shown
in blue in Figure 6.3.

left with a set Γ of spectra flagged as “detected” (in green, in Figure 6.5(a)), and the
complementary set Γ̄ of spectra in which no feature was found at a significance level set
by PFA0 (in blue, in Figure 6.5(a)). Among all the spectra in Γ̄, we focus on those which
are contiguous to detected ones (in brown, in Figure 6.5(b)). We take those spectra to
perform a second round of detection with the LR-MPβ test: the spectra for which detection
was found with the LR-MPβ test are shown in red in Figure 6.5(c). These spectra are
aggregated to the set of “detected” spectra Γ (in green, in Figure 6.5(d), which are the
union of the green and red pixels in Figure 6.5(c)). New contour pixels are then computed
(brown pixels in Figure 6.5(d)), on which the LR-MPβ test can be performed again until
no adjacent detection is found.

Detection results of the multiple-round detection approach will be reported in section 8.2
on astrophysical 3D data sets.

6.2.3.2 Analysis of the PFA and PDET for more than one detection round

We address the problem of the analytical computation of the PFA and the PDET expressions
when more that one detection round is performed. In fact, when cascading two (or more)
detection tests, the overall false alarm and detection rates increase with respect to the case
where only one test is performed.

For one faint spectrum zf in Γ̄ contiguous to one bright spectrum zb in in Γ, a two-step

testing procedure of the previous section cascades two tests: the GLR
(1D)

1s and the LR-
MPβ. For the first test, the PFA0 depends only on the threshold η, while the probability
of detection PDET0 = Pr(maxi(

�

�di
tz
�

�) > η | H1) depends on η and on the considered
spectrum zf . For the LR-MPβ, the PFA depends on the fixed threshold ξ, while the PDET
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(a) (b)

(c) (d)

Figure 6.5: An illustration of the multiple-round detection strategy.

depends on ξ, zf and on the bright neighbor zb. For those two consecutive tests performed
on zf , a FA may occur:

i) when the GLR
(1D)

1s makes a FA on zf , which happens with probability PFA0(η);

ii) when there is:

- no FA by GLR
(1D)

1s on zf (probability (1− PFA0(η))),

- and detection of the GLR
(1D)

1s test on the spectrum zb (probability PDET0(zf , η)),

- and FA of LR-MPβ with zb (probability PFA(zb, ξ)).

The probability of detection of the two tests can be derived similarly, which gives:

�

PFA
2tests(zf ) = PFA0(η) + (1− PFA0(η))PDET0(zb, η)PFA(zb, ξ)

PDET
2tests(zf ) = PDET0(zf , η) + (1− PDET0(zf , η))PDET0(zb, η)PDET(zb, ξ),

(6.36)
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where the characteristics of the first stage are obtained by (3.48) and (3.49) and the char-
acteristics of the second stage are given by the red (average) curve in Figure 6.4(a).

The expression of the PFA and PDET for a multiple-round detection method can be
finally generalized to the case in which, given a faint spectrum zf , the bright spectrum zb
is chosen as one among the 8 neighbors of zf . The expressions in (6.36) thus become























PFA
2tests(zf ) = PFA0(η) + (1− PFA0(η))× 1

8

8
�

i=1

PDET0(zbi , η)PFA(zbi , ξ)

PDET
2tests(zf ) = PDET0(zf , η) + (1− PDET0(zf , η))× 1

8

8
�

i=1

PDET0(zbi , η)PDET(zbi , ξ).

(6.37)

Results obtained in terms of FA rate, when performing the cascade of two tests, will be
shown in section 8.2, in the context of astrophysical 3D data sets.

A first encouraging attempt to account for the spatio-spectral dependencies of neighbors
spectra in a 3D data set was presented in this section. Nevertheless, performing such
multiple-round detection approach is complicated, especially with regard to the analytical
computation of the overall PFA and PDET. We thus introduce in the next section a detection
strategy based on a new data model, in which both the effects of the WSF and of the SSF
are explicitly taken into account and which is also simple to control and implement. Based
on this model, a detection strategy taking advantage from dedicated dictionaries composed
of 3D elementary atoms is proposed.

6.3 A (spatio-spectral) 3D model-based strategy

The data model (5.1) and (5.25) account only for the effects of the instrument’s WSF,
through the use of the matrix H. In particular, the spectral content of each 1D atom ri,
i = 1, . . . , L of the R dictionary is assumed to be spread by H in the λ direction. However,
we further assume that at every single wavelength λ, the instrument’s SSF also dilutes
spatially the information over a number of (Nx × Ny) adjacent columns. With the aim
of further improving the detection performances of our tests, this section introduces a 3D
spatio-spectral data model that also accounts for the effects of the instrument’ SSF.

To our knowledge, few related detection approaches exist. Among these, [Starck 2009]
proposes a detection/reconstruction method for low flux sources using a wavelet-based
spatio-spectral dictionary, along with a multi-scale variance stabilization transform. In
contrast to our approach, the dictionary of [Starck 2009] is generic, and does not account
for the instrumental spreading functions. We also note the use of (one-dimensional) spe-
cific spectral dictionaries in [Chan 2012, Ramos 2012]. The first paper considers the case
of Poisson noise with a regularization term favouring group sparsity, and the second paper
a dictionary of Gaussian lines in conjunction with a Bayesian version of the support-vector
machine-learning technique [Tipping 2012].

In the following, the 3D model together with the corresponding expression of the con-
strained GLR test are derived. We also discuss the choice made on the strategy used to
design the considered dictionary. Numerical results, which confirm the superiority of the
3D approach with respect to the previous ones, will be shown in section 8.3.
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6.3.1 3D data Model and GLR
(3D)

1s detection test

The spread of information in the three dimensions can be represented by the composition of
the signal feature with both the instrument’s WSF and SSF. For the simplicity of exposition
we consider that the SSF is spectrally invariant, but, as specified below, this is not necessary.
In a given data cube, to each spectral column s(x, y), with x = 1, . . . , X and y = 1, . . . , Y , is
associated a data sub-cube of dimension (Nx×Ny×Λ) where the energy is smeared because
of the SSF. We explicit the data model in vector form. All the (Nx × Ny) Λ-dimensional
spectra in each such data sub-cube are stacked one on top of the other to form a NxNyΛ
column vector sV . This leads to the following model:

H1 : sV (x, y) = F(x, y)HRα+ �V , (6.38)

where sV and �V ∈ R
NxNyΛ, and �V ∼ N (0,ΣV (x, y)) is a Gaussian noise vector charac-

terized by a (NxNyΛ × NxNyΛ) diagonal covariance matrix ΣV , in which the diagonal is
the vectorized form of the associated sub-cube containing the noise variances of each voxel.
Here, the matrix H, the dictionary R, and the coefficient vector α are the same as in model
(5.1) and (5.25), while F(x, y) represents the (NxNyΛ×Λ) matrix composition by the SSF.
If we denote by

f =











f11 · · · f1Ny

f21 · · · f2Ny

...
...

fNx1 · · · fNxNy











(6.39)

the array of the SSF coefficients at position (x, y) (that we first assume invariant in the λ
dimension, for simplicity), and by

φ = vecf = [f11 . . . fNx1, . . . , f1Ny . . . fNxNy ]
t (6.40)

its vector form, then

F = [f11IΛ . . . fNxNyIΛ]
t

= φ ⊗ IΛ, (6.41)

where ⊗ denotes the Kronecker product and IΛ the Λ-dimensional Identity matrix.
Note that when the SSF is not spectrally invariant, F should be replaced by

F = [diag(f11), . . . , diag(fNxNy
)]t, (6.42)

where
f ij = [fij(λ1), . . . , fij(λΛ)], (6.43)

with i = 1, . . . , Nx, j = 1, . . . , Ny.
According to (6.38), in the weighted data domain we obtain, for each spectral column

s(x, y), the following model for the associated vectorized data cube sV :

H1 : Σ
− 1

2
V sV = Σ

− 1
2

V FHRα+wV , �α�0 = 1, (6.44)
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where wV ∼ N
�

0, INxNyΛ

�

and the dependence on (x, y) of ΣV and F is made implicit

for the clarity of exposition. Similarly to section 5.2, we refer to Σ
− 1

2
V FHR = DΣFH as an

equivalent dictionary. Noting

zV = Σ
− 1

2
V sV ,

DV = DΣFHN−1
DΣFH

and θ = NDΣFH
α, (6.45)

with NDΣFH
the diagonal matrix composed of the norms of the columns of DΣFH, (6.44)

leads to the model
H1 : zV = DV θ +wV , �θ�0 = 1, (6.46)

which corresponds to the expression of model (5.26), with the crucial difference that this
time both the WSF and SSF are taken into account in the normalized dictionary DV .

We now derive the expression of the constrained 3D GLR detection test for model (6.46).
Similarly to what said in section 5.3 for the 1D spectral model (5.25), the GLR test for (6.46)
yields

GLR
(3D)

1s :

max
j, θj

p
�

zV | dVj , θj
�

p (zV | 0)
H1

≷
H0

γ1s. (6.47)

Following the same steps as those described in (5.29) - (5.36), we obtain

GLR
(3D)

1s : T
(3D)

GLR1s
(zV )

H1

≷
H0

ξ1s, (6.48)

where ξ1s = 2 ln γ1s. The expression of the GLR
(3D)

1s test statistic gives

T
(3D)

GLR1s
(zV ) = max

j

�

�dV
T
j zV

�

� . (6.49)

Again, the GLR
(3D)

1s is equivalent to the Max test of [Arias-Castro 2010] applied to the vector
form of the 3D atoms dVj in DV and of the data zV . Note that we do not attempt to first
deconvolve the data, and then detect. The reason is that in such a two-step approach, the
dependence of deconvolution on a regularization term would influence the data distribution.
In addition, deconvolution somewhat performs a detection, but without rigorously defining
the realized detection test (nor controlling its size and power). Thus, detection would be
performed twice. In contrast, our approach is one-shot: the sparsity based test essentially
performs information re-concentration to improve detection (quite in the spirit of matched
filtering principles), while keeping the statistical description of the data accurate.

The threshold ξ1s controlling the PFA is computed numerically in function of the ξ1s
threshold. An example of the empirical computation of the PFA as a function of the corre-
sponding test threshold will be given in subsection 7.3.3. Detection results in the context
of astrophysical 3D data sets will be shown in section 8.3.

6.3.2 Design strategies for the choice of the dictionary

An important point is represented by the choice of the spectral dictionary R. As discussed
in subsection 2.2.2, there are several ways to choose R. Of course, this dictionary can be
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taken as a generic one (for instance wavelets). However, if some atoms of such dictionary
are known not to well represent the data to be detected, they should be removed, as they
will essentially increase the PFA but only marginally increase the PDET. In addition, when a
representative data set of the signals under H1 is available, it may be more efficient to design
a specific dictionary. In such cases, R is often simply taken as the mean or the first singular
vector obtained by a SVD of the data set [Manolakis 2009], or it can be optimized using now
classical sparse dictionary techniques, as for instance the K-SVD approach of [Aharon 2006]
(see Appendix B.3). Another set of approaches called minimax seeks a dictionary of reduced
dimension, which maximizes the worst probability of detection under H1 [Lehmann 2005].

We note an important issue in the case where a spectral library is available. Assume this
(possibly very large) library L is so accurate that the signal under H1 can be considered
to belong to L. In this case, it may be not only computationally prohibitive, but also
suboptimal (w.r.t. detection power) to implement a test of the form (6.48) with R = L

(i.e the concatenation of all possible alternatives). This is because the PFA may increase
wildly with the number of alternatives [Suleiman 2013]. Hence, dictionaries with reduced
dimensions such as those cited above are very useful. The design of the dictionary also
critically influences the success of a detection strategy.

As a final remark, we comment on the one-sparse hypothesis made in (5.25) and (6.44).
If the signals under H1 are sparsely decomposed in R using a few atoms of rapidly decreasing
amplitudes, then only the largest feature will be detectable in highly noisy data. On the
other hand, if R is sufficiently well designed/large and thus contains (up to an amplitude
factor) an atom equal to the signal under H1, we can also consider that the signals are
one-sparse in R. Hence, the 1−sparse hypothesis is justified either because of high noise
level or because it is indeed true.

A comparison between the 1D (5.29) and the 3D (6.48) one-sparse GLR tests using the
K-SVD [Aharon 2006] and the minimax dictionary learning approaches of [Suleiman 2013]
will be reported in section 8.3, in the context of astrophysical hyperspectral data.

6.4 Conclusion

With the aim to improve detection with respect to strategies based only on spectral models
for 3D data sets, we have investigated different approaches exploiting both the spatial and
the spectral dependencies between neighbors spectra in 3D data cubes, through the 1D and
2D PSF, and a sparse spectral model using an appropriate dictionary.

First, several strategies assuming eventually that neighbors spectra are proportional
have been derived.

Second, we have introduced a new detection method that allies dictionary learning tech-
niques, sparse models and spread functions to concentrate information prior to detection.
This method, based on a data model that takes into account both the WSF and SSF in-
strument’s effects, is currently generalized to the case where sources are spatially structured
(instead of punctual).

In the next part of the manuscript, the dictionary model-based detection strategies intro-
duced in chapter 5 and chapter 6 are applied to signal detection in highly noisy astrophysical
hyperspectral data.
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7.1 Introduction

Thanks to their rich informative content, multi-dimensional data sets are exploited in an
increasing number of modern applications. For instance, 3D hyperspectral images can be
acquired by spectro-imagers combined with microscopes, satellites or even space probes and
be then used successfully in different domains such as bio-medicine [Vo-Dinh 2004], defense
[Manolakis 2003] and astrophysics [Starck 2009]. Astrophysics is the field we are interested
in the applicative part of our work.

In this chapter, a brief overview on Hyperspectral Imaging and some of its applications to
Astrophysics is firstly presented in section 7.2. The ESO’s MUSE (Multi Unit Spectroscopic
Explorer) instrument and its characteristics are introduced in subsection 7.2.3 and 7.2.4.
Conceived to be installed at the Very Large Telescope in Chili in 2013, MUSE is an integral
field spectrograph that will provide a huge quantity of hyperspectral data. As the instrument
is still under construction, all the numerical simulations presented hereafter are performed
on simulated, but very realistic, hyperspectral data cubes coming from the consortium in
charge of MUSE’s assembly.
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We then illustrate the detection results obtained by applying the sparsity-constrained

GLR
(1D)

1s (5.35) and the unconstrained GLR (5.9) detection strategies to MUSE data in
section 7.3. After a discussion concerning the choice of the redundant dictionary R on
which the considered data model (5.2) is based (subsection 7.3.1), results on astrophysical
data are shown in the case of a single test spectrum (subsection 7.3.2) and in the case of
MUSE data cubes (subsection 7.3.3).

7.2 Hyperspectral Imaging and its application to Astro-
physics

7.2.1 Spectroscopy in Astronomy

Astronomers will unfortunately never be able to bring a star in their laboratory and study
it. Astronomical discoveries have thus been and continue to be essentially made through
the study of the light emitted by the stars. While this study can be made considering the
light as a whole, it is also possible to divide it into its component parts to better understand
the nature of the observed emitting celestial objects.

Sir Isaac Newton was the first who in the 17th century scientifically proved that the
rainbow colors coming out of a prism hit by a light beam were not due to impurities in the
glass but to the light itself [Newton 1672]. Newton adopted the Latin word spectrum (“the
means to see”) to describe the whole set of these colors. Newton’s beliefs were based on the
corpuscular theory, according to which light was made of a stream of particles traveling in
a narrow beam. This was in contrast with the “Huygens’ principle”, by the dutch physicist
Christiaan Huygens, who in his “Traité de la lumière” [Huygens 1690] had theorized light
was made of moving waves propagating through the free space at the speed of light. It was
only in the 19th century with its wave theory of light that Thomas Young [Young 1802] made
a significant contribution in the particle versus wave theory debate, in favor of Huygens’
wave theory. Nowadays this duality persists, representing still a fundamental property of
light.

In the meanwhile, another well known scientist named Sir Frederick William Herschel,
improved on Newton’s results measuring the temperature of each color of the light: blue
and green were cooler, while red was warmer. Herschel also (accidentally) discovered the
presence of a warmer form of light beyond the red light [Herschel 1800], opening the door
to the study of types of electromagnetic radiation invisible to the human eye. That region
became known as infrared radiation. Today we know that visible light is only a small part
of the set of all possible frequencies of electromagnetic radiation. In particular, the visible
spectrum covers all the wavelengths (the distance a wave travels during one oscillation)
between 0.4 µm (ultraviolet limit) and 0.8 µm (infrared limit).

In astronomy, what it is called spectrum of a source is the whole set of radiations that
the observed object emits. The field of physics that allows to experimentally study the
spectrum of a physical phenomenon is called spectroscopy. The rise of spectroscopy has
begun in the 19th century. The development of the first spectroscope is attributable to
Joseph von Fraunhofer who in 1819, thanks to this tool, was able to identify absorption
lines in the solar spectrum [Brand 1995] then named as Fraunhofer lines. A spectroscope
allows to separate the various components of a beam of light along wavelengths. If combined
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with a device for measuring the intensity of light at the various wavelengths, it is called a
spectrometer. The sampling of the spectrum together with the range of covered wavelengths
depend on the optical devices of the spectrograph.

The spectrum of an astronomical object contains many key informations about its chemi-
cal and physical composition. This knowledge also provides informations on the past history
of the object and on its evolution. Depending on its composition, a spectrum is generally
characterized by a specific combination of continuum, absorption and/or emission spectral
lines. The more chemical elements form the observed object, the more its spectrum is
complicated, presenting the spectral signature of each one of the composing elements. An
example of a star and of a a galaxy spectrum is illustrated in Figure 7.1 in blue and red,
respectively.
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Figure 7.1: Example of a star (in blue) and galaxy (in red) spectrum.

Obviously, studying only the spectral characteristics of an object leads to neglect the
spatial information. Over the last decades, scientists and engineers have thus focused their
interest on how to extend the information provided by spectroscopic analysis at all the points
of a given spectral scene, such as for example a telescope’s field of view. These efforts have
given rise to what is known today as Imaging Spectroscopy, Hyperspectral Imaging or Integral
Field Spectroscopy in astronomy: a set of multi-band techniques allowing to simultaneously
acquire both the spectral and the spatial types of information. A brief survey is presented
in the next section.
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7.2.2 Hyperspectral Imaging
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Figure 7.2: Example of hyperspectral image and spectrum associated to a pixel

Hyperspectral Imaging (HSI) combines the power of digital imaging with that of spec-
troscopy. In fact, HSI allows to represent a same observed scene over several narrow spectral
bands, in different ranges of wavelengths (visible, infrared, and more). To each spatial po-
sition in the image thus corresponds a well-defined spectral information. Data obtained
through HSI are arranged in cubes (data cubes) that are characterized by two spatial di-
mensions (x, y) and a spectral dimension λ. An example of hyperspectral image is illustrated
in Figure 7.2. The prefix hyper- was coined referring to the large number of wavelengths at
which spectra in hyperspectral data cubes are sampled. The literature in fact differentiates
between:

- Multi-spectral imagers, that allow data collection in a dozen of spectral bands;

- Hyper-spectral imagers, that allow data collection in several hundreds or even thou-
sands of spectral bands.

Multi-dimensional data sets often possess intrinsic characteristics that lead to processing
difficulties. First, the large data size: for example, hyperspectral images made up of hun-
dreds spectral bands require increasing storage capacities and fast processing algorithms.
Second, the poor SNR: splitting the information over three dimensions and increasing the
sampling resolution often leads to relatively stronger noise levels in the voxel elements. In
addition, the features of interest may be intrinsically weak and (spatially) sparse: an ex-
ample is provided by the astrophysical data considered in this chapter. In such cases, it
may be extremely difficult to detect the presence of information, because it is both rare and
weak. This is the situation considered all along this chapter.
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Figure 7.3: A 3D illustration of the MUSE instrument. Comparison of the instrument’s
dimension with respect to the human being on the right of the Figure. (Original picture
from ESO’s website)

7.2.3 An instance of Hyperspectral Imaging in Astrophysics: The MUSE
instrument

The Multi Unit Spectroscopic Explorer (MUSE) is an integral field spectrograph in devel-
opment for one of the four 8 meters telescopes of the European Southern Observatory’s
Very Large Telescope (VLT). The MUSE instrument will allow to obtain the spectroscopic
equivalent of the Hubble Deep Fields [Williams 1996]. Moreover, the main scientific goals of
this instrument will concern: the study of stellar population in nearby galaxies, the study
of supermassive black holes, planets and small bodies, and the study of the formation and
evolution of galaxies. In the latter case, the MUSE instrument will enable to study the
progenitor of normal galaxies, which are also the farthest galaxies from the Earth.

One of the major challenges of the MUSE instrument concerns the detection and char-
acterization of such distant galaxies. Those galaxies, which are more than ten billion light
years far away from Earth, appear as spatially localized within one or a few pixels (because
of the instrument’s spatial Point Spread Function, as explained in the next section) and
present spectra characterized by a particular, very faint and narrow line, known as Lyman-
alpha line (Ly-α). Examples of Ly-α objects and corresponding emitting lines are given in
section 8.3 (see Figure 8.3 and 8.8(a)). As it will be emphasized in section 8.3, the huge
distance together with the low luminosity of the objects and the disruptive effects of the
atmosphere, make the detection of those sources very difficult.

The MUSE instrument combines the power and the accuracy of 24 Integral Field Units
(IFU). These 3D spectrographs allow to cover a very large field of view and to simultaneously
obtain a spectrum for each one of its points (pixels). Figure 7.3 shows how the MUSE
instrument will appear once assembled at the VLT.

More specifically, MUSE will deliver hyperspectral data cubes composed of 300×300
spectra sampled at approximately 3600 wavelengths of the visible spectrum, with a spectral
resolution of 0.13 nm and in a spectral range going from 0.48 to 1 µm [Kosmalski 2011].
Most data acquired by the MUSE instrument will be characterized by a very low SNR.
In particular, data will be strongly contaminated by the spectral signature of atmospheric
molecules. In addition, data will be largely affected by Poisson noise, which is indeed data
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dependent. Moreover, the instrumental detection efficiency is variable with wavelength
[Bourguignon 2011]. Consequently, the noise level is highly variable from one wavelength
to another, and also from one spectrum to another. An example of noise variance involved
in one of the MUSE’s spectra is given in Figure 7.4.
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Figure 7.4: Example of noise variances affecting the components of a MUSE spectrum.

7.2.4 MUSE instrument’s Point Spread Function

MUSE is characterized by a three-dimensional Point Spread Function (PSF), which is vari-
able in (x, y) and λ. As previously defined in chapter 6, the PSF is the mathematical
function that describes the instrument acquisition system’s response to a point source. For
an astronomical object such as a point star, the effect of the instrument’s PSF is visible
by a blurring of the information over all the data dimensions. When the instrument can
be considered as linear and invariant, the data are modeled by a convolution of the object
(celestial body) by a function (kernel) that mathematically describes the blur.

In the scope of this work, MUSE is considered as a linear system. MUSE’s PSF can
thus be separated into two distinct functions: a Spatial Spread Function (SSF), which covers
(13 × 13) pixels in the spatial domain, and a Wavelength Spread Function (WSF), which
spreads over 7 spectral elements. Both the WSF and the SSF of the instrument slightly
vary over the Λ = 3600 wavelengths of MUSE data cubes. All along this chapter and also in
the next one we will consider a constant approximation of the WSF and the SSF, obtained
computing the mean over all wavelengths. We emphasize however that this is without any
loss of generality because all the proposed methods could account for such variations.

As an illustration, MUSE’s WSF and SSF are reported in Figure 7.5 and Figure 7.6,
respectively. In particular, Figure 7.5(a) and Figure 7.5(b) show the instrument’s WSF for
the first (Λ1) and the last (Λ3600) wavelengths. Figure 7.5(c) shows the set of 3600 MUSE’s
WSFs (in blue) and the corresponding mean (approximate) WSF (in red), on which we
work. Similarly, Figure 7.6(a) and Figure 7.6(b) show the instrument’s SSF for the first
wavelength (Λ1) and the last one (Λ3600). The mean SSF is reported in Figure 7.6(c). These
approximations (Figures 7.5(c) and 7.6(c)) are not critical given the small variations of the
WSF and the SSF in Λ and the high level of noise that affects the data.
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Figure 7.5: MUSE’s WSF. 7.5(a) WSF at Λ1. 7.5(b) WSF at Λ3600. 7.5(c) WSFs for all
the wavelengths (in blue) and mean (approximate) WSF (in red).
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Figure 7.6: MUSE’s SSF. 7.6(a) SSF at Λ1. 7.6(b) SSF at Λ3600. 7.6(c) mean (approximate)
SSF.

7.3 Sparsity-constrained vs unconstrained GLR test: compar-
ison of the detection performances.

We present the detection results obtained on MUSE astrophysical hyperspectral data per-

forming the sparsity-constrained GLR
(1D)

1s ((5.35), where the (1D) apex helps to distinguish

this test from the 3D model-based GLR
(3D)

1s detector considered in the next chapter) and
the unconstrained GLR (5.9) approaches introduced in chapter 5. Both strategies are based
on the 1D (spectral) whitened data model of (5.2)

�

H0 : Σ
−1/2s = Σ−1/2� = w, w ∼ N (0, I)

H1 : Σ
−1/2s = Σ−1/2HRα+w,

where s ∈ R
Λ is the observation vector, w ∈ R

Λ is the noise vector, α ∈ R
L is the unknown

coefficient vector, Σ−1/2 represents the whitening matrix, R is a (Λ×L) known redundant
dictionary (see next section), and the effect of the instrument WSF is taken into account
through the use of its matrix form H so spectra are considered independently here.

As illustrated in Figure 7.7(a), H represents a (Λ × Λ) sparse matrix, whose columns
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contain the translated replica of the MUSE’s mean WSF (Figure 7.7(b)) over all the Λ
wavelengths.

A discussion on the design of dictionary R in the context of MUSE data is presented
below.
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Figure 7.7: Matrix form of the Wavelength Spread Function. 7.7(a) Sparse diagonal H

matrix (glimpse over the first 25 spectral bands). 7.7(b) H columns (mean WSF translated
replica) plotted for the first 22 spectral bands.

7.3.1 The design of the dictionary R

Restoration of MUSE-like spectra was recently addressed in [Bourguignon 2011], where
prior information was incorporated through sparsity constraints. A redundant dictionary
R of elementary spectral features was built in accordance with astrophysical knowledge, so
that the sparsely estimated nonzero components can be interpreted as physically meaningful
features. More precisely, R concatenates three sub-dictionaries: R = [R�RcRb], each of
which corresponds to a specific spectral component: a line spectrum, a continuous spectrum
and a series of discontinuities. R� (� for lines) is a dictionary of discrete splines with several
widths, which are centered along the reconstruction wavelength axis. Eleven width values
were used, varying from 1 (delta functions) to 138 points. Delta functions and splines model
respectively unresolved and resolved absorption or emission spectral lines. MUSE’ spectral
resolution equals 0.13 nm so that the maximal width equals 138 × 0.13 � 18 nm. Rc (c
for continuum) is a dictionary of continuous spectra composed of sine functions with low
frequencies (reduced frequencies vary from 1/N to 8/N , where N is the number of data) and
8 discretized phase shifts. It also includes the continuous component by means of a constant
signal. Finally, dictionary Rb (b for breaks) models a series of breaks in the spectrum, and
is composed of step functions which are also centered along the wavelength axis. While the
works [Bourguignon 2011] used this dictionary in the framework of spectral restoration, we
use it for detection purpose here.

The redundant dictionary R considered in this chapter contains a total of L = 27680
atoms. Examples of such atoms are given in Figure 7.8: Figures 7.8(a), 7.8(b) and 7.8(c)
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Figure 7.8: Examples of atoms in dictionary R. 7.8(a) Example of spline atom modeling
spectral emission lines. 7.8(b) Example of sine function modeling oscillatory behavior of
continuous spectra. 7.8(c) Example of step function modeling spectral breaks. 7.8(d) Ex-
ample of weighted linear combination of dictionary atoms obtained from the three atoms in
Figures 7.8(a), 7.8(b) and 7.8(c), representing a real spectrum.

respectively plot an example of spline atom (in blue) modeling an emission spectral line, an
example of sine function (in green) modeling a continuous spectrum, and an example of step
function modeling a spectral break (in red). An illustration of weighted linear combination
obtained from these three dictionary atoms and representing a real spectrum is plotted in
black in 7.8(d).

7.3.2 Comparison of the detection performances on a single test spec-
trum

The unconstrained GLR (5.9) and the sparsity-constrained GLR
(1D)

1s (5.35) tests are com-
pared on one single test spectrum, simulated by the MUSE consortium (Figure 7.9). For
the purpose of MC simulations, results will be shown for spectra shorter than those that
will be provided by the MUSE instrument (N = 2048 instead of ≈ 3600). To quantify how
the noise � affects a particular convolved spectrum sH = HRα in (5.1), we define the SNR
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as

SNR(sH) = 10 log10
||sH||22
Tr{Σ} . (7.1)

To fix the ideas, a SNR of 0 dB corresponds to a noise that has the same power as the
convolved spectrum, while a SNR of −20 dB corresponds to a noise power hundred times
greater than the power of the convolved spectrum.

The first step concerns the empirical computation of the correspondence between the
maximal probability of false alarm PFA0 and the η threshold values (5.23), necessary for

the implementation of the sparsity-constrained GLR
(1D)

1s test. The result, obtained via
MC simulation, is shown in Figure 7.9(a). For instance, we obtain that in order to fix
PFA = 0.01 we have to choose η = 4.72. Figure 7.9(b) shows the considered noiseless
spectrum (in blue) and the corresponding noisy data, on which we work (in cyan). This
spectrum is characterized by a SNR of −19.3 dB, which is representative of MUSE spectra

(as reported later in Figure 7.10(b)). Figure 7.9(c) compares the ROC curves of the GLR
(1D)

1s

(in blue) and the unconstrained GLR (in red) at a fixed SNR of −19.3dB. Since γ is fixed,

different values of PFA are obtained by varying η. Clearly, the GLR
(1D)

1s test is superior to
the unconstrained GLR. While the latter test is “blind” to the dictionary model and acts as
a simple energy detector, the former test allows to detect more efficiently particular spectral
features. For instance, for the considered spectrum, the emission line in Figure 7.9(b) is
detected by a wide spline in the normalized redundant dictionary D = Σ−1/2HRN−1

DΣH

(cf. (5.3)), showing the relevance of the 1-sparse GLR model (5.26). Figure 7.9(d) finally
compares the tests in terms of probability of detection PDET versus the SNR, at a fixed of
PFA = 0.01. With respect to the unconstrained GLR test, the proposed approach allows
substantially better detection for a wide range of SNR (−10dB to −20dB for this spectrum).
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Figure 7.9: Comparison of the GLR
(1D)

1s and GLR tests on a single MUSE spectrum. 7.9(a)
Empirical PFA0(η). 7.9(b) sH (blue) and corresponding data (cyan) at SNR = −19.3 dB.

7.9(c) ROC of GLR
(1D)

1s vs unconstrained GLR at fixed SNR = −19.3 dB. 7.9(d) PDET vs
SNR at fixed PFA = 0.01.
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7.3.3 Comparison of the detection performances on hyperspectral data
cubes

After examining the tests on a single MUSE spectrum, we now consider their comparison
on a first small MUSE-like hyperspectral data cube of size (100 × 100 × 2048), which is
illustrated in Figure 7.10. Figure 7.10(a) shows the log version of the noisy considered
cube (mean over all wavelengths). The SNR map of each spectrum is shown in Figure
7.10(b). This map can be considered as a reference showing where the signal is located

under H1. Most spectra are buried in noise and have SNR below −20 dB. The GLR
(1D)

1s

and the unconstrained GLR tests were run on each noisy spectrum of the data cube and
because of the variance diversity from one spectrum to another (Σ = Σ(x, y)), the testing

procedures use one normalized dictionary DΣH = Σ− 1
2HR per spectrum. An example of

the noise variances involved in the diagonal of Σ(x, y) was shown in Figure 7.4.
Figure 7.10(c) shows in white the location of the spectra which have been detected using

the unconstrained GLR test, while Figure 7.10(d) shows the equivalent for the GLR
(1D)

1s test.
The PFA is set to 0.01 for both tests. In the black zones no detection was claimed. At the
same PFA, the unconstrained GLR test claimed 448 detections, and the GLR

(1D)

1s 915, which
illustrates the better performances (power nearly doubled) reached by the proposed test.

To make a further example, we run the unconstrained GLR and the GLR
(1D)

1s tests on
the latest “dry-run” version of the simulated MUSE hyperspectral data cube, released by the
MUSE consortium at the end of December 2011. The dry-run data cube is (100×100×3600)
big and contains several objects of different size and type. The reconstructed white light
image of the reference noiseless scene is shown in Figure 7.11, where the color indicates
intensity. The objects of the scene are numbered from 1 to 17.

Figure 7.12 reports the detection results for the unconstrained GLR and the GLR
(1D)

1s

tests on the dry-run. The noisy scene and the SNR map are reported in Figure 7.12(a) and
Figure 7.12(b). Similarly to the simulations above both tests were run at a PFA = 0.002,

corresponding to a threshold η = 5.2 for the GLR
(1D)

1s test. The GLR
(1D)

1s (Figure 7.12(d))
outperforms the unconstrained GLR test (Figure 7.12(c)) with 767 detections versus 450.

Note that despite the satisfactory detection performances shown by the GLR
(1D)

1s on the
MUSE hyperspectral data cubes of Figure 7.10(a) and Figure 7.11, the proposed method
fails in detecting particularly faint objects. This is the case of objects number 6, 7 and 13 in
the dry-run scene of Figure 7.11. An approach to the problem of detecting such extremely

faint signals (SNR ≈ −30 dB) is given by the GLR
(3D)

1s spatio-spectral detection test of
(6.48), and will be discussed in section 8.3.
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(a) (b)

(c) (d)

Figure 7.10: Comparison of the GLR
(1D)

1s and unconstrained GLR tests on data provided
by MUSE consortium. The (x, y) axes represent the spatial dimensions as seen by MUSE.
7.10(a) Noisy MUSE subcube : Absolute value of the mean over wavelengths (logscale).
7.10(b) SNR of each spectrum. 7.10(c) Detection using the unconstrained GLR. 7.10(d)

Detection using the GLR
(1D)

1s .
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Figure 7.11: Reconstructed white light image of the noiseless dry-run data cube.

(a) (b)

(c) (d)

Figure 7.12: Compared detection performances of the GLR
(1D)

1s and GLR tests on the dry-
run, for a same PFA = 0.002. 7.12(a) Log scaled version of the considered noisy MUSE
sub-cube. 7.12(b) Dry-run’s SNR map. 7.12(c) Detection results using the unconstrained

GLR test (450 detections). 7.12(d) Detection results using the GLR
(1D)

1s test (767 detections).
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7.3.4 Analysis of the GLR
(1D)

1s test detection results in terms of p-value

To assess post-data reliability of the detection results obtained with the GLR
(1D)

1s test (5.35)
in this and in the previous simulation, an analysis in terms of p-values (cf. subsection 1.2.4)
is proposed. For reasons of clarity, results are illustrated considering the top-left dry-run’s
data sub-cube of dimensions (65 × 65 × 3600). Six objects are present in this data cube
(numbers 1, 6, 9, 11, 12 and 13 of Figure 7.11)

Defined as
p = Pr(max

i
(|Di

tx| ≥ tobs | H0), (7.2)

the p-value corresponds to the probability of obtaining, under the null hypothesis, a test
statistic at least as extreme as the one that was actually observed. In this case, tobs =
max

i
|Di

txobs|, where xobs is a considered spectrum in the cube.

The results of such analysis are reported in Figure 7.13. Figure 7.13(a) shows the

GLR
(1D)

1s detection map at PFA = 0.002 for the considered data sub-cube (same detection
map as Figure 7.12(d), top-left). Note that, among the six objects present in the scene,
only the number 1, 9, 12 and 13 (the brightest ones) are detected, while objects number 6
and 13 are not (this question will be undertaken in section 8.3).

According to (7.2), we first compute the p-value p for each spectrum in the considered
hyperspectral data sub-cube. The result of such computation is graphically shown in Figure
7.13(b), where at each colored pixel (x, y) in the image corresponds a specific p-value rate.

Now, to test the reliability of the detection results obtained with the GLR
(1D)

1s test
(detection map of Figure 7.13(a)), we threshold the p-value map of Figure 7.13(b) to different
decreasing values of the significance level α ∈ [5 · 10−3, 2 · 10−3, 10−3, 5 · 10−4]. Figures
7.13(c) − 7.13(f) illustrate the thresholded maps we obtained. In particular, with reference
to colored pixels: Figure 7.13(c) reports p-value rates that are below α = 5 · 10−3; Figure
7.13(d) shows p-value rates below α = 10−3; Figure 7.13(e) reports p-value rates below
α = 5 · 10−3; Figure 7.13(f) reports p-value rates below α = 5 · 10−4.

Interestingly, despite few false alarms, pixels detected with the GLR
(1D)

1s test (detection
map in Figure 7.13(a)) present very low values of p. This shows that when detection was
claimed, the case was actually strongly made against H0 for objects 1, 9, 11 and 12. Hence,
this shows that the dictionary appropriately captures signal features, while obviously the
unconstrained GLR does not.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.13: Comparison of the p-value maps computed for all spectra in a MUSE sub-
cube at different values of the significance level α. 7.13(a) Reference: detection map using

GLR
(1D)

1s test with PFA = 0.002. 7.13(b) p-value map computed for all the spectra in the sub-
cube. 7.13(c) p-value map thresholded at significance level α = 5·10−3. 7.13(d) p-value map
thresholded at significance level α = 2·10−3. 7.13(e) p-value map thresholded at significance
level α = 10−3.7.13(f) p-value map thresholded at significance level α = 5 · 10−4.
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7.4 Conclusion

We have presented a brief sketch of historical developments in Hyperspectral Imaging and
some of its applications to Astrophysics, from the beginnings of spectroscopy to one of
the most recent technological innovations: the ESO’s MUSE instrument. Conceived to be
installed at the Very Large Telescope in Chili in 2013, the MUSE instrument is an integral
field spectrograph that will provide a huge quantity of hyperspectral data.

In the context of MUSE astrophysical hyperspectral data, comparative analysis of the

detection performances of the unconstrained GLR and the GLR
(1D)

1s spectral model-based
detection tests (cf. chapter 5) has been proposed. In accordance to the spectral character-
istics of the considered astrophysical data, we firstly discussed a suitable and specific design
for the redundant dictionary R of model (5.2), on which the tests are based.

Numerical detection results of the GLR and the GLR
(1D)

1s tests have then been shown on a
single MUSE spectrum, and also on MUSE hyperspectral data cubes. In both circumstances,

the GLR
(1D)

1s approach has shown higher detection power with respect to the unconstrained
GLR test, for same fixed values of the PFA.

To highlight the reliability of the detection results obtained with the GLR
(1D)

1s test an
analysis of the results in terms of p-value has been proposed.

Despite the superior power of the GLR
(1D)

1s test with respect to the unconstrained GLR
on MUSE data sets, a few extremely faint sources in the hyperspectral cube remained un-
detected with the proposed approach. Improved detection results using the spatio-spectral
model based strategies of chapter 6 are reported in the next chapter.
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8.1 Introduction

We report in this chapter the results obtained applying the spatio-spectral model based
detection strategies developed in chapter 6 to MUSE hyperspectral data.

In the first section of this chapter, we focus on the multi-round detection strategy of
section 6.2 that accounts for the cascade of the sparsity-constrained GLR with a spectral

model, the GLR
(1D)

1s test of (5.35), and the test LR-MPβ (6.31), which accounts for spatial
dependency in a basic way. According to the analytical study held in subsection 6.2.3 on
the PFA and PDET of this multi-round approach, results in terms of the overall FA rate
computed on each pixel vector of the considered hyperspectral cubes are shown.

The second section of this chapter presents the detection results obtained performing

the sparsity-constrained GLR with a spatio-spectral model, the GLR
(3D)

1s test of (6.48),
introduced in section 6.3. This strategy allies dictionary learning techniques, sparse models
and spread functions to concentrate information prior to detection. In particular, we focus
on the detection of very faint and highly sparse signals in MUSE data cubes. As mentioned
in subsection 7.2.3 these spectra, which are representative of very distant galaxies, are
characterized by single, very faint and narrow lines, known as Ly−α lines, and correspond
to objects that were not detected by previous approaches (cf. subsection 7.3.3).

8.2 Multiple-round detection strategy applied to MUSE data

We present here the detection results obtained when performing the multiple-round
detection strategy introduced in subsection 6.2.3 on MUSE hyperspectral data. We first
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illustrate the principle of the approach in two steps on a MUSE sub-cube (Figure 8.1).
Then, we will turn to the multiple-step detection strategy.

Results of the two-step approach

Numerical results are illustrated on a part (14× 10 spectra of N = 2048 components each)
of a simulated MUSE data cube shown in Figure 8.1. On this data sub-cube, the following

two-step approach is implemented: after a first detection round with the GLR
(1D)

1s detection
test (5.35) for a target PFA, a second detection-round follows performing the LR-MPβ

test (6.31) on all those pixel-vectors not detected by the GLR
(1D)

1s but contiguous to bright
detected one (see subsection 6.2.3 and Figure 8.1(d)).

As a reference, we show in Figure 8.1(a) the SNR map of the considered scene: spectra
with large, energetic features are shown in yellow, and spectra with fainter features in darker
red. Figure 8.1(b) and 8.1(c) show the detection results obtained running the unconstrained

GLR (5.9) and the GLR
(1D)

1s tests respectively, at a PFA = 0.01. As already seen, at a

same PFA the GLR
(1D)

1s outperforms the unconstrained GLR test (22 detections for the

GLR
(1D)

1s versus 10 detections for the unconstrained GLR). In Figure 8.1(d), the spectra

where detection was claimed using the GLR
(1D)

1s for a target PFA0 = 0.01 (the Γ set, discussed
in subsection 6.2.3) are highlighted in green (these are also the white pixels of Figure 8.1(c)).
In the same image, the blue and brown spectra correspond to the set Γ̄: in brown are shown
the spectra where nothing was detected, but for which a contiguous neighbor was. We take
those spectra to perform a second round of detection with the LR-MPβ test for a PFA = 0.01.
This means that for each (faint) pixel in the brown contour:
i) we identify the brightest neighbor spectrum;
ii) we use the bright spectrum to estimate the salient spectral content of the faint one;
iii) based on this faint spectrum estimate we perform the LR-MPβ test of (6.31).

Figure 8.1(e) reports the detection results of such a two-step approach: the spectra for
which a detection was found are shown in red (a total of 35 detections were claimed with the

cascade of the GLR
(1D)

1s and LR-MPβ tests). A closer analysis of the spectra flagged in red
and of their estimates shows that most of the time, the features detected in the faint spectra
are real. An example was shown in Figure 6.3, for the green and blue crossed spectra of
Figure 8.1(a).

Figure 8.1(f) shows the resulting FA rate, after performing the cascade of the two tests.

The FA rates for spectra tested only once with the GLR
(1D)

1s test are reported in gradations
of blue while spectra tested twice are easily recognizable in red. The FA variation from
one spectrum to another is due to the fact that, when performing the first detection round

with the GLR
(1D)

1s test, according to model (6.1) one normalized dictionary per spectrum
is computed (because Σ varies from one spectrum to another). For simplicity, instead of
computing the value of the η threshold that would give PFA = 0.01 for each spectrum in
the data cube (which would involve the computation of one PFA vs. η curve (cf. Figure
7.9(a)) for each spectrum), we fix a value of η corresponding to a mean PFA of 0.01 for
all spectra. For this value of η, corresponding to a mean PFA of 0.01, we obtain FA rates
which are slightly different, depending on the Σ of the spectrum we are testing. The PFA

map of Figure 8.1(f) reports a minimum FA value of PFAmin = 0.009 and a maximum
value equal to PFAMax = 0.023. Hence, the overall PFA of the two-step strategy follows in
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the range 0.009 ≤ PFA
2tests ≤ 0.023. In particular, the mean PFA

2tests over all spectra in
the data cube corresponds to 0.014, which is similar to the FA rate set on each detection
round, independently. 35 detections (green and red pixels in Figure 8.1(e)) were claimed

performing the cascade of the GLR
(1D)

1s and LR-MPβ tests at the mean PFA
2tests = 0.014.

These detection performances would not have been reached performing the sole GLR
(1D)

1s

test at PFA ≈ 0.014 (a total of 33 detections is obtained with the GLR
(1D)

1s test for η = 4.2,
corresponding to an only PFA = 0.12 that is, ten times higher), the two-step strategy shows
a higher overall detection power.

Results with the multiple-step procedure on a whole data-cube

Results on the whole dry-run data cube of Figure 7.11 are illustrated in Figure 8.2 when
applying the multiple-step procedure of subsection 6.2.3. This time, after a first detection

round using the sparsity constrained GLR
(1D)

1s test at PFA ≈ 0.0018 (corresponding to
a value of the threshold η = 5.2, for this data cube), successive detection rounds are
performed on faint contour pixels with the LR-MPβ test at PFA = 0.0018 until no new
detection is found. As a reference, Figure 8.2(a) reports the SNR map of the considered
data cube (same as Figure 7.12(b)). Figure 8.2(b) shows in white the pixels where detection

is claimed after performing the first detection round with the GLR
(1D)

1s test, for a total of
767 detections on the cube. These pixels are those in green in Figure 8.2(c). Similarly to
the results shown in Figure 8.1(d) and 8.1(e), a second detection round is performed with

the LR-MPβ test at PFA = 0.0018 on all the faint pixels (not detected with the GLR
(1D)

1s

test but contiguous to detected ones) in the brown contour in Figure 8.2(c). At this point,
the new detected pixels (flagged in red) are aggregated to the set Γ of already detected ones
(in green, in Figure 8.2(d)) and another detection round with the LR-MPβ on the pixels
of the new brown contour is performed. This procedure iterates until no more faint pixels
in brown contours are detected. Figure 8.2(e) shows in red the totality of pixels detected
after three successive rounds with the LR-MPβ test (since no new pixels are detected at
the end of the third round with the LR-MPβ test, the algorithm stops). A total of 959
detections is obtained. The corresponding PFA map is illustrated in Figure 8.2(f). The
minimum FA value is of PFAmin = 3 · 10−4 and a maximum value equals PFAMax = 0.008.
The mean PFA over all spectra in the data cube corresponds to 0.0018, which is similar to
the FA rate set on each detection round, independently. At this indicative FA rate, the
multi-step strategy shows better detection power (959 detections) with respect to only one

detection round with the GLR
(1D)

1s (767 detections). Detection performances similar to that

of the cascade of the two tests would be obtained with the sole GLR
(1D)

1s test by setting a
much higher FA rate: when setting η = 4.8, corresponding to PFA ≈ 10−2, 947 detections
are claimed with this test.

From these results we see that with the multi-round detection strategy introduced in
subsection 6.2.3, improved detection performances can be achieved accounting for simple
spatial dependency essentially: unknown proportionality in (6.24), while maintaining the
PFA rate reasonably low. Nevertheless, performing such multiple-round detection approach
is complicated, especially with regard to the analytical computation of the overall PFA and
PDET (cf. subsection 6.2.3) and the variation of the PFA from one spectrum to another.
Moreover, since it is based on the exploitation of brighter spectra’s estimated spectral con-



136 Chapter 8. Detection results using spatio-spectral model based strategies

tent for the detection of faint contiguous ones, this approach does not allow any improvement
on the detection of spectrally significant but very faint pixel-vectors that were not detected

at the first detection round with the GLR
(1D)

1s test and for which none of the eight neighbors
was. This is the case for example, of objects number 6, 7, 13 in the dry-run (cf. Figure 7.11).
Improved detection results on such objects are presented in the next section, by applying
to MUSE data the spatio-spectral model based technique developed in section 6.3.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.1: Detection results using a two-step detection strategy on a MUSE sub-cube. 8.1(a)
Reference scene: SNR map in dB. 8.1(b) Result performing a single detection round with the
unconstrained GLR test at PFA = 0.01. 8.1(c) Result performing a single detection round with the

GLR
(1D)

1s test at PFA = 0.01. 8.1(d) Selection of the image contour to perform a two-step approach:

spectra where GLR
(1D)

1s claimed detection at significance level PFA0
= 0.01 are shown in green, while

neighbor spectra on which the LR-MPβ test is performed are in brown. 8.1(e) Detection result
with the LR-MPβ test at PFA = 0.01 (detected pixels in red). 8.1(f) Corresponding PFA map of

the two-step approach. The FA rates for spectra tested only once with the GLR
(1D)

1s test appear in
gradations of blue while spectra tested twice are easily recognizable in red. The mean PFA over all
spectra is PFA = 0.014.



138 Chapter 8. Detection results using spatio-spectral model based strategies

(a) (b)

(c) (d)

(e) (f)

Figure 8.2: Detection results using a multiple-step detection strategy on MUSE dry-run. 8.2(a)
Reference scene: SNR map in dB (same as Figure 7.12(b)). 8.2(b) Result performing a single

detection round with the sparsity-constrained GLR
(1D)

1s test at PFA = 0.0018: 767 detections were
claimed (white pixels). 8.2(c) Results cascading two detection rounds: a first round with the

GLR
(1D)

1s at PFA = 0.0018 (detected pixels in green) and a second round with the LR-MPβ test
at PFA = 0.0018 on brown contour pixels (detected pixels in red). 8.2(d) Results cascading three
detection rounds: pixels in red in Figure 8.2(c) are aggregated to the set Γ of detected pixels (in
green) and another round with the LR-MPβ test at PFA = 0.0018 is performed on new brown
contour pixels (detected pixels in red). 8.2(e) In white: pixels detected after a single detection

round with the sparsity-constrained GLR
(1D)

1s test (detection map of Figure 8.2(b)); in red: set of
faint contour pixels detected after two successive detection rounds performing the LR-MPβ test. A
total number of 959 detections were claimed. 8.2(f) Corresponding PFA map after three detection
rounds on the dry-run cube. The mean PFA over all spectra is PFA = 0.0018.
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8.3 Detection results of the spatio-spectral model based ap-
proach on MUSE data

As an illustration of the sparsity-constrained GLR using a spatio-spectral model, the

GLR
(3D)

1s detection method (6.48) proposed in section 6.3, we show here that we can improve
on the results of section 7.3 by using spatio-spectral dictionaries. These dictionaries exploit
both the sparsity of the data along the λ dimension and the information leakage over several
voxels, caused by the instrument 3D PSF.
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Figure 8.3: Typical spectra under H1 and corresponding data for (16, 7). Coordinates (x, y)
correspond to spatial position in Figure 8.8(a).

One of the major challenges of the MUSE instrument concerns the detection of very
distant galaxies. Those galaxies present spectra composed by a sole, faint and narrow line,
known as Lyman-alpha line (Ly-α). Figure 8.3 reports examples of Ly-α spectra (blue,
magenta and green) and the corresponding data (grey) for one of them (see also Figure
8.8). These spectra actually correspond to sources number 6, 7 and 13 in MUSE dry-run
cube of Figure 7.11. The highly noisy character of these data is striking: the lines are totally
buried in noise and the SNR of the spectra is

SNR = 10 log10
�FHRα�22
Tr{Σ} ≈ −30dB. (8.1)

8.3.1 3D (spatio-spectral) dictionary

For such sources, our approach tries to limit the difficulties caused by the composite nature
of the model. Although the spectral pattern to be detected is not known, we made the
request to the MUSE consortium to dispose of a set of training signals that represents well
the variety of all possible features to be detected. The possible shapes of the signals under
H1 can, in this case, be accurately simulated using astrophysical models: we dispose of a
library of L = 104 line profiles10 (100 of which are shown on Figure 8.4(a)), which extend
on about Nλ = 100 spectral channels. In real data, the location in spectral channel of
the lines is however arbitrary and unknown (it can be anywhere in the ≈ 3600 spectral
channels), because it depends on the distance of the source (Doppler effect11). Performing

10provided by Roland Bacon, Principal Investigator of MUSE consortium.
11The Doppler effect (from Christian Doppler, who discovered it in 1842) is the change in frequency of a

wave (or other periodic event) for an observer moving relative to its source [Doppler 1842].
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the tests (5.35) and (6.48) over X ×Y = (300× 300) spectra in a MUSE data cube, testing
for each one of these pixel-vectors the full library of L = 104 spectral signatures (extended
over Nλ = 100 spectral channels) at each spectral band in the Λ = 3600 dimension, entails
performing L × Λ × X × Y × Nλ ≈ 3 × 1014 multiplications and additions. If we assume
3 · 109 operations/sec, this represents 6 months of computation time for the 3D test.
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Figure 8.4: Examples of spectral lines and trained atoms.

We thus build specific dictionaries R, different from the one used up to now, de-
signed according to the K-SVD (cf. Appendix B.3) and minimax (cf. subsection 2.2.2
and [Suleiman 2013]) approaches. In particular, we optimize three dictionaries (SVD, K-
SVD with 7 atoms and minimax) of reduced dimensions (resp. Λ × 1, Λ × 7 and Λ × 1)
on the whole set of lines centered at a wavelength Λ50 (Figure 8.4(a)). The resulting SVD
and minimax atoms are shown in Figure 8.4(b). Note that while SVD and K-SVD learning
techniques provide atoms that reflect average (most probable) spectral characteristics in the
whole library of line profiles, the minimax approach accounts for (by maximizing the worst
PDET) the most marginal spectral form, which could be helpful in detecting sources with
spectral features dissimilar from the others.

- Construction of the 1D spectral dictionaries by translation:

Because of the unknown location of the line sought in spectral channel, we generated trans-
lation invariant versions of the SVD, K-SVD and minimax spectral profiles by shifting the
corresponding atoms at all possible wavelengths. This yielded the 1D RSVD, RKSVD7 and
Rminimax spectral dictionaries used to perform the unconstrained GLR (1.55) and the 1D

(spectral) GLR
(1D)

1s (5.35) test (see Figures 8.8(b) and 8.8(c)).

- Construction of the 3D spatio-spectral dictionaries:

The SVD, K-SVD and minimax dictionaries of 3D atoms are obtained as follows:
i) we compute the optimized SVD, K-SVD and minimax spectral profiles;
ii) each such optimized dictionary profile is composed with the instrument WSF, which
spreads the atom’s content over 7 spectral elements;
iii) the atom obtained at step ii) is composed with the instrument SSF, which blurs the
atom’s content at each spectral band over 13× 13 pixels in the spatial domain;
iv) translation invariant dictionary of this 3D atom is obtained by centering it at each posi-
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Figure 8.5: Example of 3D minimax atom: (a) minimax spectral profile (b) Left: corre-
sponding 3D atom after composition by the SSF and the WSF. Right: a cut of the 3D
atom. This atom is whitened and then correlated at each position in (x, y, λ) in the data
cube.

tion (x, y, λ) in the data cube and by whitening it with the corresponding noise variances.
This leads to specific 3D atoms, which account for the WFS and SSF effects and for target
spectral shapes.

These atoms are used to perform the sparsity-constrained spatio-spectral model-based

GLR
(3D)

1s test (6.48) (see Figure 8.8).

Examples of atoms obtained in the 3D case are shown in Figure 8.5 and Figure 8.7.
In Figure 8.5, Figure 8.5(a) illustrates the minimax spectral profile (the same as in Figure
8.4(b)) while Figure 8.5(b) shows the corresponding 3D atom (on the left) and a vertical
cut (on the right). Similarly, Figure 8.7(a) reports the plots of three different spectral
profiles and Figure 8.7(b) the corresponding 3D structures. The top raw figures shows
the spectral profile obtained by SVD approach and the corresponding 3D atom, while the
center and the bottom raws figures show two spectral profiles obtained by KSVD and the
corresponding 3D structures. These examples of 3D atoms illustrate how the energy of
Ly−α emitters can typically be distributed in MUSE data cube because of the blurring
effects of the instrument WSF and SSF. For the 3D atoms in Figure 8.7 for example, we
see that while first two (top and center raw) look very similar except for a slight difference
in the tail amplitude at lower spectral channels, the third 3D atom has a different shape
characterized by two distinct energy blobs.

8.3.2 Spatial GLR
(1D)

1s vs spatio-spectral GLR
(3D)

1s : Detection results on
three faint Ly-α emitters

We compare the GLR
(1D)

1s (5.35) and the GLR
(3D)

1s (6.48) detection tests on a small sub-
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Figure 8.6: Empirical correspondence between PFA0 and ξ (5.23) for the SVD 3D atom for
ξ = 4.7, 4.8, 4.9, 5 obtained over 102 noise realizations.

cube of the dry-run of size X × Y = 26 × 28 with Λ = 3600. Figure 8.8(a) illustrates
the noiseless reference scene (arbitrary units), which contains three spatially localized Ly-α
sources, highlighted by white circles (corresponding to objects number 6, 7 and 13 in Figure.
7.11). These sources appear spread because of the SSF. The spectra associated to the blue,
magenta and green-crossed pixels are those shown in Figure 8.3.

We have run the detection tests at a same PFA0 = 10−3 for each spectral pixel. Similarly

to Figure 7.9(a) for the GLR
(1D)

1s detection test, the correspondence between the maximal
probability of false alarm PFA0 and the ξ test threshold values (5.23) for each spatio-spectral
dictionary model-based test considered here is obtained by numerical simulation. As an

illustration, Figure 8.6 shows the PFA0 vs. ξ curve obtained for the GLR
(3D)

1s test when
performed with the SVD 3D atom, taking four different values of the test threshold ξ =
4.7, 4.8, 4.9, 5. A FA rate of PFA0 = 10−3 is here obtained for ξ = 4.8. To obtain the same

PFA0 , we found ξ = 4.8 for the GLR
(3D)

1s test using the minimax 3D atom, and ξ = 5.1 for

the GLR
(3D)

1s using the KSVD7 3D dictionary.

Note that we use estimated noise variances provided by MUSE consortium, to make
these simulations realistic as only estimated variances will be available on real data.

For the reasons listed below, the value of PFA varies from one test spectrum to another
so we refer to this PFA as an indicative mean value for all the spectra of the data cube.
First of all, our models assume knowledge of the true Σ but only estimates are available.
Second, noise variances are spatially and spectrally variable in MUSE data. Hence, for
each considered vectorized data sub-cube sV (x, y) (6.38), different vectorized whitening

sub-cubes Σ
− 1

2
V (6.44) are considered and thus different whitened 3D atoms Σ

− 1
2

V FHR

(6.44) are obtained at each (x, y, λ) position, with which whitened sub-cubes sV (x, y) are
correlated. Note also that constant approximations (mean overall spectral bands) of the
WSF and the SSF are considered in the design of the 3D atoms (cf. subsection 7.2.4). These
approximations are not critical given the small variations of the spreading functions in Λ
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and the high noise level affecting the data. According to this, not only an indicative one but
one PFA(ξ) value per pixel should have been computed. This would be computationally very
long and not really necessary (we checked by simulation). Third, these realistic simulated
MUSE data cubes reflect possible errors in the estimation of the sky background (as this
may happen in practice) and on its subtraction from the considered scene, with consequent
possible variations on the variance and mean values of the whitened data distribution. All
these reasons contribute to the variability of the PFA. Nevertheless, as will be shown in
Figure 8.8 this estimated PFA is fairly accurate.

Figure 8.8(b) and Figure 8.8(c) report the 1D model-based tests outcomes, respectively

for the unconstrained GLR test (5.9), and the GLR
(1D)

1s test (5.29) using the spectral RKSVD7

dictionary. In these figures, the values of the test statistics above the threshold ξ(PFA) are
shown in color: in the black pixels, no detection is found at PFA = 10−3. As clearly visible,
at this PFA, none of the three objects in the scene is detected (similar null results are
obtained with 1D tests using RSVD and Rminimax).

The detection results obtained with the 3D model-based GLR
(3D)

1s test are shown in
Figure 8.8(d) using a 3D atom with minimax spectral profile, in Figure 8.8(e) using a 3D
atom with SVD spectral profile, and in Figure 8.8(f) using a dictionary of 7 3D atoms with
K-SVD spectral profiles, at PFA = 10−3. This time, two among the three Ly-α objects in
the scene are clearly detected. We checked that these are true detections by a comparison
of the detected structures with the corresponding true spectra of objects 6, 7 and 13 in
the true scene of Figure 7.11. We note that some pixels (in the top right corner of the
scene) lead to a slight increase in false alarm, probably because of estimation errors of the
background, as mentioned before. The minimax and (K)-SVD approaches yield essentially
comparable results (with slightly worse performances for the minimax approach on these
three sources). The third source (bottom right corner of the scene) remains undetected: the
features detected around pixel (x, y) = (22, 22) do not actually correspond to real spectral
features (the two other do). Due to its very weak signal level with respect to noise (pixel-
vector (x, y) = (22, 22) (in magenta, in Figure 8.3) is the faintest of the three considered
Ly-α emitters) and to the fact that all important informations about the considered data
(e.g. library of adapted line profiles, high and variable noise level, spatial and spectral
spreading effects on the sources) were taken into account in the 3D model (6.46), we believe
that this kind of signal illustrates a detection limit for this instrument.
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Figure 8.7: Examples of 3D SVD atoms. 8.7(a) three 1D learned atoms. Top: atom obtained
by the SVD of L; Middle and bottom: two atoms of the optimized KSVD7 dictionary. 8.7(b)
Left column: corresponding 3D atoms after composition by the SSF and the WSF. Right:
a cut of these 3D atoms.
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Figure 8.8: Compared detection performances of the unconstrained GLR (1.55), the

GLR
(1D)
1s test (5.35) and the GLR

(3D)
1s test (6.48)) on a simulated MUSE data sub-cube.

(a): Reference map (mean over all wavelengths). (b,c): GLR and GLR
(1D)
1s with RKSVD7 .

(d-f): GLR
(3D)
1s with minimax, SVD and KSVD7 3D atoms.
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8.4 Conclusion

This chapter has illustrated the detection results obtained by implementing the spatio-
spectral model based detection strategies of chapter 6 in the context of the astrophysical
hyperspectral data of the MUSE instrument.

Results on a whole MUSE data cube obtained performing the multi-step strategy (cas-

cade of the GLR
(1D)

1s test with several LR-MPβ detection rounds) were shown, evidencing
that accounting for spatial dependencies is indeed useful to improve detection performances

on very faint spectra, with respect to the use of the sole GLR
(1D)

1s test at a same PFA. While
keeping the PFA to reasonably low levels, the reason is that those faint spectra are indeed
characterized by a spectral content similar to that of contiguous brighter pixel-vectors.

We then have shown the detection performances of the GLR
(3D)

1s test (6.48) on very faint
objects in the MUSE data cube. When applied to the hyperspectral data of the MUSE

instrument, the GLR
(3D)

1s detection method clearly improves on GLR
(1D)

1s approach. We
believe there is not much room for amelioration, because:
i) the signals may appear at unknown location in λ and are of unknown nature. We limited
this drawback by using a specific dictionary;
ii) noise is high and variable in the spectral and spatial dimensions. We properly accounted
for this by appropriate weighting.
The major informations on the data thus seem to have been taken into account in this
3D data model through the introduction of adapted dictionaries and the modeling of the
instrument’s WSF and SSF blurring effects. To decrease the PFA while keeping the power
essentially constant, possible optimizations are of course to put “cosmological constraints”
on the translations of the sources in λ, and to shift the learned atoms at multiples of the
sampling channels (instead of all channels). In addition, all tests could use the true (instead
of approximated) SSF and WSF, to the detriment of a considerable increase of the approach
complexity, for limited expected improvements.



Conclusions and perspectives





Summary and Conclusions

In this work we have presented new methods for the detection of weak sparse signals in
high level of noise. The proposed detection approaches were based on statistical hypothesis
testing principles. In the first part of the manuscript a general overview of hypothesis tests
has been reported. A statistical hypothesis test calls for a reliable hypothetical description
of the considered data and for the selection of an appropriate decision criterion, the test
statistic, according to which decision is made on the veracity of the assertions we test. In
order to control the probability of making wrong decisions (or probability of false alarm
PFA), a test threshold also has to be chosen. Many examples of widely known hypothesis
tests approaches have been provided, for both scalar and vector models, highlighting the
differences between frequentist methods based on likelihood ratios (the LR and the GLR
tests, whose detection surfaces in the two-dimensional case have also been analysed) and a
Bayesian alternative, the Bayes Factor.

We have focused our attention on binary composite hypothesis tests, that is, tests com-
posed by only two different claims that depend on unknown parameters: the null hypothesis
H0, under which the data have been described as an only noise signal, and the alternative
hypothesis H1, under which the data have appeared as noise plus an unknown signal vector.

Interested in relatively modeling and locating the signal vector’s subspace hosting the
information of interest, we have concentrated our attention on the computation of sparsity-
promoting estimates. An efficient solution was found computing a MAP estimate with
suitable prior law, an approach also interpretable as a PLS problem: when calculated using
double exponential-like shaped priors with flat tails, the MAP estimate actually leads to
sparsity-promoting thresholding functions. In particular, in the case of a Laplacian prior
law, the MAP estimate yields the soft-thresholding operator. This fact has been exploited
in the design of the proposed detection approaches.

The second part of the manuscript has been divided into two sub-parts. In the fist
sub-part, we have introduced the proposed detection tests, called the LRMAP and the
PDR tests, for a simple data model. Directly inspired from the GLR test, the LRMAP
test statistic computes the ratio of the likelihoods under the two hypotheses of the model
with a thresholded sparse parameter estimate under H1. On the other hand, the ratio of
the posterior densities was considered for the PDR. This has led to the identification of
two thresholding test statistics, TLRMAP and TPDR, well adapted for the detection of sparse
signals. Connection was found and mentioned with existing approaches in the literature.
The LRMAP and the PDR tests have been studied and their properties analyzed in both the
scalar and the vector cases. Numerical comparisons with two widely used classical detection
methods, the frequentist GLR test on one side and the Bayesian Bayes Factor on the other,
have shown in the vector case the higher detection power of the proposed tests.

Interested in better understanding the relative behavior of the LRMAP and PDR tests,
which is difficult to analyse because of their strong parameter dependency, we have con-
ducted a detailed comparative analysis based on the geometry of the two tests detection
regions. This study has allowed to specify analytical conditions on the value of the tests’
parameters (the γ and η thresholds), for which one approach is better adapted than the
other towards sparse signals detection goals. Both tests have shown to be equivalent and
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adapted to 1−sparse signals for γ = 0. Nevertheless, for η �= 0 andγ �= 0, the PDR tends to
better detect highly sparse signals while the LRMAP is more adapted to less sparse signals.

In the second sub-part, we have formulated the proposed detection methods in the case of
more refined data models accounting for adapted redundant dictionaries. One-dimensional
(spectral) dictionary-based data models were firstly considered. In this framework, we
have shown that for γ = 0 the LRMAP and the PDR resume to a same test, which we

called the GLR
(1D)

1s detector. We proved that this test is equivalent to the Max test of
[Arias-Castro 2010], an optimal detector in the case of high sparsity levels. We have also
numerically shown that for highly sparse signals our approach has similar detection power
to that of the HC method, another powerful detector for faint sparse signals in noise, coming
from the statistical literature.

We secondly presented detection methods seeking to exploit both the spectral similari-
ties of neighbors pixels in the spatial domain, and the greater accuracy of dictionary-based
models taking into account the spatio-spectral blur of information caused by instrumental
Point Spread Functions. First, the following two-step methodology, exploiting both the spa-
tial and spectral dependencies of neighbors pixels in a data cube, has been developed: after a

first detection round using the GLR
(1D)

1s test, we have introduced a multiple detection round
performing a matched filter-like test, which we have called the LR-MPβ test, on spectra not

detected by the GLR
(1D)

1s test but contiguous to bright detected ones. This approach was
shown to be able to exploit the neighbors’ common spectral information for the detection

of faintest signals that would not be detected with the sole use of the GLR
(1D)

1s strategy.
Second, we presented a detection method based on a three-dimensional (spatio-spectral)
data model, accounting for the information spread caused by the instrument PSF not only
in the spectral direction but also in the spatial ones. This new data model has led to a test

named the GLR
(3D)

1s test. We underline that all the proposed detection strategies allowed
to take account of noise characteristics, strongly variable both spectrally and spatially, and
to reliably control the FA rate.

The last part of the manuscript has concerned the application of the proposed dictionary-
based detection tests to simulated but very realistic astrophysical hyperspectral data, pro-
vided by the ESO’s MUSE instrument consortium. In the case of one-dimensional (spectral)
dictionary-based data models, we have shown that thanks also to the use of an adapted re-
dundant dictionary designed in accordance to the spectral characteristics of the signals

sought, the sparsity-based GLR
(1D)

1s outperforms the classical (unconstrained) GLR test
when considering a collection of spectra in a hyperspectral data cube.

In the case of spatio-spectral detection approaches, when using the multiple-step strategy
accounting for simple spatial dependencies between neighbors pixels, improved detection
performances have been achieved on very faint spectra contiguous to brighter ones, while
maintaining the PFA rate reasonably low. Although the detection performances of the

GLR
(1D)

1s test and of the multiple-step approach were satisfactory with respect to other
techniques (e.g. the unconstrained GLR or the HC tests) for most test sources, these kind
of strategies are still insufficient to detect extremely faint and sparse sources such as the
Ly−α objects present in the considered MUSE hyperspectral data cubes.

In response to this challenge, we have set up and compared a test called GLR
(3D)

1s for
three different dictionaries of 3D atoms computed using dictionary learning techniques such
as KSVD and minimax methods. The test has exhibited increased detection power with
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respect to the previous tests, allowing thus to detect some of the faintest Ly−α objects
in MUSE data cube and evidencing probable detection limit of the instrument for such
sources.





Perspectives

All the signal detection approaches developed in this thesis have been validated on a number
of numerical simulations. Their numerous tests allowed us to identify several improvements.

The first element concerns the study of the PDR and LRMAP tests for prior laws
different from Laplacian. MAP-based thresholding functions can be generally obtained by
using prior distributions that are mono-modal and not differentiable at the origin. Hence, it
would be interesting to undertake a comparative study of the thresholding properties of the
MAP estimate using diverse prior laws. Nevertheless, we believe that substantially different
results would not be obtained (due to the relative similarity of the resulting thresholding
functions) while considering other types of priors would heavily complicate the analysis
and implementation of the detection tests, which we showed to be already difficult in the
Laplacian case considered in this work.

In the footsteps of the study proposed in chapter 4, another possible way to compare
the performances of the PDR and LRMAP tests could be to geometrically analyze, through
a maximization/minimization approach, the corresponding values of the PDET for a same
value of the PFA, numerically evaluated in function of both the η and γ parameters. The
bases for such a problem, which is under investigation, have been presented in Appendix
B.5.

It would be also very helpful to refine the dictionary R = [R�RcRb], which is still
somewhat schematic, and to further investigate on the design and computation of specific
dictionaries using appropriate learning techniques. In fact, the design of dictionaries for
the detection of specific sources, such as for example Ly−α objects, plays an important
role for increasing the performances of the tests. Encouraging results have been shown in
the third part of this thesis where improved detection results (with respect to not-learned
dictionaries) have been obtained on MUSE hyperspectral data cubes, with dictionaries
learned using KSVD and minimax approaches and provided by [Suleiman 2013].

Concerning the spatio-spectral dictionary-based test introduced in section 6.3, possible
optimizations to decrease the PFA while keeping the power constant would be to put cos-
mological constraints on the translations of the sources in the spectral dimension, and to
shift the learned atoms at multiples of the sampling channels (instead of all channels). In
addition, all tests could use the true (instead of the approximated) SSF and WSF, to the
detriment of a considerable increase of complexity.

At last, but not least, it could be very interesting (and somehow rewarding) to see how
the detection approaches developed during these three years of research will perform on
MUSE’s real hyperspectral data, as soon as the instrument is operating at the VLT (a
version of the code is under preparation for its implementation in MUSE’s pipeline).





Appendix A

A.1 Proof of NP Lemma

We seek to find the critical region Z1 = {x : H1} in which we decide to accept H1 so that
the

PDET =

�

Z1

p(x | H1)dx (A.1)

is maximum for a given

PFA =

�

Z1

p(x | H0)dx = α. (A.2)

Here, p(x | H0) and p(x | H1) represent the known PDFs’ of x under the null and the
alternative hypotheses H0 and H1. We consider the following Lagrangian L

L = PDET + λ (PFA − α) , (A.3)

where λ ∈ R is a Lagrange multiplier. According to (A.1) and (A.2), (A.3) is equal to

L =

�

Z1

p(x | H1)dx+ λ

��

Z1

p(x | H0)dx− α

�

=

�

Z1

(p(x | H1) + λp(x | H0))dx− λα. (A.4)

To maximize L and hence the PDET for a PFA = α, we should include x ∈ Z1 if

p(x | H1) + λp(x | H0) > 0. (A.5)

We thus decide H1 if
p(x | H1)

p(x | H0)
> −λ. (A.6)

Since the LR is always nonnegative, we let γ = −λ so that we decide H1 when

p(x | H1)

p(x | H0)
> γ, (A.7)

where the threshold γ > 0 is found from PFA = α.

A.2 Proof of BF as the minimum PE detector

The proof is addressed in terms of the minimization of the Bayes Risk R [Kay 1998b]

R =

1
�

i=0

1
�

j=0

KijP (Hi | Hj)P (Hj)

= K00P (H0 | H0)P (H0) +K01P (H0 | H1)P (H1)

+K10P (H1 | H0)P (H0) +K11P (H1 | H1)P (H1), (A.8)
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where Kij are constants representing the cost if we decide Hi but Hj is true. Since for
K00 = K11 = 0 and K10 = K01 = 1 we have that R = PE, this proof also applies to
the minimum PE problem. We define Z1 = {x : decide H1} the critical region and Z0 its
complement. Then,

R = K00P (H0)

�

Z0

p(x | H0)dx+K01P (H1)

�

Z0

p(x | H1)dx

+K10P (H0)

�

Z1

p(x | H0)dx+K11P (H1)

�

Z1

p(x | H1)dx. (A.9)

Since Z1 and Z0 partition the entire space, using

�

Z0

p(x | Hi)dx = 1−
�

Z1

p(x | Hi)dx, (A.10)

we have

R = K00P (H0) +K01P (H1)

+

�

Z1

[(K10P (H0)−K00P (H0)) p(x | H0) + (K11P (H1)−K01P (H1)) p(x | H1)] dx.

At this point, we decide H1 if

(K10 −K00)P (H0)p(x | H0) < (K01 −K11)P (H1)p(x | H1). (A.11)

Assuming K10 > K00,K01 > K11, we obtain finally

p(x | H1)

p(x | H0)
>

(K10 −K00)P (H0)

(K01 −K11)P (H1)
= γ, (A.12)

which corresponds to the definition of the minimum PE detector given in (1.68) that is, the
BF.

A.3 Proof of Property 3.4.1

Prop. 3.4.1.1:

Since T (u) is even and strictly increasing for u ≥ u0, for |u| ≥ u0 we have that

T (u)
H1

≷
H0

γtest ⇔ |u|
H1

≷
H0

T−1 (γtest)

⇔ u2
H1

≷
H0

�

T−1 (γtest)
�2

,

which is the same test as GLR of (3.21) by choosing γGLR as in (3.26). Since the

condition |u| ≥ u0 is equivalent to T (u) > T (u0), the test T (u)
H1

≷
H0

γtest and the
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GLR coincide for γtest ≥ γtest0 , with γtest0 = T (u0). The false alarm of the test is
consequently

PFAtest (γtest) = PFAGLR

�

�

T−1 (γtest)
�2
�

= Pr
�

u2 >
�

T−1 (γtest0)
�2 | H0

�

= 1− Φχ2
1

�

�

T−1 (γtest0)
�2
�

,

which shows (3.28). Computing PFAtest (γtest0 = T (u0)) directly yields PFA0 , which
proves Prop. 3.4.1.1.

Prop. 3.4.1.2:

Since T (u0) ≥ 0, γtest0 ≥ 0. Then ∀γtest ∈ [0; γtest0 ], we have

T (u)
H1

≷
H0

γtest ⇔ |u|
H1

≷
H0

u0

⇔ T (u)
H1

≷
H0

T (u0) ,

which is the test obtained with γtest0 . Consequently,

PFAtest = PFA0 , ∀γtest ∈ [0; γtest0 ],

which completes the proof.
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A.4 Proof of Proposition 4.3.1

The case of n ≥ 2 components ui > η is firstly treated, before considering the particular
case of n = 1.
Case n ≥ 2: Similarly to (4.3) and (4.5), the S(n)

PDR and S(n)
LRMAP domains, for n ≥ 2,

represent two n-spheres of equations

S(n)
PDR :

�

u |
n
�

i=1

(ui − η)2 = γP , ui ≤ η, i > n

�

, (A.13)

S(n)
LRMAP :

�

u |
n
�

i=1

u2i = γL + nη2, ui ≤ η, i > n

�

. (A.14)

When intersections between S(n)
PDR and S(n)

LRMAP occur, two conditions are verified: first of
all,

| rLRMAP − rPDR |< d < rLRMAP + rPDR, (A.15)

where rLRMAP and rPDR are the radii of S(n)
PDR and S(n)

LRMAP , and d represents the distance
between the centers of the two n-spheres; secondly,

r2LRMAP − h2 < (h− d)2, (A.16)

that comes from the fact that the intersection between two n-spheres is an n-circle which
center-origin distance is equal to h = (r2LRMAP − r2PDR + d2)/2d [Kern 1948]. Figure

(a) (b)

Figure A.1: Intersections between the S(n)
PDR and S(n)

LRMAP domains when n ≥ 2. Figure
A.1(a) reports the 2D case. In this case the two n-spheres reduce to two circles intersecting
in two points (black points in the figure) that lay on a same line, reported in green. Figure

A.1(b) shows the 3D case. Here, S(3)
PDR and S(3)

LRMAP are two spheres, the intersection of
whom is a circle lying on the intersection plane plotted in green.

A.1 illustrates the case of intersection between the PDR (in red) and LRMAP (in blue)
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subsurfaces. In particular, Figure A.1(a) illustrates the case of a N = 2 component vector,
while in Figure A.1(b) we consider the case N = 3. Figure A.1(a) shows that in the 2D
case, the two n-spheres reduce to two circles intersecting in two points (in black), lying on a

same line (in green). On the other hand, as reported in Figure A.1(b), when N = 3, S(3)
PDR

and S(3)
LRMAP constitute two intersecting spheres. This time, the corresponding intersection

is a circle, which lies on the plane reported in green. According to definitions in (A.13) and
(A.14), the condition in (A.15) leads to

�

γL + nη2 −√
γP <

√
nη <

�

γL + nη2 +
√
γP . (A.17)

The right inequality of (A.17) is always verified. On the other hand, expressing γL as a
function of γP , the left side of the condition gives the following upper bound to the γL
values: γL < γP +2η

√
nγP . Condition (A.16) finally gives the following lower bound on γL:

γL > γP + η
√
2nγP . We thus obtain that, in order to have intersections between S(n)

PDR and

S(n)
LRMAP , we must choose γL > γP and so that γP + η

√
2nγP < γL < γP + 2η

√
nγP .

Case n = 1: In this particular case, the LRMAP and PDR detection regions reduce to

S(1)
PDR : (u1 − η)2 = γP and S(1)

LRMAP : u21 = γL + η2. Combining these two equations, the

condition we obtain on γL, in order to have S(1)
PDR < S(1)

LRMAP , is: γL > γP + 2η
√
γP . On

the contrary, when γL < γP + 2η
√
γP , we must have S(1)

PDR > S(1)
LRMAP .





Appendix B

B.1 Computation of the Hard Thresholding operator

The scalar HT operator can be derived solving the PLS problem

θ̂PLS = argmin
θ

J(θ) (B.1)

with cost function

J(θ) =
1

2
(x− θ)2 + ϕµ(θ), (B.2)

and non-convex clipped l1 penalty function of the form (2.15) [Antoniadis 2001]

ϕµ(θ) = µ2 − 1

2
(|θ| − µ)2I(|θ| < µ).

Since J(θ) is an even function, we focus only on the case θ ≥ 0 (symmetric results are
obtained with a similar reasoning in the case of θ ≥ 0).

• θ > µ: we want to find θ so that the following cost function is minimized

J(θ) =
1

2
(x− θ)2 + µ2. (B.3)

This problem has straightforward solution that is θ̂ = x, leading to

J(µ) = µ2. (B.4)

• 0 ≤ θ ≤ µ: the cost function is in this case

J(θ) =
1

2
(x− θ)2 + µ2 − 1

2
(θ − µ)2

=
1

2
(x2 + µ2) + θ(µ− x). (B.5)

For x > µ, the quantity µ−x < 0. The largest value of θ that minimizes (B.5) is thus
equal to θ̂ = µ. For this value, the cost function (B.5) is

J(µ, x) =
1

2
(x− µ)2 + µ2, (B.6)

but since J(µ, x) in (B.6) is always larger than J(µ) in (B.4), the optimal solution is
actually θ̂ = x.

For x ≤ µ, the quantity µ− x ≥ 0. In this case, the lowest value of θ that minimizes
(B.5) is θ̂ = 0. This solution yields

J(µ, x) =
1

2
(x2 − µ2), (B.7)

which is always smaller than J(µ) in (B.4).
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For θ ≥ 0 we thus get

θ̂ =

�

0, if 0 ≤ x ≤ µ

x, if x > µ.
(B.8)

Combining these results with the ones considering θ ≤ 0, finally yields the HT estimator of
(2.18).

B.2 Computation of the BF test statistic for model (3.18)

According to model (3.18) the BF test is defined as

BF(x) =

�

R
p (x | θ)π (θ) dθ

p (x | 0)
H1

≷
H0

γ. (B.9)

For a gaussian likelihood and a Laplacian prior, the computation of the BF test statistic
leads to

TBF(x) =
1

2λ
exp

�

x2

2σ2

��

R

exp

�

−(x− θ)2

2σ2
− |θ|

λ

�

=
1

2λ
exp

�

x2

2σ2

���

R+

exp

�

−(x− θ)2

2σ2
− θ

λ

�

dθ +

�

R−

exp

�

−(x− θ)2

2σ2
+

θ

λ

�

dθ

�

.

(B.10)

The two integrals in (B.10) can be re-written as

�

R+

exp

�

−(x− θ)2

2σ2
− θ

λ

�

dθ =

�

R+

exp

�

− 1

2σ2

�

�

θ −
�

x− σ2

λ

��2

−
�

x− σ2

λ

�2

+ x2

��

dθ

= exp

�

σ2

2λ2
− x

λ

��

R+

exp

�

− 1

2σ2

�

�

θ −
�

x− σ2

λ

��2
��

dθ

(B.11)

and

�

R−

exp

�

−(x− θ)2

2σ2
+

θ

λ

�

dθ =

�

R−

exp

�

− 1

2σ2

�

�

θ −
�

x+
σ2

λ

��2

−
�

x+
σ2

λ

�2

+ x2

��

dθ

= exp

�

σ2

2λ2
+

x

λ

��

R−

exp

�

− 1

2σ2

�

�

θ −
�

x+
σ2

λ

��2
��

dθ

(B.12)

Using the definition of the right tail probability of a Gaussian distribution N (µ, σ2) with
mean µ and standard deviation σ (also called Q−function)

Q

�

γ − µ

σ

�

= 1− Φ

�

γ − µ

σ

�

=
1√
2π

� +∞

γ

exp

�

−(θ − µ)2

2σ2

�

dθ, (B.13)
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and taking it for γ = 0 and µ = x− σ2

λ , we obtain for the integral over R
+

�

R+

exp

�

− 1

2σ2

�

�

θ −
�

x− σ2

λ

��2
��

dθ =
√
2π

�

1− Φ
�

−x

σ
+

σ

λ

��

. (B.14)

Replacing (B.14) in (B.11) gives

�

R+

exp

�

−(x− θ)2

2σ2
− θ

λ

�

dθ =
√
2π exp

�

σ2

2λ
− x

λ

�

�

1− Φ
�

−x

σ
+

σ

λ

��

. (B.15)

A similar reasoning is done for the integral over R
−. For the integral in (B.12), using

definition (B.13) with γ = 0 and µ = x+ σ2

λ , we have that

�

R−

exp

�

− 1

2σ2

�

�

θ −
�

x+
σ2

λ

��2
��

dθ =

�

R+

exp

�

− 1

2σ2

�

�

θ −
�

−x− σ2

λ

��2
��

dθ

=
√
2π

�

1− Φ
�x

σ
+

σ

λ

��

. (B.16)

Replacing (B.16) in (B.12) gives

�

R−

exp

�

−(x− θ)2

2σ2
+

θ

λ

�

dθ =
√
2π exp

�

σ2

2λ
+

x

λ

�

�

1− Φ
�x

σ
+

σ

λ

��

. (B.17)

Now, inserting in (B.10) the expressions found in (B.15) and (B.17) we finally have

TBF(x) =

√
2π

2λ
exp

�

x2

2σ2
+

σ2

2λ2

�

�

exp
�

−x

λ

� �

1− Φ
�

−x

σ
+

σ

λ

��

+ exp
�x

λ

� �

1− Φ
�x

σ
+

σ

λ

���

=

√
2π

2λ
exp

�

x2

2σ2
+

σ2

2λ2

�

�

2 cosh
�x

λ

�

− exp
�

−x

λ

�

Φ
�

−x

σ
+

σ

λ

�

− exp
�x

λ

�

Φ
�x

σ
+

σ

λ

��

.

(B.18)

B.3 Learning techniques for dictionary selection: the K-SVD
approach

A way to design dictionaries is to use learning techniques. Learning techniques allow to
obtain dictionaries whose content is adapted to fit a considered set of signals. In this
Appendix, we present the general dictionary learning problem for sparse representation of
signals. A detailed analysis of the KSVD approach introduced in [Aharon 2006] follows.

Consider a set of K training signals in R
N , {xk}k=1,...,K . In matrix form, the set of all

the training signals is represented by a matrix X of dimension N ×K, in which each xk is
a column vector. We seek to sparsely approximate the matrix X as a linear combination of
few elementary features in a set noted R:

X ≈ RA. (B.19)

The columns of matrix R, which is of dimensions N × P , represent the P elements of the
dictionary R = [r1, . . . , rP ] we seek to learn, while the matrix A, of dimensions P × K,
contains all the synthesis coefficients {ak}k=1,...,K of X on R.
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The problem here is thus to find matrices R and A such that the following optimization
problem is solved

min
R,A

||X−RA||2F , (B.20)

where ||·||F represents the Frobenius norm12, and the term ||X−RA||2F the overall Mean
Square Error (MSE)

||E||2F = ||X−RA||2F .

To restrict the search space, some constraints can be imposed. As we are looking for sparse
decomposition of X over R, the most appropriate constraint is on the number of nonzero
coefficients in the A matrix column vectors ai:

min
R,A

||X−RA||2F , subject to ||ai||0 ≤ n, ∀i. (B.21)

Recently, the K-SVD approach to dictionary learning was introduced in [Aharon 2006]
to solve problem (B.21). K-SVD is an iterative algorithm alternating the two following
steps:

• a sparse coding (sparse decomposition) step: computing the best A, with R fixed;

• a dictionary update step: searching for the best dictionary R, with A fixed.

In the sparse coding step, the problem we seek to solve is

min
A

||X−RA||2F , subject to ||ai||0 ≤ n, ∀i. (B.22)

For each one of the K columns in A, problem (B.22) can be written as

min
ai

||xi −Rai||22 , subject to ||ai||0 ≤ n. (B.23)

Finding the sparsest representation for the problem (B.23) is a combinatorial problem
[Davis 1997]. The authors propose to resort to approximate solutions by using for instance a
well known improvement of the MP algorithm (see section 6.2) that is its orthogonal version.
Differently from the MP algorithm, in the Orthogonal Matching Pursuit (OMP) [Pati 1993]
after every step the sparse vector of coefficients is updated (a new atom of the dictionary
is chosen) on the criterion of best MSE signal approximation of the residual, computed as
the orthogonal projection of the signal onto the set of atoms selected so far. The OMP
algorithm generally provides better results than the MP, but requires more computation.

After the sparse coding step, dictionary updating is performed. At A fixed, the P
dictionary atoms ri are updated one by one freezing, at each time, all columns in R except
one, say rk. Each updated column r̃k is found jointly to its corresponding coefficients (the
k−th row in A) using a rank-1 approximation.

12Given a matrix A of dimensions (M ×N), the Frobenius norm is equal to ||A||F =

�

�

�

�

M
�

i=1

N
�

j=1

a2
ij .



B.4. Asymptotic approximation of TLRMAP 165

B.4 Asymptotic approximation of TLRMAP

An asymptotic approximation of TLRMAP under H0, for N → ∞, is proposed. A first
condition must be set on the η threshold. In order to avoid the accumulation of “only
noise” components in (3.5), it is necessary to choose η =

√
2 logNaN , where aN (e.g.

aN = 1/ log(N)2) will enable to conserve only the “signal” components.
The asymptotic normality of the LRMAP test statistic under the null hypothesis can

be proved using the central limit theorem by verifying the Lyapunov’s condition13. As in
[Fan 1996], the TLRMAP k−th moments involve

E[(u2 − η2)I(|u| > η)]k (B.24)

and can be computed through the integration by parts of

� ∞

η
u2k exp−

u2

2 du (B.25)

followed by an approximation for η → ∞. For a given PFA, we obtain the asymptotic
LRMAP test:

1

σLRMAP

(TLRMAP(u)− µLRMAP)
H1

≷
H0

Φ−1(1− PFA),

with

µLRMAP =

�

2

π
exp−η2/2

�

2

η
− 4

η3
+O(η−5)

�

, (B.26)

and, after similar calculations,

σ2
LRMAP =

�

2

π
exp−η2/2

�

8

η
− 24

η3
+O(η−5)

�

. (B.27)

13Lyapunov’s Central Limit Theorem: for a sequence of independent random variables Xi with i =

1, . . . , N , each with finite expected value µi and variance σ2
i , define s2N =

N
�

i=1

σ2
i the sum of variances. If

for some δ > 0, the Lyapunov’s condition lim
N→∞

1/s2+δ
N

N
�

i=1

E[|Xi − µi|
2 + δ] = 0 is satisfied, then a sum

of (Xi − µi)/sn converges in distribution to a standard normal random variable, as n goes to infinity:

1/sn

N
�

i=1

(Xi − µi)
d
→N (0, 1). For simplicity, δ is usually chosen equal to 1.
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B.5 A tentative of comparison of the tests by analysis of the
PFA and PDET bounds

We seek to compare the performances of the two tests by evaluating, for comparable values
of the PFA, the corresponding values of the PDET = Pr(T (u, η) > γ | H1).

The dependency of the PFA and the PDET with respect to the (η,γ) parameters make
their computation inextricable, even in the case of the simple model (3.1). Hence, based
on the expressions (3.48) and (3.49) and using suitable maximizing-minimizing analytical
functions, we propose an approximation aiming at bounding the PFA (resp. PDET) in a
range PFAm < PFA < PFAM (resp. PDETm < PDET < PDETM ). For both tests, the idea is
to compare the PFA and the PDET bounds to assess relative power.

Figure B.1 illustrates the computation of the PFA maximizing-minimizing surfaces for
the PDR (left) and the LRMAP (right) tests for N = 2. In particular, Figure B.1(a) shows
the computation of the PFA upper and the lower bounds, respectively PFAM and PFAm.
Here, the PFAM upper bound corresponds to the PFA of the closest surface to the tests’
detection surfaces S (the one that gives minimum PFA value) chosen between the inscribed
circle (in green, dashed line) and the inscribed square (in green, continuous line). We thus
have that,

PFAM = min(PFA◦i ,PFA�i
), (B.28)

where

PFA◦i = 1− Pr





N
�

j=1

u2j < r2i



 = 1− Φχ2
N
(r2i ), (B.29)

with ri the radius of the circle inscribed in S under H0, and

PFA�i = 1− Pr(|uj | < li ∀j) = 1− (2Φ(li)− 1)N , (B.30)

with li the side of the square inscribed in S under H0. Φχ2
N
(·) and Φ(·) represent the

CDFs of a centered χ2 with N degrees of freedom and of a standard normal distribution,
respectively. Similarly, the PFAm lower bound corresponds to the PFA of the closest surface
to the tests’ detection surfaces S (the one that gives maximum PFA value) chosen between
the circumscribed circle (in orange, dashed line) and the circumscribed square (in orange,
continuous line). We thus have that

PFAm = max(PFA◦c ,PFA�c
), (B.31)

where PFA◦c and PFA�c are computed considering the radius/side of the circle/square cir-
cumscribed to S under H0.

An equivalent reasoning yields, for the bounds of the PDET:

PDETM = min(PDET◦i ,PDET�i
), (B.32)

where
PDET◦i = 1− Φχ2

N (λ)(r
2
i ) (B.33)

and

PDET�i = 1−
N
�

j=1

[Φ(li − θj) + Φ(li + θj)− 1], (B.34)
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Figure B.1: Figure B.1(a) Maximizing (orange) and minimizing (green) surfaces of the PDR
(left) and the LRMAP (right) tests, for N = 2. Figure B.1(b) Analytical PFAm and PFAM

approximating bounds plotted as functions of the (η, γ) parameters, for the PDR (red) and
the LRMAP (blue) tests (see text). Empirical values of the PDR and LRMAP tests PFA

computed as functions of the (η,γ) parameters (in black for both tests) follow within the
tight PFA envelopes defined by the approximating bounds. This confirms the validity of the
approach.

and for the minimum PDET:

PDETm = max(PDET◦c ,PDET�c
), (B.35)

with PDET◦c and PDET�c computed en considering the radius/side of the circle/square
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circumscribed to S under H1.
Figure B.1(b) reports the PFAm and PFAM bounds of the PDR (left) and the LRMAP

(right) tests in function of the η and γ parameters, for N = 2. The true PFA values obtained
by MC simulations are represented in black. These values are obtained computing the tests’
PFA for different couples (η, γ), over 105 noise realizations. The empirical PFA values remain
within the narrow envelope defined by the approximating bounds. This confirm the validity
of the approach and opens to the possibility of analytically refining the comparative results
between the two tests. The study of the PDET envelopes and the analytical comparison of
the tests are currently under investigation.
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