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Résumé

Les désintégrations semileptoniques du méson B participent à la détermination de certains paramètres

fondamentaux du Modèle Standard. Ce travail décrit essentiellement l’étude des deux canaux de désin-

tégrations Bs → Dsℓν̄ℓ et B → D∗∗ℓν̄ℓ (où les D∗∗ sont les premières excitations orbitales des mésons

D ayant une parité positive). Le cadre théorique est celui de la QCD sur réseau qui, en discrétisant

l’espace-temps, permet de calculer non perturbativement les fonctions de Green de la théorie. En util-

isant l’action à masse twistée avec deux saveurs dégénérées de quarks dynamiques (Nf = 2), nous

avons commencé par étudier la spectroscopie des états charmés scalaires D∗
0 et tenseurs D∗

2 . Ensuite,

nous avons réalisé la détermination du facteur de forme Gs(1) décrivant le processus Bs → Dsℓν̄ℓ dans

le Modèle Standard. Ce paramètre offre un moyen d’extraire l’élément de la matrice CKM Vcb. Par

ailleurs, et pour la première fois en QCD sur réseau, nous avons déterminé les rapports F0(q
2)/F+(q

2)

et FT (q
2)/F+(q

2) dans la région proche du recul nul: ces contributions sont en effet nécessaires afin

de discuter ce canal de désintégration dans certains modèles au-delà du Modèle Standard. Enfin, une

étude préliminaire du canal de désintégration B → D∗∗ a été abordée où nous avons trouvé une valeur

non nulle de l’élément de matrice décrivant la désintégration B → D∗
0 à recul nul contrairement de ce

qui est connu à la limite des quarks lourds. Dans le cas du B → D∗
2 , nos résultats ont montré un signal

indiquant une différence par rapport aux prédictions de masse infinie. Ces calculs sont indispensables

afin de tirer une conclusion plus solide concernant le “puzzle 1/2 vs 3/2”.

Mots clés: Physique des saveurs lourdes - QCD sur réseau - Phénoménologie des mé-

sons B - Modèle Standard - Facteurs de forme semileptoniques - Excitations orbitales

D∗∗ - Mésons lourd-légers
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Abstract

Semileptonic decays of B mesons provide a rich source of knowledge for determining fundamental

parameters of the Standard Model. This work reports mainly on the study of two semileptonic decay

channels: the Bs → Dsℓν̄ℓ and B → D∗∗ℓν̄ℓ (where the D∗∗ are the first orbitally excited states of the D

mesons having a positive parity). The theoretical framework is Lattice QCD which is considered as the

only satisfying approach which calculates in a non perturbative way the transition amplitudes from first

principles. By using the twisted mass QCD on the lattice with Nf = 2 dynamical flavors we studied,

first, the spectroscopy of the scalarD∗
0 and the tensorD∗

2 states. Then, we determined the normalization

Gs(1) of the form factor dominating Bs → Dsℓν̄ℓ in the Standard Model which provides a means of

extracting the CKM matrix element Vcb. Next, we make the first lattice determination of F0(q
2)/F+(q

2)

and FT (q
2)/F+(q

2) near the zero recoil. The obtained results are important for the discussion of this

decay in various scenarios of physics beyond the Standard Model. Finally, we did a preliminary study of

B → D∗∗ where we have obtained a non vanishing matrix element corresponding to the decay of B into

the D∗
0 at zero recoil contrary to what was known in the heavy quark limit. Moreover, the computations

corresponding to B → D∗
2 show a signal indicating a difference with respect to the infinite mass limit

prediction. These results are important to draw a firm conclusion on the “1/2 vs 3/2 puzzle”.

Keywords:

Heavy Flavor Physics - Lattice QCD - Phenomenology of B mesons - Standard Model -

Semileptonic form factors - Orbital excitations D∗∗ - Heavy-light mesons
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Introduction

The Standard Model (SM) of particle physics provides a successful description of almost all of

the so-far observed phenomena. Its predictions are in good agreement with a wide variety of experi-

mental results. However, there are many questions left unanswered and observations unaccounted for:

among the observational caveats are the problem of massive neutrinos, the relic dark matter abundance

of the Universe and its baryon asymmetry. On the theoretical side, one encounters issues such as the

so-called hierarchy problem, the unification of gauge couplings as well as the flavor and CP puzzles.

B-physics is a valuable tool to check the validity of the SM concerning the flavor sector, and thus

to search for possible signals of New Physics (NP). At the Large Hadron Collider (LHC), the LHCb

experiment is dedicated to the study of B-meson physics. B-meson decays may be mediated by new

particles; hence any deviation from the SM predictions might hint towards the presence of NP. Although

most of the experimental measurements agree with SM predictions, there are some observables [4–7]

suggesting some (small) deviations.

One of the most pressing flavor physics problems is the precise determination of the hadronic matrix

elements relevant for B physics, which requires the extraction of the values of the Cabbibo-Kobayashi-

Maskawa (CKM) matrix elements from numerous experimental inputs and from different theoretical

calculations and assumptions.

Even though experimental measurements still have non-negligible statistical and systematical uncertain-

ties (expected to be improved in a near future), current experimental errors are clearly subdominant

with respect to the theoretical uncertainties. For instance, a precise theoretical determination (at the

1% level of accuracy) of the hadronic matrix elements related to b quarks would be needed to ren-

der relevant the statistically improved measurement of B (Bs) meson leptonic and semileptonic decay

widths.

Experiments measuring semileptonic decay amplitudes of the B system, together with lattice calcula-

tions of the semileptonic form factors of B → D(∗,∗∗), give access to the Vcb element of the CKM matrix.

The theoretical computation of many B(Bs) quantities, such as the form factors, the decay constants,

or numerous matrix elements, are challenging due to the effects of strong interactions. The strength

of strong interactions, described by Quantum Chromodynamics (QCD), increases with the increase of

the distance (or with the decrease of the energy), and at distances larger than ∼1 fm (i.e. energies

lower than ∼1 GeV) the theory is no longer perturbative. Hence, every calculation involving low-energy

1
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hadronic states requires a non-perturbative treatment.

The only available method to calculate physical observables in a non-perturbative way from first prin-

ciples, where all sources of systematic errors can be kept under control and whose accuracy can be

arbitrarily increased with time, is Lattice QCD (LQCD).

The aim of this thesis is to address a small number of theoretical aspects related to B physics. It is

based on works done in collaboration with the “Laboratoire de Physique Théorique d’Orsay” and the

“European Twisted Mass Collaboration (ETMC)”. It focuses mainly on the determination of the form

factors of the Bs → Ds decay channel and the branching ratios of B → D∗∗ semileptonic transitions.

This manuscript is organized as follows: the first chapter is meant to serve as an introduction to the

Standard Model of particle physics and to flavor violation in weak interactions as parameterized by the

CKM matrix.

The second chapter introduces the notations used to represent the heavy meson states (B andD mesons)

and summarizes the current theoretical and experimental status of the B → D ℓ ν̄ℓ and B → D∗∗ℓν̄ℓ

transitions.

Chapters 3, 4 and 5 describe the formalism of Quantum Field Theory on the Lattice (how to construct

fermion and gluon actions (twisted mass fermions), deal with gauge invariance, go to the continuum,

renormalize,...). Moreover, some aspects of Lattice simulations (algorithms, propagator computation,

smearing techniques, stochastic sources,...) will also be discussed.

Chapter 6 presents an example of calculations made in LQCD: how to extract the mass of fundamental

and orbitally excited charmed D states. The whole strategy related to the meson mass determination,

especially for the excited D meson states, will be presented in detail.

Finally, Chapters 7 and 8 are devoted to another example of LQCD calculations namely the determina-

tion of the transition amplitudes and form factors. In particular, Chapter 7 discusses the phenomenology

of Bs transitions into charmed Ds mesons. The form factor parametrizing this weak decay is determined

and we also investigate the possibility of having a tensor operator in the effective weak Hamiltonian.

Such study leads to better constrain the NP effects as well as to check the SM prediction. Finally,

in Chapter 8, we discuss the effect of a finite charm quark mass in the determination of B → D∗∗

branching ratios. We focus on two D∗∗ states: the scalar D∗
0 and the tensor D∗

2 .

Chapter 9 presents an overview and concluding remarks.

Many formulae and technical details are collected in the appendices.
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Phenomenology of beauty mesons
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Flavor in the Standard Model



6 Flavor in the Standard Model

Our present understanding of the microscopic world is defined in terms of quantum fields and

the interactions between them. The best description we have of the fields and their interactions is given

by the SM of particle physics. The SM is one of the crowning achievements of twentieth century science:

at the time of this writing, the SM is able to explain results of most of the experiments that probed the

behavior of matter at the smallest scales. Only gravity remains outside the remit of the SM (in particle

physics, experiments are dealing with very tiny masses and the gravitational effects do not need to be

taken into account).

This chapter introduces some of the key concepts of the SM. The electroweak theory of weak and elec-

tromagnetic interactions is presented. Particular attention is paid to the symmetries of the Lagrangian

and the particle content of the model. A description of the different representations of the CKM matrix

is given, and finally, the unitarity triangle is presented.

1.1 The Standard Model

The SM describes our current understanding of matter and interactions. It introduces basic constituents,

called quarks and leptons, out of which all matter is made. These fundamental particles experience only

three interactions, strong, weak, and electromagnetic, which are mediated by the fundamental bosons:

the photon, the three weak bosons (W+, W−, and Z0), and the eight gluons. The SM combines the

QCD - the theory of strong interaction - and the electroweak (EW) theory - the theory of weak and

electromagnetic interactions - in a single gauge theory based on the symmetry group SU(3)C⊗SU(2)L⊗
U(1)Y .

1.1.1 Basic properties of leptons and quarks

1. Leptons

In the SM, three families of leptons are known: the electron e and its neutrino partner νe, the

muon µ and its neutrino νµ, and the τ -lepton accompanied by yet another neutrino ντ

LiL ≡
(
νℓi
ℓi

)

L

≡
(
νe

e

)

L

,

(
νµ

µ

)

L

,

(
ντ

τ

)

L

LiR ≡ eR , µR , τR

where i = 1, 2, 3. Here L stands for “left-handed” and R for “right-handed” fermion fields.

ψ(x) =
1

2
(1− γ5)ψ(x) +

1

2
(1 + γ5)ψ(x) ≡ ψL(x) + ψR(x) (1.1)

Each of the three lepton families carries its own additive quantum number Lℓ (lepton number)

which is the only distinctive characteristic for the family (ℓi, νℓi) and which is strictly conserved

in all interactions involving leptons.
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2. Quarks

The known quarks are the up and down quarks, the charm and strange quarks, and the top and

bottom quarks. They come in three generations and are the constituents of the physical meson

and baryon states

QiL ≡
(
Qui
Qdi

)

L

≡
(
u

d

)

L

,

(
c

s

)

L

,

(
b

t

)

L

, QuiR ≡ uR, cR, bR, QdiR ≡ dR, sR, tR

The quarks of type up U i.e. (u, c, b) have a charge Q = 2/3 (in units of e), while quarks of type

down D (d, s, t) have Q = −1/3.

A guiding principle in constructing a physical quantum theory is the invariance under some group of

local gauge symmetry transformations. In what follows, we illustrate this for the case of EW interac-

tions1 [8].

The EW theory inherits the phenomenological successes of the four-fermion low-energy description of

weak interactions, and provides a well-defined and consistent theoretical framework including weak in-

teractions and quantum electrodynamics in a unified picture. The weak interactions derive their name

from their intensity. At low energy the strength of the effective four-fermion interaction of charged

currents is determined by the Fermi coupling constant2 GF .

The EW interactions are based on the SU(2)L ⊗ U(1)Y gauge group. The fermion fields are described

through their left-handed and right-handed components

ψR,L =

(
1± γ5

2

)
ψ ψ̄R,L = ψ̄

(
1∓ γ5

2

)
(1.2)

In the SM the left and right fermions have different transformation properties under the gauge group.

Thus, mass terms for fermions (of the form ψ̄LψR +h.c.) are forbidden in the SU(2)×U(1) symmetric

phase. In particular, all ψR are singlets in the Minimal Standard Model (MSM).





ψ′(x)L = exp

(
iα(x)

YW
2

)
UL ψ(x)L (doublet state)

ψ′(x)R = exp

(
iα(x)

YW
2

)
ψ(x)R (singlet state)

(1.3)

where the SU(2)L transformation (non abelian) is

UL ≡ exp

(
i~θ(x) · ~τ

2

)
(1.4)

and τi are the SU(2)L generators in its fundamental representation satisfying

[τi, τj ] = εijk τk (1.5)

1The QCD part of the SM will be presented in Chapter 3.
2GF = 11.16639(1)10−5 GeV−2 in natural units ~ = c = 1.
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The phase ~θ(x) ∈ R
3 parameterizes the SU(2) gauge transformation, and α(x) ∈ R parameterizes the

U(1) gauge transformation. The parameter YW is called the hypercharge of the U(1) group.

The standard EW theory is a chiral theory, in the sense that ψR and ψL behave differently under the

gauge group. In the absence of mass terms, there are only vector and axial-vector interactions in the

Lagrangian which have the property of not mixing ψL and ψR.

Let us summarize the structure of the EW Lagrangian.

The free Lagrangian with fermion matter fields reads

L0 = ψ̄L iγ
µDµψL + ψ̄R iγ

µDµ ψR (1.6)

The requirement for local gauge invariance entails the redefinition of the partial derivatives DµψL,R





DµψL =

[
∂µ + ig1

3∑

a=1

τaW a
µ + ig2

1

2
YW (ψL)Bµ

]
ψL

DµψR =

[
∂µ + ig2

1

2
YW (ψR)Bµ

]
ψR

(1.7)

The two real numbers g1 and g2 are the couplings associated with SU(2) and U(1) respectively, and

YW is the U(1) hypercharge.

We thus have four gauge fields: W a, corresponding to the three SU(2) generators, and B corresponding

to U(1). Introducing the field strengths

Bµν = ∂µBν − ∂νBµ (1.8)

W
A
µν = ∂µW

A
ν − ∂νWA

µ − g1εABCWB
µ WC

ν (1.9)

where εABC is the totally antisymmetric Levi-Civita tensor, one can then construct the kinetic La-

grangian of the gauge fields

Lkin = −1

4
BµνB

µν − 1

4

3∑

a=1

W
a
µνW

aµν (1.10)

Gauge symmetry forbids mass terms for the gauge bosons and the fermions. Thus, the SU(2)L⊗U(1)Y

Lagrangian contains only massless fields.

The interactions of the fermions with the gauge bosons are given by

Lint = −g1ψ̄LγµW̃µψL − g2 Bµ
∑

ψj∈ℓj , νℓj ,

Qu
j , Q

d
j

y(ψj)ψ̄jγ
µψj (1.11)

where we have defined W̃µ(x) ≡ τaW a
µ (x)/2 and y(ψj) ≡ YW (ψj)/2.
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However, the SU(2)L ⊗ U(1)Y Lagrangian cannot describe the observed dynamics because the gauge

bosons and the fermions are still massless. In what follows, we will describe the mechanism of EW

symmetry breaking which gives masses to the fermions and introduces the massive (W± and Z) gauge

bosons.

1.1.2 Higgs sector

In order to generate masses, one needs to break the gauge symmetry. The origin of mass in the SM

is a consequence of the spontaneous symmetry breaking (SSB) of the SU(2)L ⊗ U(1)Y triggered by

the Higgs mechanism (developed by Higgs, Brout, Englert, Guralnik, Hagen and Kibble) [9–12]. To

describe it, let us introduce an SU(2)L doublet of complex scalar fields

φ ≡
(
φ(+)

φ(0)

)
(1.12)

The scalar Lagrangian is

LS = (Dµφ)
†
Dµφ− µ2φ†φ − h

(
φ†φ

)2
(h > 0, µ2 < 0) (1.13)

with the covariant derivative

Dµφ =
[
∂µ + ig1W̃µ + ig2y(φ)B

µ
]
φ with y(φ) =

1

2
(1.14)

The Lagrangian LS is invariant under local SU(2)L ⊗ U(1)Y transformations.

There is an infinite set (S ) of degenerate states with minimum energy, satisfying

〈0 |φ(0) | 0〉 =

√
−µ2

2h
≡ v√

2
(1.15)

where v is the vacuum expectation value (VEV) of the neutral scalar. Since the electric charge is

conserved, the VEV of φ+ must vanish. Once the system has chosen a particular state belonging to

(S ), the SU(2)L ⊗ U(1)Y symmetry is spontaneously broken to the electromagnetic group U(1)em

which remains a true symmetry of the vacuum, i.e.

SU(2)L ⊗ U(1)Y → U(1)em (1.16)

Let us parameterize the scalar doublet as follows

φ(x) = exp

{
i
σiθ

i

2

}
1√
2

(
0

v +H(x)

)
(1.17)

with four real fields θ1(x), θ2(x), θ3(x) and H(x).

Local SU(2)L invariance allows to rotate away any dependence on θi(x). These three fields are precisely

the would-be massless Goldstone bosons associated with the SSB mechanism (the condition θi(x) = 0

is called the physical (unitary) gauge).
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Gauge field masses

The covariant derivative couples the scalar doublet to the gauge bosons. The kinetic piece of the scalar

Lagrangian is

(Dµφ)
†
Dµφ

θi=0−−−→ 1

2
∂µH∂

µH +
g21 v

2

8

[(
W 1
µ

)2
+
(
W 2
µ

)2]

+
v2

8

[
g1W

3
µ − g2Bµ

]2
+ cubic + quartic terms

(1.18)

If one redefines cleverly the fields as follows

W±
µ =

W 1
µ ∓ iW 2

µ

2
(1.19)

and rotates the Bµ and W 3
µ fields as

(
W 3
µ

Bµ

)
≡
(

cos θW sin θW

− sin θW cos θW

) (
Zµ

Aµ

)
(1.20)

where θW is the weak-mixing angle defined as

tan θW =
g2
g1

(1.21)

one verifies that the kinetic part of the scalar Lagrangian written in terms of Zµ, Aµ and W±
µ now

contains quadratic terms for the W±
µ and the Z. In other words, the W± and Z gauge bosons acquire

masses

MZ cos θW = MW± =
1

2
v g1 (1.22)

while Aµ is identified with the electromagnetic vector potential and remains massless. The electromag-

netic current is thus conserved: the coupling of the electromagnetic interaction is identified with the

electron charge e

g1 sin θW = g2 cos θw = e (1.23)

and the conserved quantum number is

Q′f = T f3 +
Y fW
2

(1.24)

where Q′f is the electric charge generator (in units of e), T 3
f is the third component of the weak isospin

and Y fW is the hypercharge of the fermionic field f .

Fermion masses

A fermionic mass term Lm = −mψψ = −m(ψLψR + ψRψL) is not allowed, because it explicitly

breaks the gauge symmetry: left- and right-handed fields transform differently under SU(2)L ⊗U(1)Y .
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However, the bilinear Yukawa interactions of left- and right-handed fermions with the scalar field are

invariant under SU(2)L × U(1)Y

LYukawa = Y uij Q̄iL φ
c QujR + Y dij Q̄iL φ Q

d
jR + Y ℓij L̄iL φ ℓjR + h.c. (1.25)

where the first term involves the charge-conjugate scalar field φc ≡ iτ2φ∗. The matrices Y
u(d)
ij and

Y ℓij are the Yukawa couplings for the up (down) quarks and the charged leptons, respectively. After

EW symmetry breaking, quarks and leptons become massive and their masses are described by the

Lagrangian3

Lmass = Q̄uiL M
u
ij Q

u
jR + Q̄diL M

d
ij Q

d
jR + ℓ̄iL M

ℓ
ij ℓjR + h.c. (1.26)

with the mass matrices defined by

Mu
ij = vY uij , M

d
ij = vY dij , M

ℓ
ij = vY ℓij (1.27)

In general, the Yukawa couplings and hence the mass matrices are not diagonal. The above mass

matrices can be diagonalized through the bi-unitary transformations

V u†L Mu U
u
R = diag(mu, mc, mt) ≡ du

V d†L Md U
d
R = diag(md, ms, mb) ≡ dd

V ℓ†L Mℓ U
ℓ
R = diag(mℓ, mµ, mτ ) ≡ dℓ

(1.28)

where the U and V are the 3× 3 unitary matrices which relate flavor (unprimed) and mass eigenstates

(primed). Applying the transformations

QuL → V uL Q′u
L , QdL → V dL Q′d

L , ℓL → V ℓL ℓ
′
L (1.29)

QuR → UuR Q
′u
R , QdR → UdR Q

′d
R , ℓR → U ℓR ℓ

′
R (1.30)

to the Lagrangian given in Eq. (1.26), one obtains

Lmass =
∑

Qu
i ,Q

d
i ,ℓi

(
mQu

i
Q̄′u
iL Q

′u
iR + mQD

i
Q̄′d
iL Q

′d
iR + mℓi ℓ̄

′
iL ℓ

′
iR + h.c.

)
(1.31)

Thus we have generated a mass-term for the fermions.

In terms of the physical fermion and boson states, one can now proceed to study neutral and charged

currents.

3Since the original formulation of the SM did not include right-handed neutrinos (nor Higgs triplets), neutrinos remain
strictly massless to all orders in perturbation theory.
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Charged Currents

The charged current (CC) Lagrangian will now read

L
(q)
CC = − g1√

2

[
W+
µ Q

′u

iL γ
µ (VCKM)ij Q

′d
jL + W−

µ ℓ
′

iL γ
µ (δ)ij ν

′
ℓj L + h.c.

]
(1.32)

where the unitary matrix VCKM = V u′L V dL is the so-called Cabibbo-Kobayashi-Maskawa matrix [13,14]

which encodes flavor violation in CC. In the case of three quark generations, it is a 3×3 unitary mixing

matrix [14]

VCKM =



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 (1.33)

It can be shown that it depends on four parameters: three angles and a phase. In the absence of a

fundamental theory of flavor, there is no theoretical prediction for the values of these parameters which

should be determined experimentally. We will describe the different parametrizations of this matrix in

the next section.

W±

ℓ−

ν̄ℓ

W±

Qdj

Q
u

i

Figure 1.1: Charged current vertices describing the coupling of fermion pairs (quarks or leptons) to vector
boson W±.

Weak charged currents are the only tree-level interactions in the SM that change flavor. On the leptonic

sector, there is no analogue of the CKM matrix because, in the SM, neutrinos are massless: since they

are degenerate states, any rotation between the different flavors has no physical effect. Fig. 1.1 depicts

the CC vertices in the SM.

Neutral Currents

In terms of the mass eigenstate fields Zµ and Aµ, the neutral part of the weak interaction Lagrangian

is

LNC = −
∑

ψj

ψ̄jγ
µ
{
Aµ

[
g1
τ3
2
sin θW + g2 y(ψj) cos θW

]

+Zµ

[
g1
τ3
2
cos θW − g2 y(ψj) cos θW

]}
ψj

(1.34)
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This neutral current (NC) Lagrangian can be decomposed as

LNC = LQED + L
Z
NC (1.35)

where LQED is the usual QED Lagrangian, and

L
Z
NC = − e

2 sin θW cos θW
JµZ Zµ (1.36)

which contains the interaction of the boson with the neutral fermionic current JµZ . Equivalently, L Z
NC

has the form (see Fig. 1.2)

L
Z
NC = − e

2 sin θW cos θW
Zµ
∑

f

ψ̄fγ
u(vf − afγ5)ψf (1.37)

where the coefficients af = T f3 and vf = T f3

(
1− 2Q

′f sin2 θW

)
represent the axial (A) and vector (V )

couplings of the Z0 boson to fermions.

Z0

ℓ (νℓ)

ℓ̄ (ν̄ℓ)

Z0

q

q̄

Figure 1.2: Neutral current vertices describing the coupling of fermion pairs (quarks or leptons) to Z0 boson.

Now that we have introduced the neutral as well as the charged currents, let us proceed to present the

different parameterizations used for the CKM matrix.

1.2 Parameterization of the CKM matrix

There are several parameterizations of the CKM matrix. We will only present two of them: the standard

parameterization and a generalization of the Wolfenstein parametri- zation.

The standard parameterization: the “standard” parameterization [15] of VCKM involves three angles

θ12, θ23, θ13 and a phase δ13




c12 c13 s12 c13 s13 e
−iδ13

−s12 c23 − c12 s23 s13 e
iδ13 c12 c23 − s12 s23 s13 e

iδ13 s23 c13

s12 s23 − c12 c23 s13 e
iδ13 −c12 s23 − s12 c23 s13 e

iδ13 c23 c13


 (1.38)
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where cij = cos θij and sij = sin θij for the generation labels i, j = 1, 2, 3.

This parameterization offers numerous advantages when it comes to physical interpretation. The angles

are defined and labeled in a way which relates them to the mixing of two specific generations, and if one

of these angles vanishes, the mixing between those two generations vanishes. In the limit θ23 = θ13 = 0,

the third generation decouples and the situation reduces to the Cabibbo mixing of the first two gener-

ations, with θ12 identified as the Cabibbo angle [13]. The real angles θ12, θ23, θ13 can all be chosen to

lie in the first quadrant by an appropriate redefinition of the quark field phases.

The matrix elements in the first row and third column, which have been directly measured in decay

processes, are all of a simple form. The CP violating phase δ13 may vary in the range 0 ≤ δ13 <

2π. However, measurements of CP violation in K decays force δ13 to be in the range 0 < δ13 < π.

From phenomenological studies we know that s13 and s23 are small numbers: O(10−3) and O(10−2)

respectively. Consequently, the parameters

|Vud| = c12, |Vus| = s12, |Vub| = s13e
−iδ13 , |Vcb| = s23 and |Vtb| = c23 (1.39)

are known to an excellent approximation. The above parameters c12, s12, s13 and s23 can be extracted

from tree-level decays mediated by the transitions d → u, s → u, b → u, and b → c respectively. The

phase δ13 can be extracted from CP violating transitions or loop processes sensitive to |Vtd|.
In Chapter 2, we will present the determination of the CKM matrix element Vcb from semileptonic B

decays, and in the next chapters we will discuss how lattice computations can help in performing such

tasks.

The Wolfenstein parameterization: a considerable simplification is gained if one takes into account

that, from experiment, s12 = |Vus| ≃ 0.22, i.e. s12 is a small number. Thus, following Wolfenstein [16]

one can set

s12 ≡ λ, s23 = Aλ2, s13e
−iφ = Aλ3(ρ− iη) (1.40)

As a result, by neglecting terms of higher order in λ, one can write down

V =



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 ∼




1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


 (1.41)

where A, ρ and η are real numbers that are of order unity. This approximate form is widely used,

mainly in B physics, but care must be taken, especially for CP -violating effects in K physics, since the

phase enters Vcd and Vcs through terms that are of higher order in λ.

A survey of the current status of the CKM parameters can be found in ref. [1]. In the SM, the non-

vanishing of the η parameter is the only source of CP violation.
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1.3 The unitarity triangle

The unitarity of the CKM matrix can be expressed by several relations. In particular, the sum of

squared entries of each row (or column) must be equal to 1. Given the fact that different entries

of CKM matrix can be independently measured, it is possible to test the SM by verifying that such

relations are experimentally satisfied. In particular the most precise bound comes from the analysis of

the first line of the matrix

|Vud|2 + |Vus|2 + |Vub|2 = 1 (1.42)

The value of Vud is known from the measurement of nuclear β decays [17], and the remaining two

parameters can be determined experimentally from leptonic and semileptonic decays of K, D and B

mesons.

(1, 0)(0, 0)

(ρ̄, η̄)

∣∣∣∣
Vud V ∗

ub

Vcd V ∗
cb

∣∣∣∣
∣∣∣∣
Vtd V ∗

tb

Vcd V ∗
cb

∣∣∣∣

γ β

α

Figure 1.3: The Bjorken triangle corresponding to Eq. (1.45) in the (ρ̄, η̄) plane.

Orthogonality of rows and columns gives

∑

a

VbaV
∗
ca = δbc (1.43)

which allows to construct six (unitarity) triangles whose common area is given by the Jarlskog invari-

ant [18]

Jinv. ∼ η A2 λ6 (1.44)

Notice that Jinv. (or equivalently the area of the triangles) vanishes4 in the case δ13 = 0.

Of particular phenomenological interest is the Bjorken triangle (the “b−d” triangle displayed in Fig. 1.3)

constructed from

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.45)

since the three sides are all of the same order (λ3).

4A direct evidence that J is non vanishing is obtained from the measurement of sin 2β in B decays.
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(b) CKMfitter global fit (from [20]).

Figure 1.4: Unitarity triangle in the ρ̄ and η̄ parameters fitted to the information on angles and by constraining
other parameters from semileptonic B decays, B0

d oscillations and K mixing.

The angles of the unitarity triangle are given by





α = arg

(
Vcd V

∗
cb

Vtd V ∗
tb

)

β = arg

(
Vtd V

∗
tb

Vud V ∗
ub

)

γ = arg

(
Vud V

∗
ub

Vcd V ∗
cb

)
(1.46)

Various experimental results are used to overconstrain the vertex of the unitarity triangle. In Fig. 1.4,

we show the fit of all present bounds to the values of ρ̄ and η̄ performed by the UTfit and the CKMfitter

collaborations. All the constraints to the triangle intersect in the same region, thus indicating a good

agreement between the SM interpretation of flavor violation and experimental data. The increase in

precision, both on the theoretical and the experimental side, will allow to perform more and more

stringent fits and possibly unveil the presence of NP.

Note that we have only discussed flavor mixing for quarks since, in the SM, lepton flavor is strictly

conserved (mν = 0). Once massive neutrinos are incorporated, charged current interactions will also

violate lepton flavor.



Chapter 2

Semileptonic B decays
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Semileptonic B decays are of primary importance in Heavy Flavor Physics since, for example,

they participate very strongly in the accurate determination of the CKM matrix element Vcb. Moreover,

improving the accuracy of the CKM parameters is at the basis of many new physics analysis.

However, there are many puzzling features associated with the semileptonic b → c data, which have

appeared during the last ten years. Let us quote for instance the so-called “1/2 versus 3/2 puzzle” which

corresponds to the difference between theoretical predictions and experimental measurements of semilep-

tonic branching ratios of B → D∗∗ℓν̄ℓ [21, 22]. One can also find that in non-leptonic decays, there is

not a fair agreement between experimental results on D∗
0 production in B0 → D

0
π+ π− [23].

In the present chapter, we will introduce the notations that will be used in this manuscript, especially

for the B and the charmed D(∗,∗∗) meson states. We will then proceed with the phenomenology of the

weak transitions of the B meson into D and D∗∗ focusing on previous theoretical approaches used when

working with such semileptonic decays. Finally, the “1/2 versus 3/2 puzzle” will be discussed and some

proposals to elucidate the contradiction between theory and experiment will be suggested.

2.1 A short review on semileptonic B decays

c̄b̄

q

W−

ℓ−

ν̄ℓ

B D

Figure 2.1: Feynman diagram representing the exclusive decay B → Dℓν̄ℓ.

In the past years, B factories such as BaBar and experiments such as ALEPH, DELPHI, LHCb etc.,

collected vast amounts of data on B mesons making it possible to study their various decay modes,

such as the semileptonic decays into the charmed D meson states (D∗∗, Ds,...). From the experimental

point of view, there are two different approaches:

exclusive approach, where the final state is well defined and one can consider a particular decay as, for

example, B → D∗∗ ℓν̄ℓ or B → Dℓ ν̄ℓ (Fig. 2.1).

inclusive approach, where the decays are treated at the quark level (b → cℓν̄ℓ as shown in Fig. 2.2)

while the other quark is considered as a spectator. The fact that inclusive decays do not depend
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b

c̄

W−

ℓ−

ν̄ℓ

Figure 2.2: Feynman diagram representing the semileptonic process b→ c ℓ ν̄ℓ at tree-level.

on the final state, allows us to study semileptonic processes of the type B → Xc ℓ ν̄ℓ (where Xc is

any hadronic state containing a charm quark c).

Inclusive and exclusive decays of heavy flavors play a complementary rôle in the determination of funda-

mental parameters of the electroweak standard model and in the development of a deeper understanding

of QCD. The theory of both inclusive and exclusive processes is based on an operator product expan-

sion (OPE) which allows to separate the dynamics at short and long distances. At a very large scale,

µ = O(mW ), charm and beauty decays are described by second order weak interactions involving W±

exchanges. Since the momentum transfer p2 ≪ m2
W , one effectively has four-fermion interactions given

by a hamiltonian of the form

Heff =
GF√
2

∑

i

ci(µ)Oi(µ) (2.1)

It involves a sum of local operators Ois, which incorporate the long-distance effects, with coefficients

cis. The cis are the Wilson coefficients which encode all the physics on momentum scales greater than µ

and which can be calculated in perturbation theory as long as µ≫ ΛQCD. They include the full effects

of W s, Zs and top quarks, as well as any Beyond Standard Model (BSM) physics, plus short-distance-

effects of QCD. The scale µ is arbitrary; we have introduced it only to separate short and long distance

physics.

Armed with Heff , the matrix elements between two hadronic states |B〉 and |Xc〉 are given by

A(B → Xc) =
GF√
2

∑

i

ci(µ) 〈Xc | Oi(µ) |B〉 (2.2)

In the above expression, the matrix element 〈Xc | Oi(µ) |B〉 must be computed outside perturbation

theory.

There are a variety of approaches to deal with the calculations of hadronic matrix element. Current

ones include lattice calculations, QCD sum rules, Heavy Quark Effective Theory (HQET), and phe-

nomenological quark models. Each of these approaches has advantages and disadvantages. For example,

quark models are easy to use and good for intuition. However, their relation to QCD is unclear. On the

other hand, lattice calculations are rigorous from the point of view of QCD, but they suffer from lattice

artifacts and statistical uncertainties among other things. Furthermore, effective theories are usually
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applicable only to a restricted class of problems, and sometimes require substantial corrections which

cannot be calculated within the same framework. For example, due to the large mass of the b-quark,

it will be possible to use the systematic framework provided by HQET [24]. It describes the dynamics

of hadrons containing a heavy quark, and is very powerful in treating heavy-to-heavy transitions such

as b → c, but a priori less suitable for heavy-to-light b → u transitions. It is a valid description of the

physics at momenta much smaller than the mass of the heavy quark mQ. HQET is constructed so that

only inverse powers of mQ appear in the effective Lagrangian.

Heavy meson decay constants as well as form factors are examples of the simplest quantities that can

be studied with the above approaches.

Consider the semileptonic B decays into D mesons. They are induced by the weak annihilation process

b→ c ℓν̄ℓ where ℓ = e, µ, τ . The relevant tree-level weak hamiltonian is given by

Heff =
GF√
2
Vcb (c̄Γ

µb)L (ℓ̄Γµνℓ)L + h.c.+ · · · (2.3)

where Γµ = γµ(1− γ5) and “ · · · ” are higher-dimensional operators that contain the momentum depen-

dence. This result is an example of an operator product expansion. In this simple case, there is one

c(µ), which we take to be unity.

The corresponding transition amplitude factorizes into the product of leptonic and hadronic matrix

elements

A(B → Xc ℓν̄) =
GF√
2
Vcb 〈D | c̄Γµb |B〉︸ ︷︷ ︸

hadronic part

〈ℓ | ℓ̄Γµνℓ | νℓ〉︸ ︷︷ ︸
leptonic part

(2.4)

The hadronic part is the matrix element of the vector or axial vector currents Vµ = c̄ γµ b and Aµ =

c̄ γµγ5 b between B and D states.

It is convenient to write the structure of a matrix element in terms of a few Lorentz invariant quantities

called “form factors”. The most general vector current matrix element for B → D must transform as a

Lorentz four vector. The only four vectors available are the momenta pB and pD of the initial and final

mesons, so the matrix element must have the structure F1 pDµ + F2 pBµ. The form factors “F1” and

“F2” are Lorentz invariant functions that can only depend on the invariants, p2B , p2D and pB · pD. Two

of the variables are fixed, p2B = m2
B and p2D = m2

D, and it is conventional to choose q2 = (pB − pD)2
as the only independent variable. A similar analysis can be carried out for the other matrix elements.

The conventional choice of form factors allowed by the parity and time-reversal invariance of QCD is

〈D(pD) |Vµ |B(pB)〉 = f+(q
2)(pB + pD)µ + f−(q

2)(pB − pD)µ (2.5)

The form factors f+ and f− are real1. The same type of reasoning can be applied to any other semilep-

tonic decay to find the parametrization of the hadronic matrix elements in terms of the corresponding

form factors.

1This can be shown using, for example, the time reversal symmetry on the hadronic matrix element.
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2.2 Charmed D meson states

We are interested, throughout this work, in the charmed D mesonic state as a final product of the

semileptonic B decays. So, we will recall the two different ways to characterize charmed mesons.

2.2.1 The “spin-orbit” decomposition

The mesonic system can be classified as

∣∣n 2S+1LJ
〉

(2.6)

where n represents the radial quantum number, S stands for the total spin of the meson, L is the orbital

angular momentum and J is the total angular momentum ( ~J = ~L+ ~S).

The Eq. (2.6) represents the “spin-orbit” decomposition. When L is non zero, the states are said

orbitally excited. The first orbitally excited bound state corresponds to the 1P (L = 1) wave function

of the charmed system. We have the following four 1P states

∣∣1 3P 0

〉
;

∣∣1 1P 1

〉
;

∣∣1 3P 1

〉
;

∣∣1 3P 2

〉
(2.7)

Other excited states are associated, for example, with 2S (n = 2, L = 0) and 1D (n = 1, L = 2) wave

functions for the charmed system.

For simplicity, the index n will be henceforth omitted when there are no radial excitations.

2.2.2 The “heavy-light” decomposition

There is another decomposition called the “heavy-light” decomposition. In this case, in the rest frame

of a heavy meson, the total angular momentum ~J reads

~J = ~sh + ~ (2.8)

where ~sh is the spin of the heavy quark and ~ is the angular momentum of the “light component” of

the meson. The “light component” (or the “light degrees of freedom” or the “light cloud”) consists of the

superposition of the light quark, the sea quarks and gluons. In quark models, ~ can be decomposed as

~ = ~sl + ~l (2.9)

where ~sl represents the spin of the light quark and ~l stands for the orbital angular momentum of the

light cloud. The states are denoted as

∣∣n jJP
〉

(2.10)

This decomposition displays an interesting feature in the limit where the heavy quark of the meson has

an infinite mass: a new symmetry appears (the heavy quark symmetry (HQS) [25]) which leads to the

conservation of the spin of the heavy quark sh, and hence to the conservation of the “light component” ~

of the meson (since ~J in Eq. (2.8) is conserved due to the rotational invariance of the system). Therefore,
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it is convenient to use j as an index to order heavy-light meson states.

We will use this decomposition to classify the charmed D states

S wave states (l = 0): heavy mesons satisfying this property are listed in table 2.1.

doublet JP values notation
∣∣j JP

〉
experimental notation

0−
∣∣ 1
2 0−

〉
D (c heavy quark), B (b heavy quark)

jP = 1/2−
1−

∣∣ 1
2 1−

〉
D∗, B∗

Table 2.1: The “heavy-light” decomposition of the charm S wave states. The superscript P denotes the
parity of the state.

P wave states (l = 1): the heavy P -wave mesons are represented by M∗∗. The index j has two

values, 1/2 and 3/2, and each of these values forms a doublet. In the case where the heavy quark is the

charm, we obtain the D∗∗ presented in table 2.2.

doublet JP values notation
∣∣jJP

〉
experimental notation

0+
∣∣ 1
2 0

+
〉

D∗
0jP = 1/2+

1+
∣∣ 1
2 1+

〉
D′

1

1+
∣∣ 3
2 1+

〉
D1

jP = 3/2+
2+

∣∣ 3
2 2+

〉
D∗

2

Table 2.2: The “heavy-light” decomposition of the D∗∗. The D∗∗’s belonging to the same doublet are
related by HQS. The superscript P denotes the parity of the state.

Experimentalists usually refer to the charmedD mesons by the notations indicated in Tables 2.1 and 2.2.

We will use them when needed.

However when we consider finite quark masses, the classification used at the static approximation (i.e.

at the infinite mass limit) does not hold. Indeed, in such a case, the spin of the heavy quark is no longer

conserved. The angular momentum of the light cloud j is not a good quantum number anymore, i.e.

states must be labeled by their total angular momentum J . For example, we have two S wave states

(notation DJ : D0, D1) but they do not form a jP = 1/2
−

doublet.

Moreover, one can relate states classified in the “spin-orbit” decomposition to those represented in the

“heavy-light” one by using the so-called “6j” Wigner coefficients [26]

∣∣jJ
〉

=
∑

S

(−)sQ+sq+L+J
√

(2S + 1)(2j + 1)

{
sQ sq S

L J j

}
∣∣n 2S+1LJ

〉
(2.11)

where sq represents the spin of the light quark. When applied in the present case to the four D∗∗s, we
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get 



∣∣ 1
2 0

+
〉

=
∣∣3P 0

〉

∣∣ 1
2 1

+
〉

= − 1√
3

∣∣1P 1

〉
+

√
2

3

∣∣3P 1

〉

∣∣ 3
2 1

+
〉

=

√
2

3

∣∣1P 1

〉
+

1√
3

∣∣3P 1

〉

∣∣ 3
2 2

+
〉

=
∣∣3P 2

〉

(2.12)

We can see that, for the 0+ and 2+ states, both decompositions are equivalent. This explains why we

will choose to study the
∣∣ 1
2 0

+
〉

and the
∣∣ 3
2 2

+
〉

states amongst the D∗∗ mesons. For the two 1+ states,

more work is needed in order to disentangle them because of their dependence on
∣∣1P 1

〉
and

∣∣3P 1

〉
.

2.2.3 Properties of the D∗∗ states

The charmed D∗∗ states have been mostly observed in nonleptonic B → D∗∗ π decays from where

their properties like widths and masses are extracted (Table 2.3). Parity and angular momentum

conservation constrain the decays allowed for each state, helping to identify experimentally the D∗∗

candidates (Fig. 2.3). The main decay channels of such states are the nonleptonic decays

D∗∗ → D∗ π (2.13)

Parity is conserved, thus the pion must have an even orbital angular momentum l. Angular momentum

conservation implies that l = 0, 2. Hence the j = 1/2 states decay through an S-wave to D∗ π, and

are both expected to be broad (large decay widths)

D∗∗
j=1/2 → D

(∗)
j=1/2 π (2.14)

whereas j = 3/2 states are only allowed through an l = 2 (D-wave channel) and are expected to be

narrower (small widths)

D∗∗
=3/2 → D

(∗)
=1/2 π (2.15)

Among the expected non-strange D∗∗s, two have been observed experimentally [27]

D1(2420)
± with I(JP ) = 1

2 (1
+) (2.16)

D∗
2(2460)

± with I(JP ) = 1
2 (2

+) (2.17)

where I is the isospin quantum number. These states have rather small widths. This is the reason why

this doublet has been identified while the doublet j = 1/2 has not (broad resonances).

In the next section, we will summarize some relevant results arising from the study of D(∗) and D∗∗

states created by the semileptonic decay of B mesons.
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D∗∗ Mass [MeV] width [MeV]

D∗
0 2318±29 267 ± 40

D′
1 2427 ± 26 ± 25 384+107

−75 ± 74

D1 2421.3± 0.6 27.1± 2.7

D∗
2 2464.4 ± 1.9 37± 6

Table 2.3: Masses and decay widths ofD∗∗ [1].
Figure 2.3: Spectroscopy of D-meson excita-
tions. The lines show possible single pion tran-
sitions [27].

2.3 Exclusive B → D(∗) decays

A precise knowledge of semileptonic decays of B mesons brings several advantages to flavor physics.

For example, exclusive semileptonic B decays into D and D∗ mesons allow two independent estimates

of the CKM matrix element Vcb and contribute considerably to the analysis of the unitarity triangle.

Case of a massless lepton: in the limit of vanishing lepton mass, the differential decay rates of

B → Dℓν̄ℓ and B → D∗ℓν̄ℓ write [24]





dΓ

dw
(B → D ℓν̄ℓ) =

G2
F

48π3
(mB +mD)

2m3
D(w

2 − 1)3/2 |Vcb|2 |G (w)|2

dΓ

dw
(B → D∗ℓν̄ℓ) =

G2
F

48π3
(mB)

5 (1− r2)r3
√
w2 − 1(1 + w2)λ(w) |Vcb|2 |F (w)|2

(2.18)

where F (w) and G (w) are functions of the form factors entering the B → D(∗) transition ampli-

tudes [24], and w is the product of the velocities of the hadrons in the HQET framework

w = vB · vD =
m2
B +m2

D(∗) − q2
2mBmD(∗)

(2.19)

For a momentum transfer q2 that verifies

q2min ≤ q2 ≤ q2max, q2min = m2
ℓ ≈ 0 and q2max = (mB −mD(∗))2 (2.20)

w varies in the range

1 ≤ w .
m2
B +m2

D(∗)

2mBmD(∗)

(2.21)

The term λ(w) reads

λ(w) = 1 +
4w

w + 1
t2(w) with t2(w) =

1− 2wr + r2

(1− r)2 and r = mD∗/mB (2.22)
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By exploiting Eq. (2.18), one can derive information on the shape of

|CKM matrix element× form factor| (2.23)

from the experimentally measured differential decay rates.

The main theoretical problem is the determination of these form factors. At the zero recoil point, w = 1,

heavy quark symmetries play a useful rôle in setting the normalization F (1) = G (1) [28], even though

this point is not directly accessible from experiments due to the kinematic suppression in Eqs. (2.18).

Let us compare the latest determinations of the |Vcb| value extracted from B → Dℓν̄ℓ decays. The most

recent unquenched2 lattice calculation dates back to 2005 [29] and gives

G (1) = 1.074± 0.024 (2.24)

Using the above value along with the latest HFAG average [30] that includes older Aleph, CLEO and

Belle measurements, as well as the new 2008-2009 BaBar data, one finds

|Vcb| |G (1)| = (42.64± 1.53)× 10−3 (2.25)

The resulting estimate of |Vcb| is

|Vcb| = (39.70± 1.42exp ± 0.89th)× 10−3 (2.26)

in good agreement with the lattice determination of F (1) [31, 32] from B → D∗ℓν̄ℓ [30]

|Vcb| = (39.54± 0.5exp ± 0.74th)× 10−3 (2.27)

but with an experimental error which is more than twice larger. In the case of B → D decays, the

experimental error overcomes the theoretical one arising from the determination of G (1). However,

in the case of B transitions into D∗, the theoretical uncertainty is larger than the experimental one.

Therefore, any precise determination of the form factors is important to get a more precise value of the

CKM matrix element Vcb.

An alternate lattice determination, currently available only in the quenched approximation, consists in

calculating the form factor directly at non zero recoils w > 1, avoiding the extrapolation to w = 1 [33,34].

Using only 2009 BaBar data [35], this approach gives a slightly higher value than the unquenched lattice

results (2.26)

|Vcb| = (41.6± 1.8exp ± 0.77th)× 10−3 (2.28)

The most recent non lattice calculation combines the heavy quark expansion with a “BPS” expansion [36]

giving in this limit

G (1) = 1.04± 0.02 (2.29)

2The “unquenched” notion will be discussed later on.
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With such an estimate, one finds [1]

|Vcb| = (40.7± 1.5exp ± 0.8th)× 10−3 (2.30)

in agreement, within the errors, with both lattice determinations in (2.26) and (2.28).

Case of a massive lepton: until 2007, only decays where the final lepton was an electron or a muon

had been observed. When the mass of the charged lepton is no longer negligible3, the relations (2.18)

b

c, u

H±

τ

ν̄τ

Figure 2.4: Feynman Diagram with a charged Higgs contributing to B → τ ν̄τ and B → D(∗)τ ν̄τ .

do not hold and experimental measurements of B → D(∗)τ ν̄τ are sensitive to other form factors.

The first observation of the B → D∗τ−ν̄τ decay, by the Belle Collaboration [37], was followed by

improved measurements and evidence for B → Dτ−ντ , by both Babar and Belle Collaborations [38,39].

Recently, BaBar has updated its older measurements [38] by using its full data sample. The obtained

results of B → D(∗)τ ν̄τ branching ratios normalized to the corresponding B → D(∗)ℓν̄ℓ modes (ℓ = µ, e)

are

R(D) =
B(B → Dτν̄τ )

B(B → Dℓν̄ℓ)
= 0.440± 0.072 and

R(D∗) =
B(B → D∗τ ν̄τ )

B(B → D∗ℓν̄ℓ)
= 0.332± 0.03

(2.31)

where the statistical and systematic uncertainties have been combined quadratically. The results (2.31)

have been compared with the SM predictions [40,41]

R(D)SM = 0.297± 0.017 and R(D∗)SM = 0.252± 0.003 (2.32)

which are averaged over electrons and muons.

One can see clearly that experimental measurements exceed the SM expectations by 2.0σ for R(D) and

by 2.7σ for R(D∗); taken together, they disagree at the 3.4σ level. In a recent full Nf = 2 + 1 flavor

Lattice QCD calculation4, the authors of Ref. [42] found R(D) = 0.316± 0.012± 0.007. Another recent

phenomenological approach challenges the SM determination for R(D), giving R(D) = 0.31± 0.02 [4]:

both analyses reduce the discrepancy below 2σ.

Current experimental measurements of R(D) are statistics-limited, so the luminosities available at fu-

3We will always use massless neutrinos.
4This Nf number will be explained in a coming chapter.
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ture flavor facilities should allow significant improvements. If the experimental results for R(D) and

R(D∗) are to be confirmed, they might point to NP effects in semitauonic B decays. It has been ex-

cluded that the excess in R(D(∗)) over the SM be explained within type II two Higgs doublet model

(2HDM) [43] and in the context of the Minimal Supersymmetric Standard Model (MSSM) with flavor

violation [44]. Instead, it is deemed possible in other extensions, e.g. in type III [45] and Aligned [46]

two Higgs doublet models, by adopting effective Lagrangians [47]. (Fig. 2.4 represents charged Higgs

mediated contributions to the taunic B decays.)

In the following, we propose to study the decay Bs → Ds ℓν̄ℓ. We will revisit the SM predictions by

computing the normalization of the vector form factor relevant to the extraction of the CKM matrix

element |Vcb| from B(Bs → Dsℓν̄ℓ) with ℓ ∈ {e, µ}. Moreover, in the models with two Higgs doublets,

the charged Higgs boson can mediate tree-level processes, including B → Dℓν̄ℓ, and considerably

enhance the coefficient multiplying the scalar form factor in the decay amplitude. So, we need to

estimate the scalar form factor to interpret the recent discrepancy between the experimentally measured

R(D) and its theoretical prediction within the SM. Finally, in the models of physics BSM in which a

tensor coupling to a vector boson is allowed, a third form factor might become important. We will

perform the first Lattice QCD estimate of this (tensor) form factor.

2.4 Status of B → D∗∗ ℓ ν̄ℓ

In what follows, we will discuss the theoretical approaches used to describe the semileptonic decay

of B mesons into D∗∗ as well as the values obtained for the corresponding branching ratios from the

theoretical and the experimental sides. Important results will be collected in Sections 2.4.2 and 2.4.3.

2.4.1 Infinite mass limit approaches

In the heavy quark limit for the b and c quarks, all the transition amplitudes associated with B →
D∗∗ ℓ ν̄ℓ decays are proportional to one of the two Isgur-Wise (IW)5 functions τ1/2 and τ3/2 [25]. For

example

〈D∗∗(0+) |Aµ |B(0−)〉 ≡ − (vµ − v′µ) τ1/2(w) (2.33)

〈D∗∗(2+) |Aµ |B(0−)〉 ≡
√
3 τ3/2(w)

[
(1 + w)ǫ∗µν v

ν − v′µ vν vρǫ∗νρ
]

(2.34)

where v and v′ are the four velocities of the initial and final mesons, ǫµν is the polarization tensor of

the 2+ state and the mesonic states are normalized according to

〈
M(~v ′, εβ)

∣∣M(~v, εα)
〉

= (2π)3 2v0 δαβ δ
3(~v ′ − ~v) (2.35)

5A third IW function ξ(w) is also introduced for the B → D(∗) transitions.
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Quark model predictions

The characterization of the IW functions relies on theoretical predictions. The IWs are bounded by

sum rules, such as the so-called Uraltsev sum rule [48]

∑

n

|τ (n)3/2(1)|
2 − |τ (n)1/2(1)|

2 =
1

4
(2.36)

with n labeling the radial excitations. The functions τ1/2(1) and τ3/2(1) are the IW form factors at zero

recoil (w = 1). Focusing only on the ground states suggests the inequality |τ1/2(1)| < |τ3/2(1)|, which

is also confirmed by the similar sum rule studied in Ref. [49]. This is not a theorem but relies on the

assumption that the lowest state dominates in each channel.

The IW functions were also determined using a quark model having very interesting features in the

heavy quark limit: this particular class of models, called à la Bakamjian-Thomas (BT) [50], provides a

method for writing in a covariant way the transition amplitudes. It also exhibits the correct behavior in

the infinite mass limit and satisfies the heavy-quark symmetry relations discovered by Isgur and Wise.

Within the BT quark model approach, one finds that the difference |τ3/2(1)| − |τ1/2(1)| is positive and

large [51]. This difference between τ1/2(1) and τ3/2(1) comes from the Wigner rotations of the light

spectator quark, which acts differently for the j = 1/2 and j = 3/2 states. In addition, since the matrix

elements are written in terms of the wave functions of the bound states which depend on the dynamics,

one also has to choose a necessarily relativistic potential model to fix the wave functions at rest. The

guiding principle in choosing the potential is obviously the requirement to describe as broad a range

of observed hadrons as possible. In that respect, the standard Godfrey-Isgur (GI) potential model [52]

provides the best description of the whole spectroscopy. By using the wave functions fixed by the GI

potential model, the BT approach leads to the following results [53]

τ3/2(1) ≃ 0.54 τ1/2(1) ≃ 0.22 (2.37)

In what follows, we will compare the above values to those obtained using other theoretical approaches.

Lattice QCD predictions

The only known way to systematically and rigorously solve the quantum theory of strong interactions,

allowing us to compute these form factors without uncontrolled hypothesis, is Lattice QCD. The IW

form factor at zero recoil, τ1/2(1), was first calculated in Ref. [54] and the computation was later

improved in Ref. [55], where the results were obtained for a given lattice spacing and using Nf = 2

flavors of dynamical quarks. The results read

τ3/2(1) = 0.528(23) τ1/2(1) = 0.297(26) (2.38)

The agreement between the results obtained in the static limit of Lattice QCD (2.38) (i.e. lattice

computations using the infinite mass limit of the charm quark) and the results obtained using the BT

approach with a suitable potential model (2.37) is striking. A similar agreement has been observed for

the distribution of the axial, scalar and vector charges in the heavy-light mesons with either L = 0, or

L = 1 [56]. The advantage of quark models is that one can easily calculate the w-dependence of τ1/2(w)
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and τ3/2(w), needed when computing the branching ratios.

QCD sum rules

The τj(1) results from QCD sum rules depend on the choice of the creation and annihilation operators

for the D∗∗ states and do not agree among themselves. The first calculation of τj(1) was made in

Ref. [57, 58]

τ3/2(1) ∼ 0.25 τ1/2(1) ≃ 0.35(8) (2.39)

Other results based on QCD sum rules were presented in Ref. [59]

τ3/2(1) ≃ 0.43(8) τ1/2(1) ≃ 0.13(4) (2.40)

The hierarchy |τ1/2(1)| < |τ3/2(1)| is similar to the one found in Lattice QCD and in the quark model

discussed above. However, the value τ1/2(1) ≃ 0.13(4) is considered to be incompatible with the value

given in Eq. (2.39) or with the results in Eqs. (2.38) and (2.37). The difference between the values

obtained using QCD sum rules and between these values and the results coming from other theoretical

approaches (LQCD, quark models) is considered to be an indicator of a possible uncertainty of the

method.

2.4.2 Theoretical summary

From the previous discussion, one can calculate the ratio of the values of the IW functions involving

the D∗∗ states at w = 1 in the heavy quark limit

|τ1/2(1)|2
|τ3/2(1)|2

≃ 0.17 (2.41)

It indicates that the branching ratio of the semileptonic B decay to a jP = (1/2)+ state should be

small compared to the decay to a jP = (3/2)+ meson, provided the phase space contribution does not

reverse the trend. Using the results of the quark model calculation in the BT formalism with the GI

potential model, one has [51]

B(B0
d → D∗−

2 ℓν̄ℓ)th ≃ 0.7× 10−2

B(B0
d → D−

1 (3/2)ℓν̄ℓ)th ≃ 0.45× 10−2

B(B0
d → D′−

1 (1/2)ℓν̄ℓ)th ≃ 0.7× 10−3

B(B0
d → D∗−

0 ℓν̄ℓ)th ≃ 0.6× 10−3

(2.42)

which confirms that the production of the broad resonances is much lower than the one of narrow states.

Let us confront these results with the experimentally measured branching fractions.
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2.4.3 Experimental situation

The experimental status of the weak transitions between B and the broad D∗∗ states reveals a different

situation.

Narrow states: decays to the narrow D∗∗ states have been experimentally measured with good

accuracy6

B(B0
d → D∗

2ℓ
+ν̄ℓ) = (0.26± 0.03)% (2.43)

B(B0
d → D1ℓ

+ν̄ℓ) = (0.59± 0.05)% (2.44)

giving

B(B0
d → D∗∗

narrowℓ
+ν̄ℓ) = (0.85± 0.06)% (2.45)

There is an excess in the theoretical prediction, by a factor of 2, for B(B0
d → D∗

2ℓ
+ν̄ℓ), but there is

also an overall success for the sum B(B0
d → D∗∗

narrowℓ
+ν̄ℓ) which indicates that there is a qualitative

agreement between theory and experiment in B decays to a j3/2 state.

Broad states: the measured value for the D∗
0 is

B(B0
d → D∗

0ℓ
+ν̄ℓ) = (0.40± 0.07)% (2.46)

The semileptonic experimental data contradicts the theoretical estimate for the decay to a j = 1/2

state, with a huge discrepancy, of one order of magnitude. For the broad D′
1 state, the situation is

different because the two experiments disagree. Belle does not see any broad D′
1 component, while

BaBar gives

B(B0
d → D′

1ℓ
+ν̄ℓ) = (0.38± 0.06± 0.06)%

HFAG [30] also gives

B(B0
d → D′

1ℓ
+νℓ) = (0.18± 0.06)%

Finally, the relation found in the heavy mass limit [60–62]

B

(
B → D∗∗

=3/2 ℓ ν̄
)
≫ B

(
B → D∗∗

=1/2 ℓ ν̄
)

(2.47)

is violated: this is known as “1/2 vs 3/2 puzzle” [21, 22]. It is one of the longstanding puzzling

features of semileptonic b→ c data.

2.4.4 Conclusion and proposals

The broad B → D∗∗
1/2 decays remain a controversial topic on both experimental and theoretical front.

Measurements done by BaBar and Belle for the D′
1 are incompatible. Moreover, experimental data also

indicate that the production of D∗
0 states does not verify the theoretical predictions.

6The numbers presented are taken from [23] where the values are given by the HFAG Collaboration [30] and averaged
by taking measurements from neutral and charged B mesons using isospin symmetry. Obtained values are quoted for the
B0

d meson.
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The broadness of j = 1/2 states may be one of the reasons causing the disagreement between experi-

ments as well as between theory and experiment, since it has always been difficult to disentangle very

broad resonances.

In order to clarify the comparison between theory and experiment, it has been suggested to analyze

states analogous to the controversial D∗∗ (i.e. D∗
0 and D′

1) but having narrow widths (i.e. D∗
s0 and

D′
s1), in particular studying the non-leptonic decays B0

s → Ds π [23] which would provide an important

check of the observations made in the corresponding non-strange modes. Other theoretical suggestions

to ease or solve the previous problems include taking into account an unexpectedly large B-decay rate

to the first radially excited D
′(∗) [63–65].

In many theoretical approaches (HQET, heavy quark expansion, quark model, Lattice QCD with

quenched calculation, etc...), branching ratios corresponding to the decay B → D∗∗ℓν̄ℓ were calculated

using the infinite mass limit. The impact of the corrections arising from the finiteness of the heavy

quark mass in the process of B into the D∗∗ has not been much discussed, and until now there is no

available Lattice QCD result that would help to assess the size of these corrections. That is the reason

why, in order to address the aforementioned questions, we propose in this doctoral work to determine

for the first time the physical parameters and then the form factors from Lattice QCD using “real”

charmed quarks having a finite mass.
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Chapter 3

Lattice QCD
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The Standard Model is a gauge theory based on SU(2)× U(1)× SU(3). The SU(2) and U(1)

components have weak couplings and can be studied with perturbative methods, but the SU(3) part

(QCD) can be studied with perturbative techniques at high energies only. In the infrared regime, the

strong coupling grows and thus the use of non-perturbative techniques is inevitable in order to determine

accurately the low energy properties of QCD.

One possibility is to discretize the space-time in order to “put” the QCD Lagrangian on a finite lattice:

the method was proposed by Wilson in 1974 and is called “Lattice gauge theory”. It is a means of reg-

ularizing a field theory by moving from a continuous infinite world to a discretized finite volume where

quark fields are placed on the sites separated by the lattice spacing “a” and gauge fields are the links

between these sites (Fig. 3.1). In this theory truncated to a finite number of degrees of freedom, masses,

decay constants and hadronic transition amplitudes can, in principle, be calculated by averaging, in the

statistical sense, over gauge configurations generated numerically on a computer. The continuum limit

is then recovered, for example, by taking the limit of a vanishing lattice spacing and the volume to infinity.

In the first section we will review the continuous QCD action. Then we will introduce the discretization

of QCD on the lattice which proceeds in many steps: we begin with the lattice action for gluons followed

by the discretization of the fermionic part of the QCD action. Finally, we discuss the twisted mass

action, the adopted choice in our simulation, and we will show some of its implications.

a

Fermions

Gluons

Figure 3.1: Lattice QCD symbolic description.

3.1 QCD in the continuum

Quantum chromodynamics is a relativistic Quantum Field Theory which describes the strong interaction

in terms of fundamental degrees of freedom (quarks and gluons). In Euclidean space1, the continuum

1The reasons for going to Euclidean space are given in Appendix A.
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action for QCD with a set of nf flavours of quarks is

S[ψ, ψ̄, Aµ] =

∫
d4x

nf∑

f=1

ψ̄f (x) (γµDµ + mf ) ψf (x) −
1

4
Tr [FµνF

µν ] (3.1)

If we explicitly write all the indices, we arrive at

S[ψ, ψ̄, Aµ] =

nf∑

f=1

∫
d4x ψ̄f (x)α,A

{
(γµ)αβ [∂µδAB + ig Aµ(x)AB ]

+mfδABδαβ

}
ψf (x)β,B −

1

4
F
a
µνF

µν
a

(3.2)

where γµ are the Dirac-matrices, α, β ∈ {1, 2, 3, 4} are the Dirac indices, A,B ∈ {1, 2, 3} stands for the

color indices of the fermion fields, a ∈ {1, · · · , 8} denotes the gluon color indices and µ, ν ∈ {1, 2, 3, 4}
the Lorentz indices.

The SU(3) gauge invariance of QCD requires the action to be invariant under the transformation

ψ(x) ψ′(x) = G(x)ψ(x) , ψ̄(x)→ ψ̄′(x) = ψ̄(x)G†(x) (3.3)

where G(x) is a complex 3× 3 matrix at each space-time point x. Being unitary and special, it can be

decomposed as

G(x) = exp[−i T ·Θ(x)] (3.4)

where T represents the generators of the SU(3) group and Θ(x) is a local phase.

By definition, they satisfy

G†(x) = G−1(x) and det [G(x)] = 1 (3.5)

The local invariance of the fermionic action under the gauge transformation (3.3) generates a gauge

field Aµ(x) having the transformation property

Aµ(x) A′
µ(x) = G(x)Aµ(x)G

†(x) + i(∂µG(x))G
†(x) (3.6)

Note that Aµ lies in the Lie algebra of SU(3) which implies

Aµ(x) =
8∑

a=1

Aaµ(x) Ta (3.7)

Moreover, Dµ(x) is the covariant derivative defined by

Dµ(x) = ∂µ + i g Aµ(x) (3.8)

and transforms as

Dµ(x) D′
µ(x) = ∂µ + i g A′

µ(x) = G(x)DµG
†(x) (3.9)
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g

g

g

g g

g g

q

q̄

g

Figure 3.2: Feynman diagrams of the QCD Lagrangian for cubic and quartic self-interactions and for the
quark-gluons vertex.

Finally, F a
µν , the field strength tensor, is the commutator of two covariant derivatives expressed in

terms of the gauge fields Aaµ

F
a
µν = −i[Dν(x), Dµ(x)] = ∂µA

a
ν(x)− ∂ν Aaµ(x) + i g [Aaµ(x), A

a
ν(x)] (3.10)

It transforms according to

F
a
µν(x) F

′a
µν(x) = G(x)F

a
µν(x)G

†(x) (3.11)

Because the commutator in (3.11) does not vanish (SU(3) is a non abelian group), the term representing

the gauge action

1

4

∫
d4x

8∑

a=1

F
a
µν F

µν
a (3.12)

gives rise to self-interactions of the gluons, making QCD a highly non trivial theory. Self-interactions

(cf. figure 3.2) are responsible for confinement of color, the most prominent feature of QCD.

3.2 Gauge field on the lattice

Using local gauge invariance and requiring the locality of interactions, one can construct lattice actions

whose continuum limits reproduce the Yang-Mills Theory and whose strong coupling limits confine

quarks. The discussion of the possible gauge actions constitutes the core of the forthcoming sections.

3.2.1 Lattice transcription of gauge field variable

In the continuum, the gauge fields Aµ(x) carry 4-vector Lorentz indices and mediate interactions between

fermions. To transfer them to a lattice, Wilson noted [66] that in the continuum, a fermion moving
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from x to y in presence of a gauge field Aµ(x) picks up a phase factor given by the path ordered product

Ψ(y) = P exp


ig

y∫

x

Aµ(xµ) dx
µ


 Ψ(x) (3.13)

where g is the gauge coupling constant.

From here arises the idea that gauge field variables can be associated with links that connect sites

on the lattice. So, Wilson introduced a discretized version of a path ordered product, the gauge link

U(x, x+ aµ̂)

U(x, x+ aµ̂) = P exp

(
iga

∫ 1

0

Aµ(x+ τ µ̂) dτ

)

≡ exp

(
igaAµ(x+

µ̂

2
)

)
(3.14)

where µ̂ is a unit vector pointing in the µ direction and Aµ is the average field defined at the midpoint

of the link. The link matrix is the path dependent gauge connection that relates the color space at site

x to the site x+ aµ̂, and is denoted by

U(x, x+ aµ̂) ≡ Uµ(x) (3.15)

Uµ(x) are forward connections and U−µ(x) are backward connections (see Fig. 3.3). They satisfy

relations such as

U(x, x− aµ̂) ≡ U−µ(x) = exp

(
−i g a Aµ(x−

µ̂

2
)

)
= U †(x− aµ̂, x) (3.16)

x x+ aµ̂

Uµ(x)

x− aµ̂ x

U−µ(x)

Figure 3.3: Gauge links on the lattice.

The set of Uµ(x) for all µ and all lattice points x will be called “gauge configuration”. A configuration

represents a possible value of the gluon fields on the lattice.

Finally, we introduce the discretized forward covariant derivative

−→∇µ ψ(x) =
U(x, x+ aµ̂)ψ(x+ aµ̂)− ψ(x)

a
(3.17)

as well as the backward covariant derivative

−→∇∗
µ ψ(x) =

ψ(x)− U−µ(x)ψ(x− aµ̂)
a

(3.18)

Usually, when discretizing the continuum Dirac action, we replace the derivative with the following
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symmetric difference

∇ψ(x) =
1

2
(
−→∇µ +

−→∇∗
µ)ψ(x) =

U(x, x+ aµ̂)ψ(x+ aµ̂)− U−µ(x)ψ(x− aµ̂)
2a

(3.19)

The latter ensures the anti-hermiticity of the Dirac operator2.

3.2.2 Gauge invariance and gluon action

We are now going to discuss how to construct gauge invariant quantities (observables) on the lattice.

A rotation in color space can be done at each site with an SU(3) matrix G(x). Then, the link variable

Uµ(x) transforms according to

Uµ(x)→ G(x) Uµ(x) G
†(x+ aµ) (3.20)

Since the action needs to be invariant with respect to this transformation law, it has to be constructed

from traces of products of U matrices around closed paths, known as Wilson loops.

x+ aν̂ x+ aν̂ + aµ̂

x+ aµ̂
x

Figure 3.4: Representation of a 1× 1 Wilson loop known as plaquette.

The simplest example is the 1 × 1 loop, shown in Fig. 3.4, which defines the gauge invariant quantity

called “plaquette”

Re
[
Tr
(
Uµ(x) Uν(x+ aµ̂) U†

µ(x+ aν̂) U†
ν (x)

)]
(3.21)

whose invariance is obvious from (3.20). The trace of any Wilson loop in the fundamental representation

is complex, with the two possible path-orderings giving complex conjugate values. Thus, taking the

trace ensures gauge invariance and taking the real part is equivalent to averaging the loop and its charge

conjugate.

Formulation of the Lattice action: as a pedagogical example, we will outline the construction of

the lattice gauge action for QED (U(1) symmetry), in which the link variables are commuting complex

numbers instead of SU(3) matrices. Closed loops

L1×1
µν = Uµ(x) Uν(x+ aµ̂) U†

µ(x+ aµ̂) U†
ν (x) (3.22)

2The notion of Dirac operator will be introduced in Section 3.3
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are expressed, using Eq. (3.14), as

L1×1
µν = exp

[
iag

(
Aµ
(
x+

µ̂

2

)
+Aν

(
x+ µ̂+

ν̂

2

)
−Aµ

(
x+ ν̂ +

µ̂

2

)
−Aν

(
x+

ν̂

2

))]
(3.23)

and can be used to construct the gauge action. Expanding (3.23) about x +
µ̂+ ν̂

2
gives

L1×1
µν = exp

[
ia2g(∂µAν − ∂νAµ) +

ia4g

12
(∂3µAν − ∂3νAµ) + · · ·

]
(3.24)

and expanding the exponential, we obtain

L1×1
µν = 1 + ia2gFµν −

a4 g2

2
Fµν F

µν + O(a6) (3.25)

The real part of the loop reads

Re
[

Tr (1− L1×1
µν )

]
=

a4g2

2
Fµν F

µν + O(a6) (3.26)

while the imaginary part gives

Im (L1×1
µν ) = a2gFµν + O(a4) (3.27)

Note that, since the electric and magnetic fields E and B are proportional to Fµν , Eq. (3.27) shows

that they are given by the imaginary part of the Wilson loop L1×1
µ .

There are 6 distinct positively oriented plaquettes, {µ < ν}, associated with each site. Summing over

them and taking into account the double counting by an extra factor of 1
2 , gives, to the lowest order

in a

1

g2

∑

x

∑

µ<ν

Re Tr
[
(1− L1×1

µν )
]
=
a4

4

∑

x

∑

µ<ν

Fµν F
µν + O(a2)

a→0−−−−−−→ 1

4

∫
d4x Fµν F

µν

(3.28)

Note that the factor a4 together with the sum over x is just the discretization of the space-time integral3

and thus the expansion of the plaquette reproduces the continuum action when a goes to zero.

The gauge action for the non-abelian case can be similarly constructed: the result for SU(3), defined

in terms of plaquette and called the gauge part of the Wilson action, is

SG =
β

3

∑

x

∑

µ<ν

Re
[
Tr (1− L1×1

µν )
]

(3.29)

where β =
6

g2
is the inverse coupling4.

3That is also the reason why the O(a6) correction term in Eq. (3.25) becomes an O(a2) correction term in Eq. (3.28).
4For a general group SU(N ≥ 3), β = 2N

g2
and the plaquette L1×1

µν (N) corresponds to the same ordered product as for

SU(3).



42 Lattice QCD

Improved gauge actions: we have already shown that the Wilson gauge action (3.28) reproduces

the continuum limit up to terms O(a2). So lattice artifacts contribute at O(a2). Since it is impossible

to choose arbitrary small lattice spacings, it is advisable to use any strategy which can minimize

discretization effects and make the extrapolation to the continuum simpler. We will present in the

following the basis of the Symanzik improvement program [67–69]. The main idea of this program is to

cancel the leading order corrections and reduce lattice artifacts at non-zero lattice spacing.

We start from the above construction of the gauge action. We see clearly that the first terms in the

expansion of the plaquette in power of the lattice spacing is, for the SU(N) theory

Re
[
Tr (L1×1

µν )
]
= N +

1

2
a4O4 + a6O6 + · · · (3.30)

whereN is the trace of the 1N×N identity matrix. Here, O4 is the dimension-four operator corresponding

to the continuum gauge action

O4 = g2
∑

µν

Tr Fµν F
µν (3.31)

There are no dimension-five operators, and O6 =
∑
j

rj O
j
6, where Oj6 are the dimension-six operators

allowed by lattice symmetries. The dimension-six operators present in the discretized lattice gauge part

of the Wilson action lead to discretization errors proportional to a2.

One wants to reduce discretization errors as much as possible in order to achieve a better convergence

to the continuum limit, and to make a more efficient simulation of QCD. Classical improvements of

the lattice action, i.e. decreasing discretization errors by removing the O(a2) term, can be achieved by

adding to the lattice action operators which go to zero when a → 0, and tuning their coefficients to

eliminate dimension-six operators present in the action. The lattice action then becomes

Slatt  Scont + O(a3) (3.32)

In order to apply this program to the gauge part of the Wilson action of QCD, one adds six-link loops

involving six gauge links to define O(a2) improved actions. There are only three six-link loops that one

can draw on the lattice. These, shown in Fig. 3.5, are the planar, the twisted and the L shaped loop.

Figure 3.5: Six-link loops: from left to right, planar, twisted and L shaped.

For example, the lattice gauge action called the tree-level Symanzik action is the linear combination of
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the plaquette L1×1
µν and the planar loop L1×2

µν

SG =
β

3

∑

x

(
b0

4∑

µ,ν

[
1− Re

(
Tr L1×1

µν

)]
+ b1

4∑

µ,ν

[
1− Re

(
Tr L1×2

µν

)]
)

(3.33)

with b0 = 1 − 8b1. We recover the gauge part of the Wilson action for b1 = 0 and the tree-level

Symanzik improved action for b1 = −1/12 [69] which corresponds to the form of the gauge action used

by the European Twisted Mass Collaboration (ETMC)

SG =
β

3

∑

x

(
5

3

4∑

µ,ν

[
1− Re

(
Tr L1×1

µν

)]
− 1

12

4∑

µ,ν

[
1− Re

(
Tr L1×2

µν

)]
)

(3.34)

Other popular action is the Iwasaki action [70] where b1 = −0.331.

3.3 Fermion field on the lattice

Putting fermions on the lattice is a much more difficult task. Many approaches to lattice fermions have

been developed over the years, none of which is completely free from issues. In the following, we will

illustrate some of the fermionic actions and we will identify some of the underlying problems.

Let us start with the lattice transcription of the fermion fields ψ(x). In the continuum, the quark

fields are represented by anti-commuting Grassmann variables. On the lattice, they will be attached

to lattice points so that the fermionic field is defined as ψx, x ∈ {n}. It belongs to the fundamental

representation of SU(3).

3.3.1 The naïve action and the doublers problem

Naïve fermions are the simplest implementation of fermions on the lattice. They are rarely used in

simulations, but nevertheless it is interesting to discuss them. In order to get the action for a free

fermion field ψx, we start from its action in the continuum and in Euclidean space5

Scont
F [ψ, ψ̄] =

∫
d4x

[
ψ̄(x)γµ∂µψ(x) + mψ̄(x)ψ(x)

]
(3.35)

The naïve lattice fermions are constructed by simply replacing the derivatives by symmetric differences

Snaïve

F [ψ, ψ̄, U ] = a4
∑

x∈{n}

ψ̄xD
naiveψx = a4


 ∑

x∈{n}

4∑

µ=1

ψ̄xγµ∇µ ψx + m
∑

x∈{n}

ψ̄xψx


 (3.36)

5As was mentioned in Section 3.1, the reasons for going into Euclidean space are presented in Appendix A.
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where the symmetric lattice derivative is given by Eq. (3.19). Since the action is bilinear in ψ̄ and ψ,

we can write it in the form

SF [ψ, ψ̄, U ] = a4
∑

x,y∈{n}

∑

α,β,a,b

ψ̄x,a, α D(x, y)abαβ ψy,b, β (3.37)

where we have introduced the naïve Dirac operator

D(x, y)abαβ =

4∑

µ=1

(γµ)αβ
Uµ(x)abδx+µ̂,y − U−µ(x)abδx−µ̂,y

2a
+ m δαβδabδx,y (3.38)

The doubling problem

In order to identify the doublers, which is one of the fermion lattice regularization problems, let us cal-

culate the Fourier transform of the quark propagator for the trivial gauge field configuration Uµ(x) = 1

(this is the case when we neglect the quark-gluon interaction). We will omit the color indices for nota-

tional convenience and use vector/matrix notation in Dirac space.

For free fermions the inverse D−1
xy of the lattice Dirac operator is the quark propagator GFyx (lattice

Green function)

∑

y∈{n}

Dxy G
F
yz = δx,z (3.39)

By inserting (3.38) and the inverse Fourier transform, we arrive at

GFyz =
1

V

∑

p∈{ñ}

G̃F (p) eip·(y−z) (3.40)

where V is the total number of lattice points.

In Eq. (3.39), we get the Fourier transform of the quark propagator

1

V

∑

p∈{ñ}

∑

µ

γµ

(
eip·(x+µ̂−z) − eip·(x−µ̂−z)

2a
+ meip·(x−z)

)
G̃F (p) = δx,z (3.41)

⇔ 1

V

∑

p∈{ñ}

eip·(x−z)
∑

µ

γµ

(
eiapµ − e−iapµ

2a
+ m · 1

)
G̃F (p) = δx,z (3.42)

Replacing δx,z by its discretized expression,
1

V

∑

p∈ñ

eip·(x−z), we finally get the inverse of the quark

propagator in momentum space

G̃F (p)−1 = m1 +
i

a

4∑

µ=1

γµ sin (pµa) (3.43)
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which is nothing but D̃(p), the naïve Dirac operator in momentum space.

The matrix G̃F (p) can be calculated easily

G̃F (p) =

m1 − i

a

∑

µ

γµ sin (pµa)

m2 +
1

a2

∑

µ

sin2 (pµa)
(3.44)

In the continuum, the propagator for a massless fermion has a pole in momentum space

G̃F (p)

∣∣∣∣
m=0

=

i

a

∑

µ

γµ sin (pµa)

1

a2

∑

µ

sin2 (pµa)

a→0−−−−−−→
−i∑µ γµpµ

p2
= −i /

p

p2
(3.45)

corresponding to

p = (0, 0, 0, 0) (3.46)

However, on the lattice, the situation is different because the propagator for free fermions has 15

additional poles p = (π/a, 0, 0, 0), (0, π/a, 0, 0), · · · , (π/a, π/a, π/a, π/a), which are known as doublers.

It is then mandatory to devise ways to circumvent the problem of doublers, at least in the continuum

limit.

3.3.2 The Wilson lattice regularized action

One possible solution to avoid doublers was suggested by Wilson [71] who proposed to add a momentum-

dependent “mass term” to the fermion action. This is equivalent to raising the masses of the unwanted

doublers to values of the order of the cutoff (E ∼ 1/a), so that they become very heavy as a is taken

to zero. It is a second derivative operator which vanishes in the continuum limit

−ar
2

∑

µ

∇∗
µ∇µ ψx (3.47)

where r is the Wilson parameter which is taken equal to 1 in our simulations. We can now combine the

Wilson term (3.47) with the naïve fermion action to obtain Wilson’s complete fermion action

SW = m
∑

x

ψ̄x,α,aψy,β,bδxyδαβδab

+
1

2a

∑

x,µ

ψ̄x,α,a(γµ)αβ [Uµ(x)abψx+µ̂, β,b − U†
µ(x− µ̂)abψx−µ̂, β,b]

− ar

2a2

∑

x,µ

ψ̄x, α,a[Uµ(x)abψx+µ̂, β,bδαβ − 2ψx, β,bδabδαβ + U †
µ(x− µ̂)abψx−µ̂, β,b]

(3.48)
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which can also be written as

SW ≡
∑

x,y

∑

α,β,a,b

ψ̄x α,aD
W (x, y)abαβ ψy, β,b (3.49)

with the Dirac operator

DW (x, y)abαβ =
1

2a

{
κ−1δxyδαβδab −

∑

µ

[(
1− γµ

)
αβ
δx,y−µ̂ Uµ(x)ab

+
(
1 + γµ

)
αβ
δx,y+µ̂ U

†
µ(x− µ̂)ab

]} (3.50)

where κ is the hopping parameter

κ−1 = 2ma + 8r (3.51)

By making the same kind of reasoning as in the preceding section, we find an additional term in the

propagator

S̃(p) =
E(p)− i

a

∑
µ γµ sin(apµ)

E2(p) +
1

a2
∑
µ sin2(apµ)

(3.52)

where

E(p) = 1m+ 1
1

a

∑

µ

(1− cos(apµ)) (3.53)

For components with pµ = 0, the additional term, 1
1

a

∑
µ (1 − cos(apµ)), vanishes. Whereas, with

pµ = π/a it provides an extra contribution 2/a. This term acts as an additional mass term, and the

total mass of the doublers is now given by

m +
2l

a
(3.54)

where l is the number of momentum components with pµ = π/a.

3.3.3 Chiral symmetry considerations

The chiral symmetry is a symmetry of the Lagrangian for massless fermions. The corresponding La-

grangian, in Euclidean space, is

L =
∑

f

ψ̄f γµDµ ψf ≡
∑

f

ψ̄f D ψf (3.55)
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where D is the massless Dirac operator and ψf ≡ ψ is a vector fermion field in color space. For the two

flavors (up u and down d), we have

ψf =

(
ψu
ψd

)
(3.56)

Any spinor field can be decomposed into “chiral fields” as follows

ψ = ψL + ψR =
1

2
(1− γ5) ψ +

1

2
(1 + γ5) ψ = PL ψ + PR ψ (3.57)

where PL(PR) is the left(right)-handed projector obeying

P 2
L + P 2

R = 1 ; PL PR = 0 ; P 2
L = PL ; P 2

R = PR (3.58)

The Lagrangian can be rewritten as

L = ψ̄L DψL + ψ̄R DψR (3.59)

and is invariant6 under the following set of transformations





ψL → ψ′
L = exp

[
−i
∑

a

αaLτ
a

]
ψL

ψR → ψ′
R = exp

[
−i
∑

a

αaRτ
a

]
ψR

(3.60)

which forms the SU(2)L × SU(2)R global symmetry group. This symmetry is called “chiral symmetry”

and transforms a fermion state according to

|ψ〉 → |ψ′〉 = exp

[
−i
∑

a

(αaLτ
a)PL

]
exp

[
−i
∑

a

(αaRτ
a)PR

]
|ψ〉 (3.61)

With a bit algebra, Eq. (3.61) can be rearranged to exhibit the axial and vector nature of the transfor-

mation

|ψ〉 → |ψ′〉 = exp

[
−i
∑

a

(αaV τ
a)

]
exp

[
−iγ5

∑

a

(αaAτ
a)

]
|ψ〉 (3.62)

This corresponds to the following set of transformations for the fields

vector transformation





ψ → ψ′ = exp

[
−i
∑

a

αaV τ
a

]
ψ

ψ̄ → ψ̄′ = ψ̄ exp

[
+i
∑

a

αaV τ
a

] (3.63)

6There are two additional groups U(1)V × U(1)A. U(1)V is related to the baryon number conservation while U(1)A
is broken due to the abelian anomaly (at the quantum level).
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axial transformation





ψ → ψ′ = exp

[
−iγ5

∑

a

αaAτ
a

]
ψ

ψ̄ → ψ̄′ = ψ̄ exp

[
+iγ5

∑

a

αaAτ
a

] (3.64)

which also leaves the Lagrangian of Eq. (3.55) invariant (global SU(2)V × SU(2)A symmetry group).

Finally, since we have (Eqs. (3.55) and (3.59))

L = ψ̄Dψ = ψ̄LDψL + ψ̄RDψR (3.65)

then by substituting the relations given in Eq. (3.57), we obtain the following equation which can be

considered as the essence of the chiral symmetry in the continuum

Dγ5 + γ5D = 0 (3.66)

and which states that the massless Dirac operator anticommutes with γ5.

Going back to the lattice: in order to ensure that lattice results correspond to the continuum

limit of massless fermions, the chiral symmetry has to be respected for a 6= 0. Although the Wilson

term, which we add to the naïve action, helps in removing the doublers, the Wilson Dirac operator DW

does not obey Eq. (3.66). Since it breaks the chiral symmetry, the Wilson operator introduces O(a)

artifacts that were not present in the naïve quark action. Simulations at very small lattice spacings by

keeping reasonably large physical volume would be necessary to reach a decent level of accuracy. Such

simulations are very costly and the Symanzik O(a) improvement procedure is often necessary. For more

details about how the improvement program is implemented in lattice QCD with Wilson quarks, we

refer to [67,68].

Many attempts were made to find a discretized fermion action, free of doublers and respecting the

chiral symmetry at the same time. A very important step was the derivation of the fundamental “no-go

theorem” by Nielsen and Ninomiya [72, 73] which can be summarized as follows: a discretized theory

without unwanted doublers will necessarily violate chiral symmetry.

To find a fermion lattice action respecting the chiral symmetry, Ginsparg and Wilson [74,75] formulated,

in 1982, the Ginsparg-Wilson relation, an essential condition for chiral symmetry on the lattice

Dγ5 + γ5D = aD γ5D (3.67)

The right-hand side vanishes for a→ 0 and so the chiral symmetry is recovered in the continuum limit.

Moreover, this equation also allows to define chiral symmetry on the lattice for finite a.

In current simulations, two types of Ginsparg-Wilson fermions are being used: the first are domain-wall

fermions (DWF) which are defined on a five-dimensional space, in which the fifth dimension is ficti-

tious [76–78]. The second type are overlap fermions which appeared from a completely different context

and have an explicit form that exactly satisfies the Ginsparg-Wilson relation. However, their numerical

implementation has unfortunately a computational cost which is at least an order of magnitude greater

than for other choices.
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3.4 Twisted-mass action

An alternate regularization of QCD, which does not suffer from unphysical zero mode fermion and

preserves chiral symmetry is the “twisted mass QCD (tmQCD) action” [79, 80]. The results presented

in the forthcoming chapters will mostly deal with the case of two degenerate light quarks in the sea,

that is Nf = 2 simulations7, this section will mainly focus on the description of the action related to

such computations.

3.4.1 Twisted mass QCD in the continuum

Let ψ be a fermion field which, in addition to Dirac and color indices, carries also a flavor index which

can assume Nf = 2 values. The index structure of ψ is ψa,α,i, where a stands for the color index, α

is the Dirac index and i represents the flavor index. In such a basis, the fermionic twisted mass QCD

action, in Euclidean space, reads

SF [ψ, ψ̄,G] =

∫
d4x ψ̄a,α,i(x)

[
(γµ)αβ (Dµ)ab δij + (mq)δab δαβ δij︸ ︷︷ ︸

conventional mass term

+ (iµq)(γ5)αβ(τ
3)ijδab︸ ︷︷ ︸

twisted mass term

]
ψb,β,j(x)

(3.68)

The real parameter µq is called the twisted mass. The conventional mass term mq is trivial in color,

Dirac and flavor space, while the twisted mass term is trivial only in color space. It also has a γ5 in

Dirac space, and the third Pauli matrix τ3 which acts in SU(2) flavor space. The mass term of the

twisted-mass action can be rearranged according to

mq + iµqγ5τ
3 = M exp

(
iωτ3γ5

)
(3.69)

where M =
√
m2
q + µ2

q is called the invariant mass. We also define the twist angle ω via

tanω =
µq
mq

(3.70)

In the following, the indices will be suppressed for notational simplicity.

In terms of these quantities, the Lagrangian of Eq. (3.68) can be written as

L = ψ̄
[
D/ +M exp

(
iωτ3γ5

)]
ψ (3.71)

It breaks parity, isospin (flavor) and has an extra term when compared to the QCD Lagrangian. Let

us consider the chiral rotation around the third axis, I3(α), defined by

ψ′ = exp
(
iγ5

α

2
τ3
)
ψ ψ̄′ = ψ̄ exp

(
iγ5

α

2
τ3
)

(3.72)

7For the generalization of tmQCD to the case of quarks with different masses, we refer to [81,82].
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where α is the chiral rotation angle.

Redefining the mass parameters through the following transformations





mq → m′
q = mq cosω + µq sinω

µq → µ′
q = −mq sinω + µq cosω

(3.73)

it is straightforward to see that the Lagrangian in Eq. (3.68) is invariant under the combination of these

two transformations. In terms of Eq. (3.72) this means

L = ψ̄′
[
D/ +M exp

(
iω′τ3γ5

)]
ψ′ (3.74)

i.e. M =M ′ (which justifies the name “invariant mass”) and tanω′ = µ′
q/m

′
q, where ω′ = ω − α.

This implies that we can define a family of theories parametrized by their twist angle. They are all

equivalent because they are related by field and mass redefinitions only. The quark mass is given by

the invariant mass M .

One can immediately see that by choosing I3(α = ω), we obtain ω′ = 0, which is equivalent to µ′
q = 0

and m′
q =M . More explicitly, the special case of tmQCD with zero twist angle is simply QCD8.

Another interesting case is obtained with the I3(ω−π/2) rotations, i.e. when ω′ = π/2, so that m′
q = 0

and µ′
q =M . This case is known as fully twisted or maximally twisted QCD [83].

Symmetries: tmQCD exhibits, for a generic angle ω, the discrete symmetries that involve axis reflection

(parity and time reversal) [80].

• The twisted parity Pω is defined as





x = (x0, ~x)→ x′ = (x0,−~x)
ψ(x)→ γ0 exp

[
iωγ5τ

3
]
ψ(x′)

ψ̄(x)→ ψ̄(x′) exp
[
iωγ5τ

3
]
γ0

(3.75)

• The twisted time reversal Tω is defined as





x = (x0, ~x)→ x′ = (−x0, ~x)
ψ(x)→ i γ0γ5 exp

[
iωγ5τ

3
]
ψ(x′)

ψ̄(x)→ −i ψ̄(x′) exp
[
iωγ5τ

3
]
γ0γ5

(3.76)

The SU(2) vector and axial twisted transformations take the form:

8The basis {ψ′, ψ̄′} of Eq. (3.72) is thus called the “physical basis” because it is the basis where tmQCD takes the form
of QCD when α = ω. {ψ, ψ̄} is called the “twisted basis”.
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• Twisted vector (isospin) symmetry SU(2)ωV





ψ(x)→ exp
[
−iω

2
γ5τ

3
]
exp

[
i
θaV
2
τaγ5

]
exp

[
i
ω

2
γ5τ

3
]
ψ(x)

ψ̄(x)→ ψ̄(x) exp
[
i
ω

2
γ5τ

3
]
exp

[
−iθ

a
V

2
τaγ5

]
exp

[
−iω

2
γ5τ

3
] (3.77)

• Twisted axial (isospin) symmetry SU(2)ωA





ψ(x)→ exp
[
−iω

2
γ5τ

3
]
exp

[
i
θaA
2
τaγ5

]
exp

[
i
ω

2
γ5τ

3
]
ψ(x)

ψ̄(x)→ ψ̄(x) exp
[
i
ω

2
γ5τ

3
]
exp

[
i
θaA
2
τaγ5

]
exp

[
−iω

2
γ5τ

3
] (3.78)

which is however only valid for M = 0.

3.4.2 Lattice formulation of twisted mass Lattice QCD

We now replace the continuum Euclidean space-time by a hypercubic lattice of spacing a.

Complete tmLQCD action: following references [83–85], a lattice formulation of QCD with an

SU(2)f flavor doublet of degenerate quarks is given by the action

S = Sg[U ] + S
(w)
F [ψ, ψ̄, U ] (3.79)

Sg[U ] stands for the lattice gauge action and S
(w)
F for the tmQCD action on the lattice with Wilson

fermions.

Fermion tmLQCD action: the tmQCD action on the lattice (tmLQCD action) S
(w)
F reads

S
(w)
F

[
ψ, ψ̄, U

]
= a4

∑

x

ψ̄x
[
DW +m0 + iµqγ5τ

3
]
ψx (3.80)

where

DW =
1

2

∑

µ

γµ(∇∗
µ +∇µ)− a

r

2

∑

µ

∇∗
µ∇µ (3.81)

∇ and ∇∗ are the standard gauge covariant forward and backward derivatives, m0 and µq are respec-

tively the bare untwisted and twisted quark masses. The parameter r is the Wilson parameter. The

term DW is a standard symmetric discretization of the lattice derivative and the term ar
∑
µ∇∗

µ∇µ is

the Wilson term needed to remove the doublers from the spectrum of the theory.
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The twisted-mass fermionic action, written in terms of the hopping parameter κ, is given by

∑

x

{
ψ̄x (1 + 2 i κ µ γ5 τ3)ψx

−κ ψ̄x
3∑

µ=0

[
Uµ(x)(r + γµ)ψx+aµ̂ + U†

µ(x− aµ̂) (r − γµ) ψx−aµ̂
] } (3.82)

The hopping parameter κ is related to the untwisted quark mass m0 (κ = 1/(8 + 2am0)). The above

expression corresponds to the action implemented in our codes.

In terms of the symmetries described in the previous section, one can see that the Wilson term breaks

the twisted parity Pω and the time reversal Tω symmetries. However the ordinary parity P survives as

a symmetry if it is combined with a discrete flavor rotation (the combination being denoted as P 1
F and

P 2
F )

{
P 1
F : ψx → i γ0 τ

1 ψx′ ψ̄x → −i ψ̄x′ γ0τ
1

P 2
F : ψx → i γ0 τ

2 ψx′ ψ̄x → −i ψ̄x′ γ0τ
2

(3.83)

or if it is combined with the sign flip of the twisted mass (P̃ = P ⊗ [µq → −µq])

P̃ : ψx → i γ0 ψx′ ψ̄x → −i ψ̄x′ γ0 µq → −µq (3.84)

where x′ = P x.

The same holds for time reversal T : T 1
F , T 2

F and T⊗[µq → −µq] are also symmetries of the lattice action.

Moreover, the Wilson term breaks the twisted vector and axial symmetries SU(2)wV . This is however

a discretization effect (triggered by the presence of the Wilson term) and vanishes in the continuum limit.

Renormalization with Wilson fermions may be complicated due to the loss of chiral symmetry. In

tmQCD this can be simplified by a clever choice of the twist angle: w = π/2. In the following, we will

describe how to tune the twist angle to the maximal twist.

Tuning to maximal (or full) twist: the twist angle can be defined in the renormalized theory, anal-

ogously to the continuum theory by

tanω =
µR
mR

(3.85)

where µR and mR are respectively the renormalized twisted and untwisted quark masses given by

µR = Zµ µq mR = Zm mq (3.86)

Zµ is the renormalization constant for the twisted mass quark and Zm stands for the renormalization

constant for the untwisted quark mass m0 (mq = m0−mcri). Without chiral symmetry at finite lattice
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spacing, the bare untwisted mass term renormalizes with a counter term mcri [80]. The mcri
9 is the

value of m0 where the untwisted quark mass mR vanishes. Thus, to tune the value of ω, one has to

determine the ratio Zµ/Zm and the critical mass mcri. One possible way to determine the critical mass

is to use the “Partially Conserved Axial Current” (PCAC) relation

mR =
ZA
〈
∂µA

a
µ(x) P

a(0)
〉

2ZP
〈
P a(x)P a(0)

〉 (a = 1, 2) (3.87)

where Aµ is the axial current, and P a is the pseudoscalar density P a = ψ̄γ5
τa

2 ψ.

Tuning to maximal twist (when the twist angle ω is equal to π
2 ), that is taking m0 to the critical value

mcri and thus obtaining mR = 0, can be achieved by tuning κ to a particular value κcri so that we get

a vanishing value of the correlation function

〈
∂µA

a
µ(x) P

a(0)
〉

(3.88)

Then it is not necessary to compute any renormalization constant, but only the critical mass.

Note that the fermionic action at maximal twist is obtained by replacing m0 by mcri in Eq. (3.80).

Equivalence between tmQCD and QCD: the equivalence between QCD and tmQCD reflects itself

in the correspondence between the correlation functions computed in the two theories. The relation

between correlation functions in QCD and tmQCD can be inferred by the set of transformations of

Eq. (3.72), i.e.

〈
O
〉
[ψ̄′, ψ′](QCD) =

〈
O
〉
[ψ̄, ψ]tmQCD (3.89)

and is valid for Wilson fermions at finite lattice spacing up to cutoff effects if the theory is renormalized

in a mass independent scheme [79]. Using Ginsparg-Wilson fermions, it is possible to prove [79] that

tmQCD and QCD are equivalent, i.e. given a lattice regularization that preserves chiral symmetry, the

equivalence between QCD and tmQCD is preserved at finite lattice spacing: consequently they have

the same continuum limit. Based on universality arguments, we expect that this equivalence is also

satisfied for renormalized correlation functions computed with Wilson twisted mass fermions [79].

The equation which relates the correlators in the two theories depends on how the twist angle is defined.

Hence a given standard correlation function in QCD can be written as a linear combination of correlation

functions computed in tmQCD at a given twist ω. The procedure of computing correlation functions

can be summarized by:

• We start with the QCD correlation function we are interested in.

• We perform the axial rotation that in the continuum brings the action from the physical basis to

the twisted basis on the fields appearing in the correlation function.

• We then compute the resulting correlation function with the Wilson twisted mass lattice action

in the twisted basis, with a relevant choice of quark masses.

9The term mcri is the amount of mass induced by the Wilson term that should be subtracted to have a good chiral
limit. The corresponding κcri is called the critical parameter, which ensures that in the chiral limit the quark mass
vanishes.
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• Finally, we perform the continuum limit.

The final result will be exactly the desired QCD correlation function in the continuum with quark mass

MR =
√
m2
R + µ2

R.

Advantages: each fermion formulation has its own advantages and disadvantages. The advantages

of using the tmQCD regularization are described in great detail in Ref. [79]. For the tmQCD action,

choosing full twist is special since it simplifies, in most situations, the renormalization of the weak in-

teraction matrix elements. This is a major simplification, not only in terms of computational difficulty,

but also in terms of the uncertainty entering the computation of the observables on the lattice, like

for example the decay constants. The error associated with the computation of the renormalization

constants does enter the systematics. Also, choosing the full twist implies an important property called

O(a) improvement, i.e. the discretization effects of O(a) vanish and the leading corrections appear

only at O(a2): by simply tuning one parameter we realize the non-perturbative Symanzik improvement

program mentioned in Section 3.2.

More precisely, parity-even correlation functions (which include all the physical correlation functions)

are automatically O(a) improved (for example, this is the case of the correlators used to compute

the masses), and O(a) discretization effects will affect only parity-odd (unphysical) correlation func-

tions [86].

Disadvantages: the price to pay is that twisted terms break explicitly the parity and isospin at finite

lattice spacing [83], as we have explained above. However, these terms are O(a2) and they disappear

in the continuum limit: those symmetries are restored in the continuum.

This violation of parity will have some unpleasant consequences when studying meson spectroscopy as

will be seen in a forthcoming chapter.

In general, the effect of isospin breaking is large when working with pions. The lack of this symmetry

at finite lattice spacing means that there is a mass splitting between the charged and neutral pions

(mπ+ = mπ− 6= mπ0) leading to O(a2) discretization which are exceptionally large [87].

Conclusion

We have discussed the discretization strategy of gauge and fermion actions on the lattice as well as

several issues arising when looking for a less “controversial” fermionic action. Finally, we choose to work

with the tmQCD action because of its advantages and simplifications, as well as with the Symanzik

gauge improved action in order to compute some physical observables. The techniques of computation

on the lattice, and simulation results, will be the topic of the next chapters.



Chapter 4

Propagator computation in LQCD
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From the path integral formalism one can see the analogy between QFT and statistical me-

chanics, and how a Green’s function in Minkowskian space can be calculated in Euclidean space as a

statistical mean value (see Appendix A). However, such integrals cannot be solved analytically and have

to be computed numerically. So, we have to perform computations in a finite discretized lattice by using

a numerical integration procedure, and then extrapolate observables to the “real world”.

In this chapter, we will review the procedure to calculate correlation functions and thus physical observ-

ables in Lattice QCD. We will start with a general example and then proceed to explain some of the tools

used to compute the propagators of the theory.

4.1 Computation of a physical observable

Calculating an observable in LQCD implies finding its vacuum expectation value expressed in terms of

path integrals as

〈
O
〉

=

∫
[dψ] [dψ̄] [dU ] O e−S(ψ,ψ̄,U)

Z
(4.1)

where S = SG + SF and [dψ] [dψ̄] [dU ] are the integration measures of the fermion and gauge link

variables. Z is the partition function of the theory

Z =

∫
[dψ] [dψ̄] [dU ] e−S[ψ,ψ̄,U ] (4.2)

The fermion action, SF , is written as

ψ̄ D[U ]ψ (4.3)

where D[U ] represents the Dirac operator corresponding to the “particular” fermion action we use1.

Since fermion fields are treated as Grassmann variables, we use the property

∫
[dψ] [dψ̄] e−ψ̄ D[U ]ψ = Det[D[U ]] (4.4)

which comes from a particular case of the Wick theorem. In this way, one gets rid of the integrals over

the quark fields at the cost of having to deal with an integrand which is not local. The statistical weight

e−S is now replaced by

e−SG Det[D[U ]] (4.5)

and we are left with the integral over the gauge fields. Due to the large number of degrees of freedom

on a lattice grid, we cannot evaluate “by hand” integrals of the form (4.1) with standard approaches

such as Simpson integration.

1In our work it is the twisted mass Wilson Dirac operator.
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If we look at the dimension of a typical path integral discretized on a lattice of geometry (L3 × T =

243 × 48)

∫
[dψ] [dψ̄] [dA] · · · ⇒

∏

xµ

(∫
dψ(xµ) dψ̄(xµ) dU(xµ)

)
· · · (4.6)

we find

• xµ : 243 × 48 ≃ 7× 105 lattice sites.

• ψ ≡ ψ
a,(f)
A : 24 quark degrees of freedom for every flavor (Nf = 2) (×2 particle/antiparticle, ×3

colors, ×4 spins)

• U = Uabµ : 32 gluon degrees of freedom (× 8 colors, × 4 spin)

=⇒ In total: 243 × 48× (2× 24 + 32) ≃ 53× 106 integrals

Thus, due to the huge size of the manifold over which the integrals are computed, we need to rely on

Monte Carlo techniques which are in fact the unique method to perform such integrations. This class

of numerical integration methods can be applied whenever the integral assumes the form of a weighted

average over the integrand space, and is very suitable when the weight is highly peaked over a limited

region of the integrand space. In fact, it is a statistical physics technique: one replaces the average over

an experiment by the arithmetic mean of the results obtained from an infinite number of experiments.

In twisted mass Wilson discretization, it can be shown that Det[D[U ]] is real and positive [88] so that〈
O
〉

can be regarded as the average value of O over the space of the gauge configuration U , weighted

with the probability distribution P[U ]





〈
O
〉

=

∫
[DU ] O P[U ]

P[U ] =
1

Z

∏

f

Det[D[U ]]f e
−SG

(4.7)

The first part of the evaluation of O consists in generating a set of Nconf gauge configurations2

Ui, i ∈ [1, · · · , Nconf ] (4.8)

according to the distribution function P[Ui]. This is performed by making use of hybrid techniques

which mix normal Monte Carlo methods with molecular dynamics in order to avoid the explicit eval-

uation of the fermionic matrix determinant. Being a very technical point which is not the subject of

this thesis work, we will not review it and we will assume that the generation of such a set is possible [89].

Then, for each gauge configuration Ui, one measures the value of the observable O|Ui . An approximate

estimate
〈
O[U ]

〉
of the observable is given by the simple arithmetic average over theNconf determinations

2The generated gauge configurations can be used many times in order to determine different quantities of interest.
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O|Ui

〈
O[U ]

〉
=

1

Nconf

Nconf∑

i=1

O|Ui
as Nconf →∞ (4.9)

Computing O|Ui costs less computer power than producing ensembles of gauge configurations.

Under the assumptions of the central limit theorem, for a sufficiently large Nconf we estimate the error

on
〈
O
〉

to be about 1/
√
Nconf with respect to

〈
O[U ]

〉
. In order to make an accurate estimate of the

error, Jackknive techniques, that we will explain later, have been used.

4.2 Hadronic two-point correlation functions

The discretized two-point correlation function is useful when extracting the masses of the states and

studying their spectroscopy. Let us introduce for example the two-point correlation function of the

charmed pseudoscalar D meson

C
(2)(tx − ty) =

〈
T{O†

D(tx)OD(ty)}
〉

(4.10)

where the creation operator OD(t) is defined as

OD(tx) =
∑

~x

ψ̄u(~x, tx) γ5 ψc(~x, tx) (4.11)

ψu and ψc are respectively the u and c quark fields defined on the lattice3. The operator OD creates a

meson having a vanishing momentum with the correct quantum numbers.

Two-point correlation functions can also be written in terms of path integrals as

C
(2)(tx − ty) =

1

Z

∫ (∏

f

[dψ̄f ][dψf ] [dU ]
)

O
†
D(tx)OD(ty) e

−
∑

f S(ψf ,ψ̄f ,U)

=
1

Z

∑

~x,~y

∫ (∏

f

[dψ̄f ][dψf ] [dU ]
)

× (ψ̄c γ5ψu)(~x, tx) · (ψ̄uγ5ψc)(~y, ty) · e−
∑

f S(ψf ,ψ̄f ,U)

(4.12)

Fortunately, owing to the bilinear nature of the Lagrangian, we can use Eq. (4.4) to integrate over the

fermion fields

C
(2)(tx − ty) =

1

Z

∫
[dU ] ψ̄αc (~x, tx) γ

αβ
5 ψβu(~x, tx)ψ̄

δ
u(~y, ty)γ

δγ
5 ψγc (~y, ty)

×


∏

f

Det[D[U ]]


 e−SG[U ]

(4.13)

3For convenience, we will adopt the notation ψx ≡ ψ(x) which should not be mistaken for the continuum case.



4.3 Propagator computation 59

After performing the Wick contractions, correlation functions are expressed as traces over products of

quark propagators, Dirac matrices and color structures

C
(2)(t ≡ tx − ty) = −

∑

~x~y

〈
Tr [γ5 Su(~x, tx; ~y, ty) γ5 Sc(~y, ty; ~x, tx)]

〉
(4.14)

where Sq(x, y) is the propagator of the q quark from the lattice point4 y to the lattice point x for a

given gauge configuration U and is the solution of

Dq(x, y)Sq(y, z) = δ4(x, z) (4.15)

The Eq. (4.14) has a simple physical interpretation: Su(~x, t1; ~y, t2) ≡ D−1
u (~x, t1; ~y, t2) propagates an

up quark from (~y, t2) to the point (~x, t1) while Sc(~y, ty; ~x, tx)] ≡ D−1
c (y;x) propagates a charm quark

in the opposite direction, as depicted in Fig. 4.1.

ty tx

u

c̄

γ5(~y) γ5(~x)

Figure 4.1: Pictorial representation of a two-point correlation function.

From the properties of the Dirac operator under discrete symmetry transformations, one can deduce

several important and useful properties of the associated quark propagator. One of the symmetries is

the so called H-symmetry, or γ5-hermiticity. It is a property of the Euclidean QCD Dirac operator,

which in terms of the quark propagator means that

Su(x, y) = γ5 S
†
u(y, x) γ5 (4.16)

The H-symmetry is extremely useful as it relates propagators “x→ y” and “y → x”, so that the number

of propagators to be computed is decreased by a huge amount. With that in mind, Eq. (4.14) simplifies

to

C
(2)(t) = −

∑

~x~y

〈
Tr [S†

u(~y, ty; ~x, tx)Sc(~y, ty; ~x, tx) ]
〉

(4.17)

4.3 Propagator computation

From Eq. (4.14), one can see that meson correlation functions can be calculated as a product of inverse

Dirac operators. However, even on a lattice of modest size, the propagator matrix is extremely large

(12N × 12N where N is the number of lattice points) and thus one can only calculate a subset of each

matrix.

4Here the “point” notion relates to site as well as to Dirac and color indices.
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The quark propagator in coordinate space, which we will denote by φ in the following, can be computed

as the solution of the linear system

D φ = η (4.18)

where D is the lattice Dirac operator and η is a source vector. This equation generalizes (4.15) for a

generic source η.

In its simplest form, η is one of the twelve point sources located at the space-time point x (each source

being non zero for one color-spin combination (a; α) only). It is a function of spin α, color a and lattice

point x

η[ã, α̃, x̃]aα(x) = δa,ã δα,α̃δ(x− x̃) (4.19)

The point sources are placed at the position x̃ of the source interpolator O
†
D(x̃) and the solution φ

of (4.18) yields the quark propagator from a single point x̃ to any other point y of the sink operator

OD(y), which corresponds to just one column of the propagator matrix. This type of solutions is referred

to as “one-to-all propagators” which is just a fraction of the set of propagators connecting any two lattice

points.

As a means to access the full propagator matrix, we propose to estimate stochastically the propagators

by implementing the one-end trick method [90,91]:

1. The starting point of all stochastic approaches is to consider random sources which, for reasons

that will become clear later on, are taken diluted in spin variable

η[n, α̃, t̃]aα(x) ≡ δα,α̃ · Ξ[n, t̃]a(x) with Ξ[n, t̃]a(x) = δ(t− t̃) ±1 ± i√
2

(4.20)

where n = 1, · · ·Nr labels the noise samples generated for each gauge configuration. The factor

±1 ± i√
2

(4.21)

represents a random number. It is the so-called Z2 × Z2 noise [92]; other forms of noise exist.

The sources are non zero in a single time-slice5 t̃. All entries of Ξ on time slice t̃ are chosen

independently. The random numbers in Ξ are then copied to four sources η, where they appear in

different spin components. The optimal way to choose the time-slice (t̃) at which the stochastic

source is located, is to change it randomly as the gauge configuration is changed.

The sources satisfy

lim
Nr→∞

1

Nr

Nr∑

i=1

η[i, α̃, t̃]aα(x) η
∗[i, β̃, t̃]bβ(y)

= δab δαβ δαα̃ δββ̃ δ(x− y) δ(tx − t̃) δ(ty − t̃)
(4.22)

2. As a next step, we invert the lattice Dirac operator D (for one given flavor) on each sample of

5To keep the noise-to-signal ratio reasonable, it is mandatory to use time-slice sources rather than volume sources.
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this source. To this end, one introduces the φ-propagator which is a solution of the equation

∑

y

D[f, r]abαβ(x, y) φ[n, f, r, α̃, t̃]bβ(y) = η[n, α̃, t̃]aα(x) (4.23)

where f represents the fermion flavour and r = ±1.
Then, using Eq. (4.22) and the above equation, one can obtain an unbiased estimator of the

all-to-all propagator Sf (r, x, y)|abαβ , which is the inverse of the Dirac operator, by computing the

quantity

1

Nr

Nr∑

n=1

φ[n, f, r, α̃, t̃]bβ(x) η[n, α̃, t̃]aα(y)
∗ (4.24)

Two-point correlation functions with the one-end-trick method

For the interpolating fields of B and D mesons, having arbitrary Dirac structures6 Γ, an improved

estimator for the “charged” two-point correlators is obtained by

C
(2)
hl (t) =

1

2

∑

r=±1

〈
Tr
∑

~x,~y

Γ1 Sl(r; ~y, t̃; ~x, t̃+ t) ΓSh(−r; ~x, t̃+ t; ~y, t̃)

〉

=
1

2

∑

r=±1

1

Nr

Nr∑

i=1

〈
Tr

{
∑

~x

(Γ1γ5)α̃β̃ φ
∗
[
i, l, r, β̃, t̃

]b
α
(~x, t̃+ t)

× (γ5Γ)αβφ
[
i, h, r, α̃, t̃

]b
β
(~x, t̃+ t)

}〉

(4.25)

where the Dirac structure Γ1 is equal to γ0Γ
†γ0 and 〈...〉 stands for the gauge ensemble average. Here

h represents the heavy quark (b or c) and l is the light one.

In this case, the signal is of order V (the volume of the lattice), while the noise is of order V/
√
Nr so

that it is sufficient to employ one random source per gauge configuration.

The stochastic estimate of the three-point correlation functions follows the same idea and is also eval-

uated using the one-end-trick.

Equation (4.7) states that a physical observable can be evaluated, after the Grassmann integration, by

computing a ratio of purely bosonic integrals over the gauge fields. We stress again that the fermion

determinants depend on U and one has to perform a Monte Carlo simulation using

Z
−1 exp[−SG[U ]]

∏

f

Det[D[U ]]f (4.26)

as the distribution weight for the gauge fields. However, computing the determinant of the Dirac oper-

ator matrix is highly nontrivial. In the following, we will discuss how to deal with such a determinant.

6The Dirac structure Γ is a 4× 4 matrix acting in spin space; usually it could be one or a product of γ-matrices.
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4.3.1 Quenching and partial quenching

Figure 4.2 displays two Feynman diagrams in which solid lines represent the valence quarks propagating

in the vacuum. These quarks are created and annihilated by the operator O which enters the calculation

of correlation functions by means of path integrals. The red loop in the diagram on the right illustrates

a typical contribution to the determinant in Eq. (4.7), i.e. processes involving “sea quarks” (also known

as dynamical quarks).

u

c̄

u

c̄

Figure 4.2: Illustration of the difference between quenched (l.h.s.) and unquenched (or full) QCD (r.h.s.).

However, computing determinants is time-consuming and requires huge computing power. There is

an approximation called the “quenched approximation” which consists in neglecting the effects of the

determinant by setting it to unity in the functional integral, so that only valence quarks are retained

in correlators (diagram on the left). The quenched approximation is therefore also called “valence

approximation” and a simulation with quenched dynamical quarks is called an Nf = 0 simulation.

However, the quenched approximation, by neglecting the contribution of the sea quarks, necessarily

leads to predictions with huge systematical errors. Thus, it would be highly preferable to work with the

unquenched theory for the purpose of precise predictions and subsequent experimental confrontations

of Lattice QCD.

Light quark unquenching: in the last ten years the development of algorithms and machines made

it possible to perform computations by including the fermionic determinant that arises from integrating

over (Grassmann) quark fields. Since the historical term for omitting this determinant is “quenching”,

its inclusion is called “unquenching”. When we take into account the effect of the vacuum light quark

loops (the up u and the down d quarks assumed to be degenerate), we talk about Nf = 2 lattice

simulations. However, when we work with lower quark masses:

• the computation time increases.

• the number of lattice points has to be increased in such a way that the lattice discretization effects

are negligible when compared to the statistical ones.

So we choose to do the computations assuming a larger (unphysical) mass for the light quarks which,

in the end, will be extrapolated to the real physical mass.

Computations with Nf = 2 are affected by a quenching effect which is expected to be much smaller

than the already quantified light quark quenching (Nf = 0).
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Nonetheless, ultimately, one would like to get rid also of this effect. For this reason, the ETM Collab-

oration has begun to generate a set of Nf = 2+ 1 + 1 gauge ensembles including also the unquenching

of the strange and charm quarks. The impact of the heavy quarks on the long distance QCD vacuum

fluctuation is expected to be much less important, because their mass is much larger than the typical

scale O(ΛQCD).

Partial quenching and chiral limit: in partial quenching, only a subset of flavors of dynamical

quarks is kept but these do not have the same number nor the same mass as valence quarks. In our

work, we perform partial quenching of the two up and down light sea quarks (Nf = 2 simulations). As

we mentioned above, we have to extrapolate to the physical light quark mass. From chiral symmetry,

we know that, at leading order, the pion mass squared is proportional to the light quark mass

m2
π ∝ mq where mq =

mu +md

2
(4.27)

so we will use the pion mass (which is a physical quantity) as an indicator of the light quark masses.

Now that we have discussed the techniques for computing the propagators needed for the hadron

correlator present in Section 4.2, we will describe in the next section the smearing techniques which

improve the overlap of the lattice hadron interpolators with the physical state.

4.3.2 Smearing techniques

Since one is interested in the properties of a single hadron, the problem of isolating one single state

occurs. One possibility to tackle this problem is to take a lattice sufficiently large in the time direction

and study the behavior of the correlation functions at very large time separations tx − ty. However,

larger lattices need more computer time and the signal over noise ratio worsens at large time separations

because the signal decays exponentially.

So, one needs to look for other methods to extract fundamental states without having an increase in

noise.

In the following, we will present two types of smearing designed to improve the correlation function

signal. We will start by the Gaussian smearing applied on the fermion fields and then proceed to the

APE smearing, a type of smearing applied on the gauge fields.

Gaussian smearing

A promising ansatz to extract the ground state consists in constructing an operator that has a large

overlap with the state under study. The contribution of the fundamental state will dominate even at

small time separations. Then we can expect an accurate determination of the ground state because the

signal to noise ratio is usually large for small times.

The basic idea is to construct hadron operators by smearing the fermion field ψ(~x, t) with a suitable
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wave function F (~x, ~x′)

ψS(~x, t) =
∑

~x′

F (~x, t ; ~x′, t) ψ(~x′, t) (4.28)

The conjugate of the smeared quark field is

ψ̄S(~x, t) =
∑

~x′

ψ̄(~x′, t) γ0 [F (~x
′, t ; ~x, t)]† γ0 (4.29)

The variable ~x denotes space points as well as color and Dirac indices. There are many options for

smearing. The Jacobi smearing [93] is one of the most popular ones, and has also the good property

of being gauge invariant. The Jacobi smearing function is computed using a recursive procedure. We

start with

F (~x, ~y) = α (δ~x,~y + κsH
′(~x, ~y)) (4.30)

where H ′(~x, ~y) is called the hopping matrix

H ′ =

3∑

µ=1

Uµ(~x) δ~y,x+µ̂ + U†
µ(x− µ̂) δ~y,~x−µ̂ (4.31)

with κs being the coupling strength of the nearest neighbor in space directions, and α the normalization

factor

α =
1

1 + 6κs
(4.32)

In the following, we will see how this type of smearing is implemented when computing the propagators.

The construction of the smeared quark propagator is done in three steps

1. Using the fact that F is hermitian, we create a smeared source7 S(N)

S(1) = S(0) F

S(2) = S(1) F

· · ·
S(N) = S(N−1) F

(4.33)

where S(0) is the source used when calculating the Local-Local (LL) quark propagatorGLL (neither

the source nor the sink are smeared).

After N th iterations, the smeared source is S(N) = S(0) FN .

2. Then we solve the Dirac equation (cf. diagram on the left of Fig. 4.3)

∑

y

D(~z, tz ~y, ty) GSL(~y, ty ; ~x, tx) = SN (z, x)δtz,tx (4.34)

7From now on in this chapter, we will denote the source by S and the propagator by G.
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where D(z, y) is the Dirac matrix and GSL is the Smeared-source and Local-sink (SL) quark

propagator computed using the smeared source S(N). It is related to the local quark propagator

by

GSL(y, x) =
∑

z

GLL(y, z)F (z, x) (4.35)

u

c̄

D meson D meson

ty

Source

tx

Sink
u

c̄
ty

Source

tx

Sink

Figure 4.3: Smearing at the source for the propagators (l.h.s) Source-sink smeared quark propagators (r.h.s).

3. Finally, we multiply by the wave function to obtain the Source-Sink smeared (SS) quark propagator

GSS (diagram on the right of Fig. 4.3)

GSS(y, x) =
∑

z

FN (y, z) GSL(z, x) (4.36)

The construction of a smeared propagator does not take much more computer time than the calculation

of a local propagator.

The propagator obtained without smearing the source but only the sink is called Local-source and

Smeared-sink (LS) propagator GLS (Fig. 4.4). It can be obtained by replacing the source-smeared

propagator GSL in Eq. (4.36) by the local one GLL.

u

c̄
ty

Source

tx

Sink

Figure 4.4: Smearing at the sink for the propagators.

The Jacobi smearing depends on two parameters N and κs. These can be tuned to optimize the overlap



66 Propagator computation in LQCD

of the hadron operators with their respective ground states.

We now describe a different type of smearing applied on gauge fields. It is called the APE smearing.

APE smearing

This kind of smearing is applied on the gauge fields present in the gaussian smearing function [94]. The

gauge fields of the QCD action will remain unchanged. The idea is to remove, from the gauge links,

the fluctuations which have short wavelengths by averaging them with their nearest neighbors. In other

words, we suppress the unphysical ultraviolet fluctuations in the gauge invariant sector. The method

we will use is an iterative method based on the following steps

x+ aν̂

Uν(x)

x

x+ aµ̂

U †
ν (x+ aµ̂)

x− aν̂

Figure 4.5: Gauge link with APE smearing.

1. Initialization from the original links: U
(0)
µ (x) = Uµ(x)

2. Construction of the link as shown in Fig. 4.5 in the spatial directions only (µ 6= 0)

U (n+1)
µ (x) = U (n)

µ (x) + αAPE

∑

µ 6=ν

U (n)
ν (x)U (n)

µ (x+ ν)U (n)†
ν (x+ µ) (4.37)

where αAPE is called the APE smearing parameter.

3. Projection of Un+1
µ (x) in SU(3).

4. Repetition of the second and third steps NAPE times.

Application

Figure 4.6 shows the behavior of the D meson two-point correlation functions computed in a lattice of

size 243 × 48 at β = 3.9 for different types of smearing. The parameters of the gaussian smearing are

κs = 0.15 and N = 30 and those of the APE smearing are αAPE = 0.5 and NAPE = 10. It is obvious
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that these correlators decay exponentially with time and one can see that the SS, SL and LL correlation

functions have different exponential behaviors at small time. For reasons we will mention in the next

chapter, we prefer to use the smeared-smeared propagators when computing correlation functions.

There is also an approach followed by the ETMC aiming at combining information coming from smeared-

local and smeared-smeared operators. It is called the “w-method” [95].
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2 4 6 8 10 12 14 16 18 20
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)
D
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)
×
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−
3

t

LL
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SS

Figure 4.6: Two-point correlation functions containing Smeared-Smeared (SS) N, Smeared-Local (SL)•
and Local-Local (LL) � propagators .

Having prepared our smeared sources S, we need to compute the propagatorG, i.e., we needG = D−1 S.

Let us see how one can solve such an equation algorithmically .

4.4 Resolution of linear systems

In practice, when we look for propagators, we solve linear systems. In addition, there are many types

of propagators, each corresponding to the used source. The general form of the linear system is

Dab
αβ(x, y) G

bc
βγ(y, z) = Sacαγ(x, z) (4.38)

where D is the Dirac matrix operator, S is the so-called source and G the unknown propagator vector.

As we already mentioned, the Dirac operator is a large matrix. In order to find numerical solutions for

any particular system of linear equations, whose matrix is symmetric and positive-definite, we use the

conjugate gradient (CG) method [96]. It is an iterative method, so it can be applied to sparse systems

that are too large to be handled by direct methods such as the Cholesky decomposition. Such systems

often arise when we solve partial differential equations numerically.

We consider the following system of linear equations

Ax = b (4.39)
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for the vector x, where the known n × n matrix A is symmetric, positive definite and real, and b is

known as well. We choose to work with the CG method because it is the simplest algorithm, and in

fact the only one which applies to the case of a twisted mass Dirac operator.

The idea is to minimize the following quadratic function

f : x 7→ 1

2
(Ax, x) − (b, x) (4.40)

The symbol (, ) represents the inner product defined as followed: let u and v be two non-zero vectors,

then (u, v) := uT v. So we have (Ax, x) = xT Ax and (b, x) = xT b.

The vectors u and v are conjugate if they are orthogonal with respect to this inner product:
(
uT v

)
= 0.

Moreover, this conjugation is a symmetric relation.

We start with an input vector x0 which can be either an approximate initial solution or 0. The next

optimal solution xk+1 is given by

xk+1 = xk + αkpk (4.41)

where αk is a coefficient determined by minimizing the function f , and the direction pk is chosen to be

the conjugate, with respect to A, of the previous ones, i.e.

(pi, Apk) = 0 when i < k (4.42)

r0 = b−Ax0;
p0 = r0;
k = 0;
while k < kmax do

αk =
rTk rk
pTk Apk

;

xk+1 = xk + αk pk ;
rk+1 = rk − αk Apk;
if (rk+1, rk+1) < ǫ2(r0, r0) then

exit loop;
else

βk =
rTk+1 rk+1

rTk rk
;

pk+1 = rk+1 + βk pk;
k = k + 1;

end

end
Return xk+1;

Conjugate Gradient algorithm.

The “CG algorithm” gives the most straightforward explanation of the conjugate gradient method. The
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maximal number of iterations is given by kmax and the needed precision by ǫ. In most cases, precon-

ditioning is necessary to ensure fast convergence of the conjugate gradient method. Preconditioning is

an application of a transformation, called the preconditioner, that conditions a given problem into a

form that is more suitable for numerical solution. For example, the even/odd preconditioning uses a

decomposition of the matrix into blocks according to the parity of each site, i.e. according to the parity

of x+ y + z + t.

All numerical lattice results are obtained in a discretized space-time. However, we want to obtain results

for continuous space-time. Hence, the next section describes how the physical results are obtained in

the continuum limit.

4.5 Matching to the continuum limit

Let us recall first that the configurations used in lattice simulations are generated with a probability

distribution

e−SG (4.43)

The Yang-Mills action is proportional to β ≡ 6
g2 where g is the bare gauge coupling constant.

We then compute the mean value of the correlation functions and finally, when analyzing data, one

has to relate results to experimental values. This can be done by converting them from lattice units to

physical ones. For example, we have the hadron mass given by

mphys. = a−1mlatt.(g(a)) (4.44)

where mlatt.(g(a)) is the effective mass in lattice units8 extracted from the analysis of two-point correla-

tion functions computed for different values of the gauge coupling g. Since the gauge coupling constant

and the lattice spacing are implicitly related, this means that we measure the quantities for different

values of the lattice spacing a and then we do the extrapolation to the continuum limit by making a→ 0.

The determination of the lattice spacing a is thus crucial. Let us see the procedure to determine it.

4.5.1 Lattice spacing determination

First we have to know how the coupling g behaves as a function of a. The Renormalisation Group

Equations (RGE) give the relation between the running of g and a

−a ∂g
∂a

= β(g) = −β0 g3 − β1 g5 + · · · (4.45)

where β(g) is called the β-function and determines, up to an integration constant, how the coupling

g depends on the cutoff a. The β function is only known perturbatively up to few orders in g: β0 =

8For converting results to MeV one uses ~c = 179.327 MeV fm ⇒ 1 fm−1 = 197.327 MeV.
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11
3

N
16π2 [66] and β1 = 34

3
N

16π2

2
[97], where N is the number of the active flavors. The minus sign before

g3 is very important since it indicates that the theory is asymptotically free.

The solution of Eq (4.45) is

a(g) = exp

(
−
∫ g

0

dg′

β(g′)

)
Λ−1
L exp(− 1

2β0 g2
)(β0g

2)
−
β1
2β2

0 (1 + O(g2)) (4.46)

In the above, ΛL is an integration constant having the dimension of a mass and is defined by

ΛL = lim
g→0

1

a
exp(− 1

2β0 g2
) (β0g

2)
−
β1
2β2

0 (4.47)

By inverting the relation (4.46) one obtains the coupling g as a function of the scale a, the so-called

running coupling,

g(a)−2 = β0 log(a−2Λ−2
L ) +

β1
β0

ln
(
ln
(
a−2 Λ−2

L

))
+ · · · (4.48)

Changing a thus implies a changing of g such that the physical observable remains independent of the

scale-fixing procedure. Moreover, for shrinking lattice spacings the coupling g also decreases. Vanishing

lattice spacings correspond to a vanishing coupling g. This behavior is called the “asymptotic freedom”.

A good knowledge of the lattice spacing is needed to extract physical quantities, so after performing the

computations one needs to “calibrate” the lattice spacing a. This can be done by choosing a quantity

Oexp of dimension d and computing its extrapolated value O in lattice units. The lattice spacing will

then be given by the ratio

a = (O/Oexp)1/d (4.49)

This scaling can be directly used to obtain masses m in units of eV from am in the lattice.

In order to fix the lattice spacing a, we have to find a physical quantity that we can use to compare with

our results. Valid candidates are the decay constant of a pion fπ, a hadron mass (it could be the nucleon

or the ρ meson) or the Sommer parameter r0 [98]. However, the determination of such observables is

not the same due to the difficulty of their evaluation. For example, if we choose the nucleon mass as a

reference, it is necessary to extrapolate the result to the physical mass of quarks, which correspond to

mπ ≃ 139 MeV; because of the limitation in computer power, we performed computations with a pion

mass mπ & 300 MeV, which induces systematic errors.

A simple parameter to calculate is r0, the Sommer parameter, defined by solving the equation

r20
∂V (r)

∂r
|r0 = 1.65 (4.50)

where V (r) is the static potential between quarks and antiquarks parametrized as

A+
B

r
+ σ r (4.51)
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It can be calculated through the Wilson loop Lr×t, i.e. the trace of an ordered product of gauge link

variables along a rectangle of length (r, T ). The mean value in the vacuum is related to the potential

by

V (r) = lim
T→∞

1

T
log
〈
Lr×t

〉
(4.52)

This potential leads to the determination of the energy scale r0 = 0.440(12) fm.

In our work, the lattice spacing is fixed by using the parameter r0/a [98], with r0 determined by match-

ing fπ obtained on the same lattices with its physical value [2].

When analyzing lattice data, the obtained results have statistical and systematical errors. The errors

have to be quantified in order to confront the result with the physical experimental one. The statistical

error is due to the use of Monte Carlo importance sampling to evaluate the path integral and its

estimation will be detailed in the next chapter. There are, in addition, a different types of systematic

errors which are always present to some degree in lattice calculations. The most common lattice errors

are reviewed below.

4.5.2 Sources of systematic error

Discretization effects

Observables calculated at finite lattice spacing will differ from their continuum physical value by finite

terms. These additional terms are called, in general, discretization errors.

The continuum limit of physical quantities is reached by computing the same quantities at various lat-

tice spacings and then extrapolating to a→ 0. One should try, at the smaller possible lattice spacings,

to get rid of errors induced by this extrapolation. However, decreasing the lattice spacing for a fixed

number of lattice points shrinks the physical volume. Thus, as we decrease a, we have to increase the

number of lattice points which in turn increases the numerical cost of the computations. The minimal

value of the lattice spacing is then determined by the computational power at our disposal.

In our simulation, we will be left with effects of order a2 and above. Discretization effects are then

parametrized as polynomials in a2 (we prefer to use the term a2/a2β=3.9 since it is a dimensionless quan-

tity), thus we fit the data computed at finite lattice spacing with such polynomials and numerically

extrapolate the fitted function.

We will not concentrate here on extrapolating the masses since our ultimate goal is the computation

of the form factors. In the next chapters, we will show qualitatively how such extrapolations are done.

Typical simulations try to afford three or four values of a. Discretization errors are expected to be

larger for quantities involving larger scales, for example form factors or decays involving particles with

momenta larger than ΛQCD.

Finite size effects

The lattice volume represents the infrared cut-off of the non-perturbative regularized theory. Since all

computations are obtained using a finite volume, when analyzing the observables, one has to remove

the volume effect and, if possible, extrapolate to infinite spatial volume.

Once the volume exceeds about 2 fm (so that the particle is not “squeezed”), the dominant finite-
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volume effect comes from virtual pions wrapping around the lattice in the spatial directions. This

effect is exponentially suppressed as the volume becomes large (roughly as ∼ exp(−mπL)) and has

been estimated using Chiral Perturbation Theory (ChPT) [99] or other methods [100]. The estimates

suggest that finite volume shifts are sub-percent effects when mπL & 4, and most large-scale simulations

use lattices satisfying this condition. This becomes challenging as one approaches the physical pion mass,

for which L ≃ 5 fm is required. At present, this can only be achieved by using relatively coarse lattices,

a ≃ 0.07 fm. In our computations, the parameter mπ L is larger than 4, so finite size effects are expected

to be small and therefore can be ignored. One can check explicitly the amount of finite size effects by

performing two simulations using the same parameters but different lattice volumes and comparing the

results.

4.6 Non-perturbative renormalization

An observable calculated in Lattice QCD is a bare quantity. The path integral estimated by Monte

Carlo contains all the bare parameters of the theory (mass, couplings) and operators. Hence, we have to

apply a renormalization procedure, perturbative or non-perturbative, depending on the scheme, using

Feynman diagrams or the numerical ratio of quantities determined on the lattice.

An operator O can be renormalized as

Oren(a) = ZO(a)O (4.53)

where ZO is, in general, a function of the ultraviolet cut-off a.

The calculation of renormalization factors ZO can be carried out using lattice perturbation theory.

Although perturbation theory on the lattice is computationally more complex than in the continuum,

these calculations can be extended beyond one-loop order [101–103].

Renormalization constants, used in the present thesis, are taken from [104] where the Rome-Southampton

method (also known as the RI-MOM scheme) [105] was used to compute non-perturbatively the renor-

malization coefficients of arbitrary quark-antiquark operators. In the RI-MOM approach, the procedure

is similar to the one used in the continuum perturbation theory. In particular, the renormalization con-

ditions are defined similarly in perturbative and non-perturbative calculations. The renormalization

factors, obtained for different values of the renormalization scale, are evolved perturbatively to a ref-

erence scale µ = 2 GeV. Since, at the end, one wants to make contact with phenomenological studies,

which almost exclusively refer to operators renormalized in the MS scheme, one needs to connect the RI-

MOM quantities to those defined in this MS scheme, which is accomplished in continuum perturbation

theory [106].
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Chapter 5

Orbital excitations of charmed mesons

from tmLQCD
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A first task in numerical simulations of Lattice QCD is the determination of the lowest hadron

masses. Since most of these masses are experimentally known to high precision, the comparison to the

numerical results is an important check of non-perturbative QCD.

The essential idea of this chapter will be to look for the masses of the first orbital excitations of the D

meson, called D∗∗, having JP = 0+ and JP = 2+ as total angular momentum J and parity P . We

first discuss the procedure followed to construct creation operators with the correct quantum numbers, in

particular for the first orbitally excited states D∗∗. Then, we explain how we extract the meson masses

from the two-point correlation functions as well as how to estimate the corresponding errors.

5.1 Interpolating fields

Interpolating fields are meson (or baryon) creation and annihilation operators having the quantum

numbers of the considered states. They are mandatory in order to compute the correlation functions

used in the determination of the masses of the mesons, or the transition amplitudes of the semileptonic

channels to be studied in the next chapters. In the following, we will explain how one can find the

interpolating operators entering the B → D∗∗ ℓν̄ℓ processes, while focusing on the scalar D∗
0 (JP = 0+)

and the tensor D∗
2 (JP = 2+) states.

5.1.1 Interpolating field for the scalar D∗

0
(JP = 0+) state

The set of states with total angular momentum J and parity P in the range JP = (0, 1)± can be

described by local interpolating fields

O(t) = ψ̄q1(t, ~xq1) Γ ψq2(t, ~xq2) (5.1)

where ψ̄q1(t, ~xq1) creates an antiquark at the position ~xq1 and ψq2(t, ~xq2) creates a quark at the position

~xq2 . The Dirac structure Γ, constructed out of Dirac γµ matrices, determines the quantum numbers of

the state. In the following table are collected the different structures pertaining to the JP = (0, 1)±

states. We added the possibility of taking into account charge conjugation, but since we will only be

interested in the JP = 0+ meson, we will choose C = +1.

C = +1 C = −1

JP 0+ 0− 1+ 0+ 1+ 1−

Γ 1 γ5, γ5γ4 γ5γi γ4 γ5γ4γi γi, γi γ4

Table 5.1: Basis of the quark bilinear having an angular momentum JP where the highlighted columns
correspond to the scalar J = 0+ state. The matrix γ4 is the Euclidean equivalent of the γ0 matrix.
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To summarize, the chosen interpolating field for the D∗
0 meson is

OD∗
0
(t) = ψ̄q(t, ~xq)ψc(t, ~xc) (5.2)

5.1.2 Interpolating field for the tensor D∗

2
(JP = 2+) state

When dealing with angular momenta J strictly greater than one, it is no longer possible to consider

local interpolating fields: we need a non-local structure for these operators which can be summarized

in the following way

O(t) = ψ̄q1(t, ~xq1) Pt(x̃q1
, x̃q2

) Γ ψq2(t, ~xq2) (5.3)

where Pt(x̃q1
, x̃q2

)Γ is a suitable combination of gauge links and Dirac matrices which conspires to

give the angular momentum of the meson state. In order to determine this combination, we will rely

on group theoretical techniques described in the following section.

Group theory and angular momentum J states on the lattice

In the continuum, a state with an integer angular momentum J belongs to a specific irreducible rep-

resentation (IR), denoted by D(J), of the symmetry group SO(3). More rigourously, it belongs to the

representation space of the IR which produces the momentum J . Moreover, since J is any integer, there

is an infinite number of states of angular momentum J because there is an infinite number of IRs of

SO(3).

On the lattice, the rotation group is no longer SO(3) but the cubic group1 O, which has five IRs only,

namely A1 and A2 (one-dimensional), E (two-dimensional) and T1 and T2 (three-dimensional). Hence

the problem: how can an infinite number of states in the continuum be described by a finite number of

states on the lattice? In other words, how can we recognize a state of angular momentum J inside the

state computed on the lattice?

According to group theory, a state |ψR〉 on the lattice is related to the states |ψ〉J,m of angular momen-

tum J in the continuum by

|ψR〉 =
∑

J,m

cRJ,m |ψ〉J,m (5.4)

An angular momentum J state contributes to the r.h.s. of this equation if and only if |ψR〉 belongs to

the subduced representation [107], noted D(J) ↓ O, of D(J) in the cubic group O. It is a representation

of a sub-group of O and is reducible in terms of the IRs of O. The decomposition for different values of

1The cubic group O contains 24 elements.
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J are listed in the following table

J D(J) ↓ O

0 A1

1 T1
2 E ⊕ T2
3 A2 ⊕ T1 ⊕ T2
4 A1 ⊕ E ⊕ T1 ⊕ T2
5 E ⊕ 2T1 ⊕ T2
6 A1 ⊕A2 ⊕ E ⊕ T1 ⊕ 2T2

etc etc

So, in our case, the tensor meson will be studied using E and T2. Though these two IRs also appear

in the description of higher angular momenta, we expect the corresponding contributions to be small

because the J = 2 state is “fundamental” compared to the J > 3 states.

Construction of the interpolating field for the JP = 2+ state

Adding the parity states P is equivalent to enlarging the symmetry group of the lattice to Oh by

including the reflexions (Oh = O ⊗ reflexions). This new group Oh possesses 10 IRs which are A±
1 and

A±
2 (one-dimensional), E± (two-dimensional) and T±

1 and T±
2 (three-dimensional). The JP = 2+ state

will then be studied using the subduced representation D(2+) ↓ Oh, which gives

JP = 2+ (in the continuum)  E+ ⊕ T+
2 (on the lattice) (5.5)

Following (5.3), the interpolating field is constructed by combining a Dirac structure Γ (quark bilinears)

with a combination of paths on the lattice. In the language of group theory, we must combine the

corresponding IRs in order to obtain E+ and T+
2 . The different possibilities are





A+
1 ⊗ E+ = E+ T+

1 ⊗ E+ = T+
1 ⊕ T+

2

A+
1 ⊗ T+

2 = T+
2 T+

1 ⊗ T+
1 = A+

1 ⊕ E+ ⊕ T+
1 ⊕ T+

2

T+
1 ⊗ T+

2 = A+
2 ⊕ E+ ⊕ T+

1 ⊕ T+
2

T+
1 ⊗A+

2 = T+
2

(5.6a)





A−
1 ⊗ E− = E+ T−

1 ⊗ E− = T+
1 ⊕ T+

2

A−
1 ⊗ T−

2 = T+
2 T−

1 ⊗ T−
1 = A+

1 ⊕ E+ ⊕ T+
1 ⊕ T+

2

T−
1 ⊗ T−

2 = A+
2 ⊕ E+ ⊕ T+

1 ⊕ T+
2

T−
1 ⊗A−

2 = T+
2

(5.6b)

with the notation “JP Dirac structure ⊗ path on the lattice”.



5.1 Interpolating fields 79

Basis of JP Dirac structures: according to the previous equations, we need a priori Dirac structures

that belong to the IR space of A±
1 and T±

1 . Expanding Table 5.1 to include the space of the IRs

corresponding to the given Dirac structures, we have

C = +1 C = −1

JP 0+ 0− 1+ 0+ 1+ 1−

Γ 1 γ5, γ5γ4 γ5γi γ4 γ5γ4γi γi, γi γ4

IR space of Oh A+
1 A−

1 T+
1 A+

1
T+
1 T−

1

Table 5.2: Basis of the quark bilinear having an angular momentum JP and its corresponding representation
spaces.

Basis of paths on the lattice: following Eqs. (5.6), we a priori need to find paths which belong to the

representation space of A±
2 , T±

1 , T±
2 and E±. The two-step method proceeds as follows [107]:

(i) We start from a basis of links on the lattice. The choice we made is the dimension 6 base

consisting of all spatial links oriented in all senses {1, 1̄, 2, 2̄, 3, 3̄} where i represents a link

oriented in the +i sense, whereas ı̄ represents a link oriented in the opposite one −i.

(ii) Using the projection operators in each representation space, we then find a corresponding

basis for each IR expressed in terms of the original spatial links. The results are collected in

Table 5.3 where we have used the following notations

si = (i+ ı̄) and pi = (i− ı̄) (5.7)

Notice that many of the relevant IRs cannot be assigned a basis of paths expressed in terms

of the i and ı̄ variables, which eliminates many possibilities to be considered in Eq. (5.6).

IR A+
2 A−

2 T+
1 T−

1 T+
2 T−

2 E+ E−

Basis none none none





1√
2
p1

1√
2
p2

1√
2
p3

none none





1

2
(s2 − s3)
1√
8
(2s1 − s2 − s3)

none

Table 5.3: Basis of gauge links for each required IR.

Results

Combining the Dirac basis with the remaining path basis, we are left with the only possible structures

that can provide the E+ and T+
2 IRs. The results are listed in Table 5.4. We will choose the interpo-

lating fields with the pi variables: indeed, being the difference of links having opposite senses, they are
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closely related to derivatives on the lattice.

IR for Γ IR for paths IR of Oh interpolating field JP

T−
1 T−

1 T+
2

1√
3
ψ̄q1(γkpi + γipk)ψq2 2+, 3+

T−
1 T−

1 E+ 1√
2
ψ̄q1(γ1p1 − γ2p2)ψq2 2+, 4+

1√
6
ψ̄q1(2γ3p3 − γ1p1 − γ2p2)ψq2

A+
1 E+ E+ 1√

2
ψ̄q1(s1 − s2)ψq2 2+, 4+

1√
6
ψ̄q1(2s3 − s1 − s2)ψq2

T+
1 E+ T+

2

1

2
ψ̄q1γ5γ1(φ2 +

√
3φ1)ψq2

1

2
ψ̄q1 γ5γ2(φ2 −

√
3φ1)ψq2

−ψ̄q1γ5γ3φ2ψq2 2+, 3+

Table 5.4: Meson interpolating fields for the 2+ states. The colored rows contain the expressions we chose
for our study. The spatial indices i and k are all different when appearing in a formula. In the last row,
φ1 = (s2 − s3)/2 and φ2 = (2s1 − s2 − s3)/

√
8.

5.2 Effective mass extraction

The mesonic masses are determined from the exponential fall of the Euclidean-time two-point correlation

functions (or vacuum expectation value) of appropriate creation operators O(τ) at large time separation

as follows: having chosen the interpolating operator, we can write the formal expression of its two-point

correlation function

C
(2)
ij (τ) ≡

∑

x,y

〈
O

†
i (τ) Oj(0)

〉
T

=
1

Z
Tr [e−H (T−τ)

O
†
i (0) e

−H τ Oj(0)] (5.8)

where H is the Hamiltonian of the theory and the partition function Z is defined to be

Tr [e−T H ] (5.9)

The parameter τ is the actual distance of interest to us and T is the time extent of the system. In the

limit of large T , it is possible to show that Cij(t) corresponds to the vacuum matrix element of the

operator O
†
i (τ) Oj(0) [86]

lim
T→∞

C
(2)
ij (τ) = 〈Ω |O†

i (τ) Oj(0) |Ω〉 where |Ω〉 ≡ vacuum (5.10)
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After inserting a complete set of energy eigenstates of the Hamiltonian

∑

n

|n〉〈n|
2n

= 1 (5.11)

and using

O
†
i (τ) = eHτ O

†
i (0) e

−Hτ (time-translation invariance) (5.12)

we get

C
(2)
ij (τ) =

∑

n

〈Ω |O†
i (τ)

( |n〉〈n|
2En

)
Oj(0) |Ω〉

=
∑

n

e−τ (δEn)

2En
〈Ω |O†

i (0) |n〉 〈n |Oj(0) |Ω〉
(5.13)

where δEn = En−EΩ. From now on we use En to denote the energy differences relative to the vacuum

|Ω〉 instead of δEn. This implies that the energy EΩ of the vacuum |Ω〉 is shifted to zero.

The final expression is a sum of exponentials: each exponent corresponds to an energy level of the state

n predicted by the theory and is multiplied by the product of the matrix elements of O
†
i and Oj . In the

case where the matrix C
(2)
ij is diagonal, we have

C
(2)(τ) =

∑

n

1

2En
|〈Ω |O |n〉|2 e−En τ

=
∑

n

e−En τ

2En
|Zn|2

(5.14)

where we defined the matrix elements

Zn ≡ 〈Ω |O |n〉 (5.15)

The relation (5.14) has the following structure

C
(2)(t) = c0e

−E0 t

(
1 +

c1
c0
e−δE1t + · · ·

)
with δE1 = E1 − E0 (5.16)

where E1 is the first excited state. At small times, all the terms contribute to the sum, but at times t

larger than the inverse of the first energy gap ( 1
δE1

) all the terms inside the brackets are suppressed, so

that only the contribution of the ground state survives. The fundamental energy can then be determined

by looking at the slope of the logarithm of the correlation function at larger times

logC
(2)(t)

t>> 1
δE1−−−−−→ log c0 − E0 t (5.17)

So, if we are interested in the lowest energy E0, we look for the time interval [tmin, tmax] with tmin high

enough so that the lowest mass dominates the correlation function.

In general, the operator O creates states propagating from t = 0 both in the positive and in the negative



82 Orbital excitations of charmed mesons from tmLQCD

temporal direction, so that meson correlators are symmetric with respect to the exchange t ←→ T − t.
In this case the correlator exhibits the following time dependence

C
(2)(t) =

|Z0|2
E0

cosh[E0(
T

2
− t)] e−T E0/2 (5.18)

where T is the time extent of the lattice. Neglecting the symmetric behavior of the correlation function

leads to an error which becomes larger and larger as t approaches T/2. Therefore, we prefer to use

Eq. (5.18) when analyzing two-point correlators.

Also, in order to analyze in which time range the contribution of the sub-leading exponentials in

Eq. (5.14) can be safely neglected, one defines an effective mass as

C (2)(t)

C (2)(t+ 1)
=

cosh(meff(t− T/2))
cosh(meff(t+ 1− T/2)) (5.19)

The determination of the effective mass for a certain time t is done iteratively in terms of the ratio
C (t)

C (t+ 1)
, hence the effective mass is always defined up to t = T/2− 1. A plot of the parameter meff(t)

as a function of time will hopefully show a plateau where the low-lying state dominates and the fitting

range of the mass term can be set.
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Figure 5.1: Results of the fit parameters of the correlation function C (2)(t) with the function (5.18)
together with the constant fit of the effective mass, plotted over the effective mass. In this plot,
correlation functions were computed with aµc = 0.25.

This is not the only way to determine hadron masses. In fact, if one is interested in the determination of

both the matrix elements Z0 and the hadron mass E0, a two-parameter fit of the two-point correlation
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function is necessary. If, instead, one is only interested in the determination of the hadron mass, it is

possible to perform a constant fit of the effective mass meff extracted from the ratio between C (2)(t)

and C (2)(t+ 1).

Let us illustrate the previous two methods with an explicit numerical example for the case of the lower

lying states of the D meson. Figure 5.1 displays a comparison between the determination of the D

meson mass from a two-parameter fit of the correlation function (5.18) and from a constant fit of the

effective mass. It is clear that the latter provides a more precise estimate of E0.

When we only needed the energy determination of the hadrons (or the masses), we have used the

effective mass method. In the cases where both energy and matrix element Z were needed, we have

used the direct fit of the correlation function (5.18) in order to have a better control of the correlation

between the errors of the energy E and the matrix element Z .

5.2.1 Error estimation

In Monte Carlo simulations, we measure different quantities from the same configurations. Thus, the

measurements are naturally correlated. In this case, the expression for the error has to take this fact

into account so it is recommended to use Jackknife or Bootstrap analysis methods [108].

Jackknife method: it provides a systematic way to obtain the “standard deviation” error of a set of

stochastic measurements

1. We calculate the average m̄ of the full set of data (σ) determined from simulation.

2. We divide data (σ) into N blocks, with block length greater than the correlation time τcorr. in

order to get rid of autocorrelations. If there are no correlations, the block length can be set to

one.

3. For each n = 1 · · · N , we remove block n and calculate the average m̄(n) using the data from all

the other blocks

m̄(n) =
1

N − 1

∑

n′ 6=n

m̄(n′) (5.20)

4. We estimate the error on m by calculating the deviation of the m̄(n)s from m̄

δm =

√√√√N − 1

N

N∑

n=1

(m̄(n) − m̄)2 (5.21)

(The factor (N − 1)/N is there to give the correct result if we look at the errors of simple

observables.)

We often want an estimate of some function of the expectation value of σ′, f(
〈
σ′
〉
), where σ′ is some

quantity which we measure from simulation. Note that this is in general very different from
〈
f(σ′)

〉
.
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The Jackknife error estimate is then

δf =

√
N − 1

N

∑

m

(f(n) −
〈
f
〉
)2 (5.22)

where f(n) = f(σ′
(n)). This is typically a good approximation, because f(n) is close to

〈
f
〉
. (Here

〈
f
〉

is usually
∑

n

f(n)

N
but it could also be defined as

〈
f
〉

= f(
〈
σ′
〉
).)

Bootstrap method: it is closely related to the Jackknife method, but it mimics the resampling more

closely. It works as follows

1. We divide data (σ) into N blocks, with block length greater than the correlation time τcorr..

2. From the set of the N blocks, we pick randomly N ′ blocks (i.e. a bootstrap sample). Some blocks

may not get selected at all, some once, some twice, etc..

3. We calculate the quantity of interest σ′ over the selected data.

4. We repeat steps 2 and 3 a large number of times, say nB times, each time using random numbers

to generate the bootstrap sample. The calculated quantities are σ′
1, σ

′
2, · · · , σ′

nB
.

5. Finally, we estimate the standard deviation

δσ′ =

√
1

nB − 1

∑

i

(
σ′
i −
〈
σ′
〉)

where
〈
σ′
〉
=

∑
i σ

′
i

nB
(5.23)

One should have at least several tens of samples, preferably hundreds. In the bootstrap nB can go up

to 1000.

Let us now proceed to describe the determination of the mass of the first orbitally excited states (L = 1)

of the charmed D meson, with orbital angular momentum JP = 0+, 2+, from their corresponding two-

point correlation functions. We will refer to these two states as the scalar D∗
0 (JP = 0+) and the

tensor D∗
2 (JP = 2+) states2.

5.2.2 Spectroscopy of the scalar D∗

0
state

After describing how we can extract the meson masses from two-point correlators, we will now address

the charm scalar mesonic state. As parity is broken by the lattice twisted-mass action [83] and the

states we consider are not made out of quarks of the same flavor doublet (contrary to what is discussed

in section 5.2 of [80]), the scalar D∗
0 meson can in principle mix with the pseudoscalar D meson. In

order to disentangle these states, we will use the Generalized EigenValue Problem (GEVP) [110].

2There are also two D∗∗ with JP = 1+ but we will omit them from the current study since disentangling them demands
more work. First results on JP = 1+ in the Ds sector from Nf = 2 + 1 + 1 tmLQCD can be found in [109].
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Description of the Generalized Eigenvalue Problem

To implement this method in the present case, we consider a 2× 2 correlation matrix

C
(2)
ij (t) =

〈
O

†
i Oj

〉
=
∑

n

〈Ω |O†
i |n〉 〈n |Oj |Ω〉 e−Ent (5.24)

composed of a set of scalar and pseudoscalar operators, having the quantum numbers of the state one

is interested in. In the twisted basis we take

Oj ∈
{
χ̄c γ5 χu, χ̄c χu

}
(5.25)

Using the right-hand side of Eq. (5.24), it has been shown that diagonalizing the correlation matrix

C
(2)
ij (t) allows to disentangle the physical states to some extent. Indeed, we solve the following equation

∑

k

C
(2)
jk (t) v

(n)
k (t, t0) =

∑

k

λ(n)(t, t0)Cjk(t0)v
(n)
k (t, t0) (5.26)

in order to find the eigenvectors and eigenvalues of the system. In GEVP, the normalization at some time

slice t0 < t ought to improve the signal by suppressing the contributions from higher excited states. The

method improves when the number of interpolators is increased, but including more operators enhances

the statistical noise and thus affects the diagonalization.

When solving the GEVP, we obtain n masses from the following ratio of the eigenvalues at consecutive

times

λ(n)(t, t0)

λ(n)(t+ 1, t0)
=

e−m
(n) t

+ e−m
(n) (T−t)

e−m(n) (t+1) + e−m(n) (T−(t+1))
(5.27)

From the above ratio one can extract the effective masses as a function of time in lattice units. Finally,

fitting the data points in a defined time interval allows to extract the effective masse of the state n.

Simulation setup

In what follows, we present our results for the pseudoscalar D and the scalar D∗
0 meson masses ob-

tained using GEVP. In this analysis, correlation functions were computed using a sample of 100 gauge

configurations produced by the ETMC [111,112] with Nf = 2 twisted-mass fermions tuned at maximal

twist. The lattice volume is 243 × 48 in lattice units. We implement non-degenerate valence quarks in

the twisted mass formulation of Lattice QCD, as discussed in [113], by formally introducing a twisted

doublets for each non-degenerate quark flavor. In this analysis, we thus include in the valence sector

two twisted doublets (u, d) and (c, c′) with masses aµq = 0.0085 and aµc = 0.25 (which corresponds to

mD at β = 3.9) respectively.

We use, in our analysis, smeared-smeared two-point correlators because they are less noisy. As expected,

the effective mass of the scalar excited state (D∗
0) in Fig. 5.2 is greater than the pseudoscalar (D) one.

The effective mass plateaus are represented by the shaded band within defined intervals of time. The

plateau coming from the pseudoscalar state is found in a wider interval of time than the scalar one: in

Fig. 5.2 we choose t ∈ [4, 7] for the scalars and t ∈ [5, 14] for the pseudoscalars. Also, as t approaches
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Figure 5.2: Effective masses of scalar (•) and pseudoscalar (N) charmed D meson obtained by solving
GEVP as a function of time in lattice units. Results correspond to a simulation using 100 configurations.
The valence quark masses are aµc = 0.25 and aµl = 0.0085.

11, the data points tend to mix and the scalar mass exhibits larger error bars than the pseudoscalar.

5.2.3 Lower tensor D∗

2
states

As explained before, one can obtain the J = 2 states by considering the E+ and T+
2 IRs. The ap-

propriate operators for JP = 2+ were given in Table 5.4. We separately combine the two diagonal

interpolators contributing to the E+-representation and the three non-diagonal interpolators of the

T+
2 -representation. So we have two masses, m(E+) and m(T+

2 ). The extracted masses are, in principle,
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Figure 5.3: The plot on the left represents the effective mass m(T+
2 ) as a function of time and, on the right,

the effective mass m(E+). In this analysis, we use 240 gauge configurations. The valence charm quark has
a mass aµc = 0.215 which corresponds to the physical charm quark.

equal in the continuum: any discrepancy comes from the cut-off effects. We show in Fig. 5.3 that,
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indeed, lattice artifacts are present and that the signal to noise ratio decreases when approaching the

center of the lattice.

These plots allow not only the determination of the effective masses of JP = 2+ states, but also enable

the determination of the time range needed for the fit of the two-point correlation functions from which

we will extract the energy as well as the constant Z required in the calculation of form factors.

5.2.4 Discussion of results

From the above results, it is clear that working with excited D meson states is a delicate issue. The noise

increases when looking for higher orbital angular momentum J masses. However, the corresponding

plateaus, though not that large, are enough for a qualitative study of form factors.

We will compare the values we obtain from lattice simulations with the experimental determinations

of the masses by studying the quantity ∆m = (mD∗∗ −mD) where D∗∗ stands for the scalar D∗
0 (the

tensor D∗
2) state and D is the pseudoscalar charmed meson.

J = 0+ state: since the results presented in this chapter are obtained in lattice units, we use the

value of the lattice spacing a = 0.085 fm, fixed as explained in Chapter 4, or more precisely its inverse

a−1 ∼ 2.3 GeV to get the difference ∆m. In the case of the scalar D∗
0 , ∆m is about [369− 442] MeV.

If we compare this with the experimentally measured masses in the Ds sector (where the light quark is

not the (u, d) but the strange s), we get ratios ∆mth./∆mexp. varying from 1.13 up to 1.26.

J = 2+ state: using Fig. 5.3, one can determine that the mass m(E) ∼ 2.6 GeV and m(T2) ∼ 2.75

GeV. The uncertainty is large here due to the noise. The computed mass difference ratio to its experi-

mental value is almost 1.4.

Regardless of the fact that these results are not extrapolated to the continuum, they offer some insight

on the magnitude of the discretization errors for our currently used lattice spacing. For both scalar

and tensor states, we see a systematic trend for the mass difference ∆m to exceed the experimental one

(∼ 30%). This excess diminishes when going to the continuum limit3(∼10%).

3We confronted our results with those of [114] where an extrapolation to the continuum was performed: both results
were compatible at β = 3.9.





Chapter 6

Bs → Ds ℓ ν̄ℓ near zero recoil

from the SM and beyond
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The two semileptonic decay channels B → Dℓν̄ℓ and B → D∗ℓν̄ℓ, where the resulting lepton is

either an electron or a muon, allow two independent estimates of the CKM matrix element Vcb. The

main uncertainty on Vcb comes from the theoretical determination of the form factors that parametrize

the hadronic weak current, hence, any precise determination of the form factors lead to an accurate

determination of the CKM matrix elements.

In the first chapter, we presented a brief introduction to the exclusive decay B → Dℓν̄ℓ, giving recent

results for the ratio of branching fractions of B → D(∗)µν̄µ and B → D(∗)τ ν̄τ decays. The experimental

result for this ratio came as a surprise and suggests a disagreement with respect to the SM predictions.

This discrepancy, which is around 2σ, might provide the first evidence for NP in semitauonic B decays.

One possibility to accommodate this fact is to consider additional operators in the effective weak Hamil-

tonian which describes the system, and, in parallel, revisit the SM predictions.

With the aim of revealing and quantifying the effects of new physics in semileptonic B decays, we propose

in this chapter to focus on the study of Bs → Ds transitions. The decay mode B0
s → D+

s ℓν̄ℓ could be

studied in B-factories like LHCb or especially at Super Belle. One more advantage in studying Bs decay

is that there is no averaging between neutral and charged modes so that the soft photon problem is less

important [115]

B(Bs → Dsγsoft ℓ ν̄ℓ)

B(Bs → Dsℓν̄ℓ)
<

B(B → D0γsoftℓν̄ℓ)

B(B → D0γ ℓ ν̄ℓ)
(6.1)

Moreover, from the lattice point of view, the non-strange heavy-light mesons are more difficult because a

chiral extrapolation in the valence light quark is required, which is a source of systematic uncertainties.

Working with the strange case is simpler because the light spectator is fixed to its known mass (ms) and

no extrapolation in the light quark mass is needed when computing the relevant form factors on the lattice.

With the available computer power it is not possible to simulate quark masses in the range of the phys-

ical b mass and at the same time keep the finite volume and discretization effects under control. In

order to circumvent these problems, many different methods have been proposed (for a recent review

see [116]). The physical b quark mass expressed in lattice units, amb is larger than 1 for all ensembles

used in our simulation, and one expects large discretization effects (in principle of order 100%) when

computing directly quantities with a physical b quark mass. In our work we have avoided computing the

quantities of interest directly at the physical b quark, and have instead performed an interpolation of the

data computed from the c quark region together with information coming from the static limit (heavy

quark mass mh →∞).

In the present chapter we study the form factors entering the Bs → Ds decay channel. We proceed as

follows: first, we present the determination of the form factors parametrizing the weak matrix elements.

Then, we present the simulation details as well as the strategy for the lattice computation. Finally, we

explore what will be referred to as the “ratio method” which we implement in order to extrapolate to the
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physical b quark mass without performing any static calculation.

The analysis presented here is the object of a publication [117].

6.1 Extraction of the form factors

The amplitude for the hadronic transition Bs → Ds is parametrized in the SM through the vector and

the scalar form factors, F+(q
2) and F0(q

2), defined as

〈
Ds(pDs

)
∣∣ (V −A)µ

∣∣ B̄s(pBs
)
〉
= F+(q

2) (p
Bs

+ p
Ds

)µ

+ qµ
[
F0(q

2)− F+(q
2)
](m2

Bs
−m2

Ds

q2

) (6.2)

where the momentum transfer is q = (p
Bs
− p

Ds
), and q2 ∈]0, q2max], with q2max = (mBs

− mDs
)2. In

the above expression, the matrix element of the axial current is zero due to parity conservation.

c̄b̄

s

W
ℓ

ν̄ℓ

B̄s Ds

Figure 6.1: Feynman diagram representing the semileptonic process Bs → Ds ℓ ν̄ℓ.

The SM effective Hamiltonian can be extended to include new operators. In a generic NP scenario, not

accounting for leptonic mixing and which preserves the lepton flavor universality (LFU), the effective

Hamiltonian can be written by adding, to the SM one, scalar, vector and tensor operators [4]

Heff = −
√
2GF Vcb

[
(c̄γµb)

(
ℓ̄Lγ

µνL
)
+ gV (c̄γµb)

(
ℓ̄Lγ

µνL
)

+ gS (c̄b)
(
ℓ̄RνL

)
+ gT (c̄σµνb)

(
ℓ̄Rσ

µννL
)]

+ h.c.
(6.3)

where gS , gT and gV are the dimensionless couplings proportional to m2
W /m

2
NP, with mNP being the

New Physics scale. Though appearing in physical observables such as the B → Dℓν̄ℓ decay rate, the

extra scalar and vector parts do not provide any extra form factors. On the contrary, the tensor term
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leads to a new form factor FT (q
2) whose corresponding hadronic matrix element is defined as [118]

〈Ds(pDs
)|c̄σµνb|Bs(pBs

)〉 = −i(pBsµ
pDsν

− pDsµ
pBsν

)
2FT (q

2)

mBs
+mDs

(6.4)

Let us proceed to describe the strategy for the extraction of these form factors from lattice simulations.

As a first step, we choose a suitable kinematics.

6.1.1 Kinematics

When both mesons are at rest, only the scalar form factor contributes to the transition matrix element.

In other words, in order to “see” F+(q
2) one should give a momentum to one of the meson states which

we choose to be Ds. Moreover, we will assume that this momentum has symmetrical spatial components

p
Bs

=
(
mBs , ~0

)
and p

Ds
= (EDs , p, p, p) (6.5)

We also use the twisted boundary conditions (BCs) [119,120] for the quark field in order to increase the

kinematical region accessible for the investigation of momentum dependent quantities like, for example,

form factors. This allows to shift the quantized values of p by a continuous amount

p =
θπ

L
so that |~q| =

√
3
θπ

L
(6.6)

The chosen θs correspond to small momenta, thus we are discussing the decay matrix element near

zero-recoil. More specifically, our θs correspond to the following recoils w for Bs → Dsℓν̄ℓ

w ∈ {1, 1.004, 1.016, 1.036, 1.062} (6.7)

Note that wmax for this decay mode is 1.546.

The Ds mesons, to which a three momentum is given, obey the free-boson lattice dispersion relation

that describes the data at fixed lattice spacing

4 sinh2
ED
2

= 4

(
3 sin2

θπ

2L

)
+ 4 sinh2

mD

2
(6.8)

In the continuum limit, the latter becomes the continuum dispersion relation

E2
Ds

= |~q|2 +m2
Ds

(6.9)

Since our B-meson is always at rest, it is easy to see that

w =

√
1 +

3θ2π2

(mDsL)
2

(6.10)

This is a very welcome feature because w does not depend on the Bs mass. So we can vary mBs
to

reach its physical value while keeping mDs fixed. In other words, we will indeed be able to extrapolate

to physical B(s) → D(s) at fixed values of w.
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Using the above kinematics, we find the expressions of the form factors in terms of the corresponding

matrix elements. The factor F0(q
2) is determined from the vector transition amplitude by





P 0
µ〈D(pDs

)|Vµ|B(pBs
)〉 = mBs

+mDs

mBs
−mDs

F0(q
2) ,

with P 0
µ =

qµ
q2max

, and qµ = (mBs
− EDs

,−~pDs
)

(6.11)

The vector form factor F+(q
2) can be written as





P+
µ 〈D(pDs

)|Vµ|B(pBs
)〉 = ~q 2 2mBs

mBs
− EDs

F+(q
2) ,

with P+
µ =

(
~q 2

mBs − EDs

, ~q

) (6.12)

For the tensor operator Tµν = c̄σµνb, the component which contributes to the tensor form factor in the

Bs rest frame is T0k

〈D(pDs
)|T0k|B(pBs

)〉 =
−2i

(
m

Bs
p

Ds k

)

mBs
+mDs

FT (q
2) . (6.13)

The form factor FT is then determined by using the imaginary part of the tensor hadronic matrix

element.

6.1.2 Lattice setup and simulation details

In this analysis, we use gauge ensembles produced by the European Twisted Mass Collaboration

[111, 112] at four values of the inverse bare gauge coupling β, and different light sea quark masses.

The values of the simulated lattice spacings lie in the interval [0.05, 0.1] fm.

Dynamical quark simulations have been performed using the tree-level improved Symanzik gauge ac-

tion [69] and the Wilson twisted mass action [79] tuned to maximal twist [83] (already discussed in

Chapter 3). Let us recall that the use of maximally twisted fermionic action offers the advantage of

automatic O(a) improvement for all the interesting physical observables computed on the lattice [83].

Bare quark mass parameters, corresponding to a degenerate bare mass value of the u/d quark, are

chosen to have the light pseudoscalar mesons in the range 280 ≤ mPS ≤ 500 MeV. We have computed

two- and three-point correlation functions using valence quark masses whose range is extended from the

light sea quark mass up to 2.5− 3 times the physical charm quark mass. We implement non-degenerate

valence quarks in the twisted mass formulation by formally introducing a twisted doublet for each non-

degenerate quark flavor. We thus add in the valence sector three twisted doublets, (s, s′), (c, c′) and

(b, b′) with masses aµs, aµc and aµb, respectively. Within each doublet, the two valence quarks are

regularized in the physical basis with Wilson parameters of opposite values, r = −r′ = 1.

Here, we implement twisted BCs for the c doublet

χc(x+ Lêi) = eiθLχc(x) (6.14)
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β (L/a, T/a) aµℓ aµs aµh

3.80 (24, 48) 0.0080, 0.0110 0.0194 0.2331, 0.2742, 0.3225, 0.3793,

0.4461, 0.5246, 0.6170, 0.7257, 0.8536, 1.0040

3.90 (32, 64) 0.0030, 0.0040 0.0177
0.2150, 0.2529, 0.2974, 0.3498,

(24, 48) 0.0040, 0.0064 0.4114, 0.4839, 0.5691, 0.6694, 0.7873, 0.9260
0.0085, 0.0100

4.05 (32, 64) 0.0030, 0.0080 0.0154 0.1849, 0.2175, 0.2558, 0.3008,

0.3538, 0.4162, 0.4895, 0.5757, 0.6771,0.7963

4.20 (48, 96) 0.0020 0.0129
0.1566, 0.1842, 0.2166, 0.2548,

(32, 64) 0.0065 0.2997, 0.3525, 0.4145, 0.4876, 0.5734,0.6745

Table 6.1: Simulation details for the correlator computations at four values of the gauge coupling β = 3.80,
3.90, 4.05 and 4.20. The quantities aµℓ, aµs and aµh stand for light, strange-like and heavy (i.e. charm-like
and heavier) bare valence quark mass values respectively, expressed in lattice units.

This is equivalent to define an auxiliary field

χ
~θ
c(x) = e−i

~θ·~xχc(x) (6.15)

and a Dirac operator

D
~θ(χc, χ̄c, U) ≡ D(χ

~θ
c , χ̄

~θ
c , U

~θ) with U
~θ
i (x) = eiaθUi(x) (6.16)

The whole fermionic action finally reads

Sval = SF[χs, χ̄s, U ] + SF[χb, χ̄b, U ] + SF

[
χ
~θ
c , χ̄

~θ
c , U

~θ
]

(6.17)

where SF [χq, χ̄q, U ] represents the twisted mass action of fermions tuned to maximal twist.

Simulation details are given in Table 6.1, where µℓ, µs and µh indicate the bare light, strange-like and

heavy (i.e. charm-like and heavier) valence quark masses respectively. We have set the light valence

quark masses equal to the light sea ones, aµℓ = aµsea.

Renormalized currents are obtained from the bare ones using renormalization constants (RC), whose

values have been computed in [104, 121] using RI-MOM techniques and then transferred to the MS

scheme. In Table 6.2 we collect the values of ZV , ZA and ZT at each value of β as well as the corre-

sponding estimates of the lattice spacing [2].

Quark propagators with different valence masses are obtained using the multiple mass-solver method [96],

which allows to invert the Dirac operator for several valence masses at the same time, with a mild in-

crease in computational cost with respect to the computation of the single propagator.
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β 3.80 3.90 4.05 4.20

ZV 0.5816(2) 0.6103(3) 0.6451(3) 0.686(1)

ZA 0.746(11) 0.746(6) 0.772(6) 0.780(6)

ZT 0.73(2) 0.750(9) 0.798(7) 0.822(4)

a (fm) 0.098(3) 0.085(3) 0.067(2) 0.054(1)

Table 6.2: The renormalization constants ZV , ZA, and ZT in the MS scheme at 2 GeV, and lattice spacing
estimates for each value of the inverse gauge coupling β.

The statistical accuracy of the meson correlators is significantly improved by using the one-end stochas-

tic method [122,123] already described in Chapter 4.

Two- and three-point correlation functions were then computed by employing smearing techniques on a

set of 100-240 independent gauge configurations for each ensemble. We evaluated the statistical errors

using the Jackknife method.

Smeared interpolating operators become mandatory in the cases where relativistic heavy quarks are

involved. Smearing proves to be beneficial in reducing the coupling of the interpolating field with the

excited states, thus increasing its projection onto the lowest energy eigenstate. The usual drawback,

i.e. the increase of the gauge noise due to the fluctuations of the links entering the smeared fields, is

controlled by replacing thin gauge links with APE smeared ones. With this technical improvement,

we can extract heavy-light meson masses and matrix elements at relatively small temporal separations,

while keeping the noise-to-signal ratio under control. We employed the Gaussian smearing [124,125] for

heavy-light meson interpolating fields at the source and/or the sink. The smeared field is of the form

S(N) = (1 + 6κs)
−N (1 + κsa

2∇2
APE)

NS(0) (6.18)

where S(0) is a standard local source and ∇APE is the lattice covariant derivative with APE smeared

gauge links characterized by the parameters αAPE = 0.5 and NAPE = 20. We have taken κs = 4 and

N = 30.

6.1.3 Hadronic matrix elements from LQCD

The first step in exploring the form factors of Eqs. (6.2) and (6.4) in Lattice QCD, and getting in-

formation on semileptonic decays, is to find the matrix elements of vector or axial vector currents

between single hadron states. In order to access matrix elements, one starts by computing the following

three-point correlation functions

C
(3)(t, ti, tf , ~pi, ~pf ) =

∑

positions

〈O†
Ds

(tf , ~xf ) Jµ(t, ~x) OBs(ti, ~xi)〉 · ei(~x−~xf )·~pf · e−i(~x−~xi)·~pi (6.19)

where O
†
Ds

, OBs
are respectively the annihilation and creation operators of the Ds and Bs mesons,

Jµ is the vector or axial current. Figure 6.2 represents the diagram corresponding to such correlation

functions.
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ti

(source)

tf

(sink)

t

c̄b̄

s

Jµ

~xi
(~pi)

~xf
(~pf )

~x
(~p)

B̄s Ds

Figure 6.2: Valence quark flow in the form factor of B → Dℓν̄ℓ

In terms of the all-to-all propagators, the three-point function for the Bs → Ds process becomes

C
(3)(t, ti, tf , ~pi, ~pf ) =

∑

positions

〈
Tr
[
Sb(x, xi) γ5 S

s(xi, xf ) γ5 S
c(xf , x)Γins.

]〉

× exp [−i~pf · (~xf − ~x)] · exp [−i~pi · (~x− ~xi)]
(6.20)

where Γins. stands for the spin structure of the current. The standard way to calculate semileptonic

three-point functions in LQCD is the sequential propagator method. The sequential propagator method

provides a means of computing a heavy-quark propagator (i.e. Sc(xf , x)) that connects all spatial sites

xf at the sink time slice tf , to all sites x and t at the vector current insertion. Algorithmically, this

amounts to taking the spectator quark propagator Ss(xi, xf ) and projecting it onto the sink momentum

pf , the sink smearing and the sink matrix structure, which is here γ5.

Let

Σ̃cs(xi, x; t2, ~pf ) = γ5[Σcs(x, xi; t2, ~pf )]
†γ5 (6.21)

where

Σcs(x, xi; t2, ~pf ) =
∑

xf

Sc(x, xf )γ5S
s(xf , xi)δt2,tf−tie

−i~pf ·(~xf−~xi) (6.22)

The sequential propagator Σcs(x, xi; t2, ~pf ) can be combined with the beauty-quark propagator Sb(x, xi)

and appropriate γ-matrices to arrive at Equation (6.20)

C
(3)(t1, t2, ~pi, ~pf ) =

∑

x,xi

〈
Tr
[
Sb(x, xi) γ5 Σ̃cs(xi, x; t2, ~pf ) Γins.

]〉

× exp [i~pf · (~x− ~xi)] exp [−i~pi · (~x− ~xi)] δt1,t−ti

(6.23)

Using ∑

x

Dc(y, x)Sc(x, z) = δy,z (6.24)
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the sequential propagator Σcs(x, xi; t2, ~pf ) satisfies the relation

∑

x

Dc(y, x)Σcs(x, xi; t2, ~pf ) = γ5 S
s(y, xi) e

−i~pf ·(~y−~xi) δt2,tf−ti (6.25)

Thus to get the sequential propagator Σcs(x, xi; t2, ~pf ), the heavy-quark Dirac operator is inverted on

the “sequential source”, γ5 Ss(y, xi) e−i~pf ·(~y−~xi) δt2,tf−ti .

The goal now is to extract the matrix elements from the already computed three-point correlation

functions. From the asymptotic behavior of the three-point correlation function, it is clear that the

removal of the exponential factors can be achieved by considering the ratio

R(t) =
C (3)(t, ti, tf , ~pi, ~pf )

C
(2)
(Bs)

(t− ti, ~pf ) · C (2)
(Ds)

(tf − t, ~pi)
·ZBs ·ZDs (6.26)

where ZM = |〈0|OM |M〉| is obtained from the fit with asymptotic behavior of the two-point correlation

functions

C
(2)(t) −−−→

t→∞

Z 2
Bs,Ds

EBs,Ds

cosh

(
EBs,Ds

[
T

2
− t
])

e−EBs,Ds
T
2 (6.27)

When the operators in the ratio (6.26) are sufficiently separated in time, one observes a stable signal
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Figure 6.3: Example of the plateaus for the Bs → Ds transition amplitudes, leading to the determination
of the relevant form factors, at two different gauge couplings: (a) vector (V0 is represented by • and Vk by•) and tensor (•) hadronic matrix elements corresponding to β = 3.90, aµh = 0.4114, aµl = 0.0085. (b)
vector and tensor matrix elements corresponding to β = 4.20, aµh = 0.3525, aµl = 0.0065.

(plateau) which is the desired hadronic matrix element

R(t)
tf−t→∞−−−−−−→
t−ti→∞

〈Ds(~pf )|Jµ|Bs(~pi)〉

In this work, the two-point functions entering the ratio of Eq. (6.26) are described by their analytic
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expressions and that is why analytical ratios are used in the extraction of Bs → Ds form factors.

The quality of the plateaus can be inferred from Fig. 6.3 which shows the hadronic transition amplitudes

determined from smeared-smeared two- and three-point correlators for two different gauge ensembles.

For clarity, the data points have been shifted as indicated in the label of the plot. For β = 3.9, the

plateaus could be found in the time interval [11, 15] and for β = 4.20 the time range lies between t = 16

and t = 22.

6.2 Determination of Gs(1)

In the limit of vanishing lepton mass, the semileptonic decay rate of Bs → Ds transitions is expressed in

terms of a function G
(Bs→Ds)
s (w). Although the shape of |Vcb|G (w) is experimentally well-determined,

lattice input is needed to extract |Vcb| (the zero recoil point G (1) or the Isgur-Wise point). Let us define

the form factors in this (HQET inspired) way

1
√
mBsmDs

〈Ds(vDs)|Vµ|Bs(vBs)〉 = (vBs + vDs)µ h+(w) + (vBs − vDs)µ h−(w) (6.28)

where vBs
= pBs

/mBs
, vDs

= pDs
/mDs

, and w = (m2
Bs

+ m2
Ds
− q2)/(2mBs

mDs
). By comparing

Eqs. (6.2) and (6.28), one gets





F+(q
2) =

mBs
+mDs√

4mBsmDs

h+(w)

[
1− mBs

−mDs

mBs +mDs

h−(w)

h+(w)

]

F0(q
2) =

√
mBsmDs

mBs
+mDs

(w + 1)h+(w)

[
1− mBs +mDs

mBs
−mDs

w − 1

w + 1

h−(w)

h+(w)

] (6.29)

The above-mentioned function Gs(w) is proportional to F+(q
2); it is defined by

G (w) = h+(w) [1− H(w)] (6.30)

where, for shortness, we introduced the dimensionless ratio

H(w) =
mBs

−mDs

mBs +mDs

h−(w)

h+(w)
(6.31)

The dominant term at w = 1 is h+(1), which can be obtained from F0(q
2
max)

h+(1) =
mBs

+mDs√
4mBsmDs

F0(q
2
max) (6.32)

Unfortunately, H(1) is not directly accessible from the lattice at zero-recoil. Instead we need to compute

the form factors F0,+(q
2) at few small recoil momenta and then extrapolate to w = 1. At w 6= 1, it

is convenient to work with the ratio of two form factors and to express it in terms of H(w) by using

Eqs. (6.29)

Y (q2) ≡ F+(q
2)

F0(q2)
=

(mBs +mDs)
2 −H(w)(mBs −mDs)

2

2mBs
mDs

[w + 1−H(w)(w − 1)]
(6.33)
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from which it is easy to get

H(w) =

1− 2mBs
mDs

(mBs
+mDs

)2
[
(w + 1)Y (q2)

]

1− 2mBs
mDs

(mBs
−mDs

)2
[
(w − 1)Y (q2)

] (6.34)

It is therefore sufficient to compute the ratio Y (q2) for a few θ 6= 0, and then extrapolate the function

H(w) towards H(1). If we write

H(w) = α+ βw + γw2 + · · · (6.35)

then we can get α, β from the fit with our data, and then easily obtain H(1), which is finally combined

with the result from Eq. (6.32) to compute

Gs(1) = h+(1) [1− H(1)] (6.36)

for each gauge ensemble and for all light quark masses.

6.2.1 The extrapolation strategy

Since the numerical lattice data that we have are obtained with the strange valence light quark, it is

sufficient to determine Gs(1) for all gauge ensembles and then extrapolate to the continuum limit and

to the physical sea quark mass, by fitting with a simple linear function of msea
l and a2

G
latt
s (1) = αs + βs

msea
l

ms
+ γs

a2

a23.9
(6.37)

This quantity is calculated for all the fixed values of heavy quark masses we considered in our simulation,

which range from the charm region up to the b quark mass. This allows to extrapolate to the physical

bottom mass by means of the “ratio method” [126] which was first applied in a calculation of the b quark

mass and the decay constants fB and fBs
. Let us describe the method.

6.2.2 The ratio method

The method that we have used to determine Gs(1) is suggested by the HQET asymptotic behavior of

Gs(1)

lim
mh→∞

Gs(1) = constant (6.38)

where mh is the heavy quark mass.

As a first step, we consider an appropriate sequence of heavy quark masses

m
(i)
h i ∈ {0, · · · , 9} (6.39)
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with fixed ratios

m
(i+1)
h

m
(i)
h

= λ ≃ 1.17 (6.40)

and ranging from

mc ≤ m(i)
h ≤ mb (6.41)

where mc (mb) corresponds to the physical charm (beauty) quark mass given in the MS scheme at a

renormalization scale of 2 GeV .

Then one computes the ratios at two subsequent values of the heavy quark mass

Σ(i)(1,m
(i)
h , a2,msea

l ) =
Gs(1, a

2, m
(i+1)
h , msea

l )

Gs(1, a2, m
(i)
h , msea

l )
(6.42)
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Figure 6.4: Values of Σ3 as obtained on all of the lattice configurations used in this work and shown as a
function of µseal /µs. Various symbols are used to distinguish the lattice data obtained at different lattice
spacings: ◦ for β = 3.80, � for β = 3.90 (243), � for β = 3.90 (323), • for β = 4.05, and ⊲ for
β = 4.20. The result of the continuum extrapolation is also indicated at the point corresponding to the
physical µud/µs ≡ mud/ms = 0.037(1).

The resulting ratio provides a strong cancellation of statistical errors and its values are very accurate.

We show in Fig. 6.4 the values of Σ3 obtained for all the lattice configurations used, as a function of

the light sea quark mass divided by the physical strange quark mass.

From Eq. (6.38), it follows that the ratios (6.42) have the following static limit

lim
mh→∞


 lim
msea

l →mud

a→0

Σ(i)(1,m
(i)
h , a2,msea

l )


 def.

= lim
mh→∞

σ(i)(1,m
(i)
h ) = 1 (6.43)

where mud stands for the average of the physical up and down quark masses (mud = (mu + md)/2)

computed on the same lattices [2].
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We extrapolate the ratios defined in Eq. (6.42) to the continuum limit according to

Σ(i)(1,m
(i)
h , a2,msea

l ) = α(i)
s + β(i)

s

msea
l

ms
+ γ(i)s

a2

a23.9
(6.44)

As anticipated from Fig.6.4 the values of β
(i)
s and γ

(i)
s , as obtained from the fit of our data to Eq. (6.44),

are consistent with zero. We observe that the ratios σ(i) do not show any significant dependence on the

light sea quark mass msea
l : this implies that the value of β

(i)
s in the fit (6.44) is compatible with zero.

We checked the results obtained by imposing β
(i)
s = 0: the result for the ratios σ(i) remains practically

the same for the first heavy quark masses and compatible within the error bars for the heaviest ones.

In Table 6.2.2, we present the values of σ(i) for different heavy quark masses. We see that for larger

heavy quark masses (m
(9)
h = mb and m

(8)
h = mb/λ), the continuum value of σ(i) will have a larger

error. Also, the errors on the form factor obtained at m
(7)
h = mb/λ

2 are large but they do not alter

the convergence of the ratios σ(i) to the known static limit (infinite quark mass), equal to 1, as can be

seen from Fig. 6.5.

1/m
(i)
h [GeV] σ(i)(mh)(β(i)

s 6=0)
σ(i)(mh)(β(i)

s 6=0)

1/m
(1)
h =0.739 0.996(2) 0.991 (1)

1/m
(2)
h =0.629 1.004(4) 1.007(2)

1/m
(3)
h =0.534 1.005(5) 1.008(2)

1/m
(4)
h =0.454 1.005(6) 1.006(2)

1/m
(5)
h =0.386 1.012(8) 1.013(2)

1/m
(6)
h =0.328 1.005(10) 1.013(5)

1/m
(7)
h =0.279 1.006(23) 1.019(6)

1/m
(8)
h =0.237 0.975(48) 1.022(11)

1/m
(9)
h =0.202 0.853(48) 1.060(31)

Table 6.3: The values of the ratio σ(i) extrapolated to the continuum limit using Eq. (6.44) for each

heavy valence quark masses m
(i)
h = λimc. Results of extrapolation with β

(i)
s as a free parameter are shown

separately from those in which the observed independence on the sea quark mass is imposed in the fit (6.44)

by setting β
(i)
s = 0.

Interpolation to the static limit

Let us recall that, instead of extrapolating Gs(1) in inverse heavy quark mass to the physical b mass,

we interpolate the ratio σ (1,mh) to σ (1,mh = mb) with lim
mh→∞

σ (1,mh) = 1. In practice, after

performing the continuum extrapolation of the ratios, we study their dependence on the inverse heavy

quark mass. We perform a polynomial fit in 1/mh, of the form

σ (1,mh) = 1 +
s1
mh

+
s2
m2
h

(6.45)
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which satisfies the constraint σ = 1 at the static point. The fit is illustrated in Fig. 6.5 using the

extrapolated values σ(i) in the continuum. Note that the data points at different heavy quark masses

converge to the exactly known static limit.
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Figure 6.5: Heavy quark mass dependence of the ratio σ extrapolated to the physical value of the heavy
quark mass and to the continuum limit. The vertical line represents the value of the inverse physical b quark
mass. Filled symbols correspond to σ(1,mh) extrapolated to the continuum limit by using Eq. (6.37) with
all parameters free, whereas the empty symbols refer to the results obtained by imposing βs = 0.

The physically interesting value of Gs(1) is finally determined by considering the following equation

Gs(1,mh = mb) = Gs(1,m
(0)
h = mc) σ

(0) σ(1) · · · σ(8) (6.46)

where σ(i) stands for σ(i)(1, λimc) and where the initial triggering value Gs(1,m
(0)
h ) corresponds to the

elastic form factor of the Ds → Ds transitions. In the continuum, it is exactly equal to 1.

Note that we do not need to use the renormalization constant when starting with the elastic form factor

at the charm point. We finally obtain

G
phys.
s (1,mb) = 1.052(46) (6.47)

which is compatible with the previous lattice prediction for the B → D decay presented in Section 2.3.

If we want to start from the computed Gs(1), in the continuum, at mh = λ(i)mc we will apply σi+1 · · ·σn
in order to reach the sought value at the b-quark mass. For example, starting from i = 3, we get

Gs(1,mh = mb) = Gs(1,m
(3)
h = λ3mc) σ

(4) σ(5) · · · σ(8)

= 1.059(47)
(6.48)

which is compatible with the result given in Eq. (6.47).
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6.2.3 Systematic effects

The systematic error associated with the interpolation of the ratio σ(1,mh) as a function of 1/mh can

be determined by repeating the analysis and choosing a third order polynomial in 1/mh (rather than a

second order one as in (6.45)). This modification results in a decrease of Gs(1) for the Bs → Ds decay

of about 0.005. The resulting value Gs(1) = 1.047(61) remains compatible with the value in Eq. (6.47).

The error of Gs(1) can be significantly reduced if we impose that Gs(1) does not depend on the mass of

the dynamical sea quark, which is what we already observed in Fig. 6.5 with our data at four different

lattice spacings. This leads to

Gs(1) = 1.073(17) (6.49)

Furthermore, although the finite volume effects are not expected to affect the quantities computed in

this work, they could appear when the dynamical (sea) quark mass is lowered. In order to check for

that effect, we can compare our results obtained on the ensembles with (β = 3.9, V = 243 × 48) and

with (β = 3.9, V = 323 × 64) which differ in volume. The situation shown in Fig. 6.4 is a generic

illustration of the situation we see with all the other quantities: the form factors are insensitive to a

change of the lattice volume. All these checks suggest that our result (6.47) obtained by using β
(i)
s as

a free parameter, remains stable.

The above analysis at zero recoil can also be done at different non zero recoils. In what follows, we will

present the determination of Gs(w).

6.2.4 Gs at non zero recoil

The analysis of Gs(w) at non-zero recoil is essentially the same as in the zero-recoil case described above.

From the correlation functions (6.19) and by using the projector P+
µ (6.12) we get the form factor F+(q

2)

which is proportional to the desired G (w,m
(i)
h ), cf. Eqs. (6.29) and (6.36). The observations made in

the analysis of Gs(1) concerning the independence on the light sea quark mass and on the lattice spacing

remain true after switching from w = 1 to w > 1.

The values are given in Table 6.4, where we again report our results both in the case where the parameter

β
(i)
s in the continuum extrapolation (6.44) is left free and in the case where β

(i)
s = 0 is imposed. The

net effect in the latter case is that the resulting error is considerably smaller.

Using the parameterization of Ref. [127], which expresses Gs(w) in terms of its slope ρ2

Gs(w)

Gs(1)
= 1− 8ρ2z + (51ρ2 − 10)z2 − (252ρ2 − 84)z3 (6.50)

with z = (
√
w + 1 −

√
2)/(
√
w + 1 +

√
2), we extract the slope ρ2 from our data. Knowing that the

window of “w”s we consider here is very narrow (6.7), a clean determination of ρ2 would require very

accurate values of Gs(w).

In our case, we obtain ρ2 = 1.2(8). In the case where we dismiss the dependence on the sea quark
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w
(
q2Bs→Ds

)
[GeV2] Gs(w)β(i)

s 6=0
Gs(w)β(i)

s =0

1. (11.54) 1.052(47) 1.073(17)

1.004 (11.46) 1.052(47) 1.075(16)

1.016 (11.20) 1.029(49) 1.063(15)

1.036 (10.79) 1.044(51) 1.034(17)

1.062 (10.23) 0.986(57) 1.004(20)

Table 6.4: Results for Gs(w), the dominant factor governing the hadronic matrix element relevant to
Bs → Dsℓν̄ℓ (ℓ ∈ {e, µ}), computed at zero-recoil and at non-zero recoil.

mass (when the errors on Gs(w) are smaller) we get ρ2 = 1.1(3). These values are consistent with the

experimentally established ρ2 = 1.19(4)(4) [30]. The same result for ρ2 is obtained if the data are fit

to [128]

Gs(w)

Gs(1)
=

(
2

1 + w

)2ρ2

(6.51)

6.3 Semileptonic B decay to τ leptons and New Physics

The BaBar Collaboration has recently measured B(B → Dτν̄τ ) unveiling a discrepancy of about 2σ

with respect to the SM estimate [4]. New Physics models can account for such a discrepancy

• either via an enhancement of the coefficient multiplying the scalar form factor in the decay ampli-

tude (as can occur in models where a charged Higgs mediates the tree-level process, e.g. 2HDM);

• or by introducing a non zero coupling in which case an additional form factor appears in the

amplitude.

Since the contribution of the scalar form factor F0(q
2) is helicity suppressed in the SM, it should be

more significant in the B → Dτν̄τ than in B → Dµν̄µ. So, it is important to study it, as well as its

tensor counterpart coming from the form factor FT (q
2), when considering NP scenarios.

Thus, in this section, we will focus on the determination, at different non zero recoils, of the ratios

RT (q
2) =

FT (q
2)

F+(q2)
and R0(q

2) =
F0(q

2)

F+(q2)
(6.52)

which enter the differential decay rates of B → D process.
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RT (q
2)

To our knowledge, the only existing result is the one of ref. [129] for the non-strange case (Bud → Dud ℓ ν̄ℓ)

in which the constituent quark model was used. Their result for the ratio FT /F+ was 1.03(1) and, in

their work, this ratio was predicted to be a constant with respect to the momentum transfer q2 (or the

recoil w).
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Figure 6.6: (a) The relevant form factors FT and F+ of Bs → Ds decay channel in lattice units at different
non zero recoils corresponding to the ensemble β = 3.9, aµl = 0.0085, aµh = 0.4114. (b) The ratio FT /F+

in lattice units, as a function of q2, obtained using the same ensemble.

Indeed, our lattice computations show this behavior, for example in Fig. 6.6(b). However, FT has larger

error bars than the vector and the scalar form factors, F+ and F0 (see Fig. 6.6(a)). We begin with the

determination of suitable ratios at successive values of heavy quark masses, for a defined value of the

recoil w and at all the lattice spacings we considered in our simulation

ΣT(i)(w,m
(i)
h , a2,msea

l ) =
RT (w, a

2, m
(i+1)
h , msea

l )

RT (w, a2, m
(i)
h , msea

l )
(6.53)

The heavy quark behavior of FT (q
2) is similar to that of F+(q

2). Indeed, if we apply the heavy quark

equation of motion to the b-quark

1 + v/

2
b = b (6.54)

which, in the b rest frame, reads γ0b = b. Then, in Eq. (6.13), T0k = c̄σ0k b = −ic̄γk b, so that the

heavy quark behavior of the form factor FT (q
2) resembles that of F+(q

2).

Hence, in order to determine the physical values of RT (q
2) near zero recoil, we follow the same strategy

of extrapolation presented in Section 6.2.
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We first need to extrapolate the ratios ΣT as well as the variables RT to the continuum limit by using

a fit analogous to Eq. (6.37)

ΣT(i)(w,m
sea
l , a2) = α(i)′

s (w) + β(i)′
s (w)

msea
l

ms
+ γ(i)′s (w)

a2

a23.9
(6.55)

thus assuming a linear dependence on the dynamical (“sea”) quark mass and on the square of the lattice

spacing. Since we work with maximally twisted QCD on the lattice, the leading discretization errors

are proportional to a2. We find again that our results depend very little on the lattice spacing and that

the form factors (and their ratios) do not depend on the sea quark mass. For that reason we made the

continuum extrapolation by imposing β
(i)′
s (w) = 0 and by leaving β

(i)′
s (w) as a free parameter.
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Figure 6.7: Ratio σT as a function of the inverse heavy quark mass. The vertical line represents the value of
the inverse physical b quark mass. Filled symbols correspond to σT (w,mh) extrapolated to the continuum
limit by using Eq. (6.55) with all parameters free, whereas the empty symbols refer to the results obtained

by imposing β
(i)′
s = 0.

Using the extrapolated values in the continuum, σ
(i)
T (w) = σT (w,m

(i)
h ) with mh = λimc, we proceed

to interpolate to the physical b quark mass according to

σT (w,mh) = 1 +
s′1
mh

+
s′2
m2
h

(6.56)

This interpolation is illustrated in Fig. 6.7.

Finally, we compute RT (w,mb) by considering the equation

RT (1,mh = mb) = RT (1,m
(i)
h ) σ

(i)
T σ

(i+1)
T · · · σ(8)

T (6.57)

and taking i = 3. The main values at different momenta are collected in Table 6.5. These results are

consistent with those obtained when taking i = 2 or 4.
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w q2Bs→Ds
(GeV2) RT (q

2) with β
(i)′
s 6= 0 RT (q

2) with β
(i)′
s = 0

1.004 11.46 1.076(68) 1.078(43)

1.016 11.20 1.062(76) 1.064(49)

1.036 10.79 0.975(94) 0.997(64)

1.062 10.23 0.920(111) 1.004(76)

Table 6.5: Results for the ratios of FT with respect to F+ at different small recoils.

Notice that the error on RT (q
2) increases when going to higher values of w. We are therefore unable

to check the flatness of RT (q
2) which occurs in the infinite mass limit.

R0(q
2)

We consider in this case various ratios of R0 at successive heavy quark masses, different lattice spacings

and recoil w

Σ0
(i)(w,m

(i)
h , a2,msea

l ) =
R0(w, a

2, m
(i+1)
h , msea

l )

R0(w, a2, m
(i)
h , msea

l )
(6.58)

Then, in order to reach the continuum values σ
(i)
0 (w,m

(i)
h ) of Σ0

(i)(w,m
(i)
h , a2,msea

l ), we apply the

continuum extrapolation using

Σ0
(i)(w,m

sea
l , a2) = α(i)′′

s (w) + β(i)′′
s (w)

msea
l

ms
+ γ(i)′′s (w)

a2

a23.9
(6.59)

After inspection, we found again that the dependence of the form factors on the sea quark mass is

indiscernible in our data and that our results depend very mildly on the lattice spacing. Since the

dependence on the sea quark mass is negligible, we again consider the continuum extrapolation by

setting β
(i)′′
s (w) = 0, separately from the case in which β

(i)′′
s (w) are left as free parameters. The net

effect is that the error on σ
(i)
0 (w) = Σ0

(i)(w, 0, 0) is considerably smaller in the case with β
(i)′′
s = 0 and

the data better respect the heavy quark mass dependence.

Now we want to discuss the heavy quark interpolation. We consider the ratio of form factors R0 which

depends mainly on mBs,Ds and on the ratio of form factors
h−(w)

h+(w)
. Using the HQET mass formula [130]

mBs,Ds
= mb,c + Λ+ (λ1 + 3λ2)/mb,c (6.60)

where λ1, λ2 and Λ are expressed in terms of hadronic matrix elements defined in the framework of

HQET, and knowing that h+(w) scales as a constant with the inverse heavy quark mass, we deduce

that, for the charm mass fixed to its physical value,

R0(w,mh,mc) ∝ 1/mh (6.61)
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Consequenty, we consider the ratio R′
0(w,mh)

R
′
0(w,mh) = mh R0(w,mh) (6.62)

which scales as a constant in the heavy quark mass limit. The corresponding σ′ can then be described

by a relation similar to Eq. (6.45) and R′
0(1,mh = mb) obtained by

R
′
0(1,mh = mb) = R

′
0(1,m

(i)
h ) σ

′(i)
0 σ

′(i+1)
0 · · · σ

′(8)
0 (6.63)
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Figure 6.8: Fit of our data to Eq. (6.65). Empty symbols denote the results computed in the continuum

by setting β
(i)′′
s = 0 in Eq. (6.59). Filled symbols are obtained after allowing β

(i)′′
s 6= 0. Plotted are the

data with w = w3 = 1.016. We see that the data obtained by assuming the independence of R0 on the sea

quark scale is better with the heavy quark mass than the values obtained by letting the parameter β
(i)′′
s to

be free.

which is written in terms of R0(w,mh,mc) as

λ9mc R0(w,mh = mb) = σ
′(i)
0 σ

′(i+1)
0 · · · σ

′(8)
0 λimc R0(w, λ

imc)

⇒ R0(w,mh = mb) = λi−9 σ
′(i)
0 σ

′(i+1)
0 · · · σ

′(8)
0︸ ︷︷ ︸

σ
(i)
0 σ

(i+1)
0 ··· σ

(8)
0

R0(w, λ
imc) (6.64)

Therefore σ0 = σ′
0/λ.

Hence, we perform the heavy quark interpolation using

σ0(w,mh) =
1

λ
+
s′′1(w)

mh
+
s′′2(w)

m2
h

(6.65)

where we recall that λ = 1.176.

In Fig. 6.8, we illustrate the ratio σ0 for one specific value of w = 1.016 showing the data obtained by

assuming both the dependence and the independence of R0(w) on the sea quark scale. We see that

our results obtained by assuming the independence of R0(w) on the sea quark scale respect better the

heavy quark mass dependence than those obtained by letting the parameter β
(i)′′
s in Eq. (6.59) free,



6.3 Semileptonic B decay to τ leptons and NP 109

although both are compatible within the error bars.

The results obtained for R0(q
2) are listed in Table 6.6.

w q2Bs→Ds
(GeV2) R0(q

2) with β
(i)′′
s 6= 0 R0(q

2) with β
(i)′′
s = 0

1.004 11.46 0.766(19) 0.752(7)

1.016 11.20 0.781(24) 0.757(9)

1.036 10.79 0.787(34) 0.760(16)

1.062 10.23 0.825(59) 0.761(34)

Table 6.6: Results for the ratios of R0(q
2) at different non-zero recoils.

Knowing that the form factors satisfy the constraint F0(0) = F+(0), one can then attempt to fit R0(q
2)

linearly in q2

R0(q
2) = 1− αq2 (6.66)

From the results obtained with β
(i)′′
s (w), we get α = 0.021(1) GeV−2, while from the data with β

(i)′′
s (w)

free, α is equal to 0.020(1) GeV−2. This is illustrated in Fig. 6.9. It is interesting to note that these
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Figure 6.9: Results for R0(q
2) presented in the case where Bs → Ds are linearly fit to the form R0(q

2) =

1− αq2. The empty (filled) symbols correspond to the results obtained with β
(i)′′
s (w) = 0 (β

(i)′′
s 6= 0).

results are consistent with the values that can be obtained from the results quoted in recent works (in

the non-strange case). More specifically, from the lattice results of Refs. [33,34] one finds α = 0.020(1)

GeV−2, while from those reported in Ref. [131] one finds α = 0.022(1) GeV−2. Recent QCD sum rule

analyses give α = 0.021(2) GeV−2 [132, 133]. Note also that near zero recoil, the central value of our

result (R0(q
2) = 0.77(2)), coincides with the quark model results of Refs. [129,134].

Concluding remarks: we have computed the relevant form factors entering the semileptonic decay

channel Bs → Ds near the zero-recoil limit using fully propagating heavy quarks and renormalization
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constants, in a non-perturbative way. We applied a method which allows the interpolation to the phys-

ical b quark mass without doing any calculation in the static limit.

We first computed the normalization of the vector factor relevant to the extraction of the CKM matrix

element |Vcb| from B(Bs → Dsℓν̄ℓ) with the light lepton ℓ ∈ {e, µ} in the final state. We obtained

Gs(1) = 1.052(46) (6.67)

Then, we determined for the first time in LQCD the form factor FT (q
2) with respect to F+(q

2). In the

MS renormalization scheme and at µ = mb we obtained

FT (q
2)

F+(q2)

∣∣∣∣
q2=11.5GeV2

= 1.08(7) (6.68)

This allows a better constrained study of NP effects. Finally, we computed the ratio of the scalar

to the vector form factors, F0(q
2)/F+(q

2), required to interpret the recent discrepancy between the

experimentally measured B(B → Dτν̄τ )/B(B → Dµν̄µ) and its theoretical prediction within the SM

(cf. Chapter 2). Of several considered recoils “w”, we quote

F0(q
2)

F+(q2)

∣∣∣∣
q2=11.5GeV2

= 0.77(2) (6.69)

We observe that the errors on the above quantities can be significantly reduced if one imposes that the

form factor ratios and the form factors themselves do not depend on the mass of the dynamical (sea)

quark, which is essentially what we see at all values of the lattice spacing.

The above strategy could also be applied to the semileptonic B → D transitions with an additional

chiral extrapolation.
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Understanding the semileptonic decay of a B to a charm mesons is of key importance to control

the theoretical error on the CKM matrix element Vcb. It turns out, however, that there is a discrepancy

between the inclusive [1] and the exclusive [127] determination (based on B → D(∗) ℓ ν, see Chapter 2)

of this matrix element. The difference is of the order of 1.5σ [1].

A non-negligible part of the total width Γ(B → Xcℓ νℓ) comes from excited states. It was recently argued

that the radial excitation D′ might be particularly favored [63–65]. Another group of states, that con-

tributes to the width (around one quarter of it), is the orbital excitations, in other words, the positive

parity charmed mesons D∗∗.

As mentioned in Chapter 2, these states are not well understood: indeed there is a persistent conflict

between theory and experiment concerning the semileptonic branching ratios of B → D∗∗ℓν̄ℓ.

However, the main limitation of almost all theoretical results is that they are derived in the heavy quark

limit. Since the heavy mass corrections might be large, before getting any definitive conclusion on the

disagreement between theory and experiment, it is mandatory to study the impact of the corrections

arising from the finiteness of the heavy quark mass.

In the following, we will focus on the determination of B → D∗∗ ℓν̄ℓ form factors: we begin with the

theoretical background of the subject and then proceed to the lattice setup. Subsequently we address the

transition amplitudes governing the B → D∗∗ decay and discuss results of our LQCD calculations.

The results discussed in this chapter are the object of a forthcoming publication [135].

7.1 The theoretical framework

Our work is devoted to the calculation of the decay rates of B mesons into the
∣∣3P 0

〉
(scalar D∗

0) and

the
∣∣3P 2

〉
(tensor D∗

2) states1.

Since the form factors enter the decay rates, we will start by describing the strategy used to determine

explicitly the expressions of the B → D∗
0(D

∗
2) form factors.

7.1.1 Definition of the form factors

This type of calculation requires the knowledge of the B → D∗
0 (D∗

2) transition amplitudes which in

turn are described using six form factors [136]

1We use the
∣

∣

2S+1LJ

〉

notation of the states, where S is the spin angular momentum, L = 1 the orbital angular
momentum and J = L+ S the total angular momentum of the D∗∗ state.
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3P 2 state

〈
3P 2

(
p
D∗

2
, ε(p

D∗
2
, λ)

) ∣∣Vµ
∣∣B(p

B
)
〉

= i h̃ ǫµνλρ ε
∗να
(p

D∗
2
) pBα (pB + p

D∗
2
)λ (p

B
− p

D∗
2
)ρ

〈
3P 2

(
p
D∗

2
, ε(p

D∗
2
, λ)

) ∣∣Aµ
∣∣B(p

B
)
〉
= k̃ ε

(p
D∗

2
)

µν p
B

ν

+

(
ε
(p

D∗
2
)

αβ p
B

αp
B

β

)[
b̃+ (p

B
+ p

D∗
2
)µ + b̃− (p

B
− p

D∗
2
)µ

]
(7.1)

In the above equations, ε(p
D∗

2
, λ) is the polarization tensor of the 3P 2 state (λ being the projection of

the J = 2 total angular momentum along some quantification axis), Vµ denotes the vector current c̄γµb

and Aµ stands for the axial current c̄γµγ5b.

3P 0 state

〈
3P 0(pD∗

0
)
∣∣Vµ

∣∣B(p
B
)
〉
= 0

〈
3P 0(pD∗

0
)
∣∣Aµ

∣∣B(p
B
)
〉
= ũ+ (p

B
+ p

D∗
0
)µ + ũ− (p

B
− p

D∗
0
)µ

(7.2)

The chosen normalization of the mesonic states is

〈
M
(
p ′
) ∣∣M

(
p
)〉

= (2π)3 2E δ3(~p ′ − ~p) (7.3)

7.1.2 Extraction of the form factors

In order to calculate the semileptonic decay rates of the B to a D∗∗, one needs the momentum de-

pendence of the form factors. On the lattice, the transition amplitudes can be determined at different

momenta so that we are able to extract the corresponding form factors.

For practical convenience, we will work in the rest frame of the D∗∗ meson and the B meson will carry

a momentum having symmetric spatial components

p
D∗∗ = (m

D∗∗ , ~0) and pµ
B
= (E

B
, p, p, p)

Such kinematics greatly simplifies the expressions of the interpolating fields when we consider a fully

propagating “charm” quark.

We proceed to implement the chosen kinematics to get the expressions of the form factors from the

hadronic matrix elements.

3P 0 form factors

We adopt the following notation

T
A
µ

def.
=
〈
3P 0

∣∣Aµ
∣∣B(p

B
)
〉
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to represent the axial transition amplitude into the 3P 0 state. We explicitely get





T
A
0 = ũ+ (E

B
+m

D∗∗ ) + ũ− (E
B
−m

D∗∗ )

T
A
i = ũ+ p+ ũ− p

(7.4)

and so it is straightforward to express ũ+ and ũ− in terms of T A
µ s as follows





ũ+ = − 1

2m
D∗∗

[
E

B
−m

D∗∗

p
T
A
i −T

A
0

]
= − 1

2m
D∗∗

[
E

B
−m

D∗∗

3 p
(T A

1 + T
A
2 + T

A
3 )−T

A
0

]

ũ− =
1

2m
D∗∗

[
E

B
+m

D∗∗

p
T
A
i −T

A
0

]
=

1

2m
D∗∗

[
E

B
+m

D∗∗

3 p
(T A

1 + T
A
2 + T

A
3 )−T

A
0

] (7.5)

3P 2 form factors

To represent the axial and the vector transitions of the B meson into the 3P 2 state, we will use the

notation

T
A
µ(λ)

def.
=
〈
3P 2(λ)

∣∣Aµ
∣∣B(p

B
)
〉

and T
V
µ(λ)

def.
=
〈
3P 2(λ)

∣∣Vµ
∣∣B(p

B
)
〉

(7.6)

The strategy we follow in order to extract the corresponding form factors is described in Appendix C.

In the following, we give some relevant expressions for the k̃, b̃± and h̃ form factors

form factor k̃

k̃ = −
√
6

p
T
A
1(0) = −

√
6

p
T
A
2(0) =

√
6

2 p
T
A
3(0)

=
1

p

[
T
A
1(+2) + T

A
1(−2)

]
= − 1

p

[
T
A
2(+2) + T

A
2(−2)

] (7.7)

form factors b̃+ and b̃−





b̃+ = − 1 + i

4

1

p3m
D∗∗

[
(E

B
−m

D∗∗ )(iT
A
1(+2) + T

A
2(+2))− p(1 + i)T A

0(+2)

]

b̃− =
1 + i

4

1

p3m
D∗∗

[
(E

B
+m

D∗∗ )(iT
A
1(+2) + T

A
2(+2))− p(1 + i)T A

0(+2)

] (7.8)





b̃+ =
1− i
4

1

p3m
D∗∗

[
(E

B
−m

D∗∗ )(iT
A
1(−2) −T

A
2(−2)) + p(1− i)T A

0(−2)

]

b̃− = − 1− i
4

1

p3m
D∗∗

[
(E

B
+m

D∗∗ )(iT
A
1(−2) −T

A
2(−2)) + p(1− i)T A

0(−2)

] (7.9)
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b̃+ =
1 + i

4

1

p3m
D∗∗

[
(E

B
−m

D∗∗ )(T
A
1(+1) + T

A
2(+1) −T

A
3(+1))− pT

A
0(+1)

]

b̃− = − 1 + i

4

1

p3m
D∗∗

[
(E

B
+m

D∗∗ )(T
A
1(+1) + T

A
2(+1) −T

A
3(+1))− pT

A
0(+1)

] (7.10)





b̃+ = − 1− i
4

1

p3m
D∗∗

[
(E

B
−m

D∗∗ )(T
A
1(−1) + T

A
2(−1) −T

A
3(−1))− pT

A
0(−1)

]

b̃− =
1− i
4

1

p3m
D∗∗

[
(E

B
+m

D∗∗ )(T
A
1(−1) + T

A
2(−1) −T

A
3(−1))− pT

A
0(−1)

] (7.11)





b̃+ =
1

2 i

1

p3m
D∗∗

[
(E

B
−m

D∗∗ )T
A
3(+2) − pT

A
0(+2)

]

b̃− =
1

2 i

1

p3m
D∗∗

[
− (E

B
+m

D∗∗ )T
A
3(+2) + pT

A
0(+2)

] (7.12)

form factor h̃

h̃ =
1

2 i

1

pm
D∗∗

T V
1(λ)

ε∗3α(λ) pBα − ε∗2α(λ) pBα

=
1

2 i

1

pm
D∗∗

T V
2(λ)

ε∗1α(λ) pBα − ε∗3α(λ) pBα
= − 1

2 i

1

pm
D∗∗

T V
3(λ)

ε∗2α(λ) pBα − ε∗1α(λ) pBα

(7.13)

where the values of the terms ε∗3α(λ) pBα − ε∗2α(λ) pBα, ε∗1α(λ) pBα − ε∗3α(λ) pBα and ε∗2α(λ) pBα − ε∗1α(λ) pBα are col-

lected in the following table for each value of λ.

λ ε∗3α(λ) p
Bα − ε∗2α(λ) p

Bα ε∗1α(λ) p
Bα − ε∗3α(λ) p

Bα ε∗2α(λ) p
Bα − ε∗1α(λ) p

Bα

+2 − p

2
(1 + i) − p

2
(1− i) p

+1
p

2
i
p

2
− p

2
(1 + i)

0 − p
√

3

2
p

√
3

2
0

-1 − p

2
i
p

2

p

2
(1− i)

-2 − p

2
(1− i) − p

2
(1 + i) p
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7.1.3 Decay rates

Our ultimate goal is to determine the decay widths of B → D∗∗ ℓν̄ℓ processes which have the general

expression

dΓ(B → D∗∗ ℓ ν̄) =
1

2E
B

|M̄ |2 dΦ (7.14)

with





dΦ =
d3~p

D∗∗

(2π)3 2E
D∗∗

d3~p
ℓ

(2π)3 2E
ℓ

d3~p
ν

(2π)3 2Eν

(2π)4 δ(4)(p
B
− p

D∗∗ − pℓ − pν )

|M̄ |2 =
∑

µ, ν

Wµνℓ
µν

where Wµν denotes the hadronic tensor, lµν is the leptonic one and dΦ is the phase space element.

In Appendix D, we have evaluated Eq. (7.14) in terms of the B → D∗
0 (D∗

2) form factors considering

both massive and massless charged leptons in the final state.

7.1.4 Strategy

Once we have constructed all the theoretical background which allows us to calculate the form factors

and the decay rates of the semileptonic B → D∗∗ channels, the following strategy consists of

a) computing, on the lattice, the transition amplitudes for the B → D∗∗ processes.

b) extracting the form factors from them.

c) using the formulae in Appendix D to obtain the decay widths.

7.2 Going to the lattice

We present here some parameters and techniques used in the lattice to compute the energies and

transition amplitudes participating in the form factor computations.

7.2.1 The setup

This analysis involves two ensembles of gauge configurations already used in Chapter 6 (β = 3.90 and

β = 4.05). The parameters of the simulations are collected in Table 7.1. In the valence sector, we add

two doublets of charm and “bottom” quarks. Moreover, we implement θ-boundary conditions for the b

doublet

χb(x+ Lêi) = eiθLχb(x) (7.15)

which gives the B-meson the momentum

|~pB | =
|~θ|π
L

(7.16)
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with the particular choice

~θ = (θ0, θ0, θ0) (7.17)

Then, we determine the values of the twisting angle θ0 (for each of our lattices) corresponding to the

following chosen values of w

w =

√
1 +

3θ20π
2

m2
B L

2
∈ {1, 1.025, 1.05, 1.1, 1.15, 1.2, 1.3} (7.18)

β L3 × T a[fm] # cnfgs µsea = µl µc µb θ [π/L]

3.9 243 × 48 0.085(3) 240 0.0085 0.215 0.3498 0.0, 0.99, 1.41
2.02, 2.50, 2.92

3.66
0.4839 0.0,1.21,1.72

2.46, 3.05, 3.56
4.46

0.6694 0.0,1.48,2.11
3.01, 3.73, 4.36

5.46

4.05 323 × 64 0.069(2) 160 0.006 0.1849 0.3008 0.0,1.09,1.56
2.23, 2.76, 3.23

4.04
0.4162 0.0,1.35,1.92

2.74, 3.40, 3.97
4.97

0.5757 0.0,1.67,2.37
3.39, 4.21, 4.91

6.15

Table 7.1: Parameters of the simulations. The quantities aµℓ, aµc and aµb stand for light, charm and heavy
bare valence quark mass values respectively, expressed in lattice units. The lattice spacing aβ=3.9 is fixed
by the matching of fπ obtained on the lattice to its experimental value [2] and aβ=4.05 is rescaled using the

parameter ΛNf=2

MS
[3].

7.2.2 Computing the meson energies

The charmed meson masses and the B meson energies are relevant parameters that enter the lattice

determination of the transition amplitudes. Such quantities are extracted from the two-point correlation

functions as explained in Chapter 5.
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Two-point correlation function

In this work, we compute the quark propagators entering the correlation functions, by using all-to-all

propagators with stochastic sources already discussed in Chapter 4. The “one-end-trick”, which is in

this case generalized to include θ-boundary conditions, consists in solving the Dirac equations

∑

y

D
[
f, r, ~θ

]ab
αβ

(x, y) φ
[
i, f, r, ~θ, α̃, t̃

]b
β
(y) = η[i]aα(x) δα α̃ δtx t̃ (7.19)

where r = ±1 and f represents the fermion flavor.

To create an operator of higher orbital angular momentum (the tensor meson D∗
2), and to improve the

overlap of the interpolating fields for the ground states, we use a “derivative” smearing function where

we incorporate, in the smearing function S, a covariant derivative of the form

∇i ≡
1

2a

[
Ui(x)− U†

i (x− ı̂)
]

(7.20)

The Dirac equation then reads

∑

y

D
[
f, r, ~θ

]ab
αβ

(x, y) φ
[
i, f, r, S, ~θ, α̃, t̃

]b
β
(y) =

(
S η[i]

)a
α
(x) δαα̃ δtx t̃

(7.21)

After determining the relevant propagators, we combine them to compute the “charged” B or D two-

point correlators C
(2)hl
~θ;S1 Γ1;S2,Γ2

(t), which read [137]

C
(2)hl
~θ;S1 Γ1;S2,Γ2

(t) =
1

2

∑

r=±1

〈
Tr
∑

~x,~y

Γ1 S
S1

l (r; ~y, t̃; ~x, t̃+ t) Γ2 S
S2

h (−r; ~x, t̃+ t; ~y, t̃)

〉

=
1

2

∑

r=±1

1

N

N∑

n=1

〈
Tr

{
∑

~x

(Γ1γ5)α̃β̃ φ
∗
[
n, l, r, S1, ~0, β̃, t̃

]b
α
(~x, t̃+ t)

× (γ5Γ2)αβ(S2 φ
[
n, h, r, ~θ, α̃, t̃

]
)bβ(~x, t̃+ t)

}〉

(7.22)

where 〈...〉 stands for the gauge ensemble average and Sl denotes the light quark propagator while Sh

(where h ≡ c or b) is the heavy quark propagator. S1 (S2) represents the smearing function applied to

the light (heavy) quark fields.

We recall that in tmQCD quark propagators have the hermiticity property

Sq(r; x; y) = γ5 S
†
q (−r; y; x) γ5 (7.23)

The “charged” correlators are depicted in Figure 7.1. In the actual computation, we use Gaussian
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t̃ t̃+ t

l(−r, ~0 )

h(r, ~θ )

H H

Figure 7.1: Kinematical configuration of the two-point correlators.

smeared interpolating fields [138] whose parameters are κs = 0.15 and N = 30 with an APE smear-

ing of parameters αAPE = 0.5, NAPE = 10. On each ensemble, we estimate the statistical error by a

Jackknife procedure. An example of the input file containing the parameters used in the simulation at

β = 3.9 can be found in Appendix B.

In this work we also choose to analyze smeared-smeared two-point correlation functions, since the benefit

of such a technique has been already clearly observed in previous works.

B-meson energies

Masses and energies of pseudoscalar mesons are first extracted from a fit of the form

C
(2)
PP (t,

~θ) =
Z 2

2EP (~θ)

(
e−E(~θ)t + e−E

(~θ)(T−t)
)

(7.24)

over a time range where the contribution from the first excitation is small compared to the statistical

error. One can check the stability of the fit by enlarging the time interval and by adding a second

exponential in the formula, i.e.

C
(2)
PP (t,

~θ) =
2∑

i=1

Z 2 (i)

2E
(i)
P (~θ)

(
e−E

(i)(~θ)t + e−E
(i)(~θ)(T−t)

)
(7.25)

in order to take into account the contributions of the radial excitations.

The effective energy EP ≡ E(1)
P of the ground state is then measured from the ratio

C
(2)
PP (t+ 1, ~θ)

C
(2)
PP (t,

~θ)
= cosh(EP (~θ)) + sinh(EP (~θ)) tanh[EP (~θ)(t− T/2)] (7.26)

We compute the energies of the B-meson for all values of θs we considered in our simulations. In Figure

7.2, we show examples of energy plateaus for the lightest and the heaviest “B”-meson at three different

momenta. From the plateaus obtained at θ = 0 (the lowest ones), we can extract the “B” meson masses.

The two highest plateaus represent the “B” energies corresponding to w = 1.05 and w = 1.2. After

inspection, we fixed the plateaus to the intervals shown in Fig. 7.2 by the horizontal solid lines. The
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dashed ones are the corresponding error bars.
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Figure 7.2: Effective energies of “B”-mesons measured with the ETMC ensemble (β = 3.9,
µsea = µl = 0.0085): µh = 0.3498 (left) and µh = 0.6694 (right).

The plateaus coming from the heaviest “b” quark mass as well as highest momenta are characterized by

large fluctuations on the effective mass plateaus and thus by large uncertainties.

We collect in Table 7.2 all the masses and energies thus extracted and which we will need in our analysis.

The error coming from the time range used to identify the plateau is estimated by changing the time

interval [tmin, tmax] by tmin ± 1 and tmax ± 1 and is included in the total error with the statistical one.

Moreover, we include in the error the difference between the values obtained by using the two-state and

the one-state exponential fits.

0 5 10 15

θ
2
 [π/L]

2

1

1.5

2

2.5

3

(a
E

)2

sinh
2
(aE/2) = sinh

2
(aM/2) + 3 sin

2
(θπ/2L)

raw data

Figure 7.3: Comparison of the “B”-mesons energies with the dispersion relation, with the ETMC ensemble
(β = 3.9, µsea = µl = 0.0085).

In order to estimate the magnitude of the cut-off effects, we study the lattice dispersion relation of

the meson. Figure 7.3 displays the “B” meson energies and the theoretical “energy-momentum” for-

mula on the lattice (6.8). The agreement is good at the two lowest heavy masses but extremely poor for

the heaviest one: in other words, the cut-off effects are important when we consider “moving B”-mesons.
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β = 3.9 β = 4.05

meson θ E(θ) θ E(θ)

D 0 0.75(1) 0 0.62(1)
D∗

0 0 0.96(2) 0 0.76(2)
D∗

2 0 1.14(2) 0 0.93(2)
B(µh1) 0 1.00(1) 0 0.82(1)
B(µh2) 0 1.21(1) 0 1.01(1)
B(µh3

) 0 1.50(1) 0 1.25(1)
B(µh1) 0.99 1.02(1) 1.09 0.84(1)
B(µh2) 1.21 1.24(1) 1.35 1.02(1)
B(µh3

) 1.48 1.51(1) 1.67 1.26(1)
B(µh1) 1.41 1.04(1) 1.56 0.85(1)
B(µh2) 1.72 1.26(1) 1.92 1.04(1)
B(µh3

) 2.11 1.52(1) 2.37 1.28(1)
B(µh1) 2.02 1.08(1) 2.23 0.89(1)
B(µh2) 2.46 1.30(1) 2.74 1.08(1)
B(µh3

) 3.01 1.55(1) 3.39 1.31(1)
B(µh1) 2.50 1.12(1) 2.76 0.92(2)
B(µh2) 3.05 1.34(1) 3.40 1.11(2)
B(µh3

) 3.73 1.58(1) 4.21 1.34(1)
B(µh1) 2.92 1.16(1) 3.23 0.95(2)
B(µh2) 3.56 1.38(1) 3.97 1.15(2)
B(µh3

) 4.36 1.60(2) 4.91 1.38(2)
B(µh1) 3.66 1.25(1) 4.04 1.00(3)
B(µh2) 4.46 1.46(1) 4.97 1.22(3)
B(µh3

) 5.46 1.66(2) 6.15 1.45(1)

Table 7.2: Masses and energies extracted from the two-point correlation functions. The parameters µh1,
µh2 and µh3 correspond to the heavy “b” quark masses given in Table 7.1. At β = 3.9, time intervals for
the fits are [8, 23] (D), [6, 9] (D∗

0 and D∗
2), [11, 17] (small momenta, B(µh1

) and B(µh2
)), [9, 15] (large

momenta, B(µh1) and B(µh2)) and [9, 13] (B(µh3)). At β = 4.05, time ranges for the fits are [10, 26]
(D), [14, 26] (small momenta, B(µh1) and B(µh2)), [9, 26] (large momenta, B(µh1) and B(µh2)), [14, 22]
(small momenta, B(µh3

)) and [9, 22] (large momenta, B(µh3
)).

The charmed meson masses

We have also computed the masses of the D∗
0 and the D∗

2 . They are given, in lattice units, in Table 7.2.

We show in Fig. 7.4, the effective mass mD∗
0

of the scalar meson for the ensemble (β = 3.9, aµsea =

0.0085). It is calculated by solving the GEVP in the same manner as explained in Section 5.2.2. Here

we set t0 = 3. Although short, the signal is still acceptable for our qualitative study.

In the following, we will study the semileptonic B decays into the scalar D∗
0 and the tensor D∗

2 states.
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Figure 7.4: Effective mass of the D∗
0 meson measured with the ETMC ensemble (β = 3.9,

µsea = µl = 0.0085).

7.3 B transitions to the scalar D∗
0 (J

P = 0+) meson

Hadron structure is explored by matrix elements of suitable operators between hadronic states or the

vacuum providing information on semileptonic decays. Here we discuss the lattice calculation of the

B → D∗
0 transition amplitudes.

7.3.1 Three-point correlators

The first step to access matrix elements is to analyze the three-point correlation functions, cf. Chapter 6.

To do so, we computed the “neutral” B → D three-point correlators C
(3) bΓc
~θ;S1 Γ1;Γ;S2,Γ2

(t, ts)

C
(3) bΓc
~θ;S1 Γ1;Γ;S2,Γ2

(t, tS) =
1

2

∑

r=±1

〈
Tr
∑

~x,~y,~z

ΓSc(r, ~0; ~z, t̃+ t; ~y, t̃) Γ1 S
S1

l (−r, ~0; ~y, t̃; ~x, t̃+ tS)

×Γ2 S
S2

b (r, ~θ; ~x, t̃+ tS ; ~z, t̃+ t)

〉

=
1

2

∑

r=±1

1

N

N∑

n=1

〈
Tr

{
∑

~x

(Γγ5)α̃β̃ (φ
[
n, c, r, S1, ~0, β̃, t̃

]
)bα(~x, t̃+ t)

× (γ5Γ1)αβ Φ
∗
[
n, b, −r, l, r, S2, Γ2, ~θ, ~0, α̃, t̃, t̃+ tS

]b
β
(~x, t̃+ t)

}〉

(7.27)

where Φ represents the sequential propagator determined by inverting the Dirac operator on the sequen-

tial source Γ2αβ φ
[
i, f1, r1, ~θ1, α̃, t̃

]a
β
(x) δtS , tx−t̃

∑

y

D
[
f2, r2, ~θ2

]ab
αβ

(x, y) Φ
[
i, f2, r2, f1, r1, Γ2, ~θ2, ~θ1, α̃, t̃, t̃+ tS

]b
β
(y)

= Γ2αβ φ
[
i, f1, r1, ~θ1, α̃, t̃

]a
β
(x) δtS , tx−t̃

(7.28)
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In Fig. 7.5, we show a schematic description of the computed three-point correlators.

t̃ t̃+ tS

t̃+ t
b(r, ~θ )c(r, ~0 )

l(−r, ~0 )

Jµ

D∗∗ B

Figure 7.5: Kinematical configuration of the three-point correlators.

Unfortunately, it turns out that the three-point correlation functions of B → D∗
0 , computed with a B

meson carrying a momentum p, are very noisy. At present, it is very challenging to discern the physical

effects from lattice artifacts in the signal. So, we prefer to restrict our “scalar treatment” to the zero

recoil kinematics where the B meson is at rest.

Indeed, the B → D∗
0 amplitude at zero recoil holds an important phenomenological interpretation: at

the infinite mass limit, it vanishes, forbidding, the decay into an S-wave and reducing significantly

the phase space2. Any new results for this transition amplitude computed with a “real” charm quark

will have an impact on experimentally measured observables, such as the ratio between B → D∗
2 and

B → D∗
0 or the B(B → D∗

0)/B(B → D) that will be discussed in the following.

7.3.2 Determination of
B(B → D∗

0
)

B(B → D)
at zero recoil

In order to estimate the ratio of the “scalar” and the “pseudoscalar” transitions of B mesons (B(B →
D∗

0)/B(B → D)), we start by the evaluation of the hadronic matrix elements 〈D|V0|B〉 and 〈D∗
0 |A0|B〉.

No scalar-pseudoscalar mixing

If, for the moment, we do not take into account that there is a mixing between scalar and pseudoscalar

charmed meson states, the physical values of the matrix elements 〈D|V0|B〉 and 〈D∗
0 |A0|B〉 are given

by

〈Xj
c |O|B〉 = ZO

C
(3)

Xj
cOB

(tp, t, ts)
√

ZB

2EB
exp (−EB (t− ts)) · C (2)

Xj
c
(tp − t)

·
√

ZXj
c

(7.29)

where ts < t < tp are respectively the source, current and sink times (cf. Fig. 7.1), ZO = ZV (ZA) stands

for the renormalisation constant of the vector (axial) operator and Xj
c represents the pseudoscalar D

meson (X1
c ) and the scalar D∗

0 (X2
c ). The quantities ZXj

c
and ZB are defined from the fit of the two-

point correlators of the Xj
c and B mesons, assuming we are sufficiently far from the center of the lattice

2This can be shown using the transition amplitude of B → D∗

0 at zero recoil.
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to be able to neglect the backward exponential in time provided the contribution of the excited states

is small

C
(2)
B (t, 0) =

ZB

2mB
exp (−mB t) C

(2)

Xj
c
(t, 0) =

ZXj
c

2mXj
c

exp
(
−mXj

c
t
)

(7.30)

Then we compute

〈D∗
0 |A0|B〉
〈D|V0|B〉

=
C (3)

D∗
0A0B

(tp, t, ts) C
(2)
D (tp − t)

C
(3)
DV0B (tp, t, ts) C

(2)
D∗

0
(tp − t)

ZA
ZV

√
ZD∗

0

ZD
(7.31)

As a rough estimate, and if we neglect the dependence in the phase space, one can obtain the order of

magnitude of B(B → D∗
0)/B(B → D) from the above ratio squared, i.e. from |〈D∗

0 |A0|B〉/〈D|V0|B〉|2.
However, we prefer to redetermine the ratio of the axial and vector matrix elements in the case where we

take into account the mixing between the scalar and the pseudoscalar states due to the parity violation

of the twisted mass action.

Addressing the scalar-pseudoscalar mixing

In Chapter 5, we have already detailed the GEVP method which we implement on two-point correlation

functions in order to isolate the D and D∗
0 states and extract their masses.

Let us recall that solving the GEVP means solving the following equations





C
(2)
ij (t)v

(n)
j (t, t0) = λ(n)(t, t0)C

(2)
ij (t0) v

(n)
j (t, t0)

λ(n) =
cosh[En(T/2− t)]
cosh[En(T/2− t0)]

n = 1, 2
(7.32)

where C
(2)
ij (t) =

〈
O

†
iOj

〉
are the elements of a 2 × 2 matrix composed of two-point correlators having

the interpolating fields Oi,Oj ∈ {ψ̄cψl, ψ̄cγ5ψl}.
Hereafter we denote by λ(1) the eigenvalues related to the D meson mass and by λ(2) the ones related

to the D∗
0 mass. The corresponding eigenvectors give the linear combination of ψ̄cγ5ψl and ψ̄cψl

interpolating fields that have the largest coupling to the D(D∗
0) state.

For a correlation matrix composed of D, D∗
0 meson interpolating fields, we can write





λ(1)(tp − t, t0)
2∑

i,j=1

v
(1) †
i (tp − t, t0) C

(2)
ij (t0)v

(1)
j (tp − t, t0)

=
2∑

i,j=1

v
(1) †
i (tp − t, t0) C

(2)
ij (tp − t)v(1)j (tp − t, t0);

λ(2)(tp − t, t0)
2∑

i,j=1

v
(2) †
i (tp − t, t0) C

(2)
ij (t0)v

(2)
j (tp − t, t0)

=

2∑

i,j=1

v
(2) †
i (tp − t, t0) C

(2)
ij (tp − t)v(2)j (tp − t, t0)
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where t0 ≤ tp − t. The eigenvalues are fitted with





λ(2)(tp − t, t0) =
Z 2
D∗

0

2mD∗
0

exp
(
−mD∗

0
(tp − t− t0)

)

λ(1)(tp − t, t0) =
Z 2
D

2mD
exp (−mD(tp − t− t0))

(7.33)

The GEVP has many other applications. In the following we will implement the GEVP on the three-

point correlators in order to extract the sought hadronic matrix elements.

Implementing GEVP in the matrix element extraction

We follow the application of the GEVP described in [139,140]. In this section we assume that ts < t < tp

and t0 < tp − t. The matrix element
〈
Xj
c |J0|B

〉
, where J0 expresses the temporal component of the

axial Aµ (the vector Vµ) currents, can be written as





〈D|V0|B〉 =
Z ′
DZB

∑
j v

(1)†
j (tp − t, t0) C

(3)

(Xj
c V0 B)

(t, ts, tp)

C
(2)
B (t− ts)

∑
ij v

(1)†
i (tp − t, t0)C (2)

ij (tp − t) v(1)j (tp − t, t0)

〈D∗
0 |A0|B〉 =

Z ′
D∗

0
ZB

∑
j v

(2)†
j (tp − t, t0) C

(3)

(Xj
c A0 B)

(t, ts, tp)

C
(2)
B (t− ts)

∑
ij v

(2)†
i (tp − t, t0)C (2)

ij ,D(tp − t) v
(2)
j (tp − t, t0)

(7.34)

The term
∑
j v

(1)†
j (tp − t, t0)C

(3)

(Xj
c V0 B)

(t, ts, tp) corresponds to the “projected” three-point correlators

corresponding to B → Xj
c via the current V0, and

C
(3)

(Xj
c V0 B)

(t, ts, tp) ≡
〈
O

†
j (tp) V0(t) OB(ts)

〉
(7.35)

is composed of the interpolating field OB which creates a B meson at time ts, the interpolating field O
†
j

annihilating a pseudoscalarD meson (scalarD∗
0 meson) at time tp (i.e. Oj(tp) ∈ {ψ̄cψl(tp), ψ̄cγ5ψl(tp)})

and the current V0 inserted at time t. The “projected” three-point correlation functions are then

∑

j

v
(1)†
j (tp − t, t0) C

(3)

(Xj
c V0 B)

(t, ts, tp) = v
(1)†
1 (tp − t, t0) C

(3)
(X1

c V0 B)(t, ts, tp)

+ v
(1)†
2 (tp − t, t0) C

(3)
(X2

c V0 B)(t, ts, tp)

(7.36)

Similarly, the “projected” three-point correlation functions corresponding to the decay of B into D∗
0 via

the current A0,
∑
j v

(2)†
j (tp − t, t0)C

(3)

(Xj
c A0 B)

, read

∑

j

v
(2)†
j (tp − t, t0)C

(3)

(Xj
c A0 B)

(t, ts, tp) = v
(2)†
1 (tp − t, t0)C

(3)
(X1

c A0 B)(t, ts, tp)

+ v
(2)†
2 (tp − t, t0)C (3)

(X2
c A0 B)(t, ts, tp)

(7.37)
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where





C
(3)
(X1

c A0 B)(t, ts, tp) ≡
〈
O

†
1(tp) A0(t) OB(ts)

〉

C
(3)
(X2

c A0 B)(t, ts, tp) ≡
〈
O

†
2(tp) A0(t) OB(ts)

〉 (7.38)

Since the B meson goes through V0 (A0) only to a pure pseudoscalar D (scalar D∗
0), we can assume

that





∑

j

v
(1)†
j (tp − t, t0) C

(3)

(Xj
c V0 B)

(t, ts, tp) ≃ v(1)†1 (tp − t, t0)C (3)
(X1

c V0 B)(t, ts, tp)

∑

j

v
(2)†
j (tp − t, t0) C

(3)

(Xj
c A0 B)

(t, ts, tp) ≃ v(2)†2 (tp − t, t0) C
(3)
(X2

c A0 B)(t, ts, tp)
(7.39)

This can be confirmed by looking at the actual computed values of the eigenvectors, such as the ones

given in Table 7.3.

v(1) v(2)

0.97 -0.3 i

-0.24 i 0.95

Table 7.3: Values of the eigenvectors v(1) and v(2), for β = 3.9, t0 = ts = 3, t = 7 and tp = 14. We can
notice that they are close to being orthogonal (v(1)v(2)† ≃ 0).

The ratio of the axial and the vector hadronic matrix elements then reads

〈D∗
0 |A0|B〉
〈D|V0|B〉

=
Z

′

D∗
0

Z
′

D

∑
ij v

(1)†
i (tp − t, t0)C (2)

ij ,D(tp − t) v
(1)
j (tp − t, t0)

∑
ij v

(2)†
i (tp − t, t0)C (2)

ij ,D∗
0
(tp − t) v(2)j (tp − t, t0)

×
v
(2)†
2 (tp − t, t0) C

(3)
(X2

c A0 B)(t, ts, tp)

v
(1)†
1 (tp − t, t0) C

(3)
(X1

c V0 B)(t, ts, tp)

(7.40)

where the normalization constant Z
′

D (Z
′

D∗
0
) is obtained by performing a fit with the “projected” two-

point correlation functions





∑

ij

v
(1)†
i (tp − t, t0)C (2)

ij (tp − t) v(1)j (tp − t, t0) =
Z

′2
D

2mD
exp (−mD(tp − t))

∑

ij

v
(2)†
i (tp − t, t0)C (2)

ij (tp − t) v(2)j (tp − t, t0) =
Z

′2
D∗

0

2mD∗
0

exp
(
−mD∗

0
(tp − t)

)
(7.41)
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Finally, using (7.41), the ratio of Eq. (7.40) becomes

〈D∗
0 |A0|B〉
〈D|V0|B〉

=

√
mD∗

0

mD

√∑
ij v

(1)†
i (tp − t, t0)C (2)

ij (tp − t) v(1)j (tp − t, t0)
√∑

ij v
(2)†
i (tp − t, t0)C (2)

ij (tp − t) v(2)j (tp − t, t0)

×
v
(2)†
2 (tp − t, t0) C

(3)
(X2

c A0 B)(t, ts, tp)

v
(1)†
1 (tp − t, t0) C

(3)
(X1

c V0 B)(t, ts, tp)
× exp (−mD (tp − t)/2)

exp
(
−mD∗

0
(tp − t)/2

)

(7.42)

Estimation of the branching fractions ratio

We need the momentum dependence of the form factors in order to compute the decay rates of the

semileptonic B → D∗
0 decay channel. However, as indicated in the beginning of this section, we do not

take into account the dependence on the recoil and we only estimated the zero recoil contribution. We

will, in what follows, benefit from the ratio of hadronic transition amplitudes (7.42) written in terms

of projected two- and three-point correlators to do a rough estimation (in the sense that we drop the

contributions of the phase space) of the ratio of the corresponding branching fractions.

Symmetry properties

Let us recall that the tmQCD action preserves the parity symmetry if it is combined with the flip sign of

the twisted mass terms (see Chapter 3). Here, we will call this symmetry the “flavor-parity symmetry”

and we will denote it by R
sp
5

R
sp
5 ≡P ⊗ (µl, µc, µb  −µl,−µc,−µb) (7.43)

where P is the ordinary spatial parity and µl, µc, µb are the twisted mass terms for the light, charm

and beauty quarks.

In the continuum limit, conservation of parity leads to vanishing 〈D|A0|B〉 and 〈D∗
0 |V0|B〉 matrix

elements. On the lattice this is no longer valid unless we use the “symmetrized” three-point correlation

functions

C
(3) sym
i,j,k (tp, t, ts) ≡

1

2
(1 + R

sp
5 ) C

(3)
i,j,k(tp, t, ts) (7.44)

This symmetrization will be assumed in what follows.

Results

We benefit from the symmetry property (7.43) to determine the hadronic matrix elements as well as

the ratio (7.42) using the “symmetrized” three-point correlation functions. In Figure 7.6, we show the

obtained results for the computed ratio
〈D∗

0 |A0 |B〉
〈D |V0 |B〉 as a function of time in lattice units. We identify

acceptable plateaus which are in good agreement between the two gauge ensembles at small times

(t < 8). However, this agreement is lost at larger times. Moreover, the ratio decreases with increasing

B mass.



128 B → D∗∗ ℓ ν̄ℓ transitions using “real” charm quarks

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

4 6 8 10 12 14

〈D
∗ 0
|A

0
|B
〉

〈D
|V

0
|B
〉

t/a

mB = 2.5 GeV

mB = 3 GeV

mB = 3.7 GeV

(a) β = 3.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4 6 8 10 12 14

〈D
∗ 0
|A

0
|B
〉

〈D
|V

0
|B
〉

t/a

mB = 2.5 GeV

mB = 3 GeV

mB = 3.7 GeV

(b) β = 4.05

Figure 7.6: The ratio
〈D∗

0
|A0 |B〉

〈D |V0 |B〉 once symmetrized according to (7.44) for the three b quark masses (i.e.

for the three B meson masses as indicated in the plots) and for both lattice spacings. Here, the values are
computed using t0 = 4 for β = 3.9 and t0 = 5 for β = 4.05.

We list in Table 7.4 the values for the ratio (7.42) averaged over the time range t ∈ [6, 8] (t ∈ [5, 8]) for

β = 3.9 (β = 4.05).

β ratio (µh1) ratio (µh2) ratio (µh3)

3.9 0.29(2) 0.18(2) 0.08(2)
4.05 0.42(2) 0.30(2) 0.19(2)

Table 7.4: Ratios defined in Eq. (7.42). The b quark masses range from the lightest to the heaviest from
left to right. They correspond to the B meson mass mB ∈ {2.5, 3, 3.7} GeV.

We then fit our data at different heavy meson masses as

Ratio(mB) = α +
γ

mB
(7.45)

Performing a preliminary extrapolation to the physical mB = 5.2 GeV, we obtain:

〈D∗
0 |A0 |B〉
〈D |V0 |B〉

∣∣∣∣guess estimate
mB=5.2GeV

≃




−0.02 at β = 3.9

0.03 at β = 4.05
(7.46)

The ratio increases with the inverse of lattice spacing. However, with our available data, we are not able

to estimate the uncertainty on these numbers nor to give reliable extrapolated values in the continuum.

Performing a guess estimate of the extrapolated value at vanishing lattice spacing using

Ratio (a) = A +B

(
a

a
β=3.9

)2

(7.47)
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we obtain

〈D∗
0 |A0 |B〉
〈D |V0 |B〉

∣∣∣∣guess estimate
in the contin.

≃ 0.13 (7.48)

which is compatible with the experimental results (≃ 0.1) [1].

In the infinite mass limit, this ratio vanishes. Power corrections in the inverse of the heavy quark mass

could contribute but they have never been studied. However, our fully non-perturbative computation

has shown, for the first time, that this ratio has a non-vanishing value, in agreement with experimental

results.

7.4 B decays to the tensor D∗
2 state

In this section we want to estimate the amplitudes for B → D∗
2ℓν̄ℓ (Bs → D∗

s2ℓν̄ℓ) decays. In the

PDG [1], the naming scheme for these J = 2 state is D∗
2(2460) (D∗

s2(2573)). Here, we use three heavy

quarks corresponding to the three “B” mesons “Bi, i = 1, 2, 3” with increasing masses in the range 2.5,

3.0 and 3.7 GeV. Let us recall that we are working in the rest frame of the D∗
2 .

7.4.1 Contribution of the form factors to the 3P 2 decay width

There are four form factors (k̃, b̃+, b̃− and h̃) needed to describe the transition amplitudes from a B to

a 3P 2 state. Computing each of them from lattice data would increase the difficulty of the work. Thus

it is useful to have an idea of each contribution to the decay widths. To simplify the expressions, we

introduce the two dimensionless parameters x and y defined as

xm
B
= 2E

ℓ
as well as ym2

B
= (p

B
− p

D∗∗ )
2 = (p

ℓ
+ pν )

2 (7.49)

where E
ℓ

is the energy of the lepton in the B rest frame. We also define the mass ratio

r
D∗∗ =

m
D∗∗

m
B

(7.50)

Relations between form factors and their infinite mass limit

In the limit where the heavy quark mass is infinite, new symmetries appear and thus additional conserved

quantities. From a theoretical viewpoint [25], we get new commutators which relate the different matrix

elements
〈
jJP

∣∣ Jµ
∣∣B
〉
. Hence, the form factors, in this limit, are no longer independent





h̃ =

√
3

2

1

m2
B

√
r
D∗

2

τ
3/2

k̃ =
√
3
√
r
D∗

2
(1 + w) τ

3/2

b̃+ = −
√
3

2

1

m2
B

√
r
D∗

2

τ
3/2

b̃− =

√
3

2

1

m2
B

√
r
D∗

2

τ
3/2

(7.51)
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where

m
B
m

D∗
2
w = p

B
· p

D∗
2

=⇒ y = 1 + r2
D∗∗
− 2 r

D∗∗ w (7.52)

and τ
3/2

, is one of IW functions which depend on the momentum transfer q2, hence on y or w.

Quantitative estimate of the contribution of each form factor

Taking the limit of vanishing lepton masses, the partial decay width
d2Γ

dx dy
of the B → D∗

2 ℓ ν̄ℓ decay

channel, which we calculate in Appendix D, is written in terms of the four form factors and some

coefficients (C1, C2, C3, · · · , C8)

d2Γ

dx dy
∝
{
C1 |k̃|2 + C2 |h̃|2 + C3 |b̃+|2 + C4 |b̃−|2 + C5 (k̃ b̃

∗
+ + k̃∗ b̃+)

+ C6 (k̃ b̃
∗
− + k̃∗ b̃−) + C7 (b̃+ b̃

∗
− + b̃∗+ b̃−) + C8 (h̃ k̃

∗ + h̃∗ k̃)

} (7.53)

Moreover, the IW function τ
3/2

can be well fitted using [51]

τ
3/2

(y) = τ
3/2

(1)

[
4 r

D∗
2

(1 + r
D∗

2
)2 − y

]2σ2

3/2

(7.54)

where the phase space is bounded by

(1− r
D∗

2
)2 ≥ y ≥ 0 (7.55)

with τ
3/2

(1) ≃ 0.539 and σ2
3/2
≃ 1.50.

After integration over x and y, we obtain the following contribution of each form factor to the total

width

Ci C1 × k̃2 C2 × h̃2 C3 × b̃2+ C5 × 2 k̃ b̃+ C8

∫∫
Ci × FF2 -61.3 -0.86 -4.43 29.1 0

The largest contributions to the decay width come from the terms where the k̃ form factor appears.

Therefore, we will concentrate on its determination in the actual lattice computation.

7.4.2 Extracting the k̃ form factor

From the expressions of the polarization tensor of the D∗
2 , we can relate the interpolating fields of

the 3P 2(λ) state (cf. Chapter 5) to its polarization states λ and thus to the corresponding transition

amplitude 〈3P 2(λ) | Jµ |B〉. The results are listed in Table 7.5.

Since k̃ is given in terms of the amplitudes T A
i(λ) and in the lattice we compute correlation functions of
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IR interpolating fields polarization states λ combination of T A
i(λ)

E+ γ1D1 + γ2D2 − 2γ3D3 (0) T A
i(0)

γ1D1 − γ2D2 (+2) + (−2) T A
i(+2) + T A

i(−2)

T+
2

γ2D3 + γ3D2 (+1) + (−1) T A
i(+1) + T A

i(−1)

γ1D3 + γ3D1 (+1)− (−1) T A
i(+1) −T A

i(−1)

γ1D2 + γ2D1 (+2)− (−2) T A
i(+2) −T A

i(−2)

Table 7.5: Relations between interpolating fields and corresponding combinations of transition amplitudes
for each IR (T A

i(λ) = 〈3P 2 |Ai |B〉 where i = 1, 2, 3).

the interpolating fields, we need to express the form factor k̃ for each interpolating field. Let us list the

relevant relations used

◮ γ1D1 + γ2D2 − 2γ3D3

k̃ = −
√
6

p
T
A
1(0) = −

√
6

p
T
A
2(0) =

√
6

2 p
T
A
3(0) (7.56)

◮ γ1D1 − γ2D2

k̃ =
1

p

[
T
A
1(+2) + T

A
1(−2)

]
= − 1

p

[
T
A
2(+2) + T

A
2(−2)

]
(7.57)

◮ γ1D2 + γ2D1 and γ2D3 + γ3D2

k̃ =
i

p

{[
T
A
1(+2) −T

A
1(−2)

]
+
[
T
A
1(+1) + T

A
1(−1)

]}

= − i

p

{[
T
A
3(+2) −T

A
3(−2)

]
+
[
T
A
3(+1) + T

A
3(−1)

]} (7.58)

◮ γ2D3 + γ3D2 and γ1D3 + γ3D1

k̃ =
i

p

{[
T
A
1(+1) + T

A
1(−1)

]
+ i

[
T
A
1(+1) −T

A
1(−1)

]}

= − i

p

{[
T
A
2(+1) + T

A
2(−1)

]
+ i

[
T
A
2(+1) −T

A
2(−1)

]} (7.59)

◮ γ1D2 + γ2D1 and γ1D3 + γ3D1

k̃ =
i

p

{[
T
A
2(+2) −T

A
2(−2)

]
− i

[
T
A
2(+1) −T

A
2(−1)

]}

= − i

p

{[
T
A
3(+2) −T

A
3(−2)

]
− i

[
T
A
3(+1) −T

A
3(−1)

]} (7.60)

Having all the above formulae of k̃, we proceed to analyze the three-point correlation functions.
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Three-point correlators

In the case of a transition into the tensor D∗
2 meson, we notice that the three-point correlation functions

at higher momenta are not compatible with zero contrary to what was observed at small momenta where

the signal practically vanishes. However, at large momenta p, it becomes difficult to get a sufficiently

large signal over noise ratio. Therefore, one must devise a way to look for the source of the noise and

reduce it as much as possible in order to get a clean signal and thus reliable results.

First, we consider all the combinations contributing to the determination of the k̃ form factor. Aver-

aging the resulting value is analogous to increasing the statistics, i.e. doing the simulation with more

configurations. Moreover, we apply the symmetry property (7.44) in order to eliminate the lattice ar-

tifacts as much as possible. Unfortunately, it seems that doing this is not sufficient and we will use a

trick which consists in subtracting to every three-point correlator, computed at non zero momentum,

the correlator obtained from the simulation on the same gauge configuration and containing the same

operators but at zero momentum.

In the continuum, the B → D∗
2 decay vanishes at zero recoil. Indeed, since we start with a B meson

having angular momentum J = 0, the weak interaction operator cannot generate a J = 2 state (the

axial current Aµ has J = 0 for A0 and J = 1 for Ai).

Moreover, this vanishing is also exact on the lattice and the proof is the following. The three-point

correlators contribution to B → D∗
2 are linear combinations of correlators of the type

C
(3)
i,j,k(tp, t, ts) =

〈
O

†
Diγj

(tp)Ak(t)OB(ts)
〉

(7.61)

where ODiγj is a notation for OD∗
2

which exhibits the structure of the interpolating fields as seen in

Table 7.5. Let us consider the rotation Rl(π) of angle π around one of the three spatial directions l̂.

Under Rl(π), the spatial coordinates i as well as all vector operators (Di, γi and Ai) change sign if i

is perpendicular to l̂. Besides, all the lattice actions (including tmLQCD since Rl(π) is parity even)

are invariant under Rl(π) because it belongs to the cubic group. Hence, if an odd number of the

induces i, j, k in Eq. (7.61) are orthogonal to3 l̂, then the correlator changes sign under Rl(π) and the

amplitude must vanish. However, in the case where i 6= j 6= k, a different line of reasoning ensures the

vanishing of the B → D∗
2 decay. Parity changes the sign of the amplitude (7.61) but since it is not a

symmetry of tmQCD, we must use the “flavor-parity symmetry” (7.43): invariance under R
sp
5 imposes

that C (3)sym(tp, ts, t) = 0 on the lattice at zero recoil.

So, we may subtract to the three point correlator at non vanishing recoil the same configuration at

zero recoil. This reduces the noise, and indeed it turns out that the signal, although still very noisy, is

significantly improved.

Using the three point correlation functions analyzed as described above, we will proceed to study the

form factor k̃.

3This happens when: i = j = k 6= l̂; (i = j = l̂) 6= k and (i = j 6= k) 6= l̂.
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Estimation of the ratio
k̃

k̃∞

The estimate of B → D∗
2 in the infinite mass limit is rather successful and in good agreement with

experiment. We will thus profit from the signal quality of the three-point correlation functions to

compute the ratio of the three-point correlators to the ones derived from the infinite mass limit formula

of τ
3/2

, given in Section 7.4.1. The infinite mass limit expression of k̃ will be denoted k̃∞ and reads

k̃∞ =
√
3
√
rD∗

2
(1 + w) τ3/2(w) (7.62)

The form factor k̃∞ will be used as a benchmark for k̃ extracted from our present calculations. Since

the form factor pk̃ is proportional to the matrix elements (Eqs. (7.56), (7.57), (7.58), (7.59) and (7.60)),

one can extract it by computing the ratio of three-point correlators and two-point correlators

pk̃ −−−−−−−−→
(tp−ts)→∞

R(tp, t, ts) =
C (3)(tp, t, ts)

C
(2)
D∗

2
(tp − t)C (2)

B(~θ)
(t− ts)

ZB ZD∗
2

(7.63)

where C
(2)
D∗

2
(tp− t), C

(2)

B(~θ)
(t− ts) are respectively the two-point correlators of the D∗

2 (computed at zero

momentum) and of the B (computed at different momentum |~p| =
√
3 θ0 π/L i.e. different θ0s). The

D∗
2 meson being annihilated at time tp, the current inserted at time t and the B created at time ts.

From our benchmark k̃∞, we compute the corresponding three-point correlators at the infinite mass

limit

pk̃∞ −−−−−−−−→
(tp−ts)→∞

R(tp, t, ts) =
C

(3)
∞ (tp, t, ts)

C
(2)
D∗

2
(tp − t)C (2)

B(~θ)
(t− ts)

ZB ZD∗
2

(7.64)

We then consider the ratio of k̃ and k̃∞ at the recoil w = 1.3 (the maximal recoil we consider in our

simulations)

k̃

k̃∞

∣∣∣∣∣
w=1.3

=
C

(3)

D∗
2AiB(~θ)

(tp, t, ts)

C
(3)
∞ (tp, t, ts)

∣∣∣∣∣∣
w=1.3

(7.65)

We perform the computation of k̃/k̃∞ using the average of the diagonal contributions (Eqs. (7.56)

and (7.57)) which correspond to the discrete representation E+ for the D∗
2 interpolating field. Also,

we use the results obtained from the average of the non-diagonal contributions (Eqs. (7.58), (7.59)

and (7.60)) corresponding to the discrete representation T+
2 . Finally, we average over all diagonal and

non-diagonal contributions.

Figures 7.7 and 7.8 display the ratio
k̃

k̃∞
in (7.65) computed respectively at β = 3.9 and β = 4.05, and

for the three masses of the “B” meson, all taken at the maximum value of θ i.e. at w = 1.3.

At β = 4.05, there is a positive signal around 6 or even higher for heavier “B” masses. The signal

over noise ratio goes up to 2.7, and around its maximum, the points are about two sigmas from zero.

Although the three-point correlators C (3)(tp, t, ts) show a signal, the ratio k̃/k̃∞ is characterized by
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Figure 7.7: The ratio of k̃/k̃∞ for B → D∗
2 , at β = 3.9 and tp = 14, to the value derived from the infinite

mass limit as a function of time in lattice units for all “B” masses. We present results obtained by considering
the average of the diagonal contributions • (Eqs. (7.56) and (7.57)), and the non-diagonal contributions •
(Eqs. (7.58), (7.59) and (7.60)). The full average is presented by the � data points.

large statistical uncertainties. At β = 3.9, we observe a similar signal. However, the contribution of

the diagonal and the non-diagonal correlation functions in the ratio are not very consistent in this case.

This difference between the two contributions decreases when going to small lattice spacing at β = 4.05.

So, one would interpret this as lattice artifacts.

Being unable to extract good plateaus, we have only analyzed the signal of the three-point correlators.

The ratio k̃/k̃∞ gives somehow large estimates. Due to the large fluctuations of the three-point correla-

tors, we are unable to check the amount of contributions coming from the finiteness of the heavy quark

mass since the signal of the three-point correlators is also contaminated by the “B” meson energies

which, as we showed, suffer from cut-off effects.

Concluding remarks

We have addressed for the first time the semileptonic decay of B into D∗∗ states using fully propagating

heavy quarks. We focused on two final states: the scalar charmed meson D∗
0 and the tensor one D∗

2 .
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Figure 7.8: Same as Fig. 7.7 but for β = 4.05 and tp = 18.

We estimated the scalar matrix element at zero recoil having obtained a non vanishing value in contrast

to what is predicted in the heavy quark limit. This will have a significant impact on any observable

depending on this matrix element.

In the tensor case, we preferred to estimate the ratio of the form factor, which contributes the most to

the decay width, over its predicted value in the infinite mass limit. We observed a signal at maximal

recoil but the estimated statistical error is large at present.

In the future, we hope to get a cleaner signal for the three-point correlators in order to determine the

q2 dependence of the form factors.





Conclusion

B physics has been a field of intensive research over the past two decades. The main goal of

experimental and theoretical investigations in the B sector is to test the Standard Model of particle

physics. Semileptonic B decays are essential in that sense. Along with the experimental measurements of

the decay rates, the theoretical predictions of some form factors participate in the accurate determination

of the CKM matrix elements Vcb and Vub.

In this thesis, we have carried out the determination of form factors contributing to the semileptonic B

decays into the charm meson. Here we summarize the main results of this work.

Spectroscopy

Chapter 5 is dedicated to the spectroscopy of the fundamental and the excited charmed D meson. We

have applied the GEVP to disentangle scalar and pseudoscalar states. For the orbitally excited D∗∗

mesons, we followed a strategy based on group theory to find their corresponding effective masses. The

difference between masses of excited and fundamental states is estimated to be 30% with respect to the

experimental one.

This study serves as an introduction to the form factor extraction, especially those corresponding to

B → D∗∗ transitions. Also, it gives us an idea of the signal quality: results showed that working with

excited states is a very delicate issue which demands a special effort.

Form factors

In Chapter 6, we presented a specific approach to deal with the b quark mass extrapolation, which has

been applied to the Bs → Ds form factor determination. By building suitable ratios of appropriate

quantities at zero recoil, it was possible to determine the factor

Gs(1) = 1.052(47)

The above error bar can be significantly reduced if one imposes that the factor does not depend on the

mass of the dynamical (sea) quark, which is essentially what we noticed from all of our lattice data (at

all values of the lattice spacing).
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Furthermore, we have determined Gs(w) at non zero recoils. From these data, we extracted the slope

of Gs(w), ρ
2. In our case, we obtain

ρ2 = 1.2(8)

Since we restrained our analysis to very small ws, we could not estimate the accurate value of the slope.

However, the value is consistent with the experimental determination of ρ2.

We also performed the first Lattice QCD estimate of the tensor form factor, which appears in some

BSM models, with respect to the vector form factor FT (q
2)/F+(q

2), for different non zero recoils. At

the energy scale µ = mb and in the MS scheme, we obtained

FT (q
2)

F+(q2) q2=11.5

= 1.08(7)

We are unable to say if the above ratio is a constant with the momentum, as predicted in the infinite

mass limit, since the error estimate augments with increasing values of q2.

We computed another form factor that has a significant contribution to the decay rate when there is a

τ lepton in the final state. This contribution can be very important in various extensions of the SM.

Using the same extrapolation strategy, the value at q2 = 11.5 is

F0(q
2)

F+(q2) q2=11.5

= 0.77(2)

in agreement with the previous determination of the ratio F0(q
2)/F+(q

2).

The form factors entering B → D∗∗ decay channels were studied in Chapter 7. We have focused on

the scalar D∗
0 and the tensor D∗

2 meson state contributions to the corresponding decay widths. Due to

the lack in allocated computer time, we were unable to perform simulations on more than two gauge

ensembles so that a reliable extrapolation to the continuum was not possible. Increasing the number of

gauge configurations would help in getting more reliable results.

For the D∗
0 states, we have guess-estimated the ratio B(B → D∗

0)/B(B → D). The extrapolated value

at vanishing lattice spacing gives 0.13. The main result here is the important fact that at finite b and

c masses, the B → D
∗
0

amplitude does not vanish at zero recoil.

For the D∗
2 state, we chose to estimate the ratio of k̃ to its value in the infinite mass limit since the

latter is compatible with the experimental value. We have observed a signal for the k̃ ratio but the data

points still displayed large uncertainties especially for the heaviest “b” quark masses.

Future perspective

In the past ten years, techniques and algorithms in LQCD have undergone a significant development;

computing power has been massively increased and this is really encouraging for the Lattice community.
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In order to calculate the physical observables and reach a precision on par with the experimental one,

a more precise control of the uncertainties will be needed.

This work opens the door to explore different avenues

• with the increase in computational power, it will be possible to compute the momentum depen-

dence of the B → D∗∗ form factors. New Physics scenarios could also be added to study the

semileptonic B(Bs) decay to D∗∗ (D∗∗
s ). This would help in better understanding the NP effects.

• include the J = 1 D∗∗(D∗∗
s ) states in the form factor computation. To this end one first needs to

disentangle these two states.

• the exploration of the “ratio method” in the study of B(Bs)→ D∗,∗∗(D∗,∗∗
s ) can help in reducing

the uncertainties on the computed form factors.

Finally, there is an extensive list of interesting hadronic parameters relevant to heavy flavor phenomenol-

ogy that can be determined using Lattice QCD. An essential step in all lattice computations is to find

the source of uncertainty and try to reduce it as much as possible, in order to obtain more precise

results.
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Appendix A

Quantum Field Theory on the Lattice

A.1 Short description of relevant notions in the continuum

In Quantum Field Theory (QFT), the partition function (which is also the generating functional of

correlation functions) is expressed by

Z =

∫
Dφ eiS[φ]

where S is the action functional given in terms of the Lagrangian as

S =

∫
L dt

Unlike the partition function in statistical mechanics, the partition function in QFT contains an extra

factor of “i” in front of the action, making the integrand complex and hence, difficult to treat numerically

(convergence problem).

Green’s function: in real space, the scalar n-point Green’s function, is defined as the functional

expectation value of a time-ordered product of n scalar field operators

Gn(x1, x2, ...., xn) ≡
〈
T{φ(x1)φ(x2) · · ·φ(xn) }

〉
=

1

Z

∫
Dφ eiS[φ] φ(x1) · · ·φ(xn) (A.1)

The factor i in (A.1) is essential because it encodes the quantum feature of the theory. However,

integrals of complex, oscillating functions are numerically uncontrollable.

Imaginary time: in order to avoid the convergence problem, a possible solution is to consider an

imaginary time by performing the Wick rotation τ  it. This rotation is a method for obtaining a

solution to a mathematical problem in Minkowski space from its analogous version in Euclidean space.
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Equation (A.1) then becomes

Cn(x1, x2, ...., xn) ≡
〈
T{φ(x1)φ(x2) · · ·φ(xn) }

〉
|E =

1

Z

∫
Dφ e−SE [φ] φ(x1) · · ·φ(xn)|E

where Z =

∫
Dφ e−SE [φ] and SE =

∫
LE dτ

(A.2)

Furthermore, when comparing (A.1) and (A.2), we notice immediately how the path integral formulation

of quantum field theory in Minkowski space is related to statistical physics in Euclidean space. Since S[φ]

is real and bounded from above, e−S[φ] could be interpreted as a probability density. Therefore, Eq. (A.2)

is the statistical mean value (Maxwell–Boltzmann statistics) of the operator φ(x1)φ(x2) · · ·φ(xn) and

the Green’s functions Gn are now equivalent to what is called statistical correlation functions Cn.

This leads to many fruitful developments and makes numerical calculations and theoretical analyses

much easier. Such integrals are sufficient to extract the relevant physical information, as for example

the energy spectrum.

A.2 From Minkowski to Euclidean space

In order to evaluate numerically path integrals it is necessary to consider an imaginary time. To this

end, we define the Wick rotation for any four-vector q̃

q̃M (q0M , q
1
M , q

2
M , q

3
M ) ←→ q̃E (q1E , q

2
E , q

3
E , q

4
E)

where q4E = iq0M and qkE = qkM

The scalar product in Minkowski space is (with the choice of gµν = diag(+,−,−,−) )

x · y|M = gµνx
µν = x0y0 − x1y1 − x2y2 − x3y3

and in Euclidean space is

x · y|E = x1y1 + x2y2 + x3y3 + x4y4 = −x · y|M

For the sake of completeness, we give also the connection between the Dirac matrices in Euclidean and

Minkowski space

γ1,2,3|E ≡ −iγ1,2,3|M
γ4|E ≡ −iγ4|M ≡ γ0|M

The Euclidean Dirac matrices are chosen to be hermitian, and are simply denoted by γµ(µ = 1, 2, 3, 4)

γµ ≡ γµ|E = γ†µ
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They satisfy the anti-commutation relations

{γµ, γν} = 2δµν

For µ = 4 and γ5 ≡ γ1γ2γ3γ4 = γ†5, one can take either the “non-relativistic” representation

γ4 =

(
1 0

0 −1

)
, γ5 =

(
0 −1
−1 0

)

or the “chiral representation”

γ4 =

(
0 1

1 0

)
, γ5 =

(
1 0

0 −1

)

A.3 Discretization of the scalar field

In order to better understand the discretization of a continuous space-time and introduce some useful

notations, we propose to determine the propagator corresponding to a scalar field φ. The action

corresponding to a free scalar field, in Euclidean space, reads

S[φ] = −1

2

∫
d4x

(
∂µφ(x)∂µφ(x) +m2φ2(x)

)
(the index E will be dropped from now on.)

Most of the time, a four-dimensional continuous space is discretized as a hypercubic box called lattice

(see Fig. A.1) having a length L in spatial direction and T in time direction (T represents the Euclidean

time slices). The distance “a” between sites is called lattice spacing. The spatial volume in lattice units

is denoted by Ω = L3 and the total number of lattice points is V = Ω× T .

a

x0

x1

Figure A.1: The discretization of the lattice in two dimensions.

The points in a four dimensional hypercubic box are denoted by x, y, · · · . They are usually chosen in



146 Quantum Field Theory on the Lattice

the interval




0 ≤ xµ ≤ Lµ − 1 µ ∈ {1, 2, 3} are the three orthogonal spatial directions

0 ≤ x4 ≡ τ ≤ T − 1 the Euclidean time is the 4th coordinate

For smooth functions f(x), we have in the continuum limit

a4
NL−1∑

n1=0

· · ·
NT−1∑

n4=0

f(xµ)
NL,NT→∞−−−−−−−→

a→0

∫ V

0

d4x f(x) with fixed L and T

where NL and NT are the number of lattice points in spatial and time directions respectively.

The scalar field on the lattice is assigned to the sites x, so we write it φx. Derivatives in the continuum

can be replaced by differences

∂µφx =
1

2a
(φx+aµ̂ − φx−aµ̂) −−−→

a→0

∂

∂xµ
φ(x)

where µ̂ is a unit vector in the µ direction.

In the following, we will replace the notation a4
NL−1∑

n1=0

· · ·
NT−1∑

n4=0

by
∑

x

for simplicity.

Momentum space

The usual plane waves in a finite volume with periodic boundary conditions are given by

eip·x where





pµ = kµ
2π

L
µ ∈ {1, 2, 3} and kµ are integers

p4 = k4
2π

T
k4 is an integer

There should not be more pµ than xµ, hence we take





kµ = −NL
2

+ 1, −NL
2

+ 2, · · · , NL
2

µ ∈ {1, 2, 3}

k4 = −NT
2

+ 1, −NT
2

+ 2, · · · , NT
2

So, the momenta are restricted to the first Brillouin zone

B =
{
p : −π

a
< pµ ≤

π

a

}

The Fourier transform (from position to momentum space) and its inverse are

φ̃p =
∑

x

e−ip·x φx φx =
1

V

∑

p

eip·x φ̃p where p · x =
∑

µ

pµ xµ
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For smooth functions f(p), we have in the infinite-volume limit (we take T = L = Na→∞)

1

V

∑

p

f(p) =
1

(2π)4

∑

k

(
2π

L

)4

f

(
2π

L
k

)
a fixed−−−−→
N→∞

∫ +
π
a

−
π
a

f(p)
d4p

(2π)4

The propagator of a free field can now be found in momentum space. After performing an integration

by parts, we find that the action for the case under study can be written as

S = −1

2

∑

x,y

φx Sxy φy

where

Sxy =

(
∑

µ

∂µ∂µ +m2

)
δx,y

On the lattice, the second derivative of a function is usually taken as the following differences

−
∑

µ

∂µ∂µ f(x) ≡ � f(x) = +
1

a2

∑

µ

(f(x + aµ̂) − 2f(x) + f(x− aµ̂))

where � is the d’Alembert operator. The matrix indices of Sxy correspond to lattice points. The

propagator on the lattice is the inverse of Sxy

∑

y

SxyGyz = δx,z (A.3)

Substituting the Fourier transform

Gyz =
1

V

∑

p

eip·(y−z) G̃(p)

in Eq. (A.3) gives
1

V

∑

p

(−�+m2) eip·(x−z) G̃(p) = δx,z

Applying the derivative � on eip·(x−z) with respect to x, and replacing δx,z by
1

V

∑
p e

ip·(x−z), we get

1

V

∑

p

(m2 + a−2
∑

µ

(
2− 2 cos(a pµ)

)
eip·(x−z) G̃(p) =

1

V

∑

p

eip·(x−z)

Finally, the discretized scalar field propagator reads

G̃(p) =
1

m2 + a−2
∑

µ

(2− 2 cos(apµ))
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When a→ 0, G̃(p) goes to

1

m2 + p2 + O(a2)
(A.4)

which is the usual covariant expression for the scalar field propagator in Euclidean space

Back to Minkowski: we want to find the propagator of the scalar field in Minkowski space so,

from (A.4) we use

p2|M = p20 − p2k = −p24 − p2k = −p2|E

and we obtain

G̃(p)|M =
1

m2 − p2
(A.5)

which is indeed the scalar propagator in Minkowski space.



Appendix B

Input file

We show here an example of the input file used when computing B → D∗∗ two- and three-point

correlation functions.

L 24

T 48

WallTime 2000000

Kappa 0.160856

SEED

NoiseType 4

ApeAlpha 0.5

ApeNiter 10

JacobiKappa 0.15

JacobiNiterSo 2 0 30

JacobiNiterSe 2 0 30

JacobiNiterSi 2 0 30

MassResiduesS0 2

0.0085 1.e-12

0.215 1.e-20

NThetaS0 1

0.00

MassResidueswS0 3

0.3498 1.e-20

0.4839 1.e-20

0.6694 1.e-20
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NwThetaS0 21

0.00 0.00 0.00 0.99 1.21 1.48 1.41 1.72 2.11 2.02 2.46 3.01 2.50 3.05 3.73

2.92 3.56 4.36 3.66 4.46 5.46

NwThetaS0 7

ComputeDerivativeCorrelations 1

StartDerivativeInversionFromIMass 1

NContrTwoPoints 13

5 5

5 0

0 5

0 0

1 1

1 2

1 3

2 1

2 2

2 3

3 1

3 2

3 3

NChromoContrTwoPoints 0

MassResiduesS1 0

NThetaS1 0

MassResidueswS1 3

0.3498 1.e-20

0.4839 1.e-20

0.6694 1.e-20

NwThetaS1 21

0.00 0.00 0.00 0.99 1.21 1.48 1.41 1.72 2.11 2.02 2.46 3.01 2.50 3.05 3.73

2.92 3.56 4.36 3.66 4.46 5.46

NwThetaS1 7

TSep 18

NSpec 2
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iThetaMassR 0 0 0
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Appendix C

Extraction of the B → D∗∗ form

factors

The goal is to extract the form factors entering the transition amplitudes of B → D∗
2 decays. Since

these matrix elements are written in terms of the polarization tensor of a spin-2 state, one needs to

construct an expression for such a polarization tensor using the chosen kinematics (in our case, in the

D∗∗ rest frame).

We start by finding the polarization tensors of 3P 2(λ) state. Then, we will proceed to describe the

strategy we followed to find the expressions of the desired form factors.

C.1 Polarization tensor for the 3P 2 state

The idea is to construct a spin-2 state by combining two spin-1 states. Explicitly, we have

εµν(~p, λ) =
∑

s, s′

〈1 1 s s′ | 2 λ〉 εµ(~p, s) εν(~p, s′) (C.1)

where ~p represents the spatial components of the four-momentum of the spin-2 state, λ (s and s′) the

spin projection of the spin-2 (spin-1) state along a quantification axis chosen to be the z axis1 and,

finally, with





εµν(~p, λ) : polarisation tensor (spin 2)

εµ(~p, s) : polarisation vector (spin 1)

〈1 1 s s′ | 2 λ〉 : Clebsch-Gordan coefficients for 1 + 1→ 2

Since we do the lattice computations in the D∗∗ rest frame, the polarization vector and tensor will be

calculated at zero three-momentum.

1λ = ±2, ±1, 0 and s(′) = ±1, 0.
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C.1.1 Polarisation vector εµ(~0, s)

The polarization vector εµ(~0, s) four-vector reads [141]

εµ(0) =




0

0

0

−1


 εµ(+1) =

1√
2




0

1

i

0


 εµ(−1) = 1√

2




0

−1
i

0




where the chosen quantification axis is the z axis.

C.1.2 Polarisation tensor εµν(~0, λ)

• First case: λ = ±2
Using (C.1)

εµν(±2) = εµ(±1) εν(±1) =⇒ εµν(+2) =
1

2




0 0 0 0

0 1 i 0

0 i −1 0

0 0 0 0


 and εµν(−2) =

1

2




0 0 0 0

0 1 −i 0

0 −i −1 0

0 0 0 0




• Second case: λ = ±1
We have here

εµν(±1) =
1

2

[
εµ(±1) εν(0) + εµ(0) εν(±1)

]

=⇒ εµν(+1) =
1

2




0 0 0 0

0 0 0 −1
0 0 0 −i
0 −1 −i 0


 and εµν(−1) =

1

2




0 0 0 0

0 0 0 1

0 0 0 −i
0 1 −i 0




• Third case: λ = 0

Finally

εµν(0) =
1√
6

[
εµ(+1) εν(−1) + εµ(−1) εν(+1) + 2 εµ(0) εν(0)

]
=⇒ εµν(0) =

1√
6




0 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 2




Notice that the transversality of εµν implies

∑

ν

εµν(p
D∗∗)

p
D∗∗ν = 0 =⇒ m

D∗∗ ε
µ0
(λ) = 0 =⇒ ε0µ(λ) = 0 since εµν(λ) = ενµ(λ)
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This property could have been directly observed in the explicit form of the matrices εµν(λ). Also, owing

to the Minkowski metrics we have εµν(λ) = ε
(λ)
µν .

C.2 B → D∗
2 form factors

Let us recall the following notations to represent the vector and the axial hadronic matrix elements

T
A
µ(λ)

def.
=
〈
3P 2(λ)

∣∣Aµ
∣∣B(p

B
)
〉

and T
V
µ(λ)

def.
=
〈
3P 2(λ)

∣∣Vµ
∣∣B(p

B
)
〉

They are parametrized in terms of weak form factors as

T
V
µ(λ) = i h̃ ǫµρστ ε

ρα∗
(p

D∗∗)
p
Bα (pB + p

D∗∗ )
σ (p

B
− p

D∗∗ )
τ = 2 i h̃ ǫµρστ ε

ρα∗
(p

D∗∗)
p
Bα p

σ
D∗∗

pτ
B

T
A
µ(λ) = k̃ ε

(p
D∗∗)

µρ pρ
B
+
(
ε
(p

D∗∗)

αβ pα
B
pβ
B

)[
b̃+ (p

B
+ p

D∗∗ )µ + b̃− (p
B
− p

D∗∗ )µ

] (C.2)

Expanding the above matrix elements in the D∗∗ rest frame gives rise to expressions written in terms

of the polarization tensor ε
(λ)
µν and of the four momenta p

B
. As an example we show the matrix element

T
A
i(λ) = k̃ ε

(λ)
iρ

∗pρ
B
+
(
ε
(λ)
αβ

∗pα
B
pβ
B

)[
b̃+ p

B i + b̃− p
B i

]
(C.3)

used to extract the form factor k̃. So, the first step is to calculate the contributions

ε(λ)µν p
ν
B
, εµν(λ)pB ν and εµν(λ)pBµpB ν (C.4)

by making use of the explicit expressions of the polarization tensors for a spin-2 state, determined in

Section C.1, along with expressions of the B four momenta

pµ
B
= (E

B
, p, p, p) =⇒ p

Bµ = (E
B
, −p, −p, −p) ,

The expressions of the contributions are listed in Tables C.1 and C.2.

The next step is to use the above contributions to obtain the explicit expressions of form factors in

terms of the transition amplitudes. If we carry on with our example, let us illustrate how one can

extract k̃ from Eq. (C.3). The strategy is to choose combinations listed in Tables C.1 and C.2 so that

the contribution of the other form factors in Eq. (C.3), b̃±, vanishes. In other words, the contribution

of the term
(
ε
(λ)
αβ

∗pα
B
pβ
B

)
must go to zero. One can see from Table C.2 that εµν(λ=0)pBµpB ν = 0. So, for

the 3P 2(λ = 0) state, it is possible to express k̃ by considering the amplitudes

T
A
i(0) = k̃ ε

(0)
iρ p

ρ
B
= − k̃

p√
6

(
1, 1, −2

)
(C.5)
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ε(λ)
µν ε(λ)

µν pν
B

ε
(+2)
µν

p

2

(
0, 1 + i, i− 1, 0

)

ε
(+1)
µν − p

2

(
0, 1, i, 1 + i

)

ε
(0)
µν − p√

6

(
0, 1, 1, − 2

)

ε
(−1)
µν

p

2

(
0, 1, − i, 1− i

)

ε
(−2)
µν

p

2

(
0, 1− i, − 1− i, 0

)

ε
(+2)
µν + ε

(−2)
µν p

(
0, 1, − 1, 0

)

ε
(+2)
µν − ε(−2)

µν p
(
0, i, i, 0

)

ε
(+1)
µν + ε

(−1)
µν p

(
0, 0, − i, − i

)

ε
(+1)
µν − ε(−1)

µν p
(
0, − 1, 0, − 1

)

εµν

(λ) εµν

(λ)pBν

εµν(+2) − p

2

(
0, 1 + i, − 1 + i, 0

)

εµν(+1)

p

2

(
0, 1, i, 1 + i

)

εµν(0)
p√
6

(
0, 1, 1, − 2

)

εµν(−1)

p

2

(
0, − 1, i, − 1 + i

)

εµν(−2)

p

2

(
0, − 1 + i, 1 + i, 0

)

εµν(+2) + εµν(−2) p
(
0, − 1, 1, 0

)

εµν(+2) − ε
µν
(−2) p

(
0, − i, − i, 0

)

εµν(+1) + εµν(−1) p
(
0, 0, i, i

)

εµν(+1) − ε
µν
(−1) p

(
0, 1, 0, 1

)

Table C.1: Contribution of the terms ε
(λ)
µν pνB and εµν(λ)pB ν to the B → 3P 2 transition amplitude.

εµν

(λ) εµν

(λ)pBµpBν

εµν(+2) i p2

εµν(+1) − (1 + i) p2

εµν(0) 0

εµν(−1) (1− i) p2

εµν(−2) − i p2

εµν(+2) + εµν(−2) 0

εµν(+2) − ε
µν
(−2) 2 i p2

εµν(+1) + εµν(−1) − 2 i p2

εµν(+1) − ε
µν
(−1) − 2 p2

Table C.2: Contribution of the term εµν(λ)pBµpB ν to the B → 3P 2 transition amplitude.

The relation (C.5) implies

k̃ = −
√
6

p
T
A
1(0) = −

√
6

p
T
A
2(0) =

√
6

2 p
T
A
3(0)

Moreover, the sum of these two terms

εµν(λ=+2)pBµpB ν + εµν(λ=−2)pBµpB ν
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is zero. Therefore, combining T A
i(+2) and T A

i(−2) leads to the form factor k̃

T
A
i(+2) + T

A
i(−2) = k̃

(
ε
(+2)
iρ pρ

B
+ ε

(−2)
iρ pρ

B

)
= k̃ p

(
1, −1, 0

)
(C.6)

With the relation (C.6), we obtain

k̃ =
1

p

[
T
A
1(+2) + T

A
1(−2)

]
= − 1

p

[
T
A
2(+2) + T

A
2(−2)

]

Notice that these are not the only possible expressions. One can eliminate the form factors b̃± by using

other vanishing contributions from Table C.2. The above strategy is the same for all B → D∗
2 form

factors.





Appendix D

Semileptonic decay widths

In this appendix, we will consider the semileptonic decay of B into the D∗∗ mesons and we will find

the expressions of the corresponding differential decay widths. We will also take into account massive

charged leptons.

D.1 Stating the problem

We aim to evaluate the differential decay width dΓ(B → D∗∗ ℓ ν̄ℓ), whose general expression is

dΓ(B → D∗∗ ℓ ν̄ℓ) =
1

2E
B

|M̄ |2 dΦ (D.1)

with





dΦ =
d3~p

D∗∗

(2π)3 2E
D∗∗

d3~p
ℓ

(2π)3 2E
ℓ

d3~p
ν

(2π)3 2E
ν

(2π)4 δ(4)(p
B
− p

D∗∗ − pℓ − pν )

|M̄ |2 =
∑

µ, ν

Wµνℓ
µν

where Wµν denotes the hadronic tensor

Wµν(pB , pD∗∗ ) =
G2
F |Vcb|

2

2

∑

final spins

〈
D∗∗(p

D∗∗ )
∣∣Vµ −Aµ

∣∣B(p
B
)
〉 〈
B(p

B
)
∣∣Vν −Aν

∣∣D∗∗(p
D∗∗ )

〉

(let us note that there is no summation nor average over the initial spins since the B meson has a spin

equal to zero); ℓµν represents the leptonic tensor

ℓµν(p
ℓ
, pν ) =

∑

s

[
ūℓ(pℓ , s) γ

µ
(
1− γ5

)
vν(pν )

]
·
[
ūℓ(pℓ , s) γ

ν
(
1− γ5

)
vν(pν )

]∗
(D.2)

In this last formula, uℓ(pℓ , s) is the lepton ℓ spinor (s denotes the usual projection of its spin), while

vν(pν ) represents the antineutrino ν̄ spinor.

All that remains is to compute the leptonic and the hadronic tensors as well as the measure dΦ of the

phase space in order to obtain the expression of the differential decay widths.
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D.1.1 Leptonic tensor ℓµν

Starting from (D.2), the second term between brackets reads

[
ūℓ(pℓ , s) γ

ν
(
1− γ5

)
vν(pν )

]∗
=

[
ūℓ(pℓ , s) γ

ν
(
1− γ5

)
vν(pν )

]†

= v̄ν(pν ) γ
ν
(
1− γ5

)
uℓ(pℓ , s)

Therefore, relation (D.2) becomes

ℓµν =
∑

s

[uℓ(pℓ , s)]d [ūℓ(pℓ , s)]a
[
γµ
(
1− γ5

)]
ab

[vν(pν )]b [v̄ν(pν )]c
[
γν
(
1− γ5

)]
cd

where, in the last two relations, we have explicitly introduced the Lorentz indices (a summation over a,

b, c and d is implied).

Using the following relations





∑

s

uℓ(pℓ , s) ūℓ(pℓ , s) = (p/
ℓ
+m

ℓ
) =⇒

∑

s

[uℓ(pℓ , s)]d [ūℓ(pℓ , s)]a = (p/
ℓ
+m

ℓ
)da for the massive lepton

vν(pν ) v̄ν(pν ) =
1

2
(1− γ5)p/ν =⇒ [vν(pν )]b [v̄ν(pν )]c =

[
1

2
(1− γ5)p/ν

]

bc

for the massless antineutrino

one finally obtains

ℓµν = 8
[
pµ
ℓ
pν
ν

+ pν
ℓ
pµ
ν
− (p

ℓ
· pν ) gµν − i ǫµνρσ(p

ℓ
)ρ(pν )σ

]
(D.3)

Notice that the mass of the charged lepton has vanished, which renders the expression valid in the

situations where m
ℓ
= 0 as well as m

ℓ
6= 0.

D.2 Hadronic tensor Wµν

D.2.1 Generalities

From the expressions of the transition amplitudes given in Chapter 7, the general structure of the

hadronic tensor can be inferred and put into the form [136]

Wµν =
G2
F |Vcb|

2

2

[
α gµν + β

++
(p

B
+ p

D∗∗ )µ(pB + p
D∗∗ )ν + β

+−
(p

B
+ p

D∗∗ )µ(pB − pD∗∗ )ν

+ β
−+ (p

B
− p

D∗∗ )µ(pB + p
D∗∗ )ν + β

−−
(p

B
− p

D∗∗ )µ(pB − pD∗∗ )ν + i γ ǫµνρσ(pB + p
D∗∗ )

ρ(p
B
− p

D∗∗ )
σ

]

(D.4)

In order to compute explicitly the coefficients α , β
++

, β
+−

, β
−+

, β
−−

and γ , we have to

evaluate the possible summation over the D∗∗ spin

• Scalar meson: there is no summation
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• Vector meson: the polarisation tensor ε
(p)
µ satisfies

∑

s

ε(p)µ
∗ ε(p)ν = − gµν +

pµ pν
p2

• Tensor meson J = 2: the polarisation tensor ε
(p)
µν satisfies [142]

∑

s

ε(p)µν
∗ ε(p)ρσ = − 1

3

(
gµν −

pµ pν
p2

)(
gρσ −

pρ pσ
p2

)

+
1

2

(
gµρ −

pµ pρ
p2

)(
gνσ −

pν pσ
p2

)
+

1

2

(
gµσ −

pµ pσ
p2

)(
gνρ −

pν pρ
p2

)

D.2.2 3P0 case

We expand the relation

Wµν =
G2
F |Vcb|

2

2
[ũ+(pB + p

D∗∗ )µ + ũ−(pB − pD∗∗ )µ]·[ũ+(pB + p
D∗∗ )ν + ũ−(pB − pD∗∗ )ν ]

∗

and then identify the terms according to Eq. (D.4). We find

3P0





α = 0

β++ = |ũ+|2 β
+−

= ũ+ũ
∗
− β

−+
= ũ∗+ũ− β

−−
= |ũ−|2

γ = 0

D.2.3 3P2 case

We proceed analogously as before and we obtain

α = −
(p

B
· p

D∗
2
)2 −m2

B
m2

D∗
2

2m2
D∗

2

[
|k̃|2 + 4 |h̃|2

(
(p

B
· p

D∗
2
)2 −m2

B
m2

D∗
2

)]

β++ =
k̃ b̃∗+ + k̃∗ b̃+

3m4
D∗

2

(
p
B
· p

D∗
2
−m2

D∗
2

)(
(p

B
· p

D∗
2
)2 −m2

B
m2

D∗
2

)
+

2 |b̃+|2
3m4

D∗
2

(
(p

B
· p

D∗
2
)2 −m2

B
m2

D∗
2

)2

− |h̃|2
2m2

D∗
2

(
(p

B
· p

D∗
2
)2 −m2

B
m2

D∗
2

)
(p

B
− p

D∗
2
)2

+
|k̃|2

24m4
D∗

2

[
m2

D∗
2

(p
B
− p

D∗
2
)2 + 4

(
(p

B
· p

D∗
2
)2 −m2

B
m2

D∗
2

)]
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β
+−

=
2 b̃+ b̃

∗
−

3m4
D∗

2

(
(p

B
· p

D∗
2
)2 −m2

B
m2

D∗
2

)2
+

k̃ b̃∗−
3m4

D∗
2

(
p
B
· p

D∗
2
−m2

D∗
2

)(
(p

B
· p

D∗
2
)2 −m2

B
m2

D∗
2

)

− k̃∗b̃+
3m4

D∗
2

(
p
B
· p

D∗
2
+m2

D∗
2

)(
(p

B
· p

D∗
2
)2 −m2

B
m2

D∗
2

)
+
|h̃|2
2m2

D∗
2

(m2
B
−m2

D∗
2

)
(
(p

B
· p

D∗
2
)2 −m2

B
m2

D∗
2

)

+
|k̃|2

24m4
D∗

2

(
3m2

B
m2

D∗
2

− 4 (p
B
· p

D∗
2
)2 +m4

D∗
2

)

β
−+

= β∗
+−

β
−−

= − k̃ b̃∗− + k̃∗ b̃−

3m4
D∗

2

(
p
B
· p

D∗
2
+m2

D∗
2

)(
(p

B
· p

D∗
2
)2 −m2

B
m2

D∗
2

)
+

2 |b̃−|2
3m4

D∗
2

(
(p

B
· p

D∗
2
)2 −m2

B
m2

D∗
2

)2

− |h̃|2
2m2

D∗
2

(
(p

B
· p

D∗
2
)2 −m2

B
m2

D∗
2

)
(p

B
+ p

D∗
2
)2

+
|k̃|2

24m4
D∗

2

[
m2

D∗
2

(p
B
+ p

D∗
2
)2 + 4

(
(p

B
· p

D∗
2
)2 −m2

B
m2

D∗
2

)]

γ =
k̃∗ h̃+ k̃ h̃∗

2m2
D∗

2

(
(p

B
· p

D∗
2
)2 −m2

B
m2

D∗
2

)

D.2.4 Contraction |M̄ |2 = Wµνℓ
µν

Finally, the contraction of the Eqs. (D.3) and (D.4) gives

|M̄ |2 =
G2
F |Vcb|

2

2

[
−16 α p

ℓ
· p

ν
+ 8 β

++

{
2 [(p

B
+ p

D∗∗ ) · pℓ ] [(pB + p
D∗∗ ) · pν ]− (p

ℓ
· p

ν
)(p

B
+ p

D∗∗ )
2
}

+8 β
+−

{
− (p

ℓ
· pν )(m2

B
−m2

D∗∗
)− 2 i ǫµνρσp

µ
B
pν
D∗∗

pρ
ℓ
pσ
ν
+ 2 (p

B
· p

ℓ
)(p

B
· pν )− 2 (p

D∗∗ · pℓ)(pD∗∗ · pν )
}

+8 β
−+

{
− (p

ℓ
· p

ν
)(m2

B
−m2

D∗∗
) + 2 i ǫµνρσp

µ
B
pν
D∗∗

pρ
ℓ
pσ
ν
+ 2 (p

B
· p

ℓ
)(p

B
· p

ν
)− 2 (p

D∗∗ · pℓ)(pD∗∗ · pν )
}

+8 β
−−

{
2 [(p

B
− p

D∗∗ ) · pℓ ] [(pB − pD∗∗ ) · pν ]− (p
ℓ
· p

ν
)(p

B
− p

D∗∗ )
2
}

+32 γ
{
(p

B
· pν )(pD∗∗ · pℓ)− (p

B
· p

ℓ
)(p

D∗∗ · pν )
}]

D.3 Measure dΦ of the phase space

For simplicity, we will work from now on in the rest frame of the B meson. The momenta involved are

p
B
(m

B
, ~0) ; p

D∗∗ (ED∗∗ , ~pD∗∗ ) ; p
ℓ
(E

ℓ
, ~p

ℓ
) ; p

ν
(E

ν
, ~p

ν
) with m

ν
= 0
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The different scalar products can be written as





p
B
· p

ℓ
= m

B
E

ℓ

p
B
· p

D∗∗ = m
B
E

D∗∗

p
ℓ
· p

D∗∗ = E
ℓ
E

D∗∗ − ~pℓ · ~pD∗∗

Let us also introduce the x and y parameters, defined by

xm
B
= 2E

ℓ
as well as ym2

B
= (p

B
− p

D∗∗ )
2 = (p

ℓ
+ p

ν
)2

Knowing these two parameters is equivalent to knowing the energies E
ℓ

and E
D∗∗ . Indeed

ym2
B
= (p

B
− p

D∗∗ )
2 = m2

B
+m2

D∗∗
− 2 p

B
· p

D∗∗

m
B
E
D∗∗

=⇒ E
D∗∗ =

m2
B
(1− y) +m2

D∗∗

2m
B

(D.5)

while the product of p
ℓ

with pν is given by

ym2
B
= (p

ℓ
+ pν )

2 = m2
ℓ
+m2

ν

0

+2 p
ℓ
· pν =⇒ p

ℓ
· pν =

1

2

(
ym2

B
−m2

ℓ

)

Conservation of total momentum then leads to

1

2

(
ym2

B
−m2

ℓ

)
= p

ℓ
· (p

B
− p

D∗∗ − pℓ) =⇒ p
ℓ
· p

D∗∗ =
1

2

[
m2

B
(x− y)−m2

ℓ

]

Finally, differentiating the relations (D.3) and (D.5) gives

dE
ℓ
=
m

B

2
dx and dE

D∗∗ = − m
B

2
dy (D.6)

Notice that E
D∗∗ and y vary in opposite directions.

D.3.1 Starting point

Our goal is to calculate the differential widths with respect to the lepton energy E
ℓ

and the transfer

(p
B
− p

D∗∗ )
2, in other words with respect to the variables x and y ( d2Γ/dx dy). We start from the

general expression of the elementary volume of the phase space

dΦ =
d3~p

D∗∗

(2π)3 2E
D∗∗

d3~p
ℓ

(2π)3 2E
ℓ

d3~pν
(2π)3 2E

ν

(2π)4 δ(4)(p
B
− p

D∗∗ − pℓ − pν )

First step

We begin by integrating out the antineutrino momentum ~p
ν
. To do so, we transform the 3D-integral

into a 4D-integral by using ∫
d3~pν
2E

ν

=

∫
d4pν δ(p

2
ν
) θ(Eν )
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where θ(Eν ) denotes the Heaviside “function”. The new phase space element, averaged over the antineu-

trino momenta, is

dΦ =
1

(2π)5
d3~p

D∗∗

2E
D∗∗

d3~p
ℓ

2E
ℓ

δ
[
(p

B
− p

D∗∗ − pℓ)2
]
θ(m

B
− E

D∗∗ − Eℓ
)

From now on, p
ν

must be replaced by p
B
− p

D∗∗ − pℓ in the expression of |M̄ |2.

Second step

We now proceed to integrate over all possible orientations of ~p
ℓ

so that only the dependence on E
ℓ

(i.e.

on x) remains. We will use the spherical coordinates where the Oz axis is given by the direction of

~p
D∗∗ , and we will denote by α the angle between ~p

ℓ
and ~p

D∗∗ .

Therefore

d3~p
ℓ
= 2π sinα dα ‖~p

ℓ
‖2d‖~p

ℓ
‖ = 2π d(− cosα) ‖~p

ℓ
‖2d‖~p

ℓ
‖

where the integration over α remains to be performed.

• Integration over α: this integration can be performed owing to δ
[
(p

B
− p

D∗∗ − pℓ)2
]

(p
B
− p

D∗∗ − pℓ)2 = m2
B
+m2

D∗∗
+m2

ℓ
− 2 p

D∗∗ · pB − 2 p
ℓ
· p

B
+ 2 p

D∗∗ · pℓ

= m2
B
+m2

D∗∗
+m2

ℓ
− 2m

B
E

D∗∗ − 2m
B
E

ℓ

+ 2 (E
D∗∗ Eℓ

− ‖~p
ℓ
‖ ‖~p

D∗∗ ‖ cosα)

(D.7)

Due to δ
[
(p

B
− p

D∗∗ − pℓ)2
]

(or, equivalently, to the conservation of the total momentum), the

squared term in Eq. (D.7) must vanish. The solution of the equation is given by the value αo such

that

− cosαo =
2m

B
(E

D∗∗ + E
ℓ
)− 2E

D∗∗ Eℓ
−m2

B
−m2

D∗∗
−m2

ℓ

2 ‖~p
ℓ
‖ ‖~p

D∗∗ ‖
Consequently, we have

δ
[
(p

B
− p

D∗∗ − pℓ)2
]
=

1

2 ‖~p
ℓ
‖ ‖~p

D∗∗ ‖
δ(− cosα+ cosαo)

The integration over α then leads to the following expression of the new phase space element

averaged over the antineutrino momentum and the direction of the outgoing lepton

dΦ =
1

(2π)4
d3~p

D∗∗

2E
D∗∗

θ(m
B
− E

D∗∗ − Eℓ
)× 1

4E
ℓ

‖~p
ℓ
‖d‖~p

ℓ
‖

‖~p
D∗∗ ‖

• ‖~p
ℓ
‖ manipulation: with the help of the usual formulae and in terms of x defined in (D.3),

‖~p
ℓ
‖2 = E2

ℓ
−m2

ℓ
=

1

4
x2m2

B
−m2

ℓ
=⇒ 2 ‖~p

ℓ
‖d‖~p

ℓ
‖ = 1

2
m2

B
x dx and 2E

ℓ
= xm

B
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• Summary for this second step:

dΦ =
m

B

(2π)4
dx

8 ‖~p
D∗∗ ‖

d3~p
D∗∗

2E
D∗∗

θ(m
B
− E

D∗∗ − Eℓ
)

Third step

Finally we will carry the integration over ~p
D∗∗ . Since we want to keep the dependence on E

D∗∗ , we need

to integrate over all possible directions of the three-vector ~p
D∗∗ . Since all the directions are equiprobable,

the volume element d3~p
D∗∗ reads

d3~p
D∗∗ = 4π ‖~p

D∗∗ ‖2 d‖~p
D∗∗ ‖ = 4π ‖~p

D∗∗ ‖ED∗∗ dE
D∗∗

The phase space volume element averaged over the momentum of the antineutrino and the directions of

the lepton and the meson D∗∗ is given by

dΦ =
m

B

(2π)3
1

8
dx dE

D∗∗ θ(mB
− E

D∗∗ − Eℓ
)

Finally, we get the expression in terms of y, owing to the relation (D.6)

dΦ = − m2
B

128π3
dx dy × θ(m

B
− E

D∗∗ − Eℓ
)

D.3.2 Differential decay widths dΓ

General expression in the rest frame of the B meson

Using the definition of dΓ as well as the preceding results, the construction of the differential decay

widths proceeds in the following way

dΓ

dx dy
(B̄ → D∗∗ ℓ ν̄) = − m

B

256π3
|M̄ |2

knowing that the following substitutions need to be performed in

the general expression of |M̄ |2:




p
ν
 p

B
− p

D∗∗ − pℓ

p
B
· p

ℓ
 

1

2
m2

B
x

p
B
· p

D∗∗  
1

2

[
m2

B
(1− y) +m2

D∗∗

]

p
ℓ
· p

D∗∗  
1

2

[
m2

B
(x− y)−m2

ℓ

]



166 Semileptonic decay widths

With our choice of kinematics and notations, |M̄ |2 is given by

|M̄ |2 = 2G2
F |Vcb|2m2

B

{
− 2 α (y − r2

ℓ
)

− β
++

m2
B

[
4
[
x r2

D∗∗
+ (1− x)(y − x)

]
+ r2

ℓ

[
3 y − 4(x+ r2

D∗∗
) + r2

ℓ

]]

+
(
β+−

+ β
−+

)
m2

B
r2
ℓ

[
2(1− x− r2

D∗∗
) + y + r2

ℓ

]

+ β
−−

m2
B
r2
ℓ
(y − r2

ℓ
)

− 2 γ m2
B

[
y (1 + y − 2x− r2

D∗∗
) + r2

ℓ
(1 + y − r2

D∗∗
)
]}

Notice that, for a zero mass lepton, only the coefficients α , β++ and γ remain.

Notation

2E
ℓ
= xm

B
2m

B
E

D∗∗ = m2
B
(1− y) +m2

D∗∗

We also express all the masses in terms of the B mass through the dimensionless coefficients ri, defined

by

r
D∗∗ =

m
D∗∗

m
B

as well as r
ℓ
=
m

ℓ

m
B

Constraints on the x and y parameters

The parameters x and y, that is the lepton energy (E
ℓ
) and the D∗∗ meson energy (E

D∗∗ ), cannot be

arbitrary. These are real numbers satisfying

• First constraint: we previously obtained

cosα =
m2

B
+m2

D∗∗
+m2

ℓ
− 2m

B
(E

D∗∗ + E
ℓ
) + 2E

D∗∗ Eℓ

2
√
E2

ℓ
−m2

ℓ

√
E2

D∗∗
−m2

D∗∗

(D.8)

which leads to conditions on the accessible values of E
ℓ

(i.e. x) in terms of E
D∗∗ (i.e. y), or

conversely. This first constraint provides the variation domain of one parameter in terms of the

other.

• Second constraint: the Heaviside “function” which appeared in the phase space volume element

implies

m
B
− E

D∗∗ − Eℓ
> 0 =⇒ 1 + y − x > r2

D∗∗
(D.9)

The above inequality fixes the authorized variation domain for the so far unconstrained parameter.
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First kind of constraints: x = x(y)

In this case, we solve the equation (D.8) as a function of the energy E
ℓ

(or x) expressed in terms of

E
D∗∗ (or y), and we then impose condition (D.9) on E

D∗∗ (or y).

Non-zero mass lepton:

(m
ℓ
6= 0)





xmax =
1

2

{
1 + y − r2

D∗∗
+ r2

ℓ

[
1 +

1

y

(
1− r2

D∗∗

)]

+

(
1− r2

ℓ

y

)√[
y − (1− r

D∗∗ )2
][
y − (1 + r

D∗∗ )2
]}

xmin =
1

2

{
1 + y − r2

D∗∗
+ r2

ℓ

[
1 +

1

y

(
1− r2

D∗∗

)]

(
1− r2

ℓ

y

)√[
y − (1− r

D∗∗ )2
][
y − (1 + r

D∗∗ )2
]}

with r2
ℓ
6 y 6 (1− r

D∗∗ )
2

Zero mass lepton:

(m
ℓ
= 0)





xmax =
1

2

[
1 + y − r2

D∗∗
+
√[

y − (1− r
D∗∗ )2

][
y − (1 + r

D∗∗ )2
]]

xmin =
1

2

[
1 + y − r2

D∗∗
−
√[

y − (1− r
D∗∗ )2

][
y − (1 + r

D∗∗ )2
]]

with 0 6 y 6 (1− r
D∗∗ )

2

Second kind of contraints: y = y(x)

We now solve the equation (D.8) as a function of the energy E
D∗∗ (or y) expressed in terms of E

ℓ
(or

x) and we then impose the condition (D.9) on E
ℓ

(or x).

Non-zero mass lepton:

(m
ℓ
6= 0)





ymax =
1

2

[
x−

r2
D∗∗

(x− 2r2
ℓ
)

1− x+ r2
ℓ

+

(
1−

r2
D∗∗

1− x+ r2
ℓ

)√
x2 − 4r2

ℓ

]

ymin =
1

2

[
x−

r2
D∗∗

(x− 2r2
ℓ
)

1− x+ r2
ℓ

−
(
1−

r2
D∗∗

1− x+ r2
ℓ

)√
x2 − 4r2

ℓ

]

with 2 r
ℓ
6 x 6 1− r2

D∗∗
+ r2

ℓ
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Zero mass lepton:

(m
ℓ
= 0)





ymax = x

(
1−

r2
D∗∗

1− x

)

ymin = 0

with 0 6 x 6 1− r2
D∗∗

d2Γ

dxdy
differential decay width

◮ 3P 0 states

Non-zero mass lepton

d2Γ

dx dy
= − G2

F |Vcb|
2

128π3
m5

B

{
− |ũ+|2

[
4
[
x r2

D∗
0

+ (1− x)(y − x)
]
+ r2

ℓ

[
3 y − 4(x+ r2

D∗
0

) + r2
ℓ

]]

+
(
ũ+ũ

∗
− + ũ∗+ũ−

)
r2
ℓ

[
2(1− x− r2

D∗
0

) + y + r2
ℓ

]

+ |ũ−|2 r2ℓ (y − r2
ℓ
)

}

Zero mass lepton

d2Γ

dx dy
=
G2
F |Vcb|

2

32π3
m5

B
|ũ+|2

[
x r2

D∗
0

+ (1− x)(y − x)
]

◮ 3P 2 states

Non-zero mass lepton

d2Γ

dx dy
= − m

B

256π3

G2
F |Vcb|

2

2

{
C1 |k̃|2 + C2 |h̃|2 + C3 |b̃+|2 + C4 |b̃−|2 + C5 (k̃ b̃

∗
+ + k̃∗ b̃+)

+ C6 (k̃ b̃
∗
− + k̃∗ b̃−) + C7 (b̃+ b̃

∗
− + b̃∗+ b̃−) + C8 (h̃ k̃

∗ + h̃∗ k̃)

}
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where the Ci coefficients are given by

C1 =
m4

B

3 r4
D∗

2

{[
y2 − (2 + r2

D∗
2

) y + (1− r2
D∗

2

)2
] [

2(1− x)(x− y) + r2
D∗

2

(3 y − 2x)
]
− 3 y2 r4

D∗
2

− r2
ℓ

[
(1− 2x+ y)

[
2(1− y)2 − 3 r2

D∗
2

(1 + y)
]
− r4

D∗
2

(2x− r2
D∗

2

)
]

− 2 r4
ℓ

[
y2 − 2(1 + r2

D∗
2

) y + 1− r2
D∗

2

+ r4
D∗

2

]}

C2 =
m8

B

r2
D∗

2

[
y − (1− r

D∗
2
)2
] [
y − (1 + r

D∗
2
)2
]

×
[
y
[
2(1− x+ r

D∗
2
)(1− x− r

D∗
2
)− (1− y + r2

D∗
2

)(1 + y − 2x− r2
D∗

2

)
]

+r2
ℓ

[
(1 + y − r2

D∗
2

)(1 + y − 2x− r2
D∗

2

) + 2 r2
ℓ

]]

C3 =
m8

B

6 r4
D∗

2

[
y − (1− r

D∗
2
)2
]2 [

y − (1 + r
D∗

2
)2
]2 [

4x(1− x− r2
D∗

2

)− 4 y(1− x)

+ r2
ℓ

[
4(x+ r2

D∗
2

)− 3 y − r2
ℓ

]]

C4 =
m8

B

6 r4
D∗

2

r2
ℓ
(y − r2

ℓ
)
[
y − (1− r

D∗
2
)2
]2 [

y − (1 + r
D∗

2
)2
]2

C5 =
m6

B

3 r4
D∗

2

[
y − (1− r

D∗
2
)2
] [
y − (1 + r

D∗
2
)2
]

×
[
2(1− y − r2

D∗
2

)
[
(1− x)(x− y)− x r2

D∗
2

]

−r2
ℓ

[
(1− y + r2

D∗
2

)(1− 3x+ 2 y − r2
D∗

2

+ r2
ℓ
) + 2x r2

D∗
2

]]

C6 =
m6

B

3 r4
D∗

2

r2
ℓ

[
y − (1− r

D∗
2
)2
] [
y − (1 + r

D∗
2
)2
]

×
[
(1− y + r2

D∗
2

)(1− x+ r2
D∗

2

) + 2r2
D∗

2

(x− 2) + r2
ℓ
(1− y + r2

D∗
2

)
]

C7 =
m8

B

6 r4
D∗

2

r2
ℓ

[
y − (1− r

D∗
2
)2
]2 [

y − (1 + r
D∗

2
)2
]2 [

2(1− x− r2
D∗

2

) + y + r2
ℓ

]

C8 = − m6
B

r2
D∗

2

[
y − (1− r

D∗
2
)2
] [
y − (1 + r

D∗
2
)2
] [
y(1 + y − 2x− r2

D∗
2

) + r2
ℓ
(1 + y − r2

D∗
2

)
]
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Zero mass lepton

The coefficients of C4, C6 and C7 cancel in this limit, leading to

d2Γ

dx dy
= − m

B

256π3

G2
F |Vcb|

2

2

[
C1 |k̃|2 + C2 |h̃|2 + C3 |b̃+|2 + C5 (k̃ b̃

∗
+ + k̃∗ b̃+) + C8 (h̃ k̃

∗ + h̃∗ k̃)
]

where the Ci coefficients are given by

C1 =
m4

B

3 r4
D∗

2

[ [
y2 − (2 + r2

D∗
2

) y + (1− r2
D∗

2

)2
] [

2(1− x)(x− y) + r2
D∗

2

(3 y − 2x)
]
− 3 y2 r4

D∗
2

]

C2 =
m8

B

r2
D∗

2

[
y − (1− r

D∗
2
)2
] [
y − (1 + r

D∗
2
)2
]

× y
[
2(1− x+ r

D∗
2
)(1− x− r

D∗
2
)− (1− y + r2

D∗
2

)(1 + y − 2x− r2
D∗

2

)
]

C3 =
m8

B

6 r4
D∗

2

[
y − (1− r

D∗
2
)2
]2[

y − (1 + r
D∗

2
)2
]2[

4x(1− x− r2
D∗

2

)− 4 y(1− x)
]

C5 =
m6

B

3 r4
D∗

2

[
y − (1− r

D∗
2
)2
][
y − (1 + r

D∗
2
)2
][
2(1− y − r2

D∗
2

)
[
(1− x)(x− y)− x r2

D∗
2

]]

C8 = − m6
B

r2
D∗

2

[
y − (1− r

D∗
2
)2
][
y − (1 + r

D∗
2
)2
]
y (1 + y − 2x− r2

D∗
2

)

dΓ

dy
differential decay width

The form factors only depend (although in an unknown way) on the y parameter. To do the integration

over the x variable, we will use the expressions of the kind x = x(y).

◮ 3P 0 states

Non-zero mass lepton: in this situation, the integration is performed from

xmin =
1

2

{
1 + y − r2

D∗
0

+ r2
ℓ

[
1 +

1

y

(
1− r2

D∗
0

)]
−
(
1− r2

ℓ

y

)√[
y − (1− r

D∗
0
)2
][
y − (1 + r

D∗
0
)2
]}

to

xmax =
1

2

{
1 + y − r2

D∗
0

+ r2
ℓ

[
1 +

1

y

(
1− r2

D∗
0

)]
+

(
1− r2

ℓ

y

)√[
y − (1− r

D∗
0
)2
][
y − (1 + r

D∗
0
)2
]}
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We obtain

dΓ

dy
= − G2

F |Vcb|
2

128π3
m5

B

[
D1 |ũ+|2 +D2 (ũ+ ũ

∗
− + ũ∗+ ũ−) +D3 |ũ−|2

]

where the Di coefficients are function of y and are given by

Di(y) =

xmax∫

xmin

Ci(x, y) dx with





C1 = −4
[
x r2

D∗
0

+ (1− x)(y − x)
]
− r2

ℓ

[
3 y − 4(x+ r2

D∗
0

) + r2
ℓ

]

C2 = r2
ℓ

[
2(1− x− r2

D∗
0

) + y + r2
ℓ

]

C3 = r2
ℓ

(
y − r2

ℓ

)

After performing these integrations, we find

D1 =
1

3 y3
(
y − r2

ℓ

)2 [[
y − (1− r

D∗
0
)2
] [
y − (1 + r

D∗
0
)2
]]1/2

×
{
2 y
[
y − (1− r

D∗
0
)2
] [
y − (1 + r

D∗
0
)2
]
+ r2

ℓ

[
y2 − 2 y (1 + r2

D∗
0

) + 4 (1− r2
D∗

0

)2
]}

D2 =
1

y2
r2
ℓ

(
y − r2

ℓ

)2
(1− r2

D∗
0

)
[[
y − (1− r

D∗
0
)2
] [
y − (1 + r

D∗
0
)2
]]1/2

D3 =
1

y
r2
ℓ

(
y − r2

ℓ

)2 [[
y − (1− r

D∗
0
)2
] [
y − (1 + r

D∗
0
)2
]]1/2

Recall that, in the expression of dΓ/dy, the y parameter varies in the interval: r2
ℓ
6 y 6 (1− r

D∗
0
)2.

Zero mass lepton

The integration is now to be performed from

xmin =
1

2

{
1 + y − r2

D∗
0

+−
√[

y − (1− r
D∗

0
)2
][
y − (1 + r

D∗
0
)2
]}

to

xmax =
1

2

{
1 + y − r2

D∗
0

++
√[

y − (1− r
D∗

0
)2
][
y − (1 + r

D∗
0
)2
]}

and we get (we can take the limit r
ℓ
→ 0), with 0 6 y 6 (1− r

D∗
0
)2

dΓ

dy
= − G2

F |Vcb|
2

128π3
m5

B
|ũ+|2D1 where D1 =

2

3

[[
y − (1− r

D∗
0
)2
] [
y − (1 + r

D∗
0
)2
]]3/2

since the other coefficients D2 and D3 are zero in this case.
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◮ 3P 2 states

Non-zero mass lepton: proceeding analogously we find

dΓ

dy
= − m

B

256π3

G2
F |Vcb|

2

2

{
D1 |k̃|2 +D2 |h̃|2 +D3 |b̃+|2 +D4 |b̃−|2 +D5 (k̃ b̃

∗
+ + k̃∗ b̃+)

+D6 (k̃ b̃
∗
− + k̃∗ b̃−) +D7 (b̃+ b̃

∗
− + b̃∗+ b̃−) +D8 (h̃ k̃

∗ + h̃∗ k̃)

}

where the Di coefficients are given by

D1 =
m4

B

r4
D∗

2

1

9 y3
(
y − r2

ℓ

)2 [[
y − (1− r

D∗
2
)2
] [
y − (1 + r

D∗
2
)2
]]3/2

×
{
y
[
y2 − 2 y (1− 4 r2

D∗
2

) + (1− r2
D∗

2

)2
]
+ r2

ℓ

[
2 y2 − y (4− r2

D∗
2

) + 2 (1− r2
D∗

2

)2
]}

D2 =
m8

B

r2
D∗

2

1

3 y2
(
y − r2

ℓ

)2
(2 y + r2

ℓ
)
[[
y − (1− r

D∗
2
)2
] [
y − (1 + r

D∗
2
)2
]]5/2

D3 =
m8

B

r4
D∗

2

1

18 y3
(
y − r2

ℓ

)2 [[
y − (1− r

D∗
2
)2
] [
y − (1 + r

D∗
2
)2
]]5/2

×
{
2 y
[
y − (1− r

D∗
2
)2
][
y − (1 + r

D∗
2
)2
]
+ r2

ℓ

[
y2 − 2 y (1 + r2

D∗
2

) + 4 (1− r2
D∗

2

)2
]}

D4 =
m8

B

r4
D∗

2

1

6 y
r2
ℓ

(
y − r2

ℓ

)2 [[
y − (1− r

D∗
2
)2
] [
y − (1 + r

D∗
2
)2
]]5/2

D5 =
m6

B

r4
D∗

2

1

18 y3
(
y − r2

ℓ

)2 [[
y − (1− r

D∗
2
)2
] [
y − (1 + r

D∗
2
)2
]]5/2[

2 y
(
1− y − r2

D∗
2

)
+ r2

ℓ

(
4− y − 4 r2

D∗
2

)]

D6 =
m6

B

r4
D∗

2

1

6 y2
r2
ℓ

(
y − r2

ℓ

)2 [[
y − (1− r

D∗
2
)2
] [
y − (1 + r

D∗
2
)2
]]5/2

D7 =
m8

B

r4
D∗

2

1

6 y2
r2
ℓ

(
y − r2

ℓ

)2
(1− r2

D∗
2

)
[[
y − (1− r

D∗
2
)2
] [
y − (1 + r

D∗
2
)2
]]5/2

D8 = 0

Recall that, in these formulae, the y parameter varies in the interval r2
ℓ
6 y 6 (1− r

D∗
2
)2.
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Zero mass lepton: we obtain

dΓ

dy
= − m

B

256π3

G2
F |Vcb|

2

2

[
D1 |k̃|2 +D2 |h̃|2 +D3 |b̃+|2 +D5 (k̃ b̃

∗
+ + k̃∗ b̃+) +D8 (h̃ k̃

∗ + h̃∗ k̃)
]

where the Di coefficients are given by

D1 =
m4

B

r4
D∗

2

1

9

[[
y − (1− r

D∗
2
)2
] [
y − (1 + r

D∗
2
)2
]]3/2[

y2 − 2 y (1− 4 r2
D∗

2

) + (1− r2
D∗

2

)2
]

D2 =
m8

B

r2
D∗

2

2

3
y
[[
y − (1− r

D∗
2
)2
] [
y − (1 + r

D∗
2
)2
]]5/2

D3 =
m8

B

r4
D∗

2

1

9

[[
y − (1− r

D∗
2
)2
] [
y − (1 + r

D∗
2
)2
]]7/2

D5 =
m6

B

r4
D∗

2

1

9
(1− y − r2

D∗
2

)
[[
y − (1− r

D∗
2
)2
] [
y − (1 + r

D∗
2
)2
]]5/2

D8 = 0

Here, the y parameter lies in the domain 0 6 y 6 (1− r
D∗

2
)2.

dΓ

dx
differential decay width

It is impossible to give a priori expressions for the leptonic spectra
dΓ

dx
: since the dependence of the

form factors on y is unknown, we cannot perform the integration over y. Nevertheless, the procedure

to do those calculations is the following

1. We start from the expressions of the
d2Γ

dx dy
decay widths given above.

2. We use the constraints of the kind y = y(x) in order to perform the integration over y from ymin

to ymax. Recall that, due to (D.5), the maximum of E
D∗∗ corresponds to the minimum of y and

vice-versa. So, to integrate over E
D∗∗ from E min

D∗∗
to E max

D∗∗
, we have to integrate over y from ymax

to ymin

dΓ

dx
=

ymin∫

ymax

d2Γ

dx dy
dy
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with 



ymax =
1

2

[
x−

r2
D∗∗

(x− 2r2
ℓ
)

1− x+ r2
ℓ

+

(
1−

r2
D∗∗

1− x+ r2
ℓ

)√
x2 − 4r2

ℓ

]

ymin =
1

2

[
x−

r2
D∗∗

(x− 2r2
ℓ
)

1− x+ r2
ℓ

−
(
1−

r2
D∗∗

1− x+ r2
ℓ

)√
x2 − 4r2

ℓ

]

(Setting r
ℓ
= 0 corresponds to the case of a zero mass lepton.)

3. The last free parameter x lies in the domain

2 r
ℓ
6 x 6 1− r2

D∗∗
+ r2

ℓ

(Once again, r
ℓ
= 0 gives the variation domain in the case of a massless lepton.)

Total decay width Γ

The problem which was encountered when computing the leptonic spectra also occurs here, as one must

conduct some integration over y.
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Résumé

Les désintégrations semileptoniques du méson B participent à la détermination de certains paramètres

fondamentaux du Modèle Standard. Ce travail décrit essentiellement l’étude des deux canaux de désin-

tégrations Bs → Dsℓν̄ℓ et B → D∗∗ℓν̄ℓ (où les D∗∗ sont les premières excitations orbitales des mésons

D ayant une parité positive). La cadre théorique est celui de la QCD sur réseau qui, en discrétisant

l’espace-temps, permet de calculer non perturbativement les fonctions de Green de la théorie. En util-

isant l’action à masse twistée avec deux saveurs dégénérées de quarks dynamiques (Nf = 2), nous

avons commencé par étudier la spectroscopie des états charmés scalaires D∗
0 et tenseurs D∗

2 . Ensuite,

nous avons réalisé la détermination du facteur de forme Gs(1) décrivant le processus Bs → Dsℓν̄ℓ dans

le Modèle Standard. Ce paramètre offre un moyen d’extraire l’élément de la matrice CKM Vcb. Par

ailleurs, et pour la première fois en QCD sur réseau, nous avons déterminé les rapports F0(q
2)/F+(q

2)

et FT (q
2)/F+(q

2) dans la région proche du recul nul: ces contributions sont en effet nécessaires afin

de discuter ce canal de désintégration dans certains modèles au-delà du Modèle Standard. Enfin, une

étude préliminaire du canal de désintégration B → D∗∗ a été abordée où nous avons trouvé une valeur

non nulle de l’élément de matrice décrivant la désintégration B → D∗
0 à recul nul contrairement de ce

qui est connu à la limite des quarks lourds. Dans le cas du B → D∗
2 , nos résultats ont montré un signal

indiquant une différence par rapport aux prédictions de masse infinie. Ces calculs sont indispensables

afin de tirer une conclusion plus solide concernant le “puzzle 1/2 vs 3/2”.

Abstract

Semileptonic decays of B mesons provide a rich source of knowledge for determining fundamental

parameters of the Standard Model. This work reports mainly on the study of two semileptonic decay

channels: the Bs → Dsℓν̄ℓ and B → D∗∗ℓν̄ℓ (where the D∗∗ are the first orbitally excited states of the D

mesons having a positive parity). The theoretical framework is Lattice QCD which is considered as the

only satisfying approach which calculates in a non perturbative way the transition amplitudes from first

principles. By using the twisted mass QCD on the lattice with Nf = 2 dynamical flavors we studied,

first, the spectroscopy of the scalar D∗
0 and the tensorD∗

2 states. Then, we determined the normalization

Gs(1) of the form factor dominating Bs → Dsℓν̄ℓ in the Standard Model which provides a means of

extracting the CKM matrix element Vcb. Next, we make the first lattice determination of F0(q
2)/F+(q

2)

and FT (q
2)/F+(q

2) near the zero recoil. The obtained results are important for the discussion of this

decay in various scenarios of physics beyond the Standard Model. Finally, we did a preliminary study of

B → D∗∗ where we have obtained a non vanishing matrix element corresponding to the decay of B into

the D∗
0 at zero recoil contrary to what was known in the heavy quark limit. Moreover, the computations

corresponding to B → D∗
2 show a signal indicating a difference with respect to the infinite mass limit

prediction. These results are important to draw a firm conclusion on the “1/2 vs 3/2 puzzle”.
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Heavy Flavor Physics - Lattice QCD - Phenomenology of B mesons - Standard Model -

Semileptonic form factors - Orbital excitations D∗∗ - Heavy-light mesons


