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CHAPTER 1

(eneral introduction

1.1 Introduction

The classification task consists in predicting category membership of an unlabeled
data based on its content. Classifying images is a challenging task in computer
vision, since it involves different fields and applications. In fact, two main fields
are being studied to perform image classification and pattern recognition: the first,
which belongs to the image processing field, deals with extracting the features from
data. A way to encode images with less complex structures that best describes the
information contained in the image. While the second one is a machine learning
task defining the classification rule.

In computer vision tasks, image features are usually considered either as local or
as global descriptors. Both of them have been shown to be efficient. Gist global fea-
ture [Oliva & Torralba 2001, Oliva & Torralba 2006] for example represents a whole
scene in a unique descriptor, while the scale invariant feature transform (SIFT)
[Lowe 2004| or the histogram of oriented gradients (HOG) [Dalal & Triggs 2005|
represent local information in the image allowing the description of significant ob-
jects in the scene independently. Local features are relevant for image description.
In computer vision, they are well adapted for objects detection and image retrieval:
they give a sparse representation and cover a wide range of visual features in the
image. However, for classification task, we almost need global feature description,
since we compare categories and not only pairs of images. Hence, we usually encode
local features into global ones using statistical models. This global representation
describes the occurrence of relevant visual features in the image. State of the art
Bag of features/words (BoF/BoW) [Sivic & Zisserman 2006] are the most common
approaches in this context. Recently an efficient feature called fisher vectors (FV)
[Perronnin et al. 2010] was extensively used for large scale image classification.

Getting efficient descriptors is not sufficient to perform categorization. Robust
classification algorithms should be designed to accomplish such challenging task.
For most state of the art methods, the task of image classification is addressed as
a learning problem. Within this context, we distinguish two major approaches, de-
pending on wether we have or have not a knowledge about the categories and about
the labels of a set of data. On the one hand, unsupervised approaches, like cluster-
ing, tend to group data according to their visual content similarities. On the other
hand, supervised learning uses an already labeled training set to learn classifiers
(categories boundaries) and then labels non-annotated images subsequently. For
the second kind of learning, three or four main standard methods are often used.
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The kernel based algorithms and more precisely the Support Vector Machine (SVM)
[Cristianini & Shawe-Taylor 2000] are robust classification methods. The boosting
based algorithms such as Adaboost [Freund & Schapire 1999] are scalable, have low
computational complexity and still reliable. Nearest Neighbors approaches are fast,
simple and scalable, but still poorly effecient in accuracy. Recently, a stochastic
gradient descent (SGD) algorithm was introduced by [Bottou 2010], a robust and
non complex method for large scale data.

To state a supervised classification problem, we need to define our classifier first.
In fact, the classification rule is a function mapping between the data features and
their predicted labels. Among state of the art classifiers, we can cite k-Nearest
Neighbors, linear or kernel based classifiers. However, despite the nature of a classi-
fication rule, it is often defined by a set of parameters. Therefore, we set a learning
process to reach the optimal rule. Indeed, given a set of already annotated data, we
tend to estimate the optimal parameters by minimizing the classification error rate.

This thesis deals with supervised learning approaches for image classification.
Especially, we are interested in the minimization of a criterion based on some spe-
cific loss functions (Calibrated losses) for different kind of classification rules. In
a first part, we are interested in k-NN classifiers. A first approach, revisits and
expands a leveraged k-NN rule by minimizing the risk criterion in a boosting frame-
work. In the same context, a second approach deals with fast convergence Newton
based leveraged Nearest Neighbors rule. In a second part, we design a fast low rank
Newton descent algorithm of criterion minimization for learning scalable linear clas-
sifiers. This latter is a robust algorithm especially for big datasets and shows high
computational performance and precision towards state of the art approaches. In
a final part, this thesis presents an application of image categorization to an inter-
esting field: bio-medial imaging. In a first step, we design a specific descriptor for
such application: a multiscale contrast based feature, well adapted for cell images.
Then, we report examples of experiments on two different applications of biological
cells classification.

1.2 Setting the problem

We first provide some generalities that define our supervised learning scheme. Our
setting is that of multiclass, multilabel classification. In supervised learning, we
have access to an annotated input set of m observations, 8§ = {0; = (x;,y;),i =
1,2,...,m}. Vector x; € X is a feature data where X denotes the feature space. We
adopt the mainstream one-vs-all classification scheme. Then, vector y; € {—1,+1}¢
encodes class memberships, assuming v, = +1 means that sample x; belongs to
class ¢ and y;. = —1 otherwise.

The goal is to learn a classifier H which is a function mapping observations in X
to vectors in R®. Given some sample @, the sign of coordinate ¢ in H (x) (H, (x))
gives whether H predicts that @ belongs to class ¢, while its absolute value may be
viewed as a confidence in classification (or score).
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To define the classifier H, we will minimize the Empirical (or Hamming) Risk

e®*(H,8) which computes over classes and observations the missclassification rate
of H :

S(H,S) = éz;% > (yseHo(m:)) < 0] | (1.1)

where [] is the indicator function equal to 1 if the condition is true and 0 otherwise
and which represents here the 0/1 or empirical loss. We denote this loss F' 0/1,
Unfortunatly, the minimization of such problem is not tractable since the 0/1 loss
function is not convex.

A common alternative to minimize (1.1) is to rather minimize an upperbound
of this empirical risk, known as the Surrogate Risk. Lets denote this later ep.
This surrogate sums over observations and classes a strictly convex loss function
F : R — R that satisfies Vo € R, F%/1(z) < F ().

m

cr(H,S) = %Z % S FlyscH(ws) - (1.2)

c=1 i=1

The loss function F' is based on the functional margin y;.H.(x;) or what we call the
edge of classification and denote by p(H., 0;.). Obviously, the minimization of (1.2)
leads to a close form solution of the initial problem (1.1).

The consistency of classification rules is crucial properties without which the
minimization of the loss brings no strong statistical guarantee: the risk of classifi-
cation should get close to the lowest possible risk with a large probability (Bayes
rule). To satisfy this property, a set of loss functions relevant for learning is often
used and called Calibrated Losses [Bartlett et al. 2006].
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CHAPTER 2

Universal Nearest Neighbors
algorithm: UNN

2.1 Introduction

The nearest neighbors (NNs) rule belongs to the oldest, simplest and still most
widely studied classification algorithms [Devroye et al. 1996]. It relies on a non-
negative real-valued “distance” function. This function measures how much two
observations differ from each other, and may not necessarily satisfy the requirements
of metrics.

k-NN classification has proven successful, thanks to its easy implementation and
its good generalization properties [Shakhnarovich et al. 2006]. A major advantage
of the k-NN rule is to not require explicit construction of the feature space and be
naturally adapted to multi-class problems. Moreover, from the theoretical point of
view, straightforward bounds are known for the true risk (error) of k-NN classifica-
tion with respect to Bayes optimum, even for finite samples ([Nock & Sebban 2001]).
In fact, it is yet a challenge to reduce the true risk of the k-NN rule, usually tackled
by data reduction techniques [Hart 1968|.

We propose in this chapter an optimization of a generalized solution to the prob-
lem of boosting k-NN classifiers in the general multi-class setting, and for general
classes of losses, not restricted to Adaboost’s exponential loss, built upon the works
of [Piro et al. 2012, Nock & Nielsen 2009, Nock & Nielsen 2008]. Namely, we pro-
pose a leveraged nearest neighbor rule that generalizes the uniform k-NN rule, and
whose convergence rate is guaranteed for many classification calibrated losses, en-
compassing popular choices, such as the logistic loss or the matsushita loss. The
voting rule is redefined as a strong classifier that linearly combines weak classifiers
of the k-NN rule.

The remaining of the chapter is organized as follows: Section 2.2 brievly in-
troduces the basic notions about k-NN classifiers and about the calibrated loss
functions used latter in the learning framework. Section 2.3 presents the Universal
Nearest Neighbors algorithm for leveraging the k-NN classifier and Section 2.4 gives
details about the optimizations brought on this algorithm and the implementation of
the method. Finally, Section 2.5 shows experimental results of our method against
standard /uniform k-NN and SVM methods on large images datasets.
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crit || calibrated loss F' | annotation
A exp(—x) exp
B || In(1+ exp(—x)) log
C —z 4+ V1 + 2?2 mat

Table 2.1: The strictly convex losses that are used in UNN. From top to bottom,
losses are exponential, logistic and matsushita’s loss.

2.2 Basic notions and annotations

2.2.1 The k-NN classifier

We let j —; « denote the assertion that example (x;,y;), or simply example j,
belongs to the & NNs of observation . We shall abbreviate j —p @; by j —¢ i —
in this case, we say that example ¢ belongs to the inverse neighborhood of example
j. To classify an observation @, the A-NN rule H(x) computes the sum of class
vectors of its nearest neighbors. The coordinate ¢ in H(x) is :

He(x) = > e - (2.1)

J— kT

2.2.2 Calibrated losses

Classification calibrated losses are surrogates suitable for classification. To be
classification-calibrated, loss F' : R — R is required to be convex, differentiable
and such that F’'(0) < 0 [Bartlett et al. 2006] (Theorem 4), [Vernet et al. 2011].

In this chapter, we are interested in a subset of the calibrated losses called
Strictly Convex Losses (SCL). This set includes, in addition to the exponential loss,
the logistic, the matsushita and the squared loss. The strictly convex losses F we
are intrested in are given in Table 2.1.

2.3 UNN, Leveraging the k-NN classifier

As previously introduced, a leveraged k-NN rule is a non-uniform voting among the
k-Nearest Neighbors defined like below:

He(z:) = ) ajeyje - (2.2)

J—rkl

The classifier H, is defined as a sum among a set of 1" weak classifiers. We
call those laters prototypes. So, given a set 8 = {0; = (x;,¥:),i = 1,2,...,m},
one prototype, denoted by the index j, is a training sample € § defined by its
feature vector x;, label y;. and later by its leveraging weight ;.. Those weights are
determined by fitting the classifier H. into the supervised learning scheme previously
described in (1.2).
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2.3.1 Learning leveraged k-NNNs in a boosting framework

Voting weights « in (2.2) are solutions of the minimization of the following average
surrogate risk:

C m
() = 533 FlueH(@) | 2:3)

EF (HC 75)

Since we are in the one-vs-all learning scheme we can minimize the per-class risk
ep(H,,8) corresponding to H.. To to so, one alternative is to use a boosting like
approach and then minimize each surrogate ep(H,,8) iteratively. In fact, at each
iteration we pick one prototype j € 8 for which the classification rule is defined as
the following weak classifier:

hje(xi) = ajeyje 3 J =kt (2.4)
such that:

HC(CCZ) = Zh]’c(mi) . (2.5)

j*)k’i

Thus the local risk (of the weak classifier) is the sum of losses due to hj. over the
training set §:

m

EF(hjc,S) = %ZF(ywh]c(mz)) . (2.6)

i=1

Note that the classifier hj. follows the leveraged k-NN rule and then only a subset
of 8 for which sample j is a k-NN are concerned by the voting of j. We denote
this subset by R; C 8§ which is exactly the set of inverse nearest neighbors of j and
which cardinality is equal to n;. Hence we reduce once again the risk function that
should be minimized to this following:

EF(hjc,ij) = iZF(ywh]c(a:,)) . (27)

We need to find optimal voting weight that minimizes the risk function in (2.7).
To do so, we iteratively update the leveraging weight of the actual weak classi-
fier / prototype j in a boosting like procedure. Hence, we give samples weights of
classification denoted by w;. and progressively update them according to the miss-
classification of hj.. That is, weights of badly classified samples should be enhanced
and those of well classified ones will be narrowed. We consider the following updat-
ing rules for prototypes weights ., classification rule hj. and for training samples
weights w;e:

o, = a4+ . (2.8)
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héc(xl) = hz‘;l(xi)‘{'éjcyjc . (29)

wh = —F(yicht () (2.10)

1’

Actually, at each iteration ¢ we should minimize ¢ p(h] o> R;j) according to ;.. Let us

first replace hj. in (2.7) by its expression in (2.9). Then, the risk function becomes

er(hfe, Rj) = —ZF ywht Y@)) + vieSjeyie) - (2.11)
J =1

and its first derivative according to d;. is expressed like follows:

je

85F(h R ) t—1
96, _Zyzcy]c (Yichie () + YicdjcYjc) (2.12)

1 1 B
- ’I’L_ Z yicych/(F, (_wgc 1) + yicéjcyjc) (213)
i

Finally, finding d;. = arg min <5 r (Rt i Rj )) amounts to solving the following general

equation based on the surrogate loss F'
n;
—1 _
D viehieF (F (—wig) + viedjeie) = 0. (2.14)

2.3.2 Step by step algorithm

The different steps of UNN are detailed in the general algorithm 1. The step
[I.0] in the algorithm consists in choosing the prototype j € {1,2,...,m} (weak
classifier). In fact, at each iteration, the index to leverage j, is obtained by a call
to a weak index chooser oracle WIc(.,.,.). The selection of the index j of the next
weak classifier could be done randomly, or using some criterion. In the second case,
we pick 7' > m, and let j be chosen by Wic({1,2,...,m},t,c) such that ¢; is large
enough. Each j can be chosen more than once or one can restrict this index to be
chosen only once.

The demonstration of the computation of ¢; solution of (2.15) and w; in (2.16)
will be detailed later. Those expressions are given in Table 2.2 respectively for each
of the considered loss in Table 2.1. th and W];, used in Table 2.2, are respectively
the sum of weights of positif (good) inverse-NNs and that of negatif (bad) ones:

T

Wj—‘g = Z [yicyjc > 0] Wic 5 (217)
i=1

5
Wj; = Z [yicyjc < 0] Wie 3 (2.18)
i=1
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Algorithm 1: Algorithm UNIVERSAL NEAREST NEIGHBORS UNN(S, F)
Input: 8 = {(x;,vy;),i = 1,2,...,m}, loss F,
forc=1,2,...,C do

Let aje. < 0, V7,

Let w; < —F'(0) € R, Vi

fort=1,2,...,7T do

[I.0] Let j « Wic({1,2,...,m},1);

[I.1] Let §; € R solution of:

nj

Z yicych,(F,_l (_wic) + yicéjcyjc) =0; (215)
i=1

[L2] Vi : j ~p i, let

-1
w; — —F' <yi05jcyjc+F' (—wi)> : (2.16)

B [13] Let Qje < Qjc + 6j;

Output: he(z) =3, 5 cYic, Ve i

For now, we will give some details about the demonstration getting to the ex-
pressions in table 2.2. We will consider first the exponential loss function A in Table
2.1 which is a special case since it leads to a close form solution of ;.. Then we
will explain how to solve the problem for general cases. Lets consider the equation
(2.14) corresponding to the exponential risk function, then:

nj
Z YicYje(— exp(—(= (wi; ') + yicdjeyse))) = 0 (2.19)
i=1

n
> vieyjeexp(n(wi; 1)) exp(—gicdjeyse) = 0 (2.20)
i=1 .
> vicyjewl, L exp(—yicdjeyie) = 0 (2.21)
Z [Wicyje > 0] wi ! exp(—djc) — Z [Yicyje < 0wl texp(dje) = 0 ; (2.22)
i=1 i=1

In expression (2.22) we split the sum on the inverse-NNs such that we separate the
set R; into R;r and R} where R;r denotes the good inverse NNs (i-NN with the
same label as j) and R, denotes the bad ones (i-NNs which does not have same
label as j). Then, using definitions (2.17) and (2.18) we get:

Wi exp(=djc) = Wi exp(djc) = 0 ; (2.23)
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F | djc, see (2.17) and (2.18) g w; + g(w;)
wT
exp % In W—Jf w; exp(—YicYjcdije)
jc
W w; exp(=YicYjcIjc)
_Jc i icYjcOjc
log In W, T—w;(1—exp(—¥Yicyjcdjc))
mat 2W;e—1 1— 1—w;+ \/wi (2—w;)0jcYicYje
2\/ ch(l_ch) \/1+52 wl 2 w; +2(1 wz) wi(27wi)5jcyicyjc

Table 2.2: Computation of d;. and the weight update rule of our implementation of
UNN, for the strictly convex losses in Table 2.1. UNN leverages example j for class
¢, and the weight update is that of example i (See text for details and notations).

which leads to the following final expression of d;:

b = 11 Wi (2.24)
jc 2n WJ; . .

Therefore, the iterative update of boosting weights w!, in (2.10) as a function of 4.
is expressed like bellow:

wie = exp (—yichf.(x;)) (2.25)
= €xp <_yzch§;1(mz) - yicyjcfsjc) (226)
= w;tgl exXp (_yicyjcfsjc) (227)

For the remaining loss functions, it is not possible to directly solve (2.15). Then
we will assume that F’(F’fl(—wic) + YicdjeYje) = —wicF (yicdjcyjc). Therefore, the
equation (2.14) becomes:

Zyzcyjcww yzcéjcy]c) =0 (2'28)

T "J

Z [Yicyje > O] wi ' F/ (6;0) — Z [Wicyje < 0wl 'F/ (=65.) = 0 (2.29)
i=1 i=1
WEF (850) = Wi F'(=85c) = 0. (2.30)

Replacing F’ in (2.30) and (2.10) by its expression corresponding to each of the
considered losses will directly lead to the Table 2.2. The convergence proof and the
theoretical properties of UNN are detailed in [Nock et al. 2012].

2.4 Implementation details and optimizations

2.4.1 Implementation

Since we are dealing with classification topic for large scale image datasets, UNN
should overcome some numerical problems that could arise.
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The first one is that, we can face unbalancing problem especially because we
are considering a one-vs-all framework. To cope with such problem we use adaptive
weights w;.. That is: initially, w), are weighted, according to wether they belong or
do not belong to the class "¢", by the proportion of positive (respectively negative)
samples in this class such that the sum of weights is equal to 1. Then, at each
iteration, we normalize weights w;.,i = 1..m, to unity after the update in (2.16).

Note that when VVj+ and/or W]-_ is zero, 0. in Table 2.2 is not finite. We suggest
a simple alternative to cope with this issue: we use (VV].+ + ¢) instead of VV].+ and
(W, +¢) instead of W .

Then, for the choice of the prototype j in step [I.0] of Algorithm 1, we adopt
the next scheme: we pick T < m, consider the m samples, choose j such that «;. is
large enough and enable each example to be chosen only once.

2.4.2 Metric setting

Two major issues arise when implementing our UNN algorithm in practice. The
first one concerns the distance (or, more generally, the dissimilarity measure) used
for the k-NN search. The second one consists in setting the value of k£ for both
training and testing our prototype-based classifiers (see section 2.4.3).

In fact, defining the most appropriate dissimilarity measure for k-NN search is
particularly challenging when dealing with very high-dimensional feature vectors like
the ones commonly used for categorization. Indeed, the standard metric distances
may be inadequate when such vectors are generated by sophisticated pre-processing
stages (e.g., vector quantization or unsupervised dictionary learning), thus lying
on complex high-dimensional manifolds. In general, this should require an addi-
tional distance learning stage in order to define the optimal dissimilarity measure
for the particular type of data at hand. In this respect, our UNN method has
the advantage of being fully complementary with any metric learning algorithm
[Bel Haj Ali et al. 2010], acting on the top of the k-NN search (see Appendix A).
Furthermore, since we use here BoF based on normalized histograms, we prefer use
standard L1 distance and then avoid expensive computational tasks.

2.4.3 Parameters and optimization

Selecting a good value for k£ amounts to learning parameter-dependent weak classi-
fiers, where the parameter k specifies the size of the voting neighborhood in classifi-
cation rule (2.2). From the theoretical standpoint, a brute-force approach is possible
with boosting: one can define multiple candidate weak classifiers per example, one
for each value of k, i.e., for each neighborhood size, and then learn prototypes by
optimizing the surrogate risk function over k as well. This strategy has the ad-
vantage of enabling direct learning of k at training time. However, training several
weak classifiers per example without computation tricks would potentially severely
impair the applicability of the algorithm on huge datasets. The solution we propose
is subtler: we have modified the classification phase of UNN, and tried a soft solu-
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| # of categories | 10| 20| 30| 40| 50| 60| 100 |
k-NN BoF 76.38 | 57.28 | 45.00 | 40.27 | 36.09 | 32.30 [ 24.67
SVM BoF 83.85 | 67.65 | 58.21 [ 53.45 | 47.81 | 44.09 | 35.31

AdaBoost BoF 75.37 | 58.21 | 45.57 | 37.75 | 3241 | 29.01 | 26.72
UNN, BoF 84.28 | 70.44 | 58.49 51.07 46.34 41.80 31.61

Table 2.3: Classification performances of the different methods we tested in terms
of the average accuracy or mAP as a function of the number of categories.

tion which, to classify new observations, convolutes weighting with a simple density
estimation suggested by boosting. Typically, we consider a logistic estimator for a
Bernoulli prior which vanishes with the rank of the example in the neighbors, thus
decreasing the importance of the farthest neighbors:

1
T 1t+exp(A\j—1))

p(j) = B; (2.31)
with A > 0. The shape prior is chosen this way because it was shown that boosting,
as carried out in a number of algorithms — not restricted to the induction of linear
separators [Nock & Nielsen 2009] — locally fits logistic estimators for Bernoulli pri-
ors. The soft version of UNN we obtain, called UNNy (for “Soft UNN”), replaces
(2.2) by:

hi(x) = > Bjajeyje - (2.32)

J~ke

Notice that it is useless to enforce the normalization of coefficients ; in (2.31),
because it would not change the classification of UNN,. Notice also that the §; in
(2.32) are used only to classify new observations: the training steps of UNNj; are
the same as UNN, and so UNN; meets the same theoretical properties as UNN
described in [Nock et al. 2012].

2.5 Experiments

In this section, we present experimental results of UNN for image categorization.
Our experiments aim at carefully quantifying and explaining the gains brought by
boosting on k-NN voting on real image databases. In particular, we propose in
this section precision and accuracy comparison between UNN vs k-NN, SVM and
AdaBoost using Bag-of-Features (BoF) as descriptors. Here, we extracted 2500
SIFT [Lowe 2004]| per image to form a codebook of 500 visual words. BoF, of a
dimension 500, are then computed by vector quantizing the local features SIFT
using this codebook.

We selected 100 categories from the SUN database [Xiao et al. 2010]. We kept all
the images of each category and the inherent unbalancing of the original database.
We randomly chose half images to form a training set, while testing on the remaining
ones. The average accuracy or mAP (Mean average precision) was computed by
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Figure 2.1: Classification performances of the tested methods as a function of the
number of image categories.

averaging classification rates over categories (diagonal of the confusion matrix) and
then averaging those values after repeating each experiment 10 times on different
folds. To speed-up processing time, we used Yael toolbox! for a fast implementation
of k-NN. Furthermore, we also developed an optimized version of our program, which
exploits multi-thread functionalities. We denote this version as UNN(MT.) All the
experiments were run on an Intel Xeon X5690 12-cores processor at 3.46 GHz.

We compared UNN;, SVM with Gaussian RBF Kernel, and AdaBoost with
decision stumps? (i.e., decision trees with a single internal node), using BoF de-
scriptors. In particular, we followed the guidelines of [Hsu et al. 2003] for carrying
out the SVM experiments, thus carrying out cross-validation for selecting the best
parameters values for SVM.

In Table 2.3 we report the accuracy for each classification method. Results in
these tables are provided as a function of the number of image categories. The most
relevant results obtained are also displayed in Figure 2.1 (mAP as a function of the
number of categories) and Figures 2.2 and 2.3, for the training and classification
times, respectively.

Accuracy results display that UNNg dramatically outperforms AdaBoost (and
k-NN as well); this result, which somehow experimentally confirms that UNN suc-
cessfully exploits the boosting theory, was quite predictable, as UNN builds a piece-

!Code available at https://gforge.inria.fr/frs/?group_id=2151
*For AdaBoost, we used the code available at http://www.mathworks.com/matlabcentral/
fileexchange/22997-multiclass-gentleadaboosting.
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# categories 10 20 30 40 50 60 100

# training images || 951 | 2,162 | 3,099 | 4,381 | 5,540 | 6,568 | 11,186
k-NN 0

SVM 24 27 83 226 472 806 4526

AdaBoost 96 218 341 442 559 662 1128

UNN, 1.7 16 58 150 295 498 2146

UNN(MT) 0.3 2.5 7.8 19 36 53 257

Table 2.4: Computation time [s] for the training phase.

# categories 10 20 30 40 50 60 100
# test images || 951 | 2,162 | 3,099 | 4,381 | 5,540 | 6,568 | 11,186

k-NN 0.20 1.0 2.0 4.0 6.0 9.0 22.0
SVM 0.25 5.7 13 31 56 80 260
AdaBoost 0.02 0.1] 0.25| 043 | 0.67 | 0.95 2.74
UNN; 0.21 | 0.72 1.6 2.7 4.2 5.9 17

UNN(MT) 0.08 0.2 0.37 | 0.58 0.84 1.11 3.25

Table 2.5: Computation time [s] for the testing phase.

wise linear decision function in the initial domain X, while AdaBoost builds a linear
separator in this domain. SVM, on the other hand, have access to non-linear fit-
ting of data, by lifting the data to a domain whose dimension far exceeds that of
X. Yet, SVM testing results are somehow not as good as one might expect from
this clearcut theoretical advantage over UNN, and also from the fact that we carried
out SVM with significant parameters optimization [Hsu et al. 2003]. Indeed, UNNj
even beats SVMs over 10 to 30 categories, being slightly outperformed by them on
more categories.

In Table 2.4 and 2.5 we report the corresponding computation time (in seconds)
for the training and classification phase, respectively. Obviously, the computation
times over training and testing are also a key for exploiting the experimental results.
Table 2.4 displays that, while the training time of AdaBoost is linear, UNNy is
a logical clearcut winner over SVM for training: it achieves speedups ranging in
between two and more than seventeen over SVM. Thus, UNN provides the best
precision/time trade-off among the tested methods, which suggests that UNN might
well be more than a legal contender to classification methods dealing with huge
domains, or domains where the testing set is huge compared to the training set,
which is the case, for instance, for cell classification in biological images. Finally, we
have only scratched experimental optimizations for UNN, and have not optimized
UNN from the complexity-theoretic standpoint, so we expect room space for further
significant improvement of its training/testing times.
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2.6 Conclusion

In this chapter, we contribute to fill an important void of NN methods, show-
ing how boosting can be transferred to k-NN classification, with convergence rates
guarantees for a large number of surrogates. UNN, which builds upon the works of
(|Piro et al. 2012]), generalizes classic k-NN to weighted voting where weights, the
so-called leveraging coefficients, are iteratively learned by UNN. We prove that this
algorithm converges to the global optimum of many surrogate risks in competitive
times under very mild assumptions. Compared to [Piro et al. 2012], we enlarge the
set of formal boosting flavors of UNN, from a singleton associated to the exponential
loss to a set encompassing popular losses like the logistic and matsushita loss.

Our approach is also the first extensive assessment of UNN to computer vision
related tasks. Comparisons with k-NN, support vector machines and AdaBoost,
using Bag-of-Feature descriptors, on real domains, display the ability of UNN to be
competitive with its contenders, achieving high accuracy in comparatively reduced
training and testing times.

An optimization approach using metric learning was not reported in this chap-
ter, since it does not concern our learning framework, is reported in Appendix A
(|Bel Haj Ali et al. 2010]). It includes blending UNN with an approach that learns
more sophisticated metrics over data.



CHAPTER 3
Newton Nearest Neighbor
algorithm: N3

3.1 Introduction

Large scale image classification implies satisfying tight time, memory and numer-
ical processing requirements. Coping with them involves in general two kinds of
approaches. For the first one, scalability goes hand in hand with simplification:
algorithms are built around sophisticated, state-of-the art approaches that are sim-
plified to fit into these requirements, such as Support Vector Machines (SVM) with
linear kernels [Shalev-Shwartz et al. 2007|, or (Ada)Boosting with weight clipping
and simple stumps as weak classifiers [Ali et al. 2011].

The second kind of approaches use as core very simple algorithms that already
fit into these requirements, and then, from this basis, elaborate more complex ap-
proaches with improved performances: this is the case for the k-nearest neighbor
(NN) classifier, or the nearest class mean classifier embedded with metric learning
[Mensink et al. 2012, Weinberger & Saul 2009]. From the experimental standpoint,
these latter approaches obtain surprising competitive results with respect to the
former ones. In fact, they may have another advantage: while theoretical guaran-
tees barely survive extreme simplification, elaborating on a core makes it perhaps
easier to preserve its theoretical properties, such as its statistical consistency (e.g.
for k-NN [Devroye et al. 1996]).

Our algorithm belongs to the second category of approaches, as we elaborate on
the ordinary k-NN classifier. Our approach is different but complementary to metric
learning approaches, as we choose to adapt k-NN to the boosting framework. It is in
the same line of works as UNN algorithm introduced in chapter 2, but the present
one is of Newton-Raphson type, and then more adapted for large scale classification.

Our high-level contribution is threefold: a novel Adaptive Newton-Raphson
scheme to leverage k-NN, called N3, an extensive theoretical analysis of the ap-
proach, and fine-grained experimental validations on three large and challenging
domains: SUN and Caltech. To be more specific, the novelty of our method in-
cludes:

(i) a proof of the boosting ability of N3, the first boosting-compliant convergence
rates for a Newton-type approach to convex loss minimization to the best of our
knowledge;

(iii) a proof that the output of N? directly yields efficient estimators of posteriors;
(iv) a divide and conquer algorithm to compute these estimators and cope with the
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curse of dimensionality with low memory requirement;
(v) experimentally optimized core-processing stages for N with linear cost per
boosting iteration.

Experimental results display that N3 manages to challenge accuracy of sophis-
ticated approaches while being faster, and requires low memory.

The remaining of the chapter is organized as follows: Section 3.2 states basic
definitions. Section 3.3 presents classification-calibrated losses. Section 3.4 presents
N3 algorithm. Section 3.5 discusses its theoretical properties. Section 3.6 presents
experiments, and section 3.7 concludes the chapter.

3.2 Basic definitions

We first provide some basic definitions. Our setting is multiclass, multilabel
classification. We have access to an input set of m examples (or prototypes),
8 = {(x;,v:),i = 1,2,....,m}. Vector y; € {—1,4+1}° encodes class memberships,
assuming ;. = +1 means that observation x; belongs to class ¢. A classifier H is
a function mapping observations to vectors in R®. Given some observation , the
sign of coordinate ¢ in H(x) gives whether H predicts that @ belongs to class c,
while its absolute value may be viewed as a confidence in classification.

The nearest neighbors (NNs) rule belongs to the oldest, simplest and still most
widely studied classification algorithms [Devroye et al. 1996]. It relies on a non-
negative real-valued “distance” function. This function measures how much two
observations differ from each other, and may not necessarily satisfy the requirements
of metrics. We let j —; « denote the assertion that example (x;,y;), or simply
example j, belongs to the & NNs of observation . We shall abbreviate j — @; by
j = © — in this case, we say that example ¢ belongs to the inverse neighborhood of
example j. To classify an observation @, the k-NN rule H(x) computes the sum of
class vectors of its nearest neighbors, that is: He(z) =3, , , yjc is the coordinate
cin H(x). A leveraged k-NN rule [Nock et al. 2012] generalizes this to:

He(z) = Y ojeyje (3.1)

J— kT

where a; € RC leverages the classes of example j. Leveraging nearest neighbors
raises the question as to whether there exists efficient inductive learning schemes for
these leveraging coefficients.

To learn them, we adopt the framework of [Bartlett et al. 2006,
Vernet et al. 2011|, and focus on the minimization of a total calibrated risk
which sums per-class losses:

C m
cn(H,S) = %Z % " F(yicHe (1)) - (3.2)
c=1 i=1

EF (HC 75)
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crit || transfer function f calibrated loss F'

A m In(1 + exp(—x))

B T In(1+277)

C 3 (1 + \/117) expsinh™!(—2)

D %ﬁ?’m} max{0, —x} — In(2 + |z|)

Table 3.1: Calibrated losses that match (3.3) for several transfer functions. From
top to bottom, losses are the logistic loss, binary logistic loss, Matsushita’s loss,
calibrated linear Hinge loss.

To be classification-calibrated, loss I’ : R — R is required to be convex, differentiable
and such that F’(0) < 0 [Bartlett et al. 2006] (Theorem 4), [Vernet et al. 2011]. The
recent advances in the understanding and formalization of (multiclass) loss functions
suitable for classification have essentially concluded that classification calibration
is mandatory for the loss to be Fisher consistent or proper [Bartlett et al. 2006,
Vernet et al. 2011|. These are crucial properties without which the minimization of
the loss brings no string statistical guarantee with respect to Bayes rule (such as
universal consistency).

3.3 Classification-calibrated losses

In this chapter, we are interested in a subset of classification-calibrated functions,
namely those for which:

Flz) = —a+ / I (3.3)

for some continuous transfer function f : R — [0,1], increasing and symmetric
with respect to (0,1/2 = f(0)). Intuitively, a transfer function brings an estimate
of posteriors: it is a bijective mapping between a real-valued prediction H.(x) and
a corresponding posterior estimation for the class, ply. = +1|x], mapping which
states that both values are positively correlated, and establishes a tie for H. = 0
to which corresponds ply. = +1|x] = 1/2. Transfer functions have a longstanding
history in optimization [Kivinen & Warmuth 2001], and the set of F' that match
(3.3) strictly contains balanced convex losses, functions with appealing statistical
properties [Nock et al. 2012] (and references therein). Table 3.1 provides four ex-
ample of such losses on which we focus. Another example of losses that meet (3.3)
is the squared loss, for transfer f = min{l, max{0,z + 1/2}}.

To carry out the minimization of (3.2), we adopt a mainstream 1-vs-rest boosting
scheme which, for each ¢ = 1,2,...,C, carries out separately the minimization of
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Algorithm 2: Algorithm NEWTON NEAREST NEIGHBORS N3(8, crit, k)
Input: Sample 8, criterion crit € {A,B,C,D}, k € N,;
Let aj < 0,Vj = 1,2,...,m;
forc=1,2,...,C do
//Minimize ep(H,,8)
Let w; < m,
fort=1,2,...,7 do
[I.0]//Choice of the example to leverage
Let j < WiIc(8, w);
[I.1]//Leveraging update, d;
Let ﬁ(C,j) A Zi:j%ki WtiYicYjes
Let ng < ’{Z 1) =k Z}‘,
Compute ¢; following Table 3.2, using crit;
[I.2]//Weights update
Vi : j — ¢, update w; as in Table 3.2, using crit;
[I.3]//Leveraging coefficient update
Let Qje < Qjc + 5]';

Vi;

Output: H(z) =3, , ,a;oy;

er(H.,8) in ex(H,8). To do so, it fits the ¢! coordinate in leveraging coefficients
by considering the two-class problem of class ¢ versus all others.

3.4 N3: Adaptive Newton Nearest Neighbors

3.4.1 Algorithm

We now present algorithm N3, which stands for “Newton Nearest Neighbors”. N3 up-
dates iteratively the leveraging coefficients of an example in 8, example picked by
an oracle, Wic for “Weak Index Chooser” oracle. We detail below the properties
and implementation of Wic. The technical details of the N are given in Table 3.2.
N3 follows the boosting scheme, with iterative updates of leveraging coefficients
followed by an iterative re-weighting of examples. Before embarking into formal
algorithmic and statistical properties for N3, we first show that N2 is of Newton-
Raphson type.

Theorem 1 N3 performs adaptive Newton-Raphson steps to minimize ep(H,,8),
Ve.

Proof sketch: The key to the proof, which we explore further in subsection 3.4.2,
is the existence of a particular function gp, strictly concave and symmetric with
respect to 1/2, which allows to rewrite the loss as:

Flz) = (=gr)"(-2z) , (3.4)
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where % denotes the (Legendre) convex conjugate. Convex conjugates have the
property that their derivatives are inverses of each other. This property, along
with (3.4), allows to simplify the computation of the derivatives of the loss, for any
example ¢ in the inverse neighborhood of j:

P Hfa) (35
((=97)") (~yicHe(;))
= —vichie((—gr)) " (~yicHe(2:))
= —Yieyje(l = (95) " (~yicHe(@:)))

—yicYje(9F) " (YicHe(a:))

= —Krwyicyje - (3.6)

= yicych,(i
= —VYicYjc\\—

(
(
1

Eq. (3.6) holds because we can also rewrite the weights update (Table 3.2) as:

1

w; K—F(Q%)_l (6;vicyjc + g (Krw;)) (3.7)

where (g)~! is the inverse function of the first derivative of gp, and K is a
normalizing constant: it is respectively In(2),1,1/2,1 for A, B, C and D in Table
3.3. From (3.5), it also comes 32F(y,~ch(a:,~))/85]2~ = F'(yicHq(x;)), where F”
denotes the second derivative. Considering the whole inverse neighborhood of j, the
Newton-Raphson update for §; is (with n(c, j) = Zi:j—m W YicYje in N3):

Krn(e, j)
Dicjosi T (YicHe (i)

for learning rate 0 < Ap < 1. Matching this expression with the updates in Table
3.2 brings learning rate:

Lp Zi:jﬁki F”(yicHC(mi)) < LFFI/(O) -1
KFTL]' B Kp Y

(5]' — )\FX

(3.8)

0< A\p =

for each criteria A, B, C and D, where L is respectively 41n(2),4/1n?(2),1/2,4, and
n; = [{i : j = i}| in N3. The inequalities come from the fact that F” > 0 and
takes its maximum in 0 for all criteria. We then check that F”(0) = Kp/Lp for A,
B, C and D. |

3.4.2 A key to the properties of N?

The duality between real-valued classification and posterior estimation which stems
from f (See Section 3.3) is fundamental for the algorithmic and statistical properties’
of N3. To simplify the statement of results and proofs, it is convenient to make the
parallel between our calibrated losses F' and functions elsewhere called permissible?,

'See Appendix B for details on statistical properties of N3.

2The usual definitions are more restricted: for example the generator of the calibrated
linear Hinge loss would not be permissible in the definitions of [Kearns & Mansour 1999,
Nock et al. 2012].
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crit || leveraging weight update
update, J; g w;i < g(wi, 05, Yic, Yjc)
A 41n(2)n(c.j) w;
nj w; In 24+ (1—w; In 2) xexp(d;Yicyjc)
B 477(07.7) Wy
In?(2)n; wi+(1—w; ) x 2% VicYje
C n(c.j) 1 — 1—wi+/wi 2—wi)3; Yicyje
n; V102, wi (2—wi)+2(1—wi)/wi @ —wi)Syicuje
1-2
D an(c,j) 1rmax{0,— (8 yicyjet 2o ) |
n; 2+|5jyzcyjc+ 1—2w;

Table 3.2: Leveraging and weight updates in N® corresponding to each choice of
calibrated loss in Table 3.1.

crit generator gp

A —zlnz—(1—z)In(1 —z)

B || —zlogyx — (1 —z)logy(1 — x)

C z(1—x)

D In(2err(x)) + 1 — 2err(x)

Table 3.3: Generators corresponding to calibrated losses in Table 3.1.
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that is, functions defined on (0, 1), strictly concave, differentiable and symmetric
with respect to x = /2. It can be shown that for any of our choices of F', there
exists a permissible gp, that we call a generator, for which the relationships (3.7) and
(3.4) used in the proofsketch of Theorem 1 indeed hold. Furthermore, the generator
is also useful to write the transfer function itself, as we have:

f) = (—gr) () . (3.9)

Table 3.3 provides the four generators corresponding to choices A, B, C and D.
The permissible generator of the calibrated linear Hinge loss makes use of the error
function:

err(x) = min{z,1—z} . (3.10)

Permissible functions (as well as (3.10)) are used in losses that rely on poste-
rior estimation rather than real-valued classification. Such losses are the cor-
nerstone of decision-tree induction and other methods that directly fit posteriors
[Devroye et al. 1996]. Hence, (3.4) establishes a duality between the two kinds of
losses, duality which appears as a watermark in various works [Bartlett et al. 2006,
Friedman et al. 2000]. The writing of the weight update using gp in (3.7) is also
extremely useful to simplify the proofs of the following Theorems. Finally, there
is a synthetic writing for the weights, which sheds light on their interpretation:
unraveling the weight update (3.7) and using (3.9), we obtain that w; satisfies:

w; o< 1— f(yicHe(x;)) . (3.11)

Hence, weights and estimated posteriors are in opposite linear relationship. Ac-
cording to (3.11), examples “easier to classify” (receiving large estimated posteriors)
receive small weight. This is a fundamental property of boosting algorithms, that
progressively concentrate on the hardest examples.

3.5 Algorithmic properties of N?

The first result is a direct follow-up from Table 3.2.

Lemma 2 With choice D (calibrated linear Hinge loss), N3 may be implemented
using only rational arithmetic.

Comments on Lemma 2: In the light of the boosting properties of N3, this
result is important in itself. Most existing boosting algorithms, including UNN,
AdaBoost, Gentle AdaBoost and spawns [Nock et al. 2012, Friedman et al. 2000]
make it necessary to tweak or clip the key numerical steps, including weights update
or leveraging coefficients [Ali et al. 2011], at the possible expense of failing to meet
boosting’s convergence or accuracy. Rational arithmetic still requires significant
computational resources with respect to floating point computation, but Lemma
2 shows that whenever these are accessible, formal boosting may be implemented
virtually without any loss in numerical precision.
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Let us now shift to the boosting result on N3, which is stated under the following
weak learning assumption:

There exist constants v, > 0,7, > 0 such that at any iterations c,t of N3,

index j returned by WIcC is such that n; > 0 and the following holds: (i)
Ei: j— .0 Wi w .. N . .
== > g and (i) [Pwlyje # Yicld =k i =120 = .

Requirement (ii) corresponds to the usual weak learning assumption of boosting: it
postulates that the current normalized weights in the inverse neighborhood of exam-
ple j authorize a classification different from random by at least ~,. Requirement
(i) states that unnormalized weights must not be too small. This is a necessary
condition as unnormalized weights of minute order do not necessary prevent (i) to
be met, but would obviously impair the convergence of N? given the linear depen-
dence of §; in the unnormalized weights. The following Theorem states that N? is
a boosting algorithm.

Theorem 3 Suppose N3 is ran for T steps for each ¢, and that the weak learning
assumption holds at each iteration of N>. Denote J the whole multi-set of indezes
returned by Wic. Then for any criterion A, B, C, D, the total calibrated risk does
not exceed some ¢ < F(0) provided:

dony o= Q<m> : (3.12)

22
= T

Remark: requirement ¢ < F'(0) comes from the fact that a leveraged NN with null
leveraging vectors would make a total calibrated risk equal to F(0).

Comments on Theorem 3: to the best of our knowledge, no formal convergence
rate has been established to date for Newton approaches to boosting, including
the popular Gentle AdaBoost [Friedman et al. 2000]. Theorem 3 gives several rules
of thumb to run N2 and implement Wic. The first is that Wic should choose
examples whose inverse neighborhood is not too small. For example, assume that
boosted examples have inverse neighborhood’s size not smaller than the average,
implying (1/T) >_;cyn; > k. Then, omitting constants in the big omega of (3.12),
we obtain that (3.12) is satisfied as soon as the number of iterations (7") meets:

oo (Ot lehm
kvAa

This inequality suggest to choose k (i) proportional to C' and (ii) moderately in-

creasing in m. These two choices imply, under the weak learning assumption, that

N3 is a sparse boosting algorithm: we only need to boost a subsample of 8 to reach

a desired upperbound for the calibrated risk.
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Figure 3.1: The z-axis is the number of splits of the Fv, on CAL. The y-axis reports,
using L1 or L2 normalization, the topl accuracy of N3. Posteriors were combined
with the harmonic mean.
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N3. Posteriors were combined with the harmonic mean.

3.6 Experimental Evaluation

3.6.1 Settings: contenders, databases and features

We mainly report and discuss experiments of N? versus k-NN and sup-
port vector machines (SVM) implemented with Stochastic Gradient Descent
SGD which represents the state of art among the classifiers on large scale datasets
[Perronnin et al. 2012].

We abbreviate Nfog, N‘Zmlog, N3 . N%mgethe four flavors of N2 corresponding
respectively to rows A, B, C, D in Table 3.1. In N3, Wic chooses the example with
the largest current 9.

The datasets used in this chapter, Caltech256, and SUN are among the most
challenging datasets publicly available for large scale image classification:

e Caltech256 [Griffin et al. 2007] (CAL): This dataset is a collection of 30607 images
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3 3
N Nhinge

binlog

k-NN [ N}, N ot

L1 | 25.58 | 35.50 36.40 33.62 | 34.40
L2 | 2590 | 33.97 | 35.44 32.87 | 33.55

ACC

Table 3.4: Topl accuracy on CAL (64 splits, L1 or L2 normalization).

k-NN | Ni,, | Niinwg | SGD

Topl Acc | 20.92 30.16 30.10 28.59
Topb Acc | 42.67 | 55.21 | 54.90 57.08

Table 3.5: Topb accuracy on SUN (64 splits, L1 normalization).

of 256 object classes. Following classical evaluation, we use 30 images/class for
training and the rest for testing.

e SUN [Xiao et al. 2010] (SUN): This dataset is a collection of 108656 images divided
into 397 scenes categories. We set the number of training images per class to 50 and
we test on the remaining.

We adopted for the features the Fisher vectors (FV) [Perronnin et al. 2010]
encoding to represent images. Fisher Vector are computed over densely extracted
SIFT descriptors (FVg) and local color features (FVg.), both projected with PCA
in a subspace of dimension 64. Fisher Vectors are extracted using a vocabulary of
16 Gaussian and normalized separately for both channels and then combined by
concatenating the two features vectors (FVsis.). This approach leads to to a 4K
dimensional features vector.

To compare algorithms, we adopt the topl and top5 accuracies (ACC), de-
fined respectively as the proportion of examples that was correctly labelled and the
proportion of those for which the correct class belongs to the topb predicted pat-
terns [Mensink et al. 2012]. We also report processing times on a 2 X Intel Xeon
E5-2687W 3,1GHz and analyse the convergence and the cost of N3. But first, we
propose a divide and conquer algorithm that optimizes classification using posteri-
ors.

3.6.2 A divide and conquer algorithm to cope with the curse of
dimensionality with low memory requirement

It is well known that NN classifiers suffer of the curse of dimensionality
[Beyer et al. 1999|, hubs |[Radovanovi¢ et al. 2010], so that the accuracy can de-
crease when increasing the size of descriptors. This may also affect N3. Fv are
extremely powerful descriptors but they generate a space with about 4K dimension
for 32 gaussians that could impair N3 performance.

Our approach relies on nice property of minimizing classification-calibrated
losses: we can easily compute the posteriors from the score using N2 (see
[D’Ambrosio et al. ear]). Thus, we propose a three step splitting method :
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Figure 3.3: Topl and topb accuracies (with 1 split) on CAL as a function of the
number of iterations 7.

e split FV in a regular set of n* € {2,4,8,16,32,64} sub-descriptors and normalize
with L1 or L2 norm;

e compute posteriors for each sub-vector (Table 3.1);

e combine these probabilities using a generalized average: arithmetic, geometric or
harmonic.

3.6.3 Analysis on accuracy and convergence

First, figures 3.1 and 3.2 validate the divide and conquer approach, as increasing
the number of splits on FV clearly improves performances. Also, as seen from the
left plot, L1 normalization tends to outperform L2 normalization. The “optimal”

number of splits (64) is then used in Table 3.4 which displays that L1 normalization

3
binlog

other flavors of N3, and overall all flavors of N3 very significantly outperform k-NN.

We have also compared N? against SGD and k-NN on the SUN data set
[Xiao et al. 2010]. Results using 7' = 50 iter for N® and 1000 iter for SGD are
displayed in Table 3.5. One sees that N3 significantly beats N3 and approaches the

of FV slightly improves classical L2 normalization. N is also better than all

accuracy of SGD. Note that memory requirement for N3 is divided by the number
of splitting (i.e. twice the number of Gaussian of the Fischer Vector).

Figures 3.3 and 3.4 shows the convergence of N3 on CAL and SUN. One sees
from the plots that the convergence of the Newton approach in N? is extremely fast
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Figure 3.4: Topl and top5 accuracies (with 1 split) on SUN as a function of the
number of iterations 7.

and requires only few iterations — this is not the case for the non-Newton approach
UNN [Nock et al. 2012], which requires a larger number of iterations. The fast
convergence in N? results in sparse prototype selection (7' < m), well adapted for
large scale datasets, and suggests to choose T as a function of the number of images
in the corresponding class (inner loop of N?3), such as T'= O(m/C). Hence, we end
up with a complexity depending on T" < m.

3.7 Conclusion

In this chapter we have proposed a novel Newton-Raphson approach to boosting
k-NN. We show that it is a boosting algorithm, with several key algorithmic and
statistical properties. In fact, the specific set of calibrated loss functions allows us to
estimate the posteriors from the classification scores of N3, and use them in a divide
and conquer scheme to cope with the k-NN’s curse of dimentionality. Experiments
display that although accuracy results are similar to state of the art approaches
like SGD, our N? requires limited memory since we split the features and use each
part independently. This makes our approach suitable for very large scale image
classification problems.
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CHAPTER 4

Stochastic Low-Rank Newton
Descent algorithm: SLND

4.1 Introduction

Large scale image classification requires computational efficiency. To cope with
these issues, current standard approaches involves high dimensional features like
Fischer Vectors [Perronnin et al. 2010] or super vectors [Zhou et al. 2010| and Sup-
port Vector Machines (SVM) with linear kernels for training [Wang et al. 2010].
The classical approach introducing SVM first states dual formulation [Vapnik 1998|
where the task is to minimize empirical risk in the dual space with a regularization
term. The first alternative approach on primal optimization [Keerthi et al. 2006]
used conjugate gradient or cutting plane algorithms [Joachims 2002]. Recent state
of the art papers rather focus on the more efficient "Stochastic Gradient Descent"
algorithm (SGD) [Zhang 2004, Bottou & Bousquet 2008] and the "PEGASOS" al-
gorithm [Shalev-Shwartz et al. 2007], with linear complexity in the number of sam-
ples.

Although SGD methods perform as well as batch solvers at a fraction of cost,
first order SGD methods still suffer from slow convergence. Two approaches were
recently proposed in order to cope with this issue; The first is the natural gradi-
ent approach, which incorporates the estimation of the Riemannian metric ten-
sor using Fisher information [Amari 1998]. The second alternative approaches
are based on a stochastic version of the quasi Newton Broyden-Fletcher-Golfarb-
Shanno (BFGS) optimization algorithm. The first one is a low memory stochas-
tic version of the BFGS quasi Newton method [Schraudolph et al. 2007]. Al-
though their BFGS method reduces the number of iterations, each iteration re-
quires a multiplication by a low rank matrix. Unfortunately this computational
complexity is often larger than the gains associated with the quasi-Newton up-
date as pointed in [Bordes et al. 2009]. In order to cope with this complexity
[Bordes et al. 2009, Bordes et al. 2010] proposed a "SGD-QN" algorithm with an
update using the diagonal of the Hessian matrix. Unfortunately there are no proof
of convergence of their "SGD-QN" algorithm.

Our high-level contribution is a new stochastic Low-Rank Newton scheme with
theoretical proofs and experimental validations on three large and challenging do-
mains: SUN, Caltech256 and ImageNet. To be more specific, the novelty of our
approach includes:

(i) A new Stochastic Newton descent algorithm, SLND, which approximates the
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inverse Hessian by a low-rank matrix which we prove is the best according
to the squared Frobenius norm. SLND minimizes any classification calibrated
risk, that may ensure convergence towards Bayes rule;

(ii) The proof of convergence of SLND which provides rates of convergence and
working set of parameters for the experiments, including the step size param-
eter 7

(iii) Experimental results display that SLND has linear complexity both in term
of the number of samples and the dimension of the features and challenges the
accuracy of SGD while being a magnitude faster.

The remaining of the chapter is organized as follows: section 4.2 summarizes the
general framework, section 4.3 provides our new algorithm SLND with several key
steps for its core optimization, section 4.4 presents experiments on large datasets
and finally section 4.5 presents convergence proof of our new algorithm SLND.

4.2 Reminder

4.2.1 Framework

We first remind some definitions. Our setting is multiclass, multilabel classification.
We have access to an input set of m samples, 8§ = {(x;,y;),i = 1,2,...,m}. Vector
y; € {—1,+1}¢ encodes class memberships, assuming y;. = +1 means that obser-
vation x; belongs to class ¢. A classifier h is a function mapping observations to
real-valued vectors in RY. Given some observation @, the sign of coordinate ¢ in
h(x), h¢, gives whether h predicts that & belongs to class ¢, while its absolute value
may be viewed as a confidence in classification.

To learn this classifier, we focus on the minimization of a total risk which sums
over classes and over samples the loss of classification according to h;

o1&
ep(h,8) = EZEZF(%C}LC(%)). (4.1)
c=1 i=1

EF(hc,S)

er(he, 8) is the per-class risk, and F is a surrogate loss function.

4.2.2 Calibrated risks

Recent advances in classification allow to precisely define constraints with whom
losses F in (4.1) have to comply, to meet statistical and computational properties
particularly desirable in handling large, complex and noisy classification problems
[Bartlett et al. 2006, Nock & Nielsen 2008, Vernet et al. 2011]. There are three con-
straints: F is convex, differentiable and such that F'(0) < 0. We restrict our interest
to losses that also meet the following property:

F(z) = —x+/f : (4.2)
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crit || transfer function f calibrated loss F'

A Trem () In(1 + exp(~z))
14+max{0,

B pgelal | max{0, —a} — In(2 + |a])

Table 4.1: Calibrated losses F"* and their respective transfer functions. A is the
logistic loss and B is the calibrated linear hinge loss.

where f : R — [0,1] is increasing and symmetric with respect to (0,1/2 = f(0)).
The fundamental intuition is that f directly maps a real valued prediction h. to a
posterior estimation for class ¢ (see [D’Ambrosio et al. ear|). This last constraint
ensures that the loss at hand F is Fisher consistent and proper, properties with which
convenient form of convergence to Bayes rule are accessible through minimizing
(4.1). We call losses that meet these constraints, and the total risks by extension,
as classification calibrated. Examples of classification calibrated losses include the
squared and the logistic losses. In this chapter, we first consider the logistic loss:

Flo9(z) = 1In(1 + exp(—z)) . (4.3)

Then, we consider the calibrated linear Hinge loss, previously introduced in chapter
3, as:

Fhinge(z) = max{0, -z} —In(2 + |z|) . (4.4)

Table 4.1 gives the considered losses F' and their corresponding transfer function f.
Figure 4.1 shows the logistic loss and the calibrated linear Hinge loss. We also plot
Hinge loss and the exponential loss for comparison. Note that 0 < F”(x) < F”(0)
and F”(0) = 1/4 for the calibrated losses (4.3) and (4.4).

4.3 SLND: Stochastic Low-Rank Newton Descent

4.3.1 Computing gradient update

To carry out the minimization of (4.1), we adopt a mainstream 1-vs-rest training
scheme which is more efficient among different approaches [Perronnin et al. 2012,
Weston et al. 2011|. For each class ¢ = 1,2,...,C, we carry out separately the min-
imization of ep(he,8) in ep(h,8). To do so, it fits the ¢ component of h by
considering the class ¢ versus all others. In what follows, we thus drop "c¢" to
simplify notations.

In this approach we focus on the classical linear classifier defined as:

hx;)) = w'ay . (4.5)
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Figure 4.1: Calibrated losses F: the logistic and calibrated linear Hinge losses
considered for SLND algorithm.

The goal is to learn w for each class ¢ = 1,2, ..., C' minimizing the following criterion,
after replacing h. in ep(h.,8) by its expression in 4.5 :

cr(w,8) = =3 Flyew m) . (4.6)
=1

= — )
Remark: there is no regularization term in (4.6) (and in (4.1) in general),
which is quite non-standard if we refer to the classical SVM or SGD approaches
[Bordes et al. 2009].

To approximate the optimal w, we carry out an iterative stochastic Newton
algorithm. In general, this aims at updating at each iteration ¢, the current w noted
wy, according to a randomly picked sample x; € § as follows :

0?er (wy, ;) -t Oey (wy, x;)
Wiyl = Wy — 71} Pw, Bw,

where 7; > 0 controls the strength of the update. In such case, the first derivative
or the gradient V is:

: (4.7)

Oep (wy, ;
F(aTttl) =y’ (yiwi =) z; (4.8)

and the second derivative, or the Hessian H, is:

62611‘ (wt7 w’l)

P, =F" (yzthml) x;xl . (4.9)

7
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Unfortunately it is well known that the Hessian matrix typically varies as the
samples x; changes. Thus, instabilities arise quickly if we try to estimate it for
each sample [Bordes et al. 2009]. To circumvent these problems, statistic opti-
mization approaches consider instead an averaging of the Hessian. For example,
[Ljung & Soderstrom 1983] rewrite the stochastic Newton algorithm as follow :

82€F(wt78t) >_1 BEF(wtami) , (410)

W41 = W — 1)t <E[ 2w, ow;

where 8; C § is the set of samples «; picked until the iteration ¢. The update of
the averaged Hessian in (4.10) is quite expensive in the case of huge datasets and

large scale features. Hence, we follow [Li 1992, Cook 1998] who average the Hessian

02%er (we,8(m)))

Dep(unslon'))
2

with 8(m’) a subset of m’ < m random examples from 8, instead of E[%ﬁ:s’s)] in

(4.10). Let recall that 0 < F”(z) < F”(0) for the calibrated losses (4.3) and (4.4).

Then, we will consider the following approximation :

once and approximate it by the covariance matrix. We consider E|

826F (wt’ S(m')) 1 " T T
El Rw, I = WZ F" (yiw; a;) @i (4.11)
ie8(m’)
1
~ F0)— Y w (4.12)
M iesm)

Consequently, computing 3!, requires only once the principal hessian direction
(p.h.d.) using eigenvectors for the eigenvalue decomposition of the covariance ma-
trix.

For sometypically small £ > 0, we compute a low-rank pseudo-inverse, i.e. a low-
rank approximation of its inverse, H*, as follows, where rank(H*) = k is user-fixed.
First, we perform a diagonalization of H{ = PDPT where (non-negative) diagonal
values are ordered in decreasing order, di; > doo > ... > dyy = 0 = ...dpn, where
u > k. Denote P, the m X k matrix containing the first & columns of P, and resp.
D), as the k x k diagonal matrix of their eigenvalues. We finally compute H* only
once:

H = PpDR'Pp, - (4.13)

The update (4.7) becomes:

w1 = wp— Y F (y,w;fajl) Hrx; . (4.14)

4.3.2 Core optimization

Since we use 1-vs-rest training scheme, the training set is usually highly unbalanced
when the number of class increases, examples not in class ¢ outnumbering those in
class ¢, for any ¢. When class ¢ is a minority class, this is even more dramatic.
To dampen the negative consequences, we follow the sampling balancing approach
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proposed by [Perronnin et al. 2012]. When learning class ¢ against the rest, we use
all examples from class ¢ (the positives), while sampling a subset of the rest of the
other classes (the negatives) of the same size.

Furthermore, in order to optimize computational complexity, once H* is com-
puted, we precompute for all the training set a weighted preprocessing of the fea-
tures:

x; =Hx; . (4.15)

7

Notice that this is done only once for a given H*. This saves significant training
time and the computational complexity of each iteration in SLND is basically of
the same order as classical SGD [Bordes et al. 2009]. The final update in SLND is:

w1 = wy—qylF (ywl ) z) (4.16)

Finally, the tuning of 7 is a non-trivial problem for gradient or Newton approaches
[Bordes et al. 2009]. We prove an explicit convergence rate for SLND in Theorem
5 hereafter which provides us with expressions for 7, typically in the order Q(1/m)
and O(1/y/m). The values we have chosen in our implementation of SLND belong
to this range and are thus compatible with the formal convergence rates shown for
SLND.

4.3.3 Remarks

There are several comparisons to make about SLND with respect to other prominent
approaches. First, SLND is not related to (linear) SVM, as there is no regulariza-
tion term in the criterion (4.6), which explains the difference between the right
hand-side term in w; in (4.6) and the term in (1 — A\)w; which would follow from
the classical linear SVM cost function, where A controls the strength of regulariza-
tion [Bordes et al. 2009]. Also, SLND is significantly different from dimensionality
reduction techniques like PCA or general non-linear manifold learning, which would
carry out dimensionality reduction as a preconditioning on data and on w, thus
working on the reduced domain. Notice also that (4.15) is not a precondition-
ing of data, as each iteration in (4.16) makes use of both x; and x}. In addi-
tion, SLND is also different from the quasi newton (L)BFGS family [Nocedal 1980]
[Schraudolph et al. 2007] as the approximation to the Hessian inverse is carried out
in a different way. Moreover SLND differs from quasi-Newton methods for SVM
[Bordes et al. 2009] since we do not restrict the Hessian approximation to be diag-
onal (thus omitting all covariance terms). Finally, SLND is not a natural gradient
approach (which incorporates Riemannian metric tensor [Amari 1998|) and thus
SLND does not require the computation of the Fisher information matrix.
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4.4 Experimental evaluation

4.4.1 Settings

We mainly report and discuss experiments of SLND versus SGD which represents
the state of art among the classification methods on large scale datasets [Zhang 2004,
Bottou & Bousquet 2008] , [Shalev-Shwartz et al. 2007], [Perronnin et al. 2012].

We use Fisher vectors (FV) [Perronnin et al. 2010] as efficient features to
represent images. Fisher Vectors are computed over densely extracted SIFT
descriptors (FVg) and local color features (Fvs.), both projected with PCA in a
subspace of dimension 64. Since the goal of the chapter is to compare SLND versus
SGDwe use Fisher Vectors using a vocabulary of only 16 Gaussian to limit memory
requirement. Fach Fisher Vectors are normalized separately for both channels and
then combined by concatenating the two features vectors (FVgis.). This approach
leads to to a 4K dimensional features vector.

We report experimental results on three datasets, Caltech256, SUN and Ima-
geNet which are among the most challenging datasets publicly available for large
scale image classification:

e Caltech256 [Griffin et al. 2007]: This dataset is a collection of 30607 images
of 256 object classes. Following classical evaluation, we use 30 images/class
for training and the rest for testing.

e SUN [Xiao et al. 2010]: This dataset is a collection of 108656 images divided
into 397 scenes categories. We set the number of training images per class to
50 and we test on the remaining.

e ImageNet [Deng et al. 2009]: We use the dataset of the ImageNet Large Scale
Visual Recognition Challenge 2010 (ILSVRC2010)! with its 1000 categories.
It provides 1.2M of images for training step and 150K for testing.

To compare algorithms, we use topl and top5 accuracies (Acc), defined re-
spectively as the proportion of examples that was correctly labelled and the pro-
portion of those for which the correct class belongs to the top5 predicted images
[Mensink et al. 2012]. We first analyse parameter of SLND and then the conver-
gence of SLND.

4.4.2 Tuning parameters of SLND

Our algorithm requires the tuning of only three parameters: the step size parameter
1 , the rank k and the number of sample m/ for the computation of the covariance
matrix. The step size parameter 7, is typically in the order Q(1/m).

Let us study the influence of parameters k and m/.

"http://image-net.org/challenges/L.SVRC/2010/index
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Figure 4.2: Eigenvalues of the covariance matrix on Caltech256 (left), SUN (center)
and ImageNet (right).

Fig 4.2 shows the eigenvalues of the covariance matrix, ordered from the largest
to the smallest. All curves have the same sigmoid shape, and our choices of k
ensure that we get all the significantly large eigenvalues. Recall that although the
covariance matrix is positive-definite, the condition number is very large resulting
in an ill-conditioned problem.

In order to cope with this issue, we study the accuracy as a function of the rank
of the inverse of the Hessian: Fig 4.3 shows that accuracy curve has its max for a
large rank plateau, and furthermore this plateau shape is similar regardless of the
domain.
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Figure 4.3: Accuracy as a function of the rank of the Hessian matrix on Caltech256
(blue), SUN (red) and ImageNet (green).
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Fig 4.4 shows the accuracy as a function of samples m’ used for computing the
covariance matrix. Fluctuations of m’ imply fluctuations in the accuracy, but the
range of the accuracy is not very large for reasonable values of m/.
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Figure 4.4: Accuracy as a function of the number of samples used for the computa-
tion of the Hessian matrix on Caltech256 (blue), SUN (red) and ImageNet (green,
see text).

To summarize, the eigenvalues curve, the curve accurary as a function of the
rank k and to a lesser extent the curve accuracy as a function of m’ have the same
behavior for all databases. Thus, based on the above-experiments, both rank k£ and
m’ in SLND are easily tuned.

4.4.3 Convergence rate analysis

Training time and convergence of algorithms are very important for large scale
data base processing. We plot on fig 4.5 and 4.6 the convergence of SGD with
logistic loss, SLND both for Logistic Loss and calibrated linear Hinge Loss and
SGD-QN for logistic Loss on Caltech256 and SUN data bases. One sees from the
plots that the convergence of our Stochastic Low-Rank Newton approach SLND is
a magnitude faster than the classical SGD. Note that accuracy of Logistic Loss
and calibrated linear Hinge Loss SLND are very similar. Accuracy of SGD-QN is
very close to SGD on Caltech256 and SUN and slightly better on ImageNet; We
get similar results when using only a diagonal approximation of the Hessian matrix
in our SLND method.
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Plots of convergence in Fig 4.7 on ImageNet shows again that SLND is faster
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of a magnitude than classical SGD both for the top-1 accuracy and top-5 accuracy.
SLND requires few iterations to converge: we only need one iteration (on 2000
samples) to get the same top-1 accuracy as SGD with 200 iterations. Moreover,
we achieve top-1 accuracy equal to 36.23% (respectively top-5 accuracy equal to
59.06%) with 10 or 20 iterations of SLND, wich outperforms the best accuracies of
SGD by 4% (respectively 3.5%) and SGD-QN by 3.3% (respectively 2.4%). Note
that accuracy of SGD-QN is slightly better than SGD on ImageNet. We report
also in Fig 4.7 on ImageNet results of SGD using preconditioning of the data (noted
SGD-P) [LeCun et al. 1998]. Although preconditioning the data improves classical
SGD, SLND still outperform all SGD methods. Training using SLND on ImageNet
requires only one CPU hour. Training SGD for the same accuracy requires at least
20 CPU hours on a 2 X Intel Xeon E5-2687W 3,1GHz and 64 GB of RAM. Thus
fast convergence of SLND results in sparse training set requirement well adapted
for large scale image classification.

4.5 SLND Theoretical convergence analysis

4.5.1 Best rank k approximation

We first show that H*, as computed in (4.13), is the best rank k approximation of
the inverse of H according to squared Frobenius norm.

Lemma 4 H* satisfies:

H* = min |9 — HH'||% (4.17)
H'eRmX™ rank(H')=k

Proof: We use the fact that 7 = PDPT, PPT = J and trace tr is cyclic invariant,
and we have: ||J — HH'||% = tr((I — HH')(I — HH')) = tr(PPT(I — HH)PPT (T —
HH')) = tr(PT (I — HH)PPT (T — HH)P) = tr((I — D(PTH'P)))?), out of which
is comes that PTH'P is diagonal, and so H’ can be diagonalized in the same basis
as H. Finally, to minimize the squared Frobenius norm, the non zero entries in its
diagonal must equal the k greatest non-zero entries in D. |

4.5.2 A Weak Separability Assumption

We now prove a convergence result on SLND. For this objective, we define p;; =
—F’(yj'th x;) > 0 as a weight over the examples. For any classification calibrated
loss, —F’ is decreasing. Hence, weight py; is all the smaller as example j is all the
better classified by w;. Intuitively, an example gets better classified as y; agrees
with the sign of w, x; and the magnitude |w, x;| is large. We let p; € R™ be the

vector of weights. We let x] = (P, 9‘;1)1—30]- denote vector x; expressed in the

normalized eigenvectors’ basis of H* (4.13). Finally, we define s; € R™ as the vector
whose coordinates are:

sy = yjx; W, = y;(xd) @5, V5, (4.18)

it7
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where example i; is the one chosen to update w; in (4.16).
Our result relies on the following Weak Separability Assumption:

e (WSA) There exists v > 0 a constant such that for any iteration ¢ in SLND,

T
Dt St

(4.19)

Isell1

Figure 4.8: x7, is a better classifier for examples 1 and 2 (s41, s¢2 > 0) than it is for
example 3 (sy3 < 0).

To interpret WSA and see why it is indeed a Weak Separability Assumption, consider
the interpretation of s; and assume @7, is used as a linear classifier. Then, s;; > 0
iff the class y; agrees with the sign of this classifier, and it is all the larger as the
classifier’s output is large. On the other hand, s;; < 0 iff the class y; disagrees with
the sign of the classifier, and it is all the smaller as the classifier’s output is large.
Hence, s;; quantifies the goodness of fit of classifier 7, on x; (see Figure 4.8). Thus,
p/ st is a weighted average of this goodness of fit, in which weights are all the larger
as examples have received a bad fitting so far by w;. Hence, WSA implies that
x;, must contribute to classify better at least a small fraction of the examples with
respect to wy. To see why it is “Weak”, informally, picking «;, at random in any set
satisfying mild constraints would make an expected value of ptT s¢ equal to zero. So,
we require the choice of x;, in SLND to beat a random linear classifier by at least a
small amount. For the informed reader, the WSA parallels in our setting the popular
weak learning assumptions in boosting algorithms [Freund & Schapire 1997].

4.5.3 Convergence theorem

The following Theorem shows that under the WSA, there exists a guaranteed de-
crease rate of the calibrated risk at each iteration, and this holds for whichever of
the logistic and calibrated linear Hinge loss chosen to run SLND. The result would
also hold for various other possible choices of classification calibrated losse, including
the squared loss.
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Theorem 5 Assume WSA is satisfied at each step of SLND. Then, for any e €
(0,1) there exists a value of ny in Q(1/m) and O(1/\/m) such that the following rate
of decrease is guaranteed for the calibrated risk at hand:

272¢(1 —¢)

mE0) WVt (4.20)

er(wig1,8) < ep(wy,8) —
Since SLND is initialized with wy = 0, the null vector, to guarantee ep (wrp,8) < F°
for any chosen real F° < F(0) such that F° is in the image of F, it is enough to
make

(FO) = F)E"(0) o (m
S = (e m‘“(?)

iterations of SLND. In order not to laden the chapter’s body, a proofsketch of the
Theorem is provided in Appendix C. The proof exhibits and discusses the expression
of n; which guarantees (4.20).

4.6 Conclusion

In this chapter we have proposed a new Stochastic Low Rank Newton descent algo-
rithm (SLND) for the minimization of calibrated risk with linear complexity both
in term number of samples and dimension of the features. SLND performs update
of the current classifier with pseudo-inverses of the Hessian that are the most ac-
curate low-rank approximations of the inverse according to Frobenius norm. We
show the convergence of SLND using a Weak Separability Assumption which states
that each example chosen to update the classifier must provide a weighted margin
at least larger than some (possibly small) constant v > 0. Under this weak assump-
tion, SLND guarantees that its classifier has reached some fixed upperbound on the
claibrated risk at hand after Q(m/+?) iterations. No convergence rates are known
to date for SGD-like approaches. Furthermore, the theory provides us with a set of
working parameters for the experiments, including a step parameter 7, typically in
the order Q(1/m).

We validate these theoretical properties by benchmarking it against state-of-the-
art SGD algorithm on three challenging domains: Caltech256, SUN and ImageNet.
The results on large scale image classification display that SLND improves signif-
icantly accuracy of the SGD baseline while being faster by orders of magnitude.
Experiments also display that the parameters of SLND may be easily fixed and
used from a domain onto another.
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Bio-Medical cells classification

5.1 Introduction

High-content cellular imaging is an emerging technology for studying many bio-
medical phenomena. Pathologists establish their diagnostics by studying tissue sec-
tions, blood samples or punctures. Related cellular image analysis generally requires
to classify many cells according to their morphological aspect, staining intensity, sub-
cellular localization and other parameters. In general, samples are stained with vari-
ous dyes to visualize cell cytoplasm and nucleus. In addition, immunohistochemistry
is used to study specific protein expression. Using these approaches, pathologists
observe tissue damage or cell dysfunction like for example, inflammation, neoplasia
or necrosis. Abnormal nuclei allow determining cancer grades. Pathologists rec-
ognize aberrant shapes of whole cells, organelles, nuclei or staining allowing the
classification of the cells. Classical quantification is based on visual counting. New
powerful fully motorized microscopes are now able to produce thousands of multi-
parametric images for several experimental conditions. Consequently, large numbers
of cell images have to be analysed. Such analysis by one (or several) experimenter
is time-consuming and above all poorly reproducible. In fact, humans are limited
in their ability to classify due to the huge amount of image data. Visual counting is
consequently performed on a small portion of the sample. A Computer Aided Di-
agnosis (CAD) system will allow reliable quantification and therefore be a precious
tool in diagnostics.

In this chapter we present an application of UNN algorithm to biological cel-
lular image classification. First we introduce our specific bio-inspired descriptors,
using contrast information distributions on the already segmented cells: a region
based descriptor that shows its efficiency to describe cellular images. Those bio-
inspired features (BIF) are sometimes more than 10% more accurate than standard
descriptors for such images. Then, we report two biological applications of cells
classification using BIF descriptor.

5.2 Region based bio-inspired descriptor

For better understanding the image content, it can be useful to get inspiration from
the way our visual system operates to analyze the scene. The first transformation
undergone by a visual input is performed by the retina.

In fact, ganglion cells, that are the final output of the retina, are first simulated
by the local changes of the illumination. This information is captured by their
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receptive fields and transformed to luminance contrast intensities. Those receptive
fields are like center-surround models (see Fig. 5.1). They react to the illumination

zawu Wu

Figure 5.1: Top, receptive fields in the retina modeled by DoGs for 4 scales. Bellow,
the model of the response of those retinal cells.

of either the center or the surround of the ganglion cells and are disabled when
illuminating the other one. Such behavior, similar to an edge detector, is modeled
by a centered two-dimensional Difference of Gaussians (5.1).

DoG,(z,y) = Gy (2,y) — Gao(z,y) (5.1)

Moreover, ganglion cells react to the luminance in different scales, thus adding
multiscale aspect and allowing us to use DoG filters in a scale space (Fig. 5.1).

The basic idea is to compute features inspired from the visual system model and
specially from the main characteristics of the retina processing. Such was the case
in [Bel haj ali et al. 2011], where we represented the image using features based on
contrast information on square blocs.

Such descriptor is well adapted in the case of our cells images since the most
discriminative visual feature between categories is the luminance contrast in subcel-
lular regions. Thus, we define cell descriptors based on the local contrast in the cell,
that we call Bio-Inspired Features, BIF. The local contrast is obtained by a filtering
with Differences of Gaussians (DoGs) centered at the origin. So that the contrast
Crpm, for each position (x,y) and a given scale s in the image I'm is as follows:

Clm(x7y7 8) = Z Z(Im(Z +x,7+ y) ’ DOGU(S)(iaj)) (52)
i

We use the DoG described by [Field 1994] where the larger Gaussian has three
times the standard deviation of the smaller one. After computing these contrast
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coefficients in (5.2), we apply a non-linear bounded transfer function, named neuron
firing rates, used in [Van Rullen & Thorpe 2001]. This function is written as:

R(C)=G-C/(1+ Ref-G-C), (5.3)

where G is named the contrast gain and Ref is known as the refractory period, a
time interval during which a neuron cell reacts. The values of those two parameters
proposed in [Van Rullen & Thorpe 2001] to best approximate the retinal system are
G = 2000 Hz - contrast™" and Ref = 0.005 s.

Firing rate coefficients R(C') are encoded on an already segmented cell region.
Then, they are quantified into normalized £1 histograms of n-bins for each scale
and finally concatenated. Thus our global descriptor’s dimension is a multiple of n.

Note that state of the art classical methods such as SIFT descriptors encode
gradient directions on square blocks [Lowe 2004]. and Gist features encode average
energies of filters coefficients on square blocks too [Oliva & Torralba 2001].

5.3 Application to the localization of NIS protein in the
cells of the thyroid gland

In the present work, we perform cellular image classification to study the pathways
that regulate plasma membrane localization of the sodium iodide symporter (NIS
for Natrium Todide Symporter). Those biological experiments are part of the re-
search project of TIRO team from the faculty of medecine of Nice. NIS is the key
protein responsible for the transport and concentration of iodide from the blood
into the thyroid gland. NIS-mediated iodide uptake requires its plasma membrane
localization that is finely controlled by poorly known mechanisms. For decades, the
NIS-mediated iodide accumulation observed in thyrocytes has been a useful tool for
the diagnosis (thyroid scintiscan) and treatment (radiotherapy) of various thyroid
diseases. Improvements in radioablation therapy might result from promoting tar-
geting of NIS to the plasma membrane in the majority of thyroid cancers or metas-
tases. NIS has also been described as a promissing therapeutic transgene promot-
ing metabolic radiotherapy (i.e., 1311 uptake by cancer cells ectopically-expressing
NIS) in many different studies. An important improvement of this approach should
benefit from a better understanding of the post-transcriptional regulation of NIS
targeting to the plasma membrane, Previously, we observed that mouse NIS cataly-
ses higher levels of iodide accumulation in transfected cells compared to its human
homologue. We showed that this phenomenon was due to the higher density of the
murine protein at the plasma membrane. To reach this conclusion, biologists classi-
fied several hundreds of cells [Dayem et al. 2008]. We have also demonstrated, using
a set of monoclonal antibodies, that human NIS is not expressed intracellularly in
thyroid and breast cancer [Peyrottes et al. 2009], as was proposed by other groups.
The team of biologists is now focussing on the analysis of NIS phosphorylation
that most probably plays an important role in the post-transcriptional regulation
of the NIS. Using site-directed mutagenesis of previously-identified consensus sites,
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we have recently shown that direct phosphorylation of NIS alters NIS targeting to
the plasma membrane, as well as NIS recycling, causing retention of the protein in
intracellular compartments such as the Golgi apparatus, the endoplasmic reticulum
or the early endosomes. We used a high-content cellular imaging to study the im-
pact of the mutation of several putative phosphorylation sites on the subcellular
distribution of the protein.

5.3.1 Experiments settings

In our experiments, expert biologists individually expressed different NIS proteins
mutated for putative sites of phosphorylation. The effect on the protein localization
of each mutation was studied after immunostaining using anti-NIS antibodies as
described in [Dayem et al. 2008]. Immunocytolocalization analysis revealed mainly
two cell types with different subcellular distributions of NIS: at the plasma mem-
brane or in intracellular compartment (mainly endoplasmic reticulum) which we
will refer to by Mb; throughout the cytoplasm (with an extensive expression) which
we will call ER. An example of Mb and ER cells are shown respectively in Figures
5.2(a) and 5.2(b).
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Figure 5.2: An Mb (a) and an ER (b) extracted cells and their two segmented regions
of interest.

The goal of such experiments is to establish statistics on the different mutations
of cells. Our application aims to assign automatically for each cell one of the previ-
ously numbered patterns according to its staining aspect. The approach is depicted
into two main steps: image segmentation to seperate cells, extracting descriptors
and classification task.



56 Chapter 5. Bio-Medical cells classification

5.3.2 Cells detection and segmentation

( SEGMENTATION |

Nuclei
Detection

Nuclei Cell
Segmentation image

Segmentation
Segmented cells

Nuclei
image

Segmented Nuclei

Cells database

Figure 5.3: Block diagram of the proposed method for automatic cell segmentation.

The first step is a pre-processing segmentation of cells from the main microscopic
images. The database consist of two distinct parametric fluorescence images. The
first one, called nucleus image, shows the nucleus and the second called global image,
shows the staining of the protein. The two images are only two different acquisitions
(with two different wavelength) of the same experiment. We consider images at 40-
fold magnification that was acquired by means of a fully fluorescence microscope
(Zeiss Axio Observer Z1) coupled to a monochrome digital camera (Photometrics
cascade IT camera). We note that nuclei images are used for the only purpose to
help to segment global cells. But never used for feature extraction. The information
that is used to define classes is the staining aspect in the global cells images. Nuclei
are identified from the nuclei image and used as a prior for whole cell segmentation
of the global image. An example of nuclei and global cells segmentation result are
given in Figures 5.4 and 5.5.
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Figure 5.4: An example of nuclei segmentation. Each nucleus is identified with a
different color. The green point shows the nucleus center.
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Figure 5.5: An example of cells segmentation. Each cell is marked with a different

color.

The segmentation process is described in the diagram of Figure 5.3. In fact,

nuclei locations are detected by the mean of morphological operators and used to
segment nuclei and get their masks.
Those latters are then used as markers to segment the global cells. The output of
the segmentation step corresponds to three images for each cell: a sub-image that
bounds the cell, a binary image for cell’s mask and a second binary image for nucleus
mask.
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5.3.3 Features and classification

( CLASSIFICATION j
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Figure 5.6: Block diagram of the proposed method for automatic cell classification:
descriptor extraction and classification process.

Once cells are segmented, we apply our classification method (see diagram 5.6); First
we compute bio-inspired region descriptors, extracting contrast-based features for
each of the segmented cells. These descriptors are then used in a supervised learning
framework to define the classifier to be used to predict the class of unlabeled cells.

For this purpose, we collected 489 cell images of such biological experiments
and manually annotated them according to three classes, that are denoted in the
following as Mb (389 cells), ER (100 cells) and Round (8 cells) (dead cells).

Since round cells are very easy to classify (very high contrast everywhere in the
cell), we focus on the two category classification: Membrane (Mb) and ER.

To extract our descriptors, we use masks on cell images on which we encode firing
rate coefficients (5.3): according to the visual aspect of cells, we split each cell into
two regions of interest (see figure 5.2), corresponding to nucleus and external part,
by using previously computed masks (the external region is the remaining of the
substitution of the nucleus mask from the global one). For both of the two regions,
firing rate coefficients are quantified into normalized £1 histograms of 32-bins then
concatinated, thus giving our global descriptor with a dimension equal to 64 per
scale.

An important parameter for our bio-inspired descriptors is the scale on which
we compute the local contrast. In fact, the standard deviations of the DoG are
dependant of this parameter as follows: o1 = 0.5-25¢%¢~1 and 02 = 3-01. We made
a cross validation on 100 experiments to choose the most relevant scale parameter.
According to those evaluations, next experiments are performed using scale = 5 for
descriptor extraction.

Once we get descriptors of all the cells in the database, we ran our UNN algo-
rithm by training on 50% of the images, while testing on the remaining 50%. In
order to get robust performance estimation, we repeated the evaluation 100 times
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over different random training/testing folds. Note that we used a fast and effecient
tool for the k-NN search provided in the Yael toolbox!.

Our classification algorithm UNN; was evaluated in a first step using a uniform
regularization by the mean of the parameter v that compensates the class imbalance.
In a second step, we focused in an adaptive regularization according to majority and
minority classes and we denote this approach by UNNy ,ggptive. This approach
allows to have automatically a balance number of trained Earototypes per class (see
Tab. 5.1) and visibly decrease misclassification.

Ny Ny Ngr
UNN, 69.24% | 50.20% | 19.03%
UNN, qdaptive | 47.69% | 28.58% | 19.11%

Table 5.1: This table shows the percentage of prototypes number selected from the
training set by both UNN, and UNNy ,4aptive : We report the total number (Ng),
the one in the class Mb (Nyy), and in the class ER (Ngg). The distribution of
selected prototypes on both classes is more balanced using UNN, ,qqptive-

mAP AP for Mb AP for ER
uw(mAP) ‘ o(mAP) || u(AP) ‘ o(AP) || u(AP) ‘ o(AP)

k-NN 84.22 2.56 04.81 | 2.02 73.64 | 5.63
UNN; 86.04 2.54 94.48 1.90 77.60 5.46
UNN, qdaptive | 8767 1.93 8927 | 2.26 86.08 | 3.78
SVM 76.46 4.55 95.58 2.38 57.34 10.67

Table 5.2: Global average precision (MAP), average precision for Mb and average
precision for ER for different classifiers.

We report the average classification results and the classification rate of each
class in Tab. 5.2. Remark that we achieve a mean average precision (MAP) greater
than 87.5% when using UNN ,qptive, Which is a very promising result for our
cell descriptor and classification method. Our classification approach improves the
MAP of the k-NN classifier of more 3% and the SVM with gaussian kernel of more
than 11%. Moreover some misclassification arises on the minority class (ER) using
k-NN | thus giving an average precision (AP) of about 73% (see Tab. 5.2). Using
UNN; qdaptive classification improved MAP of the minority class up to 86% thus
13% better than k-NN. For the SVM classification, the result in Tab. 5.2 shows
that there is an important classification error on ER cells where the AP is about
only 57%.

!Source code can be downloaded in the following link: https://gforge.inria.fr/projects,/yael
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5.4 Application to Immuno-Fluorescence cells

In autoimmune diseases, targets of autoantibodies are characterized by indirect Im-
munofluorescence (IIF) on human cultured cells. Then, stained compartments of
cells are identified by experts.

In this context, we evaluate our BIF features and our UNN classification on
the HEp-2 Cells dataset [Foggia et al. 2010] provided by University of Salerno and
Campus Bio-Medico of Roma?. This database contains 721 images divided into siz
categories as shown in Fig. 5.7.

Centromere Coarse Speckled Cytoplasmatic
208 109 58

Fine Speckled Homogeneous Nucleolar
94 150 102

Figure 5.7: Sample images and the number of elements for each category in the
dataset.

Cells are already segmented (manually) and both hole images and their corre-
sponding masks are provided in the dataset.

In a first step, we extract Bio-Inspired features for each manually segmented
cell according to the cell mask. This version of our feature will be denoted as
BIF®. In a second experiment, we extracted BIF on the whole image of the cell
(without segmentation) to test the robustness of those features. We will refer to
this version by BIF®. To better adjust some parameters, such as the dimension,
we performed a cross validation system on the number of scales and the number of
quantification bins, and we choose using 4 scales with a number of bins equal to
256. Our global features are the concatenation of histograms of 256-bins for each
scale. The final dimension of descriptors is then equal to 4 x 256. We compare
our approach to the state of the art SIFT descriptor. We use classical Bag-of-

’Data available at: http://mivia.unisa.it/hep2contest/index.shtml



62 Chapter 5. Bio-Medical cells classification

Features [Sivic & Zisserman 2006], with the same dimension 1024, on the dense
SIFT provided by [Vedaldi & Fulkerson 2008| which encode gradient directions on
a grid of small square blocks of the cellular image.

| UNNeop | UNNiog | UNNoar

Accuracy 96.16 95.46 94.72
AUC 96.32 95.78 95.25

Table 5.3: Classification results using the BIF® descriptor for the three proposed
versions of UNN. The first row indicates the True Positive rate or accuracy, and
the second one is about the Area Under the roc Curve (AUC).

For the classification task we performed cross validations on 10 random folds.
Each fold corresponds to a random split of the dataset such that we train on 50% of
the images, while testing on the remaining ones. We evaluated the different versions
of UNN in Tab.5.3.

UNN SVM
BIF* | BIF® | SIFT | BIF* | BIF® | SIFT

Centromere 96.05 | 96.15 | 85.00 | 97.01 | 97.40 | 88.07
Coarse Speckled | 99.62 | 97.59 | 69.81 | 95.00 | 97.03 | 71.29
Cytoplasmatic 100.0 | 100.0 | 99.65 | 100.0 | 100.0 | 97.93
Fine Speckled 93.82 | 95.95 | 61.27 | 94.25 | 94.46 | 58.93
Homogeneous 90.26 | 91.20 | 91.86 | 93.46 | 94.00 | 88.93
Nucleolar 97.45 | 96.07 | 87.25 | 97.64 | 97.45 | 88.03
average Accuracy | 96.20 | 96.16 | 82.47 | 96.23 | 96.72 | 82.20

Table 5.4: Evaluations of UNN and SVM using both BIF?(on whole images), BIF?®
(on manually segmented cells) and SIFT Bag-of-features. Here, we give the Accu-
racy for each class. The last row shows the average Accuracy. The best performance
for each category is given in blue and the second one in green.

We compared performances of UNN,,with those of standard SVM, using both
BIF and SIFT Bags-of-features (see Tables 5.4 and 5.5). The reported results of
UNN refer to setting £ = 10 for both training and testing. This value refers to the
best performances according to a cross validation on the training set. The same
experiment was performed to choose the parameters for the gaussian SVM. Note
that for the k-NN search we used the same fast and efficient software as previ-
ously. For BIF descriptor we report experiments on both BIF® and BIF? versions
of our features. Although BIF® version performs similar results to BIF® version,
the comparison with SIFT Bags-of-features becomes fair enough to conclude that
Bio-Inspired Features are more adapted to such images. In fact, results on ta-
bles 5.4 and 5.5 display the high discriminative ability of the proposed Bio-Inspired
Feature, which allows for classification precision generally larger than 90%, up to
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UNN SVM
BIF® | BIF® | SIFT | BIF® | BIF® | SIFT
Centromere | 95.48 | 95.68 | 92.63 | 97.86 | 96.62 | 92.03
Coarse Speckled | 98.54 | 97.24 | 86.70 | 94.23 | 95.40 | 79.00

Cytoplasmatic 99.64 | 99.73 | 97.82 | 99.39 | 99.02 | 93.15
Fine Speckled 93.54 | 95.61 | 63.35 | 89.56 | 91.82 | 59.26
Homogeneous 93.42 | 94.79 | 91.06 | 97.04 | 97.78 | 91.39

Nucleolar 97.74 | 94.89 | 92.35 | 94.94 | 98.66 | 92.59
average AUC 96.39 | 96.32 | 87.32 | 95.50 | 96.55 | 84.57

Table 5.5: Evaluations of UNN and SVM using both BIF?(on whole images), BIF*
(on manually segmented cells) and SIFT Bag-of-features. Here we present the Area
Under the roc Curve (AUC) for each class. The last row shows the average AUC.
The best performance for each category is given in blue and the second one in green.

almost 100% (on the “Coarse Speckled” and “Cytoplasmatic” classes). In addition,
the precision obtained with such specific descriptor outperforms the standard SIFT
bag-of-features by at least 14% in terms of True Positive rate (TP rate) and 9%
in terms of Area Under the roc Curve (AUC). Furthermore, the most interesting
results are those obtained using BIF?, since in real cases an automatic segmenta-
tion process on cellular images is poorly reproducible. Those results (columns in
bold in tables 5.4 and 5.5) shows not only the efficiency of the feature but also the
precision of our UNN algorithm which remains relevant (in terms of TP rate and
AUC), comparable and even better than state-of-the-art SVM. For instance, notice
the improvement of UNN over SVM on the “Coarse Speckled” class (4.5% of gap),
while SVM is the best performing method on the “Homogeneous” class (3% of gap).
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Figure 5.8: Processing time of the training step for both UNN, SVM and multi-
thread version of UNN.

Besides comparing very favorably with state-of-the-art approaches, our UNN
method enables much faster classification. Fig. 5.8, shows typical processing time
for UNN and SVM and UNN achieves speedups of roughly 3 to 5 over SVM. UNN
benefits from straightforward multi-thread implementation (UNN,7) in addition
to the fast k-NN search algorithm. This makes the processing furthermore faster.
Therefore our Bio-Inspired UNN algorithm provides the best Precision/Time trade-
off.

5.5 Conclusion

As a first application in this chapter, we have presented a novel algorithm for auto-
matic segmentation and classification of cellular images based on different subcel-
lular distributions of the NIS protein. First of all, our method relies on extracting
highly discriminative descriptors based on bio-inspired histograms of Difference-of-
Gaussians (DoG) coefficients on cellular regions. Then, we applied UNN algorithm
for learning the most relevant prototypical samples that are to be used for predicting
the class of unlabeled cellular images. We notice that this application is currently
being integrated in a software designed for biological cells identification. A second
application, that deals with immunofluorescence cellular imaging, was presented in
this chapter. We used the same algorithm UNN to evaluate our experiments on an
unbalanced dataset of cells that were manually segmented. Although being the very
early results of our methodology for such a challenging application, performances
are really satisfactory (average global precision of 87.5% and MAP of the minority
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class up to 86%) and suggest our approach as a valuable decision-support tool in
cellular imaging.






CHAPTER 6

(zeneral conclusion

In this thesis, we deal with a specific supervised learning scheme for image classifica-
tion based on a set of calibrated surrogates. In this context, we designed three three
learning algorithms for different kind of classifiers. The first one is a generalization
and an optimization of a leveraged k-NN algorithm, UNN. This latter is based on
learning voting weigths in a boosting framework using the minimization of our clas-
sification criterion. In fact, we enlarge the set of losses often used in boosting and
restricted to the singleton associated to the exponential loss to a more generalized
set containing the logistic and matsushita losses. The UNN algorithm shows high
performances in competitive computation times.

The second algorithm, N3 is a Newton-Raphson approach for boosting k-NN
voting weights. We prove that our N3 method has consistent convergence prop-
erties within the set of considered losses and provide several interesting statistical
properties like the estimation of posteriors of the classification. In the experimental
standpoint, this algorithm shows a fast convergence on quite large datasets of real
images like the SUN and Caltech256. Furthermore, N3 shows that it is possible to
cope with k-NN’s curse of dimentionality. In fact, based on the posteriors of the
classification, we use N3 in a low memory divide and conquer method.

The third algorithm is a novel approach based on stochastic low rank newton
descent, SLND for linear classifiers. It consists on the minimization of calibrated
losses using a Newton update of the classifier. The Newton update, known by its
fast convergence, becomes a complex problem in high dimentional features space.
We present in this work an approximation that overcome this complexity. In addi-
tion, experiments on very large datasets show the high performances of SLND that
outperform the state of the art methods.

This work, presents at the end, an interesting application to biomedical cells
classification. For this purpose, we designed a bio-inspired descriptor, based on
histograms of contrast, that are well adapted for those microscopic cellular images.
Testing UNN algorithm for such applications shows promising high performances.
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APPENDIX A
UNN optimization with metric
learning

A.1 Introduction

A study of the accuracy of metric learning algorithms [Nielsen & Sérandour 2009]
has compared some methods, and has shown that those metrics are mostly de-
pendent on the data type. Several researches were concentrated on Mahalanobis
distance aspect like [Davis et al. 2007] who tend to define a distance given con-
straints on training set and boundaries between similarity and dissimilarity. This
can be seen as a projection in a new space that fits with an a priori knowledge on
categories.

In this appendix, we present an optimization approach tested on UNN algo-
rithm. First, we include metric learning process introduced by [Davis et al. 2007]
to adapt distances between features. This latter replaces the L1/L2 norm used for
the k-NN search. Metric choice in the context of NN classifiers could be a critical
problem [Guillaumin et al. 2009] in the way that a wrong choice can lead to the
failure of the classification method. Then, we evaluate this approach on Gist fea-
tures [Oliva & Torralba 2001, Oliva & Torralba 2006] reduced in the space of their
principal components. In fact, global descriptors like Gist are well appropriate for
classification tasks. However, those descriptors are usually high dimensional and
therefore costly in similarity measuring.

In a first section, we detail the proposed approach. In the second one, we explain
parameter settings and expose evaluation results of the different steps.

A.2 Proposed approach

A.2.1 Descriptor and dimension reduction

Global features like Bag-Of-Features (BOF) or Visual Words are often used for
categorization because they represent the global content of an image. Therefore,
this point makes descriptors very high dimensional. In this paper we use the same
Gist global features as in [Oliva & Torralba 2001] to have comparable classification
results!.

For the method we use, Gist are extracted on 4 x4 subregions of 4 scales from gray
images, and considering the 8 dominant directions. Thus we have image descriptors

"http://people.csail.mit.edu/torralba/code/spatialenvelope/
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of 512 dimensions. As we will deal with metric learning later, we need to reduce the
features dimension in first step.

We studied the effect of principal component analysis (PCA) on Gist, and we
noticed that a reduction up to 16 and even 32 times of the original dimension does
not affect the classification rate. Results will be presented later in experiments
section (A.3.3).

Throughout the following work, we use Gist with a 32 dimension where the
principal components were already computed on training dataset.

A.2.2 DMetric learning

For classification task, partial information provided by real scene images may be
misleadingly. In fact, in high dimensional feature spaces, image descriptors may be,
in the L? sense, similar within different categories and dissimilar under the same
one. For example, points that are near the class border or that are in an area of
overlap with other classes are constrained to be metrically similar but semantically
not.

In this case, we use metric learning to adjust the similarity measure so that it
increases inter-class variability and decreases intra-class one.

In [Davis et al. 2007], authors propose an Information-Theoretic Metric Learn-
ing (ITML) approach that generalize the Mahalanobis distance. This metric consid-
ers pairs of similar and dissimilar points, and trains a matrix A to build a distance
function that will make close elements in the same class and far those in distinct
ones. This distance for a given couple of points (x;, ;) is expressed in (A.1).

da (s, 25) = (2 — 2)" A(2; — ) (A1)

The approach is an iterative algorithm that tends to approximate a positive
definite matrix A using a minimization under constraints task.

min KL (p (z; Ao) [Ip (+ A)) (A.2)

subject to
da(zi,zj) <u (i,j) €S, (A.3)
da (.%'i,.%'j) > (Z,]) eD. A4)

where K L, Kullback Leibler, is a Bregman divergence (statistical distance between
distributions). S and D are sets of similar and dissimilar pairs and u and [ denotes
threshold distances between points respectively in S and D. An a priori knowledge
of some parameters is needed for learning process. For the algorithm version we use,
a constraint matrix ¢ is considered for this process, and the problem is formulated
like it follows:

mjn Dyg (A, Ag) + v - Dyg (diag (&) ,diag (&o)) (A.5)
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subject to

da (i, ) < &gy (4,5) €5, (A.6)
da(wi,x5) > &gy (i,7) € D. (A7)

where ¢ is threshold matrix for similarity and dissimilarity, c(7,7) is the index of
the constraint corresponding to the pair (7,7), v controls the tradeoff between sat-
isfying the constraints and minimizing the LogDet divergence between A and Ag:
Dy (A, Ap), which was induced from

KL (p(a: 40) [p (23 A)) = 5 Dia (4, Ay) (A8)

A.3 Experiments

A.3.1 Dataset

For our experiments we use the database proposed in [Oliva & Torralba 2001], com-
posed of outdoor natural scenes divided into the following categories: coast, moun-
tain, forest, open country, street, inside city, tall buildings and highways. This base
includes 2688 color images with 256 x 256 pixels.

open country

street  inside city tall buildings highways

Figure A.1: Natural scenes from the outdoor database of Torralba.

A.3.2 Settings

For experiments, we need two separate datasets: the first one for train and the
second for tests. We divide our database so in a random way. For the results
presented here, we use 2000 images for train (of about 250 images per category) and
688 as queries. For evaluations in (A.3.4) and (A.3.5), Gist features are used here
in 32 dimensions.

We evaluate UNN against the standard k-NN method considering different num-
bers of prototypes (classifiers). For the k-NN, it is trivial that we should consider
all training set as classifiers to be as robust as possible. However, our goal in this
paper is to optimize classification taking into consideration scalability rule. Hence,
sets of prototypes P C S tested on here contains respectively 10, 20, 30, 40, or
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50 percent of train set S. For k-NN, prototypes are chosen randomly, whether for
UNN classifiers are those of highest learned coefficients.

In a second part of this section, ITML is compared to the standard Euclidean
distance often used with Gist features. The ITML algorithm needs an a priori
knowledge on some parameters as indicated in the previous section. We use the same
parameters as [Davis et al. 2007], so we initialize the matrix A to the identity matrix,
then we consider the training set as samples to compute threshold distances and
constraints matrix. Only, due to computing cost, we consider the same parameters
as [Davis et al. 2007] to choose randomly 20x C? constraint pairs of features from the
training set. Consequently, the approximation of the matrix A is non-deterministic.
This is why we consider the mean classification result under 10 different evaluations.
We do the same thing for the k-NN method since prototypes are taken randomly.

A.3.3 Robustness to dimension reduction

Our tests aim to classify unlabeled queries based on trained classifiers. We evaluate
results of classification using the mean Average Precision (mAP) value, which is the
mean of the right classification rate of all categories.

8u

62 I I I I I I
4 8 16 32 64 128 256 512

dimension

Figure A.2: Mean average precision curve for classification depending on Gist di-
mension.

First, to prove that dimension reduction does not affect the robustness of Gist
features we evaluate classification using those descriptors in different dimensions.
The Fig.A.2 presents the evolution of the mean average precision in function of the
dimension of the features. We vary dimension from 4 to 512 and we notice that
mAP value is practically constant from dimension 16. This shows that dominant
information is located on the first 16 components of the descriptor. Consequently,
we use Gist on 32 dimensions instead of 512 which makes a huge difference in
computation time.
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A.3.4 Boosting k-NN results and comparison to the k-NN classi-
fication method

UNN is an approach based on nearest neighbors framework. Therefore, it uses
boosted coefficients to choose a set P of best classifiers from the train set, and that
is sufficient to reach a best categorization results. Next, we evaluate the influence
of trained prototypes number on classification rate respectively for UNN approach
and for k-NN one. We test on 10, 20, 30, 40 and 50 percent of the training set
as prototypes to compare the two previous approaches. The evaluation in Fig.A.3
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Figure A.3: Comparaison between k-NN classification and UNN one.

shows that UNN classification is more efficient than standard k-NN, and using
only 50 percent of S as prototypes we reach a significant precision rate. In other
evaluations not reported here, we had to consider all training set as classifiers for the
uniform (standard) k-NN method to achieve the same efficiency as UNN algorithm.

Notice that this mAP is comparable to the result of Torralba ' based on SVM
method, except that with the UNN approach we are scalable.

A.3.5 Evaluation of the metric learning process

For more efficiency, we substitute euclidean distance by ITML to adapt the metric
to features. Results in Fig.A.4 indicate that with this metric we can get more
robustness with fewer learned classifiers, which is really important when dealing
with large datasets.

As reported in Fig.A.4, for 400 prototypes (20% of the training data), we have
already more than 81% of precision when using UNN with ITML metric. And for
only 600 classifiers (30%) we come to the same precision rate as using the euclidean
distance with 1000 classifiers (50%).

We also test the optimization of ITML on k-NN method as shown in Fig.A.4
and evaluation conduct to the same conclusion as with UNN algorithm.
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Figure A.4: UNN classification using Euclidean distance and ITML.
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Figure A.5: MAP variance of UNN classification with ITML distance over 10 eval-
uations.
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Figure A.6: MAP variance of k-NN classification over 10 evaluations

We remind that because of the randomness of the learning process of the matrix
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A, previous results on ITML are averaged over 10 evaluations. Fig.A.5 shows the
variance of these results.

The same process is applied to k-NN method as prototypes are chosen randomly,
and a preview of the Fig.A.6 shows the detailed results.






APPENDIX B
Convergence proof of N® and
statistical properties

B.1 Proof of Theorem 3

The proof is sketched for the calibrated Hinge loss, and so consider row D in Tables
3.1, 3.2, 3.3. For the sake of simplicity, let us name Fp the calibrated Hinge loss,
and suppose we are at the beginning of step ¢ and class ¢ in N3, with j the index
returned by Wic. The current leveraged NNis denoted H! and the current weights
are denoted w;. For any ¢ in the inverse neighborhood of j, let us denote

Hix;) = HNxi)+ Yicdp, (Krpwiy) - (B.1)

Classifier H' is the leveraged NNto which we add a constant term which depends on
the initialization weight of example 7. We now focus on establishing a convergence
property for ep, (H.,8), which will then be translated to H,. First, we upperbound
the variation between two successive values of g, (.,8). After several derivations,
we obtain:

6FD(f~It+1 5) —6FD(Ht S)

170
- T Z A—grp, (Weriflwes) — -, (B.2)

z J—Kt

with A_g,  the Bregman divergence with generator —gp,, [Kakade et al. 2009], and
n = Zw—mz Wi41,iYicYje- Notice that 7 is not measured on the same weights as
n(e, 7).

Using the fact that Fp is F})(0) = 1/4 is strongly smooth and Theorem 6 in
[Kivinen & Warmuth 2001], we obtain that —gp, — 222 is convex. Considering its
Bregman divergence computed between w;41,; and w;;, summing for all ¢ in the
inverse neighborhood of j and rearranging terms, we obtain:

Z A,QFD(UJtJrl,iHUJt,i) > 2 Z (U}t+1,i—wt’i)2

11—t 1j—r gl

After remarking that Zi:j—)ki (yicyjc)Q = n;j, Cauchy-Schwartz inequality yields

n? Y (wi—wea)® > (7= n(e4))?

ij i
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that is:

2(77 — n(caj))2 )

S A, (willw) >

ij i

Plugging this into (B.2) yields after few more derivations the left-hand side inequality
of:

€Fp (f{é-Hv 8) —EFp (FIL S)

2 22
< () o gnimv (B.3)

mn; m

The right-hand side inequality of (B.3) comes from the weak learning assumption.
Hence, for some ¢ < F(0) = —In(2), to obtain ep, (HIT1,8) < ¢, it is sufficient
that:

S > (e —In(2))m (B.4)

2~/2 ’
o 8nVu

where j spans the indexes of J. To finish the proof, we shift the analysis to H!*!,
and obtain from (B.1) and the expressions of Fp and gp,,:

Vi:ij ki Fp(yeH! T ()
Fp (yicﬁfﬂ(wi) — Jr, (KFle,i)>
Fp (yz’cf:chH(wi) — 1+ yicyiH1> ,
< Fp(yiH ™ (z;)) + C .

—
oS}
ot

~

There remains to combine (B.4) and (B.6) to obtain the statement of the Theorem.

B.2 Statistical properties of N?

The first property consists in a justification of the weight initialization in N3. Fol-
lowing the terminologies of [Bartlett et al. 2006, Vernet et al. 2011], we want the
total calibrated risk to be pointwise Fisher consistent: this implies that for any
observation, when ply. = +1]xz|] = 1/C,Ve, the optimal constant real prediction
for @ is z = 0 [Bartlett et al. 2006, Vernet et al. 2011]. Notice that each example
in 8§ participates to C classification problems. Consider example ¢ which meets
the conditions above, and let w™ (resp. w™) denote its weight for the classifi-
cation problem for one class to which it belongs (resp. does not belong) vs all
others in N3. A constant real prediction z brings for this example a contribution
to the total calibrated risk proportional to w™||1 + y;||[1 F(—2) + w™||1 — y;|[1 F(2).
Given the definition of F' (3.3), the optimal z to this contribution is found to be
2= f7H L+ il /(w1 + yilli + w1 = yi]l1))- Because f(0) = 1/2, we have
to ensure that w||1 + y;|l1 = w™||1 — y;||1, which is the case in N3,
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The second property establishes that N3 brings a convenient estimation of poste-
riors. It confirms the intuition that the transfer function links real valued prediction
to the estimation of posteriors (See Section 3.3).

Theorem 6 For any ¢, f(H.(x)) is an efficient estimator of ply. = +1|x].

The proof, given in appendix, calls to the representation of exponential families.
It is interesting in itself as it shows that the duality between labels prediction and
posteriors estimation born from the transfer function (Section 3.3) implies a duality
between the classification calibrated risk — which depends upon labels — and the
log-likelihood of some exponential family — which is parameterized by posteriors

The third property shows that N3 is weakly universally consistent. It makes use
of the definition of the empirical risk of H on 8 (1. is the indicator variable):

C m
o1 1
g1 (H,8) = C Z . Z Ly He(zi)<0 - (B.7)
c=1 i=1

Theorem 7 Suppose that examples in S are drawn i.i.d. according to some unknown
but fived distribution D. Let Ry 1 = Eg,sj=mlc0/1(H,8)] denote the erpectation,
over the sampling of size-m samples following D, of classifier H built by N3 after
T rounds of boosting for each class. Then, as k — 400, provided k = O(T) and
T = O(m), N? is weakly universally consistent: regardless of D,

lim Rnr = R, (B.8)

m—-+00

where R* is Bayes risk.

Comments on Theorems 3 and 7: the Theorems provide sets of choices for
parameters that make it possible for N3 to perform consistent and sparse boosting.
For example, k = O(m*),T = O(m"”), with 0 < p,v <1 and p+v > 1.

B.3 Proof of Theorem 6

We focus on class ¢ and remove for the sake of readability the reference to ¢ in
all notations. We let y € {—1,+1} denote the membership to the class and g. =
(1/2—¢e)y+1/2 € {&,1 — ¢}, for some € € [0,1). Letting for short H = H(x), we
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have:
A gp(l —ellf(H))
= (=gr)(1 —&) = (—gr)(f(H))
—(1—e— f(H))(=gr) (f(H))
= (—g9r)A =)+ (—grp)"(H) +cH - H , (B.9)
Agp(ellf(H))
= (=gr)(e) = (—gr)(f(H))
—(e = f(H))(=gr)'(f(H))
= (=gr)(e) + (—gr)"(H) —cH , (B.10)
where A_,. is the DBregman divergence with  generator —gp

[Kivinen & Warmuth 2001]. To derive (B.9) and (B.10), we have used (i)
the fact that convex conjugates have derivatives that are inverse of each other,
(ii) f = (—gr) " (z) from (3.3) and (3.4), and (iii) the convex conjugate of some
strictly convex differentiable function h is h*(z) = xh’~!(x) — h(h'~!(z)). Since gg
is permissible, (—gr)(¢) = (—gr)(1 — €), and we remark that F(—z) = F(x) + z,
so that (3.3) and (3.4) become:
A gp(I—ellf(H)) = ule)+eH + F(H) ,
A gl f(H) = ule)—eH + F(~H) ,

where u = (—gp)(¢) = (—gr)(1 —€). We end up having:

Fe(yH) = A-gp(Gellf(H)) = ule) , (B.11)
with F.(z) = F(z) — ex. Now,

A_gp (9elf(H))
= —logp((—gp)mlle =1 —clz] +loguv(z) , (B.12)
where p(_g,.)+ ) is the pdf of the exponential family parameterized by (—gr)*,

with natural parameter H and expectation parameter f(H) [Banerjee et al. 2005].
Hence, f(H) is an estimator of:

Eelie] = (1-e)ply = +1|z] +eply = —1]a]
= ply=+1lz] +elply = —1z] - ply = +1]z]) .
In fact, f(H) is the only efficient estimator of Ey[g.] [Miiller-Funk et al. 1989]. Plug-
ging (B.11) and (B.12) together, we get:
—logp((—gp)rme =1 —clz] = F(yH)+r,

where r does not depend upon H or T. Hence, minimizing 5. (H,8) amounts to a
maximum likelihood fitting of f(H). There remains to take ¢ = 0 for A, B, C to
conclude the Theorem. For D, since gz is not defined in {0, 1}, we can pick ¢ = 1/7°2.
Since weights are finite, leveraging coefficients are finite. Thus, |H| = o(T?), and so
Fyr2(yH) = F(yH) + o(1). There remains to take the limit in 7" to conclude.



APPENDIX C

Convergence proof of SLND

C.1 Proofsketch of Theorem 5

The proofsketch of Theorem 5 involves there steps:
e Bregman divergence estimation.
e (Calibrated loss properties.
e Weak Separability Assumption.

We first make some simplifications in notations. We remove the ¢ subscript and
make the analysis for class ¢, and thus focus on the analysis of ep(h., 8), noted for
short er(h,8). To avoid confusion, we also rename example chosen at iteration ¢ in
(4.16) as example i, so that (4.16) reads:

Wiyl = Wt — ntyitFl (yitw;xit) $<i)t : (Cl)

Bregman divergence estimation

Let us define the Legendre conjugate and the notion of Bregman di-
vergence. F(x) = F*(—z), where x denotes the Legendre conjugate

(F*(z) = o(F')~}(z) — F((F))"4(x))), and D (ul|v) = F(u) — F(v) — (u— v)F (v)
denotes the Bregman divergence with generator F [Nock & Nielsen 2008].

We get the following equality

5F(wt+1a8) - 5F(’wta8)

S RS s
- m 4 1 (yzcthrlmz — (yzcwt T
1= 1=

1 m
= 21 D (p(e+1yillpei)

—% Zp(tﬂ)iyiyuﬂ(ini) ; (C.2)

i=1

where

m(iyig) = ptitmlﬂ{*wi:ptit(azf)—rw;’t , (C.3)
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Calibrated loss properties

Since F”(x) < F”(0) for the classification calibrated losses we consider, we
also have the following quadratic lower-bound which can be obtained following
[Kakade et al. 2009]:

m

ZDF(p(tJrl)intz = Z P(tr1yi ptz . (C4)

i=1 =1

Cauchy-Schwartz inequality brings:

m

Z ylylt Zta 22 Pt+1)i ptl (05)

i=1 i=1

2
<Z YilYi, T Zta t+1)z pti)) . (CG)

Define for short vy = Y 7™ puy1yiyits, m(it, 1), e = > ity puyiys, 7(it, 1) and II; =
S w2(it,4). Plugging (C.4) and (C.6) into (C.2) and simplifying, we obtain:

EF('wt-i-laS) - EF(wtaS)

(Ut - €t)2 Ut
_— C.7
- QFH(O)’I’I’LHt m ( )
- Ap(ve)

m

o Ay(vy) takes its maximum for vy = v° = e; — F"(0)me S0 (i, (i, 0))? = e —
F”(0)n:I1;, for which we have:

F"(0)7, 11 2eq
A(°) = ——21t
t(?} ) 2 X <77t F//(O)Ht >

Assume we pick, for some ¢ € (0,1):

21 —e)e
= = /7t C.8
77t F”(O)Ht ( )
For this choice of n;, we have:
o 26(1 B 6) . *
At(’l} ) = —Wp(2t7% ) y (Cg)

with

(2 pyi(2) T23)?
sz1((a” )Ta’f )

p(it’ ‘(H*)
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Weak Separability Assumption

Now, the Weak Separability Assumption implies | > pyi(x ) x| > vllsefr >
vlstll2 = 7\/ZZ L ((z )T:IJ )2, which leads to p(iz, H*) > ~2.
Finally, the fact that As(v;) < A(v°) and (C.9) imply:

2v2e(1 —¢)

At(vt) = F//(O)

Plugging this into (C.7) achieves the proof of the theorem.
Remarks on 7; (C.8) gives, under the WSA:

2(1 - E) Zz 1 Pti¥YilYi, T (Zta )
F"(O)Ht
2(1 —)y/[|stllx
F"(0)pticyiclllsell3

m =

for some 7/ >~ > 0 as in the WSA. Because ||s¢]|2 < [Is¢ll1 < v/m]|s¢l|2, it comes:

20 —eyy’ _ _ 200 —e)ym

F'Opa sl =" = FOpaflsely
Letting p; = (1/m) > |(x8) T x; | denote the average value of [s;;], we obtain:
2(1 — &)y 2(1 —
U=e)yy _, o 2= e
mE"(0)priq e VmE" (0)pi,

Hence, omitting py;, in big-Oh notations to simplify the analysis, the value 7, which
guarantees the rate of convergence of Theorem 5 is indeed roughly between Q(1/m)

and O(1//m).
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Abstract:

Minimization of Calibrated Loss Functions for Image Classification

Image classification becomes a big challenge since it concerns on the one hand
millions or billions of images that are available on the web and on the other hand
images used for critical real-time applications.

This classification involves in general learning methods and classifiers that must
require both precision as well as speed performance. These learning problems con-
cern a large number of application areas: namely, web applications (profiling, tar-
geting, social networks, search engines), "Big Data" and of course computer vision
such as the object recognition and image classification.

This thesis concerns the last category of applications and is about supervised
learning algorithms based on the minimization of loss functions (error) called "cali-
brated" for two kind of classifiers: k-Nearest Neighbours (kNN) and linear classifiers.

Those learning methods have been tested on large databases of images and then
applied to biomedical images.

In a first step, this thesis revisited a Boosting kNN algorithm for large scale
classification. Then, we introduced a new method of learning these NN classifiers
using a Newton descent approach for a faster convergence. In a second part, this
thesis introduces a new learning algorithm based on stochastic Newton descent for
linear classifiers known for their simplicity and their speed of convergence.

Finally, these three methods have been used in a medical application regarding
the classification of cells in biology and pathology.







Minimisation de fonctions de perte calibrées pour la classification
des images

La classification des images est aujourd’hui un défi d’'une grande ampleur puisque
¢a concerne d’'un cote les millions voir des milliards d’images qui se trouvent partout
sur le web et d’autre part des images pour des application temps réel critiques.

Cette classification fait appel en général & des méthodes d’apprentissage et a
des classifieurs qui doivent répondre & la fois & la précision ainsi qu’a la rapidité.
Ces problémes d’apprentissage touchent aujourd’hui un grand nombre de domaines
d’applications: & savoir, le web (profiling, ciblage, réseaux sociaux, moteurs de
recherche), les "Big Data" et bien évidemment la vision par ordinateur tel que la
reconnaissance d’objets et la classification des images.

La présente thése se situe dans cette derniére catégorie et présente des algo-
rithmes d’apprentissage supervisé basés sur la minimisation de fonctions de perte
(erreur) dites "calibrées" pour deux types de classifieurs: k-Plus Proches voisins
(kNN) et classifieurs linéaires.

Ces méthodes d’apprentissage ont été testées sur de grandes bases d’images et
appliquées par la suite & des images biomédicales.

Ainsi, cette thése reformule dans une premiére étape un algorithme de Boosting
des kNN et présente ensuite une deuxiéme méthode d’apprentissage de ces classi-
fieurs NN mais avec une approche de descente de Newton pour une convergence
plus rapide. Dans une seconde partie, cette these introduit un nouvel algorithme
d’apprentissage par descente stochastique de Newton pour les classifieurs linéaires
connus pour leur simplicité et leur rapidité de calcul.

Enfin, ces trois méthodes ont été utilisées dans une application médicale qui
concerne la classification de cellules en biologie et en pathologie.




