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Chapter 1

General introdu
tion

1.1 Introdu
tion

The 
lassi�
ation task 
onsists in predi
ting 
ategory membership of an unlabeled

data based on its 
ontent. Classifying images is a 
hallenging task in 
omputer

vision, sin
e it involves di�erent �elds and appli
ations. In fa
t, two main �elds

are being studied to perform image 
lassi�
ation and pattern re
ognition: the �rst,

whi
h belongs to the image pro
essing �eld, deals with extra
ting the features from

data. A way to en
ode images with less 
omplex stru
tures that best des
ribes the

information 
ontained in the image. While the se
ond one is a ma
hine learning

task de�ning the 
lassi�
ation rule.

In 
omputer vision tasks, image features are usually 
onsidered either as lo
al or

as global des
riptors. Both of them have been shown to be e�
ient. Gist global fea-

ture [Oliva & Torralba 2001, Oliva & Torralba 2006℄ for example represents a whole

s
ene in a unique des
riptor, while the s
ale invariant feature transform (SIFT)

[Lowe 2004℄ or the histogram of oriented gradients (HOG) [Dalal & Triggs 2005℄

represent lo
al information in the image allowing the des
ription of signi�
ant ob-

je
ts in the s
ene independently. Lo
al features are relevant for image des
ription.

In 
omputer vision, they are well adapted for obje
ts dete
tion and image retrieval:

they give a sparse representation and 
over a wide range of visual features in the

image. However, for 
lassi�
ation task, we almost need global feature des
ription,

sin
e we 
ompare 
ategories and not only pairs of images. Hen
e, we usually en
ode

lo
al features into global ones using statisti
al models. This global representation

des
ribes the o

urren
e of relevant visual features in the image. State of the art

Bag of features/words (BoF/BoW) [Sivi
 & Zisserman 2006℄ are the most 
ommon

approa
hes in this 
ontext. Re
ently an e�
ient feature 
alled �sher ve
tors (FV)

[Perronnin et al. 2010℄ was extensively used for large s
ale image 
lassi�
ation.

Getting e�
ient des
riptors is not su�
ient to perform 
ategorization. Robust


lassi�
ation algorithms should be designed to a

omplish su
h 
hallenging task.

For most state of the art methods, the task of image 
lassi�
ation is addressed as

a learning problem. Within this 
ontext, we distinguish two major approa
hes, de-

pending on wether we have or have not a knowledge about the 
ategories and about

the labels of a set of data. On the one hand, unsupervised approa
hes, like 
luster-

ing, tend to group data a

ording to their visual 
ontent similarities. On the other

hand, supervised learning uses an already labeled training set to learn 
lassi�ers

(
ategories boundaries) and then labels non-annotated images subsequently. For

the se
ond kind of learning, three or four main standard methods are often used.
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tion

The kernel based algorithms and more pre
isely the Support Ve
tor Ma
hine (SVM)

[Cristianini & Shawe-Taylor 2000℄ are robust 
lassi�
ation methods. The boosting

based algorithms su
h as Adaboost [Freund & S
hapire 1999℄ are s
alable, have low


omputational 
omplexity and still reliable. Nearest Neighbors approa
hes are fast,

simple and s
alable, but still poorly e�e
ient in a

ura
y. Re
ently, a sto
hasti


gradient des
ent (SGD) algorithm was introdu
ed by [Bottou 2010℄, a robust and

non 
omplex method for large s
ale data.

To state a supervised 
lassi�
ation problem, we need to de�ne our 
lassi�er �rst.

In fa
t, the 
lassi�
ation rule is a fun
tion mapping between the data features and

their predi
ted labels. Among state of the art 
lassi�ers, we 
an 
ite k-Nearest

Neighbors, linear or kernel based 
lassi�ers. However, despite the nature of a 
lassi-

�
ation rule, it is often de�ned by a set of parameters. Therefore, we set a learning

pro
ess to rea
h the optimal rule. Indeed, given a set of already annotated data, we

tend to estimate the optimal parameters by minimizing the 
lassi�
ation error rate.

This thesis deals with supervised learning approa
hes for image 
lassi�
ation.

Espe
ially, we are interested in the minimization of a 
riterion based on some spe-


i�
 loss fun
tions (Calibrated losses) for di�erent kind of 
lassi�
ation rules. In

a �rst part, we are interested in k-NN 
lassi�ers. A �rst approa
h, revisits and

expands a leveraged k-NN rule by minimizing the risk 
riterion in a boosting frame-

work. In the same 
ontext, a se
ond approa
h deals with fast 
onvergen
e Newton

based leveraged Nearest Neighbors rule. In a se
ond part, we design a fast low rank

Newton des
ent algorithm of 
riterion minimization for learning s
alable linear 
las-

si�ers. This latter is a robust algorithm espe
ially for big datasets and shows high


omputational performan
e and pre
ision towards state of the art approa
hes. In

a �nal part, this thesis presents an appli
ation of image 
ategorization to an inter-

esting �eld: bio-medial imaging. In a �rst step, we design a spe
i�
 des
riptor for

su
h appli
ation: a multis
ale 
ontrast based feature, well adapted for 
ell images.

Then, we report examples of experiments on two di�erent appli
ations of biologi
al


ells 
lassi�
ation.

1.2 Setting the problem

We �rst provide some generalities that de�ne our supervised learning s
heme. Our

setting is that of multi
lass, multilabel 
lassi�
ation. In supervised learning, we

have a

ess to an annotated input set of m observations, S
.
= {oi = (xi,yi), i =

1, 2, ...,m}. Ve
tor xi ∈ X is a feature data where X denotes the feature spa
e. We

adopt the mainstream one-vs-all 
lassi�
ation s
heme. Then, ve
tor yi ∈ {−1,+1}C
en
odes 
lass memberships, assuming yic = +1 means that sample xi belongs to


lass c and yic = −1 otherwise.

The goal is to learn a 
lassi�er H whi
h is a fun
tion mapping observations in X

to ve
tors in R
C
. Given some sample x, the sign of 
oordinate c in H (x) (Hc (x))

gives whether H predi
ts that x belongs to 
lass c, while its absolute value may be

viewed as a 
on�den
e in 
lassi�
ation (or s
ore).
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To de�ne the 
lassi�er H, we will minimize the Empiri
al (or Hamming) Risk

ε0/1(H, S) whi
h 
omputes over 
lasses and observations the miss
lassi�
ation rate

of H :

ε0/1(H, S)
.
=

1

C

C∑

c=1

1

m

m∑

i=1

[(yicHc(xi)) < 0] , (1.1)

where [.] is the indi
ator fun
tion equal to 1 if the 
ondition is true and 0 otherwise

and whi
h represents here the 0/1 or empiri
al loss. We denote this loss F 0/1
.

Unfortunatly, the minimization of su
h problem is not tra
table sin
e the 0/1 loss

fun
tion is not 
onvex.

A 
ommon alternative to minimize (1.1) is to rather minimize an upperbound

of this empiri
al risk, known as the Surrogate Risk. Lets denote this later εF .

This surrogate sums over observations and 
lasses a stri
tly 
onvex loss fun
tion

F : R→ R that satis�es ∀x ∈ R, F 0/1(x) ≤ F (x).

εF (H, S)
.
=

1

C

C∑

c=1

1

m

m∑

i=1

F (yicHc(xi)) . (1.2)

The loss fun
tion F is based on the fun
tional margin yicHc(xi) or what we 
all the

edge of 
lassi�
ation and denote by ρ(Hc, oi,c). Obviously, the minimization of (1.2)

leads to a 
lose form solution of the initial problem (1.1).

The 
onsisten
y of 
lassi�
ation rules is 
ru
ial properties without whi
h the

minimization of the loss brings no strong statisti
al guarantee: the risk of 
lassi�-


ation should get 
lose to the lowest possible risk with a large probability (Bayes

rule). To satisfy this property, a set of loss fun
tions relevant for learning is often

used and 
alled Calibrated Losses [Bartlett et al. 2006℄.
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Chapter 2

Universal Nearest Neighbors

algorithm: UNN

2.1 Introdu
tion

The nearest neighbors (NNs) rule belongs to the oldest, simplest and still most

widely studied 
lassi�
ation algorithms [Devroye et al. 1996℄. It relies on a non-

negative real-valued �distan
e� fun
tion. This fun
tion measures how mu
h two

observations di�er from ea
h other, and may not ne
essarily satisfy the requirements

of metri
s.

k-NN 
lassi�
ation has proven su

essful, thanks to its easy implementation and

its good generalization properties [Shakhnarovi
h et al. 2006℄. A major advantage

of the k-NN rule is to not require expli
it 
onstru
tion of the feature spa
e and be

naturally adapted to multi-
lass problems. Moreover, from the theoreti
al point of

view, straightforward bounds are known for the true risk (error) of k-NN 
lassi�
a-

tion with respe
t to Bayes optimum, even for �nite samples ([No
k & Sebban 2001℄).

In fa
t, it is yet a 
hallenge to redu
e the true risk of the k-NN rule, usually ta
kled

by data redu
tion te
hniques [Hart 1968℄.

We propose in this 
hapter an optimization of a generalized solution to the prob-

lem of boosting k-NN 
lassi�ers in the general multi-
lass setting, and for general


lasses of losses, not restri
ted to Adaboost's exponential loss, built upon the works

of [Piro et al. 2012, No
k & Nielsen 2009, No
k & Nielsen 2008℄. Namely, we pro-

pose a leveraged nearest neighbor rule that generalizes the uniform k-NN rule, and

whose 
onvergen
e rate is guaranteed for many 
lassi�
ation 
alibrated losses, en-


ompassing popular 
hoi
es, su
h as the logisti
 loss or the matsushita loss. The

voting rule is rede�ned as a strong 
lassi�er that linearly 
ombines weak 
lassi�ers

of the k-NN rule.

The remaining of the 
hapter is organized as follows: Se
tion 2.2 brievly in-

trodu
es the basi
 notions about k-NN 
lassi�ers and about the 
alibrated loss

fun
tions used latter in the learning framework. Se
tion 2.3 presents the Universal

Nearest Neighbors algorithm for leveraging the k-NN 
lassi�er and Se
tion 2.4 gives

details about the optimizations brought on this algorithm and the implementation of

the method. Finally, Se
tion 2.5 shows experimental results of our method against

standard/uniform k-NN and SVM methods on large images datasets.
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rit 
alibrated loss F annotation

A exp(−x) exp

B ln(1 + exp(−x)) log

C −x+
√
1 + x2 mat

Table 2.1: The stri
tly 
onvex losses that are used in UNN. From top to bottom,

losses are exponential, logisti
 and matsushita's loss.

2.2 Basi
 notions and annotations

2.2.1 The k-NN 
lassi�er

We let j →k x denote the assertion that example (xj ,yj), or simply example j,

belongs to the k NNs of observation x. We shall abbreviate j →k xi by j →k i �

in this 
ase, we say that example i belongs to the inverse neighborhood of example

j. To 
lassify an observation x, the k-NN rule H(x) 
omputes the sum of 
lass

ve
tors of its nearest neighbors. The 
oordinate c in H(x) is :

Hc(x)
.
=

∑

j→kx

yjc . (2.1)

2.2.2 Calibrated losses

Classi�
ation 
alibrated losses are surrogates suitable for 
lassi�
ation. To be


lassi�
ation-
alibrated, loss F : R → R is required to be 
onvex, di�erentiable

and su
h that F ′(0) < 0 [Bartlett et al. 2006℄ (Theorem 4), [Vernet et al. 2011℄.

In this 
hapter, we are interested in a subset of the 
alibrated losses 
alled

Stri
tly Convex Losses (SCL). This set in
ludes, in addition to the exponential loss,

the logisti
, the matsushita and the squared loss. The stri
tly 
onvex losses F we

are intrested in are given in Table 2.1.

2.3 UNN, Leveraging the k-NN 
lassi�er

As previously introdu
ed, a leveraged k-NN rule is a non-uniform voting among the

k-Nearest Neighbors de�ned like below:

Hc(xi)
.
=

∑

j→ki

αjcyjc . (2.2)

The 
lassi�er Hc is de�ned as a sum among a set of T weak 
lassi�ers. We


all those laters prototypes. So, given a set S
.
= {oi = (xi,yi), i = 1, 2, ...,m},

one prototype, denoted by the index j, is a training sample ∈ S de�ned by its

feature ve
tor xj , label yjc and later by its leveraging weight αjc. Those weights are

determined by �tting the 
lassi�er Hc into the supervised learning s
heme previously

des
ribed in (1.2).



2.3. UNN, Leveraging the k-NN 
lassi�er 9

2.3.1 Learning leveraged k-NNs in a boosting framework

Voting weights αjc in (2.2) are solutions of the minimization of the following average

surrogate risk:

εF (H, S)
.
=

1

C

C∑

c=1

1

m

m∑

i=1

F (yicHc(xi))

︸ ︷︷ ︸

εF (Hc,S)

. (2.3)

Sin
e we are in the one-vs-all learning s
heme we 
an minimize the per-
lass risk

εF (Hc, S) 
orresponding to Hc. To to so, one alternative is to use a boosting like

approa
h and then minimize ea
h surrogate εF (Hc, S) iteratively. In fa
t, at ea
h

iteration we pi
k one prototype j ∈ S for whi
h the 
lassi�
ation rule is de�ned as

the following weak 
lassi�er:

hjc(xi)
.
= αjcyjc ; j →k i (2.4)

su
h that:

Hc(xi)
.
=

∑

j→ki

hjc(xi) . (2.5)

Thus the lo
al risk (of the weak 
lassi�er) is the sum of losses due to hjc over the

training set S:

εF (hjc, S)
.
=

1

m

m∑

i=1

F (yichjc(xi)) . (2.6)

Note that the 
lassi�er hjc follows the leveraged k-NN rule and then only a subset

of S for whi
h sample j is a k-NN are 
on
erned by the voting of j. We denote

this subset by Rj ⊆ S whi
h is exa
tly the set of inverse nearest neighbors of j and

whi
h 
ardinality is equal to nj . Hen
e we redu
e on
e again the risk fun
tion that

should be minimized to this following:

εF (hjc,Rj)
.
=

1

nj

nj∑

i=1

F (yichjc(xi)) . (2.7)

We need to �nd optimal voting weight that minimizes the risk fun
tion in (2.7).

To do so, we iteratively update the leveraging weight of the a
tual weak 
lassi-

�er / prototype j in a boosting like pro
edure. Hen
e, we give samples weights of


lassi�
ation denoted by wic and progressively update them a

ording to the miss-


lassi�
ation of hjc. That is, weights of badly 
lassi�ed samples should be enhan
ed

and those of well 
lassi�ed ones will be narrowed. We 
onsider the following updat-

ing rules for prototypes weights αjc, 
lassi�
ation rule hjc and for training samples

weights wic:

αt
jc = αt−1

jc + δjc . (2.8)
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htjc(xi) = ht−1
jc (xi) + δjcyjc . (2.9)

wt
ic = −F ′(yich

t
jc(xi)) (2.10)

A
tually, at ea
h iteration t we should minimize εF (h
t
jc,Rj) a

ording to δjc. Let us

�rst repla
e hjc in (2.7) by its expression in (2.9). Then, the risk fun
tion be
omes

εF (h
t
jc,Rj)

.
=

1

nj

nj∑

i=1

F (yich
t−1
jc (xi) + yicδjcyjc) . (2.11)

and its �rst derivative a

ording to δjc is expressed like follows:

∂εF (h
t
jc,Rj)

∂δjc
=

1

nj

nj∑

i=1

yicyjcF
′(yich

t−1
jc (xi) + yicδjcyjc) (2.12)

=
1

nj

nj∑

i=1

yicyjcF
′(F ′−1

(−wt−1
ic ) + yicδjcyjc) (2.13)

Finally, �nding δjc = argmin
(

εF (h
t
jc,Rj)

)

amounts to solving the following general

equation based on the surrogate loss F:

nj∑

i=1

yicyjcF
′(F ′−1

(−wt−1
ic ) + yicδjcyjc) = 0 . (2.14)

2.3.2 Step by step algorithm

The di�erent steps of UNN are detailed in the general algorithm 1. The step

[I.0℄ in the algorithm 
onsists in 
hoosing the prototype j ∈ {1, 2, ...,m} (weak


lassi�er). In fa
t, at ea
h iteration, the index to leverage j, is obtained by a 
all

to a weak index 
hooser ora
le Wi
(., ., .). The sele
tion of the index j of the next

weak 
lassi�er 
ould be done randomly, or using some 
riterion. In the se
ond 
ase,

we pi
k T ≥ m, and let j be 
hosen by Wi
({1, 2, ...,m}, t, c) su
h that δj is large

enough. Ea
h j 
an be 
hosen more than on
e or one 
an restri
t this index to be


hosen only on
e.

The demonstration of the 
omputation of δj solution of (2.15) and wi in (2.16)

will be detailed later. Those expressions are given in Table 2.2 respe
tively for ea
h

of the 
onsidered loss in Table 2.1. W+
jc and W−

jc, used in Table 2.2, are respe
tively

the sum of weights of positif (good) inverse-NNs and that of negatif (bad) ones:

W+
jc =

nj∑

i=1

[yicyjc > 0]wic ; (2.17)

W−
jc =

nj∑

i=1

[yicyjc < 0]wic ; (2.18)



2.3. UNN, Leveraging the k-NN 
lassi�er 11

Algorithm 1: Algorithm Universal Nearest Neighbors UNN(S,F)

Input: S = {(xi,yi), i = 1, 2, ...,m}, loss F;
for c = 1, 2, ..., C do

Let αjc ← 0, ∀j;
Let wi ← −F′(0) ∈ Rm

+∗, ∀i;
for t = 1, 2, ..., T do

[I.0℄ Let j ←Wi
({1, 2, ...,m}, t);
[I.1℄ Let δj ∈ R solution of:

nj∑

i=1

yicyjcF
′(F′−1

(−wic) + yicδjcyjc) = 0 ; (2.15)

[I.2℄ ∀i : j ∼k i, let

wi ← −F′
(

yicδjcyjc + F

′−1
(−wi)

)

; (2.16)

[I.3℄ Let αjc ← αjc + δj ;

Output: hc(x) =
∑

i∼kx
αicyic, ∀c ;

For now, we will give some details about the demonstration getting to the ex-

pressions in table 2.2. We will 
onsider �rst the exponential loss fun
tion A in Table

2.1 whi
h is a spe
ial 
ase sin
e it leads to a 
lose form solution of δjc. Then we

will explain how to solve the problem for general 
ases. Lets 
onsider the equation

(2.14) 
orresponding to the exponential risk fun
tion, then:

nj∑

i=1

yicyjc(− exp(−(− ln(wt−1
ic ) + yicδjcyjc))) = 0 (2.19)

nj∑

i=1

yicyjc exp(ln(w
t−1
ic )) exp(−yicδjcyjc) = 0 (2.20)

nj∑

i=1

yicyjcw
t−1
ic exp(−yicδjcyjc) = 0 (2.21)

nj∑

i=1

[yicyjc > 0]wt−1
ic exp(−δjc)−

nj∑

i=1

[yicyjc < 0]wt−1
ic exp(δjc) = 0 ; (2.22)

In expression (2.22) we split the sum on the inverse-NNs su
h that we separate the

set Rj into R
+
j and R

−
j where R

+
j denotes the good inverse NNs (i-NN with the

same label as j) and R
−
j denotes the bad ones (i-NNs whi
h does not have same

label as j). Then, using de�nitions (2.17) and (2.18) we get:

W+
jc exp(−δjc)−W−

jc exp(δjc) = 0 ; (2.23)
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F δjc, see (2.17) and (2.18) g : wi ← g(wi)

exp 1
2 ln

W+
jc

W−

jc

wi exp(−yicyjcδjc)

log ln
W+

jc

W−

jc

wi exp(−yicyjcδjc)
1−wi(1−exp(−yicyjcδjc))

mat
2Wjc−1

2
√

Wjc(1−Wjc)
1− 1−wi+

√
wi(2−wi)δjcyicyjc

√

1+δ2
jc
wi(2−wi)+2(1−wi)

√
wi(2−wi)δjcyicyjc

Table 2.2: Computation of δjc and the weight update rule of our implementation of

UNN, for the stri
tly 
onvex losses in Table 2.1. UNN leverages example j for 
lass

c, and the weight update is that of example i (See text for details and notations).

whi
h leads to the following �nal expression of δjc:

δjc =
1

2
ln

(

W+
jc

W−
jc

)

. (2.24)

Therefore, the iterative update of boosting weights wt
ic in (2.10) as a fun
tion of δjc

is expressed like bellow:

wt
ic = exp

(
−yichtjc(xi)

)
(2.25)

= exp
(

−yicht−1
jc (xi)− yicyjcδjc

)

(2.26)

= wt−1
ic exp (−yicyjcδjc) (2.27)

For the remaining loss fun
tions, it is not possible to dire
tly solve (2.15). Then

we will assume that F

′(F′−1
(−wic) + yicδjcyjc) ≃ −wicF

′(yicδjcyjc). Therefore, the
equation (2.14) be
omes:

nj∑

i=1

yicyjcw
t−1
ic F

′(yicδjcyjc) = 0 (2.28)

nj∑

i=1

[yicyjc > 0]wt−1
ic F

′(δjc)−
nj∑

i=1

[yicyjc < 0]wt−1
ic F

′(−δjc) = 0 (2.29)

W+
jcF

′(δjc)−W−
jcF

′(−δjc) = 0 . (2.30)

Repla
ing F

′
in (2.30) and (2.10) by its expression 
orresponding to ea
h of the


onsidered losses will dire
tly lead to the Table 2.2. The 
onvergen
e proof and the

theoreti
al properties of UNN are detailed in [No
k et al. 2012℄.

2.4 Implementation details and optimizations

2.4.1 Implementation

Sin
e we are dealing with 
lassi�
ation topi
 for large s
ale image datasets, UNN

should over
ome some numeri
al problems that 
ould arise.
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The �rst one is that, we 
an fa
e unbalan
ing problem espe
ially be
ause we

are 
onsidering a one-vs-all framework. To 
ope with su
h problem we use adaptive

weights wic. That is: initially, w
0
ic are weighted, a

ording to wether they belong or

do not belong to the 
lass "c", by the proportion of positive (respe
tively negative)

samples in this 
lass su
h that the sum of weights is equal to 1. Then, at ea
h

iteration, we normalize weights wic, i = 1..m, to unity after the update in (2.16).

Note that when W+
j and/or W−

j is zero, δjc in Table 2.2 is not �nite. We suggest

a simple alternative to 
ope with this issue: we use (W+
j + ε) instead of W+

j and

(W−
j + ε) instead of W−

j .

Then, for the 
hoi
e of the prototype j in step [I.0℄ of Algorithm 1, we adopt

the next s
heme: we pi
k T ≤ m, 
onsider the m samples, 
hoose j su
h that αjc is

large enough and enable ea
h example to be 
hosen only on
e.

2.4.2 Metri
 setting

Two major issues arise when implementing our UNN algorithm in pra
ti
e. The

�rst one 
on
erns the distan
e (or, more generally, the dissimilarity measure) used

for the k-NN sear
h. The se
ond one 
onsists in setting the value of k for both

training and testing our prototype-based 
lassi�ers (see se
tion 2.4.3).

In fa
t, de�ning the most appropriate dissimilarity measure for k-NN sear
h is

parti
ularly 
hallenging when dealing with very high-dimensional feature ve
tors like

the ones 
ommonly used for 
ategorization. Indeed, the standard metri
 distan
es

may be inadequate when su
h ve
tors are generated by sophisti
ated pre-pro
essing

stages (e.g., ve
tor quantization or unsupervised di
tionary learning), thus lying

on 
omplex high-dimensional manifolds. In general, this should require an addi-

tional distan
e learning stage in order to de�ne the optimal dissimilarity measure

for the parti
ular type of data at hand. In this respe
t, our UNN method has

the advantage of being fully 
omplementary with any metri
 learning algorithm

[Bel Haj Ali et al. 2010℄, a
ting on the top of the k-NN sear
h (see Appendix A).

Furthermore, sin
e we use here BoF based on normalized histograms, we prefer use

standard L1 distan
e and then avoid expensive 
omputational tasks.

2.4.3 Parameters and optimization

Sele
ting a good value for k amounts to learning parameter-dependent weak 
lassi-

�ers, where the parameter k spe
i�es the size of the voting neighborhood in 
lassi�-


ation rule (2.2). From the theoreti
al standpoint, a brute-for
e approa
h is possible

with boosting: one 
an de�ne multiple 
andidate weak 
lassi�ers per example, one

for ea
h value of k, i.e., for ea
h neighborhood size, and then learn prototypes by

optimizing the surrogate risk fun
tion over k as well. This strategy has the ad-

vantage of enabling dire
t learning of k at training time. However, training several

weak 
lassi�ers per example without 
omputation tri
ks would potentially severely

impair the appli
ability of the algorithm on huge datasets. The solution we propose

is subtler: we have modi�ed the 
lassi�
ation phase of UNN, and tried a soft solu-



14 Chapter 2. Universal Nearest Neighbors algorithm: UNN

# of 
ategories 10 20 30 40 50 60 100

k-NN BoF 76.38 57.28 45.00 40.27 36.09 32.30 24.67

SVM BoF 83.85 67.65 58.21 53.45 47.81 44.09 35.31

AdaBoost BoF 75.37 58.21 45.57 37.75 32.41 29.01 26.72

UNNs BoF 84.28 70.44 58.49 51.07 46.34 41.80 31.61

Table 2.3: Classi�
ation performan
es of the di�erent methods we tested in terms

of the average a

ura
y or mAP as a fun
tion of the number of 
ategories.

tion whi
h, to 
lassify new observations, 
onvolutes weighting with a simple density

estimation suggested by boosting. Typi
ally, we 
onsider a logisti
 estimator for a

Bernoulli prior whi
h vanishes with the rank of the example in the neighbors, thus

de
reasing the importan
e of the farthest neighbors:

p̂(j) = βj =
1

1 + exp(λ(j − 1))
, (2.31)

with λ > 0. The shape prior is 
hosen this way be
ause it was shown that boosting,

as 
arried out in a number of algorithms � not restri
ted to the indu
tion of linear

separators [No
k & Nielsen 2009℄ � lo
ally �ts logisti
 estimators for Bernoulli pri-

ors. The soft version of UNN we obtain, 
alled UNNs (for �Soft UNN�), repla
es

(2.2) by:

hℓc(x) =
∑

j∼kx

βjαjcyjc . (2.32)

Noti
e that it is useless to enfor
e the normalization of 
oe�
ients βj in (2.31),

be
ause it would not 
hange the 
lassi�
ation of UNNs. Noti
e also that the βj in

(2.32) are used only to 
lassify new observations: the training steps of UNNs are

the same as UNN, and so UNNs meets the same theoreti
al properties as UNN

des
ribed in [No
k et al. 2012℄.

2.5 Experiments

In this se
tion, we present experimental results of UNN for image 
ategorization.

Our experiments aim at 
arefully quantifying and explaining the gains brought by

boosting on k-NN voting on real image databases. In parti
ular, we propose in

this se
tion pre
ision and a

ura
y 
omparison between UNN vs k-NN, SVM and

AdaBoost using Bag-of-Features (BoF) as des
riptors. Here, we extra
ted 2500

SIFT [Lowe 2004℄ per image to form a 
odebook of 500 visual words. BoF, of a

dimension 500, are then 
omputed by ve
tor quantizing the lo
al features SIFT

using this 
odebook.

We sele
ted 100 
ategories from the SUN database [Xiao et al. 2010℄. We kept all

the images of ea
h 
ategory and the inherent unbalan
ing of the original database.

We randomly 
hose half images to form a training set, while testing on the remaining

ones. The average a

ura
y or mAP (Mean average pre
ision) was 
omputed by
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Figure 2.1: Classi�
ation performan
es of the tested methods as a fun
tion of the

number of image 
ategories.

averaging 
lassi�
ation rates over 
ategories (diagonal of the 
onfusion matrix) and

then averaging those values after repeating ea
h experiment 10 times on di�erent

folds. To speed-up pro
essing time, we used Yael toolbox

1

for a fast implementation

of k-NN. Furthermore, we also developed an optimized version of our program, whi
h

exploits multi-thread fun
tionalities. We denote this version as UNNs(MT.) All the

experiments were run on an Intel Xeon X5690 12-
ores pro
essor at 3.46 GHz.

We 
ompared UNNs, SVM with Gaussian RBF Kernel, and AdaBoost with

de
ision stumps

2

(i.e., de
ision trees with a single internal node), using BoF de-

s
riptors. In parti
ular, we followed the guidelines of [Hsu et al. 2003℄ for 
arrying

out the SVM experiments, thus 
arrying out 
ross-validation for sele
ting the best

parameters values for SVM.

In Table 2.3 we report the a

ura
y for ea
h 
lassi�
ation method. Results in

these tables are provided as a fun
tion of the number of image 
ategories. The most

relevant results obtained are also displayed in Figure 2.1 (mAP as a fun
tion of the

number of 
ategories) and Figures 2.2 and 2.3, for the training and 
lassi�
ation

times, respe
tively.

A

ura
y results display that UNNs dramati
ally outperforms AdaBoost (and

k-NN as well); this result, whi
h somehow experimentally 
on�rms that UNN su
-


essfully exploits the boosting theory, was quite predi
table, as UNN builds a pie
e-

1

Code available at https://gforge.inria.fr/frs/?group_id=2151

2

For AdaBoost, we used the 
ode available at http://www.mathworks.
om/matlab
entral/

fileex
hange/22997-multi
lass-gentleadaboosting.
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Figure 2.2: Training time as a fun
tion of the number of image 
ategories.

Figure 2.3: Classi�
ation time for UNN(s) vs SVM as a fun
tion of the number of

image 
ategories with BoF.
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# 
ategories 10 20 30 40 50 60 100

# training images 951 2,162 3,099 4,381 5,540 6,568 11,186

k-NN 0

SVM 2.4 27 83 226 472 806 4526

AdaBoost 96 218 341 442 559 662 1128

UNNs 1.7 16 58 150 295 498 2146

UNNs(MT) 0.3 2.5 7.8 19 36 53 257

Table 2.4: Computation time [s℄ for the training phase.

# 
ategories 10 20 30 40 50 60 100

# test images 951 2,162 3,099 4,381 5,540 6,568 11,186

k-NN 0.20 1.0 2.0 4.0 6.0 9.0 22.0

SVM 0.25 5.7 13 31 56 80 260

AdaBoost 0.02 0.1 0.25 0.43 0.67 0.95 2.74

UNNs 0.21 0.72 1.6 2.7 4.2 5.9 17

UNNs(MT) 0.08 0.2 0.37 0.58 0.84 1.11 3.25

Table 2.5: Computation time [s℄ for the testing phase.

wise linear de
ision fun
tion in the initial domain X, while AdaBoost builds a linear

separator in this domain. SVM, on the other hand, have a

ess to non-linear �t-

ting of data, by lifting the data to a domain whose dimension far ex
eeds that of

X. Yet, SVM testing results are somehow not as good as one might expe
t from

this 
lear
ut theoreti
al advantage over UNN, and also from the fa
t that we 
arried

out SVM with signi�
ant parameters optimization [Hsu et al. 2003℄. Indeed, UNNs

even beats SVMs over 10 to 30 
ategories, being slightly outperformed by them on

more 
ategories.

In Table 2.4 and 2.5 we report the 
orresponding 
omputation time (in se
onds)

for the training and 
lassi�
ation phase, respe
tively. Obviously, the 
omputation

times over training and testing are also a key for exploiting the experimental results.

Table 2.4 displays that, while the training time of AdaBoost is linear, UNNs is

a logi
al 
lear
ut winner over SVM for training: it a
hieves speedups ranging in

between two and more than seventeen over SVM. Thus, UNN provides the best

pre
ision/time trade-o� among the tested methods, whi
h suggests that UNN might

well be more than a legal 
ontender to 
lassi�
ation methods dealing with huge

domains, or domains where the testing set is huge 
ompared to the training set,

whi
h is the 
ase, for instan
e, for 
ell 
lassi�
ation in biologi
al images. Finally, we

have only s
rat
hed experimental optimizations for UNN, and have not optimized

UNN from the 
omplexity-theoreti
 standpoint, so we expe
t room spa
e for further

signi�
ant improvement of its training/testing times.
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2.6 Con
lusion

In this 
hapter, we 
ontribute to �ll an important void of NN methods, show-

ing how boosting 
an be transferred to k-NN 
lassi�
ation, with 
onvergen
e rates

guarantees for a large number of surrogates. UNN, whi
h builds upon the works of

([Piro et al. 2012℄), generalizes 
lassi
 k-NN to weighted voting where weights, the

so-
alled leveraging 
oe�
ients, are iteratively learned by UNN. We prove that this

algorithm 
onverges to the global optimum of many surrogate risks in 
ompetitive

times under very mild assumptions. Compared to [Piro et al. 2012℄, we enlarge the

set of formal boosting �avors of UNN, from a singleton asso
iated to the exponential

loss to a set en
ompassing popular losses like the logisti
 and matsushita loss.

Our approa
h is also the �rst extensive assessment of UNN to 
omputer vision

related tasks. Comparisons with k-NN, support ve
tor ma
hines and AdaBoost,

using Bag-of-Feature des
riptors, on real domains, display the ability of UNN to be


ompetitive with its 
ontenders, a
hieving high a

ura
y in 
omparatively redu
ed

training and testing times.

An optimization approa
h using metri
 learning was not reported in this 
hap-

ter, sin
e it does not 
on
ern our learning framework, is reported in Appendix A

([Bel Haj Ali et al. 2010℄). It in
ludes blending UNN with an approa
h that learns

more sophisti
ated metri
s over data.



Chapter 3

Newton Nearest Neighbor

algorithm: N

3

3.1 Introdu
tion

Large s
ale image 
lassi�
ation implies satisfying tight time, memory and numer-

i
al pro
essing requirements. Coping with them involves in general two kinds of

approa
hes. For the �rst one, s
alability goes hand in hand with simpli�
ation:

algorithms are built around sophisti
ated, state-of-the art approa
hes that are sim-

pli�ed to �t into these requirements, su
h as Support Ve
tor Ma
hines (SVM) with

linear kernels [Shalev-Shwartz et al. 2007℄, or (Ada)Boosting with weight 
lipping

and simple stumps as weak 
lassi�ers [Ali et al. 2011℄.

The se
ond kind of approa
hes use as 
ore very simple algorithms that already

�t into these requirements, and then, from this basis, elaborate more 
omplex ap-

proa
hes with improved performan
es: this is the 
ase for the k-nearest neighbor

(NN) 
lassi�er, or the nearest 
lass mean 
lassi�er embedded with metri
 learning

[Mensink et al. 2012, Weinberger & Saul 2009℄. From the experimental standpoint,

these latter approa
hes obtain surprising 
ompetitive results with respe
t to the

former ones. In fa
t, they may have another advantage: while theoreti
al guaran-

tees barely survive extreme simpli�
ation, elaborating on a 
ore makes it perhaps

easier to preserve its theoreti
al properties, su
h as its statisti
al 
onsisten
y (e.g.

for k-NN [Devroye et al. 1996℄).

Our algorithm belongs to the se
ond 
ategory of approa
hes, as we elaborate on

the ordinary k-NN 
lassi�er. Our approa
h is di�erent but 
omplementary to metri


learning approa
hes, as we 
hoose to adapt k-NN to the boosting framework. It is in

the same line of works as UNN algorithm introdu
ed in 
hapter 2, but the present

one is of Newton-Raphson type, and then more adapted for large s
ale 
lassi�
ation.

Our high-level 
ontribution is threefold: a novel Adaptive Newton-Raphson

s
heme to leverage k-NN, 
alled N

3
, an extensive theoreti
al analysis of the ap-

proa
h, and �ne-grained experimental validations on three large and 
hallenging

domains: SUN and Calte
h. To be more spe
i�
, the novelty of our method in-


ludes:

(i) a proof of the boosting ability of N

3
, the �rst boosting-
ompliant 
onvergen
e

rates for a Newton-type approa
h to 
onvex loss minimization to the best of our

knowledge;

(iii) a proof that the output of N3
dire
tly yields e�
ient estimators of posteriors;

(iv) a divide and 
onquer algorithm to 
ompute these estimators and 
ope with the
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3


urse of dimensionality with low memory requirement;

(v) experimentally optimized 
ore-pro
essing stages for N

3
with linear 
ost per

boosting iteration.

Experimental results display that N

3
manages to 
hallenge a

ura
y of sophis-

ti
ated approa
hes while being faster, and requires low memory.

The remaining of the 
hapter is organized as follows: Se
tion 3.2 states basi


de�nitions. Se
tion 3.3 presents 
lassi�
ation-
alibrated losses. Se
tion 3.4 presents

N

3
algorithm. Se
tion 3.5 dis
usses its theoreti
al properties. Se
tion 3.6 presents

experiments, and se
tion 3.7 
on
ludes the 
hapter.

3.2 Basi
 de�nitions

We �rst provide some basi
 de�nitions. Our setting is multi
lass, multilabel


lassi�
ation. We have a

ess to an input set of m examples (or prototypes),

S
.
= {(xi,yi), i = 1, 2, ...,m}. Ve
tor yi ∈ {−1,+1}C en
odes 
lass memberships,

assuming yic = +1 means that observation xi belongs to 
lass c. A 
lassi�er H is

a fun
tion mapping observations to ve
tors in R
C
. Given some observation x, the

sign of 
oordinate c in H(x) gives whether H predi
ts that x belongs to 
lass c,

while its absolute value may be viewed as a 
on�den
e in 
lassi�
ation.

The nearest neighbors (NNs) rule belongs to the oldest, simplest and still most

widely studied 
lassi�
ation algorithms [Devroye et al. 1996℄. It relies on a non-

negative real-valued �distan
e� fun
tion. This fun
tion measures how mu
h two

observations di�er from ea
h other, and may not ne
essarily satisfy the requirements

of metri
s. We let j →k x denote the assertion that example (xj ,yj), or simply

example j, belongs to the k NNs of observation x. We shall abbreviate j →k xi by

j →k i � in this 
ase, we say that example i belongs to the inverse neighborhood of

example j. To 
lassify an observation x, the k-NN rule H(x) 
omputes the sum of


lass ve
tors of its nearest neighbors, that is: Hc(x)
.
=
∑

j→kx
yjc is the 
oordinate

c in H(x). A leveraged k-NN rule [No
k et al. 2012℄ generalizes this to:

Hc(x)
.
=

∑

j→kx

αjcyjc , (3.1)

where αj ∈ R
C
leverages the 
lasses of example j. Leveraging nearest neighbors

raises the question as to whether there exists e�
ient indu
tive learning s
hemes for

these leveraging 
oe�
ients.

To learn them, we adopt the framework of [Bartlett et al. 2006,

Vernet et al. 2011℄, and fo
us on the minimization of a total 
alibrated risk

whi
h sums per-
lass losses:

εF (H, S)
.
=

1

C

C∑

c=1

1

m

m∑

i=1

F (yicHc(xi))

︸ ︷︷ ︸

εF (Hc,S)

. (3.2)
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crit transfer fun
tion f 
alibrated loss F

A

1
1+exp(−x) ln(1 + exp(−x))

B

1
1+2−x ln(1 + 2−x)

C

1
2

(

1 + x√
1+x2

)

exp sinh−1(−x)

D

1+max{0,x}
2+|x| max{0,−x} − ln(2 + |x|)

Table 3.1: Calibrated losses that mat
h (3.3) for several transfer fun
tions. From

top to bottom, losses are the logisti
 loss, binary logisti
 loss, Matsushita's loss,


alibrated linear Hinge loss.

To be 
lassi�
ation-
alibrated, loss F : R→ R is required to be 
onvex, di�erentiable

and su
h that F ′(0) < 0 [Bartlett et al. 2006℄ (Theorem 4), [Vernet et al. 2011℄. The

re
ent advan
es in the understanding and formalization of (multi
lass) loss fun
tions

suitable for 
lassi�
ation have essentially 
on
luded that 
lassi�
ation 
alibration

is mandatory for the loss to be Fisher 
onsistent or proper [Bartlett et al. 2006,

Vernet et al. 2011℄. These are 
ru
ial properties without whi
h the minimization of

the loss brings no string statisti
al guarantee with respe
t to Bayes rule (su
h as

universal 
onsisten
y).

3.3 Classi�
ation-
alibrated losses

In this 
hapter, we are interested in a subset of 
lassi�
ation-
alibrated fun
tions,

namely those for whi
h:

F (x)
.
= −x+

∫

f , (3.3)

for some 
ontinuous transfer fun
tion f : R → [0, 1], in
reasing and symmetri


with respe
t to (0, 1/2 = f(0)). Intuitively, a transfer fun
tion brings an estimate

of posteriors: it is a bije
tive mapping between a real-valued predi
tion Hc(x) and

a 
orresponding posterior estimation for the 
lass, p̂[yc = +1|x], mapping whi
h

states that both values are positively 
orrelated, and establishes a tie for Hc = 0

to whi
h 
orresponds p̂[yc = +1|x] = 1/2. Transfer fun
tions have a longstanding

history in optimization [Kivinen & Warmuth 2001℄, and the set of F that mat
h

(3.3) stri
tly 
ontains balan
ed 
onvex losses, fun
tions with appealing statisti
al

properties [No
k et al. 2012℄ (and referen
es therein). Table 3.1 provides four ex-

ample of su
h losses on whi
h we fo
us. Another example of losses that meet (3.3)

is the squared loss, for transfer f = min{1,max{0, x + 1/2}}.
To 
arry out the minimization of (3.2), we adopt a mainstream 1-vs-rest boosting

s
heme whi
h, for ea
h c = 1, 2, ..., C, 
arries out separately the minimization of
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Algorithm 2: Algorithm Newton Nearest Neighbors N

3
(S, crit, k)

Input: Sample S, 
riterion crit ∈ {A,B,C,D}, k ∈ N∗;

Let αj ← 0,∀j = 1, 2, ...,m;

for c = 1, 2, ..., C do

//Minimize εF (Hc, S)

Let wi ← 1
‖1+yicyi‖1 , ∀i;

for t = 1, 2, ..., T do

[I.0℄//Choi
e of the example to leverage

Let j ←Wi
(S,w);

[I.1℄//Leveraging update, δj
Let η(c, j) ←∑

i:j→ki
wtiyicyjc;

Let nj ← |{i : j →k i}|;
Compute δj following Table 3.2, using crit;

[I.2℄//Weights update

∀i : j →k i, update wi as in Table 3.2, using crit;

[I.3℄//Leveraging 
oe�
ient update

Let αjc ← αjc + δj ;

Output: H(x)
.
=
∑

j→kx
αj ◦ yj

εF (Hc, S) in εF (H, S). To do so, it �ts the cth 
oordinate in leveraging 
oe�
ients

by 
onsidering the two-
lass problem of 
lass c versus all others.

3.4 N

3
: Adaptive Newton Nearest Neighbors

3.4.1 Algorithm

We now present algorithm N

3
, whi
h stands for �Newton Nearest Neighbors�. N

3
up-

dates iteratively the leveraging 
oe�
ients of an example in S, example pi
ked by

an ora
le, Wi
 for �Weak Index Chooser� ora
le. We detail below the properties

and implementation of Wi
. The te
hni
al details of the N

3
are given in Table 3.2.

N

3
follows the boosting s
heme, with iterative updates of leveraging 
oe�
ients

followed by an iterative re-weighting of examples. Before embarking into formal

algorithmi
 and statisti
al properties for N

3
, we �rst show that N

3
is of Newton-

Raphson type.

Theorem 1 N

3
performs adaptive Newton-Raphson steps to minimize εF (Hc, S),

∀c.

Proof sket
h: The key to the proof, whi
h we explore further in subse
tion 3.4.2,

is the existen
e of a parti
ular fun
tion gF , stri
tly 
on
ave and symmetri
 with

respe
t to

1/2, whi
h allows to rewrite the loss as:

F (x) = (−gF )⋆(−x) , (3.4)
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where ⋆ denotes the (Legendre) 
onvex 
onjugate. Convex 
onjugates have the

property that their derivatives are inverses of ea
h other. This property, along

with (3.4), allows to simplify the 
omputation of the derivatives of the loss, for any

example i in the inverse neighborhood of j:

∂F (yicHc(xi))

∂δj
= yicyjcF

′(yicHc(xi)) (3.5)

= −yicyjc((−gF )⋆)′(−yicHc(xi))

= −yicyjc((−gF )′)−1(−yicHc(xi))

= −yicyjc(1− (g′F )
−1(−yicHc(xi)))

= −yicyjc(g′F )−1(yicHc(xi))

= −KFwiyicyjc . (3.6)

Eq. (3.6) holds be
ause we 
an also rewrite the weights update (Table 3.2) as:

wi ←
1

KF
(g′F )

−1
(
δjyicyjc + g′F (KFwi)

)
, (3.7)

where (g′F )
−1

is the inverse fun
tion of the �rst derivative of gF , and KF is a

normalizing 
onstant: it is respe
tively ln(2), 1, 1/2, 1 for A, B, C and D in Table

3.3. From (3.5), it also 
omes ∂2F (yicHc(xi))/∂δ
2
j = F ′′(yicHc(xi)), where F ′′

denotes the se
ond derivative. Considering the whole inverse neighborhood of j, the

Newton-Raphson update for δj is (with η(c, j)
.
=
∑

i:j→ki
wtiyicyjc in N

3
):

δj ← λF ×
KF η(c, j)

∑

i:j→ki
F ′′(yicHc(xi))

, (3.8)

for learning rate 0 < λF ≤ 1. Mat
hing this expression with the updates in Table

3.2 brings learning rate:

0 < λF =
LF
∑

i:j→ki
F ′′(yicHc(xi))

KFnj
≤ LFF

′′(0)
KF

= 1 ,

for ea
h 
riteria A, B, C and D, where LF is respe
tively 4 ln(2), 4/ ln2(2), 1/2, 4, and

nj
.
= |{i : j →k i}| in N3

. The inequalities 
ome from the fa
t that F ′′ > 0 and

takes its maximum in 0 for all 
riteria. We then 
he
k that F ′′(0) = KF /LF for A,

B, C and D.

3.4.2 A key to the properties of N

3

The duality between real-valued 
lassi�
ation and posterior estimation whi
h stems

from f (See Se
tion 3.3) is fundamental for the algorithmi
 and statisti
al properties1

of N

3
. To simplify the statement of results and proofs, it is 
onvenient to make the

parallel between our 
alibrated losses F and fun
tions elsewhere 
alled permissible

2

,

1

See Appendix B for details on statisti
al properties of N

3
.

2

The usual de�nitions are more restri
ted: for example the generator of the 
alibrated

linear Hinge loss would not be permissible in the de�nitions of [Kearns & Mansour 1999,

No
k et al. 2012℄.
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crit leveraging weight update

update, δj g : wi ← g(wi, δj , yic, yjc)

A

4 ln(2)η(c,j)
nj

wi

wi ln 2+(1−wi ln 2)×exp(δjyicyjc)

B

4η(c,j)

ln2(2)nj

wi

wi+(1−wi)×2δjyicyjc

C

η(c,j)
2nj

1− 1−wi+
√

wi(2−wi)δjyicyjc
√

1+δ2jcwi(2−wi)+2(1−wi)
√

wi(2−wi)δjyicyjc

D

4η(c,j)
nj

1+max
{

0,−
(

δjyicyjc+
1−2wi
err(wi)

)}

2+
∣

∣

∣
δjyicyjc+

1−2wi
err(wi)

∣

∣

∣

Table 3.2: Leveraging and weight updates in N

3

orresponding to ea
h 
hoi
e of


alibrated loss in Table 3.1.

crit generator gF

A −x lnx− (1− x) ln(1− x)

B −x log2 x− (1− x) log2(1− x)

C

√

x(1− x)

D ln(2err(x)) + 1− 2err(x)

Table 3.3: Generators 
orresponding to 
alibrated losses in Table 3.1.
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that is, fun
tions de�ned on (0, 1), stri
tly 
on
ave, di�erentiable and symmetri


with respe
t to x = 1/2. It 
an be shown that for any of our 
hoi
es of F , there

exists a permissible gF , that we 
all a generator, for whi
h the relationships (3.7) and

(3.4) used in the proofsket
h of Theorem 1 indeed hold. Furthermore, the generator

is also useful to write the transfer fun
tion itself, as we have:

f(x) = (−gF )′−1(x) . (3.9)

Table 3.3 provides the four generators 
orresponding to 
hoi
es A, B, C and D.

The permissible generator of the 
alibrated linear Hinge loss makes use of the error

fun
tion:

err(x)
.
= min{x, 1− x} . (3.10)

Permissible fun
tions (as well as (3.10)) are used in losses that rely on poste-

rior estimation rather than real-valued 
lassi�
ation. Su
h losses are the 
or-

nerstone of de
ision-tree indu
tion and other methods that dire
tly �t posteriors

[Devroye et al. 1996℄. Hen
e, (3.4) establishes a duality between the two kinds of

losses, duality whi
h appears as a watermark in various works [Bartlett et al. 2006,

Friedman et al. 2000℄. The writing of the weight update using gF in (3.7) is also

extremely useful to simplify the proofs of the following Theorems. Finally, there

is a syntheti
 writing for the weights, whi
h sheds light on their interpretation:

unraveling the weight update (3.7) and using (3.9), we obtain that wi satis�es:

wi ∝ 1− f(yicHc(xi)) . (3.11)

Hen
e, weights and estimated posteriors are in opposite linear relationship. A
-


ording to (3.11), examples �easier to 
lassify� (re
eiving large estimated posteriors)

re
eive small weight. This is a fundamental property of boosting algorithms, that

progressively 
on
entrate on the hardest examples.

3.5 Algorithmi
 properties of N

3

The �rst result is a dire
t follow-up from Table 3.2.

Lemma 2 With 
hoi
e D (
alibrated linear Hinge loss), N

3
may be implemented

using only rational arithmeti
.

Comments on Lemma 2: In the light of the boosting properties of N

3
, this

result is important in itself. Most existing boosting algorithms, in
luding UNN,

AdaBoost, Gentle AdaBoost and spawns [No
k et al. 2012, Friedman et al. 2000℄

make it ne
essary to tweak or 
lip the key numeri
al steps, in
luding weights update

or leveraging 
oe�
ients [Ali et al. 2011℄, at the possible expense of failing to meet

boosting's 
onvergen
e or a

ura
y. Rational arithmeti
 still requires signi�
ant


omputational resour
es with respe
t to �oating point 
omputation, but Lemma

2 shows that whenever these are a

essible, formal boosting may be implemented

virtually without any loss in numeri
al pre
ision.
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Let us now shift to the boosting result on N

3
, whi
h is stated under the following

weak learning assumption:

There exist 
onstants γu > 0, γn > 0 su
h that at any iterations c, t of N3
,

index j returned by Wi
 is su
h that nj > 0 and the following holds: (i)

∑

i:j→ki wi

nj
≥ γu

KF
, and (ii) |p̂w[yjc 6= yic|j →k i]− 1/2| ≥ γn.

Requirement (ii) 
orresponds to the usual weak learning assumption of boosting: it

postulates that the 
urrent normalized weights in the inverse neighborhood of exam-

ple j authorize a 
lassi�
ation di�erent from random by at least γn. Requirement

(i) states that unnormalized weights must not be too small. This is a ne
essary


ondition as unnormalized weights of minute order do not ne
essary prevent (i) to

be met, but would obviously impair the 
onvergen
e of N

3
given the linear depen-

den
e of δj in the unnormalized weights. The following Theorem states that N

3
is

a boosting algorithm.

Theorem 3 Suppose N

3
is ran for T steps for ea
h c, and that the weak learning

assumption holds at ea
h iteration of N

3
. Denote I the whole multi-set of indexes

returned by Wi
. Then for any 
riterion A, B, C, D, the total 
alibrated risk does

not ex
eed some ε ≤ F (0) provided:

∑

j∈I
nj = Ω

(
(C + |ε|)m

γ2nγ
2
u

)

. (3.12)

Remark : requirement ε ≤ F (0) 
omes from the fa
t that a leveraged NN with null

leveraging ve
tors would make a total 
alibrated risk equal to F (0).

Comments on Theorem 3: to the best of our knowledge, no formal 
onvergen
e

rate has been established to date for Newton approa
hes to boosting, in
luding

the popular Gentle AdaBoost [Friedman et al. 2000℄. Theorem 3 gives several rules

of thumb to run N

3
and implement Wi
. The �rst is that Wi
 should 
hoose

examples whose inverse neighborhood is not too small. For example, assume that

boosted examples have inverse neighborhood's size not smaller than the average,

implying (1/T )
∑

j∈I nj ≥ k. Then, omitting 
onstants in the big omega of (3.12),

we obtain that (3.12) is satis�ed as soon as the number of iterations (T ) meets:

T ≥ (C + |ε|)m
kγ2nγ

2
u

.

This inequality suggest to 
hoose k (i) proportional to C and (ii) moderately in-


reasing in m. These two 
hoi
es imply, under the weak learning assumption, that

N

3
is a sparse boosting algorithm: we only need to boost a subsample of S to rea
h

a desired upperbound for the 
alibrated risk.
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 mean.

3.6 Experimental Evaluation

3.6.1 Settings: 
ontenders, databases and features

We mainly report and dis
uss experiments of N

3
versus k-NN and sup-

port ve
tor ma
hines (SVM) implemented with Sto
hasti
 Gradient Des
ent

SGD whi
h represents the state of art among the 
lassi�ers on large s
ale datasets

[Perronnin et al. 2012℄.

We abbreviate N

3
log, N

3
binlog, N

3
mat, N

3
hingethe four �avors of N

3

orresponding

respe
tively to rows A, B, C, D in Table 3.1. In N

3
, Wi
 
hooses the example with

the largest 
urrent δj .

The datasets used in this 
hapter, Calte
h256, and SUN are among the most


hallenging datasets publi
ly available for large s
ale image 
lassi�
ation:

• Calte
h256 [Gri�n et al. 2007℄ (
al): This dataset is a 
olle
tion of 30607 images
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k-NN N

3
log N

3
binlog N

3
hinge N

3
mat

a



L1 25.58 35.50 36.40 33.62 34.40

L2 25.90 33.97 35.44 32.87 33.55

Table 3.4: Top1 a

ura
y on 
al (64 splits, L1 or L2 normalization).

k-NN N

3
log N

3
binlog SGD

Top1 a

 20.92 30.16 30.10 28.59

Top5 a

 42.67 55.21 54.90 57.08

Table 3.5: Top5 a

ura
y on sun (64 splits, L1 normalization).

of 256 obje
t 
lasses. Following 
lassi
al evaluation, we use 30 images/
lass for

training and the rest for testing.

• SUN [Xiao et al. 2010℄ (sun): This dataset is a 
olle
tion of 108656 images divided

into 397 s
enes 
ategories. We set the number of training images per 
lass to 50 and

we test on the remaining.

We adopted for the features the Fisher ve
tors (fv) [Perronnin et al. 2010℄

en
oding to represent images. Fisher Ve
tor are 
omputed over densely extra
ted

SIFT des
riptors (fvs) and lo
al 
olor features (fvsc), both proje
ted with PCA

in a subspa
e of dimension 64. Fisher Ve
tors are extra
ted using a vo
abulary of

16 Gaussian and normalized separately for both 
hannels and then 
ombined by


on
atenating the two features ve
tors (fvs+sc). This approa
h leads to to a 4K

dimensional features ve
tor.

To 
ompare algorithms, we adopt the top1 and top5 a

ura
ies (a

), de-

�ned respe
tively as the proportion of examples that was 
orre
tly labelled and the

proportion of those for whi
h the 
orre
t 
lass belongs to the top5 predi
ted pat-

terns [Mensink et al. 2012℄. We also report pro
essing times on a 2 X Intel Xeon

E5-2687W 3,1GHz and analyse the 
onvergen
e and the 
ost of N

3
. But �rst, we

propose a divide and 
onquer algorithm that optimizes 
lassi�
ation using posteri-

ors.

3.6.2 A divide and 
onquer algorithm to 
ope with the 
urse of

dimensionality with low memory requirement

It is well known that NN 
lassi�ers su�er of the 
urse of dimensionality

[Beyer et al. 1999℄, hubs [Radovanovi¢ et al. 2010℄, so that the a

ura
y 
an de-


rease when in
reasing the size of des
riptors. This may also a�e
t N

3
. fv are

extremely powerful des
riptors but they generate a spa
e with about 4K dimension

for 32 gaussians that 
ould impair N

3
performan
e.

Our approa
h relies on ni
e property of minimizing 
lassi�
ation-
alibrated

losses: we 
an easily 
ompute the posteriors from the s
ore using N

3
(see

[D'Ambrosio et al. ear℄). Thus, we propose a three step splitting method :
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number of iterations T .

• split fv in a regular set of n∗ ∈ {2, 4, 8, 16, 32, 64} sub-des
riptors and normalize

with L1 or L2 norm;

• 
ompute posteriors for ea
h sub-ve
tor (Table 3.1);

• 
ombine these probabilities using a generalized average: arithmeti
, geometri
 or

harmoni
.

3.6.3 Analysis on a

ura
y and 
onvergen
e

First, �gures 3.1 and 3.2 validate the divide and 
onquer approa
h, as in
reasing

the number of splits on fv 
learly improves performan
es. Also, as seen from the

left plot, L1 normalization tends to outperform L2 normalization. The �optimal�

number of splits (64) is then used in Table 3.4 whi
h displays that L1 normalization

of fv slightly improves 
lassi
al L2 normalization. N

3
binlog is also better than all

other �avors of N

3
, and overall all �avors of N

3
very signi�
antly outperform k-NN.

We have also 
ompared N

3
against SGD and k-NN on the sun data set

[Xiao et al. 2010℄. Results using T = 50 iter for N

3
and 1000 iter for SGD are

displayed in Table 3.5. One sees that N

3
signi�
antly beats N

3
and approa
hes the

a

ura
y of SGD. Note that memory requirement for N

3
is divided by the number

of splitting (i.e. twi
e the number of Gaussian of the Fis
her Ve
tor).

Figures 3.3 and 3.4 shows the 
onvergen
e of N

3
on 
al and sun. One sees

from the plots that the 
onvergen
e of the Newton approa
h in N

3
is extremely fast
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Figure 3.4: Top1 and top5 a

ura
ies (with 1 split) on sun as a fun
tion of the

number of iterations T .

and requires only few iterations � this is not the 
ase for the non-Newton approa
h

UNN [No
k et al. 2012℄, whi
h requires a larger number of iterations. The fast


onvergen
e in N

3
results in sparse prototype sele
tion (T ≪ m), well adapted for

large s
ale datasets, and suggests to 
hoose T as a fun
tion of the number of images

in the 
orresponding 
lass (inner loop of N

3
), su
h as T = O(m/C). Hen
e, we end

up with a 
omplexity depending on T ≪ m.

3.7 Con
lusion

In this 
hapter we have proposed a novel Newton-Raphson approa
h to boosting

k-NN. We show that it is a boosting algorithm, with several key algorithmi
 and

statisti
al properties. In fa
t, the spe
i�
 set of 
alibrated loss fun
tions allows us to

estimate the posteriors from the 
lassi�
ation s
ores of N

3
, and use them in a divide

and 
onquer s
heme to 
ope with the k-NN's 
urse of dimentionality. Experiments

display that although a

ura
y results are similar to state of the art approa
hes

like SGD, our N

3
requires limited memory sin
e we split the features and use ea
h

part independently. This makes our approa
h suitable for very large s
ale image


lassi�
ation problems.



Part II

Learning Linear Classi�ers with

Calibrated Losses





Chapter 4

Sto
hasti
 Low-Rank Newton

Des
ent algorithm: SLND

4.1 Introdu
tion

Large s
ale image 
lassi�
ation requires 
omputational e�
ien
y. To 
ope with

these issues, 
urrent standard approa
hes involves high dimensional features like

Fis
her Ve
tors [Perronnin et al. 2010℄ or super ve
tors [Zhou et al. 2010℄ and Sup-

port Ve
tor Ma
hines (SVM) with linear kernels for training [Wang et al. 2010℄.

The 
lassi
al approa
h introdu
ing SVM �rst states dual formulation [Vapnik 1998℄

where the task is to minimize empiri
al risk in the dual spa
e with a regularization

term. The �rst alternative approa
h on primal optimization [Keerthi et al. 2006℄

used 
onjugate gradient or 
utting plane algorithms [Joa
hims 2002℄. Re
ent state

of the art papers rather fo
us on the more e�
ient "Sto
hasti
 Gradient Des
ent"

algorithm (SGD) [Zhang 2004, Bottou & Bousquet 2008℄ and the "PEGASOS" al-

gorithm [Shalev-Shwartz et al. 2007℄, with linear 
omplexity in the number of sam-

ples.

Although SGD methods perform as well as bat
h solvers at a fra
tion of 
ost,

�rst order SGD methods still su�er from slow 
onvergen
e. Two approa
hes were

re
ently proposed in order to 
ope with this issue; The �rst is the natural gradi-

ent approa
h, whi
h in
orporates the estimation of the Riemannian metri
 ten-

sor using Fisher information [Amari 1998℄. The se
ond alternative approa
hes

are based on a sto
hasti
 version of the quasi Newton Broyden-Flet
her-Golfarb-

Shanno (BFGS) optimization algorithm. The �rst one is a low memory sto
has-

ti
 version of the BFGS quasi Newton method [S
hraudolph et al. 2007℄. Al-

though their BFGS method redu
es the number of iterations, ea
h iteration re-

quires a multipli
ation by a low rank matrix. Unfortunately this 
omputational


omplexity is often larger than the gains asso
iated with the quasi-Newton up-

date as pointed in [Bordes et al. 2009℄. In order to 
ope with this 
omplexity

[Bordes et al. 2009, Bordes et al. 2010℄ proposed a "SGD-QN" algorithm with an

update using the diagonal of the Hessian matrix. Unfortunately there are no proof

of 
onvergen
e of their "SGD-QN" algorithm.

Our high-level 
ontribution is a new sto
hasti
 Low-Rank Newton s
heme with

theoreti
al proofs and experimental validations on three large and 
hallenging do-

mains: SUN, Calte
h256 and ImageNet. To be more spe
i�
, the novelty of our

approa
h in
ludes:

(i) A new Sto
hasti
 Newton des
ent algorithm, SLND, whi
h approximates the
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inverse Hessian by a low-rank matrix whi
h we prove is the best a

ording

to the squared Frobenius norm. SLND minimizes any 
lassi�
ation 
alibrated

risk, that may ensure 
onvergen
e towards Bayes rule;

(ii) The proof of 
onvergen
e of SLND whi
h provides rates of 
onvergen
e and

working set of parameters for the experiments, in
luding the step size param-

eter ηt;

(iii) Experimental results display that SLND has linear 
omplexity both in term

of the number of samples and the dimension of the features and 
hallenges the

a

ura
y of SGD while being a magnitude faster.

The remaining of the 
hapter is organized as follows: se
tion 4.2 summarizes the

general framework, se
tion 4.3 provides our new algorithm SLND with several key

steps for its 
ore optimization, se
tion 4.4 presents experiments on large datasets

and �nally se
tion 4.5 presents 
onvergen
e proof of our new algorithm SLND.

4.2 Reminder

4.2.1 Framework

We �rst remind some de�nitions. Our setting is multi
lass, multilabel 
lassi�
ation.

We have a

ess to an input set of m samples, S
.
= {(xi,yi), i = 1, 2, ...,m}. Ve
tor

yi ∈ {−1,+1}C en
odes 
lass memberships, assuming yic = +1 means that obser-

vation xi belongs to 
lass c. A 
lassi�er h is a fun
tion mapping observations to

real-valued ve
tors in R
C
. Given some observation x, the sign of 
oordinate c in

h(x), hc, gives whether h predi
ts that x belongs to 
lass c, while its absolute value

may be viewed as a 
on�den
e in 
lassi�
ation.

To learn this 
lassi�er, we fo
us on the minimization of a total risk whi
h sums

over 
lasses and over samples the loss of 
lassi�
ation a

ording to h;

ε
F

(h, S)
.
=

1

C

C∑

c=1

1

m

m∑

i=1

F(yichc(xi))

︸ ︷︷ ︸

ε
F

(hc,S)

. (4.1)

ε
F

(hc, S) is the per-
lass risk, and F is a surrogate loss fun
tion.

4.2.2 Calibrated risks

Re
ent advan
es in 
lassi�
ation allow to pre
isely de�ne 
onstraints with whom

losses F in (4.1) have to 
omply, to meet statisti
al and 
omputational properties

parti
ularly desirable in handling large, 
omplex and noisy 
lassi�
ation problems

[Bartlett et al. 2006, No
k & Nielsen 2008, Vernet et al. 2011℄. There are three 
on-

straints: F is 
onvex, di�erentiable and su
h that F

′(0) < 0. We restri
t our interest

to losses that also meet the following property:

F(x) = −x+

∫

f , (4.2)
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crit transfer fun
tion f 
alibrated loss F

A

1
1+exp(−x) ln(1 + exp(−x))

B

1+max{0,x}
2+|x| max{0,−x} − ln(2 + |x|)

Table 4.1: Calibrated losses F

crit
and their respe
tive transfer fun
tions. A is the

logisti
 loss and B is the 
alibrated linear hinge loss.

where f : R → [0, 1] is in
reasing and symmetri
 with respe
t to (0, 1/2 = f(0)).

The fundamental intuition is that f dire
tly maps a real valued predi
tion hc to a

posterior estimation for 
lass c (see [D'Ambrosio et al. ear℄). This last 
onstraint

ensures that the loss at hand F is Fisher 
onsistent and proper, properties with whi
h


onvenient form of 
onvergen
e to Bayes rule are a

essible through minimizing

(4.1). We 
all losses that meet these 
onstraints, and the total risks by extension,

as 
lassi�
ation 
alibrated. Examples of 
lassi�
ation 
alibrated losses in
lude the

squared and the logisti
 losses. In this 
hapter, we �rst 
onsider the logisti
 loss:

F

log(x)
.
= ln(1 + exp(−x)) . (4.3)

Then, we 
onsider the 
alibrated linear Hinge loss, previously introdu
ed in 
hapter

3, as:

F

hinge(x)
.
= max{0,−x} − ln(2 + |x|) . (4.4)

Table 4.1 gives the 
onsidered losses F and their 
orresponding transfer fun
tion f .

Figure 4.1 shows the logisti
 loss and the 
alibrated linear Hinge loss. We also plot

Hinge loss and the exponential loss for 
omparison. Note that 0 < F

′′(x) ≤ F

′′(0)
and F

′′(0) = 1/4 for the 
alibrated losses (4.3) and (4.4).

4.3 SLND: Sto
hasti
 Low-Rank Newton Des
ent

4.3.1 Computing gradient update

To 
arry out the minimization of (4.1), we adopt a mainstream 1-vs-rest training

s
heme whi
h is more e�
ient among di�erent approa
hes [Perronnin et al. 2012,

Weston et al. 2011℄. For ea
h 
lass c = 1, 2, ..., C, we 
arry out separately the min-

imization of ε
F

(hc, S) in ε
F

(h, S). To do so, it �ts the cth 
omponent of h by


onsidering the 
lass c versus all others. In what follows, we thus drop "c" to

simplify notations.

In this approa
h we fo
us on the 
lassi
al linear 
lassi�er de�ned as:

h(xi)
.
= w

⊤
xi . (4.5)
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Figure 4.1: Calibrated losses F : the logisti
 and 
alibrated linear Hinge losses


onsidered for SLND algorithm.

The goal is to learn w for ea
h 
lass c = 1, 2, ..., C minimizing the following 
riterion,

after repla
ing hc in ε
F

(hc, S) by its expression in 4.5 :

ε
F

(w, S)
.
=

1

m

m∑

i=1

F(yicw
⊤
xi) . (4.6)

Remark: there is no regularization term in (4.6) (and in (4.1) in general),

whi
h is quite non-standard if we refer to the 
lassi
al SVM or SGD approa
hes

[Bordes et al. 2009℄.

To approximate the optimal w, we 
arry out an iterative sto
hasti
 Newton

algorithm. In general, this aims at updating at ea
h iteration t, the 
urrent w noted

wt, a

ording to a randomly pi
ked sample xi ∈ S as follows :

wt+1 = wt − ηt

(
∂2ε

F

(wt,xi)

∂2wt

)−1
∂ε
F

(wt,xi)

∂wt
, (4.7)

where ηt > 0 
ontrols the strength of the update. In su
h 
ase, the �rst derivative

or the gradient ∇ is:

∂ε
F

(wt,xi)

∂wt
= yiF

′ (yiw
T
t xi

)
xi , (4.8)

and the se
ond derivative, or the Hessian H, is:

∂2ε
F

(wt,xi)

∂2wt
= F

′′ (yiw
T
t xi

)
xix

T
i . (4.9)
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Unfortunately it is well known that the Hessian matrix typi
ally varies as the

samples xi 
hanges. Thus, instabilities arise qui
kly if we try to estimate it for

ea
h sample [Bordes et al. 2009℄. To 
ir
umvent these problems, statisti
 opti-

mization approa
hes 
onsider instead an averaging of the Hessian. For example,

[Ljung & Söderström 1983℄ rewrite the sto
hasti
 Newton algorithm as follow :

wt+1 = wt − ηt

(

E[
∂2ε

F

(wt, St)

∂2wt
]

)−1
∂ε
F

(wt,xi)

∂wt
, (4.10)

where St ⊆ S is the set of samples xi pi
ked until the iteration t. The update of

the averaged Hessian in (4.10) is quite expensive in the 
ase of huge datasets and

large s
ale features. Hen
e, we follow [Li 1992, Cook 1998℄ who average the Hessian

on
e and approximate it by the 
ovarian
e matrix. We 
onsider E[∂
2ε
F

(wt,S(m′))
∂2wt

],

with S(m′) a subset of m′ ≤ m random examples from S, instead of E[∂
2ε
F

(wt,St)
∂2wt

] in

(4.10). Let re
all that 0 < F

′′(x) ≤ F

′′(0) for the 
alibrated losses (4.3) and (4.4).

Then, we will 
onsider the following approximation :

E[
∂2ε

F

(wt, S(m
′))

∂2wt
] =

1

m′
∑

i∈S(m′)

F

′′ (yiw
T
t xi

)
xix

T
i (4.11)

≈ F

′′(0)
1

m′
∑

i∈S(m′)

xix
T
i , (4.12)

Consequently, 
omputing H−1
, requires only on
e the prin
ipal hessian dire
tion

(p.h.d.) using eigenve
tors for the eigenvalue de
omposition of the 
ovarian
e ma-

trix.

For sometypi
ally small k > 0, we 
ompute a low-rank pseudo-inverse, i.e. a low-

rank approximation of its inverse, H∗
, as follows, where rank(H∗) = k is user-�xed.

First, we perform a diagonalization of H = PDP⊤
where (non-negative) diagonal

values are ordered in de
reasing order, d11 ≥ d22 ≥ ... ≥ duu = 0 = ...dnn, where

u ≥ k. Denote P|k the m× k matrix 
ontaining the �rst k 
olumns of P, and resp.

D|k as the k × k diagonal matrix of their eigenvalues. We �nally 
ompute H∗
only

on
e:

H
∗ = P|kD

−1
|k P

⊤
|k . (4.13)

The update (4.7) be
omes:

wt+1 = wt − ηtyiF
′ (yiw

T
t xi

)
H

∗
xi . (4.14)

4.3.2 Core optimization

Sin
e we use 1-vs-rest training s
heme, the training set is usually highly unbalan
ed

when the number of 
lass in
reases, examples not in 
lass c outnumbering those in


lass c, for any c. When 
lass c is a minority 
lass, this is even more dramati
.

To dampen the negative 
onsequen
es, we follow the sampling balan
ing approa
h
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proposed by [Perronnin et al. 2012℄. When learning 
lass c against the rest, we use

all examples from 
lass c (the positives), while sampling a subset of the rest of the

other 
lasses (the negatives) of the same size.

Furthermore, in order to optimize 
omputational 
omplexity, on
e H∗
is 
om-

puted, we pre
ompute for all the training set a weighted prepro
essing of the fea-

tures:

x
∗
i = H

∗
xi . (4.15)

Noti
e that this is done only on
e for a given H∗
. This saves signi�
ant training

time and the 
omputational 
omplexity of ea
h iteration in SLND is basi
ally of

the same order as 
lassi
al SGD [Bordes et al. 2009℄. The �nal update in SLND is:

wt+1 = wt − ηtyiF
′ (yiw

T
t xi

)
x
∗
i . (4.16)

Finally, the tuning of ηt is a non-trivial problem for gradient or Newton approa
hes

[Bordes et al. 2009℄. We prove an expli
it 
onvergen
e rate for SLND in Theorem

5 hereafter whi
h provides us with expressions for ηt typi
ally in the order Ω(1/m)

and O(1/
√
m). The values we have 
hosen in our implementation of SLND belong

to this range and are thus 
ompatible with the formal 
onvergen
e rates shown for

SLND.

4.3.3 Remarks

There are several 
omparisons to make about SLND with respe
t to other prominent

approa
hes. First, SLND is not related to (linear) SVM, as there is no regulariza-

tion term in the 
riterion (4.6), whi
h explains the di�eren
e between the right

hand-side term in wt in (4.6) and the term in (1 − λ)wt whi
h would follow from

the 
lassi
al linear SVM 
ost fun
tion, where λ 
ontrols the strength of regulariza-

tion [Bordes et al. 2009℄. Also, SLND is signi�
antly di�erent from dimensionality

redu
tion te
hniques like PCA or general non-linear manifold learning, whi
h would


arry out dimensionality redu
tion as a pre
onditioning on data and on w, thus

working on the redu
ed domain. Noti
e also that (4.15) is not a pre
ondition-

ing of data, as ea
h iteration in (4.16) makes use of both xi and x
∗
i . In addi-

tion, SLND is also di�erent from the quasi newton (L)BFGS family [No
edal 1980℄

[S
hraudolph et al. 2007℄ as the approximation to the Hessian inverse is 
arried out

in a di�erent way. Moreover SLND di�ers from quasi-Newton methods for SVM

[Bordes et al. 2009℄ sin
e we do not restri
t the Hessian approximation to be diag-

onal (thus omitting all 
ovarian
e terms). Finally, SLND is not a natural gradient

approa
h (whi
h in
orporates Riemannian metri
 tensor [Amari 1998℄) and thus

SLND does not require the 
omputation of the Fisher information matrix.
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4.4 Experimental evaluation

4.4.1 Settings

We mainly report and dis
uss experiments of SLND versus SGD whi
h represents

the state of art among the 
lassi�
ation methods on large s
ale datasets [Zhang 2004,

Bottou & Bousquet 2008℄ , [Shalev-Shwartz et al. 2007℄, [Perronnin et al. 2012℄.

We use Fisher ve
tors (fv) [Perronnin et al. 2010℄ as e�
ient features to

represent images. Fisher Ve
tors are 
omputed over densely extra
ted SIFT

des
riptors (fvs) and lo
al 
olor features (fvsc), both proje
ted with PCA in a

subspa
e of dimension 64. Sin
e the goal of the 
hapter is to 
ompare SLND versus

SGDwe use Fisher Ve
tors using a vo
abulary of only 16 Gaussian to limit memory

requirement. Ea
h Fisher Ve
tors are normalized separately for both 
hannels and

then 
ombined by 
on
atenating the two features ve
tors (fvs+sc). This approa
h

leads to to a 4K dimensional features ve
tor.

We report experimental results on three datasets, Calte
h256, SUN and Ima-

geNet whi
h are among the most 
hallenging datasets publi
ly available for large

s
ale image 
lassi�
ation:

• Calte
h256 [Gri�n et al. 2007℄: This dataset is a 
olle
tion of 30607 images

of 256 obje
t 
lasses. Following 
lassi
al evaluation, we use 30 images/
lass

for training and the rest for testing.

• SUN [Xiao et al. 2010℄: This dataset is a 
olle
tion of 108656 images divided

into 397 s
enes 
ategories. We set the number of training images per 
lass to

50 and we test on the remaining.

• ImageNet [Deng et al. 2009℄: We use the dataset of the ImageNet Large S
ale

Visual Re
ognition Challenge 2010 (ILSVRC2010)

1

with its 1000 
ategories.

It provides 1.2M of images for training step and 150K for testing.

To 
ompare algorithms, we use top1 and top5 a

ura
ies (a

), de�ned re-

spe
tively as the proportion of examples that was 
orre
tly labelled and the pro-

portion of those for whi
h the 
orre
t 
lass belongs to the top5 predi
ted images

[Mensink et al. 2012℄. We �rst analyse parameter of SLND and then the 
onver-

gen
e of SLND.

4.4.2 Tuning parameters of SLND

Our algorithm requires the tuning of only three parameters: the step size parameter

ηt , the rank k and the number of sample m′
for the 
omputation of the 
ovarian
e

matrix. The step size parameter ηt is typi
ally in the order Ω(1/m).

Let us study the in�uen
e of parameters k and m′
.

1

http://image-net.org/
hallenges/LSVRC/2010/index
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Figure 4.2: Eigenvalues of the 
ovarian
e matrix on Calte
h256 (left), SUN (
enter)

and ImageNet (right).

Fig 4.2 shows the eigenvalues of the 
ovarian
e matrix, ordered from the largest

to the smallest. All 
urves have the same sigmoid shape, and our 
hoi
es of k

ensure that we get all the signi�
antly large eigenvalues. Re
all that although the


ovarian
e matrix is positive-de�nite, the 
ondition number is very large resulting

in an ill-
onditioned problem.

In order to 
ope with this issue, we study the a

ura
y as a fun
tion of the rank

of the inverse of the Hessian: Fig 4.3 shows that a

ura
y 
urve has its max for a

large rank plateau, and furthermore this plateau shape is similar regardless of the

domain.
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Figure 4.3: A

ura
y as a fun
tion of the rank of the Hessian matrix on Calte
h256

(blue), SUN (red) and ImageNet (green).
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Fig 4.4 shows the a

ura
y as a fun
tion of samples m′
used for 
omputing the


ovarian
e matrix. Flu
tuations of m′
imply �u
tuations in the a

ura
y, but the

range of the a

ura
y is not very large for reasonable values of m′
.
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Figure 4.4: A

ura
y as a fun
tion of the number of samples used for the 
omputa-

tion of the Hessian matrix on Calte
h256 (blue), SUN (red) and ImageNet (green,

see text).

To summarize, the eigenvalues 
urve, the 
urve a

urary as a fun
tion of the

rank k and to a lesser extent the 
urve a

ura
y as a fun
tion of m′
have the same

behavior for all databases. Thus, based on the above-experiments, both rank k and

m′
in SLND are easily tuned.

4.4.3 Convergen
e rate analysis

Training time and 
onvergen
e of algorithms are very important for large s
ale

data base pro
essing. We plot on �g 4.5 and 4.6 the 
onvergen
e of SGD with

logisti
 loss, SLND both for Logisti
 Loss and 
alibrated linear Hinge Loss and

SGD-QN for logisti
 Loss on Calte
h256 and SUN data bases. One sees from the

plots that the 
onvergen
e of our Sto
hasti
 Low-Rank Newton approa
h SLND is

a magnitude faster than the 
lassi
al SGD. Note that a

ura
y of Logisti
 Loss

and 
alibrated linear Hinge Loss SLND are very similar. A

ura
y of SGD-QN is

very 
lose to SGD on Calte
h256 and SUN and slightly better on ImageNet; We

get similar results when using only a diagonal approximation of the Hessian matrix

in our SLND method.
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Figure 4.5: Top1 a
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ies as a fun
tion of number of passes (iterations / skips)

for SGD and SLND on Calte
h256
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tion of number of passes for SGD and SLND on

ImageNet. On top, the top-1 a
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y and at the bottom the top-5 a

ura
y.

Plots of 
onvergen
e in Fig 4.7 on ImageNet shows again that SLND is faster
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of a magnitude than 
lassi
al SGD both for the top-1 a

ura
y and top-5 a

ura
y.

SLND requires few iterations to 
onverge: we only need one iteration (on 2000

samples) to get the same top-1 a

ura
y as SGD with 200 iterations. Moreover,

we a
hieve top-1 a

ura
y equal to 36.23% (respe
tively top-5 a

ura
y equal to

59.06%) with 10 or 20 iterations of SLND, wi
h outperforms the best a

ura
ies of

SGD by 4% (respe
tively 3.5%) and SGD-QN by 3.3% (respe
tively 2.4%). Note

that a

ura
y of SGD-QN is slightly better than SGD on ImageNet. We report

also in Fig 4.7 on ImageNet results of SGD using pre
onditioning of the data (noted

SGD-P) [LeCun et al. 1998℄. Although pre
onditioning the data improves 
lassi
al

SGD, SLND still outperform all SGD methods. Training using SLND on ImageNet

requires only one CPU hour. Training SGD for the same a

ura
y requires at least

20 CPU hours on a 2 X Intel Xeon E5-2687W 3,1GHz and 64 GB of RAM. Thus

fast 
onvergen
e of SLND results in sparse training set requirement well adapted

for large s
ale image 
lassi�
ation.

4.5 SLND Theoreti
al 
onvergen
e analysis

4.5.1 Best rank k approximation

We �rst show that H∗
, as 
omputed in (4.13), is the best rank k approximation of

the inverse of H a

ording to squared Frobenius norm.

Lemma 4 H∗
satis�es:

H
∗ = min

H′∈Rm×m,rank(H′)=k
‖I−HH

′‖2F (4.17)

Proof: We use the fa
t that H = PDP⊤
, PP⊤ = I and tra
e tr is 
y
li
 invariant,

and we have: ‖I−HH′‖2F = tr((I−HH′)(I −HH′)) = tr(PP⊤(I−HH′)PP⊤(I−
HH′)) = tr(P⊤(I −HH′)PP⊤(I −HH′)P) = tr((I − D(P⊤H′P)))2), out of whi
h
is 
omes that P⊤H′P is diagonal, and so H′


an be diagonalized in the same basis

as H. Finally, to minimize the squared Frobenius norm, the non zero entries in its

diagonal must equal the k greatest non-zero entries in D.

4.5.2 A Weak Separability Assumption

We now prove a 
onvergen
e result on SLND. For this obje
tive, we de�ne ptj
.
=

−F′(yjw⊤
t xj) ≥ 0 as a weight over the examples. For any 
lassi�
ation 
alibrated

loss, −F′
is de
reasing. Hen
e, weight ptj is all the smaller as example j is all the

better 
lassi�ed by wt. Intuitively, an example gets better 
lassi�ed as yj agrees

with the sign of w
⊤
t xj and the magnitude |w⊤

t xj | is large. We let pt ∈ R
m
be the

ve
tor of weights. We let x
◦
j

.
= (P|k

√

D
−1
|k )⊤xj denote ve
tor xj expressed in the

normalized eigenve
tors' basis of H∗
(4.13). Finally, we de�ne st ∈ R

m
as the ve
tor

whose 
oordinates are:

stj
.
= yjx

⊤
j H

∗
xit = yj(x

◦
j )

⊤
x
◦
it ,∀j , (4.18)
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where example it is the one 
hosen to update wt in (4.16).

Our result relies on the following Weak Separability Assumption:

• (WSA) There exists γ > 0 a 
onstant su
h that for any iteration t in SLND,

p⊤t st
‖st‖1

≥ γ . (4.19)

x◦
it

x◦
3

y2 = −1x◦
2

y1 = +1

y3 = −1

x◦
1

H

Figure 4.8: x
◦
it is a better 
lassi�er for examples 1 and 2 (st1, st2 > 0) than it is for

example 3 (st3 < 0).

To interpret WSA and see why it is indeed a Weak Separability Assumption, 
onsider

the interpretation of st and assume x
◦
it is used as a linear 
lassi�er. Then, stj ≥ 0

i� the 
lass yj agrees with the sign of this 
lassi�er, and it is all the larger as the


lassi�er's output is large. On the other hand, stj ≤ 0 i� the 
lass yj disagrees with

the sign of the 
lassi�er, and it is all the smaller as the 
lassi�er's output is large.

Hen
e, stj quanti�es the goodness of �t of 
lassi�er x
◦
it
on xj (see Figure 4.8). Thus,

p⊤t st is a weighted average of this goodness of �t, in whi
h weights are all the larger

as examples have re
eived a bad �tting so far by wt. Hen
e, WSA implies that

xit must 
ontribute to 
lassify better at least a small fra
tion of the examples with

respe
t to wt. To see why it is �Weak�, informally, pi
king xit at random in any set

satisfying mild 
onstraints would make an expe
ted value of p⊤t st equal to zero. So,
we require the 
hoi
e of xit in SLND to beat a random linear 
lassi�er by at least a

small amount. For the informed reader, the WSA parallels in our setting the popular

weak learning assumptions in boosting algorithms [Freund & S
hapire 1997℄.

4.5.3 Convergen
e theorem

The following Theorem shows that under the WSA, there exists a guaranteed de-


rease rate of the 
alibrated risk at ea
h iteration, and this holds for whi
hever of

the logisti
 and 
alibrated linear Hinge loss 
hosen to run SLND. The result would

also hold for various other possible 
hoi
es of 
lassi�
ation 
alibrated losse, in
luding

the squared loss.
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Theorem 5 Assume WSA is satis�ed at ea
h step of SLND. Then, for any ε ∈
(0, 1) there exists a value of ηt in Ω(1/m) and O(1/

√
m) su
h that the following rate

of de
rease is guaranteed for the 
alibrated risk at hand:

ε
F

(wt+1, S) ≤ ε
F

(wt, S)−
2γ2ε(1− ε)

mF′′(0)
,∀t . (4.20)

Sin
e SLND is initialized with w0 = 0, the null ve
tor, to guarantee ε
F

(wT , S) ≤ F◦

for any 
hosen real F

◦ ≤ F(0) su
h that F

◦
is in the image of F, it is enough to

make

T ≥ (F(0)− F◦)F′′(0)
2γ2ε(1− ε)

×m = Ω

(
m

γ2

)

iterations of SLND. In order not to laden the 
hapter's body, a proofsket
h of the

Theorem is provided in Appendix C. The proof exhibits and dis
usses the expression

of ηt whi
h guarantees (4.20).

4.6 Con
lusion

In this 
hapter we have proposed a new Sto
hasti
 Low Rank Newton des
ent algo-

rithm (SLND) for the minimization of 
alibrated risk with linear 
omplexity both

in term number of samples and dimension of the features. SLND performs update

of the 
urrent 
lassi�er with pseudo-inverses of the Hessian that are the most a
-


urate low-rank approximations of the inverse a

ording to Frobenius norm. We

show the 
onvergen
e of SLND using a Weak Separability Assumption whi
h states

that ea
h example 
hosen to update the 
lassi�er must provide a weighted margin

at least larger than some (possibly small) 
onstant γ > 0. Under this weak assump-

tion, SLND guarantees that its 
lassi�er has rea
hed some �xed upperbound on the


laibrated risk at hand after Ω(m/γ2) iterations. No 
onvergen
e rates are known

to date for SGD-like approa
hes. Furthermore, the theory provides us with a set of

working parameters for the experiments, in
luding a step parameter ηt typi
ally in

the order Ω(1/m).

We validate these theoreti
al properties by ben
hmarking it against state-of-the-

art SGD algorithm on three 
hallenging domains: Calte
h256, SUN and ImageNet.

The results on large s
ale image 
lassi�
ation display that SLND improves signif-

i
antly a

ura
y of the SGD baseline while being faster by orders of magnitude.

Experiments also display that the parameters of SLND may be easily �xed and

used from a domain onto another.
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Chapter 5

Bio-Medi
al 
ells 
lassi�
ation

5.1 Introdu
tion

High-
ontent 
ellular imaging is an emerging te
hnology for studying many bio-

medi
al phenomena. Pathologists establish their diagnosti
s by studying tissue se
-

tions, blood samples or pun
tures. Related 
ellular image analysis generally requires

to 
lassify many 
ells a

ording to their morphologi
al aspe
t, staining intensity, sub-


ellular lo
alization and other parameters. In general, samples are stained with vari-

ous dyes to visualize 
ell 
ytoplasm and nu
leus. In addition, immunohisto
hemistry

is used to study spe
i�
 protein expression. Using these approa
hes, pathologists

observe tissue damage or 
ell dysfun
tion like for example, in�ammation, neoplasia

or ne
rosis. Abnormal nu
lei allow determining 
an
er grades. Pathologists re
-

ognize aberrant shapes of whole 
ells, organelles, nu
lei or staining allowing the


lassi�
ation of the 
ells. Classi
al quanti�
ation is based on visual 
ounting. New

powerful fully motorized mi
ros
opes are now able to produ
e thousands of multi-

parametri
 images for several experimental 
onditions. Consequently, large numbers

of 
ell images have to be analysed. Su
h analysis by one (or several) experimenter

is time-
onsuming and above all poorly reprodu
ible. In fa
t, humans are limited

in their ability to 
lassify due to the huge amount of image data. Visual 
ounting is


onsequently performed on a small portion of the sample. A Computer Aided Di-

agnosis (CAD) system will allow reliable quanti�
ation and therefore be a pre
ious

tool in diagnosti
s.

In this 
hapter we present an appli
ation of UNN algorithm to biologi
al 
el-

lular image 
lassi�
ation. First we introdu
e our spe
i�
 bio-inspired des
riptors,

using 
ontrast information distributions on the already segmented 
ells: a region

based des
riptor that shows its e�
ien
y to des
ribe 
ellular images. Those bio-

inspired features (BIF) are sometimes more than 10% more a

urate than standard

des
riptors for su
h images. Then, we report two biologi
al appli
ations of 
ells


lassi�
ation using BIF des
riptor.

5.2 Region based bio-inspired des
riptor

For better understanding the image 
ontent, it 
an be useful to get inspiration from

the way our visual system operates to analyze the s
ene. The �rst transformation

undergone by a visual input is performed by the retina.

In fa
t, ganglion 
ells, that are the �nal output of the retina, are �rst simulated

by the lo
al 
hanges of the illumination. This information is 
aptured by their
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re
eptive �elds and transformed to luminan
e 
ontrast intensities. Those re
eptive

�elds are like 
enter-surround models (see Fig. 5.1). They rea
t to the illumination
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Figure 5.1: Top, re
eptive �elds in the retina modeled by DoGs for 4 s
ales. Bellow,

the model of the response of those retinal 
ells.

of either the 
enter or the surround of the ganglion 
ells and are disabled when

illuminating the other one. Su
h behavior, similar to an edge dete
tor, is modeled

by a 
entered two-dimensional Di�eren
e of Gaussians (5.1).

DoGσ(x, y) = Gσ(x, y)−Gα·σ(x, y) (5.1)

Moreover, ganglion 
ells rea
t to the luminan
e in di�erent s
ales, thus adding

multis
ale aspe
t and allowing us to use DoG �lters in a s
ale spa
e (Fig. 5.1).

The basi
 idea is to 
ompute features inspired from the visual system model and

spe
ially from the main 
hara
teristi
s of the retina pro
essing. Su
h was the 
ase

in [Bel haj ali et al. 2011℄, where we represented the image using features based on


ontrast information on square blo
s.

Su
h des
riptor is well adapted in the 
ase of our 
ells images sin
e the most

dis
riminative visual feature between 
ategories is the luminan
e 
ontrast in sub
el-

lular regions. Thus, we de�ne 
ell des
riptors based on the lo
al 
ontrast in the 
ell,

that we 
all Bio-Inspired Features, BIF. The lo
al 
ontrast is obtained by a �ltering

with Di�eren
es of Gaussians (DoGs) 
entered at the origin. So that the 
ontrast

CIm for ea
h position (x, y) and a given s
ale s in the image Im is as follows:

CIm(x, y, s) =
∑

i

∑

j

(Im(i+ x, j + y) ·DoGσ(s)(i, j)) (5.2)

We use the DoG des
ribed by [Field 1994℄ where the larger Gaussian has three

times the standard deviation of the smaller one. After 
omputing these 
ontrast
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oe�
ients in (5.2), we apply a non-linear bounded transfer fun
tion, named neuron

�ring rates, used in [Van Rullen & Thorpe 2001℄. This fun
tion is written as:

R(C) = G · C/(1 +Ref ·G · C), (5.3)

where G is named the 
ontrast gain and Ref is known as the refra
tory period, a

time interval during whi
h a neuron 
ell rea
ts. The values of those two parameters

proposed in [Van Rullen & Thorpe 2001℄ to best approximate the retinal system are

G = 2000Hz · contrast−1
and Ref = 0.005 s.

Firing rate 
oe�
ients R(C) are en
oded on an already segmented 
ell region.

Then, they are quanti�ed into normalized L1 histograms of n-bins for ea
h s
ale

and �nally 
on
atenated. Thus our global des
riptor's dimension is a multiple of n.

Note that state of the art 
lassi
al methods su
h as SIFT des
riptors en
ode

gradient dire
tions on square blo
ks [Lowe 2004℄. and Gist features en
ode average

energies of �lters 
oe�
ients on square blo
ks too [Oliva & Torralba 2001℄.

5.3 Appli
ation to the lo
alization of NIS protein in the


ells of the thyroid gland

In the present work, we perform 
ellular image 
lassi�
ation to study the pathways

that regulate plasma membrane lo
alization of the sodium iodide symporter (NIS

for Natrium Iodide Symporter). Those biologi
al experiments are part of the re-

sear
h proje
t of TIRO team from the fa
ulty of mede
ine of Ni
e. NIS is the key

protein responsible for the transport and 
on
entration of iodide from the blood

into the thyroid gland. NIS-mediated iodide uptake requires its plasma membrane

lo
alization that is �nely 
ontrolled by poorly known me
hanisms. For de
ades, the

NIS-mediated iodide a

umulation observed in thyro
ytes has been a useful tool for

the diagnosis (thyroid s
intis
an) and treatment (radiotherapy) of various thyroid

diseases. Improvements in radioablation therapy might result from promoting tar-

geting of NIS to the plasma membrane in the majority of thyroid 
an
ers or metas-

tases. NIS has also been des
ribed as a promissing therapeuti
 transgene promot-

ing metaboli
 radiotherapy (i.e., 131I uptake by 
an
er 
ells e
topi
ally-expressing

NIS) in many di�erent studies. An important improvement of this approa
h should

bene�t from a better understanding of the post-trans
riptional regulation of NIS

targeting to the plasma membrane, Previously, we observed that mouse NIS 
ataly-

ses higher levels of iodide a

umulation in transfe
ted 
ells 
ompared to its human

homologue. We showed that this phenomenon was due to the higher density of the

murine protein at the plasma membrane. To rea
h this 
on
lusion, biologists 
lassi-

�ed several hundreds of 
ells [Dayem et al. 2008℄. We have also demonstrated, using

a set of mono
lonal antibodies, that human NIS is not expressed intra
ellularly in

thyroid and breast 
an
er [Peyrottes et al. 2009℄, as was proposed by other groups.

The team of biologists is now fo
ussing on the analysis of NIS phosphorylation

that most probably plays an important role in the post-trans
riptional regulation

of the NIS. Using site-dire
ted mutagenesis of previously-identi�ed 
onsensus sites,
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we have re
ently shown that dire
t phosphorylation of NIS alters NIS targeting to

the plasma membrane, as well as NIS re
y
ling, 
ausing retention of the protein in

intra
ellular 
ompartments su
h as the Golgi apparatus, the endoplasmi
 reti
ulum

or the early endosomes. We used a high-
ontent 
ellular imaging to study the im-

pa
t of the mutation of several putative phosphorylation sites on the sub
ellular

distribution of the protein.

5.3.1 Experiments settings

In our experiments, expert biologists individually expressed di�erent NIS proteins

mutated for putative sites of phosphorylation. The e�e
t on the protein lo
alization

of ea
h mutation was studied after immunostaining using anti-NIS antibodies as

des
ribed in [Dayem et al. 2008℄. Immuno
ytolo
alization analysis revealed mainly

two 
ell types with di�erent sub
ellular distributions of NIS: at the plasma mem-

brane or in intra
ellular 
ompartment (mainly endoplasmi
 reti
ulum) whi
h we

will refer to by Mb; throughout the 
ytoplasm (with an extensive expression) whi
h

we will 
all ER. An example of Mb and ER 
ells are shown respe
tively in Figures

5.2(a) and 5.2(b).
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(a)

(b)

Figure 5.2: AnMb (a) and an ER (b) extra
ted 
ells and their two segmented regions

of interest.

The goal of su
h experiments is to establish statisti
s on the di�erent mutations

of 
ells. Our appli
ation aims to assign automati
ally for ea
h 
ell one of the previ-

ously numbered patterns a

ording to its staining aspe
t. The approa
h is depi
ted

into two main steps: image segmentation to seperate 
ells, extra
ting des
riptors

and 
lassi�
ation task.



56 Chapter 5. Bio-Medi
al 
ells 
lassi�
ation

5.3.2 Cells dete
tion and segmentation

Figure 5.3: Blo
k diagram of the proposed method for automati
 
ell segmentation.

The �rst step is a pre-pro
essing segmentation of 
ells from the main mi
ros
opi


images. The database 
onsist of two distin
t parametri
 �uores
en
e images. The

�rst one, 
alled nu
leus image, shows the nu
leus and the se
ond 
alled global image,

shows the staining of the protein. The two images are only two di�erent a
quisitions

(with two di�erent wavelength) of the same experiment. We 
onsider images at 40-

fold magni�
ation that was a
quired by means of a fully �uores
en
e mi
ros
ope

(Zeiss Axio Observer Z1) 
oupled to a mono
hrome digital 
amera (Photometri
s


as
ade II 
amera). We note that nu
lei images are used for the only purpose to

help to segment global 
ells. But never used for feature extra
tion. The information

that is used to de�ne 
lasses is the staining aspe
t in the global 
ells images. Nu
lei

are identi�ed from the nu
lei image and used as a prior for whole 
ell segmentation

of the global image. An example of nu
lei and global 
ells segmentation result are

given in Figures 5.4 and 5.5.
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Figure 5.4: An example of nu
lei segmentation. Ea
h nu
leus is identi�ed with a

di�erent 
olor. The green point shows the nu
leus 
enter.
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Figure 5.5: An example of 
ells segmentation. Ea
h 
ell is marked with a di�erent


olor.

The segmentation pro
ess is des
ribed in the diagram of Figure 5.3. In fa
t,

nu
lei lo
ations are dete
ted by the mean of morphologi
al operators and used to

segment nu
lei and get their masks.

Those latters are then used as markers to segment the global 
ells. The output of

the segmentation step 
orresponds to three images for ea
h 
ell: a sub-image that

bounds the 
ell, a binary image for 
ell's mask and a se
ond binary image for nu
leus

mask.
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5.3.3 Features and 
lassi�
ation

Figure 5.6: Blo
k diagram of the proposed method for automati
 
ell 
lassi�
ation:

des
riptor extra
tion and 
lassi�
ation pro
ess.

On
e 
ells are segmented, we apply our 
lassi�
ation method (see diagram 5.6); First

we 
ompute bio-inspired region des
riptors, extra
ting 
ontrast-based features for

ea
h of the segmented 
ells. These des
riptors are then used in a supervised learning

framework to de�ne the 
lassi�er to be used to predi
t the 
lass of unlabeled 
ells.

For this purpose, we 
olle
ted 489 
ell images of su
h biologi
al experiments

and manually annotated them a

ording to three 
lasses, that are denoted in the

following as Mb (389 
ells), ER (100 
ells) and Round (8 
ells) (dead 
ells).

Sin
e round 
ells are very easy to 
lassify (very high 
ontrast everywhere in the


ell), we fo
us on the two 
ategory 
lassi�
ation: Membrane (Mb) and ER.

To extra
t our des
riptors, we use masks on 
ell images on whi
h we en
ode �ring

rate 
oe�
ients (5.3): a

ording to the visual aspe
t of 
ells, we split ea
h 
ell into

two regions of interest (see �gure 5.2), 
orresponding to nu
leus and external part,

by using previously 
omputed masks (the external region is the remaining of the

substitution of the nu
leus mask from the global one). For both of the two regions,

�ring rate 
oe�
ients are quanti�ed into normalized L1 histograms of 32-bins then


on
atinated, thus giving our global des
riptor with a dimension equal to 64 per

s
ale.

An important parameter for our bio-inspired des
riptors is the s
ale on whi
h

we 
ompute the lo
al 
ontrast. In fa
t, the standard deviations of the DoG are

dependant of this parameter as follows: σ1 = 0.5 ·2scale−1
and σ2 = 3 ·σ1. We made

a 
ross validation on 100 experiments to 
hoose the most relevant s
ale parameter.

A

ording to those evaluations, next experiments are performed using scale = 5 for

des
riptor extra
tion.

On
e we get des
riptors of all the 
ells in the database, we ran our UNN algo-

rithm by training on 50% of the images, while testing on the remaining 50%. In

order to get robust performan
e estimation, we repeated the evaluation 100 times
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over di�erent random training/testing folds. Note that we used a fast and e�e
ient

tool for the k-NN sear
h provided in the Yael toolbox

1

.

Our 
lassi�
ation algorithm UNNs was evaluated in a �rst step using a uniform

regularization by the mean of the parameter γ that 
ompensates the 
lass imbalan
e.

In a se
ond step, we fo
used in an adaptive regularization a

ording to majority and

minority 
lasses and we denote this approa
h by UNNs_adaptive. This approa
h

allows to have automati
ally a balan
e number of trained prototypes per 
lass (see

Tab. 5.1) and visibly de
rease mis
lassi�
ation.

Nt NMb NER

UNNs 69.24% 50.20% 19.03%

UNNs_adaptive 47.69% 28.58% 19.11%

Table 5.1: This table shows the per
entage of prototypes number sele
ted from the

training set by both UNNs and UNNs_adaptive : We report the total number (Nt),

the one in the 
lass Mb (NMb), and in the 
lass ER (NER). The distribution of

sele
ted prototypes on both 
lasses is more balan
ed using UNNs_adaptive.

mAP AP for Mb AP for ER

µ(mAP ) σ(mAP ) µ(AP ) σ(AP ) µ(AP ) σ(AP )

k-NN 84.22 2.56 94.81 2.02 73.64 5.63

UNNs 86.04 2.54 94.48 1.90 77.60 5.46

UNNs_adaptive 87.67 1.93 89.27 2.26 86.08 3.78

SVM 76.46 4.55 95.58 2.38 57.34 10.67

Table 5.2: Global average pre
ision (MAP), average pre
ision for Mb and average

pre
ision for ER for di�erent 
lassi�ers.

We report the average 
lassi�
ation results and the 
lassi�
ation rate of ea
h


lass in Tab. 5.2. Remark that we a
hieve a mean average pre
ision (MAP) greater

than 87.5% when using UNNs_adaptive, whi
h is a very promising result for our


ell des
riptor and 
lassi�
ation method. Our 
lassi�
ation approa
h improves the

MAP of the k-NN 
lassi�er of more 3% and the SVM with gaussian kernel of more

than 11%. Moreover some mis
lassi�
ation arises on the minority 
lass (ER) using

k-NN , thus giving an average pre
ision (AP) of about 73% (see Tab. 5.2). Using

UNNs_adaptive 
lassi�
ation improved MAP of the minority 
lass up to 86% thus

13% better than k-NN. For the SVM 
lassi�
ation, the result in Tab. 5.2 shows

that there is an important 
lassi�
ation error on ER 
ells where the AP is about

only 57%.

1

Sour
e 
ode 
an be downloaded in the following link: https://gforge.inria.fr/proje
ts/yael
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5.4 Appli
ation to Immuno-Fluores
en
e 
ells

In autoimmune diseases, targets of autoantibodies are 
hara
terized by indire
t Im-

muno�uores
en
e (IIF) on human 
ultured 
ells. Then, stained 
ompartments of


ells are identi�ed by experts.

In this 
ontext, we evaluate our BIF features and our UNN 
lassi�
ation on

the HEp-2 Cells dataset [Foggia et al. 2010℄ provided by University of Salerno and

Campus Bio-Medi
o of Roma

2

. This database 
ontains 721 images divided into six


ategories as shown in Fig. 5.7.

Centromere Coarse Spe
kled Cytoplasmati


208 109 58

Fine Spe
kled Homogeneous Nu
leolar

94 150 102

Figure 5.7: Sample images and the number of elements for ea
h 
ategory in the

dataset.

Cells are already segmented (manually) and both hole images and their 
orre-

sponding masks are provided in the dataset.

In a �rst step, we extra
t Bio-Inspired features for ea
h manually segmented


ell a

ording to the 
ell mask. This version of our feature will be denoted as

BIF

s
. In a se
ond experiment, we extra
ted BIF on the whole image of the 
ell

(without segmentation) to test the robustness of those features. We will refer to

this version by BIF

a
. To better adjust some parameters, su
h as the dimension,

we performed a 
ross validation system on the number of s
ales and the number of

quanti�
ation bins, and we 
hoose using 4 s
ales with a number of bins equal to

256. Our global features are the 
on
atenation of histograms of 256-bins for ea
h

s
ale. The �nal dimension of des
riptors is then equal to 4 × 256. We 
ompare

our approa
h to the state of the art SIFT des
riptor. We use 
lassi
al Bag-of-

2

Data available at: http://mivia.unisa.it/hep2
ontest/index.shtml
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Features [Sivi
 & Zisserman 2006℄, with the same dimension 1024, on the dense

SIFT provided by [Vedaldi & Fulkerson 2008℄ whi
h en
ode gradient dire
tions on

a grid of small square blo
ks of the 
ellular image.

UNNexp UNNlog UNNmat

A

ura
y 96.16 95.46 94.72

AUC 96.32 95.78 95.25

Table 5.3: Classi�
ation results using the BIF

s
des
riptor for the three proposed

versions of UNN. The �rst row indi
ates the True Positive rate or a

ura
y, and

the se
ond one is about the Area Under the ro
 Curve (AUC).

For the 
lassi�
ation task we performed 
ross validations on 10 random folds.

Ea
h fold 
orresponds to a random split of the dataset su
h that we train on 50% of

the images, while testing on the remaining ones. We evaluated the di�erent versions

of UNN in Tab.5.3.

UNN SVM

BIF

a
BIF

s
SIFT BIF

a
BIF

s
SIFT

Centromere 96.05 96.15 85.00 97.01 97.40 88.07

Coarse Spe
kled 99.62 97.59 69.81 95.00 97.03 71.29

Cytoplasmati
 100.0 100.0 99.65 100.0 100.0 97.93

Fine Spe
kled 93.82 95.95 61.27 94.25 94.46 58.93

Homogeneous 90.26 91.20 91.86 93.46 94.00 88.93

Nu
leolar 97.45 96.07 87.25 97.64 97.45 88.03

average A

ura
y 96.20 96.16 82.47 96.23 96.72 82.20

Table 5.4: Evaluations of UNN and SVM using both BIF

a
(on whole images), BIF

s

(on manually segmented 
ells) and SIFT Bag-of-features. Here, we give the A

u-

ra
y for ea
h 
lass. The last row shows the average A

ura
y. The best performan
e

for ea
h 
ategory is given in blue and the se
ond one in green.

We 
ompared performan
es of UNNexpwith those of standard SVM, using both

BIF and SIFT Bags-of-features (see Tables 5.4 and 5.5). The reported results of

UNN refer to setting k = 10 for both training and testing. This value refers to the

best performan
es a

ording to a 
ross validation on the training set. The same

experiment was performed to 
hoose the parameters for the gaussian SVM. Note

that for the k-NN sear
h we used the same fast and e�
ient software as previ-

ously. For BIF des
riptor we report experiments on both BIF

s
and BIF

a
versions

of our features. Although BIF

a
version performs similar results to BIF

s
version,

the 
omparison with SIFT Bags-of-features be
omes fair enough to 
on
lude that

Bio-Inspired Features are more adapted to su
h images. In fa
t, results on ta-

bles 5.4 and 5.5 display the high dis
riminative ability of the proposed Bio-Inspired

Feature, whi
h allows for 
lassi�
ation pre
ision generally larger than 90%, up to
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UNN SVM

BIF

a
BIF

s
SIFT BIF

a
BIF

s
SIFT

Centromere 95.48 95.68 92.63 97.86 96.62 92.03

Coarse Spe
kled 98.54 97.24 86.70 94.23 95.40 79.00

Cytoplasmati
 99.64 99.73 97.82 99.39 99.02 93.15

Fine Spe
kled 93.54 95.61 63.35 89.56 91.82 59.26

Homogeneous 93.42 94.79 91.06 97.04 97.78 91.39

Nu
leolar 97.74 94.89 92.35 94.94 98.66 92.59

average AUC 96.39 96.32 87.32 95.50 96.55 84.57

Table 5.5: Evaluations of UNN and SVM using both BIF

a
(on whole images), BIF

s

(on manually segmented 
ells) and SIFT Bag-of-features. Here we present the Area

Under the ro
 Curve (AUC) for ea
h 
lass. The last row shows the average AUC.

The best performan
e for ea
h 
ategory is given in blue and the se
ond one in green.

almost 100% (on the �Coarse Spe
kled� and �Cytoplasmati
� 
lasses). In addition,

the pre
ision obtained with su
h spe
i�
 des
riptor outperforms the standard SIFT

bag-of-features by at least 14% in terms of True Positive rate (TP rate) and 9%

in terms of Area Under the ro
 Curve (AUC). Furthermore, the most interesting

results are those obtained using BIF

a
, sin
e in real 
ases an automati
 segmenta-

tion pro
ess on 
ellular images is poorly reprodu
ible. Those results (
olumns in

bold in tables 5.4 and 5.5) shows not only the e�
ien
y of the feature but also the

pre
ision of our UNN algorithm whi
h remains relevant (in terms of TP rate and

AUC), 
omparable and even better than state-of-the-art SVM. For instan
e, noti
e

the improvement of UNN over SVM on the �Coarse Spe
kled� 
lass (4.5% of gap),

while SVM is the best performing method on the �Homogeneous� 
lass (3% of gap).
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Figure 5.8: Pro
essing time of the training step for both UNN, SVM and multi-

thread version of UNN.

Besides 
omparing very favorably with state-of-the-art approa
hes, our UNN

method enables mu
h faster 
lassi�
ation. Fig. 5.8, shows typi
al pro
essing time

for UNN and SVM and UNN a
hieves speedups of roughly 3 to 5 over SVM. UNN

bene�ts from straightforward multi-thread implementation (UNNMT ) in addition

to the fast k-NN sear
h algorithm. This makes the pro
essing furthermore faster.

Therefore our Bio-Inspired UNN algorithm provides the best Pre
ision/Time trade-

o�.

5.5 Con
lusion

As a �rst appli
ation in this 
hapter, we have presented a novel algorithm for auto-

mati
 segmentation and 
lassi�
ation of 
ellular images based on di�erent sub
el-

lular distributions of the NIS protein. First of all, our method relies on extra
ting

highly dis
riminative des
riptors based on bio-inspired histograms of Di�eren
e-of-

Gaussians (DoG) 
oe�
ients on 
ellular regions. Then, we applied UNN algorithm

for learning the most relevant prototypi
al samples that are to be used for predi
ting

the 
lass of unlabeled 
ellular images. We noti
e that this appli
ation is 
urrently

being integrated in a software designed for biologi
al 
ells identi�
ation. A se
ond

appli
ation, that deals with immuno�uores
en
e 
ellular imaging, was presented in

this 
hapter. We used the same algorithm UNN to evaluate our experiments on an

unbalan
ed dataset of 
ells that were manually segmented. Although being the very

early results of our methodology for su
h a 
hallenging appli
ation, performan
es

are really satisfa
tory (average global pre
ision of 87.5% and MAP of the minority
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lass up to 86%) and suggest our approa
h as a valuable de
ision-support tool in


ellular imaging.





Chapter 6

General 
on
lusion

In this thesis, we deal with a spe
i�
 supervised learning s
heme for image 
lassi�
a-

tion based on a set of 
alibrated surrogates. In this 
ontext, we designed three three

learning algorithms for di�erent kind of 
lassi�ers. The �rst one is a generalization

and an optimization of a leveraged k-NN algorithm, UNN. This latter is based on

learning voting weigths in a boosting framework using the minimization of our 
las-

si�
ation 
riterion. In fa
t, we enlarge the set of losses often used in boosting and

restri
ted to the singleton asso
iated to the exponential loss to a more generalized

set 
ontaining the logisti
 and matsushita losses. The UNN algorithm shows high

performan
es in 
ompetitive 
omputation times.

The se
ond algorithm, N

3
is a Newton-Raphson approa
h for boosting k-NN

voting weights. We prove that our N

3
method has 
onsistent 
onvergen
e prop-

erties within the set of 
onsidered losses and provide several interesting statisti
al

properties like the estimation of posteriors of the 
lassi�
ation. In the experimental

standpoint, this algorithm shows a fast 
onvergen
e on quite large datasets of real

images like the SUN and Calte
h256. Furthermore, N

3
shows that it is possible to


ope with k-NN's 
urse of dimentionality. In fa
t, based on the posteriors of the


lassi�
ation, we use N

3
in a low memory divide and 
onquer method.

The third algorithm is a novel approa
h based on sto
hasti
 low rank newton

des
ent, SLND for linear 
lassi�ers. It 
onsists on the minimization of 
alibrated

losses using a Newton update of the 
lassi�er. The Newton update, known by its

fast 
onvergen
e, be
omes a 
omplex problem in high dimentional features spa
e.

We present in this work an approximation that over
ome this 
omplexity. In addi-

tion, experiments on very large datasets show the high performan
es of SLND that

outperform the state of the art methods.

This work, presents at the end, an interesting appli
ation to biomedi
al 
ells


lassi�
ation. For this purpose, we designed a bio-inspired des
riptor, based on

histograms of 
ontrast, that are well adapted for those mi
ros
opi
 
ellular images.

Testing UNN algorithm for su
h appli
ations shows promising high performan
es.
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Appendix A

UNN optimization with metri


learning

A.1 Introdu
tion

A study of the a

ura
y of metri
 learning algorithms [Nielsen & Sérandour 2009℄

has 
ompared some methods, and has shown that those metri
s are mostly de-

pendent on the data type. Several resear
hes were 
on
entrated on Mahalanobis

distan
e aspe
t like [Davis et al. 2007℄ who tend to de�ne a distan
e given 
on-

straints on training set and boundaries between similarity and dissimilarity. This


an be seen as a proje
tion in a new spa
e that �ts with an a priori knowledge on


ategories.

In this appendix, we present an optimization approa
h tested on UNN algo-

rithm. First, we in
lude metri
 learning pro
ess introdu
ed by [Davis et al. 2007℄

to adapt distan
es between features. This latter repla
es the L1/L2 norm used for

the k-NN sear
h. Metri
 
hoi
e in the 
ontext of NN 
lassi�ers 
ould be a 
riti
al

problem [Guillaumin et al. 2009℄ in the way that a wrong 
hoi
e 
an lead to the

failure of the 
lassi�
ation method. Then, we evaluate this approa
h on Gist fea-

tures [Oliva & Torralba 2001, Oliva & Torralba 2006℄ redu
ed in the spa
e of their

prin
ipal 
omponents. In fa
t, global des
riptors like Gist are well appropriate for


lassi�
ation tasks. However, those des
riptors are usually high dimensional and

therefore 
ostly in similarity measuring.

In a �rst se
tion, we detail the proposed approa
h. In the se
ond one, we explain

parameter settings and expose evaluation results of the di�erent steps.

A.2 Proposed approa
h

A.2.1 Des
riptor and dimension redu
tion

Global features like Bag-Of-Features (BOF) or Visual Words are often used for


ategorization be
ause they represent the global 
ontent of an image. Therefore,

this point makes des
riptors very high dimensional. In this paper we use the same

Gist global features as in [Oliva & Torralba 2001℄ to have 
omparable 
lassi�
ation

results

1

.

For the method we use, Gist are extra
ted on 4×4 subregions of 4 s
ales from gray

images, and 
onsidering the 8 dominant dire
tions. Thus we have image des
riptors

1

http://people.
sail.mit.edu/torralba/
ode/spatialenvelope/
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of 512 dimensions. As we will deal with metri
 learning later, we need to redu
e the

features dimension in �rst step.

We studied the e�e
t of prin
ipal 
omponent analysis (PCA) on Gist, and we

noti
ed that a redu
tion up to 16 and even 32 times of the original dimension does

not a�e
t the 
lassi�
ation rate. Results will be presented later in experiments

se
tion (A.3.3).

Throughout the following work, we use Gist with a 32 dimension where the

prin
ipal 
omponents were already 
omputed on training dataset.

A.2.2 Metri
 learning

For 
lassi�
ation task, partial information provided by real s
ene images may be

misleadingly. In fa
t, in high dimensional feature spa
es, image des
riptors may be,

in the L2
sense, similar within di�erent 
ategories and dissimilar under the same

one. For example, points that are near the 
lass border or that are in an area of

overlap with other 
lasses are 
onstrained to be metri
ally similar but semanti
ally

not.

In this 
ase, we use metri
 learning to adjust the similarity measure so that it

in
reases inter-
lass variability and de
reases intra-
lass one.

In [Davis et al. 2007℄, authors propose an Information-Theoreti
 Metri
 Learn-

ing (ITML) approa
h that generalize the Mahalanobis distan
e. This metri
 
onsid-

ers pairs of similar and dissimilar points, and trains a matrix A to build a distan
e

fun
tion that will make 
lose elements in the same 
lass and far those in distin
t

ones. This distan
e for a given 
ouple of points (xi, xj) is expressed in (A.1).

dA (xi, xj) = (xi − xj)
T A (xi − xj) (A.1)

The approa
h is an iterative algorithm that tends to approximate a positive

de�nite matrix A using a minimization under 
onstraints task.

min
A

KL (p (x;A0) ‖p (x;A)) (A.2)

subje
t to

dA (xi, xj) ≤ u (i, j) ∈ S, (A.3)

dA (xi, xj) ≥ l (i, j) ∈ D. (A.4)

where KL, Kullba
k Leibler, is a Bregman divergen
e (statisti
al distan
e between

distributions). S and D are sets of similar and dissimilar pairs and u and l denotes

threshold distan
es between points respe
tively in S and D. An a priori knowledge

of some parameters is needed for learning pro
ess. For the algorithm version we use,

a 
onstraint matrix c is 
onsidered for this pro
ess, and the problem is formulated

like it follows:

min
A

Dld (A,A0) + γ ·Dld (diag (ξ) , diag (ξ0)) (A.5)
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subje
t to

dA (xi, xj) ≤ ξc(i,j) (i, j) ∈ S, (A.6)

dA (xi, xj) ≥ ξc(i,j) (i, j) ∈ D. (A.7)

where ξ is threshold matrix for similarity and dissimilarity, c (i, j) is the index of

the 
onstraint 
orresponding to the pair (i, j), γ 
ontrols the tradeo� between sat-

isfying the 
onstraints and minimizing the LogDet divergen
e between A and A0:

Dld (A,A0), whi
h was indu
ed from

KL (p (x;A0) ‖p (x;A)) =
1

2
Dld (A,A0) (A.8)

A.3 Experiments

A.3.1 Dataset

For our experiments we use the database proposed in [Oliva & Torralba 2001℄, 
om-

posed of outdoor natural s
enes divided into the following 
ategories: 
oast, moun-

tain, forest, open 
ountry, street, inside 
ity, tall buildings and highways. This base

in
ludes 2688 
olor images with 256× 256 pixels.


oast mountain forest open 
ountry

street inside 
ity tall buildings highways

Figure A.1: Natural s
enes from the outdoor database of Torralba.

A.3.2 Settings

For experiments, we need two separate datasets: the �rst one for train and the

se
ond for tests. We divide our database so in a random way. For the results

presented here, we use 2000 images for train (of about 250 images per 
ategory) and

688 as queries. For evaluations in (A.3.4) and (A.3.5), Gist features are used here

in 32 dimensions.

We evaluate UNN against the standard k-NNmethod 
onsidering di�erent num-

bers of prototypes (
lassi�ers). For the k-NN, it is trivial that we should 
onsider

all training set as 
lassi�ers to be as robust as possible. However, our goal in this

paper is to optimize 
lassi�
ation taking into 
onsideration s
alability rule. Hen
e,

sets of prototypes P ⊂ S tested on here 
ontains respe
tively 10, 20, 30, 40, or
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50 per
ent of train set S. For k-NN, prototypes are 
hosen randomly, whether for

UNN 
lassi�ers are those of highest learned 
oe�
ients.

In a se
ond part of this se
tion, ITML is 
ompared to the standard Eu
lidean

distan
e often used with Gist features. The ITML algorithm needs an a priori

knowledge on some parameters as indi
ated in the previous se
tion. We use the same

parameters as [Davis et al. 2007℄, so we initialize the matrix A to the identity matrix,

then we 
onsider the training set as samples to 
ompute threshold distan
es and


onstraints matrix. Only, due to 
omputing 
ost, we 
onsider the same parameters

as [Davis et al. 2007℄ to 
hoose randomly 20×C2

onstraint pairs of features from the

training set. Consequently, the approximation of the matrix A is non-deterministi
.

This is why we 
onsider the mean 
lassi�
ation result under 10 di�erent evaluations.

We do the same thing for the k-NN method sin
e prototypes are taken randomly.

A.3.3 Robustness to dimension redu
tion

Our tests aim to 
lassify unlabeled queries based on trained 
lassi�ers. We evaluate

results of 
lassi�
ation using the mean Average Pre
ision (mAP) value, whi
h is the

mean of the right 
lassi�
ation rate of all 
ategories.
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Figure A.2: Mean average pre
ision 
urve for 
lassi�
ation depending on Gist di-

mension.

First, to prove that dimension redu
tion does not a�e
t the robustness of Gist

features we evaluate 
lassi�
ation using those des
riptors in di�erent dimensions.

The Fig.A.2 presents the evolution of the mean average pre
ision in fun
tion of the

dimension of the features. We vary dimension from 4 to 512 and we noti
e that

mAP value is pra
ti
ally 
onstant from dimension 16. This shows that dominant

information is lo
ated on the �rst 16 
omponents of the des
riptor. Consequently,

we use Gist on 32 dimensions instead of 512 whi
h makes a huge di�eren
e in


omputation time.
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A.3.4 Boosting k-NN results and 
omparison to the k-NN 
lassi-

�
ation method

UNN is an approa
h based on nearest neighbors framework. Therefore, it uses

boosted 
oe�
ients to 
hoose a set P of best 
lassi�ers from the train set, and that

is su�
ient to rea
h a best 
ategorization results. Next, we evaluate the in�uen
e

of trained prototypes number on 
lassi�
ation rate respe
tively for UNN approa
h

and for k-NN one. We test on 10, 20, 30, 40 and 50 per
ent of the training set

as prototypes to 
ompare the two previous approa
hes. The evaluation in Fig.A.3
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Leveraged KNN: Euclidian distance using Gist 32
KNN: Euclidian distance using Gist 32

Figure A.3: Comparaison between k-NN 
lassi�
ation and UNN one.

shows that UNN 
lassi�
ation is more e�
ient than standard k-NN, and using

only 50 per
ent of S as prototypes we rea
h a signi�
ant pre
ision rate. In other

evaluations not reported here, we had to 
onsider all training set as 
lassi�ers for the

uniform (standard) k-NN method to a
hieve the same e�
ien
y as UNN algorithm.

Noti
e that this mAP is 
omparable to the result of Torralba

1

based on SVM

method, ex
ept that with the UNN approa
h we are s
alable.

A.3.5 Evaluation of the metri
 learning pro
ess

For more e�
ien
y, we substitute eu
lidean distan
e by ITML to adapt the metri


to features. Results in Fig.A.4 indi
ate that with this metri
 we 
an get more

robustness with fewer learned 
lassi�ers, whi
h is really important when dealing

with large datasets.

As reported in Fig.A.4, for 400 prototypes (20% of the training data), we have

already more than 81% of pre
ision when using UNN with ITML metri
. And for

only 600 
lassi�ers (30%) we 
ome to the same pre
ision rate as using the eu
lidean

distan
e with 1000 
lassi�ers (50%).

We also test the optimization of ITML on k-NN method as shown in Fig.A.4

and evaluation 
ondu
t to the same 
on
lusion as with UNN algorithm.
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Leveraged KNN: Euclidian distance using Gist 32
Leveraged KNN: ITML using Gist 32
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KNN: ITML, using Gist 32

Figure A.4: UNN 
lassi�
ation using Eu
lidean distan
e and ITML.
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Figure A.5: MAP varian
e of UNN 
lassi�
ation with ITML distan
e over 10 eval-

uations.
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Figure A.6: MAP varian
e of k-NN 
lassi�
ation over 10 evaluations

We remind that be
ause of the randomness of the learning pro
ess of the matrix



A.3. Experiments 77

A, previous results on ITML are averaged over 10 evaluations. Fig.A.5 shows the

varian
e of these results.

The same pro
ess is applied to k-NN method as prototypes are 
hosen randomly,

and a preview of the Fig.A.6 shows the detailed results.





Appendix B

Convergen
e proof of N

3
and

statisti
al properties

B.1 Proof of Theorem 3

The proof is sket
hed for the 
alibrated Hinge loss, and so 
onsider row D in Tables

3.1, 3.2, 3.3. For the sake of simpli
ity, let us name FD the 
alibrated Hinge loss,

and suppose we are at the beginning of step t and 
lass c in N3
, with j the index

returned by Wi
. The 
urrent leveraged NNis denoted Ht
c and the 
urrent weights

are denoted wt. For any i in the inverse neighborhood of j, let us denote

H̃t
c(xi)

.
= Ht

c(xi) + yicg
′
FD

(KFD
w1,i) . (B.1)

Classi�er H̃t
c is the leveraged NNto whi
h we add a 
onstant term whi
h depends on

the initialization weight of example i. We now fo
us on establishing a 
onvergen
e

property for εFD
(H̃c, S), whi
h will then be translated to Hc. First, we upperbound

the variation between two su

essive values of εFD
(., S). After several derivations,

we obtain:

εFD
(H̃t+1

c , S)− εFD
(H̃t

c, S)

= − 1

m

∑

i:j→ki

∆−gFD
(wt+1,i‖wt,i)−

η̃δj
m

, (B.2)

with ∆−gFD
the Bregman divergen
e with generator −gFD

[Kakade et al. 2009℄, and

η̃
.
=
∑

i:j→ki
wt+1,iyicyjc. Noti
e that η̃ is not measured on the same weights as

η(c, j).

Using the fa
t that FD is F ′′
D(0) = 1/4 is strongly smooth and Theorem 6 in

[Kivinen & Warmuth 2001℄, we obtain that −gFD
− 2x2 is 
onvex. Considering its

Bregman divergen
e 
omputed between wt+1,i and wt,i, summing for all i in the

inverse neighborhood of j and rearranging terms, we obtain:

∑

i:j→ki

∆−gFD
(wt+1,i‖wt,i) ≥ 2

∑

i:j→ki

(wt+1,i − wt,i)
2 .

After remarking that

∑

i:j→ki
(yicyjc)

2 = nj , Cau
hy-S
hwartz inequality yields

n2
j

∑

i:j→ki

(wt+1,i − wt,i)
2 ≥ (η̃ − η(c, j))2 ,
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that is:

∑

i:j→ki

∆−gFD
(wt+1,i‖wt,i) ≥

2(η̃ − η(c, j))2

nj
.

Plugging this into (B.2) yields after few more derivations the left-hand side inequality

of:

εFD
(H̃t+1

c , S)− εFD
(H̃t

c, S)

≤ −2η(c, j)2

mnj
≤ −8njγ

2
nγ

2
u

m
. (B.3)

The right-hand side inequality of (B.3) 
omes from the weak learning assumption.

Hen
e, for some ε < F (0) = − ln(2), to obtain εFD
(H̃T+1

c , S) ≤ ε, it is su�
ient

that:

∑

j∈I
nj ≥

(−ε− ln(2))m

8γ2nγ
2
u

, (B.4)

where j spans the indexes of I. To �nish the proof, we shift the analysis to HT+1
c ,

and obtain from (B.1) and the expressions of FD and gFD
:

∀i : j →k i , FD(yicH
T+1
c (xi))

= FD

(

yicH̃
T+1
c (xi)− g′FD

(KFD
w1,i)

)

= FD

(

yicH̃
T+1
c (xi)− ‖1+ yicyi‖1

)

, (B.5)

≤ FD(yicH̃
T+1
c (xi)) + C . (B.6)

There remains to 
ombine (B.4) and (B.6) to obtain the statement of the Theorem.

B.2 Statisti
al properties of N

3

The �rst property 
onsists in a justi�
ation of the weight initialization in N

3
. Fol-

lowing the terminologies of [Bartlett et al. 2006, Vernet et al. 2011℄, we want the

total 
alibrated risk to be pointwise Fisher 
onsistent: this implies that for any

observation, when p[yc = +1|x] = 1/C,∀c, the optimal 
onstant real predi
tion

for x is z = 0 [Bartlett et al. 2006, Vernet et al. 2011℄. Noti
e that ea
h example

in S parti
ipates to C 
lassi�
ation problems. Consider example i whi
h meets

the 
onditions above, and let w+
(resp. w−

) denote its weight for the 
lassi�-


ation problem for one 
lass to whi
h it belongs (resp. does not belong) vs all

others in N

3
. A 
onstant real predi
tion z brings for this example a 
ontribution

to the total 
alibrated risk proportional to w+‖1+ yi‖1F (−z) +w−‖1− yi‖1F (z).

Given the de�nition of F (3.3), the optimal z to this 
ontribution is found to be

z = f−1 (w+‖1+ yi‖1/(w+‖1+ yi‖1 + w−‖1− yi‖1)). Be
ause f(0) = 1/2, we have

to ensure that w+‖1+ yi‖1 = w−‖1− yi‖1, whi
h is the 
ase in N

3
.



B.3. Proof of Theorem 6 81

The se
ond property establishes that N

3
brings a 
onvenient estimation of poste-

riors. It 
on�rms the intuition that the transfer fun
tion links real valued predi
tion

to the estimation of posteriors (See Se
tion 3.3).

Theorem 6 For any c, f(Hc(x)) is an e�
ient estimator of p[yc = +1|x].

The proof, given in appendix, 
alls to the representation of exponential families.

It is interesting in itself as it shows that the duality between labels predi
tion and

posteriors estimation born from the transfer fun
tion (Se
tion 3.3) implies a duality

between the 
lassi�
ation 
alibrated risk � whi
h depends upon labels � and the

log-likelihood of some exponential family � whi
h is parameterized by posteriors

�.

The third property shows that N

3
is weakly universally 
onsistent. It makes use

of the de�nition of the empiri
al risk of H on S (1. is the indi
ator variable):

ε0/1(H, S)
.
=

1

C

C∑

c=1

1

m

m∑

i=1

1yicHc(xi)<0 . (B.7)

Theorem 7 Suppose that examples in S are drawn i.i.d. a

ording to some unknown

but �xed distribution D. Let Rm,T
.
= ES:|S|=m[ε0/1(H, S)] denote the expe
tation,

over the sampling of size-m samples following D, of 
lassi�er H built by N

3
after

T rounds of boosting for ea
h 
lass. Then, as k → +∞, provided k = O(T ) and

T = O(m), N3
is weakly universally 
onsistent: regardless of D,

lim
m→+∞

Rm,T = R∗ , (B.8)

where R∗
is Bayes risk.

Comments on Theorems 3 and 7: the Theorems provide sets of 
hoi
es for

parameters that make it possible for N

3
to perform 
onsistent and sparse boosting.

For example, k = O(mµ), T = O(mν), with 0 < µ, ν < 1 and µ+ ν > 1.

B.3 Proof of Theorem 6

We fo
us on 
lass c and remove for the sake of readability the referen
e to c in

all notations. We let y ∈ {−1,+1} denote the membership to the 
lass and ŷε
.
=

(1/2 − ε)y + 1/2 ∈ {ε, 1 − ε}, for some ε ∈ [0, 1). Letting for short H
.
= H(x), we
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have:

∆−gF (1− ε‖f(H))
.
= (−gF )(1− ε)− (−gF )(f(H))

−(1− ε− f(H))(−gF )′(f(H))

= (−gF )(1− ε) + (−gF )⋆(H) + εH −H , (B.9)

∆−gF (ε‖f(H))
.
= (−gF )(ε)− (−gF )(f(H))

−(ε− f(H))(−gF )′(f(H))

= (−gF )(ε) + (−gF )⋆(H)− εH , (B.10)

where ∆−gF is the Bregman divergen
e with generator −gF
[Kivinen & Warmuth 2001℄. To derive (B.9) and (B.10), we have used (i)

the fa
t that 
onvex 
onjugates have derivatives that are inverse of ea
h other,

(ii) f = (−gF )′−1(x) from (3.3) and (3.4), and (iii) the 
onvex 
onjugate of some

stri
tly 
onvex di�erentiable fun
tion h is h⋆(x) = xh′−1(x)− h(h′−1(x)). Sin
e gF
is permissible, (−gF )(ε) = (−gF )(1 − ε), and we remark that F (−x) = F (x) + x,

so that (3.3) and (3.4) be
ome:

∆−gF (1− ε‖f(H)) = u(ε) + εH + F (H) ,

∆−gF (ε‖f(H)) = u(ε)− εH + F (−H) ,

where u
.
= (−gF )(ε) = (−gF )(1− ε). We end up having:

Fε(yH) = ∆−gF (ŷε‖f(H))− u(ε) , (B.11)

with Fε(x)
.
= F (x)− εx. Now,

∆−gF (ŷε‖f(H))

= − log p((−gF )⋆,H)[ŷε = 1− ε|x] + log v(x) , (B.12)

where p((−gF )⋆,H) is the pdf of the exponential family parameterized by (−gF )⋆,
with natural parameter H and expe
tation parameter f(H) [Banerjee et al. 2005℄.

Hen
e, f(H) is an estimator of:

Ex[ŷε] = (1− ε)p[y = +1|x] + εp[y = −1|x]
= p[y = +1|x] + ε(p[y = −1|x]− p[y = +1|x]) .

In fa
t, f(H) is the only e�
ient estimator of Ex[ŷε] [Müller-Funk et al. 1989℄. Plug-

ging (B.11) and (B.12) together, we get:

− log p((−gF )⋆,H)[ŷε = 1− ε|x] = Fε(yH) + r ,

where r does not depend upon H or T . Hen
e, minimizing εFε(H, S) amounts to a

maximum likelihood �tting of f(H). There remains to take ε = 0 for A, B, C to


on
lude the Theorem. For D, sin
e gF is not de�ned in {0, 1}, we 
an pi
k ε = 1/T 2
.

Sin
e weights are �nite, leveraging 
oe�
ients are �nite. Thus, |H| = o(T 2), and so

F1/T 2(yH) = F (yH) + o(1). There remains to take the limit in T to 
on
lude.



Appendix C

Convergen
e proof of SLND

C.1 Proofsket
h of Theorem 5

The proofsket
h of Theorem 5 involves there steps:

• Bregman divergen
e estimation.

• Calibrated loss properties.

• Weak Separability Assumption.

We �rst make some simpli�
ations in notations. We remove the c subs
ript and

make the analysis for 
lass c, and thus fo
us on the analysis of ε
F

(hc, S), noted for

short ε
F

(h, S). To avoid 
onfusion, we also rename example 
hosen at iteration t in

(4.16) as example it, so that (4.16) reads:

wt+1 = wt − ηtyitF
′ (yitw

T
t xit

)
x
◦
it . (C.1)

Bregman divergen
e estimation

Let us de�ne the Legendre 
onjugate and the notion of Bregman di-

vergen
e. F̃(x)
.
= F

⋆(−x), where ⋆ denotes the Legendre 
onjugate

(F

⋆(x)
.
= x(F′)−1(x) − F((F′)−1(x))), and D

F̃

(u‖v) .
= F̃(u) − F̃(v) − (u − v)F̃

′
(v)

denotes the Bregman divergen
e with generator F̃ [No
k & Nielsen 2008℄.

We get the following equality

ε
F

(wt+1, S)− ε
F

(wt, S)

=
1

m

m∑

i=1

F(yicw
⊤
t+1xi)−

1

m

m∑

i=1

F(yicw
⊤
t xi)

= − 1

m

m∑

i=1

D
F̃

(p(t+1)i‖pti)

−ηt
m

m∑

i=1

p(t+1)iyiyitπ(it, i) , (C.2)

where

π(i, it)
.
= ptitx

⊤
itH

⋆
xi = ptit(x

◦
i )

⊤
x
◦
it , (C.3)
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Calibrated loss properties

Sin
e F

′′(x) ≤ F

′′(0) for the 
lassi�
ation 
alibrated losses we 
onsider, we

also have the following quadrati
 lower-bound whi
h 
an be obtained following

[Kakade et al. 2009℄:

m∑

i=1

D
F̃

(p(t+1)i‖pti) ≥
1

2F′′(0)

m∑

i=1

(p(t+1)i − pti)
2 . (C.4)

Cau
hy-S
hwartz inequality brings:

m∑

i=1

(yiyitπ(it, i))
2

m∑

i=1

(p(t+1)i − pti)
2

(C.5)

≥
(

m∑

i=1

yiyitπ(it, i)(p(t+1)i − pti)

)2

. (C.6)

De�ne for short vt
.
=
∑m

i=1 p(t+1)iyiyitπ(it, i), et
.
=
∑m

i=1 ptiyiyitπ(it, i) and Πt
.
=

∑m
i=1 π

2(it, i). Plugging (C.4) and (C.6) into (C.2) and simplifying, we obtain:

ε
F

(wt+1, S)− ε
F

(wt, S)

≤ − (vt − et)
2

2F′′(0)mΠt
− ηtvt

m
︸ ︷︷ ︸

.
=

∆t(vt)
m

. (C.7)

• ∆t(vt) takes its maximum for vt = v◦ = et − F′′(0)ηt
∑m

i=1 (yiyitπ(it, i))
2 = et −

F

′′(0)ηtΠt, for whi
h we have:

∆t(v
◦) =

F

′′(0)ηtΠt

2
×
(

ηt −
2et

F

′′(0)Πt

)

.

Assume we pi
k, for some ε ∈ (0, 1):

ηt
.
=

2(1− ε)et
F

′′(0)Πt
. (C.8)

For this 
hoi
e of ηt, we have:

∆t(v
◦) = −2ε(1 − ε)

F

′′(0)
ρ(it,H

∗) , (C.9)

with

ρ(it,H
∗)

.
=

(∑m
i=1 ptiyi(x

◦
i )

⊤
x
◦
it

)2

∑m
i=1 ((x

◦
i )

⊤x◦
it
)2

.
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Weak Separability Assumption

Now, the Weak Separability Assumption implies |∑m
i=1 ptiyi(x

◦
i )

⊤
x
◦
it
| ≥ γ‖st‖1 ≥

γ‖st‖2 = γ
√
∑m

i=1 ((x
◦
i )

⊤x◦
it
)2, whi
h leads to ρ(it,H

∗) ≥ γ2.

Finally, the fa
t that ∆t(vt) ≤ ∆t(v
◦) and (C.9) imply:

∆t(vt) ≤ −2γ2ε(1− ε)

F

′′(0)
.

Plugging this into (C.7) a
hieves the proof of the theorem.

Remarks on ηt (C.8) gives, under the WSA:

ηt =
2(1− ε)

∑m
i=1 ptiyiyitπ(it, i)

F

′′(0)Πt

=
2(1− ε)γ′‖st‖1
F

′′(0)|ptityit|‖st‖22
,

for some γ′ ≥ γ > 0 as in the WSA. Be
ause ‖st‖2 ≤ ‖st‖1 ≤
√
m‖st‖2, it 
omes:

2(1− ε)γ′

F

′′(0)ptit‖st‖1
≤ ηt ≤

2(1− ε)γ′
√
m

F

′′(0)ptit‖st‖1
.

Letting µt
.
= (1/m)

∑m
i=1 |(x◦

i )
⊤
x
◦
it | denote the average value of |stj |, we obtain:

2(1− ε)γ′

mF′′(0)ptitµt
≤ ηt ≤

2(1− ε)γ′√
mF′′(0)ptitµt

.

Hen
e, omitting ptit in big-Oh notations to simplify the analysis, the value ηt whi
h

guarantees the rate of 
onvergen
e of Theorem 5 is indeed roughly between Ω(1/m)

and O(1/
√
m).
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Abstra
t:

Minimization of Calibrated Loss Fun
tions for Image Classi�
ation

Image 
lassi�
ation be
omes a big 
hallenge sin
e it 
on
erns on the one hand

millions or billions of images that are available on the web and on the other hand

images used for 
riti
al real-time appli
ations.

This 
lassi�
ation involves in general learning methods and 
lassi�ers that must

require both pre
ision as well as speed performan
e. These learning problems 
on-


ern a large number of appli
ation areas: namely, web appli
ations (pro�ling, tar-

geting, so
ial networks, sear
h engines), "Big Data" and of 
ourse 
omputer vision

su
h as the obje
t re
ognition and image 
lassi�
ation.

This thesis 
on
erns the last 
ategory of appli
ations and is about supervised

learning algorithms based on the minimization of loss fun
tions (error) 
alled "
ali-

brated" for two kind of 
lassi�ers: k-Nearest Neighbours (kNN) and linear 
lassi�ers.

Those learning methods have been tested on large databases of images and then

applied to biomedi
al images.

In a �rst step, this thesis revisited a Boosting kNN algorithm for large s
ale


lassi�
ation. Then, we introdu
ed a new method of learning these NN 
lassi�ers

using a Newton des
ent approa
h for a faster 
onvergen
e. In a se
ond part, this

thesis introdu
es a new learning algorithm based on sto
hasti
 Newton des
ent for

linear 
lassi�ers known for their simpli
ity and their speed of 
onvergen
e.

Finally, these three methods have been used in a medi
al appli
ation regarding

the 
lassi�
ation of 
ells in biology and pathology.





Résumé:

Minimisation de fon
tions de perte 
alibrées pour la 
lassi�
ation

des images

La 
lassi�
ation des images est aujourd'hui un dé� d'une grande ampleur puisque

ça 
on
erne d'un 
ote les millions voir des milliards d'images qui se trouvent partout

sur le web et d'autre part des images pour des appli
ation temps réel 
ritiques.

Cette 
lassi�
ation fait appel en général à des méthodes d'apprentissage et à

des 
lassi�eurs qui doivent répondre à la fois à la pré
ision ainsi qu'à la rapidité.

Ces problèmes d'apprentissage tou
hent aujourd'hui un grand nombre de domaines

d'appli
ations: à savoir, le web (pro�ling, 
iblage, réseaux so
iaux, moteurs de

re
her
he), les "Big Data" et bien évidemment la vision par ordinateur tel que la

re
onnaissan
e d'objets et la 
lassi�
ation des images.

La présente thèse se situe dans 
ette dernière 
atégorie et présente des algo-

rithmes d'apprentissage supervisé basés sur la minimisation de fon
tions de perte

(erreur) dites "
alibrées" pour deux types de 
lassi�eurs: k-Plus Pro
hes voisins

(kNN) et 
lassi�eurs linéaires.

Ces méthodes d'apprentissage ont été testées sur de grandes bases d'images et

appliquées par la suite à des images biomédi
ales.

Ainsi, 
ette thèse reformule dans une première étape un algorithme de Boosting

des kNN et présente ensuite une deuxième méthode d'apprentissage de 
es 
lassi-

�eurs NN mais ave
 une appro
he de des
ente de Newton pour une 
onvergen
e

plus rapide. Dans une se
onde partie, 
ette thèse introduit un nouvel algorithme

d'apprentissage par des
ente sto
hastique de Newton pour les 
lassi�eurs linéaires


onnus pour leur simpli
ité et leur rapidité de 
al
ul.

En�n, 
es trois méthodes ont été utilisées dans une appli
ation médi
ale qui


on
erne la 
lassi�
ation de 
ellules en biologie et en pathologie.


