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Chapter 1

General introdution

1.1 Introdution

The lassi�ation task onsists in prediting ategory membership of an unlabeled

data based on its ontent. Classifying images is a hallenging task in omputer

vision, sine it involves di�erent �elds and appliations. In fat, two main �elds

are being studied to perform image lassi�ation and pattern reognition: the �rst,

whih belongs to the image proessing �eld, deals with extrating the features from

data. A way to enode images with less omplex strutures that best desribes the

information ontained in the image. While the seond one is a mahine learning

task de�ning the lassi�ation rule.

In omputer vision tasks, image features are usually onsidered either as loal or

as global desriptors. Both of them have been shown to be e�ient. Gist global fea-

ture [Oliva & Torralba 2001, Oliva & Torralba 2006℄ for example represents a whole

sene in a unique desriptor, while the sale invariant feature transform (SIFT)

[Lowe 2004℄ or the histogram of oriented gradients (HOG) [Dalal & Triggs 2005℄

represent loal information in the image allowing the desription of signi�ant ob-

jets in the sene independently. Loal features are relevant for image desription.

In omputer vision, they are well adapted for objets detetion and image retrieval:

they give a sparse representation and over a wide range of visual features in the

image. However, for lassi�ation task, we almost need global feature desription,

sine we ompare ategories and not only pairs of images. Hene, we usually enode

loal features into global ones using statistial models. This global representation

desribes the ourrene of relevant visual features in the image. State of the art

Bag of features/words (BoF/BoW) [Sivi & Zisserman 2006℄ are the most ommon

approahes in this ontext. Reently an e�ient feature alled �sher vetors (FV)

[Perronnin et al. 2010℄ was extensively used for large sale image lassi�ation.

Getting e�ient desriptors is not su�ient to perform ategorization. Robust

lassi�ation algorithms should be designed to aomplish suh hallenging task.

For most state of the art methods, the task of image lassi�ation is addressed as

a learning problem. Within this ontext, we distinguish two major approahes, de-

pending on wether we have or have not a knowledge about the ategories and about

the labels of a set of data. On the one hand, unsupervised approahes, like luster-

ing, tend to group data aording to their visual ontent similarities. On the other

hand, supervised learning uses an already labeled training set to learn lassi�ers

(ategories boundaries) and then labels non-annotated images subsequently. For

the seond kind of learning, three or four main standard methods are often used.



2 Chapter 1. General introdution

The kernel based algorithms and more preisely the Support Vetor Mahine (SVM)

[Cristianini & Shawe-Taylor 2000℄ are robust lassi�ation methods. The boosting

based algorithms suh as Adaboost [Freund & Shapire 1999℄ are salable, have low

omputational omplexity and still reliable. Nearest Neighbors approahes are fast,

simple and salable, but still poorly e�eient in auray. Reently, a stohasti

gradient desent (SGD) algorithm was introdued by [Bottou 2010℄, a robust and

non omplex method for large sale data.

To state a supervised lassi�ation problem, we need to de�ne our lassi�er �rst.

In fat, the lassi�ation rule is a funtion mapping between the data features and

their predited labels. Among state of the art lassi�ers, we an ite k-Nearest

Neighbors, linear or kernel based lassi�ers. However, despite the nature of a lassi-

�ation rule, it is often de�ned by a set of parameters. Therefore, we set a learning

proess to reah the optimal rule. Indeed, given a set of already annotated data, we

tend to estimate the optimal parameters by minimizing the lassi�ation error rate.

This thesis deals with supervised learning approahes for image lassi�ation.

Espeially, we are interested in the minimization of a riterion based on some spe-

i� loss funtions (Calibrated losses) for di�erent kind of lassi�ation rules. In

a �rst part, we are interested in k-NN lassi�ers. A �rst approah, revisits and

expands a leveraged k-NN rule by minimizing the risk riterion in a boosting frame-

work. In the same ontext, a seond approah deals with fast onvergene Newton

based leveraged Nearest Neighbors rule. In a seond part, we design a fast low rank

Newton desent algorithm of riterion minimization for learning salable linear las-

si�ers. This latter is a robust algorithm espeially for big datasets and shows high

omputational performane and preision towards state of the art approahes. In

a �nal part, this thesis presents an appliation of image ategorization to an inter-

esting �eld: bio-medial imaging. In a �rst step, we design a spei� desriptor for

suh appliation: a multisale ontrast based feature, well adapted for ell images.

Then, we report examples of experiments on two di�erent appliations of biologial

ells lassi�ation.

1.2 Setting the problem

We �rst provide some generalities that de�ne our supervised learning sheme. Our

setting is that of multilass, multilabel lassi�ation. In supervised learning, we

have aess to an annotated input set of m observations, S
.
= {oi = (xi,yi), i =

1, 2, ...,m}. Vetor xi ∈ X is a feature data where X denotes the feature spae. We

adopt the mainstream one-vs-all lassi�ation sheme. Then, vetor yi ∈ {−1,+1}C
enodes lass memberships, assuming yic = +1 means that sample xi belongs to

lass c and yic = −1 otherwise.

The goal is to learn a lassi�er H whih is a funtion mapping observations in X

to vetors in R
C
. Given some sample x, the sign of oordinate c in H (x) (Hc (x))

gives whether H predits that x belongs to lass c, while its absolute value may be

viewed as a on�dene in lassi�ation (or sore).
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To de�ne the lassi�er H, we will minimize the Empirial (or Hamming) Risk

ε0/1(H, S) whih omputes over lasses and observations the misslassi�ation rate

of H :

ε0/1(H, S)
.
=

1

C

C∑

c=1

1

m

m∑

i=1

[(yicHc(xi)) < 0] , (1.1)

where [.] is the indiator funtion equal to 1 if the ondition is true and 0 otherwise

and whih represents here the 0/1 or empirial loss. We denote this loss F 0/1
.

Unfortunatly, the minimization of suh problem is not tratable sine the 0/1 loss

funtion is not onvex.

A ommon alternative to minimize (1.1) is to rather minimize an upperbound

of this empirial risk, known as the Surrogate Risk. Lets denote this later εF .

This surrogate sums over observations and lasses a stritly onvex loss funtion

F : R→ R that satis�es ∀x ∈ R, F 0/1(x) ≤ F (x).

εF (H, S)
.
=

1

C

C∑

c=1

1

m

m∑

i=1

F (yicHc(xi)) . (1.2)

The loss funtion F is based on the funtional margin yicHc(xi) or what we all the

edge of lassi�ation and denote by ρ(Hc, oi,c). Obviously, the minimization of (1.2)

leads to a lose form solution of the initial problem (1.1).

The onsisteny of lassi�ation rules is ruial properties without whih the

minimization of the loss brings no strong statistial guarantee: the risk of lassi�-

ation should get lose to the lowest possible risk with a large probability (Bayes

rule). To satisfy this property, a set of loss funtions relevant for learning is often

used and alled Calibrated Losses [Bartlett et al. 2006℄.





Part I

Learning weighted

k-NN Classi�ers with Calibrated

Losses





Chapter 2

Universal Nearest Neighbors

algorithm: UNN

2.1 Introdution

The nearest neighbors (NNs) rule belongs to the oldest, simplest and still most

widely studied lassi�ation algorithms [Devroye et al. 1996℄. It relies on a non-

negative real-valued �distane� funtion. This funtion measures how muh two

observations di�er from eah other, and may not neessarily satisfy the requirements

of metris.

k-NN lassi�ation has proven suessful, thanks to its easy implementation and

its good generalization properties [Shakhnarovih et al. 2006℄. A major advantage

of the k-NN rule is to not require expliit onstrution of the feature spae and be

naturally adapted to multi-lass problems. Moreover, from the theoretial point of

view, straightforward bounds are known for the true risk (error) of k-NN lassi�a-

tion with respet to Bayes optimum, even for �nite samples ([Nok & Sebban 2001℄).

In fat, it is yet a hallenge to redue the true risk of the k-NN rule, usually takled

by data redution tehniques [Hart 1968℄.

We propose in this hapter an optimization of a generalized solution to the prob-

lem of boosting k-NN lassi�ers in the general multi-lass setting, and for general

lasses of losses, not restrited to Adaboost's exponential loss, built upon the works

of [Piro et al. 2012, Nok & Nielsen 2009, Nok & Nielsen 2008℄. Namely, we pro-

pose a leveraged nearest neighbor rule that generalizes the uniform k-NN rule, and

whose onvergene rate is guaranteed for many lassi�ation alibrated losses, en-

ompassing popular hoies, suh as the logisti loss or the matsushita loss. The

voting rule is rede�ned as a strong lassi�er that linearly ombines weak lassi�ers

of the k-NN rule.

The remaining of the hapter is organized as follows: Setion 2.2 brievly in-

trodues the basi notions about k-NN lassi�ers and about the alibrated loss

funtions used latter in the learning framework. Setion 2.3 presents the Universal

Nearest Neighbors algorithm for leveraging the k-NN lassi�er and Setion 2.4 gives

details about the optimizations brought on this algorithm and the implementation of

the method. Finally, Setion 2.5 shows experimental results of our method against

standard/uniform k-NN and SVM methods on large images datasets.
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rit alibrated loss F annotation

A exp(−x) exp

B ln(1 + exp(−x)) log

C −x+
√
1 + x2 mat

Table 2.1: The stritly onvex losses that are used in UNN. From top to bottom,

losses are exponential, logisti and matsushita's loss.

2.2 Basi notions and annotations

2.2.1 The k-NN lassi�er

We let j →k x denote the assertion that example (xj ,yj), or simply example j,

belongs to the k NNs of observation x. We shall abbreviate j →k xi by j →k i �

in this ase, we say that example i belongs to the inverse neighborhood of example

j. To lassify an observation x, the k-NN rule H(x) omputes the sum of lass

vetors of its nearest neighbors. The oordinate c in H(x) is :

Hc(x)
.
=

∑

j→kx

yjc . (2.1)

2.2.2 Calibrated losses

Classi�ation alibrated losses are surrogates suitable for lassi�ation. To be

lassi�ation-alibrated, loss F : R → R is required to be onvex, di�erentiable

and suh that F ′(0) < 0 [Bartlett et al. 2006℄ (Theorem 4), [Vernet et al. 2011℄.

In this hapter, we are interested in a subset of the alibrated losses alled

Stritly Convex Losses (SCL). This set inludes, in addition to the exponential loss,

the logisti, the matsushita and the squared loss. The stritly onvex losses F we

are intrested in are given in Table 2.1.

2.3 UNN, Leveraging the k-NN lassi�er

As previously introdued, a leveraged k-NN rule is a non-uniform voting among the

k-Nearest Neighbors de�ned like below:

Hc(xi)
.
=

∑

j→ki

αjcyjc . (2.2)

The lassi�er Hc is de�ned as a sum among a set of T weak lassi�ers. We

all those laters prototypes. So, given a set S
.
= {oi = (xi,yi), i = 1, 2, ...,m},

one prototype, denoted by the index j, is a training sample ∈ S de�ned by its

feature vetor xj , label yjc and later by its leveraging weight αjc. Those weights are

determined by �tting the lassi�er Hc into the supervised learning sheme previously

desribed in (1.2).
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2.3.1 Learning leveraged k-NNs in a boosting framework

Voting weights αjc in (2.2) are solutions of the minimization of the following average

surrogate risk:

εF (H, S)
.
=

1

C

C∑

c=1

1

m

m∑

i=1

F (yicHc(xi))

︸ ︷︷ ︸

εF (Hc,S)

. (2.3)

Sine we are in the one-vs-all learning sheme we an minimize the per-lass risk

εF (Hc, S) orresponding to Hc. To to so, one alternative is to use a boosting like

approah and then minimize eah surrogate εF (Hc, S) iteratively. In fat, at eah

iteration we pik one prototype j ∈ S for whih the lassi�ation rule is de�ned as

the following weak lassi�er:

hjc(xi)
.
= αjcyjc ; j →k i (2.4)

suh that:

Hc(xi)
.
=

∑

j→ki

hjc(xi) . (2.5)

Thus the loal risk (of the weak lassi�er) is the sum of losses due to hjc over the

training set S:

εF (hjc, S)
.
=

1

m

m∑

i=1

F (yichjc(xi)) . (2.6)

Note that the lassi�er hjc follows the leveraged k-NN rule and then only a subset

of S for whih sample j is a k-NN are onerned by the voting of j. We denote

this subset by Rj ⊆ S whih is exatly the set of inverse nearest neighbors of j and

whih ardinality is equal to nj . Hene we redue one again the risk funtion that

should be minimized to this following:

εF (hjc,Rj)
.
=

1

nj

nj∑

i=1

F (yichjc(xi)) . (2.7)

We need to �nd optimal voting weight that minimizes the risk funtion in (2.7).

To do so, we iteratively update the leveraging weight of the atual weak lassi-

�er / prototype j in a boosting like proedure. Hene, we give samples weights of

lassi�ation denoted by wic and progressively update them aording to the miss-

lassi�ation of hjc. That is, weights of badly lassi�ed samples should be enhaned

and those of well lassi�ed ones will be narrowed. We onsider the following updat-

ing rules for prototypes weights αjc, lassi�ation rule hjc and for training samples

weights wic:

αt
jc = αt−1

jc + δjc . (2.8)



10 Chapter 2. Universal Nearest Neighbors algorithm: UNN

htjc(xi) = ht−1
jc (xi) + δjcyjc . (2.9)

wt
ic = −F ′(yich

t
jc(xi)) (2.10)

Atually, at eah iteration t we should minimize εF (h
t
jc,Rj) aording to δjc. Let us

�rst replae hjc in (2.7) by its expression in (2.9). Then, the risk funtion beomes

εF (h
t
jc,Rj)

.
=

1

nj

nj∑

i=1

F (yich
t−1
jc (xi) + yicδjcyjc) . (2.11)

and its �rst derivative aording to δjc is expressed like follows:

∂εF (h
t
jc,Rj)

∂δjc
=

1

nj

nj∑

i=1

yicyjcF
′(yich

t−1
jc (xi) + yicδjcyjc) (2.12)

=
1

nj

nj∑

i=1

yicyjcF
′(F ′−1

(−wt−1
ic ) + yicδjcyjc) (2.13)

Finally, �nding δjc = argmin
(

εF (h
t
jc,Rj)

)

amounts to solving the following general

equation based on the surrogate loss F:

nj∑

i=1

yicyjcF
′(F ′−1

(−wt−1
ic ) + yicδjcyjc) = 0 . (2.14)

2.3.2 Step by step algorithm

The di�erent steps of UNN are detailed in the general algorithm 1. The step

[I.0℄ in the algorithm onsists in hoosing the prototype j ∈ {1, 2, ...,m} (weak

lassi�er). In fat, at eah iteration, the index to leverage j, is obtained by a all

to a weak index hooser orale Wi(., ., .). The seletion of the index j of the next

weak lassi�er ould be done randomly, or using some riterion. In the seond ase,

we pik T ≥ m, and let j be hosen by Wi({1, 2, ...,m}, t, c) suh that δj is large

enough. Eah j an be hosen more than one or one an restrit this index to be

hosen only one.

The demonstration of the omputation of δj solution of (2.15) and wi in (2.16)

will be detailed later. Those expressions are given in Table 2.2 respetively for eah

of the onsidered loss in Table 2.1. W+
jc and W−

jc, used in Table 2.2, are respetively

the sum of weights of positif (good) inverse-NNs and that of negatif (bad) ones:

W+
jc =

nj∑

i=1

[yicyjc > 0]wic ; (2.17)

W−
jc =

nj∑

i=1

[yicyjc < 0]wic ; (2.18)



2.3. UNN, Leveraging the k-NN lassi�er 11

Algorithm 1: Algorithm Universal Nearest Neighbors UNN(S,F)

Input: S = {(xi,yi), i = 1, 2, ...,m}, loss F;
for c = 1, 2, ..., C do

Let αjc ← 0, ∀j;
Let wi ← −F′(0) ∈ Rm

+∗, ∀i;
for t = 1, 2, ..., T do

[I.0℄ Let j ←Wi({1, 2, ...,m}, t);
[I.1℄ Let δj ∈ R solution of:

nj∑

i=1

yicyjcF
′(F′−1

(−wic) + yicδjcyjc) = 0 ; (2.15)

[I.2℄ ∀i : j ∼k i, let

wi ← −F′
(

yicδjcyjc + F

′−1
(−wi)

)

; (2.16)

[I.3℄ Let αjc ← αjc + δj ;

Output: hc(x) =
∑

i∼kx
αicyic, ∀c ;

For now, we will give some details about the demonstration getting to the ex-

pressions in table 2.2. We will onsider �rst the exponential loss funtion A in Table

2.1 whih is a speial ase sine it leads to a lose form solution of δjc. Then we

will explain how to solve the problem for general ases. Lets onsider the equation

(2.14) orresponding to the exponential risk funtion, then:

nj∑

i=1

yicyjc(− exp(−(− ln(wt−1
ic ) + yicδjcyjc))) = 0 (2.19)

nj∑

i=1

yicyjc exp(ln(w
t−1
ic )) exp(−yicδjcyjc) = 0 (2.20)

nj∑

i=1

yicyjcw
t−1
ic exp(−yicδjcyjc) = 0 (2.21)

nj∑

i=1

[yicyjc > 0]wt−1
ic exp(−δjc)−

nj∑

i=1

[yicyjc < 0]wt−1
ic exp(δjc) = 0 ; (2.22)

In expression (2.22) we split the sum on the inverse-NNs suh that we separate the

set Rj into R
+
j and R

−
j where R

+
j denotes the good inverse NNs (i-NN with the

same label as j) and R
−
j denotes the bad ones (i-NNs whih does not have same

label as j). Then, using de�nitions (2.17) and (2.18) we get:

W+
jc exp(−δjc)−W−

jc exp(δjc) = 0 ; (2.23)
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F δjc, see (2.17) and (2.18) g : wi ← g(wi)

exp 1
2 ln

W+
jc

W−

jc

wi exp(−yicyjcδjc)

log ln
W+

jc

W−

jc

wi exp(−yicyjcδjc)
1−wi(1−exp(−yicyjcδjc))

mat
2Wjc−1

2
√

Wjc(1−Wjc)
1− 1−wi+

√
wi(2−wi)δjcyicyjc

√

1+δ2
jc
wi(2−wi)+2(1−wi)

√
wi(2−wi)δjcyicyjc

Table 2.2: Computation of δjc and the weight update rule of our implementation of

UNN, for the stritly onvex losses in Table 2.1. UNN leverages example j for lass

c, and the weight update is that of example i (See text for details and notations).

whih leads to the following �nal expression of δjc:

δjc =
1

2
ln

(

W+
jc

W−
jc

)

. (2.24)

Therefore, the iterative update of boosting weights wt
ic in (2.10) as a funtion of δjc

is expressed like bellow:

wt
ic = exp

(
−yichtjc(xi)

)
(2.25)

= exp
(

−yicht−1
jc (xi)− yicyjcδjc

)

(2.26)

= wt−1
ic exp (−yicyjcδjc) (2.27)

For the remaining loss funtions, it is not possible to diretly solve (2.15). Then

we will assume that F

′(F′−1
(−wic) + yicδjcyjc) ≃ −wicF

′(yicδjcyjc). Therefore, the
equation (2.14) beomes:

nj∑

i=1

yicyjcw
t−1
ic F

′(yicδjcyjc) = 0 (2.28)

nj∑

i=1

[yicyjc > 0]wt−1
ic F

′(δjc)−
nj∑

i=1

[yicyjc < 0]wt−1
ic F

′(−δjc) = 0 (2.29)

W+
jcF

′(δjc)−W−
jcF

′(−δjc) = 0 . (2.30)

Replaing F

′
in (2.30) and (2.10) by its expression orresponding to eah of the

onsidered losses will diretly lead to the Table 2.2. The onvergene proof and the

theoretial properties of UNN are detailed in [Nok et al. 2012℄.

2.4 Implementation details and optimizations

2.4.1 Implementation

Sine we are dealing with lassi�ation topi for large sale image datasets, UNN

should overome some numerial problems that ould arise.
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The �rst one is that, we an fae unbalaning problem espeially beause we

are onsidering a one-vs-all framework. To ope with suh problem we use adaptive

weights wic. That is: initially, w
0
ic are weighted, aording to wether they belong or

do not belong to the lass "c", by the proportion of positive (respetively negative)

samples in this lass suh that the sum of weights is equal to 1. Then, at eah

iteration, we normalize weights wic, i = 1..m, to unity after the update in (2.16).

Note that when W+
j and/or W−

j is zero, δjc in Table 2.2 is not �nite. We suggest

a simple alternative to ope with this issue: we use (W+
j + ε) instead of W+

j and

(W−
j + ε) instead of W−

j .

Then, for the hoie of the prototype j in step [I.0℄ of Algorithm 1, we adopt

the next sheme: we pik T ≤ m, onsider the m samples, hoose j suh that αjc is

large enough and enable eah example to be hosen only one.

2.4.2 Metri setting

Two major issues arise when implementing our UNN algorithm in pratie. The

�rst one onerns the distane (or, more generally, the dissimilarity measure) used

for the k-NN searh. The seond one onsists in setting the value of k for both

training and testing our prototype-based lassi�ers (see setion 2.4.3).

In fat, de�ning the most appropriate dissimilarity measure for k-NN searh is

partiularly hallenging when dealing with very high-dimensional feature vetors like

the ones ommonly used for ategorization. Indeed, the standard metri distanes

may be inadequate when suh vetors are generated by sophistiated pre-proessing

stages (e.g., vetor quantization or unsupervised ditionary learning), thus lying

on omplex high-dimensional manifolds. In general, this should require an addi-

tional distane learning stage in order to de�ne the optimal dissimilarity measure

for the partiular type of data at hand. In this respet, our UNN method has

the advantage of being fully omplementary with any metri learning algorithm

[Bel Haj Ali et al. 2010℄, ating on the top of the k-NN searh (see Appendix A).

Furthermore, sine we use here BoF based on normalized histograms, we prefer use

standard L1 distane and then avoid expensive omputational tasks.

2.4.3 Parameters and optimization

Seleting a good value for k amounts to learning parameter-dependent weak lassi-

�ers, where the parameter k spei�es the size of the voting neighborhood in lassi�-

ation rule (2.2). From the theoretial standpoint, a brute-fore approah is possible

with boosting: one an de�ne multiple andidate weak lassi�ers per example, one

for eah value of k, i.e., for eah neighborhood size, and then learn prototypes by

optimizing the surrogate risk funtion over k as well. This strategy has the ad-

vantage of enabling diret learning of k at training time. However, training several

weak lassi�ers per example without omputation triks would potentially severely

impair the appliability of the algorithm on huge datasets. The solution we propose

is subtler: we have modi�ed the lassi�ation phase of UNN, and tried a soft solu-
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# of ategories 10 20 30 40 50 60 100

k-NN BoF 76.38 57.28 45.00 40.27 36.09 32.30 24.67

SVM BoF 83.85 67.65 58.21 53.45 47.81 44.09 35.31

AdaBoost BoF 75.37 58.21 45.57 37.75 32.41 29.01 26.72

UNNs BoF 84.28 70.44 58.49 51.07 46.34 41.80 31.61

Table 2.3: Classi�ation performanes of the di�erent methods we tested in terms

of the average auray or mAP as a funtion of the number of ategories.

tion whih, to lassify new observations, onvolutes weighting with a simple density

estimation suggested by boosting. Typially, we onsider a logisti estimator for a

Bernoulli prior whih vanishes with the rank of the example in the neighbors, thus

dereasing the importane of the farthest neighbors:

p̂(j) = βj =
1

1 + exp(λ(j − 1))
, (2.31)

with λ > 0. The shape prior is hosen this way beause it was shown that boosting,

as arried out in a number of algorithms � not restrited to the indution of linear

separators [Nok & Nielsen 2009℄ � loally �ts logisti estimators for Bernoulli pri-

ors. The soft version of UNN we obtain, alled UNNs (for �Soft UNN�), replaes

(2.2) by:

hℓc(x) =
∑

j∼kx

βjαjcyjc . (2.32)

Notie that it is useless to enfore the normalization of oe�ients βj in (2.31),

beause it would not hange the lassi�ation of UNNs. Notie also that the βj in

(2.32) are used only to lassify new observations: the training steps of UNNs are

the same as UNN, and so UNNs meets the same theoretial properties as UNN

desribed in [Nok et al. 2012℄.

2.5 Experiments

In this setion, we present experimental results of UNN for image ategorization.

Our experiments aim at arefully quantifying and explaining the gains brought by

boosting on k-NN voting on real image databases. In partiular, we propose in

this setion preision and auray omparison between UNN vs k-NN, SVM and

AdaBoost using Bag-of-Features (BoF) as desriptors. Here, we extrated 2500

SIFT [Lowe 2004℄ per image to form a odebook of 500 visual words. BoF, of a

dimension 500, are then omputed by vetor quantizing the loal features SIFT

using this odebook.

We seleted 100 ategories from the SUN database [Xiao et al. 2010℄. We kept all

the images of eah ategory and the inherent unbalaning of the original database.

We randomly hose half images to form a training set, while testing on the remaining

ones. The average auray or mAP (Mean average preision) was omputed by
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Figure 2.1: Classi�ation performanes of the tested methods as a funtion of the

number of image ategories.

averaging lassi�ation rates over ategories (diagonal of the onfusion matrix) and

then averaging those values after repeating eah experiment 10 times on di�erent

folds. To speed-up proessing time, we used Yael toolbox

1

for a fast implementation

of k-NN. Furthermore, we also developed an optimized version of our program, whih

exploits multi-thread funtionalities. We denote this version as UNNs(MT.) All the

experiments were run on an Intel Xeon X5690 12-ores proessor at 3.46 GHz.

We ompared UNNs, SVM with Gaussian RBF Kernel, and AdaBoost with

deision stumps

2

(i.e., deision trees with a single internal node), using BoF de-

sriptors. In partiular, we followed the guidelines of [Hsu et al. 2003℄ for arrying

out the SVM experiments, thus arrying out ross-validation for seleting the best

parameters values for SVM.

In Table 2.3 we report the auray for eah lassi�ation method. Results in

these tables are provided as a funtion of the number of image ategories. The most

relevant results obtained are also displayed in Figure 2.1 (mAP as a funtion of the

number of ategories) and Figures 2.2 and 2.3, for the training and lassi�ation

times, respetively.

Auray results display that UNNs dramatially outperforms AdaBoost (and

k-NN as well); this result, whih somehow experimentally on�rms that UNN su-

essfully exploits the boosting theory, was quite preditable, as UNN builds a piee-

1

Code available at https://gforge.inria.fr/frs/?group_id=2151

2

For AdaBoost, we used the ode available at http://www.mathworks.om/matlabentral/

fileexhange/22997-multilass-gentleadaboosting.
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Figure 2.2: Training time as a funtion of the number of image ategories.

Figure 2.3: Classi�ation time for UNN(s) vs SVM as a funtion of the number of

image ategories with BoF.
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# ategories 10 20 30 40 50 60 100

# training images 951 2,162 3,099 4,381 5,540 6,568 11,186

k-NN 0

SVM 2.4 27 83 226 472 806 4526

AdaBoost 96 218 341 442 559 662 1128

UNNs 1.7 16 58 150 295 498 2146

UNNs(MT) 0.3 2.5 7.8 19 36 53 257

Table 2.4: Computation time [s℄ for the training phase.

# ategories 10 20 30 40 50 60 100

# test images 951 2,162 3,099 4,381 5,540 6,568 11,186

k-NN 0.20 1.0 2.0 4.0 6.0 9.0 22.0

SVM 0.25 5.7 13 31 56 80 260

AdaBoost 0.02 0.1 0.25 0.43 0.67 0.95 2.74

UNNs 0.21 0.72 1.6 2.7 4.2 5.9 17

UNNs(MT) 0.08 0.2 0.37 0.58 0.84 1.11 3.25

Table 2.5: Computation time [s℄ for the testing phase.

wise linear deision funtion in the initial domain X, while AdaBoost builds a linear

separator in this domain. SVM, on the other hand, have aess to non-linear �t-

ting of data, by lifting the data to a domain whose dimension far exeeds that of

X. Yet, SVM testing results are somehow not as good as one might expet from

this learut theoretial advantage over UNN, and also from the fat that we arried

out SVM with signi�ant parameters optimization [Hsu et al. 2003℄. Indeed, UNNs

even beats SVMs over 10 to 30 ategories, being slightly outperformed by them on

more ategories.

In Table 2.4 and 2.5 we report the orresponding omputation time (in seonds)

for the training and lassi�ation phase, respetively. Obviously, the omputation

times over training and testing are also a key for exploiting the experimental results.

Table 2.4 displays that, while the training time of AdaBoost is linear, UNNs is

a logial learut winner over SVM for training: it ahieves speedups ranging in

between two and more than seventeen over SVM. Thus, UNN provides the best

preision/time trade-o� among the tested methods, whih suggests that UNN might

well be more than a legal ontender to lassi�ation methods dealing with huge

domains, or domains where the testing set is huge ompared to the training set,

whih is the ase, for instane, for ell lassi�ation in biologial images. Finally, we

have only srathed experimental optimizations for UNN, and have not optimized

UNN from the omplexity-theoreti standpoint, so we expet room spae for further

signi�ant improvement of its training/testing times.
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2.6 Conlusion

In this hapter, we ontribute to �ll an important void of NN methods, show-

ing how boosting an be transferred to k-NN lassi�ation, with onvergene rates

guarantees for a large number of surrogates. UNN, whih builds upon the works of

([Piro et al. 2012℄), generalizes lassi k-NN to weighted voting where weights, the

so-alled leveraging oe�ients, are iteratively learned by UNN. We prove that this

algorithm onverges to the global optimum of many surrogate risks in ompetitive

times under very mild assumptions. Compared to [Piro et al. 2012℄, we enlarge the

set of formal boosting �avors of UNN, from a singleton assoiated to the exponential

loss to a set enompassing popular losses like the logisti and matsushita loss.

Our approah is also the �rst extensive assessment of UNN to omputer vision

related tasks. Comparisons with k-NN, support vetor mahines and AdaBoost,

using Bag-of-Feature desriptors, on real domains, display the ability of UNN to be

ompetitive with its ontenders, ahieving high auray in omparatively redued

training and testing times.

An optimization approah using metri learning was not reported in this hap-

ter, sine it does not onern our learning framework, is reported in Appendix A

([Bel Haj Ali et al. 2010℄). It inludes blending UNN with an approah that learns

more sophistiated metris over data.



Chapter 3

Newton Nearest Neighbor

algorithm: N

3

3.1 Introdution

Large sale image lassi�ation implies satisfying tight time, memory and numer-

ial proessing requirements. Coping with them involves in general two kinds of

approahes. For the �rst one, salability goes hand in hand with simpli�ation:

algorithms are built around sophistiated, state-of-the art approahes that are sim-

pli�ed to �t into these requirements, suh as Support Vetor Mahines (SVM) with

linear kernels [Shalev-Shwartz et al. 2007℄, or (Ada)Boosting with weight lipping

and simple stumps as weak lassi�ers [Ali et al. 2011℄.

The seond kind of approahes use as ore very simple algorithms that already

�t into these requirements, and then, from this basis, elaborate more omplex ap-

proahes with improved performanes: this is the ase for the k-nearest neighbor

(NN) lassi�er, or the nearest lass mean lassi�er embedded with metri learning

[Mensink et al. 2012, Weinberger & Saul 2009℄. From the experimental standpoint,

these latter approahes obtain surprising ompetitive results with respet to the

former ones. In fat, they may have another advantage: while theoretial guaran-

tees barely survive extreme simpli�ation, elaborating on a ore makes it perhaps

easier to preserve its theoretial properties, suh as its statistial onsisteny (e.g.

for k-NN [Devroye et al. 1996℄).

Our algorithm belongs to the seond ategory of approahes, as we elaborate on

the ordinary k-NN lassi�er. Our approah is di�erent but omplementary to metri

learning approahes, as we hoose to adapt k-NN to the boosting framework. It is in

the same line of works as UNN algorithm introdued in hapter 2, but the present

one is of Newton-Raphson type, and then more adapted for large sale lassi�ation.

Our high-level ontribution is threefold: a novel Adaptive Newton-Raphson

sheme to leverage k-NN, alled N

3
, an extensive theoretial analysis of the ap-

proah, and �ne-grained experimental validations on three large and hallenging

domains: SUN and Calteh. To be more spei�, the novelty of our method in-

ludes:

(i) a proof of the boosting ability of N

3
, the �rst boosting-ompliant onvergene

rates for a Newton-type approah to onvex loss minimization to the best of our

knowledge;

(iii) a proof that the output of N3
diretly yields e�ient estimators of posteriors;

(iv) a divide and onquer algorithm to ompute these estimators and ope with the
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3

urse of dimensionality with low memory requirement;

(v) experimentally optimized ore-proessing stages for N

3
with linear ost per

boosting iteration.

Experimental results display that N

3
manages to hallenge auray of sophis-

tiated approahes while being faster, and requires low memory.

The remaining of the hapter is organized as follows: Setion 3.2 states basi

de�nitions. Setion 3.3 presents lassi�ation-alibrated losses. Setion 3.4 presents

N

3
algorithm. Setion 3.5 disusses its theoretial properties. Setion 3.6 presents

experiments, and setion 3.7 onludes the hapter.

3.2 Basi de�nitions

We �rst provide some basi de�nitions. Our setting is multilass, multilabel

lassi�ation. We have aess to an input set of m examples (or prototypes),

S
.
= {(xi,yi), i = 1, 2, ...,m}. Vetor yi ∈ {−1,+1}C enodes lass memberships,

assuming yic = +1 means that observation xi belongs to lass c. A lassi�er H is

a funtion mapping observations to vetors in R
C
. Given some observation x, the

sign of oordinate c in H(x) gives whether H predits that x belongs to lass c,

while its absolute value may be viewed as a on�dene in lassi�ation.

The nearest neighbors (NNs) rule belongs to the oldest, simplest and still most

widely studied lassi�ation algorithms [Devroye et al. 1996℄. It relies on a non-

negative real-valued �distane� funtion. This funtion measures how muh two

observations di�er from eah other, and may not neessarily satisfy the requirements

of metris. We let j →k x denote the assertion that example (xj ,yj), or simply

example j, belongs to the k NNs of observation x. We shall abbreviate j →k xi by

j →k i � in this ase, we say that example i belongs to the inverse neighborhood of

example j. To lassify an observation x, the k-NN rule H(x) omputes the sum of

lass vetors of its nearest neighbors, that is: Hc(x)
.
=
∑

j→kx
yjc is the oordinate

c in H(x). A leveraged k-NN rule [Nok et al. 2012℄ generalizes this to:

Hc(x)
.
=

∑

j→kx

αjcyjc , (3.1)

where αj ∈ R
C
leverages the lasses of example j. Leveraging nearest neighbors

raises the question as to whether there exists e�ient indutive learning shemes for

these leveraging oe�ients.

To learn them, we adopt the framework of [Bartlett et al. 2006,

Vernet et al. 2011℄, and fous on the minimization of a total alibrated risk

whih sums per-lass losses:

εF (H, S)
.
=

1

C

C∑

c=1

1

m

m∑

i=1

F (yicHc(xi))

︸ ︷︷ ︸

εF (Hc,S)

. (3.2)



3.3. Classi�ation-alibrated losses 21

crit transfer funtion f alibrated loss F

A

1
1+exp(−x) ln(1 + exp(−x))

B

1
1+2−x ln(1 + 2−x)

C

1
2

(

1 + x√
1+x2

)

exp sinh−1(−x)

D

1+max{0,x}
2+|x| max{0,−x} − ln(2 + |x|)

Table 3.1: Calibrated losses that math (3.3) for several transfer funtions. From

top to bottom, losses are the logisti loss, binary logisti loss, Matsushita's loss,

alibrated linear Hinge loss.

To be lassi�ation-alibrated, loss F : R→ R is required to be onvex, di�erentiable

and suh that F ′(0) < 0 [Bartlett et al. 2006℄ (Theorem 4), [Vernet et al. 2011℄. The

reent advanes in the understanding and formalization of (multilass) loss funtions

suitable for lassi�ation have essentially onluded that lassi�ation alibration

is mandatory for the loss to be Fisher onsistent or proper [Bartlett et al. 2006,

Vernet et al. 2011℄. These are ruial properties without whih the minimization of

the loss brings no string statistial guarantee with respet to Bayes rule (suh as

universal onsisteny).

3.3 Classi�ation-alibrated losses

In this hapter, we are interested in a subset of lassi�ation-alibrated funtions,

namely those for whih:

F (x)
.
= −x+

∫

f , (3.3)

for some ontinuous transfer funtion f : R → [0, 1], inreasing and symmetri

with respet to (0, 1/2 = f(0)). Intuitively, a transfer funtion brings an estimate

of posteriors: it is a bijetive mapping between a real-valued predition Hc(x) and

a orresponding posterior estimation for the lass, p̂[yc = +1|x], mapping whih

states that both values are positively orrelated, and establishes a tie for Hc = 0

to whih orresponds p̂[yc = +1|x] = 1/2. Transfer funtions have a longstanding

history in optimization [Kivinen & Warmuth 2001℄, and the set of F that math

(3.3) stritly ontains balaned onvex losses, funtions with appealing statistial

properties [Nok et al. 2012℄ (and referenes therein). Table 3.1 provides four ex-

ample of suh losses on whih we fous. Another example of losses that meet (3.3)

is the squared loss, for transfer f = min{1,max{0, x + 1/2}}.
To arry out the minimization of (3.2), we adopt a mainstream 1-vs-rest boosting

sheme whih, for eah c = 1, 2, ..., C, arries out separately the minimization of
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Algorithm 2: Algorithm Newton Nearest Neighbors N

3
(S, crit, k)

Input: Sample S, riterion crit ∈ {A,B,C,D}, k ∈ N∗;

Let αj ← 0,∀j = 1, 2, ...,m;

for c = 1, 2, ..., C do

//Minimize εF (Hc, S)

Let wi ← 1
‖1+yicyi‖1 , ∀i;

for t = 1, 2, ..., T do

[I.0℄//Choie of the example to leverage

Let j ←Wi(S,w);

[I.1℄//Leveraging update, δj
Let η(c, j) ←∑

i:j→ki
wtiyicyjc;

Let nj ← |{i : j →k i}|;
Compute δj following Table 3.2, using crit;

[I.2℄//Weights update

∀i : j →k i, update wi as in Table 3.2, using crit;

[I.3℄//Leveraging oe�ient update

Let αjc ← αjc + δj ;

Output: H(x)
.
=
∑

j→kx
αj ◦ yj

εF (Hc, S) in εF (H, S). To do so, it �ts the cth oordinate in leveraging oe�ients

by onsidering the two-lass problem of lass c versus all others.

3.4 N

3
: Adaptive Newton Nearest Neighbors

3.4.1 Algorithm

We now present algorithm N

3
, whih stands for �Newton Nearest Neighbors�. N

3
up-

dates iteratively the leveraging oe�ients of an example in S, example piked by

an orale, Wi for �Weak Index Chooser� orale. We detail below the properties

and implementation of Wi. The tehnial details of the N

3
are given in Table 3.2.

N

3
follows the boosting sheme, with iterative updates of leveraging oe�ients

followed by an iterative re-weighting of examples. Before embarking into formal

algorithmi and statistial properties for N

3
, we �rst show that N

3
is of Newton-

Raphson type.

Theorem 1 N

3
performs adaptive Newton-Raphson steps to minimize εF (Hc, S),

∀c.

Proof sketh: The key to the proof, whih we explore further in subsetion 3.4.2,

is the existene of a partiular funtion gF , stritly onave and symmetri with

respet to

1/2, whih allows to rewrite the loss as:

F (x) = (−gF )⋆(−x) , (3.4)
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where ⋆ denotes the (Legendre) onvex onjugate. Convex onjugates have the

property that their derivatives are inverses of eah other. This property, along

with (3.4), allows to simplify the omputation of the derivatives of the loss, for any

example i in the inverse neighborhood of j:

∂F (yicHc(xi))

∂δj
= yicyjcF

′(yicHc(xi)) (3.5)

= −yicyjc((−gF )⋆)′(−yicHc(xi))

= −yicyjc((−gF )′)−1(−yicHc(xi))

= −yicyjc(1− (g′F )
−1(−yicHc(xi)))

= −yicyjc(g′F )−1(yicHc(xi))

= −KFwiyicyjc . (3.6)

Eq. (3.6) holds beause we an also rewrite the weights update (Table 3.2) as:

wi ←
1

KF
(g′F )

−1
(
δjyicyjc + g′F (KFwi)

)
, (3.7)

where (g′F )
−1

is the inverse funtion of the �rst derivative of gF , and KF is a

normalizing onstant: it is respetively ln(2), 1, 1/2, 1 for A, B, C and D in Table

3.3. From (3.5), it also omes ∂2F (yicHc(xi))/∂δ
2
j = F ′′(yicHc(xi)), where F ′′

denotes the seond derivative. Considering the whole inverse neighborhood of j, the

Newton-Raphson update for δj is (with η(c, j)
.
=
∑

i:j→ki
wtiyicyjc in N

3
):

δj ← λF ×
KF η(c, j)

∑

i:j→ki
F ′′(yicHc(xi))

, (3.8)

for learning rate 0 < λF ≤ 1. Mathing this expression with the updates in Table

3.2 brings learning rate:

0 < λF =
LF
∑

i:j→ki
F ′′(yicHc(xi))

KFnj
≤ LFF

′′(0)
KF

= 1 ,

for eah riteria A, B, C and D, where LF is respetively 4 ln(2), 4/ ln2(2), 1/2, 4, and

nj
.
= |{i : j →k i}| in N3

. The inequalities ome from the fat that F ′′ > 0 and

takes its maximum in 0 for all riteria. We then hek that F ′′(0) = KF /LF for A,

B, C and D.

3.4.2 A key to the properties of N

3

The duality between real-valued lassi�ation and posterior estimation whih stems

from f (See Setion 3.3) is fundamental for the algorithmi and statistial properties1

of N

3
. To simplify the statement of results and proofs, it is onvenient to make the

parallel between our alibrated losses F and funtions elsewhere alled permissible

2

,

1

See Appendix B for details on statistial properties of N

3
.

2

The usual de�nitions are more restrited: for example the generator of the alibrated

linear Hinge loss would not be permissible in the de�nitions of [Kearns & Mansour 1999,

Nok et al. 2012℄.
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crit leveraging weight update

update, δj g : wi ← g(wi, δj , yic, yjc)

A

4 ln(2)η(c,j)
nj

wi

wi ln 2+(1−wi ln 2)×exp(δjyicyjc)

B

4η(c,j)

ln2(2)nj

wi

wi+(1−wi)×2δjyicyjc

C

η(c,j)
2nj

1− 1−wi+
√

wi(2−wi)δjyicyjc
√

1+δ2jcwi(2−wi)+2(1−wi)
√

wi(2−wi)δjyicyjc

D

4η(c,j)
nj

1+max
{

0,−
(

δjyicyjc+
1−2wi
err(wi)

)}

2+
∣

∣

∣
δjyicyjc+

1−2wi
err(wi)

∣

∣

∣

Table 3.2: Leveraging and weight updates in N

3
orresponding to eah hoie of

alibrated loss in Table 3.1.

crit generator gF

A −x lnx− (1− x) ln(1− x)

B −x log2 x− (1− x) log2(1− x)

C

√

x(1− x)

D ln(2err(x)) + 1− 2err(x)

Table 3.3: Generators orresponding to alibrated losses in Table 3.1.
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that is, funtions de�ned on (0, 1), stritly onave, di�erentiable and symmetri

with respet to x = 1/2. It an be shown that for any of our hoies of F , there

exists a permissible gF , that we all a generator, for whih the relationships (3.7) and

(3.4) used in the proofsketh of Theorem 1 indeed hold. Furthermore, the generator

is also useful to write the transfer funtion itself, as we have:

f(x) = (−gF )′−1(x) . (3.9)

Table 3.3 provides the four generators orresponding to hoies A, B, C and D.

The permissible generator of the alibrated linear Hinge loss makes use of the error

funtion:

err(x)
.
= min{x, 1− x} . (3.10)

Permissible funtions (as well as (3.10)) are used in losses that rely on poste-

rior estimation rather than real-valued lassi�ation. Suh losses are the or-

nerstone of deision-tree indution and other methods that diretly �t posteriors

[Devroye et al. 1996℄. Hene, (3.4) establishes a duality between the two kinds of

losses, duality whih appears as a watermark in various works [Bartlett et al. 2006,

Friedman et al. 2000℄. The writing of the weight update using gF in (3.7) is also

extremely useful to simplify the proofs of the following Theorems. Finally, there

is a syntheti writing for the weights, whih sheds light on their interpretation:

unraveling the weight update (3.7) and using (3.9), we obtain that wi satis�es:

wi ∝ 1− f(yicHc(xi)) . (3.11)

Hene, weights and estimated posteriors are in opposite linear relationship. A-

ording to (3.11), examples �easier to lassify� (reeiving large estimated posteriors)

reeive small weight. This is a fundamental property of boosting algorithms, that

progressively onentrate on the hardest examples.

3.5 Algorithmi properties of N

3

The �rst result is a diret follow-up from Table 3.2.

Lemma 2 With hoie D (alibrated linear Hinge loss), N

3
may be implemented

using only rational arithmeti.

Comments on Lemma 2: In the light of the boosting properties of N

3
, this

result is important in itself. Most existing boosting algorithms, inluding UNN,

AdaBoost, Gentle AdaBoost and spawns [Nok et al. 2012, Friedman et al. 2000℄

make it neessary to tweak or lip the key numerial steps, inluding weights update

or leveraging oe�ients [Ali et al. 2011℄, at the possible expense of failing to meet

boosting's onvergene or auray. Rational arithmeti still requires signi�ant

omputational resoures with respet to �oating point omputation, but Lemma

2 shows that whenever these are aessible, formal boosting may be implemented

virtually without any loss in numerial preision.
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Let us now shift to the boosting result on N

3
, whih is stated under the following

weak learning assumption:

There exist onstants γu > 0, γn > 0 suh that at any iterations c, t of N3
,

index j returned by Wi is suh that nj > 0 and the following holds: (i)

∑

i:j→ki wi

nj
≥ γu

KF
, and (ii) |p̂w[yjc 6= yic|j →k i]− 1/2| ≥ γn.

Requirement (ii) orresponds to the usual weak learning assumption of boosting: it

postulates that the urrent normalized weights in the inverse neighborhood of exam-

ple j authorize a lassi�ation di�erent from random by at least γn. Requirement

(i) states that unnormalized weights must not be too small. This is a neessary

ondition as unnormalized weights of minute order do not neessary prevent (i) to

be met, but would obviously impair the onvergene of N

3
given the linear depen-

dene of δj in the unnormalized weights. The following Theorem states that N

3
is

a boosting algorithm.

Theorem 3 Suppose N

3
is ran for T steps for eah c, and that the weak learning

assumption holds at eah iteration of N

3
. Denote I the whole multi-set of indexes

returned by Wi. Then for any riterion A, B, C, D, the total alibrated risk does

not exeed some ε ≤ F (0) provided:

∑

j∈I
nj = Ω

(
(C + |ε|)m

γ2nγ
2
u

)

. (3.12)

Remark : requirement ε ≤ F (0) omes from the fat that a leveraged NN with null

leveraging vetors would make a total alibrated risk equal to F (0).

Comments on Theorem 3: to the best of our knowledge, no formal onvergene

rate has been established to date for Newton approahes to boosting, inluding

the popular Gentle AdaBoost [Friedman et al. 2000℄. Theorem 3 gives several rules

of thumb to run N

3
and implement Wi. The �rst is that Wi should hoose

examples whose inverse neighborhood is not too small. For example, assume that

boosted examples have inverse neighborhood's size not smaller than the average,

implying (1/T )
∑

j∈I nj ≥ k. Then, omitting onstants in the big omega of (3.12),

we obtain that (3.12) is satis�ed as soon as the number of iterations (T ) meets:

T ≥ (C + |ε|)m
kγ2nγ

2
u

.

This inequality suggest to hoose k (i) proportional to C and (ii) moderately in-

reasing in m. These two hoies imply, under the weak learning assumption, that

N

3
is a sparse boosting algorithm: we only need to boost a subsample of S to reah

a desired upperbound for the alibrated risk.
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using L1 or L2 normalization, the top1 auray of N

3
. Posteriors were ombined

with the harmoni mean.
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using L1 or L2 normalization, the top1 auray (left) and top5 auray (right) of

N

3
. Posteriors were ombined with the harmoni mean.

3.6 Experimental Evaluation

3.6.1 Settings: ontenders, databases and features

We mainly report and disuss experiments of N

3
versus k-NN and sup-

port vetor mahines (SVM) implemented with Stohasti Gradient Desent

SGD whih represents the state of art among the lassi�ers on large sale datasets

[Perronnin et al. 2012℄.

We abbreviate N

3
log, N

3
binlog, N

3
mat, N

3
hingethe four �avors of N

3
orresponding

respetively to rows A, B, C, D in Table 3.1. In N

3
, Wi hooses the example with

the largest urrent δj .

The datasets used in this hapter, Calteh256, and SUN are among the most

hallenging datasets publily available for large sale image lassi�ation:

• Calteh256 [Gri�n et al. 2007℄ (al): This dataset is a olletion of 30607 images
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k-NN N

3
log N

3
binlog N

3
hinge N

3
mat

a

L1 25.58 35.50 36.40 33.62 34.40

L2 25.90 33.97 35.44 32.87 33.55

Table 3.4: Top1 auray on al (64 splits, L1 or L2 normalization).

k-NN N

3
log N

3
binlog SGD

Top1 a 20.92 30.16 30.10 28.59

Top5 a 42.67 55.21 54.90 57.08

Table 3.5: Top5 auray on sun (64 splits, L1 normalization).

of 256 objet lasses. Following lassial evaluation, we use 30 images/lass for

training and the rest for testing.

• SUN [Xiao et al. 2010℄ (sun): This dataset is a olletion of 108656 images divided

into 397 senes ategories. We set the number of training images per lass to 50 and

we test on the remaining.

We adopted for the features the Fisher vetors (fv) [Perronnin et al. 2010℄

enoding to represent images. Fisher Vetor are omputed over densely extrated

SIFT desriptors (fvs) and loal olor features (fvsc), both projeted with PCA

in a subspae of dimension 64. Fisher Vetors are extrated using a voabulary of

16 Gaussian and normalized separately for both hannels and then ombined by

onatenating the two features vetors (fvs+sc). This approah leads to to a 4K

dimensional features vetor.

To ompare algorithms, we adopt the top1 and top5 auraies (a), de-

�ned respetively as the proportion of examples that was orretly labelled and the

proportion of those for whih the orret lass belongs to the top5 predited pat-

terns [Mensink et al. 2012℄. We also report proessing times on a 2 X Intel Xeon

E5-2687W 3,1GHz and analyse the onvergene and the ost of N

3
. But �rst, we

propose a divide and onquer algorithm that optimizes lassi�ation using posteri-

ors.

3.6.2 A divide and onquer algorithm to ope with the urse of

dimensionality with low memory requirement

It is well known that NN lassi�ers su�er of the urse of dimensionality

[Beyer et al. 1999℄, hubs [Radovanovi¢ et al. 2010℄, so that the auray an de-

rease when inreasing the size of desriptors. This may also a�et N

3
. fv are

extremely powerful desriptors but they generate a spae with about 4K dimension

for 32 gaussians that ould impair N

3
performane.

Our approah relies on nie property of minimizing lassi�ation-alibrated

losses: we an easily ompute the posteriors from the sore using N

3
(see

[D'Ambrosio et al. ear℄). Thus, we propose a three step splitting method :
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Figure 3.3: Top1 and top5 auraies (with 1 split) on al as a funtion of the

number of iterations T .

• split fv in a regular set of n∗ ∈ {2, 4, 8, 16, 32, 64} sub-desriptors and normalize

with L1 or L2 norm;

• ompute posteriors for eah sub-vetor (Table 3.1);

• ombine these probabilities using a generalized average: arithmeti, geometri or

harmoni.

3.6.3 Analysis on auray and onvergene

First, �gures 3.1 and 3.2 validate the divide and onquer approah, as inreasing

the number of splits on fv learly improves performanes. Also, as seen from the

left plot, L1 normalization tends to outperform L2 normalization. The �optimal�

number of splits (64) is then used in Table 3.4 whih displays that L1 normalization

of fv slightly improves lassial L2 normalization. N

3
binlog is also better than all

other �avors of N

3
, and overall all �avors of N

3
very signi�antly outperform k-NN.

We have also ompared N

3
against SGD and k-NN on the sun data set

[Xiao et al. 2010℄. Results using T = 50 iter for N

3
and 1000 iter for SGD are

displayed in Table 3.5. One sees that N

3
signi�antly beats N

3
and approahes the

auray of SGD. Note that memory requirement for N

3
is divided by the number

of splitting (i.e. twie the number of Gaussian of the Fisher Vetor).

Figures 3.3 and 3.4 shows the onvergene of N

3
on al and sun. One sees

from the plots that the onvergene of the Newton approah in N

3
is extremely fast
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and requires only few iterations � this is not the ase for the non-Newton approah

UNN [Nok et al. 2012℄, whih requires a larger number of iterations. The fast

onvergene in N

3
results in sparse prototype seletion (T ≪ m), well adapted for

large sale datasets, and suggests to hoose T as a funtion of the number of images

in the orresponding lass (inner loop of N

3
), suh as T = O(m/C). Hene, we end

up with a omplexity depending on T ≪ m.

3.7 Conlusion

In this hapter we have proposed a novel Newton-Raphson approah to boosting

k-NN. We show that it is a boosting algorithm, with several key algorithmi and

statistial properties. In fat, the spei� set of alibrated loss funtions allows us to

estimate the posteriors from the lassi�ation sores of N

3
, and use them in a divide

and onquer sheme to ope with the k-NN's urse of dimentionality. Experiments

display that although auray results are similar to state of the art approahes

like SGD, our N

3
requires limited memory sine we split the features and use eah

part independently. This makes our approah suitable for very large sale image

lassi�ation problems.
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Calibrated Losses





Chapter 4

Stohasti Low-Rank Newton

Desent algorithm: SLND

4.1 Introdution

Large sale image lassi�ation requires omputational e�ieny. To ope with

these issues, urrent standard approahes involves high dimensional features like

Fisher Vetors [Perronnin et al. 2010℄ or super vetors [Zhou et al. 2010℄ and Sup-

port Vetor Mahines (SVM) with linear kernels for training [Wang et al. 2010℄.

The lassial approah introduing SVM �rst states dual formulation [Vapnik 1998℄

where the task is to minimize empirial risk in the dual spae with a regularization

term. The �rst alternative approah on primal optimization [Keerthi et al. 2006℄

used onjugate gradient or utting plane algorithms [Joahims 2002℄. Reent state

of the art papers rather fous on the more e�ient "Stohasti Gradient Desent"

algorithm (SGD) [Zhang 2004, Bottou & Bousquet 2008℄ and the "PEGASOS" al-

gorithm [Shalev-Shwartz et al. 2007℄, with linear omplexity in the number of sam-

ples.

Although SGD methods perform as well as bath solvers at a fration of ost,

�rst order SGD methods still su�er from slow onvergene. Two approahes were

reently proposed in order to ope with this issue; The �rst is the natural gradi-

ent approah, whih inorporates the estimation of the Riemannian metri ten-

sor using Fisher information [Amari 1998℄. The seond alternative approahes

are based on a stohasti version of the quasi Newton Broyden-Flether-Golfarb-

Shanno (BFGS) optimization algorithm. The �rst one is a low memory stohas-

ti version of the BFGS quasi Newton method [Shraudolph et al. 2007℄. Al-

though their BFGS method redues the number of iterations, eah iteration re-

quires a multipliation by a low rank matrix. Unfortunately this omputational

omplexity is often larger than the gains assoiated with the quasi-Newton up-

date as pointed in [Bordes et al. 2009℄. In order to ope with this omplexity

[Bordes et al. 2009, Bordes et al. 2010℄ proposed a "SGD-QN" algorithm with an

update using the diagonal of the Hessian matrix. Unfortunately there are no proof

of onvergene of their "SGD-QN" algorithm.

Our high-level ontribution is a new stohasti Low-Rank Newton sheme with

theoretial proofs and experimental validations on three large and hallenging do-

mains: SUN, Calteh256 and ImageNet. To be more spei�, the novelty of our

approah inludes:

(i) A new Stohasti Newton desent algorithm, SLND, whih approximates the
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inverse Hessian by a low-rank matrix whih we prove is the best aording

to the squared Frobenius norm. SLND minimizes any lassi�ation alibrated

risk, that may ensure onvergene towards Bayes rule;

(ii) The proof of onvergene of SLND whih provides rates of onvergene and

working set of parameters for the experiments, inluding the step size param-

eter ηt;

(iii) Experimental results display that SLND has linear omplexity both in term

of the number of samples and the dimension of the features and hallenges the

auray of SGD while being a magnitude faster.

The remaining of the hapter is organized as follows: setion 4.2 summarizes the

general framework, setion 4.3 provides our new algorithm SLND with several key

steps for its ore optimization, setion 4.4 presents experiments on large datasets

and �nally setion 4.5 presents onvergene proof of our new algorithm SLND.

4.2 Reminder

4.2.1 Framework

We �rst remind some de�nitions. Our setting is multilass, multilabel lassi�ation.

We have aess to an input set of m samples, S
.
= {(xi,yi), i = 1, 2, ...,m}. Vetor

yi ∈ {−1,+1}C enodes lass memberships, assuming yic = +1 means that obser-

vation xi belongs to lass c. A lassi�er h is a funtion mapping observations to

real-valued vetors in R
C
. Given some observation x, the sign of oordinate c in

h(x), hc, gives whether h predits that x belongs to lass c, while its absolute value

may be viewed as a on�dene in lassi�ation.

To learn this lassi�er, we fous on the minimization of a total risk whih sums

over lasses and over samples the loss of lassi�ation aording to h;

ε
F

(h, S)
.
=

1

C

C∑

c=1

1

m

m∑

i=1

F(yichc(xi))

︸ ︷︷ ︸

ε
F

(hc,S)

. (4.1)

ε
F

(hc, S) is the per-lass risk, and F is a surrogate loss funtion.

4.2.2 Calibrated risks

Reent advanes in lassi�ation allow to preisely de�ne onstraints with whom

losses F in (4.1) have to omply, to meet statistial and omputational properties

partiularly desirable in handling large, omplex and noisy lassi�ation problems

[Bartlett et al. 2006, Nok & Nielsen 2008, Vernet et al. 2011℄. There are three on-

straints: F is onvex, di�erentiable and suh that F

′(0) < 0. We restrit our interest

to losses that also meet the following property:

F(x) = −x+

∫

f , (4.2)
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crit transfer funtion f alibrated loss F

A

1
1+exp(−x) ln(1 + exp(−x))

B

1+max{0,x}
2+|x| max{0,−x} − ln(2 + |x|)

Table 4.1: Calibrated losses F

crit
and their respetive transfer funtions. A is the

logisti loss and B is the alibrated linear hinge loss.

where f : R → [0, 1] is inreasing and symmetri with respet to (0, 1/2 = f(0)).

The fundamental intuition is that f diretly maps a real valued predition hc to a

posterior estimation for lass c (see [D'Ambrosio et al. ear℄). This last onstraint

ensures that the loss at hand F is Fisher onsistent and proper, properties with whih

onvenient form of onvergene to Bayes rule are aessible through minimizing

(4.1). We all losses that meet these onstraints, and the total risks by extension,

as lassi�ation alibrated. Examples of lassi�ation alibrated losses inlude the

squared and the logisti losses. In this hapter, we �rst onsider the logisti loss:

F

log(x)
.
= ln(1 + exp(−x)) . (4.3)

Then, we onsider the alibrated linear Hinge loss, previously introdued in hapter

3, as:

F

hinge(x)
.
= max{0,−x} − ln(2 + |x|) . (4.4)

Table 4.1 gives the onsidered losses F and their orresponding transfer funtion f .

Figure 4.1 shows the logisti loss and the alibrated linear Hinge loss. We also plot

Hinge loss and the exponential loss for omparison. Note that 0 < F

′′(x) ≤ F

′′(0)
and F

′′(0) = 1/4 for the alibrated losses (4.3) and (4.4).

4.3 SLND: Stohasti Low-Rank Newton Desent

4.3.1 Computing gradient update

To arry out the minimization of (4.1), we adopt a mainstream 1-vs-rest training

sheme whih is more e�ient among di�erent approahes [Perronnin et al. 2012,

Weston et al. 2011℄. For eah lass c = 1, 2, ..., C, we arry out separately the min-

imization of ε
F

(hc, S) in ε
F

(h, S). To do so, it �ts the cth omponent of h by

onsidering the lass c versus all others. In what follows, we thus drop "c" to

simplify notations.

In this approah we fous on the lassial linear lassi�er de�ned as:

h(xi)
.
= w

⊤
xi . (4.5)
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Figure 4.1: Calibrated losses F : the logisti and alibrated linear Hinge losses

onsidered for SLND algorithm.

The goal is to learn w for eah lass c = 1, 2, ..., C minimizing the following riterion,

after replaing hc in ε
F

(hc, S) by its expression in 4.5 :

ε
F

(w, S)
.
=

1

m

m∑

i=1

F(yicw
⊤
xi) . (4.6)

Remark: there is no regularization term in (4.6) (and in (4.1) in general),

whih is quite non-standard if we refer to the lassial SVM or SGD approahes

[Bordes et al. 2009℄.

To approximate the optimal w, we arry out an iterative stohasti Newton

algorithm. In general, this aims at updating at eah iteration t, the urrent w noted

wt, aording to a randomly piked sample xi ∈ S as follows :

wt+1 = wt − ηt

(
∂2ε

F

(wt,xi)

∂2wt

)−1
∂ε
F

(wt,xi)

∂wt
, (4.7)

where ηt > 0 ontrols the strength of the update. In suh ase, the �rst derivative

or the gradient ∇ is:

∂ε
F

(wt,xi)

∂wt
= yiF

′ (yiw
T
t xi

)
xi , (4.8)

and the seond derivative, or the Hessian H, is:

∂2ε
F

(wt,xi)

∂2wt
= F

′′ (yiw
T
t xi

)
xix

T
i . (4.9)
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Unfortunately it is well known that the Hessian matrix typially varies as the

samples xi hanges. Thus, instabilities arise quikly if we try to estimate it for

eah sample [Bordes et al. 2009℄. To irumvent these problems, statisti opti-

mization approahes onsider instead an averaging of the Hessian. For example,

[Ljung & Söderström 1983℄ rewrite the stohasti Newton algorithm as follow :

wt+1 = wt − ηt

(

E[
∂2ε

F

(wt, St)

∂2wt
]

)−1
∂ε
F

(wt,xi)

∂wt
, (4.10)

where St ⊆ S is the set of samples xi piked until the iteration t. The update of

the averaged Hessian in (4.10) is quite expensive in the ase of huge datasets and

large sale features. Hene, we follow [Li 1992, Cook 1998℄ who average the Hessian

one and approximate it by the ovariane matrix. We onsider E[∂
2ε
F

(wt,S(m′))
∂2wt

],

with S(m′) a subset of m′ ≤ m random examples from S, instead of E[∂
2ε
F

(wt,St)
∂2wt

] in

(4.10). Let reall that 0 < F

′′(x) ≤ F

′′(0) for the alibrated losses (4.3) and (4.4).

Then, we will onsider the following approximation :

E[
∂2ε

F

(wt, S(m
′))

∂2wt
] =

1

m′
∑

i∈S(m′)

F

′′ (yiw
T
t xi

)
xix

T
i (4.11)

≈ F

′′(0)
1

m′
∑

i∈S(m′)

xix
T
i , (4.12)

Consequently, omputing H−1
, requires only one the prinipal hessian diretion

(p.h.d.) using eigenvetors for the eigenvalue deomposition of the ovariane ma-

trix.

For sometypially small k > 0, we ompute a low-rank pseudo-inverse, i.e. a low-

rank approximation of its inverse, H∗
, as follows, where rank(H∗) = k is user-�xed.

First, we perform a diagonalization of H = PDP⊤
where (non-negative) diagonal

values are ordered in dereasing order, d11 ≥ d22 ≥ ... ≥ duu = 0 = ...dnn, where

u ≥ k. Denote P|k the m× k matrix ontaining the �rst k olumns of P, and resp.

D|k as the k × k diagonal matrix of their eigenvalues. We �nally ompute H∗
only

one:

H
∗ = P|kD

−1
|k P

⊤
|k . (4.13)

The update (4.7) beomes:

wt+1 = wt − ηtyiF
′ (yiw

T
t xi

)
H

∗
xi . (4.14)

4.3.2 Core optimization

Sine we use 1-vs-rest training sheme, the training set is usually highly unbalaned

when the number of lass inreases, examples not in lass c outnumbering those in

lass c, for any c. When lass c is a minority lass, this is even more dramati.

To dampen the negative onsequenes, we follow the sampling balaning approah
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proposed by [Perronnin et al. 2012℄. When learning lass c against the rest, we use

all examples from lass c (the positives), while sampling a subset of the rest of the

other lasses (the negatives) of the same size.

Furthermore, in order to optimize omputational omplexity, one H∗
is om-

puted, we preompute for all the training set a weighted preproessing of the fea-

tures:

x
∗
i = H

∗
xi . (4.15)

Notie that this is done only one for a given H∗
. This saves signi�ant training

time and the omputational omplexity of eah iteration in SLND is basially of

the same order as lassial SGD [Bordes et al. 2009℄. The �nal update in SLND is:

wt+1 = wt − ηtyiF
′ (yiw

T
t xi

)
x
∗
i . (4.16)

Finally, the tuning of ηt is a non-trivial problem for gradient or Newton approahes

[Bordes et al. 2009℄. We prove an expliit onvergene rate for SLND in Theorem

5 hereafter whih provides us with expressions for ηt typially in the order Ω(1/m)

and O(1/
√
m). The values we have hosen in our implementation of SLND belong

to this range and are thus ompatible with the formal onvergene rates shown for

SLND.

4.3.3 Remarks

There are several omparisons to make about SLND with respet to other prominent

approahes. First, SLND is not related to (linear) SVM, as there is no regulariza-

tion term in the riterion (4.6), whih explains the di�erene between the right

hand-side term in wt in (4.6) and the term in (1 − λ)wt whih would follow from

the lassial linear SVM ost funtion, where λ ontrols the strength of regulariza-

tion [Bordes et al. 2009℄. Also, SLND is signi�antly di�erent from dimensionality

redution tehniques like PCA or general non-linear manifold learning, whih would

arry out dimensionality redution as a preonditioning on data and on w, thus

working on the redued domain. Notie also that (4.15) is not a preondition-

ing of data, as eah iteration in (4.16) makes use of both xi and x
∗
i . In addi-

tion, SLND is also di�erent from the quasi newton (L)BFGS family [Noedal 1980℄

[Shraudolph et al. 2007℄ as the approximation to the Hessian inverse is arried out

in a di�erent way. Moreover SLND di�ers from quasi-Newton methods for SVM

[Bordes et al. 2009℄ sine we do not restrit the Hessian approximation to be diag-

onal (thus omitting all ovariane terms). Finally, SLND is not a natural gradient

approah (whih inorporates Riemannian metri tensor [Amari 1998℄) and thus

SLND does not require the omputation of the Fisher information matrix.
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4.4 Experimental evaluation

4.4.1 Settings

We mainly report and disuss experiments of SLND versus SGD whih represents

the state of art among the lassi�ation methods on large sale datasets [Zhang 2004,

Bottou & Bousquet 2008℄ , [Shalev-Shwartz et al. 2007℄, [Perronnin et al. 2012℄.

We use Fisher vetors (fv) [Perronnin et al. 2010℄ as e�ient features to

represent images. Fisher Vetors are omputed over densely extrated SIFT

desriptors (fvs) and loal olor features (fvsc), both projeted with PCA in a

subspae of dimension 64. Sine the goal of the hapter is to ompare SLND versus

SGDwe use Fisher Vetors using a voabulary of only 16 Gaussian to limit memory

requirement. Eah Fisher Vetors are normalized separately for both hannels and

then ombined by onatenating the two features vetors (fvs+sc). This approah

leads to to a 4K dimensional features vetor.

We report experimental results on three datasets, Calteh256, SUN and Ima-

geNet whih are among the most hallenging datasets publily available for large

sale image lassi�ation:

• Calteh256 [Gri�n et al. 2007℄: This dataset is a olletion of 30607 images

of 256 objet lasses. Following lassial evaluation, we use 30 images/lass

for training and the rest for testing.

• SUN [Xiao et al. 2010℄: This dataset is a olletion of 108656 images divided

into 397 senes ategories. We set the number of training images per lass to

50 and we test on the remaining.

• ImageNet [Deng et al. 2009℄: We use the dataset of the ImageNet Large Sale

Visual Reognition Challenge 2010 (ILSVRC2010)

1

with its 1000 ategories.

It provides 1.2M of images for training step and 150K for testing.

To ompare algorithms, we use top1 and top5 auraies (a), de�ned re-

spetively as the proportion of examples that was orretly labelled and the pro-

portion of those for whih the orret lass belongs to the top5 predited images

[Mensink et al. 2012℄. We �rst analyse parameter of SLND and then the onver-

gene of SLND.

4.4.2 Tuning parameters of SLND

Our algorithm requires the tuning of only three parameters: the step size parameter

ηt , the rank k and the number of sample m′
for the omputation of the ovariane

matrix. The step size parameter ηt is typially in the order Ω(1/m).

Let us study the in�uene of parameters k and m′
.

1

http://image-net.org/hallenges/LSVRC/2010/index
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Figure 4.2: Eigenvalues of the ovariane matrix on Calteh256 (left), SUN (enter)

and ImageNet (right).

Fig 4.2 shows the eigenvalues of the ovariane matrix, ordered from the largest

to the smallest. All urves have the same sigmoid shape, and our hoies of k

ensure that we get all the signi�antly large eigenvalues. Reall that although the

ovariane matrix is positive-de�nite, the ondition number is very large resulting

in an ill-onditioned problem.

In order to ope with this issue, we study the auray as a funtion of the rank

of the inverse of the Hessian: Fig 4.3 shows that auray urve has its max for a

large rank plateau, and furthermore this plateau shape is similar regardless of the

domain.
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Figure 4.3: Auray as a funtion of the rank of the Hessian matrix on Calteh256

(blue), SUN (red) and ImageNet (green).
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Fig 4.4 shows the auray as a funtion of samples m′
used for omputing the

ovariane matrix. Flutuations of m′
imply �utuations in the auray, but the

range of the auray is not very large for reasonable values of m′
.
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Figure 4.4: Auray as a funtion of the number of samples used for the omputa-

tion of the Hessian matrix on Calteh256 (blue), SUN (red) and ImageNet (green,

see text).

To summarize, the eigenvalues urve, the urve aurary as a funtion of the

rank k and to a lesser extent the urve auray as a funtion of m′
have the same

behavior for all databases. Thus, based on the above-experiments, both rank k and

m′
in SLND are easily tuned.

4.4.3 Convergene rate analysis

Training time and onvergene of algorithms are very important for large sale

data base proessing. We plot on �g 4.5 and 4.6 the onvergene of SGD with

logisti loss, SLND both for Logisti Loss and alibrated linear Hinge Loss and

SGD-QN for logisti Loss on Calteh256 and SUN data bases. One sees from the

plots that the onvergene of our Stohasti Low-Rank Newton approah SLND is

a magnitude faster than the lassial SGD. Note that auray of Logisti Loss

and alibrated linear Hinge Loss SLND are very similar. Auray of SGD-QN is

very lose to SGD on Calteh256 and SUN and slightly better on ImageNet; We

get similar results when using only a diagonal approximation of the Hessian matrix

in our SLND method.
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Figure 4.5: Top1 auraies as a funtion of number of passes (iterations / skips)

for SGD and SLND on Calteh256
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Figure 4.6: Top1 auraies as a funtion of number of passes (iterations / skips)

for SGD and SLND on SUN.
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Figure 4.7: Auraies as a funtion of number of passes for SGD and SLND on

ImageNet. On top, the top-1 auray and at the bottom the top-5 auray.

Plots of onvergene in Fig 4.7 on ImageNet shows again that SLND is faster
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of a magnitude than lassial SGD both for the top-1 auray and top-5 auray.

SLND requires few iterations to onverge: we only need one iteration (on 2000

samples) to get the same top-1 auray as SGD with 200 iterations. Moreover,

we ahieve top-1 auray equal to 36.23% (respetively top-5 auray equal to

59.06%) with 10 or 20 iterations of SLND, wih outperforms the best auraies of

SGD by 4% (respetively 3.5%) and SGD-QN by 3.3% (respetively 2.4%). Note

that auray of SGD-QN is slightly better than SGD on ImageNet. We report

also in Fig 4.7 on ImageNet results of SGD using preonditioning of the data (noted

SGD-P) [LeCun et al. 1998℄. Although preonditioning the data improves lassial

SGD, SLND still outperform all SGD methods. Training using SLND on ImageNet

requires only one CPU hour. Training SGD for the same auray requires at least

20 CPU hours on a 2 X Intel Xeon E5-2687W 3,1GHz and 64 GB of RAM. Thus

fast onvergene of SLND results in sparse training set requirement well adapted

for large sale image lassi�ation.

4.5 SLND Theoretial onvergene analysis

4.5.1 Best rank k approximation

We �rst show that H∗
, as omputed in (4.13), is the best rank k approximation of

the inverse of H aording to squared Frobenius norm.

Lemma 4 H∗
satis�es:

H
∗ = min

H′∈Rm×m,rank(H′)=k
‖I−HH

′‖2F (4.17)

Proof: We use the fat that H = PDP⊤
, PP⊤ = I and trae tr is yli invariant,

and we have: ‖I−HH′‖2F = tr((I−HH′)(I −HH′)) = tr(PP⊤(I−HH′)PP⊤(I−
HH′)) = tr(P⊤(I −HH′)PP⊤(I −HH′)P) = tr((I − D(P⊤H′P)))2), out of whih
is omes that P⊤H′P is diagonal, and so H′

an be diagonalized in the same basis

as H. Finally, to minimize the squared Frobenius norm, the non zero entries in its

diagonal must equal the k greatest non-zero entries in D.

4.5.2 A Weak Separability Assumption

We now prove a onvergene result on SLND. For this objetive, we de�ne ptj
.
=

−F′(yjw⊤
t xj) ≥ 0 as a weight over the examples. For any lassi�ation alibrated

loss, −F′
is dereasing. Hene, weight ptj is all the smaller as example j is all the

better lassi�ed by wt. Intuitively, an example gets better lassi�ed as yj agrees

with the sign of w
⊤
t xj and the magnitude |w⊤

t xj | is large. We let pt ∈ R
m
be the

vetor of weights. We let x
◦
j

.
= (P|k

√

D
−1
|k )⊤xj denote vetor xj expressed in the

normalized eigenvetors' basis of H∗
(4.13). Finally, we de�ne st ∈ R

m
as the vetor

whose oordinates are:

stj
.
= yjx

⊤
j H

∗
xit = yj(x

◦
j )

⊤
x
◦
it ,∀j , (4.18)



46 Chapter 4. Stohasti Low-Rank Newton Desent algorithm: SLND

where example it is the one hosen to update wt in (4.16).

Our result relies on the following Weak Separability Assumption:

• (WSA) There exists γ > 0 a onstant suh that for any iteration t in SLND,

p⊤t st
‖st‖1

≥ γ . (4.19)

x◦
it

x◦
3

y2 = −1x◦
2

y1 = +1

y3 = −1

x◦
1

H

Figure 4.8: x
◦
it is a better lassi�er for examples 1 and 2 (st1, st2 > 0) than it is for

example 3 (st3 < 0).

To interpret WSA and see why it is indeed a Weak Separability Assumption, onsider

the interpretation of st and assume x
◦
it is used as a linear lassi�er. Then, stj ≥ 0

i� the lass yj agrees with the sign of this lassi�er, and it is all the larger as the

lassi�er's output is large. On the other hand, stj ≤ 0 i� the lass yj disagrees with

the sign of the lassi�er, and it is all the smaller as the lassi�er's output is large.

Hene, stj quanti�es the goodness of �t of lassi�er x
◦
it
on xj (see Figure 4.8). Thus,

p⊤t st is a weighted average of this goodness of �t, in whih weights are all the larger

as examples have reeived a bad �tting so far by wt. Hene, WSA implies that

xit must ontribute to lassify better at least a small fration of the examples with

respet to wt. To see why it is �Weak�, informally, piking xit at random in any set

satisfying mild onstraints would make an expeted value of p⊤t st equal to zero. So,
we require the hoie of xit in SLND to beat a random linear lassi�er by at least a

small amount. For the informed reader, the WSA parallels in our setting the popular

weak learning assumptions in boosting algorithms [Freund & Shapire 1997℄.

4.5.3 Convergene theorem

The following Theorem shows that under the WSA, there exists a guaranteed de-

rease rate of the alibrated risk at eah iteration, and this holds for whihever of

the logisti and alibrated linear Hinge loss hosen to run SLND. The result would

also hold for various other possible hoies of lassi�ation alibrated losse, inluding

the squared loss.
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Theorem 5 Assume WSA is satis�ed at eah step of SLND. Then, for any ε ∈
(0, 1) there exists a value of ηt in Ω(1/m) and O(1/

√
m) suh that the following rate

of derease is guaranteed for the alibrated risk at hand:

ε
F

(wt+1, S) ≤ ε
F

(wt, S)−
2γ2ε(1− ε)

mF′′(0)
,∀t . (4.20)

Sine SLND is initialized with w0 = 0, the null vetor, to guarantee ε
F

(wT , S) ≤ F◦

for any hosen real F

◦ ≤ F(0) suh that F

◦
is in the image of F, it is enough to

make

T ≥ (F(0)− F◦)F′′(0)
2γ2ε(1− ε)

×m = Ω

(
m

γ2

)

iterations of SLND. In order not to laden the hapter's body, a proofsketh of the

Theorem is provided in Appendix C. The proof exhibits and disusses the expression

of ηt whih guarantees (4.20).

4.6 Conlusion

In this hapter we have proposed a new Stohasti Low Rank Newton desent algo-

rithm (SLND) for the minimization of alibrated risk with linear omplexity both

in term number of samples and dimension of the features. SLND performs update

of the urrent lassi�er with pseudo-inverses of the Hessian that are the most a-

urate low-rank approximations of the inverse aording to Frobenius norm. We

show the onvergene of SLND using a Weak Separability Assumption whih states

that eah example hosen to update the lassi�er must provide a weighted margin

at least larger than some (possibly small) onstant γ > 0. Under this weak assump-

tion, SLND guarantees that its lassi�er has reahed some �xed upperbound on the

laibrated risk at hand after Ω(m/γ2) iterations. No onvergene rates are known

to date for SGD-like approahes. Furthermore, the theory provides us with a set of

working parameters for the experiments, inluding a step parameter ηt typially in

the order Ω(1/m).

We validate these theoretial properties by benhmarking it against state-of-the-

art SGD algorithm on three hallenging domains: Calteh256, SUN and ImageNet.

The results on large sale image lassi�ation display that SLND improves signif-

iantly auray of the SGD baseline while being faster by orders of magnitude.

Experiments also display that the parameters of SLND may be easily �xed and

used from a domain onto another.
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Chapter 5

Bio-Medial ells lassi�ation

5.1 Introdution

High-ontent ellular imaging is an emerging tehnology for studying many bio-

medial phenomena. Pathologists establish their diagnostis by studying tissue se-

tions, blood samples or puntures. Related ellular image analysis generally requires

to lassify many ells aording to their morphologial aspet, staining intensity, sub-

ellular loalization and other parameters. In general, samples are stained with vari-

ous dyes to visualize ell ytoplasm and nuleus. In addition, immunohistohemistry

is used to study spei� protein expression. Using these approahes, pathologists

observe tissue damage or ell dysfuntion like for example, in�ammation, neoplasia

or nerosis. Abnormal nulei allow determining aner grades. Pathologists re-

ognize aberrant shapes of whole ells, organelles, nulei or staining allowing the

lassi�ation of the ells. Classial quanti�ation is based on visual ounting. New

powerful fully motorized mirosopes are now able to produe thousands of multi-

parametri images for several experimental onditions. Consequently, large numbers

of ell images have to be analysed. Suh analysis by one (or several) experimenter

is time-onsuming and above all poorly reproduible. In fat, humans are limited

in their ability to lassify due to the huge amount of image data. Visual ounting is

onsequently performed on a small portion of the sample. A Computer Aided Di-

agnosis (CAD) system will allow reliable quanti�ation and therefore be a preious

tool in diagnostis.

In this hapter we present an appliation of UNN algorithm to biologial el-

lular image lassi�ation. First we introdue our spei� bio-inspired desriptors,

using ontrast information distributions on the already segmented ells: a region

based desriptor that shows its e�ieny to desribe ellular images. Those bio-

inspired features (BIF) are sometimes more than 10% more aurate than standard

desriptors for suh images. Then, we report two biologial appliations of ells

lassi�ation using BIF desriptor.

5.2 Region based bio-inspired desriptor

For better understanding the image ontent, it an be useful to get inspiration from

the way our visual system operates to analyze the sene. The �rst transformation

undergone by a visual input is performed by the retina.

In fat, ganglion ells, that are the �nal output of the retina, are �rst simulated

by the loal hanges of the illumination. This information is aptured by their
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reeptive �elds and transformed to luminane ontrast intensities. Those reeptive

�elds are like enter-surround models (see Fig. 5.1). They reat to the illumination
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Figure 5.1: Top, reeptive �elds in the retina modeled by DoGs for 4 sales. Bellow,

the model of the response of those retinal ells.

of either the enter or the surround of the ganglion ells and are disabled when

illuminating the other one. Suh behavior, similar to an edge detetor, is modeled

by a entered two-dimensional Di�erene of Gaussians (5.1).

DoGσ(x, y) = Gσ(x, y)−Gα·σ(x, y) (5.1)

Moreover, ganglion ells reat to the luminane in di�erent sales, thus adding

multisale aspet and allowing us to use DoG �lters in a sale spae (Fig. 5.1).

The basi idea is to ompute features inspired from the visual system model and

speially from the main harateristis of the retina proessing. Suh was the ase

in [Bel haj ali et al. 2011℄, where we represented the image using features based on

ontrast information on square blos.

Suh desriptor is well adapted in the ase of our ells images sine the most

disriminative visual feature between ategories is the luminane ontrast in subel-

lular regions. Thus, we de�ne ell desriptors based on the loal ontrast in the ell,

that we all Bio-Inspired Features, BIF. The loal ontrast is obtained by a �ltering

with Di�erenes of Gaussians (DoGs) entered at the origin. So that the ontrast

CIm for eah position (x, y) and a given sale s in the image Im is as follows:

CIm(x, y, s) =
∑

i

∑

j

(Im(i+ x, j + y) ·DoGσ(s)(i, j)) (5.2)

We use the DoG desribed by [Field 1994℄ where the larger Gaussian has three

times the standard deviation of the smaller one. After omputing these ontrast
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oe�ients in (5.2), we apply a non-linear bounded transfer funtion, named neuron

�ring rates, used in [Van Rullen & Thorpe 2001℄. This funtion is written as:

R(C) = G · C/(1 +Ref ·G · C), (5.3)

where G is named the ontrast gain and Ref is known as the refratory period, a

time interval during whih a neuron ell reats. The values of those two parameters

proposed in [Van Rullen & Thorpe 2001℄ to best approximate the retinal system are

G = 2000Hz · contrast−1
and Ref = 0.005 s.

Firing rate oe�ients R(C) are enoded on an already segmented ell region.

Then, they are quanti�ed into normalized L1 histograms of n-bins for eah sale

and �nally onatenated. Thus our global desriptor's dimension is a multiple of n.

Note that state of the art lassial methods suh as SIFT desriptors enode

gradient diretions on square bloks [Lowe 2004℄. and Gist features enode average

energies of �lters oe�ients on square bloks too [Oliva & Torralba 2001℄.

5.3 Appliation to the loalization of NIS protein in the

ells of the thyroid gland

In the present work, we perform ellular image lassi�ation to study the pathways

that regulate plasma membrane loalization of the sodium iodide symporter (NIS

for Natrium Iodide Symporter). Those biologial experiments are part of the re-

searh projet of TIRO team from the faulty of medeine of Nie. NIS is the key

protein responsible for the transport and onentration of iodide from the blood

into the thyroid gland. NIS-mediated iodide uptake requires its plasma membrane

loalization that is �nely ontrolled by poorly known mehanisms. For deades, the

NIS-mediated iodide aumulation observed in thyroytes has been a useful tool for

the diagnosis (thyroid sintisan) and treatment (radiotherapy) of various thyroid

diseases. Improvements in radioablation therapy might result from promoting tar-

geting of NIS to the plasma membrane in the majority of thyroid aners or metas-

tases. NIS has also been desribed as a promissing therapeuti transgene promot-

ing metaboli radiotherapy (i.e., 131I uptake by aner ells etopially-expressing

NIS) in many di�erent studies. An important improvement of this approah should

bene�t from a better understanding of the post-transriptional regulation of NIS

targeting to the plasma membrane, Previously, we observed that mouse NIS ataly-

ses higher levels of iodide aumulation in transfeted ells ompared to its human

homologue. We showed that this phenomenon was due to the higher density of the

murine protein at the plasma membrane. To reah this onlusion, biologists lassi-

�ed several hundreds of ells [Dayem et al. 2008℄. We have also demonstrated, using

a set of monolonal antibodies, that human NIS is not expressed intraellularly in

thyroid and breast aner [Peyrottes et al. 2009℄, as was proposed by other groups.

The team of biologists is now foussing on the analysis of NIS phosphorylation

that most probably plays an important role in the post-transriptional regulation

of the NIS. Using site-direted mutagenesis of previously-identi�ed onsensus sites,
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we have reently shown that diret phosphorylation of NIS alters NIS targeting to

the plasma membrane, as well as NIS reyling, ausing retention of the protein in

intraellular ompartments suh as the Golgi apparatus, the endoplasmi retiulum

or the early endosomes. We used a high-ontent ellular imaging to study the im-

pat of the mutation of several putative phosphorylation sites on the subellular

distribution of the protein.

5.3.1 Experiments settings

In our experiments, expert biologists individually expressed di�erent NIS proteins

mutated for putative sites of phosphorylation. The e�et on the protein loalization

of eah mutation was studied after immunostaining using anti-NIS antibodies as

desribed in [Dayem et al. 2008℄. Immunoytoloalization analysis revealed mainly

two ell types with di�erent subellular distributions of NIS: at the plasma mem-

brane or in intraellular ompartment (mainly endoplasmi retiulum) whih we

will refer to by Mb; throughout the ytoplasm (with an extensive expression) whih

we will all ER. An example of Mb and ER ells are shown respetively in Figures

5.2(a) and 5.2(b).
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(a)

(b)

Figure 5.2: AnMb (a) and an ER (b) extrated ells and their two segmented regions

of interest.

The goal of suh experiments is to establish statistis on the di�erent mutations

of ells. Our appliation aims to assign automatially for eah ell one of the previ-

ously numbered patterns aording to its staining aspet. The approah is depited

into two main steps: image segmentation to seperate ells, extrating desriptors

and lassi�ation task.
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5.3.2 Cells detetion and segmentation

Figure 5.3: Blok diagram of the proposed method for automati ell segmentation.

The �rst step is a pre-proessing segmentation of ells from the main mirosopi

images. The database onsist of two distint parametri �uoresene images. The

�rst one, alled nuleus image, shows the nuleus and the seond alled global image,

shows the staining of the protein. The two images are only two di�erent aquisitions

(with two di�erent wavelength) of the same experiment. We onsider images at 40-

fold magni�ation that was aquired by means of a fully �uoresene mirosope

(Zeiss Axio Observer Z1) oupled to a monohrome digital amera (Photometris

asade II amera). We note that nulei images are used for the only purpose to

help to segment global ells. But never used for feature extration. The information

that is used to de�ne lasses is the staining aspet in the global ells images. Nulei

are identi�ed from the nulei image and used as a prior for whole ell segmentation

of the global image. An example of nulei and global ells segmentation result are

given in Figures 5.4 and 5.5.
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Figure 5.4: An example of nulei segmentation. Eah nuleus is identi�ed with a

di�erent olor. The green point shows the nuleus enter.
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Figure 5.5: An example of ells segmentation. Eah ell is marked with a di�erent

olor.

The segmentation proess is desribed in the diagram of Figure 5.3. In fat,

nulei loations are deteted by the mean of morphologial operators and used to

segment nulei and get their masks.

Those latters are then used as markers to segment the global ells. The output of

the segmentation step orresponds to three images for eah ell: a sub-image that

bounds the ell, a binary image for ell's mask and a seond binary image for nuleus

mask.
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5.3.3 Features and lassi�ation

Figure 5.6: Blok diagram of the proposed method for automati ell lassi�ation:

desriptor extration and lassi�ation proess.

One ells are segmented, we apply our lassi�ation method (see diagram 5.6); First

we ompute bio-inspired region desriptors, extrating ontrast-based features for

eah of the segmented ells. These desriptors are then used in a supervised learning

framework to de�ne the lassi�er to be used to predit the lass of unlabeled ells.

For this purpose, we olleted 489 ell images of suh biologial experiments

and manually annotated them aording to three lasses, that are denoted in the

following as Mb (389 ells), ER (100 ells) and Round (8 ells) (dead ells).

Sine round ells are very easy to lassify (very high ontrast everywhere in the

ell), we fous on the two ategory lassi�ation: Membrane (Mb) and ER.

To extrat our desriptors, we use masks on ell images on whih we enode �ring

rate oe�ients (5.3): aording to the visual aspet of ells, we split eah ell into

two regions of interest (see �gure 5.2), orresponding to nuleus and external part,

by using previously omputed masks (the external region is the remaining of the

substitution of the nuleus mask from the global one). For both of the two regions,

�ring rate oe�ients are quanti�ed into normalized L1 histograms of 32-bins then

onatinated, thus giving our global desriptor with a dimension equal to 64 per

sale.

An important parameter for our bio-inspired desriptors is the sale on whih

we ompute the loal ontrast. In fat, the standard deviations of the DoG are

dependant of this parameter as follows: σ1 = 0.5 ·2scale−1
and σ2 = 3 ·σ1. We made

a ross validation on 100 experiments to hoose the most relevant sale parameter.

Aording to those evaluations, next experiments are performed using scale = 5 for

desriptor extration.

One we get desriptors of all the ells in the database, we ran our UNN algo-

rithm by training on 50% of the images, while testing on the remaining 50%. In

order to get robust performane estimation, we repeated the evaluation 100 times
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over di�erent random training/testing folds. Note that we used a fast and e�eient

tool for the k-NN searh provided in the Yael toolbox

1

.

Our lassi�ation algorithm UNNs was evaluated in a �rst step using a uniform

regularization by the mean of the parameter γ that ompensates the lass imbalane.

In a seond step, we foused in an adaptive regularization aording to majority and

minority lasses and we denote this approah by UNNs_adaptive. This approah

allows to have automatially a balane number of trained prototypes per lass (see

Tab. 5.1) and visibly derease mislassi�ation.

Nt NMb NER

UNNs 69.24% 50.20% 19.03%

UNNs_adaptive 47.69% 28.58% 19.11%

Table 5.1: This table shows the perentage of prototypes number seleted from the

training set by both UNNs and UNNs_adaptive : We report the total number (Nt),

the one in the lass Mb (NMb), and in the lass ER (NER). The distribution of

seleted prototypes on both lasses is more balaned using UNNs_adaptive.

mAP AP for Mb AP for ER

µ(mAP ) σ(mAP ) µ(AP ) σ(AP ) µ(AP ) σ(AP )

k-NN 84.22 2.56 94.81 2.02 73.64 5.63

UNNs 86.04 2.54 94.48 1.90 77.60 5.46

UNNs_adaptive 87.67 1.93 89.27 2.26 86.08 3.78

SVM 76.46 4.55 95.58 2.38 57.34 10.67

Table 5.2: Global average preision (MAP), average preision for Mb and average

preision for ER for di�erent lassi�ers.

We report the average lassi�ation results and the lassi�ation rate of eah

lass in Tab. 5.2. Remark that we ahieve a mean average preision (MAP) greater

than 87.5% when using UNNs_adaptive, whih is a very promising result for our

ell desriptor and lassi�ation method. Our lassi�ation approah improves the

MAP of the k-NN lassi�er of more 3% and the SVM with gaussian kernel of more

than 11%. Moreover some mislassi�ation arises on the minority lass (ER) using

k-NN , thus giving an average preision (AP) of about 73% (see Tab. 5.2). Using

UNNs_adaptive lassi�ation improved MAP of the minority lass up to 86% thus

13% better than k-NN. For the SVM lassi�ation, the result in Tab. 5.2 shows

that there is an important lassi�ation error on ER ells where the AP is about

only 57%.

1

Soure ode an be downloaded in the following link: https://gforge.inria.fr/projets/yael
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5.4 Appliation to Immuno-Fluoresene ells

In autoimmune diseases, targets of autoantibodies are haraterized by indiret Im-

muno�uoresene (IIF) on human ultured ells. Then, stained ompartments of

ells are identi�ed by experts.

In this ontext, we evaluate our BIF features and our UNN lassi�ation on

the HEp-2 Cells dataset [Foggia et al. 2010℄ provided by University of Salerno and

Campus Bio-Medio of Roma

2

. This database ontains 721 images divided into six

ategories as shown in Fig. 5.7.

Centromere Coarse Spekled Cytoplasmati

208 109 58

Fine Spekled Homogeneous Nuleolar

94 150 102

Figure 5.7: Sample images and the number of elements for eah ategory in the

dataset.

Cells are already segmented (manually) and both hole images and their orre-

sponding masks are provided in the dataset.

In a �rst step, we extrat Bio-Inspired features for eah manually segmented

ell aording to the ell mask. This version of our feature will be denoted as

BIF

s
. In a seond experiment, we extrated BIF on the whole image of the ell

(without segmentation) to test the robustness of those features. We will refer to

this version by BIF

a
. To better adjust some parameters, suh as the dimension,

we performed a ross validation system on the number of sales and the number of

quanti�ation bins, and we hoose using 4 sales with a number of bins equal to

256. Our global features are the onatenation of histograms of 256-bins for eah

sale. The �nal dimension of desriptors is then equal to 4 × 256. We ompare

our approah to the state of the art SIFT desriptor. We use lassial Bag-of-

2

Data available at: http://mivia.unisa.it/hep2ontest/index.shtml
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Features [Sivi & Zisserman 2006℄, with the same dimension 1024, on the dense

SIFT provided by [Vedaldi & Fulkerson 2008℄ whih enode gradient diretions on

a grid of small square bloks of the ellular image.

UNNexp UNNlog UNNmat

Auray 96.16 95.46 94.72

AUC 96.32 95.78 95.25

Table 5.3: Classi�ation results using the BIF

s
desriptor for the three proposed

versions of UNN. The �rst row indiates the True Positive rate or auray, and

the seond one is about the Area Under the ro Curve (AUC).

For the lassi�ation task we performed ross validations on 10 random folds.

Eah fold orresponds to a random split of the dataset suh that we train on 50% of

the images, while testing on the remaining ones. We evaluated the di�erent versions

of UNN in Tab.5.3.

UNN SVM

BIF

a
BIF

s
SIFT BIF

a
BIF

s
SIFT

Centromere 96.05 96.15 85.00 97.01 97.40 88.07

Coarse Spekled 99.62 97.59 69.81 95.00 97.03 71.29

Cytoplasmati 100.0 100.0 99.65 100.0 100.0 97.93

Fine Spekled 93.82 95.95 61.27 94.25 94.46 58.93

Homogeneous 90.26 91.20 91.86 93.46 94.00 88.93

Nuleolar 97.45 96.07 87.25 97.64 97.45 88.03

average Auray 96.20 96.16 82.47 96.23 96.72 82.20

Table 5.4: Evaluations of UNN and SVM using both BIF

a
(on whole images), BIF

s

(on manually segmented ells) and SIFT Bag-of-features. Here, we give the Au-

ray for eah lass. The last row shows the average Auray. The best performane

for eah ategory is given in blue and the seond one in green.

We ompared performanes of UNNexpwith those of standard SVM, using both

BIF and SIFT Bags-of-features (see Tables 5.4 and 5.5). The reported results of

UNN refer to setting k = 10 for both training and testing. This value refers to the

best performanes aording to a ross validation on the training set. The same

experiment was performed to hoose the parameters for the gaussian SVM. Note

that for the k-NN searh we used the same fast and e�ient software as previ-

ously. For BIF desriptor we report experiments on both BIF

s
and BIF

a
versions

of our features. Although BIF

a
version performs similar results to BIF

s
version,

the omparison with SIFT Bags-of-features beomes fair enough to onlude that

Bio-Inspired Features are more adapted to suh images. In fat, results on ta-

bles 5.4 and 5.5 display the high disriminative ability of the proposed Bio-Inspired

Feature, whih allows for lassi�ation preision generally larger than 90%, up to
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UNN SVM

BIF

a
BIF

s
SIFT BIF

a
BIF

s
SIFT

Centromere 95.48 95.68 92.63 97.86 96.62 92.03

Coarse Spekled 98.54 97.24 86.70 94.23 95.40 79.00

Cytoplasmati 99.64 99.73 97.82 99.39 99.02 93.15

Fine Spekled 93.54 95.61 63.35 89.56 91.82 59.26

Homogeneous 93.42 94.79 91.06 97.04 97.78 91.39

Nuleolar 97.74 94.89 92.35 94.94 98.66 92.59

average AUC 96.39 96.32 87.32 95.50 96.55 84.57

Table 5.5: Evaluations of UNN and SVM using both BIF

a
(on whole images), BIF

s

(on manually segmented ells) and SIFT Bag-of-features. Here we present the Area

Under the ro Curve (AUC) for eah lass. The last row shows the average AUC.

The best performane for eah ategory is given in blue and the seond one in green.

almost 100% (on the �Coarse Spekled� and �Cytoplasmati� lasses). In addition,

the preision obtained with suh spei� desriptor outperforms the standard SIFT

bag-of-features by at least 14% in terms of True Positive rate (TP rate) and 9%

in terms of Area Under the ro Curve (AUC). Furthermore, the most interesting

results are those obtained using BIF

a
, sine in real ases an automati segmenta-

tion proess on ellular images is poorly reproduible. Those results (olumns in

bold in tables 5.4 and 5.5) shows not only the e�ieny of the feature but also the

preision of our UNN algorithm whih remains relevant (in terms of TP rate and

AUC), omparable and even better than state-of-the-art SVM. For instane, notie

the improvement of UNN over SVM on the �Coarse Spekled� lass (4.5% of gap),

while SVM is the best performing method on the �Homogeneous� lass (3% of gap).
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Figure 5.8: Proessing time of the training step for both UNN, SVM and multi-

thread version of UNN.

Besides omparing very favorably with state-of-the-art approahes, our UNN

method enables muh faster lassi�ation. Fig. 5.8, shows typial proessing time

for UNN and SVM and UNN ahieves speedups of roughly 3 to 5 over SVM. UNN

bene�ts from straightforward multi-thread implementation (UNNMT ) in addition

to the fast k-NN searh algorithm. This makes the proessing furthermore faster.

Therefore our Bio-Inspired UNN algorithm provides the best Preision/Time trade-

o�.

5.5 Conlusion

As a �rst appliation in this hapter, we have presented a novel algorithm for auto-

mati segmentation and lassi�ation of ellular images based on di�erent subel-

lular distributions of the NIS protein. First of all, our method relies on extrating

highly disriminative desriptors based on bio-inspired histograms of Di�erene-of-

Gaussians (DoG) oe�ients on ellular regions. Then, we applied UNN algorithm

for learning the most relevant prototypial samples that are to be used for prediting

the lass of unlabeled ellular images. We notie that this appliation is urrently

being integrated in a software designed for biologial ells identi�ation. A seond

appliation, that deals with immuno�uoresene ellular imaging, was presented in

this hapter. We used the same algorithm UNN to evaluate our experiments on an

unbalaned dataset of ells that were manually segmented. Although being the very

early results of our methodology for suh a hallenging appliation, performanes

are really satisfatory (average global preision of 87.5% and MAP of the minority
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lass up to 86%) and suggest our approah as a valuable deision-support tool in

ellular imaging.





Chapter 6

General onlusion

In this thesis, we deal with a spei� supervised learning sheme for image lassi�a-

tion based on a set of alibrated surrogates. In this ontext, we designed three three

learning algorithms for di�erent kind of lassi�ers. The �rst one is a generalization

and an optimization of a leveraged k-NN algorithm, UNN. This latter is based on

learning voting weigths in a boosting framework using the minimization of our las-

si�ation riterion. In fat, we enlarge the set of losses often used in boosting and

restrited to the singleton assoiated to the exponential loss to a more generalized

set ontaining the logisti and matsushita losses. The UNN algorithm shows high

performanes in ompetitive omputation times.

The seond algorithm, N

3
is a Newton-Raphson approah for boosting k-NN

voting weights. We prove that our N

3
method has onsistent onvergene prop-

erties within the set of onsidered losses and provide several interesting statistial

properties like the estimation of posteriors of the lassi�ation. In the experimental

standpoint, this algorithm shows a fast onvergene on quite large datasets of real

images like the SUN and Calteh256. Furthermore, N

3
shows that it is possible to

ope with k-NN's urse of dimentionality. In fat, based on the posteriors of the

lassi�ation, we use N

3
in a low memory divide and onquer method.

The third algorithm is a novel approah based on stohasti low rank newton

desent, SLND for linear lassi�ers. It onsists on the minimization of alibrated

losses using a Newton update of the lassi�er. The Newton update, known by its

fast onvergene, beomes a omplex problem in high dimentional features spae.

We present in this work an approximation that overome this omplexity. In addi-

tion, experiments on very large datasets show the high performanes of SLND that

outperform the state of the art methods.

This work, presents at the end, an interesting appliation to biomedial ells

lassi�ation. For this purpose, we designed a bio-inspired desriptor, based on

histograms of ontrast, that are well adapted for those mirosopi ellular images.

Testing UNN algorithm for suh appliations shows promising high performanes.
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Appendix A

UNN optimization with metri

learning

A.1 Introdution

A study of the auray of metri learning algorithms [Nielsen & Sérandour 2009℄

has ompared some methods, and has shown that those metris are mostly de-

pendent on the data type. Several researhes were onentrated on Mahalanobis

distane aspet like [Davis et al. 2007℄ who tend to de�ne a distane given on-

straints on training set and boundaries between similarity and dissimilarity. This

an be seen as a projetion in a new spae that �ts with an a priori knowledge on

ategories.

In this appendix, we present an optimization approah tested on UNN algo-

rithm. First, we inlude metri learning proess introdued by [Davis et al. 2007℄

to adapt distanes between features. This latter replaes the L1/L2 norm used for

the k-NN searh. Metri hoie in the ontext of NN lassi�ers ould be a ritial

problem [Guillaumin et al. 2009℄ in the way that a wrong hoie an lead to the

failure of the lassi�ation method. Then, we evaluate this approah on Gist fea-

tures [Oliva & Torralba 2001, Oliva & Torralba 2006℄ redued in the spae of their

prinipal omponents. In fat, global desriptors like Gist are well appropriate for

lassi�ation tasks. However, those desriptors are usually high dimensional and

therefore ostly in similarity measuring.

In a �rst setion, we detail the proposed approah. In the seond one, we explain

parameter settings and expose evaluation results of the di�erent steps.

A.2 Proposed approah

A.2.1 Desriptor and dimension redution

Global features like Bag-Of-Features (BOF) or Visual Words are often used for

ategorization beause they represent the global ontent of an image. Therefore,

this point makes desriptors very high dimensional. In this paper we use the same

Gist global features as in [Oliva & Torralba 2001℄ to have omparable lassi�ation

results

1

.

For the method we use, Gist are extrated on 4×4 subregions of 4 sales from gray

images, and onsidering the 8 dominant diretions. Thus we have image desriptors

1

http://people.sail.mit.edu/torralba/ode/spatialenvelope/
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of 512 dimensions. As we will deal with metri learning later, we need to redue the

features dimension in �rst step.

We studied the e�et of prinipal omponent analysis (PCA) on Gist, and we

notied that a redution up to 16 and even 32 times of the original dimension does

not a�et the lassi�ation rate. Results will be presented later in experiments

setion (A.3.3).

Throughout the following work, we use Gist with a 32 dimension where the

prinipal omponents were already omputed on training dataset.

A.2.2 Metri learning

For lassi�ation task, partial information provided by real sene images may be

misleadingly. In fat, in high dimensional feature spaes, image desriptors may be,

in the L2
sense, similar within di�erent ategories and dissimilar under the same

one. For example, points that are near the lass border or that are in an area of

overlap with other lasses are onstrained to be metrially similar but semantially

not.

In this ase, we use metri learning to adjust the similarity measure so that it

inreases inter-lass variability and dereases intra-lass one.

In [Davis et al. 2007℄, authors propose an Information-Theoreti Metri Learn-

ing (ITML) approah that generalize the Mahalanobis distane. This metri onsid-

ers pairs of similar and dissimilar points, and trains a matrix A to build a distane

funtion that will make lose elements in the same lass and far those in distint

ones. This distane for a given ouple of points (xi, xj) is expressed in (A.1).

dA (xi, xj) = (xi − xj)
T A (xi − xj) (A.1)

The approah is an iterative algorithm that tends to approximate a positive

de�nite matrix A using a minimization under onstraints task.

min
A

KL (p (x;A0) ‖p (x;A)) (A.2)

subjet to

dA (xi, xj) ≤ u (i, j) ∈ S, (A.3)

dA (xi, xj) ≥ l (i, j) ∈ D. (A.4)

where KL, Kullbak Leibler, is a Bregman divergene (statistial distane between

distributions). S and D are sets of similar and dissimilar pairs and u and l denotes

threshold distanes between points respetively in S and D. An a priori knowledge

of some parameters is needed for learning proess. For the algorithm version we use,

a onstraint matrix c is onsidered for this proess, and the problem is formulated

like it follows:

min
A

Dld (A,A0) + γ ·Dld (diag (ξ) , diag (ξ0)) (A.5)
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subjet to

dA (xi, xj) ≤ ξc(i,j) (i, j) ∈ S, (A.6)

dA (xi, xj) ≥ ξc(i,j) (i, j) ∈ D. (A.7)

where ξ is threshold matrix for similarity and dissimilarity, c (i, j) is the index of

the onstraint orresponding to the pair (i, j), γ ontrols the tradeo� between sat-

isfying the onstraints and minimizing the LogDet divergene between A and A0:

Dld (A,A0), whih was indued from

KL (p (x;A0) ‖p (x;A)) =
1

2
Dld (A,A0) (A.8)

A.3 Experiments

A.3.1 Dataset

For our experiments we use the database proposed in [Oliva & Torralba 2001℄, om-

posed of outdoor natural senes divided into the following ategories: oast, moun-

tain, forest, open ountry, street, inside ity, tall buildings and highways. This base

inludes 2688 olor images with 256× 256 pixels.

oast mountain forest open ountry

street inside ity tall buildings highways

Figure A.1: Natural senes from the outdoor database of Torralba.

A.3.2 Settings

For experiments, we need two separate datasets: the �rst one for train and the

seond for tests. We divide our database so in a random way. For the results

presented here, we use 2000 images for train (of about 250 images per ategory) and

688 as queries. For evaluations in (A.3.4) and (A.3.5), Gist features are used here

in 32 dimensions.

We evaluate UNN against the standard k-NNmethod onsidering di�erent num-

bers of prototypes (lassi�ers). For the k-NN, it is trivial that we should onsider

all training set as lassi�ers to be as robust as possible. However, our goal in this

paper is to optimize lassi�ation taking into onsideration salability rule. Hene,

sets of prototypes P ⊂ S tested on here ontains respetively 10, 20, 30, 40, or
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50 perent of train set S. For k-NN, prototypes are hosen randomly, whether for

UNN lassi�ers are those of highest learned oe�ients.

In a seond part of this setion, ITML is ompared to the standard Eulidean

distane often used with Gist features. The ITML algorithm needs an a priori

knowledge on some parameters as indiated in the previous setion. We use the same

parameters as [Davis et al. 2007℄, so we initialize the matrix A to the identity matrix,

then we onsider the training set as samples to ompute threshold distanes and

onstraints matrix. Only, due to omputing ost, we onsider the same parameters

as [Davis et al. 2007℄ to hoose randomly 20×C2
onstraint pairs of features from the

training set. Consequently, the approximation of the matrix A is non-deterministi.

This is why we onsider the mean lassi�ation result under 10 di�erent evaluations.

We do the same thing for the k-NN method sine prototypes are taken randomly.

A.3.3 Robustness to dimension redution

Our tests aim to lassify unlabeled queries based on trained lassi�ers. We evaluate

results of lassi�ation using the mean Average Preision (mAP) value, whih is the

mean of the right lassi�ation rate of all ategories.
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Figure A.2: Mean average preision urve for lassi�ation depending on Gist di-

mension.

First, to prove that dimension redution does not a�et the robustness of Gist

features we evaluate lassi�ation using those desriptors in di�erent dimensions.

The Fig.A.2 presents the evolution of the mean average preision in funtion of the

dimension of the features. We vary dimension from 4 to 512 and we notie that

mAP value is pratially onstant from dimension 16. This shows that dominant

information is loated on the �rst 16 omponents of the desriptor. Consequently,

we use Gist on 32 dimensions instead of 512 whih makes a huge di�erene in

omputation time.



A.3. Experiments 75

A.3.4 Boosting k-NN results and omparison to the k-NN lassi-

�ation method

UNN is an approah based on nearest neighbors framework. Therefore, it uses

boosted oe�ients to hoose a set P of best lassi�ers from the train set, and that

is su�ient to reah a best ategorization results. Next, we evaluate the in�uene

of trained prototypes number on lassi�ation rate respetively for UNN approah

and for k-NN one. We test on 10, 20, 30, 40 and 50 perent of the training set

as prototypes to ompare the two previous approahes. The evaluation in Fig.A.3
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Leveraged KNN: Euclidian distance using Gist 32
KNN: Euclidian distance using Gist 32

Figure A.3: Comparaison between k-NN lassi�ation and UNN one.

shows that UNN lassi�ation is more e�ient than standard k-NN, and using

only 50 perent of S as prototypes we reah a signi�ant preision rate. In other

evaluations not reported here, we had to onsider all training set as lassi�ers for the

uniform (standard) k-NN method to ahieve the same e�ieny as UNN algorithm.

Notie that this mAP is omparable to the result of Torralba

1

based on SVM

method, exept that with the UNN approah we are salable.

A.3.5 Evaluation of the metri learning proess

For more e�ieny, we substitute eulidean distane by ITML to adapt the metri

to features. Results in Fig.A.4 indiate that with this metri we an get more

robustness with fewer learned lassi�ers, whih is really important when dealing

with large datasets.

As reported in Fig.A.4, for 400 prototypes (20% of the training data), we have

already more than 81% of preision when using UNN with ITML metri. And for

only 600 lassi�ers (30%) we ome to the same preision rate as using the eulidean

distane with 1000 lassi�ers (50%).

We also test the optimization of ITML on k-NN method as shown in Fig.A.4

and evaluation ondut to the same onlusion as with UNN algorithm.
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Figure A.4: UNN lassi�ation using Eulidean distane and ITML.
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Figure A.5: MAP variane of UNN lassi�ation with ITML distane over 10 eval-

uations.
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Figure A.6: MAP variane of k-NN lassi�ation over 10 evaluations

We remind that beause of the randomness of the learning proess of the matrix
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A, previous results on ITML are averaged over 10 evaluations. Fig.A.5 shows the

variane of these results.

The same proess is applied to k-NN method as prototypes are hosen randomly,

and a preview of the Fig.A.6 shows the detailed results.





Appendix B

Convergene proof of N

3
and

statistial properties

B.1 Proof of Theorem 3

The proof is skethed for the alibrated Hinge loss, and so onsider row D in Tables

3.1, 3.2, 3.3. For the sake of simpliity, let us name FD the alibrated Hinge loss,

and suppose we are at the beginning of step t and lass c in N3
, with j the index

returned by Wi. The urrent leveraged NNis denoted Ht
c and the urrent weights

are denoted wt. For any i in the inverse neighborhood of j, let us denote

H̃t
c(xi)

.
= Ht

c(xi) + yicg
′
FD

(KFD
w1,i) . (B.1)

Classi�er H̃t
c is the leveraged NNto whih we add a onstant term whih depends on

the initialization weight of example i. We now fous on establishing a onvergene

property for εFD
(H̃c, S), whih will then be translated to Hc. First, we upperbound

the variation between two suessive values of εFD
(., S). After several derivations,

we obtain:

εFD
(H̃t+1

c , S)− εFD
(H̃t

c, S)

= − 1

m

∑

i:j→ki

∆−gFD
(wt+1,i‖wt,i)−

η̃δj
m

, (B.2)

with ∆−gFD
the Bregman divergene with generator −gFD

[Kakade et al. 2009℄, and

η̃
.
=
∑

i:j→ki
wt+1,iyicyjc. Notie that η̃ is not measured on the same weights as

η(c, j).

Using the fat that FD is F ′′
D(0) = 1/4 is strongly smooth and Theorem 6 in

[Kivinen & Warmuth 2001℄, we obtain that −gFD
− 2x2 is onvex. Considering its

Bregman divergene omputed between wt+1,i and wt,i, summing for all i in the

inverse neighborhood of j and rearranging terms, we obtain:

∑

i:j→ki

∆−gFD
(wt+1,i‖wt,i) ≥ 2

∑

i:j→ki

(wt+1,i − wt,i)
2 .

After remarking that

∑

i:j→ki
(yicyjc)

2 = nj , Cauhy-Shwartz inequality yields

n2
j

∑

i:j→ki

(wt+1,i − wt,i)
2 ≥ (η̃ − η(c, j))2 ,
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that is:

∑

i:j→ki

∆−gFD
(wt+1,i‖wt,i) ≥

2(η̃ − η(c, j))2

nj
.

Plugging this into (B.2) yields after few more derivations the left-hand side inequality

of:

εFD
(H̃t+1

c , S)− εFD
(H̃t

c, S)

≤ −2η(c, j)2

mnj
≤ −8njγ

2
nγ

2
u

m
. (B.3)

The right-hand side inequality of (B.3) omes from the weak learning assumption.

Hene, for some ε < F (0) = − ln(2), to obtain εFD
(H̃T+1

c , S) ≤ ε, it is su�ient

that:

∑

j∈I
nj ≥

(−ε− ln(2))m

8γ2nγ
2
u

, (B.4)

where j spans the indexes of I. To �nish the proof, we shift the analysis to HT+1
c ,

and obtain from (B.1) and the expressions of FD and gFD
:

∀i : j →k i , FD(yicH
T+1
c (xi))

= FD

(

yicH̃
T+1
c (xi)− g′FD

(KFD
w1,i)

)

= FD

(

yicH̃
T+1
c (xi)− ‖1+ yicyi‖1

)

, (B.5)

≤ FD(yicH̃
T+1
c (xi)) + C . (B.6)

There remains to ombine (B.4) and (B.6) to obtain the statement of the Theorem.

B.2 Statistial properties of N

3

The �rst property onsists in a justi�ation of the weight initialization in N

3
. Fol-

lowing the terminologies of [Bartlett et al. 2006, Vernet et al. 2011℄, we want the

total alibrated risk to be pointwise Fisher onsistent: this implies that for any

observation, when p[yc = +1|x] = 1/C,∀c, the optimal onstant real predition

for x is z = 0 [Bartlett et al. 2006, Vernet et al. 2011℄. Notie that eah example

in S partiipates to C lassi�ation problems. Consider example i whih meets

the onditions above, and let w+
(resp. w−

) denote its weight for the lassi�-

ation problem for one lass to whih it belongs (resp. does not belong) vs all

others in N

3
. A onstant real predition z brings for this example a ontribution

to the total alibrated risk proportional to w+‖1+ yi‖1F (−z) +w−‖1− yi‖1F (z).

Given the de�nition of F (3.3), the optimal z to this ontribution is found to be

z = f−1 (w+‖1+ yi‖1/(w+‖1+ yi‖1 + w−‖1− yi‖1)). Beause f(0) = 1/2, we have

to ensure that w+‖1+ yi‖1 = w−‖1− yi‖1, whih is the ase in N

3
.
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The seond property establishes that N

3
brings a onvenient estimation of poste-

riors. It on�rms the intuition that the transfer funtion links real valued predition

to the estimation of posteriors (See Setion 3.3).

Theorem 6 For any c, f(Hc(x)) is an e�ient estimator of p[yc = +1|x].

The proof, given in appendix, alls to the representation of exponential families.

It is interesting in itself as it shows that the duality between labels predition and

posteriors estimation born from the transfer funtion (Setion 3.3) implies a duality

between the lassi�ation alibrated risk � whih depends upon labels � and the

log-likelihood of some exponential family � whih is parameterized by posteriors

�.

The third property shows that N

3
is weakly universally onsistent. It makes use

of the de�nition of the empirial risk of H on S (1. is the indiator variable):

ε0/1(H, S)
.
=

1

C

C∑

c=1

1

m

m∑

i=1

1yicHc(xi)<0 . (B.7)

Theorem 7 Suppose that examples in S are drawn i.i.d. aording to some unknown

but �xed distribution D. Let Rm,T
.
= ES:|S|=m[ε0/1(H, S)] denote the expetation,

over the sampling of size-m samples following D, of lassi�er H built by N

3
after

T rounds of boosting for eah lass. Then, as k → +∞, provided k = O(T ) and

T = O(m), N3
is weakly universally onsistent: regardless of D,

lim
m→+∞

Rm,T = R∗ , (B.8)

where R∗
is Bayes risk.

Comments on Theorems 3 and 7: the Theorems provide sets of hoies for

parameters that make it possible for N

3
to perform onsistent and sparse boosting.

For example, k = O(mµ), T = O(mν), with 0 < µ, ν < 1 and µ+ ν > 1.

B.3 Proof of Theorem 6

We fous on lass c and remove for the sake of readability the referene to c in

all notations. We let y ∈ {−1,+1} denote the membership to the lass and ŷε
.
=

(1/2 − ε)y + 1/2 ∈ {ε, 1 − ε}, for some ε ∈ [0, 1). Letting for short H
.
= H(x), we
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have:

∆−gF (1− ε‖f(H))
.
= (−gF )(1− ε)− (−gF )(f(H))

−(1− ε− f(H))(−gF )′(f(H))

= (−gF )(1− ε) + (−gF )⋆(H) + εH −H , (B.9)

∆−gF (ε‖f(H))
.
= (−gF )(ε)− (−gF )(f(H))

−(ε− f(H))(−gF )′(f(H))

= (−gF )(ε) + (−gF )⋆(H)− εH , (B.10)

where ∆−gF is the Bregman divergene with generator −gF
[Kivinen & Warmuth 2001℄. To derive (B.9) and (B.10), we have used (i)

the fat that onvex onjugates have derivatives that are inverse of eah other,

(ii) f = (−gF )′−1(x) from (3.3) and (3.4), and (iii) the onvex onjugate of some

stritly onvex di�erentiable funtion h is h⋆(x) = xh′−1(x)− h(h′−1(x)). Sine gF
is permissible, (−gF )(ε) = (−gF )(1 − ε), and we remark that F (−x) = F (x) + x,

so that (3.3) and (3.4) beome:

∆−gF (1− ε‖f(H)) = u(ε) + εH + F (H) ,

∆−gF (ε‖f(H)) = u(ε)− εH + F (−H) ,

where u
.
= (−gF )(ε) = (−gF )(1− ε). We end up having:

Fε(yH) = ∆−gF (ŷε‖f(H))− u(ε) , (B.11)

with Fε(x)
.
= F (x)− εx. Now,

∆−gF (ŷε‖f(H))

= − log p((−gF )⋆,H)[ŷε = 1− ε|x] + log v(x) , (B.12)

where p((−gF )⋆,H) is the pdf of the exponential family parameterized by (−gF )⋆,
with natural parameter H and expetation parameter f(H) [Banerjee et al. 2005℄.

Hene, f(H) is an estimator of:

Ex[ŷε] = (1− ε)p[y = +1|x] + εp[y = −1|x]
= p[y = +1|x] + ε(p[y = −1|x]− p[y = +1|x]) .

In fat, f(H) is the only e�ient estimator of Ex[ŷε] [Müller-Funk et al. 1989℄. Plug-

ging (B.11) and (B.12) together, we get:

− log p((−gF )⋆,H)[ŷε = 1− ε|x] = Fε(yH) + r ,

where r does not depend upon H or T . Hene, minimizing εFε(H, S) amounts to a

maximum likelihood �tting of f(H). There remains to take ε = 0 for A, B, C to

onlude the Theorem. For D, sine gF is not de�ned in {0, 1}, we an pik ε = 1/T 2
.

Sine weights are �nite, leveraging oe�ients are �nite. Thus, |H| = o(T 2), and so

F1/T 2(yH) = F (yH) + o(1). There remains to take the limit in T to onlude.
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Convergene proof of SLND

C.1 Proofsketh of Theorem 5

The proofsketh of Theorem 5 involves there steps:

• Bregman divergene estimation.

• Calibrated loss properties.

• Weak Separability Assumption.

We �rst make some simpli�ations in notations. We remove the c subsript and

make the analysis for lass c, and thus fous on the analysis of ε
F

(hc, S), noted for

short ε
F

(h, S). To avoid onfusion, we also rename example hosen at iteration t in

(4.16) as example it, so that (4.16) reads:

wt+1 = wt − ηtyitF
′ (yitw

T
t xit

)
x
◦
it . (C.1)

Bregman divergene estimation

Let us de�ne the Legendre onjugate and the notion of Bregman di-

vergene. F̃(x)
.
= F

⋆(−x), where ⋆ denotes the Legendre onjugate

(F

⋆(x)
.
= x(F′)−1(x) − F((F′)−1(x))), and D

F̃

(u‖v) .
= F̃(u) − F̃(v) − (u − v)F̃

′
(v)

denotes the Bregman divergene with generator F̃ [Nok & Nielsen 2008℄.

We get the following equality

ε
F

(wt+1, S)− ε
F

(wt, S)

=
1

m

m∑

i=1

F(yicw
⊤
t+1xi)−

1

m

m∑

i=1

F(yicw
⊤
t xi)

= − 1

m

m∑

i=1

D
F̃

(p(t+1)i‖pti)

−ηt
m

m∑

i=1

p(t+1)iyiyitπ(it, i) , (C.2)

where

π(i, it)
.
= ptitx

⊤
itH

⋆
xi = ptit(x

◦
i )

⊤
x
◦
it , (C.3)
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Calibrated loss properties

Sine F

′′(x) ≤ F

′′(0) for the lassi�ation alibrated losses we onsider, we

also have the following quadrati lower-bound whih an be obtained following

[Kakade et al. 2009℄:

m∑

i=1

D
F̃

(p(t+1)i‖pti) ≥
1

2F′′(0)

m∑

i=1

(p(t+1)i − pti)
2 . (C.4)

Cauhy-Shwartz inequality brings:

m∑

i=1

(yiyitπ(it, i))
2

m∑

i=1

(p(t+1)i − pti)
2

(C.5)

≥
(

m∑

i=1

yiyitπ(it, i)(p(t+1)i − pti)

)2

. (C.6)

De�ne for short vt
.
=
∑m

i=1 p(t+1)iyiyitπ(it, i), et
.
=
∑m

i=1 ptiyiyitπ(it, i) and Πt
.
=

∑m
i=1 π

2(it, i). Plugging (C.4) and (C.6) into (C.2) and simplifying, we obtain:

ε
F

(wt+1, S)− ε
F

(wt, S)

≤ − (vt − et)
2

2F′′(0)mΠt
− ηtvt

m
︸ ︷︷ ︸

.
=

∆t(vt)
m

. (C.7)

• ∆t(vt) takes its maximum for vt = v◦ = et − F′′(0)ηt
∑m

i=1 (yiyitπ(it, i))
2 = et −

F

′′(0)ηtΠt, for whih we have:

∆t(v
◦) =

F

′′(0)ηtΠt

2
×
(

ηt −
2et

F

′′(0)Πt

)

.

Assume we pik, for some ε ∈ (0, 1):

ηt
.
=

2(1− ε)et
F

′′(0)Πt
. (C.8)

For this hoie of ηt, we have:

∆t(v
◦) = −2ε(1 − ε)

F

′′(0)
ρ(it,H

∗) , (C.9)

with

ρ(it,H
∗)

.
=

(∑m
i=1 ptiyi(x

◦
i )

⊤
x
◦
it

)2

∑m
i=1 ((x

◦
i )

⊤x◦
it
)2

.
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Weak Separability Assumption

Now, the Weak Separability Assumption implies |∑m
i=1 ptiyi(x

◦
i )

⊤
x
◦
it
| ≥ γ‖st‖1 ≥

γ‖st‖2 = γ
√
∑m

i=1 ((x
◦
i )

⊤x◦
it
)2, whih leads to ρ(it,H

∗) ≥ γ2.

Finally, the fat that ∆t(vt) ≤ ∆t(v
◦) and (C.9) imply:

∆t(vt) ≤ −2γ2ε(1− ε)

F

′′(0)
.

Plugging this into (C.7) ahieves the proof of the theorem.

Remarks on ηt (C.8) gives, under the WSA:

ηt =
2(1− ε)

∑m
i=1 ptiyiyitπ(it, i)

F

′′(0)Πt

=
2(1− ε)γ′‖st‖1
F

′′(0)|ptityit|‖st‖22
,

for some γ′ ≥ γ > 0 as in the WSA. Beause ‖st‖2 ≤ ‖st‖1 ≤
√
m‖st‖2, it omes:

2(1− ε)γ′

F

′′(0)ptit‖st‖1
≤ ηt ≤

2(1− ε)γ′
√
m

F

′′(0)ptit‖st‖1
.

Letting µt
.
= (1/m)

∑m
i=1 |(x◦

i )
⊤
x
◦
it | denote the average value of |stj |, we obtain:

2(1− ε)γ′

mF′′(0)ptitµt
≤ ηt ≤

2(1− ε)γ′√
mF′′(0)ptitµt

.

Hene, omitting ptit in big-Oh notations to simplify the analysis, the value ηt whih

guarantees the rate of onvergene of Theorem 5 is indeed roughly between Ω(1/m)

and O(1/
√
m).
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Abstrat:

Minimization of Calibrated Loss Funtions for Image Classi�ation

Image lassi�ation beomes a big hallenge sine it onerns on the one hand

millions or billions of images that are available on the web and on the other hand

images used for ritial real-time appliations.

This lassi�ation involves in general learning methods and lassi�ers that must

require both preision as well as speed performane. These learning problems on-

ern a large number of appliation areas: namely, web appliations (pro�ling, tar-

geting, soial networks, searh engines), "Big Data" and of ourse omputer vision

suh as the objet reognition and image lassi�ation.

This thesis onerns the last ategory of appliations and is about supervised

learning algorithms based on the minimization of loss funtions (error) alled "ali-

brated" for two kind of lassi�ers: k-Nearest Neighbours (kNN) and linear lassi�ers.

Those learning methods have been tested on large databases of images and then

applied to biomedial images.

In a �rst step, this thesis revisited a Boosting kNN algorithm for large sale

lassi�ation. Then, we introdued a new method of learning these NN lassi�ers

using a Newton desent approah for a faster onvergene. In a seond part, this

thesis introdues a new learning algorithm based on stohasti Newton desent for

linear lassi�ers known for their simpliity and their speed of onvergene.

Finally, these three methods have been used in a medial appliation regarding

the lassi�ation of ells in biology and pathology.





Résumé:

Minimisation de fontions de perte alibrées pour la lassi�ation

des images

La lassi�ation des images est aujourd'hui un dé� d'une grande ampleur puisque

ça onerne d'un ote les millions voir des milliards d'images qui se trouvent partout

sur le web et d'autre part des images pour des appliation temps réel ritiques.

Cette lassi�ation fait appel en général à des méthodes d'apprentissage et à

des lassi�eurs qui doivent répondre à la fois à la préision ainsi qu'à la rapidité.

Ces problèmes d'apprentissage touhent aujourd'hui un grand nombre de domaines

d'appliations: à savoir, le web (pro�ling, iblage, réseaux soiaux, moteurs de

reherhe), les "Big Data" et bien évidemment la vision par ordinateur tel que la

reonnaissane d'objets et la lassi�ation des images.

La présente thèse se situe dans ette dernière atégorie et présente des algo-

rithmes d'apprentissage supervisé basés sur la minimisation de fontions de perte

(erreur) dites "alibrées" pour deux types de lassi�eurs: k-Plus Prohes voisins

(kNN) et lassi�eurs linéaires.

Ces méthodes d'apprentissage ont été testées sur de grandes bases d'images et

appliquées par la suite à des images biomédiales.

Ainsi, ette thèse reformule dans une première étape un algorithme de Boosting

des kNN et présente ensuite une deuxième méthode d'apprentissage de es lassi-

�eurs NN mais ave une approhe de desente de Newton pour une onvergene

plus rapide. Dans une seonde partie, ette thèse introduit un nouvel algorithme

d'apprentissage par desente stohastique de Newton pour les lassi�eurs linéaires

onnus pour leur simpliité et leur rapidité de alul.

En�n, es trois méthodes ont été utilisées dans une appliation médiale qui

onerne la lassi�ation de ellules en biologie et en pathologie.


