M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, 1972.

E. Naumann, V. Offermann, S. Onuchin, F. Panacek, P. Rademakers et al., ROOT -A C++ framework for petabyte data storage, statistical analysis and visualization, 2009.

]. R. Brun1997, F. Brun, and . Rademakers, ROOT -An Object Oriented Data Analysis Framework, Proceedings AIHENP'96 Workshop, 1997.

A. Malvagi, O. Mazzolo, J. Petit, T. Trama, and . Visonneau, TRIPOLI-4 Version 6 User Guide, rapport technique, 2009.

G. Dejonghe, Études d'eets diérentiels par la méthode de Monte Carlo dans le cadre de l'équation du transport. Applications aux calculs de protection et de neutronique, Thèse de doctorat, 1982.

J. M. Depinay, Automatisation de méthodes de réduction de variance pour la résolution de l'équation de transport, Thèse de doctorat, Ecole Nationale des Ponts et Chaussées, 2000.

T. Trama, A 3D continuous-energy Monte Carlo transport code, First International Conference on Physics and Technology of Reactors and Applications, 2007.

E. Dumonteil, F. Hugot, C. Jouanne, Y. Lee, F. Malvagi et al., An overview on the Monte Carlo particle transport code TRIPOLI-4, Transactions of the American Nuclear Society, vol.97, pp.694-695

I. Lux and L. Koblinger, Monte Carlo particle transport methods : neutron and photon calculations, 1991.

]. H. Meti2006 and . Metivier, Radioprotection et ingénierie nucléaire, EDP Science, 2006.

]. O. Peti2009 and . Petit, Inventaire des techniques de biaisage dans les codes de transport de particules par la méthode Monte Carlo, rapport technique, CEA Saclay, 2009.

]. P. Reus2003 and . Reuss, Précis de neutronique, EDP Science, 2003.

H. Rief, Generalized Monte Carlo perturbation algorithms for correlated sampling and a second-order Taylor series approach, Annals of Nuclear Energy, vol.11, issue.9, pp.455-476, 1984.
DOI : 10.1016/0306-4549(84)90064-1

]. E. Wood1965, T. Woodcock, P. Murphy, T. Hemmings, and . Longworth, Monte Carlo technique for local perturbation in multiplying systems, Proceedings of the Conference on the Application of Computing Methods to Reactor Problems, ANL-705 0, pp.557-579, 1965.

C. Dieudonné and C. Saclay-références, Monte Carlo technique for local perturbation in multiplying systems, Proceedings of the NEACRT meeting of a Monte Carlo study group, pp.261-280, 1974.

G. Dejonghe, Études d'eets diérentiels par la méthode de Monte Carlo dans le cadre de l'équation du transport. Applications aux calculs de protection et de neutronique, Thèse de doctorat, 1982.

J. A. Favorite, An alternative implementation of the dierential operator (Taylor series) perturbation method for Monte Carlo criticality problems, Nuclear Science and Engineering, vol.142, pp.327-341, 2002.

J. A. Favorite, On the accuracy of the dierential operator Monte Carlo perturbation method for eigenvalue problems, Transactions of the American Nuclear Society, vol.101, pp.460-462, 2009.

M. C. Hall, Monte Carlo perturbation theory in neutron transport calculations, Thèse de doctorat, 1980.

M. C. Hall, Cross-section adjustment with Monte Carlo sensitivities : application to the Winfrit iron benchmark, Nuclear Science and Engineering, vol.81, pp.423-431, 1982.

]. T. He2010, B. He, and . Su, On using correlated sampling to simulate small changes in system response by MCNP, Annals of Nuclear Energy, vol.37, pp.34-42, 2010.

Y. Nagaya and T. Mori, Impact of Perturbed Fission Source on the Effective Multiplication Factor in Monte Carlo Perturbation Calculations, Journal of Nuclear Science and Technology, vol.118, issue.9, pp.428-441, 2005.
DOI : 10.1080/18811248.1995.9731849

Y. Nagaya and T. Mori, Calculation of effective delayed neutron fraction with Monte Carlo perturbation techniques, Annals of Nuclear Energy, vol.38, issue.2-3, pp.254-260, 2011.
DOI : 10.1016/j.anucene.2010.10.020

M. Nakagawa and T. Asaoka, Improvement of Correlated Sampling Monte Carlo Methods for Reactivity Calculations, Journal of Nuclear Science and Technology, vol.1255, issue.6, pp.400-410, 1978.
DOI : 10.1080/18811248.1978.9735527

J. E. Olhoeft, The doppler eect for a non-uniform temperature distribution in reactor fuel elements, rapport technique, WCAP-2048, 1962.

H. Rief, Generalized Monte Carlo perturbation algorithms for correlated sampling and a second-order Taylor series approach, Annals of Nuclear Energy, vol.11, issue.9, pp.455-476, 1984.
DOI : 10.1016/0306-4549(84)90064-1

H. Rief, Stochastic perturbation analysis applied to neutral particle transport Advances in Nuclear Science and Technology, pp.69-140, 2002.

]. B. Su2010, T. Su, and . He, Enhanced correlated sampling by source biasing for pin diversion analysis, Transactions of the American Nuclear Society, vol.102, pp.220-221, 2010.

]. H. Taka1970 and . Takahashi, Monte Carlo method for geometrical perturbation and its application to the pulsed fast reactor, Nuclear Science and Engineering, vol.41, pp.259-270, 1970.

C. Dieudonné, C. Saclay-références-[-brun2011, ]. E. Brun, E. Dumonteil, and F. Malvagi, Systematic uncertainty due to statistics in Monte Carlo burnup codes : Application to a simple benchmark with TRIPOLI-4-D, Progress in Nuclear Science and Technology, pp.879-885, 2011.

E. Brun, E. Dumonteil, C. Saclay, D. Référence, and . Rt, Guide d'utilisation de TRIPOLI-4 Evoluant Version 1.1, rapport technique, pp.12-5307

J. Dufek and J. E. Hoogenboom, Numerical Stability of Existing Monte Carlo Burnup Codes in Cycle Calculations of Critical Reactors, Nuclear Science and Engineering, vol.162, issue.3, pp.307-311, 2009.
DOI : 10.13182/NSE08-69TN

E. Dumonteil and C. M. Diop, Unbiased minimum variance estimator of a matrix exponential function. Application to Boltzmann, Bateman coupled equations solving, International Conference on Advances in Mathematics, Computational Methods, and Reactor Physics, 2009.

E. Dumonteil and C. M. Diop, Biases and Statistical Errors in Monte Carlo Burnup Calculations: An Unbiased Stochastic Scheme to Solve Boltzmann/Bateman Coupled Equations, Nuclear Science and Engineering, vol.167, issue.2, pp.165-170, 2011.
DOI : 10.13182/NSE09-100

]. N. Garc2008, O. García-herranz, J. Cabellos, J. Sanz, J. C. Juan et al., Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations, Annals of Nuclear Energy, vol.35, pp.714-730, 2008.

J. E. Hoogenboom, Uncertainty propagation in Monte Carlo burn-up calculations -State of the art report, rapport technique, p.8, 2008.

]. E. Ivan1998 and . Ivanov, Method of estimating the sensitivity of a calculated nuclide vector to deviations in initial data, rapport technique, IAEA report INDC, p.418, 1998.

]. E. Ivan2005 and . Ivanov, Error propagation in Monte Carlo burn-up calculations, International Conference on Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications, 2005.

]. D. Roch2011, A. J. Rochman, S. C. Koning, A. Van-der-marck, C. M. Hogenbirk et al., Nuclear data uncertainty propagation : Perturbation vs, Annals of Nuclear Energy, vol.38, pp.942-952, 2011.

H. J. Shim, H. J. Park, and C. H. Kim, Error propagation in Monte Carlo depletion analysis, Transactions of the American Nuclear Society, vol.96, pp.582-584, 2007.

]. H. Shim2008, H. J. Shim, H. G. Park, Y. Joo, C. H. Kim et al., Uncertainty propagation in Monte Carlo depletion analysis, International Conference on the Physics of Reactors, 2008.

]. H. Shim2011, H. J. Shim, C. H. Park, and . Kim, Uncertainty propagation in Monte Carlo depletion analysis, Nuclear Science and Engineering, vol.167, pp.196-208, 2011.

T. Takeda, N. Hirokawa, and T. Noda, Estimation of Error Propagation in Monte-Carlo Burnup Calculations, Journal of Nuclear Science and Technology, vol.62, issue.9, pp.738-745, 1999.
DOI : 10.1080/18811248.1991.9731356

M. Tohjoh, T. Endo, M. Watanabe, and A. Yamamoto, Effect of error propagation of nuclide number densities on Monte Carlo burn-up calculations, Annals of Nuclear Energy, vol.33, issue.17-18, pp.1424-1436, 2006.
DOI : 10.1016/j.anucene.2006.09.010

M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, 1972.

V. Offermann, S. Onuchin, F. Panacek, P. Rademakers, M. Russo et al., ROOT -A C++ framework for petabyte data storage, statistical analysis and visualization, 2009.

W. Bernnat, Monte Carlo technique for local perturbation in multiplying systems, Proceedings of the NEACRT meeting of a Monte Carlo study group, ANL-75-2, pp.261-280, 1974.

E. Brun, E. Dumonteil, and F. Malvagi, Systematic Uncertainty Due to Statistics in Monte Carlo Burnup Codes: Application to a Simple Benchmark with TRIPOLI-4-D, Progress in Nuclear Science and Technology, pp.879-885, 2011.
DOI : 10.15669/pnst.2.879

E. Brun, E. Dumonteil, C. Saclay, D. Référence, and . Rt, Guide d'utilisation de TRIPOLI-4 Evoluant Version 1.1, rapport technique, pp.12-5307

R. Brun and F. Rademakers, ROOT ??? An object oriented data analysis framework, Proceedings AIHENP'96 Workshop, 1997.
DOI : 10.1016/S0168-9002(97)00048-X

G. Dejonghe, Études d'eets diérentiels par la méthode de Monte Carlo dans le cadre de l'équation du transport. Applications aux calculs de protection et de neutronique, Thèse de doctorat, 1982.

J. M. Depinay, Automatisation de méthodes de réduction de variance pour la résolution de l'équation de transport, Thèse de doctorat, Ecole Nationale des Ponts et Chaussées, 2000.

C. Dieudonné, E. Dumonteil, F. Malvagi, and C. M. Diop, Monte Carlo burnup code acceleration with the correlated sampling method. Preliminary test on an UOX cell with TRIPOLI-4, Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, 2013.

C. Dieudonné, E. Dumonteil, F. Malvagi, and C. M. Diop, Depletion calculations based on perturbations Application to the study of a REP-like assembly at beginning of cycle with TRIPOLI-4, Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013), La Cité des Sciences et de l'Industrie, 2013.

C. M. Diop, O. Petit, E. Dumonteil, F. Hugot, Y. Lee et al., TRIPOLI-4 : A 3D continuous-energy Monte Carlo transport code, First International Conference on Physics and Technology of Reactors and Applications, 2007.

J. Dufek and J. E. Hoogenboom, Numerical Stability of Existing Monte Carlo Burnup Codes in Cycle Calculations of Critical Reactors, Nuclear Science and Engineering, vol.162, issue.3, pp.307-311, 2009.
DOI : 10.13182/NSE08-69TN

E. Dumonteil, F. Hugot, C. Jouanne, Y. Lee, F. Malvagi et al., An overview on the Monte Carlo particle transport code TRIPOLI-4, Transactions of the American Nuclear Society, vol.97, pp.694-695

E. Dumonteil and C. M. Diop, Unbiased minimum variance estimator of a matrix exponential function. Application to Boltzmann, Bateman coupled equations solving, International Conference on Advances in Mathematics, Computational Methods, and Reactor Physics, 2009.

E. Dumonteil and C. M. Diop, Biases and Statistical Errors in Monte Carlo Burnup Calculations: An Unbiased Stochastic Scheme to Solve Boltzmann/Bateman Coupled Equations, Nuclear Science and Engineering, vol.167, issue.2, pp.165-170, 2011.
DOI : 10.13182/NSE09-100

J. A. Favorite, An alternative implementation of the dierential operator (Taylor series) perturbation method for Monte Carlo criticality problems, Nuclear Science and Engineering, vol.142, pp.327-341, 2002.

J. A. Favorite, On the accuracy of the dierential operator Monte Carlo perturbation method for eigenvalue problems, Transactions of the American Nuclear Society, vol.101, pp.460-462, 2009.

N. García-herranz, O. Cabellos, J. Sanz, J. Juan, and J. C. Kuijper, Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations, Annals of Nuclear Energy, vol.35, issue.4, pp.714-730, 2008.
DOI : 10.1016/j.anucene.2007.07.022

M. C. Hall, Monte Carlo perturbation theory in neutron transport calculations, Thèse de doctorat, 1980.

M. C. Hall, Cross-section adjustment with Monte Carlo sensitivities : application to the Winfrit iron benchmark, Nuclear Science and Engineering, vol.81, pp.423-431, 1982.

T. He and B. Su, On using correlated sampling to simulate small changes in system response by MCNP, Annals of Nuclear Energy, vol.37, issue.1, pp.34-42, 2010.
DOI : 10.1016/j.anucene.2009.10.006

J. E. Hoogenboom, Uncertainty propagation in Monte Carlo burn-up calculations -State of the art report, rapport technique, p.8, 2008.

E. A. Ivanov, Method of estimating the sensitivity of a calculated nuclide vector to deviations in initial data, rapport technique, IAEA report INDC, p.418, 1998.

E. A. Ivanov, Error propagation in Monte Carlo burn-up calculations, International Conference on Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications, 2005.

I. Lux and L. Koblinger, Monte Carlo particle transport methods : neutron and photon calculations, 1991.

H. Metivier, Radioprotection et ingénierie nucléaire, EDP Science, 2006.

M. Moriwaki and M. Aoyama, Improvement of Monte Carlo Lattice Burnup Calculation Performance with the Correlated Sampling Method, Journal of Nuclear Science and Technology, vol.23, issue.2, pp.587-596, 2002.
DOI : 10.1080/18811248.2002.9715238

M. Moriwaki, Multi-Assembly Analysis with an Advanced Correlated Sampling Method, Journal of Nuclear Science and Technology, vol.63, issue.10, pp.905-917, 2003.
DOI : 10.1080/18811248.1989.9734412

Y. Nagaya and T. Mori, Impact of Perturbed Fission Source on the Effective Multiplication Factor in Monte Carlo Perturbation Calculations, Journal of Nuclear Science and Technology, vol.118, issue.9, pp.428-441, 2005.
DOI : 10.1080/18811248.1995.9731849

Y. Nagaya and T. Mori, Calculation of effective delayed neutron fraction with Monte Carlo perturbation techniques, Annals of Nuclear Energy, vol.38, issue.2-3, pp.254-260, 2011.
DOI : 10.1016/j.anucene.2010.10.020

M. Nakagawa and T. Asaoka, Improvement of Correlated Sampling Monte Carlo Methods for Reactivity Calculations, Journal of Nuclear Science and Technology, vol.1255, issue.6, pp.400-410, 1978.
DOI : 10.1080/18811248.1978.9735527

J. E. Olhoeft, The doppler eect for a non-uniform temperature distribution in reactor fuel elements, rapport technique, WCAP-2048, 1962.

O. Petit, Inventaire des techniques de biaisage dans les codes de transport de particules par la méthode Monte Carlo, rapport technique, 2009.

P. Reuss, Précis de neutronique, Science, 2003.

H. Rief, Generalized Monte Carlo perturbation algorithms for correlated sampling and a second-order Taylor series approach, Annals of Nuclear Energy, vol.11, issue.9, pp.455-476, 1984.
DOI : 10.1016/0306-4549(84)90064-1

H. Rief, Stochastic perturbation analysis applied to neutral particle transport Advances in Nuclear Science and Technology, pp.69-140, 2002.

D. Rochman, A. J. Koning, S. C. Van-der-marck, A. Hogenbirk, and C. M. Sciolla, Nuclear data uncertainty propagation: Perturbation vs. Monte Carlo, Annals of Nuclear Energy, vol.38, issue.5, pp.942-952, 2011.
DOI : 10.1016/j.anucene.2011.01.026

H. J. Shim, H. J. Park, and C. H. Kim, Error propagation in Monte Carlo depletion analysis, Transactions of the American Nuclear Society, vol.96, pp.582-584, 2007.

H. J. Shim, H. J. Park, H. G. Joo, Y. Kim, and C. H. Kim, Uncertainty propagation in Monte Carlo depletion analysis, International Conference on the Physics of Reactors, 2008.

H. J. Shim, H. J. Park, and C. H. Kim, Uncertainty propagation in Monte Carlo depletion analysis, Nuclear Science and Engineering, vol.167, pp.196-208, 2011.

B. Su and T. He, Enhanced correlated sampling by source biasing for pin diversion analysis, Transactions of the American Nuclear Society, vol.102, pp.220-221, 2010.

H. Takahashi, Monte Carlo method for geometrical perturbation and its application to the pulsed fast reactor, Nuclear Science and Engineering, vol.41, pp.259-270, 1970.

T. Takeda, N. Hirokawa, and T. Noda, Estimation of Error Propagation in Monte-Carlo Burnup Calculations, Journal of Nuclear Science and Technology, vol.62, issue.9, pp.738-745, 1999.
DOI : 10.1080/18811248.1991.9731356

H. Kschwendt and H. Rief, TIMOC : a general purpose Monte Carlo code for stationary and time dependent neutron transport, 1970.

M. Tohjoh, T. Endo, M. Watanabe, and A. Yamamoto, Effect of error propagation of nuclide number densities on Monte Carlo burn-up calculations, Annals of Nuclear Energy, vol.33, issue.17-18, pp.1424-1436, 2006.
DOI : 10.1016/j.anucene.2006.09.010

E. Woodcock, T. Murphy, P. Hemmings, and T. Longworth, Monte Carlo technique for local perturbation in multiplying systems, Proceedings of the Conference on the Application of Computing Methods to Reactor Problems, ANL-705 0, pp.557-579, 1965.