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ABSTRACT v 

 

Abstract 

 
Extreme precipitations and their consequences (floods) are one of the most threatening 

natural disasters for human beings. In engineering design, Frequency Analysis (FA) 

techniques are an integral part of risk assessment and mitigation. FA uses statistical models to 

estimate the probability of extreme hydrological events which provides information for 

designing hydraulic structures. However, standard FA methods commonly rely on the 

assumption that the distribution of observations is identically distributed. However, there is 

now a substantial body of evidence that large-scale modes of climate variability (e.g. El-Niño 

Southern Oscillation, ENSO; Indian Ocean Dipole, IOD; etc.) exert a significant influence on 

precipitation in various regions worldwide. Furthermore, climate change is likely to have an 

influence on hydrology, thus further challenging the “identically distributed” assumption. 

Therefore, FA techniques need to move beyond this assumption. In order to provide a more 

accurate risk assessment, it is important to understand and predict the impact of climate 

variability/change on the severity and frequency of hydrological events (especially extremes).  

This thesis provides an important step towards this goal, by developing a rigorous 

general climate-informed spatio-temporal regional frequency analysis (RFA) framework for 

incorporating the effects of climate variability on hydrological events. This framework brings 

together several components (in particular spatio-temporal regression models, copula-based 

modeling of spatial dependence, Bayesian inference, model comparison tools) to derive a 

general and flexible modeling platform. In this framework, data are assumed to follow a 

distribution, whose parameters are linked to temporal or/and spatial covariates using 

regression models. Parameters are estimated with a Monte Carlo Markov Chain method under 

the Bayesian framework. Spatial dependency of data is considered with copulas. Model 

comparison tools are integrated. The development of this general modeling framework is 

complemented with various Monte-Carlo experiments aimed at assessing its reliability, along 

with real data case studies. 

Two case studies are performed to confirm the generality, flexibility and usefulness of 

the framework for understanding and predicting the impact of climate variability on 

hydrological events. These case studies are carried out at two distinct spatial scales: 

 Regional scale: Summer rainfall in Southeast Queensland (Australia): this case study 

analyzes the impact of ENSO on the summer rainfall totals and summer rainfall maxima. 

A regional model allows highlighting the asymmetric impact of ENSO: while La Niña 

episodes induce a significant increase in both the summer rainfall totals and maxima, the 

impact of El Niño episodes is found to be not significant. 

 Global scale: a new global dataset of extreme precipitation including 11588 rainfall 

stations worldwide is used to describe the impact of ENSO on extreme precipitations in 

the world. This is achieved by applying the regional modeling framework to 5x5 degrees 

cells covering all continental areas. This analysis allows describing the pattern of ENSO 

impact at the global scale and quantifying its impact on extreme quantiles estimates. 

Moreover, the asymmetry of ENSO impact and its seasonal pattern are also evaluated. 
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Résumé 

 
Les événements de pluies extrêmes et les inondations qui en résultent constituent une 

préoccupation majeure en France comme dans le monde. Dans le domaine de l'ingénierie, les 

méthodes d'analyse probabiliste sont pratiquement utilisées pour prédire les risques, 

dimensionner des ouvrages hydrauliques et préparer l’atténuation. Ces méthodes sont 

classiquement basées sur l'hypothèse que les observations sont identiquement distribuées. Il y 

a aujourd’hui de plus en plus d’éléments montrant que des variabilités climatiques à grande 

échelle (par exemple les oscillations El Niño – La Niña, cf. indice ENSO) ont une influence 

significative sur les précipitations dans le monde. Par ailleurs, les effets attendus du 

changement climatique sur le cycle de l’eau remettent en question l'hypothèse de variables 

aléatoires "identiquement distribuées" dans le temps. Il est ainsi important de comprendre et 

de prédire l'impact de la variabilité et du changement climatique sur l’intensité et la fréquence 

des événements hydrologiques, surtout les extrêmes. 

Cette thèse propose une étape importante vers cet objectif, en développant un cadre 

spatio-temporel d'analyse probabiliste régionale qui prend en compte les effets de la 

variabilité climatique sur les événements hydrologiques. Les données sont supposées suivre 

une distribution, dont les paramètres sont liés à des variables temporelles et/ou spatiales à 

l'aide de modèles de régression. Les paramètres sont estimés avec une méthode de Monte-

Carlo par Chaînes de Markov dans un cadre Bayésien. La dépendance spatiale des données est 

modélisée par des copules. Les outils de comparaison de modèles sont aussi intégrés. 

L'élaboration de ce cadre général de modélisation est complétée par des simulations Monte-

Carlo pour évaluer sa fiabilité. 

Deux études de cas sont effectuées pour confirmer la généralité, la flexibilité et l'utilité 

du cadre de modélisation pour comprendre et prédire l'impact de la variabilité climatique sur 

les événements hydrologiques. Ces cas d’études sont réalisés à deux échelles spatiales 

distinctes: 

 Echelle régionale: les pluies d’été dans le sud-est du Queensland (Australie). Ce cas 

d’étude analyse l'impact de l'oscillation ENSO sur la pluie totale et la pluie maximale 

d’été. En utilisant un modèle régional, l'impact asymétrique de l'ENSO est souligné: une 

phase La Niña induit une augmentation significative sur la pluie totale et maximale, alors 

qu’une phase El Niño n’a pas d’influence significative. 

 Echelle mondiale: une nouvelle base de données mondiale des précipitations extrêmes 

composée de 11588 stations pluviométriques est utilisée pour analyser l'impact des 

oscillations ENSO sur les précipitations extrêmes mondiales. Cette analyse permet 

d’apprécier les secteurs où ENSO a un impact sur les précipitations à l'échelle mondiale et 

de quantifier son impact sur les estimations de quantiles extrêmes. Par ailleurs, l'asymétrie 

de l'impact ENSO et son caractère saisonnier sont également évalués. 
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Résumé étendu 
 

1   Contexte général 

Le rapport IPCC [2007a] du Groupe d'experts intergouvernemental sur les changements 

climatiques indique clairement que le climat a changé au cours du 20ème siècle. La 

température de surface moyenne mondiale a augmenté de 0,74 °C pendant les 100 dernières 

années (1906-2005), le niveau de la mer a augmenté en moyenne de 1,8 mm par an entre 1961 

et 2003, les glaciers de montagne et la couverture neigeuse dans l'hémisphère nord ont 

également diminué de manière significative, avec une baisse de près de 7% depuis 1900 de la 

superficie maximale saisonnière du sol gelé, etc. En conséquence, ces modifications peuvent 

avoir un impact global sur le cycle de l'eau et les systèmes de circulation océaniques et 

atmosphériques, et donc influencer les précipitations et les écoulements fluviaux. 

Par ailleurs, il existe de nombreux éléments qui montrent que les oscillations climatiques 

à grande échelle exercent également une influence significative sur les variables 

hydrologiques dans différentes régions du monde [Henley et al., 2011]. Par exemple, 

l'oscillation australe ENSO est l'un des modes de variabilité climatique les plus importants et a 

un impact global sur les variables hydro-météorologiques [Hoerling et al., 1997]; l'oscillation 

Nord Atlantique (NAO) contrôle le système de vents d'ouest et les trajectoires des tempêtes 

dans l'Atlantique Nord vers l'Europe [Barnston and Livezey, 1987], et l'oscillation de l’Océan 

Indien (IOD) a un lien significatif avec la saisonnalité et la variation des précipitations sur la 

région de l'océan Indien et affecte aussi la mousson asiatique [Saji et al., 1999]. 

Jusqu'à récemment, les études hydrologiques étaient souvent basées sur l'hypothèse de 

«stationnarité», en considérant que les observations du passé récent pouvaient être exploitées 

pour la gestion des ressources en eau et des phénomènes extrêmes des prochaines décennies. 

Or de plus en plus d’éléments suggèrent que cette hypothèse devrait être reconsidérée, en 

prenant en compte les effets attendus du changement climatique et en s’intéressant à la 

variabilité climatique des variables hydrologiques (par exemple, les précipitations extrêmes). 

Récemment, certains hydrologues ont même déclaré «stationnarity is dead» et ont suggéré 

d’abandonner l'hypothèse de stationnarité dans l’ingénierie liée à l'eau [Milly et al., 2008]. 

Bien que l’abandon du concept de stationnarité soit toujours en discussion [Lins and Cohn, 

2011], un consensus se dégage sur le fait qu’il est important d’intégrer les impacts possibles 

des changements climatiques et/ou de la variabilité climatique pour donner des prévisions 

fiables sur les variables de précipitation et de débit [Stedinger and Griffis, 2011]. 

Cette thèse propose une étape importante vers cet objectif, en élaborant un cadre flexible 

d'analyse probabiliste qui permet de modéliser la variabilité temporelle des variables 

hydrologiques, que ce soit vis à vis de la variabilité climatique ou du changement climatique. 

 

2   Modèles d’analyse fréquentielle 

En hydrologie opérationnelle, les méthodes d'analyse probabiliste permettent d’estimer la 

probabilité associée au dépassement d’une valeur hydrologique de référence, ou inversement 
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de dimensionner un ouvrage par rapport à une probabilité cible de défaillance. De nouveaux 

cadres probabilistes ont été développés pour intégrer l'impact de la variabilité climatique et du 

changement climatique sur l’intensité et la fréquence des événements hydrologiques, en 

particulier pour les extrêmes. 

 

2.1 Approche locale, en supposant que les variables sont 

identiquement distribuées 

Les méthodes standard d’analyse probabiliste utilisent les observations pour estimer les 

paramètres d'une distribution prédéterminée. Plus formellement, étant donné un échantillon 

d'observations 
1,..., nY Y  qui sont supposées identiquement distribuées dans la plupart des cas, 

les paramètres de la distribution sont estimés avec une méthode d'estimation particulière (par 

exemple, maximum de vraisemblance, méthode des moments ou des moments pondérés, 

estimation bayésienne). Une multitude de recherches a été menée dans ce cadre au cours des 

dernières décennies. La plupart des études ont porté sur le choix de la distribution parente et 

de la méthode d'estimation (par exemple, Durrans et Tomic [2001]; Lui et Valeo [2009]; 

Hosking et al. [1985]; Kroll et Stedinger [1996]; Lang et al. [1999]; Madsen et al. [1997a]; 

Meshgi et Khalili [2009]; Ribatet et al. [2007]; Sankarasubramanian et Srinivasan [1999]), 

ou la quantification de l'incertitude (par exemple Chowdhury et al. [1991]; Cohn et al. [2001]; 

Kysely [2008]; Stedinger [1983]; Stedinger et Tasker [1985]; Stedinger et al. [2008]). 

En complément de ces méthodes basées sur l'estimation d'une distribution prédéfinie, il 

existe des approches basées sur la simulation hydrologique, en s’intéressant aux précipitations 

[Arnaud et Lavabre, 1999] et aux inondations [Boughton et Droop, 2003; Hundecha et Merz, 

2012]. D’autres méthodes ont été développées pour intégrer des informations antérieures aux 

observations issues des réseaux d’observation systématique, à partir de recherches 

documentaires sur les crues historiques ou d’études paléo-hydrologiques sur les dépôts de 

sédiments de crue (par exemple Naulet et al. [2005]; Neppel et al. [2010]; O'Connell et al. 

[2002]; Payrastre et al. [2011]; Reis et Stedinger [2005]; Stedinger et Cohn [1986]). 

 

2.2 Approche locale avec un paramétrage temporel 

Dans un contexte non stationnaire, Renard et al. [2006a] et Ouarda et El-Adlouni [2011] 

ont proposé une adaptation de l’analyse probabiliste, avec l’introduction de paramètres de la 

distribution qui varient dans le temps. Avec une structure similaire, Rust et al. [2009] ont 

discuté de la saisonnalité des précipitations extrêmes au Royaume-Uni, Kysely et al. [2010] 

ont décrit les tendances dans la température journalière et Nogaj et al. [2006] ont analysé 

l'amplitude et la fréquence des températures extrêmes. Khaliq et al. [2006] ont réalisé une 

revue bibliographique des méthodes probabilistes locales avec un paramétrage temporel. Des 

informations climatiques/météorologiques ont également été intégrées à l'analyse : par 

exemple, Micevski et al. [2006] ont utilisé l'indice IPO sur l’oscillation du Pacifique pour 

caractériser le risque d'inondation en Australie, Tramblay et al. [2011] ont retenu différentes 

covariables climatiques pour analyser les pluies fortes dans le sud de la France, et Garavaglia 

et al. [2010], [2011]; Paquet et al. [2013] ont exploité le type du temps pour quantifier le 

risque des précipitations. 
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Bien que les méthodes probabilistes locales permettent d'inclure des informations sur la 

variabilité ou le changement climatique, ces modèles restent toujours limités sur deux aspects : 

(1) l’analyse locale ne peut être appliquée aux sites non jaugés ; 

(2) l'incertitude des estimations des paramètres est très large, du fait de la taille réduite de 

l’échantillon d’observations dans un modèle local. L’usage de modèles plus complexes, 

intégrant des co-variables climatiques ou temporelles, rend encore plus sensible ce type 

d’approche à l’incertitude d’échantillonnage. Les observations sont le plus souvent 

insuffisantes pour identifier correctement les paramètres [Thyer et al., 2006]. 

Ces difficultés expliquent le développement de méthodes d'analyse probabiliste régionale, 

qui utilisent les informations disponibles sur plusieurs sites et permettent d’augmenter la taille 

des échantillons. 

 

2.3 Méthode probabiliste régionale en supposant que les variables 

sont identiquement distribuées 

L’approche régionale classique consiste à exploiter les informations de plusieurs sites 

pour effectuer l'inférence des paramètres, et permet d’obtenir des estimations plus précises. Le 

principe des méthodes régionales est de supposer que certains paramètres sont communs pour 

tous les sites dans une région homogène, et que d’autres paramètres peuvent être prédits à 

partir d'une régression sur les caractéristiques du site, par exemple pour les précipitations, à 

partir de l'altitude, la distance à la mer, etc. 

De nombreux travaux ont été réalisés sur les approches régionales en contexte 

stationnaire : par exemple Durrans et Kirby [2004]; Overeem et al. [2008]; Yu et al, [2004]; 

Cooley et al. [2007]; Madsen et Rosberg [1997a], [1997b]; Madsen et al. [1997b]; [2002] et 

Ghosh et Mallick [2011]. Une comparaison entre les approches régionales et locales sur les 

précipitations extrêmes a été effectuée par exemple par Kysely et al. [2011]. 

 

2.4 Méthode probabiliste régionale avec des co-variables 

temporelles 

Cunderlik and Burn [2003] et Leclerc et Ouarda [2007] ont proposé des modèles 

régionaux non-stationnaires pour les crues, et Hanel et al. [2009] ont adapté la méthode de 

l’indice de crue avec un paramétrage temporel pour l’analyse des précipitations extrêmes. 

Récemment, plusieurs auteurs (Aryal et al. [2009]; Lima et Lall [2010]; Maraun et al. [2010]; 

Maraun et al. [2011]; Sang et Gelfand [2009]) ont commencé à développer des modèles 

spatio-temporels. Gregersen et al. [2013] ont utilisé un modèle de régression Poissonnien 

pour décrire la fréquence des précipitations extrêmes dans l'espace et le temps. Une difficulté 

commune de toutes ces approches est le traitement de la dépendance spatiale entre les 

données. Ce point fait l’objet d’un développement spécifique dans cette thèse. 

3   Contributions principales de la thèse 

La contribution principale de la thèse est de construire un cadre rigoureux d’analyse 

probabiliste régionale, avec un paramétrage qui prend en compte la variabilité spatio-
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temporelle des variables hydrologiques. Ce cadre permet d’identifier et de quantifier 

d’éventuelles tendances temporelles et impacts de la variabilité climatique sur l’intensité et la 

fréquence des événements hydrologiques. Il intègre dans sa conception plusieurs composantes, 

avec des modèles de régression spatio-temporels, une modélisation de la dépendance spatiale 

avec une copule, une approche bayésienne pour l’estimation des paramètres et la comparaison 

de modèles. Il vise à obtenir une plate-forme de modélisation générale et flexible. 

 

3.1 Objectifs 

Les objectifs précis de la thèse sont décrits ci-dessous : 

1.    Développement du modèle, avec des outils pour l’inférence et la comparaison. Dans le 

modèle, les régressions avec les co-variables spatiales et temporelles sont utilisées pour 

décrire la variabilité des paramètres. Dans l’ajustement du modèle, la dépendance spatiale 

entre données est prise en compte et l’estimation des paramètres est effectuée dans un cadre 

bayésien, ce qui permet d’avoir directement une estimation des incertitudes. De plus, les 

différents modèles de régression liés au climat peuvent être comparés (par exemple, une 

régression linéaire et non-linéaire). Cela permet d'identifier la régression qui semble la mieux 

adaptée pour représenter la variabilité climatique et la variabilité spatiale. 

 

2.    Évaluation du modèle. Elle est réalisé à partir de cas d'études synthétiques avec des 

données simulées, et à l’aide de jeux de données observées: (i) évaluation de la cohérence et 

de la différence entre modèles variant dans le temps et modèles supposant que les variables 

sont identiquement distribuées par sous-période ; (ii) évaluation de l'intérêt de considérer la 

dépendance spatiale ; (iii) comparaison des différentes structures de dépendance spatiale 

(copule vs processus maximum stable) en termes d'estimation des probabilités conjointes et 

conditionnelles. 

 

3.    Applications du modèle. Deux cas d’études visant à quantifier l'impact ENSO sur les 

précipitations sont illustrés. 

a) Quantification de l'impact de l’oscillation ENSO sur les pluies totales et maximales 

d’été dans le Sud-Est du Queensland, en Australie. La flexibilité du cadre permet de 

tester plusieurs hypothèses, qui sont associées aux questions suivantes : 

i)    Y-a-t-il un impact de l’oscillation ENSO sur les pluies maximales journalières d’été ? 

ii) Est-ce que l'impact de l'oscillation ENSO sur les pluies maximales journalières d’été 

est asymétrique (c.a.d avec des effets différents suivant les phases El Niño et La 

Niña) ? 

b) Evaluation de l'impact de l'oscillation ENSO sur l'intensité des précipitations extrêmes 

dans le Monde. Cette analyse n'est pas basée sur les données moyennées sur une maille, 

mais sur une nouvelle base de données mondiale d’observations (HadEX2). La thèse se 

concentre sur l'analyse des extrêmes observés au droit des stations, avec le modèle 

régional mis au point pendant la thèse. Il y a trois objectifs : 

i)   Identifier les régions touchées par l’oscillation ENSO et quantifier son impact sur les 

quantiles de précipitations extrêmes (par exemple, précipitations centennales) ; 
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ii)  Evaluer l’asymétrie possible de l'impact de l'oscillation ENSO ; 

iii) Décrire le caractère saisonnier de l'impact de l'oscillation ENSO. 

 

3.2 Intérêt opérationnel de la thèse pour l’ingénierie 

Les ingénieurs chargés du dimensionnement des structures hydrauliques utilisent des 

valeurs hydrologiques de référence associées à une probabilité de défaillance admissible. 

Cette question est particulièrement complexe dans le contexte du changement climatique. 

Évidemment, il est dangereux d'extrapoler une tendance ajustée sur les observations du passé, 

car les résultats dépendent fortement de la formulation de la tendance [Cooley, 2013], et celle-

ci n’a aucune raison particulière de se prolonger à l’identique dans le futur. Une approche 

commune est d’exploiter les sorties des modèles climatiques GCM/RCM, avec un modèle 

probabiliste stationnaire, où l’on considère que les données sont identiquement distribuées sur 

des sous-périodes élémentaires (e.g. Brigode [2013]; Madsen et al. [2009]). Le choix de la 

longueur des sous-périodes résulte d’un compromis entre une période assez courte pour que 

l’hypothèse de stationnarité reste acceptable et une période suffisamment longue pour avoir 

une incertitude d’estimation raisonnable. Le modèle développé dans cette thèse permet une 

approche plus complète en exploitant la totalité de la série simulée, avec un paramétrage 

temporel continu. 

Par ailleurs, l'occurrence des événements extrêmes est liée à la variabilité climatique. 

Certaines phases des oscillations climatiques sont davantage propices à l’occurrence 

d’événements exceptionnels que d’autres (par exemple, phases El Niño ou La Niña). Il est 

alors possible, avec le modèle développé dans la thèse, d’estimer une distribution 

conditionnelle, sous hypothèse de phase climatique. Une meilleure planification des 

interventions d'urgence, et aussi potentiellement une amélioration des règles de 

fonctionnement des réservoirs peuvent être envisagées pour mieux contrôler les inondations et 

réduire l'impact des événements, dans certaines conditions particulières du climat. 

 

4   Résultats de la thèse 

Dans cette thèse, un cadre spatio-temporel d'analyse probabiliste régional a été 

développé, orienté vers l'analyse et la prédiction des risques hydrologiques, qui permet 

d’inclure les tendances temporelles et les effets de la variabilité climatique et du changement 

du climat. 

 

4.1 Le développement du cadre de modélisation régional 

(Chapitres 2 et 4) 

Le développement du modèle a été réalisé en deux étapes : (i) la construction du modèle 

local avec un paramétrage uniquement temporel (Chapitre 2), et (ii) la construction du modèle 

régional, avec un paramétrage spatial et temporel (Chapitre 4). Le premier modèle peut être 

considéré comme un cas particulier du modèle régional. Ce cadre spatio-temporel (Figure I) 

établit une plateforme très flexible pour l'analyse des variables hydrologiques en utilisant trois 

types de co-variables : temporelles, spatiales et spatio-temporelles. En particulier, le cadre 
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fournit un choix libre sur la distribution des variables, que ce soient des distributions discrètes 

ou continues. La relation entre les co-variables temporelles (ou spatio-temporelles) et les 

données est modélisée par une régression temporelle où les paramètres de la distribution sont 

des fonctions de co-variables temporelles. La sélection des co-variables temporelles est 

également flexible. Toutes les co-variables déterministes (e.g. le temps) et aléatoires (e.g. 

ENSO) peuvent être utilisées. Les effets spatiaux sur les paramètres sont pris en compte à 

l’aide d’une fonction de régression spatiale entre les variables spatiales et les paramètres. 

 

 

Figure I - Le schéma du modèle régional 

 

Le modèle régional comporte un volet sur la modélisation de la dépendance entre 

données d’une même région. Dans la thèse, nous avons utilisé des copules elliptiques pour 

modéliser la dépendance spatiale des précipitations. Par rapport aux modèles qui ignorent la 

dépendance spatiale, ce modèle permet de mieux estimer les incertitudes des paramètres, ce 

qui conduit à un diagnostic plus réaliste sur la détection de tendance temporelle et/ou d’effet 

du climat. 

Le modèle spatio-temporel est complété avec d’autres outils, pour faciliter le traitement 

des valeurs manquantes dans les données, pour réaliser l'estimation des paramètres et 

effectuer une comparaison et un diagnostic entre différentes implémentations du modèle. 

L’algorithme de calcul de la fonction de vraisemblance a été adapté pour pouvoir traiter des 

données non manquantes à chaque pas de temps, sans gaspiller aucune donnée ni procéder au 

comblement des lacunes. Par ailleurs, l'analyse bayésienne permet d’exploiter une information 

a priori sur les paramètres et de quantifier les incertitudes facilement et naturellement. Dans 

cette thèse, un nouvel algorithme MCMC est développé, qui combine plusieurs algorithmes 

existants (méthode adaptative de bloc de Metropolis, méthode adaptative de Metropolis-

Hastings et méthode classique de Metropolis-Hastings). Cet algorithme permet d'estimer les 

paramètres rapidement et efficacement dans un cadre bayésien. Avec les variables variant 

dans le temps, le test d’adéquation est dans un premier temps réalisé à l’aide d’un graphique 

PP plot. Le critère DIC est utilisé pour comparer différents modèles dans un cadre bayésien, 

en testant différentes hypothèses de distribution ou différentes fonctions de régression. Avec 
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tous ces outils, le cadre spatio-temporel développé dans cette thèse fournit un moyen flexible 

et pratique pour mieux identifier les tendances temporelles et les impacts de la variabilité 

climatique sur les événements hydrologiques, ainsi que le risque hydrologique induit. 

 

4.2 L’évaluation du cadre de modélisation (Chapitres 3 et 5) 

Plusieurs cas d’étude sont présentés pour évaluer l’intérêt du cadre de modélisation. Au 

niveau local, avec des données issues de simulations par modèles GCM sur les précipitations 

du 21e siècle dans le bassin versant de la Durance, nous démontrons la flexibilité en termes de 

choix de distribution et de fonctions de régression. Ceci est très utile lorsque l’on analyse des 

variables pour lesquelles aucune expertise a priori ne permet de statuer sur le paramétrage du 

modèle. Parmi les variables étudiées, une tendance temporelle est détectée sur la variable 

"premier jour de neige". Cette variable est également analysée en utilisant la même 

distribution avec un modèle invariant dans le temps avec deux sous-périodes (1970-1999 et 

2035-2064). Il y a une nette évolution de la valeur moyenne et des quantiles entre les deux 

sous-périodes (Figure II). Ce résultat est cohérent avec celui trouvé par le modèle non 

stationnaire, avec une évolution temporelle continue. Ce modèle permet en outre d'avoir des 

estimations avec de plus faibles incertitudes d’estimation. Les probabilités de défaillance sont 

également évaluées avec ces deux modèles, et les résultats montrent que le modèle développé 

dans la thèse est plus adapté pour évaluer le risque sur une longue durée. 

 

Figure II – Estimation de quantiles sur la variable « premier jour de neige », avec approche 

stationnaire par sous-période ou approche non stationnaire 

 

La flexibilité du modèle est aussi discutée sur un jeu régional de précipitations, en zone 

méditerranéenne française (Figure III). Les tendances temporelles et les effets des oscillations 

NAO sur la précipitation journalière maximale annuelle sont analysés à l'échelle locale. Avec 

une distribution GEV, six modèles de régressions sont testés : stationnarité, tendance 
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uniquement temporelle ou avec un effet de l’oscillation NAO. A l’échelle locale, il n'y a 

généralement aucune indication forte sur l'existence d’une tendance temporelle ou d’un effet 

de l’oscillation NAO. 

 

 

Figure III – Les 92 stations en France Méditerranée. Les sept régions homogènes ont été 

classifiées par Pujol et al., [2007]. 

 

L’analyse se poursuit à une échelle régionale. La deuxième évaluation consiste à évaluer 

l’intérêt de considérer une dépendance spatiale, en utilisant une copule elliptique. Deux 

groupes de données sont simulés avec une loi GEV qui varie dans le temps. L'estimation des 

paramètres est effectuée avec ou sans prise en compte de la dépendance spatiale. Ignorer la 

dépendance spatiale conduit à sous-estimer l'incertitude des paramètres (Figure IV). Une autre 

simulation est basée sur des données simulées à partir de processus maximum stable, avec des 

estimations réalisées avec une copule Gaussienne. Lorsque les données sont simulées avec 

une dépendance modérée, une amélioration significative a été trouvée avec l'estimation qui 

prend en compte la dépendance spatiale. Par contre, les résultats ne sont pas aussi 

convaincants avec une dépendance élevée : l’utilisation d’une copule Gaussienne donne une 

quantification réaliste sur l'incertitude des paramètres de position et la tendance, mais elle 

surestime le paramètre de la forme. 

La troisième évaluation consiste à comparer la copule Gaussienne avec un processus 

maximum stable pour modéliser la dépendance spatiale sur les données extrêmes. Les 

probabilités conjointes et conditionnelle d'un événement dépassant un seuil entre deux sites 

sont comparées. Les résultats montrent que le modèle max-stable de Schlather surestime 

systématiquement les probabilités conjointes et conditionnelles, du fait de limitations pour 

représenter les dépendances à grande distance. D'autre part, le modèle max-stable Smith et la 

copule Gaussienne conduisent à de grosses différences sur l’estimation des probabilités 
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conditionnelles, ce qui peut s'expliquer par le fait que le modèle Smith est asymptotiquement 

dépendant, tandis que la copule gaussienne est asymptotiquement indépendante. En général, 

ces résultats suggèrent que même si une copule Gaussienne peut donner des résultats 

acceptables en termes d'estimation des paramètres marginaux, le calcul des probabilités de 

dépassement jointes ou conditionnelles est beaucoup plus sensible à la représentation de la 

dépendance spatiale. L’utilisation inadaptée d'une copule Gaussienne peut conduire à la sous-

estimation de la probabilité de dépassement conditionnelle. 

 

Figure IV – Comparaison des intervalles de crédibilité à 90% sur le paramètre de la 

dépendance obtenus en ignorant la dépendence ou en la modélisant avec une copule 

Gaussienne. Le paramètre ϕ contrôle le degré de dépendance spatiale. 

 

4.3 L’impact des oscillations ENSO sur les précipitations globales 

L'une des principales contributions de cette thèse est la quantification de l'impact des 

oscillations ENSO sur les précipitations. Nous présentons un premier cas, centré sur l'impact 

d’ENSO sur les pluies journalières maximales d’été dans le sud-est du Queensland en 

Australie. Le second cas d’étude concerne une analyse globale de l'impact d’ENSO sur les 

précipitations extrêmes dans le Monde. La co-variable temporelle utilisée dans le modèle est 

l’indice climatique SOI et l'impact d’ENSO est quantifié en fonction de la valeur de l’indice 

SOI. 

 

Précipitations d’été dans le Sud-Est du Queensland (Chapitre 6) 

Dans le cas du Sud-Est du Queensland, l'impact asymétrique de l'ENSO a été évalué sur 

la pluie totale d’été. Une fonction de régression linéaire asymétrique qui sépare les différentes 

phases de l’ENSO est utilisée sur la moyenne d'une loi log-Normale. Les résultats montrent 

qu’une phase La Niña exerce une influence importante dans la région, alors que l'impact d'El 

Niño n'est pas significatif. Le phénomène est cohérent avec la revue de la littérature. Ensuite, 

l'analyse se tourne vers les valeurs maximales de précipitation, ce qui est plus difficile à 

analyser que le cumul de la pluie d’été (cf. valeurs maximales). Grâce à la flexibilité du cadre 
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développé, les différentes hypothèses peuvent être comparées dans cette étude, qui utilise les 

paramètres locaux et régionaux pour exprimer les hypothèses de stationnarité, l'impact 

symétrique ou asymétrique de l’oscillation ENSO (Figure V). En utilisant le critère DIC de 

comparaison, les modèles régionaux permettent une meilleure identification de l'impact des 

oscillations ENSO sur les précipitations extrêmes dans le Sud-Est du Queensland. Les 

oscillations ENSO ont un impact asymétrique : la phase La Niña a une forte incidence sur les 

pluies maximales d’été, tandis que la phase El Niño n'a pas d’effet significatif. Les résultats 

sont cohérents avec les conclusions sur les pluies totales d’été. 

Ainsi, la pluie centennale en phase La Niña peut être de 20 à 50% plus élevée que celle 

estimée sous hypothèse de stationnarité. Ceci fournit des informations utiles pour les 

planificateurs pour améliorer la gestion opérationnelle et organiser des interventions d'urgence 

pour une année en phase forte La Niña. 

 

 

Figure V – Estimation de la pluie centennale journalière d’été sur un site en fonction de 

l’indice climatique SOI. L’analyse est effectuée avec trois modèles : stationnaire local, 

asymétrique local et asymétrique régional. 

 

L’impact des oscillations ENSO sur les précipitations extrêmes dans le 

monde (Chapitre 7) 

Ce premier constat d’un impact asymétrique des oscillations ENSO sur les pluies d’été 

du Queensland en Australie nous conduit à nous intéresser maintenant à l'impact ENSO sur 

les précipitations extrêmes mondiales. Cette analyse est basée sur une nouvelle base de 

données mondiale des précipitations extrêmes composée de 11588 stations pluviométriques, 

dont environ 7000 stations avec plus de 40 ans d’observation. La carte du monde est 

Local stationary  

Local asymmetric  

Regional asymmetric 



RÉSUMÉ ÉTENDU xix 

 

quadrillée suivant une grille de 5°*5° (latitude, longitude). Chaque carré est considéré comme 

une région homogène. Bien qu'elle varie avec la latitude, la surface de chaque cellule est 

suffisante pour effectuer une analyse régionale sur chacune des mailles de la grille. 

 

 

 

Figure VI – Pourcentage de changement de la pluie décennale, entre une phase forte de El 

Niño (haut) ou La Niña (bas) par rapport à une phase neutre. 

 

Les résultats montrent pendant l'hiver boréal (DJF), lors de la phase El Niño, une 

augmentation des précipitations extrêmes en Amérique du Nord (le sud-ouest), en Amérique 

du Sud (le sud), la Chine (la côte sud-est) et l’Europe du Nord, alors que les précipitations 

extrêmes sont diminuées en Amérique du Nord et au Nord-Ouest de l’Afrique du Sud 

(faiblement). Pendant la phase La Niña, les précipitations extrêmes augmentent dans le nord 

de l'Amérique du Nord, en Afrique du Sud, en Australie et en Europe du Nord, alors que les 

précipitations extrêmes sont diminuées dans le sud de l'Amérique du Nord et en Inde du nord. 

La pluie décennale calculée pendant une phase forte El Niño (SOI = -20) ou La Niña (SOI = 

20) est significativement différente, dans certaines régions, de celle calculée pendant une 

phase neutre (SOI = 0) (Figure VI). Par exemple, lors d'une phase forte El Niño, la pluie 

décennale peut augmenter de 50% en Amérique centrale, 40% sur la côte sud de la Chine, et 

de près de 20 % au centre de l’Amérique du Nord et au sud-est de l’Amérique du Sud. Une 
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diminution d’environ 15% est observée dans le nord-ouest des Etats-Unis et de 20 % aux 

Philippines. Lors d’un fort épisode de La Niña, la pluie décennale augmente d’environ 15%  

au nord de l'Amérique du Nord, en Europe du Nord et sur la région méditerranéenne, de 10% 

à 40 % (d'est en ouest) en Afrique du Sud, de plus de 20% dans le nord de la Chine, de plus de 

40% dans l'est de l'Australie et de 60% dans l'ouest de l'Australie. Une diminution de 50 % est 

également observée au Mexique et de près de 25% dans le nord de l'Inde. 

L'impact de l'oscillation ENSO se trouve être asymétrique dans beaucoup de régions, 

comme par exemple pendant la saison DJF, à l’ouest de l'Amérique du Nord, le sud-est de 

l’Amérique du Sud, l'est de la Chine, l’Australie et faiblement dans l'Europe du nord et le 

centre de l'Asie. 

El Niño 

 
La Niña 

 

Figure VII–Carte des saisons pour lesquelles l’impact d’une phase El Niño (haut) ou La 

Niña (bas) est le plus fort. 

 

Enfin, l'effet de l'oscillation ENSO est fortement variable suivant la saison considérée 

(Figure VII). En phase El Niño, la saison DJF est celle qui a le plus d’impact en Amérique du 

Sud et dans le sud-est de la Chine. La saison SON est la saison avec le plus fort impact ENSO 

en Amérique du Nord (augmentation des précipitations dans la partie est et diminution des 

précipitations à l'ouest), au sud de l'Amérique du Sud et dans la partie orientale de l'Australie 
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(diminution). Lors de la phase La Niña, le plus fort impact pendant la saison DJF est observé 

dans le nord de l'Amérique du Nord (diminution), le sud de l'Amérique du Sud (diminution), 

l’Afrique du Sud et l’Australie, alors que la saison MAM est la plus impactante au sud de 

l'Amérique du Nord (diminution) et au sud-est de la Chine. Dans la partie centrale de 

l'Amérique du Nord, le sud de l'Amérique du Sud (diminution) et le nord de l'Inde, la saison 

SON est celle qui a le plus d’effet. En général, l'impact de l’oscillation ENSO est faible 

pendant la saison JJA.  
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CHAPTER 1 Introduction 

1 General background 

As reported by the Intergovernmental Panel on Climate Change IPCC [2007b], the 

climate system has changed since the 20st century. The global average surface temperature 

increased by 0.74°C during the last 100 years (1906-2005); the global average sea level raised 

with an average of 1.8 mm per year from 1961 to 2003; Northern Hemisphere mountain 

glaciers and snow cover also significantly decreased, with the maximum areal extent of 

seasonally frozen ground decreasing by nearly 7% since 1900, etc. As a consequence, those 

changes may impact the global water evaporation and circulation system, and hence 

precipitation and streamflow regimes. 

Moreover, besides climate change, there is a substantial body of evidence that large-scale 

modes of climate variability also exert a significant influence on hydrological variables in 

various regions worldwide [Henley et al., 2011]. For instance, the El Niño Southern 

Oscillation (ENSO) is one of the prominent modes of climate variability and has a global 

impact on hydro-meteorological variables [Hoerling et al., 1997]; the North Atlantic 

Oscillation (NAO) controls the system of westerly winds and storm tracks across the North 

Atlantic to Europe [Barnston and Livezey, 1987]; and the Indian Ocean Dipole (IOD) is 

associated with significant temporal and rainfall variation over the Indian Ocean region and 

affects the Asian monsoon as well [Saji et al., 1999].  

Until recently, hydrologic studies were often based on the assumption of “stationarity”
1
. 

However, as will be reviewed subsequently, more and more evidence suggests that this 

assumption should be reconsidered in light of the influence of climate change/variability on 

hydrological variables (e.g. extreme precipitation). Recently, some hydrologists even declared 

that “stationarity is dead” and suggested abandoning the stationarity assumption in water-

related design [Milly et al., 2008]. Although the “death of stationarity” is still debated [Lins 

and Cohn, 2011], a common agreement is that providing reliable predictions of precipitation 

and streamflow variables requires incorporating the possible impacts of climate change and/or 

variability [Stedinger and Griffis, 2011].    

This thesis provides an important step towards this goal, by developing a flexible 

frequency analysis framework that allows modeling the temporal variability of hydrologic 

variables, be it the consequence of climate variability or climate change. 

 

1.1 Evidence of changes in precipitation 

In hydrology, one of the main concerns with climate change is the change in the intensity 

or frequency of precipitation, especially the extreme precipitation, as well as their 

                                                 
1
The precise definition of “stationarity” will be discussed in further depth in Section 2. 
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consequences (floods). During the 20
th

 century, inter-decadal variations were observed for the 

global annual land mean precipitation, which also revealed a small upward trend of about 1.1 

mm per decade (Figure 1.1, [IPCC, 2007a]).  

 

 

Figure 1.1-Annual global land precipitation anomalies (mm) for 1900 to 2005. The 

bar plot is with the Global Historical Climatology Network dataset. The smooth 

curves show decadal variations. (Figure source IPCC [2007b], figure 3.12) 

 

Moreover, during the last decades, an increase in heavy rainfall has been reported in 

many regions worldwide. For example, the increase in extreme precipitation intensity was 

found in India [Goswami et al., 2006], western China [Zhai et al., 2005], north-eastern Italy 

[Brunetti et al., 2001], the Czech Republic [Kysely, 2009], some parts of Australia [Suppiah 

and Hennessy, 1998], etc. In the U.S., Kunkel et al. [2010] described that heavy precipitation 

associated with tropical storms significantly increased. More recently, Westra et al. [2012] 

described that there are global increasing trends in annual maximum daily precipitation in 

most parts of the world based on the at-site observed extremes. This trend is likely to continue 

in the 21
st
 century according to the regionally averaged precipitation of GCM projections 

(Figure 1.2, [IPCC, 2012]). Note however the strong discrepancy in the meaning of the word 

“extreme” between trend studies based on observations and projection studies: in the former 

case, “extreme precipitation” typically refers to annual maxima of station data, while in the 

latter case, it refers to precipitation spatially averaged over continental areas.  

 

1.2 Evidence of impacts of climate variability on hydrologic variables 

The impact of climate variability on hydrology is widespread. There exist many modes 

of climate variability that may influence hydrologic variables. However, in the following, we 

will restrict to reviewing some impacts of ENSO and NAO on hydrology. 
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Figure 1.2-Projected changes (%) in 20-year return values of annual maximum 24-

hour precipitation rates. Figure source: IPCC[2012], fig3-7a. 
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The ENSO is a climatic phenomenon in the tropical Pacific, which describes the 

variation of sea surface temperature (SST) anomalies in the tropical Eastern Pacific Ocean 

(see Figure 1.3). ENSO affects the atmospheric and oceanic circulations in the whole Pacific 

basin [Kousky et al., 1984]. For example, during El Niño phase, warm humid air spreads from 

western Pacific to Eastern Pacific, which causes more precipitation in Eastern Pacific, while 

drought in Western Pacific. Figure 1.4 illustrates the impact of ENSO on the North America 

weather anomalies. 

 

(a) 

 
(b) 

 

 

Figure 1.3-SST anomalies in degree Celsius (°C) during (a) El Niño 1998 and (b) La 

Niña 2010. Red (blue) denotes positive (negative) anomalies. Figure source: 

http://www.ospo.noaa.gov/Products/ocean/sst/anomaly/ 

 

 ENSO is also considered as the most influential climate phenomenon producing global 

extremes of precipitation [Dai et al., 1997], which leads to large precipitation anomalies in 

tropical area and influences precipitation patterns over Pacific, India and Atlantic Oceans [Dai 

and Wigley, 2000]. For example, in boreal winter, the impact of ENSO on precipitation 

variables was found in western U.S [Castello and Shelton, 2004; Cayan et al., 1999; Meehl et 

al., 2007], Southern South America [Grimm and Tedeschi, 2009], South Africa [Kruger, 1999; 

Vanheerden et al., 1988], Southern China [Wu et al., 2003] and Southeast Queensland, 

Australia [Cai et al., 2010]. 

http://www.ospo.noaa.gov/Products/ocean/sst/anomaly/
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Figure 1.4-January-March weather anomalies during moderate to strong El Niño and 

La Niña. Figure source: http://www.srh.noaa.gov/tbw/?n=tampabayelninopage 

 

 

The NAO is a climatic phenomenon in the North Atlantic Ocean, which describes the 

strength of the atmospheric pressure difference between the Icelandic low and the Azores 

anticyclone. The NAO is associated with the changes of strength and trajectory of North 

Atlantic storms [Hurrell, 1995] (see Figure 1.5) , and hence leads to changes in the pattern of 

temperature and precipitation in North America and Europe [Hurrell and VanLoon, 1997; van 

Loon and Rogers, 1978]. The NAO was found to affect the streamflow as well, for example, 

in Iceland [Jónsdóttir et al., 2004], in Central Europe [Kaczmarek, 2003; Limanówka et al., 

2002; Pociask-Karteczka et al., 2003], in Northern Europe [e.g. Kiely, 1999; Kingston et al., 

2006; Stahl et al., 2001; Wilby et al., 1997], and in the Iberian peninsula [Trigo et al., 2004; 

Vicente-Serrano and Cuadrat, 2007].  
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Figure 1.5-NAO weather pattern. Figure source:  

http://www.newx-forecasts.com/nao.html 

 

2 On the notion of stationarity 

The preceding sections illustrated that we should expect the distribution of hydrologic 

variables to vary with time, either as an effect of climate change or climate variability. In a 

probabilistic model, whether or not the distribution of random variables depends on time is 

related to the concept of stationarity. However, the precise definition of this term is sometimes 

garbled. This section therefore aims at clarifying the vocabulary that will be consistently used 

throughout this thesis, and in particular, to make the distinction between non-stationary and 

non-identically distributed variables. 

According to Brockwell and Davis [2006], a random variable is strictly stationary if its 

distribution does not vary with time. However, in the context where a random variable Y may 

depend on the realization of some other random variable X, this definition is not precise 

enough: we need to specify which distribution this definition refers to. Note that this context 

is typically the one we will be interested in throughout this thesis: Y could for instance 

describe some precipitation variable, whose distribution may depend on some ENSO index X.  

In a first step, we provide some simple illustrations using simulated data. Consider 

independent and identically distributed (iid) samples generated from a Normal distribution
2
 

                                                 
2
 Parameters μ and σ in the notation N(μ,σ) refer to the mean and the standard deviation. 

http://www.newx-forecasts.com/nao.html
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(30,10)N , as illustrated in Figure 1.6(a). The parameters of the parent distribution are 

constant: they do not depend on time, either directly or indirectly through a time-varying 

covariate X. The samples in Figure 1.6(a) are therefore stationary and identically distributed.  

Consider now Figure 1.6(b), which shows independent samples generated from the 

following Normal distribution: 

  ~ ,10i iY N  ; where  ~ 30,5i N  (1.1) 

The samples in Figure 1.6(b) are not identically distributed, since the mean 
i  of the 

parent Normal distribution is different at each time step. However, Figure 1.6(b) suggests that 

they are realizations from a stationary distribution, in the sense that they do not display any 

deterministic trend in time.  

 

 

Figure 1.6-(a)Independent and identically distributed samples generated from a 

Normal distribution N(30,10). (b) Independent samples generated from Normal 

distributions N(μi,10), with μi generated from N(30,5). (c) Same as (b), but with μi 

generated from N(30+0.1i,5). 
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In order to formalize this distinction between non-identical distribution and stationarity, 

one needs to make a distinction between the conditional and the marginal distributions. Let 

( )t  denote the distribution parameters of the random variable ( )Y t . The probability density 

function (pdf) of ( )Y t  conditional on ( )t  is denoted by ( | )tP y  . This distribution is termed 

the conditional distribution. In the example of Figure 1.6(b), this corresponds to the time-

varying Normal distribution  ,10iN  . The non-identically-distributed nature of samples in 

Figure 1.6(b) is (implicitly) a property of this conditional distribution.  

By contrast, the marginal distribution is defined by integrating out the conditioning 

variable (or “un-conditioning”): if   is a random variable, the pdf of   at time t is denoted 

by ( )tf  . The marginal distribution can then be defined as: 

 ( ) ( | ) ( )t t tP y P y f d       (1.2) 

The property of stationarity is then related to the marginal distribution: the variable ( )Y t  

is stationary if its marginal distribution does not depend on time t. In the example of equation 

(1.1), some elementary algebra shows that the marginal distribution is a Normal distribution 

 2 230, 5 10N  : it indeed does not depend on time, which confirms that the samples in 

Figure 1.6(b), although non-identically-distributed (with respect to the conditional 

distribution), are realizations from a stationary (marginal) distribution. 

Consider now the samples in Figure 1.6(c), generated from the following distribution: 

  ~ ,10i iY N  ; where  ~ 30 0.1* ,5i N i   (1.3) 

For the same reasons as previously, those samples are not identically distributed. But this 

time, they are not stationary either: indeed, the marginal distribution at time i is a Normal 

distribution  2 230 0.1* , 5 10N i  . This distribution does depend on time, as illustrated by 

the upward trend visible in Figure 1.6(c). 

As discussed in Section 1.2, hydrological events are affected by climate variability. In a 

probabilistic model, the observations can hence be considered as realizations from a time-

varying distribution conditional on some climate (temporal) covariates. This describes the 

concept of climate-informed models. However, in the real life, it is difficult to know in 

advance whether or not such climate-informed models would be stationary, because the 

existence of a temporal trend in the climate temporal covariate is uncertain. For example, 

Figure 1.7 illustrates the NAO index in January for the period 1825-2010. In this period, there 

is no apparent temporal trend. Conversely, changes in the NAO pattern may appear in the 

future. It is therefore difficult to determine whether or not the marginal distribution described 

in Eq(1.2) depends on time, because in general the distribution of the conditioning variable of 

Eq(1.2) is unknown (and is not necessary to make conditional predictions). Therefore, as non-

identically distributed variables are not necessarily non-stationary, we will favor the 

terminology “time-varying” or “climate-informed”, rather than non-stationary models. 
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Figure 1.7-NAO index in January of period 1825-2010. 

 

3 Frequency analysis models 

In engineering design, Frequency Analysis (FA) techniques are an integral part of risk 

assessment and mitigation. FA uses statistical models to estimate the probability of 

hydrological events, which provides information for designing hydraulic structures. As 

reviewed subsequently, it is more and more important to understand the impact of climate 

variability/change on the severity and frequency of hydrological events, especially extremes.  

 

3.1 Context of developed FA models 

3.1.1 At-site methods with identically distributed variables 

The standard at-site FA uses the at-site observations to estimate parameters from a pre-

specified distribution. More formally, given a sample of observations 1,..., nY Y  that are 

assumed iid in most cases, the parameters   of a given distribution ( )D   are estimated 

using a particular estimation method (e.g. maximum likelihood, moment-based approaches, 

Bayesian estimation). A wealth of research has been carried out within this context during the 

last decades. Most studies focused on the choice of the parent distribution and of the 

estimation approach (e.g., Durrans and Tomic [2001]; He and Valeo [2009]; Hosking et al. 

[1985]; Kroll and Stedinger [1996]; Lang et al. [1999]; Madsen et al. [1997a]; Meshgi and 

Khalili [2009]; Ribatet et al. [2007]; Sankarasubramanian and Srinivasan [1999]), or the 

quantification of uncertainty (e.g. Chowdhury et al. [1991]; Cohn et al. [2001]; Kysely [2008]; 

Stedinger [1983]; Stedinger and Tasker [1985]; Stedinger et al. [2008]).  

Besides the basic at-site FA based on estimating a pre-specified distribution, some 

model-based FA methods were also developed, based on models reproducing the main 

characteristic of hydrological variables, such as rainfall [Arnaud and Lavabre, 1999] and 

flood [Boughton and Droop, 2003; Hundecha and Merz, 2012]. Moreover, since a common 

problem of the at-site analysis is the relatively small data length, additional documentary 

sources on historical flood events, or data obtained from sediment deposits can be used to 

extent the data period. Historical and paleoflood data analysis were developed to deal with 
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these additional data (e.g Naulet et al. [2005]; Neppel et al. [2010]; O'Connell et al. [2002]; 

Payrastre et al. [2011]; Reis and Stedinger [2005]; Stedinger and Cohn [1986]).  

 

3.1.2 At-site methods with time-varying variables 

In the time-varying context, Renard et al. [2006a] and Ouarda and El-Adlouni [2011] 

discussed some new FA models by estimating time-varying parameters from a pre-specified 

distribution. With similar structures, Rust et al. [2009] discussed the seasonality of extreme 

precipitation in UK, Kysely et al. [2010] described the trends on daily temperature and Nogaj 

et al. [2006] analyzed the amplitude and frequency of extreme temperature. More generally, 

Khaliq et al. [2006] reviewed time-varying at-site FA methods. In addition to the analysis on 

the temporal variation, climate/weather information were also integrated to the analysis: for 

instance, Micevski et al. [2006] used the Inter-decadal Pacific Oscillation (IPO) to 

characterize the flood hazard in Australia; Tramblay et al. [2011] used various climate 

covariates to analyze the heavy rainfall in Southern France; and Garavaglia et al. [2010]; 

[2011]; Paquet et al. [2013] incorporated weather type information to quantify the rainfall 

hazard.  

While at-site FA methods enabling the inclusion of climate information or non-

stationarity are becoming common, such at-site models remain limited by two important 

drawbacks:  

(1) Local analysis cannot be applied to ungauged sites.  

(2) Uncertainty in parameter estimates (and hence predictive estimates) tends to be very 

large due to the limited number of observations in a local model. In addition, if climate 

information is included and more complex models are proposed, these observations may not 

be sufficient to identify the parameters [Thyer et al., 2006]. 

This motivates the development of regional frequency analysis (RFA) models that use 

information from multiple sites to overcome these shortcomings. 

 

3.1.3 RFA methods with identically distributed variables 

In classical RFA methods, information from multiple sites is used to perform the 

inference, which may provide more precise estimations. More precisely, the basis of most 

RFA methods is to assume that some parameters are common to all sites within a given 

homogeneous region, or that the parameters can be predicted from a regression with site 

characteristics such as (for precipitation) elevation, distance to sea, etc. 

Under the strict stationarity assumption, many RFA methodologies have been developed 

over the years (e.g. Durrans and Kirby [2004]; Overeem et al. [2008]; Yu et al. [2004]; Cooley 

et al. [2007]; Madsen and Rosbjerg [1997a]; [1997b]; Madsen et al. [1997b]; [2002] and 

Ghosh and Mallick [2011]). A comparison between regional and at-site approaches for 

extreme rainfall was performed by e.g. Kysely et al. [2011].  
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3.1.4 RFA methods with time-varying variables 

In order to move beyond the assumption of strict stationarity, Cunderlik and Burn [2003] 

and Leclerc and Ouarda [2007] described non-stationary RFA models for flood analysis, and 

Hanel et al. [2009a] introduced a time-varying index-flood model for extreme precipitation. 

Recently, several authors (Aryal et al. [2009]; Lima and Lall [2010]; Maraun et al. [2010]; 

Maraun et al. [2011]; Sang and Gelfand [2009]) started investigating spatio-temporal models. 

In the same vein, Gregersen et al. [2013] also used Poisson regression models to describe the 

frequency of extreme rainfall in both space and time. A common difficulty for all these 

approaches is the treatment of the spatial dependence existing between data. This is also one 

of the main topics that will be discussed in this thesis. 

 

3.2 FA methods for the extremes 

With FA methods, extreme data can be characterized through appropriate distributions. In 

general, there are two different ways to extract extreme data [Coles, 2001], which correspond 

to two distribution families: 

1. Block maxima: In each block of data (e.g. 1 year), only the maximum value is extracted. 

According to the extreme value theory [Fisher and Tippett, 1928], the corresponding 

distribution is the generalized extreme value distribution (GEV). 

2. Peaks-over-threshold: All values exceeding a certain threshold are extracted. The 

corresponding distribution is the generalized Pareto distribution (GP) [Balkema and De 

Haan, 1974; Pickands III, 1975]. 

 

3.2.1 Block maximum 

In a block of n iid random variables  
1,i i n

Z


, the maximum is denoted by 
1,

maxn i
i n

Y Z


 . 

The extreme value theory [Fisher and Tippett, 1928] provides an asymptotic distribution for 

Yn, when n tends to infinity. This distribution is called the generalized extreme value (GEV) 

distribution, whose cumulative distribution function (cdf) is given by: 

 

1/

( | , , ) exp 1
y

G y




   


    
         

  (1.4) 

where μ, σ and ξ denote the location, scale and shape parameters respectively. There are three 

different families in terms of the shape parameter ξ known as, respectively, Gumbel, Weibull 

and Fréchet families for zero, positive and negative values of ξ
 3

. These cdfs are shown below: 

 

                                                 
3
  In the hydrologic literature, the shape parameter ξ has generally the opposite sign as in the statistical 

literature. The hydrologic convention is used throughout this thesis. 
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Gumbel distribution (  = 0): 

 ( | , ) exp exp for
y

G y y


 


    
      

   
R  (1.5) 

 

Weibull-type distribution ( 0  ): 

 

1/

exp
( | , , )

1

y b
y b

G y a b a

y b





      
            




  (1.6) 

where a



  and b





  .  

 

Fréchet-type distribution ( 0  ): 

 
1/

0

( | , , )
exp

y b

G y a b y b
y b

a







     
   
   

  (1.7) 

where a



  and b





  . 

 

3.2.2 Peaks over threshold 

Let 1 2, ,...Z Z  be a sequence of iid random variables. Suppose that the block maxima 

1,
maxn i
i n

Y Z


 , satisfies Eq(1.4) for large n. Then for a large enough threshold u, the cdf of the 

threshold exceedances Z-u, conditional on Z>u is asymptotically (when u tends to infinity): 

  

1/

1 1 for 0

P |

1 exp for 0

x

Z u x Z u
x










  
    

  
    

       

  (1.8) 

where ξ is the same as in Eq(1.4) and ( )u      . 

This family of distribution is called the generalized Pareto [Balkema and De Haan, 1974; 

Pickands III, 1975]. 
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3.2.3 The notion of return period in the time-varying context 

In risk analysis and assessment, the rarity of an extreme event is generally quantified 

through a return period, rather than in terms of a probability of exceedance. In the context of 

identically distributed variables, the “T year event” corresponds to the event with non-

exceedance probability 1 1/p T  . A 10-year event has therefore a probability 1/10 to be 

exceeded every year. However, in the time-varying context, such simple equivalence does not 

hold any more, because the distribution varies with time. Renard [2006] and Cooley [2013] 

discussed two definitions of the return period in the time-varying context: (i) the return period 

associated with a value Q is the expected waiting time between two successive exceedances 

of level Q, and (ii) the return period associated with a value Q is computed so that the 

expected number of exceedances of level Q in the next T years is equal to one. While both 

definition are equivalent in an identical distribution context, and indeed correspond to an 

annual probability of exceedance equal to 1/T, this is not the case if a temporal trend exists. 

The interpretation of “T year events” is much less direct than under the strict stationarity 

assumption. An alternative quantification of the rarity of an event uses the concept of “failure 

probability”. The failure probability associated with a level Q and a duration n is defined as 

the probability that at least one event exceeds Q during the next n years. Typically, n can be 

considered as, the lifetime of a hydraulic structure. This concept is much easier to interpret 

than return periods outside of the stationary context. Moreover, it allows investigating 

questions such as “what should be the capacity of a dam to ensure that the probability of 

exceeding the dam capacity during its lifetime of n years is less than 0.01?” A more thorough 

discussion of return periods and failure probabilities can be found in Salas and Obeysekera 

[2013]. 

The concept of return period is not easier to handle with climate-informed models. 

Indeed, as explained in Section 2, the stationarity of climate-informed models is generally 

unknown. Moreover, even if the marginal distribution turned out to be stationary, we may still 

be interested in computing conditional probabilities of exceedance. It may be interesting to 

know how different the extreme events are during different climate conditions. For instance, if 

the main resource of a river is snowmelt, the probability of observing a large snowmelt flood 

will surely be different if one knows that temperatures are particularly high or low. This refers 

to the return level based on the conditional probability. More precisely, if the cdf of a random 

variable Y is ( | )F y  , then the “T year event” conditional on 0   corresponds to the event 

with non-exceedance probability 01 1/ ( | )p T F y    . A 10-year event conditional on 

0   has therefore a conditional probability 1/10 to be exceeded every year for which the 

climate condition satisfies 0  . 

Despite these difficulties in interpreting return periods in a non-identically-distributed 

context, their use is so deeply ingrained in engineering practice that most users expect a 

quantification in terms of return period, even in a non-stationary context. As an illustration, 

the IPCC quantifies projected changes in extreme precipitation by computing the future return 

period of today’s 20-year quantiles [IPCC, 2012]. Consequently, some results in this thesis 

will sometimes be reported in terms of return period, and they should be interpreted in terms 

of exceedance probability. 
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4 Main contributions 

The main contribution of this thesis is the construction of a rigorous regional spatio-

temporal framework that extends the usage of FA techniques to the time-varying context. In 

addition, this framework enables the quantification of temporal trends and impacts of climate 

variability on the severity/frequency of hydrological events. This framework provides a 

general and flexible modeling platform by integrating several separately developed 

components, such as spatio-temporal regression models, copula-based modeling of spatial 

dependence, Bayesian inference, model comparison tools. .  

 

4.1 Objectives 

The precise objectives of this thesis can be described as follows: 

1. Model Development, inference and comparison: the construction of the model, using 

regressions with spatial and temporal covariates to describe the spatio-temporal 

variability of the parameters, is described. Inference accounts for spatial dependence 

between data and uses a Bayesian framework, thereby enabling a direct quantification of 

estimation and predictive uncertainty. In addition, within this general framework, 

different climate-informed regression models can be compared (for instance, linear vs. 

non-linear regression). This helps identifying the most suitable regression to link climate 

variability and spatio-temporal hydrological variability. 

 

2. Model Assessment: the usefulness of the modeling framework is assessed using synthetic 

and real-world case studies aimed at: (i) assessing the consistency and difference 

between time-varying FA models and their identically-distributed counterpart. (ii) 

Evaluating the importance of considering spatial dependence. (iii) Comparing different 

spatial dependence structures (copula vs. maximum stable process) in terms of joint and 

conditional probabilities estimation. 

 

3. Model Applications: Two case studies aimed at quantifying the ENSO impact on 

precipitation are illustrated to highlight the usefulness of the framework.  

 

a) Quantify the ENSO impact on the summer total and extreme rainfall in Southeast 

Queensland (SEQ), Australia. The flexibility of the framework enables several 

competing hypotheses to be rigorously compared, thereby addressing the following 

questions:   

i) Does ENSO have an impact on summer maximum daily rainfall?  

ii) Is the impact of ENSO on summer maximum daily rainfall asymmetric (i.e., 

distinct impacts during El Niño and La Niña episodes)?  

 

b) Assess the impact of ENSO on the intensity of global seasonal extreme precipitation. 

This analysis is not based on a gridded dataset, but instead on a new global high 
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quality observation dataset (HadEX2). We focus on analyzing the at-site extremes by 

using a climate-informed regional frequency analysis (RFA) framework.  

There are three objectives in the study: 

i) to identify the regions affected by ENSO and quantify its impact on extreme 

precipitation quantiles (e.g., 10 or 100-year precipitation) 

ii) to evaluate the possible asymmetry of the impact of ENSO  

iii) to describe the seasonality of ENSO impacts. 

 

4.2 Values of the thesis from an engineering perspective 

A common question facing engineers before building some hydraulic structure is to 

design it in order to ensure that its failure probability remains acceptably low. This question is 

especially complex in the context of climate change. Evidently, it is dangerous to extrapolate 

any trend fitted on past observations, because results strongly depend on the formulation of 

the trend [Cooley, 2013]. Instead, a common approach is to use GCM/RCM outputs, and then 

to use standard iid models for different present/future sub-periods [Brigode, 2013; Madsen et 

al., 2009]. However, choosing the length of the sub-periods is a limitation: it results from a 

tradeoff between a period short enough to make the stationarity approximation acceptable and 

a period long enough to have reasonable uncertainty. The time-varying framework developed 

in this thesis provides a reasonable solution for this tradeoff, which enables providing more 

precise information for future hydraulic constructions. 

On the other hand, the occurrence of many extreme events is linked to the climate 

variability. When a strong link exists between the climate state and hydrologic events (e.g. 

heavy rainfall), it is more likely to have exceptional events under some particular climate 

condition (e.g. strong El Niño or La Niña). One advantage of a time-varying framework is 

that a quantitative link can be established between the hydrologic event and the climate state. 

Even if hydraulic constructions were built under a strictly stationarity assumption, 

planners/water resource managers can at least know how much the probability of large events 

will be increased under a certain climate condition. Armed with this knowledge, 

planners/water resource managers would be able to undertake better planning of emergency 

response, and potentially improve reservoir operating rules to better control floods, and 

reduce the impact of the events during some particular climate condition. 

 

5 Organization of the thesis 

This thesis is organized as follows: Chapter 2 illustrates the construction of time-varying 

models at the local scale. Chapter 3 presents the usage of the general framework developed in 

Chapter 2. Two case studies are discussed in this chapter. The first one focuses on GCM-

predicted hydrological variables in the Durance catchment, and compares a continuously 

time-varying model with an iid model for present/future sub-periods. The second case study 

analyzes extreme precipitation in the French Mediterranean area, and assesses the existence of 

trends and NAO impacts. Chapter 4 then describes the construction of time-varying models at 
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the regional scale. The advantage of using regional parameters for detecting weak signals is 

highlighted. In Chapter 5, the importance of considering spatial dependence is discussed. In 

particular, copulas and maximum stable processes are compared in this chapter. Chapter 6 and 

Chapter 7 present the applications of the regional time-varying framework to quantify the 

impact of ENSO on precipitation in Australia (Chapter 6) and at the global scale (Chapter 7). 

A brief summary of the main results and some avenues of further extensions are described at 

the end of the thesis. 

 



 

 

Part I Time-varying frequency 

analysis framework: Local model





 

 

CHAPTER 2 Development of a general time-varying 

modeling framework at the local scale 

The objective of this chapter is to develop a general frequency analysis framework that 

allows considering temporal trends and/or effects of climate variability indices. The 

framework intends to provide a very flexible platform to consider different hypotheses for 

various dataset. The parent distribution of data can be any discrete or continuous distribution. 

Both deterministic variables (e.g. time) and stochastic variables (e.g. climate indices) can be 

used as covariates. Based on different hypotheses, flexible regression functions are used to 

establish the relationship between covariates and parent distribution parameters. Moreover, 

the generality of the framework is highlighted for the tools around the model as well. 

Parameter inference tools, diagnostic tools and model selection tools are all integrated in this 

framework. In this chapter, we focus on at-site (local) models as the first step of a more 

general framework. 
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1 Local model construction 

In the standard FA context, observations are assumed to be identically distributed, i.e. 

they follow a common distribution with constant parameters. However, in both the climate-

informed and non-stationary contexts, the assumption of identical distribution does not hold 

any more. Therefore, we assume that, in this framework, observations follow a time-varying 

distribution, in which time-varying covariates are used to induce temporal variations of the 

parameters. 

Figure 2.1 illustrates the general principle of the local model. Observations Y follow a 

distribution with time-varying parameters β. These time-varying parameters are modeled with 

temporal regressions which are functions of time-varying covariates x and regression 

parameters θ. This construction provides us with a flexible and convenient framework to 

model the effect of climate variability and/or temporal trends on the observations. The 

following sections describe each building block of the local model in more details. 

 

 

Figure 2.1- Schematic of the Local model. 

 

1.1 Parent distribution for local model 

Let ( )Y t  denote the observation at time t and  1 2( ), ( ),..., ( )nY t Y t Y tY
4
 denote the 

collection of observations at n time steps. A local model starts by defining a parent 

distribution for the observations: 

 ( ) ~ ( ( ))Y t D tβ   (2.1) 

where D is the assumed distribution of Y and         1 2,  , ,  mt t t    t  is the 

collection of all m distribution parameters at time t (m=2 for a Gaussian distribution, m=3 for 

a GEV distribution, etc.). Note that there is no particular restriction on the choice of the 

distribution D: in particular, both continuous and discrete distributions can be considered. 

                                                 
4
 In this thesis, bold letters denote vectors. 
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1.2 Regression with temporal covariates 

The parameters β directly characterize the parent distribution D, such as its location, 

scale and shape. These parameters may depend on some time-varying covariates, like time, 

atmospheric pressure or some climate indices. Thus a regression function is defined for each 

component of the parameter vector β as follows: 

  1( ) ( ; ) {1,2,..., }i i it l h (t) i m  
i

x θ   (2.2) 

where hi is the regression function for the i
th

 component  i t , (t)x  is the collection of 

temporal covariates and θi is the collection of all parameters used in the regression function hi. 
1

il
  is the inverse link function, which establishes a one-to-one mapping between ( )i t  and 

the regression function.   

To avoid confusion with the D-parameters β(t), we call  , , 
1 m
  , the parameters 

we are going to estimate, the regression parameters (R-parameters). Note that in Figure 2.1, 

the inverse link function is made implicit in the time regression model. 

There is usually no particular restriction on the regression functions. The most common 

choice will be to assume that a D-parameter linearly depends on the covariates. Such linear 

form is a very simple and straightforward hypothesis, whereas real cases are certainly more 

complex. One simple example of a linear model is the linear trend on time: 1 2( )i t t    . 

Moreover, a linear model could also be used to describe the effect of climate variability. 

Instead of time t, the covariate could be some climate index, for example the Southern 

Oscillation Index (SOI), which is a descriptor of ENSO. The linear model would therefore 

become 1 2( ) * ( )i t SOI t    . Lastly, different covariates could be considered together. For 

instance, it could be assumed that a D-parameter is affected by both a temporal trend and the 

effect of SOI, yielding: 1 2 3( ) ( )i t t SOI t       

Non-linear regression models can also be used. For instance, a cosine regression model 

could describe a periodicity in the D-parameter (due to seasonality for instance), such as 

1 2( ) cos( )i t t   . Of course, the time t in the formula could also be replaced by any other 

time-varying covariate. 

The last building block of the regression model is the inverse-link function. It is mostly 

used to set some restrictions on the range of parameters. For example, in order to ensure that a 

standard deviation parameter is positive, an exponential function is often applied. In order to 

obtain values between 0 and 1 (e.g. the success probability parameter for a binomial 

distribution), an inverse-logit function is often used. Table 2.1 lists some common inverse-link 

functions. 

The choice of these models for different parameters is strongly influenced by the nature 

of these parameters. For instance, for a GEV distribution, a linear model may operate well for 

the location parameter, but it may not be advisable to apply it to the shape parameter due to 

the uncertainties. 
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Table 2.1-Standard inverse link functions 

Inverse link function Formula Usage 

Identity function  1   l x x    

 

Exponential function    1  l x exp x   Ensure positivity of a scale parameter 

(e.g.  standard deviation σ in a 

Gaussian distribution) 

Inverse function 
 1 1

l x
x

   Switch from intensity to rate  (e.g. λ 

in a Poisson distribution) 

Inverse-logit function 
 

 

 
1  

  1

exp x
l x

exp x

 


 
set probability parameters between 0 

and 1 (e.g. p in a Binomial distribution) 

 

 

1.3 An illustration of local model construction 

Assume that we want to analyze the seasonal maximum of daily precipitation data 

 1 2( ), ( ),..., ( )nY t Y t Y tY . As suggested by Katz et al. [2002] and Coles et al. [2003], we 

assume that Y follows a GEV distribution with time-varying parameters 

   1 2 3( ) ( ), ( ), ( ) ( ), ( ), ( )t t t t t t      t . 

For the location parameter μ(t), we want to assess the existence of a temporal trend and 

an effect of  SOI (Figure 2.2). This can be implemented by assuming a linear regression for 

μ(t) (with the identity as inverse link function). For the scale and shape parameters, in this 

example, they are assumed to be constant in time. We use an exponential inverse link function 

for the scale parameter, thus the R-parameter θ4 is defined from   to + . Therefore, the 

regression parameters to be estimated in this model are  1 2 3 4 5, , , ,     .  

 

Figure 2.2-Schematic for the construction of regressions.   
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1.4 Relationship with other modeling frameworks 

Other modeling frameworks are very similar to the regression models introduced in this 

section, in particular Generalized linear model (GLM) [Nelder and Wedderburn, 1972] and 

Generalized Additive model (GAM) [Hastie and Tibshirani, 1986]. The GLM is a 

generalization of the classical linear model, in which the distribution of data is not restricted 

to the Normal distribution. However, this model is still restricted to linear regression functions, 

whereas non-linear regressions can be introduced without difficulty in the framework 

developed here.  

In the GAM, the data  1 2,  , ,  ny y y y  are assumed to be realizations from a parent 

distribution whose mean satisfy  1

1 1 2 2( ) ( ) ( ) ... ( )m mE Y l h x h x h x     , where 

 1 2,  , ,  xmx x x  are the covariates. The regression functions ( )i ih x could be estimated by 

both parametric and non-parametric means. The regression model used in this thesis could be 

considered as a particular case of GAM, because we restrict to parametric settings for two 

reasons: (i) parametric models are easier to regionalize than non-parametric ones; (ii) 

parametric models are well-suited to Bayesian inference, which will be favored in this thesis. 

Also note that in the GAM, the regression only applies to the expectation of the random 

variable. This has been generalized by introducing GAM for location, scale and shape 

parameters (GAMLSS) [Rigby and Stasinopoulos, 2005]. 

 

2 Posterior distribution and parameter inference 

In this section, we are going to discuss statistical tools for parameter inference integrated 

in the framework. Parameters are estimated in the Bayesian framework with the help of 

MCMC methods. Once parameters have been estimated, quantiles and related uncertainties 

can be calculated.  

2.1 Parameter estimation methods 

Several methods can be used to estimate the parameters, such as the maximum likelihood 

method [Lecam, 1990], L-moments method [Hosking, 1990] or the Bayesian method [Berger, 

1985]. The Bayesian method is chosen in this thesis for the following reasons [Renard et al., 

2013]. 

1. The Bayesian framework is a general framework that can be easily applied to estimate 

parameters for any parent distribution and regression functions. 

2. Prior information of parameters is involved, which could provide additional information 

for parameter estimation. 

3. The uncertainty (credibility interval) is naturally and directly obtained through the 

posterior distribution, thus there is no need for asymptotic approximations of the 

sampling distribution of estimates. 
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4. Once the Markov chain Monte Carlo (MCMC) methods are properly and carefully 

implemented, parameter estimation in the Bayesian framework is very convenient. They 

can be applied to a wide range of problems. 

 

2.1.1 Bayesian Inference 

The Bayesian method is a statistical inference procedure that is used to estimate the 

posterior distribution of parameters in the proposed model. Instead of assuming parameter 

have deterministic but unknown values, the Bayesian method assumes that parameters are 

random variables following a “prior” distribution. This prior information is then updated 

based on the information brought by the data, yielding the posterior distribution of parameters.  

More precisely, denote by y the collection of observations and θ the collection of all 

parameters. The likelihood function of y conditional on θ is ( | )f y  . Then the posterior pdf is 

computed by: 

   (2.3) 

where . 

Usually it is difficult to compute f(y), since there doesn't always exist explicit formulas to 

compute the integral for large dimensional θ. However, as the observations y are all fixed 

values, f(y) is a constant with respect to parameters θ. Consequently, the Bayes theorem is 

often written with an unnormalized posterior density as follows: 

 ( | ) ( ) ( )f f f  y y |   (2.4) 

where   is the symbol for proportionality. 

Compared with other approaches for parameter estimation, the Bayesian method can 

directly obtain estimation uncertainties, whereas other approaches require additional 

assumption (e.g. asymptotic normality) on the distribution of estimated parameters to provide 

uncertainties.  

 

2.1.2 Markov chain Monte Carlo (MCMC) method 

The Markov chain Monte Carlo (MCMC) method is an iterative method that is often 

applied in the Bayesian framework to generate samples from the posterior distribution of 

parameters. These samples are then subsequently used to approximate the posterior 

distributions and derived quantities (using e.g. histograms of MCMC samples, posterior 

mean/median/variance etc.). In general, the MCMC method can help to efficiently obtain an 

asymptotic estimation for the target distribution when facing the following difficulties, which 

are also typically present in the Bayesian framework: 

1. The target distribution is multidimensional. It is hard to find an implicit formula for the 

pdf or cdf. 
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2. The target distribution is un-normalized. 

3. The target distribution does not belong to a standard distribution family (e.g. Gaussian, 

Exponential, etc.). 

 

The idea of MCMC is to generate random walks to obtain target distribution samples. 

The general procedure is described as follows: 

1. Choose a starting point.  

2. Generate another sample according to some proposal distribution that is conditioned on 

the previous sample.  

3. Accept or reject the new sample using some acceptance rule. 

4. Redo the previous two steps and collect a large number of samples. 

5. Use the collected samples to approximate the posterior distribution. 

 

Figure 2.3 illustrates parameter estimation with the MCMC method in a two-dimensional 

parameter space. The starting point of  (0) (0) (0)

1 2,   is (10, 5), and the chain converges 

around the value of (0, 2.5) in the end. The points in the convergence region are used to 

estimate the posterior distribution of these two parameters. The points generated prior to 

convergence are considered belonging to a burn-in period, which will be removed from the 

simulated chain used to approximate the posterior distribution. 

 

 

Figure 2.3-Illustration of parameter estimation with the MCMC method in a two-

dimensional parameter space. 
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Classical MCMC method: Metropolis-Hastings 

Many algorithms are available to implement the procedure described previously. The 

Metropolis-Hastings method is one of the most classical MCMC algorithms. 

Let f(x) denote the target distribution. For a multi-dimensional distribution f, x is hence a 

vector. In general, it is difficult to obtain the samples generated from f directly. The idea of 

MCMC is to use another distribution to generate samples (one by one), which is called the 

jump distribution. According to the property of Markov chains, the following sample does 

only depend on the previous one. Based on well-selected acceptance rules, the generated 

samples provide an asymptotic approximation of the target distribution. 

More precisely, assumed that x is the current sample, the next sample x
(*)

 is generated 

according to a jump distribution J(z|x), which is conditional on x. A common choice for the 

jump distribution is a multi-dimensional Normal distribution with its center on x and a 

covariance matrix Σ. The selection of the covariance matrix will be discussed in each specific 

method. Thus, ( | ) ( | , )NormalJ f z x z x . 

A classical method known as the Metropolis-Hastings method [Metropolis and Ulam, 

1949] is summarized as follows. 

 

Algorithm 1. Metropolis-Hastings 

 Choose a starting point x
(0)

 

 For i=1,Nsim (Nsim is the number of MCMC simulation) 

o Generate a candidate sample x
(*)

 according to the jump distribution J(z/x
(i-1)

) 

o Calculate the acceptance ratio 
(*) ( 1) (*)

( 1) (*) ( 1)

( ) ( | )

( ) ( | )

i

i i

f J

f J




 


x x x

x x x
 

o If τ>1 then accept the candidate sample (x
(i)

=x
(*)

); otherwise, accept it with probability 

τ (If accepted, x
(i)

=x
(*)

; if not, x
(i)

=x
(i-1)

).  

 End for i 

 

Nsim needs to be determined according to the convergence speed, which depends on the 

shape of the target distribution and its dimension. Questions about how to monitor the 

convergence will be discussed later. For a small dimensional distribution, MCMC chains 

converge quickly, but for large dimensional distributions, the MCMC chains often take a long 

time to reach convergence.  

 

Block Metropolis-Hastings sampler 

An alternative method described in the following is called the Block Metropolis method 

(see Marshall et al. [2004] for a thorough description and evaluation). The general idea is to 

update only a part of the parameter vector at each iteration, instead of the whole parameter 

vector as described in Algorithm 1. A particular Block Metropolis sampler is the “one-at-a-

time sampler”, which corresponds to using blocks of size one: a single dimension of the 

parameter is updated at each iteration, the rest remaining at the current value. This strategy is 

helpful to derive ‘good’ jump distributions, because by updating a single component at a time, 
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only one-dimensional jump distributions are needed. However, this algorithm also has a larger 

computational complexity. For the same simulation numbers, the “one-at-a-time” sampler will 

have Ndim times more computation than the classical Metropolis-Hastings methods, where Ndim 

is the dimension of the target distribution. 

 

Algorithm 2. Block Metropolis 

 Choose a starting point  
dim

(0) (0)

1,j j N
x


x  

 For i=1,Nsim (Nsim is the number of MCMC simulation) 

o Set ( *) ( 1)i ix x  

o For j=1,Ndim  

 Generate a candidate sample (*)

jx according to the jump distribution ( 1)( | )i

jJ z x  .  

 Calculate the acceptance ratio τ (see Algorithm 1), where (*)
x  is equal to ( *)i

x  

except the j
th

 component is equal to (*)

jx . 

 If τ>1 then accept (*)

jx  as the j
th

 component of ( *)i
x  ( ( *) (*)i

j jx x ); otherwise, 

accept it with probability τ (If accepted, ( *) (*)i

j jx x ; if not, ( *) ( 1)i i

j jx x  ). 

o End for j  

o Update ( ) ( *)i ix x  

 End for i 

 

A well-selected starting point (e.g. located in a high-density area of the target distribution) 

can help to limit the length of the burn-in period. However, it is difficult to foresee the high-

density area prior to sample the posterior distribution. One possibility to obtain a starting 

point close to the high-density area is to use the prior mean. Another possibility is to use 

optimization algorithms. 

The jump distribution is obviously the most important part of MCMC methods, since it 

is directly linked to the algorithm efficiency. In general, a ‘good’ jump distribution should be 

‘similar’ to the target distribution in terms of its size and shape. For a Gaussian jump 

distribution, such character is controlled by the covariance matrix. Non-Gaussian jump 

distributions are also interesting for some specific target distributions (e.g. Student 

distribution). However, as our framework is designed for all kinds of distribution, we use 

Gaussian jump distributions. In the following, we are going to describe adaptive methods for 

controlling the covariance matrix. 

 

Adaptive MCMC algorithms 

It is difficult to find an adequate covariance matrix (or variance for uni-variate Normal 

distribution) for the jump distribution prior to sample the posterior distribution. More 

precisely, if the variance for each dimension of the multivariate Normal jump distribution is 

large, a candidate point will jump ‘far away’ from the original point. This point is 

consequently very likely to be rejected. In contrast, if the variance is small, the candidate 
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point will be ‘close to’ the original point. This point will hence be very likely to be accepted. 

A possible way to overcome this drawback is to use an adaptive method, which will learn 

from the existent samples to ‘automatically’ adjust the covariance values. Such automatic 

adaptation are particularly easy to implement in the “one-at-a-time” sampler, because the 

jump distribution is a univariate Normal distribution, hence only requiring a variance 

specification (as opposed to a full covariance matrix). More precisely, if the acceptance rate is 

high, then one can increase the variance to avoid remaining stuck into the same region for 

many iterations. Conversely, if the acceptance rate is low, one can decrease the variance to 

avoid too large jumps. More details can be found in Renard et al. [2006b]. 

The adaptive technique used in this thesis is summarized as follows. A scale parameter δ 

is multiplied to the covariance matrix or the variance of the jump distribution. For a fixed 

iteration number Niter, if the acceptance rate ρ is higher than a predefined rate ρH, multiply δ 

by an increasing rate ρinc  (ρinc >1). Conversely, if the acceptance rate ρ is lower than a 

predefined rate ρL, multiply δ by a decreasing rate ρdec (0< ρdec <1). With this notation, the 

Adaptive Metropolis-Hastings methods and Adaptive Block Metropolis methods are 

summarized as follows. 

 

Algorithm 3. Adaptive Metropolis-Hastings 

 Choose a starting point x
(0)

 and starting scale parameter δ 

 Subdivide the Nsim iterations into blocks, with each block containing Niter iterations. The 

total number of iterations is still equal to Nsim 

 In each block of Niter iterations: 

o Generate a candidate sample x
(*)

 according to the jump distribution J(z/x
(i-1)

), in which 

the covariance matrix of J is δΣ. 

o Calculate the acceptance ratio τ (see Algorithm 1) 

o If τ>1 then accept the candidate sample (x
(i)

=x
(*)

); otherwise, accept it with probability 

τ (If accepted, x
(i)

=x
(*)

; if not, x
(i)

=x
(i-1)

).  

 Compute the acceptance rate ρ (number of x
(*)

 accepted in the last Niter iterations divided 

by Niter ) 

 Update the scale parameter δ for the next Niter iterations: if ρ <ρL, then δ=δ*ρdec; if ρ >ρH, 

then δ= δ *ρinc. 

 Move to next block. 
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Algorithm 4. Adaptive Block Metropolis 

 Choose a starting point  
dim

(0) (0)

1,j j N
x


x and starting scale parameters  

dim1,j j N



 , 

where Ndim is the dimension of the target distribution 

 Subdivide the Nsim iterations into blocks, with each block containing Niter iterations.  

 In each block of Niter iterations: 

o Set ( *) ( 1)i ix x  

o For j=1,Ndim  

 Generate a candidate sample (*)

jx according to the jump distribution ( 1)( | )i

jJ z x  , 

in which the variance for J is δjσ
2
.  

 Calculate the acceptance ratio τ (see Algorithm 1), where (*)
x  equals to ( *)i

x  

except the j
th

 component equals to (*)

jx . 

 If τ>1 then accept (*)

jx  as the j
th

 component of ( *)i
x  ( ( *) (*)i

j jx x ); otherwise, 

accept it with probability τ (If accepted, ( *) (*)i

j jx x ; if not, ( *) ( 1)i i

j jx x  ). 

o End for j  

o Update ( ) ( *)i ix x  

 Compute the acceptance rate  
dim

( ) 1,j j N



  for each dimension (number of (*)

jx accepted 

in the last Niter iterations divided by Niter ) 

 Update the scale parameters  
dim1,j j N




 : for all dimension j = 1,Ndim: if ( )j L  , then 

*j j dec   ; if ( )j H  , then *j j inc   . 

 Move to next block. 

 

MCMC sampler used in the thesis 

In this thesis, we use a combination of the adaptive Metropolis-Hastings and Block 

Metropolis methods described previously.  

The general idea behind this combination is the following: 

 In Stage 1, we use the “one-at-a-time” sampler for its ease of adaptation (since it only 

involves one-dimensional jump distributions), and its robustness to poorly-chosen 

starting values. This allows generating a first set of samples that can be used to estimate 

the jump covariance matrix. 

 Stage 2 uses an adaptive Metropolis-Hastings sampler, which is much faster than the 

“one-at-a-time” sampler. The objective of this stage is to adapt the scale factor of the 

covariance matrix. 

 Stage 3 is the “production stage”, where the samples that will be used to approximate the 

target distribution are generated using a standard, non-adaptive Metropolis-Hastings 

sampler. 
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Algorithm 5. Combined MCMC sampler 

1. Choose a starting point  
dim

(0) (0)

1,j j N
x


x and starting scale parameters  

dim1,j j N



 , 

where Ndim is the dimension of target distribution 

2. Stage 1: Run 
1simN  iterations with the Adaptive “one-at-a-time” Metropolis method 

(Algorithm 4). The last sample is denoted by 1
( )simN

x . 

3. Burn the first 
1burn simN  samples, where ρburn is the burn-in rate. Compute the sample 

covariance matrix Σ1 with the remaining samples from step 2. 

4. Stage 2: Run 
2simN  iterations with the Adaptive Metropolis-Hastings method (Algorithm 

3), with 1
( )simN

x as starting point and δ0Σ1 as covariance matrix for the jump distribution. At 

the end of this stage, the scale factor δ0 has been updated to a final value δ. 

5. Stage 3: Randomly select Nchain samples from the
2simN samples generated in step 4 as 

starting points. Run Nchain parallel chains for 
3simN  iterations with the classical Metropolis-

Hastings method (Algorithm 1). The covariance matrix for the jump distribution is δΣ1. 

6. Verify the convergence of parallel chains. 

 

If the parallel chains converged, each chain obtained from step 5 provides an estimation 

for the target distribution. The number of iterations 
1 2 3
, ,sim sim simN N N  in steps 2, 4, 6 is case-

specific. Since Algorithm 4 requires Ndim more computation than Algorithm 3, 
1simN  is 

generally smaller than 
2simN  and 

3simN . Through the first two stages (steps 1-4), we solely 

intend to obtain ‘good’ starting points for each chain and a ‘good’ covariance matrix for the 

jump distribution. Thus 
1simN  and 

2simN  don’t need to be very large. 

 

Monitoring convergence 

As illustrated in Figure 2.3, the MCMC samples provide an estimate for the target 

distribution only after convergence. This raises the question of detecting that the MCMC 

chain has converged. In this thesis, we run several parallel chains with different starting points, 

and based on these chains, compute the Gelman-Rubin (GR) index [Gelman and Rubin, 1992] 

to monitor convergence. As described by Gelman and Rubin [1992], we consider the parallel 

chains converged when the GR index is smaller than 1.2.  

For m parallel MCMC sequences  
1, ; 1,ij i n j m

x
 

 , the GR index for m chains with size n 

(already burned-in) is calculated as follows: 

 
1 1n m B

GRindex
n nm W

 
    (2.5) 

where B and W are the between- and within-chain variances and are calculated as follows: 
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where 
.

1

1 n

j ij

i

x x
n 

   and 
.. .

1

1 m

j

j

x x
m 

   

 

2.2 Posterior distribution 

Given the pre-specified distribution D, the regression functions h and the link functions l, 

regression parameters θ can be estimated in a Bayesian framework with MCMC methods. The 

posterior pdf of the regression parameters is computed as follows: 

   (2.7) 

where f(θ) is the prior pdf of regression parameters and f(Y|θ) is the likelihood function: 
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  (2.8) 

In equation (2.8), a temporal independence assumption is applied: 1 2t t  ,  1Y t  is 

independent of  2Y t .  

It is difficult to give general guidelines for prior specification in the context of this 

framework, because the meaning of the inferred R-parameters depends on the chosen 

distribution and the regression model. Consequently, the use of standard priors (e.g. default 

Jeffreys’ priors which have the property of being invariant under re-parameterization) is not 

straightforward. Thus, in the absence of any strong prior knowledge on R-parameters, we use 

flat improper priors in most of our studies. Particular prior distributions and 

distribution/regression models will be described in each case study independently. 

 

2.3 Quantile computation based on the posterior distribution 

For a fixed probability p and time t0, the p-quantile for a parent distribution D (with its 

cdf F) is calculated by its inverse cdf with D-parameter β(t0). As β(t0) depends on R-

parameters θ, we denote the p-quantile 
0

1( | )tF p  .  
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In the Bayesian framework, R-parameters θ are estimated with MCMC methods. We 

denote  ( )

1, sim

k

k N
  the Nsim MCMC generated R-parameters. Thus a posterior sample for the 

p-quantile at time t0 is given by  
0

1 ( )

1,
( | )

sim

k

t
k N

F p


 . 

3 Model diagnosis and selection 

In this section, we present graphical tools for model diagnosis. Then model comparison 

tools are discussed for selecting and comparing specific competing models. 

3.1 Diagnostic tools 

Graphical evaluation provides an easy way to check the goodness-of-fit. Compared with 

statistical tests, the graphical evaluation methods provide a simpler qualitative judgment, 

although they are not able to provide a quantitative judgment for fit. In this framework, we 

intend to make a quick check of model fit prior to starting further model comparison analyses. 

Thus graphical evaluation methods are integrated in the framework for their convenient usage. 

One of the most commonly used graphical methods is the Quantile-Quantile plot [Wilk 

and Gnanadesikan, 1968]. For a parent distribution D with constant parameters β (not varying 

with time) and cdf F, the empirical quantiles (sorted observations  
1,i i m

y


) are plotted against 

the theoretical quantiles 1

1,

( )
1 i m

i
F

m





 
 

 
 . If the model has a good fit, the plot of empirical 

quantiles versus model quantiles should be close to the diagonal. However, this plot cannot be 

used in a climate-informed or non-stationary context. Indeed, the derivation of this QQ plot 

supposes that data are identically distributed, which is not the case here, since the parameters 

vary according to the temporal covariates. 

An alternative graphical method called the Probability-Probability plot (PP plot) is 

therefore used in a climate-formed or non-stationary context. The idea of the PP plot is that if 

 
1,i i m

Y


 is a random variable with distribution  
1,i i m

D


, whose cdf are  
1,i i m

F


, then 

 
1,

( )i i i m
F Y


 are identically distributed according to a uniform [0,1] distribution. Therefore 

sorted values of 1 1 2 2( ), ( ),..., ( )m mF y F y F y  are plotted against
1,1 i m

i

m 

 
 

 
. If the fit is good, 

this plot should be close to the diagonal. More explanations and usage of PP plot in a non-

identically-distributed context can be found in Coles [2001, page 110-114].   

 

3.2 Model comparison tools 

The general framework allows analyzing the impact of different covariates on hydrologic 

data by using distinct regression models. Moreover, distinct parent distributions may also be 

tested and compared. This gives rise to a potentially large number of competing model 

formulations. Thus, a comparison tool is introduced to judge the performance of these 
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competing models. Questions like whether the impact of ENSO on the precipitation is linear 

or non-linear could be answered with these tools. In the literature, several criteria are 

proposed. The principle of these criteria is based on the tradeoff between goodness-of-fit and 

model complexity.  This section proposes a short review of these criteria.  

 

3.2.1 Criteria based on point-estimates of the parameters 

The Akaike Information Criterion (AIC) [Akaike, 1974], its modified version AICc 

[Hurvich and Tsai, 1989] and the Bayesian information criterion (BIC) [Schwarz, 1978] are 

three commonly used criteria based on point-estimates of the parameters (maximum 

likelihood estimation). The performance of these criteria in different conditions (e.g. sample 

size, parent distribution, number of inferred parameters) was discussed by Burnham and 

Anderson [2002]. For instance, these authors suggested using AICc rather than AIC for a 

larger number of parameters k or a small number of observations n.  

 

These three criteria are computed as follows: 

 2 2ln( )AIC k L    (2.9) 

 
2 ( 1)

1

k k
AICc AIC

n k


 

 
  (2.10) 

 2ln( ) ln( )BIC L k n     (2.11) 

where k is the number of inferred parameters in the model, L is the maximized value of the 

likelihood function and n is the sample size. In practice, models with small value of AIC, 

AICc and BIC are preferred. In the formula of these three criteria, a common term is -2ln(L), 

which is the term for the goodness-of-fit. Thus the difference among these three criteria is the 

penalization for the number of inferred parameters. 

 

3.2.2 Criteria based on the posterior distribution of parameters 

The use of the criteria AIC, AICc or BIC may seem at odds with the Bayesian context we 

adopted in our modeling framework. Indeed, all three criteria are based on the maximum-

likelihood estimates, while Bayesian inference is rather based on the full posterior distribution 

(which may markedly differ from the likelihood with precise priors and/or short samples). 

Moreover, all three criteria are based on point-estimates of the parameters, which somehow 

discards the benefit of using a full posterior distribution for inference. Two additional criteria 

overcome these limitations and are discussed here: Bayes Factors and the Deviance 

Information Criterion (DIC).   

 

Bayes Factors 

Bayesian model selection (BMS) technique is a method for model selection in the 

Bayesian framework. Kass and Raftery [1995] provide a guideline for the development, usage 
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and interpretation of such technique, and Frost [2004] provides further discussion and 

interpretation of the BMS tools. 

Assume that  
1,i i q

M


 is the collection of competing models and  
1,i i m

y


 are the 

observations. 
1( ),..., ( )qf M f M  denote the prior probabilities that data are generated from 

model M1,…,Mq. Consequently, 
1

( ) 1
q

i

i

f M


 .  

The choice between model Mi and Mj can be made by computing the Bayes Factor, 

which is defined as follows: 

 
( | )

( , )
( | )

i
i j

j

f M
BF M M

f M


y

y
  (2.12) 

In this term, the marginal likelihood of observations ( | )if My  is defined as follows: 

 
( ) ( ) ( )

( | ) ( | , ) ( | )i i iM M M

i i if M f M f M d


 y Y


     (2.13) 

where 
( )

( | )iM

if M  is the prior distribution of 
( )iM conditional on model Mi. One can 

recognize in this equation the denominator of the Bayes theorem. 

The direct calculation of the marginal likelihood of observations ( | )if My  is difficult in 

most cases. Several asymptotic approximation methods are proposed by Kass and Raftery 

[1995]. However, a limitation of Bayes factors is that they require using proper prior 

distributions, which is often not the case in our studies. Therefore, the BMS approach is not 

used in our framework. 

 

DIC 

The Deviance information criterion (DIC) introduced by Spiegelhalter et al. [2002] is an 

alternative method for model selection in the Bayesian framework. We use DIC in our 

framework for the following two reasons: 

1. It is based on the full posterior distribution and hence takes into account parameter 

uncertainty for judging different models 

2. It accounts for the effect of prior information when available but remains usable with 

non-informative or improper priors (provided that the posterior distribution is proper). 

 

The deviance for one given point θ in parameter space is defined as follow: 

 ( ) 2ln( ( | ))Dev f y     (2.14) 

The DIC criterion is then computed by: 

 DevDIC Dev p    (2.15) 
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where  ( )Dev E Dev    is the expectation of the deviance (with respect to the posterior 

distribution) and ( )Devp Dev Dev    is the model complexity penalty. Models with small 

DIC values are preferred. Similar to AIC, AICc and BIC, the DIC also uses the term -2ln(L) 

for the goodness-of-fit. The difference is that it is now averaged with respect to the posterior 

distribution, rather than computed at the maximum likelihood value. 

The DIC can be easily computed with the MCMC samples. Let  ( )

1, sim

k

k N
  be the Nsim 

MCMC generated points in parameter space. The calculation of DIC uses the following 

algorithm: 

 For each θ
(k)

, calculate the deviance ( )( )kDev   using equation (2.14), then get its average 

Dev . 

 Get the average point ( )

1

1 simN
k

ksimN 

   , then calculate ( )Dev   using equation (2.14). 

 Calculate DIC according to Eq (2.15). 

 

4 Synthetic case studies 

In this section, we intend to verify the numerical implementation of the modeling 

framework and to quantitatively assess the extent to which temporal variations can be 

detected with local models. Two synthetic datasets sampled from different time-varying 

models are used in the sequel. 

 

4.1 Synthetic study 1 

In the first test, a non-stationary GEV model is proposed with a seasonality component 

for the location parameter and a trend in time for the scale parameter. The test data 

1 2 500( , ,..., )y y yy  are sampled from the following distribution (Figure 2.4): 

 For 1,2,...,500, ~ (10cos(0.05 ),10 0.01 , 0.1)tt Y GEV t t     (2.16) 

We assume the following GEV(μ(t),σ(t),ξ(t)) model for the observations y: 

 

1 2

3 4

5

( ) cos( )

( )

( )
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t

  
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 



 



  (2.17) 

where 1 2 3 4 5( , , , , )      are the regression parameters to be estimated. The starting point 

for the MCMC sampler is chosen as (0) (0) (0) (0) (0) (0)

1 2 3 4 5( , , , , ) (10,0.1,8,0.1,0)      . 
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Figure 2.4-Simulated data for synthetic study 4.1. The red curve represents the curve 

of function f(t)=10cos(0.05t) in the location parameter of Eq (2.16). 

 

Figure 2.5 illustrates the MCMC sequences for the five R-parameters: (a),(b) and (c) are 

respectively for the regression parameters in location, scale and shape parameter of the parent 

GEV distribution. Results show that values of these regression parameters converge to the true 

parameters even if the starting values are poor. In fact, the farther starting points are from the 

true values, the more iteration is needed to reach convergence. 
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   (a) 

 

    (b) 

 

     (c) 

 

Figure 2.5- MCMC sequences for the five regression parameters: (a) parameters θ1 and 

θ2 for the location parameter; (b) parameters θ3 and θ4 for the scale parameter; (c) parameter 

θ5 for the scale parameter. The red lines represent the true values. 
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4.2 Synthetic study 2 

The second test is based on a GEV distribution with both location and scale parameters 

described as linear functions of time. The synthetic data 
1 2 500( , ,..., )y y yy  are sampled from 

the following distribution (Figure 2.6): 

 For 1,2,...,500, ~ (50 0.5 ,10 0.01 , 0.1)tt Y GEV t t      (2.18) 

Similarly to the first study, the following GEV(μ(t),σ(t),ξ(t)) model is used to describe the 

observations y: 
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  (2.19) 

where 1 2 3 4 5 6( , , , , , )       are the regression parameters that need to be estimated. The 

starting point for the MCMC sampler is chosen as (0) (0) (0) (0) (0) (0) (0)

1 2 3 4 5 6( , , , , , )       

(10,0.1,0.1,8,0.1,0) . We add θ3 in the regression function for location parameter to 

characterize the trend on t
2
, which is used to test whether the redundant regression parameters 

will bias the estimation result. 

 

 

Figure 2.6- Simulated data for synthetic study 4.2. 

 

Two estimations using respectively 50 and 500 observations are performed. The 

objective is to assess the difference between these two estimations. It is expected that both 

estimation results remain consistent with the true parameter values. However, our interest is 

also in assessing the difference in terms of estimation uncertainties. 
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Figure 2.7-Posterior distributions of the six regression parameters using 50 and 

500 observations. 
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Figure 2.7 illustrates the posterior distributions of the six regression parameters using 

respectively 50 and 500 observations. Not surprisingly, it is found that the posterior 

distributions based on 500 observations are much more concentrated around the true values 

than those based on 50 observations. Consequently, a relatively “small” number of 

observations (which actually corresponds to the typical length we should expect from 

hydrologic data) will lead to very large uncertainties. The burn-in period (Figure 2.8) is a little 

bit longer when 500 observations are used. This is because the uncertainty with 50 

observations is larger, thus the starting values are almost already in the convergence region. 

By contrast, with 500 observations, the starting point is not in the convergence region, thus it 

still needs some time for the chain to converge.  

 

Figure 2.8- MCMC sequences for regression parameters θ2 and θ6 with 50 

(green line) and 500 (blue line) observations. 

 

5 Conclusion on the local climate-informed framework 

In this chapter, we built a general climate-informed frequency analysis model, geared 

towards detecting and quantifying the effect of climate variability on hydrological variables. 

This is undertaken by using temporal regression models where the parameters of the parent 

distribution are a function of time-varying covariates (e.g. ENSO). A major objective was to 

keep this framework as general as possible. In particular, it enables free choices on the parent 

distribution and covariates. Moreover the selection of linear or non-linear regression functions 

is also convenient and flexible. We also implemented several tools for facilitating the use of 

this framework, in particular: (i) an inference framework based on Bayesian estimation and 

MCMC sampling; (ii) graphical diagnostics to evaluate goodness-of-fit; (iii) model 

comparison criteria, enabling the comparison of different competing hypotheses for the parent 

distribution and/or the regression models. 

This framework was implemented as a flexible computer code (in FORTRAN), whose 

reliability was assessed through several synthetic case studies. We verified that this general 
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framework is able to detect and quantify temporal variations that may be due to climate 

variability or non-stationarity. These synthetic case studies also drew our attention to the very 

large uncertainties affecting parameter estimates with relatively short samples, which 

unfortunately correspond to typical sample sizes available in Hydrology.  In order to improve 

the precision of the estimation, the most direct way would be to increase the sample sizes. 

This is however easier said than done, since the historical observation data are limited at each 

station. Seeking alternative solutions to overcome this shortage becomes especially important. 

It is also the motivation for moving from a local to a regional analysis, in which observations 

from different sites are taken into account together. Compared with the local analysis, this 

might help reducing estimation uncertainty, at the cost of additional assumptions on the 

regional variability of parameters. This will be discussed in more details in Part II. 

 





 

 

CHAPTER 3 Case studies with local time-varying 

models 

The objective of this chapter is to illustrate the use of the general FA framework at the 

local scale. Two cases will be studied in this chapter.  

The first one describes temporal trends for various hydrological variables in the Durance 

catchment, as projected by a GCM coupled with a downscaling method under a given 

scenario of future greenhouse gases emission. The first specific objective of this case study is 

to highlight the generality and flexibility of the modeling framework in terms of parent 

distributions, since several distributions – both continuous and discrete – are considered. The 

second objective is to illustrate how the assumption made to describe the temporal evolution 

of hydrological variables impacts the estimation of failure probabilities.  

The second case study aims to detect and quantify temporal trends and NAO effects on 

annual maximum daily precipitation in the Mediterranean area. The specific objective of this 

second case study is to consider several hypotheses regarding the temporal variability of 

rainfall extremes and to illustrate the use of model comparison tools to evaluate the relevance 

of those hypotheses. 
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1 Projected changes in the precipitation regime of the Durance 

catchment 

In this section, we aim to verify that the general framework is applicable with a variety 

of parent distributions. More precisely, we are going to assess the existence of temporal trends 

on hydrological variables from the Durance catchment, for which the parent distribution is not 

evident to choose. Different parent distributions, both discrete and continuous, will be 

compared with various regression models. 

The second objective is to evaluate the impact of the model used to describe non-

stationarity on risk analysis. To this aim, we will compare failure probabilities based on 

various stationary and non-stationary hypotheses.  

The data used in this section are 21
st
 century downscaled climate projections. We stress 

that the aim of this section is just to probabilistically describe the outcome of this particular 

model, rather than predict the uncertainties in future changes, which would require using 

various climate models, emission scenarios and downscaling methods. 

 

1.1 Data 

1.1.1 The Durance catchment 

The Durance River is located in southeast France with its source in Montgenèvre, Hautes 

Alpes at an altitude of 2300 meters. The river is 302 kilometers long and flows through the 

region of Provence-Alpes-Côte d'Azur to join the Rhône River at the border of Bouches du 

Rhône and Vaucluse departments. 

The catchment area is 14,250 km² (Figure 3.1). Melting snow and rainfall during spring, 

autumn and winter contribute as the main resources of water for the catchment. Various 

climate forcings influence the runoff regimes of the catchment: mountainous condition for the 

upper reaches of the river and Mediterranean condition for the lower reaches. The maximum 

runoff usually occurs during the snowmelt period (May, June). However, historical records 

show that most violent floods were occurring in autumn. 

 

1.1.2 Simulated data 

Daily precipitation data come from the projection of the Sea Atmosphere Mediterranean 

Model (SAMM), a coupling of the ARPEGE atmospheric model [Gibelin and Déqué, 2003] 

and the regional ocean circulation model for the Mediterranean (OPAMED) [Somot et al., 

2008], under a given scenario of current and future (A2) greenhouse gases emission 

[Nakicenovic et al., 2000]. This projection has been further statistically downscaled based on 

weather types and conditional resampling [Boe et al., 2006; Pagé et al., 2008] from SAFRAN 

near-surface atmospheric reanalysis [Vidal et al., 2010]. The simulated daily data are available 

from 1960 to 2100, with a decomposition of total precipitation into rainfall and snowfall with 

a spatial resolution of 8km*8km. The daily catchment precipitation is estimated as the 
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weighted average of gridded precipitation according to the surface of the catchment contained 

in each cell. 

 

 

Figure 3.1-The Durance Catchment 

 

1.2 Precipitation variables 

With the projected daily precipitation dataset, we extracted several variables, such as 

seasonal/annual maximum and total precipitation, seasonal/annual non-precipitation days, 

annual maximum consecutive dry days, date of first snow, etc. 

Figure 3.2 gives an example of the extracted variables. Most variables don’t show any 

significant temporal trend, as exemplified in Figure 3.2 with the annual maximum daily 

precipitation and the annual non-precipitation days. 

 (a) (b) 

 

Figure 3.2-Annual maximum daily precipitation (a) and annual non-precipitation 

days (b) in the Durance catchment 
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However, the first snowy day shows a significant increasing trend (Figure 3.3). This 

variable counts the number of days from 1
st
 September before a snowfall higher than 0.5 mm 

is observed. A simple linear regression applied to the whole series indicates that the first 

snowy day will be delayed by about 2.3 days every 10 years. 

 

 

Figure 3.3-Date of first snow counting from 1st September every year 

 

In order to provide a probabilistic analysis of this variable, we are going to apply the 

general FA framework built in the previous chapter to the variable ‘first snowy day”. 

 

1.3 Parent distribution selection 

The first step in applying the framework is to select the parent distribution. Both discrete 

and continuous distributions are considered here. Table 3.1 lists the tested distributions and a 

qualitative assessment of goodness-of-fit on the whole data under the stationary hypothesis.  

 

Table 3.1-Goodness-of-fit of different distributions for the date of first snow 

Distribution type 
Distribution 

Name 

Parameter 

number 
Goodness-of-fit 

Discrete Geometric 1 Bad Fit 

Poisson 1 Bad Fit 

Binomial 2 Bad Fit 

Negative 

Binomial 
2 Good Fit 

Continuous Normal 2 Good Fit 

GEV 3 Good Fit 

  

The two-parameter negative binomial and normal distributions and the three-parameter 

GEV distribution provide a good fit for this variable. We will focus on the two-parameter 

distributions, i.e. negative binomial and Normal distributions, as the parent distributions. 
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Indeed, the GEV distribution is adapted for extreme data defined as block maxima, which is 

not the case of the variable “date of first snow” studied here. 

 

1.4 Regression models  

Two competing hypotheses are both applied to the selected parent distributions, either 

with stationary parameters or with a temporal trend on the mean parameter. Table 3.2 lists the 

four competing models, where μ(t) and σ(t) are the mean and standard deviation of the 

Normal distribution, and μ(t) and r(t) are the mean and the pre-fixed lost number of the 

negative binomial distribution. In the latter case, if p denotes the probability of success, the 

Negative Binomial distribution is re-parameterized so that 
1

pr

p
 


. Flat priors are used for 

all regression parameters. 

 

Table 3.2-Competing regression models for selected parent distributions 

Model Name Hypothesis Model 

   ( ), ( )N t t   

Nor-L0 Stationary 
0 0( ) , ( )t t      

Nor-L1 Non-stationary 
0 1 0( ) , ( )t t t        

   

 ( ), ( )Neg t r t  

NB-L0 Stationary 
0 0( ) , ( )t r t r    

NB-L1 Non-stationary 
0 1 0( ) , ( )t t r t r      

 

1.5 Posterior distribution of regression parameters 

Figure 3.4 illustrates the posterior distribution of regression parameters in Nor-L0 and 

Nor-L1 models. The mean value μ0 of Nor-L0 is significantly different from the intercept μ0 of 

Nor-L1. This is because a significant positive slope μ1 is detected for Nor-L1 model. Moreover, 

the standard deviation is slightly smaller in Nor-L1, suggesting that a part of the data 

variability is due to the existence of a trend. Similar results are found for the negative 

binomial distribution. 

The slope parameter μ1 in both Nor-L1 and NB-L1 models shows a significantly positive 

value (Figure 3.5). Moreover, the posterior distributions are similar in both models. This 

consistency shows that the temporal trend on the mean can be detected with two different 

parent distributions. 
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(a) Nor-L0 

 

(b) Nor-L1 

 

Figure 3.4- Posterior distribution of regression parameters in (a) Nor-L0 and (b) Nor-

L1 models 

 

 

 (a) Nor-L1 (b) NB-L1 

 

Figure 3.5-Posterior distribution of the slope parameter in (a) Nor-L1 and (b) NB-L1 

models 
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1.6 Goodness-of-fit 

Figure 3.6 shows the PP plot of the models in Table 3.2. For all four models, the PP plots 

are close to the diagonal. Although this suggests all four models have an acceptable fit, it is 

difficult to judge the model performance solely based on this PP plot. 

 

(a) Normal distribution  

 

(b) Negative binomial distribution  

 

Figure 3.6-PP plot of the four competing models 

 

1.7 Model comparison 

Table 3.3 lists the AICc, BIC and DIC values for the four models. We can find that the 

AICc, BIC and DIC values for non-stationary models (Nor-L1 and NB-L1) are much smaller 

than their stationary counterparts. It indicates that the temporal regression parameter is not a 

negligible component in the regression model. All these three criteria are also in agreement 

that Nor-L1 is preferred to NB-L1. 
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Table 3.3-AICc, BIC and DIC values for the four models 

Model Nor-L0 Nor-L1 NB-L0 NB-L1 

AICc 1197.01 1157.92 1193.87 1165.07 

BIC 1202.86 1166.70 1199.73 1173.85 

DIC 1194.26 1154.27 1176.67 1159.11 

 

For all three indices, the negative binomial distribution seems better in a stationary 

model, but the Normal distribution becomes better in a non-stationary model, which suggests 

that the choice of the parent distribution interacts with the choice of the regression model. 

Thus the performance of parent distributions could not be discussed without regressions 

functions. 

 

1.8 Accounting for non-stationarity in GCM projections: stationary sub-

periods vs. continuous trend 

As discussed in Chapter 1 (Section 4.2), many previous studies of GCM outputs rely on 

the study of two sub-periods (representing present and future climate conditions), which are 

assumed to be strictly stationary. The evolution is then simply described as the difference (or 

the ratio) between the estimates of both periods. This can be explained by the fact that earlier 

generations of GCM did not provide “transient” runs, but only runs on several sub-periods. 

However, current GCM generally provide transient runs, thus enabling a continuous 

description of changes. 

In this section, we aim to verify whether the results from an analysis assuming strictly 

stationary sub-periods are consistent with the non-stationary trend model for a long period. 

Two “present” and “future” periods are selected for this comparison: end of 20
st
 century 

(1970-1999) and middle of 21
nd

 century (2035-2064). 

As the previous section shows that Nor-L1 is the preferred model, we use a Normal 

distribution as the parent distribution for the stationary analysis. Results of stationary FA 

analyses on these two sub-periods are compared with the full non-stationary analysis. 

 

1.8.1 Stationary sub-periods model 

Two 30-years periods data (1970-1999 and 2035-2064) are fit with a normal 

distribution ( , )N   . Figure 3.7 presents the posterior distribution of μ and σ. The standard 

deviation of these two periods is remarkably similar. However, there is a marked difference 

between the mean values of these two periods. This result confirms once again that there 

exists an evolution in the first snowy day. 
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Figure 3.7-Posterior distribution of μ and σ with a Normal parent distribution 

 

1.8.2 Stationary sub-periods model vs. non-stationary trend model 

Figure 3.8 illustrates the results of the stationary sub-periods model and the non-

stationary trend model. The 0.5-quantile and 0.99-quantile computed with the non-stationary 

trend model get across the credibility intervals of the stationary sub-periods model during the 

two sub-periods. It indicates that the prediction with the non-stationary model is consistent 

with stationary model results for each sub-period. 

 

Figure 3.8-Results of the stationary sub-periods model and the non-stationary trend 

model. Pink circles are GCM-projected data. The histogram is the mean observation 

during 1970-1999 and 2035-2064. Green (blue) lines are 0.5-quantiles (0.99-

quantiles) with 90% credibility interval (dashed lines) for the two sub-periods with 

the stationary model. Red (light blue) lines are 0.5-quantiles (0.99-quantiles) for the 

whole period with the non-stationary trend model. 
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For computational reasons, it is easier to use stationary models within two sub-periods 

than a time-varying model. However, if the sub-periods are too short, the estimation may be 

much uncertain. This is illustrated in Figure 3.8 by the credibility intervals for the 0.99-

quantile being twice as large for the stationary sub-periods model as for the time-varying 

model. On the other hand, if the sub-periods are too long, the stationary hypothesis may 

become inadequate. There is no such restriction for a continuously time-varying model.  

 

1.8.3 Failure probabilities 

In this section, we are interested in the probability that the first snow will arrive later 

than a fixed threshold at least once during the next n years. This can be interpreted as a 

“failure probability”. As an illustration, consider a ski station whose opening date is scheduled 

D days after the 1
st
 of September. The first snow happening more than D days after the 1

st
 of 

September will lead to a failure to open the station on due time. The concept of failure 

probability is more general and is central in risk assessment, for instance for designing civil 

structures such as dams. A quantity of interest is the probability that the volume of water will 

exceed the limit of a dam at least once during the next n years. This information can be used 

to decide the capacity of the dam prior to its construction. For a given threshold D, and 

making the assumption of temporal independence, the failure probability is calculated as 

follows: 
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  (3.1) 

In a stationary model,  
1,i i n

Y


 have the same distribution. In a time-varying model, the 

distribution of iY  depends on the covariates (time in this case study). Figure 3.9 presents the 

failure probability for the first snow happening later than 60, 70, 80 and 90 days after 1
st
 Sept 

at least once during the n years following 2013. The failure probability is computed in three 

distinct ways: (i) using the stationary estimates from the period 1970-1999; (ii) using the 

stationary estimates from the period 2035-2064; (iii) using the non-stationary estimates from 

the trend model. The failure probabilities are calculated with modal regression parameters 

(that correspond to the maximum posterior values). For all four thresholds, the failure 

probability of the stationary estimates from the period 1970-1999 is always the smallest. This 

is because the observations in this period are markedly smaller than during the period 2035-

2064. Compared with the stationary models, the time-varying model increases much faster 

with respect to the duration. For durations larger than about 45 years, the failure probability 

exceeds that derived from the stationary model estimated on the period 2035-2064.  

Figure 3.10 illustrates the failure probability for a fixed duration n. If a ski station wants 

to decide of its opening date so that the failure probability is less than 0.2 in the following 60 

years, the answer lies between  D  80 ( 20
th

 November, stationary estimates from 1970-

1999) and D  90 ( 30
th

 November, stationary estimates from 2035-2064 and trend model). 
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The length of 90% credibility intervals is about 20 days for the stationary models and 10 days 

for the non-stationary model. This provides preliminary information for analyzing this 

problem, based on which relevant adaptation procedures could be developed, for example 

designing reservoirs for artificial snow production, etc. 

 

 

 

Figure 3.9-Failure probability for the first snow happening later than 1st Sept + 60, 

70, 80 and 90 days at least once during the n years following 2013.  
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Figure 3.10- Failure probability for the first snow happening Q days later than 1st 

Sept at least once during the 50 (left) and 60 (right) years following 2013. 

 

1.9 Conclusion and discussion 

In this case study, we demonstrate the usage of the general time-varying framework in a 

context where no strong guidance exists to select the parent distribution. Both discrete and 

continuous parent distributions are hence trialed. As a result, the negative binomial 

distribution and the Normal distribution both provide a good description for the variable “first 

snowy day”. Thus, the flexibility of the framework to choose a parent distribution is 

highlighted. 

Moreover, the existence of a temporal trend is assessed through a linear regression model 

with time as covariate. The flexibility in the choice of the regression functions provides a 

convenient way to evaluate stationary and non-stationary hypotheses by using the model 

selection tools. In this study, all three criteria (AICc, BIC and DIC) are in agreement to 

suggest that a non-stationary model is more adequate than the stationary model for the 

variable “first snowy day”. 

Projected quantiles are estimated with both a stationary sub-periods model and the non-

stationary trend model. Although the results of both models are consistent, choosing the 

length of the sub-periods is a limitation: it results from a tradeoff between a period short 

enough to make the stationarity approximation acceptable and a period long enough to have 

reasonable uncertainty.  

The comparison of failure probabilities evaluated under the two hypotheses also 

highlights the importance of the model used to describe the evolution of the studied variable. 

The failure probabilities calculated with the non-stationary trend model increases faster than 

the stationary model with respect to the duration. This probability based on the stationary 

model is still useful for a limited duration. However, for longer durations, a continuously-

varying model is more adapted to the computation of failure probabilities.  
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2 NAO effects and temporal trends in extreme precipitation in 

Mediterranean France 

In this section, we analyze temporal trends and the effects of NAO on the intensity of 

extreme precipitation in Mediterranean France by using the general climate-informed FA 

framework. Six regression models under three competing hypotheses regarding the temporal 

variability of extreme precipitations are studied. Throughout this section, some randomly 

selected sites (e.g. sites 13 and 60) are used to illustrate the main steps involved in the 

construction of a local model and its use for prediction: specification of the building blocks of 

the model, exploration of the posterior distribution, goodness-of-fit evaluation, model 

comparison and prediction, etc.  

 

2.1 Data 

2.1.1 Precipitation data 

The precipitation dataset comprises daily precipitation series from 92 precipitation 

gauges located in Mediterranean France (Figure 3.11). The record starting years among these 

sites are ranging from 1887 to 1949, and most of them finish in 2004 (yielding record lengths 

between 57 years and 118 years). The median and average record lengths are 65 and 70 years, 

respectively.  

 

 

Figure 3.11-Location of the 92 precipitation gauges (blue dots) and homogeneous 

regions (numbers in white circles) as defined by Pujol et al. [2007].  
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These 92 stations are classified into seven homogenous zones as defined by Pujol et al. 

[2007]. Each zone contains a different number of observation stations. The precipitation 

regime within each zone is considered as homogeneous for the extreme events (although the 

distribution of extremes may vary from site to site due to elevation or exposition effects).  

In this study, we focus on the annual maximum daily precipitation (from January to 

December), which are extracted from the daily precipitation series. 

 

2.1.2 Covariate: the NAO index 

The North Atlantic Oscillation (NAO) is one of the major large-scale modes affecting the 

climate variability in the Northern Hemisphere. The NAO index is defined by the difference of 

the normalized sea level pressure between Gibraltar and Southwest Iceland [Jones et al., 

1997]. The NAO index used in this study is obtained from the Climatic Research Unit of the 

University of East Anglia, in which monthly NAO values are available 

(http://www.cru.uea.ac.uk/~timo/datapages/naoi.htm). In this database, the minimum value of 

the NAO index is about -3.5, and the maximum is about 4. 

In this study, we are interested in the annual maximum daily precipitation, thus we use 

the annual average NAO index as covariate (Figure 3.12), which is computed from the 

monthly NAO series. Besides the NAO index, another covariate is time, which is used to 

assess the existence of temporal trends in extreme precipitation. 

 

 

Figure 3.12-Annual average of the NAO index 

 

2.2 Regression models under three competing hypotheses 

Following the model construction introduced in Chapter 2, we assume a GEV 

distribution for the annual maximum daily precipitation [Coles et al., 2003; Katz et al., 2002]. 

For analyzing the temporal trend and the impact of NAO, six competing regression models 

associated with different hypotheses are introduced. In these six models, the shape parameter 

is always assumed to be constant. This is because of the well-recognized difficulty in 

estimating this parameter using relatively short local series. 

http://www.cru.uea.ac.uk/~timo/datapages/naoi.htm
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Table 3.4 lists the six competing regression models. Linear regression models are applied 

to the location or the scale parameter or both. An exponential inverse link function is applied 

for the scale parameter. The subscript on the top right (resp. bottom right) of the name “GEV” 

denotes the model for the location (resp. scale) parameter. “0” means stationary, “t” means 

linear with respect to time and “t,NAO” means linear with respect to both time and NAO.  

A model selection tool will be used to judge which hypothesis is the most suitable. Under 

the same hypothesis, we can also evaluate which model is better for presenting the temporal 

effect on the extreme precipitation in Mediterranean France. 

In this study, flat priors are used for the regression parameters. 

 

Table 3.4-Six competing regression models for the extreme precipitation in 

Mediterranean France 

Name Model Hypothesis 

0

0GEV    0 0,exp( ),GEV      Stationary 

0

tGEV   0 1 0,exp( ),GEV t     

Temporal trend 
0

tGEV   0 0 1,exp( ),GEV t     

t

tGEV   0 1 0 1,exp( ),GEV t t       

,

0

t NAOGEV   0 1 2 0( ),exp( ),GEV t NAO t       Temporal trend and 

NAO effect  ,

,

t NAO

t NAOGEV   0 1 2 0 1 2( ),exp( ( )),GEV t NAO t t NAO t           

 

2.3 Posterior distribution of regression parameters 

Regression parameters are estimated using a MCMC sampler in the Bayesian framework, 

as detailed in Chapter 2 (Section 2.1.2). As an illustration, Figure 3.13 shows the posterior 

distribution of seven regression parameters in model ,

,

t NAO

t NAOGEV for site 60. From the posterior 

distribution, the temporal trend and the effects of NAO are close to zero for both the location 

and the scale parameters. The uncertainties of the regression parameters are very large. This is 

because it is hard to provide a good estimation in such a complex model with only 60 

observations. Thus weak temporal trend and NAO effects are more likely to be masked.  

 

2.4 Goodness-of-fit 

As explained in Chapter 2 (Section 3.1), the goodness-of-fit can be evaluated graphically 

using a PP plot. The modal parameters (maximizing the posterior pdf) are used to compute the 

theoretical probability in the PP plot.  

Figure 3.14 shows the PP plot for site 60 as an illustration. The PP plot of most sites is 

close to the diagonal for all six regression models, which indicates that all six models provide 

a good description of the observations. Although comforting at first sight, this observation 
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also highlights a strong limitation of such a PP plot diagnostic: its power to distinguish 

between competing model hypotheses is very low and does not enable a conclusive 

assessment of the most suitable model. This will be improved by considering model 

comparison tools in subsequent Section 2.8. 

 

   

   

 

 

 

Figure 3.13-Posterior distribution of seven regression parameters in ,

,

t NAO

t NAOGEV  model 

for site 60  
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(a) 0

0GEV  (b) 
0

tGEV  

  

(c) 0

tGEV  (d) t

tGEV  

  

(e) ,

0

t NAOGEV  (f) 
,

,

t NAO

t NAOGEV  

Figure 3.14-Probability-probability plot of the six regression models for site 60 
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2.5 Conditional predictions  

For each of the three hypotheses we aim to evaluate (stationarity, temporal trend, 

temporal trend + NAO effect), we restrict to the most complete models ( 0

0GEV , t

tGEV  and 

,

,

t NAO

t NAOGEV ) to illustrate the predictions that can be made from the general FA framework. 

As discussed in Chapter 2 (Section 2.3), in a stationary case, the GEV quantile yp 

associated with an exceedance probability 1-p is calculated as follows: 

 
p py K





    (3.2) 

where  1 log( )pK p


     

In a time-varying case, μ and σ are varying with time according to the specific regression 

models. For example, in the ,

,

t NAO

t NAOGEV model, the quantile yp in formula (3.2) becomes: 
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  (3.3) 

With Nsim MCMC samples, quantiles  ( )

1, sim

k

p k N
y


are calculated. Thus the credibility 

interval is obtained directly for these quantiles. 

Figure 3.15 shows the annual maximum precipitation data, the median and the 0.99-

quantile for site 60 according to these three models. Dashed lines correspond to 90% 

credibility intervals for the median and the 0.99-quantile. With t

tGEV  model, there is a slight 

temporal trend on the median and the 0.99-quantile. This trend still holds with ,

,

t NAO

t NAOGEV  

model, and a fluctuation appears according to the values taken by the NAO index. In general, 

the predication with these three models is similar. This is because the temporal trend and NAO 

effects are weak compared with the natural variability of annual maximum precipitation, thus 

the variation of prediction between these models is limited. When looking at the 0.99-quantile, 

the uncertainties are still large. 
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 0

0GEV   t

t
GEV  

 

 

Figure 3.15- Observation, median and 0.99-quantile for site 60 according to three 

regression models. Black dots represent the observation of annual maximum 

precipitation. Red and blue lines are respectively 0.5 and 0.99 quantile. The dashed 

lines correspond to 90% credibility intervals. 

 

Figure 3.16 provides an alternative representation of the predictions by the three models, 

by showing the posterior distribution of the 0.9-quantile according to the three models for site 

13. The 0.9-quantiles are computed at t equal to 2012. In order to highlight the difference 

between predictions for different values of NAO, we use two extreme values NAO = -1 and 

NAO = 1.  The figure shows that uncertainty increases with the complexity of the model: the 

stationary model provides the prediction with the smallest uncertainty, while 
,

,

t NAO

t NAOGEV model 

yields the largest uncertainty. For site 13, the temporal trend is not clear since the posterior 

distribution for model t

tGEV  is similar to that of the stationary model. On the other hand, 
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when NAO is considered ( ,

,

t NAO

t NAOGEV  model), a stronger difference appears between the 

distributions of 0.9-quantiles conditioned on the two extreme NAO values. However, the 

prediction uncertainty associated with ,

,

t NAO

t NAOGEV  model remains too large to yield an 

unambiguous conclusion regarding the difference between the two NAO-conditional 

predictions.  

 

t=2012 

 

Figure 3.16-Posterior distribution of the 0.9-quantile based on three models for site 

13 

 

2.6 Temporal trend and NAO impact for all 92 sites 

One of the objectives of this case study is to evaluate whether the temporal trend and the 

NAO effect are significant for extreme precipitations in Mediterranean France. In the models 

proposed in Table 3.4, the regression parameters μ1 and σ1 characterize the temporal trend, 

while μ2 and σ2 characterize the effect of NAO. If the effect is significant, these parameters 

will be significantly different from 0. In Figure 3.13, the posterior distributions of these four 

parameters are spread around 0, which indicates that the temporal trend and the NAO effect 

are not significant for site 60. 

In order to extend this assessment to the whole dataset of 92 sites, Figure 3.17 presents 

the boxplots of the posterior distributions of μ1 and μ2 for all sites (reorganized by region as 

symbolized by the colored dots in the Figure). Although the boxplots tend to be preferentially 

positive for most stations, we still cannot make any definitive conclusion for the regional 

trend since most boxplots are not far away from zero. This can be mostly explained by the 

very large uncertainty affecting the estimation of parameter μ1 and μ2. 
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Figure 3.17-Boxplot of the posterior distribution of parameter μ1 and μ2 for all 92 

sites in the model ,

,

t NAO

t NAOGEV . Colored dots denote the homogeneous regions the 

stations belong to. 

 

2.7 Conditional quantiles for all 92 sites and their uncertainty 

In Section 2.5, we observed that the uncertainty in predicted quantiles increases with the 

complexity of the model. In this section, we give a general view of the prediction for all sites 

under three hypotheses. Figure 3.18 shows the boxplot of 0.9-quantile for all sites with 0

0GEV , 

t

tGEV  and 
,

,

t NAO

t NAOGEV  models. The number of parameters in these models is respectively three, 

five and seven. Sites with same color are in the same climatic zone. Covariates are fixed to t = 

2004 and NAO = -0.1. In general, the boxes size increases with the number of parameters. For 

example, at the site that provides the biggest 0.9-quantile value in the stationary model (the 

fourth site from the right in the third zone), the posterior distribution of the 0.9-quantile lies 

approximately between 200 and 300 with 0

0GEV  model. Based on t

tGEV  model the 
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distribution goes up to 350. It reaches more than 500 with ,

,

t NAO

t NAOGEV model. Once again, this 

illustrates that the use of more complex models to describe temporal variability comes at the 

cost of much larger uncertainties, at least within the local estimation framework considered 

here. 

 

 

 

 

Figure 3.18-Boxplot of 0.9-quantiles for all sites within seven zones (denoted by 

colored dots). Covariates are chosen as time t=2004 and NAO=-0.1 (relatively weak).  
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2.8 Model comparison 

AICc, BIC and DIC values are computed for each model. Table 3.5 gives the maximum 

log-likelihood, AICc, BIC and DIC values for site 60. In general, the maximum likelihood 

increases with the model complexity, since complex model contains more degree of freedom 

and hence better fit the observations. For site 60, the log-likelihood value of the stationary 

( 0

0GEV ) model is the smallest, as theoretically expected. However, it also gives the smallest 

value for all three criteria. This confirms our finding in Section 2.6 that neither the temporal 

trend nor the NAO effect is detected for extreme precipitation in site 60. 

 

Table 3.5-Maximum log-likelihood, AICc, BIC and DIC values for site 60 

Site 60 0

0GEV  
0

tGEV  0

tGEV  t

tGEV  ,

0

t NAOGEV  ,

,

t NAO

t NAOGEV  

MaxlogL -241.532 -241.059 -241.505 -241.046 -240.796 -240.654 
AICc 489.065 490.118 491.011 493.093 492.592 497.308 
BIC 495.348 498.495 499.388 502.564 502.064 509.968 
DIC 488.544 489.815 490.308 491.710 490.963 494.358 

 

Table 3.6 summarizes this model comparison exercise for all 92 sites by counting the 

number of sites for which each model is ranked as “best” based on the AIC, BIC and DIC 

criteria. Among all 92 sites, 0

0GEV  and 
0

tGEV  are two most frequently selected models. In 

particular, the stationary ( 0

0GEV ) model seems to be the most adapted for the majority of sites. 

In general, complex models with a large number of parameters are not frequently selected. 

However, it should be reminded that time trends and NAO effects may exist in some sites, but 

be masked because of the large estimation uncertainties. 

 

Table 3.6-Number of sites for which each model is ranked as “best” based on AICc, BIC 

and DIC criteria 

 0

0GEV  
0

tGEV  0

tGEV  t

tGEV  ,

0

t NAOGEV  ,

,

t NAO

t NAOGEV  

AICc 49 19 8 6 7 3 

BIC 74 15 2 1 0 0 

DIC 47 17 7 8 7 6 

 

Compared with AICc and DIC, BIC is known as the most penalizing criterion for models 

with many parameters [Spiegelhalter et al., 2002], which corresponds to the results of Table 

3.6. Moreover, there are still respectively 3 and 6 sites for which the 
,

,

t NAO

t NAOGEV  model is the 

best according to AICc and DIC. It turns out that the three sites where AICc select this model 

are included in the six sites where DIC selects it. It means that the results of these two criteria 

are in agreement. Figure 3.19 maps the sites where NAO-accounting models 

( ,

0

t NAOGEV ,
,

,

t NAO

t NAOGEV ) are selected by AICc and DIC. These sites are located in different 
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zones, which seem surprising since we would expect NAO effects to show some spatial 

consistency. Consequently, this local analysis is not conclusive regarding the impact of NAO 

on extreme precipitations in the Mediterranean area.  

 

 

Figure 3.19-Map of sites where NAO-accounting models are selected by AICc and DIC 

criteria. 

 

2.9 Discussion and conclusion 

In this section, we analyzed the existence of temporal trends and NAO effects on annual 

maximum daily precipitation in the Mediterranean area. Through this study, we illustrated the 

usage of the local modeling framework for describing precipitation extremes, and highlighted 

its flexibility and generality. 

With a pre-specified GEV parent distribution, we compared six regression models under 

three hypotheses of stationarity, temporal trend only, and both temporal trend and NAO effect. 

Comparing the posterior distributions of parameters and using model selection criteria, we 

found no conclusive evidence of an impact of NAO. Although some evidence of a temporal 

trend may exist, it is still difficult to identify it at the local scale due to the insufficient 

observations and large uncertainties. 

This case study could be further developed in several ways. Firstly, annual average 

values of NAO are used in this study. This temporal resolution may be too coarse to detect a 

significant effect of NAO: the NAO effect may be strong during some periods, but weak 

during other periods. Thus, studying the effect of NAO at the seasonal scale may yield 

different conclusions. 

Secondly, since the sample sizes are not sufficient to provide a precise estimation for 

each regression parameter, making an extrapolation for a high return period will lead to large 
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uncertainties. One solution to increase the sample size is to extract data by the peak over 

threshold (POT) method [Lang et al., 1999]. However, the problem might more 

fundamentally reflect the inherent limitation of identifying temporal variations at the local 

scale, especially for extremes. Another more promising solution would therefore be to move 

from a local to a regional analysis.  

When looking at the boxplots of different parameters (e.g. trend parameters: Figure 3.17, 

shape parameter: Figure 3.20), the boxes in the same zone have similar values. For instance, 

in Figure 3.17, boxes for sites in zone 1 (green) are close to 0 and are similarly ranging from  

-0.5 to 0.5. The shape parameter (Figure 3.20) for sites within the same zone also reveals 

consistency. It indicates that such parameters could be assumed identical for all sites within 

each region. Thus, in a regional model, we could set common parameters for different sites, 

which may yield a more precise estimation on these parameters, and hence obtain a more 

robust identification of temporal signals. 

In the following chapter, we will introduce a regional modeling framework to implement 

such regional analyzes. 

 

Figure 3.20-Boxplot of the shape parameter for all 92 sites in the model ,

,

t NAO

t NAOGEV . 

Each color denotes one zone. 

 





 

 

Part II Time-varying frequency 

analysis framework: Regional model





 

 

CHAPTER 4 Development of a general spatio-temporal 

regional frequency analysis framework 

The case studies performed with local models highlighted that large uncertainties affect 

parameter inference and model predictions. To overcome this limitation, we extend the local 

modeling framework to the regional scale. In the regional modeling framework, data of all 

sites are clustered together to perform the inference. Spatial effects can also be considered at 

this regional scale. This chapter describes in details the building blocks of such spatio-

temporal RFA framework: spatio-temporal regressions, spatial dependence modeling as well 

as the parameter inference tools, diagnostic tools and model selection tools.  
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1 Regional model construction 

The objective of this section is to develop a general regional FA framework. Compared 

with the local model, the main advantage of the regional model is that spatial effects are 

considered. More precisely, in the regional model, two types of covariates are involved in 

addition to the temporal covariates used in Chapter 2: spatial and spatio-temporal covariates. 

Spatial effects can thus be integrated through regression functions linked to these two types of 

covariates. Moreover, the spatial dependence of data is considered with elliptical copulas in 

this framework. 

Figure 4.1 illustrates the general principle of the regional model. Observations Y of all 

sites at different time steps are used together. Through the local regression parameters loc  and 

regional regression parameters reg , both site-specific parameters and regionalized parameters 

can be expressed conveniently. This construction provides us with a flexible and convenient 

framework to model both the temporal variation and the associated spatial effects. The 

following sections describe in more details each building block of the regional model. 

 

 

Figure 4.1- Schematic of the Regional model 

 

1.1 Parent distribution  

In a regional context, data from several sites are used together. The notation in Chapter 2 

is hence modified to introduce spatial variations. Let ( , )Y s t  be the observation at site s and 

time t and     ( , ), , ,..., , , ,...,j kY s t j 1 2 p k 1 2 n  Y  be the collection of observed data at 

all p observation sites for n time steps. Similarly to the local model, a common distribution D 

is assumed for all sites, but with parameters varying in both space and time: 

 ( , ) ~ ( ( , ))Y s t D s tβ   (4.1) 



CHAPTER 4. SPATIO-TEMPORAL REGIONAL FREQUENCY ANALYSIS FRAMEWORK 73 

 

where   ( , ), , ,...,i(s,t) s t i 1 2 m   is the collection of all distribution parameters: m is the 

number of distribution parameters of D;  ,i s t   is the i
th

 distribution parameter at time t and 

site s. 

 

1.2 Spatio-temporal regression  

1.2.1 Three type of covariates 

Similarly to the local model, regressions are used to describe spatio-temporal variations 

in the parameters  ,i s t . However, the temporal variations of the local model are extended 

in the regional model to include three different kinds of covariates: 

 Temporal covariates  x t : e.g. time, SOI (Southern Oscillation Index), NAO (North 

Atlantic Oscillation); 

 Spatial covariates ( ) s : e.g. altitude, coordinates; 

 spatio-temporal covariates ( , )z s t  : e.g. temperature. 

 

Temporal covariates only change over time (but are common to all sites), and spatial 

covariates only change over sites (but do not change in time). Spatio-temporal covariates 

change over both these two dimensions. 

 

1.2.2 Construction of regression models: a two-step approach 

The regional regression is established in two steps: specification and spatialization. The 

first step establishes site-specific regressions with temporal and spatio-temporal covariates. 

The second step establishes a spatial model with the spatial covariates (see Figure 4.1):  

 

1. Specification step: specify the time model using at-site regressions for a distribution 

parameter ( , )i s t  : 

For a given site s:  

  1( , ) ( ( ), ( , ); ( ))i i is t l h  x t z s t s   (4.2) 

where 1

il
  is the inverse link function, ih  is the regression function, x and z are temporal 

and spatio-temporal covariates, and ( )s  are the regression parameters.  This step is 

exactly the same as the regression with temporal covariates for a local model, as 

introduced in Chapter 2 (Section 1.2). 

2. Spatialization step: regression parameters ( )s  are split into two groups: 

( )( ) { ; ( )} s

loc
s s   , where 

( ) s

loc  is the collection of purely local parameters, whose value 

remains specific to each site s, and ( ) s represents all the parameters waiting to be 
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spatialized. For each of its component ( )s , we apply a spatial regression function. This 

spatial regression is time-invariant: neither spatial regression parameters nor covariates 

change over time. Hence, at this step, only regional parameters and spatial covariates are 

used. Thus a spatial regression function g is introduced: 

  1( ) ( ( ); )s l g   
reg

s   (4.3) 

where 1l is the inverse link function, ( ) s  is a vector of spatial covariates and 
reg

 is a 

vector of regional regression parameters (identical for all sites). For abbreviation, ( ) s

loc
 

and 
reg

 are called local and regional R-parameters, respectively. 

 

This two-step mechanism is very general and corresponds to a standard regionalization 

reasoning. As an illustration, consider the following “trend analysis” situation: the mean of 

some hydrologic variable is assumed to be a linear function of time (step 1, specification). 

Then, the slope of this trend may be allowed to vary across sites according to elevation (step 2, 

spatialization). This two-step mechanism also provides a simple way to develop a hierarchical 

model in future work, in which a random spatial term could be added directly into step 2. 

The following specification illustrates this situation in more details. We assume that the 

random variables  ,Y s t  follow a non-stationary Poisson distribution (one-parameter 

distribution) with time t as the temporal covariate and elevation el(s) as the spatial covariate. 

We are going to establish a model in which the distribution varies with t and the slope on t 

varies with the elevation el(s) of each site. The two-step procedure is as follows: 

 ( , ) ~ ( ( , ))Y s t Pois s t   (4.4)  

Step 1:  ( )( , ) exp ( )*s

locs t s t      (4.5) 

Step 2: 
1 2

( ) * ( )reg regs el s      (4.6) 

Therefore, the spatio-temporal regression model for ( , )s t is 

  
1 2

( )( , ) exp * ( ) *s

loc reg regs t el s t      , where 
1 2
,reg reg   and  1 2

( )( ) ( )( ) , ,..., pss ss

loc loc loc loc    are 

the regression parameters that need to be estimated. The exponential inverse link function is 

used since the parameter of a Poisson distribution should be positive. 

 

1.2.3 Example of spatio-temporal regression models 

According to the two-step procedure, the general framework enables establishing 

regression functions for various specific hypotheses. Table 4.1 lists some examples of spatio-

temporal models that can be constructed in this way. 
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Table 4.1-Example of spatio-temporal regressions. 

 Regression model Two steps Hypothesis 

1 
( )( , ) s

locs t t    
( )) ( , )

)

s

loci s t t

ii

  
  

Stationary, 

site-specific model 

2 ( , ) ,regs t s t    1

1

) ( , ) ( )

) ( ) reg

i s t s t

ii s s

 

 

 

 
  

Stationary, 

purely regional model 

3 
1 2

( ) ( )( , ) ( )s s

loc locs t x t     
1 2

( ) ( )) ( , ) ( )

)

s s

loc loci s t x t

ii

   
  

Time-varying, 

purely local model 

4 
1 2

( , ) ( )reg regs t s      

1 2

1

1

) ( , ) ( )

) ( ) ( )reg reg

i s t s

ii s s

 

   



 
 

Stationary model with 

trend in space 

5 
1 2 3

( , ) ( ) ( )reg reg regs t s x t        

1 2

3

1 2

1

2

) ( , ) ( ) ( ) ( )

) ( ) ( )

( )

reg reg

reg

i s t s s x t

ii s s

s

  

   

 

 

 



 

Separable space and 

time effects 

6 
1 1 2

( )( , ) [ ( )] ( )s

loc reg regs t s x t      

 
1

1 2

( )

1

1

) ( , ) ( ) ( )

) ( ) ( )

s

loc

reg reg

i s t s x t

ii s s

  

   

 

 
 

Trend in time,  

with slope varying in 

space 

7 
1 2

( , ) ( , )reg regs t z s t     

1

2

1 2

1

2

) ( , ) ( ) ( ) ( , )

) ( )

( )

reg

reg

i s t s s z s t

ii s

s

  

 

 

 





 

Space and time effects 

through a spatio-

temporal covariate 

 

For implementation convenience, we opted for the use of this 2-step procedure in the 

thesis, rather than directly implementing the regression models in the first column of Table 4.1. 

In fact, with quite simple building blocks, it becomes possible to build fairly complex spatio-

temporal regressions, which is easier than re-writing a new spatio-temporal regression 

function at each case study. 

 

1.3 An illustration of the regional model 

We use the same example as introduced in Chapter 2 (Section 1.3). But this time, we 

assume that the temporal trend in the region is site-specific and the impact of SOI depends on 

the distance to the sea SeaDist(s) of each site s. Figure 4.2 illustrates the schematic for 

modeling the location parameter μ(s,t). Step 1 gives the temporal regression using the 

temporal covariates t and SOI. Step 2 specifies the spatial regression on the parameter 

quantifying the effect of SOI, using the spatial covariate SeaDist. 
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Figure 4.2-Schematic for the construction of spatio-temporal regressions. 

 

1.4 Accounting for spatial dependence between sites 

In a region, the observations from different stations are in general not completely 

independent. Two nearby stations are more likely to record the same rainfall episode than two 

stations farther away from each other: the dependence between close sites is hence higher.  

There exist several ways to model this dependence. In this thesis, we opt for the use of 

copulas. Max-stable processes are an interesting alternative, especially in the context of 

extremes, but they are not considered in the proposed framework for the following reasons: 

 

1. Max-stable processes are only suitable for extreme data, but the framework we propose 

is not restricted to extreme value distributions and leaves the choice of the marginal 

distribution open (see Eq (4.1)): in this respect, using max-stable processes would result 

in an important loss of generality. 

 

2. Estimation of max-stable processes is challenging due to the difficulty of computing the 

whole likelihood. Pragmatic solutions based on the use of “composite likelihoods” have 

been proposed within a maximum-likelihood estimation context (see [Padoan et al., 

2010] for further discussion). In this thesis, we choose to use the Bayesian inference 

framework which enables a straightforward quantification of parameter and predictive 
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uncertainty. For max-stable processes, development of a Bayesian inference framework 

is very challenging and not yet available.  

 

An analysis of the difference between the maximum stable process and a Gaussian 

copula on the extreme data will be discussed in the next chapter. 

 

Copulas are used to build a joint distribution from a set of marginal distributions [Sklar, 

1959]. For a p-dimensional multivariate random variable 1 2, ,( ),  pY Y Y Y  with marginal 

cumulative distribution functions (cdf) F1,F2,…,Fp, a copula is a function C : 

 
1 1 2 2 1 2

:[0,1] [0,1]

( ( ), ( ),..., ( )) ( , ,..., )

p

p p p

C

F y F y F y F y y y


  (4.7) 

where F is the joint cdf of the random variable Y. 

Sklar [1959] showed the existence of such a function and pointed out that if the marginal 

distributions are continuous, then the copula C is unique. Some further analyses of the usage 

of copula have been proposed by these authors, amongst many others: Favre et al. [2004], 

Bardossy and Li [2008], Bardossy and Pegram [2009] , Renard and Lang [2007] and 

AghaKouchak et al. [2010]. 

Due to the convenience in highly dimensional setups (which is typically the case with 

spatial datasets) [Renard, 2011], elliptical copula are favored in our framework. The elliptical 

copulas are linked to elliptical distributions [Genest et al., 2007]. The two most commonly 

used are the Gaussian copula and the Student copula. In practice, these two copulas are very 

convenient since the modeling of spatial dependence is related to the properties of 

multivariate Gaussian and Student distributions, which are already well known. In particular, 

both copulas are parameterized by a symmetric matrix Σ representing pairwise dependence 

between sites. 

The joint cdf using a Gaussian/Student copula is defined as follow: 

 1 2 1 2( , ,..., ) ( , ,..., )p pF y y y G u u u    (4.8) 

where 

1( ( )), {1,2,..., }i i iu F y i p   , with   the cdf of a univariate standard Gaussian/Student 

distribution; 

G  is the cdf of a multivariate Gaussian /Student distribution with correlation matrix Σ (the 

degree of freedom of the Student distribution is made implicit in the notation). 

 

The dependence matrix Σ represents pairwise dependence between sites: for any  i js s , 

 ,  i js s  quantifies the dependence between 
iu  and 

ju  . This dependence is modeled by a 

function of the distance between two sites: 
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 ( , ) (|| , ||, )i j i js s s s      (4.9) 

where ||.|| is the distance function and  is the dependence model function whose variables are 

the distance and the dependence parameters η. 

The dependence calculated with Eq(4.9) is termed a “pseudo-correlation” between sites, 

because it corresponds to the correlation of the transformed variables  
1,i i p

u


 in Eq(4.8), 

rather than the correlation of the raw observations  
1,i i p

y


. 

 

1.5 Parameter inference 

Incorporating the elliptical copula described in Section 1.4, the joint pdf of the data at a 

fixed time kt is computed as follows. The joint pdf is obtained by differentiating equation 

(4.7): 

  1 2( , ), ( , ),..., ( , ) | ( , ), {1,2,..., }, {1,2,..., } ,k k p k i j kf y s t y s t y s t s t i m j p      

 
1

1, 2, ,

,

1

( ( , ) | ( ( , ), {1,2,..., }))

( , ,..., | )

( )

p

j j k i j k

j

k k p kp

j k

j

f y s t s t i m

u u u

u











 
 

  
 
 
 




   

 

( )

1

1, 2, ,

,

1

( ( , ) | , )

( , ,..., | )

( )

p
j

j j k

j

k k p kp

j k

j

f y s t

u u u

u







 
 
  
 
 
 





 



loc reg

  (4.10) 

where 

( ( , ) | ( ( , ), {1,2,..., }))j j k i j kf y s t s t i m   is the marginal pdf for site sj at time tk; 

  1

, ( , )j k j j ku F y s t  , with  the cdf of a univariate standard Gaussian/Student distribution; 

( )u is the standard Gaussian pdf or Student pdf with ν degree of freedom (the latter being 

made implicit in the notation); 

1, 2, ,( , ,..., )k k p ku u u is the multivariate Gaussian pdf (with mean=0, correlation matrix Σ) or 

multivariate Student pdf (with mean=0, correlation matrix Σ and degree of freedom ν, the 

latter being made implicit in the notation). 
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The derivation of the full likelihood uses a time independence assumption: 1 2,s t t   , 

Y(s,t1) is independent of Y(s,t2). Therefore, the full likelihood function ( | , , )f
loc reg

Y    for all 

time steps and all sites is the product of equation (4.10) applied to all n time steps.  

Similar to equation (2.4), the posterior pdf of the regression parameters is given as 

follows: 

 ( , , ) ( | , , ) ( , )f f f         
loc reg loc reg loc reg

Y Y   (4.11) 

where f(θloc, θreg, η) is the prior pdf. The posterior pdf of θloc, θreg ,η is estimated by the 

MCMC sampler [Renard et al., 2006a] described in Chapter 2 (Section 2.1). 

 

1.6 Missing values 

In any kind of dataset, missing values are inevitable. Especially in a hydro-

meteorological dataset, numerous missing values generally exist. For instance, extreme 

phenomena may cause measurement errors or make measuring equipment out of service. 

Moreover, using several stations together in a regional context generally leads to many 

missing values, because data availability varies from station to station. In data analysis, using 

appropriate methods to deal with the missing values is important to make the best of available 

data, while avoiding bias and improving the analysis quality.  

In terms of implementation, the easiest way is to remove data to derive a missing-value-

free dataset. If some missing values exist in some sites for a given time step, all data for this 

time step are rejected. The obvious drawback of this approach is that a lot of well-observed 

data are wasted: this approach is therefore not considered as an acceptable solution. 

A possible solution to avoid wasting data is to fill in the missing ones. Four techniques 

are often used to fill in the missing data: (i) use constant values, e.g. the mean of local 

observation; (ii) use correlated stations; (iii) random generated values from some distribution; 

(iv) data augmentation: consider the missing values as unknown quantities, which are 

estimated together with the model regression parameters. The first three techniques may not 

be reliable when many missing values exist in the dataset, since the manually filled data may 

change the statistical property of the original data (for instance, systematically filling missing 

values with the mean results in a loss of variability). The fourth technique, data augmentation, 

is a good alternative to avoid modifying the statistical properties of the original data. However, 

if there are many missing values in the dataset, there will be many more unknown quantities 

to be estimated, resulting in a large increase of computation time. 

In our framework, we decided to stick to the original dataset, rather than complete the 

data in some way, for the reasons of reliability and computation time. Thus we try to make the 

best use of the available dataset, without filling missing values or wasting non-missing ones. 

For a given time step, if missing values exist for some sites, we will just reject the missing 

sites, rather than all sites at this time step. This requires a careful implementation of the 

likelihood function computation. Our technique is to compute the likelihood function of all 

sites for each time step only through the non-missing sites. The missing sites at that time step 

will automatically be skipped. This implies that the number of sites used to compute the joint 
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distribution varies from time step to time step. Based on the time-independence hypothesis, 

the total likelihood is the product of the likelihood of each time step. For example, Figure 4.3 

illustrates the availability of data for 10 observation sites. Gray area represents the missing 

values. The likelihood function for time=0 to 50 will be computed using the last 5 sites only. 

For time= 70 to 80, it will be computed using site 1 to site 8, etc.  

The difficulty in this approach is related to the inversion of the spatial dependence matrix 

of the copula for the non-missing data sites. Indeed, this inversion is the computational 

bottleneck of the likelihood computation: inverting the matrix at each time step would result 

in a huge loss of computational efficiency. To overcome this issue, we identify the blocs made 

of the same non-missing data sites. The matrix is inverted once for each bloc and then stocked 

in memory to avoid repeating the calculation for another time step consisting of the same 

available sites. With this approach, only 5 matrix inversions are required for the example in 

Figure 4.3 (5 sites on bloc 0-30, 2 sites on bloc 31-50, 7 sites on bloc 51-60, 8 sites on bloc 

70-80, 10 sites on all other time steps). This is to be compared with the 200 matrix inversions 

that would be required with a naïve implementation. 

 

Figure 4.3-Illustration of data availability. Gray areas denote the missing data. 

 

1.7 MCMC sampling, model diagnosis and model comparison 

In the regional model, we use the same MCMC algorithms as introduced in Chapter 2 

(Section 2.1.2). The model diagnostic tool and model selection tools are similar to that in the 

local model described in Chapter 2 (Section 3). PP plot is used to graphically evaluate 

goodness-of-fit. For each site, the theoretical cdf for each time step is calculated using both 
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local R-parameters and regional R-parameters.  As in the local model, the plot of sorted cdf 

values  
1,

( )i i i m
F y


 against

1,1 i m

i

m 

 
 

 
should be close to diagonal for a good fit. 

For model selection, the DIC value is computed for the whole region based on the joint 

pdf calculated in Eq(4.10). Hence, various hypotheses are investigated together at a regional 

scale, rather than for specific sites. The generality and convenience of the regional framework 

is highlighted once again. 

 

2 Can the model detect spatio-temporal variations? Synthetic 

case studies  

The objective of this section is to check the numerical implementation of the regional 

modeling framework and to quantitatively assess the extent to which temporal variations and 

spatial effects can be detected with regional models. Two synthetic studies are discussed in 

this section. In both of them, data are assumed to be temporally independent. Data are 

spatially independent in the first case, while spatial dependence exists in the second case. In 

the first case, we demonstrate that usage of regional parameters can improve the identification 

of weak signals. In the second case, regression parameters are estimated both considering and 

ignoring the spatial dependence, in a preliminary attempt to evaluate the importance of spatial 

dependence modeling.  

 

2.1 Synthetic study 1 

In this case study, we simulate a dataset containing 10 observation sites  
1,10j j

s


 with 

200 time steps  
1,200k k

t


for each site. 

We also assume that data of sites 1 to 5 are missing for time t=1 to 50, data of sites 6 to 8 

are missing for t =30 to 60 and data of sites 9 and 10 are missing for t=70 to 80 as illustrated 

in Figure 4.3. In total, about 10% of the data are assumed to be missing. 

The altitude   
1,10j

jalt s


 is used as a spatial covariate and is generated from a uniform 

Unif(0,100) distribution. The 10 independently generated altitude values are shown in Table 

4.2. 

 

Table 4.2-Simulated altitude values for 10 sites. 

Site 1 2 3 4 5 6 7 8 9 10 

Altitude 32.99 12.21 95.17 17.33 93.64 45.52 91.96 38.33 10.56 95.48 
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2.1.1 First simulation: low-frequency temporal variability 

In this first simulation, the data are generated from a non-stationary 

 ( , ), ( , ), ( , )GEV s t s t s t    distribution with the following regression models: 

  1( , ) 20 0.2 ( ) cos(0.05 )s t alt s t     (4.12) 

 ( , ) 10s t    (4.13) 

 ( , ) 0.5s t     (4.14) 

Figure 4.4(a) shows the simulated data of site 9, and Figure 4.4(b) shows the data of all 

sites at time t = 61 to 65. The low-frequency temporal variability is clearly visible in the data 

(Figure 4.4) and should therefore be easily identifiable. 

We fit the simulated data with the following  ( , ), ( , ), ( , )GEV s t s t s t    regression 

model: 

Step 1: specification 

  
1

( )

1( , ) ( )cos s

locs t s t     (4.15) 

 
2

( )( , ) s

locs t    (4.16) 

 2( , ) ( )s t s    (4.17) 

Step 2: spatialization 

 
1 21( ) ( )*reg regs alt s      (4.18) 

 
32( ) regs    (4.19) 

In this regression model, 101 2

1 1 1 1

( )( ) ( )( ) ( , ,..., )
ss ss

loc loc loc loc    and 101 2

2 2 2 2

( )( ) ( )( ) ( , ,..., )
ss ss

loc loc loc loc    denote 

all the site-specific regression parameters, while
1reg , 

2reg  and 
3reg are regional regression 

parameters. Note that there is no model misspecification in this first case study: the model 

specified in equations (4.15)-(4.17) is consistent with the model used to generate the data 

(equation (4.12)-(4.14)). The only difference is that we assume that parameters controlling the 

frequency of the oscillation 
1

( )s

loc are site-specific, while data have actually been generated by a 

unique regional parameter, which is equal to 0.05. 
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(a)  Simulated data for site 9 
(b) Simulated data for all sites at time steps 

t=61 to 65 

 

 

Figure 4.4-Illustration of the first simulated dataset 

 

We estimate the posterior distribution of all regression parameters using MCMC 

sampling. Flat priors are used for all regression parameters. As the cosine function is 

symmetric around zero, the priors of 
1

( )s

loc are restricted to positive values. The starting value 

for 
1

( )s

loc ,
2

( )s

loc , 
1reg ,

2reg  and 
3reg are 0.01, 20, 10, 0.1 and 0, respectively. This correspond to 

very poor starting values given the true values of these parameters (0.05, 10, 20, 0.2 and -0.5 

respectively).  20000 MCMC iterations are performed. 

Figure 4.5 shows the MCMC sequences for the three regional parameters 
1reg  (intercept 

of the elevation regression), 
2reg (slope of the elevation regression) and 

3reg  (regional shape 

parameter). Figure 4.6 and Figure 4.7 present the MCMC sequences for the local regression 

parameters 
1

( )s

loc  (controlling the frequency of the cosine function) and 
2

( )s

loc  (local scale 

parameters). In this first case study, MCMC simulations for all parameters immediately 

converge around the true values, despite the poorly-chosen starting points. Sometimes, the 

true value may be located at the edge of the posterior distribution (e.g. Site 8, Figure 4.7), 

which is due to the random variation of the parameters rather than the estimation problem. 

This positive result builds confidence into the correct implementation of the regional 

framework, and the efficiency of the MCMC sampler. However, as mentioned previously, the 

temporal variability was quite visible in the data (Figure 4.4(a)). The next simulation setup 

considers a more challenging situation, where the temporal signal is much less evident. 
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Figure 4.5-MCMC sequences for the three regional R-parameters. 
1reg is the intercept 

of the elevation regression, 
2reg  is the slope of the elevation regression and 

3reg is the 

shape parameter. 

 

 

 

Figure 4.6-MCMC sequences for the local R-parameters 
1

( )s

loc  (controlling the 

frequency of the cosine function) at all 10 stations 

 

2.1.2 Second simulation: high-frequency temporal variability 

In this second test, we want to increase the frequency of the cosine function and verify 

whether the MCMC chains still converge. We replaced the parameter 0.05 of the cosine 

function of Equation (4.12) by 0.25, while the scale and shape D-parameters (Eq (4.13),(4.14)) 

remain the same. Thus the equation (4.12) becomes: 

  2( , ) 20 0.2 ( ) cos(0.25 )s t alt s t     (4.20) 

Figure 4.8 shows the newly simulated data for site 9. The frequency is much increased 

compared with the first simulation (Figure 4.4). As a result, the underlying cosine temporal 

signal is much less visible in the data and should therefore be more difficult to identify.  
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Figure 4.7-MCMC sequences  for the local R-parameters 
2

( )s

loc  (scale parameters) at all 

10 stations 

 

Regression model 1 

We start by using the same regression functions as in the previous simulation (equations 

(4.15)-(4.19)). The starting point of 
1

( )s

loc  is set to 0.3, and the other regression parameters use 

the same starting points as in the previous simulation. Figure 4.9 and Figure 4.10 present the 

MCMC sequences for the 20 local regression parameters 
1

( )s

loc  and
2

( )s

loc . Most of them still 

converge to the true values. However, both parameters 2

1

( )s

loc and 2

2

( )s

loc of site s2 do not converge 

to the true values. A significant gap exists between the true value (red line) and the MCMC 

sequence (black points). For the shape parameter 
3reg  (Figure 4.11), the true value -0.5 is at 

the very limit of the distribution tail when estimated with a bad starting point. A clear 

convergence problem is raised in this simulation. 

 

Figure 4.8-Illustration of the second simulated dataset. 
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Due to the large number of R-parameters in this model, the current MCMC sampler was 

not able to converge to the true values for all parameters. To verify it, we adjusted the starting 

points by setting all the regression parameters to the true values. Figure 4.9, Figure 4.10 (cyan 

lines) show that all the regression parameters converge immediately to their true values when 

starting with the good points.  

 

 

 

Figure 4.9-MCMC sequences for the local R-parameters 
1

( )s

loc  (controlling the 

frequency of the cosine function) at all 10 stations. The red line is the true value. The 

black points show the MCMC sequence with a bad starting point and the cyan line 

sow the MCMC sequence with the true value as starting point. 

 

 

 

Figure 4.10-MCMC sequences for the local R-parameters 
2

( )s

loc  (scale parameters) at 

all 10 stations. The red line is the true value. The black points show the MCMC 

sequence with a bad starting point and the cyan line show the MCMC sequence with 

the true value as starting point. 
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Figure 4.11-Posterior distribution of the shape parameter 

 

To evaluate the influence of different starting points, we launch 4 parallel chains with 

different starting points. Figure 4.12 presents the local R-parameters 
1reg (left) and 

2reg  

(right) of site 2. Among the four chains, two converge to the true values (green and cyan are 

overlapped), and two (blue and black) do not. This example illustrates the benefit of using 

parallel chains in MCMC sampling: it increases the chance to detect a convergence issue. In 

this particular case, the convergence failure at site 2 would be easily detected by the Gelman-

Rubin criterion. 

There are several possible explanations for the false convergence or non-convergence of 

the MCMC sampler. The reason of such problems mainly comes from two aspects: (i) the 

MCMC sampler is not powerful enough; (ii) the posterior distribution has a very complex 

surface, including multimodality, many small local modes, etc. The latter possibility typically 

arises when the number of observation is not sufficient to support the identification of the 

regression model, or when the regression model is poorly specified.  

 

 

Figure 4.12-MCMC sequences for local R-parameters 2

1

s

loc (left) and 2

2

s

loc (right) of site 2 
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Figure 4.13- Scatterplots of the sampled 2

1

s

loc values of site 2 vs. the corresponding (un-

normalized) posterior pdf. The left (right) panel corresponds to the black (cyan) 

chain in Figure 4.12. 

 

In order to investigate the geometry of the posterior distribution, we report in Figure 4.13 

the ‘dotty plots’ [Wagener and Kollat, 2007] for parameter 2

1

s

loc , which are the scatterplots of 

the sampled 2

1

s

loc values vs. the corresponding (un-normalized) posterior pdf. It suggests that in 

this region of the parameter space, two modes having very similar heights exist. The right 

panel shows the convergent chain, and confirms that this region of the parameter space has a 

higher posterior value. Overall, Figure 4.13 confirms that the posterior surface is quite 

complex, including multiple secondary modes where MCMC chains with poor starting values 

can easily get trapped. This kind of posterior surface is typical of poorly-behaved inferences, 

and suggests that the model should probably be modified given the amount of available data.  

In this case study, as the frequency of the cosine function increases, the temporal signal 

becomes weaker (Figure 4.4 and Figure 4.8) and is thus more difficult to identify at some 

sites. Therefore, it is not very adequate to use local R-parameters for presenting the frequency, 

while a regional effect exists (in this case, the true frequency is the same for all sites). In the 

following, we are going to use a regional R-parameter, instead of local parameters, for the 

frequency of the cosine function. 

 

Regression model 2 

The first regression model has two local regression parameters. The first one controls the 

frequency of the cosine function and the second one is the scale. In this regression model, we 

want to assess whether the parameter presenting the frequency can be better identified if the 

signal is assumed to be common for all sites.  
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Under this assumption, the ten local R-parameters for the location D-parameter are 

reduced to one parameter. Then the regression models become: 

Step 1: specification 

  1 3( , ) ( )cos ( )s t s s t     (4.21) 

 
2

( )( , ) s

locs t    (4.22) 

 
2( , ) ( )s t s    (4.23) 

Step 2: spatialization 

 
1 21( ) ( )*reg regs alt s      (4.24) 

 
32( ) regs    (4.25) 

 
43( ) regs    (4.26)  

where 
1 2 3
, ,reg reg reg    and 

4reg are regional regression parameters and only 

101 2

2 2 2 2

( )( ) ( )( ) ( , ,..., )
ss ss

loc loc loc loc    are site-specific regression parameters. 

The starting points of
2

( )s

loc , 
1reg ,

2reg  and 
3reg  remain the same, and the starting point of 

4reg  is set to 0.3 as used for 
1

( )s

loc . Figure 4.14 presents the MCMC sequences of the four 

regional R-parameters. Although we use the same starting points as in the previous case which 

did not converge, the R-parameters converge very quickly with this regression model. This 

illustrates the benefit of regionalizing in the case of weak temporal signals: such signals are 

difficult to identify locally, while they may become much clearer at the regional scale. Of 

course, this benefit comes at a cost: we made the additional assumption that the frequency of 

the temporal signal is identical for all sites. The relevance of this assumption should be 

thoroughly assessed once estimation has been performed. 

 

2.2 Synthetic study 2 

In this study, we simulate a dataset whose properties are similar to that of a real 

hydrologic dataset. We assume to have data from 20 sites in a region, with 50 data available 

for each site. The time series are denoted by  
1,20; 1,50

( , )j k j k
Y s t

 
. 10% of the data are assumed 

to be missing (see Figure 4.15(a)). 
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Figure 4.14-MCMC sequences of the four regional R-parameters. The red line is the 

true value. 

 

2.2.1 Data generation 

We start by generating the spatial covariate, which is the distance to the sea coast 

SeaDist(s). The distance to the sea coast is calculated with the coordinates  
1,20

,
j js s

j
x y


 of 

each site. The x and y coordinates of the first 16 sites are independently generated from a 

uniform Unif(0,30) distribution. The coordinates of the other 4 sites are generated from a 

uniform Unif(0,200) distribution, which locates those four sites far away from the 16 first 

sites. The idea behind this simulation setup is to generate a bunch of highly (spatially) 

dependent data, and a few nearly-independent additional series. The coastline is supposed to 

be located at the equation -0.5x+y+60=0. Figure 4.15(b) illustrates the location of the stations. 

The distance to the sea coast of each site is listed in Table 4.3. 
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Table 4.3-Distance to sea 

Site 1 2 3 4 5 6 7 8 9 10 

Distance 55.8 77.8 46.7 65.3 58.5 47.9 56.0 53.3 72.6 55.2 

Site 11 12 13 14 15 16 17 18 19 20 

Distance 52.7 70.4 69.2 48.9 76.3 57.9 54.0 87.0 80.8 146.2 

 

(a) Data availability. Gray areas 

represent the missing values. 

 

(b) Location of the stations 

 

Figure 4.15-Data availability and location of the stations 

 

A Gaussian copula is used to build the inter-site dependence. The spatial dependence 

between sites si and sj is computed by the formula: 

  ( , ) exp 0.05*|| , ||i j i js s s s     (4.27) 

where || , ||i js s  is the distance between si and sj. Figure 4.16 shows the dependence function 

and the pseudo-correlation between the 20 sites. 
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Figure 4.16-Dependence-distance function. Red dots are the pseudo-correlations 

between all pairs of sites calculated by equation (4.27). 

 

Data of these 20 sites are generated with a non-stationary  ( , ), ( , ), ( , )GEV s t s t s t    

distribution. We assume that the temporal trend depends on the distance to the sea coast 

(Figure 4.17), which is shown through ( , )s t : 

  ( , ) 50 exp 0.01* ( ) *s t SeaDist s t      (4.28) 

 ( , ) 10s t    (4.29) 

 ( , ) 0.1s t     (4.30) 

 

Figure 4.17-Temporal trend with respect to the distance to the sea. Red dots denote 

the twenty sites. 
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2.2.2 Regression and parameter estimation 

Estimation is performed with two distinct models. Spatial dependence is considered in 

the first model using a Gaussian Copula. However spatial dependence is ignored in the second 

model. Both estimations use the following  ( , ), ( , ), ( , )GEV s t s t s t    regression model: 

Step 1: specification 

 
1

( )

1( , ) ( )s

locs t s t      (4.31) 

 
2

( )( , ) s

locs t    (4.32) 

 2( , ) ( )s t s    (4.33) 

Step 2: spatialization 

  
1 21( ) *exp * ( )reg regs SeaDist s     (4.34) 

 
32( ) regs    (4.35) 

where 201 2

1 1 1 1

( )( ) ( )( ) ( , ,..., )
ss ss

loc loc loc loc    and 201 2

2 2 2 2

( )( ) ( )( ) ( , ,..., )
ss ss

loc loc loc loc   are local regression 

parameters. 
1 2
,reg reg   and 

3reg  are regional regression parameters.  

For the first estimation, a Gaussian copula is used to describe the spatial dependence. 

The dependence-distance function is assumed to have the following form: 

  1 2( , ) *exp *|| , ||i j i js s s s      (4.36) 

where η1 and η2 are two parameters that need to be estimated. Flat priors are used for all 

parameters in both models.  

Figure 4.18 present the MCMC sequence of the two parameters controlling spatial 

dependence. It shows that these parameters can be identified quite precisely from the data. 

The posterior distribution of the local (Figure 4.20, Figure 4.21) and regional (Figure 

4.19) regression parameters shows that whether or not spatial dependence is considered, the 

MCMC sequences are consistent with the true values. However, our expectation was that the 

estimation without spatial dependence would tend to under-estimate the uncertainties, because 

data from close sites are potentially over-weighted if spatial dependence is ignored. As an 

illustration, consider the following situation: there are three sites in a region, two are very 

close to each other and the third is far away from them; if the spatial dependence is 

considered, there are only two effective data (those who are close to each other should be 

considered as one), otherwise, three data will be used in the estimation. Since the data are 

potentially reused while spatial dependence is not considered, the uncertainty is thus under-

estimated. However, in Figure 4.19, Figure 4.20 and Figure 4.21, the uncertainty of the two 

estimations does not show significant differences. If anything, a slight shift can be observed at 

some sites for the local R-parameters 
1

( )s

loc  and 
2

( )s

loc . The precise reasons for this behavior are 
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unclear at this stage, but the following causes could be considered: (i) the current GEV model 

has too many parameters, in which the uncertainties are shared by all these parameters. The 

difference of uncertainty between considering and ignoring spatial dependence is therefore 

not visible through one particular parameter; (ii) as the GEV distribution is sensitive to the 

shape parameter, a slight difference on the shape parameter can therefore mask such 

difference of uncertainty on the location and scale parameters. 

In this section, we are not going to provide further investigation on the reason why the 

difference of uncertainty between the two estimations is not visible. It motivates us to make it 

clear that whether our expectation holds in our RFA framework. We are going to answer this 

question in the next Chapter. 

 

Figure 4.18-MCMC sequences of the dependence function parameters. The red line 

denotes the true value. 

 

 

 

Figure 4.19-MCMC sequences of the regional R-parameters 
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Figure 4.20-Posterior distribution of 20 local R-parameters 
1

( )s

loc   
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 Site 1 Site 2 Site 3 Site 4 

 
 Site 5 Site 6 Site 7 Site 8 

 
 Site 9 Site 10 Site 11 Site 12 

 
 Site 13 Site 14 Site 15 Site 16 

 
 Site 17 Site 18 Site 19 Site 20 

 

Figure 4.21-Posterior distribution of 20 local R-parameters 
2

( )s

loc  
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3 Conclusion on the spatio-temporal regional model 

In this chapter, we describe a general spatio-temporal regional frequency analysis 

framework, geared towards detecting and quantifying the effect of climate variability and/or 

temporal trends on hydrological variables. Compared with the covariates in the local 

framework (only varying with time), the covariates in the regional framework are of two other 

types: they may vary in space or in both time and space. Thus three types of covariates are 

introduced in the regional model: temporal, spatial and spatio-temporal. These three types of 

covariates play different roles in the regression functions, especially the spatial covariates 

which are used to describe the spatial effects by means of a spatial regression function. 

The flexibility of the framework provides a convenient way to compare various models 

and to select the most relevant relationship between covariates and hydrological data. For the 

regional analysis, spatial dependence is incorporated using elliptical copulas and a Bayesian 

approach is used for inference to enable uncertainties to be easily quantified. The use of a 

Bayesian regional framework provides the opportunity to assess the value of regional 

information in better identifying the impact of climate variability and temporal trends on 

hydrological variables (extremes in particular). 

Two synthetic case studies were performed to illustrate the implementation of the 

regional model. The advantage of setting regional parameters is highlighted through the first 

case study by comparing the estimation results for the same regression model with 

respectively local parameters (regression model 1 of Section 2.1.2) and regional parameters 

(regression model 2 of Section 2.1.2). The advantage of using regional regression parameters 

to identify a weak signal was highlighted. 

In the second synthetic study, missing values and spatial dependence are taken into 

account in the regional model. Models considering or ignoring spatial dependence are 

compared. The advantage of considering spatial dependence in such a regional model still 

needs to be discussed, and will be the topic of the next chapter. 

Evidently, the regional model provides an estimation with less uncertainty than in the 

local model, since data from different sites are clustered to make the analysis. However, a bad 

choice for the regional parameter will also lead to unreliable predictions. Therefore it is also 

very important to determine which parameter in the regression model should remain local and 

which one can be spatialized. 





 

 

CHAPTER 5 On the treatment of spatial dependence 

This chapter focuses on the treatment of spatial dependence in the modeling framework 

described in Chapter 4. It aims at investigating two questions through two synthetic case 

studies.  

In the first case study, we investigate whether ignoring the spatial dependence lead to a 

demonstrable under-estimation of uncertainties in the estimation of marginal parameters. To 

this aim, we compare the estimations obtained with a model using a Gaussian copula and a 

model assuming spatially independent data.  

The second case study focuses on extremes and compares a copula-based modeling of 

spatial dependence and the use of maximum stable processes. More precisely, we investigate 

the following questions: 

1. Is it acceptable to use a Gaussian copula to model data generated from a max-stable 

process if ones solely focus on the estimation of marginal parameters? 

2. What are the differences in terms of estimating joint or conditional probabilities of 

exceedance of high values for several sites?   
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1 Does ignoring spatial dependence leads to an under-

estimation of uncertainties? 

As discussed in Chapter 4 (Section 2.2), ignoring spatial dependence is expected to lead 

to the underestimation of uncertainties. The objective of this section is to confirm that this 

indeed holds in our regional framework, although this was hardly observed in Chapter 4 

(Section 2.2). 

To investigate this question, we estimate only one marginal parameter to avoid 

interactions with other parameters. In the following study, we consider 20 sites containing 50 

data without missing values.  

 

1.1 First simulation with a Gaussian parent distribution 

In the first simulation, data are generated with a non-stationary multi-dimensional 

Gaussian distribution  ( ), ( )N t t  , where  1 20( ) ( ),..., ( )t t t   is the mean and ( )t is 

the covariance matrix. For simplification, we assume that these 20 sites are located on a line 

with equal distance between two sites. Thus the correlation between two sites si and sj is 

assumed to be: 

 | |( ) i j

ijD      (5.1) 

where 0 1   is a constant. 

The dependence between sites will increase with . Thus for different value of , we are 

going to evaluate the difference between considering and ignoring spatial dependence. 

We further assume that ( )t is the same for all sites and ( )t is stationary. These 

parameters are specified as follows: 

 {1,2,...,20}, ( ) 20 0.1ii t t      (5.2) 

   | |, {1,2,...,20}, ( ) 25 25 i j

ij iji j D          (5.3) 

where t is the temporal covariate, which takes values from 1 to 50. 

For each value , the generated data ( , )s tY  are modeled with a Gaussian distribution 

with following regression functions: 

  1( , ) ~ 20 ,25Y s t N t    (5.4) 

where 1  is the only R-parameter to be estimated. We focus on this trend parameter because it 

corresponds to a major motivation behind the derivation of the regional modeling framework: 

we wish to improve the identification of trends or climate variability effects. 
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Spatial dependence is ignored in the first estimation, thus 
1  is the only parameter that 

need to be estimated. In the second estimation, spatial dependence is taken into account 

through a Gaussian copula with distance-dependence function is Eq(5.1). Two parameters 
1  

and 
est  therefore need to be estimated. Parameters are estimated using MCMC method under 

the Bayesian framework. In both estimations, flat priors are used. 

Figure 5.1 presents boxplots of the posterior distribution samples of 
est  with respect to 

the true value . The boxes are located on the diagonal, hence, true values of   can be 

accurately estimated. Furthermore, the uncertainty decreases as   increases, which means 

that when the dependence between sites is weak, the uncertainty of the dependence parameter 

becomes larger.  

 

Figure 5.1-Boxplot of the estimated est with respect to the true   for a Gaussian 

parent distribution 

 

Figure 5.2 presents the posterior variance of the trend parameter θ1, estimated from the 

posterior distribution samples, as a function of the true values of  . For the estimation 

ignoring spatial dependence, the posterior variance is almost constant, illustrating that the 

estimated uncertainty does not depend on the amount of spatial dependence existing in the 

data. Conversely, for the estimation considering spatial dependence, the posterior variance 

increases with the true dependence parameter : the estimated uncertainty is larger for highly 

dependent datasets, which is consistent with our expectation.  
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Figure 5.2-Posterior variance estimated from the MCMC samples of θ1.  

 

Figure 5.3 shows 90% credibility intervals of θ1. For the estimation ignoring spatial 

dependence, the size of 90% credibility interval remains almost the same, while for the 

estimation with copula, this size increases with the true dependence. This is fully consistent 

with the behavior of the posterior variance previously described. However, when the value of 

  increases, the 90% credibility interval of θ1 often does not comprises the true value of θ1 

when spatial dependence is ignored.  More precisely, out the 45 simulations carried out, only 

25 (~56%) are able to recover the true value θ1. By contrast, when spatial dependence is 

accounted for, the true value of θ1 is included in the 90% credibility intervals for all 45 

simulations but 3 (yielding a coverage of 93%, which is much more consistent with a 90% 

credibility interval). This confirms our expectation expressed at the beginning of this section 

that ignoring spatial dependence will lead to an underestimation of uncertainties. 

 

Figure 5.3-90% credibility interval of estimated θ1 with respect to . 
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1.2 Second simulation with a GEV parent distribution 

In this second simulation, we investigate whether the differences in terms of 

uncertainties discussed in Section 1.1 can still be observed for samples arising from a 

different distribution. Thus the Gaussian distribution is replaced by a GEV distribution in this 

section. 

Data are generated with a non-stationary  ( , ), ( , ), ( , )GEV s t s t s t    distribution, 

coupled with a Gaussian copula with dependence-distance relationship introduced in Eq(5.1). 

The GEV parameters are specified as follows: 

 , ( , ) 25 0.2s s t t     (5.5) 

 , , ( , ) 10s t s t    (5.6) 

 , , ( , ) 0.1s t s t     (5.7) 

where t is the temporal covariate, which takes its values from 1 to 50. 

For each value of the dependence parameter , the generated data ( , )s tY  are modeled 

with a GEV distribution with the following regression functions: 

  2( , ) ~ 25 ,10, 0.1Y s t GEV t     (5.8) 

where the trend parameter 2  is the only R-parameter to be estimated. 

Similarly as in the Section 1.1, two estimations are realized. One considers spatial 

dependence and the other ignores it. The distance-dependence function is still given by 

Eq(5.1). Thus, there are one ( 2 ) and two ( 2  and est ) parameters to be estimated in these two 

estimations. 

Figure 5.4 presents the boxplots of the posterior distribution samples of est  with respect 

to the true value . This figure is similar to Figure 5.1: the true value   is well estimated and 

the uncertainty grows when the value of   decreases. 

Figure 5.5 presents the posterior variance of the trend parameter θ2 estimated from the 

posterior distribution samples. As in Figure 5.2, the posterior variance is almost constant 

when dependence is ignored, while it increases with  when dependence is modeled with the 

copula. However, the increase in variance is less regular (less smooth) than in the previous 

case, especially for large .  
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Figure 5.4-Boxplots of the estimated est with respect to the true   for a GEV parent 

distribution 

 

Figure 5.6 shows the 90% credibility interval of θ2. The main conclusions are similar to 

that of Figure 5.3: ignoring spatial dependence leads to an underestimation of uncertainties, 

with the true value of   being often outside the 90% interval. More precisely, the coverage is 

around 60% when spatial dependence is ignored, against 93% when dependence is accounted 

for. Interestingly, the 90% credibility interval without the copula is sometimes not completely 

included in the interval obtained with the copula, and sometimes they are completely disjoint. 

In general, the results in both simulations match our expectation. Since the GEV-

simulated data have larger variability, skew and kurtosis than the Gaussian-simulated ones, 

the variation between the estimations is larger as well (they are less regular).  

 

Figure 5.5-Posterior variance estimated from the MCMC samples of θ2 
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Figure 5.6-90% credibility interval of estimated θ2 with respect to . 

 

1.3 Conclusion 

In this synthetic case study, we evaluated the difference between the estimations 

considering and ignoring spatial dependence. Consistently with our expectation, ignoring 

spatial dependence leads to an under-estimation of the parameter uncertainties. 

Two datasets are generated from time-varying Gaussian and GEV distributions, in which 

data are spatially dependent. These datasets are respectively modeled with a single-parameter 

Gaussian and GEV model. Although both of the estimation results are qualitatively in 

agreement, the estimation with the GEV model is less regular than the one with the Gaussian 

model.  

 

2 Spatial dependence for extremes: Copulas vs. maximum 

stable processes 

Copulas and maximum stable processes are two different approaches for modeling the 

spatial dependence of block maxima. In the general framework developed in this thesis, we 

opted for the use of copulas, because they are not specific to extremes and are hence more 

adaptable to a wide range of situations. Moreover, they can be easily incorporated into a 

Bayesian inference framework, which is not yet the case for max-stable processes. 

However, a multivariate distribution derived from an elliptical copula does not belong to 

the family of multivariate extreme value distributions. This raises questions on the suitability 

of elliptical copulas when the modeling framework is applied to extreme data. 
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The objective of this study is to illustrate the differences between max-stable processes 

and elliptical copulas in the description of data dependence. More precisely, we are interested 

in two distinct questions: 

1. Is using a copula to model data generated from a max-stable process an acceptable 

approximation as long as one is only interested in estimating marginal parameters (e.g. 

location, scale and shape parameters of local GEV distributions)? 

2. What are the differences in terms of estimating joint or conditional probabilities of 

exceedance of high values for several sites?   

 

2.1 Basics of maximum stable processes 

Maximum stable processes have been proposed for modeling the spatial dependency of 

extreme block maximum data. They are defined as follows: 

Suppose  
1,

( ) , d

i i n
Y s s


  are n independent identically distributed random fields in a 

multi-dimensional space d  (typically, d=2 for spatial data). If there exist suitable sequences 

( )na s  and ( ) 0nb s  , such that the limit 

 
1,...,

max ( ) ( )
( ) lim

( )

i n
i n

n
n

Y s a s
Z s

b s






   (5.9) 

exists for all ds , then Z(s) is a maximum stable process. 

Without loss generality on the characterization of maximum stable processes, the 

margins can be transformed to one particular extreme distribution. For the convenience, a unit 

Fréchet distribution is assumed:  

  
1

Pr ( ) expY s z
z

 
   

 
  (5.10) 

Thus, setting ( ) 0na s  and ( )nb s n , we obtain: 

  
1

Pr ( ) expZ s z
z

 
   

 
  (5.11) 

There are two most widely used characterizations of maximum stable processes known 

as the Smith model and the Schlather model. Details of these two models will be discussed in 

the following sections. 
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2.1.1 The Smith Model 

Let us start by considering a “rainfall-storms” construction. In an area of d , the 

intensity of the i
th

 storm episode is i .  We denote  ,i if s s  the amount of rainfall at position 

s from a storm with shape function f centered at is and intensity i . Then 

   ( ) max , , d

i i
i

Z s f s s s    (5.12) 

is the observation of maximum rainfall over independent storms in area of d . 

 

The Smith model [Smith, 1990] is often referred to as a “rainfall-storms” models 

illustrated above, which is defined as follows: 

Let  ( , ), 1i is i   denote the points of a Poisson process on 
*

d   with intensity 

measure 2 ( )d ds    where ( )ds  is a positive measure on d . Then Eq (5.12) is one 

characterization of a max-stable process, where  ( , ); , df t s s t  is a non-negative function 

such that: 

 ( , ) ( ) 1
d

f t s dt  , for all ds    (5.13) 

The Smith model defined in Eq(5.12) is a very a general form, whose margins are unit 

Fréchet: 

 

     

    

*

2 1

/ ,

Pr ( ) Pr # ( , ) : , 0

1
exp ( ) exp , ( ) exp

d d

d

z f t s

Z s z t f t s z

d dt z f t s dt
z

 

   




 

     

                
  

  (5.14) 

 where # means the number of element of the set. 

The joint distribution at two sites is given by setting   as the Lebesgue measure, and 

setting  0( , )f t s f t s   as a multivariate normal pdf centered at 0 and covariance matrix . 

Thus, the joint cdf at two sites is given by the following formula: 

   2 1
1 1 2 2

1 1 2 2

1 1 1 1
Pr ( ) , ( ) exp log log

2 2

z za a
Z s z Z s z

z a z z a z

    
            

    
  (5.15) 

where   is the standard Normal cdf, and 

 2 1Ta s s     (5.16) 

where 1 2s s s    is vector of s1, s2 coordinates difference.  

In particular, if 1 2z z z  , then the equation (5.15) becomes: 
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  1 2

2
Pr ( ) , ( ) exp

2

a
Z s z Z s z

z

  
      

  
  (5.17) 

Note that independence corresponds to 
2

a 
 
 

=1, which happens when a tends to 

infinity. This is the case when the distance between two sites tends to infinity. Therefore, the 

Smith model generates virtually independent values for very distant sites, which seems 

realistic for rainfall applications. 

The multivariate normal pdf f in d could also be replaced by some other pdf satisfying 

Eq(5.13), such as the Student pdf. In this study, we limit ourselves to using the Gaussian 

Smith model. 

Figure 5.7 illustrates two simulations of the Smith model in 2  with different covariance 

matrices. The figure on the left assumes non-correlation between x-axis and y-axis, and the 

figure on the right assumes a positive correlation between x-axis and y-axis. The fields 

generated by the Smith model are very smooth, which is a consequence of each individual 

storm having a deterministic Gaussian shape. This may seem at odds with real rainfall fields 

shown by e.g. radar images, which are much more irregular. The Schlather model presented in 

the next section addresses this issue. 

 

Figure 5.7-Two simulations of the Smith model with different covariance matrices. 

Left: Σ11= Σ22=200, Σ12= Σ21=0. Right: Σ11= Σ22=200, Σ12= Σ21=50. The data are 

transformed to unit Gumbel margins for viewing purposes. 

  

2.1.2 The Schlather Model 

Schlather [2002] described another characterization of max-stable processes, which is 

defined as follows: 

Let  , 1i i   denote the points of a Poisson process on *

  with intensity measure 2d  , 

and (.)Y  be a stationary process on d  such that  max(0, ( )) 1E Y s  . Then 
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  ( ) max max(0, ( ))i i
i

Z s Y s   (5.18) 

is one characterization of a max-stable process, where (.)iY  are iid copies of (.)Y .  

The main difference between the Smith model and the Schlather model is that the Smith 

model has a deterministic shape for the “storms” such as the multi-dimensional Normal pdf 

described in the previous section. However, the Schlather models do not impose a 

deterministic shape for each individual storm, but rather describe them as random processes 

(.)iY . Figure 5.8 presents an illustration of a field generated from the Schlather model, whose 

spatial structure seems more realistic for rainfall applications.  

The margins of the Schlather model defined in Eq(5.18) are unit Fréchet. The proof is 

similar to Eq(5.14) by changing the shape function f to the random process max(0, ( ))iY s . 

 

Figure 5.8-A simulation of Schlather model with Powered Exponential covariance, in 

which nugget, range and smoothness parameters are equal to 0, 3 and 1. 

 

The joint distribution at two sites is given by setting (.)iY  as a stationary standard 

Gaussian process with correlation function ( )h  such that  max(0, ( )) 1iE Y s  . Thus, the 

joint cdf at two sites is given by the following formula: 

   1 2
1 1 2 2 2

1 2 1 2

1 1 1
Pr ( ) , ( ) exp 1 1 2( ( ) 1)

2 ( )

z z
Z s z Z s z h

z z z z


   
               

  (5.19) 

where 0h   is the Euclidean distance between sites s1 and s2. Table 5.1 lists several 

commonly used correlation models for ( )h . 
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In particular, if 
1 2z z z  , the equation (5.19) becomes: 

  1 2

1 1 ( )
Pr ( ) , ( ) exp 1

2

h
Z s z Z s z

z

  
       

   

  (5.20) 

As ( )h  is positive, there is an upper limit for Eq(5.20), which is 
1 1

exp 1
2z

  
    
   

.  

Since independence would correspond to 
2

exp
z

 
 
 

, this implies that the Schlather model will 

never generate independent values, even for infinitely distant sites. This may be problematic 

for rainfall applications, since it is difficult to imagine how annual maxima at very distant 

sites could be dependent, given the physics of rainfall generation but also physical frontiers 

like orography. 

 

Table 5.1-Correlation functions for Schlather model 

Model Formula Condition 

Whittle-Matérn 
1

2 2

2
( )

( )

h h
h K

c c







    
    
    

  2 0, 0c     

Cauchy 

2

2

( ) 1
h

h
c







  
    
   

  2 0, 0c    

Powered Exponential 
2

( ) exp
h

h
c




  
   
   

  2 0, 0 2c     

Bessel  2

2

2
( ) 1

c h
h J

h c



 
  

     
   

  
2

2
0,

2

d
c 


   

where c2 and υ are the range and smooth parameters, Γ is the gamma function, and Jυ and Kυ 

are the Bessel and modified Bessel functions. 

 

2.2 Gaussian copula inference with various spatial data 

In this section, we aim to investigate whether the Gaussian copula model provides 

correct parameter inferences for the data generated from maximum stable process. 

 

2.2.1 Moderate dependence data 

We suppose that there are 20 observation sites in a region. Each site contains 50 years of 

data. The coordinates (in kilometer) of these 20 sites are generated from a uniform 

distribution Unif[0,200].  
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At each replication, data are generated with a GEV distribution, in which a temporal 

trend exists on the location parameter. The GEV parameters are specified as follows: 

 , ( , ) 30 0.01s s t t     (5.21) 

 , , ( , ) 10s t s t    (5.22) 

 , , ( , ) 0.1s t s t     (5.23) 

In the moderate dependence case, spatial dependence is modeled with a Gaussian copula 

and a Smith model, respectively. The Schlather model is not considered in the moderate 

dependence case, because a limit exists for the spatial dependence of Schlather models, thus 

low dependence data cannot be simulated. Figure 5.9 and Figure 5.10 present one simulated 

storm with the Gaussian copula model and the Smith model. The corresponding dependence 

function for the Copula is  exp 0.03*|| , ||ij i js s   , and the covariance matrix for Smith 

model is 11 22 100   and 12 21 0   . We use the R package “SpatialExtremes” 

developed by Dr. M. Ribatet to generate data. Note that the parameters used for the Gaussian 

copula and the Smith model correspond to the typical dependence observed in real rainfall 

data (see e.g. Renard et al. [2013]). 

 

 (a) (b) 

 

Figure 5.9-(a) Simulated field with a Gaussian Copula for the moderate dependence 

case. Black dots are the observation sites. (b) Corresponding dependence-distance 

function. Gray dots are the correlation between pairs of sites, estimated from 50 

replicated fields. The black curve is an exponential correlogram, fitted to the 

pairwise correlations using least squares. 
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 (a) (b) 

 

Figure 5.10-(a) Simulated field with a Smith model for the moderate dependence case. 

Black dots are the observation sites. (b) Corresponding dependence-distance function. 

Gray dots are the correlation between pairs of sites, estimated from 50 replicated 

fields. The black curve is an exponential correlogram, fitted to the pairwise 

correlations using least squares. 

 

The simulated data are modeled with the following GEV distribution, in which all the 

parameters are regional: 

  0 1( , ) ~ , ,Y s t GEV t      (5.24) 

and the dependence-distance function of the Gaussian copula is: 

   1, Σ , exp( *|| , ||)i ji j i j s s      (5.25) 

where || , ||i js s is the distance between site si and sj. 

The GEV parameters are estimated both considering and ignoring copula. Figure 5.11 

shows the estimation results based on 100 replications of (20 sites * 50 years) datasets. For 

readability, the 100 replications have been reordered by increasing values of parameters 

estimated with the Gaussian copula. Note however that, for one given replication in this figure, 

the estimations with and without copula are performed on exactly the same simulated dataset. 

For the data generated with the Gaussian copula model, the 90% credibility intervals 

cover the true value with a rate very close to 90% for all parameters. However, ignoring 

spatial dependence leads to the under-estimation of uncertainty: a lower coverage rate of the 

true value is detected, which is consistent with the result of Section 1.2. More precisely, this 

under-estimation of uncertainty is particularly noticeable for the location and the trend 

parameters, with coverage rates of 65% and 69%, respectively. 
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Data generated with Gaussian copula model 

 
Data generated with Smith model 

 

Figure 5.11-90% credibility intervals of the regression parameters for the moderate 

dependence case. For each parameter, replications are sorted according to the 

posterior mean of the copula-based estimation.  
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For the data generated with the Smith model, the estimation results with the Gaussian 

copula are good for the location, trend and scale parameters. Ignoring spatial dependence still 

leads to an under-estimation of uncertainty for these three parameters. However, for the shape 

parameter ξ, the coverage rate is too low for both estimations. Moreover, the true value tends 

to be slightly over-estimated when considering spatial dependence. This result suggests that 

the use of a Gaussian copula, while improving the coverage rate for the location, trend and 

scale parameters, induces a slight bias for the shape parameter. 

 

2.2.1 High dependence data 

In the high dependence case, data are generated with the same GEV distribution with 

parameters shown by Equations (5.21) (5.22) and (5.23). The spatial dependence is modeled 

with a Gaussian copula, the Smith model and the Schlather model (with Whittle-Matérn 

correlation). The dependence function for the Copula is  exp 0.06*|| , ||ij i js s   . The 

covariance matrix for the Smith model is 11 22 300   and 12 21 0   . For the Schlather 

model, nugget, sill and range of the Whittle-Matérn correlation function are 0, 1 and 30, 

respectively. Figure 5.12, Figure 5.13 and Figure 5.14 present one simulated field simulated 

by these three models. The simulated data are fitted with the same model as in the moderate 

dependence case (Eq(5.24)(5.25)). 

 

 (a) (b) 

 

Figure 5.12-(a) Simulated field with a Gaussian Copula for the high dependence case. 

Black dots are the observation sites. (b) Corresponding dependence-distance function. 

Gray dots are the correlation between pairs of sites, estimated from 50 replicated 

fields. The black curve is an exponential correlogram, fitted to the pairwise 

correlations using least squares. 
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 (a) (b) 

 

Figure 5.13- -(a) Simulated field with a Smith model for the high dependence case. 

Black dots are the observation sites. (b) Corresponding dependence-distance function. 

Gray dots are the correlation between pairs of sites, estimated from 50 replicated 

fields. The black curve is an exponential correlogram, fitted to the pairwise 

correlations using least squares. 

 

 (a) (b) 

 

Figure 5.14- (a) Simulated field with a Schlather model for the high dependence case. 

Black dots are the observation sites. (b) Corresponding dependence-distance function. 

Gray dots are the correlation between pairs of sites, estimated from 50 replicated 

fields. The black curve is an exponential correlogram, fitted to the pairwise 

correlations using least squares. 

 

The GEV parameters are estimated both considering and ignoring dependence. Figure 

5.15 show the estimation results of 100 replications with data dependence simulated by a 

Gaussian copula. More evident than in Section 2.2.1, when ignoring the spatial dependence, 
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the coverage rate of the true value significantly drops for the location, trend and scale 

parameters, while it remains very close to 90% with the copula model: this highlights the 

advantage of the copula model by considering the spatial dependence. However, results are 

not as convincing when data are generated from max-stable models (Figure 5.16). Using a 

Gaussian copula significantly improves the coverage rate for the location and trend 

parameters. However, the Gaussian copula tends to over-estimate the shape parameter ξ, 

yielding a quite low coverage rate for this parameter.  

 

 

Figure 5.15-90% credibility intervals of the regression parameters for the high 

dependence case. Data are simulated with a Gaussian copula model. For each 

parameter, replications are sorted according to the posterior mean of the copula-

based estimation. 

 

2.3 Comparison with different spatial dependence models 

In this section, we aim to investigate the differences in terms of estimating joint or 

conditional probabilities of exceedance of high values for several sites with different spatial 

dependence models. Spatial datasets are generated with a moderate dependence Smith model. 

These data are modeled with different spatial dependence models, including max-stable 

processes and copulas. Joint and conditional probabilities of exceedance are computed with 

both the estimated and the true marginal parameters. 
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Data generated with Smith model 

 
Data generated with Schelather model 

 

Figure 5.16-90% credibility intervals for the regression parameters for the high 

dependence case. Data are simulated with Smith and Schlather models. For each 

parameter, replications are sorted according to the posterior mean of the copula-

based estimation. 
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2.3.1 Data simulation 

Similar to Section 2.2, we suppose that there are 20 observation sites in a region. Each 

site contains 50 years of data. The coordinates (in kilometer) of these 20 sites are generated 

from a uniform distribution Unif[0,200]. Data are generated with a Gaussian Smith model. To 

facilitate the analysis of the spatial dependence, we assume that the GEV parameters do not 

vary with time. Thus data are generated from a GEV(30,10,-0.1), and the covariance matrix 

for the Smith model is 
11 22 200    and 

12 21 0   .  Figure 5.17 presents the simulated 

data with the Smith model for one time step. Blue dots denote the location of observation 

stations. 

 

Figure 5.17-Simulated data with the Smith model at one time step. Blue dots are the 

observation stations. Color represents the intensity. 

 

2.3.2 Inference on posterior distributions 

The simulated data are modeled with a GEV distribution under different spatial 

dependence model assumptions listed in Table 5.2. Estimation with the Gaussian copula uses 

the general framework developed in Chapter 4. The dependence-distance function of the 

Gaussian copula is given by: 

   1, Σ , exp( *|| , ||)i ji j i j s s      (5.26) 

Estimation with maximum stable processes uses the R package “SpatialExtremes”. 

Data are modeled with a stationary  , ,GEV     model. In total, 1 2, , , ,      are the 

five R-parameters that need to be estimated. A uniform Unif[0,1] prior is used for θ2 and flat 

priors are used for the other four parameters. Figure 5.18 presents the posterior distributions 

of the five parameters estimated within the Gaussian copula. The true parameter values are 

included in the “high density” area of the posterior distribution. 
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Table 5.2-Spatial dependence models 

Model Characterization 

Copula Gauss 

Max Stable process: Smith Gauss 

Max Stable process: Schlather Whittle-Matérn 

 Cauchy 

 Powered exponential 

 Bessel 

 

The estimations with the maximum stable processes are listed in Table 5.3. For all five 

maximum stable process models, the location and scale parameters are close to the true values, 

and are also close to the values estimated with a Gaussian copula. However, the shape 

parameter with Schlather models is further away from the true shape parameter value. The 

estimation results for the four variants of the Schlather models are very similar. The purpose 

of this analysis is to compare the difference between maximum stable processes and the 

copula model in terms of joint/conditional probability estimation, thus we are not going to 

provide further investigation on the results for marginal parameter estimation.  

 

   

 

Figure 5.18-posterior distributions of the five parameters estimated with a copula-

based model. Red lines are the true values of GEV parameters. 
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Table 5.3-Estimation results for different spatial dependence models 

 Location Scale Shape 

True value 30 10 -0.1 

Smith 29.06 9.37 -0.14 

Whittle-Matérn 29.22 9.87 -0.19 

Cauchy 29.22 9.86 -0.19 

Powered exponential 29.21 9.85 -0.19 

Bessel 29.17 9.81 -0.19 

 

2.3.3 Calculation of joint and conditional probabilities 

An objective of this section is to compare joint and conditional probabilities of 

exceedance estimated using a copula and a maximum stable process. In this study, the 

marginal distribution at any site is the same. We restrict this comparison to two sites. More 

precisely, we are interested in the following two probabilities: 

 

1. The probability of the annual maximum at both sites being larger than a certain value z: 

 1 2Pr ( ) , ( )Z s z Z s z  , which is calculated as follow: 

 

      

      

   

1 2 1 2

1 2 1 2

1 1 2

Pr ( ) , ( ) 1 Pr ( ) ( )

1 Pr ( ) Pr ( ) Pr ( ) , ( )

1 2Pr ( ) Pr ( ) , ( )

Z s z Z s z Z s z Z s z

Z s z Z s z Z s z Z s z

Z s z Z s z Z s z

      

       

     

  (5.27) 

2. The probability of the annual maximum at one site being larger than a certain value z, 

conditional on the other site having also recorded a value larger than z:  

 1 2Pr ( ) | ( )Z s z Z s z  , which is calculated as follow:  

 

     

    

       

1 2 1 2 2

1 2 2

1 1 2 1

Pr ( ) | ( ) Pr ( ) , ( ) / Pr ( )

Pr ( ) , ( ) / 1 Pr ( )

1 2Pr ( ) Pr ( ) , ( ) / 1 Pr ( )

Z s z Z s z Z s z Z s z Z s z

Z s z Z s z Z s z

Z s z Z s z Z s z Z s z

     

    

       

  (5.28) 

The joint probability  1 2Pr ( ) , ( )Z s z Z s z   is given by Eq(5.17) and Eq(5.20) for 

maximum stable processes and Eq(4.10) for copulas. As the joint probability depends on the 

distance h between two sites, in the following, it is denoted by  1 2Pr ( ) , ( ) |Z s z Z s z h  . 
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2.3.4 Difference in joint probabilities of exceedance 

In this section, we analyze the relationship between the joint exceedance probability, the 

inter-site distance and the exceeded rainfall level z: 

  1 1 2( , ) Pr ( ) , ( ) |g h z Z s z Z s z h     (5.29) 

 In particular, we are interested in the following two questions:  

1. With a fixed distance h, how does the joint probability vary with threshold z? 

2. With a fixed threshold z, how does the joint probability vary with distance h? 

  

Figure 5.19 presents the joint probability with respect to the threshold value for fixed 

distances 0, 20, 50 and 100 km. The case h = 0 corresponds to the marginal distribution. In 

this case, results from different maximum stable process models are identical. In order to 

understand whether discrepancies between models are due to the modeling of spatial 

dependence or the estimation of marginal parameters, we also report probabilities computed 

with the true marginal GEV parameter values. 

In general, the joint probability calculated with Schlather models is larger than that 

calculated with Smith model and Gaussian copula. For small distance ( 20h  ), the joint 

probability with copula model is the smallest. For large distance ( 50h  ), the results with 

Gaussian copula and Smith model become similar. However, results with Schlather models 

remain markedly above those two models. This is a consequence of the dependence not 

vanishing to zero at infinite distances with the Schlather model, thus yielding larger joint 

exceedance probabilities than the Gaussian copula and the Smith models. 

Figure 5.20 presents the joint probability with respect to the distance for fixed threshold 

value of 50, 80 and 100. It is logical that the joint probability goes down when the inter-site 

distances increase. However, a limit exists for the joint probability when the distance grows. 

In fact, according to Eq(5.27), with a fixed z, the joint probability only varies with 

 1 2Pr ( ) , ( ) |Z s z Z s z h  . With a Gaussian copula and the dependence-distance relationship 

assumed in Eq(5.26), this term converges to the square of the marginal probability 

 Pr ( )Z s z  since the dependence vanishes to zero at large distances. A similar behavior is 

observed with the Smith model, since the dependence also vanishes to zero at large distances 

(see Eq(5.17)). However, Schlather models yield a much higher joint probability at large 

distance. This is because the dependence does not vanishes to zero at larges distances (see 

Eq(5.20)), and the joint probability therefore does not converge to the square of the marginal 

probability. Note however that at short distances, the Smith and Schlather models yield 

similar joint probabilities that are consistently higher than the one observed with a Gaussian 

copula model. 
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 h = 0km h = 20km 

 
 h = 50km h = 100km 

 

Figure 5.19-Joint exceedance probability with fixed distance 

 

The peculiar behavior of Schlather models at large distances seems at odds with the 

expected behavior of rainfall fields, whose correlation should decrease and tend to zero when 

the inter-site distance increases. In the following, we will therefore only consider the Smith 

model and the Gaussian copula model.  

 

2.3.5 Difference in the conditional probability 

In this section, we are going to analyze how the conditional probability of exceedance 

varies according to the dependence model (Gaussian copula or Smith model). The same 

notation as in Section 2.3.4 is used. 

  2 1 2( , ) Pr ( ) | ( ) ,g h z Z s z Z s z h     (5.30) 
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Figure 5.20-Joint probability with fixed threshold value 

 

 

In particular, we are intested in two specific questions:  

1. With a fixed distance h, how does the conditional probability vary with threshold z? 

2. With a fixed threshold z, how does the conditional probability vary with distance h? 

 

Figure 5.21 presents the conditional probability 2 ( , )g h z  with respect to the threshold 

value for fixed distances of 0, 20, 50 and 100km. For h=0, two sites are at the same location, 

then the conditional probability should be 1 as found by the Smith model, while a nugget 

exists for the copula based model. For distances h = 20 or 50, the conditional probability 

calculated with the Smith model tends to a non-zero value,  while that calculated with the 

Gaussian copula tends to zero with increasing values of z. This is because the Smith model is 

asymptotically dependent and the copula model is asymptotically independent. Note that with 
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the log-scale in Figure 5.21, the difference of conditional probability reaches one order of 

magnitude for z=200. In practical terms, this implies that conditional exceedance probabilities 

may be markedly underestimated with a Gaussian copula model if data are actually 

asymptotically dependent. However, the asymptotic value of the Smith model tends to zero at 

a large distance h=100, and both the copula and the Smith model therefore yield similar 

conditional probabilities, that are close to the marginal probabilities since independence is 

virtually reached at such a large distance. 

 

 

 

Figure 5.21-Conditional probability with fixed distance. For the Smith model, the 

estimated GEV is overlapped with the true GEV for h=0 km. 

 

Figure 5.22 presents the conditional probability with respect to the distance for fixed 

threshold values of 50, 80 and 100. This figure has exactly the same shape as Figure 5.20, 

because for a fixed z, the conditional probability is the joint probability divided by the 
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marginal probability according to Eq(5.27)(5.28). Similar conclusions can therefore be drawn: 

at large distances, the conditional probabilities calculated with both the Smith and copula 

models converge to the marginal probability, but the Smith model yields larger conditional 

probabilities at short distances. 

 

 

Figure 5.22-Conditional probability with fixed threshold value 

 

2.4 Conclusion 

In this section, we first investigated the reliability of using a copula to model data 

generated from a maximum stable process. In a moderate dependence case, regression 

parameters of a GEV distribution can be well-estimated with the copula. In particular, the 

estimation quality is better than that ignoring the spatial dependence: using a Gaussian copula 

yields a more realistic quantification of uncertainties. This is especially the case for the trend 
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parameter, which is important in the context of this thesis, since a major objective of the 

modeling framework is to improve the identification of trends or climate variability effects.  

Results are not as convincing in a high dependence case. Estimation with a Gaussian 

copula provides also a good estimation for the location and trend regression parameters, with 

a much better quantification of uncertainty than that the estimation ignoring spatial 

dependence. The estimation of the scale parameter is similar when considering or ignoring 

spatial dependence. However, the shape parameter tends to be over-estimated when using the 

copula, while this behavior is not observed if spatial dependence is simply ignored.  

These results indicate that the use of a Gaussian copula is reliable for moderate 

dependence cases. However, for datasets with a high degree of spatial dependence, using a 

Gaussian copula may yield a marked overestimation of the shape parameter. It is worth noting 

that these results are conditional to the two particular representations of max-stable processes 

that were used here (Smith and Schlather models). However, none of these models is fully 

realistic as a representation of rainfall fields: the Smith model yields much too smooth fields, 

while spatial dependence do not vanishes to zero at infinite distances with the Schlather 

model. This calls for additional studies with alternative representations of max-stable fields.    

In a second step, Gaussian copula, Smith model and Schlather model are compared in 

terms of estimating joint or conditional probabilities of exceedance of high values for several 

sites. In general, Schlather models yield higher conditional and joint probabilities, because a 

minimum dependence between sites exists even at infinite distances according to the 

construction of Schlather models. The joint probabilities calculated with Smith model and 

Gaussian copula are generally similar at large distances, but the Smith model yields higher 

joint probabilities at shorter distances. The conditional probabilities calculated with the 

Gaussian copula and the Smith model can be markedly different, which is a consequence of 

the Gaussian copula being asymptotically independent, while the Smith model is 

asymptotically dependent. 

Overall, these results suggest that even if a Gaussian copula approximation may yield 

acceptable results in terms of estimating marginal parameters, the computation of joint or 

conditional exceedance probabilities is much more sensitive to the representation of spatial 

dependence.  

  



 

 

Part III General Applications: 

ENSO impact on precipitation
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General Introduction about the impact of ENSO on precipitation 

Every year worldwide, extreme rainfall results in flooding that leads to loss of life and 

infrastructure and damages economies. Not only are the direct effects of floods felt for many 

years, but the indirect effects, including disease, trauma and social dislocation, reduced 

agricultural production or loss of manufacturing capacity, can be felt for decades. The El-

Niño/La Niña Southern Oscillation (ENSO) is the single most influential climate phenomenon 

producing global extremes of precipitation [Dai et al., 1997], and has been researched 

extensively since a major El Niño event in 1982–83.  

The quality of ENSO forecasts has consequently dramatically improved in the last two 

decades, and scientists can predict ENSO events with more than 70% accuracy one year 

before their occurrence [Weiher, 1999]. Nevertheless, if the variation of extreme precipitation 

conditional on ENSO could be better understood, planners and engineers could improve 

operating rules and plan better emergency responses before predicted floods occur. The 

current studies provide important new insights into the effects of ENSO on extreme 

precipitation, including methods for quantifying the impact. 

A large number of studies have discussed the relationship between ENSO and average 

regional precipitation. In boreal winter, positive anomalies are found in southwestern North 

America during El Niño episodes and northwestern North America during La Niña episodes 

[Castello and Shelton, 2004; Meehl et al., 2007]. Positive anomalies are detected in 

southeastern South America during austral winter, spring and summer, and northeastern South 

America during autumn [Fernandez and Fernandez, 2002; Grimm, 2011; Kayano and 

Andreoli, 2006]. La Niña enhances the rainfall in South Africa in summer [Kruger, 1999; 

Vanheerden et al., 1988], and significant impact is also found in Asia [Kane, 1999; Kripalani 

and Kulkarni, 1997; Li and Ma, 2012; Wu et al., 2003] and Australia [Cai and Cowan, 2009]. 

A global pattern of the impact of ENSO on precipitation was described by Dai et al. [1997] 

and Dai and Wigley [2000]. Ropelewski and Halpert [1987] provided a global pattern of 

magnitude, phase and duration of ENSO-related precipitation. 

Compared with average regional precipitation, extreme precipitation events are 

considerably more uncertain in terms of timing and intensity. The study of the impact of 

ENSO on extremes is therefore complicated. Several studies have been carried out for specific 

regions of the world. Significant influence on the frequency of extreme precipitation in North 

America [Cayan et al., 1999; Gershunov and Barnett, 1998; Higgins et al., 2011; Jones and 

Carvalho, 2012; Schubert et al., 2008] and South America [Grimm and Tedeschi, 2009; 

Pscheidt and Grimm, 2009] has been reported. Wan et al. [2013] analyzed the relationship 

between ENSO and extreme monthly precipitation in China, while Min et al. [2013] studied 

the impact of ENSO on extreme rainfall in Australia using gridded rainfall data.  

At the global scale, Curtis et al. [2007] investigated the correlation between ENSO and 

the frequency of estimated precipitation extremes for different seasons, while Lyon and 

Barnston [2005] discussed the spatial extent of tropical land precipitation extremes related to 

ENSO extremes. Kenyon and Hegerl [2010] reported on the response of global extreme 

precipitation to ENSO. Their study was based on the at-site (local) analysis, thus the 

significance of the impact of ENSO in a great number of sites was masked. Alexander et al. 
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[2009] studied the global response of precipitation extremes to global SST variability. While 

all of these studies added to the knowledge of ENSO-precipitation teleconnection, few of 

them established a quantified relationship between ENSO intensity and the severity of the 

impact on extreme precipitation. 

Several studies have demonstrated that the teleconnection between climate variables (e.g., 

pressure and precipitation) and ENSO is not symmetric [Hannachi, 2001; Hoerling et al., 

1997; Hoerling et al., 2001; OrtizBevia et al., 2010; Sardeshmukh et al., 2000]. Asymmetry 

has also been reported for the teleconnection with regional rainfall, and Cai et al. [2010]; 

[2012], King et al. [2013]. Asymmetry has also been described for the winter precipitation 

response in North America Wu et al. [2005], and the impact of ENSO on the spring rainfall in 

south China [Feng and Li, 2011] and Taiwan [Chen et al., 2008] is also considered 

asymmetric. No study, however, provides a global pattern of the asymmetry of the impact of 

ENSO on precipitation in general, and on extreme precipitation in particular.  

As discussed in Chapter 1 (Section 3.2), the peculiarity of extreme precipitation (as 

opposed to seasonal or annual averages) requires the development of particular statistical 

models to describe the impact of ENSO or, more generally, of any other type of climate 

variability. Several time-varying and climate-informed models have been developed for 

analyzing and predicting the impact of climate variability on the intensity of extreme 

precipitation. At the local scale, Renard et al. [2006a] developed a time-varying frequency 

analysis (FA) model for quantifying temporal trends in extreme hydrological events, while 

Tramblay et al. [2012] used a similar model to study the impact of the North Atlantic 

Oscillation (NAO) and the Mediterranean Oscillation (MO) on extreme precipitation in 

Morocco.  

Ouarda and El-Adlouni [2011] discussed the impact of ENSO on annual maximum 

precipitation at the Tehachapi station in California using a time-varying Bayesian FA model, 

after Kwon et al. [2008] used a hierarchical Bayesian logistic regression model incorporating 

different climate components to analyze extreme summer rainfall in South Korea. Again at the 

regional scale, Renard et al. [2008] and Hanel et al. [2009a] described the use of time-varying 

regional models for extreme streamflow and precipitation. Aryal et al. [2009] and Lima and 

Lall [2010] used time-varying hierarchical approaches for climate teleconnections on extreme 

precipitation in the Swan-Avon River basin of southwestern Western Australia and rainfall 

occurrence in northeastern Brazil, respectively. Shang et al. [2011] used a maximum stable 

process for analyzing the impact of ENSO on extreme rainfall over California, USA. 

Limitations of previous studies on the impact of ENSO on extreme precipitation can be 

summarized as follows: 

1. Few of the studies focus on at-site observed extremes, which are much more uncertain 

than temporally or spatially averaged precipitations, and for which the impact of ENSO 

is more difficult to quantify.  

2. The current analyses using extreme-specific models with data extremes observed on-site 

mostly provide individual studies from site to site. Such at-site (local) analysis could 

mask the impact of ENSO due to huge uncertainties. On the other hand, most analyses 

using regional models do not consider the spatial dependency of the data. 
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3. Most analyses at the global scale are based on gridded datasets, as opposed to station 

observations. Gridded data are not suitable for at-site extremes, because they involve 

some form of spatial averaging. 

4. Most of the studies do not quantify the increase or decrease in extreme quantiles with 

respect to ENSO intensity at the regional or global scale.  

 

In this part, two case studies are presented, in which the limitations listed above are 

essentially overcome by using the time-varying RFA framework developed in this thesis. To 

avoid ambiguity, we clarify that both studies describe the link between ENSO and 

precipitation variability. However, being a purely statistical analysis, it does not formally 

establish causality. Chapter 6 describes the impact of ENSO in Southeast Queensland (SEQ) 

Australia, and Chapter 7 gives a global analysis of the asymmetric impact of ENSO on 

extreme precipitation. 

 





 

 

CHAPTER 6 Quantifying the impact of ENSO on 

summer rainfall in Southeast Queensland, Australia 

There is increasing evidence that the distribution of hydrologic variables such as average 

or extreme rainfall/runoff is modulated by modes of climate variability in many regions of the 

world. This chapter presents an application of the general spatio-temporal RFA framework for 

quantifying the effect of climate variability on the distribution of hydrologic variables.  

This modeling framework is applied to two case studies assessing the effect of El Niño 

Southern Oscillation (ENSO) on summer rainfall in Southeast Queensland. The first case 

study focuses on summer rainfall totals while the second analysis focuses on extremes using 

summer daily rainfall maxima. The reason for choosing data from this area is that Cai et al. 

[2010] found an asymmetric impact of ENSO on the summer rainfall in Southeast Queensland 

(SEQ): La Niña episodes correspond to marked positive rainfall anomalies in SEQ, with the 

anomalies being linearly related to the strength of the La Niña, while El Niño episodes do not 

appear to have any noticeable effects on rainfall. Cai et al. [2010] focused on spatially 

averaged seasonal rainfall over a large region. In this chapter, we will investigate two 

questions: (i) Is the asymmetric impact still evident on the summer rainfall totals of individual 

sites? (ii) Does a similar asymmetric impact also hold for extremes? The Southern Oscillation 

Index (SOI), a measure of ENSO, is considered as a time-varying covariate. In order to 

account for different effects during La Niña and El Niño episodes, an asymmetric piecewise-

linear regression is used to analyze the rainfall data using both local and regional models. 
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1 Quantifying the impact of ENSO on summer rainfall totals 

using local models  

This study uses a local model to verify and quantify the asymmetric impact of ENSO on 

summer rainfall totals over SEQ. 

 

1.1 Data and covariates 

Rainfall data are provided by the Australian Bureau of Meteorology (BOM). High 

quality summer (Dec, Jan, Feb) totals [Lavery et al., 1997] are available over 16 observation 

sites until 2011, with the record starting year among these sites ranging from 1870 to 1913, 

with most having a record longer than one hundred years. Figure 6.1 shows the location of 

rain gauges. 

 

 

Figure 6.1-Locations of the rain gauges. Summer rainfall totals are available in all 16 

gauges. The blue dots are the gauges in which daily rainfall data are available, which 

will be used to compute the summer daily maxima. 

 

The Southern Oscillation Index (SOI) and Niño 3.4 are two main indices that 

characterize the strength of ENSO phenomenon. The SOI index is calculated from the mean 

sea level pressure difference between Tahiti and Darwin. Sustained negative SOI values below 

about –8 indicate an El Niño event while sustained positive values above +8 indicate a La 

Niña event. El Niño events are associated with a warming of the central and eastern tropical 

Pacific, while La Niña events are associated with a sustained cooling of these same regions. 

These temperature gradients across the Pacific are the most important driver of ENSO. To 
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simplify this usage, in this study, we consider negative (resp. positive) SOI periods as El Niño 

(resp. La Niña) phases. The SOI data (1877-2011) used in this study was obtained from the 

Australian Bureau of Meteorology (BOM) (http://www.bom.gov.au/climate/ current/soi2.shtml).  

Niño 3.4 is computed through the sea surface temperature (SST) of the area 170E to 

120W and 5N to 5S in the central Pacific. Due to the difficulty of measurement, the historical 

data is available only since 1950. Opposite to SOI, positive (resp. negative) Niño 3.4 

describes El Niño (resp. La Niña) phase. In preliminary analyses for the period 1950-2011 

(Section 1.3.1), the two indices are compared as potential covariates: SOI (1877-2011) and 

Niño 3.4 (1950-2011).  

 

1.2 Local model for the summer rainfall totals 

The previous study by Cai et al. [2010] suggests separating the effect of La Niña 

(positive SOI or negative Niño 3.4) and El Niño (negative SOI or positive Niño 3.4) episodes 

on the summer rainfall in SEQ. Thus the specific implementation of the parent distribution is 

to use a lognormal model for the summer total rainfall, as follow:  

 ( ) ~ log ( ( ), ( ))Y t N t t    (6.1) 

where the mean µ(t) is asymmetric with respect to the positive and negative values of the 

temporal covariate, while the standard deviation is assumed to be constant: 
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 0( )t    (6.3) 

where 0 1 1, ,     and 0  are the regression parameters and Cov(t) is the temporal covariate 

(summer averaged SOI or Niño 3.4). In this study, flat priors are used for the regression 

parameters. 

 

1.3 Results 

1.3.1 Preliminary analyses with the standardized SOI and Niño 3.4 indices over the 

period 1950-2011 

In this section, we first evaluate the similarity of these two indices for the model by using 

the data from the period 1950-2011. 

Figure 6.2 illustrates the standardized summer averaged Niño 3.4 and SOI indices during 

1950-2011. To facilitate the comparison, Niño 3.4 is inversed. Evidently, these two indices are 

highly correlated and show a similar temporal pattern, suggesting that they should provide 

similar covariate information for the model in Eq(6.2). 

 

http://www.bom.gov.au/climate/%20current/soi2.shtml
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Figure 6.2-Standardized Niño 3.4 and SOI indices 

 

This is further investigated by comparing the posterior distributions of the parameters 

quantifying the ENSO effect. During El Niño phases (Figure 6.3), the distributions are similar 

for all stations and do not suggest any significant effect of ENSO. During La Niña phases 

(Figure 6.4), the distributions are still similar for all stations, but indicate a positive effect of 

ENSO. 

Given the similarity of the results obtained with covariates Niño 3.4 and SOI, we will 

restrict to the latter in the remainder of this chapter due to its longer period of availability. 

 

Figure 6.3- Boxplot of the posterior distribution of 1
  (Niño 3.4) and 1

 (SOI) 

during El Niño phase. 
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Figure 6.4- Boxplot of the posterior distribution of 
1
  (Niño 3.4) and 

1
 (SOI) 

during La Niña phase. 

 

1.3.2 Results with SOI used as covariate over the period 1877-2011 

The goodness-of-fit is evaluated graphically by using a PP plot. In this study, the PP plot 

of each site is close to the diagonal (not shown), which indicates that lognormal distribution 

provides a good fit to the observations. 

The impact of El Niño (negative SOI) and La Niña (positive SOI) on the summer rainfall 

is characterized by 1
  and 1

  respectively. If such impact is significant, the posterior 

distributions of 1 1,    should be significantly different from zero. Figure 6.5 indicates that 

most sites are significantly influenced by La Niña, whereas El Niño influence is not detected. 

To further illustrate the effect of La Niña and El Niño, the p-value of 0 is calculated for 

the regression parameters 1
  and 1

 . This p-value is equal to Pr[ 0 | ]  Y  , which refers to 

the probability of the posterior distribution of 1
  or 1

  being smaller than 0. Figure 6.6 

shows the p-value for all 16 sites on a map. During El Niño episodes, the majority of sites 

show little effect. However, during the La Niña episodes, the significance is quite clear. 
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Figure 6.5-Boxplot of the posterior distribution of (a)
1


 (El Niño) and (b) 
1
 (La Niña) 

for each site for the summer rainfall totals 

 

 

Figure 6.6-P value of zero of (a) 1
  (El Niño) and (b) 1

  (La Niña) for each site for 

the summer rainfall totals.  A p-value smaller than 10% (blue dots) indicates that the 

parameter is significantly larger than 0. 
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The general time-varying framework allows computing rainfall quantiles that vary with 

SOI values. Figure 6.7 therefore shows the evolution of several quantiles as a function of SOI. 

It indicates that during La Niña episodes, each unit of SOI value increases the summer rainfall 

by almost 5mm for the 0.5-quantile and by 10mm for the 0.99-quantile (1 in 100 year rainfall). 

However, during the El Niño episode, no clear trend is found. 

 

Figure 6.7-Quantiles of summer total rainfall with respect to SOI value for site 16. 

The blue, red and green lines are respectively the 0.05, 0.5 and 0.99 quantiles with 

90% credibility intervals (grey shaded areas). Black dots are the observations with 

respect to the SOI value of each year. 

 

1.4 Summary 

The analysis of summer rainfall totals shows a clear impact of La Niña but no strong 

impact of El Niño, thereby confirming the results of Cai et al. [2010]. This impact can be 

detected even using a local model. In the remainder of this case study, we assess whether a 

similar relationship can be detected for extreme summer daily rainfall. 

 

2 Quantifying the impact of ENSO on summer maximum daily 

rainfalls using local and regional models  

We will now focus on the summer maximum daily rainfall over SEQ. King et al. [2013] 

performed a linear correlation analysis between the 5-day maximum of gridded rainfall data 

and the SOI, and found that the asymmetry in the ENSO-rainfall teleconnection over SEQ 

exists also for extreme rainfall. In this study, we focus on investigating whether the 

asymmetric impact of ENSO (that was evident for the summer rainfall totals) is also found for 
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the observed summer maximum daily rainfalls. Moreover, our objective is also to quantify the 

intensity of the impact in terms of high quantiles. For this study, the analysis is extended to 

include both local and regional models. In the case of extreme rainfall, there is considerably 

more uncertainty in the parameter estimates (compared with summer rainfall totals) – this 

uncertainty may mask the impact of ENSO. The use of a regional model to reduce parameter 

uncertainty and better identify the impact of ENSO impact is expected. Furthermore, 

comparison of different models is undertaken to answer questions such as: “Is the impact of 

ENSO on summer maximum daily rainfall symmetric or asymmetric?”  

 

2.1 Data and covariates 

Among the 16 high quality sites (Figure 6.1), daily rainfall data is available in 10 sites. 

The record starting years among these sites are ranging from 1880 to 1906. Summer 

maximum daily rainfall is extracted from the daily data of these 10 rain gauges. The same 

covariate (summer averaged SOI) as in Section 1.1 is used in this section. 

 

2.2 Models for summer rainfall maximum 

2.2.1 Local model with temporal covariates 

In this study, the specific implementation of the parent distribution is a GEV model for 

the summer maximum daily rainfall [Coles et al., 2003; Katz et al., 2002]: 

 ( ) ~ ( ( ), ( ), ( ))Y t GEV t t t     (6.4) 

To consider the ENSO impact on the location and scale of the GEV distribution, these 

parameters are assumed to be dependent on SOI, while the shape parameter is assumed to be 

constant. This is because the shape parameter ξ is difficult to estimate at a local scale even in 

the stationary context, hence it is more robust to assume the shape parameter to be constant.  

To determine whether the asymmetric impact of ENSO found in the summer rainfall 

totals is also observed in the summer maximum daily rainfall, two different regression models 

are considered. The first one is a symmetric linear model and the other one is an asymmetric 

piecewise-linear model. To distinguish these two models, the asymmetric model uses the same 

symbols as in equations (6.2) and (6.3), and the symmetric model parameters are denoted with 

a tilde.  

 

Model 1 (Symmetric linear model) 

 0 1( ) * ( )t SOI t   
  (6.5) 

 0 1( ) * ( )t SOI t   
  (6.6) 

 0( )t 
  (6.7) 



CHAPTER 6. IMPACT OF ENSO ON SUMMER RAINFALL IN SOUTHEAST QUEENSLAND 141 

 

Model 2 (Asymmetric piecewise-linear model) 

 
0 1

0 1

* ( ); ( ) 0
( )

* ( ); ( ) 0

SOI t SOI t
t

SOI t SOI t

 


 





  
 

 

  (6.8) 

 
0 1

0 1

* ( ); ( ) 0
( )

* ( ); ( ) 0

SOI t SOI t
t

SOI t SOI t

 


 





  
 

 

 (6.9) 

 0( )t 
 (6.10) 

where 
1 20 1 0 1 0 0 1 1 0 1 1 0{ , , , , }, { , , , , , , }M M                  are the regression parameters 

of Model 1 and Model 2. Flat priors are used in this study as well. 

 

2.2.2  Regional models  

In order to better identify the parameters which quantify the impact of ENSO, regional 

models are applied in this case study. Following the two-step construction introduced in 

Chapter 4, in the first step, the time-varying structure at each site is prescribed using the same 

regression functions as in the equations (6.5)-(6.7) and (6.8)-(6.10). In the second step, two 

sets of parameters are spatialized. The first set comprises the ENSO effect parameters (e.g. for 

the asymmetric model 1 1 1 1, ,  and        ). Indeed, climate indices, like ENSO, are expected 

to have similar effects on all the observation sites within a region. We also assume a regional 

shape parameter 0 . Thus we assume these parameters are the same over the region. 

Conversely, all other parameters are assumed purely local. The regionalized equations for the 

asymmetric model thus become: 

 
0 1

0 1

( )

( )

* ( ); ( ) 0
( , )

* ( ); ( ) 0

s

loc reg

s

loc reg

SOI t SOI t
s t

SOI t SOI t

 


 





  
 

 

  (6.11) 

 
0 1

0 1

( )

( )

* ( ); ( ) 0
( , )

* ( ); ( ) 0

s

loc reg

s

loc reg

SOI t SOI t
s t

SOI t SOI t

 


 





  
 

 

  (6.12)  

 
0

( , ) regs t    (6.13) 

where 1 2 1 2

0 0 0 0 0 0

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( , ) (( , ,..., ), ( , ,..., ))p ps ss s s s

loc loc loc loc loc loc loc loc loc        s s s  are local regression 

parameters and 
1 1 1 1 0

( , , , , )reg reg reg reg reg reg       
 
are the regional regression parameters. 

For all the models considered therein, a Gaussian copula is utilized to describe the spatial 

dependence. The distance-dependence relationship is characterized by the following function: 

 1 2( , ) *exp( *|| , ||)i j i js s s s   
  (6.14) 

where η1 and η2 are the dependence parameters. 
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2.3 Assessing competing hypotheses of ENSO impact on summer 

maximum daily rainfalls  

In this case study, we consider three competing hypotheses, which lead to different 

regression models as follows: 

 

1. There is no ENSO influence on the maximum rainfall, leading to a time-invariant model.  

2. The second hypothesis is that ENSO influence is linear with respect to the GEV location 

and scale parameters, thus a symmetric linear model is trialed [Equations (6.5) and (6.6)].  

3. The third hypothesis, motivated by the results found for the summer rainfall totals 

(Section 1), is that ENSO has an asymmetric impact during two different phases (El Niño 

and La Niña). Therefore, an asymmetric model is also used [Equations (6.11) and (6.12)].  

 

The combination of these three regression models on the location and scale parameters of 

a GEV distribution gives several possible candidate models for this case study.  

Furthermore, an important research question we are interested in is whether the multi-site 

information from regional analysis provides improved identification of the impact of ENSO. 

Hence, we are interested in comparing local and regional versions of the same models.  

In a GEV distribution, the location parameter µ and the scale parameter σ characterize 

the intensity and the variability of the maximum rainfall. Thus the climate impact could be 

expressed through the location and scale parameters. Based on the three hypotheses above, we 

list the suitable GEV models by setting different regression models (Table 6.1). In Section 

2.4.5, the performance of these models will be compared.  

In Table 6.1, the first three are local models, and the next six are regional models. In the 

local models, all parameters are local. In the regional models, the parameters quantifying the 

effect of SOI and the shape parameter are regional. To simplify the notation, we use “L” for 

local and “R” for regional. The name of the models is denoted by their regression functions on 

the location and scale parameter (<location regression function>_<scale regression function>). 

Stat is for the identical (stationary) function. Sym is for the symmetric function. Asy1 is for the 

asymmetric function as in equation (6.11)(6.12). Asy2 is another asymmetric function in 

which the slope during negative SOI episode is fixed to 0 since the El Niño impact is not 

significant for summer total rainfall as shown in Section 1.4.  
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Table 6.1-Possible candidate models 

Models Regression functions for ( , )s t  Regression functions for ( , )s t  

Regression 

functions 

for ( , )s t  

Local models 

L_Stat_Stat 
( )s

loc  ( )s

loc

 

0

( )s

loc

 

LSym_LSym 
0 1

( ) ( ) * ( )s s

loc loc SOI t   
0 1

( ) ( ) * ( )s s

loc loc SOI t 

 

0

( )s

loc

 

LAsy1_LAsy1 
0 1

0 1

( ) ( )

( ) ( )

* ( ); ( ) 0

* ( ); ( ) 0

s s

loc loc

s s

loc loc

SOI t SOI t

SOI t SOI t

 

 





  


 

 
0 1

0 1

( ) ( )

( ) ( )

* ( ); ( ) 0

* ( ); ( ) 0

s s

loc loc

s s

loc loc

SOI t SOI t

SOI t SOI t

 

 





  


 

 
0

( )s

loc

 
Regional models

 

R_Stat_Stat 
( )s

loc  ( )s

loc

 

reg

 RSym_RSym 
( ) * ( )s

loc reg SOI t   ( ) * ( )s

loc reg SOI t 

 

reg

 

RAsy1_RAsy1 
0 1

0 1

( )

( )

* ( ); ( ) 0

* ( ); ( ) 0

s

loc reg

s

loc reg

SOI t SOI t

SOI t SOI t

 

 





  


 

 
0 1

0 1

( )

( )

* ( ); ( ) 0

* ( ); ( ) 0

s

loc reg

s

loc reg

SOI t SOI t

SOI t SOI t

 

 





  


 

 

reg

 RAsy2_RAsy2 
0

0 1

( )

( )

; ( ) 0

* ( ); ( ) 0

s

loc

s

loc reg

SOI t

SOI t SOI t



 

 


 

 
0

0 1

( )

( )

; ( ) 0

* ( ); ( ) 0

s

loc

s

loc reg

SOI t

SOI t SOI t



  

 


 

 

reg

 RAsy1_Stat 
0 1

0 1

( )

( )

* ( ); ( ) 0

* ( ); ( ) 0

s

loc reg

s

loc reg

SOI t SOI t

SOI t SOI t

 

 





  


 

 
0

( )s

loc

 

reg

 RAsy2_Stat 
0

0 1

( )

( )

; ( ) 0

* ( ); ( ) 0

s

loc

s

loc reg

SOI t

SOI t SOI t



 

 


 

 
0

( )s

loc

 

reg

 

 

2.4 Results 

2.4.1 Goodness-of -fit 

Figure 6.8 illustrates empirical probability vs. model probability for the local 

(LAsy1_LAsy1) and regional (RAsy1_RAsy1) asymmetric models for all ten sites. The lines are 

all close to the diagonal, which indicates that both GEV local and regional asymmetric models 

have a good fit with the observation data. 
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Figure 6.8-Probability-Probability plot of summer maximum daily rainfall with (a) 

local model LAsy1_LAsy1 and (b) regional model RAsy1_RAsy1. Each color represents 

one site.  

 

2.4.2 Identifying the impact of ENSO on summer maximum daily rainfall: none, 

symmetric or asymmetric? Local analysis 

The symmetric model (LSym_LSym) doesn’t separate El Niño and La Niña episodes. The 

p-value shown in the Figure 6.9 (a) and (b) indicates that 6 out of 10 sites detect a significant 

ENSO impact on location or scale parameter or both. The asymmetric model (LAsy1_LAsy1) 

separates the impact of El Niño and La Niña episodes. Similar to the result of the summer 

total rainfall, the El Niño impact is found neither on the location nor on the scale parameter 

(not shown) for almost all sites. However, the La Niña impact is detected on either location or 

scale parameter or both (Figure 6.9 (c) (d)). The significance on the scale parameter indicates 

that La Niña also increases the variability of the summer maximum rainfall over the majority 

of sites. With both models, summer maximum rainfall is found to be affected by ENSO effect, 

at least during the La Niña episode. 

Compared with the asymmetric model, the symmetric model has two main differences. 

One is the value of the slope and the other is the significance of the trend. An overview of all 

ten sites (Figure 6.10) indicates that 8 out of 10 sites have significant positive slope for the 1 

in 100 year rainfall for the asymmetric model during the La Niña episode, and values of the 

slope are ranging from 4 to 10 mm/unit SOI. In comparison for the symmetric linear model, 

only half of the sites show a significant trend, and values of the slope are much lower ranging 

from 1 to 5 mm/unit SOI. From the asymmetric model, a significant trend is found during the 

La Niña episodes, but not during El Niño episodes, which explains why the trend analysis 

based on the symmetric model (which forces the same effect during El Niño and La Niña) 

leads to less significant results.  
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Figure 6.9-Summer maximum daily rainfall. P-value of zero of (a) 
1

( )s

loc and (b)
1

( )s

loc of 

each site for the symmetric model LSym_LSym, and p-value of zero of (c)
1

( )s

loc  and (d) 

1

( )s

loc  of each site (during La Niña episode) for the asymmetric model LAsy1_LAsy1. A 

p-value smaller than 10% (blue dots) indicates that the parameter is significantly 

larger than 0.  
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Figure 6.10-P value of zero for the slope of 1 in 100 year summer maximum daily 

rainfall with (a) the symmetric model LSym_LSym and (b) the asymmetric model 

LAsy1_LAsy1 during the La Niña episode. 

 

2.4.3 ENSO-conditional predictions for summer maximum extreme rainfall: local 

analysis 

Figure 6.11 illustrates the relationship between the 1 in 100 year rainfall (0.99-quantile) 

and the SOI index for site 16. The large slope of the asymmetric model (red) indicates that, 

for the positive SOI, each incremental unit increase in the SOI value will increase the 1 in 100 

year rainfall by nearly 5mm, whereas the negative SOI doesn’t have a statistically significant 

trend. Figure 6.11 also illustrates that these estimations are affected by very large uncertainties. 

During a strong La Niña (e.g. SOI = 20), the asymmetric model estimates that the posterior 

median of the 1 in 100 year rainfall is almost 25% higher than with the symmetric model and 

45% higher than with a stationary model (Figure 6.11). Over all sites (not shown here), these 

two values can be up to 33 % and 50% respectively.  



CHAPTER 6. IMPACT OF ENSO ON SUMMER RAINFALL IN SOUTHEAST QUEENSLAND 147 

 

 

Figure 6.11-1 in 100 year summer maximum daily rainfall at site 16. The blue line is 

based on the stationary model (L_Stat_Stat). The green and red lines are respectively 

based on the symmetric (LSym_LSym) and asymmetric (LAsy1_LAsy1) models. The 

solid lines are median and areas inside the dashed line are 90% credibility intervals 

of each model. Black dots are the observations with respect to the SOI value of each 

year. 

 

Although the asymmetric model detects a significant ENSO effect during La Niña, the 

ENSO-conditional predictions are affected by large uncertainties. This is due to the difficulty 

of precisely identifying the parameters with a local analysis. The regional analysis aims to 

reduce parameter uncertainties, hence better quantifying the impact of El Niño and La Niña.  

 

2.4.4 Does regional analysis improve the identification of the impact of ENSO on 

summer maximum daily rainfall?  

Figure 6.12 gives the distributions of the La Niña effect parameters on the GEV location 

parameter in local (LAsy1_LAsy1) and regional (RAsy1_RAsy1) models. There is a significant 

reduction of the distribution width for the regional model. Figure 6.13 illustrates that, for the 

asymmetric model RAsy1_RAsy1, 
1reg 

 and 
1reg 

 (associated to La Niña) are found 

significantly larger than 0, whereas 
1reg 

and 
1reg 

 (associated to El Niño) are not. This 

regional analysis gives a more robust conclusion that La Niña has a significant influence on 

the summer maximum daily rainfall, whereas El Niño has not. Furthermore, the reduction of 

uncertainty on the La Niña effect parameter (
1reg 
,

1reg 
) and the shape parameter (

0reg ) 
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provides an important improvement to decrease the uncertainty on high quantiles. In Figure 

6.14, the 1 in 100 year rainfall of the local and regional asymmetric models are compared. 

During a strong El Niño (e.g. SOI = -20), the uncertainty of the regional model (measured by 

the interval width) is reduced by 50% compared with the local model, and during strong La 

Niña, this reduction is up to 60%. This clearly shows the benefit of a regional analysis in 

better identifying the impact of ENSO on extreme rainfall.  

 

SOI>0, La Niña (Local vs. Regional) 

 

Figure 6.12-Boxplot of the posterior distribution of location parameter 
1   (

1loc  in 

local model LAsy1_LAsy1 of each site and 
1reg 

 in regional model RAsy1_RAsy1). 

 

Figure 6.13-Boxplot of the posterior distribution of the regional parameters of model 

RAsy1_RAsy1 for the summer maximum daily rainfall  
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Figure 6.14-1 in 100 year summer maximum daily rainfall with local (L_Stat_Stat & 

LAsy1_LAsy1) and regional (RAsy1_RAsy1) models at site 16. The blue line is based 

on the stationary model (L_Stat_Stat). The red and green lines are respectively based 

on the local (LAsy1_LAsy1) and regional (RAsy1_RAsy1) models. The solid lines are 

median and areas inside the dashed line are 90% credibility intervals of each model. 

Black dots are the observations with respect to the SOI value of each year.  

 

2.4.5 Model comparison for summer rainfall maxima 

In this section, we use the DIC criterion to compare the following three pairs of models. 

A better model is denoted by a smaller DIC. 

 

1. Local vs. regional modeling 

Figure 6.15 illustrates the DIC values for the models in Table 6.1. The DIC values of at-

site models (L_Stat_Stat, Lsym_Lsym, LAsy1_LAsy1) are much larger than the regional 

models (R_Stat_Stat, RSym_RSym, RAsy1_RAsy1, RAsy2_RAsy2, RAsy1_Stat, RAsy2_Stat). 

Compared with the regional models, the local models have many more parameters, which lead 

to a large penalty on the model complexity. Thus regional models are preferred (according to 

the DIC criterion) to at-site models. 
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Figure 6.15-DIC value for the models in Table 6.1 for the summer maximum daily 

rainfall.  L_Stat_Stat, LSym_LSym and LAsy1_LAsy1 are local models. R_Stat_Stat, 

RSym_RSym, RAsy1_RAsy1, RAsy2_RAsy2, RAsy1_Stat and RAsy2_Stat are regional 

models.  

 

2. Stationary model vs. climate-informed model 

According to the first point, we make this comparison with regional models only. Among 

the six regional models (R_Stat_Stat, RSym_RSym, RAsy1_RAsy1, RAsy2_RAsy2, RAsy1_Stat, 

RAsy2_Stat), the DIC value of the stationary model (R_Stat_Stat) is the largest (Figure 6.15). 

Thus, this result shows once again that ENSO influences the summer maximum rainfall over 

SEQ and suggests that a climate-informed model is better. 

 

3. Symmetric vs. asymmetric effect of ENSO 

The comparison between the symmetric and asymmetric models is established with the 

regional models listed in Table 6.1. Table 6.2 summarizes the DIC difference between the 

regional models in the list and the preferred model (RAsy2_RAsy2) with the smallest DIC. 

This preferred model has asymmetric regressions on both location and scale parameters. The 

difference between RAsy1_RAsy1 and RAsy2_RAsy2 is small, indicating that not inferring the 

slope of ENSO has little impact on DIC values. The difference between the remaining 

regional models and RAsy2_RAsy2 is larger, which suggests that the models with asymmetric 

ENSO impact are preferred. In particular, model R_Stat_Stat (no ENSO effect) is strongly 

discredited according to the DIC. Lastly, these results also suggest that modeling a trend on 

the scale parameter is preferable, since models RAsy1_Stat and RAsy2_Stat have a lesser 

performance than the reference model RAsy1_RAsy1 and RAsy2_RAsy2. 

 

Table 6.2-DIC difference between the regional models listed on the table and 

RAsy2_RAsy2 model  

R_Stat_Stat RSym_RSym RAsy1_RAsy1 RAsy2_RAsy2 RAsy1_Stat RAsy2_Stat 

14.0 4.6 2.9 0 8.4 6.7 
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2.5 Summary 

We use both at-site and regional models to analyze ENSO effects on the summer rainfall 

maximum over SEQ. The link between ENSO and summer maximum daily rainfall is strong 

during La Niña phase and weak during El Niño phase. We demonstrate that using a regional 

model helps to reduce the uncertainty and provides more robust results. With the DIC 

criterion, competing models are compared. It is found that the asymmetric regression on both 

location and scale parameters is the preferred representation of ENSO effect on summer 

maximum daily rainfall. 

 

3 Discussion 

This chapter discusses key assumptions and current limitations of the modeling 

framework, and their consequences on the SEQ case study. It also proposes avenues for future 

improvements. 

 

3.1 Assumption of homogeneous regions 

An assumption of the regional model is that all data should be subject to similar climate 

impacts. This raises the question of defining such climatically homogenous regions. Ouarda 

et al. [2001] described some approaches to determine homogeneous hydrologic regions. Some 

Southeast Australian basins have also been classified into homogeneous regions by Bates et al. 

[1998]. The SEQ is a relatively small area, thus SEQ is assumed to be inside a same climatic 

homogenous region. However, when studying larger areas, the classification of different 

homogeneous regions will play an important role. 

 

3.2 Spatial dependence modeling 

The reason for using simple copulas, like Gaussian and Student copulas, is that they are 

applicable to any marginal distribution, which is convenient in the context of the general 

framework proposed in this thesis. Moreover the parameterization by a dependence matrix 

enables using geostatistical-like models (dependence is a function of distance). However, 

different copulas have different asymptotic behavior: asymptotically dependent (e.g. Student 

copula) and asymptotically independent (e.g. Gaussian copula). The extrapolation of copula is 

risky because the asymptotic dependence properties exert a strong leverage on joint 

probability of exceedance, but the limited sample size is not enough to identify such 

asymptotic properties. Therefore, to have a good decision between asymptotic dependent and 

independent copulas, more physical knowledge on spatial extent of rainfall or meteorological 

events is required. Further work could be therefore interested in the difference of using 

different copulas. 
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3.3 Spatial regression modeling 

Inside a homogenous region, the distribution of the rainfall may depend on the spatial 

information at each site. For example the ENSO effect could vary with elevation or distance 

to sea. However, in the case study, we simply assume the same ENSO effect and shape 

parameter for all sites. Spatial effects could be investigated in the case study in several aspects. 

First, some parameters are purely local, which prevents transferring quantile estimates to 

ungauged sites. This could be improved by spatializing these parameters using a spatial 

regression. Moreover, a more flexible model could be considered by allowing spatial 

variations in purely regional parameters (ENSO effects and shape parameter). This was not 

attempted in this case study because identifying such spatial effects is difficult with only ten 

sites: we therefore favored the identification of ENSO effects. However, future case studies 

based on a spatially denser dataset will investigate in more depth the construction of such 

spatial models. 

 

3.4 Practical Implications: utilizing predictions of extreme rainfall 

distributions from the climate-informed framework 

One of the advantages of using a fully probabilistic model for extremes (as opposed to a 

simple linear regression between SOI and rainfall, as undertaken in Cai et al. [2010] and King 

et al. [2013]) is that it enables the prediction of frequency of extreme rainfall conditioned on 

climate variability indices. Figure 6.7, Figure 6.11 and Figure 6.14 all provide prediction of 

the 1 in 100 year rainfall conditional on values of SOI. For the preferred regional model 

(RAsy1_RAsy1), during strong La Niña phases (with high SOI), the 1 in 100 summer 

maximum daily rainfall is to 33% higher than the corresponding estimate obtained with the 

stationary model (e.g. Figure 6.14, with SOI = 20).  

From an operational perspective, the knowledge that summer maximum daily rainfall is 

33% higher during a strong La Niña could provide useful information for planners, engineers, 

water resource managers, emergency response organizations, in order to design 

operational/response strategies to mitigate the potential impact due to the increased risk of 

extreme rainfall.  Consider the recent example of the summer of 2010-2011, when there was a 

strong La Niña (SOI = 27.1, in December) and a series of floods hit Queensland, which 

impacted on more than 70 towns and 200,000 people. The damage bill was over 5 billion 

$AUD (page 4, [Operation Queenslander: the State Community, Economic and 

Environmental Recovery and Reconstruction Plan, 2011-2013]). One of the major impact was 

a major flood in the city of Brisbane (a major Australian city with a population of 2.15 

million), caused by the release of water from the major Wivenhoe dam upstream of Brisbane 

(see Chapter 16, [Queensland Floods Commission of Inquiry]). Armed with this knowledge of 

the impact of ENSO on extreme rainfall, planners/engineers/water resource managers, would 

be able to undertake better planning of emergency response, and potentially improve reservoir 

operating rules to better control floods, and reduce the impact of extreme rainfall during 
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strong La Niña’s. On the other side of the hydrologic spectrum, climate-informed frameworks 

have the same importance for predicting extreme droughts [Henley et al., 2011]. 

From a design perspective, the unconditional marginal distribution of extreme rainfall 

would be needed (e.g. for designing a dam or other hydraulic structures). Evaluating the 

marginal probabilities involves integrating out the SOI. This requires determining the 

distribution of SOI. Historical information could be used to inform this distribution, or 

alternatively predictions of the future variations in SOI from climate changes models could 

also be used. This climate-informed framework which provides a quantitative link between 

climate variability and rainfall provides far more useful information than that derived from a 

stationary model. Comparison of the extreme rainfall risk from a stationary model to the ones 

obtained by integrating out SOI in a climate-informed model is an important question that will 

be investigated in future work. 

 

4 Conclusions 

In this chapter, we describe the usage of the general spatio-temporal regional frequency 

analysis framework developed in Chapter 2 and Chapter 4, geared towards detecting and 

quantifying the effect of climate variability on hydrological variables. This is undertaken by 

using temporal regression models where the parameters of the probability distribution of 

hydrological events are a function of climate drivers (here, ENSO). A flexible framework is 

adopted, which allows testing different temporal regression functions to describe the impact 

of climate variability. 

The first case study with the dataset of summer rainfall totals in Southeast Queensland 

shows that La Niña exerts a significant influence in the region for summer rainfall totals, 

while the impact of El Niño is not significant.  

In the second case study of summer daily rainfall maxima, the flexible framework 

enables comparing numerous models to incorporate the impact of ENSO on extreme rainfall 

over SEQ. Stationary, symmetric and asymmetric models in  both local and regional setups 

are compared using a model selection criterion (in this case, the DIC). Overall, the use of 

regional models yielded better identification of the impact of ENSO on extreme rainfall over 

SEQ compared with using only local models, for which there was too much uncertainty to 

enable clear identification. A variety of regional models, with different representations of the 

impact of ENSO (linear symmetric versus asymmetric) were also compared. Asymmetric 

models are found to be the best among them. More precisely, it is found that an asymmetric 

model, distinguishing between ENSO effect on location and scale parameters during the 

positive and negative phases of the SOI, is the most suitable in this case. These results 

corroborate the findings of other recent studies (Cai et al. [2010] and [King et al., 2013]). 

From a practical perspective, it was found that during a strong La Niña the 1 in 100 year 

rainfall for different sites can be 20% to 50% higher than estimates using a stationary model 

which ignores the influence of ENSO. This information has the potential to be used by 

engineers/planners to provide better informed response strategies.   

 





 

 

CHAPTER 7 A global analysis of the asymmetric 

impact of ENSO on extreme precipitation  

The El-Niño Southern Oscillation (ENSO) exerts a significant influence on average and 

extreme precipitation all over the world. In this study, a new database of monthly maxima of 

daily precipitation from 11,588 high quality observation sites was used to analyze the global 

impact of ENSO on extreme precipitation. Data were retrieved from selected regions 

identified after marking a 5º latitude by 5º longitude grid on a world map. For each season 

and region, a regional climate-informed statistical model was applied, in which the Southern 

Oscillation Index (SOI) was used as a covariate. The results of the study (i) quantify and 

describe the spatial pattern of the impact of ENSO on extreme precipitation; (ii) reveal the 

extent to which ENSO exhibits asymmetric impacts between El Niño and La Niña phases; and 

(iii) describe the seasons in which ENSO exerts the strongest impact.  
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1 Data and method 

1.1 Data 

The Hadley Center Global Climate Extremes Index 2 (HadEX2) dataset [Donat et al., 

2013] records the monthly maxima of daily precipitation from 11,588 high quality 

observation sites (Figure 7.1). Between 40 and 135 years of data recorded from approximately 

7000 of these sites were used for this study. The median amount of data was about 60 years, 

and it covered most of the land on the globe. For each site, we calculated the seasonal 

maximum of daily precipitation for December-January-February (DJF), March-April-May 

(MAM), June-July-August (JJA) and September-October-November (SON). The precipitation 

data recorded by HadEX2 provides very good information about rainfall in Europe, the 

United States and South Africa, and correct information for India, China and some specific 

places. However, the coverage for central South America (Amazon), most of Africa, central 

Asia, tropical areas of Asia and central Australia is relatively low. 

 

Figure 7.1-Location of high quality observation sites, with data available for 40 years 

or more. 

 

As in Chapter 6, we used the Southern Oscillation Index (SOI) as a measure of ENSO. 

Seasonally-averaged SOI values were used in this study as covariates to explain the temporal 

variability of extreme precipitation. 
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1.2 A regional extreme value model 

1.2.1 Probabilistic regional model 

In a given region, ( , )Y s t  denotes the observed seasonal maximum at site s and time t. A 

GEV distribution is assumed for all sites [Coles et al., 2003; Katz et al., 2002] with D-

parameters varying in both space and time: 

 ( , ) ~ ( ( , ), ( , ), ( , ))Y s t GEV s t s t s t     (7.1) 

A piecewise linear regression function for the location and scale parameters is used in 

order to separately evaluate the impact of ENSO during the El Niño and La Niña phases. In 

Chapter 6, we showed that using this function for both location and scale parameters could 

provide a better assessment of the impact of ENSO on extreme precipitation.  

Reasoning that ENSO, as a global mode of variability, would have a fairly uniform 

impact across a homogeneous region, we assumed that some parameters of these regressions 

would also be identical for all sites within a region, including the parameters describing the 

effect of the SOI. In addition, we also assumed that the shape parameter was time-invariant 

and regional. The advantage of using regional parameters in terms of uncertainty reduction 

has been demonstrated in Chapter 6 (Section 2.4.4), as well as in previous studies (e.g., 

Renard et al. [2008]; Hanel et al. [2009a]; Sun et al. [2013]). 

The regression function for each D-parameter is therefore given by: 
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 ( , ) regs t    (7.4) 

where 
0 0

( ) ( ) ( )( , )s s s

loc loc loc   and 
1 1 1 1

( , , , , )reg reg reg reg reg reg         are regression parameters that 

need to be estimated. ( )s

loc  are site-specific (local) parameters, while reg  are regional 

parameters which are common for all sites within the region. 

In this model, the spatial dependence between data inside a region is described with a 

Gaussian copula. More detailed discussions on the use of the Gaussian copula can be found in 

Chapter 5, as well as in previous studies [Favre et al., 2004; Renard and Lang, 2007; Renard 

et al., 2013; Sun et al., 2013]. The dependence matrix   for the Gaussian copula is 

parameterized as follows: 

 1 2( , ) exp( *|| , ||)i j i js s s s      (7.5) 
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where || , ||i js s  is the distance between sites si and sj, and 
1 2( , )   are two parameters that 

need to be estimated.  

All regression parameters were estimated using MCMC methods (Algorithm 5, Chapter 

2) under a Bayesian framework. Flat priors were used in this study. To ensure the convergence 

of the MCMC sampling, we ran two chains with two different starting points for each region.  

 

1.2.2 Defining regions 

Regional analyses produce more robust results than at-site (local) analyses. However, in 

order to obtain the spatial pattern of ENSO impact, regions should be neither too large nor too 

small, because regions with small size may not contain enough data and regions with large 

size will not concur with the homogeneity assumption. We adopted a grid size of 5˚ by 5˚ 

(about 309,000 km
2 

in area at the equator and 155,000 km
2
 at 60˚N), leading to 2592 regions, 

and applied the regional model described in section 1.2.1 repeatedly to each region.  

In order to keep computation time reasonable, we used only some of the available 

observation sites in a region (the computational bottleneck being the inversion of the 

dependence matrix  ). Selection of the sites was achieved by subdividing each region into 

16 sub-regions, from which if there are available gauges, the gauge with the longest record 

was selected (Figure 2). Therefore, in each region, there were at most 16 sites used for 

regional analysis. We considered a region to possess enough data to apply the regional model 

if there were at least three sub-regions containing available gauges in a region. The reliability 

of this method of data selection is discussed in Section 3.1. 

 

 

Figure 7.2-Schematic of choosing observation sites for each grid cell 

 

1.2.3 The impact of ENSO on precipitation quantiles 

The impact of ENSO on precipitation quantiles is presented through a slope value 

associated to SOI. More precisely, for a fixed exceedance probability 1-α, the associated 

quantile y  is computed through the inverse cdf of a GEV distribution: 
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By applying the regression functions (Equations (7.2)(7.3)(7.4)) to each D-parameter, 

conditional on a specific SOI value, the quantile y  of site s becomes: 
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 is the slope of the quantile with respect to SOI. Note 

that, as the slope slp  only depends on the regional parameters, it is itself regional and hence 

does not depend on site s. 

 

2 Results 

In this section, we first describe the inference for the parameters of the model (Section 

2.1). Then we discuss further estimates derived from the model. Section 2.2 describes the 

impact of ENSO on precipitation quantiles. Section 2.3 presents the asymmetry of the impact 

of ENSO and Section 2.4 discusses the seasonal impact of ENSO. 

 

2.1 Regional parameter estimates 

In the asymmetric model proposed in equations (7.2)(7.3) and (7.4), the impact of El 

Niño/La Niña is characterized by slope regression parameters 
1reg   and 

1reg   for El Niño and 

1reg   and
1reg  for La Niña. If the impact is significant, the posterior distribution of 

1reg   and/or 

1reg 
 (conversely,

1reg 
 and/or

1reg 
) should be significantly smaller or larger than zero. 

Figure 7.3 illustrates significance and intensity for 
1reg  (El Niño) and 

1reg   (La Niña) for 

each grid cell during DJF. Red (resp. Blue) contours denote significantly positive (resp. 

negative) values for 
1reg 
and 

1reg 
with respect to the SOI. Thus, during an El Niño phase 

(SOI<0), blue (resp. red) contours mean a stronger El Niño corresponding to a larger (resp. 

smaller) location parameter, while the relation between colour and location parameter is the 

opposite for the La Niña phase (SOI>0). Some cells in southern India and Africa are not 

convergent due to frequent zero precipitation during DJF. 

During an El Niño phase (SOI <0), the location parameter is increased in southwest 

North America, southern South America, southeast coast of China and northern Europe. 
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Conversely, the location parameter is decreased in northwest North America, the Asian 

tropical islands and weakly in South Africa. 

During a La Niña phase (SOI > 0), the location parameter is increased in northern North 

America, South Africa, Australia and northern Europe. Conversely, the location parameter is 

decreased in southern North America and northeast India. 

 

 

Figure 7.3-Slope of the location parameter with respect to SOI during El Niño (
1reg  ) 

and La Niña (
1reg  ) phases. Grey dots denote cells with too few data stations to 

perform a regional analysis. Dots with red (resp. blue) contours denote significantly 

positive (resp. negative) slopes, while dots with grey contours denote non-significant 

slopes. Dots with yellow contours denote cells where the MCMC algorithm did not 

converge, and correspond to specific locations in mountainous areas or with 

frequent zero precipitation during DJF. 

 

This global pattern for both phases is consistent with the study of Kenyon and Hegerl 

[2010] for the season from November to April. However, since their study was based on at-

site (local) analysis, the significance in a great number of sites was masked. The result is also 
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consistent with the study of ENSO-precipitation teleconnection in particular regions: North 

America [Castello and Shelton, 2004; Cayan et al., 1999]; South America [Grimm and 

Tedeschi, 2009]; Eastern China [Wu et al., 2003]; and Australia [Cai et al., 2010; King et al., 

2013]. 

For the other seasons (see Section 5.1), the impact of ENSO is weak in MAM and JJA, 

and moderate in SON. In MAM, during an El Niño phase, the location parameter is higher in 

western North America and decreased in Central America. La Niña enhances the location 

parameter in the Philippines. In JJA, a significant decrease of the location parameter is found 

in Australia during El Niño, and a significant increase is found in south India during La Niña. 

In SON, El Niño strengthens the location parameter in western North America and western 

Mediterranean regions, while reducing the location parameter in eastern Australia and the 

Philippines. La Niña leads to a higher location parameter in northwestern North America, the 

Philippines and Australia, and reduces it in southern South America. 

The impact on the scale parameter (not shown) shows a similar pattern. However, the 

strength is lower and less significant than for the location parameter. 

To test the reliability of the method of data selection described in section 1.2.2, we ran 

our model on one or two regions on each continent using all available data from those regions 

(Figure 7.4). The results of these trials were highly consistent with the results we obtained 

using only a maximum of 16 selected sites from each region.  

 

2.2 The impact of ENSO on precipitation quantiles 

A more intuitive picture of the impact of ENSO on extreme precipitation can be obtained 

by expressing it in terms of quantiles rather than in terms of location and scale parameters. In 

this section, we illustrate the percentage change in 1 in 10 year precipitation during a strong 

El Niño or La Niña phase and a neutral phase. The 1 in 10 year precipitation (0.9 quantile) is 

computed from equation (7.7) with α equal to 0.1, which requires the usage of a local 

regression parameter. Thus the illustration of a global pattern is expressed on single sites 

instead of regional effects.  

Figure 7.5 illustrates the percentage change for the 1 in 10 year precipitation during DJF 

between an extreme ENSO event (|SOI| = 20) and a neutral phase (SOI = 0). Red (blue) 

indicates that extreme El Niño/La Niña increases (decreases) the 1 in 10 year precipitation. 

During a strong El Niño event, it can be increased by more than 50% in Central America, 40% 

on the south coast of China, and nearly 20% in central North America and southeast South 

America. A decrease of about 15% can be observed in northwest America and a more than 

20% decrease in the Philippines.  

During a strong La Niña episode, the intensity of a 1 in 10 year precipitation increases by 

about 15% in northern North America, north Europe and the Mediterranean region, 10% to 

40% (from east to west) in South Africa, about 20% in northeast China, more than 40% in 

eastern Australia and 60% in western Australia. However, the intensity of a 1 in 10 year 

precipitation is decreased by more than 50% in Mexico and nearly 25% in northeast India. As 

Figure 7.5 is a derivation of the model, the illustration of the global pattern of the impact of 

ENSO on 1 in 10 year precipitation events broadly coincides with that of the slope parameter 
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shown in Figure 7.3. The results of other seasons (see Section 5.2) correspond to the location 

slope parameter of that season as well. 

 

2.3 Asymmetry of the impact of ENSO on extreme precipitations 

In each phase, ENSO can have positive, negative or no impact on precipitation. Thus 

there are nine possible combinations of the impact of ENSO during two phases. Figure 7.6 

illustrates these nine combinations between the quantiles and SOI. A very negative value of 

SOI corresponds to a strong El Niño, while a positive value indicates a La Niña.  

 

 

 

Figure 7.4-Same as Figure 7.3, but the model is run on randomly selected regions on 

each continent using all available data from those regions 
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Figure 7.5-Percentage change for the intensity of 1 in 10 year precipitation relative 

to SOI=0. Grey dots denote cells with too little station data to perform a regional 

analysis. Red (resp. blue) dots denote an increase (resp. decrease) in the intensity of a 

1 in 10 year precipitation for strong El Niño/La Niña phases compared with a 

neutral phase. Yellow dots denote cells where the MCMC algorithm did not converge. 

They correspond to specific locations in mountainous areas or to frequent zero 

precipitations during DJF. 

 

The asymmetric behaviors could be summarized in two types: (1) no effect for one phase 

and one significant effect for another phase (Figure 7.6 (a), (b), (d), (e)); (2) precipitation 

increases or decreases during both El Niño and La Niña phases (Figure 7.6 (c), (f)). Figure 7.6 

(g), (h) illustrate the symmetric behaviors and (i) presents no ENSO effect. The simplest way 

to detect the asymmetry is to compute the difference of slope during La Niña and El Niño 

phases. A positive value will be obtained for the relation of type (a), (b), (c), and a negative 

value for the relation of type (d), (e), (f) in Figure 7.6. Conversely, the slope differences for 

(g), (h) and (i) should be close to zero. Figure 7.7 illustrates the difference in the regional 

slope for the 1 in 10 year precipitation in DJF between the La Niña and El Niño phases. Red 

contours denote a significantly positive difference, while blue contours indicate the difference 

in slope is negative. The asymmetric type for a particular region could be obtained easily by 
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comparing the results of two phases in Figure 7.3. The asymmetric impact is mainly found in 

a part of North America, southeast South America, eastern China, Australia, and to a lesser 

extent, northern Europe and central Asia.  

 

 

Figure 7.6-Nine possible combinations of the relation between quantile and SOI. An 

upward trend denotes a significantly positive slope for the SOI effect on the quantile; 

while a downward trend denotes a significantly negative slope. A flat line means the 

impact of ENSO is not significant on the quantile. For instance, (a) illustrates the case 

where the slope is negative during El Niño (SOI<0) and not significant during La 

Niña (SOI>0). 

 

This asymmetric ENSO pattern coincides with the difference between the observed 

precipitation intensity during El Niño and La Niña described by Meehl et al. [2007, fig 3a] for 

North America. Grimm and Tedeschi [2009] pointed out that the El Niño impact on the 

frequency of extreme precipitation is not quite consistent with the impact of La Niña in South 

America. However, there is not enough data from Brazil in our analysis; thus we cannot make 

further verification in this area. The asymmetry found in south China during MAM (see 

Section 5.3) is consistent with the study of Feng and Li [2011]. However, we find asymmetric 
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impact is stronger in DJF than in MAM. The asymmetry found in Australia is also consistent 

with the studies of Cai et al. [2010] and King et al. [2013]. 

The results for other seasons (see Section 5.3) reveal that the asymmetry in eastern China 

and Australia is significant during MAM, and the asymmetry in western North America is 

more significant in SON than in DJF. There is no clear evidence that asymmetry exists in JJA, 

probably because JJA is the season with the lowest ENSO impact. 

 

 DJF 

 

Figure 7.7-Difference between the slope of SOI during La Niña and El Niño phases (La 

Niña - El Niño) for 1 in 10 year precipitation. Grey dots denote cells with too little 

station data to perform a regional analysis. Dots with red contours denote a 

significant difference between the impact of the La Niña and El Niño phases, while 

blue contours denote a significantly negative difference. Dots with grey contours 

denote non-significant slope differences and dots with yellow contours denote cells 

where the MCMC algorithm did not converge, and correspond to specific locations in 

mountainous areas or with frequent zero precipitation during DJF season. 

 

2.4 Seasonality of the impact of ENSO on extreme precipitations 

Figure 7.8 illustrates the season during which ENSO exerts the greatest influence on the 

1 in 10 year precipitation. Table 7.1 summarizes regions and seasons when the impact of 

ENSO is strongest. The data indicated that in most regions SON experiences the most marked 

effects of ENSO, although MAM can be equally influenced in some areas. In general, JJA is 

the season least affected by ENSO.  

In some regions, the El Niño and La Niña phases do not exert their influence in the same 

season, which reinforces the asymmetric teleconnection between ENSO and extreme 

precipitation. In Figure 7.8, we only observe the season in which the impact is the largest. The 

other seasons may have also significant ENSO impacts, but they are masked in this figure. 

In general, these findings are consistent with those from empirical orthogonal function 

(EOF) analyses for land precipitation: the ENSO signal is strongest in SON and weakest in 

JJA [Dai et al., 1997]. However, there are some differences in particular regions. Dai et al. 

[1997] found that the ENSO signal is strongest during DJF in North America and SON in the 
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Australian-Indonesian region. The results of the current study in terms of the season with the 

strongest impact of ENSO in North America and Australia clearly differ from those of Dai et 

al. [1997]. It is likely that this difference results from different hypotheses in the two studies 

(symmetric vs. asymmetric ENSO impact) and different target variables (percentage of 

variance in the total precipitation explained by ENSO vs. intensity of the ENSO effect on 

extreme precipitation). 

 

Table 7.1-Region and seasons experiencing the strongest impact of ENSO on 1 in 10 

year precipitation 

Regions Strongest impact 

seasons 

increase (+)/ 

decrease(-) precipitation 

El Niño episode 

Eastern part of North America SON - 

Western part of North 

America 

SON + 

Southern part of South 

America 

SON, DJF + 

Southeast China DJF + 

Eastern Australia JJA, SON - 

La Niña episode 

Middle north of North 

America 

SON + 

Southern part of North 

America 

DJF, MAM - 

Southern part of South 

America 

SON, DJF - 

North India SON + 

South Africa DJF + 

Eastern part of China MAM, JJA + 

Australia DJF + 
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 SOI < 0 (El Niño) 

 
 SOI > 0 (La Niña) 

 

Figure 7.8-Map of the season with the largest ENSO impact. The color illustrates the 

season in which the ENSO effect is the strongest for the 1 in 10 year precipitation for 

each grid cell. Upward pointing triangles denote increases; downward pointing 

triangles denote decreases in extreme precipitation intensity. The color intensity is 

proportional to the intensity of the ENSO impact. 

 

3 Discussion 

3.1 Limitation of the model and reliability of the definition of a region 

The use of regional models requires defining a homogenous region. In this study, we 

defined the region (grid) according to its latitude and longitude. It is important to note that for 

the purposes of the current study only the shape parameter and the ENSO effect parameters 

are regional. Other parameters are site-specific, which provides the flexibility to account for 

between-site differences within the region. 
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Experience during the research indicated that the definition of homogeneous regions 

might be unduly simplistic for some geographical areas. In mountainous areas, in particular, 

where humid air sometimes cannot get across the mountains, precipitation patterns differ on 

either side of the ranges. For example, because of the Andes Mountains, stations in the grid 

cells defined across Chile and Argentina reveal clearly different patterns. In the austral 

summer, precipitation is very low on the Chilean side, and much greater on the Argentinean 

side.  

Because of this geographical influence, the MCMC sampling is not convergent for such 

grid cells. A possible solution is to redefine regions by subdividing the grid cells into smaller 

grids. However, the number of available observation sites might be too low for a meaningful 

regional analysis. A better outcome might be achieved if the homogeneous regions were based 

on climate or physiographic variables, as opposed to the simple regular grid adopted here. 

This will be explored in future work. 

 

3.2 Changes in ENSO teleconnections  

An important question in terms of ENSO is how the evolution of such an influential 

global process will affect extreme precipitation in a future climate. Several challenges need to 

be met to address this issue. Firstly, GCM simulations suggest the possible occurrence of 

“super-ENSO” events [Latif et al., 2013] in the future, which may require extrapolating from 

the regional model used in this study well beyond the range of observed SOI values. Whether 

or not the “double-slope” relationship used in this model can be extrapolated to very high SOI 

values is an open question. Secondly, the ability of GCMs to describe the physical 

mechanisms governing the development of ENSO events remains limited, as discussed, for 

example, by Bellenger et al. [2013]. In the present state of GCMs, it is therefore unclear 

whether projections of future ENSO events can be reliably used to deduce the evolution of 

extreme precipitation in a future climate.   

 

3.3 Impact of other large scale modes of climate variability 

Besides ENSO, other large scale modes of climate variability could also affect regional 

extreme precipitation. For instance, the Indian Ocean Dipole (IOD) affects the precipitation in 

Southeast Asia and Australia, and the North Atlantic Oscillation (NAO) influences 

precipitation in North America and Europe. Research also indicates that in many regions 

precipitation is influenced by the combined effect of distinct large scale modes (e.g., [Keim 

and Verdon-Kidd, 2009]). For example, IOD and ENSO both influence precipitation in 

Australia. However, the ways in which the two modes combine to influence precipitation in 

Australia have not been established, meaning that there is still research to be undertaken in 

this area.  

The current study was solely a purely statistical analysis of the impact of ENSO on 

extreme precipitation, and does not provide any answer to this question. If such a physical 

mechanism could be understood, however, a more appropriate regression model could be 
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integrated instead of the piecewise linear regression model to provide a better evaluation of 

ENSO impact. 

 

4 Conclusions 

In the current study, we quantified and described the global pattern of the impact of 

ENSO on extreme precipitation by applying a climate-informed regional frequency analysis 

framework. 

It was found that for boreal winter (DJF), El Niño enhances extreme precipitation in 

southwest North America, southern South America, the southeast coast of China and northern 

Europe. Conversely, extreme precipitation is decreased in northwest North America and (more 

weakly) in South Africa. La Niña enhances extreme precipitation in northern North America, 

South Africa, Australia and northern Europe. Conversely, extreme precipitation is decreased 

in southern North America and northeast India. We also demonstrated how the result can also 

be used for predicting the impact of ENSO on the high return period precipitation. 

In addition, the possible asymmetry of the impact of ENSO during its El Niño and La 

Niña phases was assessed. The asymmetry is highlighted in many regions. In particular, 

during the boreal winter, data from western North America, southeast South America, eastern 

China, Australia, and to a lesser extent, northern Europe and central Asia reveal an 

asymmetric ENSO impact. 

We also determined the season most affected by ENSO. It was found that during the El 

Niño phases, DJF is the season during which the southern part of South America and 

southeast China are the most affected by ENSO processes. SON is the season during which 

ENSO most strongly affects North America (increasing precipitation in the eastern part and 

decreasing it in the west), the southern part of South America and eastern Australia (decrease). 

During the La Niña phase, the greatest impact is during DJF in the southern part of North 

America (decrease), the southern part of South America (decrease), South Africa and 

Australia, while MAM is the season most strongly affected in the southern part of North 

America (decrease) and Southeast China. In the middle north of North America, the southern 

part of South America (decrease) and northern India, the greatest effects are felt during SON. 

In general, the impact of ENSO processes is weak in JJA.  

From an engineering perspective, the information provided in this study could help to 

forecast the seasonal floods and droughts caused by ENSO, and planners could decide in 

advance how much water needs to be held in dams. 

 

5 Figures for the other seasons 

5.1 Slope of the location parameter with respect to SOI 

The following figures illustrate the slope of the location parameter with respect to SOI 

for the other three seasons (MAM, JJA and SON). Captions are the same as Figure 7.3. 
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Figure 7.9- Slope of the location parameter with respect to SOI during El Niño (
1reg  ) 

and La Niña (
1reg  ) phases for the other three seasons (MAM, JJA and SON). 

 

 

5.2 Percentage change for the intensity of 1 in 10 year precipitation 

relative to SOI=0 

The following figures illustrate the percentage change for the intensity of 1 in 10 year 

precipitation relative to SOI=0 for the other three seasons (MAM, JJA and SON). Captions 

are the same as Figure 7.5. 
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Figure 7.10-Percentage change for the intensity of 1 in 10 year precipitation relative 

to SOI=0 for the other three seasons (MAM, JJA and SON). 
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5.3 Difference between the slope of SOI during La Niña and El Niño 

phases 

The following figures illustrate the difference between the slope of SOI during La Niña 

and El Niño phases for the other three seasons (MAM, JJA and SON). Captions are the same 

as Figure 7.7. 

 

 

 

Figure 7.11- Difference between the slope of SOI during La Niña and El Niño phases 

(La Niña - El Niño) for 1 in 10 year precipitation for the other three seasons (MAM, 

JJA and SON). 

 



  

 





 

 

Conclusion of the thesis 
 

In this thesis, a general spatio-temporal regional frequency analysis framework was 

developed, geared towards analyzing and predicting hydrological hazards incorporating 

temporal trends and climate change/variability effects. 

 

Development of the general spatio-temporal regional frequency 

analysis framework 

The development of the model was undertaken through two steps: (i) local time-varying 

model construction, in which only temporal variation is considered; and (ii) regional spatio-

temporal model construction, in which both temporal and spatial variations are involved. The 

former can be considered as a particular case of the latter. This spatio-temporal framework 

provides a very flexible platform for analyzing hydrological variables by incorporating three 

types of covariates: temporal, spatial and spatio-temporal covariates. In particular, it provides 

a free choice of the parent distribution for the observation, including discrete or continuous 

distributions. The relationship between the temporal (or spatio-temporal) covariates and data 

is modeled with a temporal regression where parameters of the parent distribution are a 

function of temporal covariates. The selection of temporal covariates is also flexible, since 

both deterministic variables (e.g. time) and stochastic variables (e.g. ENSO) can be used. In 

addition to the flexibility on the treatment of temporal effects, spatial effects are also involved 

in the framework. In order to introduce spatial effects in the parameters, a spatial regression 

function is applied to describe the relationship between the spatial covariates and the 

parameter.  

A main advantage of the modeling framework is that spatial dependence is incorporated. 

In the thesis, we described the usage of elliptical copulas for modeling the spatial dependence 

of precipitation. Compared with models ignoring the spatial dependence, this model provides 

an important improvement on the estimation of parameter uncertainties, which enables a more 

realistic analysis in terms of detecting trends and climate affects.  

In addition to the model construction, this spatio-temporal framework is integrated with 

other tools for facilitating the treatment of missing values in the data, the estimation of 

parameters and model diagnosis and comparison. In particular, thanks to carefully 

implemented algorithms for calculating the likelihood with non-missing data at each time step, 

no observation data are wasted in the inference. Furthermore, the parameter estimation uses a 

Bayesian approach, in which prior information of the parameters can be included. The 

Bayesian techniques also enable easily and naturally quantifying the uncertainties. In this 

thesis, a newly developed MCMC algorithm, which combines the adaptive block Metropolis 

method, an adaptive Metropolis-Hastings method and the classical Metropolis-Hastings 

method, is used to provide fast and efficient parameter estimation under the Bayesian 

framework. In a time-varying context, the probability-probability plot is used to evaluate the 

goodness-of-fit graphically. Model comparison tools are incorporated within the Bayesian 

framework, through the Deviance Information Criterion. These tools can be used to compare 
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specific models under different assumptions or with different regression functions. Completed 

with these surrounding tools, the general spatio-temporal framework developed in this thesis 

provides a flexible and convenient way for better identifying temporal trends and impacts of 

climate variability on hydrological events, as well as the induced hydrological hazard. 

 

Assessment of the framework 

Several studies are undertaken for evaluating the general framework. With the GCM-

projected precipitation data for the 21
st
 century in the Durance catchment, we demonstrate the 

flexibility in terms of choosing parent distributions and setting regression functions when 

analyzing variables without strong distribution guidance. Among the tested variables, a 

temporal trend is detected on the variable “first snowy day”. This variable is also analyzed by 

using the same distribution with a time-invariant model for data from two sub-periods (current 

and future). There is a clear shift on the mean value and quantiles between the two periods. 

This result is consistent with the one found with our continuous time-varying model, which 

provides the estimation with much smaller uncertainties. Failure probabilities are also 

evaluated with both models, and results show that the time-varying model is more adapted for 

a risk assessment over a long duration. 

The flexibility of the model is further discussed with the case study of French 

Mediterranean precipitation. Temporal trends and NAO effects on the annual maximum daily 

precipitation are analyzed at the local scale. With a GEV parent distribution, six regression 

models under different assumptions, including stationarity, temporal trend only and both 

temporal trend and NAO effect, are compared. Globally there is no strong indication of the 

existence of temporal trends and NAO effects, except for a few isolated sites.   

The second assessment is to verify the advantage of considering spatial dependence 

through an elliptical copula. We simulate two datasets from time-varying Gaussian and GEV 

distributions. The parameter estimation is performed both considering and ignoring spatial 

dependence. As expected, in both cases, ignoring spatial dependence leads to an under-

estimation of the parameter uncertainty. A further analysis is based on datasets simulated from 

maximum stable processes. Estimations are also performed both ignoring and considering 

spatial dependence with a Gaussian copula. With the dataset simulated with a moderate 

dependence, a significant improvement can be found in the estimation considering spatial 

dependence. However, in a high dependence case, results are not as convincing: using a 

Gaussian copula yields a realistic quantification of uncertainty for the location and trend 

parameters, but it leads to an over-estimation of the shape parameter.  

The third assessment is to compare the Gaussian copula and maximum stable processes 

in modeling the spatial dependence of extreme data. The joint and conditional probabilities of 

an event exceeding a high threshold at two sites are compared. Results show that Schlather 

models systematically yield higher joint and conditional probabilities, due to its peculiar 

handling of dependence at large distances. On the other hand, the Smith model and the 

Gaussian copula yield markedly different estimates of conditional probabilities, which can be 

explained by the fact that the Smith model is asymptotically dependent, while the Gaussian 

copula is asymptotically independent. Overall, these results suggest that even if a Gaussian 

copula approximation may yield acceptable results in terms of estimating marginal parameters, 
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the computation of joint or conditional exceedance probabilities is much more sensitive to the 

representation of spatial dependence, and that unduly using a Gaussian copula may lead to 

underestimate conditional probabilities of exceedance. 

 

The impact of ENSO on the global precipitation 

One of the main contributions of the thesis is the quantification of the impact of ENSO 

on precipitation. Two case studies are performed. The first one analyzes the impact of ENSO 

on the summer total and summer maximum rainfall in Southeast Queensland, Australia. The 

second one provides a global analysis on the impact of ENSO on extreme precipitation. The 

general framework developed in this thesis provides a pragmatic way for these analyses. The 

temporal covariate used in the model is SOI and the impact of ENSO was quantified through 

the parameters characterizing SOI.  

 

Summer precipitation over SEQ 

In the case of Southeast Queensland, we first evaluate the asymmetric impact of ENSO 

on the summer total rainfall. An asymmetric linear regression function that separates different 

phases of ENSO is used on the mean of a lognormal distribution. Results show that La Niña 

exerts a significant influence in the region, while the impact of El Niño is not significant. The 

phenomenon is consistent with the literature review. Then the analysis turns to the extreme 

data, which is considered to be more uncertain than the total rainfall. Thanks to the flexibility 

of the general framework, various hypotheses are compared in this study, which includes the 

local and regional parameter settings with the assumption of stationarity, symmetric and 

asymmetric impact of ENSO. The DIC of these models indicates that the use of regional 

models yields a better identification of the impact of ENSO on extreme rainfall over SEQ. 

Among the assumptions, an asymmetric impact of ENSO is the most adapted, where La Niña 

has a strong effect on extreme summer rainfall, while El Niño has no effect. The results 

corroborate the findings with the dataset of summer total rainfall.  

From an engineering perspective, it is found that the 1 in 100 year rainfall during a 

strong La Niña can be 20% to 50% higher than the estimates under the stationary assumption. 

This provides useful information for planners to organize in advance operational management 

and emergency responses during strong La Niña years. 

 

The impact of ENSO on global extreme precipitation 

Seeing the asymmetric impact of ENSO on the summer maximum daily rainfall in SEQ, 

we are further interested in the impact of ENSO on global extreme precipitation. This analysis 

is based on a new global high quality observation dataset, which includes about 7000 stations 

worldwide whose record length is longer than 40 years. The global map is gridded with 5˚ 

latitude by 5˚ longitude cells, which are considered as homogeneous regions. Although it 

varies with latitude, the surface of each cell is reasonable to perform regional analyses. Seeing 

the advantage of an asymmetric regional model in the case study of SEQ, we apply the same 

model to the global dataset. 
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It was found that during boreal winter (DJF), during El Niño phase, extreme precipitation 

is increased in southwest North America, southern South America, the southeast coast of 

China and northern Europe, while extreme precipitation is decreased in northwest North 

America and (more weakly) in South Africa. During La Niña phase, extreme precipitation is 

increased in northern North America, South Africa, Australia and northern Europe, while 

extreme precipitation is decreased in southern North America and northeast India. The 1 in 10 

year precipitation calculated under a strong El Niño (SOI=-20) or La Niña (SOI=20) phase 

compared with that calculated during a neutral phase (SOI=0) showed a significant difference 

in some regions. For example, during a strong El Niño event, the intensity of a 1 in 10 year 

precipitation can be increased by more than 50% in Central America, 40% on the south coast 

of China, and nearly 20% in central North America and southeast South America. A decrease 

of about 15% can be observed in northwest America and a more than 20% decrease in the 

Philippines. During a strong La Niña episode, the intensity of a 1 in 10 year precipitation 

increases by about 15% the in northern North America, north Europe and the Mediterranean 

region, 10% to 40% (from east to west) in South Africa, about 20% in northeast China, more 

than 40% in eastern Australia and 60% in western Australia. A decrease by more than 50% in 

Mexico and nearly 25% in northeast India is also observed. 

The impact of ENSO is found to be asymmetric in many regions, such as (during DJF) 

western North America, southeast South America, eastern China, Australia, and to a lesser 

extent in northern Europe and central Asia. 

Lastly, the effect of ENSO is found to vary significantly according to the season. For the 

El Niño phase, DJF is the season during which the southern part of South America and 

southeast China are the most affected by ENSO processes. SON is the season during which 

ENSO most strongly affects North America (increasing precipitation in the eastern part and 

decreasing it in the west), the southern part of South America and eastern Australia (decrease). 

During the La Niña phase, the greatest impact is during DJF in the southern part of North 

America (decrease), the southern part of South America (decrease), South Africa and 

Australia, while MAM is the season most strongly affected in the southern part of North 

America (decrease) and Southeast China. In the middle north of North America, the southern 

part of South America (decrease) and northern India, the greatest effects are felt during SON. 

In general, the impact of ENSO processes is weak in JJA. 



 

 

Perspectives 

 
While the usefulness and the flexibility of the modeling framework developed in this 

thesis was demonstrated, several avenues for improvement exist as discussed in the following 

sections. 

 

Using spatial and spatio-temporal covariates 

While implemented in the modeling framework, spatial regressions have been scarcely 

tested in this work. Indeed in all case studies, we assumed identical regional parameters, 

which correspond to using identical spatial regressions. The usefulness of such structure needs 

further examination by case studies. In the ENSO case studies of Chapter 6 and Chapter 7, the 

ENSO effect could for instance vary with elevation or distance to sea. Alternatively, 

spatializing purely local parameters using a spatial regression would enable predicting 

quantiles at ungauged sites. This was not attempted in this case study because identifying such 

spatial effects is difficult with a limited number of sites (10 to 16): we therefore favored the 

identification of ENSO effects. However, future case studies based on a spatially denser 

dataset will investigate in more depth the construction of such spatial models. 

Similarly, spatio-temporal covariates have not been used, although this possibility is 

implemented. An example of interesting use of a spatio-temporal covariate would be to 

include weather type information: at each site and each time step, the weather type observed 

on the day of the annual maximum could be used as covariate. Garavaglia et al. [2010]; [2011] 

demonstrated the interest of weather type information for predicting extreme precipitation. 

 

Construction of hierarchical models 

In the regional model, we proposed two kinds of parameters: local and regional 

parameters. Local parameters are different for each site, which offers a good flexibility. 

Regional parameters are common for all sites, yielding reduced uncertainties (e.g. Figure 6.13 

and Figure 6.14). However, this distinction may be too “rigid”.  Some parameters may be 

different at each site, but still have some spatial consistency. A possible improvement is to use 

hierarchical models to enable constrained variations of parameters in space. Wikle et al. [1998] 

described a general hierarchical Bayesian framework in a non-stationary context. Lima and 

Lall [2009] [2010] used hierarchical models to describe the daily rainfall occurrence and 

extreme runoff. Renard [2011] and Renard et al. [2013] proposed a general hierarchical 

approach to regional frequency analysis. Future work could therefore be to generalize the 

model proposed in this thesis to a hierarchical setup. In particular, this may yield a more 

realistic quantification of uncertainties at ungauged sites, and hence have interesting 

applications for hazard mapping. 

 

Treatment of spatial dependence 

One of the advantages of the framework is to consider the spatial dependence of data. 

However, Chapter 5 showed that the treatment of spatial dependence using elliptical copulas 
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is perfectible. Additional work is needed to include alternative dependence structures, 

especially for extremes. Maximum stable processes provide a good alternative. However, as 

discussed in Chapter 5, the Smith and Schlather representations are also perfectible. Both 

representations have properties that do not seem very realistic when compared with real 

rainfall patterns: the Smith representation generates much too smooth rainfall fields, while 

intersite dependence does not vanishes to zero at infinite distances with the Schlather 

representation. Alternative representations that are more consistent with the properties of 

rainfall fields could be explored in the future. More generally, incorporating maximum stable 

models within a Bayesian framework is challenging as well, because of the difficulty in 

writing the joint distribution of a large number of sites. Thus statistical developments are still 

required to improve the practical handling of max-stable spatial dependence models. 

On the other hand, the dependence-distance models integrated in the framework are 

convenient for spatially continuous variables such as precipitation. However, such 

dependence model cannot directly be used for streamflow variables, because streamflow is 

not a punctual variable but is instead related to a catchment, and his dependence is therefore 

structured by the hydrologic network, rather than the sole inter-site distance. The framework 

could be completed in the future by developing new dependence models adapted to 

streamflow applications. This would certainly involve the definition of non-Euclidean 

distances that can account for the structure of the hydrologic network. Blanchet and Davison 

[2011] developed some practical solutions to model the spatial dependence of snow depth 

using non-Euclidean distances, which may be extended to the streamflow variables. 

 

Models for peak-over-threshold (POT) 

In this thesis, we favored the use of a block maxima (GEV) representation to describe 

extreme precipitations. An alternative description would be to use a POT (GPD) 

representation. This has not been attempted because it is much more difficult to model spatial 

dependence for non-concomitant peaks over threshold. Block maxima are easier because they 

can be related to the same year, making the derivation of a multivariate dataset 

straightforward. While models adapted to multivariate threshold exceedance have been 

proposed in moderate dimension (e.g. Heffernan and Tawn [2004], Boldi and Davison [2007] 

and Sabourin and Naveau [2013]), the extension of such approaches to the highly-

dimensional spatial case is challenging. An important advantage of using peaks over threshold 

data is that more data could be used in the regressions. Moreover, extremes could be 

described both in terms of severity and frequency. A further extension of the framework could 

be the development of models adapted to the POT representation, following progresses made 

in the statistical community. 

 

Further analysis on the impact of ENSO 

In the global analysis of the impact of ENSO, regional models were applied on grid cells. 

As discussed in Chapter 6 (Section 3.1), using cells as regions may lead to an incorrect 

representation of different climate regions. In future work, improvements can be achieved if 

well-defined homogeneous regions are developed. Furthermore, once homogenous regions are 
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well-defined, spatial effects can be included using spatial regression models with spatial 

covariates (e.g. elevation) to improve the analysis.  

Besides the study of the ENSO impact on precipitation, similar analyses could be 

performed on flood variables. This would rely on the development of specialized spatial 

dependence models for floods as discussed previously. With the study on floods, 

planner/water resource managers could benefit from more direct information to better 

organize their operational rules. At the other side of the hydrologic spectrum, studying the 

impact of ENSO on meteorological and hydrological droughts could also have significant 

operational applications. 

Lastly, besides ENSO, other large scale modes of climate variability could also affect 

regional extreme precipitation. As discussed in Chapter 7 (Section 3.3), it will be also 

interesting to use similar models for analyzing the impact of climate modes such as NAO or 

IOD on the regional and global precipitation. An interesting open question to investigate is 

whether the effects of distinct modes of variability simply add up to each other, or if 

significant interactions can be detected. 

 

Frequency analysis based on the output of GCM simulations 

In the context of projecting climate change impacts on hydrological variables, most 

analyses are still performed using time-invariant models with sub-periods data representing 

current and future climates. With the framework developed in this thesis, we can already 

establish a time-varying model with an entire transient GCM run, rather than restricting to 

sub-periods, which unnecessarily wastes GCM-simulated data [Hanel et al., 2009b]. However, 

a limitation of the analysis performed in this thesis is that it relied on a single GCM, and 

moreover, it did not evaluate the ability of the GCM to reproduce the observed climate. 

Further developments could therefore focus on how to use such time-varying FA framework 

with the combined observations (historical data) and multi-GCM simulations (future data) to 

provide more reliable projections for the future. 

For the engineering perspective, an important question is still how to design future 

hydraulic constructions in a changing climate. In many countries, the current approach is to 

fix an annual exceedance probability (generally prescribed by regulation) and to design the 

structure in order to withstand the corresponding quantile. However, in a context where 

distributions change with time, this approach is ambiguous: should the quantiles be calculated 

based on the distribution at the time of construction, at the end of the structure’s expected 

lifetime, or at some other fixed future date? Isn’t possible to base the design on the failure 

probability computed over the expected lifetime of the structure? Given the uncertainties 

affecting future climate and hydrologic projections, is a calculation based on the non-

stationary assumption systematically justified? How to account for these uncertainties in 

designing future hydraulic structures? All these questions remain open for future works. 
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Regional frequency analysis of precipitation 

accounting for climate variability and change 
 

Extreme precipitations and their consequences (floods) are one of the most threatening 

natural disasters for human beings. In engineering design, Frequency Analysis (FA) 

techniques are an integral part of risk assessment and mitigation. FA uses statistical models to 

estimate the probability of extreme hydrological events which provides information for 

designing hydraulic structures. However, standard FA methods commonly rely on the 

assumption that the distribution of observations is identically distributed. However, there is 

now a substantial body of evidence that large-scale modes of climate variability (e.g. El-Niño 

Southern Oscillation, ENSO; Indian Ocean Dipole, IOD; etc.) exert a significant influence on 

precipitation in various regions worldwide. Furthermore, climate change is likely to have an 

influence on hydrology, thus further challenging the “identically distributed” assumption. 

Therefore, FA techniques need to move beyond this assumption. In order to provide a more 

accurate risk assessment, it is important to understand and predict the impact of climate 

variability/change on the severity and frequency of hydrological events (especially extremes).  

This thesis provides an important step towards this goal, by developing a rigorous 

general climate-informed spatio-temporal regional frequency analysis (RFA) framework for 

incorporating the effects of climate variability on hydrological events. This framework brings 

together several components (in particular spatio-temporal regression models, copula-based 

modeling of spatial dependence, Bayesian inference, model comparison tools) to derive a 

general and flexible modeling platform. In this framework, data are assumed to follow a 

distribution, whose parameters are linked to temporal or/and spatial covariates using 

regression models. Parameters are estimated with a Monte Carlo Markov Chain method under 

the Bayesian framework. Spatial dependency of data is considered with copulas. Model 

comparison tools are integrated. The development of this general modeling framework is 

complemented with various Monte-Carlo experiments aimed at assessing its reliability, along 

with real data case studies. 

Two case studies are performed to confirm the generality, flexibility and usefulness of 

the framework for understanding and predicting the impact of climate variability on 

hydrological events. These case studies are carried out at two distinct spatial scales: 

 Regional scale: Summer rainfall in Southeast Queensland (Australia): this case study 

analyzes the impact of ENSO on the summer rainfall totals and summer rainfall maxima. 

A regional model allows highlighting the asymmetric impact of ENSO: while La Niña 

episodes induce a significant increase in both the summer rainfall totals and maxima, the 

impact of El Niño episodes is found to be not significant. 

 Global scale: a new global dataset of extreme precipitation including 11588 rainfall 

stations worldwide is used to describe the impact of ENSO on extreme precipitations in 

the world. This is achieved by applying the regional modeling framework to 5x5 degrees 

cells covering all continental areas. This analysis allows describing the pattern of ENSO 

impact at the global scale and quantifying its impact on extreme quantiles estimates. 

Moreover, the asymmetry of ENSO impact and its seasonal pattern are also evaluated. 


