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Résumé 
 

  Le nitrate, produit de la fin de chaîne de réaction des oxydes d’azotes de 

l’atmosphère (NOx = NO +NO2), est l’un des ions le plus abondant de la neige et 

de  la glace polaire.  Ses  rapports  isotopiques stables  (δ18
O, δ

15
N et Δ

17
O) ont été 

abondamment utilisés pour contraindre ses sources et les chemins réactionnels. De 

plus, le nitrate archivé dans les carottes de glace profondes peut apporter de nouvelles 

contraintes sur les conditions climatiques passées. Cependant, le dépôt de nitrate dans 

les régions polaires à faible accumulation est réversible en raison des processus post-

dépôts, compliquant l’interprétation des enregistrements. Actuellement, il existe des 

enregistrements de nitrate issus de carottes de glace profonds couvrant de 

l’information climatique sur plusieurs milliers d’années dont leur interprétation 

dépend d’une quantification précise ces phénomènes post-dépôts. 

 Nous avons étudié expérimentalement le transfert d’excès-
17

O de l’ozone 

durant la réaction en phase gaz de NO2 + O3  NO3 + O2, qui est une réaction 

importante de la chimie nocturne de formation du nitrate. De cette étude nous avons 

déterminé la fonction de transfert du Δ
17

O donnée par : ∆
17

O(O3*) = (1.23 ± 0.19) × 

∆
17

O(O3)bulk + (9.02 ± 0.99). Nous avons aussi évalué la distribution intramoléculaire 

des isotopes de l’oxygène de l’ozone et observé que l’excès d’enrichissement résidait 

de manière prépondérante sur les atomes terminaux de l’ozone. Ces résultats auront 

une implication importante sur la compréhension de la formation du nitrate via les 

mécanismes d’oxydation des précurseurs NOx. 

 L’impact de la photolyse sur les concentrations et les compositions 

isotopiques stables du nitrate est étudié dans ce travail de thèse sur la base d’étude de 

laboratoire et de terrain. Une étude de laboratoire a été conduite en irradiant de la 

neige naturelle de Dôme C avec une lampe UV à xénon et en utilisant différents filtres 

UV (280 nm, 305 nm et 320 nm). Sur la base des mesures des rapports isotopiques de 

l’oxygène et de l’azote, la dépendance aux longueurs d’onde des fractionnements 

isotopiques a été déterminée. En conséquence,  en présence de lumière UV de haute 

énergie, le fractionnement isotopique est décalé vers des valeurs moins négatives et 

vice versa. 

 Sur la base des fractionnements isotopiques obtenus en laboratoire, nous avons 

dérivé un décalage apparent de la valeur du zéro point d’énergie (ZPE) qui apporte 

une meilleure contrainte sur la section efficace d’absorption du 
15

NO3
-
.  Ce décalage 

apparent est obtenu en minimisant les écarts entre les observations et les 

fractionnements isotopiques calculés basés sur un modèle de décalage ZPE, modèle 

qui inclut outre le décalage ZPE, le changement des largeurs, de l’asymétrie et de 

l’amplitude des sections efficaces d’absorption lors de la substitution isotopique.  

 Nous avons validé le nouveau ZPE apparent en conduisant une étude de 

terrain à Dôme C, Antarctique. Dans cette étude, un dispositif expérimental a été 

construit sur le site et l’effet du rayonnement solaire UV sur la photolyse du nitrate de 

la neige investigué. Cette étude était basée sur la comparaison de deux puits remplis 

par de la neige soufflée homogénéisée dont l’un des deux puits n’était pas soumis aux 

rayonnements UV. Le fractionnement isotopique de 15N pour la neige exposée aux 

UV (-67.9 ± 12 ‰) est en bon accord avec le modèle de décalage ZPE estimé au 

cours de ce travail de thèse (-55.4 ‰). Ces valeurs sont aussi dans la gamme des 

fractionnements isotopiques apparents observée précédemment au Dôme C. Des 

calculs plus poussés pour mieux contraindre la section efficace d’absorption de 
15

NO3
-
 

avec le décalage ZPE est en cours et nous proposons que la nouvelle valeur apparente 

dérivée  du décalage ZPE devra être utilisée dans les études à venir. Nous pensons 



que l’inclusion des ces nouvelles connaissances dans un modèle prédisant 

l’enrichissement du 
15

N dans les carottes de glace permettra une interprétation 

quantitative de l’information préservée dans la glace. 

 

Mots clés: Isotopes stables, le nitrate dans la neige, la photolyse, fractionnement 

isotopique 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Abstract 
 

 Nitrate, the end product of oxidation of atmospheric NOX (= NO + NO2), is 

one of the most abundant anions present in polar snow and ice. Its stable isotope 

ratios (δ
18

O, δ
15

N and Δ
17

O) have been widely used to constrain its sources and 

oxidation pathways. In addition, the nitrate archived in deep ice cores may be an 

important metric to constrain past climate. However, deposition of nitrate in polar 

regions with low snow accumulation is reversible due to post-depositional processes, 

and interpretation of this record is complicated. Currently, there exist deep ice core 

records of nitrate encompassing climatic information of millennial time scales, and 

their interpretation relies on careful quantification of post-depositional effects. 

 We have studied the 
17

O-excess transfer from ozone during the gas phase NO2 

+ O3  NO3 + O2 reaction with laboratory experiment. This reaction is an important 

nighttime nitrate formation pathway. From this study, we have determined the ∆
17

O 

transfer function given by: ∆
17

O(O3*) = (1.23 ± 0.19) × ∆
17

O(O3)bulk + (9.02 ± 0.99). 

We have also evaluated the intramolecular oxygen isotope distribution of ozone and 

have observed that excess enrichment resides predominantly on the terminal oxygen 

atoms of ozone. The findings from this study have important implications for 

understanding nitrate formation via different NOX oxidation mechanisms. 

  The impact of photolysis on the amount and stable isotope enrichments of 

nitrate is investigated in this thesis based on laboratory and field experiments. A 

laboratory study was conducted by irradiating natural snow from Dome C with a Xe 

UV lamp and a selection of UV-filters (280 nm, 305 nm and 320 nm). Wavelength 

dependent isotopic fractionations were determined based on the oxygen and nitrogen 

isotope ratio measurements. Accordingly, in the presence of high-energy UV light, 

isotopic fractionation is shifted towards less negative values and the reverse for lower 

energy UV photons. 

 Based the isotopic fractionations obtained in the laboratory study, we derived 

an apparent ZPE-shift value, which better constrains the absorption cross-section of 
15

NO3
-
. This apparent shift is derived from the best fit between the experimental 

observations and calculated fractionations based on the existing ZPE-shift model, and 

it includes actual ZPE-shift and changes in width, asymmetry and amplitude in 

absorption cross-section arising from isotopic substitution.    

 We have validated the newly derived apparent ZPE-shift model by conducting 

a field study at Dome C, Antarctica. In this study, an experimental setup was built on-

site and the effect of solar UV photolysis on snow nitrate was investigated. This study 

was based on a comparison of two snow pits filled with locally drifted snow and by 

allowing/blocking the solar UV. The 
15

N fractionation for the UV exposed samples (-

67.9 ± 12 ‰) was in fairly good agreement with the ZPE-shift model estimate from 

this study (-55.4 ‰). These values are also within the range of the apparent isotopic 

fractionation observed at Dome C in previous studies. Further calculations to better 

constrain the absorption cross-section of 
15

NO3
-
 with the ZPE-shift are underway, and 

we propose that the newly derived apparent ZPE-shift value should be used in future 

studies. We believe that incorporating these new findings in models predicting the 

enrichments of 
15

N nitrate in ice cores will allow a quantitative interpretation of the 

information preserved in ice. 

 

Key words: Stable isotopes, nitrate in snow, photolysis, isotopic fractionation 
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CHAPTER 1 

INTRODUCTION 

1.1. The Polar Regions 

Polar regions cover significant parts of the earth’s surface, and are comprised of 

the Arctic and the Antarctic regions. Both the Arctic and the Antarctic extend from 66.3° 

North and South latitude to the respective pole. The total area covered by these regions is 

about 28 million sq. km. The Arctic includes the frozen Arctic Ocean, and is surrounded 

by the continents of Europe, Asia and, North America whereas the Antarctic atmosphere 

is pristine, dry and isolated from the rest of the globe by the Southern ocean (Fig. 1.1). 

The Antarctic is the fifth largest continent; 98 % of the region is covered with an ice 

sheet.   

Figure 1.1 Geographical maps of the Arctic (left) surrounded by continents and the Antarctic 

(right) isolated by the Southern Ocean. 

These regions have unique daytime and nighttime conditions, temperature 

profiles, local chemistries and other climatic conditions compared to the rest of the world 

and even sometimes between them. 

In contrast to equatorial regions where the duration of daytime (sun) and 

nighttime (dark) is nearly equal throughout the year, the polar regions have varying 

lengths of day and night. During the Arctic summer (June-August), there are longer 

periods of sunlight within a day and the longest day with sunlight is at the summer 

solstice (20 or 21 June). In the winter, there is less sunlight and the dark period will 

dominate with the longest night at the winter solstice (20 or 21 December). The opposite 

is true for the summer and winter seasons of the Antarctic (Austral summer/winter). 

Figure 1.1 Geographical maps of the Arctic (left) surrounded by continent and the Antarctic
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 These regions exhibit relatively colder temperatures throughout the year when 

compared to other regions of the world. There is a significant temperature difference 

between the two polar regions with a relatively higher temperature (mean annual 

temperature of about -30 °C) in the Arctic than in the Antarctic (mean annual temperature 

of about -50 °C). Extreme cases of low temperatures can also be observed at these 

regions with the coldest temperature ever recorded of -89.2 °C at Vostok station on July 

21, 1983.  

   Polar regions act as sinks for long-range-transported chemical pollutants from 

mid-latitudes brought by air and sea currents. These regions can also preserve past global 

climatic information. During snowfall at these regions, a sequence of snow layers are 

built in chronological order containing a variety of information about chemicals washed 

away from the atmosphere and deposited in the snow.  

 The Arctic, which is situated close to a landmass and with permanent inhabitants 

(humans and wildlife), is highly influenced by seasonal atmospheric transport and 

anthropogenic emissions, and archived information from this site is mainly used to infer 

to human activities. In contrast, in the Antarctic where natural processes drive the 

biogeochemical cycles of the region, information relatively free from anthropogenic 

influences can be obtained. The archived information in these ice cores can be interpreted 

by various scientific techniques including visual counting of the annual layers (darker and 

lighter layers to correspond to seasons), analysis of the concentration of specific chemical 

species and their isotopes, and by matching layers with already dated events such as 

volcanic eruptions.  

 Currently, there are a number of scientific stations in both regions and different 

countries/institutes manage each station independently or jointly. Due to its relevance to 

this study, the Dome C station is briefly explained in the section below. 

 
1.1.1. Geography of Concordia station (Dome C) 
  

 Concordia (Dome C) is a scientific station on Antarctica operated by the joint 

French-Italian polar institutes. The scientific station is located at the geographical 

coordinates 75°06’S, 123°19’E and at an altitude of 3233 m (Fig. 1.2). It is the third 

permanent continental station after Amundsen-Scott (USA) and Vostok (Russia). Its 

location was mainly chosen for the deep EPICA ice core drilling (3.3 km ice depth). It is 

also an important site for astronomical observations and chemical studies due to its clean 

background as well as favorable conditions for seismological and geomagnetic 

observations (www.institutpolaire.fr/ipev). The base is located 1200 km from the coastal 

French station Dumont d’Urville (DDU).   
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Figure 1.2. Geographical map of the Antarctic continent showing some of the stations and ice 

core drilling sites (Eisen et al., 2008) 

1.1.2. Meteorology of Concordia station  

Temperature 

Dome C is one of the coldest places on earth due to the combined high altitude 

and geographical location in the continental Antarctic. 

Based on the ground temperature record of Dome C, a minimum average 

temperature ranging -55 °C to -60 °C between April and October, and a maximum 

average temperature of -30 °C to -35 °C from December to February has been measured 

at this site (Aristidi et al., 2005).  During the Austral summer where the temperature 

reaches its maximum, a diurnal near-surface temperature variation ranging -28 °C to -38 

°C was observed during the period 16
th

 January-31
st
 January 2008 (Genthon et al., 2010) 

(Fig. 1.4).  

Figure 1.2  Geographical map of the Antarctic continent showing some of the stations and ice 
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Figure 1.3. Atmospheric temperature record at Dome C during 2005-2010 

(www.climantartide.it) 

Figure 1.4 The diurnal near surface temperature record on a tower at Dome C measured during 

16th January to 31st January 2008 (Genthon et al., 2010) 

The temperature profile at Dome C was also recorded and shown in Fig. 1.5. Accordingly, 

the tropopause is found at an altitude 5.5 km from the ice surface, followed by a 1 km 

isothermal surface. The temperature fluctuations are more pronounced in the stratospheric 

layer (Aristidi et al., 2005). 
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Figure 1.5. Average summertime temperature profile at Dome C shown between the standard 

deviation limitation lines (Aristidi et al., 2005).  

Wind 

The wind speed records from Dome C are relatively low compared to other sites 

such as Vostok. From wind speeds recorded in 1984-2004 at two weather stations at 

Dome C, an average wind speed of 2.9 m/s was measured (Aristidi et al., 2005), a value 

nearly half of the ground wind speed measured at Vostok or the South Pole.  

Humidity and snow accumulation 

Dome C is a relatively dry region with higher relative humidity during March to 

August when compared to the records between September and February (Gettelman et al., 

2006). Looking at the diurnal cycle of humidity at the station, a positive latent heat flux 

during the day (sublimation) and negative heat flux in the night (deposition) are observed 

(Genthon et al., 2010). 

Dome C is also one of the sites in Antarctica with a very low snow accumulation 

rate ranging 25-33 kg m
-2

 yr
-1 

(Urbini et al., 2008). 
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Figure 1.6. Relative humidity measurement data for Dome C (left) during Dec-Feb (2002-

2004)(Gettelman et al., 2006) and snow accumulation record for Dome C (right) based on radar 

data and snow accumulation values derived from firn core analysis (red). Contour lines represent 

surface topography within 2 m intervals. Dashed line shows snow radar profile and cyan line 

shows elevation (Urbini et al., 2008). 

1.2. Scientific Interests 

1.2.1. The NOX budget 

The global nitrogen cycle describes the various chemical forms in which nitrogen 

is transformed by physical, chemical and biological processes. The major transformations 

include nitrogen fixation, nitrification/denitrification and ammonification. 

NOX (= NO + NO2) can be produced from anthropogenic sources which includes 

mainly fossil fuels and biomass burning, and it also produced naturally via lightning and 

microbial activity (Horowitz and Jacob, 1999;Logan, 1983;Galloway et al., 2004). The 

global NOX budget is summarized in Table 1.1, and the global inorganic nitrate 

deposition in the early 1990’s is presented in Fig.1.7. The emission of anthropogenic 

NOX is relatively higher in developed nations due to energy production (primarily fossil 

fuel combustion). However, addition of anthropogenic NOX can have a substantial impact 

on biologically available N in the ecosystem, and its environmental impacts ranges from 

eutrophication of aquatic and terrestrial environments to global acidification (Galloway et 

al., 2004). Hence, it is essential to understand NOX chemistry in order to understand the 

human impact on the global N-cycle, and associated environmental and health problems. 

An in-depth knowledge of the NOX chemistry is also necessary to devise environmental 

regulations that can inhibit or prevent global NOX emissions. 



'!

Table 1.1. The Global nitrogen sources and sinks, Tg N yr
-1

 (Galloway et al., 2004)  

Figure 1.7. The global inorganic nitrogen deposition in the early 90’s in mgNyr-1m-2(Galloway 

et al., 2004). Higher emissions (marked red or pink) are mainly in North America, Europe and 

South East Asia, which are the most developed nations in the world. 

 In the Arctic today, anthropogenic sources are the major NOX contributors of 

snow nitrate, and their amount increased rapidly after the industrial revolution due to 

increased emissions mainly from developed nations. In the Antarctic, the sources of 

nitrate are not fully quantified, and currently known sources include stratospheric input 

Figure 1.
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(stratosphere-troposphere exchange and precipitation of polar stratospheric clouds) and 

long-range transport of N-species generated at lower latitude regions (Wagenbach et al., 

1998;Savarino et al., 2007;Wolff, 1995b). 

Atmospheric nitrate, an oxidation product of NOX, is removed from the 

atmosphere by dry or wet deposition as gas phase HNO3 or particulate nitrate, and will be 

buried in the polar snow. Nitrate in the snow can be easily analyzed using ion 

chromatography and it is one of the most abundant anions present in the snow. Hence, 

buried nitrate in the polar snow carries atmospheric information of millennial timescales, 

and can be used in paleoclimatic studies (Wolff, 1995b;Legrand and Kirchner, 

1988;Legrand et al., 1999). However, deposition of nitrate in polar regions is reversible, 

i.e. after being buried in the snow, its precursors and photolysis products (NOX) will be 

re-emitted (Fig. 1.8). 

Figure 1.8. Schematic of deposition of nitrate and emission of NOX products which can undergo 

local oxidation to reform nitrate, which in turn can be re-deposited or transported.   

NOX is an important atmospheric species mainly due to its profound effect on the 

tropospheric oxidation capacity via its direct influence on the two important atmospheric 

oxidants, OH and O3. Today, there exists a well-documented record of high levels of 

emitted NOX from the snowpack in polar regions.  

During intensive investigations on atmospheric oxidants at the South Pole 

(ISCAT campaign), Davis et al. (2001) observed unexpectedly high levels of NO. The 

observed levels were 1-2 orders of magnitude higher than what was measured at other 

sites in Antarctica such as the Palmer station. Photodentrification of the snowpack was 

suggested to be the sources of the high level of NOX.  

Emissions of high levels of NOX, which is consistent with the diurnal UV cycle, was 

also observed at Neumayer, Antarctica (Jones et al., 2001a;Jones et al., 2000). 

Accordingly, the high NOX flux from the snowpack is dependent on the intensity of the 

incident radiation, and it can significantly contribute to the NOX concentration of the 

lower troposphere in the Antarctic. Bauguitte and co-workers have also observed 

photochemistry-driven NOX emission at Halley station in coastal Antarctica during 
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summer 2005 (CHABLIS campaign). The authors noted the diurnal variation of NOX 

emission, and it peaked at about 5 hours after local solar noon (24 pptv) compared to its 

low level (5 pptv) at 4-5 hours after local midnight (Bauguitte et al., 2012).  

Similar observations were also recorded at Summit, Greenland in which 3-10 times 

more NOX in the interstitial air of the surface snow than the ambient air was observed 

(Honrath et al., 1999). It was suggested that photolysis of nitrate in the surface snow may 

initiate the release of NOX.  

These observations clearly show that the deposition of nitrate in the snow is 

reversible, and NOX products will be emitted from the snowpack. An elevated level of 

NOX has two implications: potential impacts of the emitted NOX on the overlying 

boundary layer at these regions (Crawford et al., 2001), and loss or modification of 

archived information in the snow (Wolff et al., 2008).  

Emitted NOX products in these regions can undergo local oxidation to reform 

nitrate, which can be either be re-deposited or transported to other sites. Hence, the 

nitrate signal left in the snowpack is not the original atmospheric signature but rather a 

modified one.  

Currently the basic NOX chemistry is more or less known. However, its chemistry 

in polar regions and significance of each nitrate formation pathways are still not clear. 

The currently known basic NOX chemistry is described below. 

1.2.2. The atmospheric reactive NOX cycle 

Figure 1.9 shows the oxidation pathways of NOX during the daytime and nighttime, 

which are described in detail below. 

Figure 1.9. The NOX cycling and nitrate formation pathways in the atmosphere. The sun 

represents the daytime mechanism whereas nighttime pathways are shown using the 

moon. Dashed lines represent the heterogeneous nitrate formation pathways.  

 cycling and nitrate formation pathways in the atmosphere. The sun 
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1.2.2.1. Daytime chemistry 
 

 During the daytime, photochemical NO-NO2 interconversion is the dominant 

process in which NO2 will be photolysed to produce NO and an excited oxygen atom 

(R.1.1.). The oxygen atom can rapidly react with molecular oxygen to produce ozone via 

R.1.2. NO2 can be reformed via R.1.3 when NO reacts with ozone. This closed 

photochemical cycling of NO-O2-O3-NO2 is called the Leighton cycle.   

 

 NO2 + hν (λ < 424 nm)    NO + O        (R.1.1) 

 

 O + O2 + M    O3 + M              (R.1.2) 

 

 NO + O3    NO2 + O2         (R.1.3) 

 

The oxidation of NO to NO2 and photolysis of NO2 to NO are so rapid that steady state 

called a ‘photostationary state’ will be achieved quickly. At steady state, the ozone 

concentration is given by: 

 

 

 O
3[ ] =

jNO
2

NO
2[ ]

kNO+O
3

NO[ ]
           (1.1) 

 

where jNO2 is the photolysis rate coefficient of NO2, and kNO + O3 is reaction rate constant 

for R.1.3. Note that the steady state ozone concentration is proportional to the 

[NO2]/[NO] ratio. The only known mechanism of ozone production in the troposphere is 

the reaction of an oxygen molecule with an oxygen atom produced by photolysis of NO2 

(R.1.2) (Seinfeld and Pandis, 2006). However, due to the reaction of NO and O3 to 

reform NO2, this is a null cycle with no net production or consumption of ozone.  

 In the presence of peroxy radicals such as HO2, the conversion of NO to NO2 is 

favored to form a “new” ozone molecule. This is due to the formation of NO2 from NO 

via R.1.4 without involving an ozone molecule in contrary to R.1.1-R.1.3.  

 

 NO + HO2    NO2 + OH          (R.1.4) 

 

Hence, the rate of ozone production can be written as: 

 

 P
O
3

= k
HO

2
+NO HO

2[ ] NO[ ]           (1.2) 

 

Net ozone production is controlled by balance between the ozone formation and 

destruction pathways, which depends on the concentration of NOX and HOX. At relatively 

low NOX levels such as in the remote atmosphere, HO2 reacts with ozone leading to a net 

loss of ozone via R.1.5. 

 

 HO2 + O3   OH + 2O2             (R.1.5) 
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As shown in Fig. 1.10, with rising concentrations of NOX, the production of NO2 also 

increases via R.1.4, and consequently the production of ozone also increases via the 

photolysis of NO2 (R.1.1-R.1.2). Above the compensation point (the concentration of 

NOX at which the net ozone production is zero), the production of ozone will be the 

dominant process with the rate described by equation 1.2. With this increase in NOX 

concentration, the net production of ozone also increases, and reaches its maximum at 

some level of NOX. Above this level the net production of ozone starts to decrease and 

the rate of the overall photochemical cycle is controlled by the CO + OH reaction (R.1.6) 

which determines HO2 production via R.1.7. Further increase in NOX will magnify the 

importance of the OH + NO2 termination reaction via R.1.8. 

CO + OH  !  H + CO2     (R.1.6) 

H + O2 + M  !  HO2 + M      (R.1.7)  

NO2 + OH  !  HNO3     (R.1.8) 

The principal removal of NOX during the daytime is via oxidation by OH radicals (R.1.8). 

At an OH concentration of 1 ! 10
6
 molecules cm

-3
, NO2 has an average lifetime of about 

24 hours. NOX has a lifetime of about 2 days in the pristine boundary layer and about 2 

weeks in the upper troposphere. At the earth’s surface NO2 is the dominant daytime 

species whereas at higher altitudes the photolysis product NO is dominant.  

Figure 1.10. The dependence of net ozone production on the level of NOX . At low NOX level, a 

net loss of ozone takes place (A). At increasing NOX level above the compensation point (net 

ozone production = 0), net ozone production also increases (B) and reaches a maximum at a 

certain NOX level. It eventually starts to decrease (C) below this point (Hewitt, 2003).  

The dependence of net ozone production on the level of NO At low NO  level, a 
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1.2.2.2. Nighttime chemistry 
 

The nighttime chemistry of nitrate in the troposphere is dominated by reactions of NO3 

and this is the most uncertain chemistry due to heterogeneous pathways. In contrast to 

daytime mechanisms, NO2 does not photolyse readily at night but it will react with ozone 

forming NO3 (R.1.9). 

 

NO2 + O3     NO3 + O2 (R.1.9) 

 

In the daytime, NO3 photolyses readily back to NO2 and O or NO and O2, and it has a 

lifetime of 5 sec during overhead sun and clear-sky conditions at sea level (Allan et al., 

2000). Additionally, the reaction of NO3 with NO is a fast reaction with approximate 

photochemical steady state with NO2 (R.1.10) during the daytime. 

 

NO3 + NO    2NO2 (R.1.10) 

 

During the night, the level of NO will be negligible (unless fresh local emissions are 

present) as all NO will be titrated by ozone and significant levels of NO3 will be formed 

via R.1.9 (Allan et al., 2000). The NO3 product can follow the following pathways to 

form nitrate (see Fig. 1.9): 

 

Reaction with NO2  

 NO3 can undergo an addition reaction with NO2 to form N2O5, which readily 

dissociates and establishes equilibrium with NO3 under ambient temperatures (R.1.11). 

N2O5 is a thermally unstable compound with a life time of 40 seconds at 290 K which 

increases to 700 seconds at 270 K. Hence, N2O5 is a possible reservoir for NOX, but with 

the possibility of reforming NO2 and NO3 depending on meteorological conditions 

(Brown and Stutz, 2012). N2O5 can undergo heterogeneous hydrolysis to form HNO3 via 

R.1.13.     

 

 NO2 + NO3  ↔  N2O5       (R.1.11) 

 

 N2O5 + H2Oads      2HNO3       (R.1.12) 

 

Reaction with VOCs and organic sulfur species 

 NO3 is reactive towards both unsaturated and saturated hydrocarbons, and sulfur-

containing organic compounds. The reaction of NO3 with unsaturated biogenic 

hydrocarbons such as terpenes is relatively faster than the saturated ones, and it can 

significantly affect the overall hydrocarbon budget (Brown and Stutz, 2012). During this 

reaction, NO3 will be added to the C-C double bond, followed by recombination with O2 

to form peroxyradicals, and further add NOX species to form stable organic nitrate 

products (Allan et al., 2000). The reaction of NO3 with saturated hydrocarbons (RH) 

proceeds via a hydrogen atom abstraction by NO3 to form nitrate (R.1.13).  

 NO3 can also react with sulfur-containing compounds such as dimethyl sulfide 

(DMS) (R.1.14). DMS is the dominant natural source of atmospheric sulfur which is 

emitted from the oceans. Hence, oxidation of DMS by NO3 can significantly affect the 
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sulfur cycle, and this reaction can be a useful sink for NOX in marine atmosphere (Platt 

and LeBras, 1997). 

 

 NO3 + RH    HNO3 + R          (R.1.13) 

 

 NO3 + CH3SCH3   HNO3 + CH3SCH2  (R.1.14) 

  
1.2.2.3. Bromine Chemistry and its relation with NOX chemistry 
 
 Bromine chemistry is relevant in polar regions where severe ozone depletion 

events (ODEs) take place during the polar spring (Simpson et al., 2007). During ODEs 

over the Arctic ocean, where such events are severe, the level of ozone can reach from 

very low to totally absent (Bottenheim et al., 2009). ODEs are caused by bromine species 

which are emitted from the sea during “bromine explosion events” via the reaction 

sequence (Simpson et al., 2007): 

 

 HOBr  + Br
-
 + H

+
   H2O + Br2   (R.1.15) 

 

 Br2 + hν   2Br 
     

(R.1.16) 

 

 Br + O3   BrO + O2     (R.1.17) 

 

 BrO + HO2    HOBr + O2    (R.1.18) 

 ------------------------------------------ 

 Net: H
+
 + Br

-
 + HO2 + O3    Br + H2O + 2O2  (R.1.19) 

 

 Reaction R.1.15 consumes one reactive bromine species (HOBr) and produces Br2 

which can produce two active bromine species. This implies that in the presence of 

bromide each active bromine will be converted into two reactive species on ice or aerosol 

surfaces. This can lead to an exponential increase in the atmospheric bromine 

concentration (bromine explosion) and hence a depletion of ozone. Ozone depletion 

events and associated effects are beyond the scope of this study; here only the 

relationship between the bromine and nitrate chemistry will be described.  

 Bromine produced during these explosion events will react with ozone via R.1.20.  

 

 Br + O3  BrO + O2     (R.1.20) 

 

The BrO radical has two fates: self-addition or reaction with HO2 to produce Br2 and 

HOBr. Both species are photo-labile and can be photolysed to produce Br and OH. 

However, BrO can also oxidize NOX species via different mechanisms to form nitrate 

(Evans et al., 2003). Its reaction with NO to produce NO2 (R.1.21) can compete with the 

oxidation of NO by O3 or RO2 (see Fig. 1.9). 

 

 BrO + NO  Br + NO2    (R.1.21) 

 

BrO can also further oxidize NO2 via: 
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 BrO + NO2 → BrNO3                                  (R.1.22) 

 

Hydrolysis of BrNO3 via R.1.23 is an important source of inorganic nitrate in the Arctic 

troposphere during spring (Morin et al., 2007b). (Note that the HOBr molecule formed 

during this reaction will recycle Br which will undergo multiple ODEs). 

 

 BrNO3 + H2O → HOBr(aq)+ HNO3(aq)        (R.1.23) 

 

In order to clearly understand these chemical processes, polar regions are places of 

interest because chemical processes are mostly driven naturally, and it has a relatively 

clean background associated with its remoteness from anthropogenic influences. Another 

unique feature of this region is 24 hours of daylight in summer and 24 hours of darkness 

in winter, which will simplify the interpretation of the atmospheric observations.  

 To generalize, NOX is emitted from nitrate buried in the snowpack and it can play 

a significant role in the chemistry of the overlying boundary layer. But the precise 

mechanisms of NOX emissions from the snowpack are still unknown. It is essential to 

understand these mechanisms in order to extract robust information from deep ice cores 

and to assess the impact of these emissions on the overlying atmosphere. 

 
1.2.3. NOX emission mechanisms from the snowpack 
  
 At the end of section 1.2.1, the field observations of elevated levels of NOX were 

described. These studies and additional studies not discussed in detail in this manuscript 

clearly suggest that post-depositional photochemical processes during sunlit periods in 

these regions will tend to drive the NOX out of the snowpack (Honrath et al., 1999;Davis 

et al., 2001;Bauguitte et al., 2012;Frey et al., 2012;Beine et al., 2002). However, the 

impacts of post-depositional processes vary for different locations in polar regions 

depending on the annual snow accumulation rates and other physical parameters (such as 

temperature and UV).  

 In polar sites such as Summit, Greenland with high annual snow accumulations of 

about (65±4.5) cm yr
-1

 (Dibb and Fahnestock, 2004), post-depositional effects may have 

an impact on the surface snow concentrations (and may change the atmospheric NOX 

concentration) but it has a minor role on the preserved nitrate record in the snowpack 

(Burkhart et al., 2004). Based on the analysis of the concentration of nitrate on the 

surface snow and from snow pits at Summit, Greenland (Burkhart et al., 2004), over 90% 

of the nitrate measured in surface snow is preserved in the snow pits (Fig. 1.11). 

 In contrast, at low accumulation sites of Antarctica such as Dome C, with an 

annual snow accumulation of only 7.2 cm yr
-1 

(Wolff et al., 2002), nitrate deposition is 

reversible i.e. deposited nitrate will be modified before being buried underneath.  

From measurements of nitrate concentrations in snow pits from these low accumulation 

sites, it can be seen that the concentration of nitrate is higher in the top few centimeters, 

and it diminishes rapidly below these layers (Fig. 1.12) (Dibb and Whitlow, 

1996;Traversi et al., 2009). 
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Figure 1.11. The concentration of nitrate observed (vertical shaded) and reconstructed (vertical 

dashed) in snow pits at Summit, Greenland. Horizontal shaded line shows the 1- year dateline of 

11 June 1997 from cumulative accumulation observation and horizontal dashed line shows the 

reconstructed maximum depth (Burkhart et al., 2004)  

Figure 1.12. The depth profile of nitrate in snow pits at Dome C (top 800 cm). From nitrate 

concentrations of 150-200 ppb in the top 20 cm, its level decreases rapidly to about 10-20 ppb 

below 40 cm and remains at this level in samples collected in 2000/01 and 2005/06 (Traversi et 

al., 2009). 

The observed huge mass loss of nitrate beneath the surface snow layers at low 

accumulation sites confirm that post-depositional effects are more significant at these 

The depth profile of nitrate in snow pits at Dome C (top 800 cm). From nitrate 
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sites than at high accumulation sites. Hence, the focus of this thesis will be only on low 

accumulation sites.  

Before discussing how NOX is emitted from the snowpack, it will be useful to understand 

how impurities such as nitrate are incorporated in snow.  

1.2.3.1. Inclusion of Impurities 

Snow is a porous medium composed of ice, air, impurities and sometimes liquid 

water. Snow can incorporate chemical species such as HNO3, HCl, H2O2 and organic 

compounds via three mechanisms: adsorption, dissolution in the ice matrix (formation of 

solid solution) and trapping of aerosol particles (Dominé et al., 2007) shown in Fig. 1.13. 

As the mechanisms of incorporation of these species into the snow are different, their 

lifetime in the snow also varies. For example, adsorbed species are readily available for 

reaction with atmospheric gases, and their lifetime in the snow is determined by the 

temperature, partial pressure of the species, and the surface of the snow available for 

gases (Specific Surface Area, SSA) (Dominé et al., 2007). In contrast, species dissolved 

in the ice matrix are trapped, and are the least available species for reactions. These 

species, which are isolated from atmospheric gases, have limited reactivity towards solid 

phase processes, and photochemical reactions are dampened by matrix (cage) effect 

(Grannas et al., 2007).  

Figure 1.13. Mechanisms of inclusion (such as adsorption and dissolution) and emission (via 

desorption and photolysis) of impurities in/from snow (Dominé et al., 2007). 

However, the inclusion of atmospheric species may be temporary, and physical processes 

and photochemistry may contribute to the emission of these species from the snowpack to 

the overlying atmosphere.   

Mechanisms of inclusion (such as adsorption and dissolution) and emission (via 
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1.2.3.2. Emission of impurities  
 

 Emission of impurities from the snowpack occurs via incorporation of these 

species (which are adsorbed or dissolved in the snow crystals) into the interstitial air of 

the snowpack, followed by diffusion towards the surface, and then release to the 

boundary atmosphere. Once released into the interstitial air (air-filled pore spaces), wind 

pumping is the most efficient mechanism for venting these species into the boundary 

atmosphere. 

 The most important mechanisms by which impurities present in the snowpack 

(such as HCl, HNO3 and H2O2) are emitted to the boundary atmosphere are desorption 

(evaporation/sublimation) and photolysis. 

 
A. Desorption (Evaporation/Sublimation)  
  

 This process refers to the physical release of impurities from the snowpack to the 

boundary atmosphere due to the presence of a temperature gradient. The change in 

atmospheric temperature, and radiative heating and cooling of the snowpack after 

deposition of the snow will lead to a temperature gradient and water-vapor fluxes. These 

factors result in snow metamorphism which is a change in snow crystal shape and surface 

area (Dominé and Shepson, 2002). Snow metamorphism can induce both sublimation and 

condensation of ice and its solutes (Perrier et al., 2002). This can lead to loss of nitrate 

from the snow, and redistribution and smoothing of nitrate profiles within the snow. 

Snow metamorphism almost always results in change in the snow specific surface area 

leading to release of adsorbed species or availability of these species for gas phase or 

surface reactions (Grannas et al., 2007).  

 The physical release of HNO3 from the snowpack in low snow accumulation sites 

has been invoked to explain the loss of nitrate from the snowpack (Röthlisberger et al., 

2000;Blunier et al., 2005;Nakamura et al., 2000).  

 Even if desorption can be a loss mechanism for snow nitrate, the magnitude of its 

effect on the overall observed loss in low snow accumulation polar sites is an issue of 

debate when compared to photolysis (Grannas et al., 2007). This issue will be discussed 

in the later sections from an isotopic perspective.  
 
B. Photolysis   
  

 Molecular photolysis arises from the penetration of high-energy solar photons into 

the snowpack which can break chemical bonds. When a molecule interacts and absorbs a 

photon of energy hv, it will be transferred into an excited state that can dissociate into 

products (photo fragments).  

 

 AB + hv    [AB*]   A + B   (R.1.24) 

 

The photolysis of a molecule in a given wavelength band (λ) is described by using the 

photolysis rate constant (J) mathematically described as: 

 

 J = σ λ( )φ λ( )I λ( )dλ
λ
1

λ
2∫     (1.3) 
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where σ is the absorption cross section of a molecule (the probability that a photon is 

absorbed by a molecule), cm
2
 molecule

-1
 

 Φ is the quantum yield (probability that absorbed photon causes photolysis), 

molecules quanta
-1 

 

 I is the spectral actinic flux (the flux of photon coming from all directions), quanta 

cm
-2

 s
-1

nm
-1

 

 

 Solar radiation ranges through the entire electromagnetic spectrum. However, 

only a fraction of this light (mainly in the visible region of the spectrum) reaches the 

surface of the earth due to the absorption of the short wavelength region by atmospheric 

gases such as O2 and O3 (Seinfeld and Pandis, 2006). Even with these conditions, there is 

a small UV window allowing part of the UV light to reach the earth’s surface, and the 

absorption cross section of nitrate overlaps within this UV window.  

 After absorption of UV light nitrate will be in the excited state, and can either 

dissipate its energy and reform nitrate or photodissociate into NOX products depending 

on the wavelength of irradiation. A number of studies have been conducted in the past to 

understand the mechanism of photodissociation of nitrate.   

 From simultaneous measurement of NO and NO2 in ambient air and air inside a 

snow pack, Jones et al. (2000) measured enhanced concentration of these species 

depending on the intensity of incident radiation. According to this study, the emission 

was dependent on the availability of solar radiation, and NOX emission stopped in the 

dark (Jones et al., 2000). The photochemically driven emission of NOX from the 

snowpack was also observed at Neumayer, Antarctica from the diurnal variation of 

emitted NOX levels (Jones et al., 2001a).  

 Using natural snow from Halley station in Antarctica, Cotter et al. (2003) observed 

emission of NOX dominated by NO2 which ceased after irradiation at wavelengths λ > 

345 nm. The observation was in agreement with a previous laboratory study on artificial 

snow produced from freezing an aqueous solution of nitrate, and was irradiated around 

the 302 nm band (Dubowski et al., 2001). These studies confirmed the wavelength region 

sensitivity of photodissociation of nitrate in snow. 

 A similar observation on photoemission of NOX products was also observed in 

different studies both in the laboratory and in the field, and a photodissociation 

mechanism of nitrate was proposed (Honrath et al., 2002;Beine et al., 2008;Jacobi et al., 

2007;Jacobi et al., 2006).  

 Even if the actual mechanism of nitrate photochemistry in snow is complex, a 

generalized mechanism of photolysis of nitrate was devised as shown below.    

 Nitrate has two major absorption bands (Fig. 1.14): one around 200 nm (intense π 

 π* band) and another one around 300 nm (weak n  π* band). The 200 nm absorption 

band is more than 3 orders of magnitude more intense than the 300 nm absorption band 

(Mack and Bolton, 1999). However, short wavelength UV light in the first band does not 

reach the surface of the earth due to attenuation by the stratospheric ozone layer. The 

absorption cross-section of nitrate between the wavelength regions of 280 nm-360 nm has 

been measured in the liquid phase by Chu and Anastasio (2003) (Fig. 1.16). 
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Figure 1.14. The absorption cross-sections of NO2
- and NO3

- between 200 nm and 400 nm 

(Mack and Bolton, 1999). 

The photolysis of nitrate at wavelengths " > 290 nm proceeds via R.1.25 

producing NO2.  

NO3
-
 + hv/H

+
 ! NO2 + OH (R.1.25) 

The minor pathway R.1.26 can also take place via peroxynitrite formation at " < 290 nm 

(Madsen et al., 2003). However, R.1.25 has a quantum yield 8-9 times larger than R.1.26.   

NO3
-
 + hv ! ONOO

-
 ! NO2

-
 + O(

3
P) (R.1.26) 

The product NO2 is eventually photolysed via R.1.27 and generates NO (that could be 

emitted) and O
-
 (to produce OH). With a pKa of 3.2, in acidic matrix, NO2

-
 combines with 

H
+
 to form HONO via R.1.28.    

NO2
-
 + hv ! NO + O

- 
(R.1.27) 

NO2
-
 + H

+! HONO  (R.1.28) 

Further reactions could also take place via R.1.29-R.1.31 

2NO2 + H2O ! NO2
-
 + NO3

-
 + 2H

+
  (R.1.29) 

NO2
-
 + OH! NO2 + OH

-
 (R.1.30) 

NO + NO2 + H2O ! 2HONO (R.1.31)

The absorption cross sections of NO  and NO  between 200 nm and 400 nm 
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In the high-energy band, the photolysis of nitrate is dominated mainly by isomerization 

with the possibility of reforming ground state nitrate as shown in Fig. 1.15 (Madsen et 

al., 2003). Accordingly, during photoexcitation of nitrate around 200 nm, 44 % of the 

molecules return rapidly to the electronic ground state. The remaining molecules will 

either form cis-ONOO
-
 (48 %) or dissociate to NO and O2

-
 or NO

-
 and O2. The 

peroxynitrite isomer returns to its ground state or forms secondary species.   

Figure 1.15. The 200 nm photoexcited nitrate and predicted pathways for the respective product 

formation (Madsen et al., 2003). The purple arrows show stabilization of molecules into the 

ground state, and red arrows indicate alternative reaction pathways.  

The observations of these two different dissociation mechanisms indicate that the 

photoproducts during nitrate photodissociation are dependent on the wavelength region of 

irradiation (i.e. they are dependent on the absorption band).  

At Dome C, as the short wavelength region of the solar spectrum is attenuated by 

the ozone layer, only the absorption band of nitrate around 300 nm is relevant (Fig. 1.16). 

Irradiance by the incoming light plays a significant role in the photodissociation of 

nitrate. An incoming light flux which reaches the surface of the snow will undergo 

scattering and be transformed from direct to diffuse light. The incoming solar radiation is 

measured as solar irradiance, and can be converted to a spherically integrated actinic flux. 

The actinic flux expresses the amount of light flux around a molecule from all directions. 

During the scattering process, the light may be reflected back, and leave the snow pack 

(described as the snow albedo) or enhance its penetration into the snowpack. The amount 

of UV light that penetrates the snow pack is dependent on the absorption and scattering 

properties of the snow, and the solar zenith angle (France et al., 2011b).  

Ice has a very strong absorption at short wavelengths (" < 170 nm) but its 

absorption capacity decreases with increasing wavelength towards the visible region 

(Warren, 1982;Warren et al., 2006). When encountering incoming solar UV or near-UV 

light, snow grains will scatter most of it. However with the presence of impurities, the 

absorption of radiation in natural snowpack can increase (France et al., 2012). At the top 

layer (near the surface) of the snowpack, multiple scattering takes place enhancing the 

he 200 nm photoexcited nitrate and predicted pathways for the respective product he 200 nm photoexcited nitrate and predicted pathways for the respective product 
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actinic flux and photolytic reactions. At the surface, scattering is dependent on the solar 

zenith angle, snow density, wavelength, and absorption and scattering coefficients. For 

example at higher solar zenith angles, most of the incoming solar radiation is reflected 

back (higher albedo) and photochemistry is very limited. In contrast, the solar zenith 

angle is irrelevant at large depths, and all the incoming light is attenuated exponentially 

(Lee-Taylor and Madronich, 2002;Simpson et al., 2002;Grannas et al., 2007). The depth 

at which this incoming solar irradiance is reduced to 1/e of the initial level is called the e-

folding depth.    

An e-folding depth at a specific wavelength &(") can be derived experimentally by 

measuring the irradiance within the snow (Iz) at a given depth z, and using the Beer-

Bouger Lambert law by: 

!

I
z

= I
0
e

(z"z0 )

#($ )  (1.4) 

where I0 is the intensity of the incident light at the snow surface with depth Z0. 

Figure 1.16. The absorption cross-section of nitrate around 300 nm (with respect to the right y 

axis) measured in the liquid phase (Chu and Anastasio, 2003) and the solar irradiance at Dome 

C measured by J. France. The measurement was taken on 21 December 2009, which was the 

longest day of the year, and at the maximum solar zenith angle.  

The top 80 cm of snow pack in Dome C can be divided into three layers: soft 

wind pack, hard wind pack and hoar-like snow (Wolff et al., 2010;Warren, 1982;France 

et al., 2011b), and each layer has a unique light attenuation property. For such snowpack, 

France et al. (2011) determined e-folding depths of 10 cm for the soft and hard wind 

packs, and 20 cm for the hoar-like layer at 400 nm by experiment. However, the e-folding 

depth is very sensitive to the impurity content of the snowpack and wavelength in the 

UV/near-visible region. Recently, a factor of two difference in e-folding depth was 

observed between the snowpack near the base and 11 km from the base at Dome C 

(Zatko et al., 2013).  
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 As discussed below, e-folding depth values have a significant influence on the 

overall determination from NOX flux out of the snowpack during photolysis. For 

example, France et al. (2011) coupled the experimental snow e-folding depth, snow pack 

reflectance and snow density with the snow Tropospheric Ultraviolet Visible (TUV) 

model (http://cprm.acd.ucar.edu/Models/TUV/) and determined the depth integrated NO2 

production from the snow pack due to photolysis.  

 The TUV model is a one dimensional radiative transfer model that enables 

estimations of the propagation of solar light passing through different atmospheric layers 

in the presence of absorbers (gases such as O3 and O2) and scatterers (Lee-Taylor and 

Madronich, 2002).   

 According to France and colleagues, 85% of the NOX emitted during photolysis is 

from the top 20 cm of the snow layer, and photolysis could reduce 80% of the surface 

nitrate concentration at Dome C (France et al., 2011b). This emission scenario is orders 

of magnitude larger than previous field studies such as that of Wolff and co-workers 

where only 40% of the nitrate mass loss was accounted by photolysis (Wolff et al., 2002). 

However, the difference between the two measurements lies mainly in the difference in 

the e-folding depth; a shorter e-folding depth (3.7 cm) was used in the latter case. Hence, 

an accurate measurement of an e-folding depth is essential to constrain the NOX emission 

due to photolysis.     

 The main photoproducts of nitrate photolysis are NO and NO2 where the latter is 

the major byproduct, which is desorbed mainly from the upper snow layers where as NO 

is preferably formed in the deep ice layers (Boxe et al., 2006;Jacobi et al., 2007). The 

probability of dissociation of nitrate into photoproducts is described using its quantum 

yield. Currently, only a few studies exist on the quantum yield of products of nitrate 

photolysis.  

 Chu and Anastasio (2003) derived the quantum yield of photolysis of nitrate in 

snow via R.1.17 (Φ = (1.7±0.3)×10
-3

) by freezing an aqueous NaNO3 solution at 263 K, 

and following the formation of OH radical using a 1 kW Hg lamp at 313 nm. However 

the resulting quantum yield was suggested to be higher in a different study conducted by 

Zhu et al. (2010). The authors determined a higher quantum yield value (Φ = 0.6±0.34) 

during photolysis of HNO3 adsorbed on ice films using 308 nm excimer laser photolysis 

combined with cavity ring down spectroscopy (Zhu et al., 2010).  

 The freeze-concentration effect is an important parameter to consider in the study 

by Chu and Anastasio (2003). Freeze-concentration is defined as the separation of the 

solutes from ice and incorporation into the liquid layers on ice crystal surfaces during 

freezing of a liquid solution. According to previous studies, during freezing of an 

aqueous solution composed of typocal organic or inorganic compounds, this effect will 

be present and increases the solute concentration in the liquid layer covering the ice 

crystals (McNeill et al., 2012;Sato et al., 2008). Furthermore, ice growth instability could 

occur forming dendrites and trapping of pockets of highly concentrated solutions between 

them. This can lead to incorporation of impurities such as NO3
-
 in liquid pockets, and 

they can display properties similar to those expected for super cooled water (Domine et 

al., 2013). Hence, the very high quantum yield (150 times higher than the value from Chu 

and Anastasio 2003) observed by Zhu and colleagues (2010) is expected to be due to the 

ability of the adsorbed HNO3 to undergo photolysis, with the photoproducts easily 

escaping the surrounding medium after photolysis (Domine et al., 2013). 
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 These significant differences in the quantum yields will limit further studies on 

constraining the photo-production of NOX. For example, in a field study at Dome C and 

determination of NO2 emission from the snowpack during photolysis of nitrate, France et 

al. (2011) observed a factor of about 400 more NO2 production while using the quantum 

yield derived from Zhu et al (2012) than from Chu and Anastasio (2003).  

 To summarize, now there are a variety of observations and proposed mechanisms 

that give credence to the post-depositional loss of nitrate from the snowpack in low 

accumulation sites, and eventually leading to the deformation of the original atmospheric 

signal archived in the snowpack. Desorption and photolysis processes have been 

suggested as the causes of the loss of nitrate from the snowpack. However, a clear 

understanding is lacking on these loss mechanisms and their associated effects. The 

photolysis of nitrate in snow is a complex process, and the parameters required to 

constrain the process are currently missing or are not well understood. For example, there 

exists only measurement of the absorption cross-section of nitrate in the liquid phase 

(Chu and Anastasio, 2003) which can be significantly different for the snow. 

Approximations made for snow chemistry based on liquid phase chemistry are 

inadequate. Even if the quantum yield of nitrate photolysis was measured (Chu and 

Anastasio, 2003;Zhu et al., 2010), the values are not in agreement with each other due to 

the reasons explained in the sections above. With so many unknown variables, it is 

difficult to constrain the NOX emission budget, and know what information is left in the 

snowpack after post-depositional effects.  

 The photochemistry of nitrate in snow focused at Dome C is briefly evaluated in 

this manuscript. In this study, stable isotopes of nitrate are used as scientific tools to 

probe post-depositional effects on nitrate in snow but a priori we need to have the basic 

concepts of isotope geochemistry described below.     

 

1.3. Scientific Approaches 
 

 In order to understand the fate of deposited nitrate in snow, recovery of the 

original information archived in deep ice cores and the potential impact of photo-emitted 

products on the atmosphere, stable isotopes of nitrate (O, N) were used in this study. 

Even if other approaches such as concentration measurement of different N-containing 

species in the snow or in the overlying atmosphere also exists, isotopes are chosen in this 

study because of the unique information which can be obtained i.e. the oxygen isotope 

ratios provide information about the oxidation pathways during nitrate formation and the 

N isotope ratios depicts the source/origin of nitrate. In order to know how it is possible to 

obtain such information, let us first introduce basic definitions and notations of stable 

isotopes geochemistry.     

 
1.3.1. Basics and Definitions in isotope geochemistry   
 

 An atom is composed of a positively charged nucleus and negatively charged 

electrons around it. The mass number of an element (A) is described as the sum of the 

number of protons (Z) and the number of neutrons (N).  Isotopes (Greek word meaning 

“equal places” to reflect they occupy same place in periodic table) are atoms containing 

the same number of protons but different number of neutrons (Hoefs, 2009). Isotopes 
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could also be defined as nuclides of a single element with different atomic weight where 

nuclide referring to any type of atom (Criss, 1999). 

Isotopes can be divided as radioactive or stable, a relative term depending on the 

detection limit of radio active decay times (Hoefs, 2009) where the former decays into 

daughter atoms at statistically predictable rates, and the latter do not decay or could be 

decaying but their half-lives are so long that it is not possible to detect (Criss, 1999). 

Stable nuclides can further be divided into radiogenic and non-radiogenic based on their 

origin. Radiogenic stable nuclides such as 
40

Ar and 
207

Pb are formed continuously by 

decay of radioactive parent element. The abundance of radiogenic nuclides depends on 

the available amounts of the parent material and the amount of time. To the contrary, 

non-radiogenic stable isotopes abundance is time independent (Criss, 1999).   

The non-radiogenic stable isotopes (simply called stable isotopes throughout this thesis) 

of oxygen and nitrogen are the focus of this PhD thesis.  

The natural abundances for major constituents of the Earth’s atmosphere (H, C, N and O) 

are given in table 1.2. 

Table 1.2. The natural abundance of selected stable isotopes 

According to Muller 1994 (IUPAC recommendations 1994), a given molecule can have 

an isotopomer or an isotopologue. Accordingly, isotopologues are molecular entity 

differing only in isotopic composition such 
16

O
16

O, 
16

O
17

O, 
16

O
18

O and 
17

O
18

O, and 

isotopomers are isotopes with same number of each isotope but different position in the 

given molecule (
16

O
17

O
16

O and 
16

O
16

O
17

O for ozone molecule) (Muller, 1994). 

Isotope ratios (R) and the delta notation (#) 

The isotopic composition of a given chemical element can be expressed as 

percentage or more conventionally as a ratio. Isotope ratios refers to the atomic 
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abundance ratio of a heavy (less abundant or rare) to a light (most abundant) isotopes of 

an element. For oxygen and nitrogen these ratios can be written as 
17

R = n(
17

O)/n(
16

O), 
18

R = n(
18

O)/n(
16

O) and 
15

R = n(
15

N)/n(
14

N) respectively. 

However, the isotopic composition of most natural samples is usually expressed in terms 

of delta values using the small delta notation (δ) defined as the relative isotopic 

enrichment of a sample relative to a reference material, defined mathematically as: 

  

δ =
Rsample

Rreference

−1     (1.5) 

 

where Rsample and Rreference are the heavy to light isotope ratios of the sample and the 

reference respectively. The delta values are often reported in units of per mille (10
-3

, ‰) 

or per meg (10
-6

).  

Some of the importances of using reference materials to measure and report the isotopic 

composition of a given compound are (Criss, 1999): 

‐ As it is difficult to measure the absolute abundance of heavy isotopes due 

to their very rare availability (for eg., D/H 〜 0.00015), performing a 

relative measurement with a reference of known/accepted isotopic 

composition will make it easier 

‐ It can account for system variability during isotopic measurements. 

Measuring differences rather than an absolute ratio is more precise and 

minimize instrumental or sample preparation biases, as variations of 

isotopic content in nature are very small. 

‐ Interlaboratory comparisons can be made relatively easily leading to 

interpretations of results from different laboratories coherent  

For the oxygen and nitrogen isotopic measurements, Vienna Standard Mean Ocean Water 

(VSMOW) and Air-Nitrogen are the corresponding reference scales respectively, and 

they are used while reporting the isotopic measurements in this thesis. (Reference 

materials are briefly discussed in the Annex of this manuscript) 

 
1.3.2. Isotope Effect 
  

 The chemical behavior of an element is basically determined by the electronic 

structure and minimal difference is expected between isotopes. However, this minor 

difference causes a significant physico-chemical behavioral variation between isotopes. 

The difference in mass number leading to variation in physical and chemical properties 

between isotopes is called isotope effect. The effect is more pronounced in lighter atoms 

such as hydrogen and oxygen.  

 The difference in physico-chemical property arises due to quantum mechanical 

effects. A diatomic molecule exhibits an energy restricted to certain discrete energy 

levels described as shown in Fig.1.17 below. The lowest energy level is described by 

1/2hν (which is above the minimum energy curve by 1/2hν) where h is the Plank’s 

constant and ν is the vibrational frequency of the two atoms to each other.  

The vibrational frequency is quantified by: 
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!

v =
1

2"
k

µ
(1.6)

where k is the reduced mass of the two atoms calculated by: 

!

µ =
m
1
" m

2

m
1
+m

2

(1.7) 

Hence a vibrating molecule, even at ground state with absolute zero temperature, 

exhibits certain zero point energy higher than the minimum in the potential energy curve 

called Zero Point Energy (ZPE). During isotopic substitution of a lighter atom by the 

heavier one in a given molecule, the ZPE of the molecule with the heavier atom will be 

reduced. This implies weaker bonds will be formed with molecules involving lighter 

isotopes than the heavier ones, and during chemical reactions molecules with the lighter 

isotopes mostly react relatively faster (Hoefs, 2009).  

 

Figure 1.17. The shift in zero point energy associated with substitution of a light isotope with a 

heavier one in a given molecule (Hoefs, 2009). 

1.3.3. Isotopic fractionation 

Isotopic fractionation is defined as the partitioning of a sample in two or more 

parts with different isotopic ratios of heavy and light isotopes than the original ratio. 

Isotopic fractionation can be caused by equilibrium or non-equilibrium effects (kinetic) 

(Criss, 1999). 

1.3.3.1. Equilibrium fractionation (Isotopic exchange) 

These are the types of reactions which involves transfer of isotopes between 

different phases, different chemical substances or between individual molecules but 

without a net reaction.  
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Chemical equilibria 
 

Isotopic exchange reaction involving chemical equilibria can be expressed as: 

  

 aA1 + bB2  aA2 + bB1    (R.1.32) 

 

where the subscripts 1 and 2 denotes the species A and B containing either the light or 

heavy isotope 1 or 2 respectively. The equilibrium constant for such reaction can be 

expressed as:  

 

 K =

A
2

A
1

" 

# 
$ 

% 

& 
' 

a

B
2

B
1

" 

# 
$ 

% 

& 
' 

b
      (1.8) 

 

 Equilibrium fractionations are largest for elements with low atomic weight such as 

H, C, O, N and S. Because of this low atomic weight, a variation in one or more neutrons 

can induce a significant difference in the masses of the isotopologues containing the 

given element.   

 For isotopic exchange reactions, the equilibrium constant K is often replaced with 

the fractionation factor α. Isotopic fractionation factor refers to the partitioning of 

isotopes between two separate phases or two parts of a system (A and B), and it can be 

described mathematically as:  

 

 αA-B = RA/RB      (1.9) 

 

where R represents the atomic ratio of heavy to light species (Criss, 1999). 

For isotopes randomly distributed overall positions between compounds A and B, the 

fractionation factor is related to the equilibrium constant K by: 

  

 α = K
1/n

      (1.10) 

 

where n is the number of atoms exchanged.  

Note that for isotopic exchange reactions involving a single atom, the fractionation factor 

is same as the equilibrium constant. Additionally, isotopic fractionation effects tend to be 

small, and the value is usually very close to one (Hoefs, 2009). Hence, it is usually 

expressed by the fractionation constant (ε) as: 

 

 ε = 1 – α      (1.11) 

 

ε is usually reported in units of “permil, ‰” and sometimes in “permeg” 

 
Physical equilibria 
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 In contrary to chemical equilibria where isotopic exchange takes place between 

different chemical species, physical equilibria takes place within molecules of the same 

species but in different phases. For example the isotopic exchange of 
18

O between the 

liquid water and water vapor.  

 

 H2
16

O(l)  +  H2
18

O(g)  ↔  H2
18

O(l)  +  H2
16

O(g) (R.1.33) 

 

The equilibrium fractionation factor for this reaction can be expressed as: 

 

 αgas-liquid = (
18

O/
16

O)gas / 
18

O/
16

O)liquid    (1.12) 

 

The difference in vapor pressure between isotopic compounds can lead to an isotopic 

fractionation. For example 
1
H2O has a higher vapor pressure than 

2
H2O, and hence the 

vapor will be enriched in light isotopes than the liquid. It should be noted that α is 

strongly dependent on temperature, and hence determines the isotopic composition of 

atmospheric water vapor. This is the basis for using the stable isotopes of water as 

metrics for global hydrological cycles (Rozanski et al., 2001).       

 
Open and closed systems 
 

 In a closed system isotopic fractionation is accompanied by conservation of mass 

and isotopic composition of the system i.e. δsystem is constant. For a system composed of 

liquid and vapor phases: 

 

 δvapor = δsystem + f ε     (1.13) 

 

where f is the mass fraction in the liquid reservoir. When the entire system is in the vapor 

form (f = 0) and δvapor = δsystem. In contrary, when the entire system is condensed into the 

liquid phase (f = 1), δvapor = δsystem + ε. 

However, the Earth’s system is mostly open and may not conserve mass and isotopic 

composition. For such processes involving an open system where a trace substance is 

removed from a large reservoir continuously, the isotopic fractionation process is called 

Rayleigh fractionation, and it can be treated theoretically using the Rayleigh equation 

(Criss, 1999). For a condensation process this equation can be written as: 

 

 
R

Ri

" 

# 
$ 

% 

& 
' = f

()1      (1.14) 

 

where f represents the fraction of the residual vapor, Ri is the isotope ratio of the bulk 

composition, and R is the instantaneous ratio of the remaining vapor (Hoefs, 2009). This 

equation is valid when a given material is removed from the system continuously, the 

fractionation associated with the removal process can be described using the fractionation 

factor, and if this factor does not change during the process at constant temperature. 

Equation 1.14 can also be expressed in terms of δ-values as: 

 



")!

!

" +1
"
0
+1

= f
#$1 (1.15)

Figure 1.18 shows a Rayleigh plot for liquid-vapor equilibrium in open and closed 

systems (Criss, 1999). As condensation occurs progressively, heavy isotopes will be 

removed from the vapor phase, and eventually the residual vapor becomes depleted in 

heavy isotopes.  

Figure 1.18. The !18O of liquid water (thick lines) and water vapor (thin lines) versus the 

fraction of water vapor remaining in an open system (curved lines) and closed systems (straight 

lines). The dotted line represents the !-values of the initial vapor.     

A simple natural log of equation 1.15 and substituting * for ()-1) allows the 

determination of the fractionation constant: 

!

ln " +1( ) = # ln f + ln("0 +1) (1.16)    

where !0 and ! are the isotopic composition at the beginning and at the end of the process 

respectively. Equation 1.16 will be repeatedly used in this manuscript.  

1.3.3.2. Non-equilibrium Fractionation 

These are processes associated with isotopic systems out of equilibrium and even 

products may become physically isolated from the reactants (unidirectional) such as 

diffusion, evaporation, and dissociation reactions which arises due to difference in mass 

The 18O of liquid water (thick lines) and water vapor (thin lines) versus the O of liquid water (thick lines) and water vapor (thin lines) versus the O of liquid water
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and zero point energy (Criss, 1999). The knowledge of these effects enables to 

understand various atmospheric chemical reaction pathways. 

 

Diffusion 
 

 Diffusion of molecules could lead to distribution of isotopes in different 

proportion simply due to the difference in the mass of the isotopes. At a given gas 

temperature, lighter species diffuse faster than heavier species. Referring to the gas law, 

the translational velocity of molecules is indirectly related the square roots of their 

respective masses. Hence, lighter molecules will escape faster a given system than the 

heavier ones, leading to an enrichment of the reservoir with time.  

 
Evaporation 
 

 Evaporation is associated with molecules escaping from the bulk liquid, and 

similar to diffusion where the lighter isotopes with higher translational velocity 

preferentially escape the bulk leaving it enriched with time. 

 
Kinetic Isotopic Effects 
 

 These effects are related to the difference in dissociation energies of molecules 

containing different isotopes. For example species containing light isotopes have 

relatively weaker bonds (higher vibrational frequency) than species with heavier isotopes. 

During bond breaking reactions such as photolysis where weaker bonds are broken 

primarily, the light isotopes will be preferentially incorporated into the product side 

leaving the residue enriched in heavy isotopes. 

 

1.3.4. Mass Independent Fractionation (MIF) 
 

 For two isotopically substituted molecules, the difference in their physical and 

chemical property is expected to arise only due to their difference in mass and termed as 

Mass Dependent Fractionation. For oxygen, one of the most abundant atmospheric gases, 

this can be expressed as the enrichment of the 
18

O relative to 
16

O is about twice that of the 

enrichment of 
17

O relative to 
16

O and it can be mathematically defined as: 

 

 δ17O = λδ18O      (1.17) 

 

where λ is the slope of  the δ
17

O versus δ
18

O plot called three isotopic plot. For molecular 

oxygen with three isotopes, the value of λ can be approximated by equation 1.18 (Young 

et al., 2002;Thiemens, 1999). 

 

 
δ17O

δ18O
≅

1

32
−
1

33

 

 
 

 

 
 

1

32
−
1

34

 

 
 

 

 
 

= 0.516    (1.18) 
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Depending on the molecular mass and nature of process, the value of the coefficient for 

oxygen can vary between 0.529 (for atomic oxygen) and 0.500 (for higher molecular 

weight species) (Thiemens, 1999). 

Different atmospheric species and minerals obey this rule and lies along the 

Terresterial Fractionation Line (TFL) with a slope " , 0.52, in agreement with Urey’s 

model prediction (Urey, 1947). However, this rule is not respected by few atmospheric 

species. After analyzing the multiple oxygen isotopic composition in Chondrules, the 

deviation from the TFL was first revealed by (Clayton et al., 1983) (Fig. 1.19). 

Accordingly, a !17
O , !18

O relation was observed and it was suggested that it is due to 

nuclear processes rather than chemical processes. Later on, Thiemens and Heidenreich 

observed !17
O values comparable to the !18

O in ozone generated in the laboratory from 

molecular oxygen using an electrical discharge demonstrating that such effect can also 

arises chemically (Thiemens and Heidenreich, 1983).  

Figure 1.19. The oxygen isotopic composition from different Chondrules sources (Clayton et al., 

1983) 

The process responsible for this deviation is named as “Mass Independent Fractionation, 

MIF”, or “Non-mass Dependent Fractionation” and quantified using the term “
17

O-

excess” denoted as "17
O and expressed mathematically as: 

!

$17O = #17O $ % & #18O (1.19) 

Equation 1.19 is derived from its original MDF relation and it has significant limitations. 

Firstly, the slope " = 0.52 used in this equation, which has emerged from the 

measurement of terrestrial and water samples which yielded a slope of 0.5164 ± 0.0033 

reviewed in (Miller, 2002), has been a subject of debate due to its inconsistency as it is 

!
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fractionation process or origin dependent. Different λ values have been obtained for 

variety of water and rock samples and different studies apply different λ values. 

However, for atmospheric species with higher 
17

O-excess (typically Δ
17

O > 20 ‰), the 

choice of slope of 0.52 has been widely accepted due to its minor impact on the overall 

Δ
17

O values.   

Secondly, expression of the 
17

O-excess is not consistent between different studies in 

which linear, logarithmic or power-law form of approximations exist. Miller (2002) used 

the power-law derived 
17

O-excess definition as: 

 

 Δ
17
O+1 =

1+δ17O

(1+δ18O)λ
     (1.20) 

 

Equation 1.20 has been suggested to be preferable expression as the slope of the 

fractionation line is invariant to the magnitude of the δ-values and the choice of the 

reference gas (provided all the references lie at the same MDF line) (Kaiser et al., 

2004;Miller, 2002). However, in the case of nitrate and in this thesis, the application of 

equation 1.19 is practical and the difference is minor in Δ
17

O if equation 1.20 was used. 

Besides, equation 1.19 has been implemented widely in previous studies in this field 

(Savarino et al., 2007;Morin et al., 2009;Michalski et al., 2003), and hence it will ensure 

consistency and eases comparison between the findings from this study with the existing 

measurement values. Additionally, the linear form is mathematically simple to make 

calculations. 

 In addition to ozone, other atmospheric species were also found carrying this 
17

O-

excess (Fig. 1.20). However, laboratory and field observations verified that their 
17

O-

excess was not directly generated but inherited/transferred from ozone during various 

atmospheric oxidation processes (Michalski et al., 2003;Röckmann et al., 2001;Yung et 

al., 1991;Savarino et al., 2000). While this conclusion is widely accepted today, the 

quantification of this transfer remains mainly on untested hypothesis.   
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Figure 1.20. The three isotopic plot showing the different species that obey or do not obey the 

mass dependent rule (Thiemens, 2006). The red circle for O3 trop* is an updated measurement of 

tropospheric ozone based on the analysis of the oxygen isotopes of tropospheric ozone at different 

geographical locations using the nitrite coated filter method (Vicars et al., 2012) as well as 

measurements in the early 90’s (Krankowsky et al., 1995;Johnston and Thiemens, 1997). 

1.3.5. MIF in ozone 

Ozone is an important atmospheric oxidant which possesses a large 
17

O-excess 

described in previous sections. There have been a number of studies conducted to 

understand why there exists 
17

O-excess in ozone. A brief analysis and historical 

development/measurement towards understanding MIF in ozone can be found in 

literatures (Thiemens, 2006;Brenninkmeijer et al., 2003;Marcus, 2008;Janssen et al., 

2001), and only a brief summary will be provided in this manuscript. 

Thiemens and Heidenreich (1983) generated ozone from molecular oxygen via 

electrical discharge. After cryogenically separated the ozone molecule and converted it to 

oxygen, they have analyzed its triple oxygen isotopes using isotope ratio mass 

spectrometer. They have obtained a slope of 1 on their three-isotope plot. This was the 

first experimental/labaratory observation of MIF in ozone due to chemical mechanism. 

Their experimental study was the benchmark for further experimental studies on ozone 

which are employed until today. 

Further experiments were also carried out to understand how temperature and 

pressure play a role on the enrichments in !17
O and !18

O in mass-independent fashion 

observed in ozone. Thiemens and Jackson (1987) observed the pressure dependence of 

isotopic enrichment in ozone produced by UV light photolysis of O2. Accordingly, !17
O = 

!18
O = 90 ‰ which was dominant above 20 torr, and !17

O = -27.5 ‰ and !18
O = -55‰ 
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dominant below 6 torr were observed. With further experimental studies (Thiemens and 

Jackson, 1990, 1987;Morton et al., 1990;Bainssahota and Thiemens, 1987), the pressure 

dependence of enrichment in ozone was briefly described. These studies showed that at 

low pressure ranges (below 100 torr) enrichment in ozone is more or less constant but 

higher than enrichments at higher pressure ranges (see Fig. 1.21a). Enrichment is 

intermediate at pressure range of about 100 torr to 600 torr. 

Figure 1.21. The pressure and temperature dependence in enrichments in !17O (open symbols) 

and !18O (closed symbols) in ozone formed from pure oxygen or air (Brenninkmeijer et al., 2003). 

Top panel (a): !17O and !18O values between 5-1000 torr. Circles and triangles represent values 

obtained at 321 K (Morton et al., 1990) and at room temperature (Thiemens and Jackson, 1990, 

1988) respectively. Best fit curves for the data from Morton et al. (1990) are obtained from 

(Guenther et al., 1999). Bottom panel (b): !17O and !18O values between 130 K and 360 K. 

Circles and triangles represent values obtained at oxygen pressures of 50 torr (Morton et al., 

1990) and at 45 torr (Janssen et al., 2003).  

The direct effect of temperature in the observed enrichments in ozone was also 

experimentally verified (Morton et al., 1990;Janssen et al., 2003) with a different 

17
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experimental set-up than the previous electric discharge experiments. In the previous 

experiments (Thiemens and Jackson, 1990, 1988), there was no control over temperature, 

and as the ozone is formed in a trap immersed in liquid nitrogen, its temperature is 

expected to vary between the discharge temperature and the liquid nitrogen temperature. 

Morton and co-workers designed a photolysis recycling experiment where the 

temperature and pressure can be controlled. At a constant oxygen gas pressure of 50 torr, 

observed the temperature dependence enrichment of δ
17

O = 36 ‰ and δ
18

O = 26 ‰ at 

130 K to δ
17

O = 117 ‰ and δ
18

O = 146 ‰ at 361 K (Morton et al., 1990) (see Fig. 

1.21b). 

 The studies mentioned above were the bench marks for further laboratory and 

field studies due to the possibility of interpolating these values to the required 

temperature and pressure regimes as needed. In chapter 2 of this manuscript, pressure and 

temperature of ozone formation were manipulated to generate ozone with different 
17

O-

excess values.    
 In order to have an advanced understanding and provide supporting information 

for the experimental observations of strangely large enrichment in ozone, different 

theoretical approaches were also provided. The RRKM theory (Rice-Ramsperger-Kassel-

Markus) developed by Marcus and co-workers was the most successful describing the 

isotopic effect in ozone and is discussed below (Marcus, 2008;Hathorn and Marcus, 

1999;Gao and Marcus, 2001).  

 Ozone can be formed from atomic oxygen produced from photolysis of molecular 

oxygen via: 

 

 O + O2 ↔ O3*      (R.1.33) 

 

 O3* + M → O3 + M     (R.1.34) 

 

After formation of an excited ozone molecule, an intramolecular energy redistribution 

will take place between the rotational and vibrational energy levels which depends on the 

molecular symmetry. According to the RRKM theory, symmetric species (
16

O
16

O
16

O, 
16

O
17

O
16

O, etc) have fewer intramolecular couplings for energy redistributions due to 

symmetry restrictions. This will lead to shorter lifetime of the O3
*
, and consequently 

lower rate of stabilized O3 formation associated with reduced probability of collision to 

loose the excess energy. In contrary, the asymmetric isotopomers have longer lifetimes 

due to increased probability for energy redistribution. This will lead to higher rate of 

stabilized ozone formation with an equal fractionation of the heavy isotopes. However, 

this is a semi-empirical model which uses an adjustable parameter η =1.18 (Gao and 

Marcus, 2001). The physical meaning behind the RRKM theory is that enrichment in 

ozone is symmetry driven i.e. only the asymmetric isotopomers exhibit non-zero 
17

O-

excess. For ozone molecule composed of two terminal (Oter) and one central atom (Ocen), 

a mass balance equation can written as: 

 

 3 Δ
17

O (O3) = 2 Δ
17

O (Oter) + Δ
17

O (Ocen)  (1.22)  

     

As the theory states that the 
17

O-excess on the central atom is zero, equation 1.22 will be 

reduced to: 
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 Δ
17

O (Oter) = 1.5 × Δ
17

O (O3)    (1.23)   

 

 This theory has been tested experimentally in different studies via reaction of 

ozone with Ag (Savarino et al., 2008;Michalski and Bhattacharya, 2009;Bhattacharya et 

al., 2008), NO (Savarino et al., 2008) and NO2
-
 (Michalski and Bhattacharya, 2009). 

These studies were based on previously existing study which states that during oxidation 

of atmospheric species, it is preferably the terminal atom will be transferred to other 

species (Liu et al., 2001). Even if their results agree on the existence of 
17

O-excess 

mainly on the terminal atom, the transferable quantity is not always equal to the 
17

O-

excess of the terminal atom. In order to account for this possibility, the transferable 
17

O-

excess can be represented by Δ
17

O (O3*) expressed as:  

 

 Δ
17

O (O3*) = α Δ
17

O (O3) + b    (1.24)  

 

where α is a factor representing fraction of 
17

O-excess transferable from the bulk and b is 

introduced to account for the fact when Δ
17

O (O3) = 0, it does not necessarily imply that 

Δ
17

O (Oter) and Δ
17

O (Ocent) are zero as proposed by the theory (Savarino et al., 2008). 

Other mechanisms during ozone formation (rotation, exchange, cyclic ozone) can lead to 

atom scrambling within the metastable ozone intermediate, generating artificial non-zero 

Δ
17

O (Ocen). In cases where α = 1.5 is observed, it will be a direct indication that the 

reaction takes place with the transfer of the terminal atom transfer exclusively (Savarino 

et al., 2008).  

The transferable 
17

O-excess is an important tool in the chemistry of many chemical 

species in the atmosphere as it can provide information about their oxidation pathways. 

The implication of this quantity in nitrate samples measured at different geographical 

locations will be briefly discussed in the sections below but in prior, the knowledge of 
17

O-excess in atmospheric ozone is essential.  

 
1.3.6. Measurements of 17O-excess in tropospheric ozone 
 

 Measuring the isotopic composition of tropospheric ozone is a complicated task due 

to the high oxygen to ozone ratio. Krankowsky et al. (1995) measured the isotopic 

composition of tropospheric ozone (Heidelberg, Germany) for the first time. Ozone 

collected via cryogenic trapping and converted to oxygen gas had average value of δ
17

O 

= 71 ‰ and δ
18

O = 91 ‰. This measurement was in good agreement with the prediction 

in δ
17

O values from laboratory studies but has lower enrichment in δ
18

O values which 

could be attributed to extra fractionations in tropospheric ozone and systematic errors 

(Brenninkmeijer et al., 2003). Following this, Johnston and Thiemens (1997) performed 

similar studies at three sites: Pasadena, La Jolla and White Sand. Accordingly, δ
17

O 

values ranging 66-78 ‰ and δ
18

O values ranging 82-90 ‰ were measured at these sites 

(see Fig. 1.22). The authors suggested ozone decomposition variability between the three 

sites as the source of differences observed in the isotopic composition of ozone. 

However, low sample collection efficiency, interference from Xenon during isotopic 

measurement and sample storage were suggested as possible factors for the observed 

variability (Brenninkmeijer et al., 2003). Both datasets from Krankowsky, and Johnston 
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and Thiemens measurements were in good agreement in the average -17
O about 25‰ 

excluding the White Sand measurement (due to high altitude) (Brenninkmeijer et al., 

2003). This average value of -17
O of tropospheric ozone is used today in different 

modeling calculations which use the 
17

O-excess in ozone to model the isotopic anomaly 

in other species such as nitrate (Morin et al., 2009;Alexander et al., 2009). However, 

theoretical calculations set this value even higher for example -17
O(O3) = 35 ‰ (Lyons, 

2001). The variation in the -17
O values of ozone has a significant effect in modeling 

calculations of determination of isotopic anomaly in other atmospheric species such as 

nitrate (discussed below).  

Figure 1.22. The 17O-excess values of tropospheric ozone measured at Pasadena, La Jolla and 

White Sand (Johnston and Thiemens, 1997) as well as in Urban air (Krankowsky et al., 1995). 

(Adapted from: Morin et al., 2007). 

1.3.7. Atmospheric observations of 17O-excess in nitrate 

The %17
O signal of atmospheric ozone is a conserved quantity (i.e., it cannot be 

altered via mass-dependent fractionation processes), which can be partially or completely 

transferred to other species through oxidation reactions (Thiemens, 2006;Michalski and 

Bhattacharya, 2009;Lyons, 2001). Ozone is an important atmospheric oxidant and during 

this process it transfers its 
17

O-excees to the other atmospheric species. As a result of this 
17

O-excess transfer, %17
O values of oxygen-bearing atmospheric species serve as proxies 

for the influence of ozone in their chemical formation pathways. This provides a unique 

approach for tracing chemical oxidation pathways in the atmosphere, and it has yielded 

valuable insight into the atmospheric dynamics of several key species such as nitrate.  

Nitrate is the end product of atmospheric NOX oxidation and possesses high 
17

O-

excess inherited from ozone (Savarino et al., 2007;Morin et al., 2008b;Morin et al., 

2007b;Michalski et al., 2003). During the oxidation reactions of NOX with ozone, the 
17

O-excess of ozone is ultimately transferred to nitrate.  

Large oxygen isotope anomalies have been measured in nitrate samples obtained 

from various parts of the globe, however; the amount of 
17

O-excess in the nitrate samples 

17
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is highly variable. /17
O values for atmospheric nitrate varying from 20 ‰ to 31 ‰ was 

measured in samples from the Atacama desert in Chile and La Jolla, California 

(Michalski et al., 2003). A relatively higher 
17

O-excess was measured in nitrate samples 

from polar sites. From a set of aerosol samples collected in coastal Antarctica over a year, 

Savarino et al. (Savarino et al., 2007)  measured /17
O of 24 ‰ – 39 ‰. McCabe et al. 

(2007) established a seasonal variation of /17
O of aerosol nitrate from 22.6 ‰ – 28.5 ‰ 

in summer and 38.1 ‰ in winter in Antarctic snow. All these measurements showed that 

atmospheric nitrate is characterized by a highly positive anomaly and there is a large 

variation among samples. The observed variation 
17

O-excess is attributed to the variation 

in the nitrate formation pathways which is in turn dependent on space and time. 

Currently, a theoretical approach is widely applied which uses the 
17

O-excess signal to 

infer to the high /17
O of nitrate samples associated with nitrate formation pathways. This 

model which was originally developed by Lyons (Lyons, 2001) and further adopted by 

many scientific studies (Morin et al., 2009;Michalski et al., 2003;Alexander et al., 

2009;Morin et al., 2011) is based on the basic principle that sink reactions do not induce 

isotopic fractionations in a mass independent fashion, and every source reaction induces a 

transfer of a given /17
O value to the newly formed species. Hence, simple mass balance 

calculations can be employed to identify the nitrate formation pathways based on the 

measured /17
O values. 

1.3.8. Mass balance calculations for !17O of nitrate  

In section 1.2.2, a brief discussion is given regarding the atmospheric chemistry 

of NOX and nitrate formation pathways. Accordingly, nitrate formation can follow either 

daytime or nighttime oxidation pathway. For clarity, the schematic on NOX oxidation 

pathways is shown below (re-plot of Fig. 1.9). Detailed mass balance calculations can be 

found in the literature (Morin et al., 2007b;Morin et al., 2011), and here a short revision 

is provided. 

Figure 1.23. The NOX cycling and nitrate formation pathways in the atmosphere. The sun 

represents the daytime mechanism whereas nighttime pathways are shown using the moon. 

Dashed lines represent the heterogeneous nitrate formation pathways.  

The NO  cycling and nitrate formation pathways in the atmosphere. The sun 
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The general mass balance equation governing the 
17

O-excess in nitrate can be written as: 

 

 Δ
17

O (NO3
-
) = 2/3 × Δ

17
O (NO2) + 1/3 × Δ

17
O (Oadd)  (1.25)  

 

where Δ
17

O (NO2) refers to the 
17

O-excess originating from NO2 and Δ
17

O (Oadd) 

describes the 
17

O-excess contribution to nitrate from the additional oxygen atom. This 

contribution depends on the mechanisms of conversions of NO2 to nitrate shown in Fig. 

1.23. Referring to this figure, the formation of Δ
17

O (NO2) depends on the concentration 

and rate of formations of O3 and RO2/HO2 (In the first approach, the Bromine chemistry 

is not considered). During photochemical steady state, Δ
17

O (NO2) can be described by: 

 

 Δ
17

O (NO2) = α Δ
17

O (O3*)       (1.26) 

 

where Δ
17

O (O3*)  denoted the transferable 
17

O-excess from O3 to NO2 during oxidation 

of NO and α is expressed by: 

 

 α =
k
NO+O

3

O
3[ ]

k
NO+O

3

O
3[ ] + kNO+HO

2

HO
2[ ] + kNO+RO

2

RO
2[ ]

  (1.27) 

 

where k denotes the reaction rate constants for the reaction between NO and its oxidants 

(O3, HO2 and RO2) and α can vary between values less than one (during daytime when 

RO2 is involved in oxidation of NO2) and close to one (during the night when 

photochemical steady state breaks down) (Morin et al., 2009). In these equations, the 

Δ
17

O (RO2/HO2) is set to 0 ‰ as the peroxy radicals are produced from O2 which 

possesses 
17

O-excess value nearly zero (Savarino and Thiemens, 1999).     

 The nitrate formation pathways with contribution of an additional oxygen atom 

can be described with the following reactions:  

 

 NO2 + OH + M  HNO3 + M   (R.1.34) 

 

 NO2 + O3  NO3 + O2    (R.1.35) 

 

 NO3 + RH  HNO3 + R     (R.1.36) 

 

 NO2 + NO3 ↔ N2O5     (R.1.37) 

 

 N2O5 + H2Oliq  2HNO3,aq    (R.1.38) 

 

To determine the mass balance equation for nitrate formation pathways (R.1.34-R.1.38), 

we will need the 
17

O-excess contributions from OH, H2O, O2 and O3.  

OH can be formed via (R.1.40.a-c): 

 

 O3 + hν  O(
1
D) + O2    (R.1.39) 

 

 O(
1
D) + H2O  2OH     (R.1.40.a) 
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 NO + HO2  NO2 + OH    (R.1.40.b) 

 

 O3 + HO2  2O2 + OH    (R.1.40.c) 

 

The OH radical formed via R.1.40.a should carry a Δ
17

O (OH) = 0.5 × Δ
17

O (O(
1
D)). 

However, rapid exchange of OH with tropospheric water (Dubey et al., 1997) which 

possess a 
17

O-excess value of zero (Zahn, 2006) will lead to Δ
17

O (OH) = 0 ‰. The OH 

produced via the two other reactions, R.1.40 b and c, will also possess negligible Δ
17

O 

values due to the Δ
17

O (HO2/RO2) (Savarino and Thiemens, 1999).  Hence, for nitrate 

formation via R.1.34, an important mass balance approximation can be given by: 

 

  Δ
17

O (NO3
-
) = 2/3 α Δ

17
O (O3*)   (1.25) 

 

For nitrate formation via R.1.35-36, which involves the transfer of additional terminal 

oxygen atom from ozone, the Δ
17

O of nitrate can be expressed by: 

 

 Δ
17

O (NO3
-
) = 2/3 α Δ

17
O (O3*) + 1/3 Δ

17
O (O3*) (1.26) 

 

Similarly, for nitrate formed from hydrolysis of N2O5 (R.1.37-38), the mass balance 

equation describing the 
17

O-excess in nitrate can be written as: 

 

 Δ
17

O (NO3
-
) = 1/3 α Δ

17
O (O3*) + ½ [2/3 α Δ

17
O (O3*) +1/3 Δ

17
O (O3*)] (1.27) 

 

 The mass balance calculations for nitrate will be modified during special 

conditions when the bromine chemistry will become relevant (mainly during polar 

spring) in nitrate formation pathways. Much attention has been given to the role of 

bromine chemistry in the 
17

O-excess record of nitrate from polar regions more recently. 

Briefly, the BrO molecule produced during the reaction of Br with ozone (see section 

1.2.2.3) will react with NO/NO2 to produce BrNO3 which will eventually undergo 

hydrolysis to produce nitrate. This hydrolysis reaction is an important mechanism which 

can incorporate an oxygen atom carrying a 
17

O-excess from ozone into nitrate i.e. during 

hydrolysis of BrNO3, a nucleophillic attack by water molecule will extract the bromine 

atom leaving the oxygen from BrO to be incorporated into the HNO3 produced (Gane et 

al., 2001). As BrO is formed exclusively via R.1.20, and during its formation it abstracts 

most likely the terminal oxygen of ozone (Zhang et al., 1997), a higher 
17

O-excess is 

predicted in nitrate from polar regions in the presence of bromine chemistry (Morin et al., 

2007b). Hence, the Δ
17

O (NO3
-
) can be described by: 

 

 Δ
17

O (NO3
-
) = (2α+1)/3 × Δ

17
O (O3

*
)     (1.28) 

 

where α can be expressed as: 

 

  α =
k
NO+O

3

O
3[ ] + kNO+BrO BrO[ ]

k
NO+O

3

O
3[ ] + kNO+BrO BrO[ ] + k

NO+RO
2

RO
2[ ] + kNO+HO

2

HO
2[ ]

  (1.29) 
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Equations 1.25-1.28 express the possible contribution of 
17

O-excess from individual 

pathways forming nitrate. However, in atmospheric conditions rather than individual 

pathways, multiple nitrate formation pathways exist and depending on space and time 

each pathway can be a dominant nitrate formation mechanism. Hence, the final isotopic 

composition of nitrate will be determined by the weight of each reaction pathway. These 

mass balance equations play a fundamental role in the modelling studies discussed below. 

 

1.3.9. Modelling of the Δ17O (NO3
-)  

 

 Few studies exist on modelling the 
17

O-excess in nitrate samples obtained from 

different geographical regions. Michalski and co-workers (2003) used a modelling 

approach to evaluate the Δ
17

O (NO3
-
) measured in aerosol nitrate samples from coastal La 

Jolla, CA which ranges 20-30.8 ‰. Based on individual reaction pathways and transfer 

mechanisms of 
17

O-excess explained in section 1.3.8, they have modelled the seasonal 

variation of Δ
17

O (NO3
-
). The calculations are based on a strong assumption of the Δ

17
O 

(O*) values and Δ
17

O values are generated only by mass transfer of oxygen atoms from 

ozone to products during oxidation. The authors were able reproduce the winter and 

spring observations with their model. However, the late summer and fall values were 

overestimated due to a seasonal shift from about 50 % homogeneous (R.1.34) during 

spring to more than 90 % heterogeneous (R.1.38) reaction pathway during the winter 

(Michalski et al., 2003). This was the first isotopic evidence which supports the available 

NOX models stating hydrolysis of N2O5 dominates the production of HNO3 in winter. 

 Morin et al. (2008) also conducted a year round study on the NOX/nitrate 

chemistry at Alert, Canada. From the analysis of the triple oxygen isotopes of 

atmospheric nitrate samples, a clear seasonal trend was observed in the Δ
17

O of nitrate 

values (see Fig. 1. 24). The highest Δ
17

O (NO3
-
) values were observed in the spring and 

the lowest values were on summer. According to this study, three dominant nitrate 

formation mechanisms from NO2 were proposed for each season, and were tested for 

their contribution to the observed 
17

O-excess in nitrate at this site. These are reactions 

with OH (summer), O3 (winter) and BrO dominant reactions during surface ozone 

depletion events (spring). The observations in winter and summer were in good 

agreement based on their model predictions for these seasons and considering the long-

range transport of atmospheric nitrate from mid-latitude regions. However, the measured 

spring Δ
17

O (NO3
-
) are higher than predicted by the model. The only possible nitrate 

formation mechanism which was not considered in the model was the nitrate formation 

via hydrolysis of BrNO3. These discrepancies strongly suggest the importance of the 

oxidation of NOX with BrO and eventually formation of nitrate via hydrolysis of BrNO3. 

Such chemistry was also provided as the explanation for the discrepancy observed 

between the measured and modelled values of the 
17

O-excess in nitrate from Summit, 

Greenland (Kunasek et al., 2008). During this study, the authors observed good 

agreement between the measured and modelled values in winter but not in summer with a 

difference of about 2-7 ‰ in the Δ
17

O of nitrate.  

 



$"!

Figure 1.24. The concentration and "17O (NO3
-) values from atmospheric nitrate collected at 

Alert, Canada (Morin et al. 2008). The black dashed line represents satellite retrieved BrO 

measurement data. Solid and dashed grey lines represent calculated "17O (NO3
-) values at 80°N 

and 40°N latitudes respectively. The strong deviations from these calculations during spring 

caused by interaction between snowpack emitted NOX and BrO are shown using the vertical thick 

black arrows.  

Recently, Savarino and co-workers established the yearly profile of nitrate from a 

tropical marine boundary coupling both field observations and modelling calculations. 

The authors determined /17
O values ranging 26-30 ‰ for nitrate samples at the Cape 

Verde observatory with minimum /17
O(NO3

-
) in summer and maximum in winter 

(Savarino et al., 2013) (Fig .1.25).  Accordingly, summer was accompanied by maximum 

/17
O values of nitrate (27 ‰) than any other region in the globe. The authors used a 

steady state box model (SSM) and a 3D-chemical transport model (CTM) to model the 

concentration and oxygen isotopes of nitrate by coupling various nitrate formation 

pathways with local measurements of NOX and O3 into the models. The models well 

reproduced the observed field nitrate concentration. However, a discrepancy between the 

modeled values and measurements in /17
O(NO3

-
) was observed arising mainly from the 

weight of nitrate formation pathways (daytime or nighttime emphasis) and amount of 

other species such as DMS in the two models.  By using mass balance calculations, the 

authors determined an average nitrate production rate of 20 ± 10 % for the pathway 

involving bromine chemistry (BrNO3 hydrolysis). Additionally, it was shown that the 

nitrate formation pathway via N2O5 pathway is negligible at this site.  

The concentration and 17O (NO ) values from atmospheric nitrate collected at ) values from atmospheric nitrate collected at 
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Figure 1.25. A year round 17O-excess profile of atmospheric nitrate during 2007/08 from Cape 

Verde Atmospheric Observatory (CVAO), Steady State atmospheric Model (SSM), 3D-Chemical 

Transport Model (CTM) and collection from three cruises (2007, 2008 and 2012) on south-north 

Atlantic transects (Savarino et al., 2013). The authors noted that the CTM model underestimation 

is associated with the chemistry in the model favoring pathways with low 17O-excess contribution 

to nitrate. 

Alexander et al. (2009) also used GEOS-Chem global 3D to simulate the 

observations of 
17

O-excess in nitrate. The model considers different nitrate formation 

pathways and used /17
O(O3) values of 25 and 35 ‰ to simulate the atmospheric 

observations. Additionally, they have included the experimentally derived transfer 

functions for the NO + O3 reaction (Savarino et al., 2008) and applied similar function for 

the missing NO2 + O3 reaction transfer function. The authors observed good agreement 

between their model and observations while using a /17
O(O3) value of 35 ‰ with the 

transfer function developed by Savarino et al. (2008). Accordingly, the NO2 + OH 

reaction dominates the global annual-mean tropospheric inorganic nitrate burden (76 %), 

followed by the N2O5 hydrolysis reaction which accounts for about 18 %. A small 

contribution (4 %) was also observed for the NO3 + DMS reaction pathway.  

Looking at each nitrate formation pathway specific to a given geographic location 

and its contribution to the annual mean nitrate concentration at the lowest model layer (0-

200 m above the surface), nitrate production in the tropics is dominated by the NO2 + OH 

pathway (87 %) due to the high OH concentration (Fig. 1.26) (Alexander et al., 2009). 

The production of nitrate via hydrolysis of N2O5 was found to be dominant (74 %) in 

high northern latitudes over the continents and the Arctic, and the high latitude marine 

boundary layer nitrate formation was dominated (up to 46 %) by the NO3 + DMS 

reaction pathway. The stratospheric nitrate contribution was found to be negligible with 

an average annual maximum contribution of 2 % over Antarctica.  

However, the model underestimated the /17
O of nitrate values (0-5 ‰) during summer 

and spring in polar regions as it ignores the bromine chemistry which may have a 

significant contribution to the high /17
O values of nitrate from this region. Morin et al. 

(2007) showed that hydrolysis of BrNO3 can have a significant contribution to the 

formation of nitrate with higher /17
O values. Additionally local snowpack emissions of 

Figure 1.25 A year round 17 excess profile of atmospheric nitrate during 2007/08 from Cape 
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NOX which are not included in the model may have introduced additional discrepancy 

with the model output (Alexander et al., 2009). 

Figure 1.26. The model output for the annual-mean fractional importance of the different nitrate 

formation pathways to the total inorganic surface nitrate (Alexander et al., 2009). 

In general, these modelling approaches provide significant information regarding 

the nitrate formation pathways and the seasonal trends observed in different geographical 

locations based on the knowledge of the /17
O of nitrate and ozone.  However, there are 

some gaps in these studies mainly due to unavailability of experimental data. For 

example, for the gas phase oxidation reaction of NO + O3 ! NO2 + O3, experimental 
17

O-excess transfer formalism was developed (Savarino et al., 2008). Accordingly, the 

transferable 
17

O-excess from ozone to NO2 was quantified by /17
O(O3*) = (1.18± 0.07) ' 

/17
O(O3)bulk + (6.6±1.5). However, this formalism is missing for some other oxidation 

pathways such as the NO2 + O3 ! NO3 + O2 reaction or Br + O3 ! BrO + O2 reactions. 

Therefore, currently existing studies employ assumptions for the transferable 
17

O-excess 

during these reactions based on existing thermodynamic and spectroscopic studies or use 

transfer values from similar reactions with already existing transfer mechanisms 

(Alexander et al., 2009;Morin et al., 2011). Hence, a credible experimental study is 

required to fill these gaps in modeling the regional and global /17
O of nitrate. Chapter 2 

of this manuscript will address the 
17

O-excess transfer during the gas phase NO2 + O3 

reaction.  

1.3.10. Isotopic effects in Photolysis 

In section 1.2.1 records of high NOX levels in the overlying boundary layer of 

polar regions were briefly discussed. These observations were also reflected in the field 

observations of nitrate mass loss from the snowpack (section 1.2.3). In those sections, 

desorption and photolysis was pointed as the two important processes for post-

depositional modification of snow nitrate. In the section below, first the observations of 

stable isotope profiles of nitrate based on the studies conducted at Dome C or in the 

The model output for the annual mean fractional importance of the different nitrate 
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laboratory will be revised. Then, the findings from these studies and their respective 

explanations will be described. Finally, the limitations of the existing studies will be 

pointed out and what is required will be suggested. 

 Photolysis (briefly defined in section 1.2.3.2) describes breaking of a chemical 

bond in a given molecule after absorption of light of appropriate energy. During bond 

breaking, the chemical bond with the light isotope (relatively weaker bond) will be 

preferentially broken than with the heavy isotope. In case of snow nitrate, this will lead to 

enrichment in 
15

N in the nitrate remaining in the snow. 

 To visualize the isotopic effects associated with photolysis, isotopic fractionation 

factor (α) was introduced which represents the partitioning of isotopes between two pools 

and related to isotopic fractionation constant (ε) by ε = (1-α) (Criss, 1999). (Note that the 

term “isotopic fractionation” will be used instead of “isotopic fractionation constant” 

throughout this manuscript (Coplen, 2011).  

 
Field observations of isotopic fractionations  
  

 In order to understand the possible causes of nitrate mass loss form the snow, 

Blunier and co-workers (2005) used stable isotopes of nitrate as interpretive tools. From 

two 15 cm long firn ice cores obtained from Dome C, they have analyzed the nitrogen 

isotope ratios of nitrate. They have also estimated the concentration of nitrate in these 

samples from the mass spectrometry measurements. The authors observed similar nitrate 

concentration profile with previous study at the same site (Röthlisberger et al., 2000) 

where the concentration showed a sharp decrease to below 10 % of initial nitrate 

remaining at 10 cm depth. In this study, rapid decrease in nitrate concentration from high 

surface concentration (maximum of 360 ppb) reaching low values (below 100 ppb) at 

about 8 cm depth (see Fig. 1.27) was also observed. From their measurement of the N 

isotope ratios depth profile, the δ
15

N increased from about 10 ‰ at the surface to about 

200 ‰ at 15 cm depth. The isotopic fractionation for N isotopes was determined 

assuming a Rayleigh type fractionation (described in section 1.3.3.1) where nitrate will 

be removed from the firn air irreversibly and using equation 1.16 which is rewritten here 

for clarity: 

 

 ln δ +1( ) = ε ln f + ln(δ0 +1)    (1.30) 

 

where δ and δ0 represents the δ
15

N after and before photolysis and f is the fraction of 

nitrate concentration left in the snow. As the N isotopic composition of nitrate at the 

beginning was not known in this study, equation 1.30 was modified by substituting f with 

C/C0 where C and C0 represents concentration of nitrate after and before photolysis as: 

 

 ln δ +1( ) = ε lnC + ln(δ0 +1) −ε lnC0[ ]  (1.31) 

 

Equation 1.31 is a linear equation of the form y = ax + b, and the authors approximated 

the second term of the equation as a constant term b. Hence, a linear plot of the ln (δ +1) 

versus ln C will be a straight line with slope ε. This approach has been followed in 

proceeding publications to determine the isotopic fractionations associated with 



$&!

photolysis which will be discussed below (Frey et al., 2009;Erbland et al., 2013). Based 

on this approach, the authors derived an isotopic fractionation of -54 ‰. 

In order to understand the mechanism behind the observed isotopic fractionation 

and to reproduce the field result in the laboratory, Blunier and co-workers took a further 

step and conducted an experimental study. Their approach was the first of its kind and is 

used as a benchmark for current researches in similar topics including experimental 

studies conducted in this manuscript. In their laboratory experiment, an artificial snow 

doped with NaNO3 was prepared and was irradiated with a UV lamp for few hours. 

Based on the nitrate concentration and N isotopes measurement before and after 

photolysis, the authors derived an isotopic fractionation of -11.7 ± 1.4 ‰. As this value is 

significantly different than their field observation, the authors ruled out photolysis as the 

dominant mechanism for the observed nitrate mass loss and isotopic fractionation. 

Frey et al. (2009) also conducted similar study at Dome C. In their study, two 

snow pits were sampled in two summer campaigns (DC 04 and DC 09), and measured 

both the oxygen and nitrogen isotopes of nitrate. From these campaigns, an average 

isotopic fractionation of 8 ± 2 ‰, 1 ±1 ‰ and -60 ± 15 ‰, were determined for !18
O, 

"17
O and !15

N respectively. In order to explain the mechanisms for these isotopic 

fractionations, a zero point energy shift (-ZPE) theoretical model was employed which is 

described briefly below.    

Figure 1.27. The nitrate concentration and !15N profile with depth for two ice cores extracted 

from Dome C. Concentration measurements were estimated from mass spectrometer 

measurements and error bars show one sigma from analytical errors (Blunier et al., 2005). 

Previous concentration measurements by (Röthlisberger et al., 2000) are shown in grey dots and 

diamonds.   

The nitrate concentration and 15N profile with depth for two ice cores extracted 15N profile with depth for two ice cores extracted 15
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The  ZPE shift model and theoretical determination of !  

In order to understand isotopic fractionations induced by photolysis of nitrate in 

snow, Frey and co-workers implemented the ZPE-shift model. The model is based on the 

observation that, with substitution of a light isotope by a heavier one, the vibrational zero 

point energy (energy associated with a molecule at the lowest vibrational energy level) of 

the heavier isotopologue is reduced. Zero point energy can be expressed by: 

!

ZPE =
!"

0

2
(1.32) 

where 10 is the vibrational frequency and k is the ground state potential curvature (also 

called spring or force constant) evaluated at the bond length R0 expressed mathematically 

as:  

!

"
0
=

k

µ
(1.33) 

where µ is the reduced mass defined by (m1m2)/(m1+m2) for the masses of the heavy and 

the lights isotopes.  

During isotopic substitution, the molecule possessing the heavier isotope will have its 

wave function at lower energy level as shown in Fig. 1.28. Hence, an isotopically 

substituted molecule will have a distinct electronic absorption spectra than the original 

molecule (Miller, 2000).  

Figure 1.28. Schematic of the direct photo dissociation process and the expected shift in the 

absorption cross-section of the heavier isotopologue (H) from the lighter (L) due to the change in 

the Zero Point Energy ("ZPE). /$0/
2, Vg and Ve denotes the ground state wave function, ground 

state electronic potential and dissociating electronic potential respectively (Liang, 2004) 

Schematic of the direct photo dissociation process and the expected shift in the Schematic of the direct photo dissociation process and the expected shift in the Schematic of the direct photo dissociation process and the expected shi
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 The model states that this difference in ZPE results in a blue shift of the UV 

absorption cross-section for the heavier isotopologue. Hence, with the knowledge of the 

absorption cross-section of the most abundant isotopologue (σ), which is easier to 

measure experimentally, the absorption cross-section of the least abundant isotopologue 

(σ’) can be derived by shifting the UV spectra of the most abundant isotopologue by a 

value corresponding to the difference in ZPE between them.  

Given that each isotopologue has a unique absorption cross-section, the rate of their 

photodissociation (J and J’) can be expressed as: 

 

 J = σ λ,T( )φ λ,T( )I λ( )dλ∫     (1.30) 

 

 J'= σ' λ,T( )φ λ,T( )I λ( )dλ∫     (1.31) 

 

where φ(λ) is the quantum yield  and I(λ) is the measured actinic flux of the source of UV 

light causing photolysis (For example, the solar actinic flux at Dome C conditions). 

The isotopic fractionation ε can be determined mathematically from the ratios of the 

photolysis rate constants of the heavy (J’) and the light (J) isotopes by: 

 

 ε =
J
'

J
−1      (1.32) 

 

However, this conceptual model is based on simplified principles which do not take into 

account the full complexity of the quantum mechanics behind isotopic substitutions. 

Previous laboratory studies observed a factor of two difference between the isotopic 

fractionation derived from this model and observations (Kaiser et al., 2003). Applying the 

time-dependent Hermite Propagation (HP) method and introducing the Franck-Condon 

model, which states that isotopic substitution has a significant effect on the wave function 

of the upper state, Johnson and co-workers were able to better reproduce the observations 

(Johnson et al., 2001). Their results were better than the predictions from the ZPE model 

but still with limitations associated with the 2D-potential energy surface (Kaiser et al., 

2003). Later, with an improved photo-dissociation dynamics of their model, (Nanbu and 

Johnson, 2004) obtained a very good agreement between their isotopic fractionation and 

the ones observed in the laboratory, pointing to the importance of taking into account the 

dynamics of the transition into the upper dissociation state and not only the ground state 

level. More recently, an empirical model using four parameters (ZPE, width, amplitude 

and asymmetry) was developed by Jost and co-workers in order to calculate the 

absorption cross-sections of isotopically substituted species (Jost, 2008;Ndengue et al., 

2010). The designed model successfully determines the absorption cross-sections of 

isotopologues of triatomic molecules.     

 In aim of determining the processes responsible for the observed enrichments in 
15

N in snow nitrate associated with post-depositional effects, Frey et al. (2009) employed 

the ZPE-shift model. The authors applied a simple ΔZPE shift of about -44.8 cm
-1

 (an 

average shift of about 0.5 nm) in the 280-360 nm ranges, constrained by the vibrational 

energies of each state mentioned in previous studies. The absorption spectrum of 
15

NO3
-
 



$)!

was determined by shifting the known 
14

NO3
-
 cross-section (Chu and Anastasio, 2003) by 

the ZPE (Fig. 1.29).  

Using the absorption cross-section values derived above, Frey and co-workers 

determined the isotopic fractionations for nitrogen isotopes using the solar actinic flux 

determined for Dome C conditions obtained using the snow TUV model (see end of 

section 1.2.3.2) and assuming a quantum yield of 1. They have obtained an isotopic 

fractionation 
15* value of -48 ‰. With the agreement of this value to the field 

observation, the authors suggested that photolysis is the major process behind isotopic 

fractionation and mass loss of snow nitrate (Frey et al., 2009). 

Frey et al. (2009) also studied the oxygen isotopic fractionations. In contrary to 

the increasing trend (enrichment) in !15
N, a decreasing profile was observed in !18

O and 

"17
O profiles with depth. The authors suggested besides photolysis, matrix effect plays a 

dominant role in oxygen isotopic fractionation pointing out previous studies which 

showed depletion in oxygen isotopes due to isotopic exchange with surrounding matrix 

(McCabe et al., 2005a) i.e. photoproducts of nitrate photolysis (NO and NO2) will 

undergo oxygen isotopic exchange with surrounding OH/water and reform nitrate. In case 

of complete isotopic exchange (100 % exchanged), the reformed nitrate will have !18
O 

values close to Dome C water (less than -40 ‰ (Masson-Delmotte et al., 2008)) and "17
O 

values close to zero as both reservoirs exhibit "17
O values close to zero (Frey et al., 

2009).  

Figure 1.29. The absorption cross section of 14NO3 measured experimentally (Chu and 

Anastasio, 2003) and 15NO3 derived applying the ZPE model (Frey et al., 2009). The absorption 

spectras are manually manipulated to show the shift but in reality they overlay on each other.  

The absorption cross section of 14NO14NO14 measured experimentally Chu and Chu and 
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 More recently, an intensive field study was conducted in the East Antarctic 

Plateau (EAP) on determination of isotopic fractionations (Erbland et al., 2013). This 

study went one step ahead and conducted simple experimental study on the effect of 

desorption (evaporation/sublimation) in the isotopic fractionations. Accordingly, at -30°C 

(close to summer time average temperature at Dome C) they have obtained a nitrogen 

isotopic fractionation of 1.8 ± 3.8 ‰. The authors also sampled different sites at the EAP 

and derived an average apparent isotopic fractionations of -59 ± 10 ‰, 2 ± 1 ‰ and 8.7 ± 

2.4 ‰ for δ
15

N, Δ
17

O and δ
18

O respectively. These values are in agreement with the 

previous study by Frey et al. (2009) field observations and ZPE-shift model. Noting the 

significant difference between the measured values and the values derived for desorption, 

the authors suggested photolysis (which is associated with large negative isotopic 

fractionations) as the dominant process behind post-depositional loss of snow nitrate and 

isotopic fractionation in EAP. However, in coastal Antarctica where the observed loss is 

small, both processes can be significant. 

 In general, these studies clearly observed the isotopic effects associated with post-

depositional processes. They have also derived apparent isotopic fractionations for 

different sites in Antarctica and suggested desorption and photolysis as responsible 

processes with their respective reasons. However, these mentioned studies also have their 

limitations. 

 The disagreement between the field observation and the laboratory experiment 

(Blunier et al., 2005) was suggested to arise from the experimental setup i.e. the lamp 

used for photolysis was unable to reproduce field conditions and it includes the 

absorption band of nitrate at 200 nm (Frey et al., 2009). Hence, photolysis rate spectrum 

spectrum will be shifted towards short wavelength regions leading to less negative or 

even positive isotopic fractionations. Additionally, photoproducts were not flushed from 

the system, and hence secondary chemistry was inevitable. 

 The ZPE-shift model approach by Frey et al. (2009) was a novel approach but it 

was too simplified. The ZPE-shift model has been previously criticized as it does not take 

into account for changes in shape and intensity of absorption spectras during isotopic 

substitution (Miller and Yung, 2000). Hence, the predictions from the model may give a 

direction of the isotopic fractionations but the accuracy remains to be tested. 

 The isotopic fractionations determined for the field measurements (Frey et al., 

2009;Erbland et al., 2013;Blunier et al., 2005) were also unable to derive purely 

photolysis driven isotopic fractionations rather an apparent value where besides 

photolysis additional process such as desorption can play a role.  

 Chapter 3 and 4 of this manuscript are dedicated to clarify these scientific gaps in 

photochemistry of nitrate in snow. In chapter 3, an experimental study which employs 

similar principle as Blunier et al. (2005) will be described. However, this study uses 

natural snow from Dome C, and had better control in parameters such as temperature, 

pressure and removal of photoproducts as well as it uses UV filters to better mimic field 

conditions. This will enable to derive a purely photolytic isotopic fractionation close to 

field conditions. We will also test the validity of the ZPE-shift model using the 

experimentally obtained values. In chapter 4, a field study, which isolates photolysis 

process, is described. In this study, the effect of photolysis in mass and stable isotopes of 

nitrate will be evaluated at Dome C, and a purely photolytic isotopic fractionation will be 
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derived. The findings from the laboratory studies will be used to explain the observations 

in the field.      

   
1.3.11. Structure of the manuscript and the PhD project  
 
1.3.11.1. Structure of the manuscript 
 
 In the introduction section, the basic backgrounds regarding the atmospheric 

chemistry of NOX and isotope geochemistry are briefly explained. From the discovery of 

isotopic anomaly in ozone to the current knowledge of experimental and theoretical 

explanations for MIF in ozone, and mass balance equations to determine 
17

O-excess in 

nitrate are described in detail.  Additionally, the current state of the art in snow 

photochemistry and the limitations of the currently existing studies in this field are also 

pointed out.  

The fundamental questions in manuscript includes: 

- How does the isotopic anomaly transfer proceeds for the NO2 + O3  NO3 + O2 

reaction? Is it similar to the NO +O3  NO2 + O2 reaction?  

- How can we account for the observed mass loss and isotopic fractionation of 

nitrate in snow?  

- Which processes significantly play a role in post-depositional modification of 

nitrate in snow? 

- What are the limitations of the currently existing studies and how can we improve 

them? 

This manuscript is comprised of three main chapters of experimental studies and an 

annex which describes the experiments conducted under this PhD study but were not 

successfully finished. A short overview for each chapter is given below. 

 
Chapter 2: 17O excess transfer during the NO2 + O3   NO3 + O2 

reaction  
 
In this chapter, the 

17
O-excess transfer during the gas phase reaction of NO2 + O3  NO3 

+ O2 is described. This is an important nighttime nitrate formation pathway but its 

isotopic transfer function has not been experimentally studied in the gas phase. The 

knowledge of this transfer function is a useful tool to understand the nocturnal nitrate 

formation pathways. Additionally, this reaction can also be used to evaluate the internal 

isotopic distribution of ozone. Michalski and Bhattacharya (2009) conducted a similar 

study for the liquid phase NO2
-
 + O3 reaction. However, this reaction does not truly 

represent the actual gas phase reaction in the atmosphere. Currently, modeling studies on 

Δ
17

O(NO3) use simple assumptions based on similar reactions. Following similar 

experimental protocol as the NO + O3  NO2 + O2 reaction isotopic transfer function by 

Savarino et al. (2008), the transferable 
17

O-excess will be computed from measurements 

of the triple oxygen isotopes of initial ozone and oxygen product. Isotopic ratios will be 

measured using the MAT-253 IRMS available at LGGE. Additionally, the intramolecular 

isotopic distribution of ozone will be evaluated and will be compared to previous studies 

(Michalski and Bhattacharya, 2009;Bhattacharya et al., 2008;Savarino et al., 2008).  
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Chapter 3: Laboratory Study of Nitrate Photolysis in Antarctic Snow, 
Part 2: Isotope Effects and Wavelength Dependence 

 
In Chapter 3, the photochemistry of nitrate in snow is briefly investigated from an 

isotopic perspective. Currently, only few experimental studies exist on constraining the 

post-depositional loss of nitrate from snowpack in low snow accumulation sites. 

However, these studies were unable to derive a purely photolytic isotopic fractionation 

(Frey et al., 2009;Erbland et al., 2013). The laboratory study, which was conducted by 

irradiating an artificial snow doped with NaNO3 (Blunier et al., 2005), did not well 

reproduce the field conditions in terms of light conditions mainly and secondary effect 

due to photoproduct recycling. The theoretical ZPE-shift model invoked to explain 

observed isotopic fractionations (Frey et al. 2009) is also a very simplified estimation. In 

Chapter 3 of this manuscript, a modified setup with better control on temperature, 

pressure and product removal is designed, and UV filters were used to match wavelength 

regions of specific interests (the field conditions at Dome C). Hence, irradiating this 

natural Dome C snow with selection of UV-filters at different wavelengths, we can 

evaluate the changes in mass and isotopic composition of nitrate in the snow. The results 

from this study are presented in two parts. The first part which focuses on the nitrate 

quantum yield (Meuasinger et al.) and the second part (chapter 3 of this manuscript) 

which describes the isotopic effects. Further, based on the experimental observations, the 

predictions of the ZPE-shift model will also be tested if it can reproduce the laboratory 

results or if limitations of ZPE-shift model to reproduce field observations can be 

improved with this experimental work combined theoretical calculations.   
 
 
Chapter 4: Isotopic effects of nitrate photochemistry in snow: A field 

study at Dome C, Antarctica 
 
In this chapter, we present the study on the photochemistry of nitrate in snow at Dome C, 

Antarctica during Austral summer 2011/12. As in chapter 3, where only photolytic effect 

was studied excluding other post-depositional effects, similar principle was also applied 

in this field study. Two snow pits with identical snow nitrate concentration and isotopic 

composition profiles were studied by exposing/blocking solar UV light to derive a purely 

photolytic fractionation. Sampling was conducted in 2-5 cm depth resolution until 30 cm 

in 10 days frequency during 02/12/2011-30/01/2012. These samples were analyzed for 

the concentration and the O and N isotopic composition of nitrate. The purely photolytic 

isotopic fractionations obtained from these measurements will be compared with the an 

apparent isotopic fractionations derived from previous studies (Frey et al., 2009;Erbland 

et al., 2013;Blunier et al., 2005) where besides photolysis additional processes such as 

evaporation are also present. Based on the results from this study, variation of isotopic 

fractionation with time or depth is also evaluated. We will also compare these 

observations with the laboratory study findings (Chapter 3) and with the ZPE-shift model 

predictions under the field conditions.     

 

At the end of this manuscript, conclusions from these studies and outlooks for future 

work are given.       
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1.3.11.2. The PhD project 
 

 This PhD project is part of the Initial Training in Mass Independent Fractionation 

(INTRAMIF) funded by the European Union Marie Curie grant. The project is composed 

of 13 PhD students and 8 laboratories in Europe. All the PhD projects are focused on 

MIF in different atmospheric species with ozone the central piece. The overall project 

preview is described in the charts below, and this PhD project (ESR 4) is assigned at 

LGGE (Grenoble) and CCAR (Grenoble).   
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CHAPTER 2 
 

 

 

17O excess transfer during the NO2 + O3 → NO3 + O2 
reaction  
 

 
This chapter is based on: 

 
 Tesfaye Ayalneh Berhanu, Joël Savarino, S.K.Bhattacharya, Willliam C. 

Vicars.
 17

O excess transfer during the NO2 + O3 → NO3 + O2 reaction. 

Journal of chemical Physics, 2012, 4, 136.  

 
 

 

 

Abstract 
 

The ozone molecule possesses a unique and distinctive 
17

O excess (Δ
17

O) which can be 

transferred to some of the atmospheric molecules via oxidation. This isotopic signal can 

be used to trace oxidation reactions in the atmosphere. However, such an approach 

depends on a robust and quantitative understanding of the oxygen transfer mechanism, 

which is currently lacking for the gas-phase NO2 + O3 reaction, an important step in the 

nocturnal production of atmospheric nitrate. In the present study, the transfer of ∆
17

O 

from ozone to nitrate radical (NO3) during the gas-phase NO2 + O3 → NO3 + O2 reaction 

was investigated in a series of laboratory experiments. The isotopic composition (δ
17

O, 

δ
18

O) of the bulk ozone and the oxygen gas produced in the reaction was determined via 

isotope ratio mass spectrometry. The ∆
17

O transfer function for the NO2 + O3 reaction 

was determined to be: ∆
17

O(O3*) = (1.23 ± 0.19) × ∆
17

O(O3)bulk + (9.02 ± 0.99). The 

intramolecular oxygen isotope distribution of ozone was evaluated and results suggest 

that the excess enrichment resides predominantly on the terminal oxygen atoms of ozone. 

The results obtained in this study will be useful in the interpretation of high ∆
17

O values 

measured for atmospheric nitrate, thus leading to a better understanding of the natural 

cycling of atmospheric reactive nitrogen. 
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2.1. Introduction 
 

 Oxygen isotopes (
16

O, 
17

O, 
18

O) in most natural compounds are distributed in such 

a way that the change in the 
17

O/ 
16

O ratio is approximately half of the change in the 
18

O/
16

O ratio. When the ratios for such samples are expressed in the relative scale of δ-

values (where δ (‰) = 10
3
 (Rsample/Rstandard – 1) and R is the 

x
O/

16
O ratio, where x = 17 or 

18) we obtain a linear array in a plot of δ17
O versus δ18

O which has a slope of 0.52 

(Terrestrial Fractionation Line) (Thiemens, 1999). Strictly speaking, the relation between 

δ17
O and δ18

O values is a power law (Miller, 2002); however, a linear relationship with a 

slope 0.52 is a good approximation over a small range of δ-values. Any deviation from 

this line is indicative of a 
17

O-excess, commonly referred to as an oxygen isotope 

anomaly caused by contribution from a mass-independent fractionation (MIF) or transfer 

processes. 
17

O excess is usually expressed in its linearized form as Δ
17

O = δ17
O - 0.52 × 

δ18
O, and signifies an excess or depletion of 

17
O from the amount expected for a mass 

dependent isotopic distribution. 

 Atmospheric ozone (O3) possesses large 
17

O-excess, with ∆
17

O values ranging 

from 20-40 ‰ (Mauersberger et al., 2001;Krankowsky et al., 1995;Thiemens and 

Heidenreich, 1983;Johnston and Thiemens, 1997). The Δ
17

O signal of atmospheric ozone 

is a conserved quantity (i.e., it cannot be altered via mass-dependent fractionation 

processes), which can be partially or completely transferred to other species through 

oxidation reactions (Thiemens, 2006;Michalski and Bhattacharya, 2009;Lyons, 2001). As 

a result of this 
17

O-excess transfer, Δ
17

O values of oxygen-bearing atmospheric species 

serve as proxies for the influence of ozone in their chemical formation pathways. This 

provides a unique approach for tracing chemical oxidation pathways in the atmosphere 

and has yielded valuable insight into the atmospheric dynamics of several key species 

such as nitrate, the end product of atmospheric NOX oxidation (Savarino et al., 

2007;Morin et al., 2008b;Morin et al., 2007b;Michalski et al., 2003) as well as 

N2O(Röckmann et al., 2001),  CO2(Alexander et al., 2004) and sulfates (Savarino et al., 

2000;Strauss et al., 2007;Farquhar and Wing, 2005;Farquhar et al., 2007). 

 Ozone is a bent molecule with two distinctive types of oxygen atoms: the two 

“terminal” atoms and the “central” atom, which is bonded to both terminal atoms. The 

anomalous isotopic enrichment is not distributed statistically in the ozone molecule 

(Janssen, 2005). In particular, it is believed that the 
17

O-excess resides on the terminal 

atom alone (Michalski and Bhattacharya, 2009). It is also believed that during oxidation 

reactions, there is a preference for reaction of the terminal oxygen atom of ozone (Liu et 

al., 2001). Hence the excess enrichment on this oxygen atom will be transferred to the 

oxidized compound and can be used as interpretive tool to study various atmospheric 

reactions (Savarino et al., 2008;Michalski et al., 2003). Therefore, a quantitative 

understanding of 
17

O-excess transfer in atmospheric reactions involving ozone is essential 

to verify the validity of these two key assumptions in particular cases.  

 The present study concerns atmospheric NOX (NO + NO2), which is emitted 

primarily through biomass burning, soil emission, fossil fuel combustion or formed in 

situ by lightning and it is strongly related to atmospheric ozone(Seinfeld and Pandis, 

2006). The atmospheric NOX cycle follows well-known daytime and nighttime reaction 

pathways and eventually results in the formation of a stable HNO3 product through the 

following reactions. 
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   NO + O3  → NO2 + O2  (R.2.1) 

 

   NO + RO2  → NO2 + RO (R.2.1a) 

 

   NO + HO2  →  NO2 + OH (R.2.1b)  

   

   NO2 + hv → NO + O                                   (R.2.2)   

  

   O + O2 → O3                                        (R.2.3) 

 

During the daytime, NO is oxidized by O3 and peroxy radicals to produce NO2, which is 

readily photolyzed back to NO. A photo-stationary state between NO and NO2 is 

achieved quickly, in less than 100 seconds (Roberts, 1990). The reaction pathways R.2.1 

and R.2.2 followed by R.2.3 constitute null cycle for ozone with no net loss or 

production. However, in the presence of volatile organic compounds (VOCs), where 

degradation intermediates HO2/RO2 are formed, NO oxidation follows pathways R.2.1a 

and R.2.1b producing NO2(Atkinson, 2000). Photolysis of NO2 and formation of ozone via 

R.2.3 is a major ozone formation mechanism in the troposphere. 

NO2 can be further oxidized by O3 to NO3 during the daytime. But due to rapid 

photolysis of NO3, its concentration is insignificant. 

 

   NO2 + O3  → NO3 + O2                                   (R.2.4) 

 

Reaction with OH (R.2.5) is the dominant daytime removal mechanism for NOx, 

resulting in a 1-2 day lifetime in the lower troposphere(Roberts, 1990).  

 

   NO2 + OH → HNO3                                         (R.2.5) 

 

At night, the NO3 radical thus produced may react with organic compounds (RH) such as 

VOCs or DMS to form stable HNO3 product (R.2.6), or may react with NO2 (R.2.7). 

 

   NO3 + RH → HNO3                                           (R.2.6) 

 

   NO2 + NO3  ↔  N2O5                                          (R.2.7)  

           

   N2O5 + H2Oads  →  2HNO3                                (R.2.8) 

 

R.2.7 attains equilibrium within a few minutes; low temperature and the absence of 

sunlight favors the forward reaction(Seinfeld and Pandis, 2006). N2O5 can undergo 

hydrolysis on aerosols via R.2.8 forming a stable nitrate product. This stable HNO3 is 

then removed from the atmosphere through dry and wet deposition (Galloway et al., 

2008). Reactivation of deposited nitrate can take place via photolysis mainly from snow 

or ice emitting active gaseous NOx in the polar environment which can be oxidized by 

local oxidants such as ozone and re deposited or transported to other locations(Jarvis et 

al., 2009;Abida et al., 2011).  
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R.2.3 is the ozone formation reaction that produces the anomalous non-zero Δ
17

O. During 

the oxidation reactions of NOX with ozone, the 
17

O-excess of ozone is transferred to 

nitrate.  

 Large oxygen isotope anomalies have been detected in nitrate samples obtained 

from various parts of the globe. Michalski et al(Michalski et al., 2003;Michalski et al., 

2002) measured ∆
17

O values for atmospheric nitrate varying from 20 ‰ to 31 ‰ in 

samples from the Atacama desert in Chile and La Jolla, California. From a set of aerosol 

samples collected in coastal Antarctica over a year, (Savarino et al., 2007) measured ∆
17

O 

of 24 ‰ – 39 ‰. McCabe et al(McCabe et al., 2007) established a seasonal variation of 

∆
17

O of aerosol nitrate from 22.6 ‰ – 28.5 ‰ in summer and 38.1 ‰ in winter in 

Antarctic snow. Morin et al (Morin et al., 2007b) also measured ∆
17

O of 29 ‰ – 35 ‰ in 

nitrate samples from the Arctic. All these measurements showed that atmospheric nitrate 

is characterized by a highly positive anomaly and there is a large variation among 

samples depending on space and time. 

 Though it is known that the oxygen isotope anomaly of atmospheric nitrate is 

inherited from ozone, the exact amount of transferable anomaly is still an issue of debate 

considering the wide range of Δ
17

O values observed in atmospheric nitrate mentioned 

above. The variation may originate from the local ozone source or may be due to reaction 

conditions. Nitrate formation follows different reaction pathways in the atmosphere 

depending on various factors(Alexander et al., 2009). Hence, it is important to investigate 

isotopic anomaly transfer for each reaction pathway in order to clearly understand and 

explain the high and variable Δ
17

O values observed for atmospheric nitrate. A 

breakthrough was made in an investigation of the gas phase reaction of NO with O3 

(R.2.1). Data obtained during this experiment was used to explain the anomaly transfer 

from ozone to NO2 in the context of an earlier study on the intramolecular isotopic 

distribution of ozone (Savarino et al., 2008).  

 Presently there is no analogous study of anomaly transfer study during the gas 

phase reaction of NO2 with O3 (R.2.5). Michalski and Bhattacharya (Michalski and 

Bhattacharya, 2009) have recently studied the aqueous phase NO2
- 
reaction with ozone in 

order to investigate the intramolecular oxygen isotope distribution of ozone and anomaly 

transfer during formation of NO3
-
. This study suggests that the ozone isotopic anomaly 

resides entirely on terminal atoms of ozone when a limited range of Δ
17

O values of ozone 

is considered (20-40 ‰). However, the aqueous phase oxidation of NO2
- 

anion with 

ozone is not chemically equivalent to the gas phase atmospheric oxidation of NO2 radical 

by ozone. Therefore, an experimental quantification of 
17

O-excess transfer from O3 to 

NO3 is necessary in order to use an isotopic approach to investigate the nitrate chemistry 

and related compounds. This is the main objective of the study described here. 

 

2.2. Experimental 
 

A. Experimental setup 

 

The NO2 + O3 reaction was carried out in a custom made vacuum line (Fig. 2.1) using 

Pyrex glass components. A turbomolecular pump (Model Pfeiffer TMH071), backed by a 

rotary oil pump (Alcatel), was used to obtain vacuum at the level of 1.3 Pa (10 mTorr) 

within a few minutes. The system was equipped with two spherical glass chambers (C1: 



%)!

10 L and C2: 1 L), two Baratron gauges (MKS, PR4000, 0-10 Torr and 0-1000 Torr 

ranges), vacuum gauges (Varian 801, thermocouple), and three cold traps T1, T2 and T3. 

A Tesla coil (ETP, BD 50E) was used to generate ozone via electrical discharge in 

oxygen (obtained from a tank, Messer, 99.999% purity).  A glass bulb containing NO2 

(Air Liquide, 98% purity) was attached to the system. NO2 was purified by cycles of 

freezing with alcohol slush (-100 °C) and pumping away non-condensable gases until any 

blue or brown/yellow colors have disappeared before its use. The line was covered with 

aluminum foil to avoid decomposition of ozone as well as NO2 caused by exposure to 

light.  

Figure 2.1. Simplified sketch of the vacuum line used in the present study where T1, T2, T3 are 

the cylindrical traps and C1 and C2 are spherical glass chambers.  

B. Preparation of ozone 

Ozone was generated via electrical discharge at various pressures (1.3 kPa to 13kPa read 

by the Baratron gauge) and temperatures (77 K to 340 K) in order to obtain %17
O(O3)bulk 

values ranging from 0 to 40 ‰ (Savarino et al., 2008). The vacuum line volume was 

rather small (about 500 ml) but inclusion of the 10 L bulb as a reservoir allowed for an 

essentially constant pressure during ozone generation. This avoided any pressure change 

effect on delta values and associated changes in the internal isotope distribution of ozone. 

Discharge was carried out in the cylindrical glass trap (T1), having a Styrofoam balcony 

in the middle containing liquid nitrogen (LN2) to trap the ozone as it was formed. To 

obtain higher enrichment values oxygen was made to flow through the system during 

discharge (in trap T2) using a diaphragm pump (Fig. 2.2) while ozone was collected in 

trap T1. Heating the glass trap with hot air gun as well as making the discharge at various 

Simplified sketch of the vacuum line used in the present study where T1, T2, T3 are 
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distances from the cold trap induced temperature variations at the ozone formation site. In 

this way, different enrichment values were produced as the %17
O of ozone is sensitive to 

variations in temperature (Morton et al., 1990). As a special case ozone with %17
O , 0 

was produced by electrolysis of acidified water (Bhattacharya et al., 2009). 

Figure 2.2. Production of ozone having various $17O values were obtained by manipulating 

pressure and temperature of ozone formation using static (LN2 temperature) and flow systems 

(room temperature). Static experiments were used to generate %17O (O3)bulk below 30‰ and flow 

experiments for %17O (O3)bulk of 30-40‰.  

C. Reaction procedure 

After ozone was produced (typically 30 µmole-120 µmole) and trapped at T1, the left 

over oxygen was pumped away until a vacuum of 10 mTorr was obtained. T1 was then 

isolated and the ozone was brought to gas phase by removing the LN2. Next, the ozone 

was allowed to equilibrate between T1 and T2 for ~ 10 minutes. T1 was then isolated and 

its ozone was taken to the cold finger at C2 and isolated from the main bulb. The ozone 

aliquot left at T2 was taken to a cold finger (containing molecular sieve, MS) attached to 

the Baratron (pre-calibrated). This ozone was converted to oxygen by warming the MS 

and oxygen amount was measured with the Baratron. This oxygen was collected in a 

sample vial (with MS) and analyzed in the mass spectrometer to obtain the isotopic 

composition of the starting ozone assuming that this ozone aliquot represents the ozone 

that would react with the NO2 in C2. The volume ratio of T1 and T2 also allows us to 

determine the amount of ozone in C2 to be used for the reaction. An excess amount 

(about twice) of gaseous NO2 was taken from the NO2 bulb and transferred to C2 by 

freezing at the bottom finger with LN2. Next, the LN2 in both fingers of C2 were removed 

and the stopcock separating the cold finger with ozone was slowly opened, allowing the 

NO2 and O3 to mix. The reaction was allowed to proceed for 30 minutes. The estimated 

Figure 2. Production of ozone having various 1717O values were obtained by manipulating 
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time for completion was determined with a chemical kinetics model (KINTECUS). 

Afterwards, LN2 was used at the bottom finger of C2 to trap all possible products (except 

O2) as well as left over NO2 and O3, if any remained. The O2 thus produced was 

transferred to a sample vial with MS and its isotopic composition was determined via 

mass spectrometry. 

 

D. Isotopic Measurements 

 

The aliquots of ozone and O2 produced from the NO2 + O3 reaction were analyzed using 

a MAT 253 IRMS in dual inlet mode. An LGGE standard oxygen gas (calibrated against 

VSMOW: δ17
OSMOW = 3.53 ‰, δ

18
OSMOW =7.52 ‰) was used as the reference gas. Each 

analysis comprises eight pairs of sample-reference ratio measurements to obtain average 

δ17
O and δ18

O values. These were in turn used to determine the enrichment relative to 

tank O2 (δ17
OSMOW = 5.97 ‰, δ18

OSMOW =12.14 ‰). As mentioned before, the linear 

expression Δ17O = δ17O − 0.52 × δ18O was used for calculating Δ
17

O values.   

 

E. Control Experiments 

 

As mentioned before, the ozone that reacts in C2 is assumed to have the same δ- values 

as the aliquot. However, there could be some minor change during the transfer from T1 to 

C2 associated with ozone dissociation or equilibration between T1 and T2. To investigate 

this possibility, we did nine control experiments in which ozone having various Δ
17

O 

values was produced and allowed to equilibrate between T1 and T2 and transferred to C2. 

The ozone gases in T2 and C2 were collected separately and analysed for δ
17

O and δ
18

O 

values.  These experiments showed that on average there is usually a small but significant 

(0.74‰) increase in Δ
17

O value during equilibration. The ozone reacting in flask C2 had 

little less δ-values: average changes were -1.38 ‰ in δ17
O and -4.22 ‰ in δ18

O (Table 

2.1) which implies slightly more ∆
17

O values than computed from aliquots. These 

corrections were applied to the measured aliquot values to obtain the reacting ozone 

values.  
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Table 2.1. Control experiment results in order to observe an aliquot- effect. Change in 

δ
17

O and δ
18

O of reacting ozone (in C2) from aliquot values (in T2) observed from the 9 

control experiments. The average change in δ values was used to correct for this effect. 

The mean change in Δ
17

O is 0.74‰. 

 

Ozone in T2        Ozone in C2 Expt. 

No δ
17

O δ
18

O δ
17

O δ
18

O 

Change in δ17O Change in δ18O 

81 59.62 71.49 58.83 68.07 0.79 3.42 

82 60.25 73.33 57.49 66.00 2.75 7.33 

83 47.60 58.62 46.49 55.04 1.10 3.58 

84 32.67 40.04 30.44 34.34 2.22 5.70 

85 29.84 39.23 28.13 34.63 1.72 4.60 

87 100.58 122.99 99.33 119.72 1.25 3.27 

88 101.23 120.10 100.90 117.13 0.33 2.97 

90 73.61 85.50 73.17 82.72 0.44 2.78 

91 59.62 71.49 58.83 68.07 0.79 3.42 

                                                                     Average  1.38 4.22 

 

 

 

2.3. Results and Analysis 
 

2.3.1. Isotopic measurements 
 

Results for δ17
O, δ18

O, and Δ17
O during the isotope transfer experiments are summarized 

in Table 2.2. Ozone produced for individual experiments had ∆
17

O values ranging from 

6.13‰ to 41.02‰. The oxygen gas produced via R4 was also analyzed and had ∆
17

O 

values ranging -0.15‰ to 31.43‰.  
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Table 2.2. Measured and calculated δ17
O, δ18

O, and Δ
17

O for Bulk Ozone, O2 and NO3 

produced by the NO2 + O3    NO3 + O2 reaction and terminal oxygen atoms of ozone. 

The values are in units of ‰ (per mil) with respect to tank oxygen and recalculated based 

on the control experiments. 

 

O3, Bulk O2, Produced Expt. 

No δ
18

O δ
17

O Δ
17

O δ
18

O δ
17

O Δ
17

O 

‡
Δ

17
O, 

NO3 

‡
Δ

17
O, 

terminal 

1 7.50 10.07 6.17 10.43 5.26 -0.15 6.28 18.84 

2 8.66 13.66 9.15 17.45 12.10 3.03 7.14 21.41 

3 11.23 15.40 9.56 24.26 15.76 3.17 7.47 22.40 

4 24.49 22.53 9.80 31.96 18.42 1.90 8.60 25.79 

5 20.66 20.75 10.00 34.72 22.85 4.84 6.81 20.44 

6 17.36 20.66 11.64 29.65 20.76 5.36 8.07 24.22 

7 35.89 32.54 13.88 38.58 28.81 8.72 8.05 24.14 

8 44.90 40.92 17.57 39.83 32.48 11.65 9.73 29.20 

9 43.88 40.46 17.64 43.83 34.35 11.47 9.93 29.80 

10 34.26 38.31 20.49 44.76 37.29 13.84 11.15 33.45 

11 33.09 37.71 20.50 45.73 36.64 12.74 11.92 35.77 

12 52.63 49.03 21.66 63.82 49.92 16.55 10.50 31.51 

13 53.78 50.09 22.12 57.16 46.37 16.42 11.02 33.07 

14 47.70 48.51 23.71 56.89 46.70 16.87 12.30 36.89 

15 43.57 46.65 23.99 41.80 37.61 15.63 13.40 40.21 

16 71.00 65.13 28.21 74.90 61.07 21.72 13.46 40.38 

17 55.56 57.14 28.24 63.71 54.35 20.81 14.10 42.29 

18 73.41 68.95 30.78 78.99 65.26 23.69 14.66 43.97 
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19 86.58 77.88 32.86 93.13 72.82 23.99 16.60 49.80 

20 89.78 81.59 34.90 99.52 77.58 25.38 17.69 53.06 

21 107.03 92.28 36.62 111.86 84.86 26.31 18.82 56.47 

22 107.14 93.24 37.53 107.97 84.24 27.57 18.80 56.39 

23 106.58 93.20 37.77 111.04 85.38 27.17 19.35 58.06 

24 103.25 91.86 38.16 109.12 85.37 28.07 19.08 57.24 

25 102.48 92.16 38.87 98.94 80.54 28.40 19.48 58.43 

26 107.77 95.54 39.50 111.84 87.64 28.88 19.85 59.54 

27 110.78 98.04 40.44 116.36 92.17 30.93 19.32 57.97 

28 105.95 96.71 41.62 111.33 90.15 31.43 20.11 60.33 

29* -41.16 -20.22 1.18 -16.58 -32.6 -0.18 0.92 2.76 

30* -44.54 -21.93 1.23 -14.97 -30.3 0.77 0.72 2.15 

31* -41.23 -20.20 1.24 -14.51 -27.6 -0.18 1.36 1.60 

 

 

2.3.2. Analysis 
 

A. Anomaly Transfer 
 

The 
17

O excess present in NO3 is a function of the 
17

O-excess in NO2 (Δ
17

O(NO2)) and 

Δ
17

O(O3*). We have defined Δ
17

O(O3*) as the 
17

O-excess transferrable from ozone via 

terminal or central oxygen atom (expressed in equation 2.3 below) and it is not same as 

Δ
17

O(O3) (Savarino et al., 2008;Janssen, 2005). This can be expressed mathematically 

using a mass balance equation as: 

 

3Δ
17

O(NO3) = 2Δ
17

O(NO2) + Δ
17

O(O3*)          (2.1) 

 

However, the 
17

O excess in NO2 radical used in this study is negligible (Δ
17

O(NO2) = -0.7 

± 1.4 ‰) (Savarino et al., 2008) compared to the higher Δ
17

O values we are interested in 

and we can fairly assume that Δ
17

O(NO2) is zero.  

The transferred oxygen isotopic anomaly can be written as a function of the isotopic 

anomaly in bulk ozone and the O2 produced by the reaction: 
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/17
O(O3*) = 3-17

O(O3) – 2-17
O(O2)             (2.2)  

where -17
O(O3) and -17

O(O2) are the values obtained from this experiment. 

Fig. 2.3 represents a plot of the /17
O(O3*) versus -17

O(O3)bulk and shows that the two are 

linearly related. The best fit linear equation over the whole range of bulk -17
O(O3) values 

is: /17
O(O3*) = (1.23±0.19) ' -17

O(O3)bulk + (9.02±0.99). However, if we narrow the 

range to the average tropospheric ozone -17
O values of 20-40 ‰ (Johnston and 

Thiemens, 1997;Krankowsky et al., 1995), the linear fit is given by /17
O(O3*) = 

(1.41±0.25) ' -17
O(O3)bulk + (3.34±1.42). This equation is in good agreement with the 

equation /17
O(O3*) = 1.5 ' -17

O(O3)bulk whose implication is discussed below. 

Figure 2.3. Plot of /17O(O3*) versus %17O(O3)bulk for the whole range of data points. The 

/17O(O3*) is calculated using the equation /17O(O3*) = 3-17O(O3) – 2-17O(O2). The best fit y = 

(1.23±0.19)x + (9.02±0.99) represents pure experimental conclusion without any assumptions.  

B. Reaction Mechanism 

The NO2 + O3 . NO3 + O2 oxidation reaction proceeds via transfer of one of the three 

oxygen atoms of ozone to NO3. We assume a probability p for the terminal oxygen atom 

transfer and (1-p) for the transfer of the central atom. This can be described by an 

isotopic transfer function as follows:  

/17
O(O3*) = p-17

O(O)terminal + (1-p)-17
O(O)central                (2.3) 

The ozone mass balance is given as: 

%17
O(O3)bulk = 2%17

O(O)terminal + %17
O(O)central                      (2.4) 

Figure 2. Plot of 17O(O *) 17O(O  for the whole range of data points. The 
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It is clear that the three unknowns p, -17
O(O)terminal and -17

O(O)central cannot be 

determined based on these two equations. However, it is known that ozone does not 

exhibit a statistically distributed isotopic anomaly. The Gao–Marcus theory (Gao and 

Marcus, 2001) postulates that  the asymmetric ozone molecule is favored during ozone 

formation due to the symmetry-driven restriction of the couplings between the rotational-

vibrational energy levels of the symmetric molecule. The key point is that asymmetric 

ozone O3* has a longer lifetime due to more rapid randomization of the energy (relative 

to symmetric O3*), enhancing the yield of asymmetric O3 from collisional stabilization. 

From a quantification of isotope transfer for the NO + O3 " NO2 + O2 reaction, Savarino 

et al. (2008) found that the terminal oxygen atom of ozone was preferentially transferred 

with only a low probability (8±5)% for central atom abstraction during this oxidation 

reaction. In an experimental study of the aqueous phase NO2
- 

/O3 oxidation reaction, 

(Michalski and Bhattacharya, 2009) determined that it is the terminal oxygen atom that is 

transferred during oxidation reactions and the isotopic anomaly resides only on the 

terminal oxygen atom of ozone.  

Figure 2.4. Plot for %17O (NO3) versus %17O(O3)bulk for the whole range of data points. %17O 

(NO3) is calculated using the equation 3%17O(NO3) = 3%17O(O3)bulk - 2%
17O(O2)produced  and it is the 

diluted /17O due to the contribution of two zero /17O oxygen atoms from NO2. The slope from 

this graph is compared with the theoretically expected slope (0.5) based on the two assumptions 

mentioned in the text. 

Based on the above studies we made the two assumptions given below and validate them 

according to our experimental observation from the gas phase NO2 + O3 " NO3 + O2 

reaction.  

i) The oxygen isotope anomaly of O3 exists only on terminal position (/17
O(O)central = 0) 

and ii) the reaction of O3 with NO2 occurs only with the terminal oxygen atoms (i.e. p = 

1). 

Hence, the oxygen molecule produced by reaction 1 is composed of two kinds of oxygen 

atoms and its /17
O value is given by: 

Figure 2. Plot for 17O (NO ) versus 17O(O  for the whole range of data points. 17O 
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2%17
O(O2)= %17

O(O)terminal + %17
O(O)central                                (2.5)    

The /17
O values for the NO3 produced can also be calculated by: 

3%17
O(NO3) = 3%17

O(O3)bulk - 2%
17

O(O2)produced                         (2.6) 

where the /17
O values of (O3)bulk and (O2)produced are the experimental values. 

Combining equations 2.4-2.6 and using the above-mentioned assumptions we obtain: 

%17
O(NO3) = 1/2%17

O(O3)bulk                                                       (2.7) 

Equation 2.7 implies that under the above assumptions, if a linear fit is made for /17
O 

(NO3) versus /17
O(O3)bulk, a slope of 0.5 should be obtained. Based on the observed 

experimental values and using equation 2.6, a linear fit of /17
O(NO3) = (0.41± 0.11) ' 

/17
O(O3)bulk + (3.00±0.57) was obtained (Fig. 2.4) for the whole range of data points. The 

/17
O(NO3) given here is a diluted /17

O value due to the two oxygen atoms already 

present in the NO2 which carries no 
17

O excess. If we restrict the range to the narrow 

tropospheric ozone -17
O values (Fig. 2.5) the fit is given by: /17

O(NO3) = (0.47± 0.15) ' 

/17
O(O3)bulk + (1.11±0.82) which matches closely to the expected relation. This implies 

that the two assumptions can be considered valid as far as the restricted tropospheric 

ozone /17
O range is concerned. 

Figure 2.5. Plot of /17O(O3*) versus %17O(O3)bulk for tropospheric ozone /17O range (20-40‰ . 

The /17O(O3*) is calculated using the equation /17O(O3*) = 3-17O(O3) – 2-17O(O2). The best y 

=(1.41±0.25)x + (3.34±0.1.42) represents a pure experimental conclusion without any 

assumptions.  

However, we note that both linear equations expressing nitrate /17
O in terms of ozone 

/17
O have a small non-zero intercept. This would suggest that even at low /17

O(O3)bulk 

values nitrate radical formed via reaction with O3 would have a small /17
O. Due to our 

inability to produce ozone with zero /17
O via electrical discharge of oxygen gas the non-

Plot of 17O(O *) 17O(O  for tropospheric ozone 17O range (20 40‰ . 
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zero intercept is inferred based on higher /17
O values. It is possible that this observation 

may be at least partly accounted by experimental error e.g., incomplete trapping and/or 

aliquot sampling, etc. Based on a set of control experiments we estimated the aliquot-

effect, which showed that the aliquot was on average enriched compared to the real 

sample by 4.22 ‰ and 1.38 ‰ in 
18

O and 
17

O respectively. 

To investigate this issue further, ozone was produced through the electrolysis of acidified 

water, which produces ozone of mass-dependent composition(Bhattacharya et al., 2009) 

and this ozone was used for reaction with NO2. The results obtained for /17
O(O3*) 

(experiments 29-31) are in good agreement with the transfer function for the narrowed 

range considering the small contribution from the -17
O(NO2) (-0.7±1.4 ‰). The above 

observations suggest that our assumptions are reasonably valid within a certain range of 

bulk ozone /17
O values (typically 20-40 ‰ range). However, for the lower /17

O range 

(below 20 ‰) the observation deviate to some extent. Therefore, it is still an open 

question if the terminal only enrichment or terminal atom transfer only theories are valid. 

We have generated ozone with /17
O below 20 ‰ at relatively lower temperature and 

pressure ranges. We believe that this might interfere with the reaction pathways. A 

thorough analysis of this apparent discrepancy is beyond the scope of this paper. 

However, this is certainly a topic that merits further study.  

Generally, our experimental observations agree well with previous studies in a limited 

bulk ozone /17
O range (Savarino et al., 2008;Michalski and Bhattacharya, 

2009;Bhattacharya et al., 2009) with respect to terminal atom only transfer and excess 

enrichment residing on only the terminal atom. 

Figure 2.6. Plot for %17O (NO3) versus %17O(O3)bulk for the tropospheric ozone %17O range (20-

40‰). %17O (NO3) is calculated using the equation 3$17O(NO3) = 3$17O(O3)bulk - 2$
17O(O2)produced 

and it is the diluted %17O due to the contribution of two zero %17O oxygen atoms from NO2. The 

slope from this graph is compared with the theoretically expected slope (0.5) based on the two 

assumptions mentioned in the text. 

Another critical issue in this study was possible mechanisms that can have direct 

or indirect effects on the measured (-values. In this study we have assumed that the 

Plot for 17O (NO ) versus 17O(O  for the tropospheric ozone 17O range (20
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contribution of additional oxygen from other processes such as decomposition of the NO3 

produced is negligible due to the reasons discussed below. 

 The major fate of the NO3 radical is reaction with NO2 to attain equilibrium with N2O5. 

Even if there might be some water on the walls of the reaction chamber, this will lead to 

the formation of HNO3 which will further push the equilibrium towards rapid 

consumption of the NO3 radicals. 

By applying mass balance, for every micromole of ozone that reacts with NO2 we should 

expect an O2 product in 1:1 ratio. Based on our experimental observation we obtain a 

slope of 0.88 for the plot of the amount of ozone consumed with respect to the amount of 

O2 produced by the reaction (Fig. 2.7). This shows that we did not produce any additional 

oxygen. In most of the data points, we observe smaller amounts of oxygen than expected. 

This is possibly due to an over estimation of the initial amount of ozone transferred to the 

reaction chamber. Oxygen is measured directly at the end of the reaction via collection on 

MS. However, ozone is determined indirectly from trap 2. As some of the ozone 

decomposes on the wall during the transfer process to reaction chamber, there is always 

some loss of ozone that is not included in the indirect method of calculating amount of 

ozone transferred. Though oxygen is formed from this process, it is pumped out in every 

step by freezing the ozone in a liquid nitrogen trap. The larger deviation observed at 

relatively higher points is due to a decrease in ozone trapping efficiency of the MS at 

higher amount of ozone or oxygen. Additionally, we have modeled our system with 

Kintecus assuming 1% of the NO3 produced is decomposed to NO2 and O rather than 

forming N2O5. We have observed no difference in the amount of O2 produced. These 

points have enabled us to rule out the possibility of additional oxygen atom contribution 

from NO3 decomposition.     

Figure 2.7. Plot of amount of Ozone reacting versus amount of oxygen produced during the NO2 

+ O3 reaction to produce NO3 and O2. The error bars show the uncertainty of measurements of 

the amounts of initial ozone and oxygen produced. 

Plot of amount of Ozone reacting versus amount of oxygen produced during the NO
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2.4. Discussion 
 

2.4.1. Reaction Dynamics 

 

Various studies have been undertaken to study the NO2 + O3 → NO3 + O2 reaction due to 

its relevance in atmospheric chemistry and in particular to evaluate the rate of this 

reaction. The IUPAC has recommended k = 1.4 × 10
-13

 e
-2470/T 

cm
3 

molecule
-1

 s
-1

 over the 

temperature range of 230 K – 360 K (k = 3.5 × 10
-17 

cm
3 

molecule
-1

 s
-1

 at 298 K) and Ea = 

20.54 kJ mol
-1

(Atkinson et al., 2004).  

Based on ab-initio studies, the reaction of NO2 with O3 seems to be determined by the π 

orbital of the terminal oxygen atom of ozone(Peiro-Garcia and Nebot-Gil, 2003). 

Accordingly, NO2 attacks the terminal oxygen of ozone and forms a single transition state 

(TS1), the rate-determining step. On the contrary, the NO + O3 reaction proceeds through 

two transition states (TS1 and TS2) as well as an intermediate (A)(Peiro-Garcia and 

Nebot-Gil, 2002, 2003). Application of the single-reference higher correlated QCISD 

methodology(Peiro-Garcia and Nebot-Gil, 2003) for the computation of the reaction 

mechanism in case of NO2 + O3 shows that the overall reaction is a direct process with no 

intermediate (A) and transition state TS2. It establishes firmly that abstraction of the 

central atom does not take place.  

 

2.4.2. Atmospheric Implications  

 

NOX plays a major role in the production of tropospheric ozone and destruction of 

stratospheric ozone(Crutzen, 1979). The NO2 + O3 → NO3 + O2 in particular has been 

investigated widely due to its importance in the nighttime chemistry of the troposphere. 

The atmospheric chemistry of nitrates can be explained by studying their oxygen and 

nitrogen isotopic composition. The relative involvement of ozone in the formation of 

atmospheric nitrate can be inferred based on 
17

O excess transfer studies.     

The correlation ∆
17

O(O3*) = (1.23±0.19) × Δ
17

O(O3)bulk + (9.02±0.99) should be applied 

to quantify the anomaly transfer during the NO2 reaction with O3. However, this equation 

underestimates the results due to the strange intramolecular isotopic distribution of ozone 

at low ∆
17

O values (typically below 20 ‰). Instead, we propose the equation ∆
17

O(O3*) = 

(1.41±0.25) × Δ
17

O(O3)bulk + (3.34±1.42) as appropriate in the 20-40 ‰ range of bulk 

ozone, which is considered relevant for tropospheric ozone. 

We can estimate the Δ
17

O value of the final NOX cycle product, HNO3, by using isotopic 

anomaly transfer functions derived experimentally for the 0-40 ‰ range in order to keep 

consistency between the two experimental results and applying mass balance equations 

defined below: 

- ∆17
O(O3*)(NO + O3) = (1.18± 0.07) × ∆

17
O(O3)bulk + (6.6±1.5) for the NO + O3 → 

NO2 + O2 reaction (Savarino et al., 2008)   

- ∆17
O(O3*)(NO2 + O3) = (1.23±0.19) × Δ

17
O(O3)bulk + (9.02±0.99) for the NO2 + 

O3 → NO3 + O2 reaction (from this study) 
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- ∆
17

O(NO2) = 1/2∆
17

O(NO) + 1/2∆
17

O(O3*)(NO +O3) 

- ∆17
O(NO3) = 2/3∆

17
O(NO2) + 1/3∆

17
O(O3*)(NO2 +O3) 

- ∆
17

O(N2O5) = 1/3∆
17

O(NO2) + 1/2∆
17

O(NO3) 

Using ∆
17

O(O3) values of 25 ‰ (Krankowsky et al., 1995;Johnston and Thiemens, 1997) 

and 35 ‰ (Lyons, 2001), we have estimated the ∆
17

O(O) of nitrate produced via the 

termination reaction NO3 + RH → HNO3 to be 25 ‰ and 33 ‰ respectively. If the 

termination reaction is via hydrolysis of N2O5, we obtain lower ∆
17

O for nitrate, 18.5 ‰ 

and 24.5 ‰, for ∆
17

O(O3) values of 25 ‰ and 35 ‰ respectively. 

However, the two nitrate formation pathways mentioned above accounts for only 22 % of 

global annual mean tropospheric nitrate formation based on modeling calculations 

(Alexander et al., 2009) assuming a tropospheric ozone ∆
17

O value of 35 ‰. The NO3 + 

DMS termination reaction can account for up to 46 % in high latitude marine boundary 

layer where as the N2O5 hydrolysis can account for up to 74 % at high northern latitudes 

over the continental and the arctic regions(Alexander et al., 2009).  

Nitrate formation pathways vary in time and space, which in turn leads to variation in the 

measured ∆
17

O value of different nitrate samples. This fact should be emphasized while 

using such isotopic anomaly transfer studies.  

 

2.5. Conclusions 
 

The use of 
17

O-excess to study various atmospheric reactions is currently a widely 

employed technique. The chemical cycling of many important atmospheric compounds 

can be investigated and quantified through the use of this method. We have studied the 

NO2 + O3 → NO3 + O2 gas phase reaction, in particular, in order to quantify the 

incorporation of anomaly from O3 to nitrate. The experimental results obtained in this 

study should serve as useful tools for studying the atmospheric chemistry of nitrate. The 

results obtained in this study show that during oxidation ozone transfers its 
17

O excess to 

NO3 in a fashion that can be quantified by the function ∆
17

O(O3*) = (1.23±0.19) × 

Δ
17

O(O3)bulk + (9.02±0.99). We would like to point out that the NO2 + O3 reaction should 

not be treated as similar to the NO + O3 reaction as the former proceeds only through 

terminal atom transfer. In order to explain the overall high atmospheric nitrate anomaly, a 

detailed study of the different nitrate formation reaction pathways of nitrate formation 

should be carried out. By coupling experimental results with modeling work, an accurate 

quantitative explanation of the 
17

O excess of nitrate samples can be obtained. 
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Appendix 

KINTECUS Modeling 

In order to understand how the NO2 reaction with ozone proceeds in the reaction 

chamber, we have used a modeling program called Kintecus (V.3.9) that is available at 

http://www.kintecus.com/. We have incorporated our experimental values for initial 

concentrations of reactants (20-35 2mole ozone and 65 2mole NO2) and possible reaction 

pathways with their reaction rates available in the literature (Table A.1). At the end of our 

experiment (30 minutes of reaction time), our model showed that all ozone is consumed 

and there is some left over NO2. Complete reaction of ozone at the end of the process 

confirms that there is no oxygen contribution due to left over ozone avoiding procedural 

bias. The reaction of NO2 and NO3 to produce N2O5 also has no influence on the oxygen 

collected, as this equilibrium does not lead to any oxygen incorporation for the system. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8. Kintecus model output for the reaction of NO2 with ozone (first 15 seconds) under 

the present experimental conditions. A rapid decrease in concentration of ozone and NO2 is 

accompanied by fast increase in O2 and NO3.The O2 and NO3 lines are overlapping because they 

are in the same concentration range. 

 

 

Kintecus model output for the reaction of NO with ozone (first 15 seconds) under 
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Table A.1. Reactions with their rate constant (k) values as incorporated in the kintecus 

model described in the text. 

 

Reaction k, cm
3
molecules

-1
s

-1
 Reference 

NO2 + O3 → NO3 + O2 3.5x10
-17

 Atkinson et al., 2004 

NO2 + NO2 → N2O4 1.4x10
-33

 Atkinson et al., 1997 

N2O4 → NO2 + NO2 6.89x10
-15

 Atkinson et al., 1997 

NO2 + NO3 → N2O5 3.6x10
-30

 Hahn et al., 2000 

N2O5 → NO2 + NO3 1.2x10
-19

 Atkinson et al., 1997 
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dependence 
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Abstract 
 

Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, in low snow 

accumulation sites post-depositional processes initiated by UV photolysis obscure the 

interpretation of its record in ice cores. The goal of these studies (see also companion 

paper in the annex by Meusinger et al. In prep.) is to describe nitrate photochemistry in 

Antarctic snow in sufficient detail to improve the interpretation of this record. Naturally 

occurring stable isotopes such as 
15

N and 
18

O provide additional information concerning 

post-depositional processes. In this paper we present results from studies of the 

wavelength-dependent isotope effects due to photolysis of nitrate in a matrix of natural 

snow. The experimental setup included a Xe UV lamp as light source with a selection of 

spectral filters, an environmental chamber with temperature controller, and an inert flow 

system to flush away gas phase photoproducts. Natural snow from Dome C, Antarctica 

was irradiated within selected wavelength regions. The irradiated snow column was 

sampled in 1 cm sections and analyzed for nitrate concentration and isotopic composition 

(δ
15

N, δ
18

O and Δ
17

O). From these measurements, an average photolytic isotopic 

fractionation of 
15
ε = -15 ± 1.2 ‰ was found for broadband Xe lamp photolysis. These 

results are ascribed to excitation of the intense absorption band of nitrate around 200 nm. 

For the photolysis experiments conducted with 280 nm and 305 nm UV-filters, we have 

determined isotopic fractionations of -23.2 ± 1.0 ‰ and -38.6 ± 2.8 ‰ respectively. An 

experiment with a filter blocking wavelengths shorter than 320 nm, approximating the 

actinic flux spectrum at Dome C, showed a photolytic fractionation constant of 
15
ε = -

47.9 ± 6.8 ‰ in good agreement with fractionations determined for the East Antarctic 

Plateau, ranging from -40 to -74.3 ‰(Erbland et al., 2013). The isotopic fractionations 
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obtained from this study are compared to theoretical estimates derived by applying the 

zero point energy shift model coupled with measured actinic fluxes at each depth. The 

results confirm that the photolytic fractionation of nitrate isotopes in snow is very 

sensitive to the actinic flux spectrum and indicate limitations in previous laboratory 

studies. This work demonstrates that the spectrum of the excitation source is a key 

parameter determining nitrogen isotope fractionation in the photolysis of nitrate in snow. 

 

3.1. Introduction 
  

 Nitrate (NO3
-
) is the end product of atmospheric NOX (NO + NO2) oxidation and 

its precursors are strongly coupled with OH and O3 chemistry in the atmosphere. The 

oxygen isotope ratios in nitrate provide information about the oxidation pathways of 

nitrate formation, and incorporate the isotopic signature of ozone during this process 

(Michalski et al., 2003;Savarino et al., 2007). As nitrogen isotopes are conserved from 

source to sink during nitrate formation, they can be used as metrics to trace the sources of 

NOX(Heaton, 1990).  

 In polar regions, nitrate is one of the most abundant anions in snow, and has a 

significant potential in documenting past climate change including the oxidation capacity 

of the atmosphere (Wolff, 1995b;Legrand et al., 1999).  

 The stable isotope ratios (R) (n(
18

O)/n(
16

O), n(
17

O)/n(
16

O) and n(
15

N)/n(
14

N), 

where n is the amount of each isotope) of nitrate are expressed as δ-values (δ
17

O, δ
18

O 

and Δ
17

O) where δ = (Rspl/Rref)-1 is the ratio of R of the sample (Rspl) and reference (Rref) 

with references being AIR_N2 and VSMOW for N and O respectively . The 
17

O-excess is 

determined by the linear relation Δ
17

O = δ
17

O - 0.52×δ
18

O. These stable isotope ratios of 

nitrate in snow have been used to investigate the sources and formation pathways of snow 

nitrate in polar regions (Hastings et al., 2004;Hastings et al., 2009;Savarino et al., 2007). 

However, the large loss of snow nitrate (Dibb and Whitlow, 1996;Röthlisberger et al., 

2000) and simultaneous isotopic fractionations in low accumulation sites (Frey et al., 

2009;Blunier et al., 2005) indicate post-depositional processes significantly modify 

nitrate and quantitative interpretation of these signals is not straightforward. Processes 

including evaporation/sublimation and photolysis change the original nitrate mass and 

isotopic signal, especially in low snow accumulation sites such as Dome C. This 

conclusion is supported by the high atmospheric NOX levels, and the profiles of nitrate 

concentration and stable isotope ratios in snow at these regions (Wolff et al., 

2002;Röthlisberger et al., 2002;Röthlisberger et al., 2000;Frey et al., 2009;Blunier et al., 

2005) described below. 

 Multiple field studies in both the Arctic and Antarctic showed elevated NOX 

levels in association with sunlight and determined the snowpack to be the source (Jones 

et al., 2001b;Honrath et al., 1999;Wang et al., 2007) but the production mechanism is not 

well constrained. A series of laboratory and field studies have studied these mechanisms. 

Using natural snow from Halley station in Antarctica, (Cotter et al., 2003) observed 

emission of NOX dominated by NO2 which ceased in the absence of UV radiation below 

345 nm, in agreement with a previous laboratory study on artificial snow doped with 

nitrate (Dubowski et al., 2001). The diurnal variation of NOX emission from a snow 

sample exposed to solar UV was monitored in a field study at Neumayer station in 

Antarctica. In this study, Jones et al. (2000) observed that NOX emission is driven by 
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photochemistry (Jones et al., 2000). Additional studies were conducted to determine the 

mechanism of photolysis of nitrate deposited in snow (Jacobi et al., 2006;Jacobi and 

Hilker, 2007;Honrath et al., 2000a;Honrath et al., 2000b). 

Photolysis of nitrate involves these elementary reactions: 

 

  NO3
-
 + hν  → NO2 + O

-
                                    (R.3.1) 

 

 NO3
-
 + hν  →  NO2

-
 + O(

3
P)                             (R.3.2) 

 

 NO2
-
 + hν  → NO + O

-
                                      (R.3.3) 

 

 NO2
-
 + OH → NO2 + OH

- 
                                (R.3.4) 

 

NO2 is the primary photoproduct of nitrate photolysis (Boxe et al., 2006); R.3.1 is 8-9 

times faster than R.3.2 (Grannas et al., 2007). Nitrite produced via R.3.2 may be 

photolyzed producing NO (R.3.3) or it may react with a hydroxyl radical to produce NO2 

(R.3.4). NOX products from nitrate photolysis are emitted to the atmosphere where they 

influence O3 and HOX chemistry and have a significant impact on the composition of the 

boundary layer, further complicating the interpretation of information archived in deep 

ice cores (Cotter, 2003;Davis et al., 2008;Jacobi and Hilker, 2007;McCabe et al., 

2005b;Qiu et al., 2002;Dominé and Shepson, 2002;Wolff et al., 2002;Grannas et al., 

2007). 

 A series of studies have used stable isotope distributions to investigate nitrate and 

nitrate-related photochemistry in snow. Blunier et al. (2005)(Blunier et al., 2005) 

investigated nitrate mass loss and isotopic fractionation (
15
ε) in artificial snow that was 

doped with NaNO3 and irradiated with a Xe UV lamp. The laboratory isotopic 

fractionations did not agree with the field observations leading the authors to rule out 

photolysis as the main mechanism driving post depositional modification of nitrate. 

However, in a later study by Frey et al. (2009)(Frey et al., 2009), it was shown that the 

isotopic fractionation obtained from the laboratory study by Blunier et al. (2005)(Blunier 

et al., 2005) was not a true representation of the field conditions; and the observed 

isotope effects were due to the nature of the Xenon excitation lamp spectrum and the lack 

of removal of photoproducts. Based on field measurements, Frey et al. (2009)(Frey et al., 

2009) determined an apparent isotopic fractionation (
15
εapp) and proposed that photolysis 

is the main mechanism responsible for the observed isotopic fractionation of stable 

isotopes of nitrate based on a theoretical approach. These authors applied a simple zero 

point energy shift model(Yung and Miller, 1997) to derive an isotopic fractionation in the 

wavelength region of interest (-48 ‰) and observed good agreement with the field 

observation (-60 ± 15 ‰ (Frey et al., 2009) and -54 ± 10 ‰ (Blunier et al., 2005)). More 

recently, Erbland et al. (2012)(Erbland et al., 2013) derived an average apparent nitrogen 

isotopic fractionation of -59 ± 10 ‰ for the East Antarctic Plateau (EAP). However, the 

variability of field conditions limited the field studies making it problematic to extract a 

purely photolytic fractionation constant including wavelength dependence (Frey et al., 

2009;Erbland et al., 2013). Additionally, the theoretical model of photolytic isotopic 

fractionation made by Frey et al. (2009) is simplistic and neglects the change in shape 

and intensity of the absorption cross-section from isotopic substitution (Ndengue et al., 
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2010;Jost, 2008), and should therefore be confirmed by an experimental study. The 

aforementioned limitations of the existing studies clearly demonstrate the need for a 

laboratory study with improved experimental setup.  

 The companion paper by Meusinger et al. focuses on the physical chemistry of 

photolysis of nitrate in snow and specifically on the quantum yield during 

photodissociation of nitrate in natural snow in the solid phase. The main goal of this 

paper is to understand the effect of photolysis on the stable isotope enrichments in nitrate 

in an experimental setup that controls key parameters including temperature, excitation 

spectrum and product removal. 

 In this study we investigate the fractionation of oxygen and nitrogen stable 

isotopes in nitrate in natural Dome C snow in response to photolysis in different UV 

wavelength regions. We discuss these results using the zero point energy shift model 

developed by Frey et al. (2009)(Frey et al., 2009). In addition, we re-evaluate previous 

works using our results and model, and discuss directions for future work. 

 

3.2. Methods 
 
3.2.1. Experimental set up and sample handling 
 

 The detailed experimental set up is described in the companion paper (Meusinger 

et al.) and will only be briefly described here. Wind blown snow from the vicinity of the 

EPICA warm laboratory at Dome C, Antarctica (75°S 06’ and 124°E 33’) was collected 

and homogenized on 6
th

 December 2011 and transported to France. Snow temperatures 

were always maintained around -20 °C during transport and storage, except during 

transfer of the sample containers which could occasionally raise the snow temperature to 

-15 °C for periods of less than an hour. Nitrate concentration measurements at the time of 

collection (29 nmol ml
-1

) and before the photolysis experiments (27 nmol ml
-1

) show 

identical concentrations within the analytical uncertainty (<3 %)(Frey et al., 2009), 

confirming temperature and environmental variation had no effect on the snow nitrate, an 

indicator that the majority of nitrate is probably not physically sorbed in the form of 

HNO3 on the surface of the grain crystal.  

 For each experiment, a sample of 110-120 g of snow was homogenized and 

transferred into a cylindrical Pyrex glass cell of 30 cm length and 6 cm internal diameter 

(Fig. 3.1). The cell is equipped with two end-clamped cells with Suprasil UV windows 

(L.O.T. Oriel). The four ports on the upper side of the cell were used as inlets and outlets 

for a water saturated N2 flow (to flush gaseous reaction products) and to monitor 

temperature and pressure during the experiment. A 16 cm long, 10 cm wide Teflon sleeve 

was formed into the same shape as the glass cell and used to line the snow column inside 

the cell (Fig. 3.2). The sleeve helped to prevent the snow sample from sticking to the 

glass cell and eased sampling after the experiments.  

All experiments were performed in an environmental chamber at -30°C with a 

side port to mount the Xe lamp. A flow of N2 saturated with water vapor continuously 

swept through the snow. Water vapor saturation was maintained by combining a dry N2 

flow with a wet flow generated by passing a fraction of the dry nitrogen flow through a 

water bubbler giving a combined flow of 2.2 L min
-1

 directed through a cold 

condensation trap placed inside the environmental chamber to remove the excess water 
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Figure 3.1. Schematic of the experimental setup used in this study. Natural snow was filled in 

the glass cell (total length of about 30 cm and internal diameter of 6 cm) with T and P probes (to 

monitor temperature and pressure) and irradiated with a Xe lamp. A flow of nitrogen (relative 

humidity of 100%) was used to remove the photoproducts. The water filter at the front of the lamp 

enabled removal of the infrared (IR) part of the incoming light.  

A Xe lamp (L.O.T. Oriel, 300 Watt) with the spectral range of 200-900 nm was 

used as light source with a water filter at the front to minimize the IR heat flux into the 

snow. UV filters were attached at the front of the lamp (LOT Oriel, Andover 

Corporation). The filters have different cut-off wavelengths; the cut-off function is 

gradual rather than sharp.  

Figure 3.2. Photo of the glass cell filled with a snow within the teflon sleeve and the four ports  

Schematic of the experimental setup used in this study. Natural snow was filled in

Photo of the glass cell filled with a snow within the tPhoto of the glass cell filled with a snow within the tPhoto of the glass cell eflon sleeve and the four ports 
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Figure 3.3. A combined picture of the photolysis experiment set up. From right nitrogen is 

flushed via the mass flow controllers that are manually adjusted. The main flow is separated into 

two: dry flow and wet flow generated by bubbling through water. The combined flow is directed 

towards the glass cell filled with snow after the excess water is removed at the water trap placed 

inside the cold chamber. The Xe lamp is turned on after all the experimental requirements are 

met. 

At the end of an experiment, post processing of the snow samples was done in a cold 

room at -15°C. The snow was slowly pushed out of the Teflon sleeve and sampled in 1-2 

cm slices with a scalpel (Fig. 3.4). From the side close to the lamp, the first 7 cm was 

sampled at 1 cm intervals as no significant light flux penetrates deeper into the snow 

column. Each sub sample (5-10 g) was homogenized and divided into two parts. One part 

A combined picture of the photolysis experiment set up. From right nitrogen is 
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was used for concentration measurements. The rest of the sample was weighed and sealed 

in a plastic bag for later isotopic analysis. 

 

 

 

 

 

 

 

Figure 3.4. Picture of the post processing of the snow. The snow column is pushed out of the 

glass cell with the Teflon sleeve that is again sub-sampled at 1-2 cm depth resolution using a 

scalpel.    

The nitrate absorption cross section has two main peaks: one at about 200 nm and 

another around 305 nm (Fig. 1.12). The former is 3 orders of magnitude larger than the 

latter (Mark et al., 1996). In order to observe the wavelength dependence of photolysis of 

nitrate we used long-pass UV filters with cut off wavelengths at 280 nm, 305 nm and 320 

nm. An overview of the experimental conditions is provided in Table 3.1. 

Table 3.1. Experimental conditions for the experiments. In each case a flow rate of 2.2 L 

min
-1

 is used to flush out the NOX by-products. Experiments are performed at -30°C with 

natural snow from Dome C. 

3.2.2. Sample Analysis 

The snow samples were analyzed for nitrate concentration using an Ion 

Chromatography system (850 Professional IC, Metroholm). The stable isotope ratios of 

nitrate were measured using the well established bacterial denitrifier method developed 

by Sigman et al.(Sigman et al., 2001) and Casicotti et al.(Casciotti et al., 2002) and 

further improved by Kaiser et al.(Kaiser et al., 2007) and Morin et al(Morin et al., 2009). 

Briefly, a bacterial culture strain (Pseudomonas Aureofaciens) was grown for 5-7 days in 

a temperature controlled shaker and then concentrated 8 times. Two ml of this bacterial 

Picture of the post processing of the snow. The snow column is pushed out of the 
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suspension was transferred into a 20 ml glass vial, sealed with a PTFE septum and 

degassed with He (Air Liquide, 99.9%) for 3 hours. The volume of sample necessary to 

obtain 50 nmol of nitrate was calculated based on the nitrate concentration measurement. 

The system at the laboratory at LGGE is designed for samples containing 100 nmol of 

nitrate; however, lower sample amounts were also analyzed using an additional 

correction to compensate for the blank effect and isotopic exchange. As we have a small 

sample volume in each slice of snow (typically 5-10 ml) with a nitrate concentration of 8-

25 nmol ml
-1

, sample volumes corresponding to 50 nmol were injected into the vials 

containing the bacteria. However, few samples were below the minimum amount of 

nitrate required for isotopic analysis and it was not possible to measure their isotopic 

composition. After overnight incubation, 0.5 ml of 1 M NaOH was added to inactivate 

the bacteria. The N2O in the headspace of the sample vials was flushed with He into a 

gold tube at 900°C where it decomposed into O2 and N2. The resulting gas mixture was 

injected into a GC column that separate the two species, and passed into a MAT253 

IRMS (Thermo) for dual analysis of the oxygen and nitrogen isotope ratios in continuous 

flow mode (Fig. 3.5). An algorithm was used to calibrate the results to account for blank 

effects and isotopic exchange that could arise due to the small sample size. To correct for 

isotope effects associated with sample analysis, we have included certified standards of 

USGS 32, USGS 34 and USGS 35(Böhlke et al., 2003;Michalski et al., 2002) (Table 3.2) 

which are treated in the exact same way as the samples and prepared in the same matrix 

as the samples (MQ water)(Morin et al., 2009), at a range of concentrations (20 – 100 

nmol). This enabled us to perform a non-linear calibration for some of the samples not 

falling in the 50 nmol range which would be uncalibrated otherwise. Using the same 

algorithm the overall accuracy of the method is determined from the standard deviations 

of the residuals of the linear regression between the measured and expected isotopic 

values of the references. For the samples analyzed in this study the associated average 

uncertainties are 2.25 ‰, 0.6 ‰ and 0.6 ‰ for δ
18

O, Δ
17

O and δ
15

N respectively. The 

larger uncertainties observed in these measurements relative to typical values are due to 

the use of samples smaller than the usual 100 nmol range.  
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Figure 3.5. Schematic of steps followed during analysis of snow nitrate by the bacterial 

denitrifier method 

Table 3.2. Isotopic composition of the standards (in units of ‰) used for isotopic 

analysis 

 
 

 
 

 
 
 

 

3.2.3. Data reduction 

Photolysis rate constants (J) are determined by: 

!

J = " #,T( )$ #,T( )I #( )d#% (3.1) 

Schematic of steps followed during analysis of Schematic of steps followed during analysis of Schematic of steps followed during anal  nitrate by the bacterial 
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where σ(λ) is the absorption cross section of 
14

NO3
-
, φ(λ) is the quantum yield and I(λ) is 

the measured actinic flux of the filtered UV Xe lamp in appropriate units (Fig. 3.6a). The 

calculated photolysis rates (i.e. the integrand of equation 1) are shown in Fig. 3.6b as a 

function of wavelength for the different filters.  

The fractionation factor (
15
ε) is determined using the Rayleigh equation (Frey et al., 

2009;Blunier, 2005) assuming NOX produced by photolysis of nitrate is irreversibly 

removed from the system with the flow of nitrogen:  

  

 
R

R
0

=
δ +1

δ
0
+1

= f
ε                                            (3.2) 

 

where R0 and R are the isotope ratios 
15

N/
14

N in nitrate before and after photolysis. Note 

that f denotes the extent of reaction as well as the nitrate fraction left in the snow and 

determined by f = C/C0, where the initial nitrate in snow has concentration C0 (and 

isotopic composition δ0) and the nitrate after irradiation has concentration C (and isotopic 

enrichment δ). From equation (1) the following relationship is obtained: 

 

 ln δ +1( ) = ε ln( f ) + ln δ0 +1( )           (3.3) 

 

Plotting ln(δ+1) versus ln (f) gives the isotopic fractionation ε as the slope. (Note that ε is 

related to the fractionation factor α by ε = α-1). The (1-σ) uncertainty in ε is based on the 

propagation of the error in the isotope ratios, as in Frey et al. (2009)(Frey et al., 2009) 

based on Taylor (1997)(Taylor, 1997). 

The isotopic fractionation is determined theoretically using the equation: 

 

 ε =
J'

J
−1     (3.4)  

 

where J’ and J are the photolytic rate constants for the heavy (
15

NO3
-
) and the light 

(
14

NO3
-
) isotopologues respectively determined using equation 1 from their 

corresponding absorption cross-sections of σ(λ) and σ’(λ) (Fig. 3.6a) and the spectral 

actinic flux I(λ) . Note that if the quantum yield (φ(λ)) is assumed to be independent of 

wavelength and to be similar for 
14

NO3
-
 and 

15
NO3

-
, then there is no need to know its 

exact value to determine the isotopic fractionation. 

 The isotopic fractionations (
15
εpho) were calculated as a function of filter type and 

snow column depth by using equation 3.4. We have measured the actinic flux of the pure 

Xe lamp in the snow column and in the presence of the UV filters (Meusinger et al.). The 

absorption cross section of 
14

NO3
-
 was obtained from Chu et al (2003)(Chu and 

Anastasio, 2003) and the absorption cross section of 
15

NO3
- 

was taken from Frey et al 

(2009)(Frey et al., 2009).  
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Figure 3.6a. The absorption cross-section of 14NO3
- measured in the liquid phase(Chu and 

Anastasio, 2003) and 15NO3
- derived from the ZPE-shift model(Frey et al., 2009) as a function of 

wavelength referring to the left y-axis as well as the actinic flux (right y-aixs) of the filtered lamp 

spectra (using the 320 nm filter) at the front of the snow (depth = 0 cm) and at depths of 1 cm and 

3 cm. Note that the ZPE-shift is exaggerated () 2 nm) for visual purpose but the actual shift 

calculated by Frey et al. (2009) is ) 0.5 nm. 

3.3. Results 

3.3.1. Nitrate concentration measurements 

Snow samples were homogenized at the beginning of each experiment to 

minimize the natural variability in nitrate concentration and isotopic composition. We 

have also determined the difference in total snow mass before photolysis in each 

experiment, and the total snow mass obtained from the sum of each sub-sample at the end 

of the photolysis experiment. The variability was less than 1 % of the total snow mass, 

indicating sublimation is negligible during the experiment and sample handling error is 

also minimal. Data for the change in nitrate concentration was discussed in Meusinger et 

al. (In prep.); here we will summarize the relevant conclusions. The actual nitrate 

concentration for each experiment is given in the Annex (Fig. A.1).  

The absorption cross section of 14NO14NO14 measured in the liquid phase Chu and Chu and 
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Figure 3.6b. Photolysis rates j(") of 14NO3
-
 determined for each UV filter calculated from 

measured irradiance of the lamp in the presence of the different filters (Meusinger et al, In prep) 

and using the absorption cross section of nitrate determined by Chu and Anastasio 2003(Chu and 

Anastasio, 2003). The solar photolysis rate of nitrate is determined by using the solar actinic flux 

at Dome C derived using TUV model 4.4 for January 15, 2004, with 297 DU ozone column and 

with an albedo of 0.9 (as used in Frey et al. 2009). Sun-DC is derived from the solar irradiance 

measured at Dome C on 8th January 2013 at 2 pm local time (Picard G. and Libois Q., personal 

communication). The thin vertical lines shows the maxima of j(*). The corresponding 15' can be 

inferred from where the vertical lines cut the 15'(*) curve (right axis). The flat line at * < 300 nm 

in the Sun-Dc from irradiance measurement at Dome C is associated with the instrumental noise. 

As it is relevant for the calculations in the forthcoming sections, the nitrate 

fraction left at the end of each experiment (f) is re-plotted in Figure 3.7. 

hotolysis rate j(j(j( ) ) 14NO14NO14 determined for each UV filter calculated from 
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Figure 3.7. Nitrate concentration profile (fraction of nitrate left, f) versus depth in the snow 

column plotted for the experiments conducted using different filters.’0’ represents the side of 

snow column closer to the lamp. 

A dark experiment (control) was performed to quantify sublimation and possible 

loss of nitrate. The experiment was conducted with the same conditions as the photolysis 

experiments for ~ 140 h. It showed no change in the concentration of nitrate confirming 

the observed loss is only associated with the UV light.  

The experiment conducted without a UV filter shows about 70 % nitrate loss for 

the front sample of experiment #3, with decreasing loss with depth in the snow column. 

The experiments using the 280 nm and 305 nm filters also showed varying losses 

depending on the duration of UV exposure and the fraction of UV light around 300 nm 

that was attenuated by the filters. The 320 nm filter experiment showed only a small loss 

after 12 days of irradiation. We conducted this experiment for longer duration, as the 

nitrate mass loss was minor (less than 2 % in 2 days) in shorter experiments.  

3.3.2. Isotopic measurements  

"15
N  

The !15
N profile for the experiments is shown in Figure 3.8.  For the experiment 

conducted using the Xe lamp without a UV-filter, !15
N increases from the initial value of 

-3.8 ‰ to about +3.0 ‰ for the sample at 3 cm depth. The !15
N values for the top two 
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samples could not be measured due to the strong loss of nitrate mass (Fig. 3.7) leading to 

a nitrate concentration (6 nmol ml
-1

) below the analysis limit.  

Figure 3.8. The !15N(NO3
-) profile with depth in the snow column for the experiments conducted 

using different filters. 

Both the 280 nm and 305 nm filter experiments cut off irradiation in the 200 nm 

nitrate absorption band and show similar patterns of isotopic enrichments, with 

enrichments to about +5.9 ‰ for the top samples. A smaller enrichment follows up to 4 

cm depth, and !15
N is stable below 5 cm. The 320 nm filter experiment also shows 

enrichment in !15
N, to a value of +2.8 ‰, for the top samples after 12 days of irradiation. 

The isotopic fractionation associated with photolysis for each experiment (
15*n, 

where n is the cut off wavelength of 280 nm, 305 nm and 320 nm, and ‘Xe’ in the case of 

no filter) was determined from the Rayleigh plots generated using equations 3.1 and 3.2. 

Most of the Rayleigh plots display a good correlation (usually R
2
 > 0.8). A typical 

example of a Rayleigh plot is shown in Figure 3.9. For experiments conducted for 7-12 

days duration and with/without a UV filter, we derived 
15*Xe, 

15*280, 
15*305 and 

15*320 

values of (-15 ± 1.2) ‰, (-23.2 ± 1.0) ‰, (-38.6 ± 2.8) ‰ and (-47.9 ± 6.8) ‰ 

respectively (Table 3.3).  

The 151515 (NO(NO  profile with depth in the snow column for the experiments conducted 
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"18
O and !17

O 

The determination of the oxygen isotopes was affected by the small sample size 

and the results are associated with large error bars. In contrast to the observed clear trend 

in the !15
N measurements, !18

O and "17
O showed no such profile, as shown in Appendix 

A.1 and A.2.  

The oxygen isotopic fractionations, 
18* and 

17
E (expressed by 

17
E = 

17* – 0.52 ' 
18*) for most of the experiments were associated with large error bars and it was not 

possible to draw meaningful Rayleigh plots for most of the experiments. However, the 

measured 
17

E values are consistently positive and the experiments conducted with the 

pure Xe lamp (162.8 h) and the 280 nm UV-filter have 
17

E values with acceptable error 

bars (1.8 ± 2.1 ‰ and 2.8 ± 1.4 ‰). The actual values obtained from this study are shown 

in the Appendix (table A.3).  

Figure 3.9. A typical Rayleigh plot for the experiment conducted using 305 nm UV-filter for 

187.2 hours. An isotopic fractionation of (-38.6 ± 2.2) ‰ was obtained for this experiment.!
A typical Rayleigh plot for the experiment conducted using 305 nm UV filter for 
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Depth dependence of the isotopic fractionation 

As observed in the concentration and isotope profile plots, neither measurement 

shows a significant change below 7 cm. This is due to the loss of light within the first few 

centimeters of depth (and hence shorter depth penetration), as the boundary conditions 

are not semi-infinite in contrast to the field conditions (France et al., 2011a) (see also 

Meusinger et al.). Hence, we have considered only the top 7 cm to evaluate the depth 

dependence of the isotopic fractionations.  

Based on the irradiance measurements at every 1 cm depth starting from the front 

side (close to the lamp), we have observed a uniform attenuation of the incoming light 

flux by the snow layers. We have calculated isotopic fractionation in nitrogen using the 

measured irradiances at every 1 cm and the absorption cross-sections of 
14

NO3
- 
(Chu and 

Anastasio, 2003) and 
15

NO3
- 
(Frey et al., 2009) for the first 7 cm samples closer to the 

lamp, and the obtained results are not significantly different for a given filter. Results for 

experiments 4 and 5 (305 nm and 320 nm UV filters) are presented in Table 3.4. 

Accordingly, for the 305 nm filter, we have calculated a fractionation constant of -33.5 

‰ at the top of the snow column, decreasing to -34.5 ‰ at 7 cm depth. Similarly, for the 

320 nm filter, a fractionation constant ranging from -39.3 ‰ to -40.7 ‰ was calculated. 

Table 3.4 Calculated isotopic fractionation constants at different depth in the snow 

column for the 305 nm and 320 nm filter experiments 
 

 
 

 
 
 
 
 
 

 
 

 

*Values observed in the laboratory experiment with the respective UV filters 

3.4. Discussions and Implications 

3.4.1. Isotopic Fractionation 

The experiment conducted without a filter showed a strong enrichment in !15
N 

probably due to excitation of the 200 nm nitrate absorption band. For the other 
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experiments, in which this part of the spectrum is blocked by the UV filters, the 

enrichment in !15
N is smaller. 

The isotopic fractionations obtained from all photolysis experiments are generally 

negative implying the remaining nitrate in the snow is enriched in 
15

N. However, the 

isotopic fractionations differ depending on the UV filter used in the experiment. For the 

two unfiltered Xe lamp experiments, conducted with durations of 20 and 163 hours, we 

calculated an average isotopic fractionation of 
15*Xe = (-15 ± 1.2) ‰. This value is in 

good agreement with the result obtained by Blunier et al. (2005)(Blunier, 2005) where an 
15*Xe value of  -11.7 ± 1.4 ‰ was determined using a more powerful Xe lamp and 

artificial snow doped with nitrate, instead of natural snow. However, these laboratory 

observations disagree with the values observed in the field (Frey et al., 2009;Erbland et 

al., 2013;Blunier et al., 2005). Our experimental studies show that the 
15*Xe value 

observed in the experimental study by Blunier et al. (2005) is mainly due to significant 

excitation of the nitrate absorption band around 200 nm by the Xe lamp, in agreement 

with the prediction by Frey et al 2009(Frey et al., 2009). However, the use of artificial 

snow and product recycling (due to a closed system) in the laboratory study from Blunier 

et al. (2005) may have an additional but minor impact on their laboratory observations. 

Since the mechanism of the 200 nm band photolysis is most likely isomerization (with 

the possibility of decaying back to nitrate) (Madsen et al., 2003), additional post-

excitation mechanisms including exchange may also affect the observed fractionation; the 

isotope-dependent absorption cross section will not be the only factor in that case. The 

use of UV filters was partly motivated by this observation. The use of UV filters has two 

important consequences. First it avoids excitation of the short wavelength absorption 

band where dissociation mechanisms are radically different from those occurring during 

the photo-excitation of the low energy band (Madsen et al., 2003). Second, it better 

replicates the solar UV at Dome C by shielding the 300 nm band.   

According to solar irradiance measurement at Dome C on the 8
th

 January 2013 at 

2 pm (local time) (Ghislan Picard and Quentin Libois, Personal Communication), shown 

in Fig. 3.2, the photolysis experiment conducted with the 320 nm filter is the best match 

to the field conditions of Dome C, in particular because it blocks the entire UV region 

below 300 nm. This experiment also gives the best agreement between laboratory 

experiments and previous field studies conducted at Dome C for isotopic fractionations 

(Frey et al., 2009;Blunier, 2005), and in the East part of the Antarctic Plateau a 
15* range 

of -40.0 to -74.3 ‰ was determined by Erbland et al. (2012)(Erbland et al., 2013) (see 

Table 3.5). 
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bIsotopic fractionation constant derived by Blunier et al., 2005 for the unfiltered Xe lamp used in their 

experiment 
cApparent isotopic fractionation constant observation range for the East Antarctic Plateau by Erbland 

et al., 2013 
dIsotopic fractionation constant derived for the Xe lamp using the 320 nm filter in this laboratory study 

 

The very small isotopic fractionations observed for the oxygen isotopes compared to the 

fractionation in 
15

N makes it difficult to observe the effects in these isotopes and draw 

strong conclusions from the experimental results (Table A.1). However, it is important to 

note that all the experiments show small positive isotopic fractionations; most of these 

values have large error bars. The two experiments in which the loss of nitrate mass was 

significantly higher, the Xe lamp (162.8 h) and 280 nm experiments, have 
17

E values of 

1.8 ± 2.1 ‰ and 2.8 ± 1.4 ‰ respectively. These values are in good agreement with the 

observations in the field (2.0 ±1.0 ‰(Erbland et al., 2013) and 
17

E = 1 ± 1 ‰ (Frey et al., 

2009)). However, we note that even if the actinic flux spectra in these two experiments 

and Dome C is significantly different, the small 
17

E values are suspected to be linked to 

the cage (matrix) effect in which photoproducts of nitrate photolysis undergo isotopic 

exchange with the surrounding OH/H2O (with 
17

O-excess values close to zero), reforming 

nitrate(McCabe et al., 2005b). In addition, we note that the lack of significant oxygen 

fractionation observed in the laboratory is in qualitative agreement with the field 

observations where the oxygen isotope fractionations are significantly smaller than the 

nitrogen isotope fractionations (for example 
18
ε = 8 ± 2 ‰ and 

17
E = 1 ± 1 ‰(Frey et al., 

2009)).  

 
3.4.2. Comparison with theoretical estimates 

  

 A theoretical model was constructed to characterize the wavelength dependence 

of the observed fractionations based on the work of Frey and co-workers(Frey et al., 

2009). In this model 
15
εpho was estimated using the Zero Point Energy-shift (ΔZPE) 

approach(Yung and Miller, 1997;Schmidt et al., 2011). The model is based on the 

observation that, with substitution of a light isotope by a heavier one, the vibrational zero 

point energy of the heavier isotopologue is reduced. This difference in ZPE results in a 

blue shift of the UV absorption cross-section for the heavier isotopologue. Frey et al 

(2009)(Frey et al., 2009) determined a ΔZPE = -44.8 cm
-1

 for 
15

NO3
-
 corresponding to a 

blue shift of approximately 0.5 nm in the absorption cross-section. Accordingly, using the 

absorption cross section of 
14

NO3
-
 in the liquid phase(Chu and Anastasio, 2003), they 

estimated the absorption cross section of 
15

NO3
-
.  

 Using this modeled cross-section and the solar actinic flux determined from the 

TUV model (TUV 4.2)(Lee-Taylor and Madronich, 2002) 

(http://cprm.acd.ucar.edu/Models/TUV/Interactive_TUV/) at Dome C conditions, Frey et 

al (2009)(Frey et al., 2009) determined a photolytic isotopic fractionation of -48 ‰ that 

was very close to the apparent (effective) fractionation observed in the field (
15
εapp = -60 

±15 ‰). However, the observation in the field is a cumulative value, where in addition to 

photolysis, processes such as evaporation, deposition and removal of nitrate by the wind 

may play a role.  

 In this study, we used a similar procedure and determine the photolytic isotopic 

fractionation for each UV-filter specific actinic flux (i.e. using the ZPE-shift derived 
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absorption cross-section and measured actinic flux of the lamp in the presence of the UV-

filters) and compare the result with the corresponding laboratory observation.  

 As explained in detail in Meusinger et al. a significant decrease in the amplitude 

of the actinic flux was observed with depth in our experiment with a limited wavelength 

dependency. In agreement with the model result, the experimental isotopic fractionations 

are insensitive to the small change in the actinic flux spectrum with depth; the predicted 

difference is less than 1.5 ‰ between top and bottom. As the isotopic fractionations are 

nearly constant, we can directly compare the experimental 
15
εn values and the predicted 

15
εpho values. 

 The photolysis experiments show a clear correlation between the wavelength-

dependent photolysis rate (j(λ)) controlled by the UV filters and 
15
εn, with a clear 

decrease in 
15
εn as j(λ) is red shifted. This trend was also predicted by Frey et al. 

(2009)(Frey et al., 2009) using the ZPE shift model (Figure 3.6). 

  The estimates obtained from the ΔZPE-shift model are in excellent agreement 

with the observed values for the unfiltered Xe lamp. As the series of filters progressively 

shield more of the high-energy UV photons, the deviation of the experimentally observed 

values from the predicted values of the ZPE-shift model grows (Table 3.3). 

 As the isotopic fractionation is derived from the absorption cross sections using 

the ZPE-shift model, the magnitude of the shift has a significant effect on the process 

isotopic fractionation constant. According to the four parameter model of absorption 

cross-section determination for isotopically substituted species created by Jost and co-

workers(Jost, 2008), the absorption cross-section of a given molecule can be expressed 

using an asymmetric Gaussian function σ/E (the absorption cross-section divided by the 

photon energy, E) which is dependent on the amplitude (A), center (C), width (W) and 

asymmetry term (S)(Ndengue et al., 2010;Jost, 2008) of the cross-section. These four 

parameters mainly depend on the initial ground state wave function, the vertical 

excitation energy and the slope and curvature of the upper electronic state. The ZPE shift 

model disregards factors other than the shift (center) and can only give a rough estimate 

of the absorption cross-section of the isotopically substituted species. In addition, the 

ZPE-shift (-44.8 cm
-1

) derived by Frey and co-workers based on previous measurements 

of the fundamental vibrational frequencies of 
14

NO3
-
 and 

15
NO3

- 
in the aqueous phase 

(Begun and Fletcher, 1960) may not be accurate. The ZPE-shift may be higher than -44.8 

cm
-1

 (Remy Jost, personal communication). Accordingly, the vibrational frequencies used 

to determine the ZPE for the nitrate isotopologues do not include the anharmonicities, 

and the partition function ratios were less accurate for 
14

NO3
-
 and 

15
NO3

-
(Begun and 

Fletcher, 1960) and by including anharmonicities the recalculated ZPE-shift become -

47.5 cm
-1

. Because of these concerns, we have followed a new approach to obtain an 

apparent ZPE-shift value obtained by fitting the theoretically predicted isotopic 

fractionations to the 
15
εn values derived from the laboratory study. The best agreement 

between the experimental and ZPE-shift model observations was for ΔZPE = -53.7 cm
-1

 

(Figure 3.10). However, it should be noted that this apparent ZPE-shift value includes all 

the changes associated with isotopic substitutions such as the actual ZPE-shift and change 

in width and amplitude during isotopic substitutions. We have tested the veracity of this 

value by comparison with the fractionations observed in the field conditions. Using the 

solar actinic flux and absorption cross-sections of nitrate isotopologues given by Frey et 

al. (2009) and applying a ZPE-shift = -53.7 cm
-1

, an average isotopic fractionation of -
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52.3 ‰ was derived for Dome C using actinic flux measured during 09 December 2011- 

13 January 2012 (Jaime Elías Gil Roca, personal communication). This is in good 

agreement with the field observations of -60 ± 15 ‰ (Frey et al., 2009) at this site.  

Figure 3.10. Plot showing the experimentally obtained 15' values for the 280 nm, 305 and 320 

nm filters and the average 15' value determined for the East Antarctic Plateau(Erbland et al., 

2013) and  versus their respective 15' values as predicted by the "ZPE model using different ZPE-

shift values. The best fit was observed at ZPE-shift = -53.8 cm-1. 

Additionally, isotopic fractionation at the tails of the absorption cross-section is 

extremely sensitive to model parameters compared to fractionation close to the maximum 

of the absorption peak. As shown in Fig. 3.6b, the asymmetric actinic spectrum favoring 

the low-energy side of the band and the steeper slope of the fractionation constant (*(")) 
in this region drives the fractionation constant towards more negative values in the longer 

wavelength regions relative to fractionations obtained using a pure Gaussian envelope. 

Accordingly, the experiments using the 305 nm filter show stronger fractionation than 

those using the 280 nm filter, and a more negative fractionation than the prediction of the 

pure ZPE-shift model. This trend continues for the 320 nm filter experiment and for the 

sun’s spectrum. The predictions of the ZPE-shift model and the laboratory results must be 

taken as an upper limit for field observations. Recently, Erbland et al. reported an 

apparent isotopic fractionation ranging from -40 to -74.3 ‰ for the East Antarctic 

Plateau(Erbland et al., 2013). The discrepancies observed between laboratory, theory and 

field observations can most likely be explained by the difference in the actinic flux 

spectra and cross-sections used for the laboratory and modeling experiments respectively. 

However, the apparent isotopic fractionations derived for the field are influenced by a 

variety of processes in addition to a unidirectional Rayleigh process. While desorption of 

Plot showing the experimentally obtained 15  values for the 280 nm, 305 and 320 



 

  94 

HNO3 is still a process that will blur the photolytic isotopic fractionation measurements, 

our dark experiment indicates that such process only has a minor effect, in line with a 

study by Erbland et al. (2012)(Erbland et al., 2013). Product recycling and re-deposition 

in the strongly stratified boundary layer of Dome C is another process which may give 

rise to deviation from a purely open system. The laboratory study has better control of 

temperature, light flux and photoproduct removal associated with the purely photolytic 

fractionation. Additionally it should be noted that the ZPE-shift model uses the 

absorption cross-section of liquid phase nitrate (Chu and Anastasio, 2003) which could 

be significantly different than the solid phase nitrate absorption spectrum (Kahan and 

Donaldson, 2007).  

 

3.5. Summary and Conclusion 
 

 We have studied the isotopic fractionation of nitrate photolysis in natural snow in 

a series of experiments. From the analysis of the nitrogen isotope ratios in nitrate as a 

function of depth in the snow column we derived 
15
εXe, 

15
ε280, 

15
ε305 and 

15
ε320 values of (-

15 ± 1.2) ‰, (-23.2 ± 1.0) ‰, (-38.6 ± 2.8) ‰ and (-47.9 ± 6.8) ‰ for unfiltered Xe lamp 

and 280, 305 and 320 nm filters respectively. The isotopic fractionation constant 

determined for the unfiltered Xe lamp is in excellent agreement with a previously 

determined value of (-11.7 ± 1.4) ‰ by Blunier et al (2005)(Blunier, 2005). This result is 

attributed to excitation of the strong absorption peak of nitrate around 200 nm, which is 

strongly attenuated in nature by O2 and O3 absorptions. The observed isotopic 

fractionation of nitrate is strongly dependent on the wavelength spectrum of irradiation, 

with an increase towards more negative values in the fractionation constant as the actinic 

flux spectrum is red shifted, in agreement with the prediction by Frey et al. (2009)(Frey 

et al., 2009). A model of the depth resolved photolytic isotopic fractionation shows 

insensitivity of 
15
εphoto to depth in the snow column, even if a significant decrease in the 

actinic flux is observed with depth. This is in agreement with the near wavelength 

independent e-folding depths reported by Meusinger et al. We believe that the results of 

this study accurately describe the photochemistry of nitrate and associated effects on the 

mass and isotopic composition of snow nitrate. Further, the presented results contribute to 

efforts to correctly account for isotopic fractionation in post-depositional processes 

affecting the preservation of nitrate record in ice core, and thus its interpretation in 

context of past climatic conditions and solar variability. We believe that further 

experimental studies on the temperature dependence of isotopic fractionation are required 

to better understand nitrate photolysis in snow. Additionally, with improved techniques 

for small sample analysis or by modifying the setup such that a higher sample amount 

could be obtained, the photolytic effect on oxygen isotopes could be better evaluated. 

Finally, our group has recently collected field samples with an experimental set up 

tending to maximize the photolysis of nitrate in Dome C snow. Findings from this study 

will help to better constrain and deconvoluate the processes behind the field apparent 

fractionation. 
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Supplementary data 

Figure A.1. Plot for the nitrate concentration for each experiment versus depth in the snow 

column 
Plot for the nitrate concentration for each experiment versus depth in the snow the nitrate concentration for each experiment versus depth in the snow the nitrate concentration for each experiment
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Figure A.2. Plot for the !18O values versus depth in the snow column for the Xe lamp and the 

three UV-filters.  
Plot for the 18O values versus depth in the snow column for the Xe lamp and the 
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Figure A.3. Plot for the "17O values versus depth in the snow column for the Xe lamp and the 

three UV-filters. 

Table A.3. The *(-!/97!*'D!./0123!72:26@8927!89!:;83!3:17<!
Plot for the 17O values versus depth in the snow column for the Xe lamp and the 



 

  98 

CHAPTER 4 
 

 
Isotopic effects of nitrate photochemistry in snow: 
Results from field experiments at Dome C, 
Antarctica 
 

 
This chapter is based on: 

 
 

Tesfaye A Berhanu, Joseph Erbland, Joel Savarino and William C. Vicars. Isotopic 

effects of nitrate photochemistry in snow: Results from field experiments at Dome C, 

Antarctica. Atmospheric Chemistry and Physics Discussions (to be submitted) 

 
 
 
 

Abstract 
 

Stable isotope ratios of nitrate in snow are expected to provide unique and valuable 

information regarding atmospheric processes and further the interpretation of information 

archived in deep ice cores. However, with post- depositional modification of snow 

nitrate, this information may be erased or significantly modified by physical or 

photochemical processes. We have investigated the role of UV-photolysis in the post-

depositional processing of nitrate mass and stable isotope ratios at Dome C, Antarctica 

during the Austral summer 2011/12. In our experimental approach, two 30 cm snow pits 

were filled with homogenized drifted snow from the vicinity of the base. One of these 

pits was covered with a plexi-glass plate that transmits solar UV radiation, while the 

other was covered with a plate that blocks incoming UV. Samples were then collected 

from each pit every 10 days at a 2-5 cm depth resolution. From the nitrate stable isotope 

ratios (δ
15

N, δ
18

O and Δ
17

O) determined for snow the samples exposed to solar UV, we 

have derived average apparent isotopic fractionations (
15
ε, 

18
ε and 

17
E) of (-67.8 ± 12) ‰, 

(12.5 ± 6.7) ‰ and (2.2 ± 1.4) ‰ respectively. The ε values derived from our 

measurements were relatively constant throughout the field season and are in close 

agreement with the values obtained in previous studies at Dome C. Meanwhile, for the 

samples where the UV light is blocked, average 
15
ε, 

18
ε and 

17
E values of -13.3 ± 2.4 ‰, 

0.2 ± 2.6 ‰ and -0.5 ± 0.8 ‰ respectively were obtained. The differences in the observed 

apparent 
15
ε values between the UV-exposed and non-UV pits indicate a quantitatively 

dominant role of solar UV photolysis in nitrate post-depositional processing. However, 

the small and negative ε values derived for the non-UV samples reflect an impact of non-

photolytic processes including surface snow mixing with drifted snow, desorption and/or 
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a minor effect from photolysis. We have also experimentally observed the depth 

independence of the 
15
ε values averaged (-59.9 ± 24.7) ‰ at the 7-30 cm depth.  

 

4.1. Introduction 
 
 Nitrate (NO3

-
) is the final product of the oxidation of atmospheric reactive 

nitrogen (NOX = NO + NO2) and is one of the most abundant ions present in polar ice and 

snow. Ice core records of nitrate offer the potential to provide quantitative constraints on 

past variations in atmospheric NOX cycling and the oxidative capacity of the atmosphere 

(Mayewski and Legrand, 1990;Wolff, 1995a). However, the interpretation of these paleo-

records is problematic at sites where snow accumulation rates are low and post-

depositional processes such as desorption (evaporation/sublimation) and photolysis can 

have a major influence on the nitrate signal archived at depth (Röthlisberger et al., 

2002;Honrath et al., 1999;Dibb et al., 1998;Zhou et al., 2001;Frey et al., 2009;Blunier, 

2005;McCabe et al., 2005b). Additionally, the products of nitrate photolysis particularly 

NOX and the hydroxyl (OH) radical can alter the oxidative capacity of the overlying 

atmosphere (Crawford et al., 2001;Chen et al., 2001;Dominé and Shepson, 2002;Grannas 

et al., 2007).  

 The stable isotope ratios (R) (n(
18

O)/n(
16

O), n(
17

O)/n(
16

O) and n(
15

N)/n(
14

N)) of 

nitrate are expressed as δ-values (δ
17

O, δ
18

O and Δ
17

O) where δ = (Rspl/Rref)-1 is the ratio 

of R of the sample (Rspl) and reference (Rref) and n is the amount (molar concentration) of 

each isotope. The Δ
17

O
 
value is determined by the linear relationship Δ

17
O = δ

17
O - 0.52 

× δ
18

O. Recently, stable isotope ratios of nitrate (δ
18

O, Δ
17

O and δ
15

N) have been 

identified as useful metrics to constrain the NOX chemistry (Morin et al., 2008a;Hastings 

et al., 2009;Savarino et al., 2007) and the post-depositional processing of nitrate in snow 

(Frey et al., 2009;Erbland et al., 2013;Blunier et al., 2005). The potential for extending 

these interpretations into the past using ice cores relies upon a quantitative understanding 

of the impact of post-depositional processes on the isotopic composition of nitrate 

archived in snow. 

 While desorption is manifested by the physical release of HNO3 from the 

snowpack, photolysis involves bond breaking in NO3
-
 and emission of the photoproducts 

into the overlying atmosphere. The UV-photolysis of nitrate can take place mainly via 

(R.4.1), which produces NO2, the major product of nitrate photolysis, or via (R.4.2) to 

produce nitrite, with the (R.4.1) reaction proceeding about 8-9 times faster than (R.4.2) 

(Grannas et al., 2007): 

 

NO3
-
 + hν  → NO2 + O

-
                                     (R.4.1) 

 

NO3
-
 + hν  →  NO2

-
 + O(

3
P)                              (R.4.2) 

 

The photo-product NO2
-
 can either undergo photolysis (R.4.3) to produce NO or react 

with the OH radical to produce NO2 product (R.4.4). 

  

NO2
-
 + hν  → NO + O

-
                                       (R.3) 

 

NO2
-
 + OH → NO2 + OH

- 
                                 (R.4) 
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In acidic conditions (pKa < 3.2), nitrite can also be protonated to form HONO (R.4.5): 

 

NO2
-
 + H

+
 → HONO           

 
                                 (R.4.5) 

 

 In order to constrain post-depositional effects on nitrate mass and stable isotope 

ratios, the isotopic fractionations for specific post-depositional processes must be known. 

Blunier and co-workers analyzed two surface cores from Dome C, Antarctica and 

determined a nitrogen isotopic fractionation (denoted as 
15
ε) of -54 ‰ (Blunier et al., 

2005). In an attempt to reproduce this field observation in the laboratory, an artificial 

snow was irradiated with UV light in the 200–900 nm wavelength range and a 
15
ε value 

of -11 ‰ was determined. The authors concluded based on the difference in 
15
ε value that 

post-depositional modification must therefore result primarily from evaporation, with 

only a minor contribution from photolysis. However, it was later confirmed that the 

laboratory study of (Blunier et al., 2005) did not adequately replicate the relevant field 

conditions, particularly the spectral distribution of the experimental UV source used for 

photolysis and the removal of photo-products (Frey et al., 2009).  

 In a field study at Dome C, Frey et al. (2009) determined nitrogen isotopic 

fractionations of (-50 ± 10) ‰ and (-71 ± 12) ‰ for snow samples collected at Dome C 

during the summer campaigns of 2004 and 2007 respectively in close agreement with the 

field observations of Blunier et al. (2005). They have also presented a theoretical estimate 

of the isotopic fractionations due to photolysis by applying the Zero Point Energy-shift 

model (ΔZPE)(Yung and Miller, 1997). Applying this simple model and using the solar 

irradiance for the summer solstice at Dome C, a 
15
ε value of -48 ‰ was determined, 

consistent with their field observations. The authors therefore suggested that photolysis is 

the key factor governing the nitrogen isotopic fractionation associated with the post-

depositional processing of nitrate at Dome C. Meanwhile, photolytic isotopic 

fractionations derived solely from the ZPE-shift model carry high uncertainties due to the 

limitations of the model, which does not account for the change in shape and intensity of 

absorption cross-sections during isotopic substitutions (Nanbu and Johnson, 2004;Frey et 

al., 2009) (Berhanu et al. In prep).  

 Erbland and colleagues also determined an average apparent 
15
ε value of -59 ± 10 

‰ for snow pits on the East Antarctic Plateau (EAP) and it was shown that photolysis is 

the primary mechanism driving the mass loss and isotopic fractionation of nitrate 

(Erbland et al., 2013). The authors also showed that evaporation plays a minor role with 

isotopic fractionations closer to zero (
15
ε = 0.9 ± 1.5 ‰ at -30 °C). 

 In a recent laboratory study by (Berhanu et al. In prep.), nitrogen isotopic 

fractionations during photolysis of nitrate was determined experimentally in Dome C 

snow. The authors used a Xe lamp with various UV-filters to better replicate field 

conditions and evaluated the wavelength sensitivity of nitrogen isotopic fractionations. 

The 
15
ε value of -47.9 ± 6.8 ‰ derived for the experiment conducted using 320 nm filter 

(closer to Dome C solar irradiance conditions), was in good agreement with the field 

observations.  

 However, the currently existing field studies (Frey et al., 2009;Erbland et al., 

2013;Blunier et al., 2005) derived apparent isotopic fractionations, values that 

incorporate not only the isotopic effects of photolysis but also other processes with 
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potential to induce isotopic fractionation (evaporation, reoxidation and surface 

deposition, etc.). Therefore, further experimental and modelling studies are required to 

constrain the effects of post-depositional processes on stable isotope ratios of nitrate in 

snow and to advance the interpretation of these measurements in the snow and ice. 

 We have conducted a field study at Concordia (Dome C), Antarctica (75°06’ S 

and 123°19’ E, elevation 3233 m) during the Austral Summer 2011/2012. The UV-

photolysis of snow nitrate and the associated impacts on its stable isotopic composition 

were investigated in this study. We have employed an isolation technique to produce 

solar UV-exposed and non-UV exposed samples in order to understand the role of 

photolysis in the post-depositional processing of snow nitrate. To the best of our 

knowledge, this is the first field study that has employed an isolation strategy to constrain 

specifically the nitrate mass loss and isotopic fractionation induced only by photolysis 

from solar UV radiation.  

 

4.2. Methods 
 

4.2.1. Field setup and sampling 
  

 Wind-blown snow (drifted snow) was collected on 02 December 2011 at the 

Dome C station and was physically homogenized. This drifted snow possessed a high 

nitrate concentration of approximately 1600 ppb, which ensured levels adequate for 

isotopic analysis. Two snow pits of 1m × 2m surface and 30 cm depth were excavated 

within close proximity (~10 meters) and filled with the drifted homogenized snow. A 

rectangular wooden frame was used to mark each surface level at a fixed position (i.e., 

depth = 0 cm). Hence, any additional windblown snow accumulating above this wooden 

mark could be removed at least on a weekly basis. The pits were covered with plexi-glass 

plates of different UV transmittances (Fig. 4.1), one having only minor transmittance (10 

- 15 %) below 380 nm and the other allowing for the transmittances of all solar UV-

radiation down to 290 nm (Fig. 4.2). The samples were named UV-exposed and non-UV 

referring to the presence and absence of solar UV respectively. The choice of the plexi-

plate transmittance is based on the UV absorption cross-section of nitrate. Note that other 

non-UV light associated effects are expected to affect both pits equally. Nitrate has UV 

absorption peaks around 200 nm and 305 nm in which the 200 nm band is 3 orders of 

magnitude stronger than the latter (Mack and Bolton, 1999). However, this strong 200 nm 

band does not reach the earth’s surface due to its absorbance by the stratospheric ozone 

layer. The non-UV plexi-plates block the secondary absorption band in contrary to the 

UV plexi-plates, which allow this band to reach the snow beneath. The plexi-glass plates 

were placed on a metallic frame at 20 cm above the snow surface, which is expected to be 

an optimum height because it minimizes both the warming effect on the underlying snow 

and trapping of emitted NOx products. Placing the plates at a higher level could increase 

the possibility of snow deposition at the sides; furthermore, at higher solar zenith angles 

there may be solar UV radiation reaching the UV-unexposed samples. Vertical plates 

were not placed at the sides to avoid trapping drifted snow. 
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Figure 4.1. Picture of the field experimental set-up at Dome C, Antarctica showing the pit filled 

with drifted snow and covered with a plexi-plate.  

Figure 4.2. The measured transmittance of the plates covering non-UV and the UV-exposed 

fields. The Solar UV light above 290 nm can pass through the plate covering the UV-exposed 

samples whereas the plate above the non-UV samples has a cut off wavelength around 375 nm 

(Note that on average 15 % of the UV below 375 nm is transmitted into the non-UV samples). 
Snow pit sampling was conducted every 10 days (from 02 December 2011 to 30 

January 2012) at a 2 - 5 cm depth resolution to a depth of 30 cm for all samples and 

continued to a depth of 50 cm for several samples. This is denoted using numbers 0 - 6 to 

Picture of the field experimental set up at Dome C, Antarctica showing the pit filled 

The measured transmittance of the plates covering non UV and the UV exposed 
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indicate sampling between the beginning and the end of the season respectively. For each 

sampling, about 40 cm ' 40 cm of the surface was used and a wall of 10 cm was left 

between the individual collections. After sampling, the remaining hole was filled with 

nearby snow of a similar nitrate concentration range. The detailed sampling dates are 

given in Table 1.  

Table 1. Experiment numbers and their respective sampling dates during the field sample 

collection in Austral summer 2011/12 at Dome C, Antarctica. 

For each sample, a snow mass of 0.5 - 1.0 kg was collected, placed in 1-liter bags (Whirl-

Pack
TM

) and stored frozen in a temporary storage at Dome C. The samples were later 

melted at room temperature and the concentration of nitrate in each sample was 

determined in a warm laboratory at the Dome C station using a continuous flow analysis 

method. This technique is employed routinely at Dome C and has a precision of < 3% 

and a detection limit of 5 ng g
-1

 (Frey et al., 2009;Erbland et al., 2013). In order to obtain 

a nitrate concentration range high enough for the isotopic analysis each sample (> 10 

µmol mL
-1

), all the samples were preconcentrated in the warm lab at Dome C following 

the procedure of (Silva et al., 2000). Briefly, nitrate in the melted snow samples was 

concentrated via quantitative trapping using 0.3 mL of anion exchange resin AG 1-X8 

(Bio-Rad 200-400 mesh chloride form), followed by elution with 10 mL of 1.0 mol L
-1

 

NaCl solution (Frey et al., 2009;Erbland et al., 2013). The pre-concentrated samples were 

then stored in plastic tubes in the dark and shipped frozen to our laboratory in Grenoble 

for isotopic analysis. 

4.2.2. Isotopic analysis 

The oxygen and nitrogen isotopic composition of nitrate was determined using the 

bacterial denitrifier method (Sigman et al., 2001;Kaiser et al., 2007;Casciotti et al., 

2002;Morin et al., 2008a) as modified by Kaiser et al. (2007) and Morin et al. (2009). 

Briefly, a bacteria culture strain (Pseudomonas aureofaciens) was concentrated 8 times 

by centrifugation following a 5-day growth period. 2 mL of the bacterial cultures were 

then transferred to a 20 mL glass vial, which was crimp-sealed with a PTFE septum. The 

vials were then degassed using He (Air Liquide, 99.99 %) for 3 hours. 100 nmol of each 

preconcentrated nitrate sample was then injected into the vials using an automated 
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injection system (Gilson Liquid Handler 215). After an overnight incubation, which 

allowed for the complete conversion of NO3
-
 to N2O (Sigman et al., 2001), 0.5 mL of 1 

M NaOH was added to each vial to inactivate the bacteria. The N2O in the sample vial 

headspace was then flushed with purified He (99.999 %) into a gold tube at 900°C where 

it was decomposed to O2 and N2 sample gases (Kaiser et al., 2007), which were then 

separated in a GC column and passed to a MAT253 IRMS (Thermo Scientific) to 

determine the stable oxygen and nitrogen isotope ratios (Morin et al., 2009).  

 To correct for isotopic effects associated with sample analysis, we have included 

certified standards of USGS 32, USGS 34 and USGS 35 (Michalski et al., 2002;Böhlke et 

al., 2003) treated in the same way as the samples and prepared in the same matrix as the 

samples (1M NaCl solution prepared using DC water to match the same water isotopic 

composition) (Morin et al., 2009;Werner and Brand, 2001). A Python algorithm was used 

to correct for blank effects and isotopic exchange which can arise in cases of small 

sample size (Details of this algorithm are given in the Supplementary materials). We have 

determined the overall accuracy of the method as the standard deviation of the residuals 

derived from the linear regression between the measured and expected values of the 

reference materials (Morin et al., 2009). For the samples analyzed in this study, the 

associated average uncertainties are 2.0 ‰, 0.4 ‰ and 0.6 ‰ for δ
18

O, Δ
17

O and δ
15

N 

respectively.  

 
4.2.3. Data reduction 
 

 We have calculated apparent isotopic fractionations (i.e. isotopic fractionations 

derived for field samples irrespective of the process inducing fractionation) for O and N 

isotopes. These values are denoted as 
15
εapp,

 18
εapp and 

17
Eapp for δ

15
N, δ

18
O and Δ

17
O for 

nitrate respectively where 
17

E = 
17
ε – 0.52 × 

18
ε. In this calculation, we have assumed an 

open system where NOX products emitted during photolysis of nitrate will be removed as 

soon as they are formed and nitrate is lost from the pits irreversibly and adopting the 

following linear relationship (Erbland et al., 2013):  

 

 ln δ +1( ) = ε ln f( ) + ln δ0 +1( )     (4.1) 

 

where f is the nitrate fraction remaining in snow and defined as the ratio of the final (C) 

and initial nitrate (C0) amount in the snow, f = C /C0 and δ0  and δ are the isotopic values 

for the initial and final snow respectively. The initial nitrate amount was calculated using 

the average nitrate concentration at 25 - 30 cm depth assuming that there is no change in 

the amount of nitrate. The slope of the ln(δ+1) versus ln(f) plot is the isotopic 

fractionation ε (note that ε = α-1, where α is the fractionation factor).  

 Isotopic fractionations due to photolysis (denoted as 
15
εphoto) have also been 

determined using the Zero Point Energy shift-model (ΔZPE) as in Frey et al. (2009). 

According to this model, during isotopic substitution of a light isotope with a heavier one, 

the ZPE of the heavier isotopologue is reduced and this shift leads to a small blue shift in 

the absorption spectrum of the heavier isotopologue relative to the lighter one. Hence, 

from a light isotopologue with measured absorption cross-section (
14

NO3
-
) it will be 

possible to derive the absorption cross section of the heavier isotopologue (
15

NO3
-
) (Fig. 
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4.3) (Yung and Miller, 1997;Miller, 2000). Isotopic fractionations (ε) were determined 

by: 

 

 ε =
J
'

J
−1      (4.2) 

 

where J’ and J are the photolytic rate constants of the heavier and lighter isotopologues 

are defined mathematically as:  

 

 J(T,θ,z) = φ(λ,T)σ(λ,T)I(λ,θ,z)dλ∫    (4.3a) 

 

 J'(T,θ,z) = φ(λ,T)σ '(λ,T)I(λ,θ,z)dλ∫     (4.3b) 

 

where σ and σ’ are the absorption cross-sections of the light and heavy isotopologues 

respectively. φ(λ) is the quantum yield and I is the actinic flux in the given wavelength 

ranges, which is dependent on solar zenith angle (θ) and depth (z). Note that if the 

quantum yield (φ(λ)) is assumed to be independent of wavelength and is same for 
14

NO3
-
 

and 
15

NO3
-
, there is no need to know its value to determine the isotopic fractionations. 
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Figure 4.3. Measured absorption cross-section of 14NO3
- in liquid phase, absorption cross-

section of 15NO3
- determined using ZPE shift model as well as solar spectra derived using TUV 

model at Dome C conditions and expected UV fluxes in the presence of the plexi filters. The 

absorption cross section of 15NO3
- was derived by applying an average shift of 0.5 nm on the 

14NO3
- and in this figure the shift is exaggerated (2 nm shift) to visualize this shift.  

4.2.4. Experimental precautions 

Several experimental precautions were applied in this study in order to minimize 

possible experimental artifacts. The two experimental setups were open to the atmosphere 

in spite of plexi-plates placed on top of them. Therefore, the deposition of snow and 

associated nitrate was prevented from the top; however, wind could deposit snow at the 

surface of the pits as the sides were not closed. In order to minimize this effect, we placed 

wooden frames at the sides of each snow pits so that it was possible to track the surface 

level (i.e. depth = 0 cm) over time, and snow above this frames was carefully removed or 

sampled as surface snow. In addition, wind blown snow during this period could be 

deposited on the plexi-glass and prevent penetration of light via absorption/reflection. To 

avoid this, the snow deposited on the plexi-plates was manually removed with a broom 1 

- 2 times a week. In a few instances snow was also carried away from the top few mm of 

the snow pit and hence our starting level (depth = 0 cm) may have been shifted to lower 

depths relative to subsequent samplings. 

Measured absorption cross section of 14NO14NO14  in liquid phase, absorption cross
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4.3. RESULTS 

4.3.1. Concentration profiles 

Fig. 4.4 shows the fraction of nitrate remaining in the two snow pits at each 

sampling time (Plots showing the nitrate fraction remaining at depth in the snow and the 

actual concentration for individual collections are shown in Figs. A.1 and A.2 of the 

supplementary material respectively). Accordingly, at the beginning of the sampling 

season (02/12/2011) the concentration of nitrate is uniform with depth  (f , 1). This 

corresponds to an average nitrate concentration of (1431 ± 46.8) ng g
-1

 and (1478 ± 34.5) 

ng g
-1

 for the UV-exposed and non-UV pits respectively.  

Figure 4.4 Plot for the nitrate fraction left the snow (f) with depth. The left plot is for the 

samples that are not exposed to the solar UV and the right plot for the one exposed to UV light. 

The grey shaded region shows the depth where other factors may play a significant role. 

For the non-UV samples collected on 21/12/2011, f began to decrease to about 

0.75 for the top 5 cm samples, but the profile became stable below 10 cm (f , 1). A 

significant nitrate loss was observed for the samples of the same pit collected on 

10/01/2012 and 30/01/2012, with f reaching 0.15 - 0.25 in the top 4 cm, but only minor 

loss (f > 0.8) below 5 cm. The maximum nitrate loss (f < 0.3) was observed at the surface. 

In contrast, the samples from the pits exposed to the UV radiation showed a 

significant decrease in nitrate amount until a depth of 20 cm. For samples collected on 

21/12/2011, a nitrate loss of f , 0.5 was observed at the surface. However, at depths 

Plot for the nitrate fraction left the snow (f) with depth. The left plot is for the 
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below 3 cm, only minor losses were observed (f > 0.8). Maximum nitrate loss (f < 0.2) 

were observed in the top 0 - 3 cm samples collected on 10/01/2012 and 30/01/2012. This 

loss continued until a 7-cm depth, with f increasing to 0.4. Further minor losses (f > 0.75) 

were observed to a depth of 20 cm and the loss of nitrate ceased below 25 cm. 

From the general profile of the nitrate fraction remaining in the snow in both pits, 

the loss of nitrate in the top 7 cm is comparable for both the UV-exposed and non-UV 

samples. However, the nitrate loss was minor below 7 cm in the non-UV samples where 

as UV-exposed samples lost a significant amount of nitrate below this depth. 

Additionally, the amount of nitrate mass loss was different within each pit depending on 

depth and sampling period.   

4.3.2. Isotopic Analysis  

Figure 4.5 shows the !15
N profiles of the two pits for the samples collected in 20 

days interval (!15
N values for the entire sampling season are shown in Fig. A.3). Non-UV 

samples from 02/12/2011 and 21/12/2011 showed fairly uniform !15
N profiles, with 

values ranging -2 ‰ to -8 ‰. However, the samples from 10/01/2012 and 30/01/2012 

exhibited !15
N values up to +15 ‰ at the surface (0-1 cm depth) extending to a depth of 

about 7 cm, with only subtle changes below a 10 cm depth. 

Figure 4.5 The !15N nitrate profile in the snow with depth. The top plot is for the samples that 

are not exposed to the solar UV and the bottom plot for those exposed to UV light.  

In the case of UV-exposed samples, only the first collection showed stability until 

a 30-cm depth with !15
N values ranging between -6 ‰ and -8 ‰. For the top 5 cm 

samples from 21/12/2011, the !15
N values showed an increasing pattern, with maximum 

values at the surface (-12 ‰), and a stable !15
N profile below 5 cm depth. Comparable 

The 15N nitrate pro15N nitrate pro15 file in the snow with depth. The top plot is for the samples that N nitrate profile in the snow with depth. The top plot is for the samples that N nitrate pro
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!15
N values and similar profiles were observed for the collections of 10/01/2012 and 

30/01/2012, with a maximum !15
N value of +35 ‰ at a depth of 2 - 4 cm. However, a 

decrease in !15
N values towards the surface level was observed. Most of the UV-exposed 

samples (except numbers 0 - 2) exhibit a decreasing pattern in !15
N values form their 

respective maximum values to about +8 ‰ - +14 ‰ near the snow surface, irrespective 

of the sampling period. Meanwhile, this pattern is also observed for the 10/01/2012 and 

30/01/2012 samples from non-UV pit.  

Figure 4.6 shows the !18
O values for all field samples, which ranged from 52 ‰ 

to 68 ‰, in good agreement the 55-70 ‰ range measured during a year-round skin layer 

snow nitrate (first few mm) measurement at Dome C (Erbland et al., 2013). From the 

figures, it is difficult to discern a trend between the !18
O values and depth or sampling 

period in either the UV-exposed or non-UV pits.  

Figure 4.6 The !18O of nitrate in the snow samples 0, 2, 4 and 6 with depth. The left plot is for 

the samples that are not exposed to the solar UV and the right plot for the one exposed to UV 

light.  
Similar to the !18

O observations, the measured "17
O values also showed no 

significant pattern with values ranging between 26 ‰ and 30 ‰ in both pits (Fig. 4.7). 

When comparing the non-UV and UV-exposed samples, more variability is observed in 

the "17
O values of the latter samples.   

18
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Figure 4.7 The "17O nitrate in the snow profile with depth. The left plot is for the samples that 

are not exposed to the solar UV and the right plot for the one exposed to UV light.  

In general, when comparing the stable oxygen isotope ratios of the UV-exposed 

and non-UV samples, it is difficult to discern any pattern or significant difference 

between the two sets and the sampling period (Figs. 4.5 and 4.6). However, the !15
N 

values exhibit significant differences between the two pits. 

4.4. DISCUSSION 

4.4.1. Post-depositional isotopic effects  

Because our experimental approach was based on the comparison of the two pits 

filled with drifted snow, it was important to ensure that each pit possessed a uniform 

nitrate distribution with depth and that the two pits were essentially identical. Figs. 3 and 

6 show uniform nitrate mass fraction left in the snow (f , 1) as well as fairly constant 

!15
N profiles (-6 ‰ to -8 ‰) profile until a 30 cm depth for both pits. This observation 

substantiates that the snow was well homogenized and that both pits had similar initial 

nitrate composition. 

The 17O nitrate in the snow profile with depth. The left plot is for the samples that 
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 The grey shaded area in Fig. 4.4 shows the significant nitrate mass loss and 
15

N 

isotopic enrichment observed in the top 0 - 7 cm of both in the UV-exposed and non-UV 

samples. This observation, coupled with the decreasing δ
15

N pattern near the surface 

layers in contrast to the expected enrichment at similar depths, implies that additional 

non-photolytic processes (e.g., snowdrift, desorption, etc.) may be involved at this depth. 

Based on this concept, we have divided the two pits into two regions: (i) the top 0 - 7 cm 

samples, where photolysis and additional processes are expected to act strongly; (ii) 

samples at 7 - 30 cm depth, where photolysis is the dominant process inducing nitrate 

mass loss and isotopic fractionation. Below, we discuss the possible causes for nitrate 

mass loss in the top 7 cm of both pits. 

 The Concordia site, like most of the sites on the East Antarctic Plateau, possesses 

a relatively low average wind speed (approximately 2.9 m s
-1

 for the 1984-2003 

meteorological record (Zhou et al., 2009;Aristidi et al., 2005). However, there still exists 

the potential for wind to deposit or remove snow on/from the surface of the two pits.  

 From the wind speed record at Dome C during the Austral summer 2011/12, 

higher wind speed events (> 5 m s
-1

) with potential to induce snowdrift were observed 

(the wind speed record for the period of this study is provided in Fig. A.6 of the 

supplementary material).  

 Drifted snow on the surface of the snow pits was also observed during our field 

campaign (see field logbook on the supplementary material). Even if the new snow above 

the surface level had been removed 1 - 2 times per week using the wooden mark as a 

reference, the snow may have already mixed with the underlying surface layer and the 

manual removal might disturb or mix the two layers, even when using extreme caution.  

 The converging pattern both in the concentration and δ
15

N measurements towards 

a specific value near at the surface may also implicate the presence of surface deposition 

explained above. For the surface samples, the respective values converge to f ≈ 0.3 and 

δ
15

N ≈ +10 to +14 ‰ (mainly in UV-exposed samples #2 - 6 and non-UV samples #4 - 

6). These values are in contrast with expectations based on the concentration and δ
15

N 

profile observed below 7 cm. Based on the surface snow samples collected near these pits 

during the experimental season (Fig. A.7 of supplementary materials), similar nitrate 

concentration and δ
15

N profile with the surface level snow from the two pits during some 

of the collects were observed, implying deposition of drifted snow on the surface of the 

pits.  

 In addition, there might have also been events when sublimation occurred on the 

surface of the pits, introducing an artifact that the surface level (depth) is consistent 

which is actually different. In addition, the drifted snow on the surface of the two pits was 

not always the same: more snow was often deposited on one pit relative to the other, and 

the deposition was not homogeneous even within a single field. This variability can lead 

to inconsistency in the surface level reference between collections and mixing of the 

snow on the surface layers.   

 Snowfall was not observed during the sampling period and thus the direct 

deposition of nitrate via snowfall has not been considered. However, even if snowfall had 

occurred, direct deposition of snow to the experimental pits would have been negligible 

due to the presence of the plexi-plates. 

 It should also be noted that desorption may have taken place from the surface of 

both of the snow pits, an effect that may have been enhanced due to the warming effect of 
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the plexi-plates. This effect should be manifested in both pits and should affect mainly 

the top few cm layers. Both pits show comparable loss of nitrate in the top 7 cm, but the 

!15
N values are significantly different, with maximum values of 15.0 ‰ and 36.0 ‰ for 

the non-UV and UV-exposed pits respectively. However, the larger negative isotopic 

fractionation observed in the UV-exposed samples is probably due to the dominance of 

photolysis compared to non-photolytic processes present in both pits.  

Another possible reason for the observed nitrate mass loss and hence isotopic 

effects could be photolysis itself in both snow pits. The plexi-plate for the non-UV pit 

eliminates the majority of UV light below 380 nm. However, 10 - 20 % of the incoming 

solar UV below 310 nm is transmitted through this plate (Fig.4.1), a wavelength range 

that overlaps with the nitrate UV absorption band. Additionally, at higher solar zenith 

angles, there might also be direct solar UV coming from the sides of the plexi-plates 

leading to photolysis. NOX photoproducts can also be locally reoxidized to form nitrate 

and re-deposited to the snow surface, as the plexi-plates may have hindered the escape of 

NOX to the open atmosphere. 

In general, there are multiple processes which can alter the concentration and 

isotopic composition of nitrate mainly intop 7 cm (Fig. 4.8). Identifying these processes 

and quantifying them is beyond the scope of this study. In this manuscript, we will 

mainly consider the snow samples between 7 - 30 cm depth.  

Figure 4.8. Schematic on the possible external processes that could have affected the 

surface layers of the two pits. These include evaporation, wind deposition/removal and 

photolysis.   

 Schematic on the possible external processes that could  the  the 
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4.4.2. Isotopic fractionations 
 
15ε  
 Due to insignificant changes in nitrate mass and isotopic composition, the linear 

fits for the first two collections of both pits had a very weak correlation, and are not 

included in this discussion. A good correlation was observed for samples collected late in 

the season and a typical Rayleigh plot is shown in Fig. 4.9. The calculated nitrogen 

isotopic fractionations (slopes of the Rayleigh plots) for samples between 7 - 30 cm depth 

in non-UV and UV-exposed pits are given in Table 2. The samples without UV have 

small negative isotopic fractionations and varying between (-7.4 ± 2.3) ‰ and (-15 ± 0.9) 

‰. In contrast, the UV-exposed snow samples yielded higher negative isotopic 

fractionations ranging from (-18.0 ± 7.3) ‰ to (-58.3 ± 20.0) ‰ and becoming more 

negative with sampling time (Table 3). It seems that either 
15
ε evolves with time (going 

from 2 to 6) or there is an artifact introduced by excluding the top samples. When 

compared to deeper snow, excluding the first top 7 cm of the snow pit may induce bias on 

the derived isotopic fractionations as the extent of the Rayleigh process is significantly 

reduced. On the other hand, the observed decreasing pattern in δ
15

N for the top layer 

samples implies presence of another process or a different snow with different isotopic 

signature (Fig. 4.5). In an effort to better constrain the observed isotopic fractionations 

while limiting the influence of biased samples, only data points within the continuity of 

the deeper samples were kept for the recalculation of the isotopic fractionations (Table 2).  

 

Table 2. The nitrogen isotopic fractionations determined for the samples at 7-30 cm 

depth. Raw values indicate the derived 
15
ε values for the 7-30 cm depth and recalculated 

indicate the values derived after including validated data points above 7 cm.   
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Figure 4.9 Example of Rayleigh plots obtained in this study, here for the UV-exposed samples 

on 30/12/2011, to derive their respective 15', 18' and 17E values. The error bars correspond to the 

analytical uncertainty including measuring the isotopic values. In case of 15N, the error bars are 

smaller than the size of the symbol. 

Example of Rayleigh plots obtained in this study, here for the UV exposed samples 
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The new plots based on these corrections are shown in Fig. 4.10. Accordingly, a 

flat pattern with 
15* values ranging between -59.8 ‰ and -73.0 ‰ is obtained, 

irrespective of the sampling time within the error bars. Similarly, a constant isotopic 

fractionation with an average value of (-13.3 ± 2.4) ‰ is determined for the non-UV 

samples. The apparent (
15*app) and photolytic (

15*photo) isotopic fractionations derived in 

previous field and laboratory studies are shown in Table 3. Our observed average 

apparent isotopic fractionation of  (-67.8 ± 12) ‰ is in good agreement with the 

previously determined average apparent isotopic fractionations of (-60 ± 10) ‰ (Frey et 

al., 2009) at Dome C and (-59 ± 10) ‰ for the East Antarctic Plateau (Erbland et al., 

2013).  

 

 

 

Figure 4.10 Time evolution of the 15' values determined for the UV exposed samples with (red) 

and without (dashed line) some of the best first 7 cm data points included and the non-UV 

samples (triangles). Errors are determined by the Least square fit method as in Frey et al., 2009.  

Based on the significant differences between the 
15* values calculated for the two 

experimental treatments, we can clearly conclude that the higher negative isotopic 

fractionation observed for the UV-exposed samples which possessed an average 
15* 

values of (-67.8 ± 12.0) ‰ are associated with a process related to solar UV photolysis. 

However, the small negative nitrogen isotopic fractionation (-13.3 ± 2.4) ‰ observed for 

the non-UV samples may reflect an impact of mixing of drifted snow with the snow pit’s 

surface snow, sublimation, minor photolysis, or a combination of these processes. In a 

recent study of post-depositional isotopic effects on the stable isotope ratios of nitrate in 

snow, it was shown desorption/evaporation and photolysis can occur simultaneously 

during sunlit periods, with the former process leading to an overall 
15

N isotopic 

fractionation close to zero (
15* = (0.9 ± 1.5) ‰ at -30°C, a temperature relevant during the 

summer at Dome C), and the latter process inducing stronger negative fractionation (
15* = 

Time evolution of the 15  values determined for the UV exposed samples with (red) 
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-59 ± 10 ‰) (Erbland et al., 2013). According to our observations, in the non-UV 

samples, photolysis is the dominant processes due to the solar UV light, and we have 

determined stronger negative isotopic fractionations. However, we can reasonably 

assume that the 
15
ε values for the non-UV samples are driven mainly by mixing of the 

surface layer snow with drifted snow, and variation in surface level and associated 

sampling depth inaccuracy, which are observed during the sampling season (see field log 

book remarks). However, these processes may not impact both pits equally, such as more 

drifted snow on non-UV sample pit than the UV-exposed pit. Thus, the isotopic 

fractionation derived for non-UV samples is mainly associated with external factors 

rather than post-depositional processes such as photolysis. This conclusion is also valid 

based on the simple difference between the significant mass loss and isotopic 

fractionations between the UV-exposed and non-UV samples.  

 

Table 3. Apparent isotopic fractionations (
15
εapp) observed in different previous studies to 

compare with the observation of this study.  

 

 

 

 

 

 

 

 

 

 

 

 
aValues determined for Dome C 
bAn apparent average value derived for different locations in the East Antarctic Plateau 
cThe 

15
ε determined for the UV-exposed samples in this study  

dDetermined using the ZPE shift model and using solar actinic flux of Dome C derived from snow 

TUV model 
eA laboratory result observed using snow from Dome C and a Xe lamp with a UV-filter at 320 nm 

(significant to Dome C conditions) (Berhanu et al In prep.) 
fDetermined using the σ(15NO3

-) values from the modified ZPE-shift derived by Berhanu et al. (In 

prep.), the plexi plates cut off wavelength for the two pits and the solar irradiance at measured at 

Dome C (Picard, G. and Libois, Q., personal communication) 
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 We have calculated the isotopic fractionations associated with photolysis for the 

samples of both the UV-exposed and non-UV pits applying the ZPE-shift model as 

described by Frey et al. (2009). The authors of this study calculated an actinic flux for the 

summer solstice of 2004 at Dome C using the TUV model (Lee-Taylor and Madronich, 

2002) (TUV 4.2) and applied the simplified ZPE-shift to determine the absorption cross 

section of the heavier isotopologue from the lighter isotopologue measured 

experimentally (Chu and Anastasio, 2003) and determined a 
15
εphoto of -48 ‰. Following 

this approach and using an actual solar actinic flux measured at Dome C on 7 January 

2012 at 2 pm local time (Ghislan Picard, personal communication) as well as including 

the UV transmittance effect from the plexi-plates, we calculate a 
15
εphoto value of -46.2 ‰ 

and -42.8 ‰ for the non-UV and UV-exposed pits respectively. However, the ΔZPE-shift 

model prediction for the non-UV samples does not agree with the field observed 
15
ε 

values, which averaged (-13.3 ± 2.4) ‰. This is likely due to the minor change in the 

shape of the solar irradiance and attenuation of incoming light by the plexi-plate 

uniformly in the wavelength region of interest (i.e., about 15 % of the incoming solar flux 

penetrates through the plexi plates covering the non-UV pit). Hence, the theoretically 

derived isotopic fractionations will not be significantly different from the UV-exposed 

samples. However, the isotopic fractionation observed in the non-UV samples is not due 

to photolysis as expected based on a simple comparison between the UV exposed and 

non-UV samples. 

 The isotopic fractionations determined for the UV-exposed field samples based on 

ZPE- shift model calculations (-42.8 ‰) are also higher than the field observations. 

Recently, Berhanu et al. (In prep.) suggested that considering only the ZPE-shift to derive 

the absorption cross-section of 
15

NO3
- 
is not an accurate approximation as the change in 

the shape of the absorption cross-section should be also be included. According to the 

four parameter principle by Jost and co-workers, the absorption cross-section of a given 

molecule can be fitted using an asymmetric Gaussian function σ/E (the absorption cross-

section divided by the photon energy, E) which is dependent on the amplitude (A), center 

(C), width (W) and asymmetry term (S) of the cross-section (Ndengue et al., 2010;Jost, 

2008). These four parameters represent the initial ground state wave function, the vertical 

excitation energy and the slope and curvature of the upper electronic state. A ZPE-shift 

model disregards these other factors and can provide only a rough approximation of the 

absorption cross-section of the isotopically substituted species. Considering this 

principle, Berhanu et al. (In prep.) suggested an apparent ZPE-shift of -53.8 cm
-1

. 

However, this value incorporates the actual ZPE-shift and the change in shape of the 

absorption cross-section due to isotopic substitution. Using this ZPE-shift, a 
15

N isotopic 

fractionation of -52.3 ‰ is derived for samples exposed to solar UV, consistent with our 

field observations. 

 The isotopic fractionations obtained in the laboratory study of Berhanu et al. (In 

prep.), where a 
15
εphoto (-47.9 ± 6.8 ‰), are also less negative than the average 

15
εapp = (-

67.8 ± 12.0) ‰ range observed in the UV-exposed snow pits. The 15 - 20 ‰ differences 

between the UV-exposed samples and the laboratory study could be due simply to 

differences in light spectra (i.e., Xe lamp vs. natural incoming solar UV). However, 

differences in the experimental set-up between the laboratory, where temperature and 

photochemical product removal can be controlled, and the field set-up where multiple 
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non-photolytic processes (i.e., desorption/evaporation and deposition) can also drive 

nitrate processing, complicate the interpretation of the observed differences. 

 

δ
18

O and Δ
17

O 

 

 Similar to the 
15
ε values determined above, we have determined 

18
ε and 

17
E values 

and plotted them versus sampling date in Fig. 4.11 The non-UV samples yielded 
18
ε 

values close to zero (an average value of 0.2 ± 2.6 ‰) due to insignificant change in 

isotopic values. In contrary, the UV-exposed data sets have nearly constant values 

ranging 9-13 ‰ (an average value of 12.5 ± 6.7 ‰), in good agreement with previous 

studies (Table 4).  

 The 
17

E values for the non-UV samples were not significantly different from zero 

whereas the UV-exposed samples yielded an average 
17

E value of 2.2 ±1.4 ‰ in excellent 

agreement with previous studies (Table 4). This is presumably a consequence of the 

“cage effect” whereby the photoproducts of nitrate photolysis are thought to undergo 

isotopic exchange with the surrounding OH/water (Δ
17

O = 0), reforming secondary 

nitrate with Δ
17

O values close to zero (McCabe et al., 2005b).  

 

Table 4. Compiled 
18
ε and 

17
E values obtained from this study for the UV-exposed 

samples and previous studies 
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Figure 4.11 Time evolution of the 18' (top panel) and 17E (bottom panel) values calculated for 

the two pits with respect to their sampling date. Errors are determined by the least square fit 

method from as in Frey et al., 2009. 

 Time evolution of the 18  (top panel) and 17E (bottom panel) value17E (bottom panel) value17 s calculated for 
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Depth dependence of isotopic fractionations 

We have determined the depth dependence of the isotopic fractionations for the 

UV-exposed samples from the concentration and isotopic values of nitrate. The non-UV 

samples showed no significant change in isotopic values with depth, and they are 

associated with large errors. Therefore, they are not presented in this manuscript. 

Snow sampling at exactly same depth during each sample collection was 

impossible in the field. Hence, the concentration and !15
N of nitrate obtained from at least 

4 collections at exactly same depth were used to derive the isotopic fractionations. In a 

few cases, samples within 1 cm depth difference were stacked together to derive the 
15* 

values. Similar to the case of the derivation of the 
15* values with sampling date, we have 

followed the !15
N signal and focused mainly on the 7 - 25 cm depth interval for the 

15* 

values.  

As shown in Fig. 4.12, a constant fractionation pattern is exhibited with depth, 

with an average 
15* value of -59.9 ± 24.7 ‰ in the UV-exposed pit. The large error bars 

are associated with availability of too few data points to make a Rayleigh fit and a large 

uncertainty in the depth measurement resulting in the concentration of different depths in 

a single bin.  

Figure 4.12 Depth evolution of 
15' for the UV-exposed field. The 

15' is calculated from 

samples at the same depth from each sampling. Error bars are calculated as in Frey et 

al. (2009). The shaded region implies the observed 
15' range of -50 ‰ to -70 ‰.  

 Depth evolution of 
15

 for the UV exposed field. The 
15

 is calculated f
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 The depth could have also changed with time, as there might be densification of 

the snow with time. The relative insensitivity of the 
15
ε values with depth is actually 

expected as an even UV light attenuation is observed with depth in snow in a recent 

laboratory study (Berhanu et al., In prep).  

 The derived 
18
ε and 

17
E values derived with depth have a very weak Rayleigh 

fitting at lower depths (i.e. below 10 – 15 cm), and are associated with large errors. This 

is mainly due to the minor changes in the isotopic signal of oxygen when compared to the 

N isotopes where relatively strong signals were observed. 

 
4.4.5. Conclusions 
 

 In a field experiment at Dome C, Antarctica, we have investigated the effect of 

solar UV radiation on the mass and stable isotope ratios of nitrate in two snow pits (non-

UV and UV-exposed) filled with drifted snow. In the UV-exposed pits, we observed a 

significant nitrate mass loss and isotopic fractionation associated with two processes: 

photolysis and additional processes including snow surface mixing with drifted snow. 

The effects of these processes are significant at a 0 - 7 cm depth and affect both the non-

UV and UV-exposed samples. Due to the existence of multiple complex processes, it is 

difficult to consider some of these data points in the determination of the isotopic 

fractionations. We have determined an average 
15
ε value of -67.9 ± 12 ‰ for the solar 

UV-exposed samples by excluding some data points in the top 7 cm, which were thought 

to be impacted by external process such as deposition. The derived 
15
ε values are in good 

agreement with previous estimates based on field observations at Dome C. In contrast, 

the 
15
ε values for the non-UV pit, which averaged (-13.3 ± 2.4) ‰, are most likely due to 

mixing of drifted snow with the surface layers with minor contributions of desorption and 

photolysis. This is the first experimental study that has demonstrated the strong influence 

of photolysis on mass loss and isotopic fractionation of nitrate under environmentally 

relevant conditions. Previous studies of nitrate photolysis in snow were significantly 

limited due to inadequate replication of natural light conditions, snow quality and the 

nature of nitrate in snow, depth penetration of the UV-light, as well as temperature and 

product removal. In contrast, this study is the ultimate replica of photolysis in natural 

conditions at Dome C. This study clearly demonstrates that photolysis, driven by the 

solar UV radiation, is the major process inducing mass loss and isotopic fractionation at 

Dome C, as suggested by previous studies (Erbland et al., 2013) and references therein).  

 The isotopic fractionations derived for the UV-exposed pits are slightly lower 

than the predicted 
15
εpho value of -47.9 ± 6.8 ‰ based on a laboratory study relevant to 

the field conditions by Berhanu et al. (In prep.) and derived from the ΔZPE-shift model (-

42.8 ‰). Assuming the 
15
ε values for the non-UV samples to be associated with only 

non-photolytic process and affect both pits equally, we have obtained a purely photolytic 
15
ε of -54.6 ‰ for the UV samples. This is in agreement with field observation of 

undisturbed snow. 

 We have also determined the depth dependence of the isotopic fractionations and 

observed the depth independence of 
15
ε values. However, the paucity of data and the 

relatively large associated errors indicate that further experimental studies regarding 

depth dependence of isotopic fractionation are required. 
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 Finally, we should also mention some of the possible limitations of this 

experimental study. Due to mechanical modification during the filling of the pits with the 

wind-blown snow, the snow used in this study might not have possessed similar physical 

properties (i.e. grain size, compactness, optical properties, etc.) identical to the natural 

snowpack. This might led to modification of scattering properties in the experimental 

snow pits. The presence of multiple processes on the surface snow layers might have also 

introduced a small artifact in regards to the derived the 
15
ε values. However, the 

experimental design can be further improved. For example, a wire frame may be placed 

covering the entire pit surface so that the surface level can be fixed at same level during 

sampling all the time. A laboratory study on desorption of nitrate from snow appropriate 

to Dome C conditions should also be conducted in the future in order to ascertain the 

effects of desorption in post-depositional processing of snow nitrate. This will ease the 

determination of pure photolytic effects with better accuracy.  
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SUPPLEMENTARY MATERIALS 

The actual nitrate concentration measurement data obtained from the IC measurement at 

the warm lab in Dome C is shown below (Fig. 1). The calculated nitrate fraction left in 

the snow (f) is also given in Fig. 2. 

The observed shift in concentration at the deepest part of the profile is probably the result 

of calibration shift and/or base line drift. The stability of the concentration profile 

associated to the fact that such variation are not related to the collect date clearly confirm 

to analytical artifact and not natural changes. 

 

Figure A.1. Nitrate concentration for the UV-exposed and non-UV samples measured at the 

warm lab in Dome C. The observed shift in the concentration plot is not suspected to result from 

loss or gain of nitrate as no correlation with sampling period was found. We suspect the 

artefact might result from standardization. 

 

 

 

 

 

 

 

Nitrate concentration for the UV exposed and non UV samples measured at the 
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Figure A.2. The nitrate fraction left in the snow plot for the non-UV and UV-exposed samples. 

  

 

 

 

 

Figure A.3 The !15N(NO3
-) profile in the snow samples with depth for the non-UV and UV-

exposed samples after excluding the data points affected by mixing/drift snow and the 

experimental setup (see main text above). 

The nitrate fraction left in the snow plot for the non UV and UV exposed samples.

The 15N(NO15N(NO15 ) profile in the snow samples with depth for the non UV and UV
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Figure A.4 Same as Fig. A.3 but here for the !18O(NO3
-) profile in the snow samples with depth 

for the non-UV (left) and UV-exposed (right) samples. 

Same as Fig 3 but here for the 18O(NO ) profile in the snow samples with depth ) profile in the snow samples with depth 
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Figure A.5 Same as Fig. A.3 but here for the "17O(NO3
-) profile in the snow samples with depth 

for the non-UV (left) and UV-exposed (right) samples. 

Same as Fig. A.3 but here for the 17O(NO ) profile in the snow samples with dep) profile in the snow samples with depth 
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Figure A.6 The wind speed record at Dome C during December 2011 (top panel) and January 

2012 (bottom panel) (http://www.climantartide.it).  

Figure A.7 The nitrate concentration measured from the surface snow collected near the two 

snow pits (blue circles), and from the surface of the UV-exposed (brown, squares) and non-UV 

(grey, triangles) pits.  

The wind speed record at Dome C during December 2011 (top panel) and January 

The nitrate concentration measured from the surface snow collected near the two 
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Figure A.8 The speed of loss of nitrate from the snow pits with depth and for different 

collections derived based on the change in nitrate amount from its initial amount 

measured from the first collection (02/12/2011). 
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Table A.1. Field observation logbook during the experimental season in Dome C, 

Antarctica  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Date Observation/Remark 

05/12/2011 Sublimation of few millimeters was noticed on 

non-UV-exposed pit  

08/12/2011 Drifted snow on the both pits, and it was swept out 

15/12/2011 5 mm sublimation observed in both pits 

19/12/2011 Strong wind drifting snow 

21/12/2011 Light snowfall, drifted snow was removed from 

the pits 

30/12/2011 Non-UV pit surface was 50 % covered with drifted 

snow but no drifted snow on the UV-exposed pit 

10/01/2012 At the surface level, 50 % of the non-UV and 20 % 

of the UV-exposed pits were covered with drifted 

snow  

12/01/2012 Drifted snow covering the entire non-UV pit and 

20 % of the UV-exposed pit 

20/01/2012 2-3 cm drifted snow on non-UV pit and 3 cm 

drifted snow on UV-exposed pit  
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Chapter 5 
 

Conclusion and outlook 
 
 The main goals of this dissertation have been the understanding of NOX/nitrate 

chemistry, and specifically the photochemistry of snow nitrate. Stable isotope ratios are 

valuable tools in isotope geochemistry with strong potential to provide information about 

crucial chemical processes. The stable isotope ratios of nitrate (δ
18

O, Δ
17

O, δ
15

N) have 

been widely used in atmospheric science to infer to the NOX oxidation pathways and 

signature of atmospheric ozone as well as to constrain the sources of NOX (= NO + NO2). 

The NOX emitted in the atmosphere will undergo oxidation through various mechanisms 

and eventually will become a stable product, nitrate. From the determination of the Δ
17

O 

signal of nitrate obtained from different geographical locations, it is be possible to 

identify and quantify the oxidation mechanism leading nitrate formation. In polar regions, 

nitrate will also be deposited in the snow, and it is one of the most abundant anions in 

polar ice and snow. A thorough analysis of its stable isotopes can then be used as metrics 

to understand past climatic changes and oxidation capacity of the atmosphere. This 

information can be obtained from deep ice cores, which preserved the nitrate record on 

millennial time scales. Despite many existing time-series of ice cores nitrate 

concentration from various regions in Antarctica such as the EPICA (European Project 

for Ice Coring in Antarctica) ice core which extends about 3259 m and encompasses 800 

ka of information (Wolff et al., 2010) or the Vostok ice core which is about 3623 m and 

spans about 400 ka (Petit et al., 1997), their interpretation remains complex. This is 

mainly due to post-depositional process which partly or completely modify the archived 

information specifically at low snow accumulation sites such as Dome C. Part of this 

PhD study is framed with the objective to investigate the effect of photolysis on the mass 

and isotopic composition of snow nitrate. Here are some of the fundamental questions 

have been answered based on the findings from this study. 

 

5.1. What is the 17O-excess transfer function for the NO2 + O3 reaction?  
 

 Based on the experimental study conducted on the gas phase NO2 + O3 reaction, 

an important nighttime nitrate formation pathway, the transferable 
17

O-excess was 

quantified by the function: ∆
17

O(O3*) = (1.23 ± 0.19) × ∆
17

O(O3)bulk + (9.02 ± 0.99). This 

function is similar to the NO + O3 transfer function (∆
17

O(O3*) = (1.18± 0.07) × 

∆
17

O(O3)bulk + (6.6±1.5)) observed by Savarino et al. (2008) but differs as for the latter, 

the central oxygen atom of ozone can be transferred with a small probability, (8 ± 5 %). 

This same gas phase reaction is also different from the liquid phase NO2
-
 + O3 reaction 

(Michalski and Bhattacharya, 2009) by truly representing the actual reaction conditions in 

the atmosphere. In the future, modeling studies should incorporate the values obtained 

from this study to better constrain the nitrate formation pathways relevant to specific 

conditions (space or time). Additionally, further experimental studies are required to 

derive the 
17

O-excess transfer functions for the different nitrate formation pathways 

including the Br +O3 reaction, which was not successful during this PhD study.            
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5.2. What do we learn from the laboratory experiments of photolysis 
of snow nitrate?  
 

 Based on our experimental approach in the laboratory, isotopic fractionations 

induced by UV-photolysis of nitrate were quantified. The novelty of this work is that it 

allows to investigate specifically photolysis process and its associated isotopic effects.  

 The design of this laboratory study enabled better control over key parameters 

such as temperature, pressure, light conditions (spectral distribution) and product removal 

compared to previous laboratory study (Blunier et al. 2005). From this study, we have 

derived nitrogen isotopic fractionations of  (-23.2 ± 1.0) ‰, (-38.6 ± 2.8) ‰ and (-47.9 ± 

6.8) ‰ for the 280, 305 and 320 nm UV filters respectively. The spectral dependence of 

isotopic fractionation was experimentally observed with less negative fractionations 

towards higher energy UV and the opposite observation in lower energy UV region, a 

trend in agreement with the theory of isotopic shift of cross-section.  

 
5.3. Can we apply the observations in the laboratory to better 
constrain the absorption cross-section of 15NO3

-? 
  

 As the experimentally measured absorption cross-section of 
15

NO3
-
 is not 

currently available, the ZPE-shift model was introduced to derive this cross-section from 

the most abundant isotopologue (Frey et al., 2009). According to this approach, the 

absorption cross-section of a heavier isotopologue can be derived from the lighter 

isotopologue by simply shifting the absorption spectra of the most abundant isotopologue 

by the ΔZPE. For nitrate, a ZPE-shift of -44.8 cm
-1

 was derived and applied to generate 

the absorption spectra of 
15

NO3
-
. Using this model approach, we have derived isotopic 

fractionations under the laboratory experimental conditions (using actinic fluxes from the 

Xe lamp in the presence of UV-filters). The model estimates were in fairly good 

agreement with the values obtained experimentally in the laboratory. In an ideal case 

where the model perfectly reproduces the experimental conditions, the isotopic 

fractionations from both approaches should match.  However, a recent four-parameter 

model presented by Jost and co-workers (Ndengue et al., 2010;Jost, 2008) states that even 

if the ZPE-shift is the major parameter which changes with an isotopic substitution, 

changes in the width and amplitude of the absorption cross-section of the least abundant 

isotopologue should also be taken into account. Hence, the small differences between the 

model estimates and the laboratory observations may arise from ignoring these 

parameters.  

 In this study, we went more into the details on effects of isotopic substitution on 

absorption cross-sections than the approach presented by Frey et al. (2009), and better 

constrained the absorption cross-section of 
15

NO3
-
. In our approach, we matched the 

results from the laboratory study with the isotopic fractionations derived using the ZPE-

shift model under the laboratory conditions (actinic flux of the Xe lamp in the presence of 

filters) and derived an apparent ZPE-shift of -53.8 cm
-1

. This apparent value better 

matches the laboratory values and the model estimates, and it incorporates changes in 

ZPE, width and amplitude during isotopic substitution. 
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5.3 How do we validate this newly derived apparent ZPE-shift? 
 

 To test the validity of the newly derived apparent ZPE-shift value, we have 

conducted a field experiment. In this study, we have designed an experimental setup 

which compares two identical snow pits which were built by filling a locally drifted snow 

with the same nitrate profile (concentration and isotopic composition) and placed two 

plexi plates to block/allow solar UV. This experimental design was unique in that it 

minimizes/prevents non-photolytic effects such as deposition and investigates the effect 

of photolysis specifically. In this study, we derived an average nitrogen isotopic 

fractionation of -67.9 ± 12.0 ‰ for the pits exposed to the solar UV.  

    We have applied the theoretical ZPE-shift model approach based on the newly 

derived apparent ZPE-shift value and obtained a 
15
ε value of -55.6 ‰ under Dome C 

conditions. This value is slightly higher but in good agreement with the experimental 

values in the field considering the error bars (-67.9 ± 12 ‰).  

 The nitrogen isotopic fractionation based on this new model prediction is also in 

good agreement with previous field measurements of average apparent isotopic 

fractionations of (-59 ± 10) ‰ derived for the East Antarctic Plateau (Erbland et al., 

2013) (Note that apparent isotopic fractionation includes fractionations induced by 

photolysis and additional processes such as desorption and deposition).  

 Based on these observations, we recommend that the newly derived apparent 

ZPE-shift should be used to constrain the absorption cross-section of 
15

NO3
-
. 

 
5.5 What are the future perspectives to better constrain the field 
observations?  
 

 We are currently applying theoretical calculations to better constrain the ZPE-

shift during isotopic substitution using the four parameters model to account for the 

changes in width, center, asymmetry and amplitude. In addition, the actual ZPE-shift 

value (-44.8 cm
-1

) is derived based on fundamental frequencies of 
14

NO3
-
 and 

15
NO3

-
. 

This approach may underestimate the ZPE-shit as the anharmonicities of these molecules 

are not taken into account. Accordingly, if anharmonicities were taken into account, the 

ZPE-shift will become -47.5 cm
-1

 (Remy Jost, personal communication) and further 

calculations may be required. In the future, when such framework will be fully 

developed, we will use the TRANSITS (TRansfer of Atmospheric Nitrate to Stable 

Isotopes to The Snow) model (Erbland, 2011) will be available to extract the 

environmental parameters from the observed isotopic fractionations of nitrate trapped in 

deep ice cores. 

 TRANSITS is a numerical model which uses variety of measurement inputs such 

as snow accumulation rate, nitrate flux, solar UV flux, the ozone column, and different 

optical parameters (quantum yield, absorption cross-sections, absorption/scattering by the 

snowpack, and so on) and physico-chemical process to constrain the information archived 

in deep ice cores. The model applies different scenarios such as variability in ozone layer 

and actinic flux, and provides estimates of concentration and isotopic composition of 

archived nitrate as well as isotopic fractionations.  

 It is expected that with a better constrain on the absorption cross-section of 
15

NO3
-

, fueled by the better molecular dynamic model, the TRANSITS model will open new 
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windows into the interpretations of δ
15

N(NO3
-
) recorded in deep ice cores. An example of 

an approach towards such application is described below.   

 
5.6. What can be the applications of these findings in the future? 
 

 The purpose of this section of the conclusion is to give directions in the possible 

applications of the findings from this experimental research. Here, we only provide a 

qualitative outlook into an example of the use of our findings. A more quantitative 

interpretation will require the use of a modeling framework (TRANSITS model). 

 The currently existing ice core nitrate data requires the clear quantification and 

full understanding of post-depositional process. There are records of very high δ
15

N 

values of nitrate reaching 300 ‰ measured in the Vostok ice core in Antarctica (Erbland, 

2011). These δ
15

N signals may carry a significant information regarding changes in the 

ozone layer and variability of the solar radiation within millennial time scales. But the 

validity of these records lie solely on the clear understanding of post-depositional effects 

and a well defined mechanism to account for their effects. 

 The top panel in Figure 5.1 shows the ozone column observed above the Halley 

station in Antarctica in October from 1955-2005. According to this plot, the ozone 

column decreases over the years from about 300 DU in 1955 to the lowest levels between 

1995 and 2000. Note that the ozone data is provided only for October, and the ozone 

level may vary at different seasons of the year; however, during this period of the year 

the ozone hole deepens and extends over the entire continent. The bottom panel shows 

the δ
15

N(NO3
-
) profile of a 6 m snow pit from Dome C which encompass the same period 

as the ozone column observation. According to Fig. 5.1, the δ
15

N values show an increase 

over the years from about 150 ‰ around 1955 to higher levels reaching 350 ‰. 

However, we should recall that δ
15

N values are the function of isotopic fractionation (ε) 

and mass loss (f). As the snow accumulation rate during the last 50-60 years was more or 

less constant, the change in δ
15

N values may arise from isotopic fractionation or change 

in the amount of loss of snow nitrate (f). But how does these parameters impact the δ
15

N 

values? 

 Isotopic fractionations are dependent on the solar actinic flux reaching the snow 

nitrate, which in turn depends on the overlying ozone layer that modulates the UV 

radiation reaching the snow. A decrease in ozone layer will lead to more energetic UV 

photons reaching the snow nitrate. Referring to the laboratory study in chapter 3, we 

expect less negative isotopic fractionations towards shorter wavelength regions thus 

lowering the δ
15

N values for the nitrate remaining in the snow in contradiction with our 

observation in the field (Fig. 5.1). However, decrease in ozone layer accompanied by 

increase of incoming solar UV flux will lead to a decrease in f, as photolysis rate of 

nitrate in the snow will be enhanced. This effect will lead to enrichment in 
15

N of nitrate 

remaining in the snow and hence higher δ
15

N values.  

 This opposing trend between 
15
ε and f with the increase of UV radiation is 

difficult to evaluate. Quantitative interpretation will requires the application of a snow 

denitrification model (e.g.,TRANSITS). In the future, modeling calculations may provide 

accurate quantitative estimates of the main parameters influencing δ
15

N in snow where 

the pre and post-period of the ozone hole can be used as a validation case, before 
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applying the model for deciphering the information buried in ice core on longer time 

scales. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. The ozone profile at Halley station in Antarctica observed during October (top) and 

the !15N(NO3
-) values measured from 6 m surface core at Dome C in 2004 (Unpublished data 

from M. Frey, S. Morin and J. Savarino) 
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Annex A 
 

Ag2O: A new non-mass dependent standard material for 
oxygen isotope measurements 

 

Tesfaye Ayalneh Berhanu, Joël Savarino, Amaelle Landais, Frédéric Prié, Renato 

Winkler, Thomas Röckmann, Marion Früchtl, Jan Kaiser, Thomas Blunier, Corentin 

Reutenauer 

 

The main objective of this part of the thesis was to prepare a reference material for 

oxygen isotope measurements, a commitment of the INTRAMIF network. The 
17

O-

excess (expressed mathematically as Δ
17

O = δ
17

O - 0.52 × δ
18

O), which is the quantity to 

describe the deviation from the formal mass dependent rule of δ
17

O ≈ 0.52 × δ
18

O, has 

been used as a tracer in various scientific studies (See previous chapters for details). 

Considering the broad scientific research on oxygen non-mass dependent fractionation 

and its associated effects, an appropriate reference material with non-zeo 
17

O-excess 

becomes essential. In this section, we present the experimental approach, the steps 

followed, the difficulties faced, and finally our recommendations for the production of 

such reference material. 

The experimental studies were conducted at LGGE, and isotopic measurements 

were compared among other laboratories within the network. The preliminary results 

from this study have been presented at the INTRAMIF annual meeting in August 2012 in 

Grenoble and at ISI2012 in Washington DC, USA.  
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6.1. Background 
 

Stable isotope ratios have been used as an important tool in various scientific 

areas such as paleoclimate, geochemistry, forensics and so forth.  

The isotopic composition of a given sample is expressed in terms of the delta notation 

(δ), which is the number ratio of the least abundant to the most abundant atom in the 

given sample (Rsample) with respect to a reference material (Rreference) (mostly expressed in 

units of per mil, ‰) as: 

 

 δ =
Rsample

Rreference

 

 
  

 

 
  −1

 

 
  

 

 
  ×1000      (6.1) 

 

Reference materials consists of natural minerals or compounds usually used in isotope 

geochemistry with desired isotopic composition, chemical purity, stability and 

homogeneity (Gonfiantini et al., 1993). Some of the advantages of using reference 

materials to measure and report the isotopic composition of a given compound are (Criss, 

1999): 

‐ As it is difficult to measure the absolute abundance of heavy isotopes due 

to their rare availability (for eg., D/H 〜 0.00015), performing a relative 

measurement with a reference of known/accepted isotopic composition 

will make it easier 

‐ It can account for system variability during isotopic measurements 

‐ Interlaboratory comparisons can be made relatively easily leading to 

interpretations of results from different labs coherent  

 

Hence, the measured (raw) δ-values for a given compound will be normalized to 

internationally recognized scales of interest, which are defined using primary reference 

materials defined below. 

Reference materials can be classified into primary (Reference), secondary 

(calibration), intercomparison materials and in-house standards (Gonfiantini et al., 

1993;Carter and Barwick, 2011) (Note that sometimes nomenclature may vary).  

 
6.1.1. Primary reference Materials (PRMs) 
 

These are materials which define the origin of the δ-scale and they have 

internationally defined δ-values so that there is no need to know their actual isotope ratios 

(R). They also enable direct comparison between measurements from different 

laboratories.  

Standard Mean Ocean Water (SMOW) was a hypothetical water sample that 

never physically existed, and was defined by Craig (1961) as reference for 
2
H/

1
H and 

18
O/

16
O determinations. Peedee Belemnite (PDB), which consisted of calcium carbonate, 

is also used to express the natural variation in Carbon isotopes. As SMOW does not have 

a unique definition and PDB was exhausted, the International Atomic Energy Agency 

(IAEA) decided to change reporting the isotopic measurements of H, C and O with 

respect to these standards, and introduced the VSMOW scale for δ
2
H and δ

18
O and the 
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VPDB scale for δ
13

C measurements (Coplen, 1994). Furthermore, as δ
2
H and δ

18
O values 

of VSMOW lie closer to the upper end of the range of abundances of 
2
H and 

18
O in 

naturally occurring materials, the agency recommended δ
2
H and δ

18
O values at the lower 

end of the range using a new reference material, Standard Light Antarctic Precipitation 

(SLAP). Hence, the oxygen and hydrogen isotopic abundances of all isotopic compounds 

should be normalized using SLAP. Accordingly, a conversion scale was recommended 

such that: 

 

‐ δ
2
HSLAP/VSMOW = -428 ‰ 

‐ δ
13

CNBS-18/VPDB = 1.95 ‰ 

‐ δ
18

OSLAP/VSMOW = -55 ‰ 

 

Note that there is no uncertainty on the isotopic values of the PRMs. It was also 

suggested to use the standard scale conversion from one scale to another. However, this 

conversion is not additive but recalculated using equation 5.2. For sample ‘a’ measured 

with respect to ‘b’ and to be normalized on VSMOW scale, the conversion equation can 

be given by:  

 

 δ18O
a /VSMOW

= δ18O
a / b

+δ18O
b /VSMOW

+10
−3
×δ18O

a / b
δ18O

b /VSMOW
      (5.2) 

 

Atmospheric nitrogen (Air_N2) is the isotopic scale for nitrogen isotopic ratio 

(
15

N/
14

N), which is prepared by deoxygenation and drying of atmospheric nitrogen 

(Mariotti et al., 1983). Its wide homogeneity in isotopic composition, abundant 

availability and easiness to be prepared were main advantageous characteristics of this 

standard.    

However, some of the PRMs are typically valuable materials and may not always 

be in the appropriate chemical form for simple isotopic standardization or insufficient to 

fix the scale contraction/expansion of the analytical method employed. These limitations 

of PRMs made it essential to produce additional reference materials known as secondary 

reference materials.  

 
6.1.2. Secondary Reference Materials (SRMs) 
 

These are natural or synthetic reference materials, which are carefully anchored to 

the PRMs so that samples can be accurately normalized to an international scale. These 

materials have internationally agreed and adopted δ-values but associated with 

uncertainties (Carter and Barwick, 2011). The IAEA distributes these materials and 

provides full documentation on their δ-value. A regular update on these values could be 

obtained from its webpage at www.nucleus.iaea.org. Some of the secondary reference 

materials distributed by the agency are given in Table 1. 

 

 

 

 

 

 



*%'!

Table 1. List of some of the secondary reference materials distributed by IAEA 

 
 

 

 

6.1.3. Intercomparison materials 

These are materials of different chemical nature and isotopic composition 

prepared to test quality of measurements and monitor long term reproducibility of sample 

preparation between participating laboratories (Carter and Barwick, 2011). The 

procedures are managed by Forensic Isotope Ratio Mass Spectrometry (FIRMS, 

http://www.forensic-isotopes.org/) and the inter laboratory comparison is practiced on 

yearly basis.  

6.1.4. In-house standards 

These are reference materials which can be used in daily basis after being 

calibrated using PRMs or SRMs which are scarce materials for daily use. However, there 

are a number of requirements for a given material to be considered as appropriate in-

house standard. These include the sample should be (Carter and Barwick, 2011): , Homogeneous  , Abundantly available or easily replaceable , Stable during storage , Non-hygroscopic (mainly for H and O measurements) , Easy and safe to store, handle and transport 

6.2. Aim of the study 

Currently, except USGS 35 there is no reference material with non-mass 

dependent nature for oxygen isotopes measurement. USGS 35 was prepared from 

purified NaNO3 from natural ore in Atacama desert, Chile (Böhlke et al., 2003). This 

material is widely used for analysis of nitrate samples, and it has isotopic values of !17
O 

= 51.5 ‰ and !18
O = 57.5 ‰. However, sodium nitrate is not in appropriate chemical 

form practical for applications in fields of isotope geochemistry. In particular, its 

conversion to O2, the main working gas to measure the 
17

O-excess, is difficult. 

In order to fill this gap in appropriate reference material with accurately known 
17

O-excess, Ag2O is proposed and tested in this experimental study. 

The choice of Ag2O is based on various points including:  , It can be easily decomposed and releases its oxygen atoms  
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‐ The pure oxygen gas obtained is a suitable gas for oxygen isotopic measurement 

(little isobaric interference)  

‐ As it is synthesized from industrial products (AgNO3), it can be produced in large 

quantities and being scarce or becoming exhausted is not an issue 

‐ It is expected to be homogeneous  

‐ It is easy to produce, handle and transport and potentially stable during storage as 

it is a solid material  

 

In this PhD study, we have prepared and characterized Ag2O and perform an 

interlaboratory comparison between the measurements in Grenoble (LGGE) and 

collaborating laboratories in Utrecht (IMAU), Paris (LSCE), and Copenhagen (CIC).  

 

6.3. Method development and technical progress 
 
Step 1: Preparation of Ag2O samples 
 

 As a first approach, we have prepared test samples of Ag2O in very small 

quantities (typically 1-2 g sample). In this experimental study, solid silver oxide (Ag2O) 

was prepared from commercial silver nitrate (AgNO3) (Sigma Aldrich), enriched water 

(
16

O = 34.4 %, 
17

O = 10.6 % and 
18

O = 55 %, Cambridge Isotope Laboratory) and excess 

sodium hydroxide (1M NaOH) via R.6.1. 

 

 2AgNO3 + 2NaOH   2NaNO3 + Ag2O↓+ H2O  (R.6.1) 

 

We have mixed 20 µL enriched water was mixed with 130 ml of 1M NaOH, and the 

mixture was left to equilibrate while stirring for 8 days. The duration of mixing was 

optimized based on tests conducted with different durations. 

 The purpose of using enriched water is to incorporate enriched oxygen atoms into 

Ag2O so that during its thermal decomposition, oxygen gas with heavy isotopes and 

accurately known isotopic composition can be obtained. In this way, the 
17

O-excess can 

be manipulated to the desired range. In this experimental study, Δ
17

O ≈ 20 ‰ was 

targeted and the amount of enriched water was determined applying a mathematical 

calculation during mixing of water solutions with different isotopic composition. 

 After 8 days, 1-2 g AgNO3 was added slowly and it was left to mix while stirring 

for additional 11 days. During the entire experiment, the preparation beaker was covered 

with an Al foil to avoid light and contamination. Again the duration of mixing was 

optimized based on previous trial experiments. A grayish precipitate was formed 

immediately after addition of silver nitrate.  

 Finally, the Ag2O precipitate was filtered and the solid precipitate was washed 

with MQ water repeatedly to remove nitrate left from silver nitrate and the excess sodium 

hydroxide. Complete removal of nitrate was confirmed by measurement of nitrate 

(QuAAtro nitrate analyzer) which was below 50 ppb.        

 The Ag2O precipitate was dried in an oven at 180°C overnight. Then, the Ag2O 

samples were carefully transferred into small amber bottles and stored in a desiccator to 

avoid moisture.   
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Step 2: Analysis of Ag2O samples 
 

 Before sample analysis, calibration of the mass spectrometer was conducted to 

determine the amount of oxygen gas produced during decomposition of Ag2O. 

  
Determination of oxygen yield and calibration of the mass spectrometer  
 

The percentage yield of oxygen gas during thermal decomposition of Ag2O is 

calculated based on the molar ratios. Accordingly, during Ag2O decomposition (R.6.2), 

for every mole of silver oxide decomposed half a mole of oxygen will be produced i.e. 

for 100 µmole of Ag2O in our experiment case, 50 µmole of oxygen is expected.  

 

Ag2O   2Ag + 1/2O2    (R.6.2) 

 

In order to determine the amount of oxygen produced, an online technique of calibration 

was followed and discussed below. 

A known amount of pure oxygen gas (50-120 µmole) was filled into a sample 

tube and introduced to the IRMS dual inlet mode inlet via expansion. The sample bellow 

is fully expanded (100 % open) during this operation. After few minutes, when the 

pressure reading in the bellow was stable, all the valves were closed and the pressure 

reading in the sample bellow was noted. Finally, the valve leading towards the ion source 

of the MS was opened and the 
32

O2 signal was noted. Based on these measurements, a 

calibration line of sample amount (µmole), pressure of oxygen gas in the sample bellow 

(torr) and the 
32

O2 signal (mV) was generated (Fig. 6.1). As the 
32

O2 signal is more 

reliable method of calibration, it was used in this study to determine the approximate 

amount of oxygen produced from thermal decomposition of Ag2O.   

 The Ag2O samples were thermally decomposed by carefully transferring about 

100 nmol of Ag2O into a clean quarter inch tube (washed with MQ water, ethanol and 

acetone and dried overnight in an oven at 200 °C), which was sealed in one side. The 

tube was then connected to the sample inlet port at the mass spectrometer, and carefully 

evacuated. Then, a heater which was already at 550°C was connected directly to the 

quarter inch tube and gaseous products were transferred into the sample bellow, which 

can be monitored from the rise in pressure in the pressure gauge at the bellow. When 

decomposition is complete, pressure reading becomes stable, the sample bellow was 

isolated, and the pressure and 
32

O2 signals were note. The isotopic composition (δ
17

O and 

δ
18

O) of the oxygen gas were measured using MAT-253 IRMS in the dual inlet mode 

relative to LGGE#1(working gas at LGGE) with an isotopic composition of δ
17

O = 3.533 

‰, δ
18

O =7.522 ‰ calibrated versus VSMOW. However, the obtained isotopic 

compositions in multiple measurements were not reproducible. Additionally, the oxygen 

gas yield from thermal decomposition of Ag2O was not consistent based on the molar 

ratio estimates. The obtained results for the experiments these experiments also showed 

very small 
17

O-excess values than expected (about 1/10
th

 of the expected 
17

O-excess 

value).  
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Figure 6.1. Calibration line for amount of oxygen in micromoles versus oxygen gas pressure in 

sample bellow (left axis, brown) and 32O2 signal for oxygen gas in sample bellow (right axis, 

blue). The linear correlation enables to determine the amount of oxygen gas yield during 

decomposition of Ag2O.   

The CO2 interference issue 

In order to identify the reason behind very low 
17

O-excess value than expected, an 

elemental scan was conducted for the oxygen gas produced. Accordingly, significantly 

big peaks were observed for CO2 (mass = 44) in all the sample gases (Fig. 6.2). The 

sources of CO2 in the oxygen samples could be either the Ag2O itself or CO2 leaking into 

the system. The latter was checked by analysing the oxygen reference gas which was 

introduced via the sample bellow and there was no CO2 peak observed confirming the 

actual CO2 source was the Ag2O.  

Ag2O is a strong absorber of atmospheric CO2 and has a wide application in space 

science and related fields to remove/recycle CO2 (as CO2 scrubber). The absorption of 

CO2 in the presence of water can be described by R.6.3 to produce Ag2CO3 which can be 

decomposed thermally above 218°C via R.6.4 (Centnerszwer and Bruzs, 1925). 

Ag2O + CO2  ! Ag2CO3 (R.6.3) 

Ag2CO3  ! Ag2O + CO2 (R.6.4) 

This implies that during thermal decomposition of Ag2O, CO2 is also generated along 

with O2, and this can lead to interference and wrong measurements of the isotopic 

signature of oxygen from Ag2O.   
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Figure 6.2. The elemental scans for two oxygen gas samples produced from decomposed Ag2O 

in the absence (left) and presence (right) of an Ascarite and Perchlorate traps. In the latter case, 

there are not observable peaks for C and CO2.  

In order to prevent the interference associated with CO2, an Ascarite trap 

(Granular CO2 absorbent made of NaOH coated with non-fibrous Silicate) was placed at 

the top of the quarter inch tubing to remove the emitted CO2 before entering to the MS 

for isotopic analysis. As reaction between Ascarite and CO2 produces water (R.6.5), an 

additional water trap (Magnesium Perchlorate named simply Perchlorate) was added as 

shown in Fig. 6.3.  

CO2 + 2NaOH  !  Na2CO3 + H2O (R.6.5) 

The Ascarite trap effectively removed the CO2 produced from the thermal decomposition 

of silver oxide, and water produced during this step was successfully removed by the 

perchlorate trap. The elemental scans obtained from oxygen samples obtained in this way 

are shown in Fig. 6.2.  

The general scheme of preparation of the reference silver oxide is summarized in the 

schematic in Fig. 6.4. Finally, the Ag2O samples prepared with this procedure were also 

sent to collaborating laboratories of CIC, LSCE and IMAU for interlab comparison.  

The elemental scans for two oxygen gas samples produced from decomposed Ag O 
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Figure 6.3. Ag2O transferred to a quarter inch tube at the bottom and the Ascarite and 

Perchlorate traps for CO2 and H2O respectively placed at the top each separated using a glass 

wool 

Figure 6.4. A schematic of the steps followed during the production and analysis of Ag2O 

Ag transferred to a quarter inch tube at the bottom and the Ascarite and 

schematic of the steps followed during the production and analysis of Ag
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6.4. Results and Discussion 

6.4.1. Results 

Based on the optimised technique of preparation of Ag2O (shown in the schematic 

in Fig. 6.4), the oxygen gas produced from Ag2O has the isotopic composition shown in 

table 5. These samples were also measured in other laboratories and their values are 

shown in this table. The Laboratory measurement manual used for these measurements is 

attached in the Annex. 

Table 5. The isotopic composition of Ag2O standard measured in our lab at LGGE and at 

other partner labs of LSCE (Paris) and IMAU (Utrecht) 

*LSCE: the measurement was done at LSCE using the reference gas from LGGE 

(LGGE#1) 

6.4.2. Discussion 

The isotopic measurements are fairly reproducible within each lab considering the 

error bars. However, there exists a significant difference between the results from the 

three labs. The difference can be associated with: 
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‐ Systematic differences arising from differences between instruments, and sample 

handling and analysis  

‐ Differences between working standards of each laboratory i.e. how well is the 

working standard of each laboratory calibrated to primary standards 

‐ Stability of the Ag2O during sample transportation and storage 

 
Systematic difference 
 

 During analysis of the Ag2O samples, there is always an error associated with its 

measurement. Besides the precision of a given measurement at a specific laboratory, 

additional errors can be introduced due to variability in sample handling and analysis. 

Even if a manual for sample handling and analysis was provided for each laboratory, 

these errors can be minimised but not avoided.  

 During the analysis of Ag2O in this study, all the laboratories involved followed 

similar but not exact same procedure. For example CO2 trapping and removal of water 

was done in a fluorination line at LSCE where as the other labs used Ascarite and 

Perchlorate traps. It may not significantly affect the observations, but it still shows 

variability in sample handling.  

 
Differences between working standards due to calibration and long-
term drift 

 
 Differences between the working standards isotopic values of each lab can lead to 

a significant difference in the measured isotopic values of Ag2O. It is customary to 

calibrate the working gas of a given lab with another lab’s working gas, which is already 

calibrated against the VSMOW scale. For example, the working gas LGGE#1 is 

calibrated against the working gases of laboratories in California, USA and Heidelberg, 

Germany. However, during this interlab calibration process, errors could be introduced in 

each step. Additional difference can arise from variation of the laboratory used to 

calibrate the working gas, and the accuracy of calibration of the working gases of these 

laboratories. For this purpose, an aliquot of LGGE#1 was sent to the collaborating 

laboratories and a smaller but significant difference was observed as shown in Table 7. 

Additionally, each participating lab sent their respective working standards with the 

corresponding isotopic values (Table 6) and it was measured in LGGE. The long-term 

drift of the LGGE#1 standard was also tested and there was a minor change of about 0.3 

‰ from its value in 2006.  
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Table 6. The isotopic composition of the working gases of the laboratories participated in 

this study. The laboratories obtained these values via intercalibration with other working 

references and all values are normalized to VSMOW scale. 

Table 7. The interlaboratory isotopic composition measurements for the working gases of 

the different laboratories measured at LGGE using LGGE#1 as reference gas. All the 

values value are normalised to VSMOW scale and the difference with the values 

provided by each laboratory (table 6) is given.  

 

 

 
 

 

*Denotes measurement conducted at IMAU using their reference gas 

Comparing tables 6 and 7, it can be seen that there is a significant difference between the 

working standards isotopic composition measured at different laboratories. For example 

the working reference gas of LGGE (LGGE#1) has lower oxygen isotopic values when 

measured at IMAU. These differences imply that the observed significant difference in 

isotopic measurement values of Ag2O can be associated with this effect. As which 

laboratory had made the right measurement value is unknown, a simple calculation was 

made assuming the isotopic values of the working gases for each lab measured at LGGE 

are true values i.e. the isotopic values for the working gases measured at LGGE for the 

two labs were used instead of the !17
O and !18

O values provided by the labs. The 

recalculated data in table 8 showed better agreement between the different measurements. 

However, it can be seen that an improved interlab calibration should be performed to 

obtain reproducible values. 
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Table 8. Recalculated oxygen isotopic values for the Ag2O standard expected to have a 
17

O excess value about 20‰.   

 
 

 

 

 

6.5. Conclusions and outlook 

We took a first approach towards preparing a reference material with non-mass 

dependent behaviour for oxygen isotopic measurements, Ag2O, from AgNO3 and 

enriched water in basic medium. The oxygen gas obtained from the thermal 

decomposition of Ag2O showed varying results based on the oxygen isotopic 

measurements performed at LGGE or in collaborating laboratories. The reason for this 

difference is not clearly known at this stage of the study. However, the major cause of 

this difference could be interference from atmospheric CO2. It is verified in this study 

that CO2 could strongly influence the measurements obtained for the oxygen gas due to 

the strong CO2 absorption nature of Ag2O. Additional reason for the variability observed 

during the interlab measurement can be the inconsistency between the working gases of 

each laboratory on the VSMOW scale, which may happen during calibration of the 

working gases. Even if all the laboratories did not participated in this interlab calibration 

procedure, a significant difference was observed between LGGE, LSCE and IMAU 

working standards. Further interferences could also arise from sample transportation, 

handling and storage procedures. 

As the final phase of this study is not conducted, a few recommendations can be 

pointed out. The first approach should be to produce Ag2O in CO2 free environment. 

Even if CO2 is abundantly available in the atmosphere, using a specific CO2 free 

production system where an inert gas can be flushed through the system during 

equilibration and preparation of Ag2O steps should be setup. This can lead to a significant 

improvement on the quality of the reference material.  

Secondly, interlab calibration should be performed in more organized, 

reproducible and careful way. In this experimental study some of the laboratories 

analysed the Ag2O samples more than 2 months after they receive these samples. This 

can lead to errors arising from sample storage and stability, further complicating the 

source of inconsistency.  

Finally, the long-term stability of the Ag2O product should be tested in a more 

controlled way. From a single batch of silver oxide, a couple of samples should be placed 

at different environmental conditions such as in light/dark, in dry/wet condition and at 

room temperature or in an oven, and the stability should be tested to decide where and 

how the product should be stored and handled.  
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Annex B 
 
17O excess transfer during the Br + O3   BrO + O2 reaction 
 

 The main objective of this study was to establish the 
17

O-excess transfer function 

during the Br + O3  BrO + O2 reaction, which is an important chemistry for the polar 

nitrate. Accordingly, BrO radical formed during ozone depletion events in polar spring 

can oxidize NOX and eventually produce BrNO3, which hydrolyses to produce HNO3 

(Morin et al., 2007a). The triangular ozone molecule, with two terminal and central 

oxygen atoms has a 
17

O-excess on the terminal oxygen atom and there is a high 

preference for this terminal atom to be transferred to other compounds during oxidation 

(Bhattacharya et al., 2008;Savarino et al., 2008). Hence, BrO will have an isotopic 

anomaly greater than the bulk ozone due to its formation from ozone via terminal oxygen 

atom transfer which can further incorporate this isotopic anomaly to nitrate. Accordingly, 

the highest 
17

O-excess in nitrate (36 ‰) was measured during highest levels of BrO (peak 

of ozone depletion events, ODE) and lowest levels of ozone. However, the transferable 
17

O-exces is not experimentally quantified and currently it is assumed that the transfer of 

a terminal oxygen atom from ozone to BrO and eventually to nitrate is 1.5 × Δ
17

O(O3,bulk) 

but it needs to be verified experimentally. 

 Similar to the NO2 + O3 reaction presented in chapter 2, we have followed similar 

idea and used the same experimental procedure (see Chapter 3 method section). In short, 

ozone was generated via electrical discharge of oxygen gas with Δ
17

O (O3) = 5 – 40 ‰. 

Part of this ozone was reacted with Br radical generated from photolysis of Br2 when 

exposed to visible light. As the Br + O3 reaction produces highly reactive BrO radicals 

which can undergo self-addition, and produce extra oxygen (BrO + BrO  Br2 + O2). 

We have used dimethyl sulfide (DMS) to counteract the self-addition reaction i.e. as soon 

as BrO is formed, it will react with DMS and the oxygen from BrO will be locked as 

DMSO, ensuring absence of extra oxygen atom. Oxygen gas produced during this 

reaction was collected and analyzed for its triple oxygen isotopic composition in addition 

to the aliquot of initial ozone.  

 The transfer function (∆
17

O(O3*) = (1.10 ± 0.21) × Δ
17

O(O3)bulk + (10.45 ± 1.07)) 

was derived based on the isotopic compositions of the initial ozone and oxygen gas 

products. However, this function is valid only if the oxygen gas is generated from the Br 

+ O3 reaction only (and not also from side reactions). Unfortunately, BrO radical 

produced during the reaction undergo fast self-addition reaction producing additional 

oxygen. DMS can also react slowly with ozone and produce oxygen, leading to additional 

oxygen atoms.  

 Hence, under the experimental setup followed in this study, it was not possible to 

avoid the side reactions and interpretations of the findings from this study were 

impossible. In the future, this reaction has to be studied in a setup such as an 

environmental chamber coupled with an FTIR spectroscopy where the reaction progress 

can be followed online. In addition, using another organic compound than DMS, which 

may quench BrO effectively, and with no side reaction shall be used to avoid 

complications arising from multiple oxygen sources. 
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Annex C 
 

Nitrogen isotopic fractionation between NO and NO2 

 

Objective 

 

 The main objective of this study was to determine the isotopic fractionation of 
15

N 

during the NO-NO2 equilibrium given by: 

 

  
14

NO + 
15

NO2 ↔ 
15

NO + 
14

NO2    

 

As briefly explained in the previous chapters, nitrate is formed from NOX via various 

oxidation mechanisms. These pathways can be inferred from the stable isotopes ratios of 

nitrate obtained from different sites. The variability in (δ
15

N) signal of atmospheric 

nitrate can be associated with variation in NOX source, partitioning of 
15

N between NO 

and NO2, isotopic fractionation during nitrate formation from NOX, or transport of 

atmospheric nitrate (Morin et al. 2009). However, these processes are not currently well 

constrained, and the focus of this study was to understand the partitioning of 
15

N between 

NO-NO2 equilibrium. Freyer et al. (1991) observed the seasonal variation in δ
15

N values 

for NO2 collected in Jülich, Germany. Accordingly, relatively higher δ
15

N values were 

measured in autumn and winter when compared to the lower summer and spring 

measurements. From the measurements of δ
15

N and molar ratios of NOX and NO2, the 

authors have indirectly derived an effective 
15

N exchange constant (K’) = 1.018.  

 In the presented study here, we have followed an approach to directly derive the 

δ
15

N exchange constant during the daytime and nighttime conditions. Note that during the 

daytime, there is the fast NO-NO2 interconversion via oxidation with O3 and photolysis 

(the Leighton cycle); however, in the nighttime only isotopic exchange will take place. 

 The 
15

N fractionation constant between NO and NO2 during the daytime or 

nighttime can be determined from the equilibrium concentration of the reactants and 

products via: 

 

 K =

14
NO[ ] 15

NO
2[ ]

15
NO[ ] 14

NO
2[ ]

      

 

where K is the equilibrium constant (note that for isotopic exchange reactions involving a 

single atom, the fractionation factor (α) is same as the equilibrium constant). 

 

Experimental setup 

 

 In order to observe this exchange reaction, an experimental setup was designed 

using the environmental chamber coupled with FTIR spectroscopy available at CCAR, 

Copenhagen. With such setup, we were able to measure in-situ the time evolution of the 

concentration of each species (
14

NO, 
15

NO, 
15

NO2, 
15

NO2) while mixed in the reaction 

chamber.  
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 First, we have prepared enriched 
15

NO2 from H
15

NO3 solution via decomposition 

using Cu metal. The 
15

NO2 gas produced was then collected and purified from remaining 

HNO3 and NO via cryogenic trapping. A known amount of this gas and an industrial 
14

NO were introduced into the environmental chamber which was then filled with air to 

an atmospheric pressure. Then, an IR spectra was recorded at different durations to 

observe the rate of loss of 
14

NO and 
15

NO2 and generation of 
15

NO and 
14

NO2 until no 

change in peak size is observed, confirming that equilibrium is attained. Then based on 

each recorded spectras, we have calculated the amount of each species (
14

NO, 
15

NO2, 
15

NO and 
14

NO2) from their respective peaks, and using MALT5 computer program (The 

program enabled to determine the amount of different species from their recorded 

spectras based on its reference library of calibrated peaks corresponding to different 

molecules).  

 

Results and difficulties  

 

 The main difficulty during this study was the issue of conservation the total NOX 

in the system. Accordingly, the total amount of the four species (
14

NO, 
15

NO2, 
15

NO and 
14

NO2) in the system was not conserved in this experimental study. We have always 

observed lower total NOX level than the sum of the amount of each species denoting 

possible presence of NOX sink. This might be associated with wall reactions in which 

NOX is lost from the system. Even if we have cleaned the environmental chamber 

repeatedly with oxidants such as ozone and irradiating with UV-lamps, we could not 

prevent the loss of NOX. Under these conditions, it was not possible to further proceed on 

this experiment.  

 In the future, such experimental study should be conducted using a similar 

experimental setup but clean enough to avoid wall reactions. 
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Annex D 

 

Nitrate preconcentration protocol 
 
 The procedures followed during preconcentration of nitrate in the snow samples 

at the warm lab in Dome C, Antarctica is shortly described below. The basic principle of 

this method is that an anion exchange resin has different affinity towards anions, and 

when a liquid sample is poured on these types of resins, anions are trapped one the resin. 

The trapped ions can be eluted and recovered with another eluent with greater affinity 

and/or higher concentration to the resin.  

 The Bio-Rad AG 1-X8  200-400 mesh chloride form is an anion exchange resin with 

higher affinity for NO3
-
 than Cl

-
 and used in this study. 

 

 1M NaCl solution was prepared and equal volume of this solution (5 ml 

each in this case) and the resin were mixed and allowed to settle. The 

supernatant was discarded and another 10 ml 1M NaCl solution was added. 

The procedure was repeated three times to have a maximal incorporation of 

Cl
-
 ions to the resin and remove any other anions, especially nitrate 

contamination  

 0.6 ml of this mixture was transferred into the tip of the funnel carefully and 

it was rinsed 5 times with 5 ml 1M NaCl solution to remove any nitrate that 

might be present including manufacturing impurities.  

 The melted snow sample was then poured into the funnel and left dripping 

until the entire sample pass through the resin. 10 ml MQ water was added to 

wash the side of the funnels if there is nitrate left on the walls. 

 Finally, the nitrate trapped in the resin was eluted by adding 2 times 5ml of 

1M NaCl. Then, the samples were collected in 20 ml plastic cups and then 

covered with parafilm and kept frozen. Note that the resin has a capacity of 

1.2 mmol.ml
-1

 and we used 0.3 ml of resin, which can hold about 360 µmol 

nitrate that is much bigger capacity than the nitrate available in our samples. 

 

These samples were shipped frozen to Grenoble for analysis of its O and N isotopic 

composition.   
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Annex E 
 

Nitrate photolysis experiments – isotopic data correction  
(provided by Joseph Erbland) 

 
The nitrate photolysis experiment pushes the denitrifier method to its limits. 

Indeed, the sub-sampling of the snow column leads to samples with nitrate amounts as 

low as 5 nmol in a few ml. Nitrate pre-concentration on anionic resins is too risky while 

dealing with nitrate amounts on the order of tens of nanomoles. This is due to a very 

small blank which would largely affect the measurement. It was therefore decided to run 

the samples at a fixed volume but with varying nitrate amounts and to apply a size 

correction to account for that. Following the identical treatment of samples and standards, 

the latters are prepared in the same way as the samples: in the same matrix (MQ/Dome C 

water), same volume, nitrate amounts which vary in the same range (usually 5 to 100 

nmol). 

The correction of the nitrogen isotopic values is undertaken by assuming that the 

sample N2 is contaminated with a small N2 blank which originates whether from a NO3
-

/NO2
-
 blank at the bacterial stage, a N2O blank or a N2 blank in the N2O line. A blank at 

the bacterial stage is very unlikely because the bacteria where flushed with He before the 

injection of the sample. Also, a N2O blank from the air is unlikely as well because N2O 

levels in the atmosphere are low. The blank is more likely to originate from atmospheric 

N2. The size and the isotopic composition of this blank must be determined using the 

standards at various sizes. Any N isotopic fractionation at the bacterial stage or in the line 

is ignored.  

 

Let's call Abk, Aspl and Ames the respective sizes (in V.s, not in nmol) of the blank, 

the initial sample and the measured mixture of the two and δ
15

Nbk, δ
15

Nspl and δ
15

Nmes the 

respective isotopic composition in nitrogen of the blank, the initial sample and the 

measured mixture of the two. We should bear in mind that δ
15

Nspl refers to the δ
15

N of the 

sample as it would be measured by the mass spectrometer in the absence of the blank. 

This value still needs to be calibrated to account for any fractionation at the bacterial 

stage and in the mass spectrometer. The isotopic mass balance of the mixture gives the 

following schematic and equation: 

 

 

 

 

 

 

 

 

 

δ
15

Nmes. Ames = δ
15

Nbk. Abk + δ
15

Nspl. Aspl 
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The following figure shows an example with standards ranging 20 to 100 nmol 

and for Abk = 0.44 V.s and !15
Nbk = -20 ‰. These values are obtained by varying Abk and 

!15
Nbk until reducing the standard deviation of the residuals to its minimum value. This 

approach (calculating the standard deviation of the residuals) is similar to the method 

employed for standards run at a given amount. The grey lines are obtained for !15
Nspl 

ranging -60 to 190 ‰ with a 10 ‰ resolution. We can clearly see that !15
Nspl represents 

an asymptotic value. 

 

This approach gives a mean error value (solid horizontal line in the lower panels) 

which is close to 0 ‰ for !15
N which means that the method does not incorporate a 

significant bias. The 1-sigma uncertainty reported using this method is 0.5 ‰ which is 

very satisfactory (at 100 nmol this value can be as low as 0.3 ‰) 

For oxygen, it is a little bit more complicated because an isotopic exchange at the 

bacterial stage must be considered. Focusing on -17
O, we neglect any isotopic 

fractionation because we assume that those are mass-dependent. We also neglect any 

blank effect.  Indeed, any atmospheric O2 blank is considered negligible because the N2 

blank is small. For the sake of simplicity, we also neglect any consumption of O2 in the 

gold tube. Let's call AIE, Aspl and Ames the respective sizes (in V.s, not in nmol) of the 

isotopic exchange, the initial sample and the measured mixture of the two and -17
OIE, 

-17
Ospl, -17

Omes the respective 
17

O-excess of the isotopically exchanged fraction, the 

initial sample and the measured mixture of the two. We should bear in mind that -17
Ospl  

refers to the -17
O of the sample as it would be measured by the mass spectrometer in the 

absence of the isotopic exchange. This value still needs to be calibrated to account for 



 

  173 

any fractionation at the bacterial stage and in the mass spectrometer. The isotopic mass 

balance of the mixture gives the following schematic and equations: 

 

 

 

 

 

Δ
17

Omes. Ames = Δ
17

O. (Aspl – AIE) + Δ
17

O. AIE 

 

This approach gives a mean error value (solid horizontal line in the lower panels) 

which is less than 0.1 ‰ for Δ
17

O which means that the method does not incorporate a 

significant bias. The 1-sigma uncertainty reported using this method is 0.5 ‰ which is 

very satisfactory (at 100 nmol it can easily go down to 0.4‰) 

The bias is larger (higher than 1‰) for δ
18

O, most probably because the oxygen 

isotopes may well be fractionated at the bacterial stage or further in the analytical 

process. The correction routine would benefit taking this effect into account. For now, the 

δ
18

O data must be considered with caution. 
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Post-depositional processes alter nitrate concentration and nitrate isotopic composition in the top layers of
snow at sites with low snow accumulation rates, such as Dome C, Antarctica. Available nitrate ice core
records can provide input for studying past atmospheres and climate if such processes are understood. It
has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the
photolysis products have a significant influence on the local troposphere as well as on other species in the
snow. For unclear reasons the range of reported quantum yields for the main reaction spans orders of
magnitude, constituting the largest uncertainty in models of snowpack NOx emissions. Here a laboratory
study is presented that uses snow from Dome C and minimizes effects of desorption and recombination by
flushing the snow with pure N2 at water vapor equilibrium during irradiation with UV light. A selection of
UV filters allowed examination of the effects of the 200 and 300 nm absorption bands of nitrate and to emulate
actinic fluxes similar to those in Dome C. Nitrate concentration and actinic flux were measured in the snow and
the quantum yield was observed to decrease with increasing exposure to UV radiation. Observed values for the
quantum yield lie in the middle of the range of previously reported values and the superposition of photolysis
in two photochemical domains of nitrate in snow is proposed: one of photolabile nitrate and one of trapped
or buried nitrate. The difference lies in the ability of reaction products to escape the snow crystal, versus
undergoing secondary (recombination) chemistry. A metric is developed to render these results applicable to
field data. Modeled NOx emissions may be increased significanty due to the observed quantum yield in this
study influencing predicted boundary layer chemistry significantly including ozone concentrations. For the
tested snow, the quantum yield changes from 0.44 to 0.05 within what corresponds to weeks of UV exposure
in Antarctica. The quantum yield in the 200 nm band was found to be ∼ 1%, contradicting the predictions of
aqueous chemistry. A companion paper present an analysis of the change in isotopic composition of snowpack
nitrate based on the same samples as in this study.

PACS numbers: Valid PACS appear here
Keywords: Suggested keywords

I. INTRODUCTION

The nitrogen cycle is central to atmospheric chemistry
as it governs photochemistry and oxidant budgets.1,2 The
photochemistry of nitrogen oxides (NOx = NO + NO2)
produces ozone in the troposphere and the NOx reac-
tions are the most important catalytic cycle removing
ozone from the stratosphere.3 Oxygen atoms are ex-
changed rapidly between ozone and NOx, with the re-
sult that polar NOx contains material from atmospheric
ozone. Therefore, information on the atmosphere’s ox-
idative capacity is stored in the main sink of the cycle,
deposited nitrate.4 The information contained in ice core
records of nitrate buried in polar regions may help in re-
constructing the oxidative conditions prevailing in past
climatic conditions5 and in better constraining the nitro-
gen budget.6,7 Nitrate is detected easily using e.g. ion
chromatography, but post-depositional processes in the
snow alter the nitrate concentration and prevent inter-

a)Electronic mail: jsavarino@lgge.obs.ujf-grenoble.fr

pretation of the record at sites with low snow accumula-
tion rates.8–10 Nitrate profiles in the top centimeters of
snow from e.g. Dome C, Antarctica, show a significant
decrease,11 while field measurements in summer show in-
creased NOx emissions above the snow pack at the same
locations.12,13 Elevated polar NOx levels are suggested
to play a central role in remote boundary layer chemistry
and cause ozone levels to rise.14 Laboratory experiments
and field studies indicate that desorption and photolysis
of nitrate in snow play a key role.

The reported values for the quantum yield of nitrate
photolysis in snow, ΦNO−

3

, range from 0.0019 (Chu and

Anastasio15) to 0.6 (Zhu et al.16), depending on the ex-
perimental method. Chu and Anastasio froze a prepared
aqueous NaNO3 solution, irradiated it with UV light at
wavelength longer than 300 nm and detected the resulting
OH radicals.15 They argue that photolysis takes place in
the disordered interface (DI, sometimes called the quasi
liquid layer17). The small value they obtained for the
quantum yield supports the theory that product species
are preferably trapped by the aqueous cage effect (see be-
low) potentially lowering the observed quantum yield.18

Zhu et al. conducted experiments using HNO3 ad-
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sorbed on an ice film.16 They detected NO2 using cavity
ring-down spectroscopy and showed that both the ab-
sorption cross section and the quantum yield of nitrate
have much larger values than reported in liquid phase15;
both increase by a factor > 100 at 308 nm. Products
from adsorbed species seem to leave the ice more easily,
increasing the observed quantum yield. In another exper-
iment by the same authors HNO3 adsorbed on aluminum
shows even higher values of ΦNO−

3

. The authors there-

fore argue that the actual quantum yield for photolysis
of HNO3 adsorbed on ice may be even larger than 0.6 be-
cause some of the NO2 product is dissolved in water/ice.
The difference in the reported quantum yields has a

direct impact on modeling studies which try to match
the measured NOx flux from the snow pack with the
underlying photochemistry. In a recent study, Frey et
al. modeled daytime NOx emissions in the austral sum-
mer at Dome C that matched the observations, but
under-predicted nighttime NOx emissions by a factor
of ∼ 3 − 4.13 Such studies of the NOx flux from the
snowpack often consider only aqueous chemistry and
use the smaller of the reported values for the quan-
tum yield.13,19,20 These studies all point out that precise
knowledge of the quantum yield of nitrate photolysis in
snow is among the main uncertainties to current models.

A. Domain of snow photochemistry

The physical and chemical behaviors of species in snow
are altered by their microphysical location due to differ-
ences in phase and the dielectric constant and electri-
cal fields arising from e.g. salt, dust and phase bound-
aries, with important implications to snow-atmosphere
interactions.21,22 Potential photochemical reaction sites
for chromophores in snow such as nitrate include: bulk
ice, water in or on the snow, the DI, the grain bound-
ary (where the Kelvin effect minimizes freezing), the ice
surface and inside mineral dust or sea-salt impurities.
The term domain of snow photochemistry is used here,
following Davis et al.,18 to describe the microphysical
properties of the region around the nitrate chromophore
that affect its photodissociation. For example the phase
and ionic strength of the nearby region will modify the
absorption cross section and photoproduct-cage interac-
tions. As summarized in a recent review by Bartels-
Bausch et al., the rate constants for a given chemical
reaction can differ by orders of magnitude depending on
the domain of snow photochemistry.17

One example of a domain-specific influence on a pho-
tochemical reaction is the cage effect. Following photo-
excitation in liquids and ice, the surrounding medium
may inhibit the initially formed primary products from
escaping the cage of water molecules surrounding them.
The products loose their excess energy via collisions to
the water molecules and often reform the initial com-
pound. This process is called the cage effect and has been
observed for many systems including organics in ice23–25

and nitrate photolysis in aqueous solution.26 Kurková et
al. show that the strength of the cage effect for organic
compounds is a function of temperature (stronger recom-
bination at lower temperatures) and microphysical state
(frozen solutions show a cage effect at much lower tem-
perature than artificial snow).24

In the case of nitrate there is evidence of recombination
of photoproducts and of the existence of two reservoirs
of nitrate which behave differently upon photoexcitation:
In an early study, Dubowski et al. report changes in the
nitrate photolysis product distribution over time.27 This
was associated with the depth of different layers allow-
ing for stronger secondary chemistry deeper in the snow.
In a similar study, Beine and Anastasio report changes
in the photolysis rate of HOOH over time.28 More re-
cently, Baergen and coworkers saw four orders of magni-
tude faster nitrate photolysis in grime than in aqueous
solution.29 In addition they observed a background sig-
nal associated with photolysis of more strongly bound
nitrate. Similarly, Blunier et al. observed a nitrate frac-
tion which could not be photolysed, no matter the length
of photolysis.30 Finally, Thomas et al. set up a chemi-
cal model which reproduced NO ratios in the boundary
layer (at Summit, Greenland) by assuming a fixed ratio
between nitrate in the DI and in the snow grain.20 Davis
et al. were among the first to suggest multiple nitrate
reservoirs18 that result in a superposition of photochem-
istry from different snow-photochemical domains. The
microphysical location appears to control how labile ni-
trate is with respect to UV light in snow. Therefore, this
study distinguishes two domains of nitrate photochem-
istry in snow: photolabile nitrate and buried nitrate.

B. Reaction mechanism

Several nitrate photolysis reaction mechanisms have
been proposed.31–35 An overview of the main reactions of
concern to this work is shown in Figure 1. The complete
mechanism is described in the Appendix, and a short
summary is given here.
Even though the aqueous chemistry of nitrogen

species31 is generally not assumed to be representative
of snow chemistry,17 it is a usefull starting point. In the
aqueous phase the nitrate ion absorbs light over a wide
range of wavelengths and shows two prominent absorp-
tion bands at around 200 and 300 nm, as shown in Figure
2. The 200 nm band is about 1000 times stronger than
the 300 nm absorption band, but typically plays a smaller
role in environmental studies due to the onset of the ac-
tinic flux at Earth’s surface around 300 nm, cf. Figure
2. The following reaction is generally assumed to be the
dominant mechanism in snow

NO−

3 + hν
H+

GGGGGGGA NO2 +OH

This corresponds to reactions A.1 and A.3 in Figure 1 and
the Appendix. NO2 can enter the gas phase and leave
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Figure 1. Scheme of the main chemical reactions. The square
brackets denote a solvent cage. Product species like NO2

may leave the system as gases, undergo photolysis or take
part in secondary reactions as indicated. Blue color indicates
reactions only possible at certain photolysis wavelengths. The
numbers refer to reactions in the Appendix.
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Figure 2. Actinic flux of different sources (left axis) and
the liquid phase nitrate absorption cross section (dashed line,
right axis). The modeled actinic flux of the sun at Dome C
(noon of 1st of January 2012, in Antarctica at 3000m ele-
vation, with an overhead ozone column of 300 Dobson Units
calculated using the TUV model36) and the Xe lamp’s spec-
trum measured 1 cm inside the snow (with different filters in
place, cf. legend). Note the logarithmic scale on the right.

the system, consistent with observations of elevated NO2

fluxes from the snowpack.13,14 NO2 can also be photol-
ysed or undergo further reaction. Pathways A and B in
Figure 1 show reformation of nitrate from its own pho-
toproducts, cf. reactions A.5 - A.11 and A.17 in the Ap-
pendix.

Aqueous chemistry on its own may not resemble nitrate
snow-phase chemistry for two reasons: i) the superposi-
tion of photochemistry of different nitrate domains and

ii) the recombination of nitrate due to secondary chem-
istry (pathways A and B in Figure 1) and the solvent
cage (reaction A.2). Both recombination reactions and
the cage effect lower the observed quantum yields as the
reactant is reformed and might show reaction rates that
depend on photoproduct concentrations. Therefore, the
presented mechanism does not include reaction rates but
it is argued in this study that the effects of superposition
of domains and recombination chemistry should be (and
for reasons of feasibility even have to be) included in the
quantum yield.
Light of wavelengths around 200 nm is not typically

present in the troposphere, but plays a role in the strato-
sphere at sufficient height. Since the deposited nitrate
in snow at Dome C is suspected to originate from polar
stratospheric clouds (typical altitude 15-20 km), it is ex-
posed to radiation of such wavelengths. At wavelengths
shorter than 260 nm, the overall reaction scheme is es-
sentially the same as for longer wavelengths, with strong
cage effects and a product pool that might recombine to
form nitrate, cf. Figure 1 and the Appendix.
The goal of this work is to study the photolysis of

nitrate in natural snow under controlled conditions in-
cluding light spectrum and temperature while flushing
the snow to test for desorption and recombination. This
work describes the setup, sample handling, data analysis
and interpretation in terms of photochemistry, while the
companion paper discusses the implications in terms of
stable isotopic composition of nitrate of the same sam-
ples. In the present study, the quantum yield is deter-
mined by measuring the actinic flux inside the snow and
the nitrate concentrations before and after illumination
with a Xenon lamp. Two hypotheses are tested:

• Since the rate of reformation of nitrate depends
on the concentration of nitrate photoproducts, the
quantum yield is dependent on light intensity.

• Since the different domains of nitrate in snow (pho-
tolabile vs. buried) show different behavior under
UV exposure, these two pools account for the large
variation reported in literature values of ΦNO−

3

.

II. THEORY

A. Mass-balance equation

Taking the reaction mechanism in Figure 1, the mass-
balance equation for nitrate is as follows:

d c
(

NO−

3

)

dt
= −c

(

NO−

3

)

(J2 + J3 + J4)

+kA c
(

NO−

2

)

+ kB c(NO2) + J2 c
(

NO−nπ∗

3

)

(1)

Here c denotes concentrations; negative terms indicate
nitrate loss and positive terms nitrate production. Quan-
tities denoted by J are first-order rate constants of pho-
tolysis (photolysis rates in short) and those denoted by
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k are reaction rate constants. The subscripts refer to re-
actions as given in Figure 1 and in the Appendix, e.g. J3
and J4 represent the rates of photolysis producing NO2

and NO−

2 respectively. Subscripts A and B indicate sec-
ondary chemistry reforming nitrate which is not resolved
in this study, cf. the Appendix. The total photo absorp-
tion rate is J1 + J12 where only J1 = J2 + J3 + J4 is
considered in eq. 1, i.e. absorption in the 300 nm band.

The effect of reaction A.2, relaxation of NO−nπ
∗

3 to NO−

3 ,

is accounted for by the term J2 c
(

NO−nπ∗

3

)

.

In the present study, only nitrate concentrations are
measured and therefore the individual terms in eq. 1 can
only be discussed indirectly. Nitrate photolysis in snow is
assumed here to be a single-step, unidirectional reaction
and the right-hand side of eq. 1 can be reduced to a single
loss term giving via integration:

J∗

NO−

3

=
− ln f

t
(2)

Equation 2 relates the apparent photolysis rate, J∗, to
the photolysis time, t, and to the measured fraction of
nitrate remaining in snow, f = xi

(

NO−

3

)

/x◦

(

NO−

3

)

,

with measured nitrate mole fractions, x
(

NO−

3

)

(in ppb =
nmol/mol). The subscript i denotes any form of extent,
e.g. photolysis time, and ◦ denotes the initial sample.
The concept of apparent quantities is introduced at this

point (denoted by the ∗ symbol) in order to distinguish
the apparent photolysis rate (derived from measured ni-
trate fractions in eq. 2) from the primary photolysis rates
in eq. 1. Erbland et al. used apparent quantities in a sim-
ilar way to describe isotopic measurements in the field
which incorporated several convoluted, indistinguishable
underlying processes.37

B. Apparent photolysis rate and quantum yield

The apparent nitrate photolysis rate, J∗

NO−

3

, (units of

s−1) is defined by:

J∗

NO−

3

(z) =

∫

I(λ, z)Φ∗

NO−

3

(λ, z)σNO−

3

(λ) dλ (3)

Here, I is the actinic flux in quanta / (cm2 s nm), σNO−

3

is the nitrate absorption cross section in cm2 and Φ∗

NO−

3

is

the apparent quantum yield (dimensionless). The quanti-
ties in eq. 3 are given as functions of the depth of the snow
layer, z, and wavelength, λ, to emphasize the importance
of these parameters. The dependence on temperature,
T , and light beam angle is neglected as experiments are
done at constant temperature and always with the light
beam normal to the snow surface, see below. Most of
the quantities in eq. 3 are not sufficiently characterized
for nitrate photolysis in snow. The actinic flux, I, for
instance, changes nonlinearly in the snow as discussed in
detail in the optical properties section. Also, the spec-
trum of a Xe lamp (used here and in most other studies)

is significantly different from that of the sun resulting in
different photolysis rates.11,38 The absorption cross sec-
tion and quantum yield for nitrate in the liquid phase and
HNO3 in the gas phase have been measured. However,
whether those measurements are applicable to nitrate in
snow or not is questionable, as the microphysical location
of nitrate in ice seems to affect reported values.15,16 Fig-
ure 2 shows some of the quantities of interest for nitrate
photolysis.
The apparent quantum yield, Φ∗

NO−

3

, was introduced

into equation 3 to account for processes in addition to
photolysis that alter the nitrate concentration. It there-
fore implicitly includes the kA and kB terms in eq. 1 as
well as all J terms. Furthermore, differences in reaction
kinetics between different domains of nitrate photolysis
in snow are also included in Φ∗

NO−

3

. In this way, c
(

NO−

3

)

and I – both of which can be determined in the field –
are considered in relation to each other.
Assuming that the quantum yield is independent of

λ15, equation 3 can be rearranged to give

Φ∗

NO−

3

(t, z) =
J∗

NO−

3

(t, z)
∫

I(λ, z)σNO−

3

(λ) dλ
(4)

Equation 4 allows derivation of the apparent quantum
yield from the known actinic flux and an apparent J∗

NO−

3

which was calculated from the measured nitrate concen-
tration in snow. As indicated here and shown later, both
J∗

NO−

3

and Φ∗

NO−

3

are dependent on both depth in the

snow and photolysis time.

C. 200 and 300 nm absorption bands

A Xe lamp was used in the present work, allowing
study of both the 200 and 300 nm absorption bands of
nitrate. J can be divided into contributions from the
wavelength regions of these bands:

JNO−

3

= J200 + J300 = Φ200

∫ 260

220

I(λ)σ(λ) dλ

+ Φ300

∫ 400

260

I(λ)σ(λ) dλ (5)

Here, the ∗ symbol and the depth dependencies of J and
I were omitted for clarity and the quantum yield was
assumed to be independent of λ.15

In order to distinguish the different nitrate absorption
bands experimentally, a UV filter with sigmoidal wave-
length around 280 nm was used in one of two experiments
(#38 & #45) of otherwise identical conditions, i.e. pho-
tolysis time, snow type, flow, etc (see Table I). In princi-
ple, the experiment with the 280 nm filter (#45) gives a
value for J300 which corresponds to the second summand
in equation 5, while the experiment with no filter gives
JNO−

3

from both absorption bands. However, the UV fil-

ter cuts off parts of the 300 nm band which should also
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be accounted for. This is done using a factor, g, which is
evaluated from the ratio of the photolysis rates (with and
without the filter) above 260 nm and is given in Table I.
Φ200 can then be calculated from equation 5 as

Φ200(z) =
JNO−

3

(z)− J300(z)
∫ 260

220
I(λ, z)σ(λ) dλ

=
J38(z)− g280J

45(z)
∫ 260

220
I(λ, z)σ(λ) dλ

(6)

Here, superscripts 38 and 45 indicate experiment ID’s
and g280 is the 300 nm band factor for the 280 nm filter.
The apparent quantum yield for the 300 nm band, Φ∗

300,
is derived from equations 4 and 5 :

Φ300(z) =
JNO−

3

(z)− J200(z)
∫ 400

260
I(λ, z)σ(λ) dλ

=
JNO−

3

(z)− Φ200(z)
∫ 260

220
I(λ, z)σ(λ) dλ

∫ 400

260
I(λ, z)σ(λ) dλ

(7)

D. Optical properties of snow and the Beer-Lambert law

Previous work has shown that the actinic flux, I,
changes nonlinearly with depth in a semi-infinite body
of snow due to prevalent scattering.36 In discussion of
their Tropospheric Ultraviolet Visible (TUV) model, Lee-
Taylor and Madronich document two distinct zones de-
scribed by the ratio of direct and diffuse light.36 Undis-
turbed sunlight has a large fraction of direct light result-
ing in an amplification of the actinic flux just below the
snow surface. Below that zone incoming light undergoes
sufficient scattering in the snow, so that effectively all
light becomes diffuse.
In the diffuse zone, the depth-profile of I can be fit-

ted assuming a unique exponential decay for each wave-
length. The exponential nature of the fit is based on the
(modified) Beer-Lambert law

I (λ, z) = I0 (λ) exp(−z/η(λ)) (8)

where I0 is the actinic flux measured in the uppermost
part of the diffuse zone in the snow and η (λ) is the (ex-
ponential) fitting parameter known as the e-folding depth
(written as η (λ) to avoid confusion with the isotopic frac-
tionation, ε). The quantity η (λ) describes the depth at
which 1/e of I0 (λ) is lost.

E. Antarctic sunny day equivalent

In order to relate laboratory results to field studies, the
exposure to nitrate-active photons is quantified. For this
purpose, an actinometric quantity, the Antarctic sunny
day equivalent numerated as Nasd, is introduced. The

idea is to illustrate the roles of the different nitrate photo-
chemical domains and the importance of secondary chem-
istry as a function of absorbed photons under ambient
conditions. Starting from the term in the denominator
of equation 4 which describes the rate of photon absorp-
tion, the total number of photons absorbed by a sample
in time t, Nph, is given as

Nph(z, t) = t

∫

I (λ, z)σNO−

3

(λ) dλ =
t J (z, t)

Φ (z, t)
(9)

Nph is equivalent to the total number of excited nitrate
molecules based on the liquid phase absorption cross sec-
tion σNO−

3

. The total number of absorbed photons can

be calculated for an experimental sample, N exp
ph , and for

snow for a typical day in Antarctica, N sun
ph , using the

sun’s actinic flux. It is assumed that the quantum yield
determined in this study is applicable to the field in sim-
ilar conditions. Nasd is defined as the ratio of absorbed
photons, and Φ cancels:

Nasd =
N exp

ph

N sun
ph

=
texp Jexp

0.5 tsun Jsun
(10)

Jsun is calculated from the modeled actinic flux at Dome
C, cf. Figure 2, and the (arbitrary) factor of 0.5 accounts
for variations in the actinic flux (e.g. clouds, changes
in ozone column and solar zenith angle). A number of
N sun

ph ≈ 0.5 is derived for tsun = 1d. A value of Nasd = 1
indicates that as many photons were absorbed by nitrate
in the experiment as in one sunny day in Antarctica,
hence the name.

III. METHODS AND MATERIAL

A. Snow

Two batches of snow from Dome C, Antarctica, were
used in the experiments. The first batch was collected on
January 20th 2009 ca. 10 km South (S 75◦ 09’ 0” E 123◦

19’ 25”) of Concordia station (S 75◦ 06’ 00” E 124◦ 33’
29”). The first ca. 10 cm of surface snow was scraped,
homogenized and placed in a thermally sealed double-
walled polyethylene bag. Approximately 5 kg of snow
were collected. The second batch was wind-blown snow
sampled in vicinity of Concordia station on December
5th 2011. The snow was stored until use at -25 ◦C in the
dark.
The nitrate mole fraction on the day of collection was

570 ppb for the 2009 batch and 1822 ppb for the 2011
batch. Comparison to the mole fractions prior to ex-
periments of around 450 ppb (2009 batch) and 1500 ppb
(2011), cf. Table I, indicates only minimal changes during
transport and storage due to denitrification by desorption
of HNO3.
All sample preparation before and after the experi-

ments was done in a cold room at LGGE at -15 ◦C. Inside
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Table I. Overview of experiments. The following properties are listed: snow type, starting nitrate mole fraction, average chloride
and sulfate mole fractions (all in ppb = nmol/mol), photolysis time, t, UV filter sigmoidal wavelength, λfilter, g (indicates how
much the filter cuts off the 300 nm band, see section 200 nm band correction for more details) and gas flow, Q. All experiments
were carried out at -30 ◦C.

Exp # Snow x◦

(

NO−

3

)

x
(

Cl−
)

x
(

SO2−
4

)

t /h λfilter /nm (g) Q /(L/min) Comment
test Dome C (2009) 230.6 – – 260 – 1.1 No light, SSA measurement
25 Dome C (2009) 421.1 131.9 95.9 137.8 – 1.1 Ice accumulation in light pathway
26 Dome C (2009) 482.9 103.4 89.8 4.6 – 1.1
27 Dome C (2009) 466.4 86.1 87.1 88.2 – 1.1
28 Dome C (2009) 503.2 97.9 76.8 114.4 – 1.1 Reverse flow direction
31 Dome C (2011) 1731.0 436.0 86.3 20.3 – 1.1
38 Dome C (2011) 1564.8 – – 162.8 – 2.2
42 Dome C (2011) 1475.9 414.6 118.0 187.2 305 (2.35) 2.2
43 Dome C (2011) 1519.4 434.3 158.4 283.2 320 (3.73) 2.2
44 Dome C (2011) 1434.9 350.0 114.4 139.5 – 2.2 No light
45 Dome C (2011) 1433.9 368.7 102.1 164.0 280 (1.18) 2.2

the cold room, the snow was kept in the dark in insulated
boxes. Before experiments the snow was homogenized by
mechanical mixing to ensure a uniform nitrate distribu-
tion (both, in terms of concentration and its domain), in
all experiments and within each single experiment.

B. Experimental setup

Figure 3 shows an overview of the experiment. The
cylindrical (ca. 400ml) glass cell containing the snow con-
sists of three parts which can be disassembled for filling:
two ends with UV transparent Suprasil windows, and a
center region where the snow is placed and which has
four ports, for temperature and pressure readings, and
in- and outflow of the water saturated nitrogen flow. The
three parts are held together by metal clamps; sealing
o-rings ensure that the closed cell is air tight. A scale
was printed on the outside of the cell to guide subsam-
pling after experiments. The snow cell is placed inside an
environmental chamber of ca 1m3 volume which is tem-
perature controlled via a PC interface. The chamber has
ports which allow tubes and optical equipment to reach
inside.
A Xenon arc lamp (300W, LOT Oriel) is placed at one

of those ports (outside the chamber), together with an in-
frared (IR) water filter to reduce the heat flux into the
chamber, and a holder to place several optional UV filters
to modulate the impinging light spectrum, cf. Figure 2
and Table I. The lamp was adjusted to be collimated at
the snow column front, but due to the nature of the two
arcs occurring within the lamp, the intensity of the beam
was not completely uniform in a plane perpendicular to
the optical axis. The snow cell was always placed in the
same way relative to the fixed lamp, but small variations
could not be avoided. Given the short distance between
the lamp and the snow cell, no large changes in the spec-
trum due to absorption in air were observed.
Water-saturated nitrogen was flowed over the snow

during experiments to remove photoproducts. Evapo-

rated liquid nitrogen (LN2) was used as carrier gas. A
part of the N2 flow was directed through a water bub-
bler in order to provide a water saturation of ca. 150%
for the set temperature of the environmental chamber
and therefore the snow. The super-saturation takes the
temperature difference between room and chamber (in-
side) into account. Since the water vapor pressure scales
with temperature, the excess water is collected in a trap
inside the chamber. After having been saturated with
water vapor at the snow temperature, the flow passes
through the snow in the glass cell and exits via a des-
ignated port. The flow direction can be changed. All
tubes directing the flow are made of stainless steel, as is
the excess water trap. The tubing for the pressure gauge
and the exit line of the flow are made of Teflon. The tem-
perature was measured using a thermocouple placed in a
half-open ethanol-filled glass vial which was introduced
into the snow column.
Prior to experiments, the gas line providing the sat-

urated nitrogen flow was heated using a heat gun while
flushing with nitrogen to remove any contaminants in
the tubes. In between experiments the nitrogen flow was
kept above zero to prevent deposition and to sublimate
any ice formed in the part of the gas line inside the cham-
ber (including the excess water trap.) The water in the
bubbler was renewed regularly; tests of the water after
several runs always showed nitrate concentrations below
the detection limit.

C. Experimental procedure, sample treatment and

subsampling

A known mass of snow was homogenized and trans-
ferred into the pre-cleaned and cooled snow cell which
had a Teflon sheet wrapped around its inside wall. This
sheet ensures efficient removal of the snow after the ex-
periment, as otherwise it sticks to the glass wall. The
cell was filled vertically using a plunger which ensures
a planar front (i.e. irradiated surface) and then closed
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Figure 3. Schematic drawing of the experimental setup and snow cell. The (ca. 400ml) snow cell has UV transparent Suprasil
windows and a printed scale on the outside to guide subsampling after experiments. It is placed, together with the excess water
trap, inside a temperature controlled environmental chamber (dashed line). The Xe lamp, IR water filter, optional UV filters
and flow preparation setup are partly outside the environmental chamber, but are connected to the snow cell via ports. Pure
nitrogen is provided from a liquid nitrogen tank. The flow direction is indicated by the small arrows and can be varied. MFC
stands for mass flow controller.

and placed inside the pre-cooled environmental cham-
ber where all tubes and ports were connected. Once the
temperature of the snow was stable, the experiment was
started by flowing the conditioned stream through the
snow and switching on the lamp.
The snow column is usually significantly hardened at

the end of an experiment, so that it can be pushed out of
the cell easily and sliced into pieces of ca. 1 cm thickness
using the scale on the cell. These slices are weighed indi-
vidually in clean bags and then transferred into two vials
each (all pre-cleaned), one for ion concentration and one
for isotopic measurements.39 Sample vials were kept in
insulated boxes in the dark in the same cold room until
measurement.

D. Specific surface area of the snow, SSA

Test runs without a lamp were performed to ensure
the snow is not altered chemically or physically due to
the flow system (e.g. desorption, crystal growth). Besides
measuring nitrate concentrations as described below, the
specific surface area (SSA) of the snow was measured be-
fore and after the run. In order to do so, snow samples of
the same batch which was used for the experiment were
stored in LN2 to make sure their properties don’t change
during storage. Also, after the experiments, a portion
of the snow was stored in LN2. The SSA was measured
using the DUFISSS instrument (DUal Frequency Inte-
grating Sphere for Snow SSA measurement) described
elsewhere40,41. Briefly, DUFISS is based on the measure-
ment of the hemispherical infrared reflectance of snow
samples using a laser diode at 1310 nm, an integrating
sphere, and InGaAs photodiodes. The instrument was

calibrated using different reflectance standards prior to
measurements. All SSA samples were analyzed at the
same time to minimize variation. Samples were removed
from the LN2 dewar some hours before the measurement
to allow the snow to equilibrate with the cold room’s
temperature.

E. Chemical and isotopic analysis

Ion chromatography (Metrohm) was used to measure
the nitrate, sulfate and chloride concentrations in each
sample. Every set of ion chromatography measurements
used freshly prepared standards and eluents.
The stable oxygen and nitrogen isotope ratios of ni-

trate were measured for each subsample. The results
and discussion of this data are presented in the compan-
ion paper.39

F. Optical characterization

Past work has given considerable attention to describ-
ing the physical (e.g. optical) properties of snow to model
the actinic flux inside the snow pack (e.g. using the TUV
model36 by Lee-Taylor and Madronich). However, a
TUV-snow model cannot be used to calculate the optical
behavior inside the snow since the geometry of the snow
cell deviates significantly from the assumption of a semi-
infinite snow pack. Therefore, an optical detection sys-
tem consisting of a Maya2000PRO photo-spectrometer
(wavelength region 220-400 nm), an optical fibre (solar-
ized, 600µm diameter) and a cosine corrector (CC-3-UV-
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Figure 4. Sketch of the irradiance measurement (a) and beam
profile (b) inside the snow column. The optical fibre was
inserted in the snow using one of the ports of the snow cell.
Measurements were taken at the three positions 1, 2 and 3.
The beam profile illustrates the assumed spacial (Gaussian)
distribution of the actinic flux inside one disk/subsample of
the column (indicated in (a) by the grey cylinder.) The actinic
flux is non-zero at the edges (positions 1 and 3).

T) was calibrated using a calibrated light source (DH-
2000-CAL, all components Ocean Optics Inc.) in order to
measure absolute irradiances. All spectra were corrected
for dark noise, the integration times were varied depend-
ing on signal strength (up to the instrument maximum
of 10 s) and spectra were averaged at least 10 times. The
calibration using the DH-2000-CAL lamp was carried out
at room temperature. All measurements were performed
in a walk-in cold room at -15 ◦C (the Xe lamp, snow
cell and photo-spectrometer were inside the cold room
while the PC for data acquisition was kept outside). The
manufacturer specified an uncertainty in the calibration
spectrum of the calibrated light source of ±5%.

Figure 4 shows how the absolute irradiance of the Xe
lamp was recorded inside the snow column. The optical
fibre and cosine corrector were placed at the same depths
as for the subsampling using one of the snow cell’s ports.
The fibre was placed radially at three positions per depth
step, see Figure 4 for details. The snow column was re-
filled at each depth using the same snow (from Dome C)
as for the photolysis experiments.

The absolute (Xe lamp) irradiances measured in the
snow at positions 1, 2 and 3 (shown in Figure 4) were
converted to total actinic fluxes in each layer as follows.
First, the field of view of the cosine corrector was taken
to be 120 ◦ based on its geometry. All measured irradi-
ances were corrected accordingly. Irradiances measured
at positions 1 and 3 were added, and the data from po-
sition 2 doubled, in order to account for the full field of
view at both the edge and the center of the snow column.
This approximation is valid because snow is highly scat-
tering, i.e. major parts of the radiation along the optical
axis are well represented and not excluded, as was tested
by longitudinal measurements. As a second approxima-
tion, a circular, gaussian distribution of the actinic flux
in the base plane of the disk was assumed. Note that the
actinic flux obtained using this method is non-zero at the
edge, equivalent to a disc-shaped offset of the Gaussian
beam profile (b in Figure 4.) Finally, the average of the

derived profile is taken as the actinic flux at that specific
depth, I (λ, z).
This set of data, later denoted as ’Xe lamp irradiances’,

was used to determine the complete actinic flux inside the
snow column. Another set of measurements was taken
placing the fibre in position 2 of the first subsample and
recording one spectrum per UV filter, labeled ’filter ir-
radiances’ below. Together with the first data set, the
actinic flux in the total column was derived for each UV
filter.
The Xe lamp irradiances are fitted using Beer-

Lambert’s law (eq. 8), where I0 = I (z = 1 cm) is the
actinic flux 1 cm into the snow. The reference point was
chosen to be inside the snow since the front of the snow
column reflects a significant portion of the emission of
the Xe lamp due to the snow’s very high albedo. The ob-
tained set of η (λ) describes the optical properties of the
snow cell. For further data processing, the exponential
fit at each wavelength was used to construct a synthetic

profile of the actinic flux based on the measured value at
z = 1 cm. Similarly, the filter irradiances measured at
z = 1 cm can be used to reconstruct the filtered actinic
flux at all depths inside the snow cell. In other words,
equation 8 is also used to derive I (λ, z) for the filtered
cases, using the same η (λ) and substituting I0 (λ) for
the filtered one. This parametrization allows accurate
modeling of the actinic flux for each UV filter.
Using the synthetic instead of the measured actinic

flux and assuming a Gaussian beam profile reduces un-
certainties in the measurements. Besides the uncertainty
in the calibration spectrum uncertainties include: i) The
measurement method is intrusive which might allow some
photons in the column to be absorbed by the fibre and
cosine corrector without being detected, ii) Variations in
the placement of the filled snow cell with the probe in-
stalled relative to the lamp (angle and side ways) changed
the signal within a range of 20%, iii) Placement of the
probes inside the snow was accurate to within ±1mm,
both radially and laterally, iv) The difference in tem-
peratures between the photolysis experiments (-30 ◦C)
and the actinic flux measurements (-15 ◦C), v) The dis-
tance between the lamp and the snow cell was accurate
to within ±1 cm; given the low atmospheric absorption
in the wavelength region of interest, this plays a minor
role.
Table I gives an overview of the experiments presented

in this paper. All experiments were conducted using a
300W Xenon lamp and at -30◦C. The total flow of nitro-
gen, Q, and the duration of irradiation, t, were varied;
the actinic flux was changed using UV filters.

IV. RESULTS

A. Snow mass

The masses of the subsamples, weighed after exper-
iments, differed only slightly, ensuring that the results
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Figure 5. e-folding depths, η (λ), (crosses, left axis) and ac-
tinic fluxes measured without UV filter at different depths, z,
as given in the legend (lines, right axis). 1/e of the incom-
ing light is lost after a very short distance into the snow (i.e.
ca. 1 cm). Only values of η (λ) are given for which the expo-
nential fit of the actinic fluxes over depth fulfilled R2 > 0.9,
eliminating noisy data below 300 nm.

are comparable to each other. Samples masses were
nominally 15 g and the standard deviation of the sample
masses was less than 1 g (n = 8). The total snow mass
weighed before and after photolysis typically differed by
less than 1%.

B. Actinic flux and e-folding depths

Figure 5 shows the profile of the actinic flux as a func-
tion of wavelength and depth in the snow column. The
amplification in the first couple of millimeters which is
predicted for low solar zenith angles by TUV models36,42

is not observed. This might be because of the low depth-
resolution of the measurements, or the non-semi-infinite
geometry of the setup.
At a distance of 5 or 6 cm into the snow, the actinic

flux decreases more than 10 fold (Figure 5); photolysis
deeper in the snow is disregarded as the signal-to-noise
ratio decreases accordingly. Equation 4 assumes that the
measured actinic flux is the same in all experiments. As
noted in Table I experiment #25 had ice accumulating in
the light path over time due to humid ambient conditions.
This, considered together with the other potential issues
concerning the measurement technique itself means that
the actinic flux results are a lower limit, since the method
is unlikely to measure more photons than are present.
Figure 5 also shows the e-folding depths, η (λ), as a

function of wavelength. Only those values are given for
which the fit fulfilled R2 > 0.9, a condition usually not
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Figure 6. Ion concentration profile in the snow after ca. 86 h
of irradiation (experiment #27). The single data points each
represent one subsample of approximate 1 cm thickness as de-
scribed in the text. The dashed lines indicate the respective
ion concentrations of the initial snow prior to irradiation.

met below 300 nm due to the low actinic fluxes, cf. Figure
5. The e-folding depth was observed to be η (λ) ≈ 1.2 cm
and rather independent of λ.

C. Physical properties of snow and SSA

The SSA did not change significantly over the course
of dark experiments in which there is flow but no light
present (data not shown). It can therefore be assumed
that the snow did not change due to storage and handling
or flow. When handling the snow after photolysis experi-
ments, changes in the front part of the snow were appar-
ent, with notably more hardening for longer experiments.
Due to the small amounts of snow available, the change
in SSA could not be measured using DUFISS. Therefore,
no quantification of the metamorphism is available but
they most likely stem from absorption of light. The SSA
is expected to decrease with time.

D. Nitrate loss and photolysis rates

Figure 6 shows the mole fractions of NO−

3 , Cl
− and

SO2−
4 in experiment #27 before and after irradiation.

Out of these ions only nitrate is affected with its concen-
tration decreasing in the first 6 cm of the snow column.
Figure 7 shows the nitrate fraction remaining in the

snow after photolysis for all experiments. The exper-
iment in the dark with gas flowing (#44) showed no
change in the nitrate concentration. Besides being a suc-
cessful blank test, this strongly suggests that no nitrate
desorbed off the snow into the water-saturated flow of ni-
trogen. All the other experiments show a loss of nitrate
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Figure 7. The measured remaining nitrate fraction in the
snow after UV exposure. The legend key follows Table I.
Depending on the photolysis time, nitrate is lost up to 6 cm
depth. Experiment #26 only shows losses in the first 3 cm
and experiment #43 only in the first 2 cm.

in the first couple of centimeters in the snow. Depending
on the length of UV exposure (photolysis time), nitrate
losses occur within the first 6 cm of snow.
Figure 8 shows the derived photolysis rates. Here, all

data from experiments 25 - 28, 31 and 38 were corrected
for absorption in the 200 nm band, essentially following
equation 5. The experiments using UV filters (42, 43 and
45) were corrected using the g factors from equation 6 and
Table I. The experimental curves in Figure 8 show two
trends: photolysis rates decrease with depth and with
photolysis time (the shortest experiment, # 26, has the
highest values of J).

Theoretical predictions of nitrate loss using literature
values of the quantum yield are also plotted in Figure
8. The quantum yield reported by Chu and Anastasio15

underestimates the losses while the value by Zhu et al.16

overestimates the losses. However, the experimental val-
ues tend to be closer to the higher values of Zhu et al.
The ’Zhu’ and ’Chu’ curves in Figure 8 assume a con-
stant quantum yield which corresponds to pure photoly-
sis without secondary chemistry. The predicted photoly-
sis rates are time-independent and decrease exponentially
with depth. In contrast the slopes of the experimental
data tend to larger values of J deeper inside the snow.
In summary the experimental nitrate losses cannot be re-
produced using the measured actinic flux and literature
data for the cross sections and quantum yields.

V. DISCUSSION

A. Loss due to scattering governs the actinic flux profile

An e-folding depth of η (λ) ≈ 1.2 cm is significantly
lower than reported in ambient measurements (by a fac-

Figure 8. Apparent photolysis rates with depth in snow. Ex-
perimental data (full lines) were calculated from measured
nitrate losses and the respective photolysis times (eq. 2). Ex-
periments 38 and 45 have the same values due to the applied
corrections (see text for details). The dashed lines (top and
bottom) were derived by assuming literature values for the
quantum yield. Note the log scale on the y-axis.

tor of 5-2019,43). This is due to the geometry of the snow
cell: most of the incoming light is lost due to scattering
to the glass-walled sides. The glass cell absorbs the UV
fraction of the light and does not reflect it back, there-
fore the boundary conditions are not semi-infinite. This
means that beyond a few centimeters into the snow most
light is lost, cf. Figure 5.
One of the main assumptions taken when deriving Beer

Lambert’s law (eq. 8) is that the medium is mainly ab-
sorbing and not multiply scattering. However, snow is
often used as an example of multiple scattering in the
literature44 and multiple scattering can be seen by dig-
ging a hole into fresh snow and observing its blueish glow.
Equation 8 is merely used as an exponential fitting func-
tion in this context. Further discussion of the extinction
coefficient of snow (which could theoretically be derived
from η (λ)) is omitted.

B. Desorption-free photolysis system with recombination

As the nitrate concentration and SSA did not change
in experiments whit no light present, it is safe to assume
that photolysis is the main loss process observed in ex-
periments with the light turned on. In particular, desorp-
tion was shown to play no role in the blank experiments.
Also, the unchanged snow mass before and after experi-
ments shows that there was no change due to sublimation
or condensation. The Cl− and SO2−

4 ion concentrations
show that no macroscopic transport of water is present
even after long photolysis times and that contamination
(e.g. from NaCl) is low. However, the physical proper-
ties of the snow did change with the light source switched
on and snow metamorphism could in principle make ni-
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Figure 9. The apparent quantum yield, Φ
∗

NO
−

3

(z, t), deter-

mined for the 300 nm band for different experiments without
UV filter (full lines) and with UV filters (dashed lines). See
caption of Figure 8 and Table I for details.

trate more available for evaporation. Given the lower
loss rates observed at longer photolysis times, desorption
does not seem to play a major role under any conditions.
In contrast, the production of nitrate via recombination
of photolysis products may explain lower apparent pho-
tolysis rates relative to theory.

C. The 200 nm absorption band of nitrate

The quantum yield Φ200 was found in this study to be
ca. 0.01 (independent of depth) which is small but sig-
nificant given the strength of the 200 nm band. Because
aqueous phase nitrogen oxide chemistry31 suggests that
all nitrate which is photolysed around 200 nm recombines
(i.e. Φ200 = 0), the 200 nm band has not received a lot of
attention in snow and ice studies35 even though the light
sources used often emitted photons in the 200 nm region.
Therefore, data from experiments using UV lamps with-
out UV filters must be treated with care. The quantum
yield determinations by Chu and Anastasio15 and Zhu
et al.16 used setups without radiation in that range of
the UV spectrum. Φ200 > 0 clearly contradicts aqueous
chemistry predictions, cf. the Appendix. It is very im-
portant to note that isotope effects may be different in
the 200 nm band; see the companion paper.39

D. Superposition of two domains of snow photochemistry

Figure 9 shows the apparent quantum yields derived by
relating the predicted number of absorbed photons (de-
rived from the actinic flux measurement) to the apparent
photolysis rates (derived from the measured nitrate con-
centrations) for different experimental conditions (equa-
tion 4). All values lie below 0.5 and span a wide range

extending to 0.01. The two trends visible in J∗ are also
found in Φ∗: first, the quantum yield increases with in-
creasing z, and second, the quantum yield decreases with
photolysis time. The changes in quantum yield exceed
the measurement error of the irradiances. For instance
in experiment #45, Φ∗ changes by a factor larger than 3
compared to an error of 20-30% in the optical measure-
ment which is smoothed by the fitting procedure. More
specifically, the measured actinic flux was regarded ear-
lier as an upper limit and therefore the reported quantum
yield is a lower limit.

One origin of the depth dependence of the quantum
yield is the secondary chemistry terms A and B in the
mass-balance equation (eq. 1). Considering that photol-
ysis yields both NOx and the radicals that oxidize it to
reform nitrate, nitrate reformation will have a nonlinear
dependence on light intensity. This is consistent with the
lower measured quantum yield at the top of the column
(Figure 9). However, it seems that secondary chemistry
alone falls short in explaining the observed time depen-
dence: the short experiment #26 yielded a high quantum
yield at low depths where nitrate was exposed to a high
photon flux.

In contrast, both trends can be explained by the su-
perposition of two photochemical domains of nitrate in
snow. Considering a system with photolabile and buried
nitrate, the former would give a larger quantum yield
while the latter will have a smaller quantum yield. In
the first hours of the experiment, nitrate is easily pho-
tolysed in the front of the snow column. During longer
experiments the snow in the back (below 3 cm) is exposed
to significant amounts of UV radiation as well, similarly
photolysing easily accessible nitrate (hence giving large
values of Φ∗.) In the front, the buried nitrate is not pho-
tolysed as easily anymore. Over time the curve of the
quantum yield shifts to the left in the representation of
Figure 9.

It is likely that the values of Φ∗ close to 0.35 relate to
the photolysis of photolabile nitrate, while the limiting
value of Φ∗

≈ 0.05 corresponds to photolysis of buried
nitrate with a stronger contribution from secondary (re-
combination) chemistry. This is in line with results of
similar experiments in the literature that show changing
photolysis rates or two nitrate pools.18,20,27,29,30

The highest quantum yields are close to the value of
Zhu et al.16 Therefore it seems likely that samples with
such high quantum yields experienced similar conditions
as in this reference where HNO3 was adsorbed on ice.

In order to explain the lower quantum yields a sim-
plified picture of nitric acid solution (i.e. ignoring other
ions) is considered here. The phase diagram45 suggests
that the experimental conditions of the present study (ni-
trate mole fractions, x

(

NO−

3

)

= 1 × 10−7
− 1.7 × 10−6,

-30 ◦C) fall into a metastable phase where solid solu-
tions of HNO3 in ice and aqueous HNO3 solutions co-
exist. In this framework the experiments by Chu and
Anastasio were performed either in the liquid phase or in
the same metastable phase (they state a total molality of
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5.4mol/kg corresponding to x
(

NO−

3

)

= 8.9×10−2). The

partitioning coefficient between solid and liquid phases45

is ∼ 10−6 for -30 ◦C and indicates that most nitrate is
in the liquid phase in the case of Chu and Anastasio. In
the liquid phase nitrate is exposed to surrounding water
molecules and a strong cage effect.26 Chu and Anastasio
argue that nitrate is photolysed in the DI in their ex-
periments. The difference between solid solution, DI and
aqueous solution is not resolved in the present study, but
it is suggested that whichever domain is the prevalent one
has a small quantum yield. Another nitrate domain not
present in the Chu and Anastasio study is distinguishable
due to its higher quantum yield.
The snow used in this study shows nitrate in multiple

domains, while the adsorption of HNO3 resulted predom-
inantly in photolabile nitrate in the work of Zhu et al.
and the freezing of an aqueous solution created mostly
buried nitrate in Chu and Anastasio’s study. The quan-
tum yields found in these studies are a direct result of the
specific preparation method used. Because such artificial
conditions are not expected to be met fully in the present
study or at Dome C, the quantum yields reported here
are not equal to the ones reported by the other groups.
Instead the quantum yield is always larger than the one
by Chu and Anastasio and always smaller than the one
by Zhu et al.
Experimental results show the significant role of sec-

ondary chemistry in nitrate snow photochemistry. How-
ever, the quantum yield does not depend on light inten-
sity alone, rejecting the first hypothesis in the introduc-
tion. Instead secondary chemistry has to be viewed in
the context of the domain of nitrate snow photochem-
istry which is consistent with the second hypothesis. Ex-
perimental results support to attribute the two literature
values of the quantum yield15,16 to the photolysis of dif-
ferent nitrate pools.

E. Application to UV exposures at Dome C

Figure 10 shows the quantum yields as a function of
Antarctic sunny day equivalents for all experiments and
shows different snow batches with different symbols. In
this visualization, the depth and time dependence of Φ∗

is a function of one single variable which is equivalent to
UV exposure. An exponential fit describes the decline in
the quantum yield well, cf. Table II. The change in quan-
tum yield suggests that after exposure to enough photons
all photolabile nitrate has been photolysed and the pool
of buried nitrate becomes more prominent, making sec-
ondary reaction pathways more important.
As indicated by the fitting curves in Figure 10, the two

different batches of snow require different lengths of time
before the lower limit of the quantum yield is reached.
While the quantum yield levels off over the course of
months in the 2009 snow, it only needs about 2-3 weeks
in the 2011 (wind-blown) snow to bleach the photoactive
nitrate. In the terminology used in this study, this indi-
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Figure 10. The apparent quantum yield, Φ∗

300 (z, t), as a func-
tion of Antarctic sunny day equivalents, Nasd. Same data as
in Figure 9 with colored diamonds for data from experiments
42 (green), 43 (orange) and 45 (blue). Antarctic sunny day
equivalents provide a metric of UV exposure to relate the
findings of this study to ambient measurements (Nasd = 1
corresponds roughly to the number of photons absorbed by
nitrate in one sunny day in Dome C). The exponential nature
of the fit was chosen arbitrarily.

Table II. Determined values and parametrization of the ni-
trate photolysis quantum yield in snow, Φ∗

NO−

3

.

Data min (Nasd) max (Nasd) mean p0, p1, p2, p3
a

2009 0.03 (114) 0.44 (2) 0.18 0.06, 3.11, -43.40, 19.77
2011 0.01 (17) 0.25 (2) 0.07 0.03, 9.99, -27.12, 6.08
all 0.01 (17) 0.44 (2) 0.12 0.05, 23.78, -114.28, 22.15

a Fitting function: p0 + p1 exp (− (x− p2) /p3).

cates that the 2011 snow has a larger fraction of buried
nitrate than the 2009 batch. The local domain of nitrate
might be influenced by the much higher chloride concen-
trations in the 2011 wind blown snow than in the 2009
batch, cf. Table I.46

F. Nitrate concentrations and NOx production at Dome C

All quantum yields found in the present study are
larger than the ones used typically in studies which esti-
mate NOx emission out of the snow pack. If no other
chemical or physical processes are assumed to play a
role in the snowpack the modeled values of J and pre-
dicted NOx fluxes will significantly increase with the
larger quantum yields.
Nitrate concentrations in snow measured in 2007 at

Dome C11 showed concentrations of 330 ng/g in the top
layer decreasing down to 30 ng/g at 50 cm depth in snow.
The concentration profile is very steep in the first 5 cm
after which only 50 ng/g of nitrate is left. There is light
down to several tens of cm at Dome C19 and the nitrate
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left at such depths can be assumed to be buried, associ-
ated with smaller values of Φ∗. Nitrate is replenished at
the top by fresh snow layers and by dry-deposited nitrate,
both of which can be assumed to be rather photolabile
and therefore to be associated with large quantum yields.
Frey et al. under-predicted nighttime NOx emissions

in austral summer at Dome C by a factor of ∼ 3 − 4.13

The ratio of NOx fluxes at day over those at night was
predicted to be 9 while only a ratio of 2.5 was observed.
While it is always bright in Antarctica in austral summer,
larger zenith angles reduce the actinic flux deeper in the
snow at nighttime. With only the top layers illuminated a
higher quantum yield can be associated with night. Dur-
ing daytime light is also present in deeper layers of the
snow where only buried nitrate is left to photolyse. Using
the largest quantum yield (0.44) for nighttime conditions
and the average of largest and smallest quantum yields
(0.23) for daytime conditions reduces the day/night NOx

flux ratio to 4.6 and decreases the discrepancy between
model and observation. However, the actual fluxes are
predicted to increase by a factor of 237 (122) during night
(day). Besides the quantum yield, Frey et al. mention the
deposition of NOx photoproducts within the snowpack as
one of the main uncertainties in their model. Such a pro-
cess reduces NOx fluxes above the snow pack and needs
further investigation in order to be parametrized and in-
cluded in models.

VI. CONCLUSIONS

The photolysis of nitrate was investigated using natu-
ral snow in a temperature controlled chamber. The ex-
periments show no desorption of nitrate, while providing
a constant gas flow to prevent the deposition of recom-
bined gas-phase products. Two batches of snow, sampled
at Dome C, Antarctica, were used. They ensure similar
microphysical locations of nitrate in the experiment and
field (neglecting effects of transport and storage). Both
the actinic flux and the nitrate concentration were mea-
sured inside the snow to calculate an apparent quantum
yield, Φ∗, which takes secondary chemistry and the pho-
tochemical domain into account. The derived values lie
between 0.44 and 0.01 – well within the range of those
reported previously (0.6 by Zhu et al.16 and 0.0019 by
Chu and Anastasio15).
The decrease of the quantum yield with UV exposure

is discussed here as a superposition of two domains of
nitrate snow photochemistry: photolabile and buried ni-
trate. It is suggested that the very different quantum
yields found in the literature can be viewed as limiting
values of photolysis of photolabile nitrate (large Φ) and
the photolysis of buried nitrate (small Φ). Photolabile
nitrate might correspond to what other authors called
surface/adsorbed nitrate and gives rise to a higher quan-
tum yield because reaction products can leave the snow
easily. The behavior of buried nitrate might resemble
that of nitrate in aqueous solution, bulk ice or the DI.

Here the escape of products is inhibited by the cage ef-
fect and an enhanced role of secondary (e.g. recombina-
tion) chemistry. Buried nitrate is less sensitive to any
flow present and results in a much lower quantum yield.
Nitrate concentrations in snow and the actinic flux

were measured in field and modeling studies.19,47 Such
studies often assume a single, one-directional photoly-
sis reaction of nitrate with a constant quantum yield in
order to predict NOx emissions out of the snow. They
therefore ignore secondary chemistry and the different
active domains of nitrate. This study suggests that the
commonly used quantum yield is insufficient in reproduc-
ing this complex mechanism. The Antarctic sunny day
equivalent, Nasd, metric was introduced for inter compar-
ison of laboratory and field studies. The results of this
study help to decrease the difference between modeled
night and daytime NOx emissions but lead to an over
prediction of NOx fluxes.
The companion paper discusses the stable oxygen and

nitrogen isotope ratios of nitrate of the same samples as
in this study. By using snow from Dome C, both papers
provide the input needed for a refined model to reproduce
isotopic data measured in Dome C ice cores.
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Appendix: Detailed reaction mechanism

The complete reaction mechanism of nitrate photoly-
sis as shown in Figure 1 is described here. The main
excitation in ambient environments is

NO−

3 + hν (λ > 260 nm)→
[

NO−

3

]nπ∗

(A.1)
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The product is an excited state of the nitrate ion result-
ing from an π∗

← n transition, abbreviated as nπ∗, Ref.
48. The square brackets denote a compound in a sol-
vent cage. The excited nπ∗ nitrate can undergo several
reaction pathways, one of them being the back reaction
which is promoted by the solvent cage

[

NO−

3

]nπ∗

→ NO−

3 (A.2)

The main forward reaction gives NO2:

[

NO−

3

]nπ∗ H+

GGGGGGGA NO2 +OH (A.3)

Another forward reaction is less likely (1 out of 9, Ref.
49) but forms the important nitrite ion:

[

NO−

3

]nπ∗

→ NO−

2 +O (A.4)

Secondary chemistry (thin lines in Figure 1) is de-
scribed next, starting with nitrite photolysis

NO−

2 + hν → NO+O− (A.5)

and nitrite protonation giving HONO (pKa = 3.2)

NO−

2 +H+
→ HONO (A.6)

The O− product from reaction A.5 readily forms the
OH radical (pKa = 11.9), while the NO product can leave
the system as a gas or undergo further reaction, such as
reaction with OH:

NO +OH→ HONO (A.7)

NO2 may undergo additional reactions:

2 NO2 +H2O→ NO−

2 +NO−

3 + 2 H+ (A.8)

with back reaction

NO−

2 +OH→ NO2 +OH− (A.9)

Another way to form HONO is:

NO2 +NO+H2O→ 2 HONO (A.10)

And finally another way to reform nitrate:

NO−

2 +OH→ HOONO→ NO−

3 +H+ (A.11)

Secondary chemistry as in reactions A.5 - A.11 might
depend on light intensity, as these reactions require two
photoproducts to react with each other. These reactions
may play a larger role in the case of trapped compounds,
e.g. after long photolysis times when the photolabile ni-
trate has been removed. The described secondary chem-
istry may reform nitrate and is indicated by the A and
B terms in Figure 1.
Chemical reaction following UV absorbtion by nitrate

at wavelengths below 260 nm is indicated in blue in Fig-
ure 1. Essentially the same overall pathway as reactions

A.1 and A.3 is possible. This pathway is initiated by the
following excitation:

NO−

3 + hν (λ < 260 nm)→
[

NO−

3

]ππ
∗

(A.12)

Note the different excitation state of the product com-
pound resulting from a π∗

← π transition indicated by
ππ∗. Madsen and coworkers showed that nearly half of
the excited nitrate decays into the ground state48:

[

NO−

3

]ππ
∗

→ NO−

3 (A.13)

The other half forms peroxynitrite, ONOO−, Ref. 48:

[

NO−

3

]ππ
∗

→ ONOO− (A.14)

And only a small portion (8%) decays in a third channel:

[

NO−

3

]ππ
∗

→ (NO +O2)
−

(A.15)

Here, the brackets are adopted from Ref. 48 since the neg-
ative charge could not be specifically assigned to either
of the products. Peroxynitrite, ONOO−, can isomerize
back to nitrate or form the same species:

ONOO−

⇆ (NO +O2)
−

(A.16)

NO and O2 are very likely to react further to give NO2

and nitrite as indicated in the last reaction:

(NO +O2)
−

→ · · · → NO2 and NO−

2 (A.17)

NO2 and nitrite can participate in the cycles (A and B)
shown in Figure 1 the same way as if formed via the
300 nm band excitation.
Aqueous phase nitrogen oxide chemistry suggests31

that all nitrate photolysed around 200 nm reforms ni-
trate. This mechanism does not hold in the case of snow
and a quantum yield of ca. 1%, cf. Figure 9, suggests
that a small fraction of peroxynitrite, ONOO−, does not
reform nitrate. Madsen et al. give a limit of 8 ± 3% for
the primary quantum yield to form (NO+O2)

− but note
that this value may act as an upper limit since it does
not include secondary reformation of nitrate.48 Accord-
ingly, their result is in agreement with the quantum yield
determined in this study.
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