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émises dans cette thèse; ces opinions doivent être considérées comme propres à
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“A choice of axioms is not a purely objective task. It is usually expected to achieve

some definite aim - some specific theorem or theorems are to be derivable from

the axiom - and to this extent the problem is exact and objective. But beyond this

there are always other important desiderata of a less exact nature : The axioms

should not be too numerous, their system is to be as simple and transparent as

possible, and each axiom should have an immediate intuitive meaning by which its

appropriateness may be judged directly.”

von Neumann and Morgenstern (1944, p. 25)
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toute ma scolarité, la compréhension de mes plus proches amis et l’accompagnement

de mes parents ? Ainsi, je suis reconnaissant envers mes parents, les membres de

ma famille ainsi que mes amis qui ont bien rigolé lorsque j’évoquai mes thèmes de
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Introduction

Motivations

In most decisions individuals must to choose between options that involve some

uncertainty about their outcomes and their effect on their well-being. Experimen-

tal studies suggest that, in making these decisions, individuals often deviate from

the paradigm of classical decision theory, even in relatively simple situations. In

carefully controlled studies psychologists show, in more complex situations, that

individual choices are sensitive to the description of the options, their contextual-

ization and elicitation method. In social context individuals care not just about

their outcomes but also about the outcomes and the intentions of those around

them.

This thesis is divided in three independent chapters. The first one deals with

additively separable preferences on the set of lotteries. This study leads to a

non-linear expected utility representation and a weak form of event-separability of

preferences. Also, I deduce a simple axiomatic foundation of an entropy modified

expected utility. In the second chapter, I provide a general choice model under

risk with social interactions. The third chapter of the thesis has to do with the

potential of quantum probability theory in the von Neumann and Morgenstern

framework. Each chapter focus on a particular generalization of the expected

utility model and I am going to present in the next paragraphs the general ideas

and theories that are common to most of them.

1



Introduction 2

Decision making under risk

Decision theory has a long history since the emergence 1 of probabilities. The

first natural criterion of decision making under risk is the standard expectation

value. This naive criterion has been challenged by the St. Petersburg paradox

in the 18th century and solved by Bernoulli (1738-1954) that postulates the ex-

pected utility2 criterion. This criterion has been axiomatised by von Neumann

and Morgenstern (1944) (modern presentations refer usually to Marschak (1950),

Herstein and Milnor (1953), Luce and Raiffa (1957), Jensen (1967) or Fishburn

(1970) for exogenous probabilities). This formulation is tractable, it defines the

attitude toward risk and it is applicable to many academic fields, especially those

related to the theory of non-cooperative games. Expected utility is based on the

independence axiom 3 and has a normative appeal. However, many experimen-

tal results have shown that this decision criterion was questionable. The most

popular is definitely the Allais paradox (1953) which leads to the definition of

two more general phenomena, common ration effect and common consequence ef-

fect. Both phenomena have been reproduced by Kahneman and Tversky (1979)

(problems 1,2 and 3,4 respectively). MacCrimmon and Larsson (1979) provide a

detailed study of the paradoxes of the independence axiom in the context of risk

and radical uncertainty. The descriptive accuracy of expected utility has led to

generalizations that we can classify4 into three non-exhaustive and non-mutually

exclusive categories.

The first class of generalizations weakens the independence axiom. The contri-

bution of the first chapter is in this class. The sophistication of the expected

utility theories with a clear axiomatic framework, identifying the weakening of the

independence axiom, allows to better understand the normative and descriptive

aspects of these theories. For example, weighted expected utility 5 proposed by

Chew and MacCrimmon (1979) where the independence axiom holds for lotteries

1The reader is referred to Hacking (1975).
2This is not the value of the random variable that must go into the calculation of expecta-

tion but the moral value, utility, that individual assigns to the variable that must go into the
calculation of expectation, giving what we call today the expected utility.

3Surprisingly absent in von Neumann and Morgenstern , see Fishburn and Wakker (1995) for
an historical perspective on the formulation of this axiom.

4I do not mention here intransitive preferences, such as the approach of Bell (1982), Fishburn
(1982) or Loomes and Sugden (1982).

5See Chew (1989) for this class of model.
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in the same equivalence class and rank dependent expected utility6 axiomatised by

Quiggin (1982) in the risk where the independence axiom holds for co-monotonic

lotteries.

The second class of generalizations rejects the independence axiom. One example

is the local expected utility initiated by Machina (1982) and developed by Chew

and Nishimura (1992), Chew and Hui (1995) and for a recent contribution Chater-

jee and Krishna (2011). This approach preserves the weak order condition and

requires a notion of differentiability of the representation of the preferences. The

expected utility becomes a local notion (in the topological sense) because differ-

entiable functional can be considered as locally linear. This approach allows great

flexibility and a generalization of criteria attitudes towards risk7. Another exam-

ple is the theory of Luce (see Luce (2000) for a compilation of all of his work and

Wakker (2000) for a short summary). Luce built an alternative theory from psy-

chological concepts and found the majority of standard models from behavioural

axioms with a concatenation operation between lotteries.

The third class consists of generalizations based on experimental approaches fo-

cusing on the descriptive aspect of the individual decision-making, identifying

utility functionals that reproduce the experimental results. The best known ex-

ample is the prospect theory of Kahneman and Tversky (1979) and refinement,

the cumulative prospect theory (i.e., the rank-dependent prospect theory (1992)).

Another example is the TAX model (Transfer of Attention Exchange) developed

by Brinbaum and Chavez (1997).

Rank-dependent expected utility is certainly the contribution that has had the

most success in decision theory (e.g., see Weber and Kirsner (1997), Diecidue and

Wakker (2001) and Mongin (2009) for arguments highlighting the rank dependent

expected utility). This theory has, both in the context of risk or uncertainty 8,

and in many models 9 to accommodate violations of expected utility theory. In

addition, the functional associated with this theory preserves interesting prop-

erties such as stochastic dominance. Empirically, the rank-dependent expected

utility leads to better results than expected utility or weighted expected utility

6See Yaari (1987) for dual expected utility and Segal (1984, 1989) or Green and Jullien (1988)
for generalized representations.

7See Cohen (1995).
8Axiomatized by Schmeidler (1989).
9Inter alia, Luce and Fishburn (1991, 1995), Tversky and Kahneman (1992), Wakker and

Tversky (1993), Chateauneuf and Wakker (1999), Schmidt and Zank (2001, 2009, 2012) and
Abdellaoui (2002).
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for choice situations referring to the Allais paradox. In more general situations,

rank-dependent expexted utility does not perform better than expected utility or

other theories 10.

An important part of axiomatic foundations of rank-dependent expected utility

related models11 requires the result obtained by Wakker (1991, 1993) on additively

separable representations for rank-ordered subsets of Cartesian products. This

result gives an additively separable representation for all lotteries when they are

assimilated as their cumulative distribution functions.

The main contribution of the first chapter is to provide an axiomatic foundation of

additively separable functional for lotteries given by their distribution functions,

using the orthogonal additivity property of the whole functional. Orthogonal

additivity means additive over orthogonal alternatives. Orthogonal alternatives

are alternatives with disjoint supports.

In a series of papers, Luce, Ng, Marley and Aczel (2008a, 2008b, 2008, 2009a,

2009b) provide a behavioural axiomatic foundation for the utility of gambling12,

based on the theory of Luce (2000). Their approach is based on the work of Megin-

niss (1976) who analytically introduced a variational functional 13 represented by

the sum of an expected utility term and an entropic term. This functional is a

particular case of preferences where the independence axiom hold for lotteries with

disjoint supports.

Social interactions and other-regarding preferences

Social Interactions14 refer to socio-economic phenomena where individuals’ choices

are not solely mediated by the price mechanism and are influenced in particular

by the choices of other individuals in their social reference groups. Rather than

10e.g., Wakker et al. (1994), Wu (1994) and Birnbaum et al. (1999).
11Segal (1984, 1989), Green and Jullien (1988), Wakker and Tversky (1993), Chateauneuf and

Wakker (1999), Wakker (1994), Schmidt and Zank and Abdellaoui (2002).
12See Diecidue et al. (2004) and Le Menestrel (2001) for a comprehensive study of utility of

gambling.
13The term “variational” is used in Maccheroni et al. (2006) for preferences including a general

cost function.
14See Zanella (2004) or Scheinkman (2008) for a short presentation.
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existing as isolated15 entities, individuals are embedded within networks of rela-

tionships, e.g. peer groups, families, colleagues, neighbours, or more generally

any socio-economic group. In game theory, empirical evidences16 challenge the

paradigm of self-interested agents. In economics, the idea that the well-being

of an agent depends on the relative as well as the absolute well-being is usually

attributed Veblen (1899). More “recently”, Duesenberry (1949) or Leibenstein

Leibenstein (1950) had already considered that, in some situations, the relative

well-being may be more meaningful than the absolute well-being. In decision

theory it is then necessary to introduce interdependent or other-regarding prefer-

ences17. The introduction of agents’ concerns for relative outcomes into economic

models are of particular interest and has been shown to carry serious implications

in different fields such as demand analysis18, labour economics19, growth20, Asset

pricing21, Attitude toward risk or uncertainty22.

Pioneering work of Schelling (1971) had persuasively shown that several important

aggregate phenomena crucially hinge not only upon the self-interested motives of

individuals, but more deeply upon the interactions among them. This was next

pointed out in a paper by Föllmer (1974) for non-market interactions, random

preferences and random endowments in a general equilibrium model. These effects

are due to social multiplier in behaviours.

Blume, Brock and Durlauf’s contribution (Brock and Durlauf (2001a, 2001b),

Blume and Durlauf (2001)) gives 23 a first analytical treatment of decision making

in the presence of social interactions. They propose a model where individuals

make binary choices. The utility of a choice depends on a private utility term,

a random utility term and a social utility term specified by the social distance

and the subjective belief of the agent. From assumptions 24 on the random utility

15See Sen (1977), Akerlof et Kranton (2000) or Davis (2013) for a criticism of the “self-centered,
self-interested” individual.

16In game theory, see Rosenthal Rosenthal (1981), Guth et al. Güth et al. (1982) or Forsythe
et al. Robert et al. (1994).

17See Karni and Safra (2002) or Maccheroni et al. (2012) in the theory of individual decision
preferences incorporating equity or interdependence under risk and uncertainty, Rabin (1993),
Fehr and Schmidt (1999) or Segal and Sobel (2007) in game theory. See Cooper and Kagel
(2009b) for a review of experimental results.

18Gaertner (1974), Pollak (1976), Becker (1991), Cowan et al. (1997), Binder et Pesaran
(2001).

19Akerlof et Yellen (1990), Neumark et Postlewaite (1998) Bowles et Park (2005).
20Corneo et Jeanne (2001), Alvarez-Cuadrado et al. (2004), Liu et Turnovsky (2005).
21Chan et Kogan (2001), Dupor et Liu (2003).
22Rohde et Rohde (2011), Linde et Sonnemans (2012), Charness et al. (2013).
23See Manski (1993).
24Random variables i.i.d according to the law of extreme values.
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term, the authors obtain a law of probabilities (a Boltzmann law) on the choice of

agents, analogous than the Curie Weiss model in statistical physics. Assuming that

agents have rational expectations, they derive the corresponding mean-field Nash

equilibria. Theoretically, their formulation clarifies interactions among agents,

and empirically, allows identification of social interactions or “ peer effects25”

between individuals. Manski (1993) defines three peer effects. An endogenous

effect, that is, the influence of group behaviour on the behaviour of the individual,

an exogenous effect , that is, the influence of the characteristics of the group on the

individual’s characteristics and the correlation effect, when members of a group

acting identically because they have the same characteristics. Empirically, their

model allows to test econometric-ally social interactions due to endogenous and

exogenous effects.

The Blume, Brock and Durlauf’s model separates into a deterministic part and a

stochastic part essential for its econometric application. From a theoretical point

of view, it is appropriate to focus on the axiomatic foundation of the deterministic

part of the model. The single use of the deterministic part in game theory would

lead probably to Nash equilibria in mixed strategies. These equilibria, probably,

would be different from equilibrium in the individual setting26. One solution is to

replace the stochastic utility term by an appropriate variational term to obtain

the desired result. The appropriate term is the Shannon entropy. This is not

surprising, Blume, Brock and Durlauf’s model is statistical physics inspired. To

recap, the logit choice model is a Boltzmann distribution and the latter is the

solution under constraint of expectation of the Shannon entropy.

The second chapter provides an axiomatic basis of interdependent preferences in

risk, in the design of Blume, Brock and Durlauf’s model. I derive a private utility

and a social utility, coupled with a variational term. Such a foundation allows

exogenous and endogenous reference groups. In addition, I give axioms for an

additively separable, among individuals in the reference group, social utility.

25For a detailed analysis the econometric approach and a review of existing literature on the
subject, see Blume et al. (2010). For an econometric issue of peer effects, see Manski (1993,
2000).

26To be convinced, without terms of social utility, it suffices to compare the standard Nash
equilibrium and the logit equilibrium introduced by McKelvey and Palfrey (1995, 1998). The
authors extend the approach of McFadden (1974) to the theory of games.
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Quantum probabilities

Several studies use quantum formalism in decision theory to explain the various

paradoxes. The way that quantum formalism is used varies across studies but it

offers new opportunities in the form of new technical capabilities from the same

mathematical tool. In a deterministic choice framework (Danilov and Lambert-

Mogiliansky (2005, 2010), Gyntelberg and Hansen (2005, 2009), Hansen (2005),

La Mura (2009)) or in stochastic choice framework (Aerts and Aerts (1995), Aerts

and Gabora (2005a,b),Aerts and D’Hooghe (2009), Aerts et al. (2011), Busemeyer

et al. (2006a), Busemeyer et al. (2011), Busemeyer and Bruza (2012), Conte et al.

(2009), Khrennikov (1999, 2010), Lambert-Mogiliansky et al. (2009), Pothos and

Busemeyer (2009), Pothos and Busemeyer (2013), Yukalov and Sornette (2010)).

What is the motivation for employing quantum formalism in decision making ?

What is the contribution ?

Foremost, it is necessary to precise that decision theory is not a quantum mechanics

phenomenon. But, the probabilistic framework can be used independently. To

avoid confusion, I prefer to speak of non-commutative probability rather than

quantum probability. Building on all this work, I present a model based on non-

commutative probabilities. My work introduces a decision-theoretic framework

which extends the expected utility methodology and in addition tries to connect

descriptive and normative approaches. The key aspect is to suppose that events

are subjective. It becomes natural to embed classical probabilities spaces in an

enclosing structure : a non-commutative probability space.



Chapter 1

Additive Utility Under Risk

1.1 Introduction

This chapter studies additive representation theory on simplices which are subsets

of Cartesian products. Interest of this subject is its application to non-linear ex-

pected utility theory. Expected utility theory was characterized by “independence”

axioms. Experimental failures1 of traditional expected utility has led to an exten-

sive literature in non-linear expected utility theory whose goal is to weaken the

independence axiom. Main cases of this literature under risk include utility theory

with the betweenness2 property, which requires independence to hold only within

equivalence classes, and rank-dependent3 utility, which requires independence to

hold only on comonotonic lotteries. The present chapter has been motivated by

several generalizations of the classical choice criterion under risk where functionals

have the property of being additively separable over probabilities. More specifi-

cally, examples of such functionals can be found under an analytical framework in

Meginniss (1976), who assumes explicitly additive separability, and in Kahneman

and Tversky (1979), who establish, from experimental data, an expected utility

with a probability weighting function.

The purpose of this chapter is to provide an axiomatic foundation to additively

separable functionals, that yields representations given by

1See Allais (1953) and Kahneman and Tversky (1979) for the independence axiom or Wu
(1994) and Wakker et al. (1994) for the comonotonic independence axiom, this axiom does not
perform better than independence except for Allais-type choices.

2E.g. Chew and MacCrimmon (1979), Chew (1983) and Chew (1989).
3E.g. Quiggin (1982) or Segal (1989).

8
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V (l) =
∑
X

Φ(xk, lk) (1.1)

where X is a finite set of outcomes and l is a finite lottery over X. This prob-

lem is equivalent to show that preferences are additively decomposable. In finite

dimension, additive representations starts in the papers of Debreu (1959) for topo-

logical full Cartesian products, Luce and Tukey (1964)4 for algebraic structures of

full Cartesian products, and Scott (1964) for finite subsets of Cartesian products.

This last result is extended by Jaffray (1974a,b) for arbitrary countable subsets

of Cartesian products. For full Cartesian products Wakker (1991, 1993) provides

necessary and sufficient conditions for additive representation over rank-ordered

subsets of full Cartesian products. In recent decades, research has focused on

monotonic additive representations on connected subsets of Cartesian product sets

to justify global5 additive representability under local additive representability.

I shall show that on simplices additive representation theory is characterized by

the properties of the above functional. An additively decomposable functional is

orthogonally additive. That is, the functional is additive whenever arguments are

orthogonal in terms of disjoint supports. My approach can be applied to the usual

case of a full Cartesian products and provides a general framework.

This chapter is organized as follows. In section 2, I introduce the key concept

of my work. Section 2.1 describes orthogonally additive functional. Section 2.2

points the differences with other approaches in the literature. Section 3 gives the

main results of this chapter. Section 4 applies the main results to variational

preferences. Proofs are given in section 5. Section 6 concludes.

As usual, decision maker’s preferences are represented by a binary relation � over

the choice set, � and ∼ denote, respectively, the asymmetric and symmetric parts

of �. � is a weak order on the choice set if it is transitive and complete. A

real-valued function V from the choice set to R is called an utility functional (or

functional for short) if it represents � on the choice set or, in mathematical terms,

if it is an order homomorphism.

4This approach is well explained in Krantz et al. (1971). See e.g. Wakker (1988b) and Luce
et al. (1971) for a comparison between the topological and the algebraic framework.

5See Segal (1992, 1994) and Chateauneuf and Wakker (1993). These results are used in
rank-dependent utility theory.
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1.2 Orthogonally additive functional

1.2.1 Orthogonal additivity

Let (X = Rn,�) be a non-trivial weakly ordered coordinate space6 over R. I

assume that n ≥ 3. I write x−ia for x with xi replaced by a. A functional V is

additively decomposable on X if ∀x ∈ X : V (x) =
∑n

1 Vi(xi) for some functions

from R to R. In this case, then the Vi’s are additive value functions. A functional

is cardinal if it is unique up to positive linear transformations. Additive value

functions {Vi}i are jointly cardinal if they are unique up to similar positive linear

transformations. Two alternatives x, y are called orthogonal if they have disjoint

supports7. As the sum of alternatives is well defined in X, a functional V is said

to be orthogonally additive8 on X if V (x + y) = V (x) + V (y) whenever x, y ∈ X
and have disjoint supports.

I suppose first that an additively decomposable functional V represents � on X.

Let x, y ∈ X such that x and y are orthogonal, it is clear that :

V (x+ y) =
∑
i

Vi(xi + yi)

=
∑

supp(x)

Vi(xi) +
∑

supp(y)

Vi(yi) +
∑

i/∈supp(x)∪supp(y)

Vi(0)

=
∑
i

Vi(xi) +
∑
i

Vi(yi)−
∑
i

Vi(0)

6There is no loss of generality to work with R. For X =
n∏
i=1

Xi if each factors Xi is endowed

with a concatenation operation or joint receipt operation ⊕i such that (Xi,⊕i) is a group and if
each factors is a connected separable topological space, the remainder of this section applies.

7The support of x ∈ Rn is defined by supp(x) = {i ∈ {1, . . . , n} | xi 6= 0}.
8The theory of disjoint additivity is well established and has important applications such as

characterization problems of integral operators. It is well known (the reader is referred Rao
(1980) for a review of results), in brief words, that a continuous orthogonally additive functional
over normed or metric linear R-vector space is representable by

F (f) =

∫
Φ (x, f (x)) dx

where Φ has to possess certain properties.
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As V is cardinal and {Vi}i are jointly cardinal, it follows that there is a class of

orthogonally additive functionals that represents �. Conversely, if I suppose that

� is represented by an orthogonally additive functional then

V (x) = V (x1, . . . , xn)

= V (
∑
i

(0, . . . , 0, xi, 0, . . . , 0))

=
∑
i

V (0, . . . , 0, xi, 0, . . . , 0)

Defining Vi = V (0, . . . , 0, xi, 0, . . . , 0), then V is additively decomposable.

1.2.2 Discussion

Orthogonal additivity is the key aspect of additively decomposable utility in my

framework. The main axiom of Debreu’s theory is coordinate independence : �
is coordinate independent (CI) on X if x−ia � y−ia ⇔ x−ib � y−ib, for all i,

whenever all alternatives in question are contained in X. (CI) is special case of

the 2 nd-order cancellation condition (C2) : � satisfies (C2) if for x1, x2, y1 and

y2 ∈ X be such that (y1
j , y

2
j ) is a permutation of (x1

j , x
2
j) for every j = 1, . . . , n

then x1 � y1 ⇔ y2 � x2. This last axiom can be stated elegantly in my framework

by :

Axiom (Orthogonal Cancellation (OC)). For all x, y, z, z′ ∈ X such that z

and z′ are orthogonal to {x, y},

x+ z � y + z ⇔ x+ z′ � y + z′
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It is clear that (OC) and (C2) are equivalent. Under structural9 assumptions,

(OC) is necessary and sufficient for an additively decomposable utility on a weakly

ordered full Cartesian product set.

Some remarks on the literature about additive representations were already given

in introduction. I focus here on the main differences with the other approaches.

Analytically, the result of Debreu (1959) is derived from web geometry and more

specifically by properties of 3-web. A 3-web is a set consisting of elements of

two types, lines and points. The set of lines of the 3-web is divided into three

families such that two lines of different families lie on exactly one common point

and each point is incident to exactly one line of each family. In the special case

where the first family corresponds to straight lines with constant first coordinate,

the second family to lines with constant second coordinate, and the last family to

equivalence classes of a preference relation, existence of an additively decompos-

able representation on X = X1×X2 is equivalent to the existence of a topological

transformation carrying the three families of lines into three families of parallel

straight lines. Thomsen (1927) gave an affirmative answer to parallelization of

3-web under differentiability assumptions and later Blaschke (1928) under con-

tinuity. Basic cancellation conditions of web geometry as Thomsen condition,

Reidmeister condition, Hexagonal condition can be found in (Krantz et al., 1971,

Chapter 6) for a modern description. Debreu, for the case of three10 dimensional,

or more, full Cartesian products showed that (CI) implies the Thomsen condition

locally on a two-dimensional subspace and inductively the result is demonstrated

for arbitrary dimension. The Algebraic approach can be found in Krantz et al.

(1971). Instead of topological assumptions, they use the restrictive assumption

of solvability and an Archimedean axiom. Other axioms are identical to Debreu,

moreover the general case is also derived from the two-dimensional case. Wakker

(1988a) provides derivation distinguishing the case of a two-dimensional and a

three-dimensional or more full Cartesian products by treating them separately.

My approach highlights that the full force of (CI) or (C2) does not apply in the two-

dimensional case because there is not enough orthogonal sequences11. I emphasize

on the fact that my framework may seem more restrictive about the structure of

each factors but, in fact, without orthogonal sequences, additive separable utility

9In the topological approach, � must be continuous with respect to the product topology of
Rn.

10The two-dimensional case can be founded in (Fishburn, 1970, Chapter 5)
11See Rätz (2001) for numerous results in mathematics where the properties of a vector space

V is completely different for dimV ≥ 3 and dimV = 2.
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does not make sense. To emphasize this comment, note that (C2) expressed as

(OC), is the translation-invariance12 axiom ,stated by Aumann (1962), restricted

to disjoint sequences. For arbitrary subset X of a linear space, it is always possible,

by translation, to find a zero and consequently to apply this approach.

1.3 The case of the simplex

1.3.1 Setup

Let X = {x1, . . . , xn} be a finite set of outcomes or certain consequences where

n ≥ 2 (if n = 1, the set of lotteries is a singleton) is the cardinal of X. Let

∆(X) = {(l1, . . . , ln) ∈ [0, 1]n |
∑

i li = 1} be the space of lotteries over X closed

under convex mixture operations with X ⊂ ∆(X) consists of all degenerate lot-

teries (denoted by δx for all x ∈ X). I denote by supp(l) ⊂ X the support of the

lottery l. Two lotteries l,m are called orthogonal if they have disjoint supports.

In the remainder of this chapter, � is a weak order on ∆(X). In most studies, �
satisfies an Archimedean axiom when X is finite or � satisfies a continuity axiom

when X is countable or uncountable. In the last case, ∆(X) is endowed with the

topology of weak convergence. This topology is the coarsest topology such that for

every continuous and bounded real-valued function g on X the map f 7→
∫
X
fg is

continuous. As we have seen previously for additively decomposable functional, a

continuity assumptions is necessary in the topological approach. At the best of my

knowledge, the Archimedean axiom is to weak to derive a continuous additively

decomposable representation. Therefore, the appropriate topology when X is fi-

nite is the relative topology induced by the product topology of [0, 1]n. When X is

finite, this topology coincides13 with the topology of weak convergence. But when

X is uncountable these two topologies are not equivalent, in fact, the topology of

12See Trockel (1992), Candeal and Induráin (1995) or Chatterjee and Krishna (2008) for results
in linear utility.

13The product topology is equivalent to the strong topology which is equivalent to the weak
topology in finite dimensional spaces.
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weak convergence is less interesting14 for generic non-linear functionals. A rep-

resentation theorem for X countable or uncountable requires a continuity axiom

with a finer 15 topology than the topology of weak convergence and its use would

be a mistake. In the sequel of this chapter, I denote by T the relative topology

induced by the product topology of [0, 1]n.

1.3.2 Orthogonal additivity in the simplex

It is clear that ∆(X) ⊂ [0, 1]n and it is not a full Cartesian product set. In addition,

lottery coordinates (probabilities) are dependent, this is the reason that makes the

usual theorems useless. However the structure of ∆(X), that is, the possibility to

have a zero in each coordinate and the composition by convex combination allow

to bring close orthogonally additive representations and additively decomposable

representations. We shall observe that, just as linearity of expected utility is

the key aspect of the standard representation under risk, orthogonal additivity on

∆(X) is the key aspect of the generalized representation. I say that a functional on

∆(X) is Orthogonally additive∗ if and only if extended to [0, 1]×∆(X) it satisfies

for all α ∈ [0, 1]

V (αl + (1− α)m) = V (αl) + V ((1− α)m) (1.2)

whenever l,m ∈ ∆(X) and have disjoint supports. As expected utility, which is

described analytically by an affine functional on ∆(X) which may be extended to

a linear functional on Rn, orthogonally additive∗ functional, in the above sense,

can be extended to an orthogonally additive functional on Rn without difficulties.

In the sequel, I do not distinguish the two concepts. Suppose that an orthogonally

14In general rank-dependent utility model (Green and Jullien (1988) and Segal (1989)) or in
the Machina approach (Machina (1982)), the primitive of the preference relation are cumula-
tive distributions. It does not seem to be a problem to use weak convergence with stochastic
dominance. Stochastic dominance implies for some functionals continuity with respect to the
topology of weak convergence as in (Becker and Sarin, 1987, Lemma 2) for lottery dependent
utility or in Delbaen et al. (2011), Spinu and Wakker (2013) for expected utility.

15I shall not examine this matter in the present chapter.Note that as in Grodal et al. Grodal
and Mertens (1968) or Vind et al. (Vind and Grodal, 2003, Chapter 11), for additive repre-
sentation over countable or uncountable full Cartesian product, we can extend the definition
of the weak convergence to glue the desired result. That is, define the coarsest topology such
that for every bounded real-valued function Φ on X × R continuous in both variables the map
f 7→

∫
X

Φ(x, f(x))dx is continuous in ∆(X). Or, as in Chew and Lee (1985), we can use a
strongest continuity axiom : for any pointwise convergent sequences (fn) and (gn) in ∆(X),
fn � gn for all n imply f � g.
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additive functional represents � on ∆(X) and that n ≥ 4. There are l,m, n, o ∈
∆ (X) such that n ⊥ {l,m}, and o ⊥ {l,m} and for all α ∈ (0, 1) then

V (αl + (1− α)n) ≥ V (αm+ (1− α)n)

⇔ V (αl) + V ((1− α)n) ≥ V (αm) + V ((1− α)n)

⇔ V (αl) ≥ V (αm)

⇔ V (αl) + V ((1− α)o) ≥ V (αm) + V ((1− α)o)

⇔ V (αl + (1− α)o) ≥ V (αm+ (1− α)o)

which is exactly the 2 nd-order cancellation condition (C2) on ∆(X). We can see

that if n ≤ 3 this property of orthogonally additive functionals is meaningless as

they do not exist l,m, n, o ∈ ∆ (X) such that n ⊥ {l,m}, and o ⊥ {l,m}. Before

I state the axioms for n ≥ 4 I will discuss special cases n = 2 and n = 3.

1.3.3 n = 2 and n = 3

The case n = 2 is somewhat outside the main interest of the chapter; cancellation

conditions are meaningless as lotteries are entirely determined by the probability

of one certain consequence. The representation result in this case is an immediate

consequence of structural16 assumptions on � and that l1 + l2 = 1. Let V be a

continuous representation of �, we can define φ1(l1) = V (l1, 1 − l1) and φ2(l2) =

V (1− l2, l2). It is obvious that φ1 +φ2 represents � and that φi’s are continuously

ordinal.

The case n = 3 is of great interest. In this case, the simplex is a two-dimensional

convex space and a representation must involve cancellation conditions similar to

Thomsen condition. It was noted that (C2) is meaningless so we must turn to

the 3 th-order cancellation condition (C3) or double cancellation17 : � satisfies

(C3) if for lk,mk ∈ ∆(X), k = 1, . . . , 3 be such that (m1
j , . . . ,m

3
j) is a permu-

tation of (l1j , . . . , l
3
j ) for every j = 1, . . . , 3 then ∀i ≤ 2, li � mi ⇒ m3 � l3.

16Weak order and continuity.
17See (Krantz et al., 1971, Definition 3, Chapter 6).
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Firstly, for trivial permutations (C3) implies transitivity18. Secondly, consider

l1, l2, l3,m1,m2,m3 ∈ ∆(X) such that m1
1 = l31,m

1
2 = l22,m

1
3 = l13,m

2
1 = l21,m

2
2 =

l12,m
2
3 = l33,m

3
1 = l11,m

3
2 = l22,m

3
3 = l23. Then (C3) can be applied. An illustration

is given in figure 1.1.

δs1 δs2

δs3

l2 m3

l3

m1l1

m2

Figure 1.1: Graphical illustration in the 2-simplex. an indifference (∼) part
C3 asserts that if l1 and m2 lie on the same indifference curve while the same
hold for l2 and m1, then l3 and m3 also lie on the same indifference curve. All

these types of conditions are similar to Thomsen condition.

Unfortunately, as (C2) is meaningless, coordinate are not easily separable and there

is no “clear” monotonicity between coordinates. From the point of view of web

geometry, suppose that � over ∆(X) is represented by a continuous functional.

The 2-simplex is a two-dimensional convex set (represented by an equilateral tri-

angle), the three families of straight lines in the 2-simplex, parallel to the sides of

the 2-simplex and the family of lines defined by the indifference curves19 of the

representation V give a family of four lines (variety of dimension one). The whole

forms a 4-web W (4, 2, 1)20. By definition a 4-web which is topologically equivalent

to a parallel 4-web is called parallelizable. In particular, if W (4, 2, 1) is paralleliz-

able then there exist φi for i = 1, . . . , 3 such that φ1 + φ2 + φ3 represent � with

one of the φi’s is a linear combination21 of the two others. A key result is that the

18This fact is also valid for full Cartesian product and shown by several authors, see (Krantz
et al., 1971, Chapter 6).

19By transitivity and continuity the family of indifference curves are continuous and non-
intersecting.

20See (Goldberg, 1988, Chapter 7) for a comprehensive treatment of such structures. W (4, 2, 1)
means that it is a 4-web in a two-dimensional convex set and that the dimension of each line is
1.

21To see this,consider the case where the indifference curves in the 2-simplex are given by
parallel straight lines. This situation arises when � satisfies the von Neumann and Morgenstern
Axioms and � is then represented by an expected utility.
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4-web must be linearisable or topologically equivalent to a linear22 4-web to obtain

a representation U such that U(l1) +U(l2) +U(l3) = U(m1) +U(m2) +U(m3) for

all li,mi ∈ ∆(X) such that (m1
j , . . . ,m

3
j) is a permutation of (l1j , . . . , l

3
j ) for every

j = 1, . . . , 3.

Denote by 1, 2, 3 the three families of straight lines corresponding to the sides of the

2-simplex and by 4 the family corresponding to the indifference curves. I denote by

[i, j, k], with i, j, k = 1, . . . , 4 and i 6= j 6= k the 3-subweb formed by the families of

curves i, j, k. [1, 2, 3] form a hexagonal (regular) 3-subweb. Under differentiability

assumptions, Goldberg (2004) gives necessary and sufficient conditions for such

results depending on the structure of the subwebs [1, 2, 4], [1, 3, 4] and [2, 3, 4]

(Structure defined by (C3)). Consequently, following Goldberg (2004), a clean

proof for a representation in the case n = 3 would necessitate, in addition to (C3),

“smooth” preferences.

However, it is possible to consider instead of � the partial order �j defined for an

arbitrary j = 1, . . . , 3 by l �j m if and only if lj = mj and l � m. If an additively

separable representation exit then

l �j m⇒ φi(li) + φk(lk) ≥ φi(mi) + φk(mk)

Embed ∆(X) in R2 with δj identified with (0, 0) ∈ R2. Define l ⊥ m if and only if

l and m have disjoint support in R2. Let ∆ = ∆(X)/ ∼j be the set of equivalence

classes of ∆(X) under ∼j with typical element L. We construct a structure on ∆

Letting

B = {(L,M) | ∃l,m such that l ∈ L,m ∈M, l ⊥ m and l +m ∈ ∆(X)}

Define ◦ on B by letting L ◦M = [l +m]. By (C3), ◦ is well defined but without

(C2), it is not possible to fit a known extensive structure (See (Krantz et al., 1971,

Definition 3, Chapter 3)). The problem is not to find a representation Φ such that

if (L,M) ∈ B then Φ(L ◦M) = Φ(L) + Φ(M), it is meaningless for �j. We need

to find a representation Φ such that if (L,M) ∈ B, (L′,M ′) ∈ B then

Φ(L ◦M)− Φ(L′ ◦M ′) = Φ(L) + Φ(M)− Φ(L′) + Φ(M ′)

22That is a web formed by straight lines not necessarily parallel.
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with respect to �j, that is, L ◦M and L′ ◦M ′ comparable and so on. In fact,

derivation of the desired result in the case n = 3 is relatively straightforward with

some additional structural assumptions but difficult with only (C3) and continuity.

However, it seems to be possible.

1.3.4 The axioms

The axioms are given for the case n ≥ 4. The first two axioms are standard and

the topology used has been discussed before. The third axiom is the translation

of (C2) on ∆(X), it is discussed bellow.

Axiom A. 1 (Weak Order (WO)). � is non trivial, complete and transitive.

Axiom A. 2 (Continuity (C)). For all l ∈ ∆(X), {m | m � l} and {m | l � m}
are closed in T .

Axiom A. 3 (Weak Orthogonal Independence (WOI)). For all l,m, n, o ∈
∆(X) such that n ⊥ {l,m}, and o ⊥ {l,m} and for all α ∈ (0, 1)

αl + (1− α)n � αm+ (1− α)n⇔ αl + (1− α)o � αm+ (1− α)o

(WOI) has a simple intuitive interpretation : If two lotteries, l and m, coincide

for a set of consequences, then the preference between l and m does not depend

on the common partial distributions. Common partial distributions can be substi-

tuted in l and m by over identical partial distributions without modify preferences.

Consequently, (WOI) seems to be the desired axiom for branch-separability over

lotteries. This axiom implies in fact that an individual consistently edit and elim-

inate common components prior to choosing between lotteries as in Kahneman

and Tversky (1979).

1.3.5 The theorem
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Theorem 1.1.

Let X = {x1, . . . , xn} with n ≥ 4, � on ∆(X) satisfies (WO), (C) and

(WOI) if and only if there are continuous real-valued functions φi : [0, 1]→ R,

i = 1, . . . , n, such that

V (l) =
n∑
1

φi(li)

represents �. Moreover, φi, i = 1, . . . , n, are unique up to similar positive

linear transformations.

For n ≥ 4, as there is enough orthogonal sequence, it is possible to demonstrate

without additional assumptions that an orthogonally additive representation ex-

ists, which leads to additively decomposable representations. The sketch of the

proof is as follows :

Embed ∆(X) in RX and consider the translation ∆0 = ∆(X)+m0 for an arbitrary

m0 in the interior of ∆(X). Define ⊥ on ∆0, orthogonality given by disjointness

of the supports. Let ∆ = ∆0/ ∼ be the set of equivalence classes of ∆0 under ∼.

Construct a structure on ∆ Letting

B = {(L,M) | ∃l,m such that l ∈ L,m ∈M, l ⊥ m}

Define ◦ on B by letting L ◦M = [l +m]. By (WOI), L ◦M exists and is well-

defined as (WOI) implies (C2). There exist a substructure of (∆,�,B, ◦) that is an

extensive structure. Consequently, it is possible to obtain Φ(L◦M) = Φ(L)+Φ(M)

for some (L,M) ∈ B. The proof is to extend this representation to ∆ and note

that it is an orthogonally additive representation.

1.3.6 Stochastic dominance

I suppose in this subsection that V (l) =
∑n

1 φi(li) represents� over ∆(X) and that

the φi’s are differentiable. Following the approach of Machina (1982) extended by

Chew and Nishimura (1992) and Chew and Hui (1995), V is Gâteaux differentiable

and
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∀l,m ∈ ∆(X), lim
α→0

V ((1− α)l + αm)− V (l)

α
=

n∑
1

(mi − li)φ′i(li) (1.3)

An equivalent way of representing this equation is to write

∀l,m ∈ ∆(X), V (l + α(m− l))− V (l) =
n∑
1

α(mi − li)φ′i(li) + o(m− l) (1.4)

As the Gâteaux derivative is linear in α(m− l), V is also Frèchet differentiable and

Machina theorems23 apply. Consequently, under differentiability, an immediate

consequence of Theorem 1 in Machina (1982) is the characterization of stochastic

dominance :

Corollary 1.2. l � m whenever l stochastically dominates m if and only if

∀i, j, j > i, ∀p, q, φ′j(p) > φ′i(q)

This means that the derivative of φi must be always inferior to the derivative of

φj if i < j.

1.4 Applications

1.4.1 An application to variational preferences

Weak orthogonal independence axiom suggest the study of the following axiom :

Axiom A. 4 (Orthogonal Independence (OI)). For all l,m, n ∈ ∆ (X) such that

n ⊥ {l,m} and for all α ∈ (0, 1)

l � m⇔ αl + (1− α)n � αm+ (1− α)n

23There is no difference here, even if the distributions are not cumulative distributions as in
Machina (1982).
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A first immediate observation is that this axiom is the independence axiom where

the composition is restricted to lotteries with disjoint supports. This means that

for lotteries with disjoint supports independence is assumed to hold. Of course, the

classical independence axiom implies it and for X sufficiently rich24, it is clear that

(OI) implies (WOI). Thus, when an individual evaluates a lottery, he compares and

cancels common components at first. Next, he reduces uniformly the remaining

distribution. For l,m ∈ ∆(X) such that li = mi 6= 1 and for all j 6= i, lj 6= mj :

l � m⇔ liδxi +
∑
j 6=i

ljδxj � liδxi +
∑
j 6=i

mjδxj

⇔ liδxi + (1− li)
∑
j 6=i

lj
1− li

δxj � liδxi + (1− li)
∑
j 6=i

mj

1− li
δxj

⇔
∑
j 6=i

lj∑
k 6=i

lk
δxj �

∑
j 6=i

mj∑
k 6=i

mk

δxj

Consequently, (OI) couples additivity and substitution by orthogonal lotteries.

The previous equivalences remain valid if i is replaced by a non-empty proper

subset I. The following theorem characterizes the orthgonal independence axiom

when n ≥ 4.

Theorem 1.3.

Let X = {x1, . . . , xn} with n ≥ 4, � on ∆(X) satisfies (WO), (C) and (OI)

if and only if there is a real-valued functions U : X → R such that

V (l) =
n∑
1

(liu(xi)− Ali ln li) , if c = 1 (1.5)

or

V (l) =
n∑
1

(
lciu(xi)−

A

c− 1
(lci − li)

)
, if c > 0 and c 6= 1 (1.6)

24For n ≤ 3, (WOI) is meaningless.
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represents �. Moreover, (ũ, Ã) is another representation of � in the above

sense if and only if there exist α ∈ R∗+ such that ũ = αu and Ã = αA. In the

case c = 1, ũ = αu+ β for β ∈ R is allowed.

This functional is the sum of an expected utility or weighted expected utility

and an entropic term (Shannon Entropy for the EU and Tsallis25 entropy for the

weighted EU). This functional appears first in Meginniss (1976) and shortly after

in Aczél (1978), Aczél and Daróczy (1978), Aczél and Kannappan (1978) in the

mixed theory of information. Both works use analytic assumptions to derive such

results. In a series of papers, Luce, Ng, Marley et Aczèl (2008a, 2008b, 2008, 2009a,

2009b) derived the same representation from a theory of joint receipts and call this

representation entropy-modified expected utility. Some properties have been stud-

ied by Yang and Qiu (2005) that propose an expected utility-entropy measure of

risk. This functional is related to variational26 preferences, that is, preferences

represented by an utility function term and a cost function term. In the economic

literature, the addition of the entropic term (Shannon entropy specifically) is justi-

fied by the cognitive cost of the decision process as in rational inattention theory27

Sims (1998, 2003). Usually, Authors claims that this kind of functional reflects

bounded rationality. In fact, the difference between these functionals and expected

utility is quite thin in terms of axioms. Optimisation of equation (1.5) is the most

simple entropic optimisation problem under expectation constraint and leads to

the multinomial logit introduced28 by Luce (1959). The multinomial logit model is

extensively used in model of discrete choice and it has two canonical foundations29

involving uncertainty. My derivation is different, if decision maker has preferences

described by equation (1.5) and if we ask him to make a random choice between

sure consequences then its choice probabilities are given by the multinomial logit

25See Tsallis (2009) for an extensive study of this generalization of the classical entropy.
26See Maccheroni et al. (2006) for a general result under uncertainty.
27This theory suggests that an agent must allocate his limited attention to the available or

imperfect information in a choice situation. To implement this idea, it is necessary to quantify
information flows. Classical entropy in information theory answers this question in the case of
entropy. For a general framework, see de Oliveira et al. (2013).

28The logit model was first proposed for binary choices by Bradley and Terry (1952)
29According to Luce derivation, if decision maker choices are probabilistic then by indepen-

dence of irrelevant alternatives axiom, ratios of choice probabilities are independent of the choice
set and the multinomial logit model emerges. According to random utility models developed by
McFadden (1974), decision maker preferences are represented by an utility function with an ad-
ditively separable random noise. If the random noise is independently distributed by the extreme
value distribution, then choice probabilities are given by the multinomial logit model.
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model. Although it may seem incongruous as conscious randomization procedure is

not a unanimous fact30. Nonetheless, my result is more significant in game theory.

To the best of my knowledge Stahl (1990) was the first to propose a functional as

equation (1.5) into game theory thus highlighting logit equilibrium. As in rational

inattention theory, he introduces a entropic cost function. Following McFadden

(1974), McKelvey and Palfrey (1995, 1998) uses random utility models to capture

randomness in the responses of experimental subjects playing a game. Their work

led to the concept of quantal response equilibrium31 and a large literature. Con-

sequently, my work provides a deterministic framework for logit equilibrium and

more. In the full generality, orthogonally additive functional provides theoretical

foundations to derive such equilibriums.

1.4.2 Data in the literature

Birnbaum and Chavez (1997) reports data on binary choices between gambles

that appear not to be accounted for by any of the models satisfying branch-

independence or distribution-independence. These properties are implied by weak

orthogonal independence axiom. The authors test and reject models as expected

utility and original prospect theory. I would be more convinced if the results were

testing functionals with not separated utility and probability weighting functions.

However, the result is not surprising as a simple weakening of the independence

axiom is not sufficient to explain individuals behaviour. In contrast, Luce et al.

(2008b) find opposite results for preferences represented by equation (1.5) and

consequently that accommodates for weak orthogonal independence axiom.

1.5 Proofs

Proof of theorem 1.1. The necessary part of the theorem is transparent, I focus

only on the sufficiency part. Let X = {x1, . . . , xn} with n ≥ 4 and ∆(X) =

{(l1, . . . , ln) ∈ [0, 1]n |
∑

i li = 1} the set of lotteries over X with finite supports.

Firstly, for n ≥ 4, � satisfies (WOI) then restricted solvability and standard

sequence are not meaningless. In fact, following Theorem 14 in (Krantz et al., 1971,

30See for example Harsanyi (1973), Rubinstein (1991) and Machina (1985).
31See Haile et al. (2008) for a review.
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Chapitre 6), it is true that restricted solvability and that Archimedean property

of additive conjoint measurement is satisfied over supports, that is (l1, . . . , ln) ≡
(lI , lX\I) for I non-empty proper subset of X. By lemma 14 in (Krantz et al.,

1971, Chapitre 6), it follows that (C3) is satisfied for (lI , lX\I) with I non-empty

proper subset of X.

(aI , xX\I) � (fI , qX\I) and (fI , pX\I) � (bI , xX\I)⇒ (aI , pX\I) � (bI , qX\I)

With respect to the measure (
∑

J li =
∑

J mi, for all l,m, J).

Secondly, let m0 be in the interior of ∆(X), consider the translation

∆0 = ∆(X) +m0 =
{
l −m0 | l ∈ ∆(X)

}
Embed ∆0 in the linear space RX and denote by 0 the zero of ∆0. For l̃, m̃ ∈ ∆0,

define ⊥ by l̃ ⊥ m̃ if and only if l̃ and m̃ have disjoint supports. With a slight

abuse of notation, consider � over ∆0 defined by

l̃ � m̃⇔ l̃ +m0 � m̃+m0

Let ∆ = ∆0/ ∼ be the set of equivalence classes of ∆0 under ∼ with typical

element L. Let

B =
{

(L,M) | ∃ l̃, m̃ such that l̃ ∈ L, m̃ ∈M, l̃ ⊥ m̃
}

Define ◦ on B by letting, for (L,M) = (
[
l̃
]
, [m̃]), L ◦M =

[
l̃ + m̃

]
if l̃ ⊥ m̃.

As m0 is in the interior of ∆(X), there is m1, l0 and l1 such that (l0j , l
1
j ) is a

permutation of (m0
j ,m

1
j) for every j = 1, . . . , n. Trivially, (l0 −m0) and (l1 −m0)

have disjoint supports and consequently the graph of ⊥ is non-empty. It is clear

that (m1 −m0) = (l0 −m0) + (l1 −m0) and in ∆0, the previous equation can be

stated as m̃1 = l̃0 + l̃1 with l̃0 ⊥ l̃1.

Consequently, the binary function ◦ from B to ∆ exists and is onto (surjective) as

m̃1 is on ∆0 without restrictions. Furthermore, by (C3), If l̃, l̃′ ∈ L and m̃, m̃′ ∈M
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are such that l̃ ⊥ m̃ and l̃′ ⊥ m̃′ then l̃ + m̃ ∼ l̃′ + m̃′ and ◦ is well defined. An

immediate observation is that if (L,M) ∈ B then (M,L) ∈ B and ◦ is commutative

by definition as
[
l̃ + m̃

]
∼
[
m̃+ l̃

]
. It is clear that for all L ∈ ∆, (L, [0]) ∈ B and

that L ◦ [0] = [0] ◦ L = L.

Let B(L) = {M ∈ ∆ | (L,M) ∈ B} and define L such that for all L, L � L � [0]

and B(L) = {[0]} and similarly L such that for all L, L ≺ L ≺ [0] and B(L) = {[0]}.
They are respectively the greatest element and the least element in ∆ that admit

orthogonal elements.

Define ∆+ and ∆− by {L ∈ ∆ | L � [0]} and {L ∈ ∆ | [0] � L} respectively, the

positive cone and the negative cone of ∆.

Let I+

L
, I−L be defined by

{
L ∈ ∆ | L � L � [0]

}
, {L ∈ ∆ | L � L � [0]} respec-

tively.

We shall now prove that (I+

L
,�,B|I+

L

, ◦) where

B|I+
L

=
{

(L,M) | ∃ l̃, m̃ such that l̃ ∈ L, m̃ ∈M, l̃ ⊥ m̃ and L+M ∈ I+

L

}

is an extensive structure with no essential maximum ((Krantz et al., 1971, Defi-

nition 3, Chapter 3)). The six axioms are established in corresponding numbered

paragraphs.

1. (I+

L
,�) is a weak order by axiom (W0); in fact, it is a simple order.

5. In I+

L
, L,M � [0], by weak orthogonal independence L◦M � L,M . Thereby

positivity holds.

2. Associativity. Disjoint sum is associative then by construction it is possible

to have naturally (M,N) and (L,M ◦ N) ∈ B|I+
L

. If not, suppose that

(L,M) ∈ B|I+
L

and (L◦M,N) ∈ B|I+
L

. Let õ ∈ L◦M and ñ ∈ N such that õ ⊥
ñ. By positivity [õ] � L,M then by continuity (restricted solvability) there

is m̃ ∈M such that m̃ belongs to the interval [[0] , L ◦M ] and consequently

m̃ ⊥ ñ and then (M,N) ∈ B|I+
L

. An identical argument gives (L,N) ∈ B|I+
L

.

Let m̃′ ∈ M and l̃ ∈ L such that m̃′ ⊥ l̃, then l̃ can be chosen collinear or

orthogonal to elements in M , as M ◦N � L then (L,M ◦N) ∈ B|I+
L

.
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3. If (L,N) ∈ B|I+
L

and L � M then by continuity there is m̃ ∈ M such that

m̃ belongs to the interval [[0] , L] and consequently (M,N) ∈ B|I+
L

. By weak

orthogonal independence L ◦N �M ◦N

4. Solvability. If L � M as M ≺ L then {N | N ⊥M} is non-empty and by

continuity there exists N such that L �M +N .

6. By continuity, � is Archimedean.

By Theorem 3 in (Krantz et al., 1971, Chapter 3) there is a function Φ from I+

L

to R+ such that

(i) L �M ⇔ Φ(L) ≥ Φ(M)

and

(ii) (L,M) ∈ B|I+
L

⇒ Φ(L ◦M) = Φ(L) + Φ(M)

and if another function Φ′ satisfies (i) and (ii), then there exists α > 0 such that,

Φ′=αΦ. It remains to extend this representation on ∆.

For all L ∈ ∆+ as ◦ is onto there is M,N such that (M,N) ∈ B and L = M ◦N .

But as (M,N) ∈ B then M,N ∈ I+

L
. It suffices to set Φ(L) = Φ(M) + Φ(N). The

prolongation is pasted by continuity. To show that additivity holds throughout

∆+, it suffices to consider L ◦M,N ◦ O whenever (L,M) ∈ B and (N,O) ∈ B.

Suppose L ◦M ∼ N ◦ O, by continuity there is R,Q such that (N,R) ∈ B|I+
L

,

(Q,M) ∈ B|I+
L

, N ◦R ∼ Q ◦M . So we have already prove associativity : (L,R) ∈
B|I+

L

, (Q,O) ∈ B|I+
L

and by (C3) L ◦ R ∼ Q ◦ O. Consequently, by cancellation :

Φ(L ◦M) = Φ(L) + Φ(M) = Φ(N ◦ O) = Φ(N) + Φ(O). Similar argument gives

an identical result if we suppose L ◦M � N ◦O.

The same reasoning leads to an orthogonality additive representation over ∆−.

As a neutral element exist on ∆, we consider whenever it is defined −L given

for L � [e] by the solvable equation L ◦ −L if (L,−L) ∈ B. By continuity a

representation exists over ∆, that is, there is a function Φ from ∆ to R such that
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(i) L �M ⇔ Φ(L) ≥ Φ(M)

and

(ii) (L,M) ∈ B⇒ Φ(L ◦M) = Φ(L) + Φ(M)

and if another function Φ′ satisfies (i) and (ii), then there exists α > 0 such that,

Φ′=αΦ.

Finally, there is Φ from ∆0 to R that represents � and such that Φ(l̃+m̃) = Φ(l̃)+

Φ(m̃) whenever l̃ and m̃ have disjoint supports therefore orthogonally additive and

by translation over ∆(X) : there is a function V from ∆(X) to R such that

(i) l � m⇔ V (l) ≥ V (M)

and

(ii) V (αl + (1− α)m) = V (αl) + V ((1− α)m)

and if another function Ṽ satisfies (i) and (ii), then there exists α > 0 such

that, Ṽ=αV . Adding a constant non equal to zero would eliminate orthogonal

additivity. The additively separable representation is given by induction and by

letting φi(li) = V (liδsi) for all i :

l � m⇔
n∑
1

φi(li) ≥
n∑
1

φi(mi)

Obviously, φi, i = 1, . . . , n, are unique up to similar positive linear transformations.

The above proof means that for α fixed and for m,n ∈ ∆(X) with disjoint supports

then there is an injective transformation such that orthogonal additivity stands

for all l, o such that l ⊥ {n, o} and o ⊥ {l,m}. From Eilenberg (1941), axioms

(WO) and (C) imply the existence of continuous function V which represents �
over ∆(X) and leaves (WOI) undisturbed. By (WOI), for all l,m, no such that

{l,m} ⊥ {n, o}
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V (αl + (1− α)n = V (αm+ (1− α)n⇔ V (αl + (1− α)o = V (αl + (1− α)o

Consequently, by the above reasoning and continuity there is h : ∆(X) → R a

continuous orthogonally additive map, and U : R→ R continuous and injective.

The above proof highlight the necessity of condition (C2) and the fact that ordering

on each component in additive conjoint measurement is not an important feature.

�

Proof of corollary 1.2. Under differentiability,

∀l,m ∈ ∆(X), V (l + α(m− l))− V (l) =
n∑
1

α(mi − li)φ′i(li) + o(m− l)

By Theorem 1 in Machina (1982), φ′i(li) is non-decreasing in i, for all li. the result

follow. �

Proof of theorem 1.3. By Theorem 1.1, a continuous orthogonally additive func-

tional represents �. Furthermore, � satisfies (OI) if for all l,m, n ∈ ∆(X) such

that n ⊥ {l,m} and for all α ∈ (0, 1) :

l � m⇔ αl + (1− α)n � αm+ (1− α)n

It follows, taking the indifference part, that for all l,m ∈ ∆(X) such that supp(l), supp(m) (
X, it is true that V (l) = V (m) if and only if for all α ∈ (0, 1), V (αl) = V (αm) or

∑
supp(l)

φi(li) =
∑

supp(m)

φi(mi)⇔
∑
supp(l)

φi(αli) =
∑

supp(m)

φi(αmi)

Therefore, as the previous equivalence is true for all proper subset of X, V satisfies

at least generalized homogeneity, that is, for all l ∈ ∆(X)

∑
i

φi(αli) =
∑
supp(l)

f(α)φi(li)
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with the φi’s and f are the unknows function. It is clear that f , as the φi’s, are

continuous over [0, 1]. By Theorem 1 in (Aczél and Dhombres, 1989, Chapter 20),

f(α) = αc for an arbitrary c ∈ R and there exists hi from [0, 1]n−1 such that

∑
k

φk(lk) = lcihi(
l1
li
, . . . ,

li−1

li
,
li+1

li
, . . . ,

ln
li

)

Firstly, by continuity, c must be greater than 0. Secondly, the additive structure

of V implies that there exist vi ∈ R for i = 1, . . . , n such that

V (l) =
∑
i

lcivi

Where for all i, vi = hi(0, . . . , 0) =
∑

k 6=i φk(0) + φi(1).

For c 6= 1 and an arbitrary constant A ∈ R, let ui defined by ui = vi + A
c−1

. It

follows that

V (l) =
∑
i

lciui −
A

c− 1

∑
i

lci

Adding a constant not modify the preferences then

Ṽ (l) =
∑
i

lciui −
A

c− 1

∑
i

lci +
A

c− 1

=
∑
i

lciui −
A

c− 1

∑
i

(lci − li)

is an representation of �. When c→ 1, Ṽ tends to
∑

i liui−A
∑

i li ln(li) which is

also a possible representation of �. The uniqueness of these representations and

the necessary part are transparent. �
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1.6 Conclusion

The purpose of this chapter was to find some concept for applied additive repre-

sentation of preferences on simplices as subsets of Cartesian products. It is more

complicated than the usual case but very similar to linear utility theory. In this

direction, a work must be undertaken. Limited experimental data and their con-

flicting aspects does not allow us to make a judgement about the credibility of such

functionals even if, in full generality, it is low given typical failures of individuals

behaviour as framing effects or intransitive preferences. However, These represen-

tations seem to have an analytical substantial advantage over most of the earlier

proposals. The most straightforward formal application can take place into game

theory as optimization problem with additively separable functional is simple. The

obtained result make possible the derivation of further results for entropy-modified

expected utility extensively used in economic studies. In this perspective a great

care must be imposed to studies that suppose an entropic term. Entropy-modified

expected utility reports a very limited bounded rationality as the cognitive im-

pairment is thin.



Chapter 2

An Axiomatic Foundation for

“Discrete” Choice with Social

Interactions

2.1 Introduction

2.1.1 Motivations

Recent research in behavioural economics1 has shown how decision makers of-

ten fail to maximize their narrow self-interest. For example, peoples do not play

the selfish, sub-game perfect equilibrium and often make positive gifts in dicta-

tor games (Robert et al. (1994)), or refuse unfair allocations in ultimatum games

(Guth et al. (1982)). Thus, a large literature2 suggests that decision makers have

other-regarding preferences3, that is, preferences that depend on more than their

own outcome and that are influenced by her own outcomes and those of others

in a absolute or relative way. This is phenomenon whose theoretical properties

merits thorough study. In economics, other-regarding preferences refer to partic-

ular forms of interactions, in which behaviours (or beliefs about behaviours) of a

1See Cooper and Kagel (2009a) for a recent survey of the experimental evidence.
2See Fehr and Gächter (2000) or Sobel (2005) for a recent survey.
3The idea that individual’s welfares depend on relative and absolute income was first intro-

duced by Veblen (1899). It is not a new subject, see Duesenberry (1949), Leibenstein (1950),
Pollak (1976).

31
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neighbourhood (the reference group) affect decision maker’s behaviours. The ref-

erence group depends on the social context, which is typically family, neighbours,

friends or peers.

In game theory, there is a field of research that confirms that people care for par-

ticular standards of fairness. Economists have found that anonymously interact-

ing agents frequently agree on rather egalitarian outcomes in bilateral bargaining

situations (Bolton and Ockenfels (2000), Camerer and Thaler (1995), Fehr and

Schmidt (1999), Falk et al. (2003). An important observation is that reciprocity is

also relevant (Fehr and Schmidt (1999)). If individuals signal bad intention, they

will receive a lower share. People punish unfair behaviour in fact. Some relevant

theoretical works study market equilibrium with generic preferences, Dufwenberg

et al. (2011) consider a general-equilibrium model in which agents have separable

non relative other-regarding preferences; or game equilibrium, Segal and Sobel

(2007) consider a model where players in a strategic environment have preferences

over strategies, which can be represented by a weighted average of the utility from

outcomes of the individual and his opponents. The weight one player places on an

opponent utility depends on the players joint behaviour, thus depicting reciprocity

in standard game theoretical way.

Less theoretical but also related are the socio-economic studies. Other-regarding

preferences has led to a rich theoretical literature in economics along with interest

in social determinants of individual behaviour. Many efforts4 to measure these

influences have been made. One of them is the model developed by Brock and

Durlauf (2001b). This model is of great interest. Firstly, because he solved two

problems raised by Manski (1993) in the field of social econometrics. The au-

thors give theoretical foundations for identification of exogenous and endogenous

peer effects in a context of binary choice and, in the same time, they determine

the Nash equilibria of their theoretical model under a suitable random utility

assumption. This assumption comes from the individual discrete choice theory

proposed by McFadden (1974). It is well known that when the random utility

term is independent and identically distributed according to generalized extreme

value distributions then the resulting choice is stochastic and follows a Boltzmann-

Gibbs distribution5. Secondly, because this last distribution is also well known in

4See for extensive treatment, Manski (1993, 2000) and Brock and Durlauf (2007) for open
problem in econometrics methods and Cox (2004) for identifications of social interactions in
game theory.

5Logit.
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statistical physics and comes from an entropy maximization problem under expec-

tation constraints. So, along with the model of Blume and Durlauf (2001), the

model of Brock and Durlauf (2001b) (now denoted BBD for Blume, Brock and

Durlauf) is a basis for a part of the econophysics field, for interaction-based model

and for economics under social interactions. In this chapter, my motivation is to

propose an axiomatic foundation for other-regarding preferences under risk in the

framework of BBD.

BBD model is a standard economic model of individual discrete choices with a

social influence term. I will derive first an “expected utility” representation with

other-regarding preferences but without stochastic term. Work under risk allows to

apply the model in game theory. Moreover, this framework enables sources of risk

to come from the interaction among lotteries chosen by the agent, lotteries chosen

by his peers and beliefs over his peers choices. I discuss the case of exogenous

reference groups and also endogenous reference groups. In this two case, I give

axioms for separate the social influence term between individuals of the reference

group. In this way, social influence between peers can be compared. A feature of

my work is to allow agents to interact in a non-anonymous fashion. The anonymity

hypothesis is suitable for large reference groups but not for small groups. However,

is not a loss of generality.

Formally, I consider preferences of an agent i. Let (li, lJ) represents the situation

in which agent i evaluates lottery li, while lJ is the joint lottery of lotteries lj,

j ∈ J . lj can be the lottery chosen by j or beliefs about the choice of j. Agent i

evaluates this situation according to :

V (li, lJ) =

∫
Xi

u(xi)dli(xi) +
∑
j∈J

(∫
Xi×Xj

Sj(xi, xj)dli(xi)dlj(xj)

)
(2.1)

The first term of this representation represents the expected utility of the decision

maker over the continuous set of outcomes Xi. The effect on i’s welfare of the

outcome of the other individuals is reported in the second term. Sj represents

the social index between i and j. The individual i forms the expected value of Sj

over the Cartesian product Xi×Xj where Xj is the continuous set of outcomes of

individual j. Finally, i sums the other-regarding term over individuals. Note that

preferences are given over a product set to allow a clean separation between the

private and the social utility.
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Secondly, to achieve similar derivation of Nash equilibria, I discuss for the case of

a simple exogenous reference group the addition of an entropic term as in chapter

1. Adding an entropic term provides a way, into a game theoretic settings, to

obtain logit equilibria. As the econometric framework must add a random utility

term, this last approach is not suitable for empirical investigations.

2.1.2 Related results

Despite the relevance of these contributions, there is little theoretical work on

other-regarding preferences, especially under risk and uncertainty. Approaches

incorporating other-regarding preferences into a decision theoretical framework

include Borah (2009), Gilboa and Schmeidler (2001), Karni and Safra (2002),

Maccheroni et al. (2012), Neilson and Stowe (2004), Ok and Kockesen (2000),

Saito (2008).

Borah (2009) introduces a concern for possibilities in the decision maker’s evalu-

ation of others’ outcomes. That is, the decision maker anticipates the welfare of

this peers. Gilboa and Schmeidler (2001) develop a model of individual welfare

that takes into account cognitive factors. They postulate that individuals com-

pare incomes with aspiration levels determined by past experiences, interpersonal

comparison, and reasoning. They give an axiomatic foundation of a measure of

welfare given by a linear combination of differences between incomes and aspi-

ration levels, where the aspiration level at each instance is a linear function of

past incomes. However, the linearity of their model is not compatible with further

extensions under risky situations. Karni and Safra (2002) present an axiomatic

model of choice behaviour for a “self-interest seeking moral individual” over ran-

dom allocation. Individual preferences are decomposed into a classical self-interest

component and a “Social” component which represents individual’s moral judge-

ment. These authors depict behaviour in terms of fairness in a way that does not

allow for distinctions with other motives such as conformism. Maccheroni et al.

(2012) generalizes the classic subjective expected utility model by allowing decision

maker’s preferences to depend on the outcomes of his peers. The choice criterion

combines a classical expected utility with expected social externalities anticipated

by decision makers. Again, the reference group is not clearly identifiable because

these authors suppose anonymous peers outcomes. Nevertheless this article is the
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closest to the present contribution. In particular, I use their conformistic refer-

ence axiom to separate the private and the social utility. Neilson and Stowe (2004)

consider preferences over a vector of probability distributions which can be repre-

sented by a convex sum of the expected utility of the decision maker and expected

utility of his opponents. The resulting specification allows the weights placed on

the opponents outcomes to be player-dependent. But, under optimization, their

way of formalising player-dependency lead to the vanishing of considerations for

others. That is, other-regarding preferences do not take into account relative wel-

fare. Ok and Kockesen (2000) incorporate the widely acknowledged phenomenon

of keeping up with the Joneses, i.e., preferences are dependent on both “relative

standing” in society and material consumption. The principal ingredient of their

analysis is the assumption that individuals desire to occupy a subjectively better

position than their peers. They consider negative interdependent preferences over

income distributions and provide an axiomatization of the relative income crite-

rion under certainty where they emphasize the distinction between relative and

individual income effects. However their starting point - what is actually regarded

as “relative standing” in society - is not satisfactory. The main reason is that

the reference group is not clearly identifiable. Saito (2008) introduces a model of

inequality aversion under risk that extends the model of Fehr and Schmidt (1999).

This chapter is organized as follows. In section 2, I introduce the key concept

of my work. Section 2.1 describes orthogonally additive functional. Section 2.2

points the differences with other approaches in the literature. Section 3 gives the

main results of this chapter. Section 4 applies the main results to variational

preferences. Proofs are given in section 5. Section 6 concludes.

The chapter is organized as follows. Section 2 provides preliminary notions and

axiomatizes preferences in the case where the reference group is exogenously given,

while Section 3 treats the case where the reference group is endogenously given.

Section 4 discusses the addition of an entropic term. Proofs are given in section

5. Section 6 concludes.
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2.2 Exogenous Reference Group

2.2.1 Non separable preferences across individuals

Let N = {1, . . . , n} be the non-empty finite set of all individuals agents, with

agent i ∈ N making the decisions. Let X ⊆ R be the space of outcomes with

typical element x. I denote by Xj the copy of X which is the space of outcomes

to individual j with typical element xj. Let ∆(Xi) be the space of lotteries over

Xi with typical element li, and ∆(
∏

j 6=iXj) be the space of lotteries over
∏

j 6=iXj

with typical element l−i which represents the joint lottery of n−1 individuals other

than i. Both are endowed with the weak topology. To every l−i there corresponds

elements lk ∈ ∆(Xk), for k 6= i, which are the marginal lotteries of l−i on the

subset Xk. Concretely, l−i is a multivariate probability distribution over all the

individuals different from i. lk represents the lottery chosen by k or beliefs about

the choice of k, l−i is the joint lottery, that is, the general lottery for the society.

I denote by LN the product set ∆(Xi) × ∆(
∏

j 6=iXj) endowed with the product

topology. Following Fishburn (1976), I introduce a binary relationR on LN defined

by

(li, l−i)R(mi,m−i)⇔ lk 6= mk for at most one k ∈ {i,−i}

When individual i is isolated from other individuals, I assume that he has a self-

interested preference relation �∅ over ∆(Xi). Since ∆(Xi) is a mixture space,

it lends itself to the expected utility setup. In contrast, when individual i is

not isolated from N \ {i}, I assume that he has a preference relation � over LN
with (li, l−i) � (mi,m−i) read as “the individual prefers the 2-tuple (li, l−i) to

the 2-tuple (mi,m−i)”. I denote by xN an element l = (li, l−i) ∈ LN such that

lk = x ∈ X for all k ∈ N . I assume that the preference relation � satisfies the

following axioms.

Axiom B. 1 (Weak Order). � is complete and transitive.

Axiom B. 2 (Continuity). For every l ∈ LN , {m | m � l} and {m | l � m}
are closed in the product topology.
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Axiom B. 3 (Independence). For every l,m, n, o ∈ LN and α ∈ (0, 1), if lRn,

mRo, n ∼ o

l � m⇒ αl + (1− α)n � αm+ (1− α)o

.

These first two axioms are standard. The Continuity axiom states that � is con-

tinuous on LN with respect to its topology, that is, the product topology. Note

that the comparison is between allocation lotteries. The decision maker compares

lottery profiles, not just his own lotteries but the group lotteries also. The Inde-

pendence axiom given here uses convex combinations of elements in LN only when

the elements being combined differ in at most one coordinate. That is, elements

of the form (li, l−i) and (li,m−i), or (li, l−i) and (mi, l−i). Standard interpreta-

tions and critiques of this axiom apply equally well to the classical independence

axiom. This axiom allows the application of convex combinations sum to differ-

ent coordinates which is essential to obtain interconnections between coordinates.

For example, this axiom says that if (li, l−i) � (mi,m−i), (ni, l−i) ∼ (mi, o−i) and

α ∈ (0, 1) then

(αli + (1− α)ni, l−i) � (mi, αm−i + (1− α)o−i)

.

Remember that when i is isolated from other individuals, I assume that he has

a self-interested preference relation �∅ over ∆(Xi) and that I denote by xN an

element l = (li, l−i) ∈ LN such that lk = x ∈ X for all k ∈ N .

Axiom B. 4 (Conformistic Reference). For every x, y ∈ X, xN � yN if, and

only if, x �∅ y

This axiom is slightly identical to the axiom stated by Maccheroni et al. (2012), the

decision maker reduces an egalitarian situation to the “self-interested preference”
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situation. Simply, in a group where everybody has the same certain outcome, the

well-being of i in this situation is the same as if he were isolated. However it is

possible to choose an other reference. Maccheroni et al. (2012) introduce directly

this axiom for varying reference group. However, for now, the reference group is

exogenous, it suffices therefore to choose a trade-off in the reference group and not

among the reference groups.

The basic axioms B.1-B.4 lead to this multi-affine6 basic representation.

Theorem 2.1. A binary relation � on LN satisfies Axioms B.1-B.4 if and

only if there exist a continuous function u : Xi → R, and a continuous function

S : Xi ×
∏

j 6=iXj → R, with S(xN) = 0 for all x ∈ X, such that

V (li, l−i) =

∫
Xi

u(xi)dli(xi) +

∫
Xi×

∏
j 6=iXj

S(xi, x−i)dli(xi)dl−i(x−i) (2.2)

represents �. Moreover, (ũ, S̃) is another representation of � in the above

sense if and only if there exist (α, β) ∈ R∗+ × R such that ũ = αu + β and

S̃ = αS.

Theorem 2.1 provides a first representation result for exogenous reference group,

the function S captures the comparative outcome concerns of i. As V is multi-

affine, S is also, and the expectation of S represents the expected social utility

given the risk that the agents face or represents the given expected social utility

given the i agent’s belief on the choices of the rest of the agents in N \ {i}.

2.2.2 Separable preferences across individuals

The following axiom allows additive representation over N \ {i}. The agent i

evaluates the social utility with respect to all individuals separately. Suppose that

(li,m−i) and (li, n−i) are such that mk = nk for all k 6= i. That is, all marginal

lotteries are equal, then the decision maker is indifferent between (li,m−i) and

(li, n−i). It is a usual assumption7 for separate multivariate expected utility

6Affine in each variable
7See (Fishburn, 1970, Chapter 11).
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Axiom B. 5 (Individual Comparative Preference). For every li ∈
∆(Xi),m−i, n−i ∈ ∆(

∏
j 6=iXj), if mk, nk ∈ ∆(Xk) are the k − th marginals

respectively of m−i, n−i and if mk = nk for k ∈ N \{i}, then (li,m−i) ∼ (li, n−i)

Theorem 2.2. A binary relation � on LN satisfies Axioms B.1-B.5 if and

only if there exists a continuous function u : Xi → R, and continuous functions

Sj : Xi ×Xj → R for j ∈ N \ {i}, with
∑

j 6=i Sj(x, x) = 0 for all x ∈ X, such

that

V (li, l−i) =

∫
Xi

u(xi)dli(xi) +
∑
j 6=i

(∫
Xi×Xj

Sj(xi, xj)dli(xi)dlj(xj)

)
(2.3)

represents �. Moreover, (ũ, (S̃j)j 6=i) is another representation of � in the above

sense if and only if there exist (α, β, (βj)j 6=i) ∈ R∗+×Rn such that ũ = αu+ β,

S̃j = αSj + βj for all j ∈ N \ {i} and
∑

j 6=i βj = 0.

This last representation allows to separate among individuals the social component

of the representation. It is very useful to compare effect of each peer over behaviour

of the decision maker.

2.3 Endogenous Reference Group

Here, other-regarding preferences are unconstrained because a “selfish” alternative

can be preferred to an alternative that takes into account the social aspect and

vice versa. I Focus directly to separable preferences among individuals, the non

separable case is trivial.

Let N = {1, . . . , n} be the non-empty, finite, set of all individuals, with individual

i ∈ N making the decisions. I denote by P(N \ {i}) the set of all finite subsets of

N with typical element J . Then J is by definition a group of individuals included

in N \ {i} ; notice that ∅ ∈ P(N \ {i}). That is, i can be isolated.
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For all J , I denote by Ji the set J ∪ {i}; similarly, if k does not belong to J , I

denote by Jk the set J∪{k}. For all J , let LJ the product set ∆(Xi)×∆(
∏

j∈J Xj)

endowed with the product topology.

Following Candeal et al. (2004), let L =
⊔
J∈P(N\{i}) LJ endowed with the disjoint

union topology8. This assumption is very technical and impose continuity for the

preferences among the reference groups.

I assume that individual i has a preference relation � over L with (li, (lj)j∈J) �
(mi, (mk)k∈K) read as “the individual prefers the 2-tuple (li, (lj)j∈J) to the 2-

tuple (mi, (mk)k∈K)”. I denote by xJi an element l = (li, (lj)j∈J) ∈ LJ such that

lp = x ∈ X for all p ∈ Ji. I assume that the preference relation � satisfies the

following axioms.

Axiom C. 1 (Weak Order). � is complete and transitive.

Axiom C. 2 (Continuity). For every l ∈ L, {m | m � l} and {m | l � m} are

closed in the disjoint union topology.

These first two axioms are again standard but note that � is continuous on L
with respect to the disjoint union topology. That is, if Xα1 and Xα2 are disjoint

topological spaces and X = Xα1 tXα2 then X inherits a natural topology called

the disjoint union topology. The idea of this topology is that if Xα1 and Xα2 do

not interact in any way, the topology have some basic properties. No sequence in

Xα1 or subset of Xα1 has a limit point in Xα2 , and vice-versa. If S ⊂ Xα1 then

the closure of S is also a subset of Xα1 , the same holds for Xα2 .

Here, the decision maker compares lottery profiles, not just his own lotteries but

the group lotteries also for all possible groups.

Axiom C. 3 (Independence). For every J,K ∈ P(N \ {i}), l, n ∈ LJ , m, o ∈
LK and α ∈ (0, 1), if lRn, mRo, n ∼ o

8Given a family Xα of topological spaces, α ∈ A, the topological space
⊔
αXα is the disjoint

union of the spaces Xα endowed with the topology in which U is open if and only if U ∩Xα is
open for all α.
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l � m⇒ αl + (1− α)n � αm+ (1− α)o

.

This axiom is a natural generalization of the independence axiom to disjoint union

of spaces.

Axiom C. 4 (Conformistic Reference). For every J ∈ P(N \{i}), x ∈ X, and

k 6∈ J xJi ∼ xJi∪{k}

All egalitarian situations are equivalent to the “self-interested preference” situ-

ation. but in comparison with Axiom B.4, for agent i it does not matter if a

group where everybody has the same outcome, is added an another individual,

again, with the same outcome. Maccheroni et al. (2012) describe as follows an

another reference :“ In the representation this axiom translates into the condi-

tion that the externality function is zero when all members of the group have the

same outcome. Different trade-offs have a similar axiomatization. For example,

if individual prefers, for the same outcome c, a smaller society, then a similar

axiom would require that, for some improvement over c, he would feel indifferent

between the smaller society with a less preferred outcome and a larger one with

better common outcome ”

Axiom C. 5 (Expansion by individual comparison). For every J ∈ P(N \{i}),
k 6∈ J and l ∈ LJ∪{k}, if lJ and lk are respectively the J-marginal and the {k}-
marginal of lJ∪{k},

(li, lJ∪{k}) � (li, lJ)⇒ (li, l{k}) � (li)

.

In the representation this axiom translates into the condition that the social utility

function depends exclusively of the individual k considered.



Chapter 2. “Discrete” Choice with Social Interactions 42

Theorem 2.3. A binary relation � on L satisfies Axioms C.1-C.5 if and only

if there exist a continuous function u : Xi → R, and continuous functions

Sj : Xi ×Xj → R for j ∈ N \ {i}, with Sj(x, x) = 0 for all j 6= i and x ∈ X,

such that

V (li, lJ) =

∫
Xi

u(xi)dli(xi) +
∑
j∈J

(∫
Xi×Xj

Sj(xi, xj)dli(xi)dlj(xj)

)
(2.4)

represents �. Moreover, (ũ, (S̃j)j 6=i) is another representation of � in the above

sense if and only if there exist (α, β) ∈ R∗+×R such that ũ = αu+β, S̃j = αSj

for all j ∈ N \ {i}.

This theorem allows to assert that the decision maker may have other-regarding

preferences but it is not automatic as in Lemma 1.

∀J,K ∈ P(N \ {i}),∀l,m ∈ L (li, lJ) � (mi,mK)⇔ V (li, lJ) > V (mi,mK)

(2.5)

In this case the reference group is not exogenously given, and memberships are

expensive. There is a second constraint during the maximisation process. the

decision maker evaluates first, as usually but for each reference groups and then

maximises among reference groups. This kind of assumption is maybe acceptable

for very small reference groups or in particular situation. However, facts about

limited rationality reduce the scope of this type of result.

2.4 Adding an entropic term

To avoid some difficulties, I suppose in this section that X is a finite set with at

least 4 elements as in chapter 1. Let ∆(Xi) be the space of lotteries over Xi with

typical element li, and ∆(
∏

j 6=iXj) be the space of lotteries over
∏

j 6=iXj with

typical element l−i which represents the joint lottery of n − 1 individuals other

than i. Both are now endowed with the relative topology induced by the product

topology of [0, 1]X . ⊥ stands for disjoint supports.
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Let R⊥ be a binary relation on LN defined by

(li, l−i)R⊥(mi,m−i)⇔ lk 6= mk and lk ⊥ mk for at most one k ∈ {i,−i}

Following Fishburn (1976) and theorem 1.3 in chapter 1, the correct axiom for a

full multi-linear plus an entropic term is the following.

Axiom B. 6 (Orthogonal Independence). For every l,m, n, o ∈ LN and α ∈
(0, 1), if lR⊥n, mR⊥o, n ∼ o

l � m⇒ αl + (1− α)n � αm+ (1− α)o

.

I state the following proposition without proof and discuss the problem of this

representation. It is possible to consider that the orthogonal restriction can be

applied only to the private representation but in this case we loose homogeneity

between the expectation of the private and the social utility. In the following

proposition, AiH(li) is the sum of the entropic term derived from the private and

the social utility part as li and l−i are considered independent there is no difficulty

to separate the joint entropy. For exogenous reference group, the optimisation

problem is not modified and the entropy of l−i cancels. In fact, with identical

agent and rational anticipation the following utility representation give the same

equilibrium that in Brock and Durlauf (2001a). I have no solutions, for now, to

find a representation only with the individual entropic term to extend next the

following proposition to endogenous group.

Proposition 2.4. A binary relation � on LN satisfies Axioms B.1,B.2,B.4

and B.6 if and only if there exist u : Xi → R, and S : Xi×
∏

j 6=iXj → R, with
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S(xN) = 0 for all x ∈ X, such that

V (li, l−i) =
∑
Xi

li(xi)u(xi) + AiH(li)

+
∑

Xi×
∏

j 6=iXj

S(xi, x−i)li(xi)l−i(x−i) + A−iH(l−i)

represents � with H is the Shannon entropy . Moreover, (ũ, S̃) is another

representation of � in the above sense if and only if there exist (α, β) ∈ R∗+×R
such that ũ = αu+ β and S̃ = αS.

2.5 Proofs

Proof of theorem 2.1.

Claim 1. If � satisfies continuity then it is archimedean in the sense that for every

l,m, n ∈ LN ,

lRn and l � m � n⇒ ∃α, β ∈ (0, 1) such that αl+(1−α)n � m � βl+(1−β)n.

Proof. Proving this implication is a standard exercise. I report it just for the sake

of completeness. Let � be continuous and l,m, n such that lRn and l � m � n.

Remember that lRn only when l and n differ in at most one coordinate, thus

either l = (li, l−i) and n = (li, n−i) or l = (li, l−i) and n = (ni, l−i). To prove that

� is Archimedean, we first need to find α ∈ (0, 1) such that αl + (1 − α)n � m.

Consider the sequence defined by ( p
p+1

l+ 1
p+1

n) for p ≥ 1. As lRn, the sequence is

well defined and converges to l. Suppose that, for all p, we have m � p
p+1

l+ 1
p+1

n.

As � is continuous in the product topology, we must have m � l, which is a

contradiction. Therefore there exists some p0 for which p0
p0+1

l + (1− 1
p0+1

)n � m.

By letting α = p0
p0+1

the result follows. The proof that there exists β ∈ (0, 1) such

that m � βl + (1− β)n is nearly identical and does not require a new proof. �

As � is continuous then it is archimedean, by Theorem 2 in Fishburn and Roberts

(1978), Axioms B.1-B.3 imply the existence of a multi-affine functional V : LN →
R, which represents �. Moreover, V is unique up to positive affine transformation.

We must show that with our stronger assumptions, this function V is continuous.



Chapter 2. “Discrete” Choice with Social Interactions 45

Claim 2. Let V be an multi-affine functional representing �, under Axiom B.2 V

is continuous in the product topology.

Proof. Let V be an multi-affine functional representing �. Consider any conver-

gent sequence in the product topology (lp) in LN whose limit is l̄ ∈ LN . Suppose

first that there exists l+ ∈ LN for which l+Rl̄ and l+ � l̄. Then Axiom B.2 implies

that, for every ε > 0, the set

Pε =
{
l | εl+ + (1− ε) l̄ � l � l̄

}
⇔ Pε =

{
l | 0 < V (l)− V

(
l̄
)
< ε

(
V (l+)− V

(
l̄
))}

as V is multi-affine

is open. In this case there exists an integer pε+ for which, if p > pε+ and lp � l̄,

then lp ∈ Pε and so

0 < V (lp)− V
(
l̄
)
< ε

(
V (l+)− V

(
l̄
))

Alternatively, suppose that there exists l− ∈ LN for which l−Rl̄ and l− ≺ l̄. In

this case, reversing the preferences and inequalities in the previous argument shows

that there must exists an integer pε− for which, if p > pε− and lp ≺ l̄, then lp ∈ Pε
and so

0 > V (lp)− V
(
l̄
)
> ε

(
V (l−)− V

(
l̄
))

The last two inequalities together imply that V (lp)→ V
(
l̄
)

as p→∞. Therefore

V is continuous when LN is given the product topology. �

Now suppose that V : LN → R is multi-affine and continuous. We recall that as

Xi (respectively
∏

j 6=iXj) is separable, then the finitely supported probabilities

over Xi (respectively
∏

j 6=iXj) are dense in ∆(Xi) (respectively ∆(
∏

j 6=iXj)).

For (xi, x−i) ∈ Xi ×
∏

j 6=iXj define v(xi, x−i) = V (δxi , δx−i
). By multi-affinity

V (li, l−i) =

∫
Xi×

∏
j 6=iXj

v(xi, x−i)dli(xi)dl−i(x−i)

for any finitely supported li, l−i. For (mi,m−i) which is not finitely supported, let

(li, l−i)p be a sequence of finitely supported probabilities converging to (mi,m−i).

By continuity

V (mi,m−i) = lim
p
V ((li, l−i)p) =

∫
Xi×

∏
j 6=iXj

v(xi, x−i)dli(xi)dl−i(x−i)
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by the Portemanteau Theorem.

Set u(x) = v(xN) and define U : ∆(Xi)→ R by,

∀li ∈ ∆(Xi), U(li) =

∫
Xi

u(xi)dli(xi)

Notice that by Axiom B.4, V (xN) = U(x) for all xN ∈ Xi ×
∏

j 6=iXj, then U is

a continuous VNM-representation of �∅ over ∆(Xi). Set S(xi, x−i) = v(xi, x−i)−
u(xi) for all (xi, x−i) ∈ Xi ×

∏
j 6=iXj. Then S(xN) = v(xN) − u(x) = 0 for all

xN ∈ Xi ×
∏

j 6=iXj, and

V (li, l−i) =

∫
Xi×

∏
j 6=iXj

(u(xi) + S(xi, x−i)))dli(xi)dl−i(x−i)

=

∫
Xi×

∏
j 6=iXj

u(xi)dli(xi)dl−i(x−i) +

∫
Xi×

∏
j 6=iXj

S(xi, x−i)dli(xi)dl−i(x−i)

=

∫
Xi

u(xi)

(∫
∏

j 6=iXj

dl−i(x−i)

)
dli(xi) +

∫
Xi×

∏
j 6=iXj

S(xi, x−i)dli(xi)dl−i(x−i)

=

∫
Xi

u(xi)dli(xi) +

∫
Xi×

∏
j 6=iXj

S(xi, x−i)dli(xi)dl−i(x−i)

for all (li, l−i) ∈ LN . Which gives the desired representation. Notice that u and S

are continuous by definition.

Conversely, assume that there exist a continuous function u : Xi → R and a

continuous function S : Xi ×
∏

j 6=iXj → R with S(xN) = 0 for all x ∈ X, which

represent � then Axioms B.1-B.4 holds.

For the last part of the lemma, let ũ : Xi → R and S̃ : Xi ×
∏

j 6=iXj → R with

S̃(xN) = 0 for all x ∈ X be continuous functions, such that Ṽ : LN → R, defined

by

Ṽ (li, l−i) =

∫
Xi

ũ(xi)dli(xi) +

∫
Xi×

∏
j 6=iXj

S̃(xi, x−i)dli(xi)dl−i(x−i)

represents �. As V is unique up to positive affine transformation there exist

α, β ∈ R with α > 0 such that Ṽ = αV + β. By Axiom B.4, for all x ∈ X,
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Ũ(x) = Ṽ (xN) then ũ = αu+ β. Consequently,

S̃ = Ṽ − Ũ

= (αV + β)− (αU + β)

= αS

Conversely, if there exist α, β ∈ R with α > 0 such that ũ = αu+ β and S̃ = αS,

then S̃(xN) = 0 for all x ∈ X, then Ṽ = Ũ + S̃ represents � over LN .

�

Proof of theorem 2.2. By Lemma 1, there exist a continuous function u : Xi → R
and a continuous function S : Xi ×

∏
j 6=iXj → R with S(xN) = 0 for all x ∈ X,

such that the functional V : LN → R, defined by

V (li, l−i) =

∫
Xi

u(xi)dli(xi) +

∫
Xi×

∏
j 6=iXj

S(xi, x−i)dli(xi)dl−i(x−i)

for all (li, l−i) ∈ LN and represents �. In what follows we denote V by

V (li, l−i) = U(li) + S(li, l−i)

Let li ∈ ∆(Xi), fix l−i ∈ ∆(
∏

j 6=iXj) and define Sj(li, lj) for j 6= i, where lj ∈
∆(Xj) is the j − th marginal of l−i, such that

S(li, l−i) =
∑
j 6=i

Sj(li, lj)

Let m−i, (m
j
−i)j 6=i ∈ ∆(

∏
j 6=iXj) be such that (mj

j) = (mj) and (mj
k) = (lk) for all

k 6= j and define

Sj(li,mj) = S(li,m
j
−i)−

∑
k 6=j

Sk(li, lk)

Summing over j we get

∑
j 6=i

Sj(li,mj) =
∑
j 6=i

S(li,m
j
−i)− (n− 2)S(li, l−i) (2.6)

As (li, l−i)R(li,m−i) and (li,m
j1
−i)R(li,m

j2
−i) for all j1, j2 6= i, the lotteries n−2

n−1
(li, l−i)+

1
n−1

(li,m−i) and
∑

j 6=i
1

n−1
(li,m

j
−i) are well defined, moreover the k − th marginal
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of
∑

j 6=i
1

n−1
mj
−i is given by

(
∑
j 6=i

1

n− 1
mj
−i)k =

1

n− 1
(m1

k + · · ·+mi−1
k ) +mi+1

k + · · ·+mn
k)

=
1

n− 1
((n− 2)lk +mk)

By Axiom B.5

n− 2

n− 1
(li, l−i) +

1

n− 1
(li,m−i) ∼

∑
j 6=i

1

n− 1
(li,m

j
−i))

Or equivalently as V is multi-affine representation of �

S(li,m−i) =
∑
j 6=i

S(li,m
j
−i))− (n− 2)S(li, l−i) (2.7)

(2.6) and (2.7), yield S(li,m−i) =
∑

j 6=i Sj(li,mj) and this concludes the proof of

the sufficiency part, since ∀(li, l−i) ∈ LN ,

V (li, l−i) =

∫
Xi

u(xi)dli(xi) +

∫
Xi×

∏
j 6=iXj

S(xi, x−i)dli(xi)dl−i(x−i)

=

∫
Xi

u(xi)dli(xi) +

∫
Xi×

∏
j 6=iXj

∑
j 6=i

Sj(xi, xj)dli(xi)dl−i(x−i)

=

∫
Xi

u(xi)dli(xi) +
∑
j 6=i

(∫
Xi×Xj×

∏
k 6=i,j Xk

Sj(xi, xj)dli(xi)dl−i(x−i)

)

=

∫
Xi

u(xi)dli(xi) +
∑
j 6=i

(∫
Xi×Xj

Sj(xi, xj)

(∫
∏

k 6=i,j Xk

dl−i(x−i)

)
dli(xi)

)

=

∫
Xi

u(xi)dli(xi) +
∑
j 6=i

(∫
Xi×Xj

Sj(xi, xj)dli(xi)dlj(xj)

)

Notice that for all j 6= i, Sj is continuous and that
∑

j 6=i Sj(x, x) = 0 for all x ∈ X
by definition. The necessary part of the lemma is obvious since mk = nk for all

k ∈ N \ {i} gives V (li,m−i) = V (li, n−i) from (2.3) and consequently implies that

(li,m−i) ∼ (li, n−i). For the last part of the lemma, let ũ : Xi → R and for j 6= i,

S̃j : Xi ×Xj → R with
∑

j 6=i S̃j(x, x) = 0 for all x ∈ X be continuous functions,

such that Ṽ : LN → R represents �. By Lemma 1 there exist α, β ∈ R with α > 0

such that ũ = αu + β and S̃ = αS with S̃ =
∑

j 6=i S̃j and S =
∑

j 6=i Sj. Then,



Chapter 2. “Discrete” Choice with Social Interactions 49

with l−i fixed as before, S(li,m
j
−i) =

∑
k 6=i Sk(li,m

j
k, S̃(li,m

j
−i) =

∑
k 6=i S̃k(li,m

j
k

and S̃ = αS imply that

S̃j(li,mj) = αSj(li,mj) +

(
α
∑
k 6=i,j

Sk(li, lk)−
∑
k 6=i,j

S̃k(li, lk)

)
= αSj(li,mj) + S̃j(li, lj)− αSj(li, lj)

Let βj = S̃j(li, lj) − αSj(li, lj) for j 6= i, then for all j 6= i, S̃j = αSj + βj with∑
j 6=i βj =

∑
j 6=i

(
S̃j(li, lj)− αSj(li, lj)

)
= S̃(li, l−i) − αS(li, l−i) = 0. Conversely,

if there exist (α, β, (βj)j 6=i) ∈ R∗+×Rn such that ũ = αu+β, S̃j = αSj +βj for all

j ∈ N \ {i} and
∑

j 6=i βj = 0, then Ṽ = Ũ +
∑

j 6=i S̃j represents � over LN . This

completes the proof. �

Proof of theorem 2.3. We first establish the sufficiency. It can easily be checked

that ∆(Xi) is separable in the weak topology and that for all J ∈ P(N \ {i}),J 6=
{∅} ∆(

∏
j∈J Xj) is separable in the weak topology. Consequently, LJ is separable

in the product topology for every J as product of separable spaces and L is sepa-

rable in the disjoint union topology as finite disjoint union of separable spaces. LJ
is connected and therefore locally connected for every J , since the disjoint union

of a family of spaces is locally connected if and only if each is locally connected,

then L is locally connected. By Theorem 1 in Candeal et al. (2004), Axioms C.1-

C.2 imply that � is a continuous total preorder on L, a locally connected and

separable space; that is, there exists a continuous function V : L → R such that

(li, lJ) � (mi,mK)⇔ V (li, lJ) ≥ V (mi,mK) (2.8)

for all (li, lJ), (mi,mK) ∈ L. For every J , let �J≡� ∩ (LJ × LJ) be the restriction

of � to LJ .

Claim 3. If � satisfies Axioms C.1-C.4 then for all J , �J satisfies Axioms B.1-B.4

Proof. Fix a J and suppose that � satisfies Axioms C.1-C.4,

• If � is a weak order then �J is also a weak order.

• Let l ∈ LJ we know that the upper contour set {m | m � l} is closed in the

disjoint union topology and consequently that {m | m � l} ∩ LJ is closed

in the product topology. We conclude that �J is upper semi-continuous.

Similarly, �J is lower semi-continuous and finally �J satisfies Axiom B.2.
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• Taking K = J shows that �J satisfies Axiom B.3.

• For every x, y ∈ X, iterated application of Axiom C.4 delivers xJ ∼ x∅ and

yJ ∼ y∅. Therefore xJ �J yJ if, and only if, x �∅ y.

�

The restriction of V to LJ represents �J . Therefore, by Lemma 1, for every J

there exist continuous functions uJ : Xi → R, and continuous functions SJ :

Xi ×
∏

j 6=iXj → R, with SJ(xJ) = 0 for all x ∈ X, such that for all (li, lJ) ∈ LJ

V (li, lJ) = V|LJ (li, lJ) =

∫
Xi

uJ(xi)dli(xi) +

∫
Xi×

∏
j∈J Xj

SJ(xi, xJ)dli(xi)dlJ(xJ)

(2.9)

By using (2.8) and (2.9), we obtain

(li, lJ) � (mi,mK)⇔ V|LJ (li, lJ) ≥ V|LK (mi,mK)

for all (li, lJ), (mi,mK) ∈ L. But then by Axiom C.4, we must have

∀x ∈ X, ∀J,K ∈ P(N \ {i}), V|LJ (xJ) = V|LK (xK)

and therefore

∀x ∈ X, ∀J,K ∈ P(N \ {i}), uJ(x) = uK(x)

Choosing u = u∅ gives

V|LJ (li, lJ) =

∫
Xi

u(xi)dli(xi) +

∫
Xi×

∏
j∈J Xj

SJ(xi, xJ)dli(xi)dlJ(xJ) (2.10)

We will show that Axiom C.5 implies that for all (li, lJ∪{k}) ∈ L, SJ∪{k}(li, lJ∪{k}) =

SJ(li, lJ) + S{k}(li, l{k}) where lJ and lk are respectively the J-marginal and the

{k}-marginal of lJ∪{k} by showing the contraposive. In the first place observe that

Axiom C.5 implies that for every J ∈ P(N \ {i}), k 6∈ J and l ∈ LJ∪{k},

(li, lJ∪{k}) ∼ (li, lJ)⇒ (li, l{k}) ∼ (li)

Secondly, suppose that there exists l = (li, lJ∪{k}) ∈ LJ∪{k}, with lJ and lk are re-

spectively the J-marginal and the {k}-marginal of lJ∪{k}, such that SJ∪{k}(li, lJ∪{k}) 6=



Chapter 2. “Discrete” Choice with Social Interactions 51

SJ(li, lJ) + S{k}(li, l{k}).

(li, lJ∪{k}) ∼ (li, lJ)⇒ V|LJ∪{k}(li, lJ∪{k}) = V|LJ (li, lJ)

⇒ SJ∪{k}(li, lJ∪{k}) = SJ(li, lJ)

⇒ S{k}(li, l{k}) 6= 0 by hypothesis

⇒ U(li) + S{k}(li, l{k}) 6= U(li)

⇒ (li, l{k}) 6∼ (li)

Which contradicts Axiom C.5, therefore,

∀(li, lJ∪{k}) ∈ L, SJ∪{k}(li, lJ∪{k}) = SJ(li, lJ) + S{k}(li, l{k}) (2.11)

To complete the proof we will show by induction on the cardinal of J that for all

(li, lJ) ∈ L

V (li, lJ) =

∫
Xi

u(xi)dli(xi) +
∑
j∈J

(∫
Xi×Xj

Sj(xi, xj)dli(xi)dlj(xj)

)
This is obviously true for |J | = 0, in this case V (li) = U(li). It is also true for

all J such that |J | = 1 by (2.9), for all j 6= i there exist continuous functions

Sj : Xi ×Xj → R, with Sj(x, x) = 0 for all x ∈ X, such that for all (li, lj) ∈ Lj

V (li, lj) = V|Lj(li, lj) =

∫
Xi

u(xi)dli(xi) +

∫
Xi×Xj

Sj(xi, xj)dli(xi)dlj(xj) (2.12)

Define for all j 6= i, Sj : Xi × Xj → R by Sj = Sj, obviously Sj(x, x) = 0

for all x ∈ X and Sj is continuous. Now assume it for all J such that |J | = p,

1 ≤ p ≤ n−2 then by using (2.11), it is true for all J such that |J | = p+1 and so the

result follows by induction. Which gives the desired representation. Conversely,

assume that there exist a continuous function u : Xi → R and continuous functions

Sj : Xi×Xj → R for j ∈ N \{i}, with Sj(x, x) = 0 for all j 6= i and x ∈ X, which

represent � then Axioms C.1-C.5 holds. The necessity part of the uniqueness

representation is obvious. To prove the sufficiency part of the uniqueness of the

representation, let ũ : Xi → R and for j 6= i, S̃j : Xi ×Xj → R with S̃j(x, x) = 0

for all x ∈ X and j 6= i be continuous functions, such that Ṽ : LN → R represents

�. Let J ∈ P(N \ {i}), by Lemma 1 the restriction of Ṽ to LJ represents �J

if there exist (αJ , βJ) ∈ R∗+ × R such that Ṽ|LJ = αJV|LJ + βJ and therefore

ũ = αJu + βJ and S̃J = αJS
J . By Axiom C.4, (αJ , βJ) = (αK , βK) for all J,K.
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Choosing (α, β) = (α∅, β∅) gives ũ = αu + β and S̃J = αSJ . By Axiom C.5 and

consequently by (2.11), an induction on the cardinal of J lets prove that S̃j = αSj

for all j 6= i. �

2.6 Conclusion

In this chapter I have studied individual preference relations under risk which are

possibly other-regarding. My primary aim has been to provide a formal back-

ground to other-regarding expected utility representations already used in various

applications which covers the case where the other agents make risky choices and

the case where the risk is a belief about the other agents choices or both. In addi-

tion, I introduced a preference relation over a disjoint union of spaces to account

for the selection among groups of individuals that operates the decision maker.

This allows us to explain the social anchoring of the decision maker. The addition

of an entropic term is partially processed to fit the Blume, Brock and Durlauf’s

model. Some difficulties arise, principally are due to the homogeneity condition

between the expectation of the private utility term and the expectation of the

social utility term.



Chapter 3

Expected Utility Theory with

Non-Commutative Probability

Theory

3.1 Introduction

The theory of expected utility in economics was first proposed by von Neumann

and Morgenstern in their seminal work on economic behaviour and games theory

(1944). It has become the classical model of decision under a risky environment.

Soon after the model was proposed, it was challenged by experimental paradoxes.

The Allais paradox (1953) and the Ellsberg paradox (1961), for example, indi-

cate violation of the independence axiom and consequently that the treatment of

probabilities by individuals is nonlinear. Since the second half of the 20th century

until today, the expected utility model has been generalized by positing nonlinear

functional forms for the individual preference function in different ways : prospect

theory by Kahneman and Tversky (1979), regret theory by Loomes and Sugden

(1982), local expected utility by Machina (1982), rank-dependent utility by Quig-

gin (1982), quadratic utility by Chew et al. (1991).

Several studies use quantum formalism in decision theory to explain the various

paradoxes. The way that quantum formalism is used varies across studies but it

offers new opportunities in the form of new technical capabilities from the same

53
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mathematical tool. In a deterministic choice framework (Danilov and Lambert-

Mogiliansky (2005, 2010), Gyntelberg and Hansen (2005, 2009), Hansen (2005),

La Mura (2009)) or in stochastic choice framework (Aerts and Aerts (1995), Aerts

and Gabora (2005a,b),Aerts and D’Hooghe (2009), Aerts et al. (2011), Busemeyer

et al. (2006a), Busemeyer et al. (2011), Busemeyer and Bruza (2012), Conte et al.

(2009), Khrennikov (1999, 2010), Lambert-Mogiliansky et al. (2009), Pothos and

Busemeyer (2009), Pothos and Busemeyer (2013), Yukalov and Sornette (2010)).

What is the motivation for employing quantum formalism in decision making ?

What is the contribution ?

Foremost, it is necessary to precise that decision theory is not a quantum mechan-

ics phenomenon. But, the probabilistic framework1 can be used independently. To

avoid confusion, I prefer to use non-commutative probability theory rather than

quantum probability. In this chapter, I am interested in non-commutative prob-

ability theory as a mathematical framework for decision theory, its relevance in

decision making and its contribution regarding the nature of human rationality.

Building on all this work, I present a model based on non-commutative probabili-

ties, by using density operators which are a generalization of classical probability

distributions. My theory introduces a decision-theoretic framework which extends

the expected utility methodology and in addition links the descriptive and norma-

tive approaches. To enable comparison with previous work, I develop the theory

in an algebraic context. That is, I begin with a commutative algebra of bounded

random variables and introduce a much larger structure - a non-commutative al-

gebra - to show that what is often presented as irrational can be understood, from

a different point of view, as rational.

The chapter is organized as follows. Section 2 presents some “quantum” concepts

and reviews the literature. I introduce the hypothesis of “own rationality”. Sec-

tion 3 provides a reformulation of von Neumann and Morgenstern’s analysis of

non-commutative probability theory and proposes an analogue theorem to rep-

resent preference relations. Section 4 explains the representation result for non-

commutative probability theory, offers an interpretation of the matrix of utilities

in terms of individual behaviour and introduces the concepts of utility under risk.

I show that my approach is equivalent to expected utility from the decision maker’s

1The oldest example of non-commutative theory of integration leading to a theory of non-
commutative probabilities is due to Neumann (1932). Reader interested in a full understanding of
the quantum probabilistic formalism should consult Birkhoff and Von Neumann (1936), Suppes
(1969) or Varadarajan (1968, 1970).
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point of view. Section 5 applies my results to prospect theory, the Allais paradox

and the Marschak-Machina triangle. Section 6 discusses the contributions of this

formalism. Proofs are given in section 7. Section 8 concludes.

3.2 Towards non-commutative probability

3.2.1 Motivations

Classical probability theory has proved satisfactory for almost all scientific pur-

poses. The one outstanding exception is quantum mechanics. In that theory,

classical probabilities are meaningless. For two events A and B, both P(A) and

P(B) may exist and yet P(A ∩ B) need not. As basic example, suppose that A is

an event related to the location of a particle and that B is an event related to the

momentum of this same particle. The event A ∩ B represents both the location

and the momentum. One basic feature of quantum mechanics is that A and B are

respectively observable but not necessarily both A and B. Consequently, no prob-

ability is assignable to A ∩ B even when P(A) and P(B) are specified. From this

observation, it is natural that a specific probability theory should be used. The

quantum probability theory is fundamentally different from the classical probabil-

ity theory. The core of the difference lies in the fact that in quantum probability

the measurement process influences the result, while in classical probability all

properties are assumed to have a definite value before measurement, and that this

value is the outcome of the measurement. Quantum probability are well defined

since Neumann (1932). The point is that a classical probabilistic system (or mea-

surable space) is an algebra of random variables that satisfies relevant axioms.

One of the restrictions on the classical algebra is commutativity : If X and Y are

two real random variables, then XY and Y X are the same random variable. In

quantum probability, this commutative algebra is replaced by a non-commutative

algebra called a von Neumann algebra. The remaining definitions stay as much

the same as possible. Non-commutativity is then a key aspect and expresses that

“observations” or “measurements” disturb the subject we are measuring.

In decision making, there are a numerous observations which show that the proba-

bility framework is questionable. The disjunction effect exhibited by Tversky and

Shafir (1992) can be considered as a probabilistic anomaly. According to the sure
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thing principle, choice over acts are independents from the knowledge of the state

of the world. Tversky and Shafir are tested this principle by presenting 98 students

with a two stage gamble, that is a gamble which can be played twice. At each stage

of the experiment the available choices was whether or not to play a gamble. After

finishing the first stage, participants are informed of the outcome of the gamble,

gain, loss or no information. The key result is based on the decision for the second

play, If they knew they won the first gamble, the majority (69%) chose to play

again; if they knew they lost the first gamble, then again the majority (59%) chose

to play again; but if they didn’t know whether they won or lost, then the majority

chose not to play (only 36% wanted to play again). Busemeyer et al. (2006b) origi-

nally suggested that this experiment was an example of an interference effect as in

quantum mechanics. A most striking example is that Moore (2002) reported that

the probability of a response to the questions “Is Gore honest?” and “Is Clinton

honest?” depends on the relative order of the questions. In this way, conjunc-

tion fallacy (Tversky and Kahneman (1983)) and disjunction fallacy (See for this

situation Carlson and Yates (1989)) are effects that show probability judgement

error. Student are confronted to the hypothetical Linda who has a “liberal” pro-

file and they must rank the following events : A, “Linda is active in the feminist

movement”, B, “Linda is a bank teller”, and their conjunction A ∩B. It appears

systematically that individuals report P(A ∩ B) ≤ P(B). This inequality violates

classical probability laws but not non-commutative probability laws. The analogy

with the quantum mechanics is that there exist a lack of knowledge concerning how

context and framing influences individual under consideration. Even if we were to

suppose that at the ontological level the interaction between the context and the

framing with an individual engenders a change of thought that is deterministic, a

lack of knowledge about this interaction gives rise to a probability model which

does not satisfy the axioms of Kolmogorov (1950).

3.2.2 Literature review

For stochastic choice framework in a static context, Aerts and Aerts (1995), Aerts

and D’Hooghe (2009) and Aerts et al. (2011) modelled incompatibility and in-

terference effects that arise in individual preference judgements. Authors used a

contextual axiomatization of quantum theory. Busemeyer et al. (2006a) modelled

cognition in a dynamical context. Busemeyer et al. (2011), Pothos and Busemeyer
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(2009, 2013) reviewed decision making paradoxes and applied quantum formal-

ism to explain human probability judgement errors including the conjunction and

disjunction fallacies, averaging effects, unpacking effects, and order effects on in-

ference. Lambert-Mogiliansky et al. (2009) showed that this kind of choice model

does not satisfy weak axiom of revealed preferences. Yukalov and Sornette (2010)

described a model where quantum behaviour comes from interferences between

intention and action.

For deterministic choice framework, Hansen (2005) formulates a theory of decision

making based on algebraic formulations of quantum mechanics. He draws an anal-

ogy between an event and a physical observable and develops a general model of a

set of events. This more general representation is used in the context of decision

theory by Gyntelberg and Hansen (2005, 2009) to adapt expected utility theory in

a Savage type formulation (1954), while Danilov and Lambert-Mogiliansky (2005,

2010) formulate a theory of decision making under uncertainty in a non-classical

environment. The latter authors propose a non-classical environment, representa-

tion for an individual, of a set of events, using a propositional system and allowing

the necessary conditions for the set of events to be isomorphic to Hilbert lattice

(see Appendix A - Quantum Logic) P (H). Obviously, the decision problem is not

associated with a “quantum” phenomenon: instead of weakening the axioms of the

theory of expected utility, here the individual does not represent the set of events

by a σ-algebra F but by an arbitrary structure comparable to P (H). However in

quantum mechanics and mathematics, it is an open problem to find the necessary

and sufficient conditions for an abstract propositional system to be isomorphic

to P (H) for some (real, complex, quaternionic or generalized) Hilbert space H.

La Mura (2009) defines lotteries as normalized vectors in Hilbert space and ob-

tains a representation theorem that extends the one proposed by von Neumann

and Morgenstern.

Whether the choice is deterministic or stochastic, the inclusion of non-commutative

probability gives some interesting properties. I focus in the reminder of this chapter

to the deterministic case.

3.2.3 Replace the set of events ?

Let S = {s1, . . . , sn} be a finite set of outcomes or certain consequences where

n ≥ 2 (if n = 1, the set of lotteries is a singleton) is the cardinal of S. Let
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L = {(l1, . . . , ln) ∈ [0, 1]n |
∑

i li = 1} be the space of lotteries over S closed under

convex mixture operations with S ⊂ L consists of all degenerate lotteries (denoted

by δs for all s ∈ S). An implicit assumption of expected utility theory is to

identify the set of lotteries with the set of classical probability distributions on S.

By definition, a classical finite probability space is a triple (Ω,F , µ) where Ω is a

finite sample space, F is a Boolean σ-algebra or a tribe over Ω, and µ : F → [0, 1]

is a countable additive map. Elements of F represent events and the map µ is

a probability measure that associates a probability µ (E) to each of the events

E ∈ F . Equivalently, consider such a classical finite probability space (Ω,F , µ)

and the space l∞ (Ω,F , µ) of bounded2 random variables on Ω. Then µ induces a

state3 ϕµ on l∞ (Ω,F , µ) by

ϕµ : l∞ (Ω,F , µ)→ R

f 7→
∫

Ω

fdµ

An event is a set E ∈ F , or equivalently the projection operator PE on l∞ (Ω,F , µ)

defined by setting

(PEf) (ω) = 1E (ω) f (ω) , ω ∈ Ω (3.1)

for each f on l∞ (Ω,F , µ), where 1E is the characteristic function of E on Ω.

Therefore all information in (Ω,F , µ) is also contained in (l∞ (Ω,F , µ) , ϕµ). More

precisely, we have two equivalent descriptions of classical probability theory. A

representation of the set of events for an individual is F or equivalently the set

{PE}E∈F .

l∞ (Ω,F , µ) encodes all the information contained in the classical structure and

has an appropriate algebraic structure. In Appendix, I characterize the resulting

algebra axiomatically. One of the axioms will be commutativity and this axiom

will be removed. The core of this chapter uses a transformation of l∞ (Ω,F , µ) to

propose a reformulation of the von Neumann and Morgenstern framework.

2Exponent∞ refers to the fact that the bound of a F-measurable function is its infinity norm.
3A positive linear functional of norm 1.
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3.2.4 The assumption of “own rationality”

Specific experiments on decision making under risk show the irrelevance of util-

ity theory in its traditional formulation. For instance, the observed choices show

that the Allais paradox (1953) exhibits frequent violation of the independence ax-

iom. Work in cognitive psychology, which contributes to economic decision theory,

shows that individuals are not fully rational and frequently are subject to cognitive

biases. Here rationality captures the idea that an individual makes a choice that is

consistent with the theory of expected utility for objective information. Contrast-

ing with the normative approach is Kahneman and Tversky’s notion of prospect

theory (1979, 1981, 1984) which is motivated by the fact that an individual in-

volved in a decision making process is influenced by the framing of the problem,

the context of choice, and individual reasoning. It has been acknowledged that

from the perspective of the observer, decision makers (who consider themselves

rational) are not rational. I now need to define more precisely this “assumption

of own rationality”.

When a lottery involves a decision maker, the observer (M) is positioned in the

canonical probability space associated with the lottery (which is not a quantum

phenomenon). I denote this space (ΩM ,FM , µM). I assume that the decision maker

(DM) occupies his own probability space (ΩDM ,FDM , µDM). My assumption is

equivalent to assuming that, under risk, individuals perceive events differently.

Although perceptions may be different, people are rational. In their represen-

tations of events, a decision problem under risk can be reduced to the expected

utility framework for a particular classical probability space. In the Appendix B,

I present the concept of D-algebras which allows us to characterize the representa-

tions of the set of events. I use the concept of non-commutative probability space

seen as representing the set of all possible classical probability spaces (Ωa,Fa, µa)
for all agents “a”. A non-commutative probability space A is a collection of many

incompatible classical probability models, each of which coincides with a commu-

tative ∗-subalgebra (see Appendix B1 - ∗-algebras for a definition) of A.

Definition 1. A decision problem is characterized by a pair {L,A} where : A,

the set of agents, is the collection of all the self-adjoint elements of a D-algebra;

and L is the set of lotteries.
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In this formalization, I look first at the conventional case. Let H be a finite-

dimensional Hilbert space with the canonical orthonormal basis (|δω1〉 , . . . , |δωn〉),
let L (H) be the space of linear operators on H and let ρ be a density operator

(see Appendix B2 - Density Operators for a definition) a probability law on L (H).

The canonical representation Rc of the set of events is given by a map that injects

the set of events F in L (H) by associating the operator Oi
4 to the event ωi. The

following properties characterize Rc :

(P1) Rc (ω) is an orthogonal projection ∀ω ∈ Ω

(P2) Rc

(⋃
ωi

)
=
∑
Rc (ωi) for all disjoint sequences (ωi) ∈ Ω

(P3) Rc (Ω) = I Identity operator of L (H)

Definition 2. A representation R of the set of events is a map that associates

any measurable subset ω of a given measurable space Ω to a projection R (ω)

on a given Hilbert spaceH such that for any partition {ωi} of Ω,
∑

iR (ωi) = I.

This means that for every density operator ρ,

µ : FDM → [0, 1]

ω 7→ µR (ω) = tr (ρR (ω))

is a classical probability law. Thus R characterizes (ΩDM ,FDM , µDM).

4Oi = |δωi
〉 〈δωi

| is the operator with 1 in the (i, i)
th

entry and zero elsewhere in the canonical
basis.
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3.3 Von Neumann and Morgenstern’s approach

in L (H)

In this section, I extend expected utility theory to non-commutative probability

theory. I explain the notions of prospect for the decision maker and of gamble for

the observer. Finally I extend the von Neumann - Morgenstern utility theorem.

3.3.1 Gamble set

Let S = (s1, . . . , sn) be a finite set of outcomes associated with the canonical space

of events Ω = {ω1, . . . , ωn} and H as a finite-dimensional real Hilbert space. The

orthonormal basis B = (|δω1〉 , . . . , |δωn〉) is associated with the canonical space of

events. Our knowledge of the decision maker’s representation of the set of events

for a lottery l can be described by a probability law on the D-algebra A = L (H).

Let ρ be a density operator, if ρ is a pure state (see Appendix C2 - States for a

definition) then there is a normalized vector |ψ〉 of H such that ρ = |ψ〉 〈ψ|.

In the canonical basis B the vector |ψ〉 can be decomposed into

|ψ〉 =
∑
i

〈ψ|δωi
〉 |δωi

〉 (3.2)

where, according to the Born rule (see Appendix C3 - Born rule)

Psi (l) = |〈ψ|δωi
〉|2 (3.3)

Equations (3.2) and (3.3) express that the state |ψ〉 gives the probability of the

outcomes of l from the point of view of the observer. From the decision maker’s

viewpoint BDM = (|πω1〉 , . . . , |πωn〉), the vector |ψ〉 can also be decomposed into

|ψ〉 =
∑
i

〈ψ|πωi
〉 |πωi

〉 (3.4)

where, the Born rule dictates that
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PDMsi (l) = |〈ψ|πωi
〉|2 (3.5)

As the basis of the decision maker’s representation is unknown, we have no details

on how he transforms the lottery probabilities. Therefore, I work from the canon-

ical basis. Also, as probability law is quite different in L (H), I can propose the

following definition for a generalized gamble.

Definition 3. A generalized gamble5 ρl associated with a lottery l is a density

operator in L (H).

I denote the set of gambles as D (H). Note that D (H) is convex: a convex

combination of density operators is still a density operator. Accordingly, I define

a mixed gamble as a convex combination of gambles. If ρl and ρm are gambles

and 0 ≤ λ ≤ 1 then λρl ⊕ (1− λ) ρm is the mixed gamble λρl + (1− λ) ρm.

3.3.2 Interpretation of a gamble

Characteristic of interpretations of non-commutative probability in my model is

the central role of decision makers. A lottery is nothing more than information

about the future and what matters is knowing how to treat this information. By

analogy, a gamble contains global information which does not reduce to the proba-

bilities {ps1 , . . . , psn} associated with each outcome si of a given lottery but also the

probabilities that the decision maker considers and in fact for all decision makers.

Thus for a decision maker fixed in his own probability space (ΩDM ,FDM , µDM)

the gamble becomes a simple lottery and must be described by a new probability

law (a classical) µDM on L (H), defined as

µDM =
∑
i

|πωi
〉 〈πωi

| ρl |πωi
〉 〈πωi

| (3.6)

In this framework a mixed gamble corresponds to the possibility of considering

mixtures of lotteries from the point of view of the decision maker without knowing

BDM . As the decision maker’s representation of the set of events is unknown and
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a representation is associated with a lottery I consider that, in a simple decision

problem, a gamble is not a mixed gamble; consequently it is a pure gamble. The

available information is given by a normalized vector |ϕl〉 of H or equivalently by

the density operator ρl = |ϕl〉 〈ϕl|. As I work in B, the simplest forms for |ϕl〉 and

ρl are :

|ϕl〉 =


√
p1

...
√
pn

 (3.7)

ρl =


p1

√
p1p2 · · ·

√
p1pn

√
p1p2 p2 · · · √p2pn
...

...
. . .

...
√
p1pn

√
p2pn · · · pn

 (3.8)

3.3.3 Representation of preference relations

Let � be a binary relation defined on D (H) to represent a decision-maker’s pref-

erence. This is not a true preference relation because agents do not deal explicitly

with density operators. As their representations of the set of events is unknown, we

work in D (H) and the relation ρl � ρm is read as : “the decision maker (weakly)

prefers gamble ρl to gamble ρm” or equivalently : “the decision maker (weakly)

prefers lottery l to lottery m with respect to R unidentified”.

Similar to von Neumann and Morgenstern’s approach, I define the following axioms

on the preference relation.

Axiom D. 1 (Weak Order (WO)). � is non trivial, complete and transitive.

Axiom D. 2 (Continuity (C)). For any ρl ∈ D (H), {ρm, ρm � ρl} and

{ρm, ρl � ρm} are closed in the weak operator topology.

Axiom D. 3 (Independence (I)). If ρl � ρm and 0 ≤ λ ≤ 1 then for any

gambles ρn,

λρl ⊕ (1− λ) ρn � λρm ⊕ (1− λ) ρn
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These axioms have the same interpretation as the usual axioms. Independence

requires that mixed gambles can be computed only in BDM or that observer know

the decision maker’s representation of the set of events. In this situation, the

classical mixture is valid.

Theorem 3.1 (Analogous of von Neumann and Morgenstern theorem’s).

(WO), (C) and (I) are jointly equivalent to the existence of a functional U :

D (H)→ R, which represents � and such that

U (ρl) = tr (ρlMu) (3.9)

and where Mu ∈ Mn (R). Moreover, Mu is unique up to positive linear

transformations.

Corollary 3.2. If ρl is a pure gamble, then

u (ρl) = 〈ϕl|Mu |ϕl〉 (3.10)

In the next section I investigate the meaning of the utility matrix. As a corollary,

I show that for a pure gamble equation (3.9) simplifies to (3.10), and u becomes a

bilinear form on H of matrix Mu in the basis (|δω1〉 , . . . , |δωn〉).

3.4 Utility matrix

In the classical case, the utility of the outcomes under certainty can set the pref-

erences of the decision maker under risk and the expected utility is a weighted

sum of the utilities under certainty. In my model, I will show that the preferences

under risk depend on the utility of the outcomes under certainty and interference

utilities between the certain outcomes. Thus, I show that u is an expected utility

and that the utility of the outcomes under risk is different from the utility of the

outcomes under certainty.
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3.4.1 Interpretation of an utility matrix

In the previous section, I presented the set of gambles using the density operator

D (H) instead of the set L of classical lotteries. In this subsection, I analyze the

consequences of this change by considering the case where, during an experiment,

it is possible to ask a decision maker about the utility that he associates with a

gamble and with given outcomes of a gamble. We recall that for a gamble that,

with certainty, gives an outcome si, the projection operator is ρsi = |δωi
〉 〈δωi

|. As

Mu is a matrix, I note Mu = (uij). The utility of ρsi is given by

u (ρsi) = tr (ρsiMu) = uii, ∀i (3.11)

We can then define the utility of the outcome si under certainty by uii, which means

that all the information about the decision maker’s preferences under certainty are

contained in the diagonal entries of Mu. Let |ϕij〉 be the pure gamble in which

the outcomes si and sj are associated respectively with the probabilities pi and pj

(pi + pj = 1). The utility of this gamble is given by

u
(
ρϕij

)
= 〈ϕij|Mu |ϕij〉 = piuii + pjujj +

√
pipj (uij + uji) , ∀i, j (3.12)

We denote the interference utility between the sure outcomes si and sj (uij + uji).

In the classical model of expected utility, the utility of outcomes (identified with

their respective sure events) defines preferences on L. Formally, an agent weights

the utility of each outcome by its associated probability. In my model, the matrix

of utilities captures the idea that the decision maker has a different representation

of the set of events. From the perspective of the observer, the decision maker is

located first in the state of the world where the outcome of the gamble is si, based

on which the decision maker evaluates the utility of the outcome si relative to this

state of the world, and then evaluates the utility of the outcome sj relative to the

same state of the world. The decision maker repeats the operation for the state

of the world where the outcome of the lottery is sj. Finally, uij can be read as

“ the utility of the outcome si if gamble’s outcome is sj ”. The diagonal of the

matrix Mu represents the outcome’s utilities, uii is the utility of the outcome si

if gamble’s outcome is certain.



Chapter 3. EUT with Non-Commutative Probability Theory 66

More generally for a pure gamble, utility is given by

u (ρ) = 〈ϕ|Mu |ϕ〉 =
n∑

i,j=1

uij
√
pipj (3.13)

3.4.2 Utility under certainty and risk

In section 3.3, it was convenient to work in B because BDM were unknown. How-

ever, based on “own rationality”, I postulate that a decision maker is in his own

probability space (ΩDM ,FDM , µDM) and for he a gamble becomes a simple lottery.

We can conclude, therefore, that in BDM , the matrix is diagonal. The following

proposition shows that u is an expected utility in BDM .

Proposition 3.3. u (ρl) is an expected utility in BDM and u (ρl) =∑
i PDMsi (l)uDMsi .

An important feature of my model is that a decision maker changes his utility under

risk. The term uDMsi which I denote uri characterizes the utility of the outcome

si under risk. uri is different from ui, his utility without risk. To illustrate the

differences between uri and ui, I can use a simple example for a 2-dimensional H.

In this case the most simple utility matrix is a real symmetric matrix

Mu =

(
u11

r
2

r
2

u22

)
(3.14)

where r = u12 +u21. Diagonalization allows us to find the eigenvalues that are the

utility of the outcome si under risk

Det (Mu − λI) = 0⇔ λ2 − (u11 + u22)λ+ u11u22 −
(r

2

)2

= 0

⇔ λ =
u11 + u22

2
±

√(
u11 − u22

2

)2

+
(r

2

)2
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By convention, I can assume that s2 � s1. Under risk the preferences are un-

changed, and outcome s2 is always preferred to s1. Accordingly, I can define the

utility of the outcomes under risk

ur1 =
u11 + u22

2
−

√(
u11 − u22

2

)2

+
(r

2

)2

(3.15)

ur2 =
u11 + u22

2
+

√(
u11 − u22

2

)2

+
(r

2

)2

(3.16)

We can see that ur1 < u1 < u2 < ur2. Thus, under risk, the utility of the preferred

outcome increases by the effect of the presence of the undesired outcome and vice

versa. Another interpretation of r would be :

ur2 − ur1 = 2

√(
u11 − u22

2

)2

+
(r

2

)2

(3.17)

We note ∆r
u = ur2 − ur1 and ∆c

u = u22 − u11, the previous expression then becomes

r2 = (∆r
u)

2 − (∆c
u)

2 (3.18)

Thus, in the case of two outcomes, r is associated with the range of utility under

risk and the range of utility under certainty. The greater the number of utilities

that are transformed under risk, the higher is r.

3.5 Applications

3.5.1 Prospect theory

Our model draws on the design proposed in Kahneman and Tversky’s prospect

theory (1979). Prospect theory divides the decision process into two stages, editing

and evaluation. Editing involves the ordering of decision outcomes. Agents set

a reference point and then consider lesser outcomes as losses and greater ones

as gains. In the evaluation stage, agents weight outcomes and their respective
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probabilities, and choose the one with the highest utility. The functional is given

by

V (l) =
∑
i

w (Psi (l)) v (si) (3.19)

The function w is a probability weighting function for the tendency for people

over-react to low probability and under-react to higher probabilities.

In my framework the function R, which is the decision maker’s representation of

the set of events, is a black box which characterizes the agent. The decision maker

considers a different probability space (ΩDM ,FDM , µDM). As in the previous sub-

section I study the case of a 2-dimensional Hilbert space with a utility matrix

given by equation (3.14).

Firstly, equations (3.15) and (3.16) show that outcomes s1 and s2 are weighted

from the reference point
(
u11+u22

2

)
.

Secondly, the probability law of the lottery from the point of view of the agent,

is modified. Diagonalization of the utility matrix allows us to construct a unitary

matrix which is the matrix base change between B and BDM . In B, ϕ decomposes

into :

|ϕ〉 =
√
p |δω1〉+

√
1− p |δω2〉 (3.20)

Without loss of generality, I use a rotation matrix U :

U =

(
cos θ − sin θ

sin θ cos θ

)
(3.21)

Thus, I can express the probability weighting function for the outcomes s1 and s2

:

ws1 (p) =
(√

p cos θ −
√

1− p sin θ
)2

(3.22)

ws2 (1− p) =
(√

p sin θ +
√

1− p cos θ
)2

(3.23)
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Figure 3.1 shows ws1 (p) and ws2 (p) for different values of θ.

Figure 3.1: Probability weighting function for 2-outcome lotteries

3.5.2 The Allais paradox

The so-called Allais paradox refers to experimental results that frequently show

violation independence axiom in expected utility theory. It arises from a com-

parison of the choices made by individuals in two successive experiments, each

consisting of a choice between two lotteries. Consider this Allais type paradox.

First, the choice between :

A: A chance of winning 10000 euros with certainty

B: A chance of winning 15000 euros with probability 0.9

Next, the choice between :

C: A chance of winning 10000 euros with probability 0.1

D: A chance of winning 15000 euros with probability 0.09

Many subjects report that A � B for the first choice and D � C for the second.

Let E be the gamble “chance of winning 0 euros with certainty”, we can verify that

C = 0.1A ⊕ 0.9E and D = 0.1B ⊕ 0.9E. By independence axiom A � B implies

C � D, hence the contradiction. The mixture of lotteries is not neutral and causes

interactions between utilities and probabilities, which change the preferences.
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In the Allais paradox, we consider all lotteries are pure gambles. The set of out-

comes is given by S = (0, 10000, 15000) and is associated with H a 3-dimensional

Hilbert space with orthonormal basis (|δ0〉 , |δ10〉 , |δ15〉). Then our knowledge of

the decision maker’s representation of the set of events can be described by a

probability law on the D-algebra A = L (H). Accordingly, the normalized vectors

associated with gambles A, B, C and D are respectively |ϕA〉, |ϕB〉, |ϕC〉 and |ϕD〉
:

|ϕA〉 =


0

1

0

 |ϕB〉 =


√

0.1

0
√

0.9

 |ϕC〉 =


√

0.9
√

0.1

0

 |ϕD〉 =


√

0.91

0
√

0.09

 |ϕE〉 =


1

0

0



Gamble C as a pure gamble is different from convex combination of pure gambles

A and E and similarly for D.

ρC 6= 0.1ρA ⊕ 0.9ρE

ρD 6= 0.1ρB ⊕ 0.9ρE

The self-adjoint utility matrix for the experiments is

Mu =


u0,0

r0,10
2

r0,15
2

r0,10
2

u10,10
r10,15

2
r0,15

2

r10,15
2

u15,15


and the utility of pure gambles A, B, C and D is given by

u (ρA) = u10,10

u (ρB) = 0.9u15,15 + 0.3r0,15

u (ρC) = 0.1u10,10 + 0.3r0,10

u (ρD) = 0.09u15,15 + 0.3
√

0.91r0,15
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Since the agent represents the experiences in another probability space for risky

situations, interferences appear. Here, all response profiles are allowed for the

Allais experiment. The gamble A is certain , the gamble B is risky and the

interference r0,15 can increase or decrease the value of the gamble compared to the

value of his expected utility. Ditto for gamble C and the interference r0,10. If I

assume that the agent understands the convex combination that leads to gamble

D, we can see that there is an additional interference :

u (ρD)− u (0.1ρB ⊕ 0.9ρE) = 0.3
(√

0.91− 0.1
)
r0,15

We assume A � B, the interference r0,15 is negative or positive and small compared

to u15,15 then the interference r0,10 can reverse the decision maker’s preferences.

3.5.3 Marschak-Machina triangle

Figure 3.2 depicts the Marschak-Machina triangle for different choices of matrix

Mu in 3-outcome lotteries. The triangle (a) characterizes the von Neumann and

Morgenstern expected utility. This case corresponds to the special case of a diag-

onal matrixMu. Other triangles show that it is possible to construct indifference

curves which are concave (b), fanning out (c) and fanning-in (d).

3.6 Discussion

Objectively, I have shown that the non-commutative or “quantum probability”

framework can be used to model the fact that an individual have a particularly

subjective representation of the set of events. However, it is a restrictive work

as a representation of the set of events can be other structure than a probability

space. I have, for prospect theory, exhibited an endogenous reference point and

a corresponding probability weighting function which is a probability measure. I

would like emphasize the fact that prospect theory is not evident for many out-

comes (as noted by the authors) and that consequently, there is, perhaps, many

reference points in the editing process. Other features of my framework is that,

naturally, density operator are not commutative for the appropriate definition of
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Figure 3.2: Examples of indifference curves on the Marschak-Machina triangle
for different matrices.

multiplication (unlike classical probability). So, simple framing can be accommo-

dated if they arise from products of probability distributions. Considering that

a representation of the set of events is valid for only one decision problem, then

my approach can accommodated regret theory (intransitive preferences). How-

ever, there are ad hoc assumptions. Generally, all “quantum” models are poor

in the sense that, in comparison with physics, there is no true classical theory of

how preferences evolve and how preferences are modified in contextual interaction.

And, without discussing the merits of some approaches, a quantum generalization

can not be considered without first having a classical, necessarily dynamic, the-

ory. This formalism under-employ available knowledge about the limitations of

cognitive processes or contextual interactions. In addition, flexibility in model

specification has risks for the use of quantum probability
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3.7 Proofs

Proof of theorem 3.1. D (H), with respect to convex combination, is a mixture

space and it satisfies the usual axiom for an affine representation by Theorem 8

in Herstein and Milnor (1953). Since H is a finite-dimensional vector space, u is a

linear form of Mn (C) ⊃ D (H) to R. Let (Eij) be the canonical basis of Mn (C)

∀ρl ∈ D (H) , u (ρl) =
∑
ij

ρij · u (Eij)

=
∑
ij

ρij · uji , where uji = u (Eij)

=
∑
i

∑
j

ρij · uji

=
∑
i

(ρlMu)ii , where Mu = (uij)

= tr (ρlMu)

�

Proof of theorem 3.2. If ρl is a pure gamble, then:

u (ρl) = tr (ρlMu)

=
∑
i

〈δsi | ρlMu |δsi〉

=
∑
i

〈δsi |ϕl〉 〈ϕl|Mu |δsi〉

=
∑
i

〈ϕl|Mu |δsi〉 〈δsi|ϕl〉

= 〈ϕl|Mu

(∑
i

(|δsi〉 〈δsi |)

)
|ϕl〉

= 〈ϕl|Mu|ϕl〉 .

�

Proof of proposition 3.3. The proof of proposition 3.3 is a straightforward appli-

cation of the spectral theorem. According to proposition 1, for a given preference
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relation, there is a self-adjoint matrix in Mn (C) which represents u. Accord-

ing to the spectral theorem Mu can be diagonalized on an orthonormal basis

(|ø1〉 , . . . , |øn〉), i.e. there is an unitary matrix U such that

Mu =
∑
i

λi |øi〉 〈øi| with λi = (U∗MuU)ii and λi ∈ R

We note λi = uDMsi . The orthonormal basis (|ø1〉 , . . . , |øn〉) is exactly the basis of

the decision maker. For all i, we set |øi〉 = |πωi
〉.

u (ρl) = 〈ϕl|Mu|ϕl〉

=

〈
ϕl|

(∑
i

uDMsi |πωi
〉 〈πωi

|

)
|ϕl

〉
=
∑
i

uDMsi 〈ϕl|πωi
〉 〈πωi

|ϕl〉

=
∑
i

uDMsi |〈ϕl|πωi
〉|2

=
∑
i

PDMsi (l)uDMsi by equation (3.5)

�

3.8 Conclusion

This chapter investigated the formulation of von Neumann and Morgenstern’s the-

ory of decision-making in terms of its algebraic structure, ∗-algebra. I showed that

classical theory corresponds to the commutative case and that a non-commutative

setting leads to the introduction of fruitful notions for understanding decision the-

ory. My hypothesis is that irrationality can be understood as wrong observation

of the probability space in which individuals perceive gambles and therefore that

individuals are rational in their representations of the sets of events. I found that

from the perspective of the observer, the utilities of outcomes under certainty are

not sufficient to describe the behaviour of a decision maker under risk and the
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observer must consider interference utilities among sure outcomes. I saw that the

utility of an outcome differs under risk and under certainty and that some para-

doxes and inconsistencies in the classical expected utility theory can be better

understood in my framework.

3.9 Appendix

3.9.1 A - Quantum Logic

The quantum logic, often called the logic of subspaces, arises from the set of

Hilbert subspaces of the complex Hilbert space H, describing the quantum system

of interest, is as follows. Each subspace h is identified with the operator Ph that

projects onto the subspace h. The lattice P (H) of closed linear subspaces of a

Hilbert space H is seen to be equivalent to the lattice of projection operators on

H. One can define the two operations (∧) (meet) and (∨) (join) acting pairwise

on any two projectors P1 and P2 by P1 ∧ P2 = P1P2, P1 ∨ P2 = P1 + P2 − P1P2,

and identify the zero as the projector O onto the zero vector 0 and the identity

as the projector I onto all of H; ∨ corresponds to the linear span, and ∧ to

the intersection. The rays of H are considered to be the atomic propositions of

P (H). The complement of the projector P is the operator P⊥ = I− P such that

P ∧ P⊥ = O and P ∨ P⊥ = I. This complement is then unique.

Definition 4. P (H) is modular if it satisfies the modularity condition :

P1 ≤ P2 ⇒ ∀P3, P1 ∨ (P2 ∧ P3) = (P1 ∨ P2) ∧ P3

Definition 5. P (H) is orthomodular if it satisfies the orthomodularity condition

:

P1 ≤ P2 ⇒ P2 = P1 ∨
(
P⊥1 ∧ P2

)
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3.9.2 B - D-algebras

B1 - ∗-algebras

We introduce the term D-algebra (D stands for Decision) to reformulate the clas-

sical framework of a decision problem. In non-commutative probability theory, a

real random variable is represented by a linear self-adjoint operator on a Hilbert

space. Accordingly, we need to replace the conventional notion of a classical finite

probability space by the notion of a non-commutative finite probability space.

The strategy is to replace l∞ (Ω,F , µ), which is a commutative ∗-algebra, by a

non-commutative ∗-algebra.

By definition, an algebra is a linear space A 6= {0} over K=C or R, that is

equipped with a multiplication (A,B)→ AB fromA×A intoA that is associative,

bilinear, and has an identity I. An algebra A is commutative if the multiplication

is commutative.

By definition, a ∗-algebra (pronounce: star-algebra) is an algebraA that is equipped

with an involution on A which is a map A→ A∗ from A into A that has the fol-

lowing properties

(i) (A∗)∗ = A A ∈ A

(ii) (aA)∗ = a∗A∗ A ∈ A, a ∈ C

(iii) (AB)∗ = B∗A∗ A,B ∈ A

An involution is positive if

(iv) AA∗ = 0⇒ A = 0 A ∈ A

Definition 6. A is a D-algebra if A is a finite-dimensional ∗-algebra over the

complex numbers and the involution is positive.
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B2 - Density Operators

Definition 7. A probability law on a D-algebra is a linear map µ : A → R that

is positive µ (A∗A) ≥ 0, ∀A ∈ A and normalized µ (I) = 1.

To characterize a probability law in A, we need the concept of density operators.

For a D-algebra A, we consider the usual trace tr. Let ρ be a density operator,

i.e. a self-adjoint positive operator of trace 16. We can then define a probability

law µ by

∀A ∈ A, µ (A) = tr (ρA)

Conversely, every probability on A arises in this way and ρ is uniquely determined

by µ. Indeed, the map (A,B) 7→ tr (A∗B) defines an inner product on A. A

probability law µ on A is a linear form on A, and there is a unique ρ in A such

that µ (A) = tr (ρ∗A) for every A in A. Hence, the conditions imposed on µ imply

that ρ is a self-adjoint positive operator of trace 1, its diagonal entries are in fact

probabilities.

We call (A, µ) a (finite dimensional) non-commutative probability space. The

above definitions refer to some comments. Firstly, this framework is abstract but

it is related to Hilbert formalism. If H is a finite-dimensional Hilbert space and

let L (H) be the space of linear operators on H, equipped with operator multipli-

cation and adjugation. Then, obviously, L (H) is a D-algebra. Conversly7, every

D-algebra has a faithful representation, i.e. there is an ∗-algebra isomorphism

between A and L (H) for an appropriate H, finite-dimensional Hilbert space. Sec-

ondly, a real random variable is a self-adjoint element of A, (A∗ = A). It is not

surprising therefore that a commutative probability space is equivalent to a clas-

sical one. A formal statement of this assertion is provided by the theorem below.

Theorem 3.4 (Gel’fand theoremDoran (1994)). Let (A, µ) be a finite-dimensional

commutative probability space. Then there exists a classical probability space (Ω,F ,P)

where Ω is a finite set, such as A is isomorphic to l∞ (Ω,F ,P) and

µ (A) =

∫
AdP ∀A ∈ A

6ρ∗ = ρ, ρ ≥ 0 and tr (ρ) = 1
7For a proof, we refer the reader to Goodman et al.Goodman et al. (1989).
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Proof. As A is finite-dimensional, we can without loss of generality suppose that

A is a commutative ∗-algebra of operators of a n-dimensional real Hilbert space.

As all the elements of A commute, we can find8 a unitary operator U such that

U∗AU is a diagonal operator for every A ∈ A. Let Ω = {ω1, . . . , ωn}. Define the

map ι (A) for every A ∈ A by

ι (A) : Ω→ R

i 7→ ι (A) (i) = (U∗AU)ii

Next, define the tribe F = σ {ι (A) |A ∈ A} and P (E) = µ (ι−1 (χE)) for every E ∈
F . This construction give a classical probability space (Ω,F ,P) and a isomorphism

ι of ∗-algebra between A and l∞ (Ω,F ,P). Moreover µ (A) =
∫
AdP, ∀A ∈ A. �

Non-commutative probability theory is more general than classical theory. The

classical probability model does not intrinsically contain an entity that corresponds

to non-commutative probability law. A non-commutative probability space de-

scribes incomplete knowledge about a system in the physical reality. An obser-

vation of a given system corresponds to a choice of a commutative ∗-subalgebra

C ⊂ A and C is thus exactly equivalent to a classical probability space. A non-

commutative probability space can be seen as representing the set of all possible

classical probability spaces (Ωs,Fs, µs) for all experimental settings “s”. A non-

commutative probability space A is a collection of many incompatible classical

probability models, each of which coincides with a commutative ∗-subalgebra of

A. A non-commutative probability law represents the catalogue of all expecta-

tions for all possible observations. Obviously an observation needs to give the

expectations of an observable with the correct probability and therefore, together

with the observation made, to define the probability space uniquely.

3.9.3 C - Quantum mechanics

Let A be a D-algebra.

8The proof is an elementary exercise in linear algebra.
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C1 - Observables

In quantum mechanics, self-adjoint operators on A are called observables. They

correspond to real-valued physical quantities and may be regarded as the equiva-

lent of classical random variables by spectral decomposition.

A =
∑

λ∈σ(A)

λPλ

The set {Pλ : λ ∈ σ (A)} is interpreted as an ideal measurement of the observable

A. If ρ is a probability law then the expected value of A is

ρ (A) =
∑

λ∈σ(A)

λρ (Pλ)

Definition 8. An ideal measurement is a partition of the identity {P1, . . . , Pn}

If an ideal measurement {P1, . . . , Pn} is performed on the system, then our knowl-

edge about the system changes. The new knowledge is described in a new proba-

bility law ρ̃ (A) :=
∑
ρ (PiAPi)

C2 - States

In quantum mechanics a probability law on A = L (H) is called a state.

Definition 9. A pure state is a probability ρ that is not a nontrivial convex

combination of other states, i.e., it is not possible to write ρ = pρ1 +(1−p)ρ2 with

0 < p < 1 and ρ1 = ρ2. A probability that is not a pure state is called a mixed

state.

Definition 10. A ket represents a complex column vector. |ψ〉 denotes the ket

vector ψ. The complex conjugate and transpose (i.e. the adjoint) of a ket is a bra.

It represents a complex row vector. 〈ψ| denotes the bra vector ψ.

Definition 11. The inner product of two kets |ψ〉 and |φ〉 returning a scalar is

defined by 〈ψ|φ〉.

Definition 12. The outer product of two kets |ψ〉 and |φ〉 returning a linear

operator is defined by |ψ〉 〈φ|.
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The following properties are equivalent and characterize pure states.

• There is a normalized vector |ψ〉 ∈ H such that ρ = |ψ〉 〈ψ| .

•
(
ρ2 = ρ

)
.

C3 - Born rule

Let A be an observable and ψ a pure state. Let {|αi〉} the eigenvectors of the

observable associated with the eigenvalues {λi}, the Born rule states that if A is

measured in state ψ, then :

• {|αi〉 〈αi|} is an ideal measurement.

• |ψ〉 =
∑
i

ci |αi〉 where |ci|2 = P (λ = λi) .

Clearly, the measured result will be one of the eigenvalues of A, and the probability

of measuring a given eigenvalue λi will equal to |ci|2.



Conclusion

This thesis was devoted to define utility functions in different contexts of decision

making under risk. This issue affects the validity of a large number of works within

many economic fields : behaviour under risk, and specifically investments, insur-

ance, the next move of your opponent in a conflict, and so on. Since the 90s, the

emergence in economy of works inspired by sociology or physics or vice versa chal-

lenge the traditional foundations of decision making analysis. This dynamic fits

experimental failures of classical decision theory9 and game theory, that is, inca-

pacity to play the sub-game perfect equilibrium10. Coordination failures observed

in game theory are mainly attributed to the fact that individuals do not take into

account other agents’ absolute or relative payoffs or in some cases well-beings.

Accordingly, even if we ignore interdependent preferences, the remaining problem

stems from the extension of individual decision theory within game theory, that

is, in context of strategic interactions.

In the referent literature it is now widespread to extend individual rationality to

cases of bounded rationality and interdependent preferences. That is why the

axiomatic foundations of these evolutions are determinants in order to structure

the different types of analytical improvements of individual decision under risk.

We can refer for the previously mentioned improvements among others, to Segal

(1989) or Chateuneuf and Wakker (1999) for the theory of individual decision

making under risk, Karni and Safra (2002) or Maccheroni et al. (2012) in the

theory of individual decision preferences incorporating equity or interdependence,

Rabin (1993), Fehr and Schmidt (1999) or Segal and Sobel (2007) in game theory.

Brock and Durlauf (2001a) and Blume and Durlauf (2001) for a theoretical and

empirical approach.

9See Lichtenstein and Slovic (1971) for reversals preferences and Tversky and Kahneman
(1992) for framing effects.

10See Rosenthal (1981) for centipede game, Guth et al (1982) for the ultimatum game and
Forsythe et al. (1994) for the dictator game.
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Blume, Brock and Durlauf’s contribution gives us both an empirical framework

which highlights peer effects in network, and a theoretical framework allowing to

integrate into utility functionals interdependent preferences, that is, the dynamics

of individual decisions within networks. This approach is widely used in econo-

physics that is why my thesis focus on the microeconomic foundations through

interdependent preferences.

Contributions

I propose in this thesis an axiomatic foundation of additively separable utility

under risk, that is, expected utility with a kernel or Carathéodory functions. I

derive then axioms for an entropy modified expected utility. This last result is

incorporated with interdependent preferences under risk to fit the Blume, Brock

and Durlauf’s model. Finally, I introduce quantum probability to taking into

account subjective events.

Additively separable utility under risk

The first chapter of this thesis provides a consistent axiomatic foundation of addi-

tively separable utility under risk. This problem is equivalent to find an additive

representation of preferences on simplices which is subsets of Cartesian products.

My approach brings close our object of study and the theory of linear utility

developed by Aumann (1962), that is, classical additive independence axioms are

translation invariance axiom restricted to alternatives with disjoint supports. Lim-

ited experimental data and their conflicting aspects does not allow us to make a

judgement about the credibility of such functionals even if, in full generality, it is

low given typical failures of individuals behaviour as framing effects or intransi-

tive preferences. However, These representations seem to have an analytical sub-

stantial advantage over most of the earlier proposals. The most straightforward

formal application can take place into game theory as optimization problem with

additively separable functional is simple. The obtained result make possible the

derivation of further results for entropy-modified expected utility extensively used

in economic studies. In this perspective a great care must be imposed to studies

that suppose an entropic term. Entropy-modified expected utility reports a very

limited bounded rationality as the cognitive impairment is thin. Concretely, this
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kind of utility functionals verifies the independence axiom for convex combinations

of lotteries restricted to lotteries with disjoint supports.

Interdependent preferences under risk

The second chapter provides an axiomatic foundation for the Blume, Brock and

Durlauf’s model. I have studied individual deterministic preference relations un-

der risk which are possibly other-regarding. My primary aim has been to provide,

following Maccheroni et al. (2012), a formal background to other-regarding ex-

pected utility representations already used in various applications which covers

the case where the other agents make risky choices and the case where the risk is

a belief about the other agents choices or both. In addition, I introduced, follow-

ing Candeal et al. (2004), a preference relation over a disjoint union of spaces to

account for the selection among groups of individuals that operates the decision

maker. This allows us to explain the social anchoring of the decision maker. The

addition of an entropic term is partially processed to fit the Blume, Brock and

Durlauf’s model. Some difficulties arise, principally are due to the homogeneity

condition between the expectation of the private utility term and the expectation

of the social utility term.

Quantum probabilities

Objectively, I have shown that the non-commutative or “quantum probability”

framework can be used to model the fact that an individual have a particularly sub-

jective representation of the set of events in the von Neumann and Morgenstern’s

framework. My hypothesis is that irrationality can be understood as wrong obser-

vation of the probability space in which individuals perceive gambles and therefore

that individuals are rational in their representations of the sets of events. I found

that from the perspective of the observer, the utilities of outcomes under certainty

are not sufficient to describe the behaviour of a decision maker under risk and the

observer must consider interference utilities among sure outcomes.

However, my hypothesis is an ad hoc assumptions that can be discussed as in all

“quantum” models. These models are poor in the sense that, in comparison with

physics, there is no true classical theory of how preferences evolve and how prefer-

ences are modified in contextual interaction. And, without discussing the merits
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of some approaches, a quantum generalization can not be considered without first

having a classical, necessarily dynamic, theory. This formalism under-employ

available knowledge about the limitations of cognitive processes or contextual in-

teractions. In addition, flexibility in model specification has risks for the use of

quantum probability

Prospects

Two axes Research seem interesting to continue, based on the results of this thesis.

The first concerns the extension of the theoretical results of the first chapter :

the space of lotteries, the simplex, is a very special case of subset of Cartesian

products. It seems that an orthogonal additivity utility theory can be build in the

continuity of the linear utility theory. In this way, some results can be obtained

for arbitrary subset of Cartesian products. Moreover the derivation of variational

preferences highlighted the possibility of an entropic term similar to Tsallis entropy

with expected utility whose probabilities are weighted. These kinf of functionals

could provide more general results compared to simple variational preferences. In

game theory for example, or in more applied fields. Finally some contradictory ex-

perimental results about additively separable utility should encourage us to study

this issue more specifically. At least, it is necessary to compare their explanatory

power with the rank-dependent expected utility.

The second axis concerns the theoretical results of the second chapter : a direct

application could be undertaken in game theory in order to determine changes

in balances and levels of social well-being. Indeed, the proposed foundations are

flexible enough to generate positive or negative externalities. Taking into account

the Tsallis entropy could give new results for equilibrium.
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Introduction (en Français)

Motivations

Dans certaines situations, les individus doivent faire des choix dans l’incertitude.

L’analyse de la décision (individuelle) s’est appliquée depuis l’après guerre à mieux

comprendre les modes de décision individuels dans de tels contextes d’incertitude.

Bien que sophistiquée, la théorie de la décision en incertitude est toujours sujette à

un grand nombre de critiques. L’observation expérimentale établit en particulier

que les choix individuels n’en confirment pas les prédictions théoriques. Dans

l’expérience, les individus ne respectent pas, en général, les hypothèses faites sur

leurs préférences pour fonder les prédictions essentielles de la théorie tradition-

nelle de la décision, même dans des situations relativement simples. Les psy-

chologues montrent, dans des situations plus complexes, que les choix individuels

sont sensibles à la description des options, à leur contextualisation et à la méthode

d’élicitation. Ces aspects de la prise de décision sont largement renseignés dans

la littérature et des réponses théoriques ont été apportées par des champs disci-

plinaires différents pour expliquer ces échecs et les dépasser.

Depuis une décennie, on en appelle aussi à d’autres champs disciplinaires tels que la

sociologie ou la physique pour traiter des fondamentaux de l’analyse décisionnelle.

Les relations de groupes, les perceptions d’appartenance, la référence au social, ont

un impact important sur la décision individuelle. D’un point de vue général, les in-

dividus sont en effet influencés par l’ensemble des facteurs de leur environnement,

aussi bien dans le processus de décision que dans leurs interactions avec d’autres

individus. La sociologie constitue donc un corps de connaissances mobilisable en

matière d’analyse de la décision. Depuis quelques années, on s’aperçoit aussi que

les sciences physiques, autre discipline sollicitée dans ce travail, peuvent apporter

également à la compréhension des décisions en incertitude. Par ses méthodes ou
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ses concepts propres relatifs à l’incertitude, cette discipline participe au renou-

vellement de l’analyse des attitudes face à l’aléa, qu’il s’agisse de contribuer à la

modélisation des interactions sociales ou à l’analyse de strictes décisions individu-

elles.

Cette thèse se compose de trois chapitres constituant des contributions distinctes

mais reliées au même centre d’intérêt, la théorie de la décision dans le risque.

Le premier chapitre traite de préférences additivement séparable, en situation

de risque, par rapport aux probabilités au sens de Debreu (1959). La théorie

des préférences additivement séparable est rapprochée de la théorie linéaire de

l’utilité. Ce chapitre présente une forme faible de la séparabilité des évènements

pour des préférences sur des loteries objectives. Il en est déduit une axiomati-

sation simple de préférences variationnelles représentées par une fonctionnelle se

décomposant en un terme d’espérance d’utilité et un terme entropique. Cette

dernière représentation, déterministe, aboutit, dans certaines conditions, à un

modèle de choix discret de type logit. Le second chapitre consiste en une fondation

axiomatique de préférences interdépendantes en présence d’interactions sociales,

sur la base du modèle initialement élaboré par Blume, Brock et Durlauf. Un

modèle de choix discret de type logit en étant un ingrédient essentiel, les résultats

du premier chapitre contribuent aussi à cette construction. Le troisième et dernier

chapitre pose la question de l’apport du modèle probabiliste de la physique quan-

tique à la théorie de la décision et de son application pour prendre en compte la

perception subjective des évènements par les individus.

Les critiques adressées à la théorie de la décision ont remis en question les formes

de rationalité usuelles de la microéconomie. Chaque chapitre se concentre donc

sur un aspect de cette remise en cause, à partir des développements de l’économie

comportementale, de l’économie cognitive, et de l’éconophysique, respectivement.

L’objet de cette introduction est d’expliciter la cohérence globale de ces trois

chapitres.

La théorie de la décision dans le risque

La théorie de la décision a une longue histoire depuis l’émergence11 des probabilités.

Le premier critère de choix, naturel, à avoir été postulé est celui de l’espérance

11Le lecteur est renvoyé à Hacking (1975).
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d’une variable aléatoire. Au 18ème siècle, le paradoxe de Saint-Petersbourg incite

Bernoulli (1738-1954) à postuler le critère de l’utilité espérée12. Sa popularité

augmente après que von Neumann et Morgenstern (1944) montrent que l’on peut

déduire ce critère d’un ensemble d’axiomes élémentaires (les exposés modernes font

usuellement référence à la présentation de Marschak (1950), Herstein et Milnor

(1953), Luce et Raiffa (1957), Jensen (1967) ou Fishburn (1970) pour une rela-

tion de préférence d’un individu sur l’ensemble des Lois de probabilités données de

manière exogène). Cette formulation est facile d’utilisation. Elle permet de définir

l’attitude face au risque et elle est applicable à de nombreux champs théoriques, no-

tamment ceux qui recourent à la théorie des jeux non-coopératifs. L’utilité espérée

repose sur l’axiome d’indépendance13 et présente l’avantage de disposer d’un fort

potentiel normatif. Cependant, de nombreux résultats expérimentaux ont montré

que ce critère de décision était contestable. Le plus populaire est certainement

le paradoxe d’Allais (1953) qui conduit à la définition de deux phénomènes plus

généraux, l’effet de rapport commun et l’effet de conséquence commune. Ces deux

phénomènes ont été reproduits par Kahneman et Tversky (1979) (problèmes 1,2

et 3,4 respectivement). MacCrimmon et Larsson (1979) fournissent une étude

détaillée des paradoxes de l’axiome d’indépendance, dans un contexte de risque ou

en incertitude radicale. Le faible pouvoir descriptif de l’utilité espérée a conduit

à des généralisations que nous classerons en trois catégories14 non exhaustives et

non mutuellement exclusives.

La première classe de généralisations repose sur l’affaiblissement systématique de

l’axiome d’indépendance. La contribution du premier chapitre s’inscrit dans ce

cadre. La sophistication de l’utilité espérée par des théories avec un cadre ax-

iomatique clair, ciblant l’affaiblissement de l’axiome d’indépendance, permet de

mieux comprendre les aspects normatifs et descriptifs de ces théories. Par exemple,

l’utilité espérée pondérée15 proposée par Chew et MacCrimmon (1979) où l’axiome

d’indépendance est vérifié pour des loteries de la même classe d’équivalence et

12Ce n’est pas la valeur, naturelle, de la variable aléatoire qui doit rentrer dans le calcul
d’espérance, mais la valeur, morale, que l’individu attribue à cette variable qui doit rentrer dans
le calcul de l’espérance, donnant ce que l’on appel aujourd’hui l’utilité espérée.

13Étonnement absent chez von Neumann et Morgenstern, voir Fishburn et Wakker (1995) pour
une perspective historique sur la formulation de cet axiome.

14Je ne fais pas mention ici des théories dont la base est une relation de préférences intransitive,
comme par exemple l’approche de Bell (1982), Fishburn (1982) ou Loomes et Sugden (1982).

15Cf. Chew (1989) pour cette classe de modèle.
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l’utilité espérée dépendante du rang axiomatisée16 par Quiggin (1982) dans le

risque où l’axiome d’indépendance est vérifiée pour des loteries co-monotones.

La seconde classe de généralisations rejette l’axiome d’indépendance. Un exem-

ple en est la théorie de l’utilité espérée locale initiée par Machina (1982) puis

développée par Chew et Nishimura (1992), Chew et Hui (1995) et par exemple,

pour une contribution récente Chaterjee et Krishna (2011). Cette approche con-

serve les conditions du pré-ordre et suppose une notion de différentiabilité de la

représentation des préférences. L’utilité espérée devient alors une notion locale (au

sens topologique du terme) car les fonctionnelles différentiables peuvent être con-

sidérées comme localement linéaires. Cette approche permet une grande flexibilité

et la généralisation des critères d’attitudes face au risque17. Un autre exemple

est la théorie de Luce (Cf. Luce (2000) pour une compilation de l’ensemble de ses

travaux et Wakker (2000) pour une courte synthèse). Luce construit une théorie al-

ternative, à partir de concepts psychologiques, et retrouvé la majorité des modèles

standards à partir d’une opération de concaténation entre les loteries.

La troisième classe de généralisations est constituée des approches s’appuyant sur

une démarche expérimentale, mettant l’accent sur l’aspect descriptif de la prise

de décision individuelle, pour identifier des fonctionnelles d’utilité capables de

reproduire les résultats expérimentaux. L’exemple le plus connu est la théorie

des perspectives de Kahneman et Tversky (1979) et son raffinement, la théorie

cumulative des perspectives (i.e., la théorie des perspectives dépendantes du rang,

(1992)). Un autre exemple est le modèle TAX (Transfer of Attention eXchange)

développée par Brinbaum et Chavez (1997).

L’utilité espérée dépendante du rang est certainement l’apport qui a eu le plus

de succès en théorie de la décision (par exemple, voir Weber et Kirsner (1997),

Diecidue et Wakker (2001) et Mongin (2009) pour des argumentaires mettant en

avant l’utilité espérée dépendante du rang). Cette notion a permis, aussi bien

dans un contexte de risque que d’incertitude18, et dans de nombreux modèles19

de rendre compte des violations de la théorie de l’utilité espérée. En outre, la

fonctionnelle associée à cette notion préserve des propriétés intéressantes comme

16Cf. Yaari (1987) pour le cas particulier de l’approche duale de l’utilité espérée et Segal (1984,
1989) ou Green et Jullien (1988) pour des représentations généralisées.

17Cf. Cohen (1995).
18Axiomatisé par Schmeidler (1989).
19Entre autres Luce et Fishburn (1991, 1995), Tversky et Kahneman (1992), Wakker et Tver-

sky (1993), Chateauneuf et Wakker (1999), Schmidt et Zank (2001, 2009, 2012) et Abdellaoui
(2002).
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la dominance stochastique. Sur un plan empirique, l’utilité espérée dépendante

du rang conduit à de meilleurs résultats que l’utilité espérée ou l’utilité espérée

pondérée pour des situations de choix se référant au paradoxe d’Allais. Dans des

situations plus générales, le pouvoir explicatif n’est pas significativement meilleur

que celui de l’utilité espérée ou d’autres théories20.

Une part importante des dérivations axiomatiques de l’utilité espérée dépendante

du rang les plus populaires21 nécessitent le résultat obtenu par Wakker (1991,

1993) sur les représentations additivement séparables pour des sous-ensembles

de produits Cartésiens où les coordonnées sont rangées par ordre croissant. Ce

résultat permet, par exemple, de donner une représentation additivement séparable

pour l’ensemble des loteries lorsque celles-ci sont assimilées à leurs fonctions de

répartition.

L’apport principale du premier chapitre est de proposer une fondation axioma-

tique de fonctionnelles additivement séparables sur l’ensemble des distributions et

non des fonctions de répartition, en utilisant la propriété d’additivité orthogonale

de l’utilité. Les formes d’indépendance faisant intervenir des loteries à supports

disjoints y sont étudiés.

Dans une série de papiers, Luce, Ng, Marley et Aczèl (2008a, 2008b, 2008, 2009a,

2009b) proposent de fonder axiomatiquement l’utilité des jeux d’argents22, sur la

base de la théorie de Luce (2000). Leur approche se base sur les travaux de Megin-

niss (1976) qui avait introduit, en fondant ce choix analytiquement, un critère de

préférences variationnelles23 représentées par une fonctionnelle se décomposant

en un terme d’espérance d’utilité et en un terme entropique. La dérivation de

fonctionnelles additivement séparables permet de traduire dans un cadre standard

le contenu de ces travaux. Comme il sera montrer dans le premier chapitre, la

dérivation de fonctionnelles additivement séparables permet de fournir dans un

cadre standard une caractérisation de ces travaux. Cette fonctionnelle est un cas

très particulier de préférences où l’axiome d’indépendance est vérifié pour des lo-

teries dont les supports sont disjoints.

20Par exemple, Wakker et al. (1994), Wu (1994) et Birnbaum et al. (1999).
21Segal (1984, 1989), Green et Jullien (1988), Wakker et Tversky (1993), Chateauneuf et

Wakker (1999), Wakker (1994), Schmidt et Zank (2001, 2009, 2012) et Abdellaoui (2002).
22Cf. Diecidue et al. (2004) et Le Menestrel (2001) pour une étude exhaustive de l’utilité des

jeux d’argents.
23Le terme variationnelle est employé dans Maccheroni et al. (2006) pour des préférences

incluant une fonction de coût général.
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Interactions sociales et préférences interdépendantes

Dans les représentations traditionnelles de la théorie de la décision, les individus

sont isolés. Ils maximisent des fonctions d’utilité souvent spécifiées par rapport à

un argument strictement individuel et absolu24. Les agents sont systématiquement

isolés de leur environnement social avant d’interagir, à travers le marché ou d’autres

instances de ré-allocation. Depuis quelques années, il y a cependant un nouvel

intérêt pour les interactions sociales25, et plus précisément pour leur appréhension

au sein de la théorie de la décision. Au delà des incitations de marché, le con-

texte social est de plus en plus considéré comme un déterminant des choix mi-

croéconomiques. En théorie des jeux, des résultats expérimentaux26 sont venus

affaiblir la notion de joueur isolé qui ne prend pas en compte le gain ou la perte

des autres joueurs que ce soit de manière absolu ou relative. Veblen (1899), puis

plus près de nous Duesenberry (1949) ou Leibenstein Leibenstein (1950) avaient

déjà envisagé que, dans certaines situations, le bien-être relatif puisse avoir plus

de sens au niveau individuel que le bien-être absolu. Pour donner substance à

une telle option, et pour l’analyse de la décision individuelle, il est nécessaire

d’intégrer des facteurs d’interdépendance27 entre les préférences des agents. La

prise en compte du bien-être relatif a un intérêt tout particulier dans des champs

de l’analyse économique aussi différents que l’analyse de la demande28, l’économie

du travail29, la croissance30, la valorisation des actifs financiers31, la prise en compte

de l’attitude face au risque ou à l’ambigüıté 32.

Les travaux de Schelling (1971) ouvre la voie à l’analyse systématique de l’influence

du contexte social sur le comportement individuel. Entre autres choses, Schelling

fait la démonstration que la dynamique d’un groupe ne dépend pas uniquement

des préférences individuelles mais aussi des interactions à l’intérieur du groupe.

24Le lecteur peut se référer à Sen (1977), Akerlof et Kranton (2000) ou Davis (2013) pour une
critique de l’individu “self-centered, self-interested”.

25Cf. Zanella (2004) et Scheinkman (2008) pour une présentation des interactions sociales en
théorie économique.

26Cf. Rosenthal Rosenthal (1981) pour le jeu du mille-pattes, Guth et al. Güth et al. (1982)
pour le jeu de l’ultimatum et Forsythe et al. Robert et al. (1994) pour le jeu du dictateur.

27Cf. Cooper and Kagel (2009b) pour l’exposition de résultats expérimentaux sur les
préférences interdépendantes.

28Gaertner (1974), Pollak (1976), Becker (1991), Cowan et al. (1997), Binder et Pesaran
(2001).

29Akerlof et Yellen (1990), Neumark et Postlewaite (1998) Bowles et Park (2005).
30Corneo et Jeanne (2001), Alvarez-Cuadrado et al. (2004), Liu et Turnovsky (2005).
31Chan et Kogan (2001), Dupor et Liu (2003).
32Rohde et Rohde (2011), Linde et Sonnemans (2012), Charness et al. (2013).
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En outre, l’introduction de préférences interdépendantes peut conduire à des dy-

namiques inattendues au regard des préférences individuelles. Dans le même esprit,

Föllmer (1974) établit que la prise en compte des interactions sociales dans une

économie aléatoire modifie radicalement la dynamique macroéconomique à cause

des effets de conformisme. Ces effets sont liés au multiplicateur social qui lie la

dynamique sociale à la dynamique individuelle.

Les contributions de Blume, Brock et Durlauf (Brock et Durlauf (2001a, 2001b),

Blume et Durlauf (2001)) offrent33 un premier traitement analytique à la prise

de décision en présence d’interactions sociales. Ils proposent un modèle où les

individus font des choix binaires sur des actions. L’utilité d’une action dépend

d’une utilité privée, d’un terme d’utilité aléatoire et d’une utilité sociale spécifiée

par la distance entre son action et la moyenne subjective des actions des agents

avec qui il interagit socialement. A partir de suppositions34 sur le terme d’utilité

aléatoire, les auteurs obtiennent une loi de probabilités (qui suit une loi de Boltz-

mann) sur le choix des agents, analogue à celui du modèle de Curie et Weiss

en physique statistique. En supposant que les agents ont des anticipations ra-

tionnelles, ils dérivent les équilibres de Nash en champ moyen du modèle. Sur un

plan microéconomique, leur formulation clarifie l’influence respective qu’exercent

mutuellement le bien-être absolu et le bien-être relatif. En spécifiant simplement

la fonctionnelle d’utilité, leurs modèle à l’avantage d’être facilement utilisable, sur

le plan empirique, pour la mise en évidence d’interactions sociales ou d’“effets de

pairs35” entre les individus. Manski (1993) définit trois effets de pairs. Un effet en-

dogène, c’est à dire l’influence du comportement du groupe sur le comportement de

l’individu, un effet exogène, c’est à dire l’influence des caractéristiques du groupe

sur les caractéristiques de l’individu et un effet de corrélation, lorsque les membres

d’un même groupe agissent de manière identique parce qu’ils ont les mêmes car-

actéristiques. Sur le plan empirique, la structure du modèle permet également de

tester économétriquement la présence d’interactions sociales en séparant les effets

endogènes et exogènes.

L’utilité dans le modèle de Blume, Brock et Durlauf se sépare en une partie

déterministe et une partie stochastique essentielle pour son application économétrique.

33Cf. Manski (1993).
34Variables indépendantes et identiquement distribuées selon la loi des valeurs extrêmes.
35Pour une analyse détaillée de l’approche économétrique et une revue de la littérature exis-

tante sur le sujet, voir Blume et al. (2010). Pour les enjeux de l’approche économétrique des
effets de pairs, voir Manski (1993, 2000).
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D’un point de vue théorique, il est pertinent de s’intéresser à la fondation ax-

iomatique de la partie déterministe de ce modèle. L’utilisation de la seule partie

déterministe en théorie des jeux conduirait, probablement, à des équilibres de Nash

en stratégie mixte. Ces équilibres, selon toute vraisemblance, seraient différents

des équilibres du modèle initial36. Une solution est de remplacer le terme d’utilité

stochastique par un terme variationnel approprié pour recouvrir les bonnes pro-

priétés d’équilibre. Le terme variationnel adéquat est l’entropie de Shannon. Cela

n’a rien d’étonnant, compte tenu de la proximité du modèle de Blume, Brock et

Durlauf avec la physique statistique. Pour rappel, le modèle de choix logit est

équivalent à une distribution de Boltzmann et cette dernière est la solution, sous

contrainte d’espérance, de l’entropie.

Le second chapitre propose un fondement axiomatique de préférences interdépendantes

dans le risque, se décomposant en une utilité privée et une utilité sociale, couplé à

un terme variationnel. Un tel fondement rend compte de la formation des groupes

de référence lorsque l’environnement social est donné de manière endogène. De

plus, l’utilité sociale peut être axiomatisée comme additivement séparable parmi

les individus de l’environnement social de l’agent qui prend la décision.

Les apports du modèle probabiliste de la physique

quantique

Au cours la dernière décennie, une littérature non négligeable s’est développée au-

tour de l’utilisation du modèle probabiliste de la physique quantique37 en théorie

de la décision. On peut illustrer cette constatation par les contributions non-

exhaustives de, Danilov et Lambert-Mogiliansky (2005, 2010), Lambert-Mogiliansky

et al. (2009), Hansen (2005), Gyntelberg et Hansen (2005, 2009), Yukalov et Sor-

nette (2009, 2010), Pothos et Busemeyer (2009, 2013), Busemeyer et al. (2009),

Busemeyer et Bruza (2012).

36Pour s’en convaincre, sans terme d’utilité sociale, il suffit de comparer les équilibres de Nash
standards et les équilibres logit introduits par McKelvey et Palfrey (1995, 1998). Ces auteurs
prolongent l’approche de McFadden (1974) à la théorie des jeux.

37Cf. Kolmogorov (1950) pour la fondation de la théorie classique des probabilités et Neumann
(1932) pour une théorie des probabilités non-commutative.
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Le troisième chapitre se propose de prendre en considération cette littérature.

Le formalisme sera présenté afin d’en expliciter au mieux son sens. Il sera en-

suite appliquer à la théorie standard de la théorie de la décision individuelle sous

l’hypothèse qu’un individu a une représentation subjective des évènements. Dans

ce cadre, l’agent maximise son utilité espérée relativement à sa représentation

subjective des évènements et il est caractérisé par deux fonctions d’utilité et une

fonction de transformation des probabilités. Les deux fonctions d’utilité ren-

dent compte, respectivement, des préférences de l’agent dans le certain et dans

le risque relativement à sa représentation subjective des évènements. La fonction

de transformation des probabilités a pour image une distribution de probabilités.

C’est à dire que l’agent réinterprète les probabilités objectives par rapport à sa

représentation des évènements. Le chapitre se conclut par une étude critique sur

l’apport de ce formalisme.
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Cette thèse a été consacrée à définir des fonctions d’utilité dans différents contextes

constitutifs d’une théorie générale de la décision individuelle dans le risque. Cette

question conditionne la validité d’un grand nombre de prédictions relevant de nom-

breux champs de l’économie : la compréhension du comportement des individus

bien évidemment, mais aussi l’ensemble des domaines où intervient les préférences

dans le risque comme la finance, l’assurance, l’économie industrielle ou l’économie

de l’environnement. Depuis les années 90, l’émergence de travaux d’économie in-

spirés par la sociologie ou la physique ou inversement sont venues questionner les

fondements classiques de l’analyse décisionnelle. Cette dynamique s’inscrit dans

la mise en évidence des faiblesses de la théorie de la décision individuelle38 et de

la théorie des jeux39. Les défauts de coordination constatées en théorie des jeux

sont principalement attribuées au fait que les individus ne prennent pas en compte

les gains des autres agents de manière absolue ou relative. Dans ce cas, même si

les problèmes observés sont consubstantiels des interactions stratégiques, la nature

insatisfaisante de certains résultats de la théorie des jeux renvoie dans une certaine

mesure aux insuffisances de la théorie de la décision individuelle.

Dans la littérature, il devient systématique de prendre en compte les limites de

la rationalité des individus et l’interdépendance des préférences : il convient donc

d’étudier ces options théoriques à partir de la théorie de la décision individuelle.

Certaines contributions récentes ont été apportées dans ce champ. Nous pouvons

citer, par exemple, Segal (1989) ou Chateuneuf et Wakker (1999) pour la théorie

de la décision individuelle dans le risque, Karni et Safra (2002) ou Maccheroni et

al. (2012) en théorie de la décision individuelle pour des préférences incorporant

38Cf. notamment Lichtenstein et Slovic (1971) pour le renversements des préférences ainsi que
Tversky et Kahneman (1992) pour les effets de cadrage.

39Entre autres Rosenthal (1981) pour le jeu du mille-pattes, Guth et al. (1982) pour le jeu de
l’ultimatum et Forsythe et al. (1994) pour le jeu du dictateur.
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de l’équité ou de l’interdépendance, Rabin (1993), Fehr et Schmidt (1999) ou Se-

gal et Sobel (2007) en théorie des jeux. Brock et Durlauf (2001a) et Blume et

Durlauf (2001) pour une approche théorique et empirique. Cette dernière con-

tribution offre un cadre empirique à la mise en évidence des effets de pairs dans

les réseaux et un cadre théorique pour la dynamique d’un réseau. L’approche en

termes de réseaux est abondamment utilisé en éconophysique et c’est pourquoi il

est intéressant d’étudier si les résultats théoriques de cette thèse peuvent, d’une

manière ou d’une autre, aider à sa compréhension en microéconomie.

Les contributions de cette thèse

Concernant la théorie de la décision individuelle dans le risque, j’ai proposé des

conditions garantissant l’existence d’une utilité additivement séparable et d’une

utilité couplée à un terme entropique. Les conditions que j’ai mises en évidence

sont assez générales et garantissent l’existence de fonctions d’utilité représentant

des préférences interdépendantes, comme formulées dans le modèle de Blume,

Brock et Durlauf. Ce modèle offre les premières bases théoriques pour des appli-

cations économétrique (Cf. Blume et al. (2010)); ensuite, ce modèle est utilisé en

microéconomie ou en éconophysique pour sa simplicité. J’ai mis en avant le formal-

isme des probabilités quantiques pour construire une représentation des préférences

dans le cas où les évènements sont subjectifs.

Espérance d’utilité “additive”

Le premier chapitre de cette thèse propose une fondation axiomatique cohérente

d’une utilité additivement séparable par rapport aux probabilités. L’obstacle prin-

cipal à une généralisation des théorèmes de constructions classiques des fonctions

d’utilité additives réside dans les méthodes utilisées pour démontrer ceux-ci. En

effet, les deux approches usuelles, l’approche algébrique et l’approche topologique,

utilisent des outils se rapportant à la structure des objets étudiés et non aux

propriétés globales de l’utilité. J’ai construit une méthode à partir de la no-

tion d’additivité orthogonale pour des séquences à support disjoint. Cette pro-

priété rapproche notre objet d’étude de la théorie de l’utilité linéaire développée

par Aumann (1962). Dans leur forme actuelle, les approches topologiques et

algébriques ne permettent pas d’étudier les sous-ensembles de produits Cartésiens
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tels que, par exemple, un ensemble d’alternatives dont les coordonnées ne sont pas

indépendantes. Le premier chapitre dépasse ce problème.

Préférences variationnelles

Certains champs théoriques peuvent accueillir directement les résultats théoriques

de ce travail. Prenons l’exemple des préférences variationnelles : de nombreux

modèles postulent l’existence d’un terme entropique couplé à une terme d’utilité

espérée pour rendre compte d’un coût cognitif à la décision ou d’un coût d’incertitude

à la décision. Bien qu’il existe des modèles où la forme du coût n’est pas en-

tropique (linéaire, quadratique ou de forme générique), cette forme reste la plus

utilisée pour ses propriétés analytiques. Des axiomes, très simples, permettent de

démontrer que ce genre de fonctions d’utilité vérifie l’axiome d’indépendance à par-

tir du moment où la formation de combinaisons convexes de loteries est restreinte

aux loteries à support disjoints. Ainsi, ce type de modèle peut être considéré

comme incorporant une rationalité proche de la rationalité normative de l’axiome

d’indépendance, donc une rationalité peu limitée.

Préférences interdépendantes dans le risque

Le second chapitre propose un fondement axiomatique du modèle de Blume,

Brock et Durlauf où les individus évaluent une utilité sociale rendant compte de

préférences interdépendantes, que ce soit sur les choix ou les gains des individus

dans son environnement social. Pour plus de flexibilité, notamment pour pou-

voir discuter de la formation des voisinages où prend place l’interaction sociale,

l’hypothèse générale d’anonymat a été supprimée. Ce chapitre propose trois formes

d’utilité dans un contexte de risque. Ceci permet de considérer soit un risque

exogène se référant à la situation des individus de l’environnement social, soit un

“risque” objectif sur les croyances que forme l’individu au coeur de l’environnement

social à propos des actions des autres individus. La première forme sépare l’utilité

privée de l’utilité dite “sociale” pour un groupe de référence exogène. La seconde

forme permet des préférences où le groupe de référence est endogène. La dernière

forme ajoute un terme entropique pour pouvoir obtenir les résultats théoriques

de Blume, Brock et Durlauf sans avoir à ajouter une utilité stochastique pour

des applications en microéconomie. Cette étape permet de mieux appréhender les



Conclusion (en Français) 114

modèles d’éconophysique. Au cours de ce chapitre, je propose des hypothèses pour

séparer additivement le terme de préférences sociales par rapport aux individus.

Probabilités quantiques

Je construis dans ce chapitre une approche basée sur le formalisme quantique.

Celle-ci permet, il semble, d’étendre les résultats du formalisme classique. Elle per-

met de plus de mieux comprendre certains problèmes comportementaux. L’hypothèse

de base est que l’individu considère des évènements subjectifs, il forme une représentation

subjective des évènements, et celle-ci est inaccessible pour l’observateur, avant que

la décision ne soit prise. Sur le plan analytique, l’utilité dérivée est semblable

à l’utilité quadratique tout en ayant une dimension (au sens physique du terme)

d’utilité espérée. Cette approche peut être une base pour expliquer les phénomènes

de cadrages. Cependant, ce formalisme a des limites. En dehors de la flexibilité

analytique due à la richesse du cadre mathématique, il n’en demeure pas moins

que ce formalisme n’apporte pas de solutions satisfaisantes sur les déterminants

du choix individuelle. En effet, et c’est une critique générale qu’il est possible

d’adresser à ce type de modèle de la littérature, la théorie quantique permet, en

physique, une étude dynamique des systèmes et ses résultats expérimentaux suff-

isent à la justifier. En théorie de la décision, nous ne disposons pas de ce type

de justification : son utilisation découle habituellement d’hypothèses ad hoc qui

peuvent être discutées.

Perspectives

Deux axes de Recherche paraissent intéressants à poursuivre, à partir des résultats

de cette thèse. Le premier axe concerne l’extension des résultats théoriques du pre-

mier chapitre : l’espace des loteries, le simplexe, reste un cas très particulier de

sous-ensemble de produits Cartésiens. Il semble qu’une théorie issue de la propriété

d’additivité orthogonale, dans la continuité de l’utilité linéaire, puisse être établie.

Ensuite, la dérivation de préférences variationnelles a mis en évidence la possi-

bilité d’un terme entropique semblable à l’entropie de Tsallis avec une espérance

d’utilité dont les probabilités sont pondérées. De manière appliquée, l’utilisation

de ces fonctionnelles pourrait apporter des résultats bien plus généraux par rap-

port aux préférences variationnelles simples, en théorie des jeux par exemple ou
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dans des champs plus appliqués. Enfin, les quelques résultats expérimentaux, con-

tradictoires, sur les fonctionnelles d’utilité additivement séparables, devraient nous

inciter à étudier plus particulièrement ce problème, pour comparer leur pouvoir

explicatif, du moins, avec celui de l’utilité espérée dépendante du rang. Le second

axe concerne les résultats théoriques du second chapitre : une application directe

pourrait être entreprise en théorie des jeux pour pouvoir déterminer les modifi-

cations des équilibres et des niveaux de bien-être social. En effet, les fondements

proposée sont assez flexibles pour générer des externalités négatives ou positives.

La prise en compte de l’entropie de Tsallis, ici aussi pourrait apporter de nouveaux

résultats.



Résumé

Décision, Risque, Interactions Sociales

par Dino BORIE

Cette thèse se compose de trois chapitres constituant des contributions distinctes mais reliées

au même centre d’intérêt, la théorie de la décision dans le risque. Le premier chapitre traite de

préférences additivement séparable par rapport aux probabilités. Il en est déduit une axioma-

tisation simple de préférences variationnelles représentées par une fonctionnelle se décomposant

en un terme d’espérance d’utilité et un terme entropique. Le second chapitre consiste en une

fondation axiomatique de préférences interdépendantes en présence d’interactions sociales, sur la

base du modèle initialement élaboré par Blume, Brock et Durlauf. Le troisième chapitre pose la

question de l’apport du modèle probabiliste de la physique quantique à la théorie de la décision

et de son application pour prendre en compte la perception subjective des évènements par les

individus.
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Abstract

Décision, Risque, Interactions Sociales

by Dino BORIE

This thesis consists of three separate chapters related to economic decisions under risk. The first

chapter presents axioms for an additively separable representation of preferences over probabil-

ities. A simple axiomatization of variational preferences represented by the sum of an expected

utility term and an entropic term is deduced. The second chapter consists of an axiomatic foun-

dation of other-regarding preferences under social interactions, based on the model originally

developed by Blume, Brock and Durlauf. The third chapter introduces the probabilistic model

of quantum physics to decision theory. In this context, individuals have a private representation

of the set of events.
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