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Résumé

Aprés plus de 50 ans de recherche, l'intéret de la simulation des grandes échelles pour la
simulation des écoulements instationnaire a été largement démontrée et cette méthode est
aujourd’hui utilisée pour une grande variété d’applications industriels. Plusieurs classes
de modéles sous-maille ont été proposées dont celle trés connue des modéles de viscosité
sous-maille souvent préférrées pour leur simplicité et leur robustesse. La formulation de
ces modéles comporte un coefficient qui doit étre ajusté ppour chaque type d’écoulement
et qui a été analysé pour des géométries simples. L’objectif de ce travail est de réaliser
des analyses a-priori de modéles sous-mailles dans un canal plan et un canal convergent-
divergent a relativement grand nombre de Reynolds. Les influences du type de filter et
de la largeur du filtre sont systématiquement abordées pour chacune des statistiques.
Le transfert d’énergie sous-maille et la dissipation sous-maille sont tout d’abord étudiés.
Ensuite, les coefficients des modéles Smagorinsky, Smgorinsky dynamique, WALE et du
modéle Sigma nouvellement proposé sont estimés a-priori. Il est démontré que les coef-
ficients des quatres modéles sont non-homogéme dans le domaine de simulation est sont
largement affectés par le gradient de pression adverse, principalement dans la zone de re-
circulation. enfin, les corrélations entre les quantités exactes et leur équivalents modélisés
sont examinés. Les résultats montrent un faible niveau de prédiction des modéles sous-
maille et une grande variabilité des quantités modélisées dans les regions de fort gradient
de pression adverse. Ceci peut expliquer les difficultés pour obtenir de bons résultats LES
dans une telle configuration.



Abstract

After more than 50 years of investigation, Large Eddy Simulation has demonstrated its
benefit for unsteady flow simulation and is currently applied in a wide variety of engi-
neering applications. Several classes of subgrid scale models were proposed, including
the well known eddy viscosity models, usually preferred because of their simplicities and
robustness. The formulation of these models includes a coefficient which needs to be
analyzed for each flow configuration and which has been investigated in simple geome-
tries. The aim of present work is to perform a-priori analysis of subgrid scale models in
plane channel flow and in a converging-diverging channel flow at fairly large Reynolds
number. The influences of the filter type and filter width are systematically addressed in
analyses of all statistics. The SGS energy transfer and SGS energy dissipation are firstly
analyzed. Then, the a priori estimate of the coefficients of subgrid scale models, including
the standard Smagorinsky, Dynamic Smagorinsky, the WALE and the new updated o
models, are investigated in detail. It is shown that, the coefficients of the four models
are non-homogeneous in the simulation domain and are largely affected by the adverse
pressure gradient, especially in the recirculation region. Finally, the correlations between
the exact quantities and their counterparts modeled by the subgrid scale models with
respect to three criteria are explored. The results show a low predictability of subgrid
scale models and a strong variability of the modeled quantities in the region of strong
adverse pressure gradient. This may explain the difficulty to obtain accurate LES results
in such flow configuration.
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Chapter 1

Introduction

1.1. The nature of turbulence

In fluid dynamics, turbulence is a flow regime characterized by chaotic and stochastic
property changes. This includes low momentum diffusion, high momentum convection,
and rapid variation of pressure and velocity in space and time (Fig. 1.1). Turbulence was
recognized as a distinct fluid behavior by Leonardo da Vinci more than 500 years ago (Fig.
1.2). Tt is Leonardo who termed such motions “turbolenze”, and hence the origin of our
modern word for this type of fluid flow. There are many opportunities to observe turbulent
flows in our everyday surroundings, whether it be smoke from a chimney, water from a river
or waterfall, or the buffeting of a strong wind. In observing a waterfall, we immediately
see that the flow is unsteady, irregular, seemingly random and chaotic, and surely the
motion of every eddy or droplet is unpredictable (Pope 2000 [116]). But it wasn’t until the
beginning of the last century that researchers were able to develop a rigorous mathematical
treatment of turbulence. The first major step was taken by Taylor during the 1930s, who
introduced formal statistical methods involving correlations, Fourier transform and power
spectra into the turbulence literature. In a paper published in 1935 in the Proceedings
of the Royal Society of London, Taylor very explicitly presented the assumption that
turbulence is a random phenomenon and then proceeded to introduce statistical tools
for the analysis of homogeneous, isotropic turbulence. In 1941 the Russian statistician
Kolmogorov published three papers (in Russian) that provided some of the most important
and most often quoted results of turbulence theory. These results represented a major
success of the statistical theory of turbulence. This theory provided a prediction for
the energy spectrum of a 3D isotropic homogeneous turbulent flow. Kolmogorov proved
that even though the velocity of an isotropic homogeneous turbulent flow fluctuates in
an unpredictable fashion, the energy spectrum (how much kinetic energy is present on
average at a particular scale) is predictable. The spectral theory of Kolmogorov had a
profound impact on the field of turbulence and it also represented the foundation of many
theories of turbulence.

Nobel Laureate R. Feynman described turbulence as “the most important unsolved
problem of classical physics” [142], but Pordal (2006) [117] explained that, due to the
advent of faster computers especially the access of supercomputers, the role of computa-
tional methods in engineering design and analysis has greatly increased during the last
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Figure 1.1: Turbulence on many different Figure 1.2: Leonardo da Vinci’s observa-
scales in a high Reynolds number tion of turbulent flow

decade. The application of Computational Fluid Dynamics (CFD) for solving problems of
turbulence has increased dramatically in the last 50 years with the objective to compute
the more precise solutions of the Navier-Stokes equations.

Wall turbulence

Over the past years, wall turbulence has attracted a lot of attentions from scientists, due
to its complexity and challenges in understanding its mechanisms. Among the different
regions of the boundary layer, the wall region is particularly challenging because the
dimensions are getting so small that they are difficult to investigate (Stanislas et al.
2009 [134]).

1.2.1. Flow near the wall

When a viscous fluid flows along a fixed impermeable wall, or past the rigid surface of an
immersed body, an essential condition is that the velocity at any point on the wall or other
fixed surface is zero. This condition modifies the general character of the flow depending
upon the value of the viscosity. If the body is of streamlined shape and if the viscosity is
small without being negligible, the modifying effect appears to be confined within narrow
regions adjacent to the solid surfaces, these are called “boundary layers”. Within such
layers the fluid velocity changes rapidly from zero to its main stream value, and this may
imply a steep gradient of shearing stress. As a consequence, not all the viscous terms in
the equation of motion will be negligible, even though the viscosity, which they contain
as a factor, is itself very small. Thus the boundary layers at high Reynolds number are
extremely thin.

The boundary layers may be either laminar (layered), or turbulent (disordered) de-
pending on the value of the Reynolds number. At low Reynolds number, the boundary
layer is laminar and the streamwise velocity changes uniformly as one moves away from
the wall, as shown on the left side of the Fig. (1.3). At high Reynolds number, the bound-
ary layer is turbulent and the streamwise velocity is characterized by unsteady (changing
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with time) swirling flows inside it. The external flow reacts to the edge of the boundary
layer just as it would to the physical surface of an object. So the boundary layer gives
any object an "effective" shape which is usually slightly different from the physical shape.
To make things more confusing, the boundary layer may lift off or "separate" from the
body and create an effective shape much different from the physical shape. This happens
because the flow in the boundary has very low energy (relative to the free stream) and is
more easily driven by changes in pressure. Flow separation is the reason for wing stall at
high angle of attack.

Laminar Turbulent
' |
: Velocity : Velocity
I—> .I_»
: Free Stream :
— —
' |
. - -
I + :
[ Boundary Layer i { ———— Unsteady

Surface of Object

Figure 1.3: Boundary layer of plane channel flow (velocity is zero at the surface),
figure from Glenn Research Center, NASA

Knowing this, it’s easy to find various boundary layers in practice. Such as the flow
around aircraft and ships’ hulls, the atmospheric boundary layer, and the flow of rivers. In
each of these flows the mean velocity vector is nearly parallel to the wall, and the near-wall
behaviors in each of these cases are very similar (Pope 2000 [116]). Various wall-bounded
flows occur frequently in engineering applications. The simplest is the plane channel flow,
since homogeneity can be assumed in the streamwise and spanwise directions. For this
reason, a lot of studies have focused on plane channel flow as an important reference case
for the testing and development of subgrid scale (SGS) turbulence models (Mayers et al.
2007 [98]).

1.2.2. The law of the wall

The general fluid equations have been known for many years, but solutions to these
equations have not properly described the observed flow effects (like boundary layers).
The theory describing the boundary layer effects was first presented by Prandtl in the
early 1900’s. Prandtl was the first to realize that the relative magnitude of the inertial
and viscous forces changed from a layer very near the surface to a region far from the
surface. He first proposed the interactively coupled, two layers solution which properly
models many flow problems.

The description of a stationary 2D flat plate boundary layer is given in Fig. (1.4).
Quantities made non-dimensional using friction velocity u, and kinematic viscosity v are
said to be expressed in wall units and denoted by a superscript + (v* = u/u,,yt =
yu,/v). The boundary layer is usually divided into two parts, the wall-layer (or inner
layer), which extends though the bottom 10 — 20% of the layer and is usually defined as
y/6 < 0.1 (y is the distance from the wall, § is half-height of the channel), and the outer
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Figure 1.4: Mean velocity profile of a smooth-flat-plate turbulent boundary layer
plotted in log-linear coordinates with law-of-the-wall normalizations

layer which covers the remainder [109]. The wall layer is characterized by large velocity
gradients, significant production and dissipation of turbulence.

Prandtl (1925) postulated that, at high Reynolds number, close to the wall (y/d << 1),
there is an inner layer, in which the turbulent stress is negligible and the mean velocity
profile is determined by the viscous scale. This viscous sublayer extends until approxi-
mately y* = 5. The velocity profile can be written as:

ut =yt (1.1)

Above the viscous sublayer is the buffer layer extending to y* = 60, in which the
viscous effects progressively become less important. This region contains the peak of
turbulent kinetic energy and turbulence production, which often occurs at y* = 12. It’s
also the transitional region between the viscosity dominated and the turbulence dominated
parts of the flow [109].

Above this, it’s the overlap region between the wall layer and the outer layer, which
is called the logarithmic layer. In this region, the turbulent stress plays a dominant role.
The velocity profile complies with the logarithmic law:

ut = Alog(y*) + B (1.2)

Where A and B are constant. This law is consistent in both inner and outer layer. In the
outer layer, the fluid velocity increases with distance from the wall to freestream velocity.
This is known as fully developed flow.

1.3. Turbulence modelling

Turbulence modeling is a key issue in most CFD simulations. Virtually all engineering
applications are turbulent and hence require a turbulence model. Various methods have
been proposed in the process of turbulence research.

A Direct Numerical Simulation (DNS, Orszag and Steven 1970) is a simulation in
computational fluid dynamics in which the Navier-Stokes equations are numerically solved
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without any turbulence model. This means that the whole range of spatial and temporal
scales of turbulence must be resolved. In particular, the grid mesh must resolve the spatial
scales, from the smallest dissipative scale (Kolmogorov scale) to the integral scale, which
is associated with the motions containing most of the kinetic energy. The computational
cost of DNS is very high, even at low Reynolds numbers. For the Reynolds numbers
encountered in most industrial applications, the computational resources required by a
DNS will largely exceed the capacity of the most powerful computers currently available.

The Reynolds-Averaged Navier-Stokes equations (RANS), which is an idea firstly pro-
posed by Osborne Reynolds (1895), constitute the time averaged equations of fluid mo-
tions. The idea behind these equations is the Reynolds decomposition, whereby an instan-
taneous quantity is decomposed into its time-averaged and fluctuating quantities. Thus,
RANS can be used to give approximate solutions to the time averaged Navier-Stokes
equations, using approximations based on the knowledge of turbulence properties. To
do so, RANS needs to compute the Reynolds stresses. Thus, it usually can be done by
three main categories of RANS-based turbulence models: the linear eddy viscosity models,
nonlinear eddy viscosity models and Reynolds stress models (RSM).

Large Eddy Simulation (LES) was initially proposed by Smagorinsky (1963), to simu-
late atmospheric air currents. But many of the issues unique to LES were firstly explored
by Deardorff (1970). According to the “local isotropy” hypothesis of Kolmogorov, at suf-
ficiently high Reynolds number, the small scales are statistically isotropic. Based on this
hypothesis, LES operates on the Navier-Stokes equations by a low-pass filter to filter out
the small scales of flow. This allows to reduce the length scales range of solution. So
the computational cost can be reduced at the same time. LES models the effect of the
small (unresolved) scales on the large (resolved) scales, which allows better fidelity than
RANS methods. Since in RANS, all the unsteadiness is averaged and considered as part
of the turbulence, only the evolution of the mean quantities is described. In addition, the
subgrid model of LES is more economical than directly resolving all the small scales like
DNS. It makes the computational cost for practical engineering systems with complex
geometry or flow configurations attainable using supercomputers. It can also be applied
to high Reynolds 3D complex flows, where DNS is actually not achievable [1].

The difficulties associated with the use of the standard LES models, particularly in near
wall regions, has lead to the development of hybrid models that attempt to combine the
best aspects of RANS and LES methodologies in a single solution strategy. An example of
a hybrid technique is the Detached Eddy Simulation (DES) (Spalart et al. 1997) approach.
This model attempts to treat near wall regions in a RANS like manner, and treat the rest
of the flow in an LES like manner. Regions near solid boundaries and where the turbulent
length scale is less than the maximum grid dimension are assigned the RANS mode of
solution. As the turbulent length scale exceeds the grid dimension, the regions are solved
using the LES mode. Therefore the grid resolution is not as demanding as pure LES,
thereby considerably cutting down the cost of the computation. The principal weakness
of DES is its response to ambiguous grids, in which the wall-parallel grid spacing is of
the order of the boundary-layer thickness (Spalart 2009 [131]). In some situations, DES
on a given grid is then less accurate than RANS on the same grid or DES on a coarser
grid. Partial remedies have been found, yet dealing with thickening boundary layers is a
central challenge.

Among these available methods of turbulence modelling, LES is still a very prevalent
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way due to its specific advantages.

1.4. Objectives of research

This thesis aims at conducting a priori analysis of the energy transfer mechanisms and a
priori evaluation of subgrid scale model coefficients respectively in plane channel flow and
converging-diverging channel flow at high Reynolds number. Standard subgrid scale mod-
els (Smagorinsky, Dynamic Smagorinsky and WALE models) as well as model developed
recently (the o model) are investigated in wall flows with and without pressure gradient.
The correlation and predictive capabilities of the models are also assessed. The influence
of the filter type and filter width on several a priori evaluation of the models is examined
in detail, using both the classical Gaussian and the new-developed least square spline
filters. The present research can provide some useful information for the implementation
of LES and the development of subgrid scale models for wall turbulence with pressure
gradient and separation as encountered in many practical applications.

1.5. Organization of the thesis

This thesis is divided into six chapters. After a general introduction in chapter one
and a brief literature review of large eddy simulation in the second chapter, the third
chapter introduces the a priori approach and the methodology used in our research. It
outlines a new filter adapted to our a priori analysis and databases, the formulations of
the energy transfer mechanisms and the subgrid models analyzed a priori in the present
research. The a priori analysis of the subgrid scale models are first validated for isotropic
turbulence. Then, the databases of both plane and converging-diverging channel flows
are described. The fourth chapter presents the results for the plane channel flow at
high Reynolds number. The energy transfer mechanisms, the evaluation of subgrid scale
models, as well as the a priori performances of the subgrid scale models are investigated.
chapter five provides the results of a priori analysis for converging-diverging channel flow at
high Reynolds number. The SGS energy transfer, SGS energy dissipation and evaluation
of coefficients of subgrid scale models are firstly investigated. Then, the correlations
between the exact and modeled counterparts and the predictive capabilities of subgrid
scale models are explored. The results for plane and converging-diverging channel flows
are compared. The final chapter summarizes the main results and conclusions drawn from
this study and makes some recommendations for future work.



Chapter 2

Large Eddy Simulation

2.1. Introduction

According to Richardson (1922), a turbulent flow is composed by different scale eddies, in
which the large eddies are unstable and eventually break up into smaller eddies and so on.
So the energy is passed down from the large scales of the motion to smaller scales until
reaching a sufficiently small length scale such that the viscosity of the fluid can effectively
dissipate the kinetic energy (Fig. 2.1).

larger whirls smaller whirls
Ia?rger‘ @ @ extinction
viscosity —) — due to viscosity
@ @ at some length scale
smaller @ Q] extinction
viscosity ) — due to viscosity
@ Q at smaller
Q length scale

Figure 2.1: Richardson’s energy cascade (from K. Khusnutdinova, 2009)

The development of the energy transfer theory in turbulent flows at high Reynolds
number began with Kolmogorov (1941) who laid the basis of the ideal subgrid scale models.
Hypothesis of Kolmogorov supposes that, at very high Reynolds number, the turbulent
motions with length scales much smaller than the integral length scale of turbulence are
statistically independent of the components of the motion at energy-containing scales. The
energy-containing scales of the motion may be inhomogeneous and anisotropic at large
scales, but this information is gradually lost by the energy cascade so that at much smaller
scales the motion is locally homogeneous and isotropic. Thus, Kolmogorov hypothesis
supposes that, the statistics of components in the equilibrium range is universally and
uniquely determined by the viscosity v and the rate of energy dissipation €. At very high
Reynolds number, the statistics of scales in the range between the integral and Kolmogorov
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length scales (‘inertial subrange’) are universally and uniquely determined by its scale k
and the rate of energy dissipation €. Then, in the inertial subrange, the turbulence energy
spectrum F/(k) should be of the form:

E(k) = Cye?3k>3 (2.1)

C} is the Kolmogorov constant, experimentally found to be approximately 1.5. This is
the famous ‘Kolmogorov’s 5/3 law. Many studies have been made of the spectrum of
turbulence at large Reynolds number (see Fig. 2.2).
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Figure 2.2: Kolmogorov’s energy spectrum.

In consideration of turbulent motions of various scales, the notions of the energy cas-
cade and Kolmogorov hypothesis provide an invaluable conceptual framework. However,
both conceptually and empirically, there are some shortcomings (Pope 2000 [116]). It’s
certainly an oversimplification to suppose that the energy cascade of the one way transfer
of energy from large size eddies to the smaller ones and that this energy transfer depends
solely on motions of large eddies. Domaradzki and Rogallo (1990) proposed that there
is energy transfer both to smaller and to larger scales, with the net transfer being to-
ward smaller scales. Although many research work has focused on the shortcomings of
the original Kolmogorov hypothesis, it should be emphasized that in the context of the
mean velocity field and Reynolds stresses in turbulent flows, these issues are of minor
significance. This does not affect its importance as a foundation of turbulence research.

2.2. LES modelling

In large eddy simulation, large scales are obtained by applying a low-pass filter on Navier-
Stokes equations, while the small scales are modeled by subgrid scale models. In this
section, several important elements of the large eddy simulation (the filter, the subgrid
scale models, the methods of implementation of LES) as well as several different flow
configurations using LES will be discussed.
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2.2.1. The governing equations

The basic governing equations for an incompressible Newtonian fluid are Navier-Stokes
equations expressed as:

8ui
ou; 0 1 Jp 0 ,0u; Ouj, |
— () = —— . 22 = 2.2
875 * (9xj (UZUJ) P 6)1‘2 +V8xj<8xj + 8xz>’ ! 1’2’3 ( )

In which, ¢ is the time, z; is the i component of the position vector, u; is the velocity
components in direction 7, p is the fluid density, p and v are respectively the static pressure
and kinematic viscosity. In LES the Navier-Stokes equations are filtered using a low-pass
filter. A filtered (resolved, or large scale) variable, denoted by an over bar, is defined as:

Fla) = /D F@)G(w, o )da’ (2.3)

where D is the entire domain and G is the filter kernel. A is the filter width which is
externally specified. In order to manipulate the Navier-Stokes equations after applying
a filter, it’s required that the filter should verify the three following properties (Sagaut
1998 [123]):

e Conservation of constants
a=a< / / Gz, 2’ t")da'dt = 1 (2.4)

e Linearity

fi@) + folw) = fil2) + fo(z) (2.5)

This property is automatically satisfied, since the convolution product verifies it
independently of the characteristics of the kernel G.

o Commutation with derivation

0f(x) _0f(x)  _
5e — 95 s=ux,t (2.6)

The filtered Navier-Stokes equations are then obtained as:

om;

om0 1op o om o
Oy _ 1 2.
ot + o, W) pon Voo, T ony) (2.7)

thus, the large scales can be selected according to turbulence theory and available com-
putational resources. Leonard (1974) expressed the non-linear term in the form of sum-
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mation:

w, = () ) (28)

— 27.97 . 7. / 7. / / !
= Ulj + Uiy + Uju; + uu;

The non-linear term is now written entirely as a function of the filtered quantity u; and
the fluctuation u;. The Leonard tensor L;; represents the interactions among the large
scales that result from subgrid scale contributions,

The cross-stress tensor Cj; represents the interactions between the resolved and subfilter
scales and is defined as:

Cij = Hiu’» - Hju‘ (210)

the Reynolds subgrid tensor:

(2.11)

represents the interactions between subgrid scales. Grouping together all the terms, the
subgrid tensor becomes:

7i; = Lij + Cij + Rij = Wu; — (2.12)
The filtered Navier-Stokes equations can be written as:
Ju;
=0
8@»
ou; 9] 1 0p 0 ,0u; 0Ou; 0Ty
T (wT) = - . Ly 24 (2.13)
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These equations are in the standard form, containing the residual-stress tensor 7;; (or sub-

grid scale stress tensor) that accounts for subgrid scale motion and needs to be modeled.

2.2.2. The filters

In DNS, the velocity field has to be resolved on lengthscales down to the Kolmogorov
scale. In LES, a low-pass filtering operation is performed so that the resulting filtered
velocity field can be adequately resolved on a relatively coarse grid. In the ideal case, the
filter width is somewhat smaller than the size of the smallest energy-containing motions
so that the energy-containing motions are fully resolved (Pope 2000 [116]).

2.2.2.1. Implicit and explicit filtering

The filtering operation in large eddy simulation can be implicit or explicit. Tt is often as-
sumed that the discretization operations performed on a particular grid act as an implicit
filter. In such a scheme, the filter width is set by the computational grid size and the filter
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kernel is set by the numerical method used to determine the derivatives. Alternatively,
an explicit filter scheme can be used, which filters the field at a scale larger than the
computational grid. Explicit filtering allows the filter kernel to be tailored to have desired
characteristics, but requires greater computational resolution for an equivalent filter size.
Hence, implicit filtering is commonly used for a long time. And it has allowed to evidence
some drawbacks of this filter.

Foremost among these is the issue of consistency. While it is true that the discrete
derivative operators have a low-pass filtering effect, the associated filter acts only in a
single spatial direction in which the derivative is taken. This fact implies that each
term in the Navier-Stokes equations is acted on by a distinct one-dimensional filter, and
thus there is no way to derive the discrete equations through the application of a single
three-dimensional filter (Vasilyev et al. 1998 [141]). Considering this ambiguity in the
definition of the implicit filter, it is not possible to calculate the Leonard term (equation
2.9) that appears as a computable portion in the decomposition of the subgrid-scale
stress. And it is also nearly impossible to make detailed comparisons of LES results with
the filtered data. These are due to the fact that the implicit filtering can not provide an
accurate representation of the filtered field. Next, when increasing the number of degrees
of freedom, additional length scales are added each time the mesh is refined. And owing
to the inherent dependence of the filtering operation on the discretized operators, the
solutions of implicitly filtered LES are extremely sensitive to the mesh resolution (Bose
et al. 2010 [16]). However, the continual refinement of the mesh size makes it difficult to
distinguish between the effects of reduced numerical error and the increase in the range of
resolved length scales. Another significant limitation of the implicit filtering approach is
the inability to control numerical error (Vasilyev et al. 1998 [141]). Without an explicit
filter, there is no direct control on the energy in the high frequency portion of the spectrum.
Significant energy in this portion of the spectrum coupled with the nonlinearities in the
Navier-Stokes equations can produce significant aliasing error. Furthermore, all discrete
derivative operators become rather inaccurate for high frequency solution components,
and this error interferes with the dynamics of the small scale eddies. This error can be
particularly harmful (Lund et al. 1995) when the dynamic model is used, since it relies
entirely on information contained in the smallest resolved scales. So it’s difficult to assess
the fidelity of the closure model owing to the observed sensitivity of the subgrid model to
numerical errors. In addition, it is difficult to define the test to primary filter ratio which
is needed as an input to the dynamic procedure. Therefore, all of these defects call for
the emergence of a more robust filtering method.

Explicit filtering reemerged a decade ago as a method to rigorously derive the consti-
tutive equations for the large scale field and to separate the filtering and discretization
operations (Bose et al. 2010 [16], Lund 2003 [86]). According to the previous researches
(Kennedy 1994 [68], Vasilyev et al. 1998 [141]), the difficulties associated with the im-
plicit filtering approach as mentioned above, can be alleviated by performing an explicit
filtering operation as part of the solution process. Explicit filtering was found to provide
several advantages. Firstly, explicit filtering can provide an accurate representation of the
filtered field, the shape of the filter is known exactly, which facilitates comparison with
experimental data and is able to compute the Leonard term. Secondly, explicit filtering
reduces the effective resolution of the simulation, but allows the filter size to be chosen
independently of the mesh spacing, this alleviates the sensitivity to the grid mesh. In par-
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ticular, if the filter width is held fixed as the mesh is refined, the velocity field will converge
to the true solution of the LES equations. The use of an explicit filter provides a means
for both assessing and minimizing the effects of numerical error in practical simulations.
As demonstrated by Lund 1997 [84], explicit filtering eliminates aliasing errors from the
nonlinear advection term. Finally, explicit filtering has the potential to reduce numerical
errors that are associated with the finite difference schemes used as implicit filters, even if
the magnitude of the truncation error is larger than the contribution of the smallest, dy-
namically relevant, physical scale (Bose et al. (2010) [16]). By damping the energy in the
high-frequency portion of the spectrum, it is possible to reduce or eliminate the various
sources of numerical error that dominate this frequency range, which become most severe
for length scales on the order of the mesh size (Vasilyev et al. 1998 [141]). Furthermore
the various sources of numerical error that would otherwise enter the stresses sampled
in the dynamic model can be controlled, which can ultimately result in a more accurate
estimate for the subgrid scale model coefficient. In addition, explicit filtering eliminates
aliasing errors from the nonlinear advection term, as demonstrated by Lund(1997). But
the exact computational cost of the explicitly filtered LES is largely dependent on the
characteristics of the filter employed, in addition to the choice of the subgrid model and
the corresponding numerical implementation (Bose et al. 2010 [16]).

2.2.2.2. Three classical filters

Spatial filtering (Leonard 1974) is the most common approach to decompose the velocity
field into large and small scales. Pope (2000) [116] presents an exhaustive discussion
of various filters and their properties. But three common explicit filters are often used
in large eddy simulation in order to benefit the advantages of an explicit filter (Sagaut
1998 [123]). They are the Box or tophat filter, the Gaussian filter, and the spectral or
sharp cutoff filter. Their kernel functions in physical and spectral space are given in Table
2.1. The spectral cutoff filter clearly separates between scales. The box filter has good

In physical space In Fourier space
1 A R N
Tophat | Glz—¢&) =4 x Wlr=¢8=5 G(k) = SinkA/2)
0 otherwise kA/2
—2
. v |z — &P = —AK?
Gaussian | G(x — &) = (T> exp (f G(k) = exp
@=4) A A’ (k) Ay
_ [ sin(ke(x —¢)) T Ay )L if k< k|
Cutoff | Glw —¢) = ( e—8 ) T =0 otherwise

Table 2.1: Formulations of three classical filters in physical and Fourier spaces

spatial localization but does not allow unambiguous separation between scales because
of spectral overlap. The Gaussian filter has intermediate localization properties in both
physical and spectral space. Many research (Piomelli et al. 1991 [112], Najjar et al.
1996 [100]) have found that explicit filtering implies the sensitivity of the LES solution to
the particular filter employed, because the filter function determines the size and structure
of the small scales.
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2.2.2.3. Commutation error

In large eddy simulation of turbulent flows, the differential equations describing the space-
time evolution of the large-scale structures are obtained from the Navier-Stokes equations
(equation 2.2) by applying a low-pass filter (equation 2.3). In order for the resulting
LES equations to have the same structure as the Navier-Stokes equations, the differenti-
ation and filtering operations must commute. Introducing the commutator [f, g] of two
operators f and g applied to the dummy variable ¢

[f,glo = fog(d) —go f(¢) = flg(d) — g(f(9)) (2.14)

The relation (2.6) can be re-written symbolically:

0,_90_090_, (2.15)

(G, &] - 0s  Os

In the above relation, it is assumed that the filter is homogeneous. But in inhomogeneous
turbulent flows, the minimum size of eddies that need to be resolved varies in different re-
gions of the flow. For example, turbulent boundary layers, multi-phase flows and strongly
localized combustion phenomena. Thus the filtering operation should be performed with
a variable filter width. In general, filtering and differentiation do not commute when the
filter width is nonuniform in space (Vasilyev et al. 1998 [141], Geurts et al. 2006 [55]).
Using the commutator equation (2.14), the most general form of the filtered Navier-Stokes
equations by applying non-homogeneous convolution filters are obtained:

Jou; )
or; [G*’ a_xl} (us) (2.16)
ot " an, W) T o T Vo <axj + 03:2-) = n, {G*, (,%} (w)  (217)

According to Geurts and Holm (2006) [55], who investigated the theory of general non-
uniform filters, the independent control over the commutator errors can be obtained by
appropriately restricting the spatial variations of the filter-width and filter-skewness (ear-
lier studies can be extended by allowing the filter to be skewed [15]). Ghosal and Moin
(1995) |58] introduced an alternate definition of the filtering operation (a second-order
commuting filter, SOCF) based on the mapping function of the nonuniform grid. Tt is
shown that with this modified definition the filtering and differentiation operations com-
mute up to an error which is second order of the filter width. They established an equation
to show what the commutation error is at most of order (kA)?>™ (A is a constant filter
width, m is any positive integer, k is the wave number in Fourier space). By developing
an asymptotic expansion for the commutation error, it can be approximated to any degree
of accuracy in terms of the filtered fields. Thus it ensures that the commutation error
does not exceed the discretization error in a numerical simulation. In brief, the studies
above agreed that an increase in the order of the spatial filter allows a control over the
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magnitude of the commutator error (Ghosal and Moin (1996) [56]) which can be reduced
in size by explicitly restricting the variations in filter-width and the normalized skewness
of the filter (Geurts and Holm 2006 [55]).

In addition, Ghosal and Moin (1995) suggested that the leading correction term can
be retained if high-order numerical schemes are used to discretize the LES equations.
This involves additional numerical complexities which can be avoided using filters with
specific properties. Vasilyev et al. (1998) formulated the general requirements for a filter
using nonuniform filter width to ensure that the differentiation and filtering operations
commute to any desired order. Minimization of the commutation error is achieved by
requiring that the filter has a number of vanishing moments. Marsden et al. (2002),
Haselbacher and Vasilyev (2003) extended their applicability to unstructured meshes.

Vreman and Geurts (2002) [145] proposed a new treatment for the commutation-
problem in which the spatial filtering of the convective term is directly combined with the
derivative-operator rather than interchanged with this operator. The latter would lead to
additional commutation-errors. This re-formulation gives rise to an adaptation of the re-
maining subgrid modeling problem which is considered in a new dynamic context. Unlike
the traditional dynamic procedure, the new procedure does not require the assumption
that the model coefficient is slowly varying on the test-filter scale. The new approach
was tested on a moderately stretched grid and provided satisfactory results when the new
dynamic models were employed.

2.2.3. Subgrid scale models

In 1877, Boussinesq postulated that the momentum transfer caused by turbulent eddies
can be modeled with an eddy viscosity. By analogy, Smagorinsky supposed that the
subgrid scale action can be modeled by a term having a mathematical structure similar
to that of molecular diffusion, in which the molecular viscosity is replaced by the subgrid
viscosity vy4s. The mathematical form of the subgrid model is written [123]:

1 —
Tij — ngk(Sij — _ZVSgSSij (218)

Where 6;; is the Kronecker symbol. ?ij is the strain-rate tensor:
— 1 ou; Ou;
Sii = = ‘ ]

(2.19)

2.2.3.1. The Smagorinsky Model (SM)

For the classical Smagorinsky (1963) model, the SGS eddy viscosity is derived under the
assumption that the small-scale turbulence is locally in equilibrium regarding production
and dissipation of kinetic energy. This leads to

Vsgs = (C:A)?[S] (2.20)

A is the filter scale, C; a coefficient which, in principle, may depend on space and scale.
|S| = 1/25,;Si;. The Smagorinsky model was previously analyzed by Moin and Kim



2.2. LES MODELLING 31

(1982) [99], Rogallo and Moin (1984) [122], Lesieur and Metais (1996) [74], and later in
depth by Pope (2000) [116]. For isotropic turbulence with an inertial range in the spec-
trum, when the filter width lies in this inertial range, Cs = 0.18 (Lilly 1967 [77]), which,
however, was found to be too large in practice. Various values of Cy have been recom-
mended depending on the type of flow and mesh resolution (Lilly 1967 [77], Deardorff et
al. 1970 [36], Pope (2000) [116], Meyers et al. 2006 [97]). However, the subgrid scales of
motion in the near wall region are far from equilibrium and contain an important fraction
of the total kinetic energy. The assumption that C is a universal constant is invalid in
such case. Furthermore, the operator |S| is not vanishing in near wall region. This major
drawback has motivated the use of Van Driest Damping functions (see Van Driest 1956)
Cy = Cy(yt)(1 — e7¥"/47), A is the van Driest constant [13]. A* = 25 is often used in
many studies. This idea is to reduce the Smagorinsky constant C to 0 as the boundary
is approached such that averages of the flow variables satisfy the boundary layer theory.
Although its deficiency, the Smagorinsky model is able to correctly predict the global
kinetic energy dissipation of the energy cascade in turbulent flows (Pantano 1999 [128]).
Thus, it’s always a very prevalent model for larger eddy simulations.

Subsequently, many attempts to use Smagorinsky model in more complex cases have
been done. For example, Scotti et al. (1993) [126] implemented the Smagorinsky
model on anisotropic grids. Instead of Deardorffs estimate involving an equivalent grid
scale A = (A1A3A3)'/3 for moderate resolution anisotropies, the eddy viscosity is re-
casted as vy, = [CsAf(ar,as)]?|S|. where f(ai,aq) is a function of the grid aspect
ratios a; and ay (a1 = A1/Az and ay = Ay/A3). For very large filter anisotropies,
f(a1,a9) ~ cosh{(4/27)[(In(a1))? — In(a1)In(as) + (In(as))?]}/2. Tt is argued that these
results should be used in conjunction with the dynamic model of Germano et al. whenever
the anisotropy of the test-filter differs significantly from that of the basic grid.

Another attempt to alleviate the drawbacks of the Smagorinsky model for different tur-
bulent fields near solid walls or in transitional regimes is based on the dynamic procedure
which will be presented in the following.

2.2.3.2. The Dynamic Smagorinsky Model (DSM)

The Dynamic Smagorinsky model was suggested by Germano et al. (1991) [52] and
improved by Lilly (1992) [77]. This model is modified by employing the mixed model of
Bardina et al. 1983 |7] as base model. The coefficient Cy of Dynamic Smagorinsky model
is no longer assumed to be constant, but is considered a function of space and time. In
the dynamic model, this is achieved by introducing a second filter A (the so-called ‘test
filter’) in addition to the original filter A. By assuming that the SGS stresses due to both
the original filter and the test filter are similar and can be modeled in a similar way, the
coefficient Cy can be derived with the test-scale defined similarly to those for the original
filter. The subtest-scale stress 7;; is approximated as:

1 ~ = ==

The resolved turbulent stresses are:

~

Lij = Ty — T = Ugi; — ;4 (2.22)
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Besides, there is:

1
and P ~ ~
M;; = A°|S[S;; — A%[S[S (2.24)
Consequently, the coefficient Cy of the Dynamic Smagorinsky model is given by:
1
Ci = 5 (LiMij /M) (2.25)

which is expressed only by the resolved scales and is calculated locally in space and time.
The hypothesis of the Smagorinsky model, that the smaller dissipative scales have an
isotropic character and can be modeled with an isotropic eddy viscosity, is maintained
also in the dynamic model. As a result, the SGS stresses are forced to be aligned with
the strain rate tensor, which is actually not true. Indeed, even in isotropic homogeneous
turbulence there are structures present at all scales in the inertial range that produce
local departure from isotropy (Abba et al. 2003 [1]).

Analysis of DNS data and experimental data revealed that the value of Cy predicted
by formula (2.25) varies strongly in space and contains a significant fraction of negative
values which become a source of kinetic energy for the resolved scales. And these values
represent the occurrence of back scatter in physical space. However the negative values
of Cy constitute a numerical destabilizing process. The remedy often adopted to avoid
excessively large negative values of C; includes averaging the numerators and denomina-
tors of (2.25) in space and/or time in price of losing some of the conceptual advantages of
the dynamic local formulation (Lesieur et al. 1996 [74]). In order to avoid the numerical
instability, some authors suggest that a clipping on negative values can be applied (Abba
2003 [1], Piomelli and Chasnov (1996) [114]). However, in practical computations, Cy is
normally set artificially to zero whenever its values are negative.

Many researchers often consider that the Dynamic Smagorinsky model is insensitive
to the test filtering parameter (Tsubokura 2006 [139]). Generally the test filter scale
A is smaller than A. And A = 2.0A is most often used and is thought to yield the
best results in many studies (Germano et al. 1991 [53], Najjar et al. 1996 [100], Collis
et al. 1999 [119]). In addition, Meneveau et al. (1997) [94] investigated the dynamic
Smagorinsky model and scale-dependent coefficients in the viscous range of turbulence.
They pointed that, since the standard dynamic procedure is based on the scale-invariance
assumption, the model coefficient is the same at the grid and test-filter levels. In many
applications this condition is not met. By considering the case when the filter-length (A)
approaches the Kolmogorov scale, the model coefficient (C) approaches zero, they showed
that the standard dynamic Smagorinsky model yields the coefficient value corresponding
to a test-filter scale (aA, a is constant) instead of the grid scale (A). Najjar et al.
(1995) performed a study of discrete test filters and finite difference approximations for
the dynamic subgrid scale model in simulations of the turbulent channel flow. For the
same test filtering operation, the results are found to be sensitive to the ratio of the
characteristic lengths of the test and grid filters.

The dynamic model has been reported to predict the distributions of eddy viscosity
better than the traditional Smagorinsky model (Rodi et al. 1997). It also has been demon-
strated that the dynamic Smagorinsky model is capable of self-adjustment to the effects of
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anisotropy (Vorobev et al. 2007 [143]). But these improvement does not necessarily lead
to better flow predictions mainly owing to numerical issues. It also should be noted that
although the improvement of the dynamic procedure, the Dynamic Smagorinsky model
does not necessarily perform better than the Smagorinsky model. For example, the be-
havior of subgrid-scale models near the turbulent/non-turbulent interface in jets which
were conducted by Silva (2009) [33] showed that near the jet edge the Smagorinsky model
is superior to the dynamic Smagorinsky.

2.2.3.3. The wall-adapting local eddy-viscosity model (WALE)

As it’s known, the Smagorinsky model vanishes for pure rotation but not for pure shear.
Although the Van Driest exponential damping function compensates the defects of the
Smagorinsky model in the near wall region (as an ad hoc modification based on the dis-
tance to the wall), this way is hard to implement in the general case for complex geome-
tries, especially without direction of flow homogeneity and/or with unstructured numerical
methods. Also it may not produce the proper near-wall scaling for the eddy-viscosity due
to the dependence on the used damping function. In addition to the development of the
dynamic procedure, another possible remedy for this is the Wall-Adapted Local Eddy-
viscosity model (WALE model of Nicoud and Ducros (2000) [102]) which is formulated
locally and define the eddy-viscosity by:

d ¢d\3/2
ngs — (CwZ)Q _ (SZ]SZ])
(Si58i)°/2 + (SE:S5)°/

(2.26)

where C,, is the coefficient of the WALE model, which has to be fixed a priori. Sidj
denotes the traceless symmetric part of the square of the velocity gradient tensor Sidj =
(5 + 3:)/2 — 04;93x/3, where §3; = GyGy;, with g;; = 06;/0x;. The WALE model is
based on the square of the velocity gradient tensor and accounts for the effects of both
the strain and the rotation rate to obtain the local eddy-viscosity. The main advantages
of the WALE model are the capability to reproduce the laminar to turbulent transition
and to give the correct near wall behavior of the SGS viscosity which goes naturally to
zero at the wall with neither damping function nor dynamic procedure needed. It offers
the same advantages as the Dynamic Smagorinsky-Lilly model with a lower complexity,
and therefore can be easily assessed on any kind of computational grid.

Since its emergence, the WALE model has been gradually applied to a variety of
flows. Ducros et al. (1998) [42] applied it to the transition to turbulence of the flow
in a pipe on an unstructured grid. The results showed that the WALE model improves
the prediction of the wall stress rate and the turbulent intensities, compared with the
Smagorinsky model. Liu et al. (2012) [79] did large eddy simulations using the WALE
model of the fully developed turbulent flows near a flat wall. The results showed that the
WALE model predicts excellent damped eddy viscosity near the wall.

2.2.3.4. The 0 model (o)

Nicoud et al. 2011 [103] proposed the o model which has, by construction, the property
to automatically vanish as soon as the resolved field is either two-dimensional or two-
component, including the pure shear and solid rotation cases. In addition, the model
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generates no subgrid-scale viscosity when the resolved scales are in pure axisymmetric or
isotropic contraction/expansion. They also showed that the o model has an appropriate
cubic behavior in the vicinity of solid boundaries without requiring any ad-hoc treatment.
The model is defined as:

Vsgs = (CUZ)QDU (2.27)
D, — os(oy — 022(02 — 03) (2.28)
01

Where o1,09,05 are three singular values of the resolved velocity gradient tensor. They
are in order such that oy > 09 > 03. C, is the coefficient of the o model.

Results for two classical test cases (decaying isotropic turbulence and periodic turbu-
lent channel flow) have been obtained by Nicoud (2011) [103]|. The results obtained with
the proposed model are systematically equivalent or slightly better than the results from
the Dynamic Smagorinsky model. Still, the 0 model has a low computational cost, is easy
to implement, and does not require any homogeneous direction in space or time. It is thus
anticipated that it has a high potential for the computation of non-homogeneous, wall-
bounded flows. The performance of the o model for wall-bounded flows was investigated
by computing LES of turbulent channel flows at friction Reynolds number Re, = 395 and
590 by Baya Toda et al. (2010) [9]. Their results were in fact slightly better than with
the dynamic Smagorinsky model. They also illustrated that, for some cases, the proper
asymptotic behavior was obtained by the dynamic Smagorinsky model only when the
dynamic procedure is applied planewise, by accounting for the homogeneous directions in
the channel flow configuration. But this procedure can be used only for simple cases with
homogeneous directions. The asymptotic behavior is built in the ¢ model’s differential
operator itself and no specific dynamic procedure/homogeneous directions is required.

As it’s a new subgrid model, no substantial literature have been conducted on the o
model, but its superiority calls for implementations on various simulations, especially on
flows with complex geometries and high Reynolds number.

2.2.3.5. Other models

Subgrid scale models commonly used in LES of turbulent flows mainly fall into several
general categories: eddy viscosity models, scale similar and mixed models and the devel-
oping trend using the dynamic procedure (Gernamo et al. 1991, Lilly 1992, and Ghosal
et al. 1995) which allows computation of model coefficients from a resolved field rather
than prescribing them as constants. All of these subgrid scale models will be discussed in
the following.

Within the large choice of subgrid scale models, eddy viscosity models are more popular
since they are robust and able to reproduce the main dissipative effect of small scale
turbulence. In the previous sections we have described several eddy viscosity models,
including the traditional Smagorinsky model, the dynamic Smagorinsky model, the wall-
adapting local eddy-viscosity model and the o model. A growing body of literature has
been reviewed to exhibit their strengths and weaknesses (Piomelli et al. 1991 [112, 115],
Liu et al. 1994 [80], Lesieur et al. 1996 [74], Meneveau and Lund 1997 [94], Canuto
and Cheng 1997 [22], Liu et al. 1999 [78], Pope 2000 [116]). The deficiencies of the
eddy viscosity models are apparent in the underestimation of the standard deviation of
the subgrid scale stresses and the inability to predict transfers of kinetic energy from the
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subfilter scales to the resolved scales (Carper et al. 2008 [25]).

In recent years, many variants of the Smagorinsky model have appeared. For example,
a different way of defining the eddy viscosity (Schumann 1975 [125]), the structure func-
tion model (Metais and Lesieur 1992 [96]). Other eddy viscosity models are also proposed
successively according to different practical needs. For example, a two-part SGS eddy-
viscosity model (Sullivan et al. 1994 [136]) in order to achieve better agreement between
LES and similarity forms in the surface layer. Some other eddy viscosity models applied
to different flows. For example, an eddy-viscosity model proposed by Vreman (2004) [144]
and applied in large-eddy simulation of turbulent shear flows with quite satisfactory re-
sults. This model is able to adequately handle not only turbulent but also transitional
flow. Another different approach to subgrid scale modeling (Stolz 2005 [135]) is designed
for laminar, transitional, and turbulent flows without ad-hoc adaptation by employing
high-pass filtered eddy-viscosity models. Subsequently, a dynamic subgrid-scale eddy vis-
cosity model for 3D turbulent jet in a cross flow (Taeibi-Rahni et al. 2010 [137]) and
the dynamic subgrid-scale eddy viscosity model for LES of turbulent flows in complex
geometry (Park et al. (2006) [106]) are developed.

The scale similar model was first introduced by Bardina et al. (1980) [6] with the
assumption of scale invariance in a strong and almost literal sense. The full structure
of the velocity field at scales below the filter scale is postulated to be similar to that at
scales above the filter scale. This postulate has been given an empirical basis from band-
pass-filtered PTV measurements (Liu et al. 1994 [80]). In that paper, vector maps from
successive bands of scales show that certain structures occur simultaneously at different
scales at nearly the same locations (Meneveau et al. 2000 [93]). Consequently, it is
suggested that the subgrid scale tensor must also be similar to a stress tensor constructed
from the resolved velocity field,

Lg

<

U (2.29)

Tij =
If a cutoff filter is used, then u; = %, and 7,; = 0, so the similarity model produces nothing.
The scale similar models can provide back scatter in a numerically stable and physically
realistic manner, and predict SGS stresses in regions that are well correlated with the
locations where large Reynolds stress occurs (Sarghini et al. 1999 [124]). Martin et al.
2000 [89] analyzed the scale similar model using the flow field obtained from the direct
simulation of compressible homogeneous isotropic turbulence. It was found to give more
accurate prediction of the subgrid scale stresses and heat fluxes than eddy-viscosity, as
well as improved predictions of the subgrid scale turbulent diffusion, the subgrid scale
viscous dissipation, and subgrid scale viscous diffusion. However, in the later applications
of large eddy simulation, it was found that the scale similar model hardly dissipates any
energy and thus can not serve as a 'stand alone’ subgrid scale model.

To correct for the lack of dissipation, it’s necessary to combine the eddy viscosity and
scale similar models to produce the 'mixed” model, which can improve the quality of the
simulations. If the subgrid scale stresses are decomposed in terms of w; and u}, the “large
subgrid scales” can be obtained by filtering the subgrid scale velocity u, = u; —u; to yield
u} = T; — U;. The mixed model can be written as:

Tij = —2V595§ij + ﬂz_'ﬂj - izi] (230)

The last two terms in equation (2.30) represent the scale similar model, the eddy-viscosity
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contribution provides the dissipation that is underestimated by the scale similar part alone
(Piomelli 2010 [109]). The mixed model has been used in a number of simulations with
considerable success (Zang et al. (1993) [150], Vreman et al. (1994) [146], Winckelmans
et al.(1998) [147|, Sarghini et al. 1999 [124], Lodato et al. (2009) [81]). For example, the
research of Sarghini et al. 1999 [124] showed that the mixed models with the Lagrangian
ensemble averaging, compared to eddy viscosity models, give results in the best agree-
ment with the direct simulation and experimental data of a high Reynolds number plane
channel flow, and a three-dimensional, nonequilibrium flow. According to Winckelmans
et al.(1998) |147] who conducted research on the mixed model in LES of decaying ho-
mogeneous turbulence, the mixed model performs significantly better than the dynamic
Smagorinsky model with same Gaussian filtering.

As described above, the concept of a dynamic model was originally proposed by Ger-
mano et al. 1991 [53]. This approach is better called a procedure than a model as it takes
one of the subgrid models as a basis. Except the procedure of Germano et al., many other
dynamic procedures have been developed recently and applied in large eddy simulation
(Ghosal et al. 1995 [57], Andrés et al. 2004 [2], Tsubokura 2006 [139]). Although the
concept of a dynamic model is very appealing, significant problems have been encountered
when the procedure is put into practice. The difficulty is that the coefficient of dynamic
procedure varies very rapidly as a function of the spatial coordinates and time and takes
on large values of both signs, leading to large eddy viscosity with both signs. To overcome
this problem, several cures have been suggested, such as averaging over homogeneous di-
rections and limiting the magnitude of negative viscosity, using a combination of local
spatial and temporal averaging.

In addition, many other subgrid scale models have been used, such as the spectral
models (Chollet et al. 1981 [27], Métais et al. 1996 [95]), the nonlinear or gradient
models (Lu and Porté-Agel 2010 [82], Berselli et al. 2003 [12]), models based on RANS
models and so on.

2.2.3.6. Discussion

In LES, a model has to satisfy various requirements. Firstly, the gradient of the subgrid
scale shear stress has a direct influence on the mean flow. Secondly, the net energy transfer
between the resolved scales and the unresolved ones has to be correctly represented.
This transfer includes the dominant dissipative effect associated with the forward scatter,
and the backward transfer from the unresolved scales to the resolved ones (Abba et al.
(2003) [1]). Furthermore, the subgrid scale model, the numerical technique, and the filter
have to be consistent in order to get a reasonable result of LES. In practice, the use
of LES models in non-spectral methods can be difficult because of the presence of large
discretization errors at coarse resolutions. When the mesh is coarse, the differentiation
and interpolation errors may be very significant and could become of equal importance
as the model contribution. In that case, the physical relevance of the numerical results
becomes questionable. Several studies highlighted the influence of discretization errors on
the subgrid modeling. Some works emphasized the use of high-order methods or explicit
filtering to damp scales close to the grid size (Ghosal 1996 [56]; Carati et al. 2001 [23];
Chow and Moin 2003 [28]). Others have focused on the minimization of the total error
(Lund and Kaltenbach (1995) [85]; Balaras et al.(1996) [5]; Najjar and Tafti (1996) [100]).
Nevertheless, our understanding of the interplay between numerical and modeling issues
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is presently quite limited.

In aspect of combination between the subgrid scale models and the filter, many research
have demonstrated that the performances of the subgrid model greatly depend on the
type of filter used (Piomelli 1988 [113]; Liu et al. 1994 [80]), the subgrid model cannot be
specified independently of the filter (Pruett et al. 2000 [120]). Piomelli et al. (1988) [113]
looked at the combinations between filters and subgrid scale stress models for LES. They
found that the consistent combinations of filters and models is essential to ensure accurate
LES results. This is due to the fact that a good consistency gives more accurate turbulence
statistics than that if the subgrid model is chosen independently of the filter. The cutoff
filter is a distinctive one among the classical filters of large eddy simulation, since it
clearly separates the resolved scales and subfilter scales. Most successful tests typically
use spectral methods and cutoff filter in homogeneous directions. But this is limited
to flows with simple geometries. More flexible filters which can be used for flows with
complex geometries is still a great lack in large eddy simulations.

2.2.4. Evaluation of subgrid scale models

Various criteria to evaluate the model performance have been discussed in previous re-
search, including a posteriori and a priori analysis based on direct numerical simulation
and experimental data.

2.2.4.1. A posteriori and a priori studies

In order to evaluate the performance of a subgrid scale model, the statistics of LES with
a particular model can be compared with the same statistics of available reference data.
The data can be from DNS or from experiments, typically in the form of mean velocity
and Reynolds stress distributions, spectra, etc. Piomelli et al. (1988) proposed the name
a posteriori tests for such comparisons to emphasize that the model is evaluated only
after it has been implemented in a simulation. A posteriori tests are considered to be
the ultimate tests of model performance. However, owing to the integrated nature of the
results (combining effects of numerical discretization, time integration, and averaging), a
posteriori tests typically do not provide much insight into the detailed physics of models
and the reasons why they success or fail to provide good results.

A complementary and perhaps more fundamental approach is based on direct compar-
ison between 7;;(z,t) and its modeled counterpart Ti’}“’d(:v, t). Such a comparison requires
data at high spatial resolution to resolve the subgrid-scale range. 7;;(x,t) is evaluated
based on its definition (Eq. 2.18), and 7;7°%(x,t) is evaluated by processing the filtered
data. For such analysis, one uses the name ‘a-priori’ to emphasize that no actual LES
computation is involved. The data for such studies can be generated using DNS, which
allows processing the full three-dimensional velocity field, but is generally limited to low
Reynolds numbers and simple geometries. Clark et al. (1979), McMillan & Ferziger
(1979), and Bardina et al. (1980) are early examples of such studies, and Hauét et al
(2007) [64], Bou-Zeid et al. (2008) [18],van Stratum (2012) [140] are more recent examples

of a priori analysis of subgrid scale models.

It should be emphasized that the two approaches, a priori and a posteriori studies, yield
different results because the flows in the two simulations evolve differently. A posteriori
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test includes the contribution of the LES model, while a priori test is an analysis based
on databases of a DNS or experiment. This difference has been observed in previous
research. Bardina et al. (1980) [6] proposed the improved subgrid models for LES, which
generate good results in a priori studies, but performed poorly in a posteriori tests. So,
it’s essential to perform not only a priori but also a posteriori tests to evaluated the LES
performances of a subgrid model.

2.2.4.2. Tests of model performance

A priori study has been used to test the performances of subgrid scale models in many
research (Meneveau 1994; Liu et al. 1994; Meneveau and Katz 2000, Abba et al.(2003) [1],
De Stefano et al. 2005 [35]). An integrated figure of merit of the local agreement between
real and modeled stresses within realizations of the flow has often been given in terms of
their correlation coefficient (Clark et al. 1979 [31]) or by the average angle between two
tensors (Abba 2003 [1]). The average angle between the modeled and the exact subgrid
scale stress tensor, the angle between the subgrid scale stresses and the strain rate tensor
have been computed on isotropic turbulence by Abba (2003) [1]. Generally, the eddy vis-
cosity models show very low correlations with true subgrid scale stresses in a priori test for
various flows (Pruett et al. 2000 [120], O’Sullivan et al. 2001 [105], Park 2005 [107]), while
they work adequately in actual simulations. In addition, it has been reported that high
correlations coefficients observed in a priori tests mostly come from deterministic correla-
tions between the resolved subfilter scale stresses and their approximations when formally
invertible filters are adopted. If such correlations are removed by adopting spectral cutoff
filter to mimic the discretization, all the existing SGS models perform poorly in a priori
tests, no matter how they perform in a posteriori tests. However, this poor performance
in a priori tests does not indicate a failure of such models but the fundamental limitation
of a priori test itself (Park 2005 [107]). So, the filter type can influence the correlation
coefficient and this has been observed by Abba 2003 [1| who found that when a filter
with an overlapping between resolved and unresolved scale in physical space is used, the
modeled subgrid scale quantities are much more correlated to the exact ones than when a
sharp cutoff filter is employed. In addition, this correlation is also influenced by the grid
resolution. According to Abba [1], all the models show worse correlations when resolution
is decreased. Especially the original dynamic model, most probably because the stress
tensor is forced to be aligned to the strain rate tensor.

2.2.4.3. Discussion

The eddy-viscosity model has low spatial correlation with the measured stress, but it pre-
dicts mean stresses with the same accuracy as the other models (Carper et al. 2008 [25]).
This deficiency of eddy viscosity models was originally observed from DNS data by Clark
et al. (1979) |31], McMillan and Ferziger (1980), and Bardina et al. (1980) [6]. Quanti-
tatively, the correlation coefficient typically ranges from 0 to 0.25 (Clark et al. 1979 [31],
Liu et al. 1994 [80]). The correlations are slightly larger (about 0.4) when the subgrid
scale force </ - 7;; is compared with <7 - Ti’}?"d. Typically the correlation is still higher (in
the range [0.5 — 0.7]) when comparing the local SGS dissipation rate 7;;S;; with 7/7°%S;;
(Clark et al. 1979 [31]) for homogeneous isotropic turbulence.

However, the other models often have larger correlations than eddy viscosity models.
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According to the results of Pruett et al. 2000 [120] on the decay of isotropic turbulence in
a compressible flow, eddy-diffusivity model correlates poorly against exact stresses (less
than 0.2), the gradient model correlates moderately well (C' = 0.6), and a stress-similarity
model correlates remarkably well (in the range [0.8 — 1.0]). The mixed model examined
by Winckelmans et al.(1998) [147] in a priori test using DNS shows that the correlation
is greater than 0.9.

In addition, it has been found that the correlation of subgrid scale models depend on
the filter type and filter size. According to Borue and Orszag 1998 [14], the correlation
coefficient between the actual subgrid scale stress tensor and the scalar eddy viscosity
representation decreases as the scale decreases. This is nearly independent of Reynolds
number. However, the correlation decreases by nearly a factor of two when a cut-off filter
is used. This observation is consistent with the results of Liu et al. (1994) |80]. Bardina
et al. 1980 [6] also noticed that the subgrid scale stresses at larger filter scales show
higher correlations. A priori test has been also used on scale dependence analysis of many
statistics (Lucor et al. 2007 [83]). For example, Bou-Zeid et al. (2008) [18] conducted
research on scale dependence of subgrid-scale model coefficients by an a priori study.
Carper et al. (2008) |25] studied subfilter-scale fluxes over a surface roughness transition.
The model coefficients are found to be scale dependent when the filter scales fall into
the production subrange of the turbulence where the flow scales are anisotropic. A priori
analysis has been also conducted on other situations, such as the effect of subgrid-scale
models on the vortices (Silva et al. (2004) [34]).

Generally, the results of the a priori test conducted on homogeneous flow are not
much related to those of the LES of channel flows. On one hand, the types of flow are
different since in the channel flow we have the presence of boundaries which are absent in
homogeneous isotropic turbulence. on the other hand, the filtering procedures are quite
different and this produces very different behavior in the models (Abba et al. (2003) [1]).

2.3. LES of wall-bounded flows

The research on turbulent boundary layers is carried out for more than a century. The
basic characteristics of turbulent boundary layer were widely believed to be well under-
stood, but it bothered only a few that real shear stress measurements differed consistently
from (theoretical) results (George 2006 [51]). Thus, during the last decade this problem
started to be re-examined.

In unbounded flows, the large eddies, carrying most of the turbulent kinetic energy, set
the length and time scales that describe the rest of the small-scale turbulence. This picture
is reversed near the wall, where the most energetically productive eddies are necessarily
part of the small-scale motion. Further, both configurations are present in wall-bounded
flows, and both contribute significantly to the overall turbulent flow field (Hutchins and
Marusic 2007 [66]).

Townsend (1976) [138] originally proposed the existence of very large anisotropic scales
in the overlap layer under the ‘attached eddy’ hypothesis, he described them as ‘inactive’,
not containing Reynolds stresses. Perry, Henbest and Chong (1986) [108] repeated that
assertion. Jiménez (1998) showed however that this characterization is only partly correct,
and that the very large anisotropic scales carry a substantial fraction of the Reynolds



40 CHAPTER 2. LARGE EDDY SIMULATION

stresses. Alamo (2001) [37] reported further evidence that they carry a substantial part
of the turbulent energy in the flow and they are ‘active’ in Townsend’s sense. Other people
described that the near-wall turbulence is well organized with coherent structures (Kline
et al. 1971, Kim et al. 1971, Stanislas et al. 2008).

If we want to solve the near-wall region, a very fine mesh is necessary. The number
of points needed increases at least like Re'® (Piomelli et al. 2002 [111]). A lot of effort
has been done in order to reduce the computational cost [46]. An estimation of LES
cost was provided by Chapman [26]. He showed that the cost of a wall-resolved LES is
proportional to Re?*. This requirement makes LES application to high Reynolds number
(order of 10° — 10%) practically impossible. The near wall resolution is thus a strong
limit for the LES methods at high Reynolds number. To bypass this problem, various
methods have been proposed. The first one is to circumvent the very costly resolution of
the near-wall turbulence structures by bridging the wall region with the aid of empirical
boundary conditions for the outer layer (Deardorff 1970 [36], Piomelli, Ferziger & Moin
1988 [113]). These empirical boundary conditions correspond to the wall functions often
applied in statistical turbulence simulations. The second approach consists in keeping
a fine grid at the wall but solving a simplified set of equations weekly coupled with to
the outer flow. In general, no further empirical information about the near-wall flow is
required in this approach. This approach was first employed by Balaras et al. [5], who
used a simplified set of equations, based on thin-boundary-layer assumption, in the inner
layer. The third one consists in using a relatively coarse grid at the wall and to mimic the
dynamical effects of the energy-containing eddies in the wall-layer through a wall model,
such models were first employed by Schumann in a channel flow simulation. Modification
of Shumann’s model has been proposed later by Grotzbach [59] and Spalding [133]. In
addition, a review of wall models used in LES can be found in various references (Cabot
et al. 2000 [21], Piomelli et al. 2002 [111, 110]). The fourth one is the so-called hybrid
methods, using RANS equations in the inner layer, while LES equations are solved away
from the wall (Frohlich and von Terzi [49]). The last one is the detached eddy simulation
(DES) method introduced by Spalart et al. [132|, which attempts to treat the near-wall
regions in a RANS-like manner, and treat the rest of the flow in an LES-like manner.

2.3.1. Wall turbulence without pressure gradient

Wall turbulence has attracted much attention in LES research with various flow config-
urations (Grotzbach 1987 [59], Gullbrand 2001 [60], Del Alamo 2003 [38], Frohlich et al.
2005 [48], Brandt 2006 [20], Elsner et al. 2009 [45], Chung et al. 2009 [29], Kuban et
al. 2012 [70]). But much understanding of wall turbulence have been gained on simple
configurations, such as plane channel flow.

The only economical way to perform LES of high Reynolds-number attached flows,
is by computing the outer layer only. The grid size can, under these conditions, be
determined by the outer-flow eddies, and the cost of the calculation becomes only weakly
dependent on the Reynolds number. Because the grid is too coarse to resolve the inner-
layer structures, the effect of the wall layer must be modeled. This requirement spurred
the development of models for the wall layer (Piomelli 2002 [111]). Many models have
been developed and applied to resolve the wall turbulence depending on different practical
needs (Bagwell et al. 1993; Hartel et al. (1998) [61]; Nicoud et al. 2001; Efros (2006) [44]).
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All of the models applied to flows on flat walls with mild pressure gradients are almost
certainly inadequate for flows which separate and reattach or flows over complex-shaped
walls. Furthermore, the development of trustworthy methods for simulating complex
flows, especially the development of models for separated flows is more problematical,
due to that the experimental data are scarce and lack detail (Ferziger 1995 [47]).

2.3.2. Wall turbulence with pressure gradient

L. Prandtl suggested in 1904 that an Adverse Pressure Gradient (APG), with the pressure
increasing in the flow direction, could possibly retard the flow to stagnation (zero velocity)
allowing the fluid particles to separate by recirculation. Adverse pressure gradient bound-
ary layers occur in many practical applications, for example in diffusers, at the trailing
edge of airfoils and the aft section of ship hulls, and they often play a critical role in
determining the performance of engineering devices. In many cases, accurate knowledge
of the adverse pressure gradient boundary layer development is the most critical factor in
predicting the overall device performance. For example, the design objective in diffusers
and aircraft high lift systems often is to obtain the maximum pressure recovery, while
avoiding separation.

Mathematically, the adverse pressure gradient can be expressed as dP/dx > 0. This
is important for boundary layers, since increasing the fluid pressure is akin to increasing
the potential energy of the fluid, leading to a reduced kinetic energy and a deceleration.
Since the fluid in the inner part of the boundary layer is relatively slow, it is more affected
by the increasing pressure gradient. Nagano et al. (1993) suggested that this near-wall
reduction in turbulent kinetic energy is due to a decrease in the production. In general,
as the magnitude of an APG increases, the mean velocity profile develops a large wake
region and the turbulent kinetic energy decreases in the near wall region. If a turbulent
boundary layer flow encounters a large APG, the flow becomes unstable. If the APG is
sufficiently large, this fluid may slow to zero velocity or even become reversed. When flow
reversal occurs, the flow is said to be separated from the surface. Such separation almost
always has negative consequences such as drag increase and loss of heat transfer. This has
very significant consequences in aerodynamics since flow separation significantly modifies
the pressure distribution along the surface and hence the lift and drag characteristics.
Thus it’s of practical importance to investigate the effects of APG on turbulent boundary
layers. Turbulent boundary layers tend to be able to sustain an adverse pressure gradient
better than an equivalent laminar boundary layer. The more efficient mixing which occurs
in a turbulent boundary layer transports kinetic energy from the edge of the boundary
layer to the low momentum flow at the solid surface, often preventing the separation
which would occur for a laminar boundary layer under the same conditions. This physical
fact has led to a variety of schemes to actually produce turbulent boundary layers when
boundary layer separation is dominant at high Reynolds numbers.

Many important features of APG turbulent boundary layer are quite well understood
(Clauser 1954 [32], Bech et al. 1998 [10], Aubertine et al. 2005 [4, 3], Drobniak et al.
2009 [41], Elsner et al. 2009 [46], Harun et al. 2010 [63], Laval et al. 2010 [72]|). The law
of the wall has been proven to be valid for higher Reynolds number APG flows (Skare
et al. 1994 [129] and Bernard et al. 2003 [11]). In the outer layer, the statistics were
found to be significantly affected by a strong APG (Skate & Krogstad 1994 [129]) and the
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turbulent intensity profiles in the outer region of APG flows collapse onto a single curve
when normalized by the inlet free-stream velocity (Nagano et al. 1993). In addition,
Clauser (1954) [32] suggested a new class of equilibrium boundary layer with an APG, in
which the ratio of the pressure gradient force to the wall shear force remains constant. The
mean velocity profiles in an equilibrium boundary layer at different streamwise locations
show similarity when properly scaled. In addition, many researches also focused on the
vortices (Robinson 1991 [121], Bech et al. 1998 [10], Skote et al. 2002 [130], Laval et al.
2012 [73]).

Turbulent flows with an APG have been regarded as being among the most difficult
flows to predict using turbulence models (Wilcox, 1993). The major difficulty in sim-
ulating a spatially evolving turbulent boundary layer within an APG is imposing the
conditions of free stream flows and realistic turbulent inflows. Since there is no system-
atic way to choose boundary conditions that result in a specific pressure distribution, an
interactive procedure is required (Na and Moin, 1998). In spite of difficulties, many re-
searches have been attempted with subgrid scale models, such as the model of a turbulent
boundary layer with a non zero pressure gradient by Barenblatt et al. (2002) [8]. Elsner
et al. (2009) did a research on the subgrid scale modeling of turbulent channel flow with
one curved wall, in which way the pressure gradient was imposed. The influence of grid
density as well as subgrid scale models on the solution has been analyzed. By comparing
to the DNS of Marquillie et al. 2011 [87], the results of computations performed on the
finer grid demonstrate that both Smagorinsky and WALE model give almost the same
skin friction coefficient along both walls apart from the separation region on the bump.
For both models the separation point is located at the same position and agrees well with
the DNS. However, the reattachment point is different and the Smagorinsky model overes-
timates the length of the recirculation zone while WALE model predicts it in accordance
with DNS. Duprat et al. (2011) proposed a new wall layer model with the goal to perform
high Reynolds number large eddy simulations of wall bounded flows in the presence of a
streamwise pressure gradient. The model is validated by a priori comparisons with direct
numerical simulation data of various flows with and without streamwise pressure gradient
and with eventual flow separation. Large eddy simulations are then performed using the
wall model as wall boundary condition. It is shown that the new wall model allows for a
good prediction of the mean velocity profile both with and without streamwise pressure
gradient [43]. Kuban et al. (2012) 70| conducted research on channel flow with a curved
wall and reported that the influence of the grid size related to the filter scale is more
important for optimization of subgrid models.

Most of the prior researches have been performed on different types of adverse pressure
gradient flows with different geometrical configurations. Most of the findings are exclusive
and do not have versatility for different given geometrical configuration. In addition, many
of these applications are at Reynolds numbers significantly higher than can be examined
even in large scale laboratory experiments. Therefore a detailed LES analysis on channel
flow with pressure gradient, which is expected a promising research, is an opportunity to
make progress in understanding the performances of different models.

This issue becomes more complex when one considers the turbulent boundary layer at
large Reynolds numbers with the presence of pressure gradient, where the lack of reliable
data is particularly evident. As it has been pointed out by Shah et al. 2009 [127] and
George et al. 2010 [50], the Adverse Pressure Gradient (APG) turbulent boundary layer



2.3. LES OF WALL-BOUNDED FLOWS 43

is particularly problematic, because of the lack of proper experimental data for sufficiently
large Reynolds numbers and for experimental conditions corresponding to real engineering
applications.



Chapter 3

A priori approach and methodology

This Chapter presents the definition of new developed least square spline filter. The
energy transfer mechanisms and the subgrid scale models examined in our research are
also introduced. The a priori analysis of subgrid scale model are first tested using both the
least square spline and Gaussian filters in isotropic turbulence. The general description
of DNS databases of plane and converging-diverging channel flow are also given finally.

3.1. Least square spline filter

In large eddy simulation, the velocity field can be decomposed into resolved and subfilter
scale components by the classical filters described in Chapter 2. Among them, the cutoff
filter has the most compact support in wave space and avoids the attenuation of energy in
resolved scales. This property explains the significant performances obtained in various
research for LES using spectral methods (Piomelli et al. 1991 [112], Abba et al. 2003 [1],
Brandt 2006 [19]). However, the cutoff filter is more favorable for flow with regular
geometries and homogeneous directions due to its limitation to spectral methods. This
rises challenges for flows with complex geometries in practical engineering applications
which must be computed in the physical space. Thus, a least square spline filter was
designed with the expectation of overcoming this limitation, as it can be applied in the
physical space while keeping excellent filtering properties. For high spline order, the
shape of the transfer function of the least square spline filter is quite similar to the cut
off filter and much sharper than other classical filters defined in physical space. The most
important property of a least square spline filter is that it has a better flexibility to easily
filter on both homogeneous and non-homogeneous grids. Least square spline filter will be
used hence to filter both the plane and converging-diverging channel flow.

3.1.1. The original filter

The least square spline filter uses B-spline method to fit a smoothing spline function of
order n, with a given node sequence in the weighted mean-square sense, meaning that
the sum: Y, Wi|f(z) — f(z)> (W; is weight coefficient, f(z) is original signal, f(z) is
the filtered function) is minimized. The filter width will be directly related to the node
distance and can therefore easily vary in space. The filter is easy to be used on functions
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distributed on non-homogeneous grid as the filter width is defined independently of the
grid. A Fortran library of least square spline is provided by Dierckx 1975 [39]. The
filtering operation in physical space can be defined as a convolution product:

@)= [ f@HE-Ods = Hx 10 31)
which corresponds to the product in Fourier space:
F(k) = F(k)H (k) (3.2)

where k is wave number, %(k), F(k), H(k) are the Fourier transforms of f(z), f(z) and
H(x). So, in Fourier space, there is:

H(k) = Fik) (3.3)

It is difficult to derive a mathematical expression of its transfer function. However, its
graphical representation in Fourier space can be deduced by applying the filter to a given
function and analyzing its filtered counterpart as shown in Fig. 3.1. Where,

G(k) = LE (k) (3.4)

In order to avoid the disturbances of fluctuations, we compute @(k) based on the average
of 100 functions f;(z) defined as:

fz) = %Zcos(wjx—i-goi), vel=1,1], 1€[1,100 (3.5)

J=1

Where w; and ¢, are the frequency and the phase shift. The cutoff wave number k. can
be defined corresponding to the intersection of the transfer function CAJ(k:) and the curve
gﬁ(k) The cutoff wave number of G(k) corresponding to each spline order does not
collapse each other, and moves toward the intersection (corresponding to L/(2A), L is
the domain size) of curves F(k),—1, F(k),—3 and F(k),—5 as increasing the spline order.
Therefore, the relationship between the cutoff wavenumber k. and the filter width A can
be approximated as k. ~ L/(2A), independently of the spline order.

The normalized function G(kA) in Fig. 3.2 shows that G(kA) decreases as a function
of the spline order k=2 +Y. Thus, the 5-order least square spline (Lss-5") is the sharpest
one. The transfer functions of the Lss-5"", cutoff and Gaussian filters are compared in
Fig. 3.3. The Lss-5"" filter is very compact and nearly comparable to the cutoff filter,
and is much sharper than the classical Gaussian filter.

The commutation error is an important factor to assess the properties of a filter. Fig.
3.4 shows the commutation error of the least square spline filter for three different spline
orders. It’s evaluated on a one-dimensional signal as expressed in Equation (3.5). The
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Figure 3.3: Comparison of the transfer Figure 3.4: Commutation errors with 3
functions of the Lss-5"", Gaussian and cut- spline orders (r = 1,3,5, w is the signal
off filters frequency).

commutation error is defined as a function of the filter width A:

Err(B) — i(a_gf) _ 078(?))2 / 3 (%)2 (3.6)

i=1 i=1

The errors for the three different spline orders reach to the maximum 1.0 at 2wA = 1.
Fig. 3.4 exhibits that, the commutation error decreases approximately as a function of
the spline order r. The smallest commutation error Err(A) ~ A° oceurs at the highest
spline order r = 5. It is smaller than that of classical filters whose commutation error is
found to be a second order function of the filter width (Ghosal and Moin 1995 [58]).
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3.1.2. The promoted filter

The original least square spline filter discussed above has its own deficiency. Because
the distribution of the inner nodes is not homogeneous, the fluctuations accumulated
in (f2(z) — 72(x)) exhibits a systematic deviation at the fixed positions of the spline
junctions. This will contaminate the other statistics associated with it. Therefore, an
optimized version of least square spline filter (denoted as Lss-ave) is proposed.
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Figure 3.5: Comparison of original Lss and Figure 3.6: The promoted Lss-ave with 3

the promoted Lss-ave for a spline order r = spline orders (r=1,3,5), using the same
3, the cutoff wavenumber is kA = 1. legend as in Fig. 3.2.
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Figure 3.7: Comparison of statistics obtained with the original least square spline
filter (Lss) and the promoted one (Lss-ave) for a function f(x) defined in Equation
(3.5).

Lss-ave filters a field twice using both the original and the shifted positions of the inner
nodes. In the optimized definition, each inner node moves forward half of the distance of
the two adjacent original inner nodes:

z(t+1)=2()+05x (x(i+1) —2(i)), i =1,2...(n — 1) (3.7)

where n is the number of inner nodes. Then the oscillations observed for (f2(z) — 72(x))
can be counteracted by the averaging operation on the summation of the two filtered
quantities as shown in Fig. 3.7. Here, we set fi(z) as the filtered field with the original
definition of the inner nodes, f»(z) as the filtered field using the shifted nodes. Thus, for
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the original least square spline filter (Lss), we have:

for the promoted one (Lss-ave), it’s defined as:
7(x)Lss—ave =0.5 % (E(x) + ﬁ(x)) (3.9)

Fig. 3.5 demonstrates the differences between Lss and Lss-ave for spline order r = 3. The
optimized filter Lss-ave is smoother than the original one Lss, especially at the cutoff wave
number (kA = 1). Lss-ave can successfully avoid the oscillations in the filtering process
as presented in Fig. 3.7, and leads to smoother statistics. More converged results can be
obtained in this way. However, as shown in Fig. 3.6, the shape of the transfer function
of Lss-ave is slightly modified as compared to the original Lss filter. The modified least
square spline filter requires twice computational time and more memory as compared to
the original one.

__ Thus, the advantages of least square spline filter are mainly in that, its transfer function
G is much sharper, so the application of low pass filter leaves more energy in the large
scale than smoother filters like the Gaussian one. The commutation error of least square
spline filter can be kept small as it is a function of the spline order. The main advantage
is that the Lss filter can be used to filter both homogeneous and inhomogeneous flows.
In the following analysis, the 5'"-order least square spline filter is used and denoted as
Lss-5!" hereafter.

3.2. Energy transfer mechanism

In large eddy simulations, the dissipative scales of motion are resolved poorly, or not at
all. As it’s known, the main role of the subgrid-scale model is to extract energy from the
large scales. In order to better understand the interaction between resolved and unresolved
scales, the energy transport equation can be written as the following with the total resolved
energy ¢ (7> = u;;/2.0) and subgrid scale kinetic energy ¢Z,, (¢2,, = Tr/2.0),

o 9 o 9 ,__ o ([ oF
Fr 8_33]-(q uj) = — 8—%(]9“3) +8_xj Ué?_xj
——
Advection of §? Press. Diff. of ¢  Visc. Diff. of ¢°
" o, 1 o (3.10)
— —(715;) — ¢ v zSz
8l'j <7_JU) I/al'j 8:1:]- Zi,j

N—— SGS Diss.
SGS Diff. Visc. Diss. of g2
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aq;, d 0 0
_ 1598 2 =) = (T — 10 — —— (7 — Pl
ot + a_ZL’j(ngSUj) - 8xj (ululuj uzuzu]) 8xj (pu] puj)
h,—/ . ~ (. ~ vl
Advection of qggs Turb. Transport Press. Diff. of qggs
0 [ 0q2 0
+— (=2 )+ — (7w
Oz; ( O; al“j( o) (3.11)
Visc. Di}}. of 4245 SGSBiff.
~ Y\ 0,00, " ox,00,) T 004
Lj O Tj O S~
SGS Diss.

~
Visc. Diss. of q2,

Both equations (3.10) and (3.11) show that the resolved scales exchange energy with unre-
solved (or resolved) scales and the surroundings through several mechanisms. The advec-

tion and diffusion terms only redistribute energy. Both resolved and subgrid scale energy

8ui Guz for

are destroyed by molecular dissipation, which is represented by the terms —v

8uz~ 61@ _ 8@2 8@
aZL'j 8[Ej 8xj 8[L‘j

negative, thus of a purely dissipative nature.

.fL'j axj

resolved scales and —v ( ) for subgrid scales. These terms are always

The SGS energy dissipation,

€sgs = TijSz‘j (3-12)

appears with opposite signs in equations (3.10) and (3.11). Typically €,,5 acts as a sink
of resolved kinetic energy and as a source term for SGS kinetic energy qus.

The total transfer of energy between large and subgrid scales is the SGS energy trans-
fer, sum of SGS diffusion and dissipation, defined as:

0
ngs = 8—%(EZ’TW) — 6595 (313)
The term O(u;7;;)/0x; accounts for a spatial redistribution of large scale kinetic energy
due to SGS motions.

Both €445 and T4, can be positive or negative depending of the local physics of tur-
bulence. On the average, energy flows from the large to the small scales, and €555 < 0 or
Tsgs > 0 (forward scatter), reversed energy flow e, > 0 or Ty, < 0 (back scatter) from
the small scales to the large ones may also occur intermittently.

The positive (¢f,,) and negative (e, ,) contributions of €.y, can be defined as:
+ 1 - 1
€sgs — 5(6595 + |€SQS|)’ €sgs — 5(6595 - |€595|) (314)

Similar to equation (3.14), the positive and negative contributions of T4, can be computed
as well by:

1 _ 1
T, = _(ngs + |T895|)7 Tegs = Q(ngs - |ngs|) (3-15)

595 2 sgs
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As it plays an important role in LES, SGS energy transfer mechanism has been the
focus of a number of studies in channel flow (Piomelli et al. 1991 [112]; Horiuti 1997 [65];
Hirtel et al. 1998 [61]; Abba et al. 2003 [1]; Hauét et al. 2007 [64]; Cimarelli and
De Angelis 2012 [30]). Many research based on DNS of turbulent channel flow have
shown that the SGS dissipation tends to zero in the laminar sublayer and an inverse
cascade of turbulent kinetic energy occurs in the buffer layer (Hirtel et al. 1994 [62]).
The inverse transfer cannot generally be described by the simple eddy viscosity type of
subgrid models. Hértel et al. 1994 supposed that the inverse cascade of turbulent kinetic
energy is primarily caused by subgrid scale stresses aligned with the mean rates of strain.
Hirtel and Kleiser (1998) [61] showed that the correlation of the wall normal subgrid stress
and the wall-normal derivative of the streamwise resolved velocity plays the key role in
the occurrence of the inverse cascade and is strongly enhanced by coherent motions, such
as the well known bursting events (Hértel et al. 1994 [62]). The magnitude of this inverse
transfer is very sensitive to the cutoff wavenumber, but it was found to depend little on the
shape of the filter applied (Hértel and Kleiser 1998 [61]). Generally it’s considered that
the correct reproduction of inverse energy transfer plays a key role in the estimation of
near-wall statistics, especially when the viscous sublayer is not properly resolved (Lodato
et al. 2009 [81]).

3.3. A priori analysis of subgrid scale models

Many a priori tests for subgrid scale models have been performed using classical filters
on homogeneous turbulence (McMillan and Ferziger 1979 [91]; Liu et al. 1994 [80]; Borue
and Orszag et al. 1998 [14]; Pope 2000 [116]; Meneveau and Katz 2000 [93]; Pruett and
Adams 2000 [120]; Wollblad and Davidson 2008 [148]), or on plane channel flow at low
Reynolds number (Piomelli et al. 1991 [112]; Hértel et al. 1994 [62]; Horiuti 1997 [65];
Abba et al. 2003 [1]; Cimarelli and De Angelis 2012 [30]), or other flow configurations,
such as in a wind tunnel by Carper and Porté-Agel 2008 [25].

In the present research, the a priori analysis of subgrid scale models will be performed
using both the classical filter (Gaussian filter) and the new developed filter (Lss-5™ filter).
The a priori tests of our research will be conducted on classical subgrid scale models,
such as the Smagorinsky model (SM), the dynamic Smagorinsky model (DSM), the wall-
adapting local eddy-viscosity model (WALE), as well as a recent model, the o model.
These models will be analyzed on a DNS of plane channel flow at high Reynolds number
(Re, = 950) and a DNS of converging-diverging channel flow at Re, = 617.

3.3.1. A priori evaluation of model coefficients

The model coefficients can be evaluated using a mathematical form of the eddy viscosity
subgrid scale models,

1 _
Tz’j - ngkézj = —2ngsSij (316)

The coefficient of subgrid scale models can not be directly computed from Equation 3.16,
as it is a tensorial relation composed of 6 independent scalar equations that must be
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satisfied. In order to reduce the number of equations to one, we use the following form
defined as:

(77°'S5) = (7:55) (8:17)

where the superscript “mod” indicates the modeled quantity. Following this, a priori
estimations of the model coefficients (Cs) of Smagorinsky model, (C,) of the WALE
model and (C,) of the o model can be evaluated by matching the measured and modeled
subgrid scale dissipation for each model that needs to be analyzed a priori as:

(%) = e (3.18)

<TZJ §w )

<Ci> = d @d \3/2Q (319)
—2(A)? (SUSZ]) SiiSij
(SiS4)3/% + (5%53)5/4
2y = <Tij§ij>
(Cy) = —2(A)? <U3(01 — 03) (09 — 03>§ij§¢j> (3.20)

The coefficient (Cy) of Dynamic Smagorinsky model is computed from equation (2.25)
with the effective test filter scale A = 2.0A in most instances of our research except
special indication. Unlike the standard Smagorinsky model, the coefficient (Cy) of Dy-
namic Smagorinsky model is calculated only from resolved scales, and it is expected to
be comparable with coefficient (Cs) of Smagorinsky model for the same flow.

For the 3D filter of our isotropic turbulence database, the grid scale A is defined as:

A= (A2 + A +1%)/3.0 (3.21)

Where A,, Zy, A, are filter widths respectively in z, v, z directions. In plane channel flow
with or without pressure gradient, a 2D filter will be used (with no filtering in the normal
direction) that will be defined as:

A= /(B2 + (Dgriay)? + B)/3.0 (3.22)

In order to simplify the research, no explicit filter is conducted in wall normal direction.
The mesh grid along y behaves as an implicit filter, so the contribution of grid spacing
Agrigy in wall normal direction is considered to calculate A. As Ayrigy 1s small with respect
to A, and A, this definition only slightly differ from the equivalent definition using only
A, and A,.
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3.3.2. Tests of models behavior

In order to evaluate performances of each SGS model, there are various methods of com-
paring the modeled and real SGS stresses based on correlation coefficients. We consider
here three different necessary conditions that the modeled SGS stress should ideally satisfy
to produce accurate flow statistics (Liu et al. 1994 [80]; Meneveau and Katz 2000 [93]).
They are defined as:

(rig) = (m7°%) (3.23)
.y Ormed
e
(1:S45) = (737°"Sis) (3.25)

The first condition (3.23) is to match the mean SGS stress. The second condition involves
the term that actually appears in the filtered Navier-Stokes equations and is referred to
as the SGS force (Meneveau and Katz 2000 [93]; Pope 2000 [116]; Geurts 2004 [54]). This
condition, which can guarantee that LES with subgrid models produces the correct mean
filtered velocity and second order resolved moments, is necessary and important for mean
momentum transport when the filter width approaches integral scale. However, it is not a
sufficient condition to guarantee correct predictions for the second-order moments (uju’)
(Meneveau 1994 [92]). The third condition reflects the ability of the model to predict the
SGS transfer rate of resolved kinetic energy.

The correlations of the form C(E, M) between exact (E) and modeled (M) quantities
using subgrid scale models can be defined as:
(EM) — (E)(M)
[((E?) — (E)?)((M?) — (M)*)]'/2

C(E, M) = (3.26)

This formula has been used by several authors for similar a priori analysis (Clark et al
1979 [31], Borue and Orszag 1998 [14]; Pruett and Adams 2000 [120]). We expect that if
the variable M is nearly statistically or instantaneously equivalent to the variable E, then
the correlation coefficient C(E, M) should be close to unity.

correlations E M
— 1
mod
Cry Tij Tir "= —2WsgsSij + g@‘ﬂkk
OA 1] ) — _2]/5 SSZ+—(SZ7—
fi axj amj ax]( g J 3 J kk’)
Cerpe 7i;Si | T5*Si; = (=255 + 50i7i) S

Table 3.1: Correlations between the exact and modeled quantities.

Accordingly, the three criteria described by equations (3.23-3.25) can be investigated
corresponding to the description in Table (3.1). Their correlations are respectively marked
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in the following.

as Cr,;, Cy, and C,

s

3.4. Validation for isotropic turbulence

Homogeneous turbulence is rarely encountered in flows of practical relevance. Neverthe-
less, the analysis of homogeneous turbulent flows has played a major role in the develop-
ment, calibration and validation of subgrid scale models. In addition to bringing in more
transparency in turbulence dynamics, homogeneous approximation simplifies to a great
degree the mathematical description and the solution of the equations. Furthermore, ho-
mogeneity in space enables the use of periodic boundary conditions, which, in turn, allow
to study the turbulence dynamics in a fraction of actual flow space, making these flows
very attractive for direct numerical simulations. Furthermore, low homogeneity reduces
the demands on experimental set up and enables the turbulence phenomena to be studied
in well control conditions.

3.4.1. Introduction

In the present study, the a priori analysis is performed on homogeneous isotropic turbu-
lence at Rey = 144 (X is the Taylor scale). The mesh resolution is 512% in a simulation
domain of size (27 x 27 x 27). Three cutoff wave numbers k. = 8, 16, 24 are adopted here.
Their corresponding filter width are displayed in Table 3.2. The DNS fields are filtered
using the three-dimensional periodic Lss-5 filter and Gaussian filters.

. 8 16 24
A/n | 51.15 | 25.58 | 17.05
L/A| 20 | 40 | 6.0

Table 3.2: Three cutoff wavenumbers and their corre-
sponding filter width with regard to the Kolmogorov scale
(n) and integral scale (L) for homogeneous isotropic tur-
bulence.

As described by many research (such as Lilly 1992 [76]), the coefficients of subgrid
models can be obtained when the cutoff wavenumber lies within a k~°/3 Kolmogorov cas-
cade and the ensemble-averaged subgrid dissipation is identical to the energy dissipation
rate. The one-dimensional streamwise energy spectrum Ej; is given in Fig. 3.8. It shows
that the three cutoff wave numbers fall fairly well into the short inertial range of the
present homogeneous flow.

3.4.2. A priori evaluation of model coefficients

In this section, the coefficients of the Smagorinsky model (Cs), Dynamic Smagorinsky
model (Cy), the WALE model (C,,) as well as the o model (C,) are evaluated a priori on
homogeneous isotropic turbulence. According to previous research, the constants of these
subgrid models for homogeneous isotropic turbulence are respectively as (C) = (Cy) =~
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Figure 3.8: One dimensional energy spectra of Ej;(z) in streamwise direction of
homogeneous isotropic turbulence.

0.16 (Lilly 1967 [77]; Meneveau 1997 |94]), (Cy) =~ 0.5 (Nicoud and Ducros 1999 [102])
and (C,) ~ 1.5 (Nicoud et al. 2011 [103]).

The results of our present analysis using Lss-5"" filter and Gaussian filter are given in
Table 3.3. The bracket means the averaging operation on all homogeneous directions of
space and time. Results of this analysis demonstrates that the theoretical behaviors of
(Cy), (Cy), (Cy) and (C,) in many practical simulations are actually far from constant
with respect to the filter width. This is consistent with observations of Meyers and
Sagaut 2006 [97]. Hence, we choose the term subgrid model “coefficient” instead of the
more commonly used “constant”.

ke 8 16 24
() Lss-5" | 0.143 | 0.122 | 0.107
Gaussian | 0.142 | 0.124 | 0.115
) Lss-5™ | 0.145 | 0.141 | 0.133
Gaussian | 0.151 | 0.155 | 0.145
() Lss-5"" | 0.435 | 0.367 | 0.326
Gaussian | 0.440 | 0.387 | 0.359
() Lss-5"" | 1.133 | 0.983 | 0.870
Gaussian | 1.132 | 0.999 | 0.936

Table 3.3: Coefficients (Cs), (Cy), (Cy), (Cy) with three cutoff wave numbers using
both Lss-5" and Gaussian filters for homogeneous isotropic turbulence.

Table 3.3 exhibits that all the coefficients of subgrid models are sensitive to the filter
width (or cutoff wave number) and filter type. They become slightly smaller in general
as the filter width decreases in inertial range. Moreover, for the same filter width, the
coefficients are larger with Gaussian filter than with Lss-5" filter.

In addition, the coefficients of Smagorinsky model 0.107 < (Cy) < 0.143 and Dynamic
Smagorinsky model 0.133 < (C,) < 0.155 are about 30% smaller than their standard value
0.16. The coefficients of WALE model 0.33 < (C},) < 0.44 and 0 model 0.87 < (C,) < 1.2
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are also about 30% smaller than their standard values which are 0.5 and 1.5 respectively
at very large Reynolds number and when the filter lies inside the inertial range. This may
be owing to the fact that the coefficients of subgrid scale models are very sensitive to the
filter type or the mesh size when using implicit filtering LES (Scotti et al. 1993 [126];
Nicoud et al. 2011 [103]).

3.5. Description of databases

In order to investigate the properties of subgrid scale models on wall turbulence, our
analysis is carried out on a direct numerical simulation of the turbulent incompressible flow
in plane channel at Reynolds number Re, = 950, and on a direct numerical simulation of
the converging-diverging channel flow at Re, = 617. The description of the two databases
will be presented in the following.

3.5.1. Plane channel flow

Most research of plane channel flow are focused on turbulence at low Reynolds number
(Piomelli et al. 1991 [112]; Hértel et al. 1994 [62]; Abba et al. 2003 [1]; Cimarelli and De
Angelis 2012 [30]). In order to investigate the energy transfer mechanism and the a priori
performances of subgrid scale models on plane channel flow at high Reynolds number,
the DNS database at the largest Reynolds number available for us is the one provided by
J.Jimenez et al. at Re, = 950. This Reynolds number is significantly higher than the
previous research conducting a priori analysis.

The DNS simulation was performed using periodic boundary conditions in the stream-
wise (x) and spanwise (z) directions, while no slip conditions were imposed on the two
parallel walls. The grid resolution is N, x N, x N, = 2048 x 385 x 1535, in a domain
87 x 2 x 3mw. A Chebychev polynomial is used in wall-normal direction (y). In the present
work, only the lower half of the domain will be used for a priori analysis.

0° 10! 102 103
ot +
y Y

Figure 3.9: Mean streamwise velocity Ut (a) and the Kolmogorov scale n (b) along wall
normal position at the lower half of plane channel flow at Re, = 950.

The 2D filtering operations using both Lss-5" filter and Gaussian filter are performed
in streamwise and spanwise directions. No filtering is performed in wall normal direction,
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Figure 3.10: Turbulent kinetic energy (¢*) (a) and the plane-averaged rate of dissipation
of turbulence kinetic energy (e) = (|2vS;;5;|) (b) along wall normal position of plane
channel flow at Re, = 950.

since in this direction a rather fine resolution is required to resolve the steep mean-flow
gradients. Otherwise, when the actual filter scales are employed, the SGS turbulence will
still contain dynamically significant turbulence structures in the near-wall region below
the actual filter width.

The mean streamwise velocity in wall unit U" along wall normal direction is shown
in Fig. (3.9), it keeps increasing toward the center of the channel, the Kolmogorov scale
(n) is also plotted. Fig. (3.10) exhibits the total turbulent kinetic energy (¢?), and the
energy dissipation rate (e) along wall normal position. These two terms are often used to
normalize the other statistics in numerical analysis. The detailed a priori analysis of the
four subgrid scale models will be performed in Chapter 4.

3.5.2. Channel flow with adverse pressure gradient

In the present study, we make use of a direct numerical simulation database of converg-
ing diverging channel flow documented in Marquillie et al. 2011 [87] and Laval et al.
(2012) [73]. The Reynolds number based on the inlet velocity and half channel width is
Re, = 617. The simulation domain is 47 X 2 X m with a spatial resolution 2304 x 385 x 576.
In streamwise direction, the 4*"-order explicit finite scheme is adopted. Chebyshev Collo-
cation is used in the normal direction. The Fourier discretization is performed in spanwise
direction, while spanwise periodicity is imposed on 27 and a symmetry is imposed on 7
in this direction. The wall curvature was obtained by a mathematical mapping of the
partial differential operators from physical coordinates to Cartesian ones. More details
about the mapping of coordinates can be found in Marquillie et al. 2008 [88]. In order
to increase the convergence of statistics, the results are averaged in the statistically ho-
mogeneous spanwise direction and in time. They are denoted with a bracket (-). Wall
units based on the friction velocity at the summit of the bump (u? = 0.0695) are denoted
with the superscript +, the reference wall units based on u¢ = 0.0494 at the inlet have
the superscript *.

The ratio of the maximum mesh size with respect to the Kolmogorov scale n is shown
in Fig. (3.11). In most of the channel, this ratio is less than 2. It is approximately 3 in the
diverging part and goes up to 5 very close to the wall. The mesh size in wall units using the

103
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inlet friction velocity is A} = 5.1,0.02 < A} < 5.1, A7 = 3.4. The global maximum values
are reached in the converging part of the channel with A} =10.7, A} = 7.9, A7 =74,

max(Ax,Ay,Az) /7

O—= N W bW

Figure 3.11: Spatial resolution of the DNS with respect to the Kolmogorov scale.
Ax, Ay, Az are the mesh sizes in streamwise, wall-normal and spanwise direction.
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Figure 3.12: Pressure gradient dC,/ds at Figure 3.13: Skin friction coefficient C; =
the two walls. Tw/(3pU2) at the two walls.

The non-dimensional pressure gradient dC,/ds (s is the tangential direction of the
bump) at the two walls is given in Fig. 3.12, where u, is the local friction velocity. The
pressure gradient at the flat upper wall is smoother and weaker compared to the lower
wall. dC,/ds becomes positive at position x = 0.2 and rises up to dC,/ds = 0.8 at
about x = 1.6. At the lower wall, the positive pressure gradient begins at z = —0.2
and increases very sharply near x = 0.2. The flow encounters a strong pressure gradient
(dC,/ds > 0.09) at both walls. The streamwise location where dC,/ds becomes larger
than 0.09 at the two walls are z = 0.24 and = = 0.75 respectively.

The friction coefficients Cy = 7,,/(3pU?2) for the two walls are depicted in Fig. 3.13,
where U, is the maximum velocity at the inlet. Both peaks of Cy at the two walls occur
at the same position x ~ —0.6. The figure indicates that the flow slightly separates at
the lower wall but not at the upper wall. A thin recirculation region occurs in the range
0.5 < z < 1.5, which is also visible on the pressure gradient at the lower wall in Fig. 3.12.

The distribution of turbulent kinetic energy (¢?) in the x-y plane is given in Fig. 3.14.
Two strong regions of turbulent kinetic energy which are more intense at the lower wall
than at the upper wall appear in the APG diverging regions. So as to conduct a detail
inspection of this region, one-dimensional normal profiles of turbulent kinetic energy along
the two walls are depicted in Fig. 3.15. One can observe a peak initially located close
to the wall near y* ~ 11 at x = 0.0 and moving away from the wall when progressing
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downstream. These peaks reach a maximum near y* ~ 33 at x = 1.2. This is due to a
very sharp increase of the energy production (Laval et al 2012 [73]). The location of the
peak corresponds to the position around y* ~ 30 of the high density peak of vortices near
x =~ 1.0 examined by Laval 2012 [71]. Then a new near wall peak is regenerated when the
original ones decrease and continue to move apart. This agrees well with observations of
the normal profiles of the averaged streamwise fluctuating velocity at the lower wall by
Laval et al. 2012 [73| who found that the production of energy due to adverse pressure
gradient is responsible for the second peak. The energy peak has a similar behavior at
the upper wall but slightly shifted downstream due to the slight streamwise shift of the
first adverse pressure gradient position (see Fig. 3.12).
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Figure 3.14: Averaged turbulent kinetic energy (¢?) = (fu/u!) on channel flow with
adverse pressure gradient at Re, = 617.
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Figure 3.15: Normal profiles of the averaged turbulent kinetic energy (¢*) at the two walls
in the adverse pressure gradient regions.
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Figure 3.16: Rate of kinetic energy dissipation (¢) = (2v5;;5;;) in the channel flow
with adverse pressure gradient at Re, = 617.

So as to normalize the other statistics in Chapter 5, the rate of kinetic energy dis-
sipation (€) = (2v.5;;5;;) in the x-y plane is given in Fig. 3.16. Two intense regions of
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Figure 3.17: Tso-value of the Q-criterion (Q = 3[|Q*—|S|?] with S = L [Vu+(Vu)?]
and Q = 1[Vu — (Vu)?]) for the whole simulation domain.
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Figure 3.18: The average radius of streamwise vortices (a) and density of probability of
the radius of streamwise vortices inside the high turbulent kinetic energy region (b) on
channel flow with adverse pressure gradient at Re, = 617 (from Laval 2012 |71]).

(€) are also observed in the diverging APG near wall regions. The sharp growth of both
turbulent kinetic energy (Fig. 3.15) and dissipation (Fig. 3.16) correspond to regions of
high concentration of vortices occurring slightly downstream of the summit of the bump
at the lower wall, and more downstream at the upper wall as shown in Fig. 3.17. In
the same geometry, the probability density of the streamwise vortices radius in the x-y
plane in the region near the peak of turbulent kinetic energy was estimated by Laval
2012 [71], who observed that the density of streamwise vortices near the turbulent energy
peak region is almost 30 times that in the other regions. At z ~ 1.0, y* < 50 occurs the
maximum density of streamwise vortices whose average radius is r* ~ 15 (less than 10
times of Kolmogorov scale 1) in the largest probability (see Fig. 3.18), while the highest
probability of the vortices radius is 7* ~ 30 outside the energy peak region. So the intense
energy and dissipation in the diverging near wall regions is mainly caused by the high
concentration of small scale vortices.

3.6. Numerical methods and computational issues

As a spectral method is not applicable for the non-homogeneous flow database, an 8-
order (implicit 5-5 stencil) compact finite-difference scheme is used for the spatial deriva-
tion for a priori analysis. However, when used with homogeneous grid, high order finite
difference derivatives are affected by ‘Runge’ effect which is spurious oscillations that may
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appear at the borders of the domain. As the analysis has to be conducted on the orig-
inal DNS grid, the only solution to compute the derivative is to restrict the domain for
the computation of the statistics by removing the regions affected by the ‘Runge’ phe-
nomenon. Using high order finite difference scheme, the ‘Runge’ phenomena is usually
restricted to the first 4 —5 points from the boundary. In our case, 48 points respectively at
the beginning and at the end of spanwise and streamwise directions in the plane channel
flow, and 24 points in the channel flow with adverse pressure gradient are ignored. These
are enough to prevent the numerical error associated to the ‘Runge’ effect to affect the
statistics.

The statistics of present research are computed by averaging over 10 fields of plane
channel flow, and 465 fields with Lss-5'" filter or 186 fields with Gaussian filter for the APG
channel flow. The a priori analysis is conducted with a post-processing code written in
Fortran 90 parallelized using Message Passing Interface (MPI). The parallel computations
were performed with 32 (for plane channel flow) or 35 (for APG channel flow) CPUs on
the LML computing server (6 nodes, 4 12-cores AMD CPU, 2.0 Ghz). The execution
efficiency and computational time largely depend on the number of processors and the
size of the database. The CPU time depends on the subgrid scale models and is affected
by the filter type. A typical a priori estimation of the Smagorinsky coefficient computed
by 465 fields of the converging-diverging channel flow requires about 100 to 200 hours
depending of the filter type. As the full computational domain (half a billion points of
grid mesh) is treated at the same time, some computations requires up to 200 Gb of
memory.



Chapter 4

Results for the plane channel flow

4.1. Introduction

This chapter presents the results of the a priori tests on the energy transfer mechanisms
and a priori evaluations of different subgrid scale models coefficients in plane channel
flow at Re, = 950. The performances of these subgrid scale models and their predicting
capacities are assessed finally. The behavior of subgrid scale models are tested with
different 2D filter widths using both Lss-5* and Gaussian filters.

4.2. Choice of filter width

In order to correctly simulate the dynamics of the inner layer of wall turbulence, the
energy containing scale should be resolved. Robinson (1991) showed that, the turbulent
dynamic in the inner layer is dominated by vortices whose dimensions are constant in wall
units, and which should be correctly resolved. In order to satisfy this requirement, later
research often suggest the filtering width to be A < 100 in streamwise and AF < 20 in
spanwise direction, and as the outer flow is approached, larger spacing can be used (Zang
1991 [149]; Piomelli 2010 [109]; Cimarelli et al. 2012 [30]).

In order to study the influence of the filter width related with the filter type, a large
range of filter width summarized in Table (4.1) are investigated in the present research.
The different positions of these filters with respect to the one-dimensional energy spectra
are given in Fig. (4.1). Three physical locations, respectively at y™ = 15 (buffer layer),
yT = 80 (logarithmic layer) and y* = 600 (outer region) are illustrated, and different
filter sizes are indicated on the figures. In large eddy simulation, the small scales which
need to be modeled are separated from the large scales by the filter. This separation
depends on the filter width in each direction.

Fig. (4.1) shows that, in the near wall position y* = 15, the energy spectra of large
scales have large difference among F1, Foy and F33. As moving toward the channel center,
this difference becomes smaller at the other two positions y™ = 80 and y™ = 600. The
filter widths chosen in each direction are close to the Kolmogorov spectra range. Most
of the cutoff wavenumbers falls inside of the inertial range or at the beginning of the
dissipative range. Some cutoff wavenumbers are placed slightly before the inertial range.

61
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Figure 4.1: The normalized energy spectra along streamwise (a, ¢, e) and spanwise (b,
d, f) directions at three physical locations: buffer layer (y™ = 15), logarithmic layer
(y™ = 80) and outer region (y* = 600). u, = (ev)/*.

But they are supposed not to take significant turbulent kinetic energy, as the inertial
range becomes wider for turbulence at high Reynolds number. Fig. (4.1) also displays
that, the spanwise filter width A plays a less significant role for the subgrid scale kinetic
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energy as moving away from the wall. It filters out less subgrid scale kinetic energy near
the channel center (y™ = 600) than in near wall region. Consequently, increasing the
spanwise filter width from A} = 10 to 20 leads to a smaller increase in subgrid scale
kinetic energy in the outer region than in near wall region.

In order to evaluate the quantity of subgrid scale kinetic energy corresponding to each
filter width, the percentage of the volume-averaged subgrid scale kinetic energy <q§g8)v to
the total volume-averaged turbulent kinetic energy (¢?), using both Lss-5"" and Gaussian
filters are presented in Table (4.1). As also shown in Fig. (4.1), the larger the filter width
(both in streamwise and spanwise directions), the higher the fraction of turbulent kinetic
energy at subgrid scales. However, this fraction is higher with Gaussian filter than with
Lss-5" filter when using the same filter width. This is because the Gaussian filter is not
as sharp as the Lss-5'" filter. It filters out less energy at the small subfilter scales, but it
also filters out energy from some large scales. Because of the shape of the kinetic energy
spectra, the quantity of subfilter energy is significantly larger with the Gaussian filter
than with the Lss-5"" filter. In order to investigate the influence of the filter function, the
Gaussian filter will be systematically used as a reference for Lss-5'" filter in the present
research.

AF =50 AF =100 A =200
Lss-5t" 2.77% 10.42%
+
A7 =10 | Gaussian | 6.70%  15.26%
AT oo | DB | 3.14%  10.66%  24.54%
z Gaussian 8.34% 16.53% 29.59%
Lss-5" 12.62% 25.71%
+ —
AT =40 | Gaussian 20.03%  32.03%
Lss-5t" 30.27%
+ —
AT =80 Gaussian 37.79%

Table 4.1: Fraction of subgrid scale kinetic energy to the turbulent
kinetic energy (¢2,.)v/(¢*)v, (@)» = 0.004

In order to give a better description of the filter effect, Fig. 4.2 presents the fraction
of subgrid scale kinetic energy averaged in a plane parallel to the wall (x,z) to the total
plane-averaged turbulent kinetic energy as a function of wall normal position. Results
are given respectively in near wall and outer regions. In the outer region, this percentage
depends mainly on the streamwise filter width AT, as it corresponds to horizontal wave
numbers where the slope of the energy spectra is flatter than spanwise (see Fig. 4.1). All
the curves with the same streamwise filter width collapse in the outer region for A} = 10
and 20, as the kinetic energy between the wave numbers corresponding to AF = 10 and
20 is small (see Fig. 4.1). The results of Table. (4.1) also indicates that, all the filter sets
with the same streamwise filter width have the smallest increase of the volume-averaged
subgrid scale kinetic energy, when increasing the spanwise filter width from AF = 10 to
20. But the increase of subgrid scale kinetic energy caused by changing the spanwise filter
width from AT = 20 to 40 is slightly larger. This is also consistent with the behavior of
energy spectra in Fig. (4.1) and the behavior of the volume-averaged fractions of subgrid
scale kinetic energy in Table. (4.1).

Increasing the spanwise filter width from AT = 20 to 40 and from 40 to 80 leads to a
significant rise of fractions of subgrid scale kinetic energy in the near wall region, especially
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Figure 4.2: Fraction of subgrid scale kinetic energy <q§gs> to the total turbulent kinetic
energy (q?) with Lss-5"" (a, ¢) and Gaussian (b, d) filters, in near wall region (a, b) and
in outer region (c, d) (The same legend will be used for the filter width in the following
figures of the current chapter except special notifications).

in the viscous and buffer layers. This is consistent with the behavior of the energy spectra
at y* = 15in Fig. (4.1). Furthermore, in the range y* < 10, the filter set at AT = 100 and
AF = 40 has larger fraction of subgrid scale kinetic energy than the filter set at AT = 200
and A = 10. The filter set with A} = 50 and A} = 20 is overlapping with the filter
set with A+ = 100 and A} = 10 using a Gaussian filter. Thus, the subgrid scale kinetic
energy has a significant asymmetry between streamwise and spanwise directions. More
energy is concentrated in the small spanwise scales. This agrees well with Cimarelli and
De Angelis 2012 [30], who found that the turbulent generation mechanisms are stronger
in the spanwise direction and are not located at large scales.

4.3. Energy transfer mechanism

In LES, it’s important to correctly evaluate the energy exchange between the resolved
and unresolved scales. Most of previous research of plane channel flow are focused on the
analysis of SGS energy dissipation at low Reynolds number with classical filters (Piomelli
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et al. 1991 [112]; Hértel et al. 1994 [62]; Horiuti 1997 [65]; Abba et al. 2003 [1]; Cimarelli
and De Angelis 2012 [30]). The subgrid scale models are mainly designed to correctly
predict the energy dissipation. Seldom studies directly refer to the analysis of the SGS
energy transfer or SGS diffusion in physical space. The present research will study the
complete effect of the unresolved scales on the resolved ones, including the SGS diffusion
and SGS energy dissipation. Special emphasis will be paid to the back scatter of SGS
energy.

4.3.1. SGS energy transfer

In the present study, the SGS energy transfer will first be analyzed in physical space, with
filter width A} = 100 and A} = 20, using a Gaussian filter. We define the direction of
energy transfer, such that, the energy is forwardly transfered from large to small scales
(forward scatter) when the SGS energy transfer Ty, is positive, and the energy is in turn
transfered backward from small to large scales (back scatter) when Ty, is negative. The
SGS energy transfer T,,, can be splitted into two contributions as defined in Chapter 3.
The positive contribution TSZS indicating the energy transfer from large to small scales,

and the negative one T,  indicating an inverse energy transfer. These two contributions

are useful to explain the SGS energy transfer in more detail.

The behavior of the total SGS energy transfer, as well as the forward scatter and
backward scatter contributions along wall normal position, are given in Fig. (4.3). The
statistics are normalized by the plane-averaged rate of kinetic energy dissipation (€) in
Fig. 4.3(a) in order to compare the analysis. The fraction of points experiencing back
scatter of SGS energy transfer is given in Fig. (4.4).

In the outer region, the positive contribution of SGS energy transfer (T, .)/(e) is on

average relatively larger than (T )/(€), indicating a net forward energy cascade from
large to small scales. This is driven by a slightly larger fraction of points (less than
4%) of forward scatter compared to back scatter. A similar behavior is observed with
Lss-5" filter, except that (T3f.)/(e) and (T,,)/(€e) are almost twice of their magnitudes
with Gaussian filter (see Fig. A.1 in Appendix A). This may be due to the sharpness
of Lss-5'" filter. In order to easily present the near wall region at the same time, the
statistics are normalized by the volume-averaged rate of kinetic energy dissipation (e),
as presented in Fig. 4.3(b). The backward and forward dominant regions of SGS energy
transfer (Tygs)/(€), are clearly divided by a demarcation in the whole region. Above
yt ~ 15, the net transfer of energy is from large to small scales. A forward scatter peak
of SGS energy transfer (T,s)/(€), occurs in the buffer layer, at about y* ~ 21. This
may be due to the influence of the turbulent kinetic energy peak at position y* ~ 18, as
evidenced in Fig. (3.10) of Chapter 3. But slightly more points (about 10%) experience

forward scatter than back scatter at this peak location.

A net backward energy cascade of (Tyy)/(€), from small to large scales occurs in
range y* < 15, as the negative term (T .)/(€), is significantly larger than the positive
one (Tg.)/(€), in this region. Furthermore, for y* < 5, the positive contribution is
almost zero. Most of the points in this region (72%-85%) transfer energy to larger scales.
The peak of net back scatter occurs at about y* = 6, where about 85% of the points
experience back scatter of SGS energy. This is at the upper limit of the viscous layer.

Hirtel et al. 1994 [62] and Piomelli et al. 1996 [114] have also found a reverse energy
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Figure 4.3: SGS energy transfer including the back scatter and forward scatter contribu-
tions, normalized by plane-averaged (a) and volume-averaged (b) rate of kinetic energy
dissipation. Statistics are given for the same filter width A} = 100 and A = 20 and a
Gaussian filter.
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Figure 4.4: Fraction of points experiencing back scatter of SGS energy transfer with the

Gaussian filter set at A7 = 100, AT = 20. The outer region is given in inset.

transfer in the buffer layer. But the forward and backward scatter peaks, especially
the back scatter predominant range of SGS energy transfer in near wall region were not
observed in previous a priori analysis (Piomelli et al. 1991 [112]; Horiuti (1997) [65]; Abba
et al. (2003) [1]).

For the filter sets with the same filter width AT = 100 and A} = 20 using Lss-5"
filter, SGS energy transfer as well as its two contributions show a behavior similar to
the above analysis with the Gaussian filter. However, some significant differences with
different filter width exist. Fig. 4.5 and 4.6 present the behavior of the plane-averaged
SGS energy transfer with different filter width of Lss-5'" and Gaussian filters. In the outer
region, the transfer is larger in magnitude for larger filter width in both directions, and
more dependent on the streamwise filter width than the spanwise one. The tail of SGS
energy transfer (Ty,s) /() for Gaussian filters is higher than with Lss-5" filter in the range
yT > 500 as presented in Fig. 4.5(b). This behavior of SGS energy transfer toward the
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channel center correspond well with the fraction of points experiencing backward scatter as
shown in Fig. 4.7. An evident rise on the fraction of points experiencing forward scatter
occurs near the channel center for the Gaussian filter with AT = 200 and A} = 80.
Thus, in the outer region, the increasing amount of subgrid scale kinetic energy caused
by increasing the filter width is consumed to strengthen the magnitude of SGS energy
transfer, while the increasing amount caused by filter type will change the developing
trend of the plane-averaged SGS energy transfer.

(a) Statistics with Lss-5t" filter (b) Statistics with Lss-5"" and Gaussian filters
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Figure 4.5: Outer region behavior of plane-averaged SGS energy transfer using Lss-5'"
and Gaussian filters. The same symbols as in Fig. 4.2.
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Figure 4.6: Near wall region behavior of plane-averaged SGS energy transfer using Lss-5""
and Gaussian filters. The same symbols as in Fig. 4.2.

In near wall region, Fig. 4.5 shows that, the frontier between the backward and forward
dominated regions, as well as the backward and forward peaks of SGS energy transfer
(Tsgs)/(€), move away from the wall when increasing the filter width both in streamwise
and spanwise directions. The Gaussian filter also forces the forward and backward peaks
to move toward the channel center as compared to the same filter sets with Lss-5" filter.
This corresponds well with the fraction of points experiencing back scatter of SGS energy
for each filter set in Fig. 4.7.

In addition, Fig. 4.6 also exhibits significantly larger magnitude of SGS energy transfer
(Tsys)/(€)y caused by the larger spanwise filter width in the near wall region than in the
outer region as given in Fig. 4.5. The energy bias even occurs on the filter sets with
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Figure 4.7: Fraction of grid points of Ti,s < 0 using the Lss-5" (a) and Gaussian (b)
filters, the near wall region is plotted in the insert. The same symbols as in Fig. 4.2.

smaller spanwise scales, compared to the prediction of subgrid scale kinetic energy in Fig.
4.2. The plentiful subgrid scale kinetic energy in near wall region, caused by the larger
filter width or the filter type, are completely used to strengthen the magnitudes of SGS
energy transfer in near wall region.

4.3.2. SGS energy dissipation

The a priori analysis of SGS energy dissipation is conducted on the same filter set as
in the previous analysis of SGS energy transfer. The results for a filter width AT =
100 in streamwise direction and A_j = 20 in spanwise direction, using Gaussian filter
are given in Fig. 4.8 and 4.9. The SGS energy dissipation is also normalized by the
plane-averaged and the volume-averaged rate of kinetic energy dissipation in Fig. 4.8(a)
and 4.8(b) respectively. In order to be consistent with the analysis of previous research
(Piomelli et al. 1991 [112|; Abba et al. 2003 [1]), we define that €, > 0 indicates
the energy flow from small to large scales (back scatter), and €55 < 0 indicates the
energy transfer from large to small scales (forward scatter). The equations of the two
contributions 6;;5 and €sgs have been defined in Chapter 3.

Unlike the bidirectional energy cascade of SGS energy transfer, the SGS energy dissi-
pation exhibits a single direction of energy cascade from large to small scales at all wall
normal positions. But there exists a significant back scatter contribution to the SGS dis-
sipation which must be accounted for in the formulation of robust LES models, as shown
in previous research (Natrajan and Christensen 2006 [101]). The negative contribution
(€sgs)/(€) of SGS energy dissipation keeps larger than the positive one (¢ .)/(¢) at all
wall distances. This is powered by a large fraction of points (more than 60%) of forward
scatter in the outer region, as displayed in Fig. 4.9.

In the near wall region, a significant forward scatter peak of SGS energy dissipation
occurs at about y* = 11, as illustrated in Fig. 4.8. A very small SGS energy dissipation
peak has been found by Piomelli et al. 1991 [112], when the same small or large filter
width in streamwise and spanwise direction is used at low Reynolds number Re, = 180.
The magnitude of this peak becomes more evident at a moderate filter width, using the
2D cutoff filter. Abba et al. 2003 [1] have found a clear forward peak of SGS energy
dissipation at Reynolds number Re, = 660 for the plane channel flow, using the 3D
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Figure 4.8: SGS energy dissipation and its two contributions normalized by plane-averaged

(a) and volume-averaged (b) rate of kinetic energy dissipation respectively, for a Gaussian
filter set at A} =100, Af = 20.
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Figure 4.9: Fraction of points experiencing back scatter of SGS energy dissipation, for a

Gaussian filter set at Af = 100, Af = 20.

tophat filter. Hirtel and Kleiser (1998) [61] reported that, the magnitude of SGS energy
dissipation increases with Reynolds number. In order to investigate the sensitivity of this
forward peak of SGS energy dissipation to the filter width and type, the results for the
additional filter sets with different filter width using Lss-5"" and Gaussian filters are given
in Fig. 4.10. For all filter sets investigated, SGS energy dissipation is larger in magnitude
in the near wall region, compared to the outer region. Globally, higher forward peaks are
observed for filter sets with larger fractions of subgrid scale kinetic energy as displayed
in Fig. 4.2. In the range y* < 10, for the filter set with AT = 100 and A = 40, this
peak is larger in magnitude than for both Lss-5"" and Gaussian filters with A+ = 200 and
AT =10. And the filter set A} = 50, AF =20 and A} = 100, A} = 10 have very silimar
magnitude in this range using Gaussian filter. Globally, the behavior of SGS dissipation
in the near wall region is driven by the amount of subgrid scale kinetic energy, whatever
the filter width in each direction or the filter type. In addition, increasing the near wall
subgrid scale kinetic energy will drive the forward peak of SGS energy dissipation to move
toward the wall. This behavior is reverse as compared to the energy cascade peaks of SGS
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energy transfer.
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Figure 4.10: Near wall region behavior of SGS energy dissipation with Lss-5" filter (a)
and Gaussian filter (b). The same symbols as in Fig. 4.2.

The maximum fraction of points experiencing forward scatter appears at about y™ = 8
as presented in Fig. 4.9. This peak is discernible in the results of Piomelli et al. 1991 [112],
who found that the energy back scatter is close to 50% throughout the channel at low
Reynolds number (Re, = 180, using cutoff filter). They claim that this fraction is inde-
pendent of the filter width and of the distance from the wall. Later, Horiuti (1997) [65]
found this forward scatter peak at Reynolds number Re, = 180 in a plane channel flow
using Gaussian filter. Abba et al. (2003) [1] found this peak of SGS energy dissipation,
at Reynolds number Re, = 660 in a plane channel flow using a tophat filter. Fig. 4.11
shows that this peak exists in the near wall region independently of the filter width and
type. It is more visible with Gaussian filter than with Lss-5" filter.
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Figure 4.11: Fraction of points experiencing back scatter of SGS dissipation with Lss-5"
filter (a) and Gaussian filter (b). A zoom in near wall region is presented in the inset.
The same symbols as in Fig. 4.2.

Fig. 4.8 and 4.9 reveal that, there is an offset between the peak in the fraction of
points experincing forward scatter of SGS energy dissipation (y* = 8) and the peak of
the positive contribution (ef,.)/(€), of SGS energy dissipation (y* = 11). This indicates
that, there is a dissymmetry in the statistics of backward and forward scatter of SGS

energy dissipation. This is expected in this region, as the turbulence is dominated by

2.0 x 102
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streaks which are well organized structures that can contribute differently to the positive
(e3,s) and negative (ez, ) contributions of SGS energy dissipation. Fig. 4.12 shows that,
with the same filter widths A} = 100 and A} = 20 as shown in Fig. 4.8 and 4.9 using Lss-
5% filter, the peak of the positive contribution (e},,)/(€), of SGS energy dissipation occurs
at y© = 11. The fraction of points experiencing backscatter is almost constant along the
wall normal distance, with a slight local minimum near y* = 8 and a second minimum
near y= = 40. So Lss-5" filter leads to a smaller disproportion of points experiencing
backward and forward scatter than with a smooth Gaussian filter. In addition, the positive
contribution (el ) /(€), of SGS energy dissipation is more pronounced using Lss-5" filter
than Gaussian filter. This implies that Lss-5"" filter acts similarly to a cutoff filter which
more markedly raises the significance of backscatter compared to the Gaussian filter as
discovered by Leslie and Quarini 1979 [75] and Piomelli et al. 1996 [114].

(30) b)

il | | — {ew/la. 0'45\—/_\//‘
6.0} — g /(e | | |

4.0

—~

=]
'S
S

o

w

il
T

20F

o

w

S
T

0.0 JEEEEEL 1000

2.0}

Fraction of points (e,4 > 0)
5

L7SS-5H' o LSS-5”’
—40f AF =100, Af =20 A =100, AT =20
50 ‘ ‘ ! ‘ ‘
° 10° 10t 10? 10% 100 10! 10? 10°
+ +

Y Y

Figure 4.12: SGS energy dissipation (a) and the fraction of points experiencing back
scatter with Lss-5" filter (b).
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Figure 4.13: Plane-averaged SGS energy dissipation in outer region as function of
filter width and filter type. The same symbols as in Fig. 4.2.

Fig. 4.8 also shows that, the plane-averaged SGS energy dissipation reaches its max-
imum near y* = 100. Then it decreases gradually toward the channel center. This is
independent of the filter type and filter width. But the SGS energy dissipation (es4s)/(€)
remains constant after the maximum according to the observation of Piomelli et al.
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(1991) [112] and Abba et al. (2003) [1|. The decrease of SGS energy dissipation toward
the channel center also occur with other filter sets using Lss-5 and Gaussian filters, as
revealed in Fig. 4.13. This is reminiscent of the developing trend of the plane-averaged
SGS energy transfer along wall normal distance, which is caused by Gaussian filter as
shown in Fig. 4.5(b). Obviously, the plane-averaged SGS energy dissipation is not as
sensitive as the plane-averaged SGS energy transfer to the filter type, but increasing the
filter width still strengthen the magnitude of the plane-averaged SGS energy dissipation.
The SGS energy dissipation was found to be independent of the filter width in an ideal
inertial range by Porté-Aget et al. 2001 [118]. However, the plane-averaged SGS energy
dissipation of the present research has larger magnitude for larger filter width both in
streamwise and spanwise directions (Fig. 4.13). Besides, the plane-averaged SGS energy
dissipation have larger magnitudes with Gaussian filter than with Lss-5" for all the filter
sets, confirming results of O’Sullivan et al. 2001 [105]|, who observed that magnitude of
SGS dissipation is strongly influenced by filter type in square duct flow at Re, = 600.

Therefore, the energy transfer mechanisms of the present wall-bounded flow do not
collapse to the previous research of wall-bounded turbulence at low Reynolds number
(Piomelli et al. (1991) [112]; Hértel et al. 1994 |62|; Horiuti (1997) |65]). Significant
backscatter cascades have been found both in SGS energy transfer and SGS energy dis-
sipation in the whole region along wall normal positions. This is in accordence with the
observations of Piomelli et al. 1996 [114], who found that backward and forward scatter
usually occur in close proximity of each other, the back scatter event being generally
surrounded by a region of significant forward scatter.

According to Domaradzki et al. 1994 [40] and Piomelli et al. 1996 [114], in the near-
wall region of a plane channel, the occurrence of large energy transfer between the resolved
and unresolved scales is strongly correlated with the turbulent structures that characterize
the wall bounded flows. A single, quasi-streamwise, vortex (or a pair with a strong leg
and a weak one) is more likely to occur in wall-bounded flow at low Reynolds number.
According to Piomelli et al. 1996 [114], the forward scatter and back scatter apparently
arise from different parts of a coherent eddy, and the net transfer is the difference of the
two sides. For our research, the significant energy distribution in small spanwise turbulent
scales in viscous and buffer layer (Fig. 4.2) is indiscernible in previous research of nearwall
turbulence structures. Thus, near wall turbulence structure associated with the energy
transfer between resolved and unresolved scales of plane channel flow at a comparable
high Reynolds number is expected. The present results show that, the turbulent kinetic
energy bias in small spanwise turbulent scales is characterized by a dominant back scatter
cascade region (Fig. 4.3(b) and 4.6) of net SGS energy transfer in near wall region. But
it’s not reflected by the SGS energy dissipation. Thus, the subgrid scale models mainly
for dissipating the net energy from resolved scales are not robust. This agrees well with
Meneveau and Katz 2000 [93] who thought that for a subgrid scale models, providing the
correct mean dissipation is in general only a necessary but not a sufficient condition to
reproduce the correct flow statistics.

4.4. A priori evaluation of model coefficients

The a priori studies of classical eddy viscosity models have been performed in different
configurations in previous work (for isotropic turbulence by Pruett and Adams 2000 [120];
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for turbulence in square duct flow by O’Sullivan et al. 2001 [105]; for the atmospheric
surface layer by Porté-Aget et al. 2001 [118]; for wind tunnel by Carper and Porté-Agel
2008 [24]; for a lake by Bou-Zeid et al. 2008 [18] etc...). However, the a priori analysis of
subgrid scale models on plane channel flow at high Reynolds number, especially of up-to-
date subgrid models, are greatly expected to provide significant information for research
and development of these models and of large eddy simulation.

In the present a priori analysis, the coefficients of the Smagorinsky, WALE and o
models are evaluated by matching the measured and modeled SGS transfer rate of resolved
kinetic energy, as defined by equation 3.18, 3.19 and 3.20 in Chapter 3. The coefficient of
the Dynamic Smagorinsky model is calculated by equation 2.25 in Chapter 2.

4.4.1. Smagorinsky model and Dynamic Smagorinsky model

The standard value of the coefficient of the Smagorinsky model (Cs) ~ 0.16 is often used
for isotropic turbulence (Lilly 1967 [77]; Meneveau 1997 [94]). This value of (Cs) has been
found too large for plane channel flow by many research (Deardorftf 1970 [36]; Moin and
Kim 1982 [99]; Piomelli, Moin and Ferziger 1988 [113]). So (C;) ~ 0.10 and (C;) ~ 0.065
were used respectively by Deardorff 1970 [36] and Moin and Kim 1982 |99| for plane
channel flow. Later, Liu et al. 1999 [78] reported a range of 0.06 < (Cs) < 0.14 which
can be used in plane channel flow.

The coefficient (Cs) of the Smagorinsky model with different filter width using Lss-
5 filter are given in Fig. 4.14. In the outer region, the values of (C,) fall in range
0.05 < (Cs) < 0.07. The lower values obtained in the present analysis, compared to
previous research, are probably due to the effect of two-dimensional, instead of three-
dimensional filtering, or to sensitivity of subgrid model coefficients to the mesh size (Scotti
et al. 1993 |126]; Nicoud et al. 2011 [103]). The coefficient (Cs) is nearly contant for
AT = 50, AT = 20 and rises somewhat toward the channel center for the other filter
widths considered. This is incompatible with the results of Porté-Aget et al. 2001 [118],
who found that the streamwise filter width has little effect on the main trends of subgrid
scale model coefficients. (C,) is smaller in magnitude for larger streamwise AT, except
for the set A} = 50, AT = 20 which corresponds to a very small fraction of subgrid
scale kinetic energy (less than 10%) as presented in Fig. 4.2. In fact, (Cs) has the same
streamwise filter width dependence as the plane-averaged SGS energy dissipation (eg4s)/(€)
(Fig. 4.13) and as the subgrid scale kinetic energy in the outer region.

Furthermore, the coefficient (C,) is significantly larger in magnitude for larger AF.
This agrees well with the results of Porté-Aget et al. 2001 [118]. The fraction of subgrid
scale kinetic energy depends slightly on the spanwise filter width in the outer region as
shown in Fig. 4.2. Nevertheless, (C,) has a A dependence consistent with the plane-
averaged SGS energy dissipation (esys)/(€) in outer region. So (Cy) is mainly related to
SGS energy dissipation rather than the subgrid scale kinetic energy. However, toward the
channel center, the evolution of (Cy) disconnects from the SGS energy dissipation which
gradually decreases. The same filter width dependence of (C;) is observed in the outer
region using Gaussian filter.

The classical Smagorinsky operator |S| defined in Chapter 3 is known to be non-
vanishing near solid boundaries. This major drawback has motivated the use of Van
Driest damping functions so as to compensate it by model coefficients. Fig. 4.15 shows
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Figure 4.14: A priori estimate of coefficient (Cs) of Smagorinsky model with different
filter width using Lss-5" filter.
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Figure 4.15: A priori estimate of coefficient (Cs) of Smagorinsky model in near region
using Lss-5" filter. f(y*) = 1 — exp(—y*/25) is the Van Driest Damping function.

the comparision of (Cs) with Van Driest damping function in the inner region. The
statistics are normalized by (Cy,) which is the mean value for each filter set in the range
300 < y* < 850. The normalized coefficient (C)/(Cl,) is far from the Van Driest damping
function, especially in the range y* < 20. The shapes of the curves (Cs)/(Cy,) mostly
rely on the ratio o (« = A} /A7T) instead of the filter width, which plays an important
role in outer region for the coefficient (Cs), as analyzed above . (Cs)/(Cs,) is closer to
Van Driest damping function for smaller o. It has been checked that the property of
(C5)/(Csp) is almost independent from the filter type.

Fig. 4.16 exhibits the influence of the filter type and filter width on coefficient (Cs) with
the same ratio « = 2.5. Generally, (C;) has larger values with Gaussian filter than with
Lss-5" filter in the outer region. The smaller the filter width, the larger the difference in
(C,) between Lss-5"" and Gaussian filter. So (C,) with small filter width using Gaussian
filter is close to the value observed in previous research, since for the same ratio a = 2.5
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Figure 4.17: A priori estimate of coefficient (Cy) of Dynamic Smagorinsky model
using Lss-5'" filter.

in the outer region, the coefficient (C) is larger for larger filter set using Lss-5", but is
smaller on large filter set using Gaussian filter.

The coefficient (Cy) of the Dynamic Smagorinsky model predicted by the resolved
scales is now compared to the a priori estimate of the coefficient (C;) of the Smagorinsky
model for each filter set. The wall normal evolution of (Cy) is displayed in Fig. 4.17. It
is almost constant for each filter set in outer region. However, the range of (Cy) which
is [0.03 — 0.07] is always smaller than that of (C,) ([0.05 — 0.07]) except for (A} = 50,
A = 20). Furthermore, (C;) has more scatter than (C,) for the different filter sets.
According to Carper and Porté-Agel 2008 [25], this scatter may be due to the fact that
a larger test filter width is too large in the dynamic procedure and limits the number of
points over which the average is calculated. However, the larger magnitude of (Cy) in
the outer region drastically relies on smaller ratio o (@ = AJ/AT), and it is consistently
smaller for the larger filter width for each «. Thus, it’s believed that the coefficient (Cy)
is closer to coeflicient (C;) for small filter width of the small ratio « for most cases, except
the filter set AT = 50, AF = 20 for which (C,) is overestimated compared to (C,).
However, the filter set (A = 100, AF = 40) for a = 2.5 using Lss-5%" filter seems to be
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the most suitable match for (Cy), which is predicted almost the same as (Cs) in outer
region.
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Figure 4.19: Relative error between coefficient (Cs) and (C,) using Gaussian filter.

Similarly to present analysis, Bou-Zeid et al. 2008|18| observed an underestimate of
(Cy). In order to clarify the comparison between (Cs) and (Cy), their differences using
both Lss-5"" and Gaussian filters are illustrated in Fig. 4.18 and 4.19 respectively. The
deviation of (Cy) from (Cj) in the near wall region (from 0 to 85%) is larger than in outer
region (less than 40%). The Dynamic model coefficient is systematically underestimated
except for the smaller Lss-5" filter (A} = 50, Af = 20). Very similar behaviors are
observed for the Gaussian and Lss-5" filters in the whole channel region. However, with a
better agreement in the outer region, the small Gaussian filter (A = 50, AT = 20) seems
to be the most suitable to match the dynamic Smagorinsky model coefficient (Cy) with
the a priori estimate (Cs). O’Sullivan et al. 2001 [105] found that small scale variations
of coefficient of Dynamic Smagorinsky model are more evident for cutoff filter compared
to Gaussian filter. Thus, the different suitable filter width for Dynamic Smagorinsky
model between Lss-5"" and Gaussian filters verifies that Lss-5"" has properties similar
to cutoff filter. Meanwhile the Dynamic Smagorinsky model is shown here to be often
under-dissipative compared to the Smagorinsky model, confirming the results of Bou-Zeid
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et al. (2008) [18].
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Figure 4.20: Influence of the test filter width of Dynamic Smagorinsky model with
Lss-5t" and Gaussian filters.

For the Dynamic Smagorinsky model, the test filter width A is often chosen such
that A = 2.0A. Within the inertial range, the Dynamic Smagorinsky coefficient (Cj)
is supposed to be insensitive to the test filter width A as shown in an open channel
flow by Tsubokura 2006 [139]. The influence of the test filter width A on (C,) has been
investigated and the main results are given in Fig. 4.20. The test filter width A has a
larger influence on the magnitude of (Cy) with the Gaussian filter than with Lss-5"* in
the outer region, especially for the smallest test filter width A = 1.5A. Such a small test
filter width is not advocated for Lss-5" filter, because it has overestimated the coefficient
(Cy) for the filter set (A} = 50, AT = 20). This test filter width has little influence in the
inner region. Thus, the smaller the filter and/or test filter width, the closer the coefficient
(Cy) to (C,) in the outer region with a Gaussian filter, not Lss-5" filter.

4.4.2. Wall-Adapting Local Eddy-Viscosity model

An important feature of the WALE model is that it can recover the proper y™ near-
wall scaling for the eddy-viscosity theoretically by accounting for the effects of both the



78 CHAPTER 4. RESULTS FOR THE PLANE CHANNEL FLOW

strain and the rotation rate of the smallest resolved turbulent fluctuations. Thus all the
turbulence structures relevant for the kinetic energy dissipation are detected by this model.
The WALE model has been observed to perform better than the Smagorinsky model on
LES of isotropic turbulence and turbulent pipe flow by Nicoud and Ducros 1999 [102]. All
the expected features have been observed: the eddy-viscosity goes naturally to zero in the
vicinity of a wall and the model gives zero eddy viscosity for pure shear. The coefficient
(Cy) of the WALE subgrid scale model is usually used as a constant in LES simulations,
notably for the converging-diverging turbulent channel flow by Kuban et al. 2012 [70].
However, to our knowledge, no a priori analysis of this WALE model has been conducted
on wall turbulence at high Reynolds number in previous research.
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Figure 4.21: A priori estimate of the coefficient (C,,) of the WALE model for different
Lss-5'" filter in the outer region.

The coefficient (C,,) =~ 0.5 has been recommended for isotropic homogeneous flow by
Nicoud and Ducros 1999 [102]. The results are obtained by Kuban et al. 2012 [70] with
0.2 < (Cy) < 04 for a converging-diverging channel flow. In the present analysis, the
a priori estimate of (C,,) is almost constant in the outer region for all Lss-5™ filters as
presented in Fig. 4.21. The low values of (C,) in the outer region (0.2 < (C,) < 0.27)
compared to previous research also reveals its sensitivity to the mesh size or to the 2D
filtering like for the Smagorinsky model. The coefficient (C,,) is not sensitive to AT, but
is always larger in magnitude for larger AT in the outer region, this is the same with
the Gaussian filter. This is due to the spanwise filter width dependence of both the SGS
energy dissipation (Fig. 4.13) and the approximate equivalent of SGS energy dissipation
by the WALE model (—2.0{(vsgs/C?)S4;Si;)-

Nicoud and Ducros 1999 [102] have shown that, for isotropic flow, the relationship
between (C,,) of the WALE model and (Cj) of the Smagorinsky model should be in the
range 3.24 < (C,,)/(Cs) < 3.36. The ratio between (C,,) and (Cj) of the present analysis
in the outer region of the channel flow falls in the range 3.31 < (C,)/(Cs) < 3.69 as
given in Table 4.2 for the different filter widths investigated here. They are larger than
in isotropic flow, especially for large filter width.

As approaching to the wall, the coefficient (C,) becomes surprisingly larger (about
0.1 < (Cy) < 1.4) than in the outer region as shown in Fig. 4.22. This is in agreement
with the behavior of SGS energy dissipation (Fig. 4.10). It’s important to note that, the
peak of (C,,) for each filter set occurs in the range y* < 10. This peak is more sensitive to
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A7 than to AF. It is significantly larger in magnitude for larger spanwise filter width Af,
especially for AT = 80 using Lss-5'" filter where it becomes very large in inner region.
This is partly due to the spanwise filter width dependence of SGS energy dissipation
(Fig. 4.10). However, it’s largely caused by the underlying differential operator <S§lj5flj)
of the WALE model as displayed in Fig. 4.23. This operator rapidly goes to zero near
solid boundaries in a way which is greatly influenced by the filter width. It becomes
very small for large spanwise filter width AF. This leads to an active sensitivity of the
approximate modeled SGS energy dissipation by the WALE model to the spanwise filter
width as presented in Fig. 4.24. Thus, the exclusive dependence of coefficient (C,,) to

spanwise filter width AT prevails in inner region.

AF =50 A =100 A} =200
- Lss-5t" 3.35 3.48
AT =10 )
Gaussian 3.37 3.46
th
AT — 20 Lss—5. 3.31 3.43 3.65
Gaussian 3.34 3.45 3.69
th
AT — 40 Lss—5. 3.35 3.61
Gaussian 3.39 3.66
AT _ 80 Lss-5t" 3.66
= Gaussian 3.64

Table 4.2: Ratio of mean values of (C,,)/(Cs) in the range 300 < y* < 850 using
Lss-5" and Gaussian filters.

3

Figure 4.22: A priori estimate of coefficient (C,,) of the WALE model in the near wall
region using Lss-5'" filter.

Meanwhile, because the resolved scales with large spanwise filter width AT = 80 are
not able to reproduce the real streaks in the near wall region, it is difficult to correctly
predict the small scale motions which contain most of the turbulent kinetic energy in
inner region (Fig. 4.2). Thus, small spanwise filter width A < 40 is recommended for
the WALE model using Lss-5" filter.

The influence of filter type and filter width on (C,,) is studied using the Lss-5" and
Gaussian filters as displayed in Fig. 4.25 and 4.26. Along the wall normal position, (C,,)
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Figure 4.23: Near wall region behavior of the WALE model operator (SSf;) using
Lss-5" filter.

0.00

[« -0.05
>
I
N3
QO -0.10
~
=
S .0.15
[aN}
|
0.20 | Lss-5"
100 10 102 2.0 x 10?
er

Figure 4.24: Near wall region behaviors of the approximate equivalent of SGS energy
dissipation by the WALE model using Lss-5" filter.

is larger with Gaussian than with Lss-5%" filter. Except for the filter set (Af = 200,
Af = 80) in the inner region. The remarkable peak of (C,) with large filter width
Af = 80 is alleviated somewhat in the near wall region by the Gaussian filter. When
large spanwise Lss-5'" filter width is used, however, the WALE model is less dissipative
in the viscous layer (y* < 10) where pure shear or rotation occurs infrequently. Anyhow,
small spanwise filter width AF < 40 can be recommended in the near wall region for the
WALE model using either Lss-5* or Gaussian filter. However, an a posteriori analysis
would be necessary to analyze the behavior of (C,,) in the near wall region.

4.4.3. 0 Model

The o model detailed in Section 2.2.3.4 of Chapter 2 takes a forward step compared to the
WALE model for generating the appropriate cubic behavior in the vicinity of solid bound-
aries without requiring any ad-hoc treatment. The o model is designed to automatically
vanish as soon as the resolved field is either two-dimensional or two-component, including
the pure shear and solid body rotation cases. Still, the 0 model has a low computational
cost, is easy to implement, and does not require any homogeneous direction in space or
time (Nicoud et al. 2011 [103]).
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Figure 4.25: Influence of the filter type and filter width on coefficient (C}) in the
outer region using Lss-5* and Gaussian filters.
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Figure 4.26: Influence of the filter type and filter width on coefficient (C,) in near
wall region using Lss-5* and Gaussian filters.

Results of the ¢ model for decaying isotropic turbulence and periodic channel flow
have been obtained by Nicoud et al. 2011 [103]. The results are systematically equivalent
or slightly better than with the Dynamic Smagorinsky model. The ¢ model has shown
the proper cubic behavior in near-wall regions of plane channel flow at Re, = 395 and
590 by Nicoud et al. 2011 [103]. But it still needs to be tested on different configurations
of non-homogeneous, wall-bounded flows.

According to Nicoud et al. 2011 [103], a constant (C,) =~ 1.5 is often used for isotropic
turbulence. The a priori estimate of coefficient (C,) in our analysis of plane channel flow
using the Lss-5"" filter is given in Fig. 4.27 and 4.28. As can be seen, (C,) has a behavior
very similar to that of (C,) of the WALE model. The magnitude of (C,) in the outer
region (0.55 < (C,) < 0.75) is significantly lower than in previous research, owing to the
same reason as for (Cs) of Smagorinsky model and (C,,) of the WALE model.

The coefficient (C,) is also larger in magnitude (about 0.3 < (C,) < 1.8) in the near
wall region than in the outer region. A maximum of (C,) is located at the same wall
distance (y* < 10) as for (C,,) of the WALE model. For the o model, the peak of (C,) is
largely due to the spanwise filter width dependence of the modeled SGS energy dissipation
by the ¢ model. This is mainly caused by the differential operator (D,) (defined by
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Figure 4.29: Near wall region behavior of the o model operator (D,) using Lss-5"
filter.

equation 2.28 in Chapter 2) of the o model (Fig. 4.29), as the differential operator (S;;S;;)
is not as sensitive as (D,) to the filter width in near wall region (Fig. 4.30).

The influences of the filter type and filter width on (C,) are shown in Fig. 4.31 and
4.32. Changing the filter type or filter width has almost the same effects on (C,) and (C,,)
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Figure 4.32: Influence of filter type on coefficient (C,) in near wall region using Lss-5"
and Gaussian filters.

along the wall normal (see Fig. 4.25 and 4.26). This a priori analysis seems to indicate
that the behavior of both ¢ and WALE models is very similar in terms of modeled SGS
energy dissipation. The superiority of the ¢ model compared to WALE model is not
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reflected in the present analysis of the plane channel flow. The coefficient (C,,) and (C,)
are more sensitive to the spanwise filter width AT than the classical Smagorinsky model or
Dynamic Smagorinsky model. This is not favorable for practical use of a model constant.
Thus, small spanwise filter width A < 40 in near wall region is also recommanded for
the 0 model using both Lss-5"" and Gaussian filters.

The failure of invariance of model coefficient has been reported in many studies (O’Neil
and Meneveau 1997 [104]; Carper and Porté-Agel 2008 |25], Bou-Zeid et al. (2008) [17])
when the filter and/or test filter width fall outside the inertial subrange and inside the
so-called production subrange. All the a priori analysis of the coefficients of subgrid scale
models in the present research indicate that the uniformity of model coefficient breaks
down when approaching the wall. Furthermore, the coefficients of subgrid scale models
considered here show great sensitivity to filter width and type. This confirms the results
of Porté-Aget et al. 2001 [118|, who found that filter width has a considerable effect on
the various model coefficients, and the large eddy simulations can yield more realistic
results by allowing the model coefficient in the eddy-viscosity model to change with filter
width. The distinguishing point of the present research lies in that a strong sensitivity to
the spanwise filter width of the coefficients of the WALE and ¢ models has been found,
which was not reported by classical subgrid models in previous research. All the results
confirm that for LES the subgrid scale models can not be specified independently of the
filter, which has been reported by many research (Piomelli 1988 [113]; Liu et al. 1994 [80];
Pruett et al. 2000 [120]).

4.5. Tests of models behavior

Large eddy simulation for predicting turbulent flux under non-equilibrium flow requires
a closer look at how well the subgrid scale models reproduce the statistical behavior of
subgrid scale quantities. However, a priori tests evaluating the behavior of subgrid scale
models on channel flow are not so numerous in previous research. In this Section, we
explore how the subgrid scale models analyzed in Section 4.4 perform to predict the three
statistical quantities defined in equation 3.23, 3.24 and 3.25 of Chapter 3. Important
information on correlations between exact quantities and their counterparts computed
with the subgrid models, as well as the predictive capabilities of eddy viscosity models
along wall normal position will be provided. Definition of correlation between exact (E)
and modeled (M) quantities is given in equation 3.26 of Chapter 3. The a priori analysis
will be conducted primarily on Smagorinsky and WALE models (as the o model behaves
quite similarly to the WALE model as analyzed above). A priori tests are performed using
the average model coefficients as function of wall distance calculated in Section 4.4.

4.5.1. Correlation of SGS tensor

Distributions of the exact SGS stresses (7;;) normalized by the square of the friction
velocity u? along the wall normal are given in Fig. 4.33 with a filter width AF = 100,
A} =40. All components of the SGS stress tensor (7;;) are slightly larger with Gaussian
filter than with Lss-5" filter. Evaluation of model performances are mainly dependent on
components (711), (T12), (T22) and (733), as (113) and (7p3) are zero due to the spanwise
homegeneity. Similar shapes of SGS tress tensor (7;;) are observed for other filter width.
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Figure 4.33: Distributions of normalized SGS stress tensor (u, being the friction velocity)
using Lss-5!" (a) and Gaussian (b) filters.
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Figure 4.34: Correlations C7,. between exact SGS stress tensor and the modeled counter-
parts by Smagorinsky model using Lss-5" filter.

The eddy-viscosity model accounts for only the deviatoric part of the SGS stress tensor
7,7 — 1/37Tki0:;. For the diagonal components (7 = j7), it’s difficult to compare the real SGS
stress tensor and the modeled one, as 1/37446;; is non-zero. Correlations between 7;; —
1/37, and —QVSQSEZ- +1/37k, do not indicate an accurate predicting capability of subgrid
scale models for the component 7; of the real SGS stress tensor. Consequently, 1/37,x6;; is
often ignored, or only components i # j of SGS stress tensor are tested in previous a priori
analysis (Meneveau and Katz 2000 [93]; Wollblad and Davidson 2008 [148]). Recently an
alternative way has been followed by Carper and Porté-Agel 2008 [25] who added the real
value of 1/37,0;; to the modeled subgrid scale tensor in order to provide an appropriate
comparison with other non-eddy viscosity models. Our analysis is conducted by both
considering and ignoring 1/3759;;.

For a priori tests of Smagorinsky model in homogeneous turbulence, McMillan and
Ferziger 1979 [91] reported that correlation between the exact SGS stress tensor and

103



CTI 2

86 CHAPTER 4. RESULTS FOR THE PLANE CHANNEL FLOW

the modeled one by Smagorinsky model is 0.33. Liu et al. 1994 [80] found that the
correlation in isotropic turbulence is no more than 0.25. The a priori reference of eddy-
viscosity models for plane channel flow is very scarce. Correlations C7,; between the
exact SGS stress tensor and its modeled component by Smagorinsky model are given in
Fig. 4.34. They are first analyzed with a filter width Af = 100, A = 40 using the
Lss-5" filter. The correlations Cy,; have large dependence on the distance from the wall.

The correlation C,, is about 0-0.1 in the outer region, it is smaller than in previous
homogeneous turbulence (McMillan and Ferziger 1979 [91], Liu et al. 1994 [80]).

High correlations from 0.3 to 1.0 occur on C,,, C.,, and Cp,,. This is due to 1/37
which contains one third of each 7;;. When 1/376;; is ignored, correlations C.,,, C-,, and
C,, collapse to the order of C;,,, C., and C,,, as shown in Fig. 4.34(b). In Fig. 4.34, a
negative drop occurs on correlation C,, in the buffer layer, and C,, and C,, are negative
in the near wall region in Fig. 4.34(b). This indicates that the correlation between 75
and Sio, 711 and Sq; as well as 733 and Ss3 becomes worse in the inner region of a plane
channel flow compared to previous research on homogeneous turbulence for which Pope
2000 [116] and Meneveau and Katz 2000 [93] reported that the correlation between 7;;
and the strain rate tensor S;; is not as good as expected for the Smagorinsky model.

Furthermore, C,,,, C,,, and C.,, in Fig. 4.34(a) are higher than the results of Carper
and Porté-Agel 2008 [25], who obtained correlations less than 0.3. This difference is
attributed to the fact that all components ¢ = j of the exact and modeled SGS stress
tensor are mesured here. On the other hand, Carper and Porté-Agel 2008 [25] measure
correlations between only a few components of the two stress tensors and the statistical
data set in our case is substantially larger than theirs.
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Figure 4.35: Influence of filter width on  Figure 4.36: Influence of filter type on cor-

correlations C,,, using Lss-5" filter. relations C;,, using Lss-5"" filter.

The performance of Smagorinsky model in plane channel flow also depends on the
choice of the filter width and type as shown in Fig 4.35 and 4.36, confirming the previous
conclusions for Smagorinsky model in homogeneous turbulence (Pope 2000 [116]; Abba
2003 [1]). The correlation C,, increases in general for the larger filter width as given in
Fig. 4.35, in agreement with observations of Borue and Orszag 1998 [14] in the inertial
range of a high Reynolds number flow using classical filters, and Liu et al. 1994 [80] in
a turbulent jet. The larger correlations with Gaussian filter are due to the overlapping
between resolved and unresolved scales with this filter. Thus the modeled quantities with

Gaussian filter are much more correlated to the exact ones than when a sharp Lss-5%"
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models using Lss-5" filter. models using Lss-5" filter.

filter is employed (Abba 2003 [1]; Park et al. 2005 [107]). However, low correlations of
subgrid scale models in a priori tests do not indicate a failure of such models but the
fundamental limitation of a priori test itself (Park 2005 [107]). However, the betrayal
for the monotone increasing on larger filter width for correlation C;,, occurs in the buffer
layer, this is also observed with Gaussian filter. Therefore, correlations between exact and
modeled quantities of present plane channel flow exhibit more complex features depending
on filter width and type, as well as the distance from the wall.

Comparison of correlations C7,; between the Smagorinsky and WALE models with
filter width A} = 100, Af = 40 is shown in Fig. 4.37. The WALE model has a lower
correlation C;,, than the Smagorinsky model except in the buffer layer where no drop
of correlation is observed. No significant difference occurs at the three high correlations
Cr,, Cry, and (7, between the two models.

T117 T22
For the present plane channel flow, the spatial and temporal averaging of Sy, Sa» and
Ss3 are zero due to streamwise and spanwise homogeneity. So the predicting capabilities
of the subgrid scale models for the average SGS tensor components (711), (T22) and (7s3)
can not be evaluated. The exact (72) and its predicted counterpart by the Smagorinsky
and WALE models are given in Fig. 4.38 and 4.39. Two filter sets AT = 50, AT = 20 and
AF =100, Af = 40 are analyzed. The predicting capablhtles of both the Smagorinsky
and WALE models are quite comparable in the range y™ < 10. However, while (75) is
better predicted by the WALE than by the Smagorinsky model in the buffer layer and the
outer region with the Lss-5" filter width A+ = 50, AT = 20. (7},) is underestimated by
the two models for the larger Lss-5%" filter width AT = 100, AT = 40 and for the smaller
Gaussian filter (A7 = 50, AF = 20), while the Smagorinsky model performs better at
predicting (712) at the same time. Therefore, the a priori predicting capacity of subgrid
models for SGS stress tensor can not be evaluated independently of the filter width and
filter type. However, it’s important to denote that, the better predicting capability of
both Smagorinsky and WALE models in the viscous layer than in outer region correspond
to a lower correlation C;,, for the WALE model (see Fig. 4.37).

The standard deviation o1, of the exact and modeled SGS stress tensor component
(7;;) is shown in Fig. 4.40. In the range y* > 20, the WALE model always has a better

Figure 4.38: Exact (713) and its modeled
counterparts by Smagorinsky and WALE

10%
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Figure 4.39: Exact (715) and its modeled counterparts by Smagorinsky model and the

WALE model with filter width AT = 50, AT = 20 using Lss-5"" filter (a) and Gaussian
filter (b).

(a) (b)

1.0 T — —
— Exact Al =100,AF =40
th

—  Exact | F =100, AF =40

SM Gaussian

Lss-5

o8t 08t

~ 0.6 ~ 0.6
= s

\ \

S S

© 04 S 04}

0.2 0.2

NS~
R .

. - - . 0.0
10" 10 10? 10% 10°
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prediction for the standard deviations of 715 with both filters. The standard deviation of
712 is well predicted in range y* < 10 by the WALE model using a Lss-5'" filter. It is
important to note, however, that while the WALE model has been shown to have a poor
correlation with the SGS stress tensor 75 in Fig. 4.37, the standard deviations predicted
in the outer region are better than with the Smagorinsky model.

4.5.2. Correlation of SGS force

A good prediction of subgrid scale models for the SGS force (defined in Table 3.1 of
Chapter 3) contained in the filtered Navier-Stokes equations is important to guaranntee
the accuracy of LES. The normalized SGS force (f;) with filter width A} = 100, Af = 40
are given in Fig. 4.41. Components (f;) and (fs) are looked at in the following analysis,
since f3 is zero due to homogeneity in spanwise direction. The two components are slightly
larger with Gaussian filter than with Lss-5" filter.

Correlations C, and C}, using Lss-5"" filter are displayed in Fig. 4.42. The negative
drop of Uy, in the buffer layer and the negative correlation Ct, toward the channel center
in Fig. 4.42(a) are alleviated when term 1/37446;; is not considered in Fig. 4.42(b). Similar
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Figure 4.41: Distributions of normalized average SGS force (f;) using Lss-5" (a) and
Gaussian filter (b) along wall normal position.
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or between 97;;/dx; and d75M /0x; (b) for Smagorinsky model, using Lss-5" filter,

behavior is observed with Gaussian filter (see Fig. A.2 in Appendix A). The influence of
filter width and filter type on correlations Cy, and CY, is plotted in Iig 4.43 and 4.44. The
results further show that the increment of each correlation also depends on the specific
correlation component, beside the filter width and filter type. The monotone increase
of correlations for larger filter width is inverse for C, in the buffer layer. Moreover, for
the large filter width Af = 200, AT = 80 in Fig. 4.44, there is no apparent growth of
correlations, especially Cy, in the near wall region with a Gaussian filter compared to
Lss-5t" filter. Thus the dependence to the filter type is not universal for the correlation
of SGS force in the present plane channel flow.

Comparisons between the WALE model and the Smagorinsky model are given in
Fig. 4.45 and 4.46 for a small filter width. Both correlation and the average of the modeled
SGS force have the same behavior as for larger filter width. No significant difference occurs
on correlation C, between the Smagorinsky model and the WALE model as shown in
Fig. 4.45. Generally, both models perform better for predicting the SGS forces in the outer
region than in the near wall region. Mason and Thomson 1992 [90] observed that the mean
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velocity profile in the matching region has not had a logarithmic form and it is impossible
to eliminate the error by adjustments of the subgrid lengthscale. They thought that an
obvious defect of the Smagorinsky model is its failure to represent stochastic subgrid stress
variations and showed that inclusion of these variations leads to a marked improvement
in the near-wall flow simulation. Nevertheless, the SGS force predicting capabilities of
the models are not consistent with their correlations which are higher in near wall region
compared to the outer region. This discrepancy between correlation values and predicting
capacities of the two models is independent of the filter width and type. These results
reveal that strong correlations sometimes do not imply high predicting abilities of eddy-
viscosity models, and vice versa. This is in good agreement with the results of Carper and
Porté-Agel 2008 [25] who found that the eddy-viscosity model produces low correlation
with the mesured SGS stress as well as unrealistically low fluctuation levels, while the
differences in probability density functions (PDFs) of the exact 712 and the modeled 74
by eddy-viscosity models are nearly indistinguishable.
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4.5.3. Correlation of SGS energy dissipation

Although the coefficients of subgrid scale models discussed in Section 4.4 are computed
a priori by matching the measured and modeled subgrid scale dissipation, this does not
imply a good local correlation between the two terms along wall normal position. The
exact quantity <Tij§ij> has been given in Fig. 4.13. Correlation C_ between Tijgi]’ and
77045, using the small Lss-5" filter along wall normal position is shown in Fig. 4.47. In
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act SGS energy dissipation and the mod- Ce. between Smagorinsky model and
eled one by Smagorinsky model using Lss- WALE model using Lss-5!" filter set At =
5 filter. 50, Af = 20.

the outer region, the correlation C._  gradually decreases when moving toward the channel
center. Many studies showed that correlations of the three criteria considered here are
generally ordered as Cr,, < Cy, < C,,,, for homogeneous turbulence (Meneveau and Katz
2000 [93]). However, our a priori analysis on all the dominant correlations precisely reveals
that the above order is not universal for each correlation component of each condition in
a plane channel flow, even in the outer region. For example, in this outer region, C._ _ is

sgs

smaller than Cp, in Fig. 4.42 or than C; ,, (,,, C,; in Fig. 4.34. Correlation C.  has
similar filter width and filter type dependent behavior with correlations C;,, and CY,, C},,
depending on distance from the wall. Slightly higher correlation C, is obtained with

the Gaussian filter (see Fig. A.3 in Appendix A).

Comparison of correlations C,, between Smagorinsky model and WALE model is
given in Fig. 4.48. Both models correlate poorly along wall normal position, even though
the averaged SGS energy dissipation is exactly modeled due to the definition of the model
coefficients (equation 3.18 and 3.19 of Chapter 3). This confirms that even though the
eddy viscosity models show very low correlations in a priori test, they work adequately
in actual simulations (Park 2005 [107]). This explains why eddy-viscosity models always
prevail despite their deficiency of correlation, such as their bad predicting capacities for
subgrid stress tensor 7;; and SGS force f; in the near wall region of a plane channel flow.
In fact, subgrid scale models are mainly designed to drain total energy from resolved
scales in large eddy simulations.
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4.6. Conclusion

In this chapter, a priori analysis of SGS energy transfer and SGS energy dissipation
have been investigated in plane channel flow at high Reynolds number (Re, = 950).
A strong inhomogeneity of subgrid scale kinetic energy is observed along wall normal
position. An anisotropy of subgrid scale kinetic energy between streamwise and spanwise
direction occurs in the near wall region. Consequently, two contrary net SGS energy
transfer directions are differentiated by a frontier lying in the buffer layer. The back
scatter energy cascade of the net SGS energy transfer occurs in the viscous and buffer
layers. This behavior has not been reported in previous research, but it is endorsed by
different filter width using both the two dimensional Lss-5* and Gaussian filters. This
back scatter is stronger in magnitude than the forward scatter which begins in the buffer
layer until the channel center, as it’s powered by approximately up to 85% of grid points
experiencing back scatter in near wall region, whereas slightly more than 50% of grid
points experience forward scatter in the outer region. Meanwhile, the net SGS energy
dissipation exhibits a single direction of energy cascade from large to small scales at all
wall normal position. The fraction of points experiencing back scatter of net SGS energy
dissipation is less than 40%. The turbulent kinetic energy concentrated in small spanwise
turbulent scale is not significantly reflected by the SGS energy dissipation. Analysis of
turbulence coherent structures associated with interscale energy exchange in near wall
region are expected to provide more information for a deeper analysis of plane channel
flows at a comparable Reynolds number.

The coefficients of the classical Smagorinsky model, the Dynamic Smagorinsky model,
the WALE model as well as the recent ¢ model are estimated a priori subsequently. In
the outer region, the coefficients (Cs) and (Cy) are close to a constant, while the near
wall behavior of (Cs)/(Cs,) is sensitive to the ratio of the filter width in streanwise and
spanwise directions. The underestimation of (Cy) is dependent on the filter width and
filter type. This underestimation can be remedied by a small test filter width in condition
of using a Gaussian filter, but not a Lss-5"" filter. The coefficients (C,) and (C,) are
found to have quite similar behavior for a priori analysis of present channel flow. They
are greatly dependent on the spanwise filter width A along wall normal position, and are
especially sensitive to large AT in near wall region due to both the SGS dissipation and
the differential operator (S¢.S;) of the WALE model as well as the differential operator
(D,) for the o model. The present analysis indicates that a small spanwise filter width
AT < 40 is recommended in the near wall region for the WALE model and ¢ model for
present flow.

Correlations between exact SGS tensor 7;;, the SGS force f;, the SGS energy dissi-
pation €., and their counterparts modeled by the Smagorinsky model and the WALE
model are assessed. There is no great difference globally between the predictive capabil-
ities of subgrid scale models tested here for correctly predict the SGS tensor 715 and its
standard deviation along wall normal position. The WALE model has a better prediction
than Smagorinsky model for both the mean and the standard deviations of 75, but only
for the Lss-5'" filter. The eddy viscosity models can correctly dissipate the total energy
from resolved scales despite its deficiencies observed in the present analysis. The results
confirm some well established conclusions, such as the larger correlations with Gaussian
filter compared to the sharp Lss-5"" filter or for larger filter width compared to smaller
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filter width (Pope 2000 [116]). But, based on the three examined criteria, contradictions
with the existing conclusions occur in the buffer layer. Therefore, more studies are needed
to investigate this behavior in the near wall region of plane channel flow.



Chapter 5

Results for APG channel flow

5.1. Introduction

Recently, turbulent flows with an adverse pressure gradient as a challenge for large eddy
simulation have drawn a lot of attention. Several LES have been conducted on such
turbulence with different configurations (Elsner et al. 2009 [46]; Kuban et al. 2010 [69];
Kuban et al. 2012 [70]). This chapter is based on the examination of the statistics
in the near-wall region of channel flow with a curved wall documented in Marquillie et
al. 2011 |87] and Laval et al. 2012 [73]. Description of the database is presented in
Section 3.5.2 of Chapter 3. At Reynolds number Re, = 617, the flow slightly separates at
the lower curved wall and is at the onset of separation at the upper wall. Therefore, two
different configurations of pressure gradient as well as the effect of wall curvature can be
investigated and compared.

The energy transfer mechanisms are first analyzed in converging-diverging region. A
priori evaluations of model coefficients ((C;) of the Smagorinsky model, (Cy) of Dynamic
Smagorinsky model, (C,,) of the WALE model and (C,) of ¢ model) are subsequently
performed. Important information of correlations between exact quantities and their
counterparts modeled by the subgrid scale models, as well as their predictive capacities
as eddy viscosity models are provided finally.

In practical implementation, the filtering and spacial derivation are two important
procedures, which could influence the accuracy of results. Jordan 1999 [67] investigated
the order that whether one should filter the full resolution equations before or after the
coordinate transformation. Two procedures were considered for obtaining a LES curvi-
linear coordinate form. The first procedure filters the Cartesian coordinate system prior
to its transformation. The order of operations respectively appears as:

NS (Cartesian) = Filter = LES (Cartesian) = Transform = LES (curvilinear)

An alternative progression to this path involves reversing the order of operations. This
second derivation proceeds as:

NS (Cartesian) = Transform = NS (curvilinear) = Filter = LES (curvilinear)
such that the filter operation is now sensibly directed along the grid lines. To justify this
latter choice, satisfaction of the commutative property is required between the filtering
and the transformed form of the differentiation. No discernible differences were detected
in the spectral energies of the turbulent fluctuations by filtering in either the physical
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Figure 5.1: Computing grid in the (x, y) plane (every 16 meshes are plotted in each
direction). The flow is coming from the left.

domain or the transformed space (Jordan 1999 [67]). As a preparatory a-priori analysis
and in order to simplify the research, we adopt the first procedure which is a useful LES
methodology for complex domains, without considering the variant of the subgrid stress
tensor. The 2D filtering operation of both Lss-5"" and Gaussian filters are applied in
Cartesian coordinate (x, z). Then, in order to take into account the complex geometry of
the physical domain, the partial differential operators are transformed using the mapping
that has the property of following a profile at the lower wall with a flat surface at the
upper wall.

Wall units based on the friction velocity at summit of the bump u = 0.0695 are
denoted with the superscript 4, the reference wall units based on u? = 0.0494 at the inlet
have the superscript *.

5.2. Choice of filter width

In order to analyze the effects of the filter width and filter type in the following a priori
tests, the statistics are performed on three filter sets (Af = 50, AT = 20), (A7 = 100,
AT = 40) and (A = 200, AT = 80) using both Lss-5"" and Gaussian filters. The
percentage of the averaged subgrid scale kinetic energy (qus> to the averaged turbulent
kinetic energy (¢?) are shown in Fig. 5.2. The 2D statistics of the latter is given in Fig.
3.14 of Chapter 3. Only few results with Gaussian filter are presented due to very similar
behavior between both filter types.

The fraction of subgrid scale kinetic energy increases rapidly when increasing the filter
width in the whole channel region, while (¢Z,,)/(¢?) is larger with Gaussian filter compared
to Lss-5 filter for the same filter width. This is in agreement with their behavior in plane
channel flow (Fig. 4.2).

It should be noted that, in the diverging near wall regions, high fractions of SGS
kinetic energy occur near the walls, at the same position as the two regions of strong
turbulent kinetic energy (see Fig. 3.14). These fractions are stronger at the lower wall
than at the upper wall, saliently for the larger filter width. For example, for the larger filter
(AF =200, A} = 80), the fraction (¢2,,)/(q®) reaches 80%—90% near the lower wall. This
region corresponds also to a high concentration of small scale vortices observed by Laval
et al. 2012 [71], meaning that the large number of intense small vortices contain most
of the subgrid turbulent kinetic energy in this region. Therefore, in order to resolve the
energy-containing scales at best by large eddy simulation, the largest filter set (A_; = 200,
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Figure 5.2: Fraction of subgrid scale kinetic energy (qggs> to the total turbulent kinetic
energy (¢*) in x-y plane using the Lss-5* and Gaussian filters.

AT = 80) is probably too large to be recommended in diverging APG near wall region.
However, the results with this large filter width are presented in order to show the trend
of statistics, such as energy transfer with respect to filter width.

A more detailed analysis is given by 1D profiles of the fraction of subgrid scale kinetic
energy along the two walls in the diverging region as shown in Fig. 5.3. Quite similar
behavior at two walls are observed with Gaussian filter. At the lower wall, the fraction
of (¢2,,)/(¢*) is maximum at z ~ 1.3, 20 < y* < 30, whatever the filter width and filter
type. This occurs roughly at the same streamwise and wall normal positions as the peak
of turbulent kinetic energy (see Fig. 3.15(a)). Besides, the peak of (¢2,,)/(¢?) at the upper
wall occurs at x ~ 2.8, 20 < y* < 40, more downstream than the peak of turbulent kinetic
energy (see Fig. 3.15(b)). Furthermore, the curves shape of (¢2,,)/(¢*) in the near wall
region of the upper wall (which corresponds to a weaker adverse pressure gradient) evolve
similarly to that of the plane channel flow toward the wall (see Fig. 4.2).
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Figure 5.3: One-dimensional fraction of subgrid scale kinetic energy to the total turbulent
kinetic energy at diverging lower wall (a) and flat upper wall (b) regions using Lss-5""
filter set (A} = 100, A = 40).

5.3. Energy transfer mechanism

The stability analysis of the same flow has been investigated by Marquillie et al. 2011 [87]
who found that the instability onset of low-speed streaks coincide with the strong pro-
duction peaks of turbulent kinetic energy near the maximum of pressure gradient on both
the curved and the flat walls. Laval et al. 2012 [73| reported that this adverse-pressure
gradient turbulent flow is characterized by strong peaks of turbulent kinetic energy at
both walls, as a consequence of the breakdown of more organized flow structures. How-
ever, the SGS energy transfer mechanism in APG turbulent boundary layer has found
less attention. Here, we aim at assessing SGS energy transfer and SGS energy dissipation
with different filter width using both Lss-5* and Gaussian filters, to make progress in
understanding the physics of such flows in order to improve statistical models for such
turbulence.

5.3.1. SGS energy transfer

The SGS energy transfer in the x-y plane with three filter sets using Lss-5" filter and
Gaussian filter are given in Fig. 5.4. The energy transfer direction is defined the same way
as in Section 4.3 of Chapter 4. The longitudinal oscillations appearing as bands through
the channel center are due to the fact that the flow structures are strongly correlated
in space and time. A good convergence of statistics would require more non-correlated
fields which are not affordable for such DNS at large Reynolds number. The narrow white
strips with Lss-5" filter or the small white dots with Gaussian filter through the channel
center are due to the statistics which are not perfectly converged, but they do not affect
the analysis of the results. The statistics are more converged with Gaussian filter than
Lss-5t" filter which shows more oscillations in physical space due to its strong sharpness
(see Fig. 3.6).

On average, the turbulent energy is transfered from large to small scales ((Ts,5) > 0)
for most regions and this transfer is gradually reducing in magnitude toward the channel

center. This behavior is obtained because the positive contribution (7 ) is larger in

magnitude than the negative one (T, ) through the whole region as shown in Fig. 5.5.



98 CHAPTER 5. RESULTS FOR APG CHANNEL FLOW

+1.0E+00
+1.0E-01
- +1.0E-02
B | 1.0E-03
+1.0E-04
+1.0E-05

—g+1.0E+00
+1.0E-01
+1.0E-02
+1.0E-03
+1.0E-04
+1.0E-05

+1.0E+00
+1.0E-01
+1.0E-02
+1.0E-03
+1.0E-04
+1.0E-05

Figure 5.4: SGS energy transfer (Ty,,) with three filter widths in converging-diverging
channel regions using Lss-5" (a, ¢, e) and Gaussian (b, d, f) filters.

a (b)
@ (T},.), AF = 100, A = 40, (Gaussian) —(Ty), A7 =100, AT = 40, (Gaussian) +1.0E+00
+1.0E-01
+1.0E-02
+1.0E-03
+1.0E-04

+1.0E-05

Figure 5.5: Positive (a) and negative (b) contributions of SGS energy transfer with the
Gaussian filter set at A_;F = 100, A_j = 40.

This is the same for all filter widths using both Lss-5"" and Gaussian filters. The number of
points experiencing back scatter in most region is in general less than 50% (see Fig. 5.6),
especially with the Gaussian filter. The enlarged views of (Ty,), (T4,) and (T, as
well as P(Ty4s < 0) near the two walls mostly in the diverging APG region are given in
Fig. B.2-B.5 in Appendix B.

Two strong forward scatter regions appear in the APG region beginning at x ~ 0.8
at the lower wall, and slightly more downstream at the upper wall (Fig. 5.4) and they
are more intense for larger filter width. Two intense regions also occur at both the
positive contribution (7 ), and the negative one (T ) (see Fig. 5.5). (T ) is more

sgs
stronger than (7._.) in diverging APG near wall regions They are powered by two strong

59s
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Figure 5.6: Fraction of points experiencing back scatter of SGS energy transfer using the
Lss-5" (a) and Gaussian (b) filter set at AT = 100, AF = 40.
elongated regions of the fraction of points experincing forward scatter (> 50%) of SGS
energy transfer (dark blue regions) near the two walls as illustrated in Fig. 5.6. Near the
lower wall, Marquillie et al. 2011 [87] observed that, the turbulent streaks break down
at x = 0.78 where a hairpin-type streamwise vortex emerge. Thus, the strong forward
scatter of net SGS energy transfer is caused by the intense production of vortices.
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Figure 5.7: One-dimensional profiles of forward scatter of net SGS energy transfer in the
diverging APG region at the lower wall, including the average of its positive and negative
contributions, using Lss-5"" (a, ¢) and Gaussian filter (b, d). Statistics are normalized by

the rate of kinetic energy dissipation.

The thin white band close to the wall of the bump in the converging region or along
the two wall edges in APG diverging region for large filter width (Fig. 5.4(d), 5.4(e) ,
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5.4(f)) is slightly negative, indicating a weak backscatter, due to a significantly negative
contribution (77 ,) in the same region (see Iig. 5.5(b)). Accordingly, a thin layer with high
fraction of points (> 50%, red region) experiencing back scatter of SGS energy transfer
is visible along the edge of the bump and edges of the two walls in APG diverging region
as shown in Fig. 5.6. For the same filter width, the fraction of back scatter (red region
in Fig. 5.5) is more intense with Gaussian filter than Lss-5%" filter, corresponding to the

larger region of backscatter with the Gaussian filter (see Fig. 5.4).

In order to investigate in detail the regions of large net SGS energy transfer, one-
dimensional analysis at the lower wall are displayed in Fig. 5.7. Although the region of
forward scatter becomes larger as increasing the filter width, the maximum of forward
scatter always appears near z = 1.2, and 60 < y* < 70, independently of the filter width
and type. This corresponds to the same streamwise position of turbulent kinetic energy
peak (see Fig. 3.15(a) of Chapter 3) and the peak of fraction of subgrid scale kinetic
energy (see Fig. 5.3(a)), but more distant from the wall than the other two peaks.
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Figure 5.8: One-dimensional profiles of forward scatter of net SGS energy transfer in the
diverging APG region at the upper wall, including the average of its positive and negative
contributions using Lss-5" (a, ¢) and Gaussian filter (b, d). Statistics are normalized by
the rate of kinetic energy dissipation.

Furthermore, in Fig 5.7, both contributions (T ) and (T,,) are significantly larger
than the net SGS energy transfer (Ty,,) with Lss-5" filter, while (T},s) is comparable to
its two contributions with the Gaussian filter. This corresponds to a lower number of

points experiencing back scatter than with Lss-5t" filter (see Fig. 5.6). A similar behavior



5.3. ENERGY TRANSFER MECHANISM 101

between filter type also occurs in the plane channel flow (see Fig. 4.3(a), and Fig. A.1
in Appendix A). The large magnitudes of both positive and negative contributions with
Lss-5!" filter decrease continuously as moving downstream. This is due to the fact that the
Lss-5" filter is sharper than the Gaussian filter and introduces more oscillations. These
oscillations become more significant when derivative operation is performed on the filtered
quantities for the SGS energy transfer contributions and these are more salient than in
plane channel flow (see Fig. 4.5(b)), because most vortices are much smaller than the filter
width in diverging APG near wall regions. Furthermore, it should be noted that, contrary
to their behavior in plane channel flow, the intense positive and negative contributions
with Lss-5" filter occur in a limited range 40 < y* < 200. However, the large values of
the averaged negative contribution with Gaussian filter are shifted toward larger y* with
respect to the positive one. Therefore, the peak position of both positive and negative
contributions are largely dependent on the filter type.
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Figure 5.9: One-dimensional profiles of back scatter of net SGS energy transfer in the
converging and diverging regions using Lss-5t" (a, ¢) and Gaussian (b, d) filters. Statistics
are normalized by the rate of kinetic energy dissipation.

Fig. 5.7 also show that, weak back scatter with Gaussian filter occurs in the range
y* < 30, but it is not discernable with Lss-5" filter in the same range. However, significant
back scatter appear for large filter width with Lss-5" filter (see Fig. 5.7(c)), in the range
70 < y* < 80. It is stronger than in plane channel flow for the same filter set (see
Fig. 4.5(a)). These are consistent with net SGS energy transfer (see Fig. 5.4) and the
fraction of points experiencing back scatter of (T,,) (see Fig. 5.6). A detail analysis of
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back scatter regions is given later.

One-dimensional profile of forward scatter of net SGS energy transfer in the APG
upper wall region is shown in Fig. 5.8. In this region, one can observe that, the larger the
filter width, the larger the magnitude of net (Ty,,). The peak of forward scatter of net
SGS energy transfer occurs at = ~ 2.4, independently of the filter width and filter type.
This is more downstream than the peak of turbulent kinetic energy (see Fig. 3.15(b)), but
more upstream than the peak of fraction of subgrid scale kinetic energy (see Fig. 5.3(b)).
Thus, at the diverging upper wall, the forward cascade is less correlated to the turbulent
kinetic energy (see Fig. 3.15(b)) or the fraction of subgrid scale kinetic energy. Contrary to
what was observed at lower wall, the influence of Lss-5"" filter on the magnitude of (T} )
and (T, ) is weaker at the upper wall. Furthermore, similarly to the plane channel flow

sgs

(Fig. 4.3(a)), both (T} ) and (T,,) monotonically increase toward the channel center at
the upper wall (which is experiencing a weaker adverse pressure gradient and no curvature
compared to the lower wall). Nevertheless, back scatter is also observed for y* < 30 with

large filter width (see Fig. 5.8(b)-5.8(d)), but more downstream than for the lower wall.

Finally, one-dimensional analysis of back scatter of net SGS energy transfer is given
in Fig. 5.9. Both the streamwise and normal positions of back scatter peak is greatly
dependent on the filter type, but independent on the filter width, despite the larger
magnitude of back scatter cascade for the larger filter width. With Gaussian filter, the
maximum of the back scatter of (T,) occurs in the converging favorable pressure gradient
region at x = —0.5, y* ~ 30. This is roughly the same streamwise position as the
maximum skin friction (see Fig. 3.13 of Chapter 3). However, with Lss-5!" filter, the
peak of back scatter is largely downstream to the diverging APG region at x ~ 1.0,
70 < y* < 90, near to the streamwise position of the peak of turbulent kinetic energy
and peak of fraction of subgrid scale kinetic energy. Furthermore, in the near wall region,
statistics with (GGaussian filter evolves similarly to what has been observed for the plane
channel flow as moving away from the wall (see Fig. 4.3(a)). However, the back scatter
cascade is stronger and the frontier seperating the forward and backward scatter of (T},;)
is further from the wall (60 < y* < 80), compared to the plane channel flow. Similarly
to the forward scatter cascade of (Ti,s) in the diverging APG upper wall region, the
magnitude of back scatter cascade of net SGS energy transfer is comparable for both
filter types.

5.3.2. SGS energy dissipation

In this Section, the a priori analysis of net SGS energy dissipation and its positive and
negative contributions are performed on the same filter set as in the above analysis of SGS
energy transfer. The definitions of SGS energy dissipation and its positive and negative
contributions are given in Section 4.3.2 of Chapter 4.

SGS energy dissipation (ey,s) with three filter widths using both Lss-5" and Gaussian
filters are given in Fig. 5.10. As the SGS energy dissipation requires no derivative of
filtered quantities, the results with both filter types are smoother than for (Ty,s). In most
region, the net SGS energy dissipation is negative on average (meaning that the kinetic
energy is extracted from large scales), since the negative contribution (€5gs) 18 larger in
magnitude than the positive one (e;qu> independently of filter width and filter type as
shown in Fig. 5.11. Accordingly, the fraction of points experiencing back scatter is in
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Figure 5.10: SGS energy dissipation (es,s) with three filter widths in converging-diverging
channel regions using Lss-5" (a, ¢, e) and Gaussian (b, d, f) filters.
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Figure 5.11: Positive (a) and negative (b) contributions of SGS energy dissipation with
the Gaussian filter set at AT = 100, AF = 40.
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Figure 5.12: Fraction of points experiencing back scatter of SGS energy dissipation with
the Lss-5" (a) and Gaussian (b) filter set at A} = 100, Af = 40.
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Figure 5.13: One-dimensional profiles of intensive forward scatter of net SGS energy dissi-
pation in the diverging APG region at the lower wall, including the average of its positive
and negative contributions using Lss-5"" (a, ¢) and Gaussian filter (b, d). Statistics are
normalized by the rate of kinetic energy dissipation.

most regions less than 50%, especially with Gaussian filter as given in Fig. 5.12.

Moreover, two regions of strong negative SGS energy dissipation occur close to the
two walls in the diverging APG region. These regions become stronger when increasing
the filter width due to the larger fraction of subgrid scale kinetic energy for larger filter
width in the same region (see Fig. 5.2). Accordingly, two stronger regions occur on the
negative contribution (e ) compared to the positive contribution (¢ ) in the near wall
regions of the diverging part as illustrated in Fig. 5.11. These correspond to two dark
blue regions with P(e.s < 0) < 0.5 in Fig. 5.12, which are more pronounced for Lss-5
filter. Furthermore, these forward cascade regions becomes more intense for larger filter

width at the two walls for both filter types.

Large regions of back scatter occur in the center of the converging favorable pressure
gradient region and also slightly above the edge of the bump just before the summit, more
salient with the Gaussian filter. This back scatter of net (ey,s) is not observed in plane
channel flow (see Fig. 4.8(a)). Its occurence is owing to the negative contribution (e ) is
lower than the positive one (ef,.) in the center of the converging region (see Fig. 5.11). Tt
is important to note that, as shown in Fig. 5.12, the high fraction of points experiencing
back scatter of dissipation with Gaussian filter (red-white region, up to 80%) does not

imply a more intensive back scatter magnitude than Lss-5" filter which corresponds to
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a white region (slightly more than 50%) in the center of converging favorable pressure
gradient region and along the edge of the bump. Moreover, these back scatter become
stronger when increasing the filter width, but still weaker than most of forward scatter of
net (ey,s) for both Lss-5" and Gaussian filters (see Fig. B.1 of Appendix B).
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Figure 5.14: One-dimensional profiles of forward scatter of net SGS energy dissipation in
the diverging APG upper wall region, including the positive and negative contributions
using Lss-5" (a, ¢) and Gaussian filter (b, d). Statistics are normalized by the rate of
kinetic energy dissipation.

So as to inspect these intensive regions of both forward and back ward scatters, one-
dimensional analysis of net SGS energy dissipation and its positive and negative contribu-
tions at the lower wall in the diverging APG region are given in Fig. 5.13. The maximum
of net SGS energy dissipation occur at x = 1.2, 40 < y* < 60, no matter what the filter
width and filter type are. This is the same streamwise position as the peaks of turbulent
kinetic energy (see Fig. 3.15(a) of Chapter 3) and the fraction of subgrid scale kinetic
energy (see Fig. 5.3), but slightly further from the wall than the peak of turbulent kinetic
energy. It also corresponds to the streamwise position of the peak of net SGS energy
transfer in diverging APG lower wall region (see Fig. 5.7), but closer to the wall.

However, as moving away from the wall, evolutions of (¢f ) and (e ,), as well as the

net (es45) are quite different from those of the plane channel flow (see Fig. 4.8(a)), as the
shapes of these curves are very sensitive to the filter type. It should be noted that, a weak
peak of the positive contribution (ejgs) appears near y* =~ 4 for all filter sets examined here,
with marginal influence on the net SGS energy dissipation. Then, as moving away from

the wall, a second peak of (¢ ) occurs near 70 < y* < 100, more pronounced than the
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Figure 5.15: One-dimensional profiles of back scatter of net SGS energy dissipation in the
converging-diverging channel region with respect to the lower wall, including the average
of its positive and negative contributions using Lss-5 (a, c, e) and Gaussian filter (b, d,
f). Statistics are normalized by the rate of kinetic energy dissipation.

first peak, and more salient with Lss-5" filter compared to Gaussian filter. Furthermore,
the onset of sharp increase of (ejgs> near its second peak contributes to the peak of net
(€4,6) in the range 40 < y* < 60. Contrary to the significantly high magnitude of SGS
energy transfer contributions (T} ) and (T7,,), the positive and negative contributions of
SGS energy dissipation are comparable for both filter types. Moreover, contrary to the
other intense forward and backward cascade of SGS energy transfer (see Fig. 5.7, 5.8 and
5.9), the magnitude of forward scatter of net (eyy,) is also slightly dependent on the filter
width.
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One-dimensional analysis of forward scatter of net SGS energy dissipation in the di-
verging APG upper wall region is shown in Fig. 5.14. In comparision to the lower wall
region, the evolutions of all contributions are more similar to the statistics in plane chan-
nel flow (see Fig. 4.8(a)) toward the channel center. The magnitude of the net (ey,s) is
also slightly dependent on the filter width as in the diverging lower wall region. However,
the peak of net SGS energy dissipation always occurs at x ~ 2.2, 40 < y* < 70. This is
roughly the same streamwise position as the peak of turbulent kinetic energy in the di-
verging upper wall region (see Fig. 3.15(b)), while it is more upstream than the streamwise
position of the peak of subgrid scale kinetic energy at the upper wall (see Fig. 5.3(b)).
But this peak is further from the wall than the peaks of turbulent kinetic energy and
fraction of subgrid scale kinetic energy. Therefore, at the upper wall, the forward cascade
of net SGS energy dissipation is strongly correlated to the turbulent kinetic energy, but
not related to the fraction of subgrid scale kinetic energy.

One-dimensional analysis of back scatter of net SGS energy dissipation and its positive
and negative contributions in the converging favorable pressure gradient region are shown
in Fig. 5.15. The magnitude of back scatter is largely dependent of the filter width and
filter type. This back scatter appears in the channel center only for the large Lss-5t filter
width (Af = 200, Af = 80), while it is obvious for all the three Gaussian filter sets, and
larger in magnitude for larger filter widths. The peak of back scatter with Gaussian filter
happens distinctly at  ~ —0.9, y* > 400, slightly more upstream than the streamwise
position of the maximum of skin friction (see Fig. 3.13 of Chapter 3).

5.3.3. Conclusion

The results of the a priori analysis in a converging-diverging channel regions show that, the
forward scatter of SGS energy transfer and SGS energy dissipation are closely correlated
to the turbulent kinetic energy in the diverging APG region due to the strong adverse
pressure gradient and the presence of curvature. The fraction of subgrid scale kinetic
energy, the net SGS energy transfer and net SGS energy dissipation reach their maxima
exactly at the same streamwise position as the peak of turbulent kinetic energy at the
lower wall, independently of the filter width and filter type. It’s interesting that, intense
back scatter of SGS energy dissipation occurs in the converging channel center, which is
absent in plane channel flow. The peak of this back scatter is slightly more upstream
than the peak of skin friction, and its magnitude is greatly dependent on the filter width
and filter type. However, the streamwise position of the peak of SGS energy back scatter
is greatly dependent on the filter type, located near the maximum of skin friction with
the Gaussian filter. Finally, it should be noted that, the influence of the sharpness of
the Lss-5'" filter is larger for the positive and negative SGS energy transfer than for the
contributions of the SGS energy dissipation, for the present channel flow with a curved
wall compared to the plane channel flow.
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5.4. A priori evaluation of model coefficients

The assessments of the role of the model coefficients has been investigated by Kuban et
al. 2012 [70] on the same geometry as in the present study at two Reynolds numbers
Re, = 395 and Re, = 617. It was shown that, in addition to the influence of numerical
procedure, the mesh size is significantly important for a good quality of the LES solution.
They also reported that, in some cases, the effect of the choice of subgrid scale model is
larger than the effect of the mesh. However, to the best of our knowledge, no a priori
tests of subgrid scale models have been performed on wall turbulence with adverse pressure
gradient.

In the present a priori analysis, coefficients of the Smagorinsky model, dynamic
Smagorinsky model, WALE model and ¢ model are evaluated on a channel flow with
adverse pressure gradient at Re, = 617. The definitions of the terms investigated in the
a priori analysis are given in Section 4.4 of Chapter 4.

5.4.1. Smagorinsky model and Dynamic Smagorinsky model
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Figure 5.16: A priori estimate of the averaged Smagorinsky model coefficient (Cs) in
converging-diverging region with three filter widths using Lss-5!" (a, ¢, e) and Gaussian

(b, d, 1) filters.

The a priori estimate of the average coefficient (Cs) of the Smagorinsky model is
first analyzed in the converging-diverging channel region using both Lss-5"* and Gaussian
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Figure 5.17: SGS energy dissipation —(e,y,) and its modeled counterpart —(eS>=") by the

Smagorinsky model using C, = 1.0 at = 1.8, for the filter width AT = 100, AT = 40
using Lss-5" and Gaussian filters.
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Figure 5.18: SGS energy dissipation —(eyy,) and its modeled counterpart —(e>=") by the
Smagorinsky model using Cs = 1.0 and the square of the norm of subgrid stress tensor at

r = 1.8, using the Gaussian filter width A} = 100, AT = 40.

filters. The 2D distributions are given in Fig. 5.16. Only the positive values are displayed
as, in a LES context, the negative values lead to numerical instabilities and are usually
clipped to zero. As a clear difference with plane channel flow, negative values of (Cj)
(white region) appear in the channel center of the converging (favorable pressure gradient)
region and along the edges of the bump. The extent of the negative regions is larger with
the Gaussian filter than with the Lss-5"" filter. This corresponds exactly to the back
scatter regions of net SGS energy dissipation (see Fig. 5.10). A detailed analysis of the
negative regions is given in Fig. B.6 in Appendix B. For each filter set, however, due to the
influence of the pressure gradient, (Cy) extends over a larger range than in plane channel
flow (see Fig. 4.14, and 4.16).

It should be noted that high positive values of (Cs) are observed in the channel cen-
ter of the diverging APG region. They are more pronounced with the Gaussian fil-
ter. This is due to the fact that, in the diverging channel center, the absolute value
of SGS energy dissipation (e,) is slightly larger with Gaussian than with Lss-5"" filter,
while the absolute value of SGS energy dissipation modeled by the Smagorinsky model

(e57h) = —2.O<(ngs/052)§?j>) using Cy = 1 is larger with Lss-5"* than with Gaussian
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filter (see Fig. 5.17) in the same region. As a ratio between (e,) and (¢5:7"), a larger (C.)
is obtained using the Gaussian filter in the diverging channel center. A similar behavior

is observed with other filter width.

Although the SGS energy dissipation is significantly larger in the near wall region
than in the channel center of the diverging APG part (see Fig. 5.10), (C) is lower near
the wall than in the channel center in the same region for each filter set. This is due to
the fact that the SGS energy dissipation modeled by the Smagorinsky model —<ESC;S:1) is
significantly larger than the real SGS energy dissipation —(ey4s) in the near wall region
y* < 100 compared to the channel center as shown in Fig. 5.18. The real and modeled
SGS energy dissipation is analyzed at x = 1.2, which is the streamwise position of the
peak of the (esys). It is important to point out that, in the near wall region, the large

—(eS:7") is caused by the norm of the strain rate tensor (S;;), which is noticeably larger
in near wall region than in the channel center at the same streamwise position as shown

in Fig. 5.18. All of these observations are independent of the filter type and filter width.

The results of Fig. 5.16 also show that, the highest value of (Cy) is close to the standard
value of (Cs) ~ 0.16 for isotropic turbulence (Lilly 1967 [77]; Meneveau 1997 [94]), but
significantly higher than our results of plane channel flow (see Fig. 4.16). Meanwhile, as
increasing the filter width, the peak positive values of (C,) increase for Lss-5"" filter, but
decrease for Gaussian filter. This agrees well with their behavior in the outer region of
plane channel flow (see Fig. 4.16). Moreover, small positive (Cs) (less than 0.06) appear
in the converging favorable pressure gradient channel center, corresponding to a weaker
forward cascade of net SGS energy dissipation compared to the diverging region.

(a) (b)
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Figure 5.19: One-dimensional profiles of the averaged (C;) of Smagorinsky model roughly
before (a) and after (b) the onset of the recirculation region at the lower wall using Lss-5"

filter set A =100, Af = 40.

In order to examine the averaged (C;) along the edge of the bump, one-dimensional
analysis at the lower wall are given in Fig. 5.19. In the favorable pressure gradient region,
the near wall behavior of (Cs) in the present research do not show significant difference
with that in plane channel flow (see Fig. 5.19(a)). However, from at z = —0.2 (the
position where the sign of the pressure gradient changes to positive, see Fig. 3.12), the
position where (Cy) increases sharply moves away from the wall when moving downstream
until the onset of the flow detachment at = 0.6. Then, from z = 0.7 (see Fig. 5.19(b),
a new peak of (Cs) appears in the near wall region (10 < y™ < 20). This peak firstly
becomes larger and moves away from the wall rapidly and then decreases gradually as
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Figure 5.20: A priori estimate of coefficient (Cy) of Dynamic Smagorinsky model in
converging-diverging regions with three filter widths (3 = 2.0A) using Lss-5" (left) and
Gaussian (right) filters.

moving downstream. It is hardly discernible at z = 1.8 (roughly the streamwise position
of the recirculation region). Similar behavior of (C;) are observed at the lower wall with
Gaussian filter and for small filter width (A} = 50, Af = 20). For (C,) with the largest
filter width (A} = 200, A} = 80), no sensitivity to dC,/ds is observed. Therefore, in
near wall regions of the lower wall, (C;) with small and moderate filter widths using both
Lss-5"" and Gaussian filters have significantly different behavior as varying the pressure
gradient dC,/ds. However, (Cs) is much less sensitive to the variations of dC,/ds at the
upper wall.

Similarly to what was done in plane channel flow, the averaged coefficient (Cy) of
the dynamic Smagorinsky model estimated only by the resolved scales are investigated.
Three filter widths using both filter types and with test filter width A = 2.0A are given
in Fig. 5.20. For each filter set, the negative regions of (Cy) (in white) extend wider
than the negative regions of (Cs) (see Fig. 5.16) or than the region of back scatter of net
SGS energy dissipation (see Fig. 5.10). An examination of negative (Cy) in detail shows
that they have similar behavior as negative (Cs) (see Fig. B.6 in Appendix B). In the
center of the diverging channel part, however, the positive values of (Cy) are larger than
the corresponding values of (Cs). Thus, (Cy) is more scattered than (C;) in the whole
channel region, especially for the large filter width (A = 200, AT = 80) of both filter
types. This is in agreement with the behavior in plane channel flow (see Fig. 4.17), and
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Figure 5.21: One-dimensional profiles of the averaged (Cy) of the Dynamic Smagorinsky
model at the lower wall using Lss-5" filter set AT = 100, Af = 40.
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Figure 5.22: Relative errors between the a priori estimate of the averaged coefficient (Cy)
of the Smagorinsky model and the averaged (C,;) of the Dynamic Smagorinsky model in
converging-diverging regions using Lss-5"" (a, ¢, ) and Gaussian (b, d, f) filters.

may be due to a too large test filter width as reported by Carper and Porté-Agel 2008 [24].

A closer look at one-dimensional analysis of the averaged (Cy) at the lower wall is
given in Fig. 5.21. The behavior of (Cy) at the lower wall is similar to that of (Cj)
(see Fig. 5.19). A near wall peak of (Cy) appears in the range 0.7 < x < 1.8, roughly
corresponding to the recirculation region of the flow. However, negative (Cy) is observed
at © = 1.0. Therefore, (Cy) is more scattered than (Cs) for the same filter set, due to the
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influence of test filter of the Dynamic Smagorinsky model. At the upper wall, however,
(Cy) has a similar behavior to that in plane channel flow.

A more detailed comparison based on the relative errors between (Cs) and (Cy) is
given in Fig. 5.22. The figure depicts that both underestimation and overestimation of
(Cq) compared to (Cs) occur at all filter sets examined here. In the converging channel
center, (Cy) is mainly overestimated (about 0-60%, in blue region). The overestimation
is weakened for the larger filter width of Lss-5% filter, but strengthened as increasing the
Gaussian filter width. Meanwhile, the underestimation (about 40-80%) of (Cy) occurs
mostly in the near wall regions of the diverging part. This is comparable with our results
in near wall regions of plane channel flow (see Fig. 4.18 and 4.19). However, the under-
estimation of (Cy) become stronger for larger filter width of both Lss-5" and Gaussian
filters. They even go up to 100% in the range 0.0 < x < 2.0 for the largest filter width
(AF =200, AF = 80). This is in contradiction to the only occurrence of underestimation
of (Cy) in plane channel flow (see Fig. 4.18 and 4.19). Both significant underestimation
(up to 100%) and overestimation (down to —100%) of (Cy) occur in the converging chan-
nel center. Thus, the deviation of (Cy) from (Cj) in converging channel center is much
larger than in plane channel flow.

Meanwhile, two additional test filter widths (A = 1.5A and A = 3.0A) are also
investigated for the estimation of the Dynamic Smagorinsky model coefficient. The results
are given in Figs. B.7-B.10 in Appendix B. Contrary to the high sensitivity of (Cy) to the
test filter width A in plane channel flow (see Fig. 4.20), the best comparison between (C,)
and (Cs) are obtained with a test filter width A = 2.0A, in agreement with the previous
results of plane channel flow at Re, = 640 conducted by Tsubokura 2006 [139] .

5.4.2. Wall-Adapting Local Eddy-Viscosity model

As an interesting alternative to the Smagorinsky model, the WALE model coefficient is
also estimated a priori using the same database of converging-diverging channel flow. The
results are given in Fig. 5.23. Similarly to the observations for (Cs), the negative (C,,)
mainly appear in the center of the converging favorable pressure gradient region and along
the lower wall of the converging part for the largest filter width (AT = 200, AT = 80).
An inspection of negative (C,,) shows that it behaves the same way as negative (Cs) and
(Cy).

Similarly to what was observed for (Cj), (C,,) is larger with Gaussian than with Lss-
5% filter in the diverging channel center. This is due to the contribution of both the SGS

energy dissipation (eyg,) and its counterpart ((e5»=") = —2.O<(V893/C’fu)§?j>) modeled by
the WALE model using C,, = 1.0 as shown in Fig. 5.24. One can observe that, with the
Gaussian filter, —(e,g,) is larger than with the Lss-5" filter, while a smaller —(e5»=") is
obtained with the Gaussian filter at the same position x = 1.8. Thus, a larger (C,,) can
be obtained by the ratio between (ey4,) and (eSx=") in the diverging channel center. This
behavior is independent of the filter width for both filter types.

Furthermore, the positive (C,,) becomes larger as increasing the filter width both in
the diverging channel center and along the two walls. The strongly positive values of (C,,)
in the diverging APG near wall regions largely exceed the standard value (C,,) ~ 0.5 for
isotropic turbulence. This is more pronounced for the larger filter width. In order to

explain the strong (C,) for the filter width (A} = 200, AF = 80) in the diverging APG
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Figure 5.23: A priori estimate of the averaged coefficient (C,,) of the WALE model in the
converging-diverging region with three filter widths using Lss-5"" (a, ¢, e) and Gaussian
(b, d, f) filters. The maximum of (C,) reaches up to 2.3 with Lss-5"" filter in the near
wall region.
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Figure 5.24: SGS energy dissipation —(e) and its modeled counterpart —(e$=") by the

WALE model using C,, = 1.0 at z = 1.8 for the filter width A = 100, AT = 40 using
Lss-5"" and Gaussian filters.

near wall regions, one-dimensional profiles of the exact SGS energy dissipation (es,s) and
its counterpart modeled by the WALE model (¢»=1) using C,, = 1 are given in Fig. 5.25.

sgs

Statistics are analyzed with two Lss-5t" filter widths at x = 1.8. The exact SGS energy
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Figure 5.25: SGS energy dissipation —(ey,s) and its modeled counterpart —(e sgs—l) by the

WALE model using C,, = 1.0 at = = 1.8 for the Lss-5" filter width Af =100, Af =40
and Al =200, A} = 80.
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Figure 5.26: One-dimensional profiles of WALE model operator <ng Sgh) at the lower wall

using Lss-5™ filter width A} = 100, A} =40 and A} = 200, A = 80.

dissipation —(ey4s) is almost the same for the Lss-5 filter width (A} = 100, AT = 40)
and (A} =200, AF = 80) in the near wall range y* < 100 at the lower wall. Meanwhile,
—(e5==") is smaller with (AF = 200, A7 = 80) than with (A} = 100, AT = 40) in the
same region. Similar behavior of —(ey,) and —(eS=") are observed at the upper wall.
Therefore, a larger (Cy,) is obtained from the ratio between the SGS energy dissipation
(€sgs) and its counterpart (eS»=') modeled by the WALE model with the larger filter
width (AF = 200, AT = 80) than the smaller one (A} = 100, AT = 40).

It is important to note that, the larger values of — (e Cg“’ 1) for the smaller filter width in
the near wall region are caused by the operator (S¢S¢%) of the WALE model as shown in
Fig. 5.26. Statistics are analyzed at the same position x = 1.8. One can observe that, in
the near wall range y* < 100, (S{S¢%) is significantly amplified for the smaller filter width
(Af =100, AT = 40). This explains the larger —(eS=") for the filter width (A} = 100,
A+ = 40) compared to (AF = 200, A} = 80) in the near wall regions (see Fig. 5.25). The
behavior of all statistics associated with the high values of (C,,) near both the curved and
flat walls are the same for the Gaussian filter. Therefore, in the near wall region, the high
values of (Cy) with a large filter width are greatly due to the sensitivity of the WALE

operator (S¢%S%) which is significantly smaller for the larger filter width.
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Figure 5.27: One-dimensional profiles of the averaged (C,,) of WALE model at the lower
wall for the filter width AF = 100, AF = 40 using both Lss-5" (a, ¢) and Gaussian (b,
d) filters.

One-dimensional analysis of (C,) along the edge of the curved wall are given in
Fig. 5.27. Statistics are mainly analyzed in the recirculation region. Contrary to sig-
nificantly high values in the near wall region of plane channel flow, (C,,) is considerably
lower here in the range y* < 6 than in the region far from the wall. This low values
of (C,) increases from z = 0.6 as moving downstream. For the smaller Lss-5" filter
(AF =50, AT = 20), very similar behavior of (C,,) to the plane channel flow is observed
in the range y* > 10 in the recirculation region. For the larger Lss-5™ filter (AT = 100,
AT = 40) and all the Gaussian filter widths, however, a peak of (C,) occurs from the
onset of the recirculation region = 0.6, in the range y* > 10. This peak becomes smaller
and moves away from the wall as moving downstream. A relatively flatter (C,,) than in
plane channel flow is obtained at the end of the recirculation region (x = 1.5) for the
larger filter width (AF = 100, AF = 40) for both filter types. This behavior of (C,) in
the recirculation region is also observed for the largest filter width (A} = 200, AT = 80).
A similar behavior of (C,,) is observed at the upper wall.

5.4.3. 0 Model

The a priori evaluation of the averaged coeflicient (C,) of the ¢ model with three filter
widths using both Lss-5"" and Gaussian filters are depicted in Fig. 5.28. (C,) has a similar
behavior to (C},) in the whole converging-diverging channel region. (C,) is larger with
Gaussian filter than with Lss-5%" filter for each filter width. This is owing to the effects
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Figure 5.28: A priori estimate of coefficient (C,) of ¢ model in converging-diverging
regions with three filter widths using Lss-5™" (a, ¢, e) and Gaussian (b, d, f) filters. The
maximum of (C,) is 1.65 for both filter types.

of both the SGS energy dissipation (esys) and its counterpart modeled by the ¢ model
(5e=1) = —2.0<(V598/03)§?j)> using C, = 1. Detailed statistics are given in Fig. 5.29.
At z = 2.0, larger absolute values of (eg,) and (e57.=") are obtained respectively with the
Gaussian and Lss-5" filters. Therefore, a larger (C,) is obtained in the channel center,
by the ratio of (eyys) and (e57=') using the Gaussian filter. This is independent of the
filter width of both filter types.

In Fig. 5.28, large values of (C,) appear in the diverging APG near wall regions, more
pronounced for the largest filter width (A} = 200, Af = 80). The maximum (C,) ~ 1.65
is even larger than the standard value (C,) ~ 1.5 for isotropic turbulence. The large
values of (C,) for the larger filter width (A = 200, AT = 80) in the near wall region
is due to the contributions of both the SGS energy dissipation (ey,s) and the modeled
SGS energy dissipation (e57=") by the o model as shown in Fig. 5.30. The SGS energy
dissipation —(e,4,) is almost overlapped in the range y* < 100 for the two Lss-5t" filter
width (Af =100, A = 40) and (AF =200, A} = 80). Since —(eS%=") is smaller for the
larger filter width (A} = 200, A} = 80) than for the smaller one (A} = 100, A} = 40)
in the same range, so a larger (C,) is obtained by the ratio between (ey4,) and (eS7=")

with the larger filter width (A} = 200, AF = 80) in the near wall region of the diverging
APG part.
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The sensitivity of

sgs

60a21

) to the filter width is dependent of the o model operator (D, )

in the near wall region. One-dimensional profiles of (D,) at the same position z = 1.5
is given in Fig. 5.31. At the lower wall, the magnitude of (D,) with the smaller filter
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width (Af

a larger SGS energy dissipation —(e

sgs

100, A+ = 40) is almost 4 times that with the larger one. This causes
“=1) modeled by the o model for the smaller filter

width (A = 100, AJ = 40) in the near wall region (see Fig. 5.30). Similar behavior of
(D,) and (eS2=1) are observed with the Gaussian filter. Therefore, the large sensitivity

5gs

of the o model operator (D, ) to the filter width contributes significantly to generate the
large values of (C,) in the near wall region of the diverging APG part.

A deeper examination of (C,) in the recirculation region of the lower wall is given
in Fig. 5.32. Contrary to the high values in plane channel flow, very low values of (C,)
are observed in the near wall region. Beginning at the onset of recirculation region, the
low values of (C,) gradually increase as moving downstream, but keep lower than in the
near wall region of plane channel flow. Similarly to (C,,) (but less pronounced), a peak of
(C,) is also observed in the range y* > 10 in the recirculation region. At each position,
(C,) increases faster than (C,,) as moving away from the wall. The values obtained are
higher than in plane channel flow in the logarithmic and outer region. Globally, in the
recirculation region, (C,) is steeper than in plane channel flow. A similar but slightly less
steeper behavior of (C,) is observed at the upper wall.

5.4.4. Conclusion

In the present analysis, the coefficients of four subgrid scale models are evaluated a pri-
ori with different filter widths using both Lss-5"* and Gaussian filters. The results are
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compared with the plane channel flow. Due to the pressure gradient and curvature at
the lower wall, the model coefficients show much more scatter than in plane channel flow
as analyzed in Section 4.4 of Chapter 4. Significant negative coefficients of subgrid scale
models corresponding to the back ward of SGS energy dissipation occur in the converging
channel center. These negative coefficients are not observed in our results of plane channel
flow, as no back scatter is present in the SGS energy dissipation.

Due to the influence of the adverse pressure gradient, high values of the coefficients,
which are even larger than their standard values for isotropic turbulence, occur in the
diverging channel region. Both the SGS energy dissipation and its counterpart modeled
by the subgrid scale models are very sensitive to the filter type. This leads to larger coef-
ficients of the four subgrid models with Gaussian than with Lss-5'" filter in the diverging
channel center. (Cs) and (Cy) are smaller in the near wall region than in the channel
center. This is due to a significantly larger value of the norm of the strain rate tensor
(Si;) near the wall, independently of the filter type and filter width. However, (Cy) is
found to be more scattered and further from (C;) than in plane channel flow. The filter
width dependent behavior of the operator (S{Sg%) of the WALE model and the operator
(D,) of the o model give rise to stronger values of (C,,) and (C,) near both the lower and
upper walls in the diverging APG region, especially for the larger filter width (Af = 200,
A+ = 80) with both filter types. The coefficients (C,,) and (C,) are found to have quite

similar behavior in the present a priori analysis.

The one-dimensional analysis shows that, all the model coefficients at both walls have
different behavior to the plane channel flow. At the lower wall, (C;) and (Cy) are quite
sensitive to the variation of the pressure gradient. A new peak of each model coefficient
is observed in the recirculation region. Near the end of the recirculation region, (C,,) is
flatter than in plane channel flow. However, in all recirculation region, (C,) is steeper
than in plane channel flow.



5.5. TESTS OF MODELS BEHAVIOR 121

5.5. Tests of models behavior

In this section, the correlations of the SGS stress tensor, the SGS force, the SGS energy
dissipation and their counterparts modeled by the Smagorinsky and WALE models are
investigated in detail. The predictive capabilities of different models are also investigated.
The a priori analysis are performed using the average model coefficients calculated in
Section 5.4. This means that the averaged SGS dissipation is modeled exactly. Statistics
in the diverging APG part will be analyzed in more detail, as the large eddy simulation
usually fails to predict correctly the flow in this region.

5.5.1. Correlation of SGS tensor

The exact SGS stresses (7;;) normalized by the square of the friction velocity (u2)? at
the inlet are given in Fig. 5.33 for a filter width AT = 100, AF = 40. The evaluation of
model performances is conducted on the components (711), (712), (T22) and (733), as (7i3)
and (793) are zero due to the spanwise homogeneity. Fig. 5.33 shows that the magnitude
of the different components of (7;;) is larger than in plane channel flow. Two peaks of
positive (711), (T22) and (733), as well as both positive and negative (715) occur near the
wall in the diverging channel region, due to the strong occurrence of small scale vortices
as shown in Fig. 3.17. One-dimensional analysis shows that the peak of SGS stress tensor
occurs at the same streamwise position as the peak of the turbulent kinetic energy at the
lower wall, but not at the upper wall (see Fig. B.11 in Appendix B). The Gaussian filter
gives larger peaks with stronger intensity compared to the Lss-5 for all components of
(7ij)-

Correlations C7,; between the exact SGS stress tensor and its counterpart modeled
by Smagorinsky model with a filter width AT = 100, AT = 40 using both Lss-5* and
Gaussian filters are given in Fig. 5.34. In accordance with plane channel flow, all correla-
tions are in general higher with Gaussian than with Lss-5" filter. The worse correlations
C,,, occur in the converging channel center, in addition to the very near wall regions as
observed in plane channel flow (see Fig. 4.34). The higher correlations C;,,, C,, and C.,
compared to Cy,, are due to 1/37, which is added to the modeled subgrid scale tensor
as already observed in plane channel flow. However, a peak of C,, (up to 1.0) appears at
both walls from the throat until z ~ 2.0, while the low values of C,,, C},, and C.,, occur
near the wall. Moreover, it is important to note that, the regions of SGS stress tensor
intensive in Fig. 5.33 do not correspond to the highest correlation regions in Fig. 5.34.

In order to investigate the correlation C7,, in detail, one-dimensional profiles with both
Lss-5"" and Gaussian filter width (Af = 100, AT = 40) and (AF = 50, AT = 20) at the
lower wall are given in Fig. 5.35. In the viscous layer, for each filter set, C’, is lower than
in plane channel flow for each filter set. It is closed to a constant, which is comparable
to the plane channel flow, for the smaller Lss-5"" filter width (A} = 50, AF = 20) in
the whole channel region. However, C,, is not well converged with the smaller Gaussian
filter width (A} = 50, AT = 20) as moving away from the wall in the recirculation region.
For the larger filter width (A} = 100, A = 40) with both filter types, a peak of C.,
appears from the onset of recirculation region at x = 0.5. This peak firstly increases and
then decreases as moving downstream, finally, with the Gaussian filter, C,, is slightly
larger than in the outer region of plane channel flow. A similar behavior is observed for
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the largest filter width (Af = 200, Af = 80) of both filter types. Therefore, in the
recirculation region, with small filter width, C,, is more influenced by the filter type,
than with large filter width. Similar one-dimensional analysis for the other correlations
Chy,, Cry, and C.,, are given in Appendix B (see Fig. B.12).

Further comparisons of correlations C',, between the Smagorinsky and WALE models
using both Lss-5"" and Gaussian filter width (AT = 50, AF = 20) and (A = 200,
AT = 80) at = 1.3 the lower wall (the peak position of 71, along the lower wall)
are given in Fig. 5.36. A peak of C,, occurs at this station, in the range y* ~ 100.
It is more pronounced for the larger filter width (Af = 200,Af = 80). This is not
observed in the plane channel flow for both models (see Fig. 4.37), and may be due to the
strong turbulence developed above the separated region. For the larger Lss-5t" filter width
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Figure 5.34: Correlations C7,. between exact SGS stress tensor and the counterparts
modeled by Smagorinsky model using Lss-5"" (a, c, e, g) and Gaussian (b, d, f, h) filters.

(A = 200, AT = 80) and both Gaussian filters, the Smagorinsky model has a higher
C.,, than the WALE model in the outer region. This is the same for the small filter width
(AT =50, AF = 20), where a low value of C;,, (in the range [0,0.2]) is obtained by both
models. In the near wall region, except for the small Gaussian filter width (AT = 50,
AT = 20), C,,, for both models, shows a similar behavior along 3* to the plane channel
flow. In the near wall region, C,,, is significantly lower than in plane channel flow (see
Fig. 4.37).

A more detailed analysis is provided by looking at the statistics along wall normal
direction of the exact SGS tensor 715 and its predicted counterpart by the Smagorinsky
and WALE models at © = 1.3 as given in Fig. 5.37. As 715 does not contain the 1/37
term, it can provide an accurate comparison between the real and modeled quantities.
Two filter sets (Af = 50, AT = 20) and (A} = 200, Af = 80) using both Lss-5"
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Figure 5.35: One-dimensional profiles of correlation C,,, at the lower wall using Lss-5
(a, ¢) and Gaussian (b, d) filters.

and Gaussian filters are analyzed. Contrary to their behavior in plane channel flow (see
Fig. 4.38), both the exact 72 and its counterparts predicted by both models collapse to
zero in the range y* > 100. In the near wall range 5 < y* < 80, for the small Lss-5""
filter width (AT = 50, AT = 20), a slightly higher C,,, is obtained with the WALE model
than the Smagorinsky model, while 715 is better predicted by the Smagorinsky model for
the filter set (A = 50, AT = 20) with Gaussian filter in the same range. The difference
between the exact 75 and its counterparts becomes larger as increasing the filter width
in the near wall region. For the largest filter width (A} = 200, AT = 80) with Lss-5",
the worst prediction is obtained by the WALE model in range 40 < y* < 50, where a
deep drop of (715) occurs in the same range as the peak of turbulent kinetic energy (see
Fig. 3.15(a)). It also corresponds to a low correlation C,, obtained by both models in the
same range (see Fig. 5.36). A similar behavior is observed at the upper wall (see Fig. B.13
in Appendix B).

A closer look at the standard deviation o, of the exact and modeled SGS stress tensor
712 at the lower wall is shown in Fig. 5.38. Both models underpredict the fluctuations
of 75, while the WALE model performs slightly better than the Smagorinsky model in
the range y* < 100. With both filter types, large differences between the exact o015 and
its counterparts modeled by the Smagorinsky and WALE models are observed, with a
peak in the range 30 < y* < 50. This corresponds to a low correlation C,, and a bad
prediction for 75 by both models in the same region. Thus, both the Smagorinsky and
WALE models perform poorly in predicting the mean and fluctuation of SGS stress tensor
T12 in the recirculation region at the lower wall.



5.5. TESTS OF MODELS BEHAVIOR 125

(a) (b)

0.6 T T 0.6

Af =50, AF =20 — SM AT =50,AF =20
Lower wall, x=1.3 . | Lower wall, x=1.3
Lss-5! WALE 051 Gaussian

0.5

o

04r 1 04}

.

g 03f 1 & o3}

0.2 1 0.2

-~

01 o1k

-~

— SM UK
0.00 0.00F -- WALE
- n n LN ] | n n
00 10! 10? 00 10! 10?
*
Y ¥
(c) (d)
0.6 —— — T T 0.6 —— —
AT =200, AT =80 — SM AT =200, AT = 80
Lower wall, x=1.3 . Lower wall, x=1.3
051 Lss-5th WALE 951" Gaussian

0.00
-0.05

Figure 5.36: Comparison of correlation C, between Smagorinsky and WALE models
using Lss-5™" filter (a, ¢) and Gaussian filter (b, d) at the lower wall.

5.5.2. Correlation of SGS force

Correlation of the SGS force f; defined by equation (3.24) in Chapter 3 is an interesting
alternative to evaluate the a priori performances of subgrid scale models, as it corresponds
to the exact term involved in the Navier-Stokes equations. In our case, (f3) is zero due to
the homogeneity in spanwise direction. Therefore, only components f; and f5 are analyzed
in the following. The wall normal distribution of SGS force at several streamwise locations
is given in Fig. B.15 in Appendix B.

Correlations Cf, and Cy, between the two components of exact SGS force and their
modeled counterparts by Smagorinsky model using both Lss-5"* and Gaussian filter width
A} =100, Af = 40 are given in Fig. 5.39. One can observe that, Cf, and C, with Lss-5"
filter and C'y, with Gaussian filter is lower than 0.4 both in the converging and the diverg-
ing regions. In most regions of the channel, however, larger C}, (in the range [0.4,0.6])
is obtained with the Gaussian filter. This result is in agreement with plane channel flow
(see Fig. 4.42(a) and Fig. A.2). This large correlation may be due to the influence of
1/37x which is added to the modeled SGS stress tensor. However, significantly higher
correlation regions of Cy and Cy, are observable above the two walls in the diverging

APG part. In most regions, C'y, and Cy, are generally larger than in plane channel flow
(see Fig. 4.43).

Comparison of correlations C'y, and C'y, between Smagorinsky and WALE models using
both Lss-5" and Gaussian filters at the lower wall are given in Fig. 5.40 at z = 1.3. As a
difference with the plane channel flow, a peak of C, and Cy, occurs around y* ~ 100 for
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both models. These are roughly the same positions as the peak of C.,, both in streamwise
and wall normal positions as shown in Fig. 5.36. When moving downstream, both Cy,
and Cy, tend to become equivalent to the correlations in the outer region of plane channel
flow (see Fig. 4.45). Along all normal positions, C, and C}, are comparable or larger
with the Smagorinsky than with the WALE model, except that larger C'y, and Cy, are
obtained with the WALE model respectively in the range y* > 100 and y* < 10 using
the largest Lss-5" filter width (AF = 200, AT = 80). The main conclusion is that, the
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correlations Cy, and C}, are larger with the Smagorinsky model than the WALE model
in the outer region, while they are more dependent of the filter type and filter width in
the near wall region.

5.5.3. Correlation of SGS energy dissipation

This section investigates the correlation between the SGS energy dissipation and its coun-
terparts modeled by the subgrid scale models. The statistics of exact (es,s) are presented
in Fig. 5.10 in Section 5.3. Correlation C, between €4, and its modeled counterparts
by Smagorinsky model using Lss-5'" and Gaussian filters is given in Fig. 5.41. In most
region, poor correlation (in the range [0.0,0.4]) is observed with the Lss-5" filter, while
higher correlation (in the range [0.4,0.6]) is obtained with the Gaussian filter. This is in
agreement with the influence of the filter type in plane channel flow (see Fig. 4.47 and
A.3). However, with the Gaussian filter, significantly high correlation C,,, (up to 0.8)
appear in the diverging channel center and in the turbulent layer above the lower wall.
This value is higher than the correlation in plane channel flow and may be due to the
influence of adverse pressure gradient.
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{10.6
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Figure 5.41: Correlations C ,, between exact SGS energy dissipation and its modeled
counterparts by Smagorinsky model using Lss-5"* (a) and Gaussian (b) filters.

Comparison of C,  obtained by the Smagorinsky and WALE models at the lower
wall and at z = 1.3 is shown in Fig. 5.42. Similarly to C,, and Cy,, CYy,, a peak of
Ce.,, appears close to y* ~ 100 for both models, independently of the filter type and
filter width. With the larger filter width (A} = 200, A+ = 80) for both filter types,
higher correlation is obtained with the Smagorinsky than with the WALE model in the
whole channel region. However, for the small Gaussian filter width (AT = 50, A = 20),
the behavior of C,, is close to the plane channel flow. For the small Lss-5" filter width
(AF =50, AF = 20), no significant difference between models occurs in the range y* > 20,
while a worse correlation C¢, , occurs close to the wall with the WALE model. Therefore,
although the coefficients of subgrid scale models are calculated by matching the real and
the modeled SGS energy dissipation, the correlation between them, which is dependent of
the filter type and filter width, is not high at the lower wall, and it depends on the filter
type and filter width. A similar behavior is observed at the upper wall (see Fig. B.18 in
Appendix B).
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5.5.4. Conclusion

This section has investigated the correlations and the predictive capabilities of subgrid
scale models based on three criteria. The SGS tensor is found to be more correlated with
the turbulent kinetic energy at the lower wall than at the upper wall. This agrees well
with the behavior of SGS energy dissipation. But the large values of the SGS stress tensor
do not correspond to regions of high correlation. In the recirculation region, low C.,, is
observed, and the influence of the filter type on C.,, is larger for the small than for large
filter width. A peak of C,,, appears for the large filter width. Due to the influence of
1/37k, Cy, is significantly larger with Gaussian than with Lss-5"" filter. Higher correlation
of €445 is also observed with Gaussian than with Lss-5%" filter. In the diverging APG region,
the maximum of €,y is even larger than in plane channel flow.

The difference between model performances are also analyzed. In most outer regions
at the lower wall, the Smagorinsky model has higher correlations C,,, Cy,, Cy,, as well as
Ce.,, than the WALE model. It is important to note that, the mean and the fluctuation
of SGS stress tensor 715 is badly predicted by the Smagorinsky and WALE models in the
near wall region, corresponding to a low correlation C., in the same range. However,
although the coefficients of subgrid scale models are calculated by matching the real and

modeled SGS energy dissipation, the correlation between them is low.
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5.6. Conclusion

This Chapter firstly investigated the energy transfer mechanisms in converging-diverging
channel flow, with special attention on the APG region. Two regions of both strong SGS
energy transfer and strong SGS energy dissipation are observed in the diverging APG
near wall regions, with a higher intensity at the lower wall than at the upper wall. These
regions correspond to an intense production of vortices, observed by Laval et al. 2012 [73|
for the same flow. The one-dimensional analysis of the energy transfer mechanisms reveal
that, both (T,,,) and (esys) are more correlated with the turbulent kinetic energy and
the fraction of subgrid scale kinetic energy at the lower wall than at the upper wall,
independently of the filter width and type. The influence of the sharpness of the Lss-5"
filter is larger for the positive and negative SGS energy transfer than for the contributions
of the SGS energy dissipation, for the present converging-diverging channel flow compared
to the plane channel.

Secondly, the coefficients of four subgrid scale models are evaluated. Contrary to the
plane channel flow, significant negative coefficients of subgrid scale models, corresponding
to backward SGS energy dissipation, occur in the converging channel center. Due to the
filter type dependent behavior of the SGS energy dissipation and its counterparts modeled
by the subgrid scale models, the coefficients of the four subgrid models are larger with
Gaussian than with Lss-5" filter in the diverging channel center. Owing to a larger norm
of the strain rate tensor (S;;) in the near wall region than in the channel center, small
(C) and (Cy) are obtained near the wall, independently of the filter type and filter width.
The coefficients (C,,) and (C,) are found to have quite similar behavior in the present a
priori analysis. The filter width dependent behavior of the operator (S5 of the WALE
model and the operator (D,) of the o models leads to higher (C,,) and (C,) near both the
lower and upper walls in the diverging APG region, especially for the larger filter width
with both filter types. The one-dimensional analysis show that, a new peak of each model
coefficient is observed in the recirculation region.

Finally, the model performances based on three criteria are analyzed. The Smagorin-
sky model has higher correlations C;,,, Cy,, Cy,, and C_ , than the WALE model in most
regions of the lower wall. In the near wall region, the mean and the fluctuation of SGS
stress tensor Ty is badly predicted by the Smagorinsky and WALE models, corresponding
to a low correlation C,,, in the same range. A similar but less pronounced behavior com-
pared to the circulation region is observed at the upper wall. However, the low correlation

based on the SGS energy dissipation is slightly higher than in plane channel flow.



Chapter 6

Conclusions and Perspectives

6.1. Conclusions

In order to investigate the behavior of subgrid scale models under the effect of different
pressure gradients, an a priori analysis is first conducted in a plane channel flow at fairly
high Reynolds number to provide a reference for the a priori analysis of a flow with a
more complex geometry. Compared to the previous research of plane channel flow at low
or moderate Reynolds number (Piomelli et al. 1991 [112]; Horiuti 1997 [65]), a significant
peak of the SGS energy dissipation is observed near the peak of turbulent kinetic energy at
y* = 10. In addition to the SGS energy dissipation traditionally analyzed at low Reynolds
number, the full terms of SGS energy transfer are investigated. A net back-scatter of SGS
energy transfer is observed in the viscous layer. But the averaged positive and negative
contributions of local SGS energy transfer are significantly larger than the net SGS energy
transfer, especially with the sharp Lss-5"" filter. So, only considering the net term may
be misleading, as it does not reveal the full energy transfer mechanisms of turbulence.

Then the coefficients of four eddy-viscosity models are evaluated a priori in the plane
channel flow. In the outer region, lower values of the Smagorinsky model coefficient are
obtained as compared to previous a priori estimates for plane channel flow (Liu et al.
1999 [78]). One part of the explanation may be due to the 2D filtering or the sensitivity
of the model coefficients to the mesh size. However, this a priori estimate is rather
independent of the filter type and only slightly function of the filter width in the range
investigated. The averaged Smagorinsky coefficient computed from large scales using the
dynamic procedure is on average underpredicted compared to the standard Smagorinsky
coefficient. However, a good agreement between the two coefficients is obtained with
small filter width, when the ratio between the streamwise and spanwise filter widths
is small. The a priori analysis reveals a strong sensitivity of the averaged coefficients
of both the WALE and o models in the viscous and the beginning of the buffer layer
regions. Therefore, the uniformity of both the WALE and the ¢ model coefficients breaks
down when approaching the wall. In the outer region, the averaged coefficient of the
WALE model in the range (0.2,0.35) and the averaged coefficient of the ¢ model in the
range (0.5,0.85) are significantly smaller than their recommended values for homogeneous
isotropic turbulence (0.5 for the WALE model, according to Nicoud and Ducros 1999 [102])
or plane channel flow (1.5 for the o model, according to Nicoud et al. 2011 [103]). The

131



132 CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

ratio between the WALE model coefficient and the Smagorinsky model coefficient is higher
than the ratio estimated by Nicoud and Ducros 1999 [102] for homogeneous isotropic
turbulence.

Subsequently, a closer look at how well the subgrid scale models reproduce the statistics
of subgrid scale quantities is investigated by comparing the statistics and the correlation
of the exact and modeled quantities based on the SGS stress tensor. The correlations of
the normal components of the SGS stress tensor 7;; are higher than the results of Carper
and Porté-Agel 2008 [25]. However, it is shown that the correlations of these components
are largely dependent of the way of considering or non-considering the trace of the SGS
stress tensor which is not modeled. The statistics of 715 is investigated in more detail and
it is found that the correlation between its exact and modeled counterpart is lower than
the correlation obtained by Carper and Porté-Agel 2008 |25] in a wind tunnel with a low
Reynolds number. Higher correlations are obtained with the smoother Gaussian filter.
This is known as a consequence of the overlapping between resolved and unresolved scales.
Although the coefficients of subgrid scale models are computed by matching the measured
and modeled subgrid scale dissipation, the correlation of the SGS energy dissipation is low
both in the near wall and outer regions. The present a priori analysis of correlations and
models performances indicates that, the local characteristics of the subgrid scale quantities
including the SGS energy dissipation are poorly modeled. The role of eddy viscosity
models is only to reproduce the averaged dissipative effect of turbulence. However, low
correlations do not indicate a failure of such models but a fundamental limitation of a
priori test itself (Park 2005 [107]).

To the best of our knowledge, the present work is the first attempt to perform an
a priori analysis of subgrid scale models in wall turbulence with pressure gradient and
wall curvature. Contrary to what has been observed in plane channel flow, weak back
scatter of SGS energy transfer and SGS energy dissipation are observed in the converging
channel center and above the edge of the bump before the summit, under the effect of
favorable pressure gradient. However, the present a priori analysis is mainly focused on
the diverging APG region, with special attention to the recirculation region at the lower
wall, as it is the most difficult region of the flow to be modeled. Due to the intense
production of turbulent kinetic energy, two strong forward scatter regions of SGS energy
transfer and SGS energy dissipation occur in the diverging APG regions. This forward
scatter is more intense along the lower wall. Above the recirculation region, the forward
scatter begins further from the wall, compared to plane channel flow. In the diverging
APG near wall regions, the averaged SGS energy transfer in the diverging APG near
wall regions reveal that, the kinetic energy of strong vortices generated by the streaks
instability upstream of the separation point is not transfered to the large resolved scales
when moving downstream, as the net averaged energy flux is going from the large resolved
to small unresolved scales in this region. This is corroborated by a higher probability of
points experiencing forward scatter.

The a priori evaluation of the subgrid scale model coefficients reveals strong non-
uniformity within the whole simulated region. This is due to the different behavior of
both the exact SGS energy dissipation and its modeled counterpart, which are sensitive
to the filter type and filter width. Low values of coefficients of the standard Smagorinsky
model and Dynamic Smagorinsky model occur in the diverging APG near wall regions
with both filter types, while high values with Gaussian filter are observed in the diverging
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channel center. Meanwhile, higher values of coefficients of the WALE and ¢ models
are observed in the diverging channel center with Gaussian filter. However, both filter
type lead to high coefficients of the WALE and ¢ models in the region of strong energy
production, near the two walls, especially for large filter width. Therefore, when a constant
appropriate to the core flow is adopted in a LES, statistics in the diverging APG near
wall regions may be incorrectly predicted, especially with a coarse mesh or a large explicit
or smooth filter. This confirms the results of Kuban et al. 2012 [70] in LES of the same
flow configuration but with different simulating parameters (different mesh grid, different
filter) as compared to the present analysis. They adopted a constant coefficient of the
WALE model and obtain results which are not very accurate in the diverging near wall
regions. The coefficient of the ¢ model is also variable in a quite similar way as the
coefficient of the WALE model in the whole channel region.

The correlations of the SGS stress tensor, the SGS force and the SGS energy dissi-
pation are also investigated in this database of channel flow with a curved wall. Low
C,,, correlation is obtained independently of the filter type and filter width. But slightly
higher C7,, is observed with the Gaussian filter in the recirculation region somewhat above
the lower wall, indicating a slightly better correlation between the SGS stress tensor 79
and its counterpart modeled by the Smagorinsky model. However, both the Smagorinsky
and WALE models perform poorly in predicting the mean and fluctuation of SGS stress
component Ty, in the recirculation region. Similarly to what has been observed in plane
channel flow, the correlation of the SGS energy dissipation is low. Higher correlation of
the SGS energy dissipation is observed with the Gaussian filter compared to the plane
channel flow, in the diverging channel center and even near the lower wall in the diverging
APG region.

6.2. Perspectives

For the plane channel flow, additional a priori analysis with various Reynolds number
and with the same filter sets as in present analysis would be useful to address the effect
of the Reynolds number. As the peaks of coefficients of the WALE and ¢ models with
the large spanwise filter width are observed in the near wall region, both models with
coefficients obtained by a priori estimate with small spanwise filter width could be tested
in a posteriori analysis of the same configuration and with equivalent explicit filters.

For the converging-diverging channel flow, the size and shape of vortices associated
with the streaks instability as well as the statistics of the resulting vortices were investi-
gated by Laval el al. 2012 [71] [73]. The present a priori analysis shows that, both the
forward and backward contributions are more significant than the net SGS energy trans-
fer term. Therefore, a more detailed analysis of the turbulence structures is expected to
provide information on the full energy transfer mechanisms. As significant back scatter of
both SGS energy transfer and SGS energy dissipation is observed, other non-eddy viscos-
ity models which can reflect the back scatter energy cascade of turbulence, like the Scale
Similarity Model, or other models with high correlations or good predictive capabilities
of statistics could be tested both a priori and a posteriori.

Using the same flow configuration, Kuban et al. 2012 [70] showed that, using a single
filter in the wall normal direction and different subgrid scale models, they could not
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get a good near wall agreement with DNS in the diverging APG region. Therefore, a
posteriori analysis with a comparable explicit filtering both in the streamwise and spanwise
directions as our a priori analysis could be tested. The explicit filtering allows the filter size
to be chosen independently of the mesh spacing, which can alleviate the sensitivity of the
results to the mesh and minimizes the effects of numerical error in practical simulations.

According to Kuban et al. 2012 [70], the near wall results obtained with a constant
WALE model coefficient are close to the results obtained using the Dynamic Smagorinsky
model. Thus, it is interesting to conduct a priori analysis for the WALE and ¢ models
with a dynamic procedure for a deep comparison with their standard formulations, in
order to investigate the local behavior of these model coefficients.

Unfortunately, due to the limitation of computational resources, a limited number of
filter width have been tested in the present study. Since the coefficients of the WALE and
o models are found to be sensitive to the spanwise filter width in the plane channel flow,
a more complete analysis could be useful to evaluate their specific sensitivity to the filter
width in different direction and in different regions of the converging-diverging channel.

In our study, performances of four eddy viscosity models have been investigated in the
converging-diverging channel flow with a curved wall. As in the present configurations,
the pressure gradient strongly evolves in space, the physics of the flow is far from equilib-
rium. The results of our a priori analysis are difficult to generalize to other APG flows.
Unfortunately, a priori research of subgrid scale models at such kind flow is scarce, as full
3D databases of flows with complex geometry at a high Reynolds number is not easy to be
acquired. However, more a priori and a posteriori tests of these models are required to be
conducted in other databases of turbulent flow with various pressure gradients at a large
enough Reynolds number, in order to improve our knowledge on the effect of pressure
gradient or curvature on the subgrid scale models behavior.
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Appendix A

A priori results for plane channel flow

A.1. SGS energy transfer

30

— (Ty)/{e) EleO,E:QO
Lss-5'"

20

15

Figure A.1: Net SGS energy transfer including the average of its positive and negative
contributions using the Lss-5" filter set A} = 100 and Af = 20. Statistics are
normalized by the rate of kinetic energy dissipation.
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A.2. Correlations of SGS force f; and f; using Gaussian
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Figure A.2: Correlations Cy, and Cy, between (97;;/0x;) and (3(7;" + 1/374)/0z;) (a)
or between (97;;/dx;) and (97" /0x;) (b) for Smagorinsky model, using Gaussian filter.

Fig. A.2 shows that, in the outer region, C}, is larger without than with item 1/374,
while a larger Cy, is obtained by considering 1/37y. It should be noted, however, that
by considering 1/37xx, Cy, is significantly larger with Gaussian than with Lss-5" filter
(see Fig. 4.42(a)) in the outer region, while C, is almost the same using both Lss-5"" and
Gaussian filters when 1/37y is not considered.

A.3. Correlations of SGS energy dissipation using Gaus-
sian filter
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Figure A.3: Correlation C.,,, between exact SGS energy dissipation and the modeled
one by Smagorinsky model using Gaussian filter.



Appendix B

A priori results for APG channel flow

B.1. Energy transfer mechanism

B.1.1. Back scatter of net SGS energy dissipation
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Figure B.1: Back scatter of net SGS energy dissipation (eyys) in converging favorable

pressure gradient region using Lss-5"" (a, ¢, ) and Gaussian (b, d, f) filters.
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B.1.2. SGS energy transfer in APG regions
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Figure B.2: SGS energy transfer for filter width AT = 100, AT = 40 using Lss-5'" (a)
and Gaussian (b) filters.
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Figure B.3: Positive contribution of SGS energy transfer for filter set Al = 100, AF = 40
using Lss-5" (a) and Gaussian (b) filters.
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Figure B.4: Negative contribution of SGS energy transfer for filter set AT = 100, AF = 40
using Lss-5" (a) and Gaussian (b) filters.
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Figure B.5: Fraction of points experincing back scatter of SGS energy transfer for filter
set Al = 100, Af = 40 using Lss-5'" (a) and Gaussian (b) filters.
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B.2. A priori evaluation of model coefficients

B.2.1. A priori estimate of negative (C) with Gaussian filter

A detail concentration of negative (C) with Gaussian filter is given in Fig. B.6. One can
observe that, the smallest values of (Cy) (approximately —0.08) appear in the center of
converging channel region. This corresponds roughly to the maximum of back scatter of
net (€s55) (see Fig. B.1 of Appendix). Furthermore, the absolute value of negative (C)
become larger as increasing the filter width, in agreement with the increasing trend of
back scatter of net SGS energy dissipation.
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Figure B.6: A priori estimate of negative regions of (C) (Smagorinsky model) in the

converging channel region using the Gaussian filter set (A} = 100, AT = 40) (a) and
(AF =200, At = 80) (b).
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B.2.2. A priori estimate of the DSM coefficient (C;) using different
test filters

Figure B.7: A priori estimate of coefficient (C;) of Dynamic Smagorinsky model in the

converging-diverging channel regions with three filter sets (3 = 1.5A) using Lss-5" (a, c,
e) and Gaussian (b, d, f) filters.
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Figure B.8: Relative error between coefficient (Cs) and (Cy) in the converging-diverging

channel regions using Lss-5" (a, ¢, e) and Gaussian (b, d, f) filters (A = 1.5A).
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Figure B.9: A priori estimate of coefficient (C;) of Dynamic Smagorinsky model in the

converging-diverging channel regions with three filter sets (ﬁ = 3.0A) using Lss-5" (a, c)

and Gaussian (b, d) filters.
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Figure B.10: Relative error between coefficient (Cs) and (Cy) in the converging-diverging

channel regions using Lss-5" (a, ¢) and Gaussian (b, d) filters (A = 3.0A).
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B.3. Tests of models behavior

B.3.1. SGS stress tensor

(2 | ()
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Figure B.11: One-dimensional profiles of the normalized SGS stress tensor at the lower
(a) and upper (b) walls using the Gaussian filter width AT = 100, AT = 40.

One-dimensional analysis of SGS stress tensor with Gausian filter width A} = 100,
AT = 40 are given in Fig. B.11. At the lower wall, the peaks of components (r;),
(T12), (m22) and (733) occur at the same position = 1.3 in the range 30 < y* < 50,
collapsing to the streamwise and normal positions of the peak of turbulent kinetic energy
(see Fig. 3.15(a)) and the streamwise position of the peak of fraction of subgrid scale
kinetic energy (see Fig. 5.3(a)). However, the peaks of SGS stress tensor are different
dependently of different component at the upper wall. Only the peak of (71;) occurs at
x = 2.0, 20 < y* < 30, as the same position of the peak of turbulent kinetic energy
(see Fig. 3.15(b)) at the upper wall. A similar one-dimensional behavior of all these
components are observed with Lss-5" filter and with other filter width. Therefore, the
SGS stress tensor is more correlated with the turbulent kinetic energy at the lower wall
than at the upper wall where the effect of subgrid scale kinetic energy becomes larger.
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and C
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B.3.2. Wall normal profiles of correlations C; , C

T22

In order to investigate these correlations in detail, one-dimensional analysis near both
the flat and curved walls are given in Fig. B.12. C},, keeps high (near to 1.0) along the
lower wall from the diverging part. A pits begins to appear at x = 0.7 with Lss-5'" and
at x = 0.6 with Gaussian filter in range y* < 10, roughly collapsing to the onset of the
flow detachment. This pits reaches minimum at z = 1.9 with Lss-5"" and at z = 1.6
with Gaussian filter, almost the end of the flow detachment. Besides, the peak of C.,,
gradually decreases and moves away from the wall, in the range 0.7 < x < 1.9, y* > 30
with Lss-5"", 0.6 < z < 1.6, y* > 30 with Gaussian filter, as moving downstream along
streamwise positions. Near the end of the diverging channel, C,, is smaller than in near
wall region of plane channel flow. A new peak of C;,, begins to appear at x = 0.2 with
Lss-5" and x = 0.6 with Gaussian filter. It moves away from the wall and disappears at
the end of the channel z = 7.0 when moving downstream. The minimum of C.,, occurs
at * = 0.3 with Lss-5" and x = 0.5 with Gaussian filter. A peak of C,,, is observed
from the onset of circulation region x = 0.3, y* < 10 with Gaussian filter, while a similar
peak only appears from z = 0.9, y* < 10 with Lss-5"*. This peak moves away from the
wall and gradually disappears as moving downstream. Thus, in circulation regions, a new
peak is observed respectively on C7,,, C,,, and C.,, very near to the wall, while it begins
at a position which is more downstream with Gaussian compared to with Lss-5" filter.
Besides, slightly larger correlations (C.,,, Cr,, and C.,) are observed using Gaussian than
Lss-5™" filter in accordance with the observations in plane channel flow (see Fig. 4.36).
This is the same for the other filter width with both filter types. Quite similar behavior
to the plane channel flow are observed at the upper wall, independently of the filter type

and filter width.
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Figure B.12: Wall normal profiles of correlations C,,, C,,, and C,,, at the lower wall
using Lss-5" (a, ¢, e) and Gaussian (b, d, f) filter width A} = 100, AT = 40.
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B.3.3. Statistics of (r2) at the upper wall
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Figure B.13: Wall normal profiles of exact (r5) and its modeled counterparts by the
Smagorinsky and WALE models using the Lss-5"" (a, ¢) and Gaussian (b, d) filters at the
upper wall.
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B.3.4. Standard deviation at the upper wall
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Figure B.14: Standard deviation of the exact and modeled (715) with filter width A} = 50,
AT =20 using Lss-5"" (a) and Gaussian (b) filters at the upper wall.
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B.3.5. Behavior of the exact SGS force

One-dimensional analysis of the normalized (f1), (f2) using the Gaussian filter at both
lower and upper walls are given in Fig. B.15. At the lower wall, the positive maxima of
(f1) and (fs) occur at the same streamwise position x = 1.3, respectively in the range
40 < y* < 70 and y* < 10. It corresponds to the same streamwise position of the peaks of
both turbulent kinetic energy (see Fig. 3.15(a)) and the fraction of subgrid scale kinetic
energy (see Fig. 5.3(a)). At the upper wall, the positions of these peaks occur at = = 2.3,
50 < y* < 80. This is slightly more downstream than the peak of turbulence kinetic
energy (see Fig. 3.15(b)), but more upstream than the peak of fraction of subgrid scale
kinetic energy (see Fig. 5.3(b)). The peaks of (f1) and (f2) occur at the same positions
for other filter type and filter width at both walls. Therefore, (f;) and (fs) are more
correlated with the turbulent kinetic energy or the fraction of subgrid scale kinetic energy
at the lower wall than at the upper wall.
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Figure B.15: One-dimensional profiles of the normalized SGS force (f1), (f2) at the lower
(a) and upper (b) walls using Gaussian filter width A+ = 100, AF = 40.
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B.3.6. Comparison of the exact SGS force (f;) and (f;) and their
modeled counterparts

A closer look at the models predictive capabilities at streamwise positions x = 1.3 cor-
responding to the peaks of SGS forces at the lower wall are given in Fig. B.16. One-
dimensional profiles of exact (f1), (f2) and their modeled counterparts by the Smagorin-
sky and WALE models are analyzed using the Lss-5!" and Gaussian filters. A peak of (f;)
and (f2) (with negative sign) occur at x = 1.3, in the range 40 < y* < 70. This is caused
by the peak of turbulent kinetic energy roughly in the same range. In the range y* > 100,
both the exact SGS force and the modeled counterparts collapse to zero, corresponding
to a poor correlations Ct, and CY, in the same region (see Fig. 5.40).

In the near wall range y* < 100, both (f;) and (f2) are badly predicted by the two
models, especially at y* = 1. In the range 10 < y* < 100, for the small filter width
(A =50, AF = 20), (f1) is better predicted with Lss-5"" than with the Gaussian filter.
However, a better prediction for (f;) with a large filter width (A} = 200, AF = 80) is
obtained using the Gaussian filter in the near wall range 4 < y* < 100, while (f;) is
better predicted by the Smagorinsky model for the larger Lss-5t" filter width (A} = 200,
AT = 80). It should be noted that, an identical prediction for (f,) is obtained by both
models with all the Gaussian filter widths and the small Lss-5%" filter width (A} = 50,
AT = 20), through the whole channel. For the large Lss-5™" filter width (A} = 200, Af =
80), the Smagorinsky model predicts (fs) better than the WALE model. Therefore, the
difference between models for predicting (f1) and (fs) is not striking when the Gaussian
filter or small Lss-5" filter width is adopted, while the Smgorinsky model performs better
than the WALE model for a large Lss-5" filter width (AF = 200, AT = 80). A similar
behavior is observed at the upper wall.
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Figure B.16: Comparison of one-dimensional profiles of exact (f1), (f2) and their coun-
terparts modeled by the Smagorinsky and WALE models using Lss-5" (a, ¢, e, g) and
Gaussian (b, d, f, h) filters at the lower wall.
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In order to complete the analysis of the mean quantities, the standard deviations
between the exact and modeled SGS force with a small filter width (AF = 50, Af = 20)
using both Lss-5'" and Gaussian filters at the lower wall are shown in Fig. B.17. In the
range y* < 2, the fluctuations of both (f;) and (fs) are badly predicted by the two models
using both filter types, while no difference of the predictive capacities is observed between
the Smagorinsky and WALE models in the same range. This corresponds to the bad
predictions of (f1) and (fs) in Fig. B.16. In the range 3 < y* < 70, the WALE model does
slightly better than the Smagorinsky model for predicting the fluctuations of f; and f,
with Lss-5" filter. But no better prediction of f; is observed by the WALE model in the
same range in Fig. B.16. Meanwhile, the level of f; fluctuation is better predicted by the
WALE model in the range 3 < y* < 70 using the large Gaussian filter width (AF = 200,
AT = 80), while (f,) is not better predicted by the WALE model in Fig. B.16. Therefore,
the models predictive capabilities for the fluctuations of f; and fy and for (f;) and (fs)
are not consistent, and dependent on the filter type and filter width.
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Figure B.17: Comparison of standard deviation of the exact f;, fo and the modeled

counterparts obtained by the Smagorinsky and WALE models with filter width A+ = 50,
A} = 20 using Lss-5" (a, ¢) and Gaussian (b, d) filters at the lower wall.
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B.3.7. Correlation of exact and modeled SGS dissipation at the
upper wall
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Figure B.18: Comparison of correlation (C.,,,) obtained by the Smagorinsky and WALE
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Résumé étendu

Au cours de ces derniéres années, la turbulence a beaucoup attiré 'attention de la commu-
nauté scientifique, en raison de sa complexité, de la difficulté & comprendre les mécanismes
physiques et a les modéliser. Parmis les différents types de turbulence, la turbulence preés
d’une paroi est particuliérement complexe car les échelles sont d’autant plus petites que
'on se rapproche de la paroi. Les couches limites (régions affectés par la présence d’une
paroi) peuvent étre soit laminaires ou soit turbulentes en fonction de la valeur du nombre
de Reynolds. Notre étude porte sur les couches limites turbulentes.

L’étude de la turbulence de paroi peut étre réalisée sur plusieurs types de géométrie
simple dont les écoulements de canal plan. La plupart des recherches numériques sur
cette géomeétrie sont axées sur la turbulence a faible nombre de Reynolds (Piomelli et
al. 1991 [112]; Hértel et al. 1994 [62]; Abba et al. 2003 [1]; Cimarelli and De Angelis
2012 [30]). Notre étude a pour objectif de réaliser une analyse a priori des mécanismes
de transfert d’ énergie et une évaluation a priori des coefficients et des performances
des modéle sous-mailles, sur un écoulement de canal plan et un écoulement de canal
convergent-divergent a grand nombre de Reynolds. Les coefficients de plusieurs modéles
de type "viscosité turbulente" sont étudiés en détail pour plusieurs types et tailles de
filtres. Ensuite, les capacités prédictives des différents modéles sous-mailles sont également
évaluées dans les deux configurations découlement.

Parmis les modéles sous-mailles pour la simulation des grandes échelles, il existe
une famille de modéle de type “viscosité turbulente" basé sur ’hypothése de Boussi-
nesq. Plusieurs de ces modéles sont analysés dans notre étude. Parmi eux, le modéle
de Smagorinsky est capable de prédire correctement la dissipation globale d’énergie ciné-
tique, mais ne permet pas de prédire le bon comportement de la viscosité turbulente
proche des parois. Afin de compenser ce défaut, une procédure dynamique a été pro-
posée par Germano et al. (1991). Le coefficient du modeéle Smagorinsky dynamique n’est
alors plus constant mais évalué en fonction des échelles résolues. Le coefficient obtenue
retrouve alors le bon comportement prés d’'une paroi de sorte qu’il est plus adapté pour
la simulation des écoulements de paroi. Un autre altenative est le modéle “Wall Adapting
Local Eddy viscosity" (WALE). En tenant compte de Peffet du taux de tension et de
rotation, ce modéle est capable de reproduire la transition d’'un écoulement laminaire a
un écoulement turbulent. Le modéle génére une viscosité sous-maille qui posséde un bon
comportement & proximité d’une paroi et ceci avec une complexité moindre par rapport
au modéle de Smagorinsky dynamique. Les mémes auteurs ont développé récemment un
nouveau modéle du méme type. Le modéle o a la propriété de s’annuler automatiquement
dés que le champ résolu est bidimensionnel ou a deux composantes, y compris pour les
cas de cisaillement pur et de rotation solides. Ce modéle a un faible cotit de calcul, il est
facile & mettre en ceuvre et ne nécessite pas de direction homogéne dans 1’espace ou dans
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le temps. C’est donc un modéle qui posséde des qualités intéressantes pour la simulation
de la turbulence de paroi.

L’influence du type de filtre et de la largeur de filtre sur I’évaluation a priori des
modéles sous-mailles est examinée en détail, en utilisant a la fois un filtre Gaussian et
le filtre ‘least square spline’ que 'on a développé et qui peut étre utilisé pour filtrer un
champ avec une grille homogéne ou non-homogene. Le filtre ‘least square spline’ (LSS)
est défini par des B-splines d’ordre n ajustés par moindre carrés pondérés. Ceci signifie
que la somme Y, W;i|f(z) — f(z)|? est minimisé (W; est le coefficient de poids, f(x) est le
signal original et f(z) est le signal filtré). La relation entre le nombre d’onde de coupure
k. et la largeur du filtre A peut étre approchée par k. ~ L/(2A), indépendamment de
lordre des splines. La fonction de transfert CAJ(kZ) décroit comme k=1, Lerreur de

commutation du filtre LSS est fonction de I'ordre des splines utilisées (Err(A) ~ A").

L’erreur de commutation avec n = 5 (Lss-5t") est Err(A) =~ A’ ce qui est inférieur a I
erreur de commutation des filtres classiques (souvent au deuxiéme ordre). Cependant, en
raison du fait que la répartition des nceuds utilisée pour le calcul des B-splines est fixé,
des fluctuations importantes apparaissent dans le calcul de certaines statistiques. Par
conséquent une version améliorée du filtre Lss-5"" (filtrage d’un champ deux fois avec un
déplacement des noeuds) est proposée et utilisée dans toute les analyses.

Aprés avoir défini les modéles et les filtres, nous procédons a une analyse a priori sur
plusieurs configurations d’écoulement différents avec et sans gradient de pression. Méme
si les écoulements turbulents homogénes isotropes ne sont pas d’intérét pratique, ils sont
interessant pour une premiére calibration et validation des modéles sous-mailles. Dans
notre étude, 'analyse a priori est d’abord validé sur la turbulence homogéne et isotrope
a Rey = 144 (ou X est Péchelle de Taylor). La résolution du maillage est 5123 est la taille
du domaine de simulation est (27 x 27 X 27). Les mémes nombres d’onde de coupure du
filtre k. sont adoptées dans les trois directions et sont situé dans la zone inertielle. Les
résultats montrent, en accord avec les recherches antérieures, que tous les coefficients des
modéles sous-mailles sont sensibles a la largeur du filtre et au type de filtre. Cependant,
les coefficients du modéle de Smagorinsky (Cs), du modéle de Smagorinsky Dynamique
(Cyq), du modéle WALE (C,,) ainsi que du modéle o (C,) sont environ 30% plus petits
que les valeurs standard préconisée pour ce type d’écoulement.

Afin d’étudier le mécanisme de transfert d’énergie et les performances des modéles
sous-maille sur I’écoulement de canal plan & grand nombre de Reynolds la base de données
de DNS & Re, = 950 fourni par J. Jimenez et al. a été utilisée. La simulation DNS a
été réalisée en utilisant des conditions limites périodiques dans le sens longitudinal (x) et
transverse (z) alors qu'une condition de non-glissement est imposée sur les deux parois
paralléles. La résolution de la grille est NV, x N, x N, = 2048 x 385 x 1535, dans un
domaine de calcul de 87 x 2 x 37. Une discrétisation de Chebychev est utilisé dans le sens
normal & la paroi (y). Le nombre de Reynolds de cette base de données est plus élevé que
ceux utilisé pour les analyses a priori des recherches antérieures. Les opérations de filtrage
2D avec les filtres Lss-5" et Gaussian sont effectuées dans les directions longitudinale et
transverse. Aucun filtrage n’est effectué dans la direction normale a la paroi, puisque,
dans cette direction, une résolution fine est nécessaire pour résoudre les gradients de
I’écoulement moyen.

Dans notre analyse, la fraction de 1’énergie cinétique sous-maille sur I’énergie cinétique
turbulente est examinée. Une forte inhomogénéité est observée en fonction de la distance a
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la paroi, en utilisant différentes tailles de filtres dans les directions longitudinale et trans-
verse. Le transfert d’énergie et la dissipation sous-maille ainsi que leurs contributions
positives et négatives respectives sont explorées dans ’espace physique avec différentes
largeurs de filtre Lss-5"" et Gaussien. Le changement de signe du transfert d’énergie net
se produit dans la zone tampon. Le transfert d’énergie inverse, c’est a dire de petites
échelles vers les grandes échelles, est observé dans la couche visqueuse et au début de
la couche tampon. Ce comportement n’a pas été rapporté dans les études antérieures,
mais il est observé dans notre étude pour différentes largeurs du filtre bidimensionnel
Lss-5"" et Gaussien. Le transfert d’énergie inverse est plus fort que le transfert d’énergie
direct qui commence de la couche tampon jusqu’au centre du canal. Ce comportement
est en accord avec les statistiques des pourcentages de points pour lesquels le transfert est
inverse (jusqu’a 85% a proximité de la paroi pour un peu plus de 50% dans la zone ex-
térieure). Lorsque 1’on se rapproche du centre du canal, ¢’est une cascade directe d’énergie
qui domine. Conformément a ce qui avait été montré dans les recherches précédentes a
nombre de Reynolds faible ou modéré, nos résultats confirment tout d’abord un pic de
dissipation d’énergie proche de paroi. Dans le méme temps, les statistiques de dissipation
d’énergie net en fonction de la distance & la paroi sont toujours de méme signe, corre-
spondant a une dissipation de I’énergie des échelles résolue. Etant donné que les deux
contributions de transfert d’énergie sont significativement plus grandes que le transfert net
d’énergie, I'analyse plus approfondie des structures cohérentes de la turbulence associés a
I’échange d’énergie entre les échelles dans la région proche de paroi devraient fournir plus
d’informations sur le mécanisme de transfert.

Dans un second temps, les coefficients du modéle Smagorinsky classique ((C5)), du
modéle Smagorinsky dynamique ((Cy)), du modéle WALE ( (C,)) ainsi que modéle o
((Cy,)) sont estimés a priori dans la méme configuration de canal plan. Dans la zone
extérieure, les coefficients (Cs) et (Cy) sont proche d’une constante, tandis que le com-
portement du coefficient de Smagorinsky prés de la paroi est sensible au rapport de la
largeur de filtre dans les directions longitudinale et transverse. La sous-estimation du
coefficient de Smagorinsky dynamique (Cy) est fonction de la largeur du filtre et du type
de filtre. Cette sous-estimation est plus faible en utilisant une petite largeur de filtre test
pour un filtre Gaussian, mais pas avec filtre Lss-5"". Les coefficients (C,,) et (C,) ont un
comportement assez similaire pour cette analyse a priori sur I’écoulement du canal plan.
Ils dépendent largement de la largeur du filtre transverse AT et sont particuliérement
sensibles aux grandes valeurs de celle-ci dans la région proche de paroi. Ceci est due au
comportement & la fois de la dissipation sous-maille et de I'opérateur différentiel <S§§S§lj>
du modéle WALE ainsi que de Popérateur différentiel (D,) pour le 0 modéle. La présente
analyse indique qu’une faible largeur du filtre transverse AF < 40 est recommandée pour
les simulations avec les modéles WALE et o dans la région preés de la paroi.

Les corrélations du tenseur sous-maille 7;;, de la force sous-maille f;, de la dissipation
sous-maille €54, et de leurs homologues modélisés par les modéle sous-maille Smagorinsky
et WALE sont ensuite évalués et analysées. Les analyses ne permettent pas de mettre
en évidence globalement de grande différence entre les capacités prédictives des modéles
sous-maille testés, notamment pour la composante 75, tant sur la valeur moyenne que
sur la déviation standard. Cette analyse permet de confirmer certaines conclusions déja
établies, telles qu’un niveau de corrélation plus grand avec le filtre Gaussien par rapport
au filtre Lss-5" ou pour les plus grandes largeurs de filtre (Pope 2000). Cependant, nos
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conclusions basé sur les trois critéres examinés ne sont pas toujours en accord avec les
résultats précédent en particulier dans la couche tampon.

Une étude équivalente est ensuite menée sur une base de données de simulation
numérique directe d'un écoulement de canal convergent-divergent documenté dans Mar-
quillie et al. 2011 [87] et Laval et al.  (2012) [73]. Le nombre de Reynolds basé
sur la vitesse de frottement & Uentrée (u? = 0.0494) et la moitié de la largeur du canal
(h =1) est Re, = 617. Le domaine de simulation est de 47 X 2 X 7 avec une résolution
spatiale de 2304 x 385 x 576. Une discrétisation aux différence finis explicite du 4éme
ordre est utilisée dans la direction longitudinale tandis que les deux autres directions sont
traités par une méthode spectrale (collocation Chebyshev dans la direction normale et
Fourier dans la direction transverse). La courbure de la paroi inférieure a été obtenu par
un changement de variables pour les opérateurs de dérivées partielle du domaine physique
vers un domaine cartésien. Les détails sur le changement de coordonnées sont disponibles
dans Marquillie et al. 2008 [88|. Afin d’augmenter la convergence des statistiques, les
résultats sont moyennés dans la direction transverse et dans le temps. Les unités de paroi
basé sur la vitesse de frottement au sommet de la bosse (u2 = 0.0695) sont indiqués par
I'exposant +, les unités paroi de référence basés sur u? = 0.0494 a I'entrée du domaine
de calcul ont 'exposant *. Sur la paroi inférieure, le gradient de pression adimensionné
dC,/ds (ou s est la direction tangente a la paroi) devient positif & © = —0.2 et augmente
trés fortement vers x = 0.2. Le gradient de pression a la paroi supérieure plane est, quant
a lui, plus lisse et plus faible qu’a la paroi inférieure. Une région de recirculation trés fine
(visible sur le coefficient de frottement C; = 7,,/(3pU2) se produit dans Uintervalle de
0.5 <z < 1.5 a la paroi inférieure.

Les résultats de I’ analyse a priori dans la région divergente montrent que le transfert
d’énergie direct et la dissipation d’énergie directe sont étroitement liés a 1’énergie cinétique
turbulente engendrée par le fort gradient de pression adverse dt a la courbure. La frac-
tion de I'énergie cinétique sous-maille, les valeurs nettes du transfert et de la dissipation
d’énergie atteignent leur maximum exactement a la méme position que le pic d’énergie
cinétique turbulente a la paroi inférieure, et ceci indépendament de la largeur et du type
de filtre. Il est intéressant de noter la présence de dissipation d’énergie inverse net dans
le centre du canal convergent alors qu’il n’y a pas de dissipation inverse dans le canal
plan. Le pic de cette dissipation d’énergie inverse est un peu plus en amont que le pic
de frottement a la paroi, et son intensité dépend fortement de la largeur et du type de
filtre. Cependant, la position longitudinale du pic de transfer d’énergie inverse dépend
beaucoup du type de filtre. Il est situé prés du maximum de frottement a la paroi avec
le filtre Gaussien. Enfin, il convient de noter que, pour cet écoulement de canal conver-
gent, divergent, l'influence de la raideur du filtre est plus importante pour les transferts
d’énergie positive et négative que pour les contributions de la dissipation d’énergie. Ce
phénomeéne est plus prononcé pour ’écoulement de canal convergent-divergent que pour
I’écoulement de canal plan. Suite a ’analyse des transfert d’énergie dans la configuration
de canal convergent-divergent, les coefficients de quatre modéles sous-maille sont évaluées
a priori avec différentes largeurs de filtre Lss-5!" et Gaussien. Les résultats sont comparés
avec les résultats du canal plan.

En raison du gradient de pression due a la courbure de la paroi inférieure, les coeffi-
cients des modéles sont beaucoup plus dispersés que pour le canal plan (voir la section
4.4 du Chapitre 4). Les coefficients négatifs des modeéles sous-mailles (correspondant a
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la dissipation d’énergie inverse) apparaissent dans le centre du canal convergent. Ces
coefficients négatifs ne sont pas observés dans nos résultats de canal plan, car aucune dis-
sipation inverse n’a été observée. Les valeurs des coefficients les plus grandes, supérieure
aux valeurs standards pour la turbulence isotrope, se produisent dans la région de canal
divergent. La dissipation d’énergie réelle ainsi que son homologue modélisé par des mod-
éles sous-mailles étant trés sensibles au type de filtre ceci conduit a de plus grandes
valeurs des coefficients des quatre modéles sous-mailles avec le filtre Gaussien qu’avec le
filtre Lss-5" au centre du canal divergent. A Dinverse, les coefficients (C,) et (C;) sont
plus petits dans la région proche de paroi que dans le centre du canal divergent. Cela
est dii & une plus grande valeur de la norme du tenseur des taux de déformation (S;)
prés de la paroi et ceci indépendamment du type de filtre et de la largeur du filtre. Le
coefficient de Smagorinsky dynamique (C,) s’étend sur une gamme plus large et est plus
éloigné de lestimation a-priori de (Cs) par rapport aux résultats du canal plan. Les com-
portements en fonction de la largeur du filtre de I'opérateur (S{S%) du modéle WALE
et de lopérateur (D,) du modéle o donnent lieu & des valeurs fortes de (C,,) et (C,)
prés des parois inférieure et supérieure dans la région divergente, en particulier pour la
plus grande largeur du filtre (AF = 200, AF = 80) et ceci pour les deux types de filtres.
Les coefficients des modéles WALE et ¢ ont un comportement assez similaire dans notre
analyse a priori. Une analyse plus détaillée dans la région de gradient de pression adverse
montre que les coefficients des modéles ont des comportements différents prés des deux
parois par rapport aux résultats de canal plan. A la paroi inférieure, (Cs) et (Cy) sont trés
sensibles a la variation du gradient de pression. Un extremum du coefficient de modele
sous-maille est observé dans la zone de recirculation pour chacun des modéles. Prés de
la fin de la zone de recirculation, (C,) est légérement plus homogéne que pour le canal
plan. Cependant, dans toute la région de recirculation, (C,) change plus rapidement que
les résultats du canal plan.

Les corrélations entre quantité sous-maille réelles et les mémes quantités modélisées
sont étudiés. Les grandes valeurs des composantes du tenseur sous-maille sont positionné
aux méme endroit que les grandes valeurs de I’énergie cinétique turbulente a la paroi
inférieure alors quelles sont légérement décalées a la paroi supérieure. Ceci est en accord
avec le comportement de la dissipation d’énergie. Mais les grandes valeurs du tenseur
ne correspondent pas aux fortes corrélations dans la région de recirculation. Dans la
région de recirculation, une faible corrélation C,, de la composante faible 715 est observée.
L’influence du type de filtre sur C., est plus grande pour les plus petites que pour les
plus grandes largeurs du filtre. Une corrélation plus élevée de eyy5 et de fo = O7;/0z;
est également observée avec le filtre Gaussien comparé au filtre Lss-5"". Dans la région
du canal divergent, le maximum de €445 est encore plus grand que pour le canal plan. La
différence entre les performances des modéles sont également analysés. Dans la plupart des
régions externes de la paroi inférieure, le modéle de Smagorinsky conduit a des corrélations
de C,,, Cf,, Cf,, ainsi que C¢,,, plus grandes qu’avec le modéle WALE . Tl est important
de noter que la moyenne et la fluctuation du tenseur 715 sont mal prédites par les modéles
Smagorinsky et WALE dans la région proche de la paroi, ce qui est en accord avec la
faible corrélation de C,, observée dans le méme intervalle. D’autre part, bien que les
coefficients des modéles sous-mailles sont calculés en faisant correspondre la dissipation
réelle a la dissipation modélisé, les corrélations entre les deux termes reste faible pour
tous les modéles.
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Dans la configuration d’écoulement analysée dans notre étude conduisant a des gradi-
ents de pressions différents sur les deux parois, le gradient de pression est fort et évolue
rapidement dans ’espace. La physique de I’écoulement est donc loin de I’équilibre et les
résultats de notre analyse a priori sont difficiles & généraliser & d’autres écoulements. Par
conséquent, il serait intéressant de faire des analyses a priori et a posteriori pour d’autres
configuration avec gradients de pression différents. Ceci permettrait d’améliorer nos con-
naissances sur le lien entre les mécanismes de transfert d’énergie et les performances
des modéles sous-mailles dans des configurations d’écoulements plus variés et donc plus
représentatives des problémes réels.
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Analyse a-priori de modéles LES sous-mailles appliqués a la tur-
bulence de paroi avec gradients de pression

Aprés plus de 50 ans de recherche, l'intéret de la simulation des grandes échelles pour la
simulation des écoulements instationnaire a été largement démontrée et cette méthode est
aujourd’hui utilisée pour une grande variété d’applications industriels. Plusieurs classes
de modéles sous-maille ont été proposées dont celle trés connue des modéles de viscosité
sous-maille souvent préférrées pour leur simplicité et leur robustesse. La formulation de
ces modéles comporte un coefficient qui doit étre ajusté ppour chaque type d’écoulement
et qui a été analysé pour des géométries simples. L’objectif de ce travail est de réaliser
des analyses a-priori de modeéles sous-mailles dans un canal plan et un canal convergent-
divergent a relativement grand nombre de Reynolds. Les influences du type de filter et
de la largeur du filtre sont systématiquement abordées pour chacune des statistiques.
Le transfert d’énergie sous-maille et la dissipation sous-maille sont tout d’abord étudiés.
Ensuite, les coefficients des modéles Smagorinsky, Smgorinsky dynamique, WALE et du
modéle Sigma nouvellement proposé sont estimés a-priori. Il est démontré que les coef-
ficients des quatres modéles sont non-homogéme dans le domaine de simulation est sont
largement affectés par le gradient de pression adverse, principalement dans la zone de re-
circulation. enfin, les corrélations entre les quantités exactes et leur équivalents modélisés
sont examinés. Les résultats montrent un faible niveau de prédiction des modéles sous-
maille et une grande variabilité des quantités modélisées dans les regions de fort gradient
de pression adverse. Ceci peut expliquer les difficultés pour obtenir de bons résultats LES
dans une telle configuration.

Mots Clés : Simulation des grandes échelles, turbulence, filtrage, simulation numérique
directe.

A-priori analysis of LES subgrid scale models applied to wall tur-
bulence with pressure gradients

After more than 50 years of investigation, Large Eddy Simulation has demonstrated its
benefit for unsteady flow simulation and is currently applied in a wide variety of engi-
neering applications. Several classes of subgrid scale models were proposed, including
the well known eddy viscosity models, usually preferred because of their simplicities and
robustness. The formulation of these models includes a coefficient which needs to be
analyzed for each flow configuration and which has been investigated in simple geome-
tries. The aim of present work is to perform a-priori analysis of subgrid scale models in
plane channel flow and in a converging-diverging channel flow at fairly large Reynolds
number. The influences of the filter type and filter width are systematically addressed in
analyses of all statistics. The SGS energy transfer and SGS energy dissipation are firstly
analyzed. Then, the a priori estimate of the coefficients of subgrid scale models, including
the standard Smagorinsky, Dynamic Smagorinsky, the WALE and the new updated o
models, are investigated in detail. It is shown that, the coefficients of the four models
are non-homogeneous in the simulation domain and are largely affected by the adverse
pressure gradient, especially in the recirculation region. Finally, the correlations between
the exact quantities and their counterparts modeled by the subgrid scale models with
respect to three criteria are explored. The results show a low predictability of subgrid
scale models and a strong variability of the modeled quantities in the region of strong
adverse pressure gradient. This may explain the difficulty to obtain accurate LES results
in such flow configuration.

Keywords: Large Eddy Simulation, turbulence, filter, direct numerical simulation



