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Résumé en français

Les infrastructures de transport, liées à la géographie du territoire, ont une

influence importante sur les interactions entre individus. La progression récente

de la rapidité et de la fréquence des déplacements [144] ont notamment aidé

à la diffusion à l’échelle mondiale de plusieurs maladies: HIV [54], SARS [30],

H1N1 [56, 91], MRSA [40]. Dans ce contexte, il est d’une importance cruciale de

développer des outils théoriques permettant de comprendre comment la mobilité

humaine influence la propagation de maladies infectieuses.

Au cours de cette thèse, nous avons tout d’abord réalisé une revue systématique

de l’utilisation des mouvements de population dans la propagation épidémique.

Nous nous sommes ensuite focalisés sur l’étude des mouvements de navette et

avons développé plusieurs outils pour comprendre leur influence: l’exemple de

la diffusion de la grippe en France a été utilisé pour cette étude.

Revue systématique de la mobilité humaine dans l’épidémiologie des

maladies transmissibles

La première partie de cette thèse a été consacrée à une revue systématique

des travaux portant sur des modèles de propagation épidémique et intégrant

des données de mobilité. Si le rôle des transports aériens dans la diffusion des

pathogènes est aujourd’hui bien documenté, à l’échelle nationale/régionale, les

mouvements de navette en revanche sont souvent intégrés sans que cela soit

justifié. Dans la suite de cette thèse, nous avons donc cherché à compren-

dre l’influence que ces mouvements pouvaient avoir, en se focalisant sur le cas

spécifique de la propagation de la grippe en France.

Analyse des chemins de propagation de la grippe

Tout d’abord, nous avons effectué un calcul de l’auto-corrélation spatiale des

données de suivi de propagation grippale enregistrées par le réseau Sentinelles

basée sur les mouvements de navette, afin de confirmer leur influence sur la

propagation de la grippe. Grâce à des outils de comparaison d’épidémies basés

sur un modèle métapopulation, nous avons ensuite montré qu’il était important
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d’intégrer les mouvements des enfants et des adultes, qui sont différents. Cette

étude nous a également permis de montrer l’existence de chemins de diffusion

typiques, empruntés selon le point de départ de l’épidémie.

Analyse spectrale

Dans un second temps, nous avons effectué une étude analytique de l’influence

des mouvements de navette en développant un modèle linéaire basé sur le

précédent. Nous proposons dans cette thèse deux outils basés sur l’analyse

spectrale de la matrice de ce modèle et du sous-espace vectoriel généré par ses

vecteurs propres dominants: ces outils ont permis d’étudier le rôle de chaque

canton dans la diffusion de la grippe d’une part et la dynamique globale du

modèle d’autre part, ainsi que de confirmer les résultats précédents.
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Summary of the thesis in English

Transportation networks have a major influence on the interactions between

people. The worldwide diffusion of some disease, like HIV [54], SARS [30], H1N1

[56, 91] or MRSA [40] has for instance been eased by the recent increases in the

velocity of transportation means and the frequency of movements [144]. In this

context, it is of crucial importance to develop theoretical tools to understand

the influence of human mobility on infectious disease propagation.

During this thesis, we have performed at first a systematic review of the use of

population movements in models of epidemic propagation. Then, we focused

on the national/regional scale, using commuting movements, and we developed

several tools to analyze their influence on the propagation of influenza in France.

Systematic review of human mobility in epidemiology of infectious

diseases

The first part of this thesis has been dedicated to the systematic review of

works on epidemic propagation integrating mobility data. Nowadays, the in-

fluence of air travel on disease diffusion has been extensively studied: on na-

tional/regional scale however, commuting movements are often integrated in

models without justification. In the following of this thesis, we investigated the

influence of these movements: the example of influenza propagation in France

was used to make this study.

Propagation pathways analysis

We started this work with the calculation of spatial auto-correlation of surveil-

lance data from the Sentinelles network, based on commuting data, in order to

confirm they had an influence on influenza propagation. Then, we developed

tools based on a metapopulation model, to compare epidemics propagation,

thanks to which we showed that both children and adults movements, which

are different, should be integrated in models. In this study, we also evidenced

the existence of preferential pathways for diffusion, that are followed depending

on the seeding district of the epidemic.
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Spectral analysis

We then performed an analytical analysis of commuting movements influence

by developing a linear model based on the previous one. In this thesis, we

propose two tools based on the spectral analysis of the matrix of this model and

the study of the vectorial sub-space generated by its dominant eigenvectors:

with these tools, we studied the role of each district in the propagation on one

hand and the global dynamics of the model on the other hand. Previous results

were confirmed by this second analysis.
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Chapter 1

Preface

Following directly the evolutions of the industrial revolution, last century has

seen a tremendous development of transportation means. The unprecedented

increase of speed and volume of travel has led to deep modifications in human

mobility [134]: in developed countries, for example, the number of kilometers

daily crossed by an individual has increased by over 1000-fold in the last century

[143]. The evolution of air travel in particular has been spectacular: the number

of air travellers has grown at a rate of 9% a year since 1960 and is expected to

keep growing at 5% for at least 10 years [136]. Similarly, due to the globalization

of economy, shipping traffic has greatly progressed, increasing by 27% since 1993

[145]. Due to the development of international tourism and migrations, more

and more people move temporarily or permanently on increasing distances: in

1990, 500 million persons crossed annually the border of a state (unpublished

data of the World tourism organization). These evolution generate increasing

contacts between distant populations [42]: as an example, the rate of contacts

between Europe and Americas has constantly increased during past century and

is nowadays higher than it has ever been.
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Consequences on human health

The increase of mobility has major consequences on human health: a growing

number of people are exposed to unknown pathogens [66] and more diseases be-

come potential pandemics [134]. Similarly, the propagation of several diseases

has been facilitated and accelerated by the development of transportation net-

work and the evolution of human movements. The worldwide spread of cholera

for example, has been directly linked to human travel: first, the pathogen has

been introduced to the Baltic, Canada, USA and Mexico in the 1830s by the ex-

plorations of Russian troops, Irish immigration and Canadian exploration [35].

Then, during the 19th century and the beginning of the 20th, each pandemic of

cholera increased in extent and intensity, following the expand of global trans-

port system [126]. Human migration and air travel were also proven to be one

of the main supports of HIV early propagation, which allowed its spread to be-

tween 100000 and 300000 people on the five continents between the start of the

epidemic, in the mid-1970s and 1980 [99]. On smaller scales, the intensity of

movements between them and urban center shapes the propagation of HIV to

rural areas [93]. More recently, SARS, which emerged in the province of Guang-

Dong, China, in November 2002 [118] propagated through airplane network to

several countries worldwide [30] before the public health measures set by WHO

stopped its diffusion in July 2003. Similarly, air traffic has been proven to be

the main vector of international influenza propagation [10].

To halt the propagation of these infectious diseases, we need to understand

how mobility affects the propagation and what type of interventions could be

relevant. Among the numerous methods used to preview future evolutions of

epidemics, modeling has been one of the most extensively used [52] and has

proven useful in cases of real outbreaks, like the 2001 foot-and-mouth epidemic

[51, 86]. Within this scope, we dedicated the first part of this thesis to the sys-

tematic review of mobility data uses in epidemiological models, which will be

presented in the third chapter. This review showed that, due to the complexity

of human mobility, its integration in models requires a strict selection of the
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movements that will be inserted: the scale of study, the mean of transmission

of the disease, its generation time limit the range of movements of interest for

the model. In most models of transmission, choice has been made to focus

on airplane or commuting movements: if airplane has been extensively studied

and proven to influence international propagation of infectious diseases, the rele-

vance of commuting movements has been less explored. Therefore, we dedicated

the following of this thesis to the analysis of commuting movement influence on

the propagation of diseases in France. Due to its mode of transmission and to

the existence of many datasets documenting its propagation, we used influenza

as a case study for this analysis.

The case study of influenza

Despite a low fatality rate, influenza is a major threat [115]: due to its genetic

variability and the speed at which it spreads [100], it infects a large number of

people every year, so that almost 20% of children and 5% of adults are affected

by influenza each year [112]. Influenza epidemic occur on a regular basis, with

recurrent pandemic outbreaks [34], like the 1918 pandemic, which killed around

40 million people in a year [104].

The speed of transmission of influenza, and its frequency of occurrence,

which allows for the constitution of large databases detailing its propagation,

make influenza a good example to understand how human mobility affects in-

fectious disease transmission. For these reason, in the second part of this work,

we used the case of influenza propagation in France to study how commuting

movements influence infectious diseases propagation.

We started this work by analyzing the spatial autocorrelation of influenza-

like illness surveillance data provided by the Sentinelles network and confirmed

that they exhibited a spatial structure linked to commuting movements. Given

this result, we investigated the influence of the commuting structure on disease

propagation: to do so, we developed several tools to evaluate the similarity of
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epidemic propagations and study the role of the networks nodes in the diffusion.

In a first part, we developed a metapopulation model of propagation based on

commuting movements: to analyze its simulation results, we defined two criteri-

ons, based on the similarities between epidemics, that were used to demonstrate

the existence of recurring propagation patterns. Chapter four will present this

work.

In a second part, we proposed a linearized version of this model and per-

formed its analytical study, using tools based on the spectral analysis of the

model equivalent matrix. This study gave results on the global dynamic of the

system and on the specific role of different cities in the propagation. These two

works will be exposed in chapters five and six.

The studies performed in this thesis required the analysis of large datasets

and the storage of large amounts of data. To complete them, we faced a tech-

nological challenge: the solutions that were developed to overcome it will be

presented in the seventh chapter of this thesis.
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Chapter 2

Background & definitions

In this chapter, we will briefly describe mathematical models that have been

developed to simulate the transmission of infectious diseases. This notably

includes the SIR model, on which most of our work was based. We will present

how spatial information can be added to the model and show some examples of

spatial models.

In a second part, we will focus on networks, a mathematical object that is

nowadays often used in epidemic models to describe spatial relationships. Some

methods to recognize two specific types of networks, namely the scale-free and

the small world networks, will also be presented, as these techniques will be

used in following chapters.

2.1 Why do we use models ?

Nowadays, several tools are available to fight the propagation of an epidemic:

distribution of curative or preventive treatment, vaccination, isolation of in-

fected individuals, closing of public spaces... However, depending on the disease

and its characteristics, like the mode of transmission, the probability for a con-

tact to be infectious, the time of incubation or the time before remission, do not

have the same impact on disease propagation (in terms of number of infected
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for example): the optimal strategy may ask for the use of one specific technique,

or a mix of several. Testing all combinations is impossible: to overcome this

issue, one can used mathematical models to understand disease propagation

and decide which policy should be adopted to fight it. Different problematics

can be addressed by the use of models: first, they can be used to make purely

theoretical analysis to understand the influence of a parameter or the structure

of the model on the size of the epidemic. When data documenting the propa-

gation of epidemics are available, different models can be compared to data to

determine which one gives the best approximation of reality and describes the

most accurately the mechanisms of propagation. Once the best model has been

found, it can be used to test different methods to halt epidemic propagation

and select the most efficient.

When a model is constructed, one has to adopt a trade-off between accuracy

and transparency: accuracy usually improves by adding more complexity to the

model, but in the process, its transparency decreases. Conversely, simplifying

the model to ease the understanding of its behavior and the role of each pa-

rameter decreases the proximity of the model to reality. Therefore, simplifying

assumptions on the system behavior have to be made to develop a model on the

behavior of the system.

In next part, we will present one of the simplest epidemiological model exist-

ing, the SIR model, and some of its parameters. Then, we will take an interest

into the integration of spatial information in this model.

2.2 The SIR model

The SIR model divides the population according to their infectious state, be-

tween susceptibles (individuals who have not been exposed to the disease and

can be contaminated), infected (currently colonized by the pathogen) and re-

covered (individuals previously infected and cured). During the simulation,

individuals can pass from a state to another. The evolution of the system is
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assured by the transition of susceptibles in the infected compartment as they

make contact with infected individuals who transmit them the disease and by

the transition of infected in the recovered compartment when they are cured

(Figure 2.1)

Figure 2.1: The SIR model

The SIR model makes the simplifying assumptions that the compartments

are homogeneous: in the susceptible compartment, all individuals have the same

susceptibility to the disease. In the same way, all infected individuals have

the same infectivity and the same probability to transmit the disease when

encountering a susceptible. All infected recover at the same rate and get off the

infectious compartment at the same speed. It is also supposed that all pairs of

individuals have the same probability of establishing a contact.

The system dynamics are regulated by the following equations:























dS
dt

= −β SI
n

dI
dt

= β SI
n

− γI

dR
dt

= γI

(2.1)

β and γ, respectively named rate of contact and recovery rate, describe the

natural history of the infection. With them can be defined the reproduction

ratio, or R0, which describes the capacity of the disease to invade the population

or not.
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2.2.1 Transmission rate

The rate of contact, often noted β, is the product of two parameters: the contact

rate, c and the transmission probability, p. The contact rate, is the probability

for two individuals, from any compartment, to make a contact: it is constant,

and equal for all pairs of individuals. Similarly, the transmission probability,

the chance for a susceptible to be infected when it makes a contact with an

infected individual, is constant and equal for all pairs of susceptible-infected.

2.2.2 Recovery rate

The recovery rate, often noted γ characterizes the speed of recovering of an

infectious individual: it is constant through time and equal for all individuals.

Its reciprocate, 1
γ
determines the average length of infectious period.

2.2.3 Basic reproduction ratio

The basic reproduction ratio, R0, is the number of individuals to which a single

infected can transmit the disease in a fully susceptible population. When R0 >

1, each infected has more than 1 descendant and the disease tends to propagate

to a growing number of individuals, but when R0 < 1, it tends to quickly stop

its propagation and disappear from the population. In the SIR model, the basic

reproduction ratio can easily be calculated with the transmission rate and the

recovery rate, with following equation:

R0 =
β

γ
(2.2)

2.2.4 Extensions of the SIR model

The natural history of some diseases cannot be reproduced with the SIR model:

other compartmental models have been proposed to give a more accurate de-

scription of a larger set of diseases [88]. For example, in the SEIR model (E

standing for ”exposed”), an additional compartment, which members are in-
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fected but not not infectious is added: this structure enables the modeling of

a latency period. To simulate diseases for which infection does not confer im-

munity, the model SIS has been developed: after recovery, individuals return in

the susceptible class instead of entering the recovered one. In case of temporal

immunity, the SIR model can be used by adding to it a lost of immunity rate,

describing the speed at which individuals go out of recovery class to re-enter

the susceptible one.

The compartments of the model can also be divided to take into account the

Figure 2.2: An example of compartmental SIR model

heterogeneity of the population (age, gender, susceptibility to the disease...)

(Figure 2.2). For example, the infectious class can be divided between symp-

tomatic and asymptomatic individuals: to model the different behavior of these

classes, different parameters will be used to simulate their interaction with the

susceptible class. The existence of heterogeneity of contacts in the population

can also motivate a division : for sex transmitted diseases, for example, a divi-

sion of classes between genders and sexual orientations can be adopted in order

to represent accurately the potential interactions.

Geography is an important source of heterogeneity in the interactions be-

tween people, as individuals at a small distance have a higher probability of
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interacting. Moreover, the division of the territory in cities, linked by a net-

works of highways and public transportation, shapes the way people interact.

Several solutions have been developed to integrate this spatial information in

models: in next part, we will present some of them and focus on networks, the

mathematical objects used in some models a,d that will be used in this thesis.

2.3 Spatial models

There are diverse ways of taking into account the heterogeneities induced in the

interactions between individuals by their spatial repartition. Depending on the

disease and its mode of transmission, the relevant information, that should be

integrated in the model, will be different. The three models that we present here,

are three different ways of using spatial information, but focusing on different

aspects of it, namely the division in groups, the distance and the network of

interactions.

2.3.1 Patch models

Patch models have been the first occurrence of spatial models used for epidemi-

ology [20, 64, 84]: they have been extensively used to simulate the propagation

of measles and helped in the comprehension of some specific patterns observed

in the district-level dataset describing its propagation in England since 1948. In

patch models, the population is divided in sub-groups: the force of infection ex-

erted on an individual depends on the distance between its patch and the others

and on the prevalence of infection in all patches. The same force is exerted on

all individuals of the same patch.

In patch models, the focus is set on the notion of community, represented

by the patch, which can be understood as a city or a neighborhood. These

model rely on the simplifying hypothesis that the probability of interacting

with another individual mainly depends on the community of living: the place

of residence induces the affiliation to a group and all individuals gathered in the
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same group have equal probability of making contact.

2.3.2 Distance transmission

In distance transmission models, instead of simulating the evolution of an entire

class, each individual is modeled separately. An individual can infect any other

in a range surrounding it, with a probability decreasing with distance. Such

models are called individual-based, or IBM, and they have notably been used

to model the propagation of foot-and-mouth disease [51, 87]: in these cases,

individuals were farms and exerted a force of infection on their neighbors caused

by the transportation of bovines and cattle between them.

Distance transmission gives an accurate description of the decreasing of the

force of infection caused by distance, but doesn’t account for the fact that

distance is not the only factor shaping the network of contacts. As an example,

cities in which many businesses are implanted attract more commuters than

others, increasing the probability for their residents to meet outsiders.

2.3.3 Network models

When distance models and patch models represent the interactions between

individuals with general laws depending on the distance or the individuals char-

acteristics, network models focus on the contacts between individuals or groups.

To represent them, a mathematical object which study have been initiated by

graph theory [20, 70, 142] and social sciences [94, 130, 140] is used: this struc-

ture is composed of nodes and edges connecting them and can be used to model

a population and the presence or absence of contacts between individuals or

subgroups. These models have been extensively used to understand the trans-

mission of a disease due to social contacts [45, 48, 139] or sexual contacts [106].

Despite social scientists, who were more interested by the reason behind

the connections, epidemiologists using networks models have focused on the

structure of networks and have been using several tools and measures to describe

them.
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Common measures

Given the complexity of real-life networks, describing them in a meaningful way

is a difficult challenge: for several decades, researchers have introduced param-

eters, based on networks measurable properties, in order to extract important

information from this complexity [4, 109, 111]. Here, we will present the defini-

tion of the parameters that have been used in this thesis.

- Degree The degree of a node is the number of its neighbors: in directed

networks (i.e, networks in which edges have a direction), degree is subdivided

between the number of incoming edges and of outgoing edges. To describe the

entire network, the degree distribution, often noted P (k) has been introduced: it

is defined as the probability for a node to have k neighbors. Degree distribution

has been often used to describe social networks, especially for epidemiological

purposes, as the number of contacts of a node gives an important information

on its role in the network and its capacity to transmit an infectious disease. The

heterogeneity of degrees has a great influence on the probability for an infection

diffusing on the network to become an epidemic [13, 32]: epidemics are less

frequent when all nodes have the same amount of neighbors. Degree correlation,

defined as the propensity of a node to have a link with a node of same degree,

has also been proven to influence epidemic propagation: the high correlation

between the degrees of connected nodes in networks of sexual contacts is for

example a key element to understand HIV propagation [67]. Speed and extent

of an epidemic are also influenced by degree correlation [19].

- Distance The distance dij between two nodes i and j is defined as the

minimal number of steps needed to go from one node to the other, following the

edges of the network. A pathway between i and j of minimal length is called

a shortest path: there are often many shortest path for each pair of nodes.

From this notion can be defined the average path length, the mean distance

between 2 nodes of the network: it measures the typical distance between any
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pair of nodes. The notion of distance can be of crucial importance to understand

disease propagation: percolation approaches have shown that a short average

minimal distance can have many consequences on the diffusion on a network.

When only a short number of steps are needed to reach a node from any starting

point, diseases can spread more quickly [105].

Distance can also be used to characterize the importance of a node in a

network: the more shortest path pass through the node, the more it is central

to the network. This notion is quantified with the parameter of betweenness

centrality, which measures the number of shortest paths passing through a node.

Identifying the nodes with high betweenness is important for disease control, as

due to their central place in the network, they are likely to be infected early

in an epidemic and to transmit the disease to many others: they are thus key

targets for intervention [18].

- Clustering Clustering evaluates the propensity of nodes to form communi-

ties inside a network. It can be measured with the clustering coefficient, which

is the probability that 2 nodes connected to a third one will be connected one

with each other (2.3).

φ =
3 ∗Number of triangles in the network

Number of connected triples
(2.3)

where a connected triple designates a group of three nodes where at least one is

connected to the others. Clustering coefficient can also be defined for a single

node i: in this case, it evaluates how the nodes connected i are connected to

each others.

This parameter gives an insight on the mixing among the network: in highly

clustered networks, nodes tend to aggregate in separated communities, with few

contacts between them. This parameter is an important information to predict

the diffusion of an epidemic on the network: in highly clustered networks, the

size of clusters and quantity of contacts between them strongly influence the

final size of the epidemic [81]. Moreover, clustering as been proven to be the
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main determinant of epidemic growth rate: R0 tends to be lower in highly clus-

tered networks, diminishing the epidemic growth rate [103].

Types of networks

Several types of networks have been used in epidemiological models: we will

briefly present here the 4 more commonly used, namely lattices, random, scale-

free and small-world networks.

a) b)

c) d)

Figure 2.3: Examples of networks

a) A random network, b) A lattice, c) A scale-free network, d) A small-world network

- Random networks In these networks, connections between nodes are ran-

domly formed, without consideration of nodes spatial position (Figure 2.3-a):

therefore, degree distribution follows a gaussian law and the heterogeneity in the

degrees of nodes is low. Due to the randomness of bounding, random networks
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also lack clustering and their average path length is usually low.

If some works have been done to understand the propagation of epidemics

on random networks, like [81] who showed that the initial transmission rate was

inferior in a random network than in a random mixing model, random networks

are more commonly used as a comparison point in studies using other types

of networks, in order to highlight the influence of their characteristics on the

diffusion .

- Lattices Lattices are constructed on a fixed grid of nodes, which all have the

same number of contacts, usually 4 or 8, depending on the number of dimensions

the lattice is built on (Figure 2.3-b). As connections highly depend on the spatial

position of nodes, clustering is often high in lattices. Connections are only local

and lattices lack of long distance edges, connecting distant clusters: therefore,

the average path length is high. Due to the absence of long-distance connection,

the propagation of an epidemic on a lattice is purely wave-like, with an initial

growth smaller than the one observed on random networks [64].

Lattice have notable been used to study plant diseases, like in the well known

example of forest fire [9]. In these cases, geographical constraints limit the

number of possible contacts to the immediate neighbors of an individual, making

lattice an appropriate choice of model for the network of contacts.

- Scale free networks In many observed networks, the distribution of de-

gree is far from homogeneous: when most individuals have few contacts, a small

number of people have many: this repartition is mainly caused by the natural

process of social contacts generation, where individuals tend to bound prefer-

entially with people having already many contacts. Such process of contact

generation creates specific networks, called scale-free networks (Figure 2.3-c), in

which degree distribution follows a power-law [15].

In scale-free networks, hyper-connected individuals play a disproportionate

role in epidemic propagation: such people are both at great risk of being in-

fected and highly probable to transmit the disease to others. As an example,
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the persistence of sexually transmitted diseases in populations were most in-

dividuals are involved in monogamous relationships is caused by the presence

of super spreaders, highly susceptible to these diseases [72]. Similarly, during

the SARS epidemic, most infections were caused by super spreaders [123]. The

identification of super spreaders and their targeted vaccination can significantly

decreases the attack rate of an epidemic [116].

- Small world networks Small world networks have a structure similar to

a lattice, with addition of some long distance links. They are characterized by

a strong clustering coefficient and a small average shortest distance, caused by

the presence of long distance links which connect clusters of neighbors, inter-

connected nodes. This type of network captures both the local component

of interactions and the possibility of rare long-distance contacts that can be

encountered in social interactions: the spread of an epidemic on a small world

network will associate a wave-like behavior and occasional jumps to uninfected

areas [105].

A network can be identified as small-world if it exhibits both of its characteristic,

namely an equal or higher average shortest path length and a higher clustering

coefficient than a random network with the same number of edges and vertices

[76]. This can be measured using a parameter, S, such as:

S =
CN

lN
∗

lrand

Crand

(2.4)

where CN and Crand are the clustering coefficient of the network and a random

network, and lN and CN their average shortest path length. If a network can

be considered as small-world, this parameter will be superior to 1.

*****

In this chapter, we have seen that several structures have been proposed

to insert some spatial information in an epidemiological model. The choice of

a model notably depends on the mode of transmission of the disease. In next
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chapter, we will see how these structures have been used to represent a particular

type of spatial information: the human mobility.

*****
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Chapter 3

Disease propagation in the

light of human mobility

Human mobility is a complex system [59]: movements at different scales, fre-

quent or rare, predictable or random form a dense network, difficult to model. To

integrate mobility data in epidemiological models, simplifying assumptions have

to be made: frequently, models are focused on one specific type of movements,

or one scale. During the first part of this thesis, we have realized a systematic

review of existing epidemiological work using models of mobility. This work

gave us an insight on the structure of existing datasets concerning human mo-

bility and the techniques developed to insert this information in epidemiological

models.

3.1 Article

Review: Human mobility and the spread of infectious diseases
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Review : human mobility and the spread of

infectious diseases

Segolene Charaudeau

1 Introduction

Disease propagation is intrinsically a spatial phenomenon : geography and
urban development shape the repartition of individuals on the territory, and
their interactions, impacting pathogens transmission. Within this scope, move-
ments of agents can influence disease propagation, either by facilitating it, or
by diffusing the pathogen to uninfected populations. Therefore, epidemic fore-
cast crucially depends on our capacity to model the movement of individuals
on differents scales and to understand its influence on infectious diseases propa-
gation. Several solutions have been proposed to address this issue, from simple
compartmental models to complex systems : with technological progresses in
terms of storage capacity and calculation time, epidemiologists have been able
to developp more and more complex spatially explicit models, integrating more
precise data. This review aims at studying how mobility data have been used in
epidemic models to describe disease propagation. In the first part will be pro-
posed a small historical outline of the joint evolution of transportation means
and disease propagation. The second part will briefly present the type of datasets
describing human mobility that have been used to parameterize epidemiological
models and the third part will present the techniques and solutions that have
been proposed to model different types of movements.

2 Historical perpective

Disease propagation has radically changed during history, following the deep
changes in transportation means. During pre-industrial times, populations were
relatively isolated : by foot and by cart movements were the main vectors of
spatial diffusion. It has for example been proven that, in 14th century, the prop-
agation of Black Death from southern to nothern Europe occured at a speed of
200 to 400 miles an hour, which is coherent with a transmission via by foot or
by horse travels [1].
The progressive development of new means of transportation, and the rise of long
distance travel has modified the propagation of many diseases and, in some cases,
has even exposed entirely susceptibles populations to new pathogens. From 15th

to 18th century, the rush for new land discovery led by Europeans exposed many
people to unknown pathogens, like smallpox or measles, brought to Americas
during their exploration, or like malaria and tropical diseases to which Euro-
pean travellers were ewposed during African colonization [2]. On a more daily
basis, the rise of long distance trade also facilitated the propagation of many
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diseases : trade caravans and religious pilgrimage were for example privileged
means for plague and smallpox propagation [3]. The development of transport
and communications even modified disease propagation at the smaller scale of a
single country : in United States, the propagation of cholera between 1832 and
1866 evolved from a wave-like propagation to a propagation oriented towards
main cities as railway transportation became more and more efficient [4].
Even if transportation means have improved during all last 5 centuries, making
long distance travel more frequent, the most important changes have occurred
during the last fifty years, where global traffic has increased in a spectacular
way. Indeed, the volume and speed of traffic have grown so much, that hu-
man mobility in high-income countries has increased by 1000 fold in the last
40 years [3]. The extremely quick development of air travel has been a major
cause of this evolution : indeed, since 1960, the number of air passengers has
grown of 9% each year [5]. Last century migration of people from countryside to
cities, and the quick growth of urban areas it has induced, is also an important
concern for disease propagation. As 52% of world population now lives in urban
context [6], the density of population in the biggest cities increases, multiply-
ing the contacts between individuals, which sets a favorable context for disease
transmission. Understanding human mobility inside urban environments thus
becomes another important issue in the fight against epidemics, as it sets up
the network of interaction between individuals.

3 Data on human mobility

Gathering data on mobility can be done using two different approaches,
either by focusing on the locations between which movements occur, or by fol-
lowing the individuals. Following several individuals in their daily movements
necessitate either a complex technological infrastructure or a tedious reporting
lying entirely on the good will and the memory of participants. The first ap-
proach can be implemented more easily, as the a priori selection of the locations
of interest permits to avoid the issue of following individual trajectories. Histori-
cally, the second approach have thus been favoured, as technological limitations
made it difficult to implement the first. However, with the developpement of
technologies, and especially of geolocalization, more and more datasets were
constituted with the first approach : collected information is more detailled and
less rigid, as unusal trajectories including unplanned locations can be registered
with this method. However, information is also more complex and its interpre-
tation is harder than for datasets constitued with a selected set of locations. In
following part, we will present datasets on human mobility constituted by both
methosds : first we will present datasets focused on fixed locations and then
datasets constituted of individual movements.

3.1 Movements between fixed locations

Human movements form a complex, diverse system, composed of travels for
diverse causes (migration, business travels, students exchanges, vacation...) and
using diverse means of transportation (train, plane, boat...). Due to this diver-
sity, studying mobility is complex and obtaining exhaustive data difficult : given
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the variety of individual behaviors, most datasets are constructed by focusing
on a single mean of transportation, or a single type of movement and approx-
imate the diversity by describing its main, often repetitive, patterns. This is
for example the case of many public and commercial datasets of transportation
companies, that were used in the first epidemiological models studying mobil-
ity. At first quite scarce, due to limitations caused by technology, those datasets
became more and more complex. Airplane travel and commuting, both involv-
ing massive and repetitive movements, have been the movements most used for
epidemiological modelling.

3.1.1 Airplane mobility

At first limited, datasets describing airplane movements provided by com-
mercial companies became gradually more complete, notably by including more
airports and by keeping a more exhaustive track of travellers. This allowed for
a better comprehension of the complex, multi-scalar structure of the airplane
network : due to the low impact of geographical constraints on its development,
airplane network exhibits a a small-world structure, with a scale-free distribu-
tion of outgoing degree [7]. It also presents a high degree of clustering : most
airports are gathered in communities, which communicate through specific air-
ports, through which pass all outgoing traffic.Thus, most connected nodes in
the network are not necessarily the most central ones. Indeed, most of these
nodes are hubs in their community, but not global hubs. Non-hubs nodes have
mainly connections within their community, and passengers leaving them have
to pass through the local hub to travel out. Identifying the nodes connecting
communities is of a crucial importance to understand travelling patterns and
diffusion phenomena on the network.

3.1.2 Commuting movements

More sensitive to geographical constraints, commuting networks don’t ex-
hibit the same structure as airplane network, but some common pattern can be
observed, like the power-law distribution of nodes degree. This structure can
be explained by the process by which commuting networks are formed. Indeed,
as some locations attract more commuters than others : main cities tend to
have significantly more schools and workplaces and drain most of the travellers.
The comparison of several commuting networks, in Germany, Italy and Sar-
dinia, with themselves a few years before showed that they actually evolved
by adding new links between connected cities [8, 9]. Creating networks by suc-
cessively adding links between highly connected nodes tend to create networks
which degree distribution follows a power law [10]. However, despite this char-
acteristic, commuting networks don’t exhibit a scale free structure : the creation
of new links between cities is constrained by the means of transport used for
commuting, and by geography (the number of incoming individuals that can
pass through a limited space is itself limited). Real-life commuting networks are
thus not scale-free [8, 11, 12].
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3.2 Individualized movements

During past years, the development of technologies has gradually permitted
a more and more precise follow-up of identified individuals, and a better in-
sight into individual behavior. The record of mobile phone data [13–15], dollar
bills movements [16] or public transportation use [17, 18] gave a distribution of
distances crossed by humans, and evidenced the predominance of local move-
ments on long distance travel. The distribution of distance covered by travel
exhibited a power-law behavior and individuals mainly moved in a restricted
area [13, 16, 17]. Using the ”Where’s Georges ?” study of US dollar bill circu-
lation, [16] also showed that human movements was composed of long periods
of stagnation in a restricted perimeter, interspersed with long distance jumps.
This behavior can satisfyingly be described with a truncated Levy flight model,
an improved version of the French mathematician Paul Levy model of random
walk with a power law distribution distances, where unlikely larger movements
are suppressed. However, this random description neglects an important charac-
teristic of human movement : its reproducibility. The analysis of mobile phone
trajectories showed that individuals tend to execute 93% of their movements in
a restricted set of locations that are frequently visited [14,15]. However, despite
the individuality of each one movement pattern, they merge in a single spa-
tial distribution, making truncated Levy flight a good approximation of human
movement [13].
At each time, the choice of a destination for an individual is influenced by both
the distance between its current location and the different spots of interest, and
the attractiveness of these spots. Indeed, the workplaces, schools and residen-
tial areas of a city don’t attract the same number of individuals : some of these
spots act as major hubs, draining most of the moving individuals [18]. A study
on 3 months data of mobile phone activity in Boston city showed that urban
movement was both repetitive and focused on the most attractive spots of the
city [19], making it mostly predictable. Most movements are either morning
or evening movements of commuters going from or back home : both of them
can be described as simultaneously diffusive and directed, as they diffuse away
from repulsive spots (either home or workplace) towards attractive ones [20].
However, distance remains a decisive factor in the choice of a destination, and
individuals privilege short distance travels [21].

4 Mobility networks in epidemic models

Epidemiologists have not waited for the completion of databases on human
movement to study the impact of mobility on disease transmission : metapopula-
tion models, first introduced in ecological litterature to analyze problems such as
extinction or recolonization [22–24], have quickly been adapted to epidemiolog-
ical problematics, notably to study childhood diseases, like measles [25–30]. De-
spite their simplicty, these models gave interesting results on the role played by
mobility on propagation, and explained observed phenomenons such as synchro-
nization of epidemics between cities in pre-vaccine area and its disappearance
after vaccination [29,30], waves of infection [27] or persistence of measles [26].
Progressively, with the constitution of detailled databases describing the move-
ments of individuals at different scales, models have been developed to describe
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specific situations. At first, the precision of data was limited by thecnology :
movements were aggregated in few flows, occuring on large scales. First models
were thus addressing the issue of movements on large to global scales. With
the progression of technology, the precision of data increased, describing move-
ments on smaller scales : epidemiological models have gradually included these
information, simulating infectious disease propagation on more local scales.

4.1 Modelling disease propagation on a global scale

First implementations of models including mobility information were based
on very aggregated datasets, in which few flows between a restricted number
of destinations were documented. Gradually, larger datasets, including more
locations have been used. In parallel of this evolution, the improvement of com-
puter technology has permitted the development of more complex compartmen-
tal models, in which travellers were identified, instead of modelling the influence
of travel as a force of infection, as it was previously done.
The flows described in first datasets were large scale ones : progressively, more
local flows, like commuting, have been described and included in models, at first
in models focusing on national or local scales, then in multi-scalar models.

4.1.1 First models on restricted datasets

At first, a metapopulation approach was employed to build the models, us-
ing the same methods as the ones of already existing patch models. Due to
the limits of the technology available at the time, first datasets were imprecise
and averaged the movement of individuals in some major tendencies : models
thus included a small number of patches. The work on global influenza prop-
agation through airline network of [31] was one of the first implemention of
a metapopulation model using transportation data. This SIR metapopulation
model included 52 cities of different continents, linked by a network of inter-
action calibrated with data from the international air transport statistics. The
evolution of the epidemic was directed by a difference equation, parameterized
using national data of 1968 influenza morbidity and, despite the limited number
of cities included in the model, it was able to successfully mimic the real course
of the epidemic. Several works later re-used this first model, and adapted it
to other transportation data [32, 33], to other set of cities [34, 35] or to study
the propagation of other diseases, like smallpox [36]. The reproduction of sim-
ulations conducted by [31] with updated airline transportation data from 2000
by [33] showed how much the increase of worlwide air traffic deeply modified
influenza diffusion : the disease propagated much faster between countries, and
reached each hemispheres simultaneously, contrary to what [31] observed with
transportation data from 1968.

4.1.2 Larger datasets

Following the increase of computational capacities and the gathering in 2002
of a large dataset on movements of airplane travellers by the International Air
Transport Association (IATA), new models were developped to study more ex-
haustively the influence of air travel on worlwide disease propagation [37–40].
These works introduced the use of stochastic Langevin equations to have an
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insight into the diversity of possible epidemic pathways : the high variance ex-
hibited by simulations results highlighted the sensitivity of epidemic diffusion to
stochastic fluctuations. At first, the model was parameterized to simulate SARS
epidemics [37] : propagation was found to be higly replicable, due to the het-
erogeneity of airports connectivity. Later, its adaptation to other diseases, like
influenza [38] showed that this behavior also depended on the characteristics of
the disease. Indeed, H5N1 propagation on the same network exhibited different
behaviors, as the replicability of epidemics depended on the city it started in :
epidemics initiated in poorly connected airports were more replicable than the
ones starting in the hubs of the network. However, some preferential pathways
of propagation were also evidenced, highlighting the existence of a backbone of
main transmission axes in the network. This result was later improved in [40],
which refined this backbone definition, by introducing seasonnality in transmis-
sion parameters. The IATA database recorded information on the number of
travellers, but also on the mean duration of a stay abroad : both information
were used in previous models, but no individual follow of the travellers was
introduced in the model and the memory of individuals original city was not
kept.

4.1.3 Identification of travellers

[41] proposed a model introducing a follow-up of travellers, who eventually
returned to their city of origin : and confirmed the influence of the network
connectivity on the propagation. The model was calibrated with the data of
the official Airline Guide (OAG) of 2010 and included a precise description of
the variations induced by seasonal climate change on influenza transmissibil-
ity, which permitted an updated prediction of influenza transmission patterns,
notably of the differences encoutered in the 2 hemispheres. Cities in north-
ern hemisphere, more connected, experience influenza simultaneously, and they
share a common influenza season, while epidemics are less ssynchronized in
southern hemisphere, due to the smaller interconnection of airports. Patterns
of seasonality were also found to have an important influence on the timing
of influenza apparition in every city, as the timing of southern and nothern
hemisphere contamination depends on the location of first cases.

4.1.4 Role of Commuting movements

The crucial role of airplane network in the global propagation of influenza
evidenced by previous models has been confirmed in 2009, during the H1N1
pandemic : a strong correlation between data of international flows from Mex-
ico and imported H1N1 cases was found, confirming the role of airplane travel in
the diffusion of the disease [42]. However, even if airplane travel is indubitably
important to understand disease propagation, these models neglect more local
movements, which also have an influence on the dynamics of epidemics [43].
Daily movements from workplace to home constitute a large part of human
mobility, and their influence on epidemic propagation, mainly influenza and
smallpox, have also been widely studied [44–46]. In [46], Viboud et al. per-
formed a comparison of US 1972 to 2002 mortality from pneumonia or influenza
data to several measure of domestic transportation, among which workflows,
internal air flows and long-distance travel, and found that commuting was the
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best predictor for influenza propagation, confirming the important role played
by commuting movements.
As commuting often happen on shorter scales than airplane travel, obtaining
an exhaustive description of its structure is often complicated : to reconstruct
commuting movements with incomplete datasets, [46] introduced gravity net-
works models, as developped by transportation theory. Based on the propension
of individuals to choose their commuting destination on distance and size of the
communities, the modelled flow Cij between 2 communities i and j depends on
the numbers of inhabitants in i, Ni and j, Nj , and on the distance between the
cities dij [47].

Cij = θ
Nτi

i N
τj
j

d
ρ
ij

(1)

Parameters τi, τj and ρ calibrate the influence of each variable on the intensity
of commuting flow and θ is a proportionality constant : they are fixed using
datas on commuting.

4.1.5 Multiscalar model

Commuting movements on a global scale were first intoduced in the compu-
tational platform GLEam [48] : using data from the IATA base and commuting
data gathered in 29 countries, Balcan and al. developped a model including 3362
subpopulations over the world, with the objective of studying the respective in-
fluence of these movements on international influenza propagation. If the IATA
database contituted an exhaustive description of airplane movements, commut-
ing data could’nt be gathered in every country : missing data were simulated
using a gravitationnal model. The international propagation was found to be
little influenced by commuting movements : as the final size of the epidemic on
each continent was not modified in the abscence of commuting, air travel alone
seems to be sufficient to successfully predict the final attack rate of influenza
on each continent. However, some differences appeared at smaller scales : in the
abscence of commuting, epidemics in American desynchronized and the prop-
agation inside the country was slowed down. If both types of movements thus
seems to influence disease propagation, the scale at which it can be relevant to
include them seems to be different. Airplane transportation is sufficient to study
international propagation, while commuting movements, as they influence the
relative timing of epidemics episodes, seems to be important to study more local
scales.

4.2 Diffusion on a local scale

Most of the time, national or more local movements are described in ag-
gregated datasets : however, more and more individualized data are available,
specially to describe local movements, inside a single city for example. The tech-
niques used to integrate these data in models differ depending on their nature :
if using aggregated data gathered on national scale can be done with techniques
similar as the one encountered for global scale, using individualized data calls
for the developpement of other methods.
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4.2.1 Propagation at national scale

Many models describing propagation on national scale are compartmental,
like global scale models. However, as the number of people in these contexts is
smaller than in global models, other methods, demanding more computation,
and that would have been impossible to simulate for larger populations, have
also been proposed.

- Compartmental models To study more specifically propagation on smaller
scales (national or regional), models have been developped, using data on com-
muting movements and demographic data on the population studied. They
demonstrated the influence of commuting networks structure on local propaga-
tion. The typical structure of commuting networks, characterized by the pres-
ence of highly connected hubs and a strong clustering based on spatial proximity,
causes an important variance in nodes connectivity : due to this diversity, the
probability for a disease to diffuse to the entire network and its speed strongly
depends on the initial city infected. In United States, for example, [46] showed
that the synchronization of epidemic episodes in different cities depended on
the connectivity of the initially infected city. The repartition of movements on
the territory, notably of long distance movements, are also determinant for the
propagation : despite their scarcity, long distance movements are nevertheless
crucial for epidemic survival, as they enables diffusion of the disease to distant
patches [44].
In most works using gravity models to represent commuting, the coupling be-
tween subpopulations linked by workflows is modelled by the share of a part of
their force of infection [45,46] : propagation happens as if the pathogen was di-
rectly diffusing between the cities, proportionnaly to the number of commuters
exchanged, while the commuters themselves are not identified. However, the in-
dividuality of commuters is an important characteristic of commuting, as each
individual daily repeats the same movement back and forth between its home
and its workplace. Models representing commuting as a force of infection do not
consider this individuality, and often overestimates epidemics spatial synchrony
and the number of cases at their peak [49]. A way to avoid this issue would be
to use compartmental models separating individuals depending on their com-
muting movements.
If metapopulation approach have been often used [45, 46, 50, 51]. the recent
progress of data gathering, and the completion of precise datasets also enabled
the development of individual based models, which had been known and used for
more than 30 years [52], but not at their fully potential [53] due to the scarcity
of available data.

- IBM models In most individual based models, individuals are gathered in
groups of interaction, like a school or a household, where privileged transmission
is supposed to occur.Each individual is, depending on its personal characteris-
tics, such as gender or age, allocated to a household, a workplace and sometimes
a leisure space. Demographic data and descriptions of the spatial repartition of
residences and workplaces are used to allocate individuals in a way mimicking
the population of interest. The interpretation of data, and their translation into
a model design, can be a crucial issue in the conception of IBM models. The
unavailability of some informations leads to the necessity of making assumptions
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to generate the missing data : for example, [54] and [55] faced the same issue to
generate the workplaces of their models. The only information they had was the
average workplace size : [54] chose to make all workplaces the same, when [55]
chose to generate a set of workplaces using a gaussian distribution for their sizes.
Given the impact that the heterogeneity of the network of interaction has on
disease propagation [38,46], such a choice can lead to differences in the results of
simulations. Moreover, [56,57] highlighted the importance of using accurate and
precise data to describe a population with their work on influenza propagation
in Europe : the simulations shown that the speed of an influenza epidemic in a
country strongly depended on the demographic structure of its population and
its characteristics (vacation planning, matrix of contacts between generations,
employment rate...). The use of erroneous data to generate the population can
cause false predictions on the characteristics of epidemic propagation.
The simulation of community contacts can also be a puzzling issue : usually,
individuals are supposed to make one third of their contact at home, one third
at work and one third in the global community. As data on community contacts
are often harder to gather, assumptions have to be made on how these kind
of contacts occur, and with who. [58] and [59], while both studying influenza
propagation in South East Asia, made different choices to give an account of
community transmission. In [59], community contact could occur between any
2 individuals, depending on the distance between them, while [58] chose to
place individuals in communities where they fully interacted with other mem-
bers randomly. [54], which studied influenza propagation, proposed to mix both
approaches considering that individuals were interacting with people in their
neighborhood and little less with every other people. The differences in model-
ing led to different conclusions in terms of public health strategies : [59] planned
that an influenza epidemic could be contained as long as R0 < 1.9, when [58]
concluded to a limit of R0 < 2.4.
In addition to the different ways of interacting considered by previous models,
some work tried to include contacts during transportation, by making people in-
teract on intermediary points between their departure and their arrival [60,61].
However, as data about transportation were missing, strong assumptions had
to be made to calibrate the model, which can be seen as not parsimonious.
The time scale of influenza propagation allows the approximation of a static host
population : aging of individuals and birth of new susceptibles can be ignored.
However, the study of persistent or long time scale diseases, like hepatitis, tu-
berculosis or HIV requires to take into account the renewal of the population.
Such a model was proposed by [62] to study hepatitis A propagation : birth and
mortality rate in the studied Italian areas were used to simulate the creation
and suppression of individuals, depending on their age. New-born individuals
were placed in appropriate households : demographic data on the composition
of households were used to do so realistically.

4.2.2 Propagation at urban scale

At a smaller scale, [63] modelled the behavior and daily travels of Port-
land inhabitants, using an individual-based second by second microsimulation.
A static network of interactions was constructed using dynamical movements
of individuals, themselves generated from data about transportation networks,
location of work or leisure places and composition of the population. A contact
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was created between 2 individuals if they stayed in the same location, even for a
brief time : the more they remained in the same place, the more the contact was
considered intense. The obtained contact network was a small world one, but the
number of contacts might have been overestimated, as no difference was made
between different environments, assuming that people interact in the same way
at home, at work or during their leisure. Aggregating the contacts occurring
at different times in one graph might also have induced an overestimation of
epidemic speed.

Figure 1 – Citations of the works of Eubank and al., Ferguson and al and Longini

and al.

Research areas to which belongs papers citing [63] (in blue), [59] (in green) and [58] (in
red). Only the research areas to which 0.01% of citing papers of at least one article belonged
were selected ( EnV : Environmental sciences, Phy : Physics, CoS : Computer Science, Eng :
Engineering, Mat : Mathematics, ScT : Science and technology, MaC : Mathematics and
Computational Biology, LiS : Life Sciences and Biomedicine, PuH : Public health, InD :
Infectious Diseases, HeC : Health care, Mic : Microbiology, BiM : Biochemistry and molecular
biology, GIM : General Internal medicine, MeI : Medical informatics, Imm : Immunology, Vir :
Virology, ExM : Experimental medicine). Research areas were related to physics and computer
sciences (blue), epidemiology (red), medicine (purple) and environmental sciences (green).

This work remains a unique example of the use of such detailled dataset
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in epidemiological models : the method has been essentially considered as a
technological breakthrough. Among the 877 papers which cited the work of
Eubank and al, 49.7% were physics or computer sciences papers, but only 22.3%
were epidemiological one (Figure 1). The contemporary works of Ferguson et
al. [59] and Longini et al. [58], which also used an idividual-based approach but
less detailled descriptions of individuals movements, had a comparable numbers
of citations but more impact for epidemiology (Figure 1), with respectively
42.1% and 41.8% of citations in either epidemiological or medicine papers.

4.2.3 Comparison of different models

The introduction of IBM models in 2004 has not met full support from epi-
demiologists : the high complexity of this model, which needs multiple assump-
tions on human behavior and are highly parameterized, seemed unnecessary
to many, who tried to show that simple compartment models could be used
instead to study the same situations [64]. Indeed, despite their realistic possi-
bility of modelling each individual separately, the complexity of IBM models,
and the high computational time they ask for, make them maladjusted to some
problematics, for which metapopulation models can be a better choice.

They are thus mainly used to study small scales propagations : in a city, a
country or sometimes a continent, where gathering complete data about human
behavior can be easier, and where the smaller number of individual makes ex-
tensive simulations easier. On the other hand, metapopulation models can be
used to model wider areas and study worldwide propagation, as their smaller
time of execution allows to execute more replications of stochastic simulations.
However, the results obtained with these models are less detailed than previous
ones.
The 2 approaches have been compared by [65], with a confrontation of influenza
propagation in Italy simulated with GLEaM and an agent-based model. Starting
from the same initial conditions, the 2 models simulated very similar epidemics,
exhibiting the same timing of epidemic peaks in different cities. However, due
to its lack of precise contact structure, the metapopulation model induced more
interaction between individuals and the epidemic it generated affected more
people than the one simulated with agent-based model.

4.3 Challenges

Due to the lack of precise data, models including mobility often have to ig-
nore some aspects of the movements, that could have an impact on the epidemic
studied. Movements are not constant in time : seasonnal migrations, vacations
or week-ends can modify the intensity of travellers flows and their destinations.
Holidays for example strongly modify the behavior of individuals : children stop
school interactions, and a significant number of people leave their residence to
gather with others in vacation places. These changes in the network of inter-
action between individuals can have repercussions on the propagation of the
disease [57].
Moreover, the movements usually included in epidemiological models, like com-
muting or airplane travel do not fully describe human regular travelling patterns.
At local scale, sporadic, spontaneous random movements of individuals from one
city to another can also be considered for example [44]. When those movements
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are included in a local model, the speed of an influenza epidemic increase from
up to 25%.
Travellers are also often supposed to exhibit the same travel behavior, whatever
their age, gender or departure location. However, differences in travel behavior
can influence the speed of an epidemic propagation : introducing a differentia-
tion between high and low frequency travellers in worldwide epidemic modelling
doesn’t change the average speed of propagation but strongly modify its vari-
ance [66], giving a better exploration of possible behaviors. Nevertheless, few
data about travel patterns are currently available, making it hard to include
realistic travel behavior in epidemic modelling.

4.4 Confrontation of models to data

A large range of situations have been addressed by epidemiological models :
from airplane travels to the internal mobility of the city of Portland, many dif-
ferent networks of movements have been modelled to simulate the propagation
of different infectious diseases, including influenza, SARS or smallpox. In some
cases, surveillance data describing the propagation of the disease studied on the
scale considered are available : the confrontation of simulation results to these
data have permitted to confirm the interest of using mobility movements to
simulated disease diffusion.
The role of airplane travel on the propagation of several infectious diseases, in-
cluding SARS and influenza has been showed by several comparasons between
simualtion results and surveillance data. To confirm the predictions of GLEaM
on influenza international diffusion, [67] compared their simulation results to
the number of cases registered in 7 countries and 9 american states during the
2001-2002 influenza season, and to the number of acute respiratory infection
cases of tje same period. They found the imulations to be a good predictor of
the epidemic timing, which confirmed the pertinence of using airplen movements
to predict international propagation of influenza. During the 2009 H1N1 pan-
demic, [42] used data on the ongoing epidemic to compare the date on which
first cases of influenza where declaired in several countries to the intensity of
air travel between these countries and Mexico. A strong correlation was found
between the two variables. Similar results have been obtained on SARS : [68]
compared the number of cases predicted in 20 countries by a model based on
airpalne flows to the number of cases reported in these countries in the WHO
database : once again, simulations results gave a good prediction of propaga-
tion.
Despite their common use in epidemiological models, less studies have been
done to prove the pertinence of commuting movements to predict disease prop-
agation. Such a study was realized by [46] , who performed a Mantel test to
evaluate the correlation between the synchrony of influenza temporal series in
american states to commuting flows and other measures of distance, like airflows
or geographical distance. Among all distances used to perform the test, com-
muting flows were the best predictor of similarity of epidemic timing between
states. This analysis confirmed that commuting movements have an influence
on influenza propagation. To our knowledge, no other study has been done to
compare surveillance data to commuting flows.
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5 Conclusion

In this review, we highlighted the importance of taking mobility movements
into account when studying epidemic propagation. The intrinsic complexity of
human mobility makes it difficult to study, but some of its specific components
have been well studied and their influence on propagation at different scales
proven. At the worldwide scale, the impact of airplane movements have been
widely studied and confirmed with data from 2009 influenza pandemic. The in-
fluence of commuting movements on pathogen diffusion on a smaller scale has
also been well analyzed : this result has been less confronted to data analysis,
but some work like [46] still confirms it.
Current progress in data gathering and modeling tools have permitted the de-
veloppment of models studying propagation on an even smaller case. However,
even if the models seem to confirm the intuition that daily short-distance move-
ment are vectors of propagation, these results have not yet been confirmed with
data analysis.
Despite the progress accomplished during last decades to integrate human mo-
bility in epidemiological, some challenges remain, to determine if some other
aspects of movements, currently not taken into account, could influence epi-
demic propagation.
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3.2 Observations

Taking mobility movements into account is of crucial importance to understand

infectious disease propagation: epidemiologists have for the moment mainly

focused on two aspects of human movements, namely commuting and airplane

travel and both of them have been shown to impact spatial diffusion of disease

like SARS or influenza [30, 56, 91].

The international airplane network has been widely studied in the litera-

ture. Indeed, in our review, more than 2
3 of our papers were either including or

focusing on the airplane network and its influence on disease propagation: no

other networks has been so extensively studied. Moreover, several analysis have

compared the results of simulations on models including the airplane network

to surveillance data and confirmed the simulations were good predictors of the

timing of the international epidemic propagation.

Commuting networks on the other hand, despite their frequent use in epidemio-

logical models, have been less studied. Few analysis have been done to confirm

the pertinence of using commuting flows to understand disease propagation. In

the following chapter, we will address this issue, using the example of influenza

propagation in France as a case model.

*****
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Chapter 4

Influence of commuting

movements on influenza

propagation

4.1 Introduction

In last decade models investigating the correlation between human mobility

and infectious disease propagation, the worldwide air transportation network

has been the most extensively studied system (see the previous chapter). The

international propagation of diseases like SARS or influenza has been shown to

be largely driven by flows of airplane travelers [30, 91]. However, in the complex

network of human mobility, airplane traffic only covers long-range movements:

in countries like France, or Germany, where most daily movements occur on

smaller scales, airplane has significantly less importance than other means of

transportation, like train or car. Modeling mobility on those scales thus ne-

cessitates to take into consideration other types of movements. If human mo-

bility on local scale is composed of very diverse movements, the collection of

GPS data on car geolocalization in Italy [58] has shown that the majority of
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regular highway traffic is composed of commuting movements, making them a

good approximation of mobility on national scale. As more and more data on

commuting have been gathered in past years, they have been introduced in an

increasing number of models studying infectious disease propagation on local

to intermediate scales. However, the correlation between disease transmission

and commuting has not been extensively studied yet: except for [137] work

on United States influenza propagation, which showed a spatial autocorrelation

linked to commuting data in influenza propagation data, no more work has been

done to investigate this link. In this chapter, we will first focus on the analysis

of the specific case of influenza propagation in France and see if it shows a corre-

lation with commuting network. Then, we will present a model that have been

developed to simulate influenza propagations based on flows of commuting, and

make some observations on the simulation results.

These results will be analyzed in the second part of this chapter. In first

chapter, we have seen that the structure of the network can influence disease

diffusion, its speed and the pathways it follows: we will therefore explore how

the patterns observed in the simulations are related to the underlying network

structure.

Both of these works are presented in the article ”Commuter mobility and

the spread of infectious diseases: application to influenza in France”, joint to

this chapter.

4.2 Spatial autocorrelation of influenza incidence

In this paragraph will be presented a study that we proposed to demonstrate the

influence of commuting on the propagation of influenza in France. To perform

this analysis, we used the database on influenza propagation gathered by the

Sentinelles network, a network of physicians who have been recording influenza

incidence in a weekly basis since 1984. This study was presented in the article

joint to this chapter, and we hereby summarize the first part of this article,
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where the autocorrelation calculus was presented.

4.2.1 Investigating the link between influenza propagation

and commuting: spatial autocorrelation and model

design

The Sentinelles network gathers over 1300 physicians distributed between French

territory: as the network covers regularly the territory, the influenza incidence

it records can be expressed at NUTS3 level (which corresponds to the French

administrative division of department). We compared able to compare the in-

cidence temporal series of the 26 epidemics to the commuting flows between

departments. In order to account for the different commuting behavior of work-

ers and students, we used two separated networks, each of them describing one

type of commuting flows.

To perform the analysis of the spatial autocorrelation of Sentinelles data,

we performed Mantel’s test, as presented in [137] and calculated Moran’s in-

dex for both networks of commuting. Moran’s index, which evaluates spatial

autocorrelation at a specific time, was found significantly positive throughout

the epidemic, with both network of commuting. In both cases, the index was

positive 2 to 3 weeks before the national peak of the epidemic. Mantel’s test,

which compared the synchrony between the temporal series of incidence in the

departments to the matrices of commuting, was also significant. Both results

confirmed the existence of a spatial structure in influenza incidences. The pro-

gression of Moran’s index (increasing during the first phase of the epidemic,

when influenza was transmitted from department to department and decreasing

when the incidence started decreasing in some departments) and the correla-

tion between the synchrony of incidence evolution in different departments and

commuting flows, established the existence of a correlation between epidemic

spread and commuting flows.
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To investigate this relation, we developed a deterministic metapopulation

model of influenza propagation, where the natural history of the disease was

modeled with a SEIR process. To generate a population similar to the French

one, we used data gathered at LAU1 level in a census conducted in 1999: we

chose to divide individuals in 5 ages classes, including 2 classes of children and

1 class of adult, to take into consideration the different patterns of contacts

depending on the type of commuting an individual was involved into. We con-

sidered 3 types of contacts between individual: household contacts between dif-

ferent age classes in the same district, commuting contact occurring at school or

workplace between individual of the same age and community contact occurring

between neighbors.

Extensive simulations were performed using this model by introducing suc-

cessively a single infected in each district. The results of the simulations were

analyzed with Mantel’s test and Moran’s index and the same results as for Sen-

tinelles data were obtained, revealing the existence of a spatial autocorrelation

in simulated incidence.

4.2.2 Observations and Perspectives

Observation of simulated propagations

The model exposed in this article was used to simulate epidemics initiated by

the introduction of a single infected (either a child or an adult) in each district.

The observation of the spatial propagation obtained in each cases evidenced

a recurring pattern of propagation that could be found whatever district the

disease was inoculated into. Indeed, the epidemic started with a first phase of

wave like propagation, where the disease was mainly transmitted to surrounding

districts. Progressively, the front line became less circular, as the epidemic

started diffusing in some preferential directions: in most cases, 10 to 12 weeks

after the introduction of influenza, the epidemic reached areas not geographically

linked to the one already infected. When disconnected areas were reached, the
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Figure 4.1: Simulations with a model based on commuting data

Maps of the incidence for 100000 individuals of influenza in every district 11 weeks (a), 12
weeks (b), 13 weeks (c) and 14 weeks (d) after the seeding. Each epidemic was seeded by
introducing a single infected child in a different district.

epidemic started propagating from them, in a wave like progression similar to

the encountered at the beginning. The three phases propagation, with a local

diffusion followed by a phase of quick non wave like expansion, was encountered

in every simulations. An illustration of this observation is given in Figure 4.1

, with the example of four epidemics seeded in randomly chosen districts. As

it can be seen on maps of week 10 and 12, the propagation of influenza during

the first weeks of the epidemic has been mainly local in 4 cases. Week 13 of

epidemics I, II and IV show an example of the disrupted propagation explained

before, as the influenza suddenly appears in Paris or Lyon, without a wave

like propagation from the seeding district. Same behavior can be observed on

epidemic III, with a sudden diffusion to the West of the country, while the
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epidemic has been confined in eastern districts before.

I)

II)

III)

IV)

a) b) c) d)

Figure 4.2: Four simulations initiated in Puy de Dome and following different

pathways

Maps of the incidence for 100000 individuals of influenza in every district 11 weeks (a), 12
weeks (b), 13 weeks (c) and 14 weeks (d) after the seeding. The epidemics were initiated in
four neighbor districts of Puy de Dome, but followed different pathways

The location of the first infected plays an important role in the spatial prop-

agation. The observation on the simulations showed that besides the existence

of a similar global behavior, influenza diffusion followed recurring patterns: in

most cases, the direction of Paris was privileged, as either the epidemic front

line was distorted in this direction or Paris was infected even if the front line

had not reached it yet. Important French cities, like Lyon, Marseille or Toulouse

played a similar role for epidemics starting in their vicinity (epidemics I and II

of figure 4.1 are illustrations of this phenomenon). The location of the first

infected district has a major influence on the pathways followed by the propa-
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gation and thus on the whole course of the epidemic. Indeed, despite the local

behavior of the propagation in the first phase of diffusion, epidemics starting

in neighboring districts could exhibit a very different behavior, as shown on

Figure 4.2. The four epidemics presented in this figure have been initiated in

neighboring districts of the same department, Puy de Dome, located near the

city of Clermont Ferrand. However, despite the vicinity of these districts, epi-

demics initiated in them exhibited different behaviors. While epidemics I and II

followed similar pathways, first diffusing in the direction of Lyon, then of Paris

and Marseille, epidemic III diffused simultaneously towards Lyon and Montpel-

lier, another southern city. Epidemic IV diffused in the direction of Lyon and

Paris and reached Paris before the other epidemics did. Despite their neigh-

boring seeding districts, influenza did not diffuse in the same direction in each

epidemic and the distortion of the epidemic front line did not occur in the same

directions.

Figure 4.3: Example of overlap curves

Overlap curves measuring the similarity between epidemic propagations in case of seeding in
different couples of districts

The parameter of overlap [29], which compares the incidence in each district

at a fixed time step for two epidemics was used to quantify the similarity between
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epidemics propagation. This parameter varies between 0 and 1, and is maximal

when the incidence is the same in each district in both situations. We compared

the courses of epidemics seeded in different couples of districts: for every couple,

overlap increased from 0 to 1 but with a different growth rate (Figure 4.3).

The diversity of overlap behaviors was coherent with observations made on

epidemic propagations: on average, overlap growth rate was higher for couples

of districts at small distance, in line with the observations of a mainly local

initial propagation. In the same time, the variance of overlap initial values for

couples at small distance was high, which was coherent with the observation

that a great diversity of propagation pathways could be followed by epidemics

starting in neighboring districts. Different behaviors were also exhibited for

couples of distant districts, for which overlap started to increase more or less

quickly: this result was coherent with the simulations observed, in which the

timing of epidemic arrival in an area depended of the district of seeding.

Observing these specific patterns in the epidemics diffusing on the network

created by the flows of commuting ask the question of the existence of a link

between the structure of the network and the patterns. Commuting network

are both small world , as many social networks are (like acquaintances network

[6], scientific collaboration network [108] or Internet network [5]), in which the

shortest path between any couple of nodes is small, and scale-free: in the follow-

ing part, we will relate the patterns of propagation observed on the simulations

to this specific structure.

4.3 Influence of the network structure on the

propagation

The networks shaped by commuting movements are complex structures, com-

posed of 495891 edges for the work network and 282883 for the school one (Fig-

ure 4.4-a,b). They both have a strongly clustered structure, with a significantly

high local clustering coefficient for both networks (0.46 for school commuting
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Figure 4.4: Distance crossed by commuters

a) School commuting network b) Work commuting network (to ease the reading, only the
commuting paths followed by 50 people or more were represented. Probability for a com-
muter to cross a certain distance in its commuting travel. In both networks, less than 2% of
individuals cross more than 100km in regular commuting networks c) and randomized ones
d). On Figure d) are represented the intervals in which 95% of distributions are found

and 0.38 for work commuting). As most individuals commute in the vicinity

of their home (Figure 4.4), clustering is mainly local and communities gather

neighboring districts. Given this structure of commuting networks, we ventured
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the hypothesis that the similarity of patterns observed between some epidemics

at their beginning and during their course was linked to the structure of the

networks’ clusters. To test this hypothesis, we developed two criterions, based

on the measure of similarity between epidemic propagations, that will be pre-

sented in next part of this chapter. In the following part, will be exposed our

investigation of the correlation between the distribution of these criterions and

the structure of the networks. A part of this analysis was exposed in the ar-

ticle ”Commuter mobility and the spread of infectious diseases: application to

influenza in France”.

4.3.1 Relation between the structure of commuting net-

works and similarities between epidemic courses

In order to evidence the impact of local communities on influenza propagation,

we generated randomized network of commuting, by reshuffling the arrival dis-

trict of each commuting link. The networks generated by this process were small-

world networks (S=4.7 for school and 2.86 for work), with the same incoming

and outgoing degree for each district, but the distribution of distances crossed

by commuting was different, as more people were involved in long distance

commuting (Figure 4.4-b). After randomization, although still small world, the

networks were less clustered (with an average clustering coefficient of 0.16 for

school network and 0.18 for work): the local communities observed in regular

commuting networks were not present after their randomization . As we had

done previously, we simulated epidemic propagations on randomized networks

by introducing a single infected in every district. The attack rate was not mod-

ified and progression of national incidence was the same in those simulations:

however, the spatial propagation of influenza was different and the patterns of

diffusion previously observed were not present here. We evaluated the similar-

ity of epidemic propagation between epidemics starting from couples of random

districts and found the same result for each one of them, independently of the

distance between them, which was not the case for epidemics simulated with
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non-randomized commuting networks.

To test the previously ventured hypothesis, we developed a criterion com-

paring the propagation of epidemics starting in 2 different districts on regular

networks and randomized networks. This criterion compared for how long the

propagations on commuting networks presented more similarity than the ones

on randomized networks, in which the local communities had been suppressed.

We observed that this parameter was positively correlated with the number

of commuters exchanged by the 2 districts and negatively correlated with the

distance between them. Moreover, we found that, in case of districts more than

100 km away, the criterion reached its minimum, meaning that epidemics seeded

in these spatial units showed from the first day less similarity than epidemics

simulated on randomized networks. For couples of less distant districts, the

criterion was highly variable: epidemics initiated in the most populated French

cities, which are hubs in commuting networks, had an important similarity with

epidemics initiated in their vicinity for several weeks. When we clustered French

districts based on this criterion, we observed that each district could be included

in a cluster with one or two of these cities. French territory was so divided in

49 communities of districts gathered around a major city: epidemics seeded in

a community would propagate following a pathway similar to epidemics seeded

in the local hub.

4.3.2 Article

Article: ”Commuter mobility and the spread of infectious diseases: application

to influenza in France”.

58



1

Commuter mobility and the spread of infectious diseases:

application to influenza in France

Ségolène Charaudeau1,2,∗, Khashayar Pakdaman2, Pierre-Yves Boëlle1
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Abstract

Commuting data is increasingly used to describe population mobility in epidemic models. However, there

is little evidence that the spatial spread of observed epidemics agrees with commuting. Here, using data

from 25 epidemics for influenza-like illness in France (ILI) as seen by the Sentinelles network, we show

that commuting volume is highly correlated with the spread of ILI. Next, we provide a systematic analysis

of the spread of epidemics using commuting data in a mathematical model. We extract typical paths in

the initial spread, related to the organization of the commuting network. These findings suggest that an

alternative geographic distribution of GP accross France to the current one could be proposed. Finally, we

show that change in commuting according to age (school or work commuting) impacts epidemic spread,

and should be taken into account in realistic models.

Introduction

The multi-scale network of social interactions [1, 2] makes rapid dissemination of transmissible diseases

possible, as illustrated recently by pandemic A/H1N1 2009 influenza and SARS [3, 4]. In this context,

predicting the efficacy of public health interventions requires the identification of the most relevant factors

for dissemination [4]- [5]. For instance, international air travel was found to provide good prediction for

the worldwide spread of SARS and influenza A/H1N1 2009 [3,4]; it was however shown that intervention

on the global air traffic would be of limited efficacy [6]. At a more local scale, air travel is less relevant

and other types of movement must be taken into account. Commuting, i.e. daily movements from
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residence to work or school, has been widely used to describe spatial mobility in models, using exhaustive

datasets [7, 8] or gravity models [9, 10].

Except for a report on the correlation between influenza epidemic peak timing and inter-states com-

muting in the USA [9], whether commuting may explain the spatial spread of epidemics has been little

studied. Influenza like illness (ILI) incidence time series, as monitored by the Sentinelles network since

1984 in France, provide data at a high spatial resolution (NUTS3) that can be used in this respect

(http://www.sentiweb.org). These data, unique in duration and spatial resolution, helped elucidate long

sought questions like the impact of school closure during epidemics [11] and to validate model predictions

for pandemic flu [12]. Commuting data based on the census of the population is also available at an even

finer scale.

Using these two databases we first analyzed how commuting data relates to disease spread at a local

level. We then examind the underlying mechanisms of propagation using an epidemic model derived

from commuting networks An indicator based on the similarity of epidemic courses in excess of random

movements was developed. Finally, we investigated how age differences in commuting networks, i.e. to

school or to work, led to changes in the spatial spread of diseases.

Materials and Methods

Data

Sentinelles data

The Sentinelles network [13] is comprised of over thirteen hundred general physicians (GPs), accounting

for approximately 2% of the total number of French GPs. They report the number of observed influenza-

like illness cases on a regular basis, using a standardized case definition (more than 39C fever with myalgia

and respiratory syndromes). We used the data of 26 consecutive seasonal influenza epidemics, from 1985

to 2010 (Figure 1). The data was obtained on a weekly basis at the NUTS3 (’department’) level. There

are 95 NUTS3 areas in France. To jointly analyse multi-year epidemics, we defined each year week 0 as

the national epidemic peak, and considered 15 weeks of data before and after this date.
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Figure 1. Spatial spread of influenza like illness in France Incidence for 100000 inhabitants as
monitored by the Sentinelles network during season 1985-1986. Maps are 2 weeks apart

Demography and commuting

We used the data collected in the 1999 census data in France. All data were obtained at the LAU1

level, that we refer to as ’district’ afterwards. There are 3704 districts in France. In each district, the

population was split into 5 age classes : less than 3 years old; 3 to 10; 11 to 18; 18 to 65 and more

than 65. These categories were retained to capture large changes in mixing groups due to schooling (3-10

and 11-18) and work (18-65). The frequency of each age class was obtained from census data in each

district, as well as the percentage of population with a professional occupation. We also computed the

average number of contacts of an individual of age a with members of the same household of age a′ in

each district, denoted by MD
H (a, a′) in district D.

The commuting dataset, derived from census data, contains the movements of more than 25 millions

of adults and 9 millions of children. Commuting frequencies between districts were computed as a matrix

MS(D,D′) for school-based commuting and MW (D,D′) for work-based commuting, where D stands

for the district of residence and D′ for the district of destination. The matrices were normalized by

rows, yielding the percentage of the population of the district of residence commuting to the district of

destination; for example MX(D,D) was the percentage of people remaining in their district of residence

for school or work.

We identified communities using the weighted ’Louvain’ algorithm [14]. This algorithm clusters nodes

by maximizing the weight of links within each cluster while minimizing that between clusters. The com-
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munities identified with the school commuting network and the work commuting network were compared

with the Jaccard index, which compares 2 clusterings by measuring the number of district pairs that are

gathered together in both clusterings over the number of comparable district pairs (a pair of districts is

considered comparable if the 2 units belong to the same community in at least one clustering).

Disease transmission model

Natural history of influenza infection

The natural history of influenza infection was described as a 4 stage SEIR process: individuals were first

susceptible to the disease (stage S), then latent (infected but not infectious yet; stage E), infectious (stage

I) and finally recovered and removed from transmission (stage R). We simulated transmission using the

generation time distribution, i.e. the time from infection in a primary case to infection in a secondary

case, as in Mills et al. [15]. For all asymptomatic cases and symptomatic cases within households, the

generation time distribution was modelled by a gamma distribution with mean 3.7 days and standard

deviation 3.1 days. For symptomatic cases in the community, the generation time was gamma distributed

with mean 1.1 days and standard deviation 0.4 day [16]. These differences account for the reduced time

spent in the community, school or workplace by symptomatic cases. We assumed an initial percentage of

susceptibility of 80%, irrespective of age.

Transmission

A discrete time (time step 0.2 days) deterministic transmission model was implemented. We assumed

that only professionally active individuals in age class 18-65 would commute to work, and that all children

aged 3 to 18 attended and commuted to school. School-based commuting matrices were the same in age

classes 3-10 and 11-18. No births and deaths were considered during the time of simulation, nor any

change in place of residence or of destination.

At each time step, the number of incident cases ∆Ia,D(t) in age class a and district D was computed

as Sa,D(t)×Pa,D(t) where Sa,D(t) was the number of susceptible individuals and Pa,D(t) the probability

of infection. The probability of infection was calculated according to the following equation:

(1).

Pa,D(t) = 1− e−(λH
a,D(t)+λS

a,D(t)+λW
a,D(t)+λCo

a,D(t))∆t (1)
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where λX
a,D(t) was the force of infection exerted on an individual of age a in district D from place X.

Household based force of infection was computed using the age-specific average number of contacts in

the household. More precisely, the force of infection was proportional to the density of infected contacts

among household members as follows (2) :

λH
a,D(t) = βH

∑

a′ MD
H (a, a′)× (IAa′,D(t) + ISa′,D(t))

∑

a′ MD
H (a, a′)×Na′,D(t)

(2)

where βH was the pairwise rate of contact leading to transmission in the household. IAa′,D(t) and

ISa′,D(t) were respectively the number of asymptomatic and symptomatic incident cases, which were

considered equally able to transmit the infection.

For school-based (X=S) and workplace-based (X=W) force of infections, we used a similar approach,

computing the expected density of infection among contacts as (3):

λX
a,D(t) = βX

∑

D′ MX(D,D′)×
∑

D′′ MX(D′′, D′)× (IAa′,D(t) + ISa′,D(t))
∑

D′ MX(D,D′)×
∑

D′′ MX(D′′, D′)×Na,D′′

(3)

here βX was the pairwise rate of contact leading to transmission. Using this formulation, the contacts

in place D′ are counted with all people effectively commuting to this place, from place D as well as from

all places D′′ directly connected to D′.

For community based transmission, the force of infection was computed using the same principle as

above by (4).

λCo
a,D(t) = βCo ×

∑

D′ MCo(D,D′)×
∑

D′′ MCo(D
′′, D′)

∑

a′(IAa′,D(t) + ISa′,D(t))
∑

D′ MCo(D,D′)×
∑

D′′ MCo(D′′, D′)
∑

a′ Na′,D′′

(4)

where the sum was on all districts D′ sharing a border with district D. To take into account the

different behavior of people during day and night, we considered that individuals were only commuting

during the day, and staying at home during the night. Therefore, we considered that individuals could

only interact within their households at night.

We calibrated transmission parameters βS , βW , βC and βH so that simulated epidemics had durations

and attack rates consistent with observed epidemics (see http://www.sentiweb.org). More precisely, in

the Sentinelles network, a typical epidemic starts when incidence increases over 150 cases /100000 per

week, and remains above this threshold for approximately 10 weeks; the cumulated excess cases during this
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period ranges between 2 and 8 percent of the population. We selected parameters with which the duration

with an incidence larger than 150/100000 was 10 weeks, and the excess cumulated cases was 5.5% of the

population. Several sets of β values were still possible, and we finally selected values so that one half of

the cases were due to school or work transmission (respectively 35.6%±0.008 and 10.1%±0.001), and the

other half to local transmission (household and community, respectively 29.9%±0.005 and 24.2%±0.006

of transmission). This repartition compared with other choices reported in [17] and [7], although we put

a little more weight on school/work transmission. Using these parameters, the initial exponential growth

coefficient of the epidemic was 0.75 log(person)/week, in the same range as those observed during the

last 25 epidemic seasons in France (0.5 to 1.0).

Statistical analysis of data and results

Spatial auto-correlation analysis

Moran’s I statistic [18] was used to evaluate the spatial auto-correlation of ILI incidence data. Moran’s

I was calculated by:

I =
N

∑

wij

×

∑

i

∑

j wij(xi − x)(xj − x)
∑

i(xi − x)2
(5)

where N is the number of spatial units, xi the incidence observed in unit i and wij the spatial weight

of the link between i and j. Moran’s I ranges between -1 and 1, with negative values indicating nega-

tive correlation among neighbors, while positive values indicate positive correlation. To assess whether

commuting agreed with spatial incidence, we computed the wij as the size of the population commuting

between i and j [19].

Moran’s I was computed for each week before and after epidemic peaks, and averaged, week-wise. To

test for the specific role of the commuting network as opposed to commuting distance only, we compared

these indices with those obtained using random commuting networks, where the distribution of distance

travelled was kept the same as in the original data, but commuting trips were chosen at random in any

direction. We repeated the above calculation for 100 such random networks.

We also used Mantel’s test as described in [9]. The correlation between incidence time series was first

calculated for all pairs of departments, then compared with the flows (ingoing and outgoing) between

departments.

In all cases, permutation tests were used to calculate P-values.
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Overlap between epidemics

We used the overlap measure introduced in Colizza [20], that takes into account the similarity in spatial

spread, as well as in total incidence. Values close to 1 indicate similar incidence in all places at a given

time, while values of 0 correspond with little overlap. In all cases, epidemics were started with one

infected children in a single district. The overlap between two epidemics, started in districts I and II,

was calculated as

Θ(t) =













√∑
j II

j
(t)

N

∑
j III

j
(t)

N

+

√

(1−
∑

j II
j
(t)

N
)× (1−

∑
j III

j
(t)

N
)













×
∑

j

√

ΠI(t)×ΠII(t) (6)

where ΠI(t) described the geographical distribution of incidence among districts at time step t in epidemic

I, and iI(t) was the incidence per population at time t. The overlap measurement is for a given time t.

Irrespective of the starting places, the overlap measure always grew to 1 with time.

Figure 2. Measuring similarity in spread above randomness C1 Lines correspond with overlap
measures for a given pair of district at different times after introduction of a single infected. For a
particular pair (green line), we also present the overlap measure obtained using reshuffled networks for
the same pair (red line). Criterion C1 was defined as the time when the green line crossed the red line.

For each pair of districts in France, we aimed to identify up to what date after first introduction

epidemics grew more similarly than expected if commuting was at random. This is measured by criterion,

C1 that we computed as follows. First, the commuting networks were reshuffled, by permuting, at

random, the destinations in the original network. This procedure retained the distribution of degrees in
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incoming and outgoing links, but randomized the destinations all over France, implementing a random

commuting network. Then, epidemics were simulated starting from the same pair of districts using the

reshuffled networks. The “above randomness” part was computed as the time during which the overlap

of the epidemics simulated using the original networks was larger than that with the reshuffled networks

(Figure 2). Large values of C1 indicated that the two epidemics looked alike for a long time.

Sensitivity analysis

To test the sensitivity of the model to the proportion of infections occuring in each context, we performed

100 simulations with a set of parameters, for which 32.0% ± −0.005 of transmission occured at home,

36.5%±0.0056 at school or work and 31.3%±−0.0009 in the community, starting from randomly selected

districts. Overlap was used to compare these simulations to the former ones.

An analysis of sensitivity was also performed to test the impact of the hypothesis that adults asymp-

tomatic individuals had a reduced generation time, by simulating 100 outbreaks with a random initial

case where only children would have it. As before, overlap was used to compare the simulations to the

former ones.

The sensitivity of the results to the proportion of adults initially immunized was also tested, simulating

100 outbreaks intitialized in randomly chosen districts with different rate of immunity (0, 10, 20, 30, 40,

50, 60 and 70%). Simulations were compared to outbreaks generated with a 80% rate of immunity for

adults using overlap.

Results

Commuting networks

Workers from one district commuted on average to 133 other districts, and school aged children to an

average 75 destinations (Figure 3-a,b). The average commuting distance was 14.8 km and 12.4 km for

work and school, with 15% of workers commuting outside their department, but only 6.7% for children

(Figure 3-c). Long distance travel (> 100 km away) was however as common for work and school (1.5%

of the cases).

The diameter (i.e. the longest minimal path from one place to the other) of the commuting network

was 3 for work and 4 for school.
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Figure 3. Commuter mobility in France (a,b)Total number of individuals leaving each district via
work commuting (a) and school commuting (b). (c) Proportion of commuters and travelled distance in
the school network (red) and the work network (green). (d,e) Clusters identified in the work (d) and
schoool (e) commuting networks.

The importance of short-distance commuting also showed in the communities found by clustering

(Figure 3-d,e). Indeed, all communities were constituted of adjacent districts, although this is not a

constraint of the method. The Jaccard index for the work and school communities was 0.519, showing that

approximately half the districts belonged to the same community in both the work and school networks.

The differences arose for the most part from places along the borders between clusters. The work network

produced less communities than the school network, especially in the Paris region, highlighting the more

local structure of school commuting.

Commuting and observed epidemics in France

In the 26 epidemics observed in the Sentinelles network, the spatial autocorrelation computed with

weights derived from school and work commuting was significantly greater than 0. In other words,

incidence increased synchronously in strongly linked areas. Moran’s I was significantly greater than 0

(P < 0.001) as soon as 8 weeks before the national peak and remained greater than 0 up to 9 weeks

afterwards(Figure 4-a), with maximum value 1 to 3 weeks before the date of the national peak. The

magnitude of Moran’s I was approximately the same with all spatial weights.

Likewise, Mantel’s test performed with weights matrix derived from school and work commuting was

positive (Mantel’s correlation being equal to 0.069 for work commuting and 0.060 for school commuting),
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Figure 4. Autocorrelation in incidence for observed and simulated epidemics (a) Mean value
of Moran’s Index computed on the 26 epidemics from the Sentinelles network, and (b) on 100 simulated
epidemics. In each case, the blue line uses work commuting based weights or school (red line). Gray
areas corresponds to the 95% expected values when no autocorrelation is present.

confirming the existence of a spatial auto-correlation linked to commuting movements (P < 0.001).

Commuting and simulated epidemics

Simulated epidemics started from different places were all similar in timing and incidence at the national

level. Moran’s I analysis exhibited the same behavior as in the observed epidemics (Figure 4-b) and was

significantly positive using all weight matrices. Here again, the index increased as the epidemic spread

and was the largest shortly before the date of national peak.

As for observed epidemics, Mantel’s test was found to be positive for simulated epidemics (mantel

correlation was equal to 0.106 with work commuting and 0.121 with school commuting).

Overlap in initial epidemic spread

Irrespective of the starting district, national incidence was very similar over the course of the epidemic.

Even if the national incidence were similar, overlap changed depending on the pair of districts considered.

Initial overlap was very variable using the observed commuting network, but always increased to 1 with

time. Remarkably, the overlap in epidemics using reshuffled networks was also large, and quickly increased

to 1 as well.

The excess in overlap, as measured by criterion C1, ranged from 0 to more than 180. The first case

arose for epidemics started from distant places, with C1 increasing in neighboring districts. There was a
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large negative correlation between C1 and distance (r = −0.916± 0.040, Spearman correlation). Almost

all district pairs more than dlim = 100 km away had C1 = 0, in other words epidemics started from

districts more than dlim km away showed little resemblance in initial spread.

On the contrary, C1 increased when the two starting districts were closer, indicating spread on common

paths. However, the variance of C1 was large, even at small distances, indicating that distance was not

the only condition for similar spread. For example, 2 epidemics started in districts less than 10 km away

could be less similar than 2 epidemics started more than 50 km away; and epidemics started from less

than 10 km away could have a very similar spread or quickly diverge depending on the pair of districts

considered.

We found that the correlation between C1 and the proportion of commuters between districts was

also large (r= 0.854 ± 0.038), and that both distance and volume contributed to the value of C1: The

partial correlation between C1 and the proportion of commuters, conditional on distance, was 0.415. The

coefficient of determination of distance and proportion of commuters on C1 was large: r2 = 0.852±0.022.

Figure 5. Typical pathways according to initial infective location For each district, C1 values
were averaged over all neighbors less than 100 km away. Basins of attraction were identified by
clustering.

To get a picture of initial common paths of spread, we averaged the value of C1, in each district, over
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all neighbors less than 100 km away. A large value indicated common initial paths in all epidemics started

in close neighbors. Figure 5 illustrates these preferential paths, as evidenced by large values of average

C1 in several places. Among the districts having the largest values of C1, many were large French cities,

like Paris, Toulouse or Marseille: 30 of the 50 largest French cities were among those with the largest C1

values. Other districts with large average C1 were found as suburban cities close to large cities; and some

in coastal or border districts. Overall, there was a large correlation between average C1 and the number

of inhabitants in each district (r= 0.654± 0.019).

Based on the average C1 value, we obtained 49 communities based on Louvain clustering (Figure 5).

Most of these clusters included one or two very populated French cities, for which the average value of

C1 was the highest of the community. 33 clusters included one of the 50 largest French cities and 5

other included a city less important in size, but large relative to its neighboring districts. Other large

French cities were included in previous clusters, as they were strongly connected to a large city (Aix,

for example, 22nd biggest city in France, was aggregated with Marseille, 2nd most populated city, which

is both close and well connected to it). 6 of the remaining clusters did not include major French cities

and corresponded with sparsely populated areas. Finally, coastal or border districts tended to cluster

together on a geographical basis.

Age dependent commuting networks

Commuting for work and school created two layers of mixing that could lead to differences in the spatial

spread. Indeed, the distance traveled to work was larger, suggesting increased dissemination, but trans-

mission in children is typically larger and could take precedence on transmission by adults. We therefore

simulated the spread of epidemics in models where either commuters for school or work remained in their

place of residence, with the same number of contacts.

Epidemics were started from 100 random districts with the 3 possibilities : commuting to work and

school, only to school or only to work (Figure 6-a,b,c). Epidemics simulated with the two commuting

reached a national peak in a narrow time window, the time of peak slightly depending on the size of

district of departure population (correlation −0.087± 0.031) or on the number of commuters sent by the

district of departure in the school and the work network (correlation were respectively −0.106 ± 0.032

and −0.133 ± 0.032). The final attack rate was not influenced by the district of departure. The spread

of epidemics simulated with only one type of commuting was more variable, with an increased range of
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Figure 6. School and work commuting networks and the spatial spread of epidemics (a,b,c)
ILI epidemic curves using all commuting networks (a), only work commuting (b) and only school
commuting (c). Epidemics were started form 1000 randomly chosen districts. (d) Overlap between
epidemics using work (blue curve) or school commuting (red curve)

time to the national peak.

Not unexpectedly, ignoring one commuting network led to epidemics that spread less rapidly. The peak

of epidemics simulated with school commuting were on average delayed by 2 weeks, although with large

variability. For some simulations, the propagation was faster when only school commuting was present,

but this was independent of the district of departure (correlation of delay with district population :

0.037± 0.198; correlation with the number of children commuting from the district : 0.011± 0.197). The

impact was more important for epidemics simulated with work commuting, which were more delayed,

and with highest variability.

Finally, simulated outbreaks where all commuters followed the same commuting pattern, either school

or work, were much in line with the results above. Overlap with original simulations was almost perfect

when using only the school network but differed markedly from the start when using only work commuting
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Figure 7. Sensitivity analysis Overlap between epidemics simulated with first model and epidemics
propagating only by school (red) or work (blue) commuting (a) , with epidemics for which
asymptomatic adults do not have a reuced genration time (b), with epidemics simulated with different
parameters of transmission (c). (d) Overlap between epidemics in which 80% of adults are susceptible
with epidemics with different rates of susceptibility.

(w Figure 7 -a).

Sensitivity analysis

The overlap between simulations with different rates of contacts and the original simulations started in

the same district was very large (Figure 7 -b) as 95% of overlap values ranged between 0.9929 and 0.9998

through the entire course of the epidemic. This indicates that the spread of the epidemic was very similar

in both cases and that our results regarding to how networks shape the initial spread were robust to this

modification.

Similarly, the overlap between epidemics with a reduced generation time for symptomatic adults and

without was very large (Figure 7-c) with 95% of overlap values ranging between 0.9931 and 0.9999 during
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the whole course of the epidemics. This showed that the results regarding initial spread of the disease

was robust to this assumption.

The overlap between simulations with 80% of susceptible adults and other percentages of immunization

decreased with the rate of susceptibility of adults (Figure 7-d).

Discussion

Our analysis showed that commuting data determines the spread of influenza in modern populations,

as evidenced by the large autocorrelation in observed ILI incidence in regions connected by commuting.

Building on this observation, we provided an in depth study of the consequences of mobility as described

by commuting in the initial spread of epidemics, showing how to identify preferential paths in a densely

connected territory. Last, we showed that age specific heterogeneity in commuting leads to different

patterns of spread, depending on the age category the most involved in transmission.

The spatial structure of epidemics in France was manifest according to the change in Moran’s index

over time. The index increased up to a maximum just before the national epidemic peak, and decreased

afterwards. This spatial structure was hinted at by the non random structure of spatial incidence pointed

out by Bonabeau et al. [21] and the decreasing correlation with distance found by Crepey et al. [22].

However, neither of these studies linked these observations with human mobility. Here, we showed that

these properties could be explained by commuting, strengthening the case for using commuting data to

model the spatial spread of diseases at a regional scale. We measured the correlation between incidence

and commuting using Moran’s I and Mantel’s test. These provide complementary information regarding

the association of commuting with spatial disease spread. Indeed, Moran’s I compares magnitudes in

connected regions, while Mantel’s test is more sensitive to the timing of the peaks between epidemics.

As in Viboud [9], Mantel’s test supported the hypothesis of correlation between epidemic spread and

commuting volume. Our conclusions are further supported by the fact that in the simulated epidemics,

Moran’s I and Mantel’s test displayed the same pattern as for observed epidemics.

In our systematic exploration of the model dynamics, a three stages scenario for the spread of epidemics

emerged. The first stage followed introduction of an infected individual in the population. The lack of

large C1 value for districts more than 100 km apart reflected the spatial scale of this first phase, and

the large variance in C1 values evidenced the strong dependence on the initial location for initial spread.
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During this stage, transmission occurred in the initial community and its proximal districts over a few

weeks. It ended when infection reached an amplifier district. This was illustrated by the existence of

districts with a large average C1 value, showing that these places produced epidemics that were very

similar to those started around. The second stage saw the spread from the first amplifier district to other

districts at a longer range, via long distance links. In this second stage, it was mostly large cities that

were attained all over the territory. The last stage started with the spread around large cities, but quickly

led to transportation of cases both locally and globally, yielding the national epidemics. Importantly,

this structure arose from the features of observed commuting data. One of the challenges was to be able

to identify the amplifier nodes and their basins of attraction, and the downstream propagation paths

directly from such data. This is where the methods introduced in our paper are of broader interest.

We used the raw commuting data from the census, instead of a smoothed version based on a gravity

model [9, 23, 24]. As our data was exhaustive, it was not necessary to use modelling in the first place.

Using raw data leads to more heterogeneity in commuting links, given different districts at the same

distance and with the same population may not receive the same number of commuters. It may also lead

to results that are very dependent on the reported mobility, which captures only a part of human mobility.

Allowing individuals to mix in a local community (district and close neighbors) was a way to keep the

particular features of the commuting data, while allowing for inaccuracies or random moves not measured

in commuting. We also chose to differentiate school and work commuting, when most metapopulation

models either ignore school commuting [9, 23] or assume the same rate of contact between individuals

in the 2 contexts [24]. In our simulations, we found that the interactions of the two networks tended to

homogenize epidemic curves, irrespective of the starting location. Indeed, the timing of the peak was in

a very limited range, irrespective of the starting place. With our choice of parameters, the spatial spread

of the disease was driven more strongly by school commuting than by work commuting: removing the

work network affected less overall transmission than the converse. The prominence of the school network

is likely a consequence of our assumption that over 40% of all transmissions occurred in school. However,

this analysis shows that differences in commuting networks could lead to changes in spatial spread. For

example, it was reported that school holidays mostly affected how quick a disease would spread [25, 26],

but this result did not take into account differences between work and school commuting. Our results

show that closing schools may also affect preferential paths of spread.

Seeding epidemics with only one case, as we did in the systematic analysis, is presumably not very
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realistic. Indeed, real epidemics may be seeded by repeated introductions from abroad over a few weeks.

We however selected this simple seeding pattern to study systematically the influence of the initial place

of introduction, as it allowed a rather simple way to compare epidemic courses through their overlap.

This type of seeding likely reduces noise and leads to increased spatial autocorrelation, as noted in Figure

4.

Thanks to the systematic search for locations having large similarity with others, we identified pref-

erential paths for epidemic spread due to human mobility. Clustering districts according to the average

C1 measure allowed to define clusters showing the ’basin of attraction’ for these preferential paths, as

shown in Figure 5. Most clusters were centered around an important city of the area, which may not be

highly populated compared to other cities, but was relatively important compared to neighboring places.

The role of such places must be studied further in the context of epidemiologic surveillance. Indeed, it

suggests that to capture a new epidemic, it would be interesting to have at least a GP in each cluster. It

must be studied whether this would be more effective than allocating surveillance based on population

coverage [27]. Moreover, as the behavior of epidemics from any district in a cluster tends to resemble the

behavior from a central city, focusing on the main cities identified in the study could lead to the optimal

use of GPs for surveillance.
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4.3.3 Observations, Supplementary informations and Per-

spectives

a) b)

Figure 4.5: Comparison of criterion C2 to the distance between districts and the

flows of commuters exchanged by them

Criterion C2 evaluated for 2000 randomly chosen pairs of districts compared to the distance
between districts (a) and the rate of active people from the districts commuting between
them, either for work or school purposes (b). C2 was negatively correlated with distance but
positively correlated with the rate of commuters

The study conducted with criterion C1 showed districts could be gathered

in communities from which the pathway followed by an epidemic would be the

same whatever the district of seeding: the structure of commuting networks,

both small world networks with many local communities, was identified as a

cause of this division. This analysis explained the the diversity of overlap pat-

terns at the start of epidemics. However, as criterion C1 focused on the begin-

ning of epidemics, later similarities between epidemics could not be investigated

using it. We thus introduced a second criterion, C2, that we defined as the

integral of overlap curve on the 180 days of simulation.

As criterion C1, C2 was negatively correlated with the distance (r = −0.962±

0.010, spearman correlation) and positively correlated with the rate of com-

muters exchanged by the districts (r = 0.842 ± 0.041) (Figure 4.5). Both dis-

tance and volume of commuting contributed to C2: indeed, partial correlation

between C2 and volume of commuters conditional on distance was 0.481.

Despite its decrease with distance, we noticed that for some areas criterion

C2 was significantly high compared to the distance between them (Figure 4.6).
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d) e) f)

Figure 4.6: C2 for six districts and all other districts

Criterion C2 evaluated for six hubs, namely Lille (a), Strasbourg (b), Paris (c), Bordeaux (d),
Marseille (e) and Toulouse (f)

Areas surrounding hubs had among them a criterion C2 greater than with other

districts located at approximatively the same distance: moreover, we noticed

that the criterion was higher for some couples of hubs, like Toulouse and Lyon,

than for others couples at the same distance, like Toulouse and Poitiers. This

result confirmed that epidemic propagation did not happen solely by wave-like

diffusion and was in line with observations made on the simulations, in which we

noticed the attraction exerted by some hubs, like Paris on epidemics depending

on their district of seed. Criterion C2 would indeed be higher for a hub and a

district if the disease seeded in this district diffused quickly to the hub.

Analyzing more specifically the values of criterion C2 for each couples of

hubs would be an interesting lead for future work: such study would permit to

identify the existence of specific links between some hubs, which would indicate

an important attractivity of each of them on the other. It could be interesting

for prevision of future epidemics diffusion, as it could be a tool to predict pref-

erential directions of propagation, depending on the current localization of the

disease.
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4.3.4 Structure of the network and similarities between

epidemic propagation

In previous part, the analysis of simulation results with criterions C1 and C2

evidenced the existence of a spatial structure of influenza propagation: the dif-

fusion being partly led by commuting movements, we sought how this structure

could be linked to the commuting network. Given the negative correlation of

both criterions with the geographical distance between district, we started this

analysis by evaluating their correlations with the distance between nodes on the

network. As the notion of distance didn’t take into account the weights of edges,

which play an important role in commuting networks, we then looked for other

parameters to measure the proximity of two nodes and calculated their corre-

lation with criterions C1 and C2. This study will be presented in the following

chapters.

Shortest path

The pathway followed by an influenza epidemic depends both on the location

of its first infected and the connectivity of seeding district. The positive cor-

relation between both C1 and C2 with the rate of commuters exchanged by

two districts indicated that epidemics are highly probable of following the same

pathway when they are initiated in districts between which an important flow of

commuters exists. However, as we also observed strong similarities between epi-

demics initiated in not directly linked districts, the existence of a direct link was

not sufficient to explain the distribution of the criterions. To further investigate

the link of the distribution of criterions with the structure of the network, we

evaluated the correlation between both C1 and C2 with the parameter usually

employed to measure proximity on networks, distance (Figure 4.7- a,b). We

found strong correlations between distance and both C1 (r = −0.667 ± 0.039)

and C2 (r = −0.681± 0.042).

Despite the high correlations observed, the coefficient of determination of
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a) b)

c) d)

Figure 4.7: Influence of shortest path length on criterion C1 and C2 Boxplots of

criterion C1 (a) and C2 for couples of districts at distance 1, 2 3 and 4. Average value of

both criterions decreases when the distance increases. Similar boxplots have been traced for

C1 and C2 with couples classified by their distance on a reduced commuting network, where

vertices representing the movement of less than 10 people have been ignored.

distance on C1 and C2 was low (r2 = 0.194 and 0.470 respectively), indicating

that the variations observed were not fully explained by distances.

Commuting networks expose a small-world structure: parameter S [76] was

indeed significantly positive for both networks (S = 9.864 ± 0.005 for school

commuting and 5.328 ± 0.007 for work). In consequence, the average shortest

path length is small in both networks: for 96% couples, shortest path length is

inferior to 2. Therefore, distance does not provide a discriminant information

on couples of nodes. Moreover, as 79.4% of edges in work commuting network

and 87.0% in the school commuting one represent less than 10 people traveling,
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most couples for which distance is low are joined by a shortest path including

one of these weak links. The probability of influenza transmission through

such path is small, due to the few commuters travelling through it: the small

distance between districts thus didn’t imply a strong proximity in terms of

disease transmission.

Therefore, we re-evaluated correlations between the criterions and distances,

after suppression in the networks of the edges representing the movement of less

than 10 commuters. As previously, strong correlations were observed between

distances and both C1 (r = −0.856±0.029) and C2 (r = −0.868±0.015) (Figure

4.7 - c,d). The coefficient of determination of new distance on C1 and C2 was

higher than previously (r2 = 0.361 and 0.667 respectively).

This result confirmed that common distance was not sufficient to under-

stand the distribution of criterions C1 and C2: therefore, we looked for other

measures of distance on networks, in which commuting traffics would be taken

into consideration.

Flows of commuters

- Measuring distances in a transportation network The weights of the

edges in commuting networks measure the intensity of travellers flow between

districts: following a common approximation in transportation theory, they can

be considered as capacities or maximum flows. This approximation allows for

the generalization of measures commonly used in unweighted networks, notably

distance [110].

To extend the concept of distance, we need to introduce a new notion: path-

way transport rate. For a given pathway P , constituted of nodes (n1, ..., np)

and weighted links (fn1→n2
, ..., fnp−1→np

), transport rate is defined as the ra-

tio of its capacity (c(P ) = max1≤i≤p−1fi→i+1) to its length. Assuming that

transportation through each edge takes one unit of time, transport rate can be

understood as the quantity of flow transmitted through this path by unit of

83



time. An equivalent of distance for weighted networks, l′, can thus be deduced

from this notion [22], with equation 4.1:

l′(m, o) =

∑

fi→j

N
∗

1

maxP (i→j)r(P )
(4.1)

where N is the number of nodes in the network, r(P ) the transportation rate of

path P and maxP (m→o)c(P ) the maximal transport rate that can be obtained

with a pathway going from node m to node o.

This expression requires the evaluation of all pathways relying nodes and

can therefore be hard to compute for large networks: this difficulty can be

circumvented using the concept of maximal flow.

- Maximal flow and Ford Fulkerson algorithm The maximal flow prob-

lem is a well known problematic of optimization theory, involving the search

of the maximal volume that can be passed through a network from a source

node to a sink. The capacities of edges constitute the constraints of this prob-

lem, as they limit the quantity of flow that can be transmitted between nodes.

From this notion we can define the maximum average simultaneous transport

rate between two nodes i.e the average transport rate when the maximal flow is

transmitted between the nodes, given by equation 4.2:

raverage(m, o) =
1

Fmax(m, o)
∗

∑

P∈S(m,o)

r(P ) ∗ c(P ) (4.2)

where Fmax(m, o) is the maximal flow from m to o and S(m,o) the set of path-

ways followed to transmit it.

We can then redefine the distance previously defined by equation 4.1 using

this new notion:

l′(m, o) =

∑

fi→j

N
∗

1

raverage(m, o)
(4.3)

The problem of maximal flow being well explored, 4.1 is easier to evaluate than

the previous one: in this thesis, the algorithm of Ford Fulkerson [55] was used
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to determine the maximum flows and the pathways permitting its transmission.

- Flows and similarities between districts High correlation was found

between redefined distance and C1 (r = 0.921±0.026) and C2 (r = 0.952±0.042).

4.8 The coefficient of determination of refined distance on both criterions was

a) b)

Figure 4.8: Influence of distance on criterion C1 and C2

higher than previously (r2 = 0.65 and 0.75 respectively). This large values

indicated that the similarities of epidemic propagations were strongly linked to

the structure of commuting networks. Intensity of commuting traffic between

nodes gives particularly a good explanation of the differences observed in the

similarities between the whole propagation, measured by C2.

4.3.5 Interpretation and perspectives

Influenza propagation is greatly influenced by the structure of commuting net-

works: indeed, the hubs of the network play a central role in the diffusion.

Hubs are surrounded by basins of attraction, from which any epidemic will be

attracted to them. Therefore, the similarity between epidemics initiated in dif-

ferent districts of the same basin of attraction will be higher than with epidemics

starting from outside.

The division of districts between basins of attraction is directly linked to the

structure of the network: indeed, the high correlation between criterions C1 and
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C2 and the weighted distance between districts indicates that high similarities

of early and total propagation were found for districts between which an im-

portant flow of commuters was exchanged. Districts gathered in the same basin

of attraction are thus highly connected district. Due to the predominance of

short-distance links, highly connected districts are mostly short-distanced ones:

basins of attraction thus gather districts located in the same geographical area.

The three stages behavior observed on simulations is fully explained by the

structure of commuting networks: the conjunction of predominant local com-

muting movements and attractiveness of hubs causes the first phase of wave-like

local propagation when the existence of privileged links between hubs evidenced

by C2 analysis explains the sudden jumps of the epidemic.

The variability of initial pathways observed on simulation can also be explained

by the structure of the network: the division of districts in spatially connex

basins of attraction, linked to the strength of commuters flows between dis-

tricts, explains the differences of patterns of propagation observed for epidemics

starting in short- distanced districts.

This behavior is typical of propagations on scale-free networks such as com-

muting networks [16]: due to their central role in propagation, identifying the

network’s hubs is of crucial importance to design adequate public health poli-

cies [116]. However, for complex networks including a large number of nodes

and edges, finding those hubs can be a tricky issue: the criterions defined in

this part can be used to pinpoint hubs from simulation results and to find their

basins of attraction, an important information to predict future propagation of

epidemics.
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4.4 Conclusion

In this chapter, we showed that epidemic in France exhibited a spatial struc-

ture, determined by the mouvements of commuting, which proves the interest

of using commuting data to understand epidemic propagation on a national/

regional level.

To understand the consequences of mobility structure on the propagation of

infectious diseases, we developed a metapopulation model based on commut-

ing movement: we observed that simulations exhibited a three-phases behavior

of propagation typically encountered in propagations on scale-free networks as

commuting networks. Using two criterions based on the analysis of similarity

between epidemic propagations, we showed that the network hubs could be re-

trieved from propagation data. Those hubs have a central role in propagation,

as they attract and redistribute the epidemic: French territory could be divided

in basins of attraction surrounding hubs, in which the epidemic propagation

was attracted by the central hub. Thus, we showed that epidemic propagation

followed recurring pathways, depending on their seeding district and proposed

tools to predict the pathway an epidemic will follow depending on its current

location. The structure in basins of attraction was shown to be directly linked

to the intensity of commuters flows between districts.

*****

In this chapter, we proposed an analysis of the structure of influenza propa-

gation based on criterions measuring the similarity between results of epidemic

simulations. Those results gave an insight of the role of different districts in

the propagation: to quantify this result, we developed a linearized version of

our model and performed an analysis based on a study of its next generation

operator. This analytical study will be presented in chapters five and six.
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Chapter 5

Districts role in the system

dynamics

In the previous chapter, an extensive exploration of potential epidemic propaga-

tion on French territory was performed and we evidenced the existence of prefer-

ential pathways of diffusion. The observation of the simulations also showed the

presence of an apparently recurring scheme in propagation: whatever district

influenza was seeded into, the epidemic first propagated mainly to neighboring

districts, until it reached one of the network hubs. Once a first hub was reached,

the disease then spread to other hubs, in some cases not geographically linked

to the initial area of infection and was then transmitted to their neighbors. The

study performed on criterions C1 and C2 was coherent with this observation:

the small values of criterion for couples of distant districts confirmed that at the

beginning, epidemic propagation only occurred on a local scale. The central role

played by hubs was also confirmed by the high values of the criterion obtained

for them and their surroundings.

Previous work by Barthelemy and al [16] had proven that in scale free net-

works, as the commuting networks, hubs provides transmission on a large scale

and diffusion between other nodes occurs locally. Propagation on these struc-

88



tures has been shown to be highly predictable as soon as the epidemic reaches

the main hubs [32], only the timing of this event and the paths followed are

variable, depending on the node of seed [16]. To understand the diversity of

possible patterns of propagation, an analysis of diffusion in the first stages of

an epidemic is thus required.

Given the complexity of the model, making an analytical study of early

dynamics is complex. However, during the initial phase of the epidemic, only

few individuals are infected: the depletion of susceptibles can be neglected and

it can be assumed that infectious individuals make contact with susceptibles

only. Given this approximation, we can consider the number of susceptibles to

be constant and linearize the equations of the model: new equations give a good

approximation of the model dynamics in its first stages and its analytical study

can be performed more easily [43].

5.1 Linearized model

5.1.1 Linearization

The linearized model can be summarized with equation 5.1.

X(t+ dt) =













I3704∗5 −S3704∗5 ∗M

0 TI′ + TI ∗ S3704∗5 ∗M













∗X(t) (5.1)

In previous equation, vector X(t) describes the state of the system at time

t, namely the number of susceptibles and infected in each districts and age

classes, and keeps memory of the previous states of the system during the past

50 time steps (equation 5.2). The limit of 50 for the memory sized was fixed

as it corresponds to a generation time of 10 days, which has less than 10−6%
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chances to occur.

X(t) =



















































































































S0,0(t)

...

S0,4(t)

S1,0(t)

...

S3703,4(t)

I0,0(t− (TH − 1)dt)

...

I0,0(t)























TH

I0,1(t− (TH − 1)dt)

...

I0,1(t)























TH

I3703,4(t− (TH − 1)dt)

...

I3703,4(t)























TH



















































































































(5.2)

In equation 5.1, matrix S3704 is a diagonal matrix which diagonal is consti-

tuted of the number of susceptibles in each class. Given the linear approximation

made for the first stages of the epidemic, this matrix is constant.

The evolution of the system state is accomplished by the product of vector X(t)

by the matrix M (equation 5.3).
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M =







































βWNWT t
WWW tT ∗

W

+ βSNS1
T t
S1
SStT ∗

S1

+ βSNS2
T t
S2
SStT ∗

S2

+ βCNCT
t
CCCtT ∗

C







































∗ (0.1pH + 0.9pO) + (βHH3704NHT ∗
H) ∗ pH

(5.3)

where W , S and C are respectively the matrices of commuting for work, school

and community. The different generation times of individuals are represented

with matrices pH and pO, calibrated to follow the gamma distribution of genera-

tion times in household and in the community. NX are diagonal matrices which

diagonal components are the number of people encountered via commuting or

household contacts. Finally, TX and T ∗
X are simple transition matrices.

The similarity between the model and its linearized version was verified using

overlap on 1000 simulations starting from randomly chosen initial states (Figure

5.1). Overlap was found to be superior to 0.99 for the first 6 weeks of simulation,

before quickly decreasing, as the diminution of the susceptibles pool became too

important for the approximation of constant susceptibles to stay accurate. The

paths followed by epidemic propagation with both models being the same during

first weeks, the linear model could thus be used for an analytical study of the

epidemic behavior in its beginning.

5.2 Kernels

5.2.1 Kernel definition

The variance in epidemic propagation in the first weeks of an epidemic being

largely correlated with the district of seed [16], we used the matrix of next
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a) b)

Figure 5.1: Simulations with the commuting model compared to simulations with

its linearized version

a) Comparison of national incidence through time in 3 epidemics simulated with both the
commuting model (continued line) and its linearized version (dotted line). Curves in the
same colors are from simulations generated by starting in the same district and the same age
class. b) Overlap between incidence of epidemics generated with the commuting model and
the linear model. During the first 8 weeks of simulation, the overlap was greater than 0.99,
indicating an important similarity between the propagation in the 2 cases

generation to determine the number of descendants that a single infected in each

district and each age class could generate through time. This way, we defined a

function k, giving the expected number of descendants of an individual of age

a and from district d infected n days ago, as

k(a, d, n) = M ×Xa,d,n (5.4)

where Xa,d,n is a null vector, except for its (50 × 5 × d + 50 × a + 50 − n)

component, equal to 1.

Function k is called the kernel of the model [43]: this tool of modeling was

used to perform several analysis on the influence of each district and age class

on the intensity and the extension of first stages propagation.
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a) b)

Figure 5.2: Descendants of a single infected

a) Distribution of the number of descendants for an infectious of a child age class (blue) and
an adult age class (red). The dispersion was higher in cases of children, with a long tail of
distribution for high values. On average, adults had less than 1 descendants, but children had
more than 1. b) Number of descendants of a child for each district. The higher values were
found in districts colored in red, which happened to be the hubs identified in previous study.

5.2.2 Kernel analysis

Number of descendants

The age class of an individual had a strong influence on the number of sus-

ceptibles to which it could transmit influenza: while elders and babies could

infect a very limited number of people (respectively 0.1 and 0.3 on average) and

weren’t able to have at least one descendant in any district, adults and children

of both age classes had a higher capacity of transmission. Children were also

found to infect more individuals than adults: moreover, as a child had on aver-

age 1.10 ± 0.01 descendants, these age classes had the capacity to amplify the

number of infected, while adults, whom number of descendants was 0.94±0.02 ,

didn’t (Figure 5.2-a). Number of descendants distribution was quite different in

both cases: with a variance of 0.03, in case of an infected adult the distribution

was massed around its average value and had a maximum of 1.6. However, for

children, the distribution has a higher variance (0.1) and a maximum of 3.4,

and, despite the one of adults, didn’t exhibit a symmetrical structure, as it

showed a long tail. The number of descendants of a child infected was found
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to be superior to 2 in 42 districts, all of them being hubs of the commuting

networks.

The highest numbers of people infected by a single individual, for both chil-

dren an adult age classes, were found in the districts identified as hubs (Figure

5.2-b). In major cities, as Lyon, Toulouse or Marseille, a child could have more

than 3 descendants, up to 3.4. This characteristic could notably be explained

by the positive correlation between this parameter and the number of children

inside the district (p = 0.59±0.02): as hubs tend to have more inhabitants than

other cities, the quantity of children living there is also higher.

In certain districts, we observed that an individual from any age class in-

fected less than 1 person: those districts would not be able to grow an epidemic

from an initial single infected. However, in the previous chapter, we noted that

the introduction of a single individual in any district led to a national infection:

the network of connections linking the infection in different districts thus had

the ability to support the epidemics seeded in districts were individuals had few

descendants.

First-generation descendants localization

Due to the scale-free structure of both commuting network, most districts have

many connections with other: a high proportion of districts were thus infected

whatever the location of the initial individual. On average, 1159.5 ± 10.05

districts were infected by an adult first infectious, and 2133.9± 20.93 by a child

(Figure 5.3-a). However, many links in the networks, especially the one of school

commuting, are weak links, through which the probability of infection is small:

therefore, for some of the districts considered as infected in previous calculus, the

probability of transmission is actually small, sometimes inferior to 0.001%. If we

only consider the districts where the probability of transmission was superior

to 1%, the quantity of districts reached was considerably reduced, falling to

7.4 ± 0.10 on average for an infectious of the adult age class and 11.4 ± 0.13
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a) b)

c) d) e)

Figure 5.3: Localization of first-generation descendants

a) Distribution of the number of districts infected in case of a first infected who is a child (in
blue) or an adult (in red). b) Same distribution, but considering only the district for which
the probability of transmission is greater than 1%. c,d,e) Maps of the districts infected by
respectively Toulouse (c), Lyon (d) and a randomly chosen districts. Only districts with a
probability of infection greater than 1% were represented. While Lyon and Toulouse are hubs
of the connectivity network, the randomly chosen district is not.

for one in a child age class (Figure 5.3-b). As for the number of infected,

the distribution of infected districts exhibited the symmetrical structure of a

gaussian distribution for an adult first infected and showed a long tail in case

of a child.

Once again, the maximal number of districts reached from a single individ-

ual with a probability greater than 1% were found for the hubs of the network

(on the other hand, we didn’t find any specific pattern when considering the

total number of districts reached, without distinction on the probability of in-

fluenza transmission). An illustration of this is given with Figure 5.3-c,d,e: we

represented the districts having more than 1% chance of being infected by 2

hubs, namely Toulouse (Figure 5.3-c) and Lyon (Figure 5.3-d ), and a randomly

chosen district (Figure 5.3-d). This example illustrates the width of the area
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reached by an infected placed in a hub compared to the one reached by an

average infected.

This result was coherent with the previous one: on average, an infected

individual placed in a hub would infect people on more districts, thus having

in total more descendants than the average infected. The number of person

infected in the district of origin was not different in average nodes and in hubs,

despite the higher quantity of inhabitants of the latter: the number of people

infected outside of the seeding district was therefore higher in case of a seed

placed in a hub than in any other node. Hubs play both a role of amplification

of the epidemic, increasing the number of infected and a role of distribution, as

they enable the disease to reach a large number of places.

Moreover, we observed that the average distance between a district and the

one it infects was higher in the case of a hub, meaning that they can export the

disease to not neighboring areas.

Antecedents of each type of infected

a) b)

Figure 5.4: Antecedents of the infected of each district

a) Distribution of the number of people infected in a district by a distribution of one infected
per district in a child age class (in blue) or in th adult age class (in red). The average number
of infected was similar in both distributions, but with children infected, the variance of the
distribution was higher. b) Number of infected in each district in cases of children as first
infected. The higher values were found in hubs, here colored in red.

The location of an individual didn’t influence only the number of people it
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could infect, it also had an impact on its probability of being infected. Using

the kernels, we looked at how many individuals were infected in each district if

we put an infected child or an infected adult in each age class (due to the low

capacity of disease transmission of babies and elders, we did not introduced an

infected in those age classes): the total number of infected on average slightly

differed depending on the age class of the first infected, as the average number

of infected was 1.94 ± 0.01 in case of an adult and 2.09 ± 0.02 in case for

a child. Both distributions had a long tail on their upper values, but more

districts had an important number of infectious when the initial infected was a

child than when it was an adult (Figure 5.5-a). The network of infection from

adults therefore diffused influenza equally between districts, while the network

from children concentrated the disease in some privileged districts. Similarly

as what had been observed in the study of descendants, we found that hubs

were the districts where most infections occurred (Figure 5.5-b). Moreover, we

also looked from which places each district was infected and found that hubs

were the places for which the probability of being infected by many different

districts was the highest, i.e an infected in any randomly chosen district has

a more important probability to have descendants in a hub than in any other

district.

Hubs combine an important capacity of amplification, as any infected in a

hub will have many descendants, in and outside it, and a central position in the

epidemic, as there is a high probability for their individuals to be infected by

sick people of other districts. This result could explain how epidemics can be

bred from districts which individuals transmit the disease to less than 1 person

on average: if the disease succeed in being exported to another district, it is

highly probable that a hub will be infected and will play a role of amplificator

for the epidemic.
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Figure 5.5: Privileged links between hubs

Linked hubs

The kernels also gave an insight of the intensity of the connection between two

districts: the most descendants an infected from a district had in another one,

the more connected they could be considered. We selected the 50 cities which

were receiving the most infectious from the rest of the country, and observed

how they were connected. On Figure 5.5 are represented the 50 cities (all of

them were hubs): an arrow is represented between two nodes if one infected in

one of them has more than 1% chance of having descendants in the other.

This analysis underlined the centrality of Paris, linked to most of the other

hubs: this result was coherent with the simulations of epidemics, on which we

had observed that Paris was a privileged direction of propagation for almost any

district of seed. The hyper-connectivity of Paris, combined with its important

number of inhabitants, would explain why it was among the first cities infected

in each simulations. The organization of French urban network, historically
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centered on Paris, could explain why Paris is the most connected of all hubs.

Apart from this case, most links were between non distant hubs, which could

be explained by the local nature of commuting. Local clusters could also be

observed, in which local hubs had privileged contacts with a neighboring bigger

hub. Some of these clusters could be observed in the vicinity of the important

cities of Lyon, Toulouse and Marseille, three among the most populated French

cities.

The same analysis could be done on all districts, to find the hub they are the

most linked to. It could help to identify the direction in which an epidemic will

be attracted, depending on its current localization and be an interesting tool to

predict epidemic propagation.

5.3 Perspectives of use for the kernels

Given the linearity of the equations, the kernels can be used to evaluate the

state of the system at a time step t depending on its previous states time steps.

X(t) =
∑

n∈[1,...,nmax]

∑

(a,d)∈X(t−n)

k(a, d, n) (5.5)

This property could be used on datasets describing the evolution of incidence

in an epidemic to find the localization of its seeds. French influenza epidemics

have multiple seeds: due to the communication of the country with its Euro-

pean partners and international communication with the rest of the world by

airplane transportation, new influenza cases are re-introduced on the territory

throughout the entire influenza season. In the incidences recorded by the Sen-

tinelles network, the aggregation of the data on week and department drown

the information of these re-introductions. Kernels could thus be used on inci-

dence data to reconstruct previous time steps with the vectors of incidence of

an epidemic from the week of its official start. With this work, the main places
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of re-introduction of influenza in France could be identified: this information

could be used to design public health policies targeting these places as a priority

in order to limit the arrival of new influenza cases during the influenza season.

5.4 Conclusion

In this chapter, we have linearized the model defined in the previous chapter:

the linear equations were used to define kernels of propagation, which give the

number of descendants of an individuals depending on its age and district of

residence.

These kernels were used to study the influence of individuals on the propa-

gation of an epidemic: we found that the hubs of the network play a double role.

On one hand, they attract the epidemic, as their residents can be contaminated

by infected from many other districts. On the other hand, they amplify the

epidemic and redistribute it, as an infected from a hub has many descendants,

distributed on a large number of districts. The attractiveness of these districts

and their propensity to amplify the epidemic compensate the low capacity of

some other districts in the network, which inhabitants have less than 1 descen-

dant when infected. An analysis of the contacts between hubs also highlighted

that Paris was the main attractor of the epidemic, as infected in most hubs

have descendants in Paris. We also observed that hubs located in the same

geographical area formed little clusters, surrounding the most populated hub of

the area. This analysis was coherent with the observations performed on the

simulations of the model in the previous chapter.

We also found that children were the main vectors of influenza transmission:

on average, an infected child has more descendants than an infected adult from

the same district. This result confirmed the results obtained in chapter 2.

*****

In this chapter, we used the linearized model to study the influence on epi-
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demic propagation of each district individually: we have seen that only some

of them have the capacity of amplifying an epidemic. However, this study does

not give information on the behavior of the whole system: the following chapter

will address this issue.
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Chapter 6

Analysis of the system

global dynamics

In the previous chapter, we developed a linear model to approximate the behav-

ior of the model at the beginning of a simulation. From this model, we defined

for each category of individual, a kernel giving the number of descendants of an

infected in this category through time. An analysis of kernels highlighted the

importance of the networks hubs, which play the role of attractors and amplifi-

cators for the epidemic. This analysis gave us an insight on the specific influence

of each district separately: in this chapter, we will study the general behavior

of the model and study its capacity in sustaining an epidemic whatever district

influenza is seeded into.

To do so, we will take an interest in R0, the basic reproduction number of

the model, which is defined as the average number of new cases generated by a

single typical infected individual. R0 is one of the most important concept in

epidemiology [71]: originally developed for demographic studies [44, 131], it was

introduced in epidemiological research to study vector-borne disease as malaria

[128] then directly transmitted disease [90] and is now widely used to study

infectious disease models. It is among the first quantities estimated in case of

102



an emerging disease outbreak and is used to help in the design of interventions

for recurring infections. R0 is mainly used as a threshold: indeed, from its

definition, it is clear that if R0 < 1, each infected individual infects less than

one new individual and the infection will disappear from the population. On

the contrary, if R0 > 1, the pathogen will be able to invade the susceptible

population. The magnitude of R0 also gives an insight of the speed of the

number of infected growth.

Initially defined for simple homogeneous models, in which R0 is directly

linked to the probability for a contact between a susceptible and an infected to

be infectious, the concept has been extended for complex multi-compartment

models and several methods have been proposed to evaluate the R0 of such

models. Notably, [43] defined the next generation operator, from which R0 is

the spectral radius. The next generation operator depends on the equations of

the linear model: to explain its calculation, let us consider the following linear

system:

∆x(t) = A× x(t) (6.1)

where x is a n-dimensional vector representing the number of infectious indi-

viduals in each category of the system at time step t. If the spectral bound

(i.e the maximal real part of all eigenvalues), here noted s(A), is inferior to 0,

the system is stable and all variable decay to 0. On the contrary, if s(A) > 0,

the system is unstable, meaning that an epidemic can be generated with this

system. The next generation theorem [41] states that, for any decomposition

A = F − V where s(−V ) < 0, V −1 ≥ 0 and F ≥ 0,























s(A) < 0 ⇔ ρ(FV −1) < 1

s(A) > 0 ⇔ ρ(FV −1) > 1

s(A) = 0 ⇔ ρ(FV −1) = 1

(6.2)

Here, ρ(X) defines the spectral radius of the matrix X and F ≥ 0 requires that

all elements of F are greater than or equal to 0. F and V can be chosen to
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respect the conditions of the previous theorem and to have an epidemiological

interpretation [77]. A classical decomposition is to set F as the matrix giving

the rate at which new individual are infected and V as the one describing the

internal movement of individuals between the classes (due to recovery). When

F and V are chosen as such, FV −1 forms the next generation operator and

ρ(FV −1) = R0 [43].

In the previous chapter, we developed a linearized version of our model: we

will see in next part how we can define the next generation operator given these

equations.

6.1 Next generation operator

From the previous chapter equation, we can extract a subset of linear equations

describing the evolution of the vector of infectious in each class:

XI(t+∆t) = T
′

I + TI × S3704×5 ×M ×XI(t) (6.3)

where XI(t) is the part concerning the number of infectious individuals of vector

X(t) defined in the previous chapter. This expression can be related to previous

system:

XI(t+∆t) = XI(t) + ∆XI(t)

= XI(t) +A×XI(t)
(6.4)

We can therefore relate the matrix M to matrix A:

A = TI × S3704×5 ×M − (Id− T
′

I) (6.5)

We find here the decomposition proposed previously, with F = TI×S3704×5×M

and V = Id− T
′

I : R0 of our model can be evaluated with the spectral radius of

FV −1.

In next part, we will study the eigenvalues of FV −1. To simplify the calcula-

tion, we only kept one time step for each infected class, suppressing the ’memory’
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of the system: in this case, we have T
′

I = 0, thus V = Id. The next generation

operator is then equal to the next generation matrix TI × S3704×5 × M : the

calculation of R0 can be completed with an analysis of the eigenvectors of the

matrix, which throw here light on the dynamics of the system.

6.2 Eigenvalues and eigenvectors of the next

generation operator

The complete next generation operator is a ((3704 × 5) × (3704 × 5)) matrix:

given the size of this matrix, evaluating its eigenvectors and eigenvalues was a

complex task, requesting important calculation resources. Therefore, instead of

performing the calculation for the entire matrix, we designed smaller models,

including a restricted number of either specifically or randomly chosen districts.

Small models were constructed in the same way as the global one, but including

only some of the 3704 districts: all edges bounded by at least a node outside

the subset were suppressed from the commuting matrices and we considered all

commuting happened in the subset considered, in the same proportions than the

one found in the complete commuting networks. The calculation was performed

on 100 different subsets of between 100 and 400 districts and similar results

were obtained in each cases.

6.2.1 Isolated districts

As a first analysis, we isolated each district from the others and considered all

children and workers were commuting inside their district of origin. We evalu-

ated the next generation operator for each of them and calculated their spectral

radius: we found that its variance among districts was low. Indeed, the average

R0 was 2.29, with a variance of 3× 10−3: this result can easily be understood,

as the only difference between the models restricted to a single district was the

number of inhabitants and the rate of contacts between age classes. The num-

ber of inhabitants had little impact on R0: given the formulation of the force
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of infection in school, work and community, it was not influenced by the size

of the population. Only the inside-household part of the force of infection was

modified, but only in function of the repartition of the population between age

classes. Similarly, the rate of contacts between age classes only modified the

force of infection in households and not the 3 others.

This result shows that an epidemic can be generated in each district individ-

ually, while in the previous chapter, the analysis of kernels showed that in some

districts, the number of descendants of an infected was inferior to 1, whatever

the age of the first infected, making them unable to breed an epidemic with-

out communication with other districts. The heterogeneity of connections and

degrees increases the heterogeneity in the number of descendants of a first in-

fected between districts, which is very limited in the absence of commuting. The

presence of external commuting thus increases the difference between districts,

reducing for some of them their capacity to generate an epidemic.

6.2.2 Partial analyses for isolated areas

Complete commuting networks

Following previous analysis, we constructed several models based on different

subsets of districts: as a start, we built these models by selecting the districts

of a department and its surrounding departments. We then calculated the

next generation operators of these models and studied their eigenvalues and

eigenvectors. The figure 6.1 shows an example of result obtained for a subset

centered on the department of Bouches du Rhone, where the French city of

Marseille, second most populated city, is located: similar results were obtained

for the various subsets we analyzed.

In each cases, we found that, among the multiple eigenvalues of the next

generation operator, several were superior to 1 (Figure 6.1-a): this result influ-

enced our analysis of eigenvectors. In classical analysis of the next generation

matrix eigenvectors, only the dominant eigenvector is analyzed as the state of
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a) b)

c) d)

Figure 6.1: Eigenvalues and some eigenvectors for the subset of districts sur-

rounding Marseille

a) Eigenvalues of the next generation operator for a model restricted to the districts of the 5
departments surrounding the city of Marseille b) Dominant eigenvector of the same matrix:
the highest component are found for the 2 children age class of the most important cities of
this subset of districts c) and d) Two others eigenvectors, associated with eigenvalues superior
to 1. High component are found in a mix districts from different departments

the system tends to follow the distribution of infectious individuals encountered

in it [88]. To explain this, let us reconsider the system of linear equations previ-

ously introduced: ∆x(t) = A×x(t). If A is a (n×n) matrix, it has n eigenvalues

λk, to which n eigenvectors Vk composing a base of the space Cn are associated.

Therefore, for each initial vector XI , n coefficient {i1, . . . , in} ∈ C
n such as
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XI =
∑n

k=1 ikVk can be found. Therefore, we can write:

A×XI =
∑n

k=1 ikλkVk

Am ×XI =
∑n

k=1 ikλ
m
k Vk

(6.6)

If we suppose that λ1 is the dominant eigenvalue, we can see that, when n grows,

λm
k can be neglected before λm

1 for all k 6= 1: the evolution of the system thus

tend towards a repartition of infectious individuals proportional to V1. In our

case, as multiple eigenvalues are superior to 1 and cannot be neglected before

the dominant eigenvalue, a better understanding of the system dynamics can

be obtained by studying the subspace generated by the base of eigenvectors

associated with eigenvalues superior to 1. Therefore, instead of studying the

dominant eigenvector only as it is usually done, we performed an analysis of the

subspace generated by eigenvectors associated to eigenvalues superior to 1.

In each case, we found that all components of the dominant eigenvector

were positive and real: in other eigenvectors, both positive and negative real

components were found (it is demonstrated in [43] that due to the construction

of the next generation matrix, the dominant eigenvector is the only positive

eigenvector). For each subset of districts, we found that the highest components

of the dominant eigenvector were the ones associated to the children age class

of the main hubs of the subset of districts (Figure 6.1-b): in the example of

the subset centered on Bouches du Rhone, the highest component was found

for Marseille. The components associated to children in other important cities,

which were smaller than Marseille and were not among the cities identifies in the

previous chapter as main amplificators of the system, also had values higher than

the rest of districts but smaller than the one of Marseille. Dominant eigenvectors

in other subsets showed similar results. If the largest values observed in hubs

could be explained by their more important population, the fact that the highest

components are associated to children highlights that classes of children are more

affected by the epidemic.

In the other eigenvectors, we observed that highest components could be
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found for districts in different departments (Figure 6.1-c,d), which indicates a

correlation between the evolution of incidence in different departments.

a) b)

Figure 6.2: Eigenvalues and dominant eigenvectors for a random subset of dis-

tricts

a) Eigenvalues of the next generation operator for a model restricted to a random subset of
200 districts b) Dominant eigenvector of the same matrix: the highest components were found
for local hubs and populated cities

To complete this analysis, we performed the same calculation on random

subsets of districts, of approximately the same size. Similar results were ob-

tained, with a continuum of eigenvalues and a dominant eigenvector in which

maximal components were found for the most important cities of the subset,

whether a local hub or a global one: an example of these is given in figure 6.2.

On the subsets we tested, we noted that eigenvalues were lower when no global

hub was present in the subset: in some cases including neither global nor local

hubs, the dominant eigenvalue was inferior to 1 (Figure 6.2). We didn’t perform

an exhaustive analysis to prove this result: further work would be necessary to

understand how the presence or absence of major hubs affect the eigenvalues of

the next generation operator.

However, to investigate further the role of hubs, we performed a first test, by

suppressing all outgoing links from the children in hubs and analyzed the next

generation operators in these cases.
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a) b)

c) d)

Figure 6.3: Eigenvalues and some eigenvectors for the subset of districts sur-

rounding Marseille without hubs

a) Eigenvalues of the next generation operator for a model restricted to the districts of the
5 departments surrounding the city of Marseille and where the children of hubs can’t infect
any susceptible b) Dominant eigenvector of the same matrix: the highest components are
regrouped in the same department. c,d) 2 eigenvectors associated with eigenvalues superior
to 1: the highest components are found on districts belonging to the same department

Isolation of the children in hubs

We performed this experiment on the sub models centered on a department

and its surrounding departments. In these models, we selected the districts for

which the components where significantly higher than the others in the dominant

eigenvector and suppressed the outgoing links for the children in them. Then,

we evaluated their next generation operator and analyzed their eigenvalues and

eigenvectors. On figure 6.3 are shown the results obtained for the sub model

centered on the department of Bouches du Rhone.
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In each case, we noticed a diminution of the next generation operator eigen-

values (Figure 6.3-a): the dominant eigenvalue was smaller and less eigenvalues

were superior to 1. Preventing the children from the main cities from transmit-

ting influenza causes a decrease of the system basic reproduction ratio, which

slows down the transmission of the epidemic.

The eigenvectors were also modified: the highest components of the domi-

nant eigenvector were regrouped on the districts of a single department (Figure

6.3-b). Similarly, in all eigenvectors associated with an eigenvalue superior to

1, the high components were gathered on the districts of 1 or 2 departments.

In the absence of infections caused by the children of hubs, the evolution of the

epidemic in each district is mainly correlated with its evolution in districts of

its department. This result would need further investigation to be proven, but

it would confirm that the transmission of influenza between clusters of districts

is mainly conducted by the hubs and especially by their children.

6.2.3 Perspectives

Given the similarity of observations made on each model based on a random

subset of districts we tested, which structure reproduces exactly the one of

the entire model, from the characteristics of commuting network to the way

individuals interact, we believe that the results obtained on small models can

be extended to the global model. Actually performing this analysis could be

interesting to understand the model dynamics: indeed, dominant eigenvectors

could be used to identify groups of districts in which the evolution of incidence is

correlated: the clusters identified could be compared to the ones found in chapter

2. In the calculation of eigenvectors performed on sub-models, we observed that

the highest components of dominant eigenvectors were the districts belonging

to one or more departments, thus defining connex clusters, as were the clusters

identified in chapter 2. We can suppose that a similar result would be obtained

for the complete matrix, which would confirm the existence of higher similarities

between non distant districts caused by the predominance of local commuting.
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The study of the dominant eigenvector could also be used to confirm the role of

amplificator of children age classes and hubs.

In previous part, we have seen that suppressing the capacity of hubs of trans-

mitting the disease caused a decrease of R0 and all eigenvalues and diminished

the correlation of incidence between districts belonging to different departments:

the same test could be performed on the complete matrix. This would indicate

that the transmission of the disease between clusters is mainly driven by hubs.

6.3 Conclusion

In this chapter, we proposed an analytical study of the model presented in the

previous chapters, based on the calculation of the eigenvalues and eigenvectors

of its next generation operator. An analysis of smaller models, including only a

subset of districts showed that children in hubs were the most affected by the

disease. With the dominant eigenvectors, we observed that districts could be

clustered in connex groups, in which the evolution of incidence is correlated.

The values of dominant eigenvectors components also indicated the existence of

correlation between some clusters. When we suppressed the capacity of children

in hubs to transmit the disease to others, the correlations previously observed

between clusters significantly decreased.

*****

The results presented in chapter four to six were obtained by a work of ex-

tensive simulations, using big datasets, and analysis of their results, composed

of thousands of text files. To perform this study, the scientific work of defining

methods and criterions has to come with a technical work, to implement algo-

rithms able to compute the simulations and analysis in a reasonable time. This

work will be exposed in next chapter.
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Chapter 7

Technical development

To complete the work presented in chapter four to six, we had to work with

big datasets: each commuting networks contained several hundred of thousand

entries and the composition of households was registered for 3704 districts, each

containing individuals from five different age classes. We performed our sim-

ulations on a model composed of 3704 districts and five age classes, dividing

the susceptibles in 18520 compartments. The simulations were realized on a

time frame of 180 days, with a time step of 1
5 of a day. Simulating epidemics

thus required the manipulation of big files of data and to dispose of important

memory space, as the simulations required to remind the state of the systems

and its previous states on 50 time steps. Due to these constraints, we had to

develop technical solutions to manage the issues encountered with the time and

memory needed for simulations: they will be presented in the first part of this

chapter. Once the simulations were performed, we were also confronted to prob-

lems caused by the size of the data generated. Indeed, to analyze the results, we

had to memorize an important quantity of data for each simulation: the treat-

ment and the storage of these data have quickly become an issue. Once again,

we had to think of solutions to overcome this problem: they will be exposed in

the second part of this chapter.
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7.1 Management of the simulations

At first, we developed a stochastic model and wanted to execute an extensive

exploration of eventual epidemic pathways, by realizing several replications of

epidemics starting in each of the 3704 district and each of the five age classes.

However, due to the size of the data and the number of information that the sys-

tem had to keep in memory for each epidemic, the time needed for a simulation

was important (eight to ten minutes). Even if we had at our disposal a cluster

of computers, on which 20 nodes were available for this work, the time needed

to complete all simulations would have enormous (from 40 to 102 months). To

reduce calculation time, we developed a second version of our model, that could

be launched on a grid of computers, on which the calculation power was higher.

This didn’t solve our problems: each simulation generated a file of size 2MO:

all files together thus represented 3TO. The time needed to get these files back

from the grid was once again enormous: to overcome this issue, we had to reduce

the number of simulations we wanted to realize.

7.1.1 OpenMOLE and simulations on grid

During this thesis, the Institute of Complex Systems (ISC) gave us an access

to the ISC-PIF grid of computers, which gathers several thousands of servers,

dispatched in different countries: we therefore gained access to an important ca-

pacity of calculation. To interface so many different servers, ISC has developed

OpenMOLE, a work flow engine designed to enabled the launch of applica-

tions programmed in different languages (among which C, C++, Java, R...)

in parallel on different computers from the grid, whatever their location. To

use the grid, the program to be launched in parallel has to be inserted in an

OpenMOLE capsule: the start of parallel simulations and their repartition on

available computers is done by an OpenMOLE program.

We developed an OpenMOLE program to encapsulate our program and

launch the simulations in parallel. The time needed to realize the exploration of
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potential epidemic pathways decreased, as many more computers were available

to perform the simulations. However, we encountered another issue: as simula-

tions were performed on distant computers, the result file had to be sent back.

Due to the size of the files, this task asked for a longer time than the simulations

themselves. Therefore, we chose to make the simulations on the cluster at our

disposal, but to reduce the number of simulations realized.

7.1.2 From stochastic to deterministic

To reduce the number of simulations, we first decided to use a determinis-

tic version of our model instead of the stochastic one. Indeed, in this thesis,

we aimed at analyzing the average behavior of epidemics and identifying the

principal pathways used by influenza to diffuse among districts. We were not

interested in the variations around the average behavior: the analysis could thus

be performed with a deterministic model. This decisions permitted to divide

the number of simulations required by 100.

When we performed a first set of simulations, we observed that it wasn’t nec-

essary to simulate propagations created by individuals from each 5 age classes:

as babies and elders mainly have contacts with children and adults of their own

district, a first infected of these age class will mostly transmit the disease inside

its district. The infection will be transmitted to other district by infected chil-

dren and adults: thus the pathways followed by the epidemic will be similar to

the one used when the first infected is an adult or a child. Similarly, it is not

necessary to launch simulations from both children age classes: the network of

commuting used by both classes being the same, the patterns of propagation

started by individuals from them are also the same. Therefore, we decided to

only simulate epidemics starting from the class of adults or from one class of

children.
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7.2 Management of the results

Even if we performed less simulations than initially planned, the size of the files

generated by simulations remained an issue. To perform the analysis of our

results, we needed to perform all simulations using the matrices of commuting

and several randomized versions of these matrices. Simulations performed with

one couples of matrices, with all possible initial states, generates an ensemble

of files of size 17GO. To storage all files needed for the analysis, we needed

bigger storage space than the one we had: this issue was easily overcome by

the purchase of external devices of storage. However, this solution also brought

another problem: as data were stored on different devices, the treatment of re-

sults needed to interface these different spaces. We chose to perform all analysis

on a local server and to create automatic routines to copy the files from their

storage space when needed and delete them after. A part of the thesis was thus

dedicated to the development of such programs, using the languages bash and

expect, to interface my computer, the cluster, where simulations were performed

and the FTP servers were stored.

*****
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Chapter 8

Conclusion

Last decades have known a spectacular improvement of computational capac-

ities: nowadays, data storing and analysis are possible in an unprecedented

extent. In chapter three, we showed that epidemiologists have taken advantage

of this evolution by constructing more and more complex systems to register

precise data on human mobility, that were integrated in models giving a more

and more accurate description of human movement. If the realism of models

is indubitably improved by this process, they also gain complexity through it:

understanding how the structure of networks influence propagation and if their

usage is pertinent become more and more difficult.

For many infectious disease, the set up of extensive surveillance plans have

permitted the construction of large datasets describing their propagation with

an increasing spatial and temporal precision: extracting the spatial structure of

these data and comparing it to the complex networks of contacts is of crucial im-

portance to understand the mechanisms underlying the propagation. Moreover,

the design of suitable public health policies requires for an extensive analysis

of this structure [36, 83]. In this context, we are in great need of new tools,

allowing the analysis of complex, large-size datasets, to extract their structure

and rely it to contact networks.

Commuting data are a good example of this issue: despite their frequent
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use in epidemologic models [48, 49, 96], few evidence has been given that they

give a description of movements useful to understand epidemic propagation and

few analysis have been made to describe how they structure diffusion. In this

thesis, we performed such analysis, based on the study of influenza propaga-

tion in France: to perform this work, we defined several tools, providing new

methodologies for the analysis of observed epidemics and mobility networks.

8.1 Influence of commuting structure on influenza

propagation

8.1.1 Role of commuting in the propagation

Using the time series of influenza-like illness recorded by the Sentinelles network

since 1984, we found that the magnitude and timing of epidemics in departments

connected either by work or school commuting were correlated.

Thus, influenza propagation shows a spatial structure, related to commuting

movements, in coherence with the results exposed in [137]. This result evidence

the pertinence of using commuting data to understand the propagation of in-

fectious diseases in countries where the patterns of contact are similar to France.

Since we showed that commuting movements influence influenza propaga-

tion, we took an interest in the consequences this influence had on propagation:

we looked for the existence of specific behaviors of propagation induced by the

structure of commuting movements. To perform this analysis, we generated

data of influenza propagation with a metapopulation model based on commut-

ing movements.

8.1.2 Age related commuting

In simulations, we found that age-related differences in commuting had an im-

pact on propagation: ignoring either adult commuting or children commuting,
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which constituted different networks, modified the timing of simulations. In-

deed, the interaction of both networks tended to homogenize epidemic curves,

when the timing of epidemics simulated after the removal of either of them was

greatly variable. As many models including commuting only take into account

one of these networks [10, 102], this results highlights the importance of using

data on both networks in epidemic models.

8.1.3 Underlying structure: attractors and basins of at-

traction

On all simulated epidemics was observed a three-times recurring pattern, start-

ing with a phase of wave-like local diffusion followed by quick transmission of

the disease to French most populated cities as soon as the disease had reached

one of them. Wave-like propagation from these cities to their neighborhoods

followed.

Using both criterions measuring the similarity between epidemic propaga-

tions and analysis of the kernels of the linearized model, we showed that a subset

of populated cities, hyper-connected nodes of the commuting network, played a

role of attractor and amplificator of the epidemic. Due to this dual role, they

were both at high risk of being infected and transmitting the disease to a large

set of other cities. All French cities could be associated to at least one of this

hub, to which it preferentially transmitted the disease. We could thus divide the

territory in clusters, centered on a global or local hub, to which the epidemic

was attracted when starting anywhere in the cluster. Suppressing the capacity

of hubs to transmit the disease to other districts greatly decreased the commu-

nication between the clusters, showing that the diffusion of influenza between

them is largely caused by transmission from the hubs. Using similar tools, we

evidenced the existence of preferential transmission between hubs, inducing the

existence of preferential pathways of propagation between the clusters. Among

all hubs, Paris played a focal role, as it was connected to all other hubs.

The propagation is greatly influenced by the structure of commuting net-
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work: indeed, the behavior we observed in the simulations is typical of prop-

agations on scale-free networks as commuting networks [16]. The propagation

is mainly driven by the hyper-connected hubs, which both attract and redis-

tribute the epidemic. Paris, the most connected hub of the network, plays a

central role in the propagation and is among the first infected in all simulations.

On another hand, the important local clustering of the networks induces a wave-

like local propagation between non-hubs neighboring districts. Identifying those

patterns of propagation and particularly the hubs, is of great importance to de-

sign adequate public health policies [116], as the targeted vaccination of hubs

could significantly reduce the attack rate of the epidemic, when vaccination of

random cities would have only limited effect. Identifying recurring patterns of

propagation can also be used to predict the hubs in which influenza will diffuse

in real time in order to vaccinate them preferentially.

Finding hubs and their basins of attraction is thus an important challenge to

understand propagation on a network. This research can be turned in a tricky

issue due the complexity of social network, but the methods we developed in

this thesis to treat the example of influenza propagation on commuting network

can be used to overcome this issue and seek for hubs and their basins from

propagation data.

8.2 New methodology for network analysis

In this thesis, we developed both methods to be applied on simulation results

and analytical methods to directly study a model of propagation. These tools

give results on the early behavior and the general dynamics of the epidemic.

8.2.1 Early propagation

Due to the predominance of short distance commuting, most propagation, in-

cluding early propagation, occur on very short distance. Long-distance trans-

mission mainly occurs when the epidemic reaches a hub, from which it is trans-

120



mitted to other districts.

Criterion C1 and kernels were defined to analyze this early propagation,

based on similarities between epidemics propagation and the localization of an

infected descendants depending on its district of residence. As early propagation

tend to be directed towards hubs, this analysis permitted to pinpoint them and

to find their basins of attraction.

8.2.2 Global dynamics

Despite the importance of local propagation, influenza diffusion also occurs on

longer distances, mainly between hubs: due to the existence of strong commut-

ing links between some of them, influenza diffusion follows preferential pathways.

To analyze these pathways, we defined criterion C2, based on the measure-

ment of epidemic similarity and the next-generation operator, which also gave

us an insight on the model global dynamics.
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[111] Mark Newman, Albert-László Barabási, and Duncan J Watts. The Struc-

ture and Dynamics of Networks. Princeton University Press, 2006.

[112] Zambon M Nicholson KG, Wood JM. Influenza. In Lancet, pages

362:1733–45, 2003.

[113] for National Statistics Office. Travel trends 2004: a report on the inter-

national passenger survey., 2005.

[114] M Padgham. Human Movement Is Both Diffusive and Directed. PLoS

One, 7(5), 2012.

[115] Peter Palese. Influenza: old and new threats. Nature medicine, 10:S82—

-S87, 2004.

[116] Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemic spread-

ing in scale-free networks. Physical review letters, 86(14):3200–3203, 2001.

[117] R Patuelli, A Reggiani, S P Gorman, P Nijkamp, and F-J Bade. Network

analysis of commuting flows: A comparative static approach to German

data. Networks & Spatial economics, 7(4):315–331, 2007.

[118] J S M Peiris, Y Guan, and K Y Yuen. Severe acute respiratory syndrome.

Nature medicine, 10:S88—-S97, 2004.

[119] L Perez and S Dragicevic. An agent-based approach for modeling dy-

namics of contagious disease spread. International Journal of Health Ge-

ographics, 8, 2009.

[120] S Phithakkitnukoon, T Horanont, G Di Lorenzo, R Shibasaki, and

C Ratti. Activity-Aware Map: Identifying Human Daily Activity Pat-

tern Using Mobile Phone Data. In A Salah, AA and Gevers, T and Sebe,

134



N and Vinciarelli, editor, Human Behavior Understanding, volume 6219

of Lecture Notes in Computer Science, pages 14–25, HEIDELBERGER

PLATZ 3, D-14197 BERLIN, GERMANY, 2010. SPRINGER-VERLAG

BERLIN.

[121] F Rakowski, M Gruziel, L Bieniasz-Krzywiec, and J P Radomski. In-

fluenza epidemic spread simulation for Poland - a large scale, individual

based model study. Physica A-Statistical Mechanics and its applications,

389(16):3149–3165, 2010.

[122] S Riley and N M Ferguson. Smallpox transmission and control: Spa-

tial dynamics in Great Britain. Proceedings of the National Academy of

Sciences of the United States of America, 103(33):12637–12642, 2006.

[123] Steven Riley, Christophe Fraser, Christl A Donnelly, Azra C Ghani,

Laith J Abu-Raddad, Anthony J Hedley, Gabriel M Leung, Lai-Ming Ho,

Tai-Hing Lam, Thuan Q Thach, and Others. Transmission dynamics of

the etiological agent of SARS in Hong Kong: impact of public health

interventions. Science, 300(5627):1961–1966, 2003.

[124] C Rizzo, A Lunelli, A Pugliese, A Bella, P Manfredi, G Scalia Tomba,

M Iannelli, M L Degli Atti, and EPICO Working Grp. Scenarios of dif-

fusion and control of an influenza pandemic in Italy. Epidemiology and

Infection, 136(12):1650–1657, 2008.

[125] M G Roberts and J A P Heesterbeek. A new method for estimating the

effort required to control an infectious disease. Proceedings of the Royal

Society B - Biological Sciences, 270(1522):1359–1364, 2003.

[126] Leonard Rogers. Fevers in the Tropics. H. Frowde, Hodder & Stoughton,

1908.

[127] P Rohani, D J D Earn, and B T Grenfell. Opposite patterns of synchrony

in sympatric disease metapopulations. Science, 286(5441):968–971, Octo-

ber 1999.

135



[128] Ronald Ross. The prevention of malaria. Dutton, 1910.

[129] L A Rvachev and I M Longini. A mathematical-model for the global

spread of influenza. Mathematical Biosciences, 75(1):3–23, 1985.

[130] John Scott. Social network analysis. SAGE Publications Limited, 2012.

[131] Francis R Sharpe and Alfred J Lotka. L. A problem in age-distribution.

The London, Edinburgh, and Dublin Philosophical Magazine and Journal

of Science, 21(124):435–438, 1911.

[132] C Song, T Koren, P Wang, and A-L Barabasi. Modelling the scaling

properties of human mobility. Nature Physics, 6(10):818–823, October

2010.

[133] C Song, Z Qu, N Blumm, and A-L Barabasi. Limits of Predictability in

Human Mobility. Science, 327(5968):1018–1021, 2010.

[134] A J Tatem, D J Rogers, and S I Hay. Global transport networks and in-

fectious disease spread. In DJ Hay, SI and Graham, A and Rogers, editor,

Advances in parasitology, Vol 62: Global mapping of infectious diseases:

Methods, Examples and emerging applications, volume 62 of Advances in

Parasitology, pages 293–343. ELSEVIER ACADEMIC PRESS INC, 525

B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA, 2006.

[135] David Tilman and Peter M Kareiva. Spatial ecology: the role of space in

population dynamics and interspecific interactions, volume 30. Princeton

University Press, 1997.

[136] P Upham, C Thomas, D Gillingwater, and D Raper. Environmental ca-

pacity and airport operations: current issues and future prospects. Journal

of Air Transport Management, 9(3):145–151, 2003.

[137] C Viboud, O N Bjornstad, D L Smith, L Simonsen, M A Miller, and

B T Grenfell. Synchrony, waves, and spatial hierarchies in the spread of

influenza. Science, 312(5772):447–451, 2006.

136



[138] C Viboud, M A Miller, B T Grenfell, O N Bjornstad, and L Simonsen.

Air travel and the spread of influenza: important caveats. PLoS Medicine,

3(11):e503; author reply e502, November 2006.

[139] Jacco Wallinga, W John Edmunds, and Mirjam Kretzschmar. Perspective:

human contact patterns and the spread of airborne infectious diseases.

TRENDS in Microbiology, 7(9):372–377, 1999.

[140] Stanley Wasserman and Katherine Faust. Social network analysis: Meth-

ods and applications, volume 8. Cambridge university press, 1994.

[141] D J Watts, R Muhamad, D C Medina, and P S Dodds. Multiscale,

resurgent epidemics in a hierarchical metapopulation model. Proceed-

ings of the National Academy of Sciences of the United States of America,

102(32):11157–11162, 2005.

[142] Douglas Brent West and Others. Introduction to graph theory, volume 2.

Prentice hall Englewood Cliffs, 2001.

[143] M E Wilson. Travel and the emergence of infectious diseases. Emerging

Infectious Diseases, (1):39–46, 1995.

[144] M E Wilson. The traveller and emerging infections: sentinel, courier,

transmitter. Journal of Applied Microbiology, 94(S):1S–11S, 2003.

[145] M Zachcial and C Heideloff. ISL Shipping Statistics Yearbook 2003 (Inst.

of Shipping Economics and Logistics, Bremen, Germany). 2003.

137


