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Résumé

Nous considérons la résolution de très grands systèmes linéaires creux à l'aide d'une mé-
thode de factorisation directe appelée méthode multifrontale. Bien que numériquement
robustes et faciles à utiliser (elles ne nécessitent que des informations algébriques : la
matrice d'entrée A et le second membre b, même si elles peuvent exploiter des stratégies
de prétraitement basées sur des informations géométriques), les méthodes directes sont
très coûteuses en termes de mémoire et d'opérations, ce qui limite leur applicabilité à des
problèmes de taille raisonnable (quelques millions d'équations). Cette étude se concentre
sur l'exploitation des approximations de rang-faible dans la méthode multifrontale, pour
réduire sa consommation mémoire et son volume d'opérations, dans des environnements
séquentiel et à mémoire distribuée, sur une large classe de problèmes.

D'abord, nous examinons les formats rang-faible qui ont déjà été développé pour repré-
senter efficacement les matrices denses et qui ont été utilisées pour concevoir des solveur
rapides pour les équations aux dérivées partielles, les équations intégrales et les problèmes
aux valeurs propres. Ces formats sont hiérarchiques (les formats H et HSS sont les plus
répandus) et il a été prouvé, en théorie et en pratique, qu'ils permettent de réduire substan-
tiellement les besoins en mémoire et opération des calculs d'algèbre linéaire. Cependant,
de nombreuses contraintes structurelles sont imposées sur les problèmes visés, ce qui peut
limiter leur efficacité et leur applicabilité aux solveurs multifrontaux généraux.

Nous proposons un format plat appelé Block Rang-Faible (BRF) basé sur un découpage
naturel de la matrice en blocs et expliquons pourquoi il fournit toute la flexibilité nécéssaire
à son utilisation dans un solveur multifrontal général, en terme de pivotage numérique et
de parallélisme. Nous comparons le format BRF avec les autres et montrons que le format
BRF ne compromet que peu les améliorations en mémoire et opération obtenues grâce
aux approximations rang-faible. Une étude de stabilité montre que les approximations
sont bien contrôlées par un paramètre numérique explicite appelé le seuil rang-faible, ce
qui est critique dans l'optique de résoudre des systèmes linéaires creux avec précision.
Ensuite, nous expliquons comment les factorisations exploitant le format BRF peuvent
être efficacement implémentées dans les solveurs multifrontaux. Nous proposons plusieurs
algorithmes de factorisation BRF, ce qui permet d'atteindre différents objectifs.

Les algorithmes proposés ont été implémentés dans le solveur multifrontal MUMPS.
Nous présentons tout d'abord des expériences effectuées avec des équations aux dérivées
partielles standardes pour analyser les principales propriétés des algorithms BRF et mon-
trer le potentiel et la flexibilité de l'approche ; une comparaison avec un code basé sur le
format HSS est également fournie. Ensuite, nous expérimentons le format BRF sur des
problèmes variés et de grande taille (jusqu'à une centaine de millions d'inconnues), pro-
venant de nombreuses applications industrielles. Pour finir, nous illustrons l'utilisation de
notre approche en tant que préconditionneur pour la méthode du Gradient Conjugué.

Mots-clés : matrices creuses, systèmes linéaires creux, méthodes directes, méthode mul-
tifrontale, approximations rang-faible, équations aux dérivées partielles elliptiques.
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Abstract

We consider the solution of large sparse linear systems by means of direct factorization
based on a multifrontal approach. Although numerically robust and easy to use (it only
needs algebraic information: the input matrix A and a right-hand side b, even if it can
also digest preprocessing strategies based on geometric information), direct factorization
methods are computationally intensive both in terms of memory and operations, which
limits their scope on very large problems (matrices with up to few hundred millions of
equations). This work focuses on exploiting low-rank approximations on multifrontal
based direct methods to reduce both the memory footprints and the operation count, in
sequential and distributed-memory environments, on a wide class of problems.

We first survey the low-rank formats which have been previously developed to effi-
ciently represent dense matrices and have been widely used to design fast solutions of
partial differential equations, integral equations and eigenvalue problems. These formats
are hierarchical (H and Hierarchically Semiseparable matrices are the most common ones)
and have been (both theoretically and practically) shown to substantially decrease the
memory and operation requirements for linear algebra computations. However, they im-
pose many structural constraints which can limit their scope and efficiency, especially in
the context of general purpose multifrontal solvers.

We propose a flat format called Block Low-Rank (BLR) based on a natural blocking
of the matrices and explain why it provides all the flexibility needed by a general pur-
pose multifrontal solver in terms of numerical pivoting for stability and parallelism. We
compare BLR format with other formats and show that BLR does not compromise much
the memory and operation improvements achieved through low-rank approximations. A
stability study shows that the approximations are well controlled by an explicit numerical
parameter called low-rank threshold, which is critical in order to solve the sparse linear
system accurately. Details on how Block Low-Rank factorizations can be efficiently imple-
mented within multifrontal solvers are then given. We propose several Block Low-Rank
factorization algorithms which allow for different types of gains.

The proposed algorithms have been implemented within the MUMPS (MUltifrontal
Massively Parallel Solver) solver. We first report experiments on standard partial differ-
ential equations based problems to analyse the main features of our BLR algorithms and
to show the potential and flexibility of the approach; a comparison with a Hierarchically
SemiSeparable code is also given. Then, Block Low-Rank formats are experimented on
large (up to a hundred millions of unknowns) and various problems coming from several
industrial applications. We finally illustrate the use of our approach as a preconditioning
method for the Conjugate Gradient.

Keywords: sparse matrices, direct methods for linear systems, multifrontal method,
low-rank approximations, high-performance computing, parallel computing.
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Chapter 1

General introduction

1.1 Context

Solving large sparse linear systems is a very important issue in academic research and
in industrial applications, as a part of even more complex problems. Partial differential
equations for structural dynamics, circuit design and numerous other fields lead to such
sparse systems. Modern science and new knowledge in various domains tend to make
the systems larger and larger. Newest applications commonly require the solution of
linear systems with many millions of unknowns. This is often a keystone in numerical
simulations.

The development of supercomputers has provided us with the opportunity to solve
these critical problems but brought some new issues such as memory consumption, accu-
racy and speed, which are encountered daily by numerical analysts and mathematicians.

In this context, it is critical to adapt and improve the available methods to make these
problems feasible. Solving large sparse linear systems involves many technical aspects,
so we start with a survey of direct methods in Section 1.2, in which we first present
them in the context of dense matrices, and then naturally come to sparse direct methods,
and more particularly, multifrontal methods in Section 1.3. As a way to improve them,
low-rank approximations techniques will then be introduced in Section 1.5, as well as
some of the most important ways to exploit low-rank approximations for solving sparse
linear systems. This introductive section ends in Section 1.6 with a presentation of the
experimental environment of this work: the software involved, the test problems studied
and the computational systems used.

1.2 Solving sparse linear systems with direct methods

We are interested in efficiently computing the solution of large sparse linear systems which
arise from various applications such as mechanics and fluid dynamics. A sparse linear
system is usually written in the form:

Ax = b , (1.1)

where A is a sparse matrix of order n, x is the unknown vector of size n and b is the right-
hand side vector of size n. In Wilkinson's definition, a sparse matrix is “any matrix with
enough zeros that it pays off to take advantage of them”; in modern numerical computing,
A can be extremely large (a few hundred billions of equations). It is thus critical to adapt
dense algorithms to sparse objects, with the underlying objective to avoid storing the zero
entries and thus spare useless operations and storage.

1



1. General introduction

This kind of matrices is often encountered in physical simulations. While modeling
phenomena such as heat diffusion from a source on a square surface, it is not feasible
to compute the temperature on any point of the surface because there is an infinity of
points in this continuous domain. Thus, the domain is discretized leading to a relatively
small set of unknowns and linear equations. Moreover, due to the nature of physical
phenomena (and also due to how the corresponding operators are approximated through
the discretizations) these variables are likely to interact only with a few other physical
variables (typically, its neighbors), which translates into many zeros in the corresponding
matrix. This discretized structure is called a mesh. Note that more than one unknown
can be attached to a given meshpoint so that the order of the matrix (i.e., the number
of unknowns for the entire problem) may be larger than the number of meshpoints. In
physical applications, assuming for simplicity that there is one unknown per mesh point,
a coefficient aij of a matrix can thus be viewed as a representation of the interaction
between physical variables i and j of the discretized domain (the mesh).

Two types of methods are commonly used to solve (1.1). Iterative methods build
a sequence of iterates which hopefully converges to the solution. They have a relatively
small memory consumption and provide good scalability in parallel environments but their
effectiveness strongly depends on the numerical properties of the problem. Direct methods
build a factorization of A (e.g., A = LU or A = QR) and then solve the problem using the
factorized form of A. Their better numerical stability and robustness are widely agreed
upon although these techniques often have large memory and computational requirements.
The choice of a method is usually not straightforward as it depends on many parameters
(the matrix itself, the physical application, the computational resources available).

In this dissertation, we focus on a particular case of direct methods which is based on
Gaussian elimination and called the multifrontal method, although iterative methods will
also be discussed.

1.2.1 Dense direct methods: factorization, solution, error analysis

We focus on direct methods based on Gaussian elimination. The matrix A is factorized into
the form LU (in the general case), LDLT (in the symmetric, indefinite case) or LLT (in
the symmetric positive definite case, commonly referred to as the Cholesky factorization),
where L is unit lower triangular and U is upper triangular (note that L is not unit in
the case of the LLT Cholesky factorization). We provide in Algorithm 1.1 a simplified
sketch of the LU factorization in the dense case, i.e., the nonzero pattern of the matrix
is not taken into account. We ignore numerical issues and pivoting for the sake of clarity
(this will be discussed later). For this reason, we assume that diagonal entries are always
nonzeros. Each step k of the factorization corresponds to the elimination of a pivot (i.e., a
diagonal entry akk), which yields a new column of L and a new row of U . Then, the trailing
submatrix is modified through a rank-one update. These two operations are denoted by
Factor (F) and Update (U).

Algorithm 1.1 Dense L U factorization without pivoting.
1: ◮ Input: a square matrix A of size n; A = [aij ]i=1:n,j=1:n

2: ◮ Output: A is replaced by its L U factors
3:

4: for k = 1 to n − 1 do
5: Factor: ak+1:n,k  

ak+1:n,k

akk

6: Update: ak+1:n,k+1:n  ak+1:n,k+1:n − ak+1:n,k � ak,k+1:n

7: end for

2



1.2. Solving sparse linear systems with direct methods

In Algorithm 1.1, note that the strictly lower triangular (i.e., excluding the diagonal
since 8 i, li,j = 1) part of A is replaced by L and the upper triangular part of A is replaced
by U . The operation and memory complexities of the dense factorization of a matrix of
size n are O(n3) and O(n2) [? ], respectively. Given the factors L and U of the matrix
A, the solution of Equation (1.1) can be computed by means of two successive phases,
namely the forward elimination (which solves a lower triangular system using L) and the
backward substitution (which solves an upper triangular system using U). These two
distinct phases are sketched in Algorithm 1.2. Note that the solution computed during
the forward elimination is used as a right-hand side in the backward substitution.

Algorithm 1.2 Dense triangular solution through forward elimination and backward
substitution.

1: Solution of Ly = b for y

2: (forward elimination)
3:

4: y  b

5: for j = 1 to n do
6: for i = j + 1 to n do
7: yi  yi − lij � yj

8: end for
9: end for

1: Solution of Ux = y

2: (backward substitution)
3:

4: x  y

5: for i = n to 1 by − 1 do
6: for j = i + 1 to n do
7: xi  xi − uij � xj

8: end for
9: xi  xi = uii

10: end for

Algorithms 1.1 and 1.2 are called scalar (or point) because operations are performed
on single coefficients. They can be substantially improved by organizing the operations in
such a way that most of them can be performed on blocks. This improves the efficiency of
the process by means of BLAS 3 [41] operations (an operation defined between B1 of size
m1 � n1, m1 > 1 and n1 > 1, and B2 of size m2 � n2, m2 > 1 and n2 > 1, such as a matrix-
matrix product, is called a BLAS 3 operation) which are more cache-friendly and allow
different levels of parallelism. However, both the memory and operations complexities are
the same as in the scalar factorization. The blocked version of the dense factorization is
presented in Algorithm 1.3 and will be particularly important in this dissertation as the
algorithms we propose and study in Sections 2.4 and 3.4 are based on it. Note that at
each loop step in Algorithm 1.3, the Factor phase is performed by means of Algorithm 1.1.

Algorithm 1.3 Dense Block L U factorization without pivoting.
1: ◮ Input: a NB � NB-block matrix A of size n; A = [AI,J ]I=1:NB,J=1:NB

2: ◮ Output: A is replaced with its L U factors
3:

4: for K = 1 to NB do
5: Factor: AK,K  LK,KUK,K

6: Solve (compute U): AK,K+1:NB  L−1
K,K � AK,K+1:NB

7: Solve (compute L): AK+1:NB,K  AK+1:NB,K � U−1
K,K

8: Update: AK+1:NB,K+1:NB  AK+1:NB,K+1:NB − AK+1:NB,K � AK,K+1:NB

9: end for

Forward elimination and backward substitution also have their blocked equivalence,
presented in Algorithm 1.4. These algorithms will be reused in the context of the multi-
frontal Block-Low Rank solution phase presented in Section 3.5.
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1. General introduction

Algorithm 1.4 Dense blocked triangular solution through forward elimination and back-
ward substitution.

1: Solution of Ly = b for y

2: (forward elimination)
3:

4: y  b

5: for J = 1 to NB do
6: xJ  L−1

J,J � xJ

7: for I = J + 1 to NB do
8: yI  yI − LI,J � yJ

9: end for
10: end for

1: Solution of Ux = y

2: (backward substitution)
3:

4: x  y

5: for I = NB to 1 by − 1 do
6: for J = I + 1 to NB do
7: xI  xI − UI,J � xJ

8: end for
9: xI  U−1

I,I � xI

10: end for

Once the linear system (1.1) has been solved, one usually wants to evaluate the quality
of the solution. Due to the floating-point arithmetic, the representation of numbers in
computers is indeed inexact, which means operations are also inexact, leading to roundoff
errors. The computed solution x̂ is thus not the exact solution of (1.1) but it can be seen
as the exact solution of a perturbed linear system written (A+� A)x̂ = b. How far is this
perturbed system from the one we wanted to solve is measured by the backward error,
which corresponds to the smallest perturbation on A and on b which leads to a linear
system whose x̂ is the exact solution [85]. This normwise backward error is defined as
follows:

k Ax̂ − bk

k Ak k x̂k + k bk
:

Although the normwise backward error can be used for sparse systems, it does not take into
account the fact that zeros are exact zeros, even in floating-point arithmetic. Therefore,
it is possible to use a componentwise backward error defined as follows:

max
i

�
|Ax̂ − b|i

(|A||x̂| + |b|)i

�

:

Throughout this dissertation, the normwise backward error and the componentwise
backward error will be referred to as the scaled residual (SR) and the componentwise
scaled residual (CSR), respectively.

Arioli et al. [15] showed that the relative forward error jjx−x̂jj

jjxjj
(where x̂ is the computed

solution and x the exact solution) is bounded by the backward error multiplied by the
condition number of the matrix. The direct consequence of this statement is that a bad
forward error can be caused either by a large condition number (in which case the problem
is called ill-posed and is by nature hard to solve) or by an unstable algorithm (in which case
even a well-conditioned problem can lead to poor forward error). For this reason, in order
to evaluate the numerical quality of our algorithms, scaled residuals and componentwise
scaled residuals will be used in this dissertation.

In practice, most significant roundoff errors are caused by adding a large value with
a small value. Thus, small pivots should be avoided because they appear in the denomi-
nator of operations, increasing the original value. Many solutions have been developed to
overcome this issue, such as scaling the input matrix [92] in order to balance globally the
numerical values and generally improve the numerical properties of the matrix. However,
in many cases, preprocessing facilities are not sufficient to ensure the numerical stability
of the algorithm and other strategies have been developed to achieve this goal such as the
numerical pivoting.

4



1.2. Solving sparse linear systems with direct methods

1.2.2 Pivoting for accuracy

Numerical pivoting has been designed to control growth factor and prevent instability
of Gaussian elimination. As said before, because most of the instability is due to the
selection of small pivots, pivoting aims at avoiding choosing a pivot if it is too small.
This yields a factorization where pivots are not eliminated in the natural order as it was
presented in Algorithm 1.1. Instead, at step k of the algorithm (where ak,k is supposed
to be selected as pivot), the selected pivot is ak,p, such that |ak,p| = max

k� j� n
|ak,j |. This is

called partial pivoting. Once the pivot has been found, columns k and p are switched so
that ak,p becomes the new diagonal value and the new pivot. All such permutations are
stored in order to reapply them during the solution phase. Note that for partial pivoting,
the pivot research is, in the literature and in reference codes (i.e., LAPACK), done along the
column, but we will perform it along the row, as in the equation above (it mainly depends
on the storage of the rowwise or columnwise storage of the matrix, aiming at enhancing
memory access efficiency). This pivoting strategy is often enough to ensure the numerical
stability of the algorithm, although it is in theory not stable. If still not satisfying, one
can perform complete pivoting where any entry in the whole trailing submatrix can be
chosen as a pivot. This strategy is rarely used because it performs more data movements
to bring the pivot to the diagonal position by means of rows and columns permutations.
More importantly, it requires globally O(N3) comparisons instead of O(N2) in case of
partial pivoting, which means that the cost of pivoting is roughly comparable to the cost
of factorizing the matrix (.

Another pivoting strategy which is sometimes used (especially in sparse factorizations)
is the static pivoting. As opposed to previous strategies, static pivoting does not perform
any permutation: when a pivot is considered too small, it is artificially set to a given
value. For instance, if |ak,k| <

p
� mach � ||A||, then ak,k  

p
� mach � ||A||, where � mach is

the machine precision. This strategy is simpler, more scalable but also less reliable [10].
Note that for symmetric matrices, pivoting is performed similarly and we want to

maintain the symmetric structure of the matrix. Regular pivots as well as two-by-two
pivots [24, 25, 44] are used, which leads to a block diagonal D matrix in the LDLT

factorization (two-by-two pivots are 2 � 2 diagonal blocks on D).

1.2.3 Graphs, � ll-in and dependencies

Sparse matrices being a particular case of dense ones, all the previously presented algo-
rithms and analysis can be applied to sparse matrices too. However, this is not efficient
in practice as many computations would be done with zero values. It is possible to take
advantage of these zero values in order to avoid useless operations. The main issue is then
to maintain the number of zero values as high as possible during the factorization process,
because less zero values leads to more storage and more operations. This phenomenon
(the creation of new nonzero values) is called � ll-in and can be conveniently modeled by
graphs.

In all this section, the matrix is assumed structurally symmetric (i.e., ai,j 6= 0 , aj,i 6=
0) for the sake of clarity, although more general results exist for the unsymmetric case. To
a structurally symmetric sparse matrix A can be associated an undirected graph G which
represents its pattern i.e., where the non-zeros are. This graph is called an adjacency
graph and is formalized in Definition 1.1.

Definition 1.1 - Adjacency graph.
The adjacency graph of a structurally symmetric matrix A is a graph G(A) = (V, E) with
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1. General introduction

n vertices such that:

• There is a vertex vj ∈ V for each row (or column) j of A.

• There is an edge f vi, vj g ∈ E if and only if aij 6= 0, for i 6= j.

An illustration of the notion of adjacency graph is given in Figure 1.1.

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

(a) Initial matrix.

1 2 3

4 5 6

7 8 9

(b) Adjacency graph.

Figure 1.1: The original matrix and its corresponding adjacency graph.

The elimination of a variable k in A through Gaussian elimination has the following
effects on its adjacency graph:

1. vertex vk is removed from G(A) along with all the incident edges.

2. edges are added between any pair of neighbors of vk (if not already present). A new
edge in the graph corresponds to a new non-zero value: a fill-in.

This is illustrated in Figure 1.2. For instance, the elimination of a1,1 creates new
non-zero values in a2,4 and a4,2. Equivalently, vertices (2) and (4) were originally not
connected but since they both are connected to (1), a new edge has to be added. Then,
the process continues and these new nonzero values yield themselves new nonzero values
(for instance, a3,4 becomes non-zero because a2,4 itself became non-zero before).

In this example, 16 new values turn non-zero in the factors, representing 67% more
non-zero than in the original matrix. Many techniques have been developed to reduce the
fill-in which occur during sparse factorizations. One of the most used and famous one is
certainly the nested dissection [51], especially for large scale systems.

The idea is to divide the original graph G(A) into s subgraphs G1, . . . , Gs, disconnected
by a vertex separator S at their interface, so that no edge exists between any vertex of
Gi and any vertex of Gj , 8 i, j, i 6= j. The process is then recursively applied to both G1,
. . . , Gs, as shown in Figure 1.3(a) where we assume s = 2. Two levels of nested dissection
are performed in this example. Note that throughout this study, we will now always
assume s = 2 for the sake of clarity (this is also often the case in practice). The nested
dissection yields a separator tree, which is a graph such that each node p is associated with
a separator interfacing Gp1

and Gp2
and has two children i1 and i2, associated with the

separator of Gp1
and Gp2

, respectively. The root of the separator tree is the first separator.
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1.2. Solving sparse linear systems with direct methods
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(a) Filled matrix.

1 2 3

4 5 6

7 8 9

(b) Adjacency graph with � ll-in.

Figure 1.2: The filled matrix and its corresponding adjacency graph. In red are represented
the new edges and non-zeros.

1 3 2

7 8 9

4 6 5

(a) The two � rst steps of nested dis-
section applied on the graph from Fig-
ure 1.1(b). Gray vertices are vertices
from the top level separator. Vertices 3
and 6 are two separators of level 2.

7,8,9

3

1 2

6

4 5

(b) The corresponding separator
tree. The root is the top level sep-
arator.

Figure 1.3: Example of nested dissection of a 3 � 3 regular grid and its corresponding
separator tree.

The matrix is then reordered according to this partition (the reordered matrix will be
referred to as ~A): variables 1, 2, 4 and 5 come first (they are leaves), then the variables
3 and 6 come (separators of level 2), and finally the variables 4, 5 and 6 come (top level
separator). This is illustrated in Figure 1.4(a). This ordering scheme has been theoretically
shown to optimally decrease fill-in during factorization for regular 2D graphs [51] and
more generally for almost any planar graph [75]. In practice, it is efficient on a wider class
of graphs. When the factorization of ~A is performed, the fill-in is indeed substantially
reduced. Figure 1.4(b) shows the filled form of ~A where only 10 new non-zeros have
been created. This represents 37% less than in the natural order (the order of Figure 1.1).
Consequently, less operations are also needed to compute the factors (because no operation
is performed on zero values). This is due to the fact that when eliminating variable 1, fill-
in only occurs between variables 3 and 7 (because it has no edge with any other variable).
Then once variables 1, 2, 4 and 5 have been eliminated, no more fill-in occurs.

The direct consequence is that the elimination of variable 1 has no influence on vari-
ables 2, 4 and 5. However, it has an influence on the variables 3 and 7. Thus, variable
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(a) Matrix reordered after one step of
nested dissection.
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(b) Fill-in within factorization of the
matrix reordered after one step of
nested dissection.

Figure 1.4: The effect of two steps of nested dissection on the original matrix and its filled
form.

1 has to be eliminated before those latter two variables. This illustrates the existence of
dependencies between the variables, which are well modeled by the separator tree already
presented in Figure 1.3(b): the elimination of a variable i can only influence variables in
separators located on the path from i to the root in the separator tree. It is possible to
exploit this property in order to efficiently compute the factorization of a sparse matrix
and this is what the multifrontal method (and also other methods) does.

1.3 The multifrontal method

The multifrontal method aims at solving large sparse linear systems of equations. It has
been first designed in 1983 by Duff and Reid [42; 43], and represents the dependencies
between the elimination of variables by means of the elimination tree, which was intro-
duced in 1982 by Schreiber [90] in the context of symmetric matrices. In this dissertation,
we will often use terminology related to the nested dissection to conveniently present the
multifrontal method, although this applies in any context. This also allows for clear expla-
nations in Chapter 3, which presents a low-rank multifrontal solver. Because the theory
related to the multifrontal method will not be used for our purpose, we will avoid an
excessively technical presentation here. For this same purpose, the multifrontal method
is presented for symmetric matrices but it can be generalized to general matrices. For de-
tailed theory and presentation about the multifrontal method, one can refer to Eisenstat
and Liu [45; 46] for unsymmetric matrices, to Liu [77] for a survey on symmetric matrices
or to L'Excellent [71] for implementation, parallelism and numerical issues.

1.3.1 Elimination tree and frontal matrices

As stated before, the multifrontal method heavily relies on the elimination tree. Defini-
tion 1.2 formalizes this idea.

Definition 1.2 - Elimination tree (symmetric case); from Liu [77].
Given a symmetric matrix A and its lower triangular factor L = (lij)1� i,j� n, the elimina-
tion tree of A is a graph with n vertices such that p is the parent of a node j if and only
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1.3. The multifrontal method

if
p = minf i > j : lij 6= 0g

The elimination tree corresponding to the matrix of Figure 1.4(a) (which will be re-
ferred to as simply A in the rest of this section) is illustrated in Figure 1.5.

6 is parent of 5
4 is child of 6
4 and 5 are siblings
9 is the root
1, 2, 4 and 5 are leaves
{3,1,2} is a subtree rooted at 3

1 2

3

54

6

7

8

9

Figure 1.5: An example of elimination tree based on matrix from Figure 1.4(a) and some
graph related vocabulary.

We know from Schreiber [90] that the elimination tree represents the dependencies
between the elimination of variables: a variable i can be eliminated only when all its
descendants have been eliminated, i.e., the traversal of tree must be topological and is
in practice in postorder: a topological order is a scheme where a parent is numbered
after its children; a postorder is a topological order where the nodes of each subtree are
numbered consecutively. From the opposite view, when variable i is eliminated, some of
its ascendants are updated. The idea behind the multifrontal method is to perform the
eliminations and store the updates in dense matrices called frontal matrices or fronts.

Let us take the example of A. The elimination of variable 1 updates the variables 3
and 7. The rest of the matrix is not needed as the subtree rooted at 4 is independent from
1, thus we form the corresponding frontal matrix as shown in Figure 1.6(a). A similar
behavior occurs for the elimination of variable 3 in Figure 1.6(c).

1
1

3

3

7

7

(a) Front as-
sociated with
variable 1.

2
2

3

3

9

9

(b) Front as-
sociated with
variable 2.

3
3

7

7

8

8

9

9

(c) Front associ-
ated with variable
3.

Figure 1.6: Three of the frontal matrices involved in the factorization of matrix A.

The elimination of variable 1 yields a 2 � 2 Schur complement which contains the
updates related to variables 3 and 7. Similarly, elimination of variable 2 yields a 2 �
2 Schur complement which contains the updates related to variables 3 and 9. Those
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1. General introduction

Schur complements are called contribution blocks (CB). They are kept in memory (see
Section 1.3.3) until they are not needed anymore. Once 1 and 2 have been eliminated,
no more update related to variable 3 will be created elsewhere. Thus, the updates in
related contribution blocks are collected, summed with the corresponding values coming
from the original matrix and a new frontal matrix, associated with variable 3, is formed:
this is called the assembly. Variable 3 is for this reason called fully-summed, as all the
contributions related to variable 3 have been summed together, and no more contribution
will be created. Then, the process continues: the elimination of variable 3 yields a new
3 � 3 contribution block which contains the updates related to variables 7, 8 and 9, and
so on. The variables corresponding with to the contribution blocks are called the non
fully-summed variables, because they are not ready to be eliminated.

In practice, the nodes of the elimination tree are amalgamated to form supernodes
so that a frontal matrix usually has more than only 1 fully-summed variable. Regular
amalgamation merge variables which have the same column structure (in the filled matrix)
together in the same front. For instance, in Figure 1.4, variables, 7, 8 and 9 have the same
column structures and can thus be amalgamated. This improves the efficiency of the
process as BLAS 3 operations can be performed. Then, instead of eliminating only one
single variable, several variables are eliminated within each frontal matrix. To further
improve efficiency, amalgamation can also be relaxed by amalgamating columns which
have not necessarily the same structure. This increases the number of zero entries stored
(and potentially the fill-in) but also enhances the efficiency of operations. The resulting
tree, called an assembly tree, is pictured in Figure 1.7. The root is obtained through regular
amalgamation while other nodes have not been amalgamated. All of the eliminations
performed within a node (amalgamated or not) will be called the partial factorization of
the corresponding frontal matrix, as not all the variables are eliminated. Note that there
is not only one way to amalgamate nodes and many strategies may be defined in order to
enhance different aspects of the factorization (such as parallelism).
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Figure 1.7: Assembly tree based on the nested dissection of A.
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In the context of nested dissection, a natural assembly tree is the one that matches
exactly the separator tree pictured in Figure 1.3(b), because of how the separators are
built. Indeed, extracting the fully-summed variables of each front in the assembly tree
presented in Figure 1.7 would lead exactly to the separator tree of Figure 1.3(b). For
this reason and in the case of nested dissection, a frontal matrix is associated with each
separator and its fully-assembled variables correspond to the variables in the separator
itself. Similarly, the non fully-summed variables correspond to parts of separators which
are higher in the tree (for instance, variable 1 updates completely the directly upper
separator, e.g., variable 3, and partly the top level separator, e.g., variable 7). Moreover,
the non fully-summed variables form a border around the current separator (variables 7
and 3 around variable 1). This is illustrated on a larger example in Figure 1.8, where
the nested dissection is stopped when subdomains are too small, which is what is done in
practice.

(a) General nested dissection of the
graph.

(b) Corresponding assembly tree where
fully-summed variables of frontal ma-
trices correspond to separators.

Figure 1.8: A general nested dissection and its corresponding assembly tree. When S7 is
eliminated, variables of S3 and half the variables of S1 are updated. This forms a border
around S7.

The non fully-summed variables within the frontal matrix where variables of S7 are
eliminated consist of all the variables of S3 and half of the variables of S1, which forms a
border around S7. For these reasons, we will often use separator and fully-summed vari-
ables without any distinction, and similarly for border and non fully-summed variables.
Note that this analogy will be used even in the case where the fill-reducing permutation is
not obtained with a nested dissection method, which is often the case in practice. This is
justified by the fact that if we consider a subtree of the elimination tree rooted at a given
node N , the set of variables eliminated within a given branch below N is independent
of the set of variables eliminated within any other branch below N , meaning there is
no direct edge between them in the graph. As they commonly update the fully-summed
variables of N , these latter variables can be viewed as a separator.

The generalization of the notions of elimination trees and frontal matrices to the
unsymmetric case is not straightforward [34, 35, 39, 40, 45, 46, 52, 53, 49]. It requires
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1. General introduction

significantly more formalism and graph theory to generalize these notions, mainly because
handling interaction between the two distinct zero-patterns of the L and U factors during
the elimination process is complex. In this dissertation, we will always consider that
the elimination tree of the symmetrized matrix |A| + |A|T is used, which is still quite
a competitive approach even if one can better take into account the unsymmetry with
more sophisticated approaches (see [6, 32, 33, 61, 49, 74]). Note that in all previously
referenced work for unsymmetric matrices, the task dependency graph resulting from the
generalization of the elimination tree is in general not anymore a tree which significantly
complicates data structures and algorithms.

Due to the underlying tree structure, the multifrontal method is naturally suited for
parallelism as two siblings can be processed on two different processes, because the two
corresponding sets of variables are independent. This type of parallelism is called the
tree parallelism. Another level of parallelism can also be exploited: the node parallelism,
where a front is processed by different processes. This latter type is the greatest source
of parallelism. We will get back to the parallelism within multifrontal methods in Sec-
tion 1.6.2, in the particular case of the MUMPS multifrontal solver.

The multifrontal method is only one of the two main classes of sparse direct methods.
The other class, called supernodal, includes several variants of the same technique which
differ in how the updates are handled. In a right-looking supernodal method, the updates
are applied right after a variable is eliminated. In a left-looking approach, the updates
are delayed as much as possible and applied just before a variable is eliminated. For a
detailed survey on parallel approaches for sparse linear systems on should consult Heath
et al. [65]. The Multifrontal method can thus be viewed as in between since updates are
performed after elimination (like in the right-looking approach) but stored in contribution
blocks and applied later (more like in the left-looking approach). Note that most of the
techniques which will be presented throughout this dissertation could also fit supernodal
approaches.

The general structure of a frontal matrix, which will be used throughout this disserta-
tion is illustrated in Figure 1.9, before and after the partial factorization. Note that the
root node of the assembly tree has no contribution block.
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(a) Frontal matrix after assembly
and before partial factorization.
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(b) Frontal matrix after partial
factorization.

Figure 1.9: The general structure of a front before and after its processing. The shaded
block is called the (1,1) block or the fully-summed block.
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1.3.2 Threshold pivoting and delayed pivots

Because the multifrontal method is based on Gaussian elimination, just as the dense LU
factorization is, the same numerical problems may occur. Thus, pivoting techniques must
be used to ensure the accuracy of the solver. Because of the particular constraints due
to the multifrontal method, partial pivoting as presented in Section 1.2.2 must be slightly
adapted. First of all, pivoting dynamically modifies the structure of the factors which can
increase the fill-in (and thus the operation count) as variables are not eliminated in the
predicted order. For this reason, the standard partial pivoting is relaxed and a partial
threshold pivoting strategy is used where a pivot ak,k is considered not acceptable when

|ak,k| < u � max
k� j� nass

|ak,j |

where 0 � u � 1 and nass is the number of fully-summed variables in the considered
front. In practice, u = 0: 1 or u = 0: 01 is enough to ensure stability. Moreover, because
only fully-summed variables can be eliminated within a given front, a pivot must be fully-
summed to be selected. This means pivots must remain in the (1,1) block of the front, so
that at the first step of the partial factorization of a front, any entry of the (1,1) block is
candidate for being the first pivot. Note that pivoting is performed in a quasi complete
fashion as pivots are not searched only in current row (but are not searched in the entire
front though). Sometimes, priority is given to diagonal pivots.

Because a pivot cannot be chosen outside the (1,1) block, some pivots may remain
unacceptable within current front. In this case, they remain uneliminated and are merged
to the original non fully-summed variables as part of the contribution block. Such a
variable is called a delayed pivot and will again be considered fully-summed in the parent
frontal matrix, until it is eliminated. This further modifies the structure of the frontal
matrices and increases the computational cost.

1.3.3 Memory management

Because the multifrontal method stores the updates in contribution blocks to apply them
later (i.e., upper in the assembly tree), two types of memories, which are handled and
behave differently, have to be distinguished:

1. the active memory which stores the active frontal matrix as well as all the contribu-
tion blocks waiting to be consumed.

2. the memory of the factors which stores the rows of U and the columns of L as frontal
matrices are processed.

These two types of memory are strongly impacted by the underlying ordering used
to obtain the assembly tree. Because an analysis of this behavior is not needed for our
purpose, we will assume in this section that an assembly tree is given. For more details
about this particular issue, one can refer to Guermouche et al. [63].

The active memory has a complex behavior. When the memory needed to process a
front is allocated, it increases. Then, contributions blocks are consumed by the assembly
of the current front, which makes the active memory space size decrease. Once the frontal
matrix has been processed, the contribution block has to be copied and stored, so that the
active memory size increases again as shown in Figure 1.10 (right-hand side arrow). The
process continues and the active memory size keeps increasing and decreasing. Note that
in a sequential setting, when a postorder traversal of the tree is used, the memory of the
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contribution blocks behaves like a stack: a node being processed right after all its children,
all the contribution blocks needed for its assembly can be conveniently accessed as they
are on top of the stack. This is not the case in a parallel environment as a postorder
traversal of the tree is no longer ensured [5].

Because of this particular behavior, the maximum size of the active memory, called
its peak, will often be considered to analyze the memory consumption of the multifrontal
method. This peak consists of the memory for a given frontal matrix and all the contribu-
tion blocks which are stacked (and thus called the stack) at the moment when the frontal
matrix is assembled. A tree being given, the size of the peak of active memory (as well
as its global behavior) strongly depends on the postorder traversal of the tree [76] and, in
general, may be bigger than the size of the factors.

The memory of the factors is simpler to analyze: it always increases during the exe-
cution and its maximal size does not depend on the tree traversal.

Figure 1.10 summarizes the typical memory usage at a given point of the multifrontal
process. Note that to enhance memory efficiency, the memory space in many multifrontal
codes is usually allocated once at the beginning (based on a prediction of the memory
needed for the factors and the peak of active memory, which is sometimes hard to evalu-
ate accurately in a parallel environment or when pivoting is intense) and then managed
explicitly, which avoids dynamic allocations.

active memory

active front stack of CBsfactors

free free

Figure 1.10: The total memory allocated statically for the multifrontal process. The two
distinct types of memory are illustrated. After the active front is processed, the columns
and rows of the factors computed go to the factors memory area and the new contribution
block is stacked.

1.3.4 Multifrontal solution

Once all the nodes of the assembly tree have been processed, the matrix is factorized and
the linear system can be solved through forward elimination and backward substitution.
Throughout this dissertation, the partial factorization of front F i (associated with the
node i of the assembly tree) will be considered yielding a factor blocked as illustrated in
Figure 1.11. Note that this is not the only way of blocking the factor. The part of L (U)
computed within front F i will be referred to as Li (U i). For convenience, we present the
blockwise version of the algorithm which will be reused in Chapter 3.

The forward elimination Ly = b is achieved by means of a bottom-up traversal of the
assembly tree. At each node, part of the temporary solution y is computed (corresponding
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1.3. The multifrontal method

Li
1,1

U i
1,1

Li
2,2

U i
2,2

Li
di,di

U i
di,di

di

blocks

di

blocks
hi

blocks

hi

blocks

Figure 1.11: Structure of the factor computed within front F i, ready for the solution
phase.

to the fully-summed variables associated with the frontal matrix of the current node) and
part of it is updated (corresponding to the non fully-summed variables associated with
the frontal matrix of the current node), as Algorithm 1.5 and Figure 1.12 show. Note that
because the forward elimination requires a bottom up traversal of the assembly tree, it
can be done directly on the fly during the factorization.

Algorithm 1.5 Multifrontal right-looking forward elimination in front F i i.e., Liyi = bi

is solved. This step is performed for any node (front) of the assembly tree, from bottom
to top.

1: for c = 1 to di do
2: yc  (Li

c,c)
−1 � bc

3: for r = c + 1 to di + hi do
4: br  br − Li

r,c � yc

5: end for
6: end for

Then, a top-down traversal of the assembly tree is performed for the backward sub-
stitution phase, which behaves quite similarly as the forward elimination phase. It is
illustrated in Algorithm 1.6 and Figure 1.13.

Note that the forward elimination and the backward substitution are performed in a
right-looking and left-looking fashions, respectively, in order to match the natural storage
scheme when L is stored by columns and U by rows.

1.3.5 The three phases

Multifrontal solvers are usually organized into three convenient different phases, which
already naturally appeared in the discussion above and are namely:
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1. General introduction

Figure 1.12: Illustration of the multifrontal right-looking forward elimination in front F i.

Algorithm 1.6 Multifrontal left-looking backward substitution in front F i i.e., U ixi = yi

is solved. This step is performed for any node (front) of the assembly tree, from top to
bottom.

1: xi  yi

2: for r = di to 1 by − 1 do
3: for c = r + 1 to di + hi do
4: xi

r  xi
r − U i

r,c � xi
c

5: end for
6: xi

r  (U i
r,r)

−1 � xi
r

7: end for

Figure 1.13: Illustration of the multifrontal left-looking backward substitution in front Fi.

Analysis. This step handles the preprocessing of the matrix. A global, fill-reducing, per-
mutation is computed and the corresponding assembly tree is built. Other numerical
pretreatments can also be performed to improve the numerical properties of the ma-
trix and enhance the accuracy of the subsequent phases. A symbolic factorization
(i.e., based on the nonzero pattern of the matrix only) is also performed to forecast
the data structures of the factorization and the memory consumption.

Factorization. The assembly tree is traversed and partial factorizations of each front is
performed (under LU , LLT or LDLT forms). The factorization step usually requires
the most computations. The theoretical memory and operation complexities [51, 75]
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1.4. Iterative methods and preconditioning

of the multifrontal factorization are given in Table 1.1, for the Poisson and Helmholtz
equations discretized on both 2D and 3D meshes. These problems are presented in
Section 1.6.4.1. The meshes are in theory assumed “well-behaved” [80] (they are
cubic in our context) and partitioned with a nested dissection.

Problem Mry Ops

PoissonN 2D
O(n log(n)) O(n3 = 2)

HelmholtzN 2D

PoissonN 3D
O(n4 = 3) O(n2)

HelmholtzN 3D

Table 1.1: Theoretical complexities of the multifrontal factorization. Mry stands for
number of entries in factors. Ops stands for number of operations for the factorization. n

is the size of the matrix. N is the size of the underlying square or cubic mesh: n = N2 in
2D, n = N3 in 3D.

Solution. The assembly tree is traversed twice to perform the forward elimination and
the backward substitution. The accuracy of the solution may be optionally evaluated
through various types of metrics (see 1.2).

1.4 Iterative methods and preconditioning

Direct methods are not the only methods to solve linear systems: iterative methods [88]
can also be used. In this also widely used kind of methods, the solution is computed
iteratively from an initial guess x0. At each step, an operation xk+1 = f(xk) is applied,
where f depends on the method, which can be for instance the Conjugate Gradient [66] or
GMRES [89]. A stopping criterion is defined (based on how close to the exact solution xk

is) and the process stops when it is satisfied. In this case, the process has converged, but it
is not always the case. To avoid non-convergence or slow convergence, some preprocessing
of the matrix may be needed. This is called preconditioning the matrix and amounts
to solving a preconditioned system M−1Ax = M−1b. When A is a symmetric positive
definite matrix, the preconditioner M is split to keep this property and the preconditioned
system is written as M−1 = 2AM−1 = 2 � M1 = 2x = M−1 = 2b. If M = A, then the convergence
is fast (0 iteration) but we need to solve the original system to obtain M−1. The idea is
thus to find a good approximate of A−1 which can be computed at a very low cost and
makes the convergence faster. The strategy for finding it can be very problem-dependent
and this is the main drawback of iterative methods, although versatile strategies have also
been proposed, such as incomplete factorizations (where some off-diagonal elements are
dropped, for instance, if they match a zero in the original matrix). In the context of a
double precision linear system, a good and versatile, although expensive, preconditioner is
A−1 computed in single precision with a direct solver. This strategy will be investigated
with Block Low-Rank factorization (see Sections 1.6.4.3 and 5.1.2).

1.5 Low-rank approximations

This dissertation is motivated by several algebraic properties dealing with the rank of
matrix, which can be exploited to efficiently represent matrices. We first recall some
algebraic properties of the rank and will introduce the notion of low-rank matrix. We will

17



1. General introduction

show how these particular matrices can be used in order to accelerate some of the algebraic
operations they are involved in. Finally, we will describe how to reorder certain full-rank
matrices to obtain low-rank subblocks, and how these subblocks have been exploited in
the literature. In this section, A will always be chosen in R

m� n but the same definitions
and theorems hold for C

m� n.

1.5.1 Rank and properties

We denote rank(A) the algebraic rank of A, in contrast with the numerical rank at
precision ε defined below.

Definition 1.3 - Numerical rank at precision ε.
Let A ∈ R

m� n be a matrix. The number of singular values σi satisfying |σi| ≥ ε is called
the numerical rank at precision ε of A and is written rank� (A).

This work relies more on the numerical rank at precision ε than on the algebraic rank.
For this reason and for sake of clarity, the notation rank will be used for both algebraic
rank and numerical rank at precision ε when no ambiguity is possible.

We now recall some properties of the rank (see for instance [94, 57]).

Property 1.1 - Matrices operations.
Let A ∈ R

m� n and B ∈ R
m� n be two matrices. Then the following properties hold:

(i) rank(A) � min(m, n)

(ii) rank(A + B) � rank(A) + rank(B)

Now assume B ∈ R
n� m. Then:

(iii) rank(AB) � min(rank(A), rank(B))

Properties (ii) and (iii) are the most interesting. (ii) implies that we have almost no
control on the rank of the sum of two matrices. Assume the two matrices have same
rank. Adding the two of them can either (worst case) double the rank, either (best case)
dramatically decrease it, either just change it. Secondly, we have almost the opposite
behavior with the product. There is no rank increase. The product of two matrices of
small rank will still have a small rank.

1.5.2 Low-rank matrices

This work is based on representing matrices under a particular form, called low-rank form.
This is formalized in Definition 1.4.

Definition 1.4 - [18] Low-rank form.
Let A be a m � n matrix of numerical rank k at precision ε. The low-rank form of A,
written Ã, is an approximation of A under the form:

Ã = X � Y T ,

where X and Y are matrices of size m � k and n � k, respectively. The quality of the
approximation is given by A = Ã + E , where k Ek 2 � ε. Computing the low-rank form of
a matrix will be referred to as demoting.
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1.5. Low-rank approximations

Proof of the existence. A proof of existence of such a representation uses the Singular
Value Decomposition (SVD, [57]) of A. We compute the SVD of A, which is defined for
any m � n matrix A:

A = U � � � V T

where U ∈ R
m� m and V ∈ R

n� n are orthogonal and � ∈ R
m� n is diagonal. By defini-

tion [57], � = diag(σ1, σ2, : : : , σn) with σ1 ≥ σ2 ≥ : : : ≥ σn (each σi is a singular value of
A). If we set (using Matlab notations) X = U(:, 1 : k), Y = V (:, 1 : k)� (1 : k, 1 : k), we
have A = XY T + E, where k Ek 2 � ε since all the removed singular values are smaller
than ε.

Low-rank forms are particularly suitable representations for low-rank matrices, defined
in Definition 1.5.

Definition 1.5 - [18] Low-rank matrix.
Let A be a m � n matrix of numerical rank k at precision ε and εmax be a given real
number. A is said to be a low-rank matrix if it has a low-rank form Ã � X � Y T with X

and Y matrices of size m � k and n � k, respectively, which satisfies:
(

k(m + n) � mn

ε � εmax

The first condition states that the low-rank form of a low-rank matrix requires less
storage than the standard form. For this reason, we will sometimes use the term compress-
ing instead of demoting with no distinction for low-rank matrices. The second condition
simply states that the approximation is “good enough”, which strongly depends on the
application. For industrial applications, typical values of εmax range from 10−16 (double
precision) or 10−8 (single precision) to 10−2. Small values of εmax are mostly used in the
context of a direct solver while larger values are used in the context of the computation
of a preconditioner. This definition can be expressed similarly as Wilkinson's definition
of sparse matrices (see Section 1.2): “A low-rank matrix is any matrix with enough very
small singular values that it pays off to take advantage of them”. Note that throughout this
dissertation, the acronyms FR and LR will denote Full-Rank and Low-Rank, respectively.

As a consequence of the first condition, the complexity of basic linear algebra op-
erations performed on low-rank matrices under low-rank forms, such as matrix-matrix
products and triangular solves, is also decreased, as explained in Section 1.5.3.

The proof of existence of Definition 1.4 shows that the numerical rank at precision ε

can be computed together with X and Y with a Singular Value Decomposition (SVD).
This can also be done, less precisely but much faster, with a Rank-Revealing QR (RRQR)
factorization. Less standard techniques have also been experimented in this context, such
as Adaptive Cross Approximation (ACA, [18]) and randomized sampling [104]. Low-
rank approximation techniques are thus based upon the idea to ignore E and simply
represent A with its low-rank form A = X � Y T . This is, by definition, an approximation
whose precision can be controlled through the parameter ε called low-rank threshold. The
efficiency of such a representation depends on how small is the rank of the matrix at a
given precision satisfying the user.

1.5.3 Low-rank basic algebraic operations

Low-rank matrices are, by definition, a way to reduce the amount of memory needed to
store matrices. Moreover, this is a convenient format to reduce the complexity of the
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1. General introduction

main algebraic operations performed during the multifrontal factorization of a matrix:
the matrix-matrix product and the triangular solve.

1.5.3.1 Low-rank solve

We consider a low-rank matrix A = XY T of size n � n and a lower triangular matrix
L. A is assumed to have rank k. A full-rank solve consists of computing the product
R = A�L−T which requires n3 floating-point operations. Using the low-rank structure of A,
this operation can be rewritten as R = X �(Y T �L−T ). Thanks to this particular bracketing,
it requires now only 3kn2 operations. If k < n= 3, the low-rank triangular solve requires
less operations than its full-rank counterpart. Moreover, if one sets Ỹ T = Y T � L−T , then
R = XỸ T is a low-rank matrix and it can be directly used for low-rank computations,
although the numerical rank of R may be in reality lower than k (the low-rank form of R

is in this case not optimal).

1.5.3.2 Low-rank matrix-matrix product

We consider two low-rank matrices A1 = X1Y T
1 and A2 = X2Y T

2 . We assume that
A1 ∈ R

m� p has rank k1 and A2 ∈ R
p� n has rank k2. The product of two matrices can also

be improved in case one of them, at least, is low-rank. This is even more important than
for the low-rank solve as matrix-matrix products occur more often than triangular solves in
the multifrontal factorization. The full-rank matrix-matrix product R = A1 � A2 requires
2mnp operations. Using low-rank forms, the product becomes R = (X1Y T

1 ) � (X2Y T
2 ).

Obviously, the latter bracketing must be avoided because it just recomputes the regular
form of each matrix, and multiplies them, which would require even more operations
than in the standard case. This would bring us back to the original matrix product.
Consequently, the product Y T

1 with X2 has to be performed first. Say C  Y T
1 � X2. This

leads to the situation depicted in Figure 1.14.

X1

Y
T
2

C

m

n

k1

k1

k2

k2

Figure 1.14: Multiplying two low-rank matrices, after the first step: C  Y T
1 � X2.

At this point a block C appears which is of very small dimensions. Since we have three
matrices to multiply together, two types of bracketing are possible:
right-first product: R = X1 � (CY T

2 )
left-first product: R = (X1C) � Y T

2
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1.5. Low-rank approximations

The right-first product requires 2k1k2(p + n) + 2k1mn operations divided in three
phases:

1. Computation of C: 2pk1k2 ops

2. Computation of B = C � Y T
2 : 2nk1k2 ops

3. Computation of X1 � B: 2mnk1 ops

This result is not symmetric, i.e., the number of operations required for the left-first
product is different. With the same reasoning as before, we get a cost of 2k1k2(p + m) +
2k2mn operations. The operation requirements of each version of the low-rank matrix-
matrix product are summarized in Table 1.2.

left-first product right-first product
# of ops 2k1k2(p + m) + 2k2mn 2k1k2(p + n) + 2k1mn

Table 1.2: Operations required for multiplying two low-rank matrices.

Since the number of operations is not symmetric, we have to decide in which case we
use the right-first product, and in which case we use the left-first product. We denote CL

(CR) the cost of a left-first product (right-first product). To decide if we use a right-first
or a left-first product, we have to know the sign of CL −CR which is given by the following
equality:

sign(CL − CR) = sign

�

(k2 − k1) +
k1

m

k2

n
(m − n)

�

This gives us a simple way to know which product should be computed, depending
on the numerical properties of each operand. Note that if we assume the result to be a
square matrix, i.e. m = n, then the sign of CL − CR is simply given by the sign of k2 − k1.

The low-rank product, as we defined it, multiplies two matrices under low-rank forms
and outputs a matrix under regular form. This means that if one wants the low-rank
form of the product, one has to recompute it from the result. A mean to avoid this is to
perform an incomplete product. Assume we have done the computation of C as before.
The product R = A1 � A2 can be written R = U1 � C � V T

2 . Thus there are two remaining
products. The previous method proposed to compute both of them, in order to obtain R

in a full-rank standard format. If we now consider doing only one of them, say the second
one (it works similarly with the first one): R = X1 � (C � Y T

2 ). Now we observe that the
term C � Y T

2 ∈ R
k1�n. Since X1 ∈ R

m�k1 , setting Ỹ2 = C � Y T
2 leads to R = X1 � Ỹ T

2 , which
is a low-rank form of R. This way, the cost of the product is lower (as we compute an
incomplete one) and a low-rank form of the result is directly obtained. However, similar
to the low-rank solve, this low-rank form may not be the most compact one for the result.

Multiplying two low-rank matrices A1 and A2 will thus decrease the required number
of operations. However, we also have to consider the cost of demoting the two matrices,
which can be quite expensive too. This will increase the number of operations. In the
context of a multifrontal approach, we will compute many matrix products involving
a given low-rank matrix. Then, the computational cost of demoting a matrix can be
absorbed by the total savings for all the products.

1.5.4 Admissibility condition and clustering

In the general case, a given matrix is not a low-rank matrix, which means it admits no
e� cient low-rank form. However, it has been shown in Börm [20] and Bebendorf [18]
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1. General introduction

that submatrices (also called subblocks) defined by an appropriately chosen partitioning
of matrix indices, assuming the matrix arises from an elliptic partial differential equation,
can be low-rank matrices. Assuming I = f 1, : : : , ng is the set of row (and column) indices
of A, a set of indices σ � I is called a cluster. Then, a clustering of I is a disjoint union
of clusters which equals I. b = σ � τ � I � I is called a block cluster based on clusters
σ and τ . A block clustering of I � I is then defined as a disjoint union of block clusters
which equals I � I. Let b = σ � τ be a block cluster, Ab = Aστ is the subblock of A with
row indices σ and column indices τ .

A considerable reduction of both the memory footprint and the operations complexity
can be achieved if the block clustering defines blocks whose singular values have a rapid
decay (for instance, exponential) in which case each block can be accurately represented
by a low-rank product X � Y T . Clearly, this condition cannot be directly used in practice
to define the matrix block clustering. In many practical cases it is, however, possible
to exploit the knowledge of the mathematical problem or the geometrical properties of
the domain where the problem is defined in order to define an admissibility condition,
i.e., a heuristic rule that can be cheaply checked to establish whether or not a block is
(likely to be) low-rank or that can be used to guide the block clustering computation.
For instance, in the case of matrices deriving from discretized elliptic PDEs one such
admissibility condition is presented in Definition 1.6.

Definition 1.6 - [18, 20] Admissibility condition for elliptic PDEs.
Let b = σ � τ be a block cluster. b is admissible if

diam(σ) + diam(τ) � 2� dist(σ, τ) ,

where the distance dist(σ,τ) is the number of edges in the shortest path from a node of σ

to a node of τ and the diameter diam(σ) is the largest distance between two nodes of σ.
� is a problem dependent parameter.

This admissibility condition follows the intuition that variable sets that are far away
in the domain are likely to have weak interactions which translates into the fact that the
corresponding block has a low rank; this idea is depicted in Figure 1.15(a). Figure 1.15(b)
shows that the rank of a block Aστ is a decreasing function of the geometric distance
between clusters σ and τ . This experiment has been done on a top-level separator of a 3D
1283 wave propagation problem called Helmholtz128 (and further described in Table 1.4),
with square clusters of dimension 16 � 16, so that each subblock has size 256. It shows
that depending on the distance between clusters, there is potential for compression which
can be exploited. The dashed line at y = 128 shows the cutoff point where it pays to store
the subblock using a low-rank representation.

An admissibility condition being given, it is possible to define an admissible block
clustering, i.e., a block clustering with admissible blocks, which can be used to efficiently
represent a dense matrix by means of low-rank approximations with an accuracy defined
by the low-rank threshold ε in Definition 1.5.

This admissibility condition requires geometric information in order to properly com-
pute diameters and distances. In the context of an algebraic solver, this is not conceivable
because the only available information is the matrix. Thus, another condition must be
used and a natural idea is to use the graph of the matrix. In Börm [20] and Grasedyck
[59], other admissibility conditions have been studied. They only need the graph of the
matrix G and are thus called black box methods. Definition 1.7 details this graph version
of Definition 1.6.
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Figure 1.15: Two illustrations of the admissibility condition for elliptic PDEs.

Definition 1.7 - [20, 59] Black box admissibility condition.
Let b = σ � τ a block cluster where σ and τ are sets of graph nodes. b is admissible if

diamG(σ) + diamG(τ) � 2� distG(σ, τ) ,

where diamG and distG are classical graph diameter and distance in G, respectively, and
� a problem dependent parameter.

This admissibility condition may still be unpractical because, first, it is not clear
how to choose the � parameter in an algebraic context and, second, because computing
diameters and distances of clusters of a graph may be costly. This condition, however,
can be further simplified and complemented with other practical considerations that, for
instance, pertain to the efficiency of basic linear algebra kernels on the X and Y matrices
of the low-rank form. In order to define an efficient clustering strategy suited for our
purpose and format, as well as to ensure the efficiency of the algorithms designed, another
admissibility condition is proposed in Section 3.3.1.

1.5.5 Existing low-rank formats

Several matrix formats have been proposed in the literature, in order to exploit low-rank
forms of submatrices. We will present first a brief historical background on low-rank
formats, followed by a more extensive presentation of different widely used formats.

1.5.5.1 Brief historical background

The idea of exploiting low-rank approximations to represent matrices was first (and for
a long time) motivated by the computation of the inverse of an irreducible tridiagonal
matrix [50] (1950), which is a semiseparable matrix (for a definition, see Gohberg et al.
[56], Vandebril et al. [97]). Based on this notion, sequentially semiseparable matrices
appear and are defined as follows.

Definition 1.8 - Sequentially semiseparable matrix (SSS) [62].
Let B be a semiseparable N � N matrix. Then there exist n positive integers m1, � � � , mn,
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with N = m1 + � � � + mn, to block-partition A as

B = (Bi,j), where Bi,j ∈ R
mi� mj satisfies Bi,j =

8
><

>:

Di if i = j

XiWi+1 � � � Wj−1Y T
j if i < j

PiRi−1 � � � Rj+1QT
j if i > j

with:
8 i ∈ [1, � � � , n − 1], Xi ∈ R

mi� ki , Qi ∈ R
mi� li+1 ,

8 i ∈ [2, � � � , n], Yi ∈ R
mi� ki−1 , Pi ∈ R

mi� li ,
8 i ∈ [2, � � � , n − 1], Wi ∈ R

ki−1� ki , Ri ∈ R
li+1� li .

Note that ki and li need to be small enough to make this representation efficient.

For instance, with n = 4, the matrix B has the form:

B =

2

6
6
6
4

D1 X1Y T
2 X1W2Y T

3 X1W2W3Y T
4

P2QT
1 D2 X2Y T

3 X2W3Y T
4

P3R2QT
1 P3QT

2 D3 X3Y T
4

P4R3R2QT
1 P4R3QT

2 P4QT
3 D4

3

7
7
7
5

After many years of theoretical work on showing that the inverses of very specific tridi-
agonal, pentadiagonal and band matrices can be represented as semiseparable matrices,
Barrett [17] proved in 1979 that the inverse of a tridiagonal matrix is a semiseparable
matrix, without further assumption. In 1985, Gohberg et al. [56] proposed methods to
solve semiseparable systems of equations, for strongly regular matrices. Finally, in 2002,
Chandrasekaran et al. [27] generalized this result to more classes of matrices. A detailed
survey on the evolution of these notions can be found in Vandebril et al. [96].

Simultaneously, the Fast Multipole Method (FMM, [60]) introduced the notion on far-
field approximations from an analytical point of view, on the context of electromagnetics
(n-body problems). This technique will strongly influence researchers to design low-rank
approximations of matrices, based on well separated variables (see the notion of admissibil-
ity condition above). Although some black-box variants of the fast multipole method have
been defined for specific classes of kernels [48], it still does not offer the same versatility
as algebraic low-rank formats.

Many formats have been derived from the SSS format, and are widely used in many
applications. Most of them are hierarchical, in the sense that a hierarchy is introduced
between the approximated blocks. Within this class of formats, two subclasses have to be
distinguished: independent hierarchical formats (where all the blocks are independently
expressed) and nested hierarchical formats (where blocks are expressed with respect to
other ones). This makes the algorithms much more complex but also more scalable. We
will focus on Hierarchical H matrices which are a good starting point to understand
independent hierarchical formats, and on HSS matrices (which is a nested hierarchical
format) because it was the first to be used for implementing high-performance sparse
direct solvers. Another format, called the Hierarchically Block Separable (HBS) format
[54, 55] has also been used for direct solvers. As it is closely related to the HSS format,
we will not further explain it.

1.5.5.2 Hierarchical (H) matrices

The H-matrix [18, 20] format, where H stands for Hierarchical, is historically the first low-
rank format for dense matrices. This format is based on an admissible block clustering
which is obtained by a recursive subdivision of I � I.
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1.5. Low-rank approximations

A hierarchical matrix consists in a hierarchy of subblocks within the original matrix;
its structure can be conveniently represented by a tree graph. This tree is commonly
referred to as cluster tree in the literature (see [20] for instance).

Definition 1.9 - Cluster tree.
Let T (V, S, r) be a tree and I a set of indices. To each node v ∈ V is associated a set of
children S(v) and a label v̂ (a label is a cluster associated with a node of the tree, i.e. a
subset of I, see Section 1.5.4). A cluster tree on I, written TI , is defined as follows :

- r = root(TI) has the label I, i.e. r̂ = I ;

- 8 v ∈ V, v̂ =
G

s2 sons(v)

ŝ , where
F

is a disjoint union and sons(v) denotes all the

children of node v in T ;

A cluster tree represents a recursive dissection of the original index set I, as illustrated
in Figure 1.16.

• • • • • • • •
1 2 3 4 5 6 7 8

(a) Regular 1D mesh

12345678

1234 5678

12 34 56 78

(b) The cluster tree based on recursive
bisections of the mesh

Figure 1.16: Example of a mesh and a corresponding cluster tree

This leads to the definition of a hierarchical block partition of the set I relying on the
notion of block cluster tree.

Definition 1.10 - Block cluster tree.
Let TI and TJ be two cluster trees. A block cluster tree TI� J for TI and TJ is defined
as follows :

- r = root(TI� J ) = (root(TI), root(TJ )) ;

- each node b ∈ TI� J has the form b = (t, s), for t ∈ TI and s ∈ TJ , and its label
satisfies b̂ = t̂ � ŝ ;

- let b = (t, s) ∈ TI� J . If sons(b) 6= ; , we have

sons(b) =

8
>><

>>:

f tg � sons(s) if sons(t) = ; , sons(s) 6= ; ,

sons(t) � f sg if sons(t) 6= ; , sons(s) = ; ,

sons(t) � sons(s) otherwise :

Several block cluster trees TI� J can be built based onr TI and TJ . Two examples of
block cluster trees constructed from cluster tree 1.16(b) are shown in Figures 1.17 and 1.18,
together with each corresponding hierarchical matrix.

It is shown in Figures 1.17 and 1.18 that several different block cluster trees can
be obtained from a single cluster tree. The induced hierarchical matrices are also very
different. For instance, it is obvious that the hierarchical structure of Figure 1.17 will
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1. General introduction

12345678 � 12345678

(a) A block cluster tree from
cluster tree 1.16(b)

(b) The corre-
sponding hierar-
chical matrix

Figure 1.17: Example 1

12345678 � 12345678

1234 � 1234 5678 � 56781234 � 5678 5678 � 1234

12 � 56 34 � 7812 � 78 34 � 56

(a) A block cluster tree from cluster tree 1.16(b) (b) The corre-
sponding hierar-
chical matrix

Figure 1.18: Example 2

not be efficient if the original matrix is not a low-rank matrix, which is the general case.
Consequently, we need more rules to build a block cluster tree which will induce an efficient
hierarchical representation of the matrix. A natural idea is to use one of the admissibility
conditions defined in Section 1.5.4 to define an admissible block cluster tree.

Definition 1.11 - Admissible block cluster tree.
An admissible block cluster tree is a block cluster tree which, for all (t,s) leaves of TI� J ,
satisfies :

(t, s) is admissible or sons(t) = ; or sons(s) = ;

The definition of a H-matrix comes straightforward from an admissible block cluster
tree.

Definition 1.12 - H-matrix.
Let A be a n � n matrix defined on I � I. Let TI� I be an admissible block cluster tree for
a given admissibility condition. A is a H-matrix if 8 b leaf of TI� I , Ab is a low-rank matrix
or |b| is small. Then, its H-matrix form bA can be obtained with Algorithm 1.7.

Algorithm 1.7 shows how the H-matrix format of a matrix A, together with its admis-
sible block cluster tree can be built, by a recursive procedure.

The result of this procedure is thus an admissible block cluster tree built in a top-
down fashion, as well as its corresponding H-matrix. Note that a set of siblings of the
tree defines a block clustering of the block cluster associated with their parent node and
that the final admissible clustering is defined by the leaves of the tree, which defines
the structure of the H-matrix. An example is shown in Figure 1.19, with the following
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1.5. Low-rank approximations

Algorithm 1.7 H-matrix construction
Input A, a matrix defined on row and column indices I.
Output bA, the H-matrix form of A.

1: initialize list with [I � I]
2: while list is not empty do
3: remove an element b from list

4: if b is admissible then
5: bAb  low-rank form of Ab

6: else if b is large enough to split then

7:

 

b1 b2

b3 b4

!

= b

8: add b1, b2, b3 and b4 to list

9: else
10: bAb  Ab

11: end if
12: end while

simplified admissibility condition : admissible , empty intersection. In this case the
admissible block cluster tree has been constructed by splitting the set of matrix indices
as follows: I = I7 = I3 ∪ I6 = f I1 ∪ I2g ∪ f I4 ∪ I5g .

12345678 � 12345678

1234 � 1234 5678 � 56781234 � 5678 5678 � 1234

12 � 12 34 � 34 78 � 7856 � 5612 � 34 34 � 12 78 � 5656 � 78

(a) Admissible block cluster tree from cluster tree 1.16(b). Rectangle nodes are admissible.

1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1

XI6I3
Y T

I6I3

XI3I6
Y T

I3I6

XI2I1
Y

T

I2I1

XI1I2
Y

T

I1I2

XI4I3
Y

T

I4I3

XI3I4
Y

T

I3I4

(b) Corresponding H-matrix.

Figure 1.19: An admissible block cluster tree and the induced H-matrix.
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1. General introduction

In a more general case, the structure of a H-matrix is not necessarily as regular as in
the provided example which means that the diagonal blocks may not have the same size.
Moreover, different admissibility conditions can also be defined.

For more details about H-matrices, we refer the reader to Bebendorf [18], Börm [20]
or Hackbusch [64]. Note that H-matrices can be generalized to H2-matrices [20], which
feature nested basis.

1.5.5.3 Hierarchically Semiseparable (HSS) matrices

Although also based on a hierarchical blocking defined by a cluster tree, HSS matrices
are substantially different from H-matrices as nested basis are involved. They rely on a
bottom-up traversal of a cluster tree.

Definition 1.13 - [103] HSS matrix.
Assume A is an n� n dense matrix, and I = f 1, 2, : : : , ng . I is recursively split into smaller
pieces following a binary tree T with k nodes, denoted by j = 1, 2, : : : , k � root( T ). Let
tj � I be a cluster associated with each node j of T . (T is used to manage the recursive
partition of A.) We say A is an HSS form with the corresponding postordered HSS tree
T if :

1. T is a full binary tree in its postordering, or, each node j is either a leaf or a non-leaf
node with two children j1 and j2 which satisfy j1 < j2 < j ;

2. The index sets satisfy tj1
∪ tj2

= tj and tj1
\ tj2

= ; for each non-leaf node j, with
tk � I ;

3. For each node j, there exist matrices Dj , Xj , Yj , Rj , Wj , Bj (called HSS generators),
which satisfy the following recursions for each non-leaf node j:

Dj � A|tj � tj
=

 

Dj1
Xj1

Bj1
Y T

j2

Xj2
Bj2

Y T
j1

Dj2

!

, Xj =

 

Xj1
Rj1

Xj2
Rj2

!

, Yj =

 

Yj1
Wj1

Yj2
Wj2

!

,

where Xk, Yk, Rk, Wk and Bk are not needed (since Dk � A is the entire diagonal
block without a corresponding off-diagonal block). Due to the recursion, only the
Dl, Xl, Yl matrices associated with a leaf node l of T are stored. At any other node
j (excluding the root), Bj , Rj , Wj are stored and will be used to generate Dj , Xj , Yj

from Dl, Xl, Yl (this explains why these matrices are called generators).

For instance, the HSS matrix Ã associated with a 4 leaves HSS tree has the form:

Ã =

2

6
6
6
4

D1 X1B1Y T
2 X1R1B3W T

4 Y T
4 X1R1B3W T

5 Y T
5

X2B2Y T
1 D2 X2R2B3W T

4 Y T
4 X2R2B3W T

5 Y T
5

X4R4B6W T
1 Y T

1 X4R4B6W T
2 Y T

2 D4 X4B4Y T
5

X5R5B6W T
1 Y T

1 X5R5B6W T
2 Y T

2 X5B5Y T
4 D5

3

7
7
7
5

(1.2)

The construction of such an HSS matrix is achieved through a topological order traver-
sal of the T tree, also referred to as HSS tree, picture in 1.20.

Each time a node j is visited, the block-row and block-column corresponding to the
related cluster (i.e., Atj ,: = Atj ,(In tj) and A:,tj

= A(In tj),tj
, respectively) are compressed

into a low-rank form. Note that, apart from the leaves, the compressed block-row or
block-column is formed by combining the result of previous compressions. Algorithm 1.8
gives a more formal description of the construction of an HSS matrix.
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1 2
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B2

B4

B5

B3

B6

X1, Y1

D1

X2, Y2

D2

X4, Y4

D4

X5, Y5

D5

R1

W1

R4

W4

R3

W3

R2

W2

R5

W5

R6

W6

Figure 1.20: HSS tree

Algorithm 1.8 HSS matrix construction
Input A a matrix defined on row indices I and column indices J .
Input TI a cluster tree on I with n postordered nodes
Output bA the HSS matrix form of A.

1: for i = 1 to n do
2: node i is associated with a cluster c

3: if i is a leaf then
4: compress block row Ac,: and block column A:,c ignoring any previous bases X, Y :

Ac,: = XiT̃c,:

AT
:,c = YiT̃

T
:,c

5: else
6: i is assumed to have two children i1 and i2 associated with two clusters c1 and c2

7: form Ac,: and A:,c using Ac1,:, A:,c1
, Ac2,: and A:,c2

ignoring any X, Y bases
8: compress Ac,: and A:,c to obtain generators Rc1

, Rc2
, W T

c1
and W T

c2
:

Ac,: =

 

Rc1

Rc2

!

Ãc,: AT
:,c =

 

Wc1

Wc2

!

ÃT
:,c

9: identify Bc1
and Bc2

from Tc1,: and Tc2,:, respectively. At line 7, the columns of
Ac1

that do not go to Ac,: form Bc1
, and similarly for Bc2

.
10: end if
11: end for

The first steps of Algorithm 1.8 are sketched in Figure 1.21, based on the HSS form
of (1.2). In Figure 1.21(a), the four blockrows are compressed, yielding Ui's and Bi's and
short and wide Ṽ T

i 's. In Figure 1.21(b), the blockrows are merged (which corresponds
to move in the HSS tree from the leaves to their parent). The corresponding part of the
Ṽ T

i 's from previous level are thus merged, and recompressed in Figure 1.21(c), yielding
U3 and U6. Note that the colors in Figure 1.21(c) illustrate that, for instance, U3 can be
recovered from U1 and U2 through small generators. In practice, these blockrow compres-
sion steps are followed by blockcolumn compressions, which are performed similarly. This
construction is extensively explained in Xia et al. [106] through a similar 4 � 4 example.
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1. General introduction

(a) First step of row compression
at the leaf level l. The blockrows
are entirely compressed.

(b) Second step of row compres-
sion, corresponding to the l − 1
level (parents of the leaves). Ma-
trices generated through compres-
sion at previous level are partly
merged.

(c) After the merge, blockrows
are recompressed.

Figure 1.21: Pictorial illustration of the blockrow compression steps of the construction
of the HSS form of Ã.

Because of the particular structure of HSS matrices, the standard LU factorization
cannot be used efficiently to factorize a HSS matrix. Instead, a ULV [28, 103] factorization
must be used to ensure that the HSS structure is efficiently exploited.

Based on some theoretical assumptions of the maximal rank r found in the construction
of the HSS form of the matrix A of order n [29, 47], it has been shown that the complexity of
the HSS construction is O(rn2) [103, 106]. Based on the same assumptions, the complexity
of the multifrontal HSS factorization [103] could be derived for matrices coming from the
discretization of the Poisson and Helmholtz equations, in the fully-structure case only
(when frontal matrices are always represented with HSS matrices and thus are never
stored in a standard full-rank format, which requires the assembly of frontal matrices to
be done in HSS format). In practice, codes which are able to run on large problems are
partially-structured (the frontal matrices are first stored in a standard full-rank format,
HSS representations are used in the L,U parts and the contribution blocks are stored in
a standard full-rank format). These complexity results are summarized in Table 1.3, for
both full-rank and HSS multifrontal methods on matrices coming from the 2D and 3D
discretizations of the Poisson and Helmholtz equations, presented in Section 1.6.4.1. Note
that in practice, the ranks observed may be higher than the theoretical ones [47, 79]. We
will further develop the complexity analysis with experimental results in Sections 2.3.2
and 4.3.

For a more detailed presentation and study of HSS matrices, we refer the reader to Xia
[103], Xia et al. [105] and Wang et al. [99; 101].

1.6 Experimental environment

1.6.1 HSS solvers

Our solver based on a new low-rank format (presented in Chapter 2) will be compared
with two partially-structured multifrontal HSS solvers:

• Hsolver [102] is geometric (i.e., the nested dissection used to reorder the original
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1.6. Experimental environment

Problem Rank full-rank multifrontal HSS multifrontal

Mry Ops Mry Ops

PoissonN 2D O(1)
O(n log(n)) O(n3 = 2) O(n log log(n)) O(n log(n))

HelmholtzN 2D O(log(N))

PoissonN 3D
O(N) O(n4 = 3) O(n2) O(n log(n)) O(n4 = 3 log(n))

HelmholtzN 3D

Table 1.3: Theoretical complexities for full-rank and HSS multifrontal factorizations based
on theoretical ranks. The HSS multifrontal is assumed to perform all assembly in HSS
format. Mry stands for number of entries in factors. Ops stands for number of operations
for the factorization. n is the size of the matrix. N is the size of the underlying square or
cubic mesh: n = N2 in 2D, n = N3 in 3D.

matrix and form the assembly tree as well as the HSS trees used to represent frontal
matrices in HSS forms rely on the knowledge of the underlying geometry of the
mesh) and will be used in Sections 2.3.2 and 4.3 to compare the memory and opera-
tion experimental complexities. This solver has been chosen to study these aspects
because results have already been published [101] and were thus available to us.

• StruMF [81] is algebraic (i.e., no knowledge on the geometry is needed) and will
be used in Section 4.3.1 to compare general performance. Our solver being also
algebraic, StruMF was more suitable for a comparison of the two codes. Moreover,
the StruMF solver was available to us to run new experiments.

All the studies performed with HSS technologies have been done in collaboration
with the Lawrence Berkeley National Laboratory (Xiaoye Sherry Li, Artem Napov and
François-Henry Rouet).

1.6.2 The MUMPS solver

MUMPS [8, 9, 11, 13] is a MUltifrontal Massively Parallel sparse direct Solver, developed
mainly in Bordeaux, Lyon and Toulouse (France). It started in 1996 with the European
project PARASOL, first targeting distributed-memory architectures. It is inspired by
the shared-memory code MA41 by Amestoy and Duff [3, 4]. MUMPS main features
include MPI [93] parallel factorization and solve, handling of symmetric positive definite,
general symmetric and unsymmetric matrices, multi-arithmetic capability, backward error
analysis, iterative refinement [15]. The iterative refinement is an iterative process which
increases the solution accuracy, as shows Algorithm 1.9.

Algorithm 1.9 Iterative refinement.
Input a matrix A, its factors L and U , a computed solution x̂ to Ax = b

Output x̂ is replaced by a more accurate solution
1: while residual ||Ax − b|| > tol do
2: r = Ax − b

3: solve Ad = r ◮ using the factors L and U computed during the factorization
4: x  x − d

5: end while
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1. General introduction

MUMPS also provides many numerical features such as symmetric and unsymmetric
threshold pivoting, null pivot detection, 2-by-2 pivots (symmetric), delayed pivots, scal-
ing [12, 87]. This guarantees the robustness of the code. Work is also in progress to exploit
shared-memory parallelism using OpenMP [72].

Many orderings of the matrix can be used, from a user defined permutation to standard
packages or algorithms: AMD [7], PORD [91], METIS [68], SCOTCH [83] and their parallel
versions ParMETIS [70] and PT-SCOTCH [30].

MUMPS relies on the elimination tree of A (or of A + AT in the unsymmetric case).
Both node and tree parallelisms are exploited. Sequential nodes are referred to as type
1 nodes. Parallel nodes are referred to as type 2 nodes. In a parallel environment, the
root node can be on demand processed using a ScaLAPACK [31] two-dimensional block
cyclic distribution scheme; in this case, the root node is referred to as a type 3 root. In
a type 2 node, the master process is assigned to process the fully-summed rows and is in
charge of organizing computations; the non fully-summed rows are distributed following
a one-dimensional row-wise partitioning, so that each slave holds a range of rows. An
illustration of these tree and node parallelisms in MUMPS is given in Figure 1.22.

Type 3

Type 2Type 2

Type 1Type 1 Type 1 Type 1

P0

P1

P0
P2P3P2

P1

P0 P0

P0
P1
P2

P1
P2
P3

P1P0 P3 P2

P0

tree
parallelism

tree + node
parallelism

Figure 1.22: Different kinds of nodes in MUMPS (unsymmetric case). Type 3 node
is a ScaLAPACK root distributed following a 2D block-cyclic scheme. Type 2 nodes are
partitioned by blocks of rows. The master process (hatched) holds the fully-summed
rows, i.e., the (1,1) block and the (1,2) block (corresponding to U12). The slaves hold
block rows. In this example, type 2 nodes exploit node and tree parallelism. Type 1 nodes
are processed on a single process and exploit only tree parallelism. The shaded part of
each front represents its fully-summed part.

Many factorization types can be performed depending on the properties of the input
matrix (which can be given distributed or centralized, assembled or in elemental format):
LU , LDLT , LLT . An out-of-core facility is also provided to reduce the memory require-
ments of the factorization. The factorization is performed using BLAS 2 and BLAS 3
operations [41] through a panelwise scheme (a vertical panel is a diagonal block and all
the blocks below it, in which case its width is the number of columns of the diagonal
block; an horizontal panel is a diagonal block and all the blocks on the right of it, in
which case its width is the number of rows of the diagonal block; for the sake of simplicity,
we will always use panel without any distinction) where the width of panels commonly
depends on the features of the underlying architecture. Within each panel, a pivot is
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1.6. Experimental environment

searched for and, if found, eliminated after permutation to bring it to the adequate po-
sition. This yields a row of U and a column of L. BLAS 2 right-looking updates are
then performed within the panel. The processing of a panel ends when no more pivots
can be found, which happens when either all the pivots of the current panel have been
eliminated, or some pivots could not be eliminated (in which case current panel is short-
ened and these non-eliminated variables are postponed to the next panel). After the end
of the panel processing occurs, all the variables outside the panel are updated through a
BLAS 3 right-looking update. These ideas are illustrated in Figure 1.23(a) (postponed
uneliminated pivots) and in Figure 1.23(b) (pivots delayed to parent front).

CB

current panel

non-eliminated variables

to be updated with
BLAS 3 operations

eliminated variables

next panel
(size has increased)

(a) At the end of current panel processing, some
variables may not be eliminated, in which case
they are postponed to the next panel, hoping they
will be eliminated later during the front process-
ing. All the trailing submatrix is updated with
BLAS 3 operations using current panel' s newly
eliminated variables.

CB

delayed variables

to be updated with
BLAS 3 operations

eliminated variables
last panel

test

(b) At the end of the processing of the last panel,
some variables may still not be eliminated, which
means they cannot be eliminated within current
front. They are then delayed to the parent front.

Figure 1.23: MUMPS sequential (type 1) factorization scheme with pivoting.

This panel scheme is used for the communication pattern in type 2 nodes, as illustrated
in Figure 1.24. P0 is the master process; other processes are slaves and receive messages
from the master (unsymmetric case) or from the master and other slaves (symmetric
case). When all the rows of a panel have been processed, the master updates the rows of
L corresponding to fully-summed variables (without communication). It also sends data
to the slaves so that they can update the rows of L corresponding to non fully-summed
variables.

Our work on exploiting low-rank approximations in multifrontal methods was mo-
tivated by different common issues related to this class of solvers: the large memory
consumption (the maximum size of the stack) and the computational complexity. More-
over, as problem size increase, the volume of communications tends to become more and
more critical in the efficiency of solvers. Designing a low-rank format which is capable to
tackle these issues while maintaining the robustness and features of a given solver is thus
needed.

33



1. General introduction

P0

P1

P2

P3

(a) Unsymmetric case.

P0

P1

P2

P3

(b) Symmetric case.

Figure 1.24: Communication pattern used within type 2 nodes. P0 is the master process.
In the unsymmetric case, it is the only process sending messages. In the symmetric case,
slaves also send messages to other slaves.

1.6.3 Code_Aster

Among the industrial applications concerned with solving large systems, some are very
critical and this is the case of the applications at Électricité De France1. EDF has to guar-
antee the technical and economical control of its means of production and transportation
of electricity. The safety and the availability of the industrial and engineering installa-
tions require mechanical studies before taking any decision about their exploitation. These
studies are often based on numerical simulations, which are done using Code_Aster [1],
an internal software, freely distributed since 2001. Code_Aster's main goal is the anal-
ysis of structures and thermomechanics for studies and research. It offers a full range
of multiphysical analysis and modeling methods that go well beyond the standard func-
tions of a thermomechanical calculation code: from seismic analysis to porous media via
acoustics, fatigue, stochastic dynamics, etc. To achieve efficient and accurate simulations,
Code_Aster needs to solve larger and larger systems of equations, in many different con-
texts. This step is performed mainly using MUMPS and is usually the bottleneck of such
a code, both in terms of memory and computational costs. For EDF's needs, it is thus
critical to keep improving multifrontal solvers to tackle new challenging problems, without
conceding the versatility and the robustness of the solver.

1.6.4 Test problems

The experiments presented throughout this dissertation were run on a set of problems
coming from different physics applications. We assess the efficiency of our approach in
two distinct contexts: as a direct solver (the set of problem is given in Table 1.4) and as
a preconditioner (the set of problem is given in Table 1.5).

A couple of academic problems are used to evaluate the potential of our approach.
Then, problems from industrial applications are used to demonstrate the effectiveness of
the BLR factorization.

1Électricité De France, usually shortened to EDF, is the main French utility company. It is the world' s
largest producer of electricity, primarily from nuclear power.
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1.6.4.1 Standard operators

These problems are mainly used in Chapter 4 to evaluate the influence of different param-
eters on the efficiency of our method, and to obtain an insight of the gains which can be
obtained.

We first used the Poisson equation based on the Laplacian operator discretized on a
regular cubic 3D N � N � N grid with a 7-point stencil:

� u = f (1.3)

with u = 1 on the boundary @ 
 (Dirichlet conditions). This yields a symmetric positive
definite real matrix whose size depends on the mesh size. Matrices based on this operator
discretized on a N � N � N mesh will be named PoissonN. For instance, Poisson128 is
widely used in Chapter 4. Also, when experiments require dense matrices (in Chapter 2),
we extract from these matrices their respective Schur complement associated with the top
level separator of a geometric (i.e., computed by hands) nested dissection tree. These
dense matrices are then called geo_root_PoissonM. Finally, when the Schur complement
is associated with the top level separator of an algebraic (i.e., computed with METIS) nested
dissection tree, the corresponding dense matrix is similarly called alg_root_PoissonM.

The second academic problem we study is a 3D finite-difference frequency-domain
impedance matrix using a regular 27-point stencil discretization of the Helmholtz equa-
tion [82]:

 

−� −
! 2

v(x)2

!

u(x, ! ) = s(x, ! ), (1.4)

where � is the Laplacian, ! is the angular frequency, v(x) is the seismic velocity field,
and u(x, ! ) is called the time-harmonic wavefield solution to the forcing term s(x, ! ).
The resulting matrix is a complex unsymmetric matrix. Matrices based on this operator
discretized on a N � N � N mesh will be named HelmholtzN. For instance, Helmholtz128
is widely used in Chapter 4.

1.6.4.2 Direct solver context

A set of different matrices has been used in a direct solver context. Some of them come
from EDF [2] industrial applications with Code_Aster. The other ones come from the
University of Florida Sparse Matrix Collection [36] and were used in Xia [103]. In Table 1.4,
several details about these matrices are given, and data about full-rank executions with
MUMPS are also presented.

The mesh associated with the pompe problem is illustrated in Figure 1.25.

Figure 1.25: Discretized mesh associated with the pompe matrix.
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Name Prop. N NZ factors ops CSR application
(� 106) (� 106) storage (full rank) field

th-r7 3D/sym. 8 118 128 GB 267E+12 4 � 10−14 EDF thermal
me-r12 2D/sym. 134 1140 200 GB 151E+12 8 � 10−14 EDF mechanical
pompe 3D/sym. 0 : 8 28 2 : 6 GB 5E+11 1 � 10−15 EDF pump for nuclear

backup circuit
cont-300 3D/sym. 0 : 18 0 : 53 0 : 2 GB 7E+9 6 � 10−8 optimization

(linear, UFL)
kkt_power 3D/sym. 2 8 3 : 8 GB 4E+12 3 � 10−10 optimal power flow

(nonlinear, UFL)
d-plan-inco 2D/sym. 2 21 2 : 6 GB 4E+11 EDF material

incompressibility
apache2 3D/spd 0: 7 5 1 : 3 GB 2 : 3E+11 1 � 10−14 structural problem
ecology2 3D/spd 1 5 0: 3 GB 1 : 8E+10 3 � 10−15 circuit theory
G3_circuit 3D/spd 2 8 0: 8 GB 6 : 7E+10 6 � 10−15 circuit simulation
parabolic_fem 3D/spd 0: 5 4 0 : 2 GB 8 : 5E+9 3 � 10−15 diffusion-convection
thermomech_dM 3D/spd 0: 2 1 0 : 06 GB 8 : 2E+8 7 � 10−16 thermics
tmt_sym 3D/spd 0: 7 5 0 : 3 GB 1 : 3E+10 2 � 10−15 electromagnetics

Table 1.4: Set of problems used for the experimentations. They come from finite-
difference or finite elements methods simulations. CSR = Componentwise Scaled Residual

= max
i

|b − A�x|i
(|b| + |A| |�x|)i

. All matrices use double precision real arithmetic.

Additionally to these symmetric problems, an unsymmetric complex extensive study
of seismic modeling and full-waveform inversion is given in Section 5.2.

1.6.4.3 Preconditioner context

Low-rank techniques can also be efficient as preconditioners. An analyze of the per-
formance of such preconditioners is given in Section 5.1.2 with problems presented in
Table 1.5.

N NZ application

piston 1, 377, 531 54, 713, 045 external pressure force
on the top (see Figure 1.26(a))

perf 2, 016, 000 75, 850, 976 “cavity” hook subjected to
internal pressure force
(see Figure 1.26(b) and 1.26(b))

Table 1.5: Problems studied in the context of a BLR preconditioned conjugate gradient.
The default accuracy needed for EDF applications is 10−6. These problems are symmetric
positive definite real double precision.

These two problems will be used within a conjugate gradient method. All these prob-
lems are EDF test-cases for nuclear power stations: a piston with external pressure force,
a cavity hook with internal pressure force and a blocking device for actuator and pump.
Moreover, perf, is a challenging problem for EDF as no fully satisfying preconditioner
has been found, i.e., the convergence is much slower than for usual EDF problems.

In EDF's process, the preconditioner is computed through a single precision multi-
frontal factorization of A, so that the same process can be used for almost any matrix.
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When the number of iterations is low, such as for piston, the global process roughly
requires half the memory and operation counts of a double precision multifrontal factor-
ization, for the same accuracy. When the number of iterations is high, this method is still
chosen because memory constraints are usually stronger than other constraint in EDF's
context.

(a) piston (b) perf001d (c) perf001d (Details)

Figure 1.26: The geometries and discretization of EDF's problems studied in a BLR
preconditioned conjugate gradient context.

1.6.5 Computational systems

Several computational systems have been used for the experimental sections of this dis-
sertation:

• Conan, SGI machine at ENSEEIHT: 1 node with four octo-core AMD Opteron 6620
processor @3.0GHz and 512-GB memory per node. Used for some of the experiments
in Chapter 4 and for the experiments in Section 5.1.

• Hyperion, Altix ICE 8200 machine at the Calcul en Midi-Pyrénées resource center
(CALMIP): 352 nodes with two quad-core Intel Xeon 5560 processors @2.8 GHz and
32 GB memory per node. Used under the allocation 2012-p0989. Used for some of
the experiments in Chapter 4.

• Hopper, Cray XE6 machine at the National Energy Research Scientific Computing
Center (NERSC): 6384 nodes with two twelve-core AMD Opteron 6172 processors
@2.1 GHz and 32 GB memory per node. Used for experiments in Sections 4.2.6.

• Thera, 1 node with eight opto-core AMD Opteron node with 384-GB per node. Used
for experiments in Section 5.2.
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Chapter 2

Block Low-Rank (BLR) format

In this chapter, we propose a new structure for exploiting the low-rank property of a
matrix, called Block Low-Rank. It is based on a flat, non-hierarchical natural matrix
structure. We justify why we decided not to use the H format, nor the HSS format and
explain the main advantages of BLR in the context of an algebraic, general multifrontal
solver. We also give a comparison of these three formats in terms of compression cost and
efficiency in order to evaluate the quality of each format. Finally, the numerical accuracy
of the BLR compression and the compression parameter ε is discussed.

2.1 De� nition

The BLR format is a flat, non-hierarchical block matrix format, as defined in Definition 2.1.

Definition 2.1 - Block Low-Rank matrix (BLR).
Given an admissibility condition, let P be an admissible block clustering with p2 clusters.
Let A be an n � n matrix.

Ã =

2

6
6
6
6
4

B11 B12 � � � B1p

B21 B22 � � � B2p

...
...

. . .
...

Bp1 Bp2 � � � Bpp

3

7
7
7
7
5

is called a “Block Low-Rank matrix” if 9 (σ, τ) ∈ f 1, 2, : : : , pg 2, there exists kστ such that
Bστ is a low-rank block with rank kστ .

The definition requires at least one block to be low-rank, so that the BLR repre-
sentation of A always offers memory storage reduction. However, note that in practice,
many (if not all) blocks are usually low-rank, which ensures the overall efficiency of the
representation.

The structure of a BLR matrix is not hierarchical: a flat block matrix structure is
used. BLR matrices can thus be viewed as a particular case of H-matrices where all
the subblocks have been subdivided identically, i.e., where all the branches of the block
cluster tree have the same depth. However, because the basis used to approximate the
Bστ blocks are not nested (each block is approximated independently), BLR matrices are
not a particular case of HSS matrices. In Equation (2.1), an example of a 4 � 4 BLR
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2. Block Low-Rank (BLR) format

matrix is given. This latter case, where only the diagonal blocks are not low-rank, occurs
often in practice, as diagonal blocks represent self-self interactions.

Ã =

2

6
6
6
6
6
4

D1 X12Y T
12 X13Y T

13 X14Y T
14

X21Y T
21 D2 X23Y T

23 X24Y T
24

X31Y T
31 X32Y T

32 D3 X34Y T
34

X41Y T
41 X42Y T

42 X43Y T
43 D4

3

7
7
7
7
7
5

: (2.1)

Figure 2.1 shows the global structure of the BLR representation of a dense Schur com-
plement of order 128 � 128 corresponding to the top level separator of a 128 � 128 � 128
Laplacian problem, with a low-rank threshold set to 10−14. The numbering scheme il-
lustrated in 2.1(a) is recursive although this is only required for H and HSS matrices.
The diagonal blocks are full-rank. A large majority of off-diagonal blocks are low-rank.
A strong correlation between distance between clusters in Figure 2.1(a) and rank in Fig-
ure 2.1 can be observed.

1 2 5 6
3 4 7 8
9 10 13 14
11 12 15 16
17 18 21 22
19 20 23 24
25 26 29 30
27 28 31 32

(a) Numbering scheme of the graph asso-
ciated with the Schur complement. The
numbers give the ordering of the 32
blocks of 32 � 16 = 512 variables within
the BLR structure. Any other number-
ing of the clusters would give equivalent
results, as the rank only depends on the
interaction between two clusters.

(b) Structure of a BLR matrix. The darkness of a block
is proportional to its storage requirement (the lighter a
block is, the smaller is the memory needed to store it).
Each block in the matrix is of size 512 � 512.

Figure 2.1: Illustration of a BLR matrix of a dense Schur complement of a 128� 128 � 128
Laplacian problem with a low-rank threshold � set up to 10−14. The corresponding
clustering of its 128 � 128 planar graph into 4 � 8 = 32 blocks is also given.

2.2 Motivations to use BLR in a multifrontal context

It has been shown that H and more extensively HSS [103] matrices can be potentially em-
bedded in multifrontal solvers. These approaches, however, either rely on the knowledge
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2.2. Motivations to use BLR in a multifrontal context

of mathematical properties of the problem or on the geometric properties of the domain
on which it is defined (i.e., the discretization mesh) or lack some of the features that
are essential for a general purpose, sparse, direct solver like, for instance, robust threshold
pivoting or dynamic load balancing in a parallel environment. Our objective is, instead, to
exploit low-rank approximations within a general purpose, multifrontal solver which aims
at providing robust numerical features in a parallel framework and where no knowledge
of the problem can be assumed except the matrix itself. In such a context, hierarchi-
cal structures are likely to be too hard to handle and may severely limit the necessary
flexibility:

• In a parallel multifrontal solver, frontal matrices may be statically or dynamically
partitioned, in an irregular way in order to achieve a good load and memory balance;
hierarchical formats may pose heavy constraints or may be complex to handle in this
case.

• The HSS format achieves good compression rates only if each node of the HSS
tree defines an admissible cluster. This means that the diagonal blocks cannot be
permuted in an arbitrary way but have to appear along the diagonal in a specific
order which depends on the geometry of the separator (see Section 1.5.5.3). This
information may not be available or too complex to extrapolate in a general purpose,
algebraic solver.

• In HSS matrices the compressions are achieved through SVD or RRQR decompo-
sitions on block-rows and block-columns, i.e., strongly over or under-determined
submatrices. This has a twofold disadvantage. First it is based on the assumption
that all the columns in a block-row (or, equivalently, rows in a block-column) lie in
a small space which has been proven only for some classes of problems and may not
be true in general [29]. Second, due to the shape of the data, these operations are
often inefficient and difficult to parallelize; this has led researchers to consider the
use of communication-avoiding RRQR factorizations or the use of randomization
techniques.

• The assembly of a frontal matrix is very difficult to achieve if the contribution blocks
are stored in a hierarchical, low-rank format. For this reason, intermediate full-rank
representations are used in practice [99, 103, 105]. This, however, comes at a very
significant cost (see Figures 2.3 and 2.5).

The analysis presented in Section 2.3, although restricted to a limited number of
problems, suggests that a simpler format such as BLR delivers benefits comparable to
the H and HSS ones; BLR, though, represents a more suitable candidate for exploiting
low-rank techniques within a general-purpose, multifrontal solver as it presents several
advantages over hierarchical formats:

• The matrix blocking is flat, i.e., not hierarchical, and no relative order is imposed
between the blocks of the clustering. This is a very valuable feature because it sim-
plifies the computation of the index clustering and delivers much greater flexibility
for distributing the data in a parallel environment.

• The size of blocks is homogeneous and is such that the SVD or RRQR operations
done for computing the low-rank forms can be efficiently executed concurrently
with sequential code (for example, the LAPACK _GESVD or _GEQP3 routines). This
property is extremely valuable in a distributed memory environment where reducing
the volume of communications is important.
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2. Block Low-Rank (BLR) format

• The L21 submatrix can be easily represented in BLR format with a block clustering
induced by those of the L11 and L22 submatrices.

• Pivoting techniques seem hard and inefficient to use when factorizing a matrix stored
in a hierarchical format; this has led researchers to employ different types of factor-
izations, e.g. a ULV factorization [28, 106], which also aims at factorizing a HSS
matrix without using the original full-rank form. BLR format is more naturally
suited for applying partial threshold pivoting techniques within a standard LU fac-
torization, although it may induce a dynamic change in the BLR structure which
can lead to performance loss (in terms of compression), see Section 3.4.4.

• The assembly of frontal matrices is relatively easy if the contribution blocks are
in BLR format. We also have the option of switching to an intermediate full-rank
format because the compression is relatively cheap (see Figures 2.3 and 2.5).

Motivated by the previous observations, we focus in this paper on the BLR format
for exploiting, in an algebraic setting, low-rank techniques. The remainder of this paper
describes how block clustering is performed and the main algorithmic issues of the low-rank
factorization phase.

2.3 Comparison with the other formats in a dense context

A comparative study of the three formats described before (H, HSS and BLR) is presented
in this section in order to validate the potential of the BLR format in the context of
the development of algebraic methods for exploiting low-rank approximations within a
general purpose, multifrontal solver. We first analyze the number of operations required
to represent a dense matrix in either low-rank format (called the compression cost, based
on Rank-Revealing QR in this study) and compare the memory compression rates obtained
on two problems of given sizes. Then, we propose an experimental complexity study for
both the operation count and the number of entries in factors. This argumentation should
thus be viewed globally as a two steps reasoning based on two different aspects which
cannot be considered independently since each one needs the other one to make sense:

1. the compression cost and the number of entries in the given low-rank representation.

2. the complexity of the factorization based on the given low-rank representation.

2.3.1 Compression cost and memory compression

We use the H, HSS and BLR formats for compressing the dense matrices geo_root_Pois-
son128 and geo_root_Helmholtz128 presented in Section 1.6.4.1. The geometric sepa-
rator of either problem is a 128 � 128 surface lying in the middle of the cubic domain and
the corresponding Schur complement is thus a dense matrix of order 16384. For all three
formats, the low-rank threshold ε is set up to 10−14 and the clustering was defined by a
8 � 8 recursive checkerboard partitioning of the separator into blocks of size 256, using
the same approach as in the 4 � 8 case from Figure 2.1(a); this clustering is essentially
what is referred to as the weak admissibility condition in Börm [20, Remark 3.17]. Other
block sizes have been experimented and give comparable results for both problems. These
results, illustrated in Figures 2.2, 2.3, 2.4 and 2.5 are in compliance with what Wang et al.
[100] observed. Note that the clustering is recursive in order to be efficient for hierarchical

42



2.3. Comparison with the other formats in a dense context

formats; this is not needed for BLR. Also note that this kind of clustering is used in prac-
tice for regular grids for H [18, 58, 21] and HSS [105, 102] applications. Because we are
interested in compression cost and memory compression, no factorization is performed in
this section. In terms of memory compression, Figures 2.2 and 2.4 show that the three
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Figure 2.2: Comparison of the number of entries needed to represent geo_root_Pois-

son128 as a H, HSS and BLR matrix, expressed as a fraction of the full-rank number of
entries in the original matrix. The clustering is hand-computed and geometric.
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Figure 2.3: Compression cost comparison between H, HSS and BLR formats on the
geo_root_Poisson128 problem, expressed in number of operations required. The clus-
tering is hand-computed and geometric.

formats appear to be roughly equivalent at low precision: the truncation is so aggressive
that almost no information is stored anymore. In the case of the geo_root_Helmholtz128
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Figure 2.5: Compression cost comparison between H, HSS and BLR formats on the
geo_root_Helmholtz128 matrix, expressed in number of operations required. The clus-
tering is hand-computed and geometric.

matrix, the three formats provide comparable gains with BLR being slightly worse than
the other two at high accuracy and better when the approximation threshold is bigger
than 10−10. For the geo_root_Poisson128 matrix, BLR is consistently better than the
hierarchical formats although all three provide, in general, considerable gains. These pre-
liminary results suggest that the BLR format delivers gains that are comparable to those
obtained with the hierarchical ones on the test problems.
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2.3. Comparison with the other formats in a dense context

Figures 2.3 and 2.5 show the cost of computing the H, HSS and BLR formats start-
ing from a standard dense matrix. This is computed as the cost of the partial RRQR
factorizations; because for H and HSS matrices these operations are performed on much
larger blocks, the conversion to BLR format is much cheaper with respect to the cases
of hierarchical formats and also with respect to the cost of an LU factorization of the
same front. The cost of a full-rank factorization is indeed 10 (geo_root_Helmholtz128
problem) or 100 (geo_root_Poisson128 problem) times larger than the BLR compres-
sion cost at full accuracy (ε = 10−14), so the factorization remains dominant. This is
one of the reasons which led researchers to investigate other compression methods such
as randomized sampling [104] and adaptive cross approximations [18] in the context of
hierarchical formats. Moreover, because a truncated rank-revealing QR factorization is
used to compress the blocks, the compression cost decreases when the accuracy decreases.
This property is extremely useful as it allows the switching from full-rank to low-rank and
vice versa at an acceptable cost compared to the dense LU factorization cost.

2.3.2 Experimental dense complexity

The results of the previous section, which seem to make BLR format the most suitable
for our purpose, have to be counterbalanced by a study on the memory and operations
complexity which can be achieved thanks to these techniques. This will be done only for
the HSS format (and more particularly with the Hsolver package, see Section 1.6.1) as no
results on experimental dense complexity (for theoretical complexity, see Section 1.5.5)
for H matrices could be found in the literature.

For HSS, we exploited the operation counts given in Wang et al. [101] for the 3D
Helmholtz problem in the dense case to obtain an experimental complexity with 5 N �
N � N meshes (N = 100, N = 200, N = 300, N = 400 and N = 500). To obtain a
dense matrix, they perform a geometric nested dissection of the domain and compute in
full-rank the dense Schur complement associated with the top level separator. The dense
matrices obtained are thus of size n = N2 and correspond to what is called geo_ro-

ot_HelmholtzN in this dissertation. The HSS representations (obtained with a low-rank
threshold ε = 10−3) of these matrices are then factorized using a ULV factorization. We
did a tentative fit on the published data and obtained a O(n2 : 2) complexity. Although the
maximum numerical rank should, in theory, also be taken into account in the complexity,
this result gives a good insight of the behavior of the method. No results for the memory
nor for other problems could be found in the literature.

For BLR, the matrices geo_root_PoissonN, alg_root_PoissonN and geo_root_Helm-

holtzN, presented in Section 1.6.4.1, are considered. The BLR factorization algorithm
used to process these matrices is sketched in Algorithm 2.1 and is performed with a low-
rank threshold ε = 10−4.

Note that this algorithm is a slight modification of the standard block LU factorization
(Algorithm 1.3) where the standard Update phase is split blockwise in order to use low-rank
products. The interest of such a BLR factorization will be discussed later in the context
of the multifrontal BLR solver in Chapter 3. Although Algorithm 2.1 is sufficient for
this experimental complexity study, more algorithms will also be proposed in Chapter 3.
Then, the same tentative fit procedure as for the HSS case is used to derive experimental
memory and operation complexities.

Figures 2.6 and 2.7 show the memory and operation (respectively) experimental com-
plexities of the BLR dense factorization of the geo_root_PoissonN and alg_root_Pois-

sonN matrices. Figures 2.8 and 2.9 show the memory and operation (respectively) exper-
imental complexities of the BLR dense factorization of the geo_root_HelmholtzN matrix
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2. Block Low-Rank (BLR) format

Algorithm 2.1 Dense BLR L U factorization.
1: ◮ Input: a B � B-block matrix A of size n; A = [AI,J ]I=1:B,J=1:B

2: ◮ Output: A is replaced with its L U factors
3:

4: for I = 1 to B do
5: Factor: AI,I  LI,IUI,I

6: for J = I + 1 to B do
7: Solve (compute U): AI,J  L−1

I,I � AI,J

8: Compress: AI,J  XI,J � Y T
I,J ◮ Low-Rank compression

9: end for
10: for K = I + 1 to B do
11: Solve (compute L): AK,I  AK,I � U−1

I,I

12: Compress: AK,I  XK,I � Y T
K,I ◮ Low-Rank compression

13: end for
14: for J = I + 1 to B do
15: for K = I + 1 to B do
16: Update: AK,J  AK,J − XK,I � (Y T

K,IXI,J) � Y T
I,J ◮ Low-Rank updates

17: end for
18: end for
19: end for

(results with alg_root_HelmholtzN could not be obtained given the much larger amount
of computations needed to obtain them, compared to alg_root_PoissonN). In all four
figures, the theoretical complexities of the full-rank LU factorization are also given. Note
that the theoretical full-rank memory and operation complexities do not depend on the
shape of the associated separator.
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Figure 2.6: Experimental memory complexity for the BLR factorization of matrices
geo_root_PoissonN and alg_root_PoissonN based on a N � N � N , where N is re-
ferred to as the mesh size and n = N2. Note that the FR theoretical complexity does not
depend on whether the associated separator is algebraic or geometric.
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Figure 2.7: Experimental operation complexity for the BLR factorization of matrices
geo_root_PoissonN and alg_root_PoissonN based on a N � N � N , where N is referred
to as the mesh size and n = N2. Note that the FR theoretical complexity does not depend
on whether the associated separator is algebraic or geometric.
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Figure 2.8: Experimental memory complexity for the BLR factorization of matrices
geo_root_HelmholtzN based on a N � N � N , where N is referred to as the mesh size
and n = N2. Note that the FR theoretical complexity does not depend on whether the
associated separator is algebraic or geometric.

The complexities obtained are always at least one order less than the corresponding
full-rank complexity, both in memory and in operations. Comparing geo_root_PoissonN

and alg_root_PoissonN, we can observe that the complexities are worse with the al-
gebraic separator (O(n1 : 5) in memory, O(n2 : 2) in operations) than with the geomet-
ric one (O(n1 : 4) in memory, O(n2 : 1) in operations), because the regularity of the lat-
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Figure 2.9: Experimental operation complexity for the BLR factorization of matrices
geo_root_HelmholtzN based on a N � N � N , where N is referred to as the mesh size
and n = N2. Note that the FR theoretical complexity does not depend on whether the
associated separator is algebraic or geometric.

ter one enhances admissibility and thus compression. The complexities obtained with
geo_root_HelmholtzN are worse than for geo_root_PoissonN, both in memory (O(n1 : 7))
and complexity (O(n2 : 6)). This latter complexity O(n2 : 6) can be compared with the HSS
obtained from Wang et al. [101], which is better (O(n2 : 2)). Intuitively, it is unsurprising
that hierarchical formats have better complexities since the block size naturally increases
with the size of the problem. However, BLR has a lower compression cost and offers more
flexibility, which are critical in the context of a general algebraic solver. In Chapter 4, we
will also show that BLR allows for a good BLAS 3 efficiency and will compare our BLR
multifrontal solver with the HSS partially-structured solver StruMF in Section 4.3.1. We
summarize in Table 2.1 the memory and operation complexities for BLR (on all studied
problems) and HSS (for geo_root_HelmholtzN only).

Problem Hsolver BLR FR (theory)

mry ops mry ops mry ops

geo_root_HelmholtzN � O(n2 : 2) O(n1 : 7) O(n2 : 6) O(n2) O(n3)
geo_root_PoissonN � � O(n1 : 4) O(n2 : 1) O(n2) O(n3)
alg_root_PoissonN � � O(n1 : 5) O(n2 : 2) O(n2) O(n3)

Table 2.1: Summary of the experimental complexities obtained with dense matrices with
both HSS and BLR. mry stands for number of entries in factors. ops stands for number
of operations for the factorization. n is the size of the matrix.
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2.4 Numerical stability and low-rank threshold

In this section, the numerical stability of the Block Low-Rank format is discussed in
the context of the LU factorization. This study is inspired by what Demmel et al. [38]
did for standard LU with roundoff errors. We study the Algorithm 2.1 presented in the
previous section, in which the low-rank compression is done after the Solve phase. As in
the reference paper, no pivoting is performed. For the other variants of the algorithms
presented in Chapter 3, equivalent, but slightly different results, could be obtained [26].
In this study, we will use the matrix norm defined by:

||A|| = max
i,j

|ai,j |:

The aim of this study is to propose a bound of the relative residual res(L, U) = jjA−L̂Û jj

jjAjj
=

jj� Ajj

jjAjj
, where L̂ and Û are the LU factors of A computed with Algorithm 2.1, and to

analyse it in order to understand the numerical behavior of Algorithm 2.1. The choice of
the low-rank threshold is then discussed, based on these conclusions. In Demmel et al.
[38], assumptions on the numerical behavior of standard BLAS 3 operations are first stated
(u denotes the unit roundoff, c1, c2, c3 are polynomial constants):

1. If A ∈ R
m� n and B ∈ R

n� p then the computed approximation Ĉ to C = AB satisfies

Ĉ = AB + � C

where ||� C|| � c1(m, n, p)u||A||||B|| + O(u2)

2. The computed solution X̂ to the triangular systems TX = B, where T ∈ R
m� m and

B ∈ R
m� p and satisfies

TX̂ = B + � B

where ||� B|| � c2(m, p)u||T ||||X̂|| + O(u2)

3. The block level LU factorization is done in such a way that the computed LU factors
of A11 ∈ R

r� r satisfy
L̂11Û11 = A11 + � A11

where ||� A11|| � c3(r)u||L̂11||||Û11|| + O(u2)

For conventional BLAS 3 implementations, these assumptions hold [67].
Then and under these assumptions, a bound of res(L, U) was proposed in the case of

a (full-rank) block factorization with blocks of size r:

||� A|| � u
�

� (n, r)||A|| + � (n, r)||L̂||||Û ||
�

+ O(u2), (2.2)

where � (n, r) and � (n, r) are polynomial constants depending on c1, c2 and c3, and u the
unit roundoff, with 8 n 6= r, � (n, r) = 1 + � (n − r, r) and � (r, r) = 0.

2.4.1 Bound for the relative residual of a dense Block Low-Rank LU
factorization

We use the same techniques to derive a bound for the factorization based on Algorithm 2.1.
Assumptions 1, 2 and 3 are still considered valid, and a fourth one is added, assuming the
compression is performed using a Singular Value Decomposition (which will be assumed
throughout this bound study):
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4. If C ∈ R
m� n, X ∈ R

m� k and Y ∈ R
n� k then the low-rank approximation ~C to C

at numerical accuracy ε satisfies

Ĉ = XY T + � C

where ||� C|| � ε

We propose in Theorem 2.1 a bound for the dense BLR factorization, under assump-
tions 1 to 4.

Theorem 2.1
Let L̂ and Û be the LU factors of A ∈ R

n� n computed with Algorithm 2.1, u the unit
roundoff, r the size of each of the B blocks, εlij

the low-rank threshold used for block (i, j)
of L and εuij

the low-rank threshold used for block (i, j) of U . Then, under assumptions
1, 2 and 3, holds:

8 r ∈ N
∗, 8 n ∈ N

∗, r � n,

||� A|| � u

�

� (n, r)||A|| + � (n, r)
�

||L̂||||Û || + max(εL)||Û || + max(εU )||L̂|| + max(εL) max(εU )
� �

+ r max
�

max(εU )||L̂||, max(εL)||Û ||
�

+ O(u2)

(2.3)

where � is a constant depending on c1, c2 and c3 (see assumptions) and 8 n 6= r,

� (n, r) = 1, � (r, r) = 0. εU denotes the set of low-rank thresholds used for the compressions
of the blocks of U , so that max(εU ) = max

j>i
(εi,j), and similarly for L.

We first propose a proof of the theorem and will analyze it afterwards.

Proof. The proof is by induction on B, the number of blocks of size r.
We first show that (2.3) holds for B= 1. Then, we only compute the LU factorization
of A1,1 = A and thus max(εL) = max(εL) = 0. According to assumption 3, we have
L̂Û = A + � A where:

||� A|| � u||L̂||||Û || + O(u2) = u

�

� (r, r)||A|| + � (r, r)
�
||L̂||||Û || + max(εL)||Û ||

+ max(εU )||L̂|| + max(εL) � max(εU )
�
�

+ r max
�

max(εU )||L̂||, max(εL)||Û ||
�

,

since � (r, r) = 0, max(εL) = max(εL) = 0:

This proves the theorem for B= 1, and for all n ∈ N
� .

Let us assume (2.3) holds for a given B (and for all n) and then show that it holds
for B+1 (and for all n). We thus consider a 2 � 2 matrix A ∈ R

n� n with A11 ∈ R
r� r,

A21 ∈ R
n−r� r, A12 ∈ R

r� n−r and A22 ∈ R
n−r� n−r. The objective is to find a bound on

||� A11||, ||� A21||, ||� A12|| and ||� A22||. The latter one will be given by the induction
hypothesis. Then, we will conclude ||� A|| � max(||� A11||, ||� A21||, ||� A12||, ||� A22||).
We assume that A12 and A21 are not subdivided for the sake of clarity, noting that the
proof would work the same way. For the same reason, the “O(u2)” will be omitted.
The proof follows the same scheme as in Demmel et al. [38]. We will denote with a hat
symbol^the computed blocks without low-rank approximation, and with a tilde~symbol

50



2.4. Numerical stability and low-rank threshold

the computed blocks after low-rank approximation. We will intensively use the bound
||AB|| � p||A||||B||, where A ∈ R

m� p and B ∈ R
p� n. It will be used without any

comment. Note that it is the best such bound [38]. Bounding ||� A11|| is straightforward
as it entirely relies on assumption (3):

||� A11|| � c3(r)u||L̂11||||Û11||: (2.4)

Then, we want to bound ||� A21|| and ||� A12||.
The factors L̂21 and Û12 have to be computed first, which yields, according to assump-

tion (2):
(

L̂11Û12 = A12 + � Â12

||� Â12|| � c2(r, n − r)u||L̂11||||Û12||
(2.5)

and: (

L̂21Û11 = A21 + � Â21

||� Â21|| � c2(r, n − r)u||Û11||||L̂21||
(2.6)

The compression is then performed on the computed factors L̂21 and Û12 and thus,
based on assumption (4), we have:

(

Û12 = ~U12 + E12 where ||E12|| � ε12

L̂21 = ~L21 + E21 where ||E12|| � ε21
(2.7)

Thus, using (2.5), we obtain:
(

L̂11
~U12 = A12 + � Â12 − L̂11E12 = A12 + � A12

||� A12|| � c2(r, n − r)u||L̂11||||Û12|| + rε12||L̂11||
(2.8)

and similarly with (2.6):
(

L̂21
~U11 = A21 + � Â21 − E21Û11 = A21 + � A21

||� A21|| � c2(r, n − r)u||Û11||||L̂21|| + rε21||Û11||
(2.9)

We now want to update the Schur complement B using low-rank approximations. We know
B = A22 − L21U12. We first compute Ĉ = ~L21

~U12 +� Ĉ. Then, thanks to assumption (1),
we obtain:

||� Ĉ|| � c1(n − r, r, n − r)u
�

||~L21|||| ~U12||
�

Using (2.7), we have ~L21
~U12 = (L̂21+E21)(Û12+E12) = L̂21Û12+L̂21E12+E21Û12+E21E12,

which leads to:
Ĉ = L̂21Û12 + L̂21E12 + E21Û12 + E21E12 + � Ĉ

and:

� Ĉ � c1(n − r, r, n − r)u
�

||L̂21||||Û12|| + ||L̂21||ε12 + ||Û12||ε21 + ε12ε21

�

We also have
B̂ = A22 − Ĉ + F, (2.10)

where ||F || � u
�

||A22|| + ||Ĉ||
�

. It follows that B̂ = A22 − ~L21
~U12 + � B where

||� B|| � u

�

||A22|| + ||~L21
~U12||

�

+ ||� Ĉ||

� u

�

||A22|| + r||L̂21||||Û12|| + r||L̂21||ε12 + r||Û12||ε21 + rε12ε21

+c1(n − r, r, n − r)
�

||L̂21||||Û12|| + ||L̂21||ε12 + ||Û12||ε21 + ε12ε21

� �
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2. Block Low-Rank (BLR) format

Now we compute the LU factorization of B̂, leading to L̂22Û22 = B̂ + � B̂. Thanks to
the induction hypothesis (which holds for all n and thus for n − r too), we have:

||� B̂|| � u

�

� (n − r, r)||B̂|| + � (n − r, r)
�

||L̂22||||Û22|| + max(εL22
)||Û22||

+ max(εU22
)||L̂22|| + max(εL22

) � max(εU22
)
� �

+ r max
�

max(εU22
)||L̂||, max(εL22

)||Û ||
�

Then, since A22 = B̂ + L̂21Û12 − � B = L̂22Û22 + L̂21Û12 − � B̂ − � B, we obtain L̂22Û22 +
L̂21Û12 = A22 + � A22, where

||� A22|| � ||� B̂|| + ||� B||

� � (n − r, r)u||B̂||

+� (n − r, r)u
�

||L̂22||||Û22|| + max(εL22
)||L̂22||

+ max(εU22
)||Û22|| + max(εL22

) max(εU22
)
�

+r max
�

max(εU22
)||L̂||, max(εL22

)||Û ||
�

9
>>>>>=

>>>>>;

||� B̂||

+u

�

||A22|| + r||L̂21||||Û12|| + r||L̂21||ε12 + r||Û12||ε21 + rε12ε21

+c1(n − r, r, n − r)
�

||L̂21||||Û12|| + ||L̂21||ε12 + ||Û12||ε21 + ε12ε21

� �

9
>>=

>>;

||� B||

||� A22|| � ||� B̂|| + ||� B||

� � (n − r, r)u||B̂||

+ � (n − r, r)u
�

||L̂22||||Û22|| + max(εL22
)||L̂22||

+ max(εU22
)||Û22|| + max(εL22

) max(εU22
)
�

+ r max
�

max(εU22
)||L̂||, max(εL22

)||Û ||
�

+ u

�

||A22|| + r||L̂21||||Û12|| + r||L̂21||ε12 + r||Û12||ε21 + rε12ε21

+ c1(n − r, r, n − r)
�

||L̂21||||Û12|| + ||L̂21||ε12 + ||Û12||ε21 + ε12ε21

� �

Using (2.10) to expand ||B̂||, we obtain (ignoring terms in u2):

||� A22|| � u [1 + � (n − r, r)] ||A22||

+ u� (n − r, r)
h

||L̂22||||Û22|| + max(εL22
)||L̂22|| + max(εU22

)||Û22|| + max(εL22
) max(εU22

)
i

+ u
h

r + c1(n − r, r, n − r) + � (n − r, r)
ih

||L̂21||||Û12|| + ||L̂21||ε12 + ||Û12||ε21 + ε12ε21

i

+ r max
�

max(εU22
)||L̂||, max(εL22

)||Û ||
�

(2.11)

Finally, knowing that ||� A|| � max(||� A11||, ||� A21||, ||� A12||, ||� A22||), collecting (2.4),
(2.8), (2.9) and (2.11), and using the following bounds:

||A22|| � ||A||

8 i, j, ||L̂ij || � ||L̂||

8 i, j, ||Ûij || � ||Û ||
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2.4. Numerical stability and low-rank threshold

we obtain the desired result with:

� (n, r) =1 + � (n − r, r)

� (n, r) =max
h

� (n − r, r) + r + c1(n − r, r, n − r) + � (n − r, r), c2(n − r, r), c3(r)
i

This bound allows us to better define the low-rank threshold ε to use in order to
guarantee a good accuracy. Equation (2.8) shows that to obtain a very fine truncation,
the low-rank threshold εij(i < j) of the (i, j) block of U should be chosen with respect
to ||L̂ii||. The same statement holds with εij(i > j) and ||Ûjj || thanks to Equation (2.9).
However, computing norms at each step of the factorization requires many operations and
should be in practice avoided. We can relax these statement by looking directly at the
bound, which indicates that εL could be chosen with respect to ||Û || and εU with respect
to ||L̂||, which cannot be done because the low-rank thresholds need to be known before
all the factors have been computed. In order to avoid all these norms computations, an
absolute low-rank threshold is chosen. Then, it does not need to be different for L and U

so we will assume Theorem 2.3 is simplified as follows:

||� A|| � u

�

� (n, r)||A|| + � (n, r)
�

||L̂||||Û || + ε||Û || + ε||L̂|| + ε2
� �

+ rε max
�

||L̂||, ||Û ||
�

+ O(u2),
(2.12)

Note that in most cases, ε <
p

u so that uε2 = O(u2). Interestingly, the second term
is not multiplied by u so it will be dominant in most cases. Moreover, all the terms in uε

will also often be dominated by the terms in u and in ε, meaning that for values of ε not
too far from u, the error added to the full-rank standard LU error is rε max

�

||L̂||, ||Û ||
�

.

Given a stable full-rank factorization, max
�

||L̂||, ||Û ||
�

is contained (relatively to ||A||) so
that the Block Low-Rank factorization should also be stable.

2.4.2 Experiments and analysis

We present experimental results for the bound of Theorem 2.1 on different dense matrices.
The constants are set up to 1 as this configuration has led to satisfying results. For more
details about these constants, one can refer to Demmel and Higham [37]. As said before,
the low-rank threshold is chosen absolute. We want to show that err = jj� Ajj

jjAjj
is sharply

bounded by the bound of Theorem 2.1 and that it is close to the low-rank dropping pa-
rameter. The dense matrices studied in this section are obtained from sparse matrices:
we compute the top level separator (with METIS) of the graph of these sparse matrices
and eliminate all other variables so that a dense Schur complement is obtained. These
Schur complements are our dense matrices. The sparse matrices we use are Poisson32,
Helmholtz32 and some other matrices from the University of Florida Sparse Matrix Col-
lection (bbmat, onetone1, wang3 and wang4). These latter four matrices were used in Li
and Demmel [73] and are numerically difficult. The sizes of the corresponding Schur
complements are presented in Table 2.2.

This forms a set of unsymmetric, numerically difficult, matrices from different types of
applications on which the analysis is done with different block sizes and low-rank thresh-
olds. For each matrix, we give in Table 2.3 the block size used, the error err = jj� Ajj

jjAjj
and

the bound.
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2. Block Low-Rank (BLR) format

matrix name (UFL) Poisson32 Helmholtz32 bbmat onetone1 wang3 wang4

root size 1024 1024 1064 1032 961 957

Table 2.2: Size of the dense Schur complement associated with the top level separator of
a nested dissection computed with METIS.

The bounds are sharp for all the matrices for any low-rank threshold. In most of the
case, the bound is the same order of the observed error. However, the bound is sometimes
too optimistic, but even in these cases it remains very close: for instance for wang4,
ε = 10−6 and block size 107, the error is 1.38E-06 and the bound is 9.98E-07.

Note that other types of low-rank thresholds (such as relative to the diagonal L or U)
have been experimented in Buttari et al. [26], without any substantial improvement.
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2.4. Numerical stability and low-rank threshold

problem ε block size err bound

10−14 121 2.075068E-14 1.182143E-14
256 1.202998E-14 1.208495E-14

Helmholtz32 10−10 121 1.985522E-10 1.132319E-10
256 1.142500E-10 1.155068E-10

10−6 121 2.059789E-06 1.132314E-06
256 9.122070E-07 1.155063E-06

10−14 121 3.477928E-14 9.142465E-15
256 1.962034E-14 9.144515E-15

Poisson32 10−10 121 3.028155E-10 8.937881E-11
256 2.204627E-10 8.939897E-11

10−6 121 1.588831E-06 8.937861E-07
256 1.408218E-06 8.939876E-07

10−14 119 9.655596E-13 5.635941E-12
266 1.237731E-12 1.662243E-12

bbmat 10−10 119 2.293800E-11 1.055635E-09
266 1.109681E-11 6.407317E-10

10−6 119 6.781275E-07 1.050105E-05
266 5.127564E-08 6.391335E-06

10−14 115 6.913305E-11 1.800261E-09
258 1.318127E-11 1.124705E-10

onetone1 10−10 115 9.018629E-11 4.152371E-08
258 1.832740E-11 9.562843E-09

10−6 115 1.732020E-06 3.972760E-04
258 4.626845E-07 9.451328E-05

10−14 107 1.374437E-14 2.071843E-14
241 2.648347E-14 2.071843E-14

wang3 10−10 107 1.362081E-10 2.014647E-10
241 1.117009E-10 2.014647E-10

10−6 107 4.192184E-06 2.014641E-06
241 2.891060E-06 2.014641E-06

10−14 107 7.289383E-15 1.063247E-14
240 1.198408E-14 1.063247E-14

wang4 10−10 107 1.659250E-10 9.982301E-11
240 8.704217E-11 9.982301E-11

10−6 107 1.388475E-06 9.982236E-07
240 6.900322E-07 9.982236E-07

Table 2.3: Bounds and errors obtained for different problems, block sizes and low-rank
thresholds.
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Chapter 3

Block Low-Rank multifrontal
method

In this chapter, we present how the standard multifrontal method can be adapted to ben-
efit from the BLR format. We show how the BLR format can be used in the three main
phases of a multifrontal process and propose different factorization algorithms (which offer
different performance and features). We explain how standard symmetric and unsymmet-
ric pivoting can be easily adapted and present the distributed memory parallelization
scheme used with BLR.

3.1 General idea

As presented in Section 1.3, most of the linear algebra computations of the multifrontal
process are performed within dense matrices called fronts, which can be viewed as Schur
complements. The idea of a BLR multifrontal solver is to represent these dense fronts as
BLR matrices and to perform the partial factorization of the front with BLR algorithms.
The structure of a BLR front is given in Figure 3.1.

L i
1,1

U i
1,1

L i
di,di

U i
di,di

L i
2,2

U i
2,2

L i
di,di

U i
di,di

CB

Figure 3.1: Structure of a BLR front in its compressed and factorized form.
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3. Block Low-Rank multifrontal method

The diagonal blocks of the fully-summed part of the front are kept full-rank, while all
the others are approximated when worth it. The size of the blocks, although usually quite
regular, may vary slightly within a front (see Section 3.3). Note that Figure 3.1 represents
the front at the end of the partial factorization.

3.2 Assembly

Because of their nature, assembly operations are relatively inefficient [16] and their cost can
significantly affect the speed of the overall multifrontal factorization. In the experimental
code we developed, we decided not to perform the assembly operations in BLR format
in order to avoid an excessive amount of indirect addressing which may seriously impact
performance. An analogous choice was also made in related work on the usage of HSS
matrices within multifrontal solvers, as explained in Section 1.5.5.3.

Frontal matrices are, thus, assembled in full-rank form and compressed progressively,
by panels, as the partial front factorization proceeds, as shown in the next section. This,
however, does not mean that contribution blocks cannot be compressed; despite the fact
that compressing contribution blocks does not help reducing the overall number of floating
point operations (unless the updates are performed directly on compressed blocks, which
would have to be recompressed afterwards [18]), storing them in low-rank form has a
twofold advantage:

1. It allows the peak of active memory (see Section 1.3.3) to be reduced. In a sequential,
multifrontal method, at any moment, the active memory is defined as the sum of
the size of the CB stack (described in Section 1.3) plus the size of the front currently
being factorized. Stacking the contribution blocks in low-rank form reduces the
active memory. Although this makes the relative weight of the current front in the
active memory higher, it has to be noted that if the partial front factorization is
done in a left-looking fashion, frontal matrices can be assembled panelwise which
means that in the active memory only one panel at a time is stored in full-rank. We
have not implemented this feature yet, and, as discussed in the next section, the
front factorization is still performed in a right-looking fashion.

2. In a parallel environment, it reduces the communications volume (the total amount
of data sent between processors during the execution). In a parallel solver, frontal
matrices are generally mapped onto different MPI tasks which means that assembly
operations involve transferring contribution blocks from one MPI task to another.
By storing contribution blocks in low-rank form, the total volume of communications
can be reduced.

Because we want to assemble fronts in full-rank form, if a contribution block is in low-
rank form, it has to be decompressed before the associated assembly takes place. This
only increases the overall number of floating point operations by a small amount because
the cost of converting to and from the BLR format is contained, as shown in Figures 2.3
and 2.5. Because it is not necessary to systematically compress the contribution blocks, in
the experimental results of Chapter 4 and Chapter 5 the gains provided by this operation
and the associated cost are always reported separately (when reported at all).

3.3 Front variables clustering

The objective of clustering variables is to induce an efficient BLR representation of fronts.
To achieve this goal, two clusterings are needed: one for the fully-summed variables and
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one for the non fully-summed variables. For the sake of clarity, we always consider the
fully-summed variables of a frontal matrix to be associated with a separator. This anal-
ogy has been justified in Section 1.3.1, both when the assembly tree has been computed
through a nested dissection and through any other method. In this latter case, a separator
tree will refer to a tree matching the shape of the assembly tree where each node consists
of the fully-summed variables of the corresponding node in the assembly tree. Similarly,
the non fully-summed variables of a frontal matrix are associated with a border made
of pieces of other separators (again, see Section 1.3.1). To ease the presentation of our
algorithms and without loss of generality, we will assume that a nested dissection has
been used to build the assembly tree. The root frontal matrix (the one at the top of the
assembly tree) is then associated with the top level separator of the graph of the original
sparse matrix A. The fully-summed variables of any other frontal matrix are associated
with a separator located lower in the separator tree.

The BLR representation of a matrix is based upon the assumption that the frontal
matrices are assembled in such a way that variables belonging to the same cluster ap-
pear contiguously along the diagonal. These clusters are defined by a clustering, whose
efficiency relies on two tasks:

1. defining a suitable admissibility condition which basically describes what an optimal
clustering is;

2. partitioning variables with a strategy which gives as many admissible blocks as
possible, for each front.

Those two tasks are critical as the overall efficiency of the BLR multifrontal factorization
relies mainly on them.

3.3.1 Algebraic admissibility condition for BLR

To obtain the BLR representation of a front, variables have to be grouped into clusters
which satisfy as much as possible the admissibility condition presented in Section 1.5.4,
ensuring that the interaction block of two given admissible clusters is low-rank and can
thus be efficiently represented. However, in the context of a general purpose multifrontal
solver, this condition is not satisfying as it requires geometric information of the underlying
problem. For this reason, a black-box admissibility condition, which only needs the graph
G of the original matrix (or subraphs of it, for instance GS , the graph induced by the nodes
of the separator S corresponding to front F ), can be used (as explained in Section 1.5.4
and in Grasedyck et al. [59]). This condition, however, can be further simplified and
complemented with other practical considerations in order to define a clustering strategy
suited for the BLR format:

1. For efficiency reasons, the size of the clusters should be chosen between a minimum
value that ensures a good efficiency of the BLAS operations performed later with
X and Y matrices and a maximum value that allows the compressions (using SVDs
or RRQRs) to be performed with sequential routines and that enables an easy and
flexible distribution of blocks in a parallel environment.

2. The distance between any two clusters σ and τ has to be greater than zero
(distG(σ, τ) > 0) which amounts to saying that all the clusters are disjoint. Note
that this point alone is equivalent to the weak admissibility condition proposed by
Börm [20, Remark 3.17].
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3. Block Low-Rank multifrontal method

3. For a given size of clusters (and consequently a given number of clusters in G) the
diameter of each cluster should be as small as possible in order to group within
a cluster only those variables that are likely to strongly interact with each other.
For example, in the case where G is a flat surface, it is better to define clusters by
partitioning G in a checkerboard fashion rather than cutting it into slices.

Once the size of the clusters is chosen, the objectives 2 and 3 can be easily achieved by
feeding the graph G to any modern graph partitioning tool such as METIS or SCOTCH, as
discussed in the next two sections which show how to compute the clustering of the fully
assembled and non-fully assembled variables in a frontal matrix. Note that, in practice,
partitioning tools take the number of partitions as input and not their size; however the
size of the resulting clusters will differ only slightly because partitioning methods com-
monly try to balance the weight of the partitions. Because of the simple nature of the
BLR format which does not require a relative order between clusters, simpler and cheaper
partitioning or clustering techniques may be employed instead of complex tools such as
METIS or SCOTCH. Experimental results in Chapter 4 show that the cost induced by the
separators clustering using METIS is however acceptable.

To illustrate the BLR admissibility condition (and more particularly its point 3) and
give some insight about what the clustering should look like, we consider the dense matrix
geo_root_Poisson81 of size 6561, i.e. the root F associated with the top level separator
of the nested dissection of the 81 � 81 � 81 cubic domain. This geometric separator is
thus a square surface. To compute the BLR representation of F (we only consider the
compression of geo_root_Poisson81 without factorizing it as we want to focus on how
the admissibility condition influences the compression), we need to partition the separator
to obtain the desired blocking of the matrix. Figure 3.2 illustrates two different ways of
performing such a partitioning.

(a) slices clustering (b) checkerboard clustering

Figure 3.2: Two different clustering of the same surface.

The number of entries required to store this matrix in a BLR format based on the
latter two clustering heuristics is given in Table 3.1. The low-rank threshold ε is set up
to 10−14.

Slices clustering does not respect the admissibility condition (since it leads to small
distances between clusters, large cluster diameters) which translates into a bad memory
compression rate of 83% while checkerboard clustering does respect the admissibility con-
dition (large distances between clusters, small cluster diameters) and provides a compres-
sion rate of 57%. Although separators are in practice less regular than in this illustrative
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Format slices checkerboard

FR 43, 046, 721 (100%) 43, 046, 721 (100%)
BLR 35, 728, 778 (83%) 24, 536, 630 (57%)

Table 3.1: Number of entries to store the dense matrix A in full-rank (FR), BLR format
with slices clustering and BLR format with checkerboard clustering. Percentages are with
respect to the full-rank number of entries.

example, this gives a good intuition on the kind of heuristic we are targeting for the
partitioning.

3.3.2 Fully-summed variables/separator clustering

Given our admissibility condition, a method to actually perform the clustering on vari-
ables of a front has to be found. Because a front is made of two different (and more
importantly, independent) sets of variables (the fully-summed variables and the non fully-
summed variables, see Section 1.3), we need to compute two clusterings (note the clustering
of each front is an independent problem, even though the same method is applied each
time). We explain how the clustering can be computed first for the fully-summed vari-
ables (corresponding to variables of a separator) and then for the non fully-summed ones
(corresponding to variables of a border). Although ideas such as partitioning the whole
original graph or partitioning the subgraph induced by the separator's variables are very
natural and simple, we will first show why they fail (Section 3.3.2.1) and then propose
another method called the halo method (Section 3.3.2.2). In this section, we consider GS ,
the graph induced by the nodes of the separator S corresponding to front F .

3.3.2.1 Why basic approaches fail

Let us consider the graph shown in Figure 3.3(a). The squared grid represents the graph
of the original sparse matrix A. The dots represent the nodes associated with the fully-
summed variables of a given front. As explained in Section 1.3.1, these nodes are consid-
ered to always form a separator (in this example, it is the top level separator). Assume we
want to partition it to obtain the clustering of the front corresponding to this separator
and thus its BLR representation. Figure 3.3(b) gives one suitable partitioning of the sep-
arator which is the optimal one on this academic example, for a given number of clusters
(here, 3).

A graph partitioning tool such as METIS or SCOTCH with a target partition size will com-
pute BLR admissible blocks, given that the graph is connected enough, which cannot be
guaranteed for GS . Figure 3.4 shows the result obtained with the routine PartGraphKway

of METIS. This routine partitions a graph into k equal-size parts using the multilevel k-way
partitioning algorithm [69].

As some of the nodes of the subgraph are singletons (due to no connection with any
other vertex of the separator), no neighborhood information is available for the partitioner
so that disconnected variables (top right location in the subgraph) are basically assigned a
partition number which has no geometric meaning. To avoid this problem, let us consider
partitioning the whole graph of the domain and compute the partitioning of the separator
from this one, as shown in Figure 3.5. Unlike the previous case, the partitioner has too
much information, so that the induced partitioning of the separator has no guarantee to
be consistent with respect to what we aim at.

61



3. Block Low-Rank multifrontal method

•

•

•

•

•

•

•

•

•

•

•

(a) A simple graph and a separator.
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(b) Desired clustering of the separa-
tor.

Figure 3.3: A simple graph, a separator and the desired partitioning of the separator.
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(b) Partitioning obtained with
PartGraphKway

Figure 3.4: Partitioning the variables of the separator using its subgraph.

Another method has thus to be designed to overcome these difficulties. Called the
halo method, it can be viewed as a compromise between the latter two basic methods.

3.3.2.2 Halo method

We consider GS , the graph induced by the nodes of the separator S corresponding to front
F . To easily present the halo method, we consider a new example corresponding to the
worst case of a disconnected separator (Figure 3.6(a)). We have seen in Section 3.3.2.1
that a partitioning tool cannot always compute an admissible clustering based on such a
disconnected separator.

Although in reality such an extreme situation would rarely occur, it is quite commonly
the case where a separator is formed by multiple connected components that are close to
each other in the global graph G. This may lead to a sub-optimal clustering because
variables that strongly interact due to their adjacency will end up in different clusters.

This problem may be overcome by reconnecting GS in a way that takes into account
the geometry and shape of the separator: variables close to each other in the original graph
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(b) Induced separator partitioning

Figure 3.5: Separator partitioning using the whole original graph.

G have to be close to each other in the reconnected GS in order to satisfy the admissibility
condition. We describe an approach that achieves this objective by extending the subgraph
induced by each separator with a relatively small number of level sets (a vertex v belongs to
the level set Li of S if and only if there exist s ∈ S such that the distance between v and s is
exactly i). The union on these level sets for i = 1 to p the depth of the halo (together with
the original nodes of the separator) is called a halo. The graph of the halo will be referred
to as GH . Note that GS is included in GH . The graph partitioning tool is then run on
GH and the resulting partitioning projected back on the original subgraph GS . Figure 3.6
shows how this is done on the example above using just one level set. For a limited number
of level sets, the extended graph preserves the shape of the separator, keeps the cost of
computing the clustering limited and allows us to compute clusterings that better comply
with the strategy presented in the previous section. In practice, we observed that two
layers are enough to reconnect the separator and to obtain good performance (in 2D, one
layer is sufficient). However, on very complex domains, the optimal value may have to be
found experimentally.

To illustrate the halo method, we experimented it on top level separators computed
with SCOTCH on a 2D 5-points Laplacian and a 3D 7-points Laplacian. These separators
are highly disconnected due to the lack of diagonal edges in the graph. The results
in Figures 3.7 and 3.8(b) show that the partitioning, although not exactly shaped as a
checkerboard, does achieve our objective and respect the admissibility condition (clusters
are far and their diameter is relatively small). Two vertices which are close in the original
graph but disconnected in the separator graph are indeed kept in the same cluster (unless
a new cluster starts). Figure 3.8(a) illustrates the natural clustering obtained without
halo, i.e. obtained by partitioning the subgraph induced by the separator nodes itself.

3.3.3 Non fully-summed variables/border clustering

As explained before, two clusterings have to be found in order to obtain the BLR repre-
sentation of a front. The halo method has been introduced and allows the clustering of
the variables of the separator (i.e., the fully-summed variables) to be robust and efficient.
Obviously, the halo method applies for any set of variables, regardless of our context.
Thus, the first natural idea is to apply the halo method to the set of non fully-summed
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(c) 3-way partitioning of GH
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(d) 3-way partitioning of GS

Figure 3.6: Halo-based partitioning of GS with depth 1. GH is partitioned using METIS.

Figure 3.7: The halo method applied on the top level separator computed with SCOTCH

on a 2D 5-points stencil Laplacian problems.

variables which yields a good quality clustering, as shows Section 3.3.3.1. However, we
will show that this strategy is far from being optimal in terms of the amount of work to
do to achieve this clustering. Consequently, we will propose in Section 3.3.3.2 a simplified
strategy which benefits from the underlying tree structure in the multifrontal process and
gives almost equally efficient BLR representations.

3.3.3.1 Explicit border clustering

The previous section shows how the halo method can be employed to compute the cluster-
ing of a separator. This method can obviously be used for clustering any set of variables
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3.3. Front variables clustering

(a) Without halo. (b) With halo.

Figure 3.8: The clustering of the top level separator computed with SCOTCH on a 3D
7-points stencil Laplacian problems, with and without the halo method.

and, therefore, also those in the non fully-assembled part of the front that form a border
around the corresponding separator (see Section 1.3). This ensures that the clustering of
the border will be admissible. Figure 3.9(b) illustrates the way the clusters are computed
using the halo method for both the separator and the border. Let us consider a particu-
lar border associated with the separator circled in Figure 3.9(a). This separator has been
clustered with the halo method. Then, the same method is applied on the border variables
which gives a similar clustering, illustrated in Figure 3.9(b).

(a) A nested dissection of the domain where the vari-
ables of the current separator have been partitioned
with the halo method. The clustering of the current
border remains to be computed.

(b) Zoom on current separator and
border. The clustering of the border
of the current separator is obtained
with the halo method, so that opti-
mal regular clusters are found. Each
segment is a cluster.

Figure 3.9: Explicit clustering where the halo method is applied both on the separator
and on the border variables.

Although this approach leads to an efficient clustering of the non fully-summed vari-
ables, it may suffer performance issues because it actually does many times the same
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3. Block Low-Rank multifrontal method

task. As illustrated in Figure 3.9(a), because of the structure of the assembly tree, one
particular variable belongs to one separator which, in turn, may be (partially) included in
multiple borders. Inversely, as Figure 3.9(a) and 3.11 illustrate, a border can be viewed
as a union of parts of separators lying on the path that connects the related node to the
root of the elimination tree.

3.3.3.2 Inherited border clustering

As a consequence of the previous comment, each clustering of a separator can be used
partially for the clustering of several borders. Thus, clustering the variables of all the
separators is sufficient to obtain, by induction, a clustering of the borders.

(a) A nested dissection of the domain where the
variables of each separator have been clustered
with the halo method, i.e. each segment is a
group of variables.

2

1

tiny sub-part

tiny sub-part

tiny sub-part

no sub-part

(b) Zoom on current separator and border. The
separator' s clustering has been computed with
the halo method. The border' s clustering is in-
herited from several separator clusterings. At
some corners, a cluster maybe not be entirely
involved in current front so that tiny clusters
may appear.

Figure 3.10: Inherited clustering where the separators are partitioned with the halo
method and the borders inherit their clustering.

A top-down traversal of the separator tree is performed and the variables of each
separator are clustered with the halo method proposed in Section 3.3.2.2. Then, the
clustering of a given border is inherited from the clustering of all the separators it is made
of, as Figure 3.10(b) shows. Figure 3.11 illustrates this idea from the point of view of a
front.

In a given front (viewed here as a child front), variables which are non fully-summed
will be eliminated in other fronts located higher in the tree. Among these variables, some
will be eliminated in the same front (viewed here as a parent front), meaning they belong
to the same separator. In the child front, one can thus obtain a clustering of these variables
based on the clustering of the separator they belong to. This clustering is in fact included
in the clustering of the separator (as all the fully-summed variables of the parent front
may not be present in the non fully-summed variables of the child front). This being valid
for all the non fully-summed variables of the child front, one can obtain a clustering of
this front from the clustering of separators located upper in the tree.
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3.3. Front variables clustering

child

parent

Figure 3.11: Inheriting the clustering from the front point of view: The clustering of the
Schur complement in inherited from the clustering of the fully-summed variables of the
parents.

Depending on where the separators intersect, small clusters, on which the compression
cannot provide much memory and operation reduction, may be formed; as a result, the
CB may include blocks which are too small to be effectively compressed and to achieve a
good BLAS efficiency for the related operations. Note that this problem also affects the
blocking of the L21 submatrix but to a lower extent because the effect is damped by the
good clustering computed for the separator (see Figure 3.12).

(a) L11 blocking : optimal
blocks because any block in-
terconnects two optimal clus-
ters from the corresponding
original separator clustering

(b) L21 blocking : close to op-
timal block because any block
interconnects at least one op-
timal cluster from the cor-
responding original separator
clustering

1
2

1 2

(c) CB blocking : not always
optimal because a block possibly
interconnects two non-optimal
small clusters from the inherited
clustering of the border. Braces
show a reclustering possibility.

Figure 3.12: Relation between inherited clustering and front blocking. The small clusters
correspond to clusters located in corners in Figure 3.10(b). The large clusters correspond
to optimal clusters which are integrally kept in the current front. Note that not all the
large clusters of Figure 3.10(b) are represented here.

To recover BLAS efficiency, a reclustering step can be performed by merging neighbor
clusters together in order to increase the block size, as Figure 3.12(c) shows. Recovering
the low-rank compression is less straightforward. Indeed, it is not guaranteed that two
neighbor blocks in the front correspond to two neighbor clusters in the graph. Constraining
the clustering strategy to obtain this property considerably increases its complexity (by
the addition of notions such as global cluster ordering, recursive ordering as in HSS for
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3. Block Low-Rank multifrontal method

instance) with a small payoff since the proportion of small clusters in a front is usually
very small.

It has to be noted that the inherited clustering also provides another convenient prop-
erty: the blocking of a frontal matrix is compatible with the blocking of its parent front.
This translates into the fact that one block of its Schur complement will be assembled into
exactly one block of the parent front, as by construction a block of a Schur complement
is always included in one single block in the fully-summed part of another frontal matrix.
This considerably eases the assembly of frontal matrices especially in the parallel case
where frontal matrices are distributed.

Experiments have shown that, as expected, the inherited clustering is much faster than
the explicit clustering (see Table 3.2 with the example of the Helmholtz128 problem), with
very similar global performance. Moreover, the overhead due to the clustering is quite
low compared to the analysis phase (which is itself, often, dominated by the factorization
phase).

clustering full rank
analysisinh exp

5 s. 42 s. 62 s.

Table 3.2: Time spent in the clustering phase in the explicit (exp) and inherited (inh)
cases. The clustering being performed during the analysis phase, we also indicate the
full-rank analysis time.

The inherited clustering strategy will thus be used throughout this study.

3.4 Factorization

Fronts are assembled following an order computed during the analysis and leading to
contiguous BLR blocks. The objective is then to perform all the standard computations
in a way that the low-rank kernels presented in Section 1.5.3 can be exploited to reduce
the computational cost associated to the partial factorizations. This requires the design of
new algorithms which are able to benefit from the low-rank operation efficiency without
giving up all the other features needed in a general multifrontal solver such as pivoting
and parallelism. We first define some notations related to the standard tasks performed
in a full-rank partial factorization and use them afterwards to present several new BLR
algorithms, which shows the algorithmic flexibility of our approach. We then explain how
pivoting and parallelism can be achieved within this context.

3.4.1 Standard tasks

Once a front has been assembled, a partial factorization is performed in order to compute
the corresponding part of the global factors. These computations have a large influence
on the global performance of the software. Moreover, the storage of these factor parts
becomes larger and larger as matrix size grows. It is thus critical to improve this phase.
We assume that clusterings CF S for the fully-summed (FS) variables and CNF S for the non
fully-summed (NFS) variables have been computed, which give a blocking of the front.
In the full-rank standard case, four fundamental tasks must be performed in order to
compute the blocked incomplete factorization of the front F :
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3.4. Factorization

1. factor (F) Lρ,ρLT
ρ,ρ = Fρ,ρ for ρ ∈ CF S .

2. solve (S) Lτ,ρ = Fτ,ρL−T
ρ,ρ for ρ ∈ CF S , τ ∈ CF S ∪ CNF S ,

where τ > ρ (τ > ρ if Fτ,τ

appears after Fρ,ρ on the

diagonal).

3. internal update (U) Fτ,σ = Fτ,σ − Lτ,ρLT
σ,ρ for ρ, σ ∈ CF S , τ ∈ CF S ∪ CNF S ,

where τ ≥ σ > ρ.

4. external update (U) Fτ,σ = Fτ,σ − Lτ,ρLT
σ,ρ for ρ ∈ CF S , τ, σ ∈ CNF S ,

where τ ≥ σ.

As the factorization is done panelwise, two “update” phases are defined. The internal
update is the right-looking update of blocks whose rows or columns correspond to fully
summed variables. The external update is the right-looking update of the contribution
block, as illustrated in Figure 3.13.

L
U

L

L

L

L

U U U U

internal
update

external
update

non full-summed
variables

fully-summed
variables

Figure 3.13: Difference between internal and external update. All shaded blocks are
updated through external update are they belong to the contribution block. All white
blocks are updated through internal update.

3.4.2 Low-rank algorithms

Looking back at Section 1.5.3, one can observe that three of the four standard tasks can
be improved by using low-rank blocks: the “solve” and the two “update” phases.

To obtain BLR algorithms, it is necessary to compress the blocks at some point. We
thus add a new task which corresponds to the compression of a block defined by the clus-
terings:

5. compress (C) Lτ,ρ ≃ Xτ,α1
Y T

ρ,α2
for ρ ∈ CF S , τ ∈ CF S ∪ CNF S ,
where |α1| = |α2| = numerical rank
of Lτ,ρ.

Due to the flexibility of the BLR format, several versions of the BLR factorization
of a front can be implemented based on these five tasks, depending on the position of
the compression. Figure 3.14 presents five different algorithms for the factorization of a
front. Note that for the sake of simplicity, the order relations between σ, ρ and τ are now
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3. Block Low-Rank multifrontal method

ignored. Similarly, the subscripts 1 and 2 in α1 and α2 will be omitted. The first algorithm
is the conventional full-rank partial factorization [57] and is called FSUU, which stands
for Factor, Solve, internal Update, external Update. The other four are based on the
BLR representation of the front and differ on when the compression is performed. As we
move down the figure, from FSUUC to FCSUU, the computational cost decreases as we are
performing the compression earlier and thus making more and more of an approximation
to the factorization.

FSUU : no compression
for ρ ∈ CF S in ascending order

F factor Fρ,ρ = Lρ,ρLT
ρ,ρ

S solve Lτ,ρ = Fτ,ρL−T
ρ,ρ for τ ∈ CF S ∪ CNF S

U internal update Fτ,σ = Fτ,σ − Lτ,ρLT
σ,ρ for σ ∈ CF S , τ ∈ CF S ∪ CNF S

U external update Fτ,σ = Fτ,σ − Lτ,ρLT
σ,ρ for τ, σ ∈ CNF S

FSUUC : compress after updates
for ρ ∈ CF S in ascending order

F factor Fρ,ρ = Lρ,ρLT
ρ,ρ

S solve Lτ,ρ = Fτ,ρL−T
ρ,ρ for τ ∈ CF S ∪ CNF S

U internal update Fτ,σ = Fτ,σ − Lτ,ρLT
σ,ρ for σ ∈ CF S , τ ∈ CF S ∪ CNF S

U external update Fτ,σ = Fτ,σ − Lτ,ρLT
σ,ρ for τ, σ ∈ CNF S

C compress Lτ,ρ ≃ Xτ,αY T
ρ,α for τ ∈ CF S ∪ CNF S

FSUCU : compress after internal and before external updates
for ρ ∈ CF S in ascending order

F factor Fρ,ρ = Lρ,ρLT
ρ,ρ

S solve Lτ,ρ = Fτ,ρL−T
ρ,ρ for τ ∈ CF S ∪ CNF S

U internal update Fτ,σ = Fτ,σ − Lτ,ρLT
σ,ρ for σ ∈ CF S , τ ∈ CF S ∪ CNF S

C compress Lτ,ρ ≃ Xτ,αY T
ρ,α for τ ∈ CF S ∪ CNF S

U external update Fτ,σ = Fτ,σ − Xτ,α

�

Y T
ρ,αYρ,�

�

XT
σ,� for τ, σ ∈ CNF S

FSCUU : compress before updates
for ρ ∈ CF S in ascending order

F factor Fρ,ρ = Lρ,ρLT
ρ,ρ

S solve Lτ,ρ = Fτ,ρL−T
ρ,ρ for τ ∈ CF S ∪ CNF S

C compress Lτ,ρ ≃ Xτ,αY T
ρ,α for τ ∈ CF S ∪ CNF S

U internal update Fτ,σ = Fτ,σ − Xτ,α

�

Y T
ρ,αYρ,�

�

XT
σ,� for σ ∈ CF S , τ ∈ CF S ∪ CNF S

U external update Fτ,σ = Fτ,σ − Xτ,α

�

Y T
ρ,αYρ,�

�

XT
σ,� for τ, σ ∈ CNF S

FCSUU : compress before solve
for ρ ∈ CF S in ascending order

F factor Fρ,ρ = Lρ,ρLT
ρ,ρ

C compress Fτ,ρ ≃ Xτ,αZT
ρ,α for τ ∈ CF S ∪ CNF S

S solve Lτ,ρ = Xτ,α(ZT
ρ,αL−T

ρ,ρ ) for τ ∈ CF S ∪ CNF S

i.e, Lτ,ρ = Xτ,αY T
ρ,α with Y T

ρ,α = ZT
ρ,αL−T

ρ,ρ

U internal update Fτ,σ = Fτ,σ − Xτ,α

�

Y T
ρ,αYρ,�

�

XT
σ,� for σ ∈ CF S , τ ∈ CF S ∪ CNF S

U external update Fτ,σ = Fτ,σ − Xτ,α

�

Y T
ρ,αYρ,�

�

XT
σ,� for τ, σ ∈ CNF S

Figure 3.14: Standard and BLR factorizations of a symmetric front. The flexibility of the
BLR format allows the definition of 4 different BLR factorization algorithms. When two
different compressed blocks have to be used, variable � is used in addition to α.
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The algorithms in Figure 3.14 target different objectives in the context of applicative
solvers. FSUUC can be used when an accurate factorization is needed (there is no approx-
imation during the factorization in this case because the compression is fully done off-line
at the end of standard processing of each front) and when speeding up the solve phase is
critical, for instance if many right-hand sides are involved. This may be particularly ben-
eficial in Newton-type solvers where multiple solves have to be done based on the same
factorization for example. On the other hand, FCSUU computes a more approximated
factorization, useful in the typical context of preconditioning or when a very accurate
solution is not needed due to, for instance, measurements limitations. This strategy limits
the scope of BLR pivoting because no permutations within a BLR panel can be done after
compression.

Note that a sixth task can be added which corresponds to the compression of the CB:

6. external compress (Ce) Fτ,σ ≃ Uτ,αV T
σ,α for τ, σ ∈ CNF S .

This task can be performed at the end of any of the algorithms in Figure 3.14 in order
to decrease the active memory size as well as the amount of communication necessary to
assemble the parent front in a parallel context, as explained in Section 3.2. This external
compression could also theoretically be done before the external update, in which case
these right-looking updates have to be done in compressed format. This considerably
increases the complexity of the operation as recompression phases are needed. For this
reason, we did not consider this option.

We decided to implement and study Algorithm FSCUU as it gives the best compromise
between savings (for both memory and operations) and robustness of the solver:

• The number of operations needed for the solve task is much lower than for the internal
and external updates so that we can focus on these two latter tasks without using a
low-rank solve operation.

• The solve task is done accurately which avoids a twofold approximation of the factors.

• Standard symmetric and unsymmetric pivoting strategies can be used which ensures
the robustness of the solver (in which case the tasks F and S are, in pratice, done si-
multaneously). In the context of a general distributed multifrontal solver which aims
at solving large problems, pivoting is indeed critical to tackle challenging problems,
on which low-rank technologies are particularly efficient (see results in Chapter 4).

In the case of symmetric matrices, note that the Update operation can be further
improved by exploiting the orthogonality of the U part of the low-rank form. If one
compresses LT

σ,ρ instead of Lσ,ρ, the BLR update operation becomes

Fτ,σ = Fτ,σ − Y T
τ,α

�

XT
τ,αXσ,�

�

Yσ,�

When τ = σ, we obtain Xτ,α = Xσ,� which yields XT
τ,αXσ,� = I thanks to the orthogonality

of X.

3.4.3 Implementation

To implement algorithm FSCUU efficiently, nested panels are introduced for the partial
factorization of each front. The original panels, as explained in Section 1.6.2 (Figure 1.23),
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3. Block Low-Rank multifrontal method

are kept unchanged and are from now on called the inner panels. The other panels are
larger than the inner ones and are called outer panels. They can be viewed as panels of
panels and correspond to the BLR blocks defined by the clustering of the fully-summed
variables (for this reason, they will be sometimes also referred to as BLR panels, without
distinction). This idea is illustrated in Figure 3.15.

in
ne

r 
pa

ne
l

 (
si

ze
 [
32

-9
6]

)

BLR panel corresponding
to one cluster

Figure 3.15: An example of nested panels. Inner panels correspond to standard panels
of size 32, 64 or 96, typically. Outer BLR panels are defined by the clustering. Once each
inner panel has been processed, the BLR panel is ready to be demoted.

In the BLR factorization, a given inner panel behaves the same way as in the standard
factorization, except that it no longer updates all the trailing submatrix with BLAS 3
operations; instead, it performs BLAS 3 right-looking updates only within the BLR panel.
At the end of the processing of a BLR panel, the trailing submatrix can be updated through
BLAS 3 operations taking advantage of the compressed form of the blocks. In practice,
this yields a procedure where the Factor and Solve phases (see Section 3.4.2) are performed
within each BLR panels by means of inner panels computations. Then the compression
is performed on current BLR panel and the BLR right-looking update can be done. If
a full-rank factorization is performed, this nested panel scheme will also be used with a
default outer panel size of 100. This allows for a slightly faster full-rank factorization due
to faster cache accesses.

Note that this nested panels scheme can also be adapted to any of the algorithms
presented in Section 3.4.2, by slightly rearranging and modifying the way operations within
inner panels are performed. For instance, if one is interested in implementing algorithm
FCSUU, operations on inner panels would have to be limited to the diagonal block of the
BLR panel. When this diagonal block is fully updated, the compression can be performed
and then the Solve phase can be performed on already compressed block at the outer panel
scale.

3.4.4 Pivoting

Thanks to the flexibility of the BLR format, standard pivoting can be applied in the
BLR factorization algorithm in order to ensure a better numerical stability in case of hard
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3.4. Factorization

problems. Pivoting can be performed for any BLR factorization algorithm besides FCSUU,
as explained in Section 3.4.2. Pivot postponing happens at both the inner and the outer
panels. Pivots are first postponed (if they could not be eliminated), as in the full-rank
case, between inner panels in the current BLR panel. When all the variables of current
BLR panel have been processed, if uneliminated variables remain, then the second level
of postponing occurs: these variables are postponed to the next BLR panel (and, thus, to
its first inner panel) which is consequently enlarged, as illustrated in Figure 3.16. At the
end of the last outer panel, if uneliminated variables remain, they are then delayed to a
parent front, just as in the standard algorithm presented in Section 1.6.2.

CB

current BLR panel

non-eliminated variables

to be updated with
BLAS 3 BLR operations

eliminated variables

next BLR panel
(size has increased)

in
ne

r
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l

Figure 3.16: Sequential BLR factorization scheme with BLR pivoting. Inner panels
are of size 32, 64 or 96, typically. Outer panels are defined by the clustering. The
internal right-looking updates, performed within each outer panel using inner panels are
not represented. Arrows represent the right-looking updates performed with BLR blocks,
both in the fully-summed part and the non fully-summed part.

This standard, robust pivoting strategy can be easily coupled with the BLR format
thanks to its flat structure. It is indeed possible to dynamically modify the size of a cluster
without perturbing the format and without increasing the complexity of the computations.
The only issue in this operation is whether or not the admissibility of the clustering will
be maintained in such cases. In situations where many postponed (or delayed) pivots
occur, the compression may indeed be heavily degraded. Fortunately, as a relatively
small number of fronts is selected for BLR (see Section 3.6), the number of postponed (or
delayed) pivots within BLR fronts is likely to be contained. The influence of pivoting over
the compression rates will be investigated in Section 4.2.5.

Note that this nested panel implementation can also be used when a full-rank factor-
ization is performed. For locality reasons (cache access), this implementation has showed
slightly better performance in the full-rank case than with the single panel standard im-
plementation.
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3. Block Low-Rank multifrontal method

3.4.5 Distributed-memory parallelism

The standard communication pattern presented in Section 1.6.2 also benefits from the
nested panels and the compression of the BLR blocks within outer panels. For the sake
of simplicity, the symmetric case is not described.

The master sends rows at the end of the processing of each outer panel, so that
compressed blocks of U can be sent, decreasing the total volume of messages involved
during the factorization of type 2 nodes. Each slave is thus in charge of compressing its
own BLR blocks of L and to use them as well as the received BLR blocks to perform the
BLR right-looking update of its rows. Note that the master also perform compressions
in the blocks of L corresponding to the fully-summed variables block, as illustrated in
Figure 3.17 in the unsymmetric case.

CB

compressed by the master (

to be updated with
BLAS 3 BLR operations

compressed by slaves

)

Figure 3.17: Communication pattern used within type 2 nodes. P0 is the master process,
holding all the fully-summed rows. In the unsymmetric case, it is the only process sending
messages. In the symmetric case, slaves also send messages to other slaves. Compression
is done both by the master and by the slaves. Compressed blocks are sent so that the
volume of communication decreases.

The data access pattern of the discussed parallel factorization algorithm raises the
question of the distribution of the rows among available slave processes. In an ideal case,
the block partitioning induced by the clustering would conform with the 1D row-wise
distribution among slave processes, meaning a Block Low-Rank would not be split between
two slaves. However, this is in practice not possible since the clustering is performed
statically during the analysis while the distribution pattern is dynamically adapted during
the execution (based on a complex strategy which aims at fulfilling some critical memory
and workload constraints [11]). Thus, one must adjust the clustering to the distribution
pattern on-fly to ensure that good parallel performance is maintained. Fortunately, one
of the arguments for choosing a flat, flexible low-rank format (see Section 2.2) is that
the clustering can easily be dynamically adapted to other constraints, such as parallel
distribution, without greatly perturbing the structure. In this context, at most two blocks
per slave will be affected (the first and the last one of each slave) and because several
blocks will be given to each process, this does not affect much the overall compression, as
shown in Section 4.2.6. The dynamic clustering adaptation is illustrated in Figure 3.18 in a
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typical configuration, where 4 blocks out of 17 have slightly changed. The figure represents
only slave processes as the master process always respects the original clustering.

decreased 

increased

block size has:

Figure 3.18: Dynamic adaptation of the clustering to adapt to the 1D row-wise distribution
constraints, represented with dashed lines. Dotted lines represent the original clustering.
The actual clustering used for low-rank compressions remains unchanged except for four
blocks: two are enlarged, two are shortened.

The BLR multifrontal factorization is thus an improved factorization where both clas-
sical pivoting and distributed-memory parallelism methods can still be used with only
minor modifications. The BLR factorization algorithms being based on compressing the
blocks of the factors, the solution phase (which exploits the factors) has to be adapted,
too. Interestingly, low-rank kernels together with compressed factors can also be exploited
in this phase to decrease the number of operations involved.

3.5 Block Low-Rank solution

We first present the BLR solution algorithm and then theoretically demonstrate how
the memory compression of the factor and the operation compression of the solution are
related. Note that the BLR solution algorithm has not been implemented yet, so that
the factors have to be decompressed before performing the forward elimination and the
backward substitution phases.

Let F i be the partial factor computed within front i. The lower triangular part of F i

is Li while its upper triangular part is U i. Assume F i is stored as a BLR lower triangular
matrix with di clusters in the fully-summed part, and hi clusters on the non fully-summed
part. The structure of F i is illustrated in Figure 3.1. Each diagonal block is full-rank.
Each off-diagonal block Li

α� or U i
α� has a rank of ki

α� . The clusters are all assumed of
same size b. This assumption is not a strong constraint as the clustering of the front is
usually well balanced, and will be useful for Section 3.5.2.
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3. Block Low-Rank multifrontal method

As the same computations are performed on all the fronts during the multifrontal
solution phase, we will focus throughout this section on the factor F i associated with a
given front.

3.5.1 Algorithm

As showed in Section 1.3, the multifrontal solution consists in two phases, namely the
forward elimination and the backward substitution. Each of these two phases can be
viewed as a tree traversal. At each node of the tree, a partial solve operation is performed
to compute the entries of the unknowns corresponding to the fully summed variables of
the corresponding front. Some entries of the right-hand side are also updated. If the
factor is compressed, the standard algorithm in Section 1.3 has to be slightly modified to
benefit from the BLR forms, resulting in Algorithm 3.1 and 3.2.

The BLR forward elimination is given in Algorithm 3.1. This procedure is applied to
all the fronts of the assembly tree, in a bottom to up traversal.

Algorithm 3.1 BLR forward elimination in front Fi.
1: Solution of Liyi = bi

2:

3: yi  bi

4: for c = 1 to di do
5: yc  (Li

c,c)
−1 � yc

6: for r = c + 1 to di + hi do
7: yr  yr − Xi

rc �
�

(Y i
rc)

T � yc

�

◮ low-rank product
8: end for
9: end for

Figure 3.19 gives a pictorial explanation of Algorithm 3.1.

Figure 3.19: Illustration of the BLR forward elimination in front Fi.

Note that the forward elimination is done in a right-looking way. It is followed by
a backward substitution phase, which is done in a left-looking fashion. This phase is
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applied to each front following a top-down traversal of the tree and the algorithm is given
in Algorithm 3.2.

Algorithm 3.2 BLR backward substitution Fi.
1: Solution of U ixi = yi

2:

3: xi  yi

4: for r = di to 1 by − 1 do
5: for c = r + 1 to di + hi do
6: xi

r  xi
r − Xrc � ((Yrc)T � xi

c) ◮ low-rank product
7: end for
8: xi

r  (U i
r,r)

−1 � xi
r

9: end for

As for the forward elimination, we give in Figure 3.20 a pictorial explanation of the
algorithm.

Figure 3.20: Illustration of the BLR forward elimination in front Fi.

The low-rank blocks which appear in the factors L and U can thus be used to reduce
the amount of operations needed for both the forward elimination and the backward sub-
stitution phases of the multifrontal solution phase. Interestingly, this operation reduction
is directly related to the memory reduction achieved in the factors. We show in the next
section the actual relationship between them.

3.5.2 Operation count

If using the low-rank blocks during the solution phase is algorithmically quite straightfor-
ward thanks to the flat non-hierarchical BLR approach, the exact relationship between
the overall factor compression of the factor and the operation compression in the solve
phase is less obvious.

We first focus on a given front i (i.e., on a partial solution), as illustrated in Figure 3.1
and will use the notations introduced in the introduction of Section 3.5. Then, the result
is extended to the overall solution process and finally to the overall solve process.
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3. Block Low-Rank multifrontal method

We remind the reader that the number of operations needed to compute x from LUx =
b (where L and U are N � N lower and upper triangular matrices, respectively, b is a vector
of size N) is 2N2 [57] (using forward elimination and backward substitution).

A compression rate T ∈ R, 0 � T � 1 between an original data Do and a final data
Df is defined as follows:

Df = T � Do

For instance, the BLR factor compression rate TF is defined as:

|LBLR| = TF � |LF R|

where |LF R| and |LBLR| are the number of entries in the full-rank factors and in the BLR
factors, respectively.

We first want to compute the number of operations needed to perform the partial
solution on a given front i. The result is given in Lemma 3.1.

Lemma 3.1 - Partial solution operation count for a BLR front.
Let Li and U i be the factors associated with front i, having di clusters of size b in the
fully-summed part and hi clusters of size b in the non fully-summed part, the operation
count for the partial solution with a single right-hand side is

Si(di, hi) = 2dib
2 + 4b

diX

� =1

di+hiX

α=� +1

(ki
α� + ki

� α),

where ki
α� is the rank of the block cluster F i

α� .

Proof. On each diagonal block two triangular solutions (a lower and an upper) are per-
formed. Each of these needs b2 operations so that 2b2 are needed for each diagonal block.
There are di diagonal blocks, which gives the first term in Si(di, hi).

Then, each off-diagonal block steps in a low-rank update of a part of the right-hand
side. The cost of this operation for F i

α� is 4bki
α� . We sum up this term over all the

off-diagonal blocks in Li and U i and we obtain the second term in Si(di, hi).

This absolute operation count has to be related to the factor compression so that it is
possible to estimate easily the operation count. The result is given in Lemma 3.2.

Lemma 3.2 - Operation compression rate for the BLR partial solution.
Given Li and U i the BLR factors associated with front i and the corresponding factor
memory compression TFi

, the operation compression rate for the BLR partial solution
with a single right-hand side is

TSi
= TFi

Proof. We write the number of elements in the compressed Li and U i in two different
ways. The first way is to sum up the entries blockwise. Each diagonal block has b2 entries
while each off-diagonal block F i

α� has bki
α� + bki

α� , which gives a total number of entries
of:

dib
2 + 2b

diX

� =1

di+hiX

α=� +1

(ki
α� + ki

� α) (3.1)

78



3.5. Block Low-Rank solution

The second way is to use the definition of TFi
, which multiplies the full-rank number of

entries to obtain the BLR number of entries in F i:

TFi
(d2

i b2 + 2dihib
2) (3.2)

By definition, we have (3.1) = (3.2) so that:

1
2

 

2dib
2 + 4b

diX

� =1

di+hiX

α=� +1

(ki
α� + ki

� α)

!

= TFi

�

d2
i b2 + 2hidib

2
�

We substitute the left-hand side term using Lemma 3.1 to obtain:

Si(di, hi) = 2TFi

�

d2
i b2 + 2hidib

2
�

(3.3)

FRi = 2hidib
2 + b2d2

i = (bdi)2 +2(hib)(dib) is the number of operations needed to perform
a full-rank partial solution on factor Li. Then:

Si(di, hi) = TFi
� FRi

Then we obtain the desired result by definition of the compression rate.

In Theorem 3.1, we extend this result to the whole multifrontal solution, assuming all
the fronts have been processed with BLR techniques. In practice, the smallest fronts are
kept full-rank but their associated volume of memory usage and computation is negligible
so that our assumption is consistent.

Theorem 3.1 - Operation compression rate for the BLR multifrontal solution.
Given a BLR multifrontal factorization of a matrix of size N with NZ entries in the factors
L and U and a global factor memory compression rate of TF , then the global operation
compression rate for the BLR multifrontal solution is:

TS = TF :

Proof. The number of fronts in the assembly tree will be referred to as NF . The proof
basically follows the same methods as for Lemma 3.1 and Lemma 3.2.

We first want to calculate S =
P NF

i=1 Si(hi, di). Equation (3.3) gives:

S = 2
NFX

i=1

TFi
(d2

i b2 + 2hidib
2) (3.4)

By definition of TS , we also have:

TF =
P NF

i=1 TFi
(d2

i b2 + 2hidib
2)

P NF

i=1 d2
i b2 + 2hidib2)

(3.5)

Substituting (3.5) in (3.4), we obtain:

S = 2TF

NFX

i=1

(b2d2
i + hidib

2)

FR =
P NF

i=1 2hidib
2 + b2d2

i =
P NF

i=1(bdi)2 + 2(hib)(dib) is the number of operations needed
to perform the full-rank solution. Then:

S = TF � FR

which gives the desired result by definition of a compression rate.
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3. Block Low-Rank multifrontal method

3.6 Switch level

It is not necessary, nor efficient, to use low-rank approximations on all the frontal matrices.
Indeed, to obtain good compression rates which overcome the compression costs, it is
better to consider only larger fronts. How much work and memory is done and consumed
in fronts larger than a given size can be easily assessed on a regular 9-point stencil by
reusing some work and notations by Rouet [86], itself based on George [51] paper on
nested dissection; the results of this analysis are shown in Figure 3.21. The elimination
tree directly based on a complete nested dissection is used (i.e. a nested dissection where
the smallest separators have size 1). However, in practice, the nested dissection is stopped
before the separators reach size 1 and the corresponding elimination tree is post-processed
with different techniques, such as amalgamation, which aim at merging fronts in order to
increase efficiency. The resulting tree is called the assembly tree and contains basically
less fronts but larger ones. For this reason, in a practical context, the graphs shown in
Figure 3.21(a) would be translated upwards. This remark should be taken into account
when reading the analysis below.

Figures 3.21(a) and 3.21(b) show that most of the factor entries are computed and
almost all of the floating point operations are done within fronts of relatively large size.
This is particularly interesting considering that these larger fronts only account for a very
small fraction of the total number of fronts in the assembly tree, as shown in Table 3.3.

mesh size

210 211 212 213 214 215

N = 200 1: 61h 1 : 68h 1 : 71h 1 : 73h 1 : 74h 1 : 74h

N = 400 0: 37h 0 : 40h 0 : 42h 0 : 42h 0 : 43h 0 : 43h

N = 600 0: 17h 0 : 20h 0 : 21h 0 : 22h 0 : 23h 0 : 23h

N = 800 0: 07h 0 : 09h 0 : 10h 0 : 11h 0 : 11h 0 : 11h

N = 1000 0: 05h 0 : 06h 0 : 06h 0 : 06h 0 : 06h 0 : 06h

Table 3.3: Proportion of fronts larger than N with respect to the total number of fronts
in the assembly tree, for different mesh sizes.

This shows that there is no need to compress small fronts for two reasons:

1. It would be too much work for a small gain (in small fronts we can only target
a few entries and a few computations that cannot justify the additional cost of
compression) ;

2. It is more critical to focus on the top of the tree because the corresponding large
fronts represent most of the work to be done in the multifrontal process, in terms of
computations and memory.

In practice, this notion of switch level translates into a condition on the minimal
separator size (or NASS min, which is also the number of fully-summed variables of a
given front) to select a front for BLR. Even if it corresponds to an actual level only
when the global ordering of the matrix is based on a nested dissection, we will use this
expression with any global ordering. How to select properly the switch level for an efficient
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(a) Proportion of entries of the factors computed in the
frontal matrices larger than n.
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(b) Proportion of the total number of operations performed
for the partial factorization of the frontal matrices larger
than n .

Figure 3.21: Proportions of entries of the factors and of number of operations in the top
levels of the assembly tree. The problem studied is a 2D PoissonN. The corresponding
matrix size is thus the square of the mesh size N. Note that the largest fronts we look at
in these plots represent very few fronts compared to the total number of fronts, as shows
Table 3.3.

BLR factorization will be investigated in Section 4.2.2, where we will show that now fine
tuning is needed, which is critical in the context of general multifrontal solver.
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Chapter 4

Evaluation of the potential of the
method

In this Chapter, we present experimental results which demonstrate the efficiency of the
BLR multifrontal method on the two equations presented in Section 1.6.4.1: Poisson and
Helmholtz. We investigate in sequential the influence of many parameters of the BLR
method (cluster size, switch level, low-rank threshold) and of the problem (ordering). We
present results obtained with distributed-memory parallelism. We also investigate numer-
ically difficult matrices that need pivoting and allow simultaneously good compressions.
Then, we compare our approach with the HSS partially-structured approach through a
memory and operation complexity study (done against the Hsolver package). We also
compare our code with the multifrontal HSS partially-structured solver StruMF and an-
alyze the differences between the two techniques.

Except for Section 4.3 where the influence of the mesh size is analyzed, the experiments
are run with Poisson128 and Helmholtz128. Details about these matrices are given in
Table 4.1. The ordering is SCOTCH, except when the influence of the ordering is studied.
The Poisson and the Helmholtz problems are studied with a low-rank threshold of ε =
10−14 (double precision real) and ε = 10−8 (double precision complex), respectively.

Matrix N NZ ops memory peak factor size

Poisson128 2, 097, 152 8, 339, 456 2 : 7E + 13 7GB 19GB
Helmholtz128 2, 097, 152 55, 742, 968 6 : 6E + 13 21GB 98GB

Table 4.1: Full-rank results obtained with MUMPS on matrices coming from the Poisson
and the Helmholtz equations discretized on a 128 � 128 � 128 mesh.

Note that though the two problems have the same size in terms of the matrix di-
mension, the volume of computations required for Helmholtz128 is much higher than for
Poisson128. Moreover, Helmholtz128 is a double precision complex problem so that each
computation is performed at a higher cost.

To perform the compression efficiently, we modified LAPACK's *geqp3 to make this
Householder QR routine a rank-revealing QR.

4.1 Metrics

The effectiveness of the BLR multifrontal solver will be measured with different metrics
mostly related to the reduction of memory and operations. Relative and absolute metrics
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are used. The relative ones are always given as percentages of the equivalent FR quantity,
computed with MUMPS. They are thus quantities that we want to be as low as possible.
The metrics we will typically use to evaluate the efficiency of a BLR multifrontal solver
are the following:

1. Memory: two memory compression metrics have to be distinguished:

factor compression: written |L|, it is defined as the ratio of the number of entries
needed to store the factor computed with the BLR approach over the number
of entries needed to store the regular factor. We will sometimes refer to this
metric simply as the “memory compression rate”.

peak of CB stack compression: written |CB|, it is the ratio of the maximum
size of the CB stack with the BLR approach over the maximum size of the
CB stack with a regular full rank approach. It will also be referred to as the
maximum size of CB stack compression. For a definition of the CB stack,
please refer to Section 1.3.3. Note that to obtain this compression, an external
compress task (Ce, see Section 3.4) must be performed. As it is optional, and
usually low due to efficient compression, it will never be indicated. This metric
together with the factor compression give a good insight of the global memory
reduction that can be obtained thanks to the BLR approach.

2. Operations: For each task (or tasks combination) defined in Section 3.4.2, we will
indicate either the corresponding absolute low-rank operation count, or the cor-
responding operation compression as a percentage of the full-rank factorization
(FR factorization) operation count.

For instance, a column called “ops F+S” shows the operation count (in which case no
unity is indicated) or the operation compression (in which case a % is always added)
related to the factor and solve tasks of the algorithm. Note that even when a task has
no equivalent in full-rank (e.g., the compression task C), it will be express anyway
relatively to the full-rank factorization operation count, illustrating the overhead.
Also note that when a U is indicated, it denotes both the internal and external
updates.

We will often use “operation compression rate” to indicate the reduction in opera-
tions obtained on the overall process (i.e., including all the tasks and overheads).

3. Timings: We will indicate in seconds the time spent in a task (or task combination)
of the BLR algorithm defined defined in Section 3.4.2.

For instance, a column called “time F+S+U” indicates the time spent in the factor,
solve and update tasks of the algorithm. This allows us, for instance, to distinguish
the compression time from the other more standard tasks of the process.

4.2 General results with the BLR multifrontal solver

The objective of this section is to establish whether the BLR multifrontal method demands
a fine tuning of the parameters previously described (block size, switch level etc.). As the
results presented in the following subsections show, this is not the case, which is clearly a
very desirable property as it yields a twofold advantage:

1. it is possible to define default settings that perform well in most practical cases.
This considerably improves the ease of use of the BLR multifrontal solver which can
be used as a black-box tool by the end user.
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4.2. General results with the BLR multifrontal solver

2. it guarantees that all the algorithms proved efficient in the full-rank case (such as
the pivoting scheme or the distribution among processors in a distributed-memory
context, for instance), will remain efficient as the Block Low-Rank technologies will
not add strong constraint on them.

We show in this section that the Block Low-Rank method has all the needed flexibility
to fulfill the two latter goals.

4.2.1 Cluster size

The first parameter we want to study is the cluster size, which defines the size of the blocks
which will be compressed within the frontal matrices. This parameter is very important
as the efficiency of the BLAS 3 operations and the compression cost rely on it. This
dependency was expressed in the Block Low-Rank admissibility condition in Section 3.3.1.
Throughout this dissertation, the cluster size is always fixed for all the frontal matrices
which are processed with BLR techniques. However, it is likely that choosing the cluster
size depending on the separator size may lead to better gain but we have not tested it yet.
Figures 4.1 and 4.2 show how the memory compression rates are influenced by the block
size.

64 128 192 256 320 384 448 512
20

30

40

50

60

70

Cluster size

%

|L|

|CB|

Figure 4.1: Influence of the cluster size on the memory compression rates obtained thanks
to BLR approximations on the Poisson128 problem. The low-rank threshold is set up to
ε = 10−14.

When the cluster size is very small (64 and 128), the compression rates are quite poor
for both problems in terms of memory: blocks are too small to be compressed. Then, as the
block size increases, the memory compression rates improve, but not significantly. Finally,
when the block size becomes larger than 320 for Poisson128 and 448 for Helmholtz128,
it comes a point when the memory compression rates start to increase again.

Figures 4.3 and 4.4 show similar results for the operation compression rates and the
speedups. The compression cost and the operation gain obtained for the factorization are
plotted separately.

With smaller cluster sizes, compression costs are very low for both problems. However,
the corresponding operation compression rates are quite high, which is consistent with the

85



4. Evaluation of the potential of the method

64 128 192 256 320 384 448 512
20

40

60

80

100

Cluster size

%

|L|

|CB|

Figure 4.2: Influence of the cluster size on the memory compression rates obtained thanks
to BLR approximations on the Helmholtz128 problem. The low-rank threshold is set up
to ε = 10−8.
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Figure 4.3: Influence of the cluster size on the operation compression rates obtained thanks
to BLR approximations on the Poisson128 problem. The execution times for compression
and factorization are also indicated. The low-rank threshold is set up to ε = 10−14.

poor memory compression observed with these cluster sizes. Simultaneously, and this is
even more critical, the time reduction rates are even worse due to low BLAS 3 efficiency on
such small blocks, which are further reduced because of the low-rank compression. When
the cluster size increases, the compression costs increase too, but remain at a low level. The
factorization compression rates decrease substantially until they become stable. As far as
the timings are concerned, because the BLAS 3 efficiency increases with the cluster size, the
difference between the operation compression rates and the time reduction rates decreases
to an acceptable amount for Poisson128 (15% for a cluster size of 320) and to almost
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64 128 192 256 320 384 448 512
0

20

40

60

80

100

120

Cluster size

%

time F+S+U

ops C

ops F+S+U

time C

Figure 4.4: Influence of the cluster size on the operation compression rates obtained
thanks to BLR approximations on the Helmholtz128 problem. The execution times for
compression and factorization are also indicated. The low-rank threshold is set up to
ε = 10−8.

zero for Helmholtz128. Finally, when the cluster sizes become too large, the compression
costs become too high to be compensated by the gain obtained for the factorization, and
the BLAS 3 efficiency does not improve anymore. Note that for Helmholtz128, larger
cluster sizes have also be experimented without further improvements.

An important point to make is that, excluding smaller block sizes (64 and 128) the
difference between the best block size and the worst one is roughly 10%, which means that
the cluster size has a limited influence on the overall efficiency of the method, provided that
the block size is not unreasonably small. For all the rest of the experiments in this section,
the cluster size will thus be set up to 320 for Poisson128 and 448 for Helmholtz128,
consistently with the above analysis. The direct algorithmic consequence is that the
pivoting scheme proposed in Figure 3.16 should not perturb too much the compression
rates because of dynamic change of the block size, which is confirmed by results presented
in Section 4.2.5.

4.2.2 Switch level

As explained in Section 3.6, not all the frontal matrices of the assembly tree are candidate
for Block Low-Rank processing because excessively small frontal matrices do not provide
enough room for gain as most of the memory and operations are consumed in the largest
frontal matrices. Figures 4.5 and 4.6 show the influence of the minimum number of fully-
summed variables (NASS) required for a frontal matrix to be selected for Block Low-Rank
processing.

Selecting too many frontal matrices does not decrease the overall memory compression
rates but does increase the total cost of compressing by all the operations performed in
RRQR on blocks which at the end are not compressed (in this case, the compression cost
is not compensated by operations performed on the compressed form). However, as can be
observed in Figures 4.5 and 4.6, this overhead is highly negligible. This can be explained by
the fact that when NASS becomes smaller than the block size, the fully-summed block of
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Figure 4.5: Influence of the minimal size of the separator (NASS min) required for a
frontal matrix to be selected for BLR processing on the Poisson128 problem. The low-
rank threshold is set up to ε = 10−14 and the cluster size is 320.
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Figure 4.6: Influence of the minimal size of the separator (NASS min) required for a frontal
matrix to be selected for BLR processing on the Helmholtz128 problem. The low-rank
threshold is set up to ε = 10−8 and the cluster size is 448.

the frontal matrix (the (1, 1) block) is viewed as a diagonal block and thus no compression
is attempted. Then, on small fronts, the number of non fully-summed variables can also
be smaller than the block size so that the (2, 1) (and the (1, 2) block if unsymmetric) block
is viewed as one single block to compress, which leads to small compression cost. As far
as memory is concerned, selecting too many frontal matrices has on the other hand no
influence on the global factor memory compression as only useless operations are added
to the process.
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Selecting too few frontal matrices globally degrades the performance, both in terms of
memory and operations count, because more frontal matrices could have been successfully
compressed.

Finally, the peak of |CB| stack remains constant as long as the nodes that are in the
active memory at the moment when the peak is achieved are compressed with the BLR
format.

Tables 4.2 and 4.3 give more details about results presented in Figures 4.5 and 4.6,
in terms of number of selected fronts (# fronts), of the fraction of the global factor
which is computed in these fronts (|L%|; for instance, if all the fronts are selected, then
|L%| = 100% because 100% of the factors entries are computed in these selected fronts)
and the fraction of the global operation count which is actually performed within them.
Note that unlike |L|, |L%| is not a compression rate.

NASS min # fronts |L%| |FAC%|

100 1461 92.4 99.8
200 606 87.8 99.3
300 321 83.6 98.6
400 205 79.8 97.6
500 157 77.6 97.0
600 131 75.6 96.3
700 112 73.9 95.6
800 91 70.9 94.1
900 69 66.8 91.7

1000 49 62.4 88.9

Table 4.2: Poisson128 problem, ε = 10−14, cluster size= 320. |L%| is the fraction of
the global factor which is actually computed within BLR frontal matrices. |FAC%| is the
fraction of the global operation count which is actually performed within BLR frontal
matrices.

NASS min # fronts |L%| |FAC%|

100 3108 91.3 99.7
200 1044 84.7 99.1
300 307 76.2 97.6
400 231 74.2 97.0
500 169 71.3 96.0
600 135 68.9 95.0
700 123 67.9 94.6
800 101 65.3 93.1
900 81 62.5 91.5

1000 66 59.8 89.7

Table 4.3: Helmholtz128 problem, ε = 10−8, cluster size= 448. |L%| is the fraction of
the global factor which is actually computed within BLR frontal matrices. |FAC%| is the
fraction of the global operation count which is actually performed within BLR frontal
matrices.
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4. Evaluation of the potential of the method

The number of selected frontal matrices is in any case very small (Poisson128 and
Helmholtz128 have 76403 and 47127 frontal matrices, respectively), which means that
most of the fronts are still processed in the classical, full-rank way. Within this small
amount of frontal matrices, almost all the operations of the multifrontal process are per-
formed (from 88: 9% to 99 : 8% for Poisson128 and from 89: 7% to 99 : 7% for Helmholtz128)
and a very large fraction of the global factor is computed (from 62: 4% to 92 : 4% for
Poisson128 and from 59: 8% to 91 : 3% for Helmholtz128). These results confirm the the-
oretical study of Section 3.6 and justify the choice of compressing only the larger fronts.
An illustration of this idea is given in Figure 4.7 where the assembly tree of the Geoazur32
problem is represented. The tree results from applying to the input matrix a nested dissec-
tion ordering computed with SCOTCH. From blue to red (see the colormap in the picture),
the factor compression (local to each frontal matrix) improves.

Figure 4.7: SCOTCH tree of Geoazur32 problem, ε = 10−4, double precision, obtained with
MUMPS. Colormap: red = high compression.

The tree of Figure 4.7 illustrates well the fact that not much can be gained when
compressing small frontal matrices as most of them turn out to be not low-rank. Same
result holds for the operation counts. Note that the figure has been generated with a
smaller problem and with a larger low-rank threshold for the sake of clarity and to better
emphasize the behavior.

These results have shown that the critical aspect in setting up the minimal NASS
size for a front to be candidate for Block Low-Rank processing is to ensure that enough
fronts are selected. As selecting too many fronts has no important impact both in terms
of memory and operation counts (because the compression attempts which failed are done
on small frontal matrices, so that the computational cost is low), the efficiency of the
solver can be easily ensured by setting up a fairly small minimal NASS. In the rest of this
Chapter, this size will be 300 for both Poisson128 and Helmholtz128 problems.

4.2.3 Orderings

The global ordering of the matrix plays a critical role in multifrontal methods, as the
amount of fill-in, the efficiency of the tree parallelism and the size of the frontal matri-
ces (and thus the node parallelism) heavily rely on them [63, 71]. It is thus critical to
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4.2. General results with the BLR multifrontal solver

have the flexibility to use several orderings during the preprocessing phase of the solver
together with the BLR approach. Even though our description was often based on the
nested dissection, we show that any of the common ordering algorithms is suitable for
our purpose. Tables 4.4 and 4.5 present statistics about full-rank and low-rank runs with
five different ordering methods, for Poisson128 and Helmholtz128 problems. Like for
Sections 4.2.1 and 4.2.2, our aim is to show that good Block Low-Rank performance is
compatible with a wide range of matrix orderings, in order to guarantee that the most
efficient reordering strategy can be kept together with the Block Low-Rank feature. The
orderings experimented in this section have been previously mentioned in Section 1.6.2.
Note that METIS and SCOTCH are the only nested dissection based orderings used in this
section.

ordering
FR top separator global

mry ops peak size |L| ops F+S+C+U |L| ops F+S+C+U |CB|

AMD 36GB 1 : 1E + 14 23GB 43669 22 : 0% 9 : 6% 35 : 3% 13 : 2% 16 : 8%
AMF 27GB 6 : 4E + 13 15GB 17405 35: 6% 17 : 4% 40 : 3% 15 : 8% 22 : 6%

PORD 15GB 1 : 8E + 13 5GB 7 100: 0% 100 : 0% 55 : 6% 24 : 3% 37 : 5%
METIS 18GB 2 : 6E + 13 7GB 16397 32: 3% 16 : 0% 52 : 6% 24 : 6% 65 : 5%
SCOTCH 19GB 2 : 7E + 13 8GB 16384 32: 8% 16 : 3% 53 : 3% 24 : 2% 24 : 0%

Table 4.4: Low-rank compressions for the top separator and the global process with differ-
ent orderings on the Poisson128 problem with ε = 10−14. Top level separator of PORD is
too small to be selected for low-rank. “FR peak” is the peak of active memory (excluding
factors).

ordering
FR top separator global

mry ops peak size |L| ops F+S+C+U |L| ops F+S+C+U |CB|

AMD 218GB 3 : 9E + 14 92GB 53895 54: 8% 42 : 2% 60 : 3% 42 : 8% 34 : 5%
AMF 162GB 2 : 8E + 14 80GB 23788 50: 3% 37 : 6% 61 : 8% 42 : 0% 47 : 5%

PORD 110GB 1 : 0E + 14 28GB 6146 84: 6% 97 : 3% 63 : 9% 40 : 0% 43 : 0%
METIS 98GB 6 : 5E + 13 22GB 17731 41: 9% 31 : 5% 72 : 3% 53 : 0% 40 : 9%
SCOTCH 98GB 6 : 6E + 13 21GB 17949 41: 8% 31 : 0% 72 : 0% 52 : 3% 40 : 7%

Table 4.5: Low-rank compressions for the top separator and the global process with dif-
ferent orderings on the Geoazur128 problem with ε = 10−8. “FR peak” is the peak of
active memory (excluding factors).

Unsurprisingly, METIS and SCOTCH perform the best in full-rank on these types or
problem. Because these tools are based on the nested dissection method the computed
topmost separators are also very well compressed because they are large, smooth and very
suitable for efficient admissible clustering, as Figure 4.9 illustrates. This is not the case
of the top level separator from AMD presented in Figure 4.8 since it highly irregular.

However, one can observe that the overall compression rates (both in operations and
memory) is worse for SCOTCH and METIS than for any other ordering strategy. However,
because the corresponding reductions are applied to a lower original absolute memory con-
sumption and operation count (because SCOTCH and METIS perform the best in full-rank),
the overall performance remains the best for these two methods. Given that separators
in these methods are close to minimal in size at each level of the nested dissection tree,
the low-rank compression is simultaneously very efficient at the top of tree and poorly
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4. Evaluation of the potential of the method

Figure 4.8: AMD top level separator associated with Helmholtz10 matrix.

(a) Side face (b) Perspective

Figure 4.9: SCOTCH top level separator

efficient below a still fairly high level where separators are already becoming small (see
again Figure 4.7). For instance, it is not the case of AMF where large frontal matrices
appear in lower levels of the tree, as illustrated in Figure 4.10.

Note that the minimal NASS to select a frontal matrix for BLR as well as the block size
is the same for all 5 ordering methods. Because we have shown that the compression rates
are stable for these two parameters, we decided to keep them for all other 4 heuristics,
which eases the comparison. Also note that, even if the compression rates are slightly
worse for METIS and SCOTCH, the overall operation count remains much lower than with
the other ordering methods thanks to a much better reduction of the fill-in. SCOTCH will
thus be used for the other experiments in this section.

4.2.4 Low-rank threshold

The low-rank threshold has an important role to play in Block Low-Rank multifrontal
solvers, as it controls both the efficiency and the accuracy of the solution. Depending
on the underlying equation, one will have to set up a value that is suited to the wanted
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4.2. General results with the BLR multifrontal solver

Figure 4.10: AMF tree of Geoazur32 problem, ε = 10−4, double precision, obtained with
MUMPS. Colormap: red = high compression.

compression and accuracy. Figures 4.11 and 4.12 show how the memory compression rates
improve when the low-rank threshold increases.
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Figure 4.11: Influence of the low-rank threshold ε on the memory compression rates on
the Poisson128 problem. The cluster size is set up to 320 and the minimal NASS to
select a frontal matrix for BLR is 300.

Unsurprisingly, large values of ε lead to high memory compression rates for both
problems. The main difference between the two behaviors is that for the Poisson128

problem, the memory compression rates are already good at full accuracy, while for the
Helmholtz128 problem, the low-rank threshold has to be slightly larger to obtain interest-
ing memory compression rates. Note that the contribution blocks are better compressed
than the factor, as they usually correspond to farther interactions and larger blocks. Fig-

93



4. Evaluation of the potential of the method

0

20

40

60

80

100

%

|L|

|CB|

10−10

Low−rank threshold
10−12 10−8 10−6 10−4 10−210−14

Figure 4.12: Influence of the low-rank threshold ε on the memory compression rates on
the Helmholtz128 problem. The cluster size is set up to 448 and the minimal NASS to
select a frontal matrix for BLR is 300.

ures 4.13 and 4.14 present the corresponding operations and time reduction rates.
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Figure 4.13: Influence of the low-rank threshold ε on the operations and time reduction
rates on the Poisson128 problem. The cluster size is set up to 320 and the minimal NASS
to select a frontal matrix for BLR is 300.

The efficiency of the factorization increases when the low-rank threshold increases.
Consistently with the memory compression rates, the Helmholtz128 problem requires a
larger low-rank threshold in order to obtain good efficiency. The computational speed is
good: for Poisson128, the time reduction is 20% more than the operation compression,
which is acceptable. This overhead corresponds to the time spent outside the BLR fronts,
which is by definition not compressed and thus remains constant. For Helmholtz128, the
time reduction is almost the same as the operation compression. Because of the very large
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Figure 4.14: Influence of the low-rank threshold ε on the operations and time reduction
rates on the Helmholtz128 problem. The cluster size is set up to 448 and the minimal
NASS to select a frontal matrix for BLR is 300.

computational volume of the Helmholtz128 problem, the time spent outside BLR fronts is
here negligible. Note that to obtain the BLR overall time, the two solid curves and the two
dashed curves should be added, which means that the total time reduction rate is always
higher (only slightly higher for Helmholtz128) that the total operation compression rate.

These compression rates have to be related to the accuracy obtained for the solution
as too bad accuracy is usually not workable. As explained in Section 2.4, the threshold
we use is absolute as matrices are scaled. Figures 4.15 and 4.16 show how the Scaled
Residual (SR) and the Componentwise Scaled Residual (CSR) introduced in Section 1.2
behave with respect to the low-rank threshold ε. These residuals are also reported with
Iterative Refinement (IR, see Section 1.6.2).

Without iterative refinement, the residuals are close to the order of magnitude of the
low-rank threshold, which means no error propagation is observed. Moreover, to recover
full-accuracy, iterative refinement is almost always very efficient (it does not work only for
very large value of ε i.e., beyond 10−4 for Poisson128 and 10−2 for Helmholtz128) with
a small number of steps. Table 4.6 reports the number of steps of iterative refinement
which were performed for each case.

ε 10−14 10−12 10−10 10−8 10−6 10−4 10−2

Poisson128 1 1 1 2 4 5 5
Helmholtz128 1 1 1 2 3 6 10

Table 4.6: Number of iterative refinement steps performed to obtain the accuracy reported
in Figures 4.15 and 4.16.

4.2.5 Pivoting

In this section, we focus on the pivoting within Block-Low Rank factorizations and show
how it can be critical in order to obtain good low-rank compressions on numerically difficult
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Figure 4.15: Influence of the low-rank threshold ε on the accuracy of the solution on the
Poisson128 problem. The cluster size is set up to 320 and the minimal NASS to select
a frontal matrix for BLR is 300. Both Scaled Residual (SR) and Componentwise Scaled
Residual (CSR) are reported, with and without Iterative Refinement (IR).
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Figure 4.16: Influence of the low-rank threshold ε on the accuracy of the solution on the
Helmholtz128 problem. The cluster size is set up to 448 and the minimal NASS to select
a frontal matrix for BLR is 300. Both Scaled Residual (SR) and Componentwise Scaled
Residual (CSR) are reported, with and without Iterative Refinement (IR).

problems. Because Helmholtz128 and Poisson128 do not require any pivoting, we use for
this section three different matrices cont-300, kkt_power and d-plan-inco, presented
in Section 1.6.4.2. Note that the two first matrices come from the University of Florida
Sparse Matrix Collection. These matrices have 68,243 (38% of matrix order), 56,646 (3%)
and 67,890 (6%) delayed pivots, respectively. Even if the percentages are low the last two
matrices, it still is a fairly high amount of delayed pivots. Table 4.7 summarizes the results
obtained with these matrices. We test our strategy with threshold partial pivoting and
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cont-300 kkt_power d-plan-inco

MUMPS FR partial 5.68E-8 3.05E-10 1.90E-12
MUMPS FR static 5.71E-3 4.66E-4 8.88E-7

BLR (10−14) static 5.91E-3 7.90E-5 1.04E-6
Compressions (|L| - |CB| - f) 98 - 90 - 116 75 - 62 - 64 46 - 6 - 8

BLR (10−14) partial 2.06E-8 2.65E-9 2.37E-12
Compressions (|L| - |CB| - f) 92 - 72 - 82 75 - 61 - 62 45 - 5 - 7

BLR (ε) partial 1.59E-3(10−9) 9.77E-4(10−8) 6.28E-7(10−7)
Compressions (|L| - |CB| - f) 86 - 54 - 67 55 - 46 - 30 42 - 5 - 5

Time MUMPS FR partial 4 s. 4043 s. 263 s.
Time BLR partial (ε) 2 s. (10−9) 557 s. (10−8) 71 s. (10−7)

Table 4.7: Results about partial and static pivoting with BLR and FR factorizations.
The residuals reported are Componentwise Scaled Residuals. The low-rank threshold is
either indicated in the first column (when identical for all other columns), either indicated
directly in the corresponding columns. f is the operations compression rate for F+S+U+C.

without, in which case static pivoting is activated and explicitly indicated in the table.
We show that partial pivoting allows for more compression and that a high amount of
pivoting does not degrade the compression rates even if the BLR panels are dynamically
changed (see Section 3.4.4). Note that the amount of delayed pivots remains stable for all
these runs.

Table 4.7 consists of five blockrows of two rows, besides the header. The first one in-
dicates the Componentwise Scaled Residual (CSR = maxi

�
jAx̂−bji

(jAjjx̂j+jbj)i

�

, see Section 1.2.1)
in full-rank for both static and threshold partial pivoting. It shows that partial pivoting
substantially increases the stability of the factorization on these matrices. The second
blockrow indicates the CSR and the compression rates obtained with a BLR factorization
with static pivoting. The low-rank threshold ε is chosen so that the CSR is as close as
possible to the CSR obtained in full-rank with static pivoting. The third blockrow reports
the CSR and the compression rates obtained with a BLR factorization with partial piv-
oting. The low-rank threshold ε is chosen so the CSR is as close as possible to the CSR
obtained in full-rank with partial pivoting. The fourth blockrow follows the same idea,
except that the low-rank threshold ε is chosen so that the CSR is as close as possible to
the CSR obtained in full-rank with static pivoting. Finally, the last blockrow reports the
total execution time corresponding to the fourth blockrow.

Let us compare first the second and third blockrow. The compression rates are similar,
which shows that the perturbation induced by delayed pivot has no influence on the global
efficiency. Moreover, because partial pivoting does not artificially change values during
the factorization (whereas static pivoting does), the compression rates are even sometimes
better (see problem cont-300). Note if some delayed pivots are delayed to the same
front, and if there are enough of them, they are considered as an original BLR panel so
the compression can be efficient. All in all, this shows that for an equivalent (or better)
compression (both in memory and operations), the accuracy of the solution is much better
thanks to partial pivoting, even with the BLR factorization. The fact that the accuracy
is better with BLR and partial pivoting than in BLR and static pivoting is not quite
surprising, as the BLR factorization benefits from the same numerical stability as for the
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full-rank case. But, this is an interesting result only because the compression rates are
maintained or improved, since this makes a substantial difference in terms of efficiency.

Now compare blockrows two and four. The CSR is fixed as it is chosen to be as close as
possible to the CSR obtained with a full-rank factorization with static pivoting. To obtain
this accuracy, a small low-rank threshold is needed if the BLR factorization is done with
static pivoting (ε = 10−14). However, in the context of a BLR factorization with partial
pivoting, the low-rank threshold can be chosen much larger (from 10−9 to 10−7 in our
example) which improves the compression rates: it requires almost twice fewer operations
to perform the BLR factorization with partial pivoting than the one with static pivoting,
for the same accuracy. The memory footprint is also slightly improved. Note that these
improvements are worse for problem d-plan-inco.

Finally, the corresponding timings show that the operation efficiency remains very
good for all of these three matrices. Quite surprisingly, for problem kkt_power, the time
reduction (14%, not indicated in the Table) is higher than the operation compression rate
(30%). This may be due to the fact that in the full-rank case, there are more outer panels
(called BLR panels when BLR is applied) because they are smaller than in the BLR case.
This means that the delayed pivots are potentially tested more times in full-rank than in
BLR (because then are tested once at each panel), which slow down the factorization.

These results show the numerical robustness of our method, and show that on some
classes of problems, pivoting may be critical either to keep a satisfying accuracy, either
to obtain acceptable low-rank compressions. Thanks to the flexibility of the BLR format,
both objectives can be achieved.

4.2.6 Distributed-memory parallelism

We show that the distribution scheme presented in Section 3.4.5 allows for good efficiency
and maintains the compressions rates when the number of processors increases. We present
in Table 4.8 the factor compression rates obtained for Poisson128 and Helmholtz128 with
different numbers of processors.

# Poisson128 Helmholtz128

procs |L|

1 53.3% 72.0%

4 54.5% n/a
8 54.5% n/a

16 54.6% 73.6%
32 54.9% 73.6%
64 55.3% 73.7%

128 56.0% 74.1%

Table 4.8: Factor compression rates in parallel for Poisson128 and Helmholtz128 prob-
lems. Low processor numbers do not provide enough memory to run the problems.

A monotonic deterioration of the factor compression rates can be observed. Because
it is very low (even with 128 processors, which is quite high for this size of problems),
we are willing to pay this price to obtain a better parallel efficiency. This shows that
the strategy of dynamically adapting some of the BLR blocks (see Figure 3.18) is a good
strategy in terms of factor compression. Operation compression and timings results are
given in Table 4.9 or the Helmholtz128 problem only, because it is unsymmetric. In the
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symmetric case, the slave to slave communications (see Figure 1.24(b) in the full-rank case)
must be done in BLR (in order to avoid compressing blocks multiple times locally on each
slave) to completely update the contribution blocks using low-rank products. Although
there is no theoretical or structural obstacle to do it, this has not been implemented yet,
so that the operation compressions rates and the timings are degraded when increasing
the number of processors on symmetric matrices. For this reason, we do not present
the results for Poisson128 in Table 4.9. Also, the peak of CB stack compression rate
is never indicated as it is difficult and expensive (because it requires communications)
to compute in parallel. Moreover, the factor compression rates and the unsymmetric
operation compression rates are sufficient to justify that constraining the BLR panels to
the distribution among processors is a strategy that pays off.

# ops execution time

procs F+S+U+C BLR MUMPS

16 56.4% 3133s. 4905s.
32 56.5% 2125s. 2648s.
64 56.7% 1409s. 1537s.

128 57.3% 1014s. 979s.

Table 4.9: Operation compression and timings in parallel for Helmholtz128.

First notice that the scalability for the full-rank factorization is good. Results are
less good for the BLR factorization. This can be explained by the fact that because
the amount of computations is lower in the BLR case (half of the full-rank number of
operations), the number of processors used for the same problem size should be lower in
order to maintain a good work load per processor. Moreover, because the compression
rates are experimentally usually higher in the (2, 1) blocks, which are distributed among
the slaves, the workload of the master becomes relatively higher compared to the full-rank
case, meaning than adding more slaves does not improve the execution times because the
computations performed by the master are dominant. Without any adaptation to the
dynamic scheduler to the BLR factorization, these results show a very good potential and
we are confident that they can be considerably improved. Work in this direction is in
progress.

4.3 Comparison with HSS techniques in a multifrontal
context

We focus on the experimental complexities which can be achieved using both HSS and
BLR representations but will also investigate the accuracy of the solution which can be
obtained using HSS-embedded and BLR solvers. We compare our approach with the
HSS partially-structured approach implemented in Hsolver in Sections 4.3.1 and 4.3.2,
by exploiting complexity results from Wang et al. [102]. Note that in these sections, the
low-rank threshold used for the BLR experiments provides the same accuracy as in the
HSS case, so that results can be compared. Also the low-rank threshold is constant for
any size of mesh. In Section 4.3.3, we will analyse the compression rates which can be
obtained with respect to the accuracy of the solution, using new experiments performed
with StruMF.
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This work has been done in collaboration with the Lawrence Berkeley National Lab-
oratory (Xiaoye Sherry Li, Artem Napov and François-Henry Rouet).

The efficiency of a low-rank format can be assessed by taking into consideration two
types of metrics:

1. the memory and operation complexity, which can be written as αn� .

2. the flop rate which can be achieved s.

4.3.1 Experimental multifrontal memory complexity

For the 3D Helmholtz equations, we could derive experimental memory (i.e., the mem-
ory to store the factors) complexities from Wang et al. [102] (unfortunately, no results
on Poisson are presented in this paper). Results are summarized in Table 4.10. The
corresponding theoretical complexities are given in Table 1.3.

Problem Hsolver

3D HelmholtzN O(n1 : 1)

Table 4.10: Experimental memory complexities obtained with the partially-structured
HSS multifrontal solver Hsolver. n is the size of the matrix.

The memory experimental complexities obtained with Hsolver are very consistent with
the theory and are satisfying.

In order to obtain similar results, we performed the BLR factorization of PoissonN and
HelmholtzN for different sizes of mesh N and derived the experimental memory complexity
of the multifrontal BLR method. The results are presented in Figures 4.17 and 4.18, for
mesh sizes ranging from 32 to 256 (224 for HelmholtzN).
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Figure 4.17: Experimental memory complexity for the multifrontal BLR factorization of
matrix PoissonN on a N � N � N mesh. n = N3.

This shows that the experimental memory complexity of the BLR multifrontal method
is slightly higher than for the HSS case (O(n1 : 2) versus O(n1 : 1)) but are still satisfying for
both problems.
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Figure 4.18: Experimental memory complexity for the multifrontal BLR factorization of
matrix HelmholtzN on a N � N � N mesh. n = N3.

These latter results correspond to the � values defined in the introduction of Sec-
tion 4.3. Table 4.11 summarize the results for both BLR and HSS formats.

Problem Hsolver MUMPS BLR

Helmholtz 2800 � n1 : 1 375 � n1 : 25

Table 4.11: Summary of the memory experimental complexities obtained with the
partially-structured HSS multifrontal solver Hsolver and the BLR solver based on
MUMPS. n is the size of the matrix. The full-rank multifrontal operation complexity
is 180 � n4 = 3.

Interestingly, HSS has a better complexity but its constant is much higher. This means
that BLR will be better than HSS on relatively small problems. Using these results, we
can prove that the cutoff matrix size is n = 700, 000 (which corresponds to a cubic mesh
size of N = 88), after which Hsolver requires less memory to store the factors. Similarly,
the BLR multifrontal method will perform better (in terms of memory for the factors)
than the full-rank multifrontal method if n > 6859 (i.e., if N > 19).

4.3.2 Experimental multifrontal operation complexity

To study the multifrontal operation complexity, we will first investigate the value of � ,
then the value of α and finally the speed s.

As for the experimental memory complexities, we used results presented in Wang et al.
[102], on the same problems. They are summarized in Table 4.12. The corresponding
theoretical complexities were given in Table 1.3.

Unlike the experimental memory complexities, the experimental operations complex-
ities are worse than the theoretical ones, which is mainly due to the fact that the ex-
perimental code is a partially-structured approach while the theory [103] focuses on a
fully-structured approach. However, the complexity which can be achieved is still satisfy-
ing.
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Problem Hsolver (ops)

3D HelmholtzN O(n1 : 6)

Table 4.12: Experimental operation complexities obtained with the partially-structured
HSS multifrontal solver Hsolver. ops stands for number of operations for the factorization.
n is the size of the matrix.

As far as the BLR factorization is concerned, we did the same experiments as for the ex-
perimental memory complexity of Section 4.3.1. The results are presented in Figures 4.19
and 4.20, for mesh sizes ranging from 32 to 256 (224 for HelmholtzN).
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Figure 4.19: Experimental operation complexity for the multifrontal BLR factorization of
matrix PoissonN on a N � N � N mesh. n = N3.

These results show that BLR has a good experimental complexity for both prob-
lems. For HelmholtzN, it is slightly higher than the one achieved through HSS partially-
structured factorizations. The original full-rank multifrontal solver has thus been well
improved. Note that for the largest mesh sizes, the block size could be increased in order
to obtain better compressions, although it was not done in these experiments to ease the
comparison.

These results give the � value and in order to better compare the two methods, we
have experimentally computed the constants (α), which yields more accurate complexities.
They are summarized in Table 4.13 where both � and α are indicated for both BLR and
HSS factorizations.

Problem Hsolver MUMPS BLR

Helmholtz 2350 � n1 : 6 150 � n1 : 77

Table 4.13: Summary of the operation experimental complexities obtained with the
partially-structured HSS multifrontal solver Hsolver and the BLR solver based on
MUMPS. n is the size of the matrix. The full-rank multifrontal operation complexity
is 55 � n2.
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Figure 4.20: Experimental operation complexity for the multifrontal BLR factorization of
matrix HelmholtzN on a N � N � N mesh. n = N3.

The same behavior as for the memory case can be observed: HSS has a better com-
plexity but its constant is much higher. Again, this means that BLR will be better than
HSS (in terms of operations) on relatively small problems. Using these results, we can
easily find this cutoff matrix size which is n = 11, 000, 000 (which corresponds to a cubic
mesh size of N = 220), after which Hsolver requires less operations to factorize the matrix.

These operation results have to be correlated with the speed that is achieved dur-
ing the factorization. Based on experiments performed with Hsolver (and also visible
with StruMF) on HelmholtzN, we obtained that HSS achieves 35% of the full-rank speed,
while BLR achieves 80% of it. If we integrate the flop rate in our reasoning, it changes
substantially the cutoff after which Hsolver is faster than BLR MUMPS, which becomes
n = 1, 700, 000, 000, corresponding to a mesh size of N = 1200, which makes a big differ-
ence. Similarly, the BLR multifrontal method will perform better (in terms of memory
for the factors) than the full-rank multifrontal method if n > 64 (i.e., if N > 4).

The fact that HSS is slower than the full-rank equivalent might be due to the fact that,
by construction, the partially-structured HSS approach handles small blocks in order to
represent the matrices (the generators) which slows down the operation efficiency of the
compressions and the factorization. It is less the case of BLR, which handles relatively
large blocks that all have a comparable size.

4.3.3 Accuracy and compression

To have a fair and complete comparison, the accuracy of the solution should also be taken
into account. We experimented with the BLR solver and StruMF on a 3D Helmholtz96

problem only with different low-rank thresholds ε. Results are presented in Table 4.14.
At high accuracy, StruMF was too slow so that results could not be obtained in an

acceptable time (with ε = 1e−6, the HSS-embedded factorization in StruMF is still three
time slower than the full-rank factorization). However, for these accuracies, BLR is able
to compress very well, which means that both accuracy and compression can be simulta-
neously targeted. For the HSS solver, when the factorization is very relaxed (ε = 1: 1 for
instance), the compression rates become close to the ones of BLR but then the solution is
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4. Evaluation of the potential of the method

ε 1e − 14 1e − 10 1e − 6 1e − 2 1 : 1

BLR (|L| � ops) 63% � 35% 51% � 24% 37% � 15% 28% � 9% 25% � 9%
HSS (|L| � ops) / � / / � / 66% � 85% 45% � 28% 35% � 9%

Table 4.14: Low-rank threshold with respect to the factor compression rate (|L|) and
the operation compression rate (ops=ops F+S+C+U) obtained with BLR MUMPS and
StruMF on a 3D Helmholtz96 problem.

not acceptable in the context of a direct solver. However, it can be used as a preconditioner.

For this kind of model problem on regular meshes, low-rank technologies are appeal-
ing but the full-rank multifrontal method should be preferred for small grid sizes. For
medium-size grids, BLR seems to be a better candidate than HSS (in terms of opera-
tion count and performance) due the smaller pre-factor in the complexity and the better
performance of the underlying dense kernels. However, for very large problems (10M+
degrees of freedom), the better asymptotic behavior of HSS might make it a more suit-
able approach. Also, in memory-constrained environments, the HSS approach should be
used in priority even for medium-size grids since it seems to provide a better compression
of the LU factors. We conclude that there is no clear winner even for these kinds of
simple model problems; furthermore, the behavior of these different low-rank techniques
remains to be investigated for non-PDE problems or PDE problems on irregular unstruc-
tured meshes, but this preliminary study, along with the advantages listed in Chapter 2,
demonstrate that BLR techniques are worth investigating and can be of interest for many
applications. We plan to extend this study to different classes of problems, usages of
the solver (as a preconditioner, as a direct solver. . . ), and larger applications by using
distributed-memory implementations of each technique, and new low-rank compression
algorithms. In particular, recently investigated fully-structured HSS techniques relying
on randomized sampling [104] seem to be a promising direction for improving HSS-based
sparse solvers. This is the object of an on-going collaboration with Xiaoye S. Li., Artem
Napov and François-Henry Rouet.
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Chapter 5

Application to real-life industrial
problems

In the previous chapter, we evaluated the potential of our method on two widely used
operators. We have shown the flexibility and the efficiency of our solver. In this chapter, we
present experiments on the BLR multifrontal solver used in various applicative contexts.
We interfaced our code with EDF's finite element industrial code Code_Aster (see 1.6.3)
and used it as a direct solver and as a preconditioner for the conjugate gradient. We show
how double precision Block Low-Rank with a low-rank threshold ε = 10−8 can be a good
alternative to full-rank single precision in order to efficiently precondition hard problems.
Then, we present a geophysics study in a 3D seismic modeling context for front-wave
inversion (in collaboration with the Seiscope project). Finally, we show some results on a
set of matrices available in the University of Florida Sparse Matrix Collection and coming
from various applications, aiming at widening the scope of our study. All these problems
have been introduced in Section 1.6.4.

5.1 Structural mechanics in EDF Code_Aster

We experiment our approach in the context of EDF structural mechanics package Code_Aster.
Our BLR solver has been coupled to Code_Aster so that results could be obtained for
different reference test-cases, corresponding to large and archetypal applications. In a
first section, we study the BLR multifrontal solver on three matrices presented in Sec-
tion 1.6.4.2. In a second section, we analyse how loosely approximated factors can be
used to precondition the conjugate gradient.

5.1.1 Direct solver

Three matrices coming from different application have been experimented in a direct solver
context. pompe is quite small while the two others, amer12 and dthr7, are very large (from
8 to 134 millions of unknowns each, see Section 1.6.4.2). These experiments have been
performed in sequential as distributed-memory results have already been presented in
Chapter 4. We first present in Table 5.1 results about the overhead due to clustering for
all three problems.

The extra-time spent in the clustering appears to be very low compared to the original
analysis time, which means that the price to pay to build BLR frontal matrices will be
negligible compared to the factorization, which often dominates the analysis.
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5. Application to real-life industrial problems

matrix FR analysis time clustering time total BLR analysis time

pompe 22 s. 8 s. 30 s.
amer12 2650 s. 140 s. 2790 s.
dthr7 517 s. 15 s. 532 s.

Table 5.1: Timings related to the clustering phase. The original full-rank analysis time
is indicated together with the time overhead due to clustering. The total BLR analysis
time is thus the sum of the two first timings.

The results related to the factorization of the three problems are given in Table 5.2.
Many metrics are proposed: the factor compression |L|, the peak of CB stack compression
|CB|, the operation compression for the overall factorization (F+S+C+U) together with
the corresponding elapsed time, the componentwise scaled residual (CSR) and the scaled
residual (SR), without and with iterative refinement (IR), in which case the extra-time is
indicated (time IR). For metrics given as percentages, the corresponding full-rank (FR)
quantity is also given, so that one can understand the savings obtained in terms of giga-
bytes or operations. The BLR solver is experimented with low-rank thresholds ε ranging
from 10−14 to 10−2.

The pompe matrix being small, the improvements which can be achieved due to low-
rank approximations are low, since both the volume of computations and the memory
footprint are already small. With ε = 10−14, the factorization takes 10 seconds less time
than in full-rank, which represents more than 10% of time savings. With ε = 10−8, the
time saved goes up to 20 seconds and a quarter of the factor memory has also been saved,
which becomes more interesting. The scaled residual remains good while the component-
wise scaled residual is quite heavily affected. However, a few steps of iterative refinement
can be done to recover full accuracy, but the price to pay is 20 seconds, meaning that
it can be done if the memory constraint is stronger than the time constraint. Note that
this problem is also numerically difficult as 3, 375 delayed pivots and 5, 960 two-by-two
pivots have been detected. With a condition number of 3: 1e + 07, the factorization may
be unstable and this can explain the behavior of the componentwise scaled residual. Nev-
ertheless, these are promising results and experimenting refined meshes would increases
the potential of compression with a better discretization.

The other two matrices, amer12 and dthr7, are numerically easier (almost no delayed
pivot) and present very satisfying performance. With ε = 10−14, both of them require half
of the full-rank factor storage and 5 to 10 times less operations. The peak of CB stack
is also well reduced, to 10% to 20% of the full-rank peak, which gives a good insight of
the global memory reduction (note that the time spent in the external compression phase,
which is needed to compress the CB stack and which is not indicated in the table, is always
lower than 20% of the overall BLR factorization time indicated in the table). Moreover,
even if the time compression is worse than the operation compression, it remains very good
as both problems could be solved in just 40% of the time for the full-rank method, at a
comparable accuracy. Because the operation compression rates are very low, most of the
operations performed during the factorization are done on small blocks, which decreases
a lot the BLAS 3 efficiency. Simultaneously, because the number of remaining operations
is very low, the decrease in BLAS 3 efficiency is counterbalanced and all in all the overall
time decreases.
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5.1. Structural mechanics in EDF Code_Aster

|L| |CB|
ops time

SR CSR SR IR CSR IR time IR
F+S+C+U F+S+C+U

p
o
m
p
e

FR 2.6GB 100 % 4.7e+11 89 s. 2.9e-17 2.3e-15 2.1e-17 7.5e-16 20 s.
10−14 86.3 % 59.3 % 67.3 % 81 s. 2.8e-17 2.2e-10 2.8e-17 6.7e-16 20 s.
10−12 82.8 % 52.6 % 60.0 % 79 s. 2.8e-17 2.5e-08 2.5e-17 6.0e-16 20 s.
10−10 78.4 % 44.9 % 52.0 % 76 s. 1.5e-15 2.4e-06 2.3e-17 6.1e-16 22 s.
10−8 72.9 % 36.0 % 43.0 % 69 s. 2.9e-13 4.5e-04 2.3e-17 8.9e-15 17 s.
10−6 65.8 % 25.9 % 33.3 % 67 s. 3.5e-11 6.9e-03 2.3e-17 4.3e-13 28 s.
10−4 56.2 % 15.7 % 23.0 % 61 s. 4.2e-09 1.0e-01 2.4e-09 2.0e-01 22 s.
10−2 43.5 % 9.1 % 12.5 % 52 s. 7.0e-08 2.0e-01 6.8e-08 5.0e-01 22 s.

a
m
e
r
1
2

FR 200GB 100 % 1.5e+14 16747 s. 1.8e-14 7.6e-14 1.8e-16 5.6e-16 1300 s.
10−14 54.9 % 7.7 % 9.2 % 6602 s. 3.8e-15 4.3e-14 1.7e-16 6.1e-16 1489 s.
10−12 52.8 % 6.6 % 7.9 % 6317 s. 3.7e-13 4.0e-12 1.9e-16 5.7e-16 1332 s.
10−10 50.4 % 5.4 % 6.7 % 6798 s. 5.7e-11 3.2e-10 1.7e-16 6.3e-16 1489 s.
10−8 47.7 % 4.2 % 5.4 % 6566 s. 1.6e-08 7.5e-08 1.9e-16 6.1e-16 2293 s.
10−6 44.6 % 2.7 % 4.1 % 6312 s. 3.1e-06 9.9e-06 1.0e-06 1.7e-05 1728 s.
10−4 41.1 % 1.7 % 2.8 % 6020 s. 1.4e-04 3.0e-03 1.6e-04 1.0e-03 2951 s.
10−2 37.5 % 1.5 % 2.0 % 5786 s. 2.6e-03 2.6e-02 1.2e-03 6.7e-03 1758 s.

d
t
h
r
7

FR 128GB 100 % 2.7e+14 25815 s. 5.9e-17 4.6e-14 7.7e-19 5.5e-16 796 s.
10−14 49.1 % 22.7 % 18.5 % 10716 s. 2.2e-16 7.3e-13 7.8e-19 5.4e-16 867 s.
10−12 42.8 % 17.4 % 13.6 % 9188 s. 2.2e-14 1.1e-10 7.6e-19 5.3e-16 566 s.
10−10 36.4 % 12.6 % 9.4 % 8263 s. 3.3e-12 1.1e-08 7.9e-19 5.8e-16 765 s.
10−8 30.2 % 8.5 % 6.2 % 8122 s. 4.4e-10 2.5e-06 8.2e-19 5.3e-16 861 s.
10−6 23.7 % 5.2 % 3.6 % 7338 s. 1.0e-07 1.4e-04 8.3e-19 5.8e-16 1502 s.
10−4 17.4 % 2.8 % 1.9 % 6528 s. 6.6e-06 2.3e-02 2.8e-06 6.8e-03 905 s.
10−2 12.5 % 1.6 % 1.1 % 6423 s. 3.7e-05 1.0e-01 1.9e-05 2.9e-02 755 s.

Table 5.2: Results on 3 matrices from EDF applications, given in terms of factor size |L|,
peak of CB stack size |CB|, number of operations for the factorization (ops F+S+C+U)
and total elapsed time for factorization time (time F+S+C+U). The componentwise scaled
residual (CSR) and scaled residual (SR) are given with and without iterative refinement
(IR). The time spent in the iterative refinement steps is also indicated (time IR). A
percentage in a given row is given relatively to the first value of this row (i.e., value in
column FR).

Again, if the memory constraint is stronger than the time constraint, one can relax
the low-rank threshold to, say, ε = 10−8 and perform iterative refinement to recover full
accuracy. This allows for more factor compression (a factor of 2: 5 to 5) and to divide the
peak of CB stack by a factor of more than 10. Moreover, even with the extra time spent
in the iterative refinement (around 1000 s. for dthr7 and around 2000 s. for amer12), the
overall time would stay twice lower as in the full-rank case.

Note that the fact that the accuracy suddenly fails when the low-rank threshold is
too large is consistent with what was observed in Figures 4.15 and 4.16 so that ε = 10−8

works well for all problems in this study (so far).

These results pave the way for a new class of numerically approximated solvers with a
good potential for iterative refinement, because the low-rank truncation has a numerical
meaning. This idea naturally leads to experimenting BLR factorizations as preconditioner
in a pure iterative context.
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5. Application to real-life industrial problems

5.1.2 BLR preconditioned conjugate gradient

Block Low-Rank techniques can also be efficiently used to design preconditioners, using
a larger threshold ε than in a direct solver context. This is particularly critical for EDF
applications when direct solvers are too memory and time consuming, in which case a
conjugate gradient preconditioned with a single precision factorization of the original
matrix is used. The conjugate gradient iterations are always performed in double precision.
We experimented with our BLR solver on two problems which present different behaviors.
These problems were also presented in Section 1.6.4.3. piston is a problem where the
conjugate gradient works well in full-rank. perf is ill-conditioned and the convergence is
slow. The algorithm used to solve these problems within EDF's Code_Aster and full-rank
single precision preconditioner is reported in Algorithm 5.1 for the unsymmetric case.

Algorithm 5.1 Full-rank conjugate gradient preconditioned with a single precision fac-
torization of A, in the unsymmetric case. The subscript shows the precision used for
storing the corresponding data (s=single, where not specified, double is assumed).

1: Compute the preconditioner: As = A; LsUs = As

2: Compute r = b − Ax for some initial guess x

3: for it = 1 to ... do
4: rs = r

5: zs = Usn Lsn rs

6: z = zs

7: ρ =< r, z >

8: if it = 1 then
9: p = z

10: else
11: � = ρ= ρo

12: p = z + � p

13: end if
14: q = Ap

15: α = ρ= < p, q >

16: x = x + αp

17: r = r + αq

18: ρo = ρ

19: check convergence; continue if necessary
20: end for

Algorithm 5.1 will be referred to as FR SP (where SP stands for Single Precision) in
this section. Then, the BLR based variants which we experiment for these problems are:

1. BLR SP: Ls and Us are replaced with ~Ls and ~Us; the tilde is added to denote factors
computed with a BLR factorization.

2. BLR DP (where DP stands for Double Precision): Ls and Us are replaced with ~L
and ~U and steps 4 and 6 removed.

Note that FR DP does not make sense as it requires to compute the full-rank double
precision factors (then, the solution should be obtained directly by means of forward
elimination and backward substitution).

We give in Table 5.3 results in terms of number of iterations to convergence and
time to convergence (i.e. the time for computing the preconditioner and perform the
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5.1. Structural mechanics in EDF Code_Aster

conjugate gradient iterations). These reference results have been obtained with a single
precision preconditioner (computed with MUMPS) and correspond to a regular usage
within Code_Aster at EDF. As explained before, piston has a quick convergence whereas
perf is much slower.

# it. Time

piston 3 373 s.
perf 69 815 s.

Table 5.3: Number of iterations and time to convergence with FR SP.

We used our BLR solver to compute an alternative preconditioner. We test both single
and double precision with different low-rank threshold ε. In single precision, ε ranges from
10−8 to 10−3 or 10−4, depending on the convergence. In double precision, ε ranges from
10−14 to 10−3 or 10−4, depending on the convergence. Recall that the conjugate gradient
iterations are always performed in double precision. We present in Tables 5.4 and 5.5
the number of iterations obtained with a BLR preconditioner, both in single and double
precision. We also give the corresponding memory and operations compression rates due
to low-rank compressions. The run times do not appear in these two tables since they will
be discussed separately through Figures 5.1 and 5.2.

BLR SP BLR DP

ε #it |L| |CB|
ops

#it |L| |CB|
ops

F+S+C+U F+S+C+U

10−14

not applicable in single precision

1 79.0% 35.4% 48.4%
10−13 1 77.2% 32.8% 45.3%
10−12 1 75.3% 30.2% 42.3%
10−11 1 73.2% 27.5% 37.1%
10−10 1 70.9% 24.9% 36.0%
10−9 2 68.4% 22.1% 32.7%
10−8 4 66.4% 22.8% 31.0% 2 65.6% 19.2% 29.5%
10−7 3 63.4% 20.0% 27.5% 2 62.5% 16.3% 26.2%
10−6 3 60.1% 17.4% 24.0% 3 59.1% 13.4% 22.9%
10−5 4 56.3% 14.9% 20.5% 4 55.1% 10.9% 19.6%
10−4 6 51.7% 12.8% 17.0% 7 50.4% 8.9% 16.3%
10−3 66 45.9% 11.0% 13.2% 24 44.5% 7.3% 12.8%
10−2 no convergence in 1000s.

Table 5.4: Compression and convergence results for piston, for both BLR SP and BLR
DP variants.

In single precision, both Tables 5.4 and 5.5 show that when the low-rank threshold
is not too aggressive (e.g. ε < 10−3 for piston and ε < 10−4 for perf), the increase in
number of iterations due to the approximations is fairly contained. With more aggressive
thresholds, both problems start converging much slower until the convergence cannot be
obtained within 1000 seconds because too much information has been lost.
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5. Application to real-life industrial problems

BLR SP BLR DP

ε #it |L| |CB|
ops

#it |L| |CB|
ops

F+S+C+U F+S+C+U

10−14

not applicable in single precision

1 72.7% 27.9% 41.9%
10−13 1 70.6% 25.7% 39.2%
10−12 1 68.3% 23.0% 36.2%
10−11 1 66.1% 20.5% 33.4%
10−10 2 64.2% 18.3% 31.0%
10−9 2 62.2% 16.1% 28.8%
10−8 67 59.4% 18.9% 26.7% 3 58.7% 13.7% 25.5%
10−7 68 56.9% 16.9% 24.3% 4 56.4% 11.4% 23.4%
10−6 66 52.4% 15.2% 20.2% 8 51.9% 9.6 % 19.7%
10−5 67 49.1% 14.1% 17.1% 19 48.6% 8.6 % 17.0%
10−4 81 45.1% 13.5% 14.1% 68 44.4% 8.0 % 14.1%
10−3

no convergence in 1000s.
10−2

Table 5.5: Compression and convergence results for perf, for both BLR SP and BLR
DP variants.

In double precision, unsurprisingly, the convergence is very fast at high accuracy, as
the preconditioner becomes closer to the exact inverse. At lower accuracy, the number of
iterations to convergence increases but remains below the corresponding single precision
number of iteration in most cases, as single precision can be viewed as a coarse, basic
truncation of double precision while low-rank truncation only dropped values with no
numerical influence. For piston, the number of iterations cannot be really improved by
using a double precision preconditioner as it is already low in single precision. However,
for perf, the number of iterations can be substantially decreased since the convergence is
slow in single precision.

In terms of compression rates due to low-rank approximations, the behavior when the
threshold increases is the same as already observed in Chapter 4: the compression rates
become better. A factor of at least 2 and 3 can be obtained in memory and operations,
respectively, even at full single or double precision.

The iteration counts have to be related to the overall process timing (the spent in
computing the preconditioner and performing all the required conjugate gradient itera-
tions) in order to find the best strategy. Figures 5.1 and 5.2 give the time spent in the
overall process (i.e., computing the preconditioner and performing the conjugate gradient
iterations) for both problems.

Interestingly, the speed-up obtained during the preconditioner computation can exceed
the extra cost due to the increase in the number of iterations. This is the case for both
problems, in single or double precision: the optimal time is not obtained for the lowest
number of iteration. For piston, ε = 10−4 is the optimal low-rank threshold in terms
of execution time, both for single and double precisions. The overall optimal time is
obtained in single precision and is 44% of the full-rank case. The corresponding operation
compression is 17%, so that, as already observed for many problems in this dissertation,
the time reduction is not equivalent to the operations reduction due to the worse efficiency
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Figure 5.1: Timing results for piston. The corresponding total full-rank execution time
is 373 seconds.
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Figure 5.2: Timing results for perf. The corresponding total full-rank execution time is
815 seconds.

of BLAS operations in the BLR case. However, the overall time is still cut by more than
half because so many operations have been saved that it pays off even if these operations
are slower. For perf, ε = 10−5 and ε = 10−7 are the optimal low-rank thresholds for single
and double precision, respectively. It is very interesting to note that on this problem, the
overall optimal time is obtained in double precision, being 49% of the full-rank time.
Similarly as for piston, the operation efficiency has decreased too. Although double
precision operations are slower, this behavior is possible because a very large amount of
iterations have been saved. Block-Low Rank double precision preconditioner thus may
make sense when the number of iterations in full-rank single precision is large, because a
considerable reduction of the number of iterations to convergence can be achieved thanks
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5. Application to real-life industrial problems

to the numerically meaningful low-rank truncation.
In terms of memory, because the compression rates are similar in single and double

precision, double precision preconditioners are still twice as memory consuming as the
single precision preconditioner.

The choice of which strategy to adopt is thus unclear and depends on the context.
On one hand, if one needs to recompute the preconditioner many times, then it is worth
increasing the number of iterations slightly and obtaining a very cheap preconditioner. On
the other hand, if a preconditioner can be reused many times (because of small changes
in the matrix for instance, like in a Newton process) it can be worth spending more time
computing it but sparing afterwards many iterations.

Note that, as showed in Section 3.5, the solution phase is also improved by the Block
Low-Rank techniques. Although not implemented yet, an interesting time reduction can
be expected for these problems because the reduction in the factor storage (|L|) is im-
portant and thus the time spent in the conjugate gradient could be further divided by a
factor of almost 2.

5.2 3D frequency-domain seismic modeling (Seiscope
project)

5.2.1 Context

Seismic modeling and full-waveform inversion (FWI) can be performed either in the time
domain or in the frequency domain [98]. One distinct advantage of the frequency do-
main is to allow for a straightforward implementation of attenuation in seismic modeling
[95]. Second, it provides a suitable framework to implement multi-scale FWI by frequency
hopping, which is useful to mitigate the nonlinearity of the inversion [84]. Frequency
domain seismic modeling consists of solving an elliptic boundary-value problem, which
can be recast in matrix form where the solution (i.e., the monochromatic wavefield) is
related to the right-hand side (i.e., the seismic source) through a sparse impedance ma-
trix, whose coefficients depend on frequency and subsurface properties [78]. The resulting
linear system can be solved with a sparse direct solver based on the multifrontal method to
efficiently compute solutions for multiple sources by forward/backward substitutions, once
the impedance matrix is LU factorized. However, the LU factorization of the impedance
matrix generates fill-in, which makes the direct-solver approach memory demanding. Ded-
icated finite-difference stencils of local support [82] and fill-reducing matrix ordering based
on nested dissection are thus simultaneously used to minimize this fill-in. A second limita-
tion is that the volume of communications limits the scalability of the LU factorization on
a large number of processors. Despite these two limitations, Operto et al. [82] and Brossier
et al. [22] showed that few discrete frequencies in the low part of the seismic bandwidth [2 -
7 Hz] can be efficiently modeled for a large number of sources in 3D realistic visco-acoustic
subsurface models using small-scale computational platforms equipped with large-memory
nodes. This makes this technique attractive for velocity model building from wide-azimuth
data by FWI [19]. A first application to real Ocean Bottom Cable data including a com-
parison with time-domain modeling was recently presented by Brossier et al. [23]. To
reduce the memory demand and the operation counts, Wang et al. [99] proposed comput-
ing approximate solutions of the linear system by exploiting the low-rank properties of
elliptic partial differential operators, based on a HSS solver. Their approach exploits the
regular pattern of the impedance matrix built with finite-difference stencils on uniform
grid. Our algebraic approach is amenable to matrices with a non regular pattern such as
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5.2. 3D frequency-domain seismic modeling (Seiscope project)

those generated with finite element methods on unstructured meshes. We test our solver
on the 3D SEG/EAGE overthrust model and give quantitative insights on the memory
and operation count savings provided by the BLR solver.

5.2.2 Numerical example and analysis

We perform acoustic finite-difference frequency-domain seismic modeling in the 3D SEG
EAGE overthrust model [14] of dimension 20km � 20km � 4 : 65km (km=kilometers) with
the 27-point mixed-grid finite-difference stencil [82] for the 2-Hz, 4-Hz and 8-Hz frequencies
(Figures 5.3 and 5.4).
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Figure 5.3: SEG/EAGE overthrust velocity model.

We perform the simulation on a single 64-core AMD Opteron node equipped with
384GB of shared memory. No timing could be obtained because no exclusive access to
the machine was provided, so that the timings we obtained where not stable enough to be
exploitable; we were not allowed to install the encompassing code in any other machine
neither. The compression rates could be obtained as they do not require any exclusive
access. We use single precision arithmetic to perform the full-rank (FR) and the BLR
factorizations. The point source is located at x (dip) = 2 km, y (cross) = 2 km and z
= 0.5 km. A discretization rule of 4-grid points per minimum wavelength leads to a grid
interval of 250 m, 135 m and 68 m and a finite-difference grid of 0.3, 1.4 and 8 millions of
nodes for the 2-Hz, 4-Hz and 8-Hz frequency, respectively, considering 8 grid points in the
perfectly-matched layers surrounding the computational domain. Results for the full-rank
simulations obtained with MUMPS are given in Table 5.6.

Frequency Operation count LU Mem LU Memory peak

2 Hz 8.957E+11 3 GB 4 GB
4 Hz 1.639E+13 22 GB 25 GB
8 Hz 5.769E+14 247 GB 283 GB

Table 5.6: Results for the full-rank simulations obtained with MUMPS. Operation count
LU : number of operations during LU factorization. Mem LU : Memory for LU factors in
GigaBytes. Memory peak: Maximum size of stack during LU factorization in GigaBytes.

The BLR solutions are computed for 3 values of the threshold ε (10−3, 10−4 and 10−5)
and are validated against the FR solutions (Figure 5.4(a-c)). The accuracy of the BLR
solutions can be qualitatively assessed in Figure 5.4(d-l) and the reduction of the memory
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demand and operation complexity resulting from the BLR approximation are outlined in
Tables 5.7 and 5.8. We use the metrics presented in Section 4.1.

In a first attempt to assess the footprint of the BLR approximation on seismic imaging,
we show 2-Hz monochromatic reverse-time migrated images (RTM) computed from the
FR and the BLR solutions in Figure 5.5. RTM is computed in the true velocity model for
an array of shots and receivers near the surface with a shot and receiver spacings of 500
m and 250 m, respectively.

BLR solutions for ε = 10−3 are of insufficient quality for FWI applications (Fig. 5.4(d-
f) and 5.5d), while those obtained with ε = 10−5 closely match the FR solutions (Fig.
5.4(j-l) and 5.5b). BLR solutions for ε = 10−4 show some slight differences with the FR
solutions (Fig. 5.4(g-i)), but might be considered for FWI applications (Fig. 5.5c). For the
8-Hz frequency, the operation count performed during the BLR factorization represents
14.8% (� = 10−4) and 21.3% (� = 10−5) of the one performed during the FR factorization.
It is worth noting that the operation count reduction increases with frequency (i.e., with
the size of the computational grid) as the maximum distance between variables in the grid
increases, a key feature in view of larger-scale simulations. For example, for ε = 10−4, the
operation count decreases from 28: 4% to 14 : 8% when the frequency increases from 2 Hz to
8 Hz (see Table 5.7). The overhead associated with the decompression of the contribution
block is negligible, a distinct advantage compared to the HSS approach of Wang et al.
[99], and hence should not significantly impact the performance of the BLR factorization.
The memory saving achieved during the BLR factorization follows the same trend as the
operation count, since it increases with frequency. For the 8-Hz frequency and ε = 10−5,
the memory for LU-factor storage and the peak of CB stack during BLR factorization
represent 41 : 6% and 23: 9% of those required by the FR factorization, respectively, as shows
Table 5.8. The reduction of the storage of the contribution blocks (CB) is even higher.
Both (LU and CB compression) will contribute to reducing the volume of communication
by a substantial factor and improving the parallel efficiency of the solver.

Frequency ops F+S+U(%) ops C (%)

� = 10−3 � = 10−4 � = 10−5 � = 10−3 � = 10−4 � = 10−5

2 Hz 21.1 28.4 36.6 3.5 4.5 5.2
4 Hz 12.7 18.6 25.6 1.1 1.4 1.8
8 Hz 9.5 14.8 21.3 0.3 0.4 0.5

Table 5.7: Operation statistics of the BLR simulations.

Frequency |L| |CB|

� = 10−3 � = 10−4 � = 10−5 � = 10−3 � = 10−4 � = 10−5

2 Hz 44.7 53.4 61.8 16.8 23.9 32.3
4 Hz 34.5 42.2 50.0 19.0 21.7 24.4
8 Hz 21.3 28.9 41.6 15.9 19.4 23.9

Table 5.8: Memory statistics of the BLR simulations.

The computational time and memory savings achieved during BLR factorization in-
crease with the size of the computational grid (i.e., frequency), suggesting than one order
of magnitude of saving for these two metrics can be viewed for large-scale factorization
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(c) FR solution at 8Hz

0

1

2

3

4D
e

p
th

 (
k
m

)

0
Dip (km)

5

10

15

20

C
ro

ss
 (k

m
)

5 10 15 20

(d) Di� erence between FR and
BLR solution at " = 10−5 at 2Hz.
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(e) Di� erence between FR and
BLR solution at " = 10−5 at 4Hz.
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(f) Di� erence between FR and
BLR solution at " = 10−5 at 8Hz.
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(g) Di� erence between FR and
BLR solution at " = 10−4 at 2Hz.
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(h) Di� erence between FR and
BLR solution at " = 10−4 at 4Hz.
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(i) Di� erence between FR and
BLR solution at " = 10−4 at 8Hz.
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(j) Di� erence between FR and
BLR solution at " = 10−3 at 2Hz.
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(k) Di� erence between FR and
BLR solution at " = 10−3 at 4Hz.
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Figure 5.4: Study on the quality of the real part of the solution with different accuracies
and frequencies. Amplitudes are clipped to half the mean amplitude of the full-rank
wavefield on each panel.

involving several tens of millions of unknowns. In this special applicative context, future
work involves a sensitivity analysis of FWI to the BLR approximation before application
of visco-acoustic FWI on wide-azimuth data recorded with fixed-spread acquisition geome-
tries [23]. Note that, as already stated throughout this dissertation, the computational
efficiency of the BLR solver might be improved by iterative refinement of the solutions
(although this needs to be performed for each right-hand side, which can represent many
computations in this particular application) or by performing the BLR factorization in
double precision. Moreover, the computational savings provided by the BLR solver might
allow frequency-domain seismic modeling in realistic 3D visco-elastic anisotropic media
[100].
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Figure 5.5: 2-Hz RTM image for full-rank and low-rank factorizations.

5.3 Problems from the University of Florida Sparse
Matrix Collection

In addition to all the results already presented, we extend our study on matrices coming
from different types of applications in order to show that BLR can be efficient on a wide
range of problems. These matrices, also, appear in Xia [103] and give thus another insight
of how BLR compares to HSS. Even though they are small, they give an interesting idea
of different fields where low-rank technologies could be used. In Table 5.9, we indicate
the complete results on this set of 6 matrices, including compression rates, timing and
accuracy.

First note that on these small matrices, the full-rank execution time is so low that
it is difficult to improve it significantly, which explains why the full-rank and low-rank
execution times are so close, even if the operation compression rates are good (note that the
time spent in the iterative refinement is not taken into consideration). As far as memory
is concerned, the factors are reduced by less than a factor of 2 but the maximum peak of
CB stack |CB| is divided by 4 to 2, which is significant. To obtain these compression rates,
the low-rank threshold had to be set up to ε = 10−8, which leads to a CSR of the same
order. However, with only 2 steps of iterative refinement, the full accuracy is recovered,
meaning that on problems theoretically not suitable for low-rank approximations, it can
nevertheless be worth using these technologies with loosely approximated factorizations
and iterative refinement.

Finally, these results compare well with what could be obtained with an HSS solver
in Xia [103]. In most matrices, the compression of the factor is worse with BLR but
the operation compression is usually better, at a same accuracy. Timing could not be
compared as they were not indicated in the reference paper.
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apache2 ecology2 G3_circuit
parabo- thermo-

tmt_sym
lic_fem mech_dM

|L|
MUMPS 1.68E8 4.32E7 1.13E8 2.98E7 7.53E6 3.62E7
BLR 55% 70% 70% 79% 81% 75%

|CB| BLR 28% 25% 23% 37% 46% 28%

ops
MUMPS 2.36E11 1.85E10 6.68E10 8.46E9 8.16E8 1.32E10
BLR 21% 28% 36% 44% 52% 34%

time
MUMPS 28 s. 7 s. 15 s. 3 s. 1 s. 4 s.
BLR 28 s. 5 s. 16 s. 2 s. 2 s. 4 s.

CSR
MUMPS 8.79E-15 2.60E-15 5.20E-15 2.65E-15 6.38E-16 4.39E-16
BLR 4.44E-9 1.45E-8 4.58E-9 7.32E-9 4.31E-9 1.96E-9

BLR (2 IR) 1.74E-16 2.00E-16 2.47E-16 2.60E-16 3.49E-16 6.63E-17

Table 5.9: Results on matrices coming from different application fields. CSR is the
componentwise scaled residual.

117





Chapter 6

Conclusion

6.1 General results

In this work, we have proposed an efficient and flexible low-rank format suitable for the
implementation of algebraic general purpose multifrontal solvers. We have first presented
an extensive survey of the most popular already existing hierarchical low-rank formats
and discussed the interest of a flat format referred to as Block Low Rank (BLR) in the
context of algebraic distributed-memory multifrontal solvers. In the dense matrices, we
have compared BLR, H and HSS formats based on the cost of compressing, the memory
needed to store the low-rank form and the number of operations required to compute
the factorization. We have shows that BLR is a good candidate; although it is slightly
less efficient in terms of memory and operation compression, it allows for a good BLAS 3
efficiency and critical algorithms on which rely, for instance, the numerical pivoting and
the distribution among processors, can be adapted without conceding their efficiency. To
define the blocking on which the BLR format relies, we have designed an efficient algebraic
clustering which exploits the assembly tree of the multifrontal process. The overhead of
this clustering step, which is performed during the analysis phase, has been shown to
be low. We have proposed different factorization algorithms which differently exploit the
BLR approximations: from a loosely approximated factorization (for applications where
one solution phase is performed per factorization) to an exact factorization with off-line
approximated factors (for applications where many solutions phases are performed per
factorization). We have focused in this thesis on an intermediate variant which gives a good
compromise between numerical robustness and reduction of factorization and solution
complexities. We have proposed an implementation scheme of this algorithm that can
embed threshold partial pivoting and distributed-memory parallelism. A flexible recursive
two levels of panels algorithm has been designed to accommodate both BLR format and
numerically robust blocked factorization. We have shown that this scheme allows for
efficient use of matrix-matrix operations (BLAS 3 kernels) within BLR based factorization.

To validate the proposed approach, we have firstly experimented with our method
on two standard PDEs applications and have shown that substantial memory and time
reductions can be obtained, even with a low-rank threshold close to machine precision.
Moreover, we have observed that the efficiency of the BLR factorization does not need a
fine tuning of the block size and does not rely on a particular underlying global ordering
of the matrix. We have exhibited that partial pivoting is critical in some cases in order
to preserve accuracy and low-rank compression rates. We have demonstrated that in the
context of distributed-memory parallelism the compression rates are also preserved. BLR
approach has then been experimented on a wide set of symmetric and unsymmetric large
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industrial problems. We have shown that quite interesting memory and time reductions
can be obtained while preserving/controlling numerical accuracy in the solution.

Finally, we have tested the BLR factorization with larger low-rank threshold to use it
as a preconditioner for the conjugate gradient method. We have showed that it can be
a good alternative against general single precision full-rank preconditioners, thanks to a
numerical truncation instead of the coarse sword cutting resulting from the use of single
precision arithmetic.

6.2 Software improvements

All proposed algorithms have been implemented in the context of the MUMPS (MUlti-
frontal Massively Parallel Solver) solver. The full-rank factorization had to be completely
redesigned in order to implement the two levels of panels even in full-rank, so that the
same numerical kernels can be used in low-rank. We observed that the two levels of panel
scheme allows for more efficiency in the full-rank case too, due to a better cache locality.
We managed to maintain, together with the BLR factorization, most of the underlying
algorithms of MUMPS, so that critical features such as out-of-core, pivoting, dynamic
scheduling are still available together with BLR factorization.

This development version of MUMPS has been coupled with Code_Aster and exper-
imented in the industrial context of EDF, validating that both full-rank and low-rank
versions of the solver can be used. It has also been successfully used in the context of 3D
frequency-domain seismic modeling (Seiscope project).

We emphasize that the technologies and ideas presented throughout this dissertation
do not rely on a particular implementation of the multifrontal method, and can thus be
applied or adapted to any other solver besides MUMPS.

6.3 Perspectives and future work

We describe possible directions for future work. We start with some implementation issues.
As recalled in previous section, many variants of the BLR factorization have been defined
and although the approach that offers the best compromise between numerical robustness
and efficiency has been implemented, one could consider implement the remaining variants.
Among them the variant that provides an exact factorization with off-line approximate
factors could be interesting and reasonably easy to implement. This would be a natural
and quite straightforward way to improve the flexibility of BLR-based solvers, and to
adapt to applicative constraints. In the same context, we have shown that the solution
phase of the multifrontal method can be substantially improved by taking advantage
of the compression of the factors. Implementing the BLR solution phase will further
improve the overall process, especially when many solution phases are performed for each
factorization, such as in the conjugate gradient method or for the front-wave inversion
problem (see Section 5.2). This requires the factors to be stored in BLR format and thus
to define new data structure to store factors. This data structure would also allow for a
better exploitation of the memory compression. To further reduce the memory footprint,
a panelwise assembly could be performed: once the panel associated to the current BLR
block is assembled and factorized, a compression step would be immediately performed,
decreasing the global memory needed to store a front. Hence there is (almost) no large
dense matrix; this is reminiscent of the fully-structured HSS approach. The same data
structure could also be used to store the contribution blocks in compressed form. This
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would enable further communication volume reduction and decrease in the size of the
memory stack.

In a distributed-memory context, slave to slave communications (i.e., within a node of
the assembly tree) are also requested for symmetric matrices and should be done in BLR
format so that the corresponding contribution blocks can be updated using low-rank prod-
ucts. The BLR factorization also raises many scheduling issues, as the amount of storage
and computations decreases. Even though promising results could be obtained without
any modification of the dynamic scheduling, many improvements could be obtained by
taking into account compression rates. The main difficulty is that because of low-rank
compression it is impossible to predict the memory and computational requirements for
a given front. Moreover, because the (2,1) block of a BLR front is usually better com-
pressed than the (1,1) block, the computations performed in the (1,1) block may become
dominant creating an unbalanced between processes. The distribution of the rows among
processors may thus be impacted. A first idea would be to further split nodes (see [71]) of
the elimination tree to reduce the relative weight of the (1,1) block. in order to decrease
the size of the dominant block. Similarly, because the relative computational weight of
the fronts will dynamically and substantially change, the global mapping of the tasks on
the processes will have to be redesigned and even if dynamic scheduling should naturally
handle part of the difficulties our scheduling algorithms will have to be revisited in this
context. For example, some studies have been carried out on static memory-aware map-
ping [86], showing that pivoting can perturb quite heavily the memory usage and thus
that dynamic memory-aware mapping is needed. BLR factorizations enhance this need
because of dynamic compressions.

In a more general context, BLR technologies pave the way to a broader usage of direct
solvers (multifrontal and even supernodal) for industrial applications, as they allow some
of the usual difficulties encountered by direct solvers users to be overcome. Finally, we
believe that the proposed approaches can also be successfully and naturally exploited to
improve the efficiency of hybrid and iterative solvers.
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